WorldWideScience

Sample records for generates magnetostatic field

  1. On the generation of magnetostatic solutions from gravitational two-soliton solutions of a stationary mass

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, A. [B.K.C. College, Department of Physics, Kolkata (India); Chaudhuri, S. [University of Burdwan, Department of Physics, Burdwan (India)

    2017-11-15

    In the paper, magnetostatic solutions of the Einstein-Maxwell field equations are generated from the gravitational two-soliton solutions of a stationary mass. Using the soliton technique of Belinskii and Zakharov (Sov Phys JETP 48:985, 1978, Sov Phys JETP 50:1, 1979), we construct diagonal two-soliton solutions of Einstein's gravitational field equations for an axially symmetric stationary space-time and investigate some properties of the generated stationary gravitational metric. Magnetostatic solutions corresponding to the generated stationary gravitational solutions are then constructed using the transformation technique of Das and Chaudhuri (Pramana J Phys 40:277, 1993). The mass and the dipole moment of the source are evaluated. In our analysis we make use of a second transformation (Chaudhuri in Pramana J Phys 58:449, 2002), probably for the first time in the literature, to generate magnetostatic solutions from the stationary gravitational two-soliton solutions which give us simple and straightforward expressions for the mass and the magnetic dipole moment. (orig.)

  2. Magnetostatic modes in ferromagnetic samples with inhomogeneous internal fields

    Science.gov (United States)

    Arias, Rodrigo

    2015-03-01

    Magnetostatic modes in ferromagnetic samples are very well characterized and understood in samples with uniform internal magnetic fields. More recently interest has shifted to the study of magnetization modes in ferromagnetic samples with inhomogeneous internal fields. The present work shows that under the magnetostatic approximation and for samples of arbitrary shape and/or arbitrary inhomogeneous internal magnetic fields the modes can be classified as elliptic or hyperbolic, and their associated frequency spectrum can be delimited. This results from the analysis of the character of the second order partial differential equation for the magnetostatic potential under these general conditions. In general, a sample with an inhomogeneous internal field and at a given frequency, may have regions of elliptic and hyperbolic character separated by a boundary. In the elliptic regions the magnetostatic modes have a smooth monotonic character (generally decaying form the surfaces (a ``tunneling'' behavior)) and in hyperbolic regions an oscillatory wave-like character. A simple local criterion distinguishes hyperbolic from elliptic regions: the sign of a susceptibility parameter. This study shows that one may control to some extent magnetostatic modes via external fields or geometry. R.E.A. acknowledges Financiamiento Basal para Centros Cientificos y Tecnologicos de Excelencia under Project No. FB 0807 (Chile), Grant No. ICM P10-061-F by Fondo de Innovacion para la Competitividad-MINECON, and Proyecto Fondecyt 1130192.

  3. Methods for magnetostatic field calculation

    International Nuclear Information System (INIS)

    Vorozhtsov, S.B.

    1984-01-01

    Two methods for magnetostatic field calculation: differential and integrat are considered. Both approaches are shown to have certain merits and drawbacks, choice of the method depend on the type of the solved problem. An opportunity of combination of these tWo methods in one algorithm (hybrid method) is considered

  4. Magnetostatic wave tunable resonators

    Science.gov (United States)

    Castera, J.-P.; Hartemann, P.

    1983-06-01

    Theoretical principles and techniques for the implementation of magnetostatic surface wave and volume wave resonators in high frequency oscillators are discussed. Magnetostatic waves are magnetic waves that propagate in materials exposed to a polarized magnetic field. The propagation speed ranges from 3-300 km/sec for wavelengths between 1 micron and 10 mm, in the presence of lags from 10-1000 nsec/ cm. Tunable resonators in the 1-20 GHz frequency range have been manufactured with YIG using liquid phase epitaxy for deposition on gadolinium and gallium substrates. Distributed-mirror Fabry-Perot cavity resonators are described and performance tests results are reported, including losses of 8 dB, a quality coefficient under voltage of 450, and frequency rejection outside of resonance better than 10 dB. However, saturation occurs at low power levels at frequencies lower than 4.2 GHz, a feature overcome with forward volume magnetostatic wave generators, which have a quality factor of 500, an insertion loss of 22 dB, and rejection around 15 dB.

  5. Testing nonlinear electrodynamics in waveguides: the effect of magnetostatic fields on the transmitted power

    Energy Technology Data Exchange (ETDEWEB)

    Ferraro, Rafael, E-mail: ferraro@iafe.uba.a [Instituto de AstronomIa y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina); Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina)

    2010-05-14

    In Born-Infeld theory and other nonlinear electrodynamics, the presence of a magnetostatic field modifies the dispersion relation and the energy velocity of waves propagating in a hollow waveguide. As a consequence, the transmitted power along a waveguide suffers slight changes when a magnetostatic field is switched on and off. This tiny effect could be better tested by operating the waveguide at a frequency close to the cutoff frequency.

  6. Testing nonlinear electrodynamics in waveguides: the effect of magnetostatic fields on the transmitted power

    International Nuclear Information System (INIS)

    Ferraro, Rafael

    2010-01-01

    In Born-Infeld theory and other nonlinear electrodynamics, the presence of a magnetostatic field modifies the dispersion relation and the energy velocity of waves propagating in a hollow waveguide. As a consequence, the transmitted power along a waveguide suffers slight changes when a magnetostatic field is switched on and off. This tiny effect could be better tested by operating the waveguide at a frequency close to the cutoff frequency.

  7. Laser plasma heating in the presence of electrostatic-magnetostatic crosses fields

    International Nuclear Information System (INIS)

    Goya, A.; Fonseca, A.L.A.; Nunes, O.A.C.

    1994-01-01

    The mechanism of plasma heating by one or two lasers in the presence of electrostatic-magnetostatic crossed fields is studied. The results show that the increasing of heating ratio is bigger due to the increment of stationary electric field. 7 refs

  8. Wave function for harmonically confined electrons in time-dependent electric and magnetostatic fields.

    Science.gov (United States)

    Zhu, Hong-Ming; Chen, Jin-Wang; Pan, Xiao-Yin; Sahni, Viraht

    2014-01-14

    We derive via the interaction "representation" the many-body wave function for harmonically confined electrons in the presence of a magnetostatic field and perturbed by a spatially homogeneous time-dependent electric field-the Generalized Kohn Theorem (GKT) wave function. In the absence of the harmonic confinement - the uniform electron gas - the GKT wave function reduces to the Kohn Theorem wave function. Without the magnetostatic field, the GKT wave function is the Harmonic Potential Theorem wave function. We further prove the validity of the connection between the GKT wave function derived and the system in an accelerated frame of reference. Finally, we provide examples of the application of the GKT wave function.

  9. Enhanced THz radiation generation by photo-mixing of tophat lasers in rippled density plasma with a planar magnetostatic wiggler and s-parameter

    Science.gov (United States)

    Abedi-Varaki, M.

    2018-02-01

    In this paper, the effects of planar magnetostatic wiggler and s-parameter on the terahertz (THz) radiation generation through rippled plasma have been investigated. Efficient THz radiation generation by photo-mixing of tophat lasers for rippled density plasma in the presence of the wiggler field has been presented. Fundamental equations for the analysis of the non-linear current density and THz radiation generation by wiggler magnetostatic field have been derived. It is shown that for the higher order of the tophat lasers, the values of THz amplitude are greater. In fact, the higher order of the tophat lasers has a sharp gradient in the intensity of lasers, which leads to a stronger nonlinear ponderomotive force and, consequently, a stronger current density. In addition, it is seen that by increasing s-parameter, the normalized transverse profile becomes more focused near the axis of y. Furthermore, it is observed that the normalized laser efficiency has a decreasing trend with increasing normalized THz frequency for different values of the wiggler field. Also, it is shown that by employing a greater order of the tophat lasers and a stronger wiggler field, the efficiency of order of 30% can be achieved. Moreover, it is found that we can control focus and intensity of THz radiation emitted in rippled plasma by choosing the appropriate order of the tophat lasers and tuning of the wiggler field.

  10. Precise magnetostatic field using the finite element method

    International Nuclear Information System (INIS)

    Nascimento, Francisco Rogerio Teixeira do

    2013-01-01

    The main objective of this work is to simulate electromagnetic fields using the Finite Element Method. Even in the easiest case of electrostatic and magnetostatic numerical simulation some problems appear when the nodal finite element is used. It is difficult to model vector fields with scalar functions mainly in non-homogeneous materials. With the aim to solve these problems two types of techniques are tried: the adaptive remeshing using nodal elements and the edge finite element that ensure the continuity of tangential components. Some numerical analysis of simple electromagnetic problems with homogeneous and non-homogeneous materials are performed using first, the adaptive remeshing based in various error indicators and second, the numerical solution of waveguides using edge finite element. (author)

  11. New exact solutions of the Einstein—Maxwell equations for magnetostatic fields

    International Nuclear Information System (INIS)

    Goyal, Nisha; Gupta, R.K.

    2012-01-01

    The symmetry reduction method based on the Fréchet derivative of differential operators is applied to investigate symmetries of the Einstein—Maxwell field equations for magnetostatic fields, which is a coupled system of nonlinear partial differential equations of the second order. The technique yields invariant transformations that reduce the given system of partial differential equations to a system of nonlinear ordinary differential equations. Some of the reduced systems are further studied to obtain the exact solutions

  12. Practical design of magnetostatic structure using numerical simulation

    CERN Document Server

    Wang, Qiuliang

    2013-01-01

    Covers the practical numerical method for the analysis and design of magnets Extensively covers the magnet design and computation aspects from theories to practical applications, emphasizing design methods of practical structures such as superconducting, electromagnetic and permanent magnet for use in various scientific instruments, industrial processing, biomedicine and special electrical equipments. The computations cover a wide range of numerical techniques and analytical derivation to efficiently provide solutions to complicated problems that are often encountered in practice, where simple analytical calculations are no longer adequate. Chapters include: Introduction of Magnet Technology, Magnetostatic Equation for the Magnet Structure, Finite Element Analysis for Magnetostatic Field, Integral Method for Magnetostatic Field, Numerical Method of Solenoid Coils Design, Series Analysis of Axially Symmetric Magnetic Field, Magnets with High Magnetic Field and High Homogeneity, Permanent Magnet and its App...

  13. Planar Hall effect sensor with magnetostatic compensation layer

    DEFF Research Database (Denmark)

    Dalslet, Bjarke Thomas; Donolato, Marco; Hansen, Mikkel Fougt

    2012-01-01

    Demagnetization effects in cross-shaped planar Hall effect sensors cause inhomogeneous film magnetization and a hysteretic sensor response. Furthermore, when using sensors for detection of magnetic beads, the magnetostatic field from the sensor edges attracts and holds magnetic beads near...... the sensor edges causing inhomogeneous and non-specific binding of the beads. We show theoretically that adding a compensation magnetic stack beneath the sensor stack and exchange-biasing it antiparallel to the sensor stack, the magnetostatic field is minimized. We show experimentally that the compensation...... stack removes nonlinear effects from the sensor response, it strongly reduces hysteresis, and it increases the homogeneity of the bead distribution. Finally, it reduces the non-specific binding due to magnetostatic fields allowing us to completely remove beads from the compensated sensor using a water...

  14. Combined algorithms in nonlinear problems of magnetostatics

    International Nuclear Information System (INIS)

    Gregus, M.; Khoromskij, B.N.; Mazurkevich, G.E.; Zhidkov, E.P.

    1988-01-01

    To solve boundary problems of magnetostatics in unbounded two- and three-dimensional regions, we construct combined algorithms based on a combination of the method of boundary integral equations with the grid methods. We study the question of substantiation of the combined method of nonlinear magnetostatic problem without the preliminary discretization of equations and give some results on the convergence of iterative processes that arise in non-linear cases. We also discuss economical iterative processes and algorithms that solve boundary integral equations on certain surfaces. Finally, examples of numerical solutions of magnetostatic problems that arose when modelling the fields of electrophysical installations are given too. 14 refs.; 2 figs.; 1 tab

  15. Magnetostatic fields computed using an integral equation derived from Green's theorems

    International Nuclear Information System (INIS)

    Simkin, J.; Trowbridge, C.W.

    1976-04-01

    A method of computing magnetostatic fields is described that is based on a numerical solution of the integral equation obtained from Green's Theorems. The magnetic scalar potential and its normal derivative on the surfaces of volumes are found by solving a set of linear equations. These are obtained from Green's Second Theorem and the continuity conditions at interfaces between volumes. Results from a two-dimensional computer program are presented and these show the method to be accurate and efficient. (author)

  16. Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics

    Science.gov (United States)

    Santos, J. J.; Bailly-Grandvaux, M.; Ehret, M.; Arefiev, A. V.; Batani, D.; Beg, F. N.; Calisti, A.; Ferri, S.; Florido, R.; Forestier-Colleoni, P.; Fujioka, S.; Gigosos, M. A.; Giuffrida, L.; Gremillet, L.; Honrubia, J. J.; Kojima, S.; Korneev, Ph.; Law, K. F. F.; Marquès, J.-R.; Morace, A.; Mossé, C.; Peyrusse, O.; Rose, S.; Roth, M.; Sakata, S.; Schaumann, G.; Suzuki-Vidal, F.; Tikhonchuk, V. T.; Toncian, T.; Woolsey, N.; Zhang, Z.

    2018-05-01

    Powerful nanosecond laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in excess of 0.5 kT. The quasi-static currents are provided from hot electron ejection from the laser-irradiated surface. According to our model, which describes the evolution of the discharge current, the major control parameter is the laser irradiance Ilasλlas2 . The space-time evolution of the B-fields is experimentally characterized by high-frequency bandwidth B-dot probes and proton-deflectometry measurements. The magnetic pulses, of ns-scale, are long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport through solid dielectric targets, yielding an unprecedented 5-fold enhancement of the energy-density flux at 60 μm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes, and to laboratory astrophysics.

  17. Computation of 3-D magnetostatic fields using a reduced scalar potential

    International Nuclear Information System (INIS)

    Biro, O.; Preis, K.; Vrisk, G.; Richter, K.R.

    1993-01-01

    The paper presents some improvements to the finite element computation of static magnetic fields in three dimensions using a reduced magnetic scalar potential. New methods are described for obtaining an edge element representation of the rotational part of the magnetic field from a given source current distribution. In the case when the current distribution is not known in advance, a boundary value problem is set up in terms of a current vector potential. An edge element representation of the solution can be directly used in the subsequent magnetostatic calculation. The magnetic field in a D.C. arc furnace is calculated by first determining the current distribution in terms of a current vector potential. A three dimensional problem involving a permanent magnet as well as a coil is solved and the magnetic field in some points is compared with measurement results

  18. Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics

    Science.gov (United States)

    Santos, Joao

    2017-10-01

    Powerful laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in the kTesla range. The B-fields are measured by proton-deflectometry and high-frequency bandwidth B-dot probes. According to our modeling, the quasi-static currents are provided from hot electron ejection from the laser-irradiated surface, accounting for the space charge neutralization and the plasma magnetization. The major control parameter is the laser irradiance Iλ2 . The B-fields ns-scale is long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport into solid dielectric targets, yielding an unprecedented enhancement of a factor 5 on the energy-density flux at 60 µm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes and to laboratory astrophysics. We acknowledge funding from French National Agency for Research (ANR), Grant TERRE ANR-2011-BS04-014, and from EUROfusion Consortium, European Union's Horizon 2020 research and innovation programme, Grant 633053.

  19. Measurement of 3-Axis Magnetic Fields Induced by Current Wires Using a Smartphone in Magnetostatics Experiments

    Science.gov (United States)

    Setiawan, B.; Septianto, R. D.; Suhendra, D.; Iskandar, F.

    2017-01-01

    This paper describes the use of an inexpensive smartphone's magnetic sensor to measure magnetic field components (B[subscript x], B[subscript y] and B[subscript z]) induced by current wires in magnetostatic experiments. The variable parameters used to measure the magnetic sensor's capabilities were: the geometrical shapes of the wire, current…

  20. Magnetostatic excitations in thin ferrite films

    International Nuclear Information System (INIS)

    Zil'berman, P.E.; Lugovskoi, A.V.

    1987-01-01

    The authors discuss the influence of the exchange interaction and dissipative processes in thin ferrite films on the eigenfrequency spectrum of magnetostatic standing waves and on the dispersion relation and attenuation of magnetostatic traveling waves. For the first time they obtain explicitly the dispersion relation for magnetostatic waves (MSWs) in a tangential saturating magnetic field H 0 to second order (inclusive) in the exchange interaction parameter λ. The authors obtain computer solutions for this equation in the complex frequency (ω) plane (for standing waves) or wave-number (q) plane (for traveling waves). The authors show that the dispersion relation constructed from the standing-wave spectrum is different from that of the traveling waves if λ≠0, even if dissipation is neglected. The traveling waves have auxiliary branches of the dispersion relation with weak damping near the spin-wave-resonance (SWR) frequencies. Dissipation has only a relatively weak effect on the frequency spectrum of the standing waves, shifting it upward. For the traveling waves, however, dissipation leads to qualitative changes in the structure of the dispersion relation, giving rise to new branches, forbidden bands, reentrant and anomalous-dispersion regions

  1. Contribution to the resolution of magnetohydrodynamic and magnetostatic equations

    International Nuclear Information System (INIS)

    Boulbe, C.

    2007-10-01

    Interaction between a plasma and a magnetic field appears and has an important role in various domains such as thermonuclear fusion by magnetic confinement or astrophysical plasmas for example. In evolution, these interactions are described by the equations of magnetohydrodynamics (MHD). At equilibrium, the MHD equations result in the magnetostatic equations involving the magnetic field and the kinetic pressure of the plasma. The magnetostatic equations form a system of 3-dimensional non linear partial differential equations involving a magnetic field and a kinetic plasma pressure. When the pressure is supposed negligible, the magnetic field is known as Beltrami field. In a first time, we propose to solve numerically the Beltrami field problem using a fixed point iterative algorithm associated with finite element methods. This iterative strategy is extended in a second time to the computation of magnetostatic configurations with pressure. In the sequel, we interest in the approximation of ideal MHD equations. This system forms a nonlinear hyperbolic conservation law. We propose to use a finite volume approach, in which fluxes are calculated by a Roe's method on a tetrahedral mesh. Fluxes of the magnetic field are modified in order to satisfy the constraint of divergence free imposed on it. The proposed methods have been implemented in two new 3-dimensional codes called TETRAFFF for equilibrium, and TETRAMHD for MHD. The obtained numerical results confirm the high performance of these methods. (author)

  2. Effects of metal and 'magnetic wall' on the dispersion characteristic of magnetostatic waves

    International Nuclear Information System (INIS)

    Lock, Edwin H.; Vashkovsky, Anatoly V.

    2006-01-01

    The dispersion relation of magnetostatic waves tangentially magnetized to saturation ferrite film, with a 'magnetic wall' condition (tangential component of microwave magnetic field is equal to zero) on one of the film surface and with a metal condition on the opposite surface is analyzed. The dispersion characteristics show that unidirectional magnetostatic waves appear in this structure: they can transfer energy in one direction only and fundamentally cannot transfer energy in the opposite direction. The dispersion-free propagation of magnetostatic waves also is possible in the structure in a wide frequency interval

  3. Transformation magneto-statics and illusions for magnets

    Science.gov (United States)

    Sun, Fei; He, Sailing

    2014-10-01

    Based on the form-invariant of Maxwell's equations under coordinate transformations, we extend the theory of transformation optics to transformation magneto-statics, which can design magnets through coordinate transformations. Some novel DC magnetic field illusions created by magnets (e.g. rescaling magnets, cancelling magnets and overlapping magnets) are designed and verified by numerical simulations. Our research will open a new door to designing magnets and controlling DC magnetic fields.

  4. On the magnetostatics of chains of magnetic nanoparticles

    DEFF Research Database (Denmark)

    Phatak, C.; Pokharel, R.; Beleggia, Marco

    2011-01-01

    A novel approach is presented for the computation of the magnetostatic energy of straight and bent chains of identical, uniformly magnetized particles of arbitrary shape. The formalism relies on the concept of the magnetometric tensor field, and allows for closed form expressions for the magnetos...

  5. On the Basic Equations of the Magnetostatics

    Directory of Open Access Journals (Sweden)

    A. M. Makarov

    2016-01-01

    Full Text Available The paper studies the physical relationship between the main objects of the magnetic field in a continuous medium with magnetization effects. Consistently considers the following hypotheses: a hypothesis of the primacy and the physical reality of the magnetization vector field environment, a similar hypothesis about the real existence of Ampere currents (molecular currents, magnetization currents, a hypothesis of a magnetic dipole moment of the medium volume element in view of bulk density of electric currents in this volume. A more rigorous derivation of the basic differential equations of magnetostatics from the Biot-Savart-Laplace equation is proposed.The well-known works justifying basic equations of magnetostatics use a procedure wherein when proving the local differential ratio is used a transformation of some volume integral to the surface integral bounding this volume. Thus, there is a specific way to select a closed surface that is either a surface in a vacuum (beyond the medium volume under consideration, or a surface of the conductor (a normal component of currents to the surface, here, becomes zero. In the paper the control surface is arbitrarily carried out within the volume of the medium under consideration, thereby leading to the mathematically sound result.The paper analyzes the hypotheses listed above. The main feature of analysis is a succesively using concept of bilateralism surface bounding the medium volume of the arbitrary finite dimensions. The analysis allowed us to reveal the physical adequacy of the considered hypotheses, derive the appropriate differential equations for the basic vector fields of magnetostatics and obtain a new condition. The resulting condition for the closedness of magnetization currents is recorded in entire compliance with the well-known Gauss electrostatic law, which avoids the need for additional, but not always reasonable assumptions.

  6. An Analysis of Characteristics of Magnetostatic Waves Propagating in Nonhomogeneous Fields Across the Ferrospinel Film Thickness

    Science.gov (United States)

    Velikanova, Yu. V.; Vinogradova, M. R.; Mitlina, L. A.

    2018-06-01

    The amplitude-frequency characteristics (AFCs) of magnetostatic waves in the films of magnesium-manganese ferrospinels with nanostructured inhomogeneities are discussed. A common effect, observed in the film AFCs under different process conditions, is the `oscillations of propagation' of magnetostatic waves as a function of the frequency. The oscillation pattern is thought to depend on the inhomogeneous exchange parameters and the surface anisotropy constants. The wave instability is characterized by the resonant interaction of the dipole magnetostatic waves with the surface spin waves. It is shown that the ferrospinel films with periodic nanostructured inhomogeneities of 30-40 nm could be treated as magnon crystals. An inclusion of the inhomogeneity into consideration allows one to provide reasoning for the formation of the rejection bands within the range 9-12 GHz, whose frequencies correspond to Bragg frequencies.

  7. A self-consistent model of a thermally balanced quiescent prominence in magnetostatic equilibrium in a uniform gravitational field

    International Nuclear Information System (INIS)

    Lerche, I.; Low, B.C.

    1977-01-01

    A theoretical model of quiescent prominences in the form of an infinite vertical sheet is presented. Self-consistent solutions are obtained by integrating simultaneously the set of nonlinear equations of magnetostatic equilibrium and thermal balance. The basic features of the models are: (1) The prominence matter is confined to a sheet and supported against gravity by a bowed magnetic field. (2) The thermal flux is channelled along magnetic field lines. (3) The thermal flux is everywhere balanced by Low's (1975) hypothetical heat sink which is proportional to the local density. (4) A constant component of the magnetic field along the length of the prominence shields the cool plasma from the hot surrounding. It is assumed that the prominence plasma emits more radiation than it absorbes from the radiation fields of the photosphere, chromosphere and corona, and the above hypothetical heat sink is interpreted to represent the amount of radiative loss that must be balanced by a nonradiative energy input. Using a central density and temperature of 10 11 particles cm -3 and 5000 K respectively, a magnetic field strength between 2 to 10 gauss and a thermal conductivity that varies linearly with temperature, the physical properties implied by the model are discussed. The analytic treatment can also be carried out for a class of more complex thermal conductivities. These models provide a useful starting point for investigating the combined requirements of magnetostatic equilibrium and thermal balance in the quiescent prominence. (Auth.)

  8. A three-dimensional magnetostatics computer code for insertion devices

    International Nuclear Information System (INIS)

    Chubar, O.; Elleaume, P.; Chavanne, J.

    1998-01-01

    RADIA is a three-dimensional magnetostatics computer code optimized for the design of undulators and wigglers. It solves boundary magnetostatics problems with magnetized and current-carrying volumes using the boundary integral approach. The magnetized volumes can be arbitrary polyhedrons with non-linear (iron) or linear anisotropic (permanent magnet) characteristics. The current-carrying elements can be straight or curved blocks with rectangular cross sections. Boundary conditions are simulated by the technique of mirroring. Analytical formulae used for the computation of the field produced by a magnetized volume of a polyhedron shape are detailed. The RADIA code is written in object-oriented C++ and interfaced to Mathematica (Mathematica is a registered trademark of Wolfram Research, Inc.). The code outperforms currently available finite-element packages with respect to the CPU time of the solver and accuracy of the field integral estimations. An application of the code to the case of a wedge-pole undulator is presented

  9. Magnetostatic Analysis of a Pinch Mode Magnetorheological Valve

    Directory of Open Access Journals (Sweden)

    Gołdasz Janusz

    2017-09-01

    Full Text Available The study deals with the pinch mode of magnetorheological (MR fluids’ operation and its application in MR valves. By applying the principle in MR valves a highly non-uniform magnetic field can be generated in flow channels in such a way to solidify the portion of the material that is the nearest to the flow channel’s walls. This is in contrary to well-known MR flow mode valves. The authors investigate a basic pinch mode valve in several fundamental configurations, and then examine their magnetic circuits through magnetostatic finite-element (FE analysis. Flux density contour maps are revealed and basic performance figures calculated and analysed. The FE analysis results yield confidence in that the performance of MR pinch mode devices can be effectively controlled through electromagnetic means.

  10. Simple analysis of off-axis solenoid fields using the scalar magnetostatic potential: application to a Zeeman-slower for cold atoms

    OpenAIRE

    Muniz, Sérgio R.; Bhattacharya, M.; Bagnato, Vanderlei S.

    2010-01-01

    In a region free of currents, magnetostatics can be described by the Laplace equation of a scalar magnetic potential, and one can apply the same methods commonly used in electrostatics. Here we show how to calculate the general vector field inside a real (finite) solenoid, using only the magnitude of the field along the symmetry axis. Our method does not require integration or knowledge of the current distribution, and is presented through practical examples, including a non-uniform finite so...

  11. The inverse problem of the magnetostatic nondestructive testing

    International Nuclear Information System (INIS)

    Pechenkov, A.N.; Shcherbinin, V.E.

    2006-01-01

    The inverse problem of magnetostatic nondestructive testing consists in the calculation of the shape and magnetic characteristics of a flaw in a uniform magnetized body with measurement of static magnetic field beyond the body. If the flaw does not contain any magnetic material, the inverse problem is reduced to identification of the shape and magnetic susceptibility of the substance. This case has been considered in the study [ru

  12. Unravelling the tunable exchange bias-like effect in magnetostatically-coupled two dimensional hybrid (hard/soft) composites

    International Nuclear Information System (INIS)

    Hierro-Rodriguez, A; Teixeira, J M; Rodriguez-Rodriguez, G; Rubio, H; Vélez, M; Álvarez-Prado, L M; Martín, J I; Alameda, J M

    2015-01-01

    Hybrid 2D hard-soft composites have been fabricated by combining soft (Co 73 Si 27 ) and hard (NdCo 5 ) magnetic materials with in-plane and out-of-plane magnetic anisotropies, respectively. They have been microstructured in a square lattice of CoSi anti-dots with NdCo dots within the holes. The magnetic properties of the dots allow us to introduce a magnetostatic stray field that can be controlled in direction and sense by their last saturating magnetic field. The magnetostatic interactions between dot and anti-dot layers induce a completely tunable exchange bias-like shift in the system’s hysteresis loops. Two different regimes for this shift are present depending on the lattice parameter of the microstructures. For large parameters, dipolar magnetostatic decay is observed, while for the smaller one, the interaction between the adjacent anti-dot’s characteristic closure domain structures enhances the exchange bias-like effect as clarified by micromagnetic simulations. (paper)

  13. Effect of Magnetostatic Interactions on Twin Boundary Motion in NiMnGa Magnetic Shape Memory Alloy

    DEFF Research Database (Denmark)

    Heczko, Oleg; Vokoun, David; Kopecky, Vit

    2015-01-01

    on the initial position of the twin boundary, the magnetic field providing the critical stress varied in the range 832 kA/m. By taking into account the variants sizes and their mutual interactions, we explained the observed dependence of the switching field on the location of the boundary. The resulting match......We investigated the effect of magnetostatic interactions on the field-induced reorientation of martensite variants in Ni50.0Mn27.5Ga22.5. The reorientation, achieved by sweeping a single Type-II twin boundary along the sample, was triggered by a twinning stress of about 0.1 MPa. However, depending...... between model predictions and measurements illustrates the fundamental role played by demagnetization effects and magnetostatic interactions in magnetic shape memory effect....

  14. Effect of a radial space-charge field on the movement of particles in a magneto-static field and under the influence of a circularly polarized wave

    International Nuclear Information System (INIS)

    Buffa, A.

    1967-06-01

    The effect of a circularly polarized wave on a cylindrical plasma in a axial magnetostatic field and a radial space-charge field proportional to r is studied. Single particle motion is considered. The electrostatic field produces a shift in the cyclotron resonance frequency and,in case of high charge density, a radial movement of the off-resonance particles. In these conditions a radio-frequency-particle resonance is also possible called 'drift-resonance'. The drift resonance can be produced, with whistler mode, and may be employed in ion acceleration. Afterwards parametrical resonances produced by space-charge field oscillations and collisional limits of theory are studied. Cases in which ion acceleration is possible are considered on the basis of a quantitative analysis of results. (author) [fr

  15. Magneto-static Modeling from Sunrise/IMaX: Application to an Active Region Observed with Sunrise II

    Energy Technology Data Exchange (ETDEWEB)

    Wiegelmann, T.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; Noort, M. van [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Neukirch, T. [School of Mathematics and Statistics, University of St. Andrews, St. Andrews KY16 9SS (United Kingdom); Nickeler, D. H. [Astronomical Institute, AV CR, Fricova 298, 25165 Ondrejov (Czech Republic); Rodríguez, J. Blanco [Grupo de Astronomía y Ciencias del Espacio, Universidad de Valencia, E-46980 Paterna, Valencia (Spain); Iniesta, J. C. Del Toro; Suárez, D. Orozco [Instituto de Astrofísica de Andalucía (CSIC), Apartado de Correos 3004, E-18080 Granada (Spain); Schmidt, W. [Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, D-79104 Freiburg (Germany); Pillet, V. Martínez [National Solar Observatory, 3665 Discovery Drive, Boulder, CO 80303 (United States); Knölker, M., E-mail: wiegelmann@mps.mpg.de [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States)

    2017-03-01

    Magneto-static models may overcome some of the issues facing force-free magnetic field extrapolations. So far they have seen limited use and have faced problems when applied to quiet-Sun data. Here we present a first application to an active region. We use solar vector magnetic field measurements gathered by the IMaX polarimeter during the flight of the Sunrise balloon-borne solar observatory in 2013 June as boundary conditions for a magneto-static model of the higher solar atmosphere above an active region. The IMaX data are embedded in active region vector magnetograms observed with SDO /HMI. This work continues our magneto-static extrapolation approach, which was applied earlier to a quiet-Sun region observed with Sunrise I. In an active region the signal-to-noise-ratio in the measured Stokes parameters is considerably higher than in the quiet-Sun and consequently the IMaX measurements of the horizontal photospheric magnetic field allow us to specify the free parameters of the model in a special class of linear magneto-static equilibria. The high spatial resolution of IMaX (110–130 km, pixel size 40 km) enables us to model the non-force-free layer between the photosphere and the mid-chromosphere vertically by about 50 grid points. In our approach we can incorporate some aspects of the mixed beta layer of photosphere and chromosphere, e.g., taking a finite Lorentz force into account, which was not possible with lower-resolution photospheric measurements in the past. The linear model does not, however, permit us to model intrinsic nonlinear structures like strongly localized electric currents.

  16. A Galleria Boundary Element Method for two-dimensional nonlinear magnetostatics

    Science.gov (United States)

    Brovont, Aaron D.

    The Boundary Element Method (BEM) is a numerical technique for solving partial differential equations that is used broadly among the engineering disciplines. The main advantage of this method is that one needs only to mesh the boundary of a solution domain. A key drawback is the myriad of integrals that must be evaluated to populate the full system matrix. To this day these integrals have been evaluated using numerical quadrature. In this research, a Galerkin formulation of the BEM is derived and implemented to solve two-dimensional magnetostatic problems with a focus on accurate, rapid computation. To this end, exact, closed-form solutions have been derived for all the integrals comprising the system matrix as well as those required to compute fields in post-processing; the need for numerical integration has been eliminated. It is shown that calculation of the system matrix elements using analytical solutions is 15-20 times faster than with numerical integration of similar accuracy. Furthermore, through the example analysis of a c-core inductor, it is demonstrated that the present BEM formulation is a competitive alternative to the Finite Element Method (FEM) for linear magnetostatic analysis. Finally, the BEM formulation is extended to analyze nonlinear magnetostatic problems via the Dual Reciprocity Method (DRBEM). It is shown that a coarse, meshless analysis using the DRBEM is able to achieve RMS error of 3-6% compared to a commercial FEM package in lightly saturated conditions.

  17. Using a micromachined magnetostatic relay in commutating a DC motor

    Science.gov (United States)

    Tai, Yu-Chong (Inventor); Wright, John A. (Inventor); Lilienthal, Gerald (Inventor)

    2004-01-01

    A DC motor is commutated by rotating a magnetic rotor to induce a magnetic field in at least one magnetostatic relay in the motor. Each relay is activated in response to the magnetic field to deliver power to at least one corresponding winding connected to the relay. In some cases, each relay delivers power first through a corresponding primary winding and then through a corresponding secondary winding to a common node. Specific examples include a four-pole, three-phase motor in which each relay is activated four times during one rotation of the magnetic rotor.

  18. New Multigrid Method Including Elimination Algolithm Based on High-Order Vector Finite Elements in Three Dimensional Magnetostatic Field Analysis

    Science.gov (United States)

    Hano, Mitsuo; Hotta, Masashi

    A new multigrid method based on high-order vector finite elements is proposed in this paper. Low level discretizations in this method are obtained by using low-order vector finite elements for the same mesh. Gauss-Seidel method is used as a smoother, and a linear equation of lowest level is solved by ICCG method. But it is often found that multigrid solutions do not converge into ICCG solutions. An elimination algolithm of constant term using a null space of the coefficient matrix is also described. In three dimensional magnetostatic field analysis, convergence time and number of iteration of this multigrid method are discussed with the convectional ICCG method.

  19. Precise magnetostatic field using the finite element method; Calculo de campos magnetostaticos com precisao utilizando o metodo dos elementos finitos

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Francisco Rogerio Teixeira do

    2013-07-01

    The main objective of this work is to simulate electromagnetic fields using the Finite Element Method. Even in the easiest case of electrostatic and magnetostatic numerical simulation some problems appear when the nodal finite element is used. It is difficult to model vector fields with scalar functions mainly in non-homogeneous materials. With the aim to solve these problems two types of techniques are tried: the adaptive remeshing using nodal elements and the edge finite element that ensure the continuity of tangential components. Some numerical analysis of simple electromagnetic problems with homogeneous and non-homogeneous materials are performed using first, the adaptive remeshing based in various error indicators and second, the numerical solution of waveguides using edge finite element. (author)

  20. Magnetostatics of the uniformly polarized torus

    DEFF Research Database (Denmark)

    Beleggia, Marco; De Graef, Marc; Millev, Yonko

    2009-01-01

    We provide an exhaustive description of the magnetostatics of the uniformly polarized torus and its derivative self-intersecting (spindle) shapes. In the process, two complementary approaches have been implemented, position-space analysis of the Laplace equation with inhomogeneous boundary condit...

  1. A magnetostatic particle code and its application to studies of anomalous current penetration of a plasma

    International Nuclear Information System (INIS)

    Lin, A.T.; Pritchett, P.L.; Dawson, J.M.

    1976-01-01

    A large number of important plasma problems involves self-consistent magnetic fields. For disturbances which propagate slowly compared to the velocity of light, the magnetostatic approximation (Darwin model) suffices. Based on the Darwin model a particle model has been developed to investigate such problems. (GG) [de

  2. Contribution to the resolution of magnetohydrodynamic and magnetostatic equations; Contribution a la resolution des equations de la magnetohydrodynamique et de la magnetostatique

    Energy Technology Data Exchange (ETDEWEB)

    Boulbe, C

    2007-10-15

    Interaction between a plasma and a magnetic field appears and has an important role in various domains such as thermonuclear fusion by magnetic confinement or astrophysical plasmas for example. In evolution, these interactions are described by the equations of magnetohydrodynamics (MHD). At equilibrium, the MHD equations result in the magnetostatic equations involving the magnetic field and the kinetic pressure of the plasma. The magnetostatic equations form a system of 3-dimensional non linear partial differential equations involving a magnetic field and a kinetic plasma pressure. When the pressure is supposed negligible, the magnetic field is known as Beltrami field. In a first time, we propose to solve numerically the Beltrami field problem using a fixed point iterative algorithm associated with finite element methods. This iterative strategy is extended in a second time to the computation of magnetostatic configurations with pressure. In the sequel, we interest in the approximation of ideal MHD equations. This system forms a nonlinear hyperbolic conservation law. We propose to use a finite volume approach, in which fluxes are calculated by a Roe's method on a tetrahedral mesh. Fluxes of the magnetic field are modified in order to satisfy the constraint of divergence free imposed on it. The proposed methods have been implemented in two new 3-dimensional codes called TETRAFFF for equilibrium, and TETRAMHD for MHD. The obtained numerical results confirm the high performance of these methods. (author)

  3. Forward volume and surface magnetostatic modes in an yttrium iron garnet film for out-of-plane magnetic fields: Theory and experiment

    Science.gov (United States)

    Lim, Jinho; Bang, Wonbae; Trossman, Jonathan; Amanov, Dovran; Ketterson, John B.

    2018-05-01

    We present experimental and theoretical results on the propagation of magnetostatic spin waves in a film of yttrium iron garnet (YIG) for out-of-plane magnetic fields for which propagation in opposite directions is nonreciprocal in the presence of a metal layer. The plane studied is defined by the film normal n and n × k where k is the wave vector of the mode. Spin waves in this setting are classified as forward volume waves or surface waves and display non-reciprocity in the presence of an adjacent metal layer except for when H//n. The measurements are carried out in a transmission geometry, and a microwave mixer is used to measure the change of phase, and with it the evolution of wavevector, of the arriving spin wave with external magnetic field.

  4. Superstrong coupling of thin film magnetostatic waves with microwave cavity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xufeng; Tang, Hong X., E-mail: hong.tang@yale.edu [Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511 (United States); Zou, Changling [Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511 (United States); Department of Applied Physics, Yale University, New Haven, Connecticut 06511 (United States); Jiang, Liang [Department of Applied Physics, Yale University, New Haven, Connecticut 06511 (United States)

    2016-01-14

    We experimentally demonstrated the strong coupling between a microwave cavity and standing magnetostatic magnon modes in a yttrium iron garnet film. Such strong coupling can be observed for various spin wave modes under different magnetic field bias configurations, with a coupling strength inversely proportional to the transverse mode number. A comb-like spectrum can be obtained from these high order modes. The collectively enhanced magnon-microwave photon coupling strength is comparable with the magnon free spectral range and therefore leads to the superstrong coupling regime. Our findings pave the road towards designing a new type of strongly hybridized magnon-photon system.

  5. The influence of magnetostatic interactions in exchange-coupled composite particles

    DEFF Research Database (Denmark)

    Vokoun, D.; Beleggia, Marco; De Graef, M.

    2010-01-01

    Exchange-coupled composite (ECC) particles are the basic constituents of ECC magnetic recording media. We examine and compare two types of ECC particles: (i) core-shell structures, consisting of a hard-magnetic core and a coaxial soft-magnetic shell and (ii) conventional ECC particles, with a hard-magnetic...... core topped by a soft cylindrical element. The model we present describes the magnetic response of the two ECC particle types, taking into account all significant magnetic contributions to the energy landscape. Special emphasis is given to the magnetostatic (dipolar) interaction energy. We find...... that both the switching fields and the zero-field energy barrier depend strongly on the particle geometry. A comparison between the two types reveals that core-shell ECC particles are more effective in switching field reduction, while conventional ECC particles maintain a larger overall figure of merit....

  6. Spin-wave logic devices based on isotropic forward volume magnetostatic waves

    International Nuclear Information System (INIS)

    Klingler, S.; Pirro, P.; Brächer, T.; Leven, B.; Hillebrands, B.; Chumak, A. V.

    2015-01-01

    We propose the utilization of isotropic forward volume magnetostatic spin waves in modern wave-based logic devices and suggest a concrete design for a spin-wave majority gate operating with these waves. We demonstrate by numerical simulations that the proposed out-of-plane magnetized majority gate overcomes the limitations of anisotropic in-plane magnetized majority gates due to the high spin-wave transmission through the gate, which enables a reduced energy consumption of these devices. Moreover, the functionality of the out-of-plane majority gate is increased due to the lack of parasitic generation of short-wavelength exchange spin waves

  7. Spin-wave logic devices based on isotropic forward volume magnetostatic waves

    Energy Technology Data Exchange (ETDEWEB)

    Klingler, S., E-mail: stefan.klingler@wmi.badw-muenchen.de; Pirro, P.; Brächer, T.; Leven, B.; Hillebrands, B.; Chumak, A. V. [Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern (Germany)

    2015-05-25

    We propose the utilization of isotropic forward volume magnetostatic spin waves in modern wave-based logic devices and suggest a concrete design for a spin-wave majority gate operating with these waves. We demonstrate by numerical simulations that the proposed out-of-plane magnetized majority gate overcomes the limitations of anisotropic in-plane magnetized majority gates due to the high spin-wave transmission through the gate, which enables a reduced energy consumption of these devices. Moreover, the functionality of the out-of-plane majority gate is increased due to the lack of parasitic generation of short-wavelength exchange spin waves.

  8. Polarimetry on dense samples of spin-polarized 3He by magnetostatic detection

    International Nuclear Information System (INIS)

    Wilms, E.; Ebert, M.; Heil, W.; Surkau, R.

    1997-01-01

    A very sensitive low-field fluxgate magnetometer is used to detect the static magnetic field produced by dense samples of spin-polarized 3 He gas contained in spherical glass cells at pressures around several bars. The 3 He nuclear polarization can be extracted with high precision ΔP/P<1% by utilizing magnetostatic detection in combination with adiabatic fast-passage spin reversal. The polarization losses can be kept well below 0.1% thus making this type of polarimetry almost non-destructive. More simply even, P can be measured with reduced accuracy by the change of field when the cell is removed from the fluxgate. In this case the accuracy is limited to about 10% due to the uncertainties about the susceptibilities of the cell walls. (orig.)

  9. Tensile stress dependence of the magnetostatic interaction between Fe-rich wires

    International Nuclear Information System (INIS)

    Gawronski, P.; Zhukov, A.; Blanco, J.M.; Gonzalez, J.; KuIakowski, K.

    2005-01-01

    We study the influence of the applied tensile stress on the magnetostatic interaction between two amorphous Fe-rich wires. The hysteresis loop is measured for: (i) conventional wires produced by in-rotation-water method, with diameter of 125μm (ii) cold-drawn wires with diameter of 50μm. The stress dependence of the interaction field is evaluated from the shape of the hysteresis loops, which show characteristic two-step behaviour. These steps mark the values of the switching field of the wires. For the conventional wires the tensile stress dependence of the interaction field can be explained as a result of the tensile stress dependence of the magnetization. For the cold-drawn wires, the interaction field shows a maximum with the applied stress. This behaviour is interpreted as a consequence of a local variation of the domain structure at the wire ends. It modifies the stray field, and-as a consequence-the switching field of the neighbouring wire

  10. Magnetostatic interactions and forces between cylindrical permanent magnets

    Czech Academy of Sciences Publication Activity Database

    Vokoun, David; Beleggia, M.; Heller, Luděk; Šittner, Petr

    2009-01-01

    Roč. 321, č. 22 (2009), s. 3758-3763 ISSN 0304-8853 EU Projects: European Commission(XE) 46559 - CERINKA Institutional research plan: CEZ:AV0Z10100520 Keywords : cylinder * force measurement * magnetostatic * permanent magnet Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.204, year: 2009

  11. Magnetic fields, special relativity and potential theory elementary electromagnetic theory

    CERN Document Server

    Chirgwin, B H; Kilmister, C W

    1972-01-01

    Magnetic Fields, Special Relativity and Potential Theory is an introduction to electromagnetism, special relativity, and potential theory, with emphasis on the magnetic field of steady currents (magnetostatics). Topics covered range from the origin of the magnetic field and the magnetostatic scalar potential to magnetization, electromagnetic induction and magnetic energy, and the displacement current and Maxwell's equations. This volume is comprised of five chapters and begins with an overview of magnetostatics, followed by a chapter on the methods of solving potential problems drawn from elec

  12. Nonequivalence of the magnetostatic potential energy corresponding to the Ampère and Grassmann current element force formulas

    International Nuclear Information System (INIS)

    Minteer, Timothy M

    2013-01-01

    The equivalence of the Ampère and Grassmann (Biot–Savart/Lorentz) current element force formulas is well established. However, when the magnetostatic potential energy corresponding to these force formulas is evaluated, the formulas are found to be nonequivalent. The historical current element force formulas are first presented. The magnetostatic potential energy corresponding to these historical current element force formulas are then analysed. The end result establishes the Grassmann and Neumann current element force formulas as the only commonly referenced formulas giving the correct magnetostatic potential energy for circuital currents. (paper)

  13. On the relationship between magnetostatic wave energy and dispersion characteristics in ferrite structures

    International Nuclear Information System (INIS)

    Vashkovsky, Anatolii V; Lock, Edwin H

    2011-01-01

    The energy and dispersion characteristics of a dipole spin wave in a ferrite-dielectric-metal structure are calculated. An analysis of spin wave dispersion characteristics with extreme points demonstrates how fundamental relationships among the propagation constant, phase and group velocities, Poynting vector, and power flux manifest themselves when the wavenumber changes near these points. A comparison of magnetostatic approximation results with calculations using Maxwell's equations shows the inadequacy of the magnetostatic approximation formulas currently used for calculating the Poynting vector and power flux of dipole spin waves. A correct alternative is proposed. (methodological notes)

  14. Lowest order Virtual Element approximation of magnetostatic problems

    Science.gov (United States)

    Beirão da Veiga, L.; Brezzi, F.; Dassi, F.; Marini, L. D.; Russo, A.

    2018-04-01

    We give here a simplified presentation of the lowest order Serendipity Virtual Element method, and show its use for the numerical solution of linear magneto-static problems in three dimensions. The method can be applied to very general decompositions of the computational domain (as is natural for Virtual Element Methods) and uses as unknowns the (constant) tangential component of the magnetic field $\\mathbf{H}$ on each edge, and the vertex values of the Lagrange multiplier $p$ (used to enforce the solenoidality of the magnetic induction $\\mathbf{B}=\\mu\\mathbf{H}$). In this respect the method can be seen as the natural generalization of the lowest order Edge Finite Element Method (the so-called "first kind N\\'ed\\'elec" elements) to polyhedra of almost arbitrary shape, and as we show on some numerical examples it exhibits very good accuracy (for being a lowest order element) and excellent robustness with respect to distortions.

  15. Polarimetry on dense samples of spin-polarized {sup 3}He by magnetostatic detection

    Energy Technology Data Exchange (ETDEWEB)

    Wilms, E.; Ebert, M.; Heil, W.; Surkau, R. [Mainz Univ. (Germany). Inst. fuer Physik

    1997-12-21

    A very sensitive low-field fluxgate magnetometer is used to detect the static magnetic field produced by dense samples of spin-polarized {sup 3}He gas contained in spherical glass cells at pressures around several bars. The {sup 3}He nuclear polarization can be extracted with high precision {Delta}P/P<1% by utilizing magnetostatic detection in combination with adiabatic fast-passage spin reversal. The polarization losses can be kept well below 0.1% thus making this type of polarimetry almost non-destructive. More simply even, P can be measured with reduced accuracy by the change of field when the cell is removed from the fluxgate. In this case the accuracy is limited to about 10% due to the uncertainties about the susceptibilities of the cell walls. (orig.). 29 refs.

  16. Birkeland currents in an anisotropic, magnetostatic plasma

    International Nuclear Information System (INIS)

    Birmingham, T.J.

    1992-01-01

    An expression for the parallel current density is derived for a plasma characterized by negligible bulk flow (magnetostatic) velocity and a two-component (anisotropic) pressure tensor by expanding the equilibrium Vlasov equation for each species in the adiabatic parameter until such point as a nonvanishing moment j parallel = ∫ d 3 vv parallel is identified. The result is a nonlocal one: it relates j parallel at one point s along a field line to j parallel at another (reference) point s 0 plus an integral function of the pressure and magnetic field between them. It is a generalization and elaboration of results obtained by Bostrom (1975), Heinemann (1990), and Heinemann and Pontius (1991). The expression could have been obtained by integrating the current continuity equation with -∇ x j perpendicular as a source term and j perpendicular given by perpendicular momentum balance. The authors explicitly show the equivalency. The widely used Vasyliunas (1970) equation follows when P perpendicular is set equal to P parallel and s and s 0 are taken to be at the ionosphere and the equator. An extended discussion of the relationship of results derived here to others in the literature is carried out in an effort to bring unity and perspective to this problem area

  17. Reformulation of nonlinear integral magnetostatic equations for rapid iterative convergence

    International Nuclear Information System (INIS)

    Bloomberg, D.S.; Castelli, V.

    1985-01-01

    The integral equations of magnetostatics, conventionally given in terms of the field variables M and H, are reformulated with M and B. Stability criteria and convergence rates of the eigenvectors of the linear iteration matrices are evaluated. The relaxation factor β in the MH approach varies inversely with permeability μ, and nonlinear problems with high permeability converge slowly. In contrast, MB iteration is stable for β 3 , the number of iterations is reduced by two orders of magnitude over the conventional method, and at higher permeabilities the reduction is proportionally greater. The dependence of MB convergence rate on β, degree of saturation, element aspect ratio, and problem size is found numerically. An analytical result for the MB convergence rate for small nonlinear problems is found to be accurate for βless than or equal to1.2. The results are generally valid for two- and three-dimensional integral methods and are independent of the particular discretization procedures used to compute the field matrix

  18. The chronicle of the electro-magnetostatic

    International Nuclear Information System (INIS)

    Bassalo, J.M.F.

    1983-01-01

    The Chronicle of the electro-magnetostatic is shown, since the first observation made by Tales de Mileto, in the VI centry B.C., about the magnetic and electric phenomenons, up to the mathematical learning of the electrical circuits, made by Kirchhoff, almost in the first half of the XIX century. In run away of this chronicle, the experimental laws involving the behavior of the electrical charge, in the insulators and in the conductors, are presented as well as the piezo and piro-electrical and chemical effects the electrical charge incite in some substances. (Author) [pt

  19. Geophysical Field Theory

    International Nuclear Information System (INIS)

    Eloranta, E.

    2003-11-01

    The geophysical field theory includes the basic principles of electromagnetism, continuum mechanics, and potential theory upon which the computational modelling of geophysical phenomena is based on. Vector analysis is the main mathematical tool in the field analyses. Electrostatics, stationary electric current, magnetostatics, and electrodynamics form a central part of electromagnetism in geophysical field theory. Potential theory concerns especially gravity, but also electrostatics and magnetostatics. Solid state mechanics and fluid mechanics are central parts in continuum mechanics. Also the theories of elastic waves and rock mechanics belong to geophysical solid state mechanics. The theories of geohydrology and mass transport form one central field theory in geophysical fluid mechanics. Also heat transfer is included in continuum mechanics. (orig.)

  20. Utilisation of the Magnetic Sensor in a Smartphone for Facile Magnetostatics Experiment: Magnetic Field Due to Electrical Current in Straight and Loop Wires

    Science.gov (United States)

    Septianto, R. D.; Suhendra, D.; Iskandar, F.

    2017-01-01

    This paper reports on the result of a research into the utilisation of a smartphone for the study of magnetostatics on the basis of experiments. The use of such a device gives great measurement result and thus it can replace magnetic sensor tools that are relatively expensive. For the best experimental result, firstly the position of the magnetic…

  1. Design and analysis of permanent magnet moving coil type generator used in a micro-CHP generation system

    Science.gov (United States)

    Oros Pop, Susana Teodora; Berinde, Ioan; Vadan, Ioan

    2015-12-01

    This paper presents the design and analysis of a permanent magnet moving coil type generator driven by a free piston Stirling engine. This assemble free piston Stirling engine - permanent magnet moving coil type generator will be used in a combined heat and power (CHP) system for producing heat and power in residential area. The design procedure for moving coil type linear generator starts from the rated power imposed and finally uses the Faraday law of induction. The magneto-static magnetic field generated by permanent magnets is analyzed by means of Reluctance method and Finite Element Method in order to evaluate the magnetic flux density in the air gap, which is a design data imposed in the design stage, and the results are compared.

  2. Magnetostatic atmospheres with variations in three dimensions

    International Nuclear Information System (INIS)

    Low, B.C.

    1982-01-01

    The paper treats the static equilibrium of a fully ionized atmosphere with an embedded magnetic field in the presence of a uniform gravity. The magnetic field lines are assumed to lie in parallel vertical planes, taken to be perpendicular to the x-axis in Cartesian coordinates. Except for this assumption, the system is allowed to vary in all three dimensions. The theoretical investigation reported here is a departure from previous studies of magnetostatics which have been limited by mathematical tractability to symmetric or two-dimensional systems. The class of three-dimensional equilibria considered are characterized by the sum of plasma and magnetic pressures being invariant in the x-direction. A nonlinear second-order hyperbolic partial differential equation having y and z as independent variables, is shown to be a necessary condition on the magnetic surfaces for an equilibrium state to exist. This is a physical condition not encountered in symmetric equilibria described with an ignorable coordinate. The special case of the total pressure varying only with height is soluble analytically and selected explicit solutions are presented to illustrate various structural properties of prominence-like density enhancements, coronal magnetic arcades, and discrete bipolar plasma loops. There is considerable interest in the equilibrium and stability of plasma loops in the solar corona. This paper presents for the first time, explicit equilibrium solutions for plasma loops with three-dimensional extensions. Of particular interest is that the loop solutions presented include simple examples which can be shown to be stable under isothermal conditions

  3. NUMERICAL SIMULATION OF MAGNETIC FIELD STRUCTURE IN CYLINDRICAL FILM SCREEN

    Directory of Open Access Journals (Sweden)

    G. F. Gromyko

    2016-01-01

    Full Text Available A numerical method for solving the boundary value problem for a nonlinear magnetostatic equation describing the external magnetostatic field penetration through the cylindrical film coating is developed. A mathematical model of the shielding problem based on the use of the boundary conditions of the third kind on the film surface is studied. The nonlinear dependence of the film magnetic permeability on magnetic field conforms with experimental data. The distribution of the magnetic field strength in the film layer and the magnetic permeability of the film material depending on the magnitude of the external magnetic field strength are investigated numerically.

  4. Magnetostatic torsional actuator with embedded nickel structures for the improvement of driving force and wobble motion

    International Nuclear Information System (INIS)

    Tang, Tsung-Lin; Fang, Weileun

    2011-01-01

    This study demonstrates the magnetostatic torsional actuator consisting in a Si–Ni compound frame to significantly improve the driving force. The present design has three merits: (1) it employs a Si mold to simultaneously electroplate/pattern thick Ni, and the Ni and Si structures respectively provide magnetostatic force and superior mechanical properties, (2) the embedded Ni structures not only increase the ferromagnetic material volume but also enhance magnetization strength to enlarge magnetostatic torque, (3) the Si–Ni compound structure, which is nearly symmetric about the torsional axis in the out-of-plane direction, can decrease the moment of inertia and also reduce the wobble motion. In applications, one-axis torsional actuator is implemented and characterized. The experiments show that the Si–Ni compound scanner has an optical scan angle θ optical = 90° with the input power 81 mW. The input power is decreased as compared with the existing scanner. Moreover, the out-of-plane wobble motion is only 44 nm at θ optical = 15°. Compared with the existing designs consisted of asymmetric structures in the out-of-plane direction, such as electroplated film and silicon rib, about the torsional axis, the equivalent eccentric force is reduced nearly two-fold. In short, the proposed design not only increases the driving force but also decreases the wobble motion

  5. Effects of magnetostatic interaction on the magnetization processes in Fe73.5Cu1Nb3Si13.5B9 nanocrystalline wires

    International Nuclear Information System (INIS)

    Li, Y.F.; Vazquez, M.; Chen, D.X.; Hernando, A.

    2002-01-01

    Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9 amorphous wire was annealed at different temperatures (T a =400-700 deg. C, for 30 min) that result in partial devitrification and subsequently, the quasi-saturated hysteresis loop was measured. It is found that the loops are not symmetric, exhibiting two coercive fields, H c1 and H c2 , on descending and ascending branches, respectively. Moreover, the asymmetry degree is modified when the sample is previously magnetized under a field of 60 kA m -1 . The dependence on both maximum measured field, H m , and temperature, T, of the displaced loop has been determined. With increasing H m , the shift H sh =(H c2 +H c1 )/2 decreases and the coercivity H c =(H c2 -H c1 )/2 increases, but H sh -H c H c1 remains constant. Both H sh and the magnetic polarization, μ 0 M m , at maximum field decreases with elevating T. The loop of this sample also shows a remarkable time-effect. The H m - and T-dependent H sh is discussed considering the existence of an effective bias-field generated from the magnetostatic interaction between the nanocrystalline particles and residual soft matrix, and the time-effect could be ascribed to the dipolar interaction among the particles. (author)

  6. Permanent magnet assembly producing a strong tilted homogeneous magnetic field: towards magic angle field spinning NMR and MRI.

    Science.gov (United States)

    Sakellariou, Dimitris; Hugon, Cédric; Guiga, Angelo; Aubert, Guy; Cazaux, Sandrine; Hardy, Philippe

    2010-12-01

    We introduce a cylindrical permanent magnet design that generates a homogeneous and strong magnetic field having an arbitrary inclination with respect to the axis of the cylinder. The analytical theory of 3 D magnetostatics has been applied to this problem, and a hybrid magnet structure has been designed. This structure contains two magnets producing a longitudinal and transverse component for the magnetic field, whose amplitudes and homogeneities can be fully controlled by design. A simple prototype has been constructed using inexpensive small cube magnets, and its magnetic field has been mapped using Hall and NMR probe sensors. This magnet can, in principle, be used for magic angle field spinning NMR and MRI experiments allowing for metabolic chemical shift profiling in small living animals. Copyright © 2010 John Wiley & Sons, Ltd.

  7. Magnetostatic interactions in a natural magnetite-ulvospinel intergrowth system

    Science.gov (United States)

    Evans, M. E.; Krasa, D.; Williams, W.; Winklhofer, M.

    2005-12-01

    The difficult problem of magnetostatic interactions in naturally-occurring minerals has a long history but a renewed attack on it is currently being driven by recent advances in instrumentation and computing power. We report a new investigation of a finely exsolved magnetite/ulvöspinel intergrowth first studied magnetically by Evans & Wayman (1974) and more recently by Harrison et al. (2002). Transmission electron micrographs reveal a rectilinear pattern of tiny magnetite blocks separated by ulvöspinel sheets. The magnetite blocks have a gaussian size distribution with mean and standard deviation of 193 and 46 nm, respectively (n ~ 500), with the separation between nearest neighbours being typically 40 nm, but often much less. Thermomagnetic analysis yields a well-defined Curie point of 548°C indicating that the ``magnetite" actually has a compostion of Fe2.9Ti0.1O4. Routine hysteresis measurements immediately reflect the interaction between neighbouring ``magnetite" regions, with Mrs/Ms = 0.22, well below the expected value for non-interacting single-domain particles. The corresponding FORC diagram clearly reveals the interaction fields with Hi = 30 mT (full-width at half-maximum, FWHM) centred on a well-defined Hc peak at 20 mT. Furthermore, the maximum interaction field observed (~50 mT) agrees well with that expected from simple theory and micromagnetic calculations. Elimination of the intergrowth structure by heating in an evacuated quartz vial for 2 hours at 1000 °C leads to marked changes in the magnetic properties: Mrs/Ms drops to 0.11, Hcr/Hc increases from 1.98 to 2.73, the main peak on the FORC diagram shifts to 6 mT and the interaction field profile drastically narrows (FWHM Hi = 14 mT).

  8. Class of analytic solutions for the thermally balanced magnetostatic prominence sheet

    International Nuclear Information System (INIS)

    Low, B.C.; Wu, S.T.

    1981-01-01

    This is a theoretical study of the nonlinear interplay between magnetostatic equilibrium and energy balance in a Kippenhahn-Schlueter type prominence sheet. The basic effects are illustrated explicitly with an analytic model in which a radiative loss proportional to rho 2 T balances against wave heating proportional to rho, with thermal conduction confined along magnetic field lines, where rho and T denote the plasma density and temperature, respectively. The particular choices of heat sink and source enable us to integrate the governing equations exactly while they are of the basic mathematical forms to simulate radiative loss in an optically thin plasma which is heated by wave dissipation. The steady solutions exhibit three different basic behaviors, characterized by the total wave heating in the prominence sheet being more than, equal to, or less than the total radiative loss. It is the compaction of the plasma along the field lines under its own weight combined with the effects of energy transport that determines which of the three basic behaviors obtains in a particular situation. The implications of the steady solutions for the formation of prominences are discussed. The exact solutions presented do not support the conclusion of Milne, Priest, and Roberts that there is an upper bound on the plasma beta for an equilibrium of the Kippenhahn-Schlueter prominence

  9. Field calculations. Part I: Choice of variables and methods

    International Nuclear Information System (INIS)

    Turner, L.R.

    1981-01-01

    Magnetostatic calculations can involve (in order of increasing complexity) conductors only, material with constant or infinite permeability, or material with variable permeability. We consider here only the most general case, calculations involving ferritic material with variable permeability. Variables suitable for magnetostatic calculations are the magnetic field, the magnetic vector potential, and the magnetic scalar potential. For two-dimensional calculations the potentials, which each have only one component, have advantages over the field, which has two components. Because it is a single-valued variable, the vector potential is perhaps the best variable for two-dimensional calculations. In three dimensions, both the field and the vector potential have three components; the scalar potential, with only one component,provides a much smaller system of equations to be solved. However the scalar potential is not single-valued. To circumvent this problem, a calculation with two scalar potentials can be performed. The scalar potential whose source is the conductors can be calculated directly by the Biot-Savart law, and the scalar potential whose source is the magnetized material is single valued. However in some situations, the fields from the two potentials nearly cancel; and the numerical accuracy is lost. The 3-D magnetostatic program TOSCA employs a single total scalar potential; the program GFUN uses the magnetic field as its variable

  10. Iterative algorithm for the volume integral method for magnetostatics problems

    International Nuclear Information System (INIS)

    Pasciak, J.E.

    1980-11-01

    Volume integral methods for solving nonlinear magnetostatics problems are considered in this paper. The integral method is discretized by a Galerkin technique. Estimates are given which show that the linearized problems are well conditioned and hence easily solved using iterative techniques. Comparisons of iterative algorithms with the elimination method of GFUN3D shows that the iterative method gives an order of magnitude improvement in computational time as well as memory requirements for large problems. Computational experiments for a test problem as well as a double layer dipole magnet are given. Error estimates for the linearized problem are also derived

  11. Mathematical and numerical models for eddy currents and magnetostatics with selected applications

    CERN Document Server

    Rappaz, Jacques

    2013-01-01

    This monograph addresses fundamental aspects of mathematical modeling and numerical solution methods of electromagnetic problems involving low frequencies, i.e. magnetostatic and eddy current problems which are rarely presented in the applied mathematics literature. In the first part, the authors introduce the mathematical models in a realistic context in view of their use for industrial applications. Several geometric configurations of electric conductors leading to different mathematical models are carefully derived and analyzed, and numerical methods for the solution of the obtained problem

  12. Effect of magnetostatic interactions on twin boundary motion in Ni-Mn-Ga magnetic shape memory alloy

    Czech Academy of Sciences Publication Activity Database

    Heczko, Oleg; Vokoun, David; Kopecký, Vít; Beleggia, M.

    2015-01-01

    Roč. 6, Jul (2015), s. 1000204 ISSN 1949-307X R&D Projects: GA ČR GA15-00262S Institutional support: RVO:68378271 Keywords : magnetism in solids * demagnetization factors * magnetostatic interactions * shape memory alloys Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.978, year: 2015

  13. Magnetostatic analysis of a rotor system supported by radial active magnetic bearings

    Directory of Open Access Journals (Sweden)

    Ferfecki P.

    2009-06-01

    Full Text Available The development and the design of a radial active magnetic bearing (AMB reflects a complex process of the multidisciplinary rotor dynamics, electromagnetism and automatic control analysis. Modelling is performed by application of the physical laws from different areas, e.g. Newton's laws of motion and Maxwell's equations. The new approach in the numerical modelling of radial AMB and design methodology allowing automatic generation of primary dimensions of the radial AMB is proposed. Instead of the common way of computation of electromagnetic forces by linearizing at the centre position of the rotor with respect to rotor displacement and coil current, the finite element computation of electromagnetic forces is used. The heteropolar radial AMB consisting of eight pole shoes was designed by means of the built up algorithms for rotor system with two discs fixed on the cantilever shaft. A study of the influence of the nonlinear magnetization characteristics of a rotor and stator material on the equilibrium position of a rotor system is carried out. The performed numerical study shows that results obtained from the analytical nonlinear relation for electromagnetic forces can be considerably different from forces computed with magnetostatic finite element analysis.

  14. Numerical Solution of Magnetostatic Field of Maglev System

    Directory of Open Access Journals (Sweden)

    Jaroslav Sobotka

    2008-01-01

    Full Text Available The paper deals with the design of the levitation and guidance system of the levitation train Transrapid 08 by means of QuickField 5.0 – a 2D program formagnetic electromagnetic fields solutions.

  15. On absorption of low frequency electromagnetic fields

    International Nuclear Information System (INIS)

    Brunner, S.; Vaclavik, J.

    1993-03-01

    The drift kinetic equation (DKE) is used to establish a formula for power absorption of small amplitude, low frequency electromagnetic (EM) fields in a hot toroidal axisymmetric plasma. The stationary plasma is first considered. Electrons and ions are described by local Maxwellian distributions, alpha particles by a local slowing-down distribution. The fluctuating part of the distribution function for each species is then evaluated from the linearized DKE in terms of the EM fields using a perturbation method. The parameter b p =B p /B o , where B p is the poloidal component of the magnetostatic field B o , and the parameter v d /λω, where v d is the magnetic curvature drift, λ the wavelength perpendicular to B o and ω the frequency of the EM fields, are considered to be small. By integrating the resulting distribution function over velocity space, an explicit formula for the power absorbed by each species is obtained. To obtain an expression suitable for direct implementation in an ideal-MHD code, the electric field component parallel to the magnetostatic field is evaluated using the quasi-neutrality equation. (author) 4 refs

  16. Self-generation of magnetic fields

    International Nuclear Information System (INIS)

    Dolan, T.J.

    2000-01-01

    The stars generate self-magnetic fields on large spatial scales and long time scales,and laser-produced plasmas generate intense self-magnetic fields on very short spatial and time scales. Two questions are posed : (1) Could a self-magnetic field be generated in a laboratory plasma with intermediate spatial and time scales? (2) If a self-magnetic field were generated,would it evolve towards a minimum energy state? If the answers turned out to be affirmative,then self-magnetic fields could possibly have interesting applications

  17. A combined vector potential-scalar potential method for FE computation of 3D magnetic fields in electrical devices with iron cores

    Science.gov (United States)

    Wang, R.; Demerdash, N. A.

    1991-01-01

    A method of combined use of magnetic vector potential based finite-element (FE) formulations and magnetic scalar potential (MSP) based formulations for computation of three-dimensional magnetostatic fields is introduced. In this method, the curl-component of the magnetic field intensity is computed by a reduced magnetic vector potential. This field intensity forms the basic of a forcing function for a global magnetic scalar potential solution over the entire volume of the region. This method allows one to include iron portions sandwiched in between conductors within partitioned current-carrying subregions. The method is most suited for large-scale global-type 3-D magnetostatic field computations in electrical devices, and in particular rotating electric machinery.

  18. Co/Au multisegmented nanowires: a 3D array of magnetostatically coupled nanopillars

    KAUST Repository

    Bran, C.; Ivanov, Yurii P.; Kosel, Jü rgen; Chubykalo-Fesenko, O.; Vazquez, M.

    2017-01-01

    Arrays of multisegmented Co/Au nanowires with designed segment lengths and diameters have been prepared by electrodeposition into aluminum oxide templates. The high quality of the Co/Au interface and the crystallographic structure of Co segments have determined by high-resolution transmission electron microscopy. Magnetic hysteresis loop measurements show larger coercivity and squareness of multisegmented nanowires as compared to single segment Co nanowires. The complementary micromagnetic simulations are in good agreement with the experimental results, confirming that the magnetic behavior is defined mainly by magnetostatic coupling between different segments. The proposed structure constitutes an innovative route towards a 3D array of synchronized magnetic nano-oscillators with large potential in nanoelectronics.

  19. Co/Au multisegmented nanowires: a 3D array of magnetostatically coupled nanopillars

    KAUST Repository

    Bran, C.

    2017-01-31

    Arrays of multisegmented Co/Au nanowires with designed segment lengths and diameters have been prepared by electrodeposition into aluminum oxide templates. The high quality of the Co/Au interface and the crystallographic structure of Co segments have determined by high-resolution transmission electron microscopy. Magnetic hysteresis loop measurements show larger coercivity and squareness of multisegmented nanowires as compared to single segment Co nanowires. The complementary micromagnetic simulations are in good agreement with the experimental results, confirming that the magnetic behavior is defined mainly by magnetostatic coupling between different segments. The proposed structure constitutes an innovative route towards a 3D array of synchronized magnetic nano-oscillators with large potential in nanoelectronics.

  20. Three dimensional field computation

    International Nuclear Information System (INIS)

    Trowbridge, C.W.

    1981-06-01

    Recent research work carried out at Rutherford and Appleton Laboratories into the Computation of Electromagnetic Fields is summarised. The topics covered include algorithms for integral and differential methods for the solution of 3D magnetostatic fields, comparison of results with experiment and an investigation into the strengths and weaknesses of both methods for an analytic problem. The paper concludes with a brief summary of the work in progress on the solution of 3D eddy currents using differential finite elements. (author)

  1. A nonlinear theory of cosmic ray pitch angle diffusion in homogeneous magnetostatic turbulence

    International Nuclear Information System (INIS)

    Goldstein, M.L.

    1975-04-01

    A plasma strong turbulence, weak coupling theory is applied to the problem of cosmic ray pitch angle scattering in magnetostatic turbulence. The theory used is a rigorous generalization of Weinstock's resonance-broadening theory and contains no ad hoc approximations. A detailed calculation is presented for a model of slab turbulence with an exponential correlation function. The results agree well with numerical simulations. The rigidity dependence of the pitch angle scattering coefficient differs from that found by previous researchers. The differences result from an inadequate treatment of particle trajectories near 90 0 pitch angle in earlier work

  2. Accurate magnetic field calculations for contactless energy transfer coils

    NARCIS (Netherlands)

    Sonntag, C.L.W.; Spree, M.; Lomonova, E.A.; Duarte, J.L.; Vandenput, A.J.A.

    2007-01-01

    In this paper, a method for estimating the magnetic field intensity from hexagon spiral windings commonly found in contactless energy transfer applications is presented. The hexagonal structures are modeled in a magneto-static environment using Biot-Savart current stick vectors. The accuracy of the

  3. DC Motor control using motor-generator set with controlled generator field

    Science.gov (United States)

    Belsterling, Charles A.; Stone, John

    1982-01-01

    A d.c. generator is connected in series opposed to the polarity of a d.c. power source supplying a d.c. drive motor. The generator is part of a motor-generator set, the motor of which is supplied from the power source connected to the motor. A generator field control means varies the field produced by at least one of the generator windings in order to change the effective voltage output. When the generator voltage is exactly equal to the d.c. voltage supply, no voltage is applied across the drive motor. As the field of the generator is reduced, the drive motor is supplied greater voltage until the full voltage of the d.c. power source is supplied when the generator has zero field applied. Additional voltage may be applied across the drive motor by reversing and increasing the reversed field on the generator. The drive motor may be reversed in direction from standstill by increasing the generator field so that a reverse voltage is applied across the d.c. motor.

  4. Apparatuses and methods for generating electric fields

    Science.gov (United States)

    Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L

    2013-08-06

    Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.

  5. Solar magnetic field studies using the 12 micron emission lines. II - Stokes profiles and vector field samples in sunspots

    Science.gov (United States)

    Hewagama, Tilak; Deming, Drake; Jennings, Donald E.; Osherovich, Vladimir; Wiedemann, Gunter; Zipoy, David; Mickey, Donald L.; Garcia, Howard

    1993-01-01

    Polarimetric observations at 12 microns of two sunpots are reported. The horizontal distribution of parameters such as magnetic field strength, inclination, azimuth, and magnetic field filling factors are presented along with information about the height dependence of the magnetic field strength. Comparisons with contemporary magnetostatic sunspot models are made. The magnetic data are used to estimate the height of 12 micron line formation. From the data, it is concluded that within a stable sunspot there are no regions that are magnetically filamentary, in the sense of containing both strong-field and field-free regions.

  6. Three dimensional field computation software package DE3D and its applications

    International Nuclear Information System (INIS)

    Fan Mingwu; Zhang Tianjue; Yan Weili

    1992-07-01

    A software package, DE3D that can be run on PC for three dimensional electrostatic and magnetostatic field analysis has been developed in CIAE (China Institute of Atomic Energy). Two scalar potential method and special numerical techniques have made the code with high precision. It can be used for electrostatic and magnetostatic fields computations with complex boundary conditions. In the most cases, the result accuracy is better than 1% comparing with the measured. In some situations, the results are more acceptable than the other codes because some tricks are used for the current integral. Typical examples, design of a cyclotron magnet and magnetic elements on its beam transport line, given in the paper show how the program helps the designer to improve the design of the product. The software package could bring advantages to the producers and designers

  7. Ten years of born and infeld electrodynamics investigations

    Energy Technology Data Exchange (ETDEWEB)

    Vellozo, Sergio O. [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil); Helayel Neto, Jose Abdala [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Assis, Leonardo P. G. De [Stanford University (United States); Gaete, Patricio [U.S.M. (Chile)

    2013-07-01

    Full text: In this year, our group celebrates ten years of incursions in four-dimensional (3+1) Born and Infeld Electrodynamics (BIE). As is well known, BIE is a classical and nonlinear theory and it predicts a maximum finite value for the electric field, preventing the occurrence of classical singularities. It gives also finite energy for a point-like electric charge. In this period, our main effort was on BIE magnetic sector and the most significant results were: 1. the finite and well behaved magnetostatic field solution for a point-like electric charge at rest, 2. the intrinsic angular momentum (spin) as a self interaction among electric and magnetic field, 3. the cohesive resultant force, using the same natural and simple mechanism, giving stability to the electric charge. Another BIE incursion line stands for three-dimensional (2+1). We investigated the consequences of the space-time dimensionality on the existence of magnetostatic fields generated by electric charges at rest in an inertial frame, which were present in our four-dimensional version. A magnetostatic field associated with an electric charge at rest does not appear in this case. Interestingly, the addition of the topological term (Chern-Simons) to BIE yields the appearance of the magnetostatic field. Finally, we are looking for the hydrogen-like atom spectrum under the BI electrostatic potential, as well the muonic atom spectrum. (author)

  8. Magnetic response to applied electrostatic field in external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, T.C. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); University of Florida, Department of Physics, Gainesville, FL (United States); Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); Tomsk State University, Department of Physics, Tomsk (Russian Federation); Shabad, A.E. [P. N. Lebedev Physics Institute, Moscow (Russian Federation)

    2014-04-15

    We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to the simple example of a spherically symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space; the pattern of the lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics. (orig.)

  9. Idea Generation in Highly Institutionalized Fields

    DEFF Research Database (Denmark)

    Agoguè, Marine; Boxenbaum, Eva

    innovation. An important question facing innovation research is thus how actors can generate ideas that break with the field frame in highly institutionalized fields? To answer this question, we draw on insights into dual process modeling from cognitive sciences. Dual process modeling emphasizes...... the different nature of the conscious (deliberate) and subconscious (implicit) systems involved in ideation. We further elaborate on how these two systems relate to four streams of research that management scholars evoke to model microprocesses of generating new ideas, namely metaphors, conceptual blending......The early phase of innovation processes in highly institutionalized fields relies on the capabilities of actors to generate new ideas that break with the field frame. Informed by a dominant logic, a field frame shapes collective cognition and can thus prevent the generation of new ideas and block...

  10. Stationary axisymmetric Einstein--Maxwell field equations

    International Nuclear Information System (INIS)

    Catenacci, R.; Diaz Alonso, J.

    1976-01-01

    We show the existence of a formal identity between Einstein's and Ernst's stationary axisymmetric gravitational field equations and the Einstein--Maxwell and the Ernst equations for the electrostatic and magnetostatic axisymmetric cases. Our equations are invariant under very simple internal symmetry groups, and one of them appears to be new. We also obtain a method for associating two stationary axisymmetric vacuum solutions with every electrostatic known

  11. The free energies of partially open coronal magnetic fields

    Science.gov (United States)

    Low, B. C.; Smith, D. F.

    1993-01-01

    A simple model of the low corona is examined in terms of a static polytropic atmosphere in equilibrium with a global magnetic field. The question posed is whether magnetostatic states with partially open magnetic fields may contain magnetic energies in excess of those in fully open magnetic fields. Based on the analysis presented here, it is concluded that the cross-field electric currents in the pre-eruption corona are a viable source of the bulk of the energies in a mass ejection and its associated flare.

  12. Effects of Static Magnetic Fields on the Physical, Mechanical, and Microstructural Properties of Cement Pastes

    Directory of Open Access Journals (Sweden)

    Juan J. Soto-Bernal

    2015-01-01

    Full Text Available This paper presents the results of an experimental study carried out to comprehend the physical, mechanical, and microstructural behavior of cement pastes subjected to static magnetic fields while hydrating and setting. The experimental methodology consisted in exposing fresh cement pastes to static magnetic fields at three different magnetic induction strengths: 19.07, 22.22, and 25.37 Gauss. The microstructural characterization makes evident that there are differences in relation to amount and morphology of CSH gel; the amount of CSH is larger and its morphology becomes denser and less porous with higher magnetostatic induction strengths; it also shows the evidence of changes in the mineralogical composition of the hydrated cement pastes. The temperature increasing has no negative effects over the cement paste compressive strength since the magnetostatic field affects the process of hydration through a molecular restructuring process, which makes cement pastes improve microstructurally, with a reduced porosity and a higher mechanical strength.

  13. Macroscopic kinematics of the Hall electric field under influence of carrier magnetic moments

    International Nuclear Information System (INIS)

    Sakai, Masamichi

    2016-01-01

    The relativistic effect on electromagnetic forces yields two types of forces which depend on the velocity of the relevant particles: (i) the usual Lorentz force exerted on a moving charged particle and (ii) the apparent Lorentz force exerted on a moving magnetic moment. In sharp contrast with type (i), the type (ii) force originates due to the transverse field induced by the Hall effect (HE). This study incorporates both forces into a Drude-type equation with a fully spin-polarized condition to investigate the effects of self-consistency of the source and the resultant fields on the HE. We also examine the self-consistency of the carrier kinematics and electromagnetic dynamics by simultaneously considering the Drude type equation and Maxwell equations at low frequencies. Thus, our approach can predict both the dc and ac characteristics of the HE, demonstrating that the dc current condition solely yields the ordinary HE, while the ac current condition yields generation of both fundamental and second harmonic modes of the HE field. When the magnetostatic field is absent, the simultaneous presence of dc and ac longitudinal currents generates the ac HE that has both fundamental frequency and second harmonic.

  14. Accurate magnetic field calculations for contactless energy transfer coils

    OpenAIRE

    Sonntag, C.L.W.; Spree, M.; Lomonova, E.A.; Duarte, J.L.; Vandenput, A.J.A.

    2007-01-01

    In this paper, a method for estimating the magnetic field intensity from hexagon spiral windings commonly found in contactless energy transfer applications is presented. The hexagonal structures are modeled in a magneto-static environment using Biot-Savart current stick vectors. The accuracy of the models are evaluated by mapping the current sticks and the hexagon spiral winding tracks to a local twodimensional plane, and comparing their two-dimensional magnetic field intensities. The accurac...

  15. Strong and superstrong pulsed magnetic fields generation

    CERN Document Server

    Shneerson, German A; Krivosheev, Sergey I

    2014-01-01

    Strong pulsed magnetic fields are important for several fields in physics and engineering, such as power generation and accelerator facilities. Basic aspects of the generation of strong and superstrong pulsed magnetic fields technique are given, including the physics and hydrodynamics of the conductors interacting with the field as well as an account of the significant progress in generation of strong magnetic fields using the magnetic accumulation technique. Results of computer simulations as well as a survey of available field technology are completing the volume.

  16. Quasi-Static Electric Field Generator

    Science.gov (United States)

    Generazio, Edward R. (Inventor)

    2017-01-01

    A generator for producing an electric field for with an inspection technology system is provided. The generator provides the required variable magnitude quasi-static electric fields for the "illumination" of objects, areas and volumes to be inspected by the system, and produces human-safe electric fields that are only visible to the system. The generator includes a casing, a driven, non-conducting and triboelectrically neutral rotation shaft mounted therein, an ungrounded electrostatic dipole element which works in the quasi-static range, and a non-conducting support for mounting the dipole element to the shaft. The dipole element has a wireless motor system and a charging system which are wholly contained within the dipole element and the support that uses an electrostatic approach to charge the dipole element.

  17. The stress components effect on the Fe-based microwires magnetostatic and magnetostrictive properties

    Energy Technology Data Exchange (ETDEWEB)

    Rodionova, V. [Institute of Physics & Technology and STP “Fabrika” Immanuel Kant Baltic Federal University, A. Nevskogo 14, Kaliningrad 236041 (Russian Federation); National University of Science and Technology “MISIS”, Leninsky prospect 4, Moscow 119049 (Russian Federation); Baraban, I.; Chichay, K.; Litvinova, A. [Institute of Physics & Technology and STP “Fabrika” Immanuel Kant Baltic Federal University, A. Nevskogo 14, Kaliningrad 236041 (Russian Federation); Perov, N. [Institute of Physics & Technology and STP “Fabrika” Immanuel Kant Baltic Federal University, A. Nevskogo 14, Kaliningrad 236041 (Russian Federation); Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991 (Russian Federation)

    2017-01-15

    For glass-coated amorphous ferromagnetic Fe-based microwires both joint and separate effect of metallic nucleus diameter, d, and the ratio of metallic nucleus diameter to the total diameter of microwire in glass shell, d/D, on magnetic properties is investigated. Thereby the contribution of both shell-induced stresses, associated with the ratio of diameters, and internal nucleus stresses (residual, quenching), associated with the diameter of the nucleus are estimated. A strong and non-monotonic effect of the metallic nucleus diameter and metallic nucleus diameter/total microwire diameter ratio on magnetostatic and magnetostrictive properties was established. For analysis, we considered magnetically bi-stable microwires of “classic” Fe{sub 77.5}Si{sub 7.5}B{sub 15} alloy with positive magnetostriction coefficient.

  18. The stress components effect on the Fe-based microwires magnetostatic and magnetostrictive properties

    International Nuclear Information System (INIS)

    Rodionova, V.; Baraban, I.; Chichay, K.; Litvinova, A.; Perov, N.

    2017-01-01

    For glass-coated amorphous ferromagnetic Fe-based microwires both joint and separate effect of metallic nucleus diameter, d, and the ratio of metallic nucleus diameter to the total diameter of microwire in glass shell, d/D, on magnetic properties is investigated. Thereby the contribution of both shell-induced stresses, associated with the ratio of diameters, and internal nucleus stresses (residual, quenching), associated with the diameter of the nucleus are estimated. A strong and non-monotonic effect of the metallic nucleus diameter and metallic nucleus diameter/total microwire diameter ratio on magnetostatic and magnetostrictive properties was established. For analysis, we considered magnetically bi-stable microwires of “classic” Fe_7_7_._5Si_7_._5B_1_5 alloy with positive magnetostriction coefficient.

  19. Comparative analysis of nodal and edge finite element method for numerical analysis of 3-D magnetostatic systems

    International Nuclear Information System (INIS)

    Mintchev, Pavel; Dimitrov, Marin; Balinov, Stoimen

    2002-01-01

    The possibilities for applying the Finite Element Method (FEM) with gauged magnetic vector potential and the Edge Element Method (EEM) for three-dimensional numerical analysis of magnetostatic systems are analyzed. It is established that the EEM ensures sufficient accuracy for engineering calculations but in some cases its use results in bad convergence. The use of the FEM with gauged magnetic vector potential instead of the EEM is recommended for preliminary calculations of devices with complex geometry and large air gaps between the ferromagnetic parts. (Author)

  20. Magnetic field generation device for magnetohydrodynamic electric power generation

    International Nuclear Information System (INIS)

    Kuriyama, Yoshihiko.

    1993-01-01

    An existent magnetic field generation device for magnetohydrodynamic electric power generation comprises at least a pair of permanent magnets disposed to an inner circumferential surface of a yoke having such a cross sectional area that two pairs of parallel sides are present, in which different magnetic poles are opposed while interposing a flow channel for a conductive fluid therebetween. Then, first permanent magnets which generate main magnetic fields are disposed each at a gap sandwiching a plane surface including a center axis of a flow channel for the conductive fluid. Second permanent magnets which generate auxiliary magnetic fields are disposed to an inner circumferential surface of a yoke intersecting the yoke to which the first permanent magnets are disposed. The magnetic poles on the side of the flow channel for the second permanent magnets have identical polarity with that of the magnetic poles of the adjacent first permanent magnets. As a result, a magnetic flux density in the flow channel for the conductive fluid can be kept homogeneous and at a high level from a position of the axial line of the flow channel to the outer circumference, thereby enabling to remarkably improve a power generation efficiency. (N.H.)

  1. Observation of magnetostatic wave electron absorption in ferrite-high temperature superconductor structure. Nablyudenie ehlektronnogo pogloshcheniya magnitostaticheskikh voln v strukture ferrit-vysokotemperaturnyj sverkhprovodnik

    Energy Technology Data Exchange (ETDEWEB)

    Anfinogenov, V B; Gulyaev, Yu V; Zil' berman, P E; Kotelyanskij, I M; Polzikova, N I; Sukhanov, A A [AN SSSR, Moscow (USSR). Inst. Radiotekhniki i Ehlektroniki

    1989-07-26

    Conditions for magneto-static wave (MSW) propagation in laminar structures ferrite-high-temperature superconductor (YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}) and effect of transition into superconducting state under the temperature drop on these conditions are investigated. MSW electron absorption effrect in such structures (strongly dependent on the temperature) is detected and its interpretation is given.

  2. Linear field demagnetisation of artificial magnetic square ice

    Directory of Open Access Journals (Sweden)

    Jason Phillip Morgan

    2013-12-01

    Full Text Available We have studied experimentally the states formed in artificial square ice nanomagnet systems following demagnetisation in a rotating in-plane applied magnetic field that reduces to zero in a manner that is linear in time. The final states are found to be controlled via the system's lattice constant, which determines the strength of the magnetostatic interactions between the elements, as well as the field ramping rate. We understand these effects as a requirement that the system undergoes a sufficiently large number of active rotations within the critical field window in which elements may be reversed, such that the interactions are allowed to locally exert their influence if the ground state is to be approached. On the other hand, if quenched disorder is too strong when compared to the interaction strength, any close approach to the ground state is impossible. These results show that it is not necessary for there to be any ac component to the field amplitude that is applied to the system during demagnetisation, which is the method almost exclusively employed in field protocols reported to date. Furthermore, by optimising the parameters of our linear demagnetisation protocol, the largest field-generated ground state domains yet reported are found.

  3. Generation of attosecond electron packets via conical surface plasmon electron acceleration

    Science.gov (United States)

    Greig, S. R.; Elezzabi, A. Y.

    2016-01-01

    We present a method for the generation of high kinetic energy attosecond electron packets via magnetostatic and aperture filtering of conical surface plasmon (SP) accelerated electrons. The conical SP waves are excited by coupling an ultrafast radially polarized laser beam to a conical silica lens coated with an Ag film. Electromagnetic and particle tracking models are employed to characterize the ultrafast electron packets. PMID:26764129

  4. A multifunctional energy-saving magnetic field generator

    Science.gov (United States)

    Xiong, Hui; Sun, Wanpeng; Liu, Jinzhen; Shi, Jinhua

    2018-03-01

    To improve the energy utilization of magnetic field generators for biological applications, a multifunctional energy-saving magnetic field generator (ESMFG) is presented. It is capable of producing both an alternating magnetic field (AMF) and a bipolar pulse magnetic field (BPMF) with high energy-saving and energy-reuse rates. Based on a theoretical analysis of an RLC second-order circuit, the energy-saving and energy-reuse rates of both types of magnetic fields can be calculated and are found to have acceptable values. The results of an experimental study using the proposed generator show that for the BPMF, the peak current reaches 130 A and the intensity reaches 70.3 mT. For the AMF, the intensity is 11.0 mT and the RMS current is 20 A. The energy-saving and energy-reuse rates for the AMF generator are 61.3% and 63.5%, respectively, while for the BPMF generator, the energy-saving rate is 33.6%. Thus, the proposed ESMFG has excellent potential for use in biomedical applications.

  5. Some recent developments in the theoretical dynamics of magnetic fields

    International Nuclear Information System (INIS)

    Low, B.C.

    1986-01-01

    This article describes recent developments in the theoretical investigation of magnetostatic equilibrium in the presence of gravity, nonequilibrium in hydromagnetics, and classical problems in hydromagnetic stability. The construction of magnetostatic dequilibria has progressed beyond geometrically idealized systems, such as the axisymmetric system, to fully three-dimensional systems capable of modelling realistic solar structures. Nonequilibrium in a magnetic field with an arbitrary interweaving of lines of force due to random footpoint motion is a novel and subtle property with important implications for the solar atmosphere. To the extent quasi-static solar structures are approximated by stable equilibrium, ideal hydromagnetic stability theory provides a first insight into how stability is achieved in the solar environment. A qualitative physical picture based on recent stability analyses is given. The article places emphasis on understanding basic principles and issues rather than detailed results which can be found in the published literature

  6. Complex analysis with applications to flows and fields

    CERN Document Server

    Braga da Costa Campos, Luis Manuel

    2012-01-01

    Complex Analysis with Applications to Flows and Fields presents the theory of functions of a complex variable, from the complex plane to the calculus of residues to power series to conformal mapping. The book explores numerous physical and engineering applications concerning potential flows, the gravity field, electro- and magnetostatics, steady heat conduction, and other problems. It provides the mathematical results to sufficiently justify the solution of these problems, eliminating the need to consult external references.The book is conveniently divided into four parts. In each part, the ma

  7. Radiation, waves, fields. Causes and effects on environment and health

    International Nuclear Information System (INIS)

    Leitgeb, N.

    1990-01-01

    The book discusses static electricity, alternating electric fields, magnetostatic fields, alternating magnetic fields, electromagnetic radiation, optical and ionizing radiation and their hazards and health effects. Each chapter presents basic physical and biological concepts and describes the common radiation sources and their biological effects. Each chapter also contains hints for everyday behaviour as well as in-depth information an specific scientific approaches for assessing biological effects; the latter are addressed to all expert readers working in these fields. There is a special chapter on the problem of so-called 'terrestrial radiation'. (orig.) With 88 figs., 31 tabs [de

  8. Multipolar ordering in electro- and magnetostatic coupled nanosystems.

    Science.gov (United States)

    Vedmedenko, Elena Y; Mikuszeit, Nikolai

    2008-06-23

    Electric and magnetic multipole moments and polarizabilities are important quantities in studies of intermolecular forces, non-linear optical phenomena, electrostatic, magnetostatic or gravitational potentials and electron scattering. The experimental determination of multipole moments is difficult and therefore the theoretical prediction of these quantities is important. Depending on purposes of the investigation several different definitions of multipole moments and multipole-multipole interactions are used in the literature. Because of this variety of methods it is often difficult to use published results and, therefore, even more new definitions appear. The first goal of this review is to give an overview of mathematical definitions of multipole expansion and relations between different formulations. The second aim is to present a general theoretical description of multipolar ordering on periodic two-dimensional lattices. After a historical introduction in the first part of this manuscript the static multipole expansion in cartesian and spherical coordinates as well as existing coordinate transformations are reviewed. On the basis of the presented mathematical description multipole moments of several symmetric charge distributions are summarized. Next, the established numerical approach for the calculation of multipolar ground states, namely Monte Carlo simulations, are reviewed. Special emphasis is put on the review of ground states in multipolar systems consisting of moments of odd or even order. The last section is devoted to the magnetization reversal in dense packed nanomagnetic arrays, where the magnetic multipole-multipole interactions play an important role. Comparison between the theory and recent experimental results is given.

  9. The optical analogy for vector fields

    Science.gov (United States)

    Parker, E. N. (Editor)

    1991-01-01

    This paper develops the optical analogy for a general vector field. The optical analogy allows the examination of certain aspects of a vector field that are not otherwise readily accessible. In particular, in the cases of a stationary Eulerian flow v of an ideal fluid and a magnetostatic field B, the vectors v and B have surface loci in common with their curls. The intrinsic discontinuities around local maxima in absolute values of v and B take the form of vortex sheets and current sheets, respectively, the former playing a fundamental role in the development of hydrodyamic turbulence and the latter playing a major role in heating the X-ray coronas of stars and galaxies.

  10. Discovery of Enhanced Magnetoelectric Coupling through Electric Field Control of Two-Magnon Scattering within Distorted Nanostructures.

    Science.gov (United States)

    Xue, Xu; Zhou, Ziyao; Dong, Guohua; Feng, Mengmeng; Zhang, Yijun; Zhao, Shishun; Hu, Zhongqiang; Ren, Wei; Ye, Zuo-Guang; Liu, Yaohua; Liu, Ming

    2017-09-26

    Electric field control of dynamic spin interactions is promising to break through the limitation of the magnetostatic interaction based magnetoelectric (ME) effect. In this work, electric field control of the two-magnon scattering (TMS) effect excited by in-plane lattice rotation has been demonstrated in a La 0.7 Sr 0.3 MnO 3 (LSMO)/Pb(Mn 2/3 Nb 1/3 )-PbTiO 3 (PMN-PT) (011) multiferroic heterostructure. Compared with the conventional strain-mediated ME effect, a giant enhancement of ME effect up to 950% at the TMS critical angle is precisely determined by angular resolution of the ferromagnetic resonance (FMR) measurement. Particularly, a large electric field modulation of magnetic anisotropy (464 Oe) and FMR line width (401 Oe) is achieved at 173 K. The electric-field-controllable TMS effect and its correlated ME effect have been explained by electric field modulation of the planar spin interactions triggered by spin-lattice coupling. The enhancement of the ME effect at various temperatures and spin dynamics control are promising paradigms for next-generation voltage-tunable spintronic devices.

  11. Applications of integral equation methods for the numerical solution of magnetostatic and eddy current problems

    Energy Technology Data Exchange (ETDEWEB)

    Trowbridge, C W

    1976-06-01

    Various integral equation methods are described. For magnetostatic problems three formulations are considered in detail, (a) the direct solution method for the magnetisation distribution in permeable materials, (b) a method based on a scalar potential, and (c) the use of an integral equation derived from Green's Theorem, i.e. the so-called Boundary Integral Method (BIM). In the case of (a) results are given for two-and three-dimensional non-linear problems with comparisons against measurement. For methods (b) and (c), which both lead to a more economical use of the computer than (a), some preliminary results are given for simple cases. For eddy current problems various methods are discussed and some results are given from a computer program based on a vector potential formulation.

  12. Applications of integral equation methods for the numerical solution of magnetostatic and eddy current problems

    International Nuclear Information System (INIS)

    Trowbridge, C.W.

    1976-06-01

    Various integral equation methods are described. For magnetostatic problems three formulations are considered in detail, (a) the direct solution method for the magnetisation distribution in permeable materials, (b) a method based on a scalar potential and (c) the use of an integral equation derived from Green's Theorem, i.e. the so-called Boundary Integral Method (BIM). In the case of (a) results are given for two-and three-dimensional non-linear problems with comparisons against measurement. For methods (b) and (c) which both lead to a more economic use of the computer than (a) some preliminary results are given for simple cases. For eddy current problems various methods are discussed and some results are given from a computer program based on a vector potential formulation. (author)

  13. Z a Fast Pulsed Power Generator for Ultra-High Magnetic Field Generation

    Science.gov (United States)

    Spielman, R. B.; Stygar, W. A.; Struve, K. W.; Asay, J. R.; Hall, C. A.; Bernard, M. A.; Bailey, J. E.; McDaniel, D. H.

    2004-11-01

    Advances in fast, pulsed-power technologies have resulted in the development of very high current drivers that have current rise times ~100 ns. The largest such pulsed power driver today is the new Z accelerator located at Sandia National Laboratories in Albuquerque, New Mexico. Z can deliver more than 20 MA with a time-to-peak of 105 ns to low inductance (~1 nH) loads. Such large drivers are capable of directly generating magnetic fields approaching 3 kT in small, 1 cm3 volumes. In addition to direct field generation, Z can be used to compress an applied, axial seed field with a plasma. Flux compression schemes are not new and are, in fact, the basis of all explosive flux-compression generators, but we propose the use of plasma armatures rather than solid, conducting armatures. We present experimental results from the Z accelerator in which magnetic fields of ~2 kT are generated and measured with several diagnostics. Issues such as energy loss in solid conductors and dynamic response of current-carrying conductors to very large magnetic fields are reviewed in context with Z experiments. We describe planned flux-compression experiments that are expected to create the highest-magnitude uniform-field volumes yet attained in the laboratory.

  14. Fluorescent lamp with static magnetic field generating means

    Science.gov (United States)

    Moskowitz, P.E.; Maya, J.

    1987-09-08

    A fluorescent lamp wherein magnetic field generating means (e.g., permanent magnets) are utilized to generate a static magnetic field across the respective electrode structures of the lamp such that maximum field strength is located at the electrode's filament. An increase in efficacy during operation has been observed. 2 figs.

  15. Laser-generated magnetic fields in quasi-hohlraum geometries

    Science.gov (United States)

    Pollock, Bradley; Turnbull, David; Ross, Steven; Hazi, Andrew; Ralph, Joseph; Lepape, Sebastian; Froula, Dustin; Haberberger, Dan; Moody, John

    2014-10-01

    Laser-generated magnetic fields of 10--40 T have been produced with 100--4000 J laser drives at Omega EP and Titan. The fields are generated using the technique described by Daido et al. [Phys. Rev. Lett. 56, 846 (1986)], which works by directing a laser through a hole in one plate to strike a second plate. Hot electrons generated in the laser-produced plasma on the second plate collect on the first plate. A strap connects the two plates allowing a current of 10 s of kA to flow and generate a solenoidal magnetic field. The magnetic field is characterized using Faraday rotation, b-dot probes, and proton radiography. Further experiments to study the effect of the magnetic field on hohlraum performance are currently scheduled for Omega. This work was performed under the auspices of the United States Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA-27344.

  16. Minimal generating sets of groups, rings, and fields | Halbeisen ...

    African Journals Online (AJOL)

    A subset X of a group (or a ring, or a field) is called generating, if the smallest subgroup (or subring, or subfield) containing X is the group (ring, field) itself. A generating set X is called minimal generating, if X does not properly contain any generating set. The existence and cardinalities of minimal generating sets of various ...

  17. Self-generation of dissipative solitons in magnonic quasicrystal active ring resonator

    International Nuclear Information System (INIS)

    Grishin, S. V.; Beginin, E. N.; Morozova, M. A.; Sharaevskii, Yu. P.; Nikitov, S. A.

    2014-01-01

    Self-generation of dissipative solitons in the magnonic quasicrystal (MQC) active ring resonator is studied theoretically and experimentally. The developed magnonic crystal has quasiperiodic Fibonacci type structure. Frequency selectivity of the MQC together with the parametric three-wave decay of magnetostatic surface spin wave (MSSW) leads to the dissipative soliton self-generation. The transfer matrix method is used to describe MQC transmission responses. Besides, the model of MQC active ring resonator is suggested. The model includes three coupled differential equations describing the parametric decay of MSSW and two differential equations of linear oscillators describing the frequency selectivity of MQC. Numerical simulation results of dissipative soliton self-generation are in a fair agreement with experimental data

  18. Self-generation of dissipative solitons in magnonic quasicrystal active ring resonator

    Energy Technology Data Exchange (ETDEWEB)

    Grishin, S. V., E-mail: grishfam@sgu.ru; Beginin, E. N.; Morozova, M. A.; Sharaevskii, Yu. P. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation); Nikitov, S. A. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation); Kotel' nikov Institute of Radioengineering and Electronics, Russian Academy of Science, Moscow 125009 (Russian Federation)

    2014-02-07

    Self-generation of dissipative solitons in the magnonic quasicrystal (MQC) active ring resonator is studied theoretically and experimentally. The developed magnonic crystal has quasiperiodic Fibonacci type structure. Frequency selectivity of the MQC together with the parametric three-wave decay of magnetostatic surface spin wave (MSSW) leads to the dissipative soliton self-generation. The transfer matrix method is used to describe MQC transmission responses. Besides, the model of MQC active ring resonator is suggested. The model includes three coupled differential equations describing the parametric decay of MSSW and two differential equations of linear oscillators describing the frequency selectivity of MQC. Numerical simulation results of dissipative soliton self-generation are in a fair agreement with experimental data.

  19. Dynamical mass generation in QED with weak magnetic fields

    International Nuclear Information System (INIS)

    Ayala, A.; Rojas, E.; Bashir, A.; Raya, A.

    2006-01-01

    We study the dynamical generation of masses for fundamental fermions in quenched quantum electrodynamics in the presence of magnetic fields using Schwinger-Dyson equations. We show that, contrary to the case where the magnetic field is strong, in the weak field limit eB << m(0)2, where m(0) is the value of the dynamically generated mass in the absence of the magnetic field, masses are generated above a critical value of the coupling and that this value is the same as in the case with no magnetic field. We carry out a numerical analysis to study the magnetic field dependence of the mass function above critical coupling and show that in this regime the dynamically generated mass and the chiral condensate for the lowest Landau level increase proportionally to (eB)2

  20. Ferrofluid aggregation in chains under the influence of a magnetic field

    International Nuclear Information System (INIS)

    Ivanov, Alexey O.; Kantorovich, Sofia S.; Mendelev, Valentin S.; Pyanzina, Elena S.

    2006-01-01

    The paper is devoted to the basic problem of chain aggregate formation in magnetic fluids under the influence of an external magnetic field. Chain distribution in dynamic equilibrium is obtained on the basis of free energy minimization method under the condition when the interparticle dipole-dipole interaction between the nearest neighboring ferroparticles in each chain is taken into account. The modified mean field approach is used for considering the dipole-dipole interaction between all particles in a ferrofluid. The model describes well the molecular dynamics simulations of magnetostatic properties for monodisperse ferrofluids containing chain aggregates

  1. Field Effect Microparticle Generation for Cell Microencapsulation.

    Science.gov (United States)

    Hsu, Brend Ray-Sea; Fu, Shin-Huei

    2017-01-01

    The diameter and sphericity of alginate-poly-L-lysine-alginate microcapsules, determined by the size and the shape of calcium alginate microspheres, affect their in vivo durability and biocompatibility and the results of transplantation. The commonly used air-jet spray method generates microspheres with a wider variation in diameter, larger sphere morphology, and evenly distributed encapsulated cells. In order to overcome these drawbacks, we designed a field effect microparticle generator to create a stable electric field to prepare microparticles with a smaller diameter and more uniform morphology. Using this electric field microparticle generator the encapsulated cells will be located at the periphery of the microspheres, and thus the supply of oxygen and nutrients for the encapsulated cells will be improved compared with the centrally located encapsulated cells in the air-jet spray method.

  2. The electromagnetic bio-field: clinical experiments and interferences.

    Science.gov (United States)

    Burnei, G; Hodorogea, D; Georgescu, I; Gavriliu, Ş; Drăghici, I; Dan, D; Vlad, C; Drăghici, L

    2012-06-12

    One of the most important factors is the technical and scientifically rapid development that is continually modifying the world we live in and polluting it with electromagnetic radiations. A functional and structural influence of magnetic and electromagnetic field on living organisms is presented in the literature by many performed experiments. The notion of bio-field represents the electromagnetic field generated by the bio-structures, not only in their normal physiological activities but also in their pathological states. There is a tight interdependency between the bio-field and the bio-structure, which respects the primary notion of an electromagnetic field given by the Maxwell-Faraday laws, in which, the electromagnetic phenomena are simplified to the field variations. These variations can be expressed in a coherent differential equation system that bounds the field vectors to different space points at different time moments. The living organisms cannot contain electrostatic and magneto-static fields due to the intense activity of the bio-structures. The biochemical reactions that have high rhythms and speeds always impose the electrodynamics character of the biologic field that also corresponds to the stability of the protein molecule that can be explained only through a dynamic way. The existent energy is not considered an exciting agent, and it does not lead to any effects. The parameters of these elementary bio-fields cannot yet be fully known due to technical reasons. The biological structures are very complex ones and undergo continuous dynamical activity. That is why the calculus model should be related to the constant dynamics, nowadays being very difficult to express.

  3. Self-generated magnetic fields in direct-drive implosion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Igumenshchev, I. V.; Nilson, P. M.; Goncharov, V. N. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Zylstra, A. B.; Li, C. K.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-06-15

    Electric and self-generated magnetic fields in direct-drive implosion experiments on the OMEGA Laser Facility were investigated employing radiography with ∼10- to 60-MeV protons. The experiment used plastic-shell targets with imposed surface defects (glue spots, wires, and mount stalks), which enhance self-generated fields. The fields were measured during the 1-ns laser drive with an on-target intensity ∼10{sup 15} W/cm{sup 2}. Proton radiographs show multiple ring-like structures produced by electric fields ∼10{sup 7} V/cm and fine structures from surface defects, indicating self-generated fields up to ∼3 MG. These electric and magnetic fields show good agreement with two-dimensional magnetohydrodynamic simulations when the latter include the ∇T{sub e} × ∇n{sub e} source, Nernst convection, and anisotropic resistivity. The simulations predict that self-generated fields affect heat fluxes in the conduction zone and, through this, affect the growth of local perturbations.

  4. Finite-element 3D simulation tools for high-current relativistic electron beams

    Science.gov (United States)

    Humphries, Stanley; Ekdahl, Carl

    2002-08-01

    The DARHT second-axis injector is a challenge for computer simulations. Electrons are subject to strong beam-generated forces. The fields are fully three-dimensional and accurate calculations at surfaces are critical. We describe methods applied in OmniTrak, a 3D finite-element code suite that can address DARHT and the full range of charged-particle devices. The system handles mesh generation, electrostatics, magnetostatics and self-consistent particle orbits. The MetaMesh program generates meshes of conformal hexahedrons to fit any user geometry. The code has the unique ability to create structured conformal meshes with cubic logic. Organized meshes offer advantages in speed and memory utilization in the orbit and field solutions. OmniTrak is a versatile charged-particle code that handles 3D electric and magnetic field solutions on independent meshes. The program can update both 3D field solutions from the calculated beam space-charge and current-density. We shall describe numerical methods for orbit tracking on a hexahedron mesh. Topics include: 1) identification of elements along the particle trajectory, 2) fast searches and adaptive field calculations, 3) interpolation methods to terminate orbits on material surfaces, 4) automatic particle generation on multiple emission surfaces to model space-charge-limited emission and field emission, 5) flexible Child law algorithms, 6) implementation of the dual potential model for 3D magnetostatics, and 7) assignment of charge and current from model particle orbits for self-consistent fields.

  5. Generating functionals for quantum field theories with random potentials

    International Nuclear Information System (INIS)

    Jain, Mudit; Vanchurin, Vitaly

    2016-01-01

    We consider generating functionals for computing correlators in quantum field theories with random potentials. Examples of such theories include cosmological systems in context of the string theory landscape (e.g. cosmic inflation) or condensed matter systems with quenched disorder (e.g. spin glass). We use the so-called replica trick to define two different generating functionals for calculating correlators of the quantum fields averaged over a given distribution of random potentials. The first generating functional is appropriate for calculating averaged (in-out) amplitudes and involves a single replica of fields, but the replica limit is taken to an (unphysical) negative one number of fields outside of the path integral. When the number of replicas is doubled the generating functional can also be used for calculating averaged probabilities (squared amplitudes) using the in-in construction. The second generating functional involves an infinite number of replicas, but can be used for calculating both in-out and in-in correlators and the replica limits are taken to only a zero number of fields. We discuss the formalism in details for a single real scalar field, but the generalization to more fields or to different types of fields is straightforward. We work out three examples: one where the mass of scalar field is treated as a random variable and two where the functional form of interactions is random, one described by a Gaussian random field and the other by a Euclidean action in the field configuration space.

  6. Generation of intense transient magnetic fields

    International Nuclear Information System (INIS)

    Benjamin, R.F.

    1983-01-01

    In a laser system, the return current of a laser generated plasma is conducted near a target to subject that target to a magnetic field. The target may be either a small non-fusion object for testing under the magnetic field or a laser-fusion pellet. In the laser-fusion embodiment, the laser-fusion pellet is irradiated during the return current flow and the intense transient magnetic field is used to control the hot electrons thereof to hinder them from striking and heating the core of the irradiated laser-fusion pellet. An emitter, e.g. a microballoon of glass, metal or plastics, is subjected to a laser pulse to generate the plasma from which the return current flows into a wire cage or a coil and then to earth. (author)

  7. Generation as the origin of Higgs fields

    International Nuclear Information System (INIS)

    Izawa, K.I.

    1991-01-01

    This paper provides a simple reformulation of the standard electroweak theory of leptons with two generations as a generalized gauge theory. It is based on a discrete analogue of Kaluza-Klein theories, with the extra dimension being the generations of the matter. Higgs fields appear as part of a generalized gauge field. Hypercharge quantization results from the use of a simple Lie superalgebra su(1/2) as the generalized gauge algebra

  8. International Geomagnetic Reference Field: the 12th generation

    DEFF Research Database (Denmark)

    Thébault, Erwan; Finlay, Chris; Beggan, Ciarán D.

    2015-01-01

    The 12th generation of the International Geomagnetic Reference Field (IGRF) was adopted in December 2014 by the Working Group V-MOD appointed by the International Association of Geomagnetism and Aeronomy (IAGA). It updates the previous IGRF generation with a definitive main field model for epoch ...

  9. Relativistic Scott correction in self-generated magnetic fields

    DEFF Research Database (Denmark)

    Erdos, Laszlo; Fournais, Søren; Solovej, Jan Philip

    2012-01-01

    /3}$ and it is unchanged by including the self-generated magnetic field. We prove the first correction term to this energy, the so-called Scott correction of the form $S(\\alpha Z) Z^2$. The current paper extends the result of \\cite{SSS} on the Scott correction for relativistic molecules to include a self......-generated magnetic field. Furthermore, we show that the corresponding Scott correction function $S$, first identified in \\cite{SSS}, is unchanged by including a magnetic field. We also prove new Lieb-Thirring inequalities for the relativistic kinetic energy with magnetic fields....

  10. Morphology of magnetic fields generated in laser-produced plasmas

    International Nuclear Information System (INIS)

    Boyd, T.J.M.; Cooke, D.

    1988-01-01

    Magnetic fields in the megagauss range have been measured in experiments on plasmas generated by irradiating targets with high power lasers. A study of the morphology of these self-generated fields is important not only for its intrinsic interest but for possible implications in laser--target physics. In this paper work on the numerical modeling of large magnetic fields generated in target experiments is reported. The results show generally satisfactory agreement with the fields measured experimentally both in terms of the magnitude of the peak fields and their morphology. In the numerical model the contribution from the Hall term in describing the evolution of the magnetic field is shown to be important especially in short pulse (≅100 psec) experiments

  11. Electromagnetic field properties in the vicinity of a massive wormhole

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, I. D.; Shatskiy, A. A., E-mail: shatskiy@asc.rssi.ru [Russian Academy of Sciences, Astro Space Centre, Lebedev Physical Institute (Russian Federation)

    2011-12-15

    It is proved that not only massless but also traversable massive wormholes can have electromagnetic 'hair.' An analysis is also presented of the passage from a traversable wormhole to the limit of a Reissner-Nordstroem black hole, with the corresponding disappearance of 'hair.' A general method is developed for solving stationary axisymmetric Maxwell's equations in the field of a massive, spherically symmetric wormhole. As a particular example of application of the method, a solution is found to the axisymmetric magnetostatic problem for a current loop in the field of the Bronnikov-Ellis-Morris-Thorne wormhole.

  12. Attosecond pulse trains generated using two color laser fields

    International Nuclear Information System (INIS)

    Mauritsson, J.; Louisiana State University, Baton Rouge, LA; Johnsson, P.; Gustafsson, E.; L'Hullier, A.; Schafer, K.J.; Gaarde, M.B.

    2006-01-01

    Complete test of publication follows. We present the generation of attosecond pulse trains from a superposition of an infrared (IR) laser field and its second harmonic. Our attosecond pulses are synthesized by selecting a number of synchronized harmonics generated in argon. By adding the second harmonic to the driving field the inversion symmetry of generation process is broken and both odd and even harmonics are generated. Consecutive half cycles in the two color field differ beyond the simple sign change that occurs in a one color field and have very different shapes and amplitudes. This sub-cycle structure of the field, which governs the generation of the attosecond pulses, depends strongly on the relative phase and intensity of the two fields, thereby providing additional control over the generation process. The generation of attosecond pulses is frequently described using the semi-classical three step model where an electron is: (1) ionized through tunneling ionization during one half cycle; (2) reaccelerated back towards the ion core by the next half cycle; where it (3) recombines with the ground-state releasing the access energy in a short burst of light. In the two color field the symmetry between the ionizing and reaccelerating field is broken, which leads to two possible scenarios: the electron can either be ionized during a strong half cycle and reaccelerated by a weaker field or vice versa. The periodicity is a full IR cycle in both cases and hence two trains of attosecond pulses are generated which are offset from each other. The generation efficiency, however, is very different for the two cases since it is determined mainly by the electric field strength at the time of tunneling and one of the trains will therefore dominate the other. We investigate experimentally both the spectral and temporal structure of the generated attosecond pulse trains as a function of the relative phase between the two driving fields. We find that for a wide range of

  13. Localized excitation of magnetostatic surface spin waves in yttrium iron garnet by shorted coaxial probe detected via spin pumping and rectification effect

    International Nuclear Information System (INIS)

    Soh, Wee Tee; Ong, C. K.; Peng, Bin

    2015-01-01

    We demonstrate the localized excitation and dc electrical detection of magnetostatic surface spin waves (MSSWs) in yttrium iron garnet (YIG) by a shorted coaxial probe. Thin films of NiFe and Pt are patterned at different regions onto a common bulk YIG substrate. A shorted coaxial probe is used to excite spin precession locally near various patterned regions. The dc voltages across the corresponding regions are recorded. For excitation of the Pt regions, the dc voltage spectra are dominated by the spin pumping of MSSWs from YIG, where various modes can be clearly distinguished. For the NiFe region, it is also found that spin pumping from MSSWs generated in YIG dominated the spectra, indicating that the spin pumped currents are dissipated into charge currents via the inverse Spin Hall effect (ISHE) in NiFe. For all regions, dc signals from YIG MSSWs are observed to be much stronger than the ferromagnetic resonance (FMR) uniform mode, likely due to the nature of the microwave excitation. The results indicate the potential of this probe for microwave imaging via dc detection of spin dynamics in continuous and patterned films

  14. Generation Of Unipolar Field For The Control Of Charges

    Directory of Open Access Journals (Sweden)

    Barnabas Oluwaseyi Alabi

    2017-10-01

    Full Text Available Electric charge is the property of a matter that allow for electric and magnetic forces interaction. These charges can be controlled by unipolar electromagnetic field. In this study such unipolar field that can propagate was generated. This unipolar electromagnetic field was simulated and tested for propagation. To produce a propagating unipolar magnetic field a time-varying unipolar electric current generator was considered. The model considered was simulated in the National Instruments Multisim windows application environment. The generated electric voltage waveform was viewed via the output grapher of the application. Various loads were connected to ensure consistency in the unipolar waveform for different load value on the generator. The result obtained showed that a unipolar field which could propagate can be achievable only when the signal involved was properly rectified. After rectification however the desired waveform and signal was produced. The test for propagation was done using a core of iron and a small solenoid connected to the rectified output and the field produced was magnetic this attracted a metal clip 1.0 cm away and a larger core attracted a hammer from around 10.0 cm away. The study concluded that a propagating magnetic field useful for the control of charges can be generated if the signal involved is made to be unipolar in nature.

  15. International Geomagnetic Reference Field: the 12th generation

    OpenAIRE

    Thébault , Erwan; Finlay , Christopher ,; Beggan , Ciarán ,; Alken , Patrick; Aubert , Julien ,; Barrois , Olivier; Bertrand , François; Bondar , Tatiana; Boness , Axel; Brocco , Laura; Canet , Elisabeth ,; Chambodut , Aude; Chulliat , Arnaud ,; Coïsson , Pierdavide ,; Civet , François

    2015-01-01

    International audience; The 12th generation of the International Geomagnetic Reference Field (IGRF) was adopted in December 2014 by the Working Group V-MOD appointed by the International Association of Geomagnetism and Aeronomy (IAGA). It updates the previous IGRF generation with a definitive main field model for epoch 2010.0, a main field model for epoch 2015.0, and a linear annual predictive secular variation model for 2015.0-2020.0. Here, we present the equations defining the IGRF model, p...

  16. Magnetic field generations in planetary interiors

    International Nuclear Information System (INIS)

    Singh, R.N.

    1981-01-01

    One of the most fundamental properties of some better known planets is their internally generated magnetic field. A successful explanation of such magnetic fields in 'large hot planetary interiors' remains elusive. Starting from Sir Joseph Larmor's discussions of 'How could a rotating body such as Sun become a magnet' (1979) to present day general consensus that 'the existence of the geomagnetic field is a manifestation of a finite amplitude instability of the Earth's core', significant theoretical developments have taken place in this field. The essential ingredients of the successful theories are the presence of a rotating fluid core of large size having sufficiently high electrical conductivity and energy source to drive the convection. These theories use equations of Newton and Maxwell to generate the requisite kind of the magnetic and velocity fields in response to the preferred distribution of the energy sources. Studies before early seventies, were devoted, mainly, to resolve the kinematics of the problem, and have convincingly demonstrated the plausibility of regeneration action of the organised motion. However, the main problem of the dynamo-processes is yet in the early stages of development despite important contributions made by Soward and Busse. A review of some of these developments is presented. (author)

  17. Analytical theory of neutral current sheets with a sheared magnetic field in collisionless relativistic plasma

    Science.gov (United States)

    Kocharovsky, V. V.; Kocharovsky, Vl V.; Martyanov, V. Yu; Nechaev, A. A.

    2017-12-01

    We derive and describe analytically a new wide class of self-consistent magnetostatic structures with sheared field lines and arbitrary energy distributions of particles. To do so we analyze superpositions of two planar current sheets with orthogonal magnetic fields and cylindrically symmetric momentum distribution functions, such that the magnetic field of one of them is directed along the symmetry axis of the distribution function of the other. These superpositions satisfy the pressure balance equation and allow one to construct configurations with an almost arbitrarily sheared magnetic field. We show that most of previously known current sheet families with sheared magnetic field lines are included in this novel class.

  18. Computation of demagnetizing fields and particle distribution in magnetic fluid with inhomogeneous density

    International Nuclear Information System (INIS)

    Pshenichnikov, A.F.

    2012-01-01

    A new algorithm for calculating magnetic fields in a concentrated magnetic fluid with inhomogeneous density is proposed. Inhomogeneity of the fluid is caused by magnetophoresis. In this case, the diffusion and magnetostatic parts of the problem are tightly linked together and are solved jointly. The dynamic diffusion equation is solved by the finite volume method and, to calculate the magnetic field inside the fluid, an iterative process is performed in parallel. The solution to the problem is sought in Cartesian coordinates, and the computational domain is decomposed into rectangular elements. This technique eliminates the need to solve the related boundary-value problem for magnetic fields, accelerates computations and eliminates the error caused by the finite sizes of the outer region. Formulas describing the contribution of the rectangular element to the field intensity in the case of a plane problem are given. Magnetic and concentration fields inside the magnetic fluid filling a rectangular cavity generated under the action of the uniform external filed are calculated. - Highlights: ▶ New algorithm for calculating magnetic field intense magnetic fluid with account of magnetophoresis and diffusion of particles. ▶ We do not need to solve boundary-value problem, but we accelerate computations and eliminate some errors. ▶ We solve nonlinear flow equation by the finite volume method and calculate magnetic and focus fields in the fluid for plane case.

  19. Pulsed magnetic field generation suited for low-field unilateral nuclear magnetic resonance systems

    Science.gov (United States)

    Gaunkar, Neelam Prabhu; Selvaraj, Jayaprakash; Theh, Wei-Shen; Weber, Robert; Mina, Mani

    2018-05-01

    Pulsed magnetic fields can be used to provide instantaneous localized magnetic field variations. In presence of static fields, pulsed field variations are often used to apply torques and in-effect to measure behavior of magnetic moments in different states. In this work, the design and experimental performance of a pulsed magnetic field generator suited for low static field nuclear magnetic resonance (NMR) applications is presented. One of the challenges of low bias field NMR measurements is low signal to noise ratio due to the comparable nature of the bias field and the pulsed field. Therefore, a circuit is designed to apply pulsed currents through an inductive load, leading to generation of pulsed magnetic fields which can temporarily overpower the effect of the bias field on magnetic moments. The designed circuit will be tuned to operate at the precession frequency of 1H (protons) placed in a bias field produced by permanent magnets. The designed circuit parameters may be tuned to operate under different bias conditions. Therefore, low field NMR measurements can be performed for different bias fields. Circuit simulations were used to determine design parameters, corresponding experimental measurements will be presented in this work.

  20. SATURATION OF MAGNETOROTATIONAL INSTABILITY THROUGH MAGNETIC FIELD GENERATION

    International Nuclear Information System (INIS)

    Ebrahimi, F.; Prager, S. C.; Schnack, D. D.

    2009-01-01

    The saturation mechanism of magnetorotational instability (MRI) is examined through analytical quasi-linear theory and through nonlinear computation of a single mode in a rotating disk. We find that large-scale magnetic field is generated through the α-effect (the correlated product of velocity and magnetic field fluctuations) and causes the MRI mode to saturate. If the large-scale plasma flow is allowed to evolve, the mode can also saturate through its flow relaxation. In astrophysical plasmas, for which the flow cannot relax because of gravitational constraints, the mode saturates through field generation only.

  1. Conversion and improvement of the Rutherford Laboratory's magnetostatic computer code GFUN3D to the NMFECC CDC 7600

    International Nuclear Information System (INIS)

    Tucker, T.C.

    1980-06-01

    The implementation of a version of the Rutherford Laboratory's magnetostatic computer code GFUN3D on the CDC 7600 at the National Magnetic Fusion Energy Computer Center is reported. A new iteration technique that greatly increases the probability of convergence and reduces computation time by about 30% for calculations with nonlinear, ferromagnetic materials is included. The use of GFUN3D on the NMFE network is discussed, and suggestions for future work are presented. Appendix A consists of revisions to the GFUN3D User Guide (published by Rutherford Laboratory( that are necessary to use this version. Appendix B contains input and output for some sample calculations. Appendix C is a detailed discussion of the old and new iteration techniques

  2. Error field generation of solenoid magnets

    International Nuclear Information System (INIS)

    Saunders, J.L.

    1982-01-01

    Many applications for large solenoids and solenoidal arrays depend on the high precision of the axial field profile. In cases where requirements of ΔB/B for nonaxial fields are on the order of 10 -4 , the actual winding techniques of the solenoid need to be considered. Whereas an ideal solenoid consisting of current loops would generate no radial fields along the axis, in reality, the actual current-carrying conductors must follow spiral or helical paths. A straightforward method for determining the radial error fields generated by coils wound with actual techniques employed in magnet fabrication has been developed. The method devised uses a computer code which models a magnet by sending a single, current-carrying filament along the same path taken by the conductor during coil winding. Helical and spiral paths are simulated using small, straight-line current segments. This technique, whose results are presented in this paper, was used to predict radial field errors for the Elmo Bumpy Torus-Proof of Principle magnet. These results include effects due to various winding methods, not only spiral/helical and layer-to-layer transitions, but also the effects caused by worst-case tolerance conditions both from the conductor and the winding form (bobbin). Contributions made by extraneous circuitry (e.g., overhead buswork and incoming leads) are also mentioned

  3. Generation mechanisms for magnetic-field-aligned electric fields in the magnetosphere

    International Nuclear Information System (INIS)

    Faelthammar, C.-G.

    1977-09-01

    Magnetic-field-aligned electric fields in the magnetosphere can be generated in several different ways, and in this review some possible mechanisms are presented. Observational data now available indicates that more than one of the mechanisms mentioned are operative in the magnetosphere but it is not yet possible to evaluate their relative importance. (author)

  4. Laser light absorption and harmonic generation due to self-generated magnetic fields

    International Nuclear Information System (INIS)

    Kruer, W.L.; Estabrook, K.G.

    1977-01-01

    It is shown that self-generated magnetic fields can play a significant role in laser light absorption. Even normally incident light will then be resonantly absorbed. Computer simulations and theoretical estimates for this absorption and the concomitant harmonic generation are given for parameters characteristic of some recent experiments

  5. Generation of strong pulsed magnetic fields using a compact, short pulse generator

    Science.gov (United States)

    Yanuka, D.; Efimov, S.; Nitishinskiy, M.; Rososhek, A.; Krasik, Ya. E.

    2016-04-01

    The generation of strong magnetic fields (˜50 T) using single- or multi-turn coils immersed in water was studied. A pulse generator with stored energy of ˜3.6 kJ, discharge current amplitude of ˜220 kA, and rise time of ˜1.5 μs was used in these experiments. Using the advantage of water that it has a large Verdet constant, the magnetic field was measured using the non-disturbing method of Faraday rotation of a polarized collimated laser beam. This approach does not require the use of magnetic probes, which are sensitive to electromagnetic noise and damaged in each shot. It also avoids the possible formation of plasma by either a flashover along the conductor or gas breakdown inside the coil caused by an induced electric field. In addition, it was shown that this approach can be used successfully to investigate the interesting phenomenon of magnetic field enhanced diffusion into a conductor.

  6. Megagauss field generation for high-energy-density plasma science experiments

    International Nuclear Information System (INIS)

    Rovang, Dean Curtis; Struve, Kenneth William; Porter, John Larry Jr.

    2008-01-01

    There is a need to generate magnetic fields both above and below 1 megagauss (100 T) with compact generators for laser-plasma experiments in the Beamlet and Petawatt test chambers for focused research on fundamental properties of high energy density magnetic plasmas. Some of the important topics that could be addressed with such a capability are magnetic field diffusion, particle confinement, plasma instabilities, spectroscopic diagnostic development, material properties, flux compression, and alternate confinement schemes, all of which could directly support experiments on Z. This report summarizes a two-month study to develop preliminary designs of magnetic field generators for three design regimes. These are, (1) a design for a relatively low-field (10 to 50 T), compact generator for modest volumes (1 to 10 cm3), (2) a high-field (50 to 200 T) design for smaller volumes (10 to 100 mm3), and (3) an extreme field (greater than 600 T) design that uses flux compression. These designs rely on existing Sandia pulsed-power expertise and equipment, and address issues of magnetic field scaling with capacitor bank design and field inductance, vacuum interface, and trade-offs between inductance and coil designs

  7. On the computation of the demagnetization tensor field for an arbitrary particle shape using a Fourier space approach

    International Nuclear Information System (INIS)

    Beleggia, M.; Graef, M. de

    2003-01-01

    A method is presented to compute the demagnetization tensor field for uniformly magnetized particles of arbitrary shape. By means of a Fourier space approach it is possible to compute analytically the Fourier representation of the demagnetization tensor field for a given shape. Then, specifying the direction of the uniform magnetization, the demagnetizing field and the magnetostatic energy associated with the particle can be evaluated. In some particular cases, the real space representation is computable analytically. In general, a numerical inverse fast Fourier transform is required to perform the inversion. As an example, the demagnetization tensor field for the tetrahedron will be given

  8. Modulated Field Synchronous Generator for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Petru Chioncel

    2013-01-01

    Full Text Available This paper presents a modern electromechanical conversion systemsolution as the modulated field synchronous generator, offering on theone hand, an output voltage with constant frequency in terms of speedvariation of the wind turbine and on the other hand an advantagepower / weight ratio due to the high frequency for which the magneticcircuit of the electric machine is sized. The mathematical model of the modulated field synchronous generator is implemented in MatLABmodeling language, highlighting the command structure on thetransistors bases of the inverter transistors, through which thefunctioning of the electric machine can be studied, especially in terms of the frequency of the delivered voltage.

  9. Optimising Magnetostatic Assemblies

    DEFF Research Database (Denmark)

    Insinga, Andrea Roberto; Smith, Anders

    theorem. This theorem formulates an energy equivalence principle with several implications concerning the optimisation of objective functionals that are linear with respect to the magnetic field. Linear functionals represent different optimisation goals, e.g. maximising a certain component of the field...... approached employing a heuristic algorithm, which led to new design concepts. Some of the procedures developed for linear objective functionals have been extended to non-linear objectives, by employing iterative techniques. Even though most the optimality results discussed in this work have been derived...

  10. Tunneling ionization and harmonic generation in two-color fields

    International Nuclear Information System (INIS)

    Kondo, K.; Kobayashi, Y.; Sagisaka, A.; Nabekawa, Y.; Watanabe, S.

    1996-01-01

    Tunneling ionization and harmonic generation in two-color fields were studied with a fundamental beam (ω) and its harmonics (2ω,3ω), which were generated by a 100-fs Ti:sapphire laser. Ion yields of atoms and molecules were successfully controlled by means of a change in the relative phase between ω and 3ω pulses. Two-color interference was clearly observed in photoelectron spectra and harmonic spectra. In the ω endash 2ω field even-order harmonics were observed in which the intensity was almost equal to that of the odd harmonics because of an asymmetric optical field. These results were compared with the quasi-static model for ionization and with the quantum theory for harmonic generation. copyright 1996 Optical Society of America

  11. Below-threshold harmonic generation from strong non-uniform fields

    Science.gov (United States)

    Yavuz, I.

    2017-10-01

    Strong-field photoemission below the ionization threshold is a rich/complex region where atomic emission and harmonic generation may coexist. We studied the mechanism of below-threshold harmonics (BTH) from spatially non-uniform local fields near the metallic nanostructures. Discrete harmonics are generated due to the broken inversion symmetry, suggesting enriched coherent emission in the vuv frequency range. Through the numerical solution of the time-dependent Schrödinger equation, we investigate wavelength and intensity dependence of BTH. Wavelength dependence identifies counter-regular resonances; individual contributions from the multi-photon emission and channel-closing effects due to quantum path interferences. In order to understand the underlying mechanism of BTH, we devised a generalized semi-classical model, including the influence of Coulomb and non-uniform field interactions. As in uniform fields, Coulomb potential in non-uniform fields is the determinant of BTH; we observed that the generation of BTH are due to returning trajectories with negative energies. Due to large distance effectiveness of the non-uniformity, only long trajectories are noticeably affected.

  12. Effect of a radial space-charge field on the movement of particles in a magneto-static field and under the influence of a circularly polarized wave; L'effet d'un champ de charge d'espace radial sur le mouvement des particules dans un champ magnetique statique et sous l'action d'une onde polarisee circulairement

    Energy Technology Data Exchange (ETDEWEB)

    Buffa, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-06-15

    The effect of a circularly polarized wave on a cylindrical plasma in a axial magnetostatic field and a radial space-charge field proportional to r is studied. Single particle motion is considered. The electrostatic field produces a shift in the cyclotron resonance frequency and,in case of high charge density, a radial movement of the off-resonance particles. In these conditions a radio-frequency-particle resonance is also possible called 'drift-resonance'. The drift resonance can be produced, with whistler mode, and may be employed in ion acceleration. Afterwards parametrical resonances produced by space-charge field oscillations and collisional limits of theory are studied. Cases in which ion acceleration is possible are considered on the basis of a quantitative analysis of results. (author) [French] On etudie l'effet d'une onde polarisee circulairement sur un plasma cylindrique place dans un champ magnetique axial constant, en supposant etre en presence d'un, champ de charge d'espace radial proportionnel a r. L'etude est faite du point de vue de la particule individuelle. Le champ electrostatique deplace la frequence de resonance cyclotron et, dans le cas de forte densite, donne lieu a un mouvement radial des particules qui ne sont pas en resonance. Dans ces champs, il peut aussi se produire une resonance qu'on a appele 'de derive', entre un R.F. et la particule. Cette resonance peut se produire avec le mode siffleur et peut etre utilisee pour l'acceleration des ions. On considere ensuite les resonances parametriques, qui se manifestent lorsque le champ de charge d'espace oscille, et les limites a la theorie posees par les collisions. Une discussion quantitative des resultats fait ressortir les cas dans lesquels on peut accelerer les ions. (auteur)

  13. Recent progress in nanostructured next-generation field emission devices

    International Nuclear Information System (INIS)

    Mittal, Gaurav; Lahiri, Indranil

    2014-01-01

    Field emission has been known to mankind for more than a century, and extensive research in this field for the last 40–50 years has led to development of exciting applications such as electron sources, miniature x-ray devices, display materials, etc. In the last decade, large-area field emitters were projected as an important material to revolutionize healthcare and medical devices, and space research. With the advent of nanotechnology and advancements related to carbon nanotubes, field emitters are demonstrating highly enhanced performance and novel applications. Next-generation emitters need ultra-high emission current density, high brightness, excellent stability and reproducible performance. Novel design considerations and application of new materials can lead to achievement of these capabilities. This article presents an overview of recent developments in this field and their effects on improved performance of field emitters. These advancements are demonstrated to hold great potential for application in next-generation field emission devices. (topical review)

  14. Recent progress in nanostructured next-generation field emission devices

    Science.gov (United States)

    Mittal, Gaurav; Lahiri, Indranil

    2014-08-01

    Field emission has been known to mankind for more than a century, and extensive research in this field for the last 40-50 years has led to development of exciting applications such as electron sources, miniature x-ray devices, display materials, etc. In the last decade, large-area field emitters were projected as an important material to revolutionize healthcare and medical devices, and space research. With the advent of nanotechnology and advancements related to carbon nanotubes, field emitters are demonstrating highly enhanced performance and novel applications. Next-generation emitters need ultra-high emission current density, high brightness, excellent stability and reproducible performance. Novel design considerations and application of new materials can lead to achievement of these capabilities. This article presents an overview of recent developments in this field and their effects on improved performance of field emitters. These advancements are demonstrated to hold great potential for application in next-generation field emission devices.

  15. Stability and semiclassics in self-generated fields

    DEFF Research Database (Denmark)

    Erdös, Laszlo; Fournais, Søren; Solovej, Jan Philip

    2013-01-01

    We consider non-interacting particles subject to a fixed external potential V and a self-generated magnetic field B. The total energy includes the field energy β∫B^2 and we minimize over all particle states and magnetic fields. In the case of spin-1/2 particles this minimization leads...... measuring the field strength in the semiclassical limit is κ=βh. We are not able to give the exact leading order semiclassical asymptotics uniformly in κ or even for fixed κ. We do however give upper and lower bounds on E with almost matching dependence on κ. In the simultaneous limit h→0 and κ→∞ we show...

  16. Wiggler magnetic field assisted third harmonic generation in expanding clusters

    Science.gov (United States)

    Vij, Shivani

    2018-04-01

    A simple theoretical model is constructed to study the wiggler magnetic field assisted third harmonic generation of intense short pulse laser in a cluster in its expanding phase. The ponderomotive force of laser causes density perturbations in cluster electron density which couples with wiggler magnetic field to produce a nonlinear current that generates transverse third harmonic. An intense short pulse laser propagating through a gas embedded with atomic clusters, converts it into hot plasma balls via tunnel ionization. Initially, the electron plasma frequency inside the clusters ω pe > \\sqrt{3}{ω }1 (with ω 1 being the frequency of the laser). As the cluster expands under Coulomb force and hydrodynamic pressure, ω pe decreases to \\sqrt{3}{ω }1. At this time, there is resonant enhancement in the efficiency of the third harmonic generation. The efficiency of third harmonic generation is enhanced due to cluster plasmon resonance and by phase matching due to wiggler magnetic field. The effect of cluster size on the expansion rate is studied to observe that the clusters of different radii would expand differently. The impact of laser intensity and wiggler magnetic field on the efficiency of third harmonic generation is also explored.

  17. Generating functional of the mean field in quantum electrodynamics with non-stable vacuum

    International Nuclear Information System (INIS)

    Gitman, D.M.; Kuchin, V.A.

    1981-01-01

    Generating functional for calculating a mean field, in the case of unstable vacuum, in quantum field theory has been suggested. Continual representation for the generating functional of the mean field has been found in the case of quantum electrodynamics with an external field. Generating electron-positron pairs from vacuum [ru

  18. Dispersed solar thermal generation employing parabolic dish-electric transport with field modulated generator systems

    Science.gov (United States)

    Ramakumar, R.; Bahrami, K.

    1981-01-01

    This paper discusses the application of field modulated generator systems (FMGS) to dispersed solar-thermal-electric generation from a parabolic dish field with electric transport. Each solar generation unit is rated at 15 kWe and the power generated by an array of such units is electrically collected for insertion into an existing utility grid. Such an approach appears to be most suitable when the heat engine rotational speeds are high (greater than 6000 r/min) and, in particular, if they are operated in the variable speed mode and if utility-grade a.c. is required for direct insertion into the grid without an intermediate electric energy storage and reconversion system. Predictions of overall efficiencies based on conservative efficiency figures for the FMGS are in the range of 25 per cent and should be encouraging to those involved in the development of cost-effective dispersed solar thermal power systems.

  19. Theoretical analysis of transcranial magneto-acoustical stimulation with Hodgkin–Huxley neuron model

    Directory of Open Access Journals (Sweden)

    Yi eYuan

    2016-04-01

    Full Text Available Transcranial magneto-acoustical stimulation (TMAS is a novel stimulation technology in which an ultrasonic wave within a magnetostatic field generates an electric current in an area of interest in the brain to modulate neuronal activities. As a key part of the neural network, neurons transmit information in the nervous system. However, the effect of TMAS on the neuronal firing rhythm remains unknown. To address this problem, we investigated the stimulatory mechanism of TMAS on neurons with a Hodgkin-Huxley neuron model. The simulation results indicate that the magnetostatic field intensity and ultrasonic power can affect the amplitude and interspike interval of neuronal action potential under continuous wave ultrasound. The simulation results also show that the ultrasonic power, duty cycle and repetition frequency can alter the firing rhythm of neural action potential under pulsed ultrasound. This study can help to reveal and explain the biological mechanism of TMAS and to provide a theoretical basis for TMAS in the treatment or rehabilitation of neuropsychiatric disorders.

  20. The intermittency of vector fields and random-number generators

    Science.gov (United States)

    Kalinin, A. O.; Sokoloff, D. D.; Tutubalin, V. N.

    2017-09-01

    We examine how well natural random-number generators can reproduce the intermittency phenomena that arise in the transfer of vector fields in random media. A generator based on the analysis of financial indices is suggested as the most promising random-number generator. Is it shown that even this generator, however, fails to reproduce the phenomenon long enough to confidently detect intermittency, while the C++ generator successfully solves this problem. We discuss the prospects of using shell models of turbulence as the desired generator.

  1. The phase accumulation and antenna near field of microscopic propagating spin wave devices

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Crosby S.; Kostylev, Mikhail, E-mail: mikhail.kostylev@uwa.edu.au; Ivanov, Eugene [School of Physics M013, The University of Western Australia, Crawley, WA 6009 (Australia); Ding, Junjia; Adeyeye, Adekunle O. [Department of Electrical and Computer Engineering, National University of Singapore, 117576 Singapore (Singapore)

    2014-01-20

    We studied phase accumulation by the highly non-reciprocal magnetostatic surface spin waves in thin Permalloy microstripes excited and received by microscopic coplanar antennae. We find that the experimentally measured characteristic length of the near field of the antenna is smaller than the total width of the coplanar. This is confirmed by our numerical simulations. Consequently, the distance over which the spin wave accumulates its phase while travelling between the input and output antennae coincides with the distance between the antennae symmetry axes with good accuracy.

  2. The phase accumulation and antenna near field of microscopic propagating spin wave devices

    International Nuclear Information System (INIS)

    Chang, Crosby S.; Kostylev, Mikhail; Ivanov, Eugene; Ding, Junjia; Adeyeye, Adekunle O.

    2014-01-01

    We studied phase accumulation by the highly non-reciprocal magnetostatic surface spin waves in thin Permalloy microstripes excited and received by microscopic coplanar antennae. We find that the experimentally measured characteristic length of the near field of the antenna is smaller than the total width of the coplanar. This is confirmed by our numerical simulations. Consequently, the distance over which the spin wave accumulates its phase while travelling between the input and output antennae coincides with the distance between the antennae symmetry axes with good accuracy

  3. On the theory of magnetic field generation by relativistically strong laser radiation

    International Nuclear Information System (INIS)

    Berezhiani, V.I.; Shatashvili, N.L.; Mahajan, S.M.

    1996-07-01

    The authors consider the interaction of subpicosecond relativistically strong short laser pulses with an underdense cold unmagnetized electron plasma. It is shown that the strong plasma inhomogeneity caused by laser pulses results in the generation of a low frequency (quasistatic) magnetic field. Since the electron density distribution is determined completely by the pump wave intensity, the generated magnetic field is negligibly small for nonrelativistic laser pulses but increases rapidly in the ultrarelativistic case. Due to the possibility of electron cavitation (complete expulsion of electrons from the central region) for narrow and intense beams, the increase in the generated magnetic field slows down as the beam intensity is increased. The structure of the magnetic field closely resembles that of the field produced by a solenoid; the field is maximum and uniform in the cavitation region, then it falls, changes polarity and vanishes. In extremely dense plasmas, highly intense laser pulses in the self-channeling regime can generate magnetic fields ∼ 100 Mg and greater

  4. Slender Ca ii H Fibrils Mapping Magnetic Fields in the Low Solar Chromosphere

    Energy Technology Data Exchange (ETDEWEB)

    Jafarzadeh, S.; Rutten, R. J.; Szydlarski, M. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Solanki, S. K.; Wiegelmann, T.; Riethmüller, T. L.; Noort, M. van; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J. [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Rodríguez, J. Blanco [Grupo de Astronomía y Ciencias del Espacio, Universidad de Valencia, E-46980 Paterna, Valencia (Spain); Iniesta, J. C. del Toro; Suárez, D. Orozco [Instituto de Astrofísica de Andalucía (CSIC), Apartado de Correos 3004, E-18080 Granada (Spain); Knölker, M. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States); Pillet, V. Martínez [National Solar Observatory, 3665 Discovery Drive, Boulder, CO 80303 (United States); Schmidt, W., E-mail: shahin.jafarzadeh@astro.uio.no [Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, D-79104 Freiburg (Germany)

    2017-04-01

    A dense forest of slender bright fibrils near a small solar active region is seen in high-quality narrowband Ca ii H images from the SuFI instrument onboard the Sunrise balloon-borne solar observatory. The orientation of these slender Ca ii H fibrils (SCF) overlaps with the magnetic field configuration in the low solar chromosphere derived by magnetostatic extrapolation of the photospheric field observed with Sunrise/IMaX and SDO/HMI. In addition, many observed SCFs are qualitatively aligned with small-scale loops computed from a novel inversion approach based on best-fit numerical MHD simulation. Such loops are organized in canopy-like arches over quiet areas that differ in height depending on the field strength near their roots.

  5. Changes in Earth's core-generated magnetic field, as observed by Swarm

    DEFF Research Database (Denmark)

    Finlay, Chris; Olsen, Nils; Gillet, Nicolas

    By far the largest part of the Earth's magnetic field is generated by motions taking place within our planet's liquid metal outer core. Variations of this core-generated field thus provide us with a unique means of probing the dynamics taking place in the deepest reaches of the Earth....... In this contribution, we will present the core-generated magnetic field, and its recent time changes, as seen by ESA's Earth explorer mission Swarm. We will present a new time-dependent geomagnetic field model, called CHAOS-6, derived from satellite data collected by the Swarm constellation, as well as data from...... the previous missions CHAMP and Oersted together with ground observatory data. Advantage is taken of the constellation aspect of the Swarm mission by ingesting field differences along track and across track between the lower pair of Swarm satellites. Evaluating the global field model at the outer boundary...

  6. The spatial distribution and time evolution of impact-generated magnetic fields

    Science.gov (United States)

    Crawford, D. A.; Schultz, P. H.

    1991-01-01

    The production of magnetic fields was revealed by laboratory hypervelocity impacts in easily vaporized targets. As quantified by pressure measurements, high frame-rate photography, and electrostatic probes, these impacts tend to produce large quantities of slightly ionized vapor, which is referred to as impact-generated plasma. Nonaligned electron density and temperature gradients within this plasma may lead to production of the observed magnetic fields. Past experiments were limited to measuring a single component of the impact-generated magnetic fields at only a few locations about the developing impact crater and consequently gave little information about the field production mechanism. To understand this mechanism, the techniques were extended to map the three components of the magnetic field both in space and time. By conducting many otherwise identical experiments with arrayed magnetic detectors, a preliminary 3-D picture was produced of impact-generated magnetic fields as they develop through time.

  7. On the electric and magnetic field generation in expanding plasmas

    International Nuclear Information System (INIS)

    Gielen, H.J.G.

    1989-01-01

    This thesis deals with the generation of electric and magnetic fields in expanding plasmas. The theoretical model used to calculate the different field quantities in such plasmas is discussed in part 1 and is in fact an analysis of Ohm's law. A general method is given that decomposes each of the forces terms in Ohm's law in a component that induces a charge separation in the plasma and in a component that can drive current. This decomposition is unambiguous and depends upon the boundary conditions for the electric potential. It is shown that in calculating the electromagnetic field quantities in a plasma that is located in the vicinity of a boundary that imposes constraints on the electric potential, Ohm's law should be analyzed instead of the so-called induction equation. Three applications of the model are presented. A description is given of the unipolar arc discharge where both plasma and sheath effects have been taken into account. Secondly a description is presented of the plasma effects of a cathode spot. The third application of the model deals with the generation of magnetic fields in laser-produced plasmas. The second part of this thesis describes the experiments on a magnetized argon plasma expanding from a cascaded arc. With the use of spectroscopic techniques the electron density, ion temperature and the rotation velocity profiles of the ion gas have been determined. The magnetic field generated by the plasma has been measured with the use of the Zeeman effect. Depending on the channel diameter of the nozzle of the cascaded arc, self-generated magnetic fields with axial components of the order of 1% of the externally applied mangetic field have been observed. From the measured ion rotation it has been concluded that this magnetic field is mainly generated by azimuthal electron currents. The corresponding azimuthal current density is of the order of 15% of the axial current density. The observed ion rotation is caused by electron-ion friction. (author

  8. Numerical simulation of the leaky dielectric microdroplet generation in electric fields

    Science.gov (United States)

    Kamali, Reza; Manshadi, Mohammad Karim Dehghan

    2016-07-01

    Microdroplet generation has a vast range of applications in the chemical, biomedical, and biological sciences. Several devices are applied to produce microdroplets, such as Co-flow, T-junction and Flow-focusing. The important point in the producing process is controlling the separated fluid volume in these devices. On the other hand, a large number of liquids, especially aqueous one, are influenced by electric or magnetic fields. As a consequence, an electric field could be used in order to affect the separated fluid volume. In this study, effects of an electric field on the microdroplet generation in a Co-flow device are investigated numerically. Furthermore, effects of some electrical properties such as permittivity on the separating process of microdroplets are studied. Leaky dielectric and perfect dielectric models are used in this investigation. According to the results, in the microdroplet generating process, leaky dielectric fluids show different behaviors, when an electric field is applied to the device. In other words, in a constant electric field strength, the volume of generated microdroplets can increase or decrease, in comparison with the condition without the electric field. However, for perfect dielectric fluids, droplet volume always decreases with increasing the electric field strength. In order to validate the numerical method of this study, deformation of a leaky dielectric droplet in an electric field is investigated. Results are compared with Taylor theoretical model.

  9. Schrödinger Theory of Electrons in Electromagnetic Fields: New Perspectives

    Directory of Open Access Journals (Sweden)

    Viraht Sahni

    2017-03-01

    dots in a magnetostatic field, one in a ground state and the other in an excited state. For the time-dependent case, the evolution of the same states of the quantum dots in both a magnetostatic and a time-dependent electric field is described. In each case, the satisfaction of the corresponding “Quantal Newtonian” law is demonstrated.

  10. Ripple Field AC Losses in 10-MW Wind Turbine Generators With a MgB2 Superconducting Field Winding

    DEFF Research Database (Denmark)

    Liu, Dong; Polinder, Henk; Magnusson, Niklas

    2016-01-01

    Superconducting (SC) synchronous generators are proposed as a promising candidate for 10-20-MW direct-drive wind turbines because they can have low weights and small sizes. A common way of designing an SC machine is to use SC wires with high current-carrying capability in the dc field winding...... and the ac armature winding is made with copper conductors. In such generators, the dc field winding is exposed to ac magnetic field ripples due to space harmonics from the armature. In generator design phases, the ac loss caused by these ripple fields needs to be evaluated to avoid local overheating...... and an excessive cooling budget. To determine the applicability of different design solutions in terms of ac losses, this paper estimates the ac loss level of 10-MW wind generator designs employing a MgB2 SC field winding. The effects on ac losses are compared between nonmagnetic and ferromagnetic teeth...

  11. Generation of hydrogen free radicals from water for fuels by electric field induction

    International Nuclear Information System (INIS)

    Nong, Guangzai; Chen, Yiyi; Li, Ming; Zhou, Zongwen

    2015-01-01

    Highlights: • Hydrogen free radicals are generated from water splitting. • Hydrogen fuel is generated from water by electric field induction. • Hydrocarbon fuel is generated from CO_2 and water by electric field induction. - Abstract: Water is the most abundant resource for generating hydrogen fuel. In addition to dissociating H"+ and "−OH ions, certain water molecules dissociate to radicals under an electric field are considered. Therefore, an electric field inducing reactor is constructed and operated to generate hydrogen free radicals in this paper. Hydrogen free radicals begin to be generated under a 1.0 V electric field, and increasing the voltage and temperature increases the number of hydrogen free radicals. The production rate of hydrogen free radicals is 0.245 mmol/(L h) at 5.0 V and room temperature. The generated hydrogen free radicals are converted to polymer fuel and hydrogen fuel at production rates of 0.0093 mmol/(L h) and 0.0038 mmol/(L h) respectively, under 5.0 V and 0.25 mA. The results provide a way to generate hydrogen free radicals, which might be used to generate hydrocarbon fuel in industrial manufacture.

  12. Highly stable and finely tuned magnetic fields generated by permanent magnet assemblies.

    Science.gov (United States)

    Danieli, E; Perlo, J; Blümich, B; Casanova, F

    2013-05-03

    Permanent magnetic materials are the only magnetic source that can be used to generate magnetic fields without power consumption or maintenance. Such stand-alone magnets are very attractive for many scientific and engineering areas, but they suffer from poor temporal field stability, which arises from the strong sensitivity of the magnetic materials and mechanical support to temperature variation. In this work, we describe a highly efficient method useful to cancel the temperature coefficient of permanent magnet assemblies in a passive and accurate way. It is based on the combination of at least two units made of magnetic materials with different temperature coefficients arranged in such a way that the ratio of the fields generated by each unit matches the ratio of their effective temperature coefficients defined by both the magnetic and mechanical contributions. Although typically available magnetic materials have negative temperature coefficients, the cancellation is achieved by aligning the fields generated by each unit in the opposite direction. We demonstrate the performance of this approach by stabilizing the field generated by a dipolar Halbach magnet, recently proposed to achieve high field homogeneity. Both the field drift and the homogeneity are monitored via nuclear magnetic resonance spectroscopy experiments. The results demonstrate the compatibility of the thermal compensation approach with existing strategies useful to fine-tune the spatial dependence of the field generated by permanent magnet arrays.

  13. A review of self generated B-field in ICF corona

    International Nuclear Information System (INIS)

    Jha, L.N.

    1989-07-01

    Self generated high order magnetic field in the corona of Inertial Confinement Fusion Plasma plays a very important role in the design of fusion target because of its strong influence on the transport of thermal flux from the critical density region to the ablation layer. A review of the generation of megagauss magnetic field both experimental, theoretical and simulation studies has been presented. (author). 28 refs, 5 figs, 1 tab

  14. Non-invasive diagnostics of ion beams in strong toroidal magnetic fields with standard CMOS cameras

    Science.gov (United States)

    Ates, Adem; Ates, Yakup; Niebuhr, Heiko; Ratzinger, Ulrich

    2018-01-01

    A superconducting Figure-8 stellarator type magnetostatic Storage Ring (F8SR) is under investigation at the Institute for Applied Physics (IAP) at Goethe University Frankfurt. Besides numerical simulations on an optimized design for beam transport and injection a scaled down (0.6T) experiment with two 30°toroidal magnets is set up for further investigations. A great challenge is the development of a non-destructive, magnetically insensitive and flexible detector for local investigations of an ion beam propagating through the toroidal magnetostatic field. This paper introduces a new way of beam path measurement by residual gas monitoring. It uses a single board camera connected to a standard single board computer by a camera serial interface all placed inside the vacuum chamber. First experiments with one camera were done and in a next step two under 90 degree arranged cameras were installed. With the help of the two cameras which are moveable along the beam pipe the theoretical predictions are experimentally verified successfully. Previous experimental results have been confirmed. The transport of H+ and H2+ ion beams with energies of 7 keV and at beam currents of about 1 mA is investigated successfully.

  15. A thick-walled sphere rotating in a uniform magnetic field: The next step to de-spin a space object

    Science.gov (United States)

    Nurge, Mark A.; Youngquist, Robert C.; Caracciolo, Ryan A.; Peck, Mason; Leve, Frederick A.

    2017-08-01

    Modeling the interaction between a moving conductor and a static magnetic field is critical to understanding the operation of induction motors, eddy current braking, and the dynamics of satellites moving through Earth's magnetic field. Here, we develop the case of a thick-walled sphere rotating in a uniform magnetic field, which is the simplest, non-trivial, magneto-statics problem that leads to complete closed-form expressions for the resulting potentials, fields, and currents. This solution requires knowledge of all of Maxwell's time independent equations, scalar and vector potential equations, and the Lorentz force law. The paper presents four cases and their associated experimental results, making this topic appropriate for an advanced student lab project.

  16. Accelerating large-scale phase-field simulations with GPU

    Directory of Open Access Journals (Sweden)

    Xiaoming Shi

    2017-10-01

    Full Text Available A new package for accelerating large-scale phase-field simulations was developed by using GPU based on the semi-implicit Fourier method. The package can solve a variety of equilibrium equations with different inhomogeneity including long-range elastic, magnetostatic, and electrostatic interactions. Through using specific algorithm in Compute Unified Device Architecture (CUDA, Fourier spectral iterative perturbation method was integrated in GPU package. The Allen-Cahn equation, Cahn-Hilliard equation, and phase-field model with long-range interaction were solved based on the algorithm running on GPU respectively to test the performance of the package. From the comparison of the calculation results between the solver executed in single CPU and the one on GPU, it was found that the speed on GPU is enormously elevated to 50 times faster. The present study therefore contributes to the acceleration of large-scale phase-field simulations and provides guidance for experiments to design large-scale functional devices.

  17. Microrelief-Controlled Overland Flow Generation: Laboratory and Field Experiments

    Directory of Open Access Journals (Sweden)

    Xuefeng Chu

    2015-01-01

    Full Text Available Surface microrelief affects overland flow generation and the related hydrologic processes. However, such influences vary depending on other factors such as rainfall characteristics, soil properties, and initial soil moisture conditions. Thus, in-depth research is needed to better understand and evaluate the combined effects of these factors on overland flow dynamics. The objective of this experimental study was to examine how surface microrelief, in conjunction with the factors of rainfall, soil, and initial moisture conditions, impacts overland flow generation and runoff processes in both laboratory and field settings. A series of overland flow experiments were conducted for rough and smooth surfaces that represented distinct microtopographic characteristics and the experimental data were analyzed and compared. Across different soil types and initial moisture conditions, both laboratory and field experiments demonstrated that a rough soil surface experienced a delayed initiation of runoff and featured a stepwise threshold flow pattern due to the microrelief-controlled puddle filling-spilling-merging dynamics. It was found from the field experiments that a smooth plot surface was more responsive to rainfall variations especially during an initial rainfall event. However, enhanced capability of overland flow generation and faster puddle connectivity of a rough field plot occurred during the subsequent rain events.

  18. Real-time Image Generation for Compressive Light Field Displays

    International Nuclear Information System (INIS)

    Wetzstein, G; Lanman, D; Hirsch, M; Raskar, R

    2013-01-01

    With the invention of integral imaging and parallax barriers in the beginning of the 20th century, glasses-free 3D displays have become feasible. Only today—more than a century later—glasses-free 3D displays are finally emerging in the consumer market. The technologies being employed in current-generation devices, however, are fundamentally the same as what was invented 100 years ago. With rapid advances in optical fabrication, digital processing power, and computational perception, a new generation of display technology is emerging: compressive displays exploring the co-design of optical elements and computational processing while taking particular characteristics of the human visual system into account. In this paper, we discuss real-time implementation strategies for emerging compressive light field displays. We consider displays composed of multiple stacked layers of light-attenuating or polarization-rotating layers, such as LCDs. The involved image generation requires iterative tomographic image synthesis. We demonstrate that, for the case of light field display, computed tomographic light field synthesis maps well to operations included in the standard graphics pipeline, facilitating efficient GPU-based implementations with real-time framerates.

  19. Generation of macroscopic magnetic-field-aligned electric fields by the convection surge ion acceleratiom mechanism

    International Nuclear Information System (INIS)

    Mauk, B.H.

    1989-01-01

    The ''convection surge'' computer model presented previously (concerning the dramatic, nonadiabatic, magnetic-field-aligned energization of ions near the Earth's geosynchronous orbit in the presence of strong, transient, magnetic-field-perpendicular inductive electric fields) has been extended to include the self-consistent generation of magnetic-field-aligned electric fields. The field-aligned electric potential is obtained by imposing the quasi-neutrality condition using approximated electron distribution forms. The ions are forced to respond self-consistently to this potential. It is found that field-aligned potential drops up to 1 to 10 kV can be generated depending on electron temperatures and on the mass species of the ions. During transient periods of the process, these large potential drops can be confined to a few degrees of magnetic latitude at positions close to the magnetic equator. Anomalous, sometimes dramatic, additional magnetic-field-aligned ion acceleration also occurs in part as a result of a quasi-resonance between the parallel velocities of some ions and the propagating electric potential fronts. It is speculated that the convection surge mechanism could be a key player in the transient, field-aligned electromagnetic processes observed to operate within the middle (e.g., geosynchronous) magnetosphere. copyright American Geophysical Union 1989

  20. Low pressure arc discharge lamp apparatus with magnetic field generating means

    Science.gov (United States)

    Grossman, Mark W.; George, William A.; Maya, Jakob

    1987-01-01

    A low-pressure arc discharge apparatus having a magnetic field generating means for increasing the output of a discharge lamp is disclosed. The magnetic field generating means, which in one embodiment includes a plurality of permanent magnets, is disposed along the lamp for applying a constant transverse magnetic field over at least a portion of the positive discharge column produced in the arc discharge lamp operating at an ambient temperature greater than about 25.degree. C.

  1. Low pressure arc discharge lamp apparatus with magnetic field generating means

    Science.gov (United States)

    Grossman, M.W.; George, W.A.; Maya, J.

    1987-10-06

    A low-pressure arc discharge apparatus having a magnetic field generating means for increasing the output of a discharge lamp is disclosed. The magnetic field generating means, which in one embodiment includes a plurality of permanent magnets, is disposed along the lamp for applying a constant transverse magnetic field over at least a portion of the positive discharge column produced in the arc discharge lamp operating at an ambient temperature greater than about 25 C. 3 figs.

  2. Measurements of magnetic fields generated in underdense plasmas by intense lasers

    International Nuclear Information System (INIS)

    Najmudin, Z.; Walton, B. R.; Mangles, S. P. D.; Dangor, A. E.; Krushelnick, K.; Fritzler, S.; Malka, V.; Faure, J.; Tatarakis, M.

    2006-01-01

    Measurements have been made of the magnetic field generated by the passage of high intensity short laser pulses through underdense plasmas. For a 30 fs, 1 J, 800 nm linearly-polarised laser pulse, an azimuthal magnetic field is observed at a radial extent of approximately 200 μm. The field is found to exceed 2.8 MG. For a 1 ps, 40 J, 1054 nm circularly-polarised laser pulse, a solenoidal field is observed that can exceed 7 MG. This solenoidal field is absent with linear polarised light, and hence can be considered as an Inverse Faraday effect. Both types of field are found to decay on the picosecond timescale. For both the azimuthal and solenoidal fields produced by such intense lasers, the production of energetic electrons by the interaction is thought to be vital for magnetic field generation

  3. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets and Supernova Remnants

    Science.gov (United States)

    Nishikawa, K.-I.; Hartmann, D. H.; Hardee, P.; Hededal, C.; Mizunno, Y.; Fishman, G. J.

    2006-01-01

    We performed numerical simulations of particle acceleration, magnetic field generation, and emission from shocks in order to understand the observed emission from relativistic jets and supernova remnants. The investigation involves the study of collisionless shocks, where the Weibel instability is responsible for particle acceleration as well as magnetic field generation. A 3-D relativistic particle-in-cell (RPIC) code has been used to investigate the shock processes in electron-positron plasmas. The evolution of theWeibe1 instability and its associated magnetic field generation and particle acceleration are studied with two different jet velocities (0 = 2,5 - slow, fast) corresponding to either outflows in supernova remnants or relativistic jets, such as those found in AGNs and microquasars. Slow jets have intrinsically different structures in both the generated magnetic fields and the accelerated particle spectrum. In particular, the jet head has a very weak magnetic field and the ambient electrons are strongly accelerated and dragged by the jet particles. The simulation results exhibit jitter radiation from inhomogeneous magnetic fields, generated by the Weibel instability, which has different spectral properties than standard synchrotron emission in a homogeneous magnetic field.

  4. Review on structured optical field generated from array beams

    Science.gov (United States)

    Hou, Tianyue; Zhou, Pu; Ma, Yanxing; Zhi, Dong

    2018-03-01

    Structured optical field (SOF), which includes vortex beams, non-diffraction beams, cylindrical vector beams and so on, has been under intensive investigation theoretically and experimentally in recent years. Generally, current research focus on the extraordinary properties (non-diffraction propagation, helical wavefront, rotation of electrical field, et al), which can be widely applied in micro-particle manipulation, super-resolution imaging, free-space communication and so on. There are mainly two technical routes, that is, inner-cavity and outer-cavity (spatial light modulators, diffractive phase holograms, q-plates). To date, most of the SOFs generated from both technical routes involves with single monolithic beam. As a novel technical route, SOF based on array beams has the advantage in more flexible freedom degree and power scaling potential. In this paper, research achievements in SOF generation based on array beams are arranged and discussed in detail. Moreover, experiment of generating exotic beam by array beams is introduced, which illustrates that SOF generated from array beams is theoretically valid and experimentally feasible. SOF generated from array beams is also beneficial for capacity increasing and data receiving for free-space optical communication systems at long distance.

  5. Field-enhanced route to generating anti-Frenkel pairs in HfO2

    Science.gov (United States)

    Schie, Marcel; Menzel, Stephan; Robertson, John; Waser, Rainer; De Souza, Roger A.

    2018-03-01

    The generation of anti-Frenkel pairs (oxygen vacancies and oxygen interstitials) in monoclinic and cubic HfO2 under an applied electric field is examined. A thermodynamic model is used to derive an expression for the critical field strength required to generate an anti-Frenkel pair. The critical field strength of EaFcr˜101GVm-1 obtained for HfO2 exceeds substantially the field strengths routinely employed in the forming and switching operations of resistive switching HfO2 devices, suggesting that field-enhanced defect generation is negligible. Atomistic simulations with molecular static (MS) and molecular dynamic (MD) approaches support this finding. The MS calculations indicated a high formation energy of Δ EaF≈8 eV for the infinitely separated anti-Frenkel pair, and only a decrease to Δ EaF≈6 eV for the adjacent anti-Frenkel pair. The MD simulations showed no defect generation in either phase for E <3 GVm-1 , and only sporadic defect generation in the monoclinic phase (at E =3 GVm-1 ) with fast (trec<4 ps ) recombination. At even higher E but below EaFcr both monoclinic and cubic structures became unstable as a result of field-induced deformation of the ionic potential wells. Further MD investigations starting with preexisting anti-Frenkel pairs revealed recombination of all pairs within trec<1 ps , even for the case of neutral vacancies and charged interstitials, for which formally there is no electrostatic attraction between the defects. In conclusion, we find no physically reasonable route to generating point-defects in HfO2 by an applied field.

  6. Ambient fields generated by a laser spark

    Czech Academy of Sciences Publication Activity Database

    Rohlena, Karel; Mašek, Martin

    2016-01-01

    Roč. 61, č. 2 (2016), s. 119-124 ISSN 0029-5922 R&D Projects: GA MŠk(CZ) LD14089; GA MŠk(CZ) LG13031 Institutional support: RVO:68378271 Keywords : laser spark * radiation chemistry * field generation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.760, year: 2016

  7. Triaxial fiber optic magnetic field sensor for MRI applications

    Science.gov (United States)

    Filograno, Massimo L.; Pisco, Marco; Catalano, Angelo; Forte, Ernesto; Aiello, Marco; Soricelli, Andrea; Davino, Daniele; Visone, Ciro; Cutolo, Antonello; Cusano, Andrea

    2016-05-01

    In this paper, we report a fiber-optic triaxial magnetic field sensor, based on Fiber Bragg Gratings (FBGs) integrated with giant magnetostrictive material, the Terfenol-D. The realized sensor has been designed and engineered for Magnetic Resonance Imaging (MRI) applications. A full magneto-optical characterization of the triaxial sensing probe has been carried out, providing the complex relationship among the FBGs wavelength shift and the applied magnetostatic field vector. Finally, the developed fiber optic sensors have been arranged in a sensor network composed of 20 triaxial sensors for mapping the magnetic field distribution in a MRI-room at a diagnostic center in Naples (SDN), equipped with Positron emission tomography/magnetic resonance (PET/MR) instrumentation. Experimental results reveal that the proposed sensor network can be efficiently used in MRI centers for performing quality assurance tests, paving the way for novel integrated tools to measure the magnetic dose accumulated day by day by MRI operators.

  8. Effects of external magnetic field on harmonics generated in laser interaction with underdense plasma

    International Nuclear Information System (INIS)

    Faghihi-Nik, M.; Ghorbanalilu, M.; Shokri, B.

    2010-01-01

    Complete text of publication follows. Generation of harmonic radiation is an important subject of laser plasma interaction and attracts great attention due to a wide range of applications. It has been seen that intense electromagnetic and quasi-static transverse magnetic fields are generated in laser plasma interaction. An extremely intense magnetic field (up to hundreds of MG) has been observed by experimental measurements in interaction of short laser pulses with plasma. These self-generated or applied magnetic fields affect the propagation of the laser pulses. In most laser interactions with homogeneous plasma, odd harmonics of laser frequency are generated. In this paper, we point out the possibility of even harmonics generation when a linearly polarized laser beam propagates in homogeneous plasma in the presence of a transverse magnetic field. It is shown that applying external field induces a transverse current density oscillating twice of the laser field which leds to generation of second harmonic radiation. This current density is derived using the perturbation method, and the steady state amplitude of the second harmonic obtained by solution of the wave equation. By the same procedure the current density and then the steady state amplitude of higher order harmonics are calculated. The efficiency of harmonic generation (the ratio of harmonic power to incident power) is a drastically function of the strength of external magnetic field. It is found that the efficiency of even harmonics is zero in the absence of magnetic field and increases as the magnetic field is increased. For odd harmonics, applying the external magnetic field enhances the generated harmonics as well. The conversion efficiency also increases with increase in plasma density and intensity of the laser beam.

  9. Closed and open magnetic fields in stellar winds

    Science.gov (United States)

    Mullan, D. J.; Steinolfson, R. S.

    1983-01-01

    A numerical study of the interaction between a thermal wind and a global dipole field in the sun and in a giant star is reported. In order for closed field lines to persist near the equator (where a helmet-streamer-like configuration appears), the coronal temperature must be less than a critical value Tc, which scales as M/R. This condition is found to be equivalent to the following: for a static helmet streamer to persist, the sonic point above the helmet must not approach closer to the star than 2.2-2.6 stellar radii. Implications for rapid mass loss and X-ray emission from cool giants are pointed out. The results strengthen the case for identifying empirical dividing lines in the H-R diagram with a magnetic topology transition locus (MTTL). Support for the MTTL concept is also provided by considerations of the breakdown of magnetostatic equilibrium.

  10. Study of neutron fields around an intense neutron generator.

    Science.gov (United States)

    Kicka, L; Machrafi, R; Miller, A

    2017-12-01

    Neutron fields in the vicinity of the newly built neutron facility, at the University of Ontario Institute of Technology (UOIT), have been investigated in a series of Monte Carlo simulations and measurements. The facility hosts a P-385 neutron generator based on a deuterium-deuterium fusion reaction. The neutron fluence at different locations around the neutron generator facility has been simulated using MCNPX 2.7E Monte Carlo particle transport program. To characterize neutron fields, three neutron sources were modeled with distributions corresponding to different incident deuteron energies of 90kV, 110kV, and 130kV. Measurements have been carried out to determine the dose rate at locations adjacent to the generator using bubble detectors (BDs). The neutron intensity was evaluated and the total dose rates corresponding to different applied acceleration potentials were estimated at various locations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Generalization of the Biot--Savart law to Maxwell's equations using special relativity

    International Nuclear Information System (INIS)

    Neuenschwander, D.E.; Turner, B.N.

    1992-01-01

    Maxwell's equations are obtained by generalizing the laws of magnetostatics, which follow from the Biot--Savart law and superposition, to be consistent with special relativity. The Lorentz force on a charged particle and its rate of energy change also follow by making Newton's second law for a particle in a magnetostatic field consistent with special relativity

  12. Magnetostatics of anisotropic superconducting ellipsoid

    International Nuclear Information System (INIS)

    Saif, A.G.

    1987-09-01

    The magnetization and the magnetic field distribution inside (outside) an anisotropic type II superconducting ellipsoid, with filamentary structure, is formulated. We have shown that the magnetic field in this case is different from that of the general anisotropic one. The nucleations of the flux lines for specimens with large demagnetization factors are theoretically studied. We have shown that the nucleations of the flux lines, for specimens with large demagnetization factor, appears at a field larger than that of ellipsoidal shape. (author). 15 refs

  13. Entropy Generation in Natural Convection Under an Evanescent Magnetic Field

    International Nuclear Information System (INIS)

    Magherbi, Mourad; El Jery, Atef; Ben Brahim, Ammar

    2009-01-01

    We numerically study the effect of an externally-evanescent magnetic field on total entropy generation in conducting and non-reactive fluid enclosed in a square cavity. The horizontal walls of the enclosure are assumed to be insulated while the vertical walls are kept isothermal. A control volume finite element method is used to solve the conservation equations at Prandtl number of 0.71. The values of relaxation time of the magnetic field are chosen, so that the Lorentz force acts only in the transient state of entropy generation in natural convection. The total entropy generation was calculated for fixed value of irreversibility distribution ratio, different relaxation time varying from 0 to 1/5 and Grashof number equal to 10 5

  14. Electric-field effects in optically generated spin transport

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2009-01-01

    Transport of spin-polarized electrons in semiconductors is studied experimentally. Spins are generated by optical excitation because of the selection rules governing optical transitions from heavy-hole and light-hole states to conduction-band states. Experiments designed for the control of spins in semiconductors investigate the bias-dependent spin transport process and detect the spin-polarized electrons during transport. A strong bias dependence is observed. The electric-field effects on the spin-polarized electron transport are also found to be depended on the excitation photon energy and temperature. Based on a field-dependent spin relaxation mechanism, the electric-field effects in the transport process are discussed.

  15. Electric-field effects in optically generated spin transport

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au

    2009-05-25

    Transport of spin-polarized electrons in semiconductors is studied experimentally. Spins are generated by optical excitation because of the selection rules governing optical transitions from heavy-hole and light-hole states to conduction-band states. Experiments designed for the control of spins in semiconductors investigate the bias-dependent spin transport process and detect the spin-polarized electrons during transport. A strong bias dependence is observed. The electric-field effects on the spin-polarized electron transport are also found to be depended on the excitation photon energy and temperature. Based on a field-dependent spin relaxation mechanism, the electric-field effects in the transport process are discussed.

  16. Generation of an isolated sub-30 attosecond pulse in a two-color laser field and a static electric field

    International Nuclear Information System (INIS)

    Zhang Gang-Tai; Zhang Mei-Guang; Bai Ting-Ting

    2012-01-01

    We theoretically investigate high-order harmonic generation (HHG) from a helium ion model in a two-color laser field, which is synthesized by a fundamental pulse and its second harmonic pulse. It is shown that a supercontinuum spectrum can be generated in the two-color field. However, the spectral intensity is very low, limiting the application of the generated attosecond (as) pulse. By adding a static electric field to the synthesized two-color field, not only is the ionization yield of electrons contributing to the harmonic emission remarkably increased, but also the quantum paths of the HHG can be significantly modulated. As a result, the extension and enhancement of the supercontinuum spectrum are achieved, producing an intense isolated 26-as pulse with a bandwidth of about 170.5 eV. In particular, we also analyse the influence of the laser parameters on the ultrabroad supercontinuum spectrum and isolated sub-30-as pulse generation. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  17. Field generated within the SSC magnets due to persistant currents in the superconductor

    International Nuclear Information System (INIS)

    Green, M.A.

    1984-01-01

    This report presents the results of a number of computer studies of the magnetic fields generated by persistent circulating currents in the superconductor of superconducting dipoles. These magnetic fields are referred to as residual fields throughout this report. Since the field generated by persistent currents have a hysteric behavior, they are analagous to the residual filed found in iron bound conventional solenoids. The residual field calculations presented in this report were done using the LBL SCMAG4 computer code. This code has not been well tested against measured data, but a comparison with measured CBA data given in this report suggests that good agreement is possible. The residual fields generated by persistent superconducting currents are rich in higher multipoles. This is of concern to the accelerator designer for SSC. This report shows the effect of various superconductor parameters and coil parameters on the magnitude and structure of the residual fields. The effect of the magnet charging history on residual fields is aldo discussed. 14 references

  18. Analysis of off-axis solenoid fields using the magnetic scalar potential: An application to a Zeeman-slower for cold atoms

    Science.gov (United States)

    Muniz, Sérgio R.; Bagnato, Vanderlei S.; Bhattacharya, M.

    2015-06-01

    In a region free of currents, magnetostatics can be described by the Laplace equation of a scalar magnetic potential, and one can apply the same methods commonly used in electrostatics. Here, we show how to calculate the general vector field inside a real (finite) solenoid, using only the magnitude of the field along the symmetry axis. Our method does not require integration or knowledge of the current distribution and is presented through practical examples, including a nonuniform finite solenoid used to produce cold atomic beams via laser cooling. These examples allow educators to discuss the nontrivial calculation of fields off-axis using concepts familiar to most students, while offering the opportunity to introduce themes of current modern research.

  19. Magnetostatic calculation of fringing field for the Rogowski pole boundary with floating snake

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yan; Ming-Wu, Fan [Institute of Atomic Energy, Peking (China)

    1984-01-01

    A boundary integral method has been used to calculate the fringing field distribution of Rogowski pole boundary with floating snake for QMG2 type of QDDD magnetic spectrograph and the experimental EFB is nearly reproduced from BIM calculation. As a further criteria, a calculation for clamped Rogowski pole but without snake is also performed and the calculated EFB shows perfect identity with the experiment. For evaluating the effect of snake quantitatively, this work also predicts the EFB values for two different positions of snake.

  20. Heat generation in agglomerated ferrite nanoparticles in an alternating magnetic field

    International Nuclear Information System (INIS)

    Lima, E Jr; De Biasi, E; Mansilla, M Vasquez; Saleta, M E; Granada, M; Troiani, H E; Zysler, R D; Effenberger, F B; Rossi, L M; Rechenberg, H R

    2013-01-01

    The role of agglomeration and magnetic interparticle interactions in heat generation of magnetic ferrofluids in an ac magnetic field is still unclear, with apparent discrepancy between the results presented in the literature. In this work, we measured the heat generating capability of agglomerated ferrite nanoparticles in a non-invasive ac magnetic field with f = 100 kHz and H 0 = 13 kA m -1 . The nanoparticles were morphologically and magnetically characterized, and the specific absorption rate (SAR) for our ac magnetic field presents a clear dependence on the diameter of the nanoparticles, with a maximum SAR = 48 W g -1 for 15 nm. Our agglomerated nanoparticles have large hydrodynamic diameters, thus the mechanical relaxation can be neglected as a heat generation mechanism. Therefore, we present a model that simulates the SAR dependence of the agglomerated samples on the diameter of the nanoparticles based on the hysteresis losses that is valid for the non-linear region (with H 0 comparable to the anisotropy field). Our model takes into account the magnetic interactions among the nanoparticles in the agglomerate. For comparison, we also measured the SAR of non-agglomerated nanoparticles in a similar diameter range, in which Néel and Brown relaxations dominate the heat generation.

  1. Stochastic generation of explicit pore structures by thresholding Gaussian random fields

    Energy Technology Data Exchange (ETDEWEB)

    Hyman, Jeffrey D., E-mail: jhyman@lanl.gov [Program in Applied Mathematics, University of Arizona, Tucson, AZ 85721-0089 (United States); Computational Earth Science, Earth and Environmental Sciences (EES-16), and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Winter, C. Larrabee, E-mail: winter@email.arizona.edu [Program in Applied Mathematics, University of Arizona, Tucson, AZ 85721-0089 (United States); Department of Hydrology and Water Resources, University of Arizona, Tucson, AZ 85721-0011 (United States)

    2014-11-15

    We provide a description and computational investigation of an efficient method to stochastically generate realistic pore structures. Smolarkiewicz and Winter introduced this specific method in pores resolving simulation of Darcy flows (Smolarkiewicz and Winter, 2010 [1]) without giving a complete formal description or analysis of the method, or indicating how to control the parameterization of the ensemble. We address both issues in this paper. The method consists of two steps. First, a realization of a correlated Gaussian field, or topography, is produced by convolving a prescribed kernel with an initial field of independent, identically distributed random variables. The intrinsic length scales of the kernel determine the correlation structure of the topography. Next, a sample pore space is generated by applying a level threshold to the Gaussian field realization: points are assigned to the void phase or the solid phase depending on whether the topography over them is above or below the threshold. Hence, the topology and geometry of the pore space depend on the form of the kernel and the level threshold. Manipulating these two user prescribed quantities allows good control of pore space observables, in particular the Minkowski functionals. Extensions of the method to generate media with multiple pore structures and preferential flow directions are also discussed. To demonstrate its usefulness, the method is used to generate a pore space with physical and hydrological properties similar to a sample of Berea sandstone. -- Graphical abstract: -- Highlights: •An efficient method to stochastically generate realistic pore structures is provided. •Samples are generated by applying a level threshold to a Gaussian field realization. •Two user prescribed quantities determine the topology and geometry of the pore space. •Multiple pore structures and preferential flow directions can be produced. •A pore space based on Berea sandstone is generated.

  2. A remotely interrogatable sensor for chemical monitoring

    Science.gov (United States)

    Stoyanov, P. G.; Doherty, S. A.; Grimes, C. A.; Seitz, W. R.

    1998-01-01

    A new type of continuously operating, in-situ, remotely monitored sensor is presented. The sensor is comprised of a thin film array of magnetostatically coupled, magnetically soft ferromagnetic thin film structures, adhered to or encased within a thin polymer layer. The polymer is made so that it swells or shrinks in response to the chemical analyte of interest, which in this case is pH. As the polymer swells or shrinks, the magnetostatic coupling between the magnetic elements changes, resulting in changes in the magnetic switching characteristics of the sensor. Placed within a sinusoidal magnetic field the magnetization vector of the coupled sensor elements periodically reverses directions, generating magnetic flux that can be remotely detected as a series of voltage spikes in appropriately placed pickup coils. one preliminary sensor design consists of four triangles, initially spaced approximately 50 micrometers apart, arranged to form a 12 mm x 12 mm square with the triangle tips centered at a common origin. Our preliminary work has focused on monitoring of pH using a lightly crosslinked pH sensitive polymer layer of hydroxyethylmethacrylate and 2-(dimethylamino) ethylmethacrylate. As the polymer swells or shrinks the magnetostatic coupling between the triangles changes, resulting in measurable changes in the amplitude of the detected voltage spirits.

  3. Field quality analysis to monitor the industrial series production of the dipole magnets for the Large Hadron Collider

    CERN Document Server

    Pauletta, S; Todesco, Ezio

    2002-01-01

    In superconducting accelerator magnets, the field quality is mainly determined by conductor position inside the coil. For the LHC, the dipolar field homogeneity must be assured up to 10-5 of the main field component, imposing strict manufacturing tolerances. Magnetic measurements at room temperature provide a fast and economical way to find out assembly errors or the use of faulty components. In order to compute control bounds for the industrial series production, the magnetic measurements performed at room temperature on 27 pre-series collared coils have been statistically analyzed in this work. An automatic tool has been implemented to single out anomalous values of the magnetic field in the measurements. Such cases have been analyzed using a magnetostatic code to work out errors in the manufacturing process and the possible cures.

  4. Critical fields of an exchange coupled two-layer composite particle

    International Nuclear Information System (INIS)

    Goll, D.; Kronmueller, H.

    2008-01-01

    High-density recording systems require magnetic bits with perpendicular easy axis and large magnetocrystalline anisotropy to guarantee thermal stability. However, the large magnetic fields up to 10 T for the reversal of magnetization cannot be afforded by conventional write heads. Therefore, composite exchange coupled spring systems of soft and hard magnetic layers may be used to reduce the switching field. In this case the reversal of magnetization in general takes place in two steps: a nucleation process in the soft layer and a depinning process for the displacement of the domain wall at the phase boundary of the soft and the hard magnetic layer. The nucleation and depinning fields are determined on the basis of the continuum theory of micromagnetism. It is shown that the nucleation fields decrease according to a 1/L 2 law with increasing thickness L of the soft layer and the depinning field of the charged Neel wall may be reduced by factors of 3-6 in comparison with the ideal nucleation field of the hard magnetic phase. One-step rectangular hysteresis loops are obtained for thicknesses of the soft layer smaller than the exchange length of the magnetostatic field

  5. Birth, growth and death of an antivortex during the propagation of a transverse domain wall in magnetic nanostrips

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, H.Y. [Physics Department, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); HKUST Shenzhen Research Institute, Shenzhen 518057 (China); Wang, X.R., E-mail: phxwan@ust.hk [Physics Department, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); HKUST Shenzhen Research Institute, Shenzhen 518057 (China)

    2014-11-15

    Antivortex birth, growth and death accompanying the propagation of a transverse domain wall (DW) in magnetic nanostrips are observed and analyzed. Antivortex formation is an intrinsic process of a strawberry-like transverse DW originated from magnetostatic interaction. Under an external magnetic field, the wider width region of a DW tends to move faster than the narrower one. This speed mismatch tilts and elongates DW center line. As a result, an antivortex with a well-defined polarity is periodically born near the tail of the DW center line. The antivortex either moves along the center line and dies on the other side of the nanostrip, or grows to its maximum size, detaches itself from the DW, and vanishes eventually. The former route reverses the polarity of DW while the later keeps the DW polarity unchanged. The evolution of the DW structures is analyzed using winding numbers assigned to each topological defects. The phase diagram in the field-width plane is obtained and the damping constant's influence on the phase diagram is discussed. - Highlights: • The magnetostatic interaction leads to a strawberry-like domain wall. • Two types of antivortices evolutions are identified. • Antivortex generation can cause decrease of Walker breakdown field. • The phase diagrams on the field-width plane are obtained.

  6. Strong terahertz field generation, detection, and application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Yong [Univ. of Maryland, College Park, MD (United States)

    2016-05-22

    This report describes the generation and detection of high-power, broadband terahertz (THz) radiation with using femtosecond terawatt (TW) laser systems. In particular, this focuses on two-color laser mixing in gases as a scalable THz source, addressing both microscopic and macroscopic effects governing its output THz yield and radiation profile. This also includes the characterization of extremely broad THz spectra extending from microwaves to infrared frequencies. Experimentally, my group has generated high-energy (tens of microjoule), intense (>8 MV/cm), and broadband (0.01~60 THz) THz radiation in two-color laser mixing in air. Such an intense THz field can be utilized to study THz-driven extremely nonlinear phenomena in a university laboratory.

  7. Strong terahertz field generation, detection, and application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Yong [Univ. of Maryland, College Park, MD (United States)

    2016-05-15

    This report describes the generation and detection of high-power, broadband terahertz (THz) radiation with using femtosecond terawatt (TW) laser systems. In particular, this focuses on two-color laser mixing in gases as a scalable THz source, addressing both microscopic and macroscopic effects governing its output THz yield and radiation profile. This also includes the characterization of extremely broad THz spectra extending from microwaves to infrared frequencies. Experimentally, my group has generated high-energy (tens of microjoule), intense (>8 MV/cm), and broadband (0.01~60 THz) THz radiation in two-color laser mixing in air. Such an intense THz field can be utilized to study THz-driven extremely nonlinear phenomena in a university laboratory.

  8. Near-field second-harmonic generation from gold nanoellipsoids

    Energy Technology Data Exchange (ETDEWEB)

    Celebrano, M; Zavelani-Rossi, M; Polli, D; Cerullo, G [Istituto di Fotonica e Nanotecnologie, CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Biagioni, P; Finazzi, M; Duo, L [LNESS - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Labardi, M; Allegrini, M [CNR-INFM, polyLab, Dipartimento di Fisica ' Enrico Fermi' , Universita di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); Grand, J; Adam, P M; Royer, P [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060 10010 Troyes cedex (France)

    2008-07-01

    Second-harmonic generation from single gold nanofabricated particles is experimentally investigated by a nonlinear scanning near-field optical microscope (SNOM). High peak power femtosecond polarized light pulses at the output of a hollow pyramid aperture allow for efficient second-harmonic imaging, with sub-100-nm spatial resolution and high contrast. The near-field nonlinear response is found to be directly related to both local surface plasmon resonances and particle morphology. The combined analysis of linear and second-harmonic SNOM images allows one to discriminate among near-field scattering, absorption and re-emission processes, which would not be possible with linear techniques alone. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Self-Generated Magnetic Fields in Stagnation-Phase ICF Implosions

    Science.gov (United States)

    Walsh, Christopher; Chittenden, Jeremy; McGlinchey, Kristopher; Niasse, Nicolas

    2016-10-01

    3-D extended-MHD simulations of the stagnation phase of an ICF implosion are presented, showing significant self-generated magnetic fields (1000-5000T) due to the Biermann Battery effect. Perturbed hot-spots generate magnetic fields at their edges, as the extremities of hot bubbles are rapidly cooled by the surrounding low temperature fuel, giving non-parallel electron pressure and density gradients. Larger amplitude and higher mode-number perturbations lead to an increased hot-spot surface area and more heat flow, developing greater non-parallel gradients and therefore larger magnetic fields. Due to this, largely perturbed hot-spots can be affected more by magnetic fields, although the accelerated cooling associated with greater deviations from symmetry lowers magnetisation. The Nernst effect advects magnetic field down temperature gradients towards the outer region of the hot-spot, which can also lower the magnetisation of the plasma. In some regions, however, the Nernst velocity is convergent, magnetising the tips of cold fuel spikes, resulting in anisotropic heat-flow and an improvement in energy containment. Low-mode and multi-high-mode simulations are shown, with magnetisations reaching sufficiently high levels in some regions of the hot-spot to suppress thermal conduction to lower than 50% of the unmagnetised case. A quantitative analysis of how this affects the hot-spot energy balance is included.

  10. h-Adaptive Mesh Generation using Electric Field Intensity Value as a Criterion (in Japanese)

    OpenAIRE

    Toyonaga, Kiyomi; Cingoski, Vlatko; Kaneda, Kazufumi; Yamashita, Hideo

    1994-01-01

    Finite mesh divisions are essential to obtain accurate solution of two dimensional electric field analysis. It requires the technical knowledge to generate a suitable fine mesh divisions. In electric field problem, analysts are usually interested in the electric field intensity and its distribution. In order to obtain electric field intensity with high-accuracy, we have developed and adaptive mesh generator using electric field intensity value as a criterion.

  11. Calculations of self-generated magnetic fields in parylene disc experiments

    International Nuclear Information System (INIS)

    Dahlbacka, G.H.; Mead, W.C.; Max, C.E.; Thomson, J.J.

    1975-01-01

    Experiments have been planned at Livermore to measure self-generated magnetic fields using the Faraday Rotation of frequency quadrupled 1.1 μm laser light. The LASNEX code was used during the planning of these experiments and has provided valuable information in establishing the conditions under which the thermoelectric fields expected can be measured. Suspected thermoelectric fields have been inferred from experiments that have been carried out at NRL

  12. Piezoelectric components wirelessly driven by dipole antenna-like electric field generator

    Energy Technology Data Exchange (ETDEWEB)

    Bhuyan, S., E-mail: elesatya@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Kumar, R.; Panda, S.K. [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Hu, J. [Lab of Precision Drive, Nanjing University of Aeronautics and Astronautics, Nanjing 210026 (China)

    2011-08-25

    Highlights: > Wireless energy transmission technique. > Dipole antenna-like electric field generator. > Piezoelecctric resonance. > Finite element analyses. > Simulations and experimental verifications. - Abstract: A new technique of transmitting electric energy wirelessly to piezoelectric components by using a dipole antenna-like electric field generator is explored. Two square size brass plate-shaped live and ground electrodes are used to form a dipole antenna-like electric field generator. When the dipole antenna-like electric field generator in electric resonance with an inductor, a maximum output power of 2.72 mW and an energy conversion efficiency of 0.0174% have been achieved wirelessly by the piezoelectric plate area of 40 mm{sup 2} operating in the thickness vibration mode, placed at the center 4 mm away from the antenna plane with an optimum electrical load of 1365 {Omega}, resonant frequency of 782 kHz, 1 cm electrodes separation, 2500 cm{sup 2} electrode area of dipole antenna-like structure, and input ac source power of 15.58 W applied to the series of dipole antenna-like structure and inductor. The theoretically calculated results have been validated by the experimental studies. It is seen that at the resonance frequency and optimum electrical load, the output power of the wirelessly driven piezoelectric component decreases with the size of piezoelectric component, distance of piezoelectric component from the electrode of antenna plane, but increases with the antenna electrode area.

  13. Methods of high current magnetic field generator for transcranial magnetic stimulation application

    Science.gov (United States)

    Bouda, N. R.; Pritchard, J.; Weber, R. J.; Mina, M.

    2015-05-01

    This paper describes the design procedures and underlying concepts of a novel High Current Magnetic Field Generator (HCMFG) with adjustable pulse width for transcranial magnetic stimulation applications. This is achieved by utilizing two different switching devices, the MOSFET and insulated gate bipolar transistor (IGBT). Results indicate that currents as high as ±1200 A can be generated with inputs of +/-20 V. Special attention to tradeoffs between field generators utilizing IGBT circuits (HCMFG1) and MOSFET circuits (HCMFG2) was considered. The theory of operation, design, experimental results, and electronic setup are presented and analyzed.

  14. Magnetostatics and dynamics of ion irradiatied NiFe/Ta multilayer films studied by vector network analyzer ferromagnetic resonance

    International Nuclear Information System (INIS)

    Marko, Daniel

    2010-01-01

    In the present work, the implications of ion irradiation on the magnetostatic and dynamic properties of soft magnetic Py/Ta (Py=Permalloy: Ni 80 Fe 20 ) single and multilayer films have been investigated with the main objective of finding a way to determine their saturation magnetization. Both polar magneto-optical Kerr effect (MOKE) and vector network analyzer ferromagnetic resonance (VNA-FMR) measurements have proven to be suitable methods to determine μ 0 M S , circumventing the problem of the unknown effective magnetic volume that causes conventional techniques such as SQUID or VSM to fail. Provided there is no perpendicular anisotropy contribution in the samples, the saturation magnetization can be determined even in the case of strong interfacial mixing due to an inherently high number of Py/Ta interfaces and/or ion irradiation with high fluences. Another integral part of this work has been to construct a VNA-FMR spectrometer capable of performing both azimuthal and polar angle-dependent measurements using a magnet strong enough to saturate samples containing iron. Starting from scratch, this comprised numerous steps such as developing a suitable coplanar waveguide design, and writing the control, evaluation, and fitting software. With both increasing ion fluence and number of Py/Ta interfaces, a decrease of saturation magnetization has been observed. In the case of the 10 x Py samples, an immediate decrease of μ 0 M S already sets in at small ion fluences. However, for the 1 x Py and 5 x Py samples, the saturation magnetization remains constant up to a certain ion fluence, but then starts to rapidly decrease. Ne ion irradiation causes a mixing and broadening of the interfaces. Thus, the Py/Ta stacks undergo a transition from being polycrystalline to amorphous at a critical fluence depending on the number of interfaces. The saturation magnetization is found to vanish at a Ta concentration of about 10-15 at.% in the Py layers. The samples possess a small

  15. Magnetostatics and dynamics of ion irradiatied NiFe/Ta multilayer films studied by vector network analyzer ferromagnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Marko, Daniel

    2010-11-25

    In the present work, the implications of ion irradiation on the magnetostatic and dynamic properties of soft magnetic Py/Ta (Py=Permalloy: Ni{sub 80}Fe{sub 20}) single and multilayer films have been investigated with the main objective of finding a way to determine their saturation magnetization. Both polar magneto-optical Kerr effect (MOKE) and vector network analyzer ferromagnetic resonance (VNA-FMR) measurements have proven to be suitable methods to determine {mu}{sub 0}M{sub S}, circumventing the problem of the unknown effective magnetic volume that causes conventional techniques such as SQUID or VSM to fail. Provided there is no perpendicular anisotropy contribution in the samples, the saturation magnetization can be determined even in the case of strong interfacial mixing due to an inherently high number of Py/Ta interfaces and/or ion irradiation with high fluences. Another integral part of this work has been to construct a VNA-FMR spectrometer capable of performing both azimuthal and polar angle-dependent measurements using a magnet strong enough to saturate samples containing iron. Starting from scratch, this comprised numerous steps such as developing a suitable coplanar waveguide design, and writing the control, evaluation, and fitting software. With both increasing ion fluence and number of Py/Ta interfaces, a decrease of saturation magnetization has been observed. In the case of the 10 x Py samples, an immediate decrease of {mu}{sub 0}M{sub S} already sets in at small ion fluences. However, for the 1 x Py and 5 x Py samples, the saturation magnetization remains constant up to a certain ion fluence, but then starts to rapidly decrease. Ne ion irradiation causes a mixing and broadening of the interfaces. Thus, the Py/Ta stacks undergo a transition from being polycrystalline to amorphous at a critical fluence depending on the number of interfaces. The saturation magnetization is found to vanish at a Ta concentration of about 10-15 at.% in the Py layers

  16. Motionally-induced electromagnetic fields generated by idealized ocean currents

    Science.gov (United States)

    Tyler, R. H.; Mysak, L. A.

    Using the induction equation, we investigate the generation of electromagnetic fields by the motional electromagnetic induction due to ocean currents. In this paper, solutions are presented for a linear induction equation for the magnetic flux density vector which contains prescribed time-independent ocean current and conductivity fields. Once the magnetic flux density is known, the electric field and electric current density are easily obtained by differentiation. Solutions are given for several examples of idealized flow which include: 1) Vertically and horizontally sheared plane-parallel flow with depth-dependent conductivity; 2) A simple Stommel circulation gyre; and 3) Symmetric gyres. The results indicate that typical ocean current features induce magnetic fields with magnitudes reaching 100's of nT within the water and about 1-10 outside of the water. For the case of a field of gyres, the ocean-induced magnetic fields decay away from the ocean on spatial scales set by the horizontal scale of the ocean feature. At the altitudes of magnetic field satellite surveys, ocean-induced magnetic fields may retain values of a few nT, which are strong enough to be detected. Thus it is concluded that satellite observations of the earth's main magnetic field and, in particular, the observed temporal variations, could be affected by the ocean circulation. Summary and discussion In Section 3, we found exact solutions to the induction equation for idealized flows. The results gave magnitudes of about tens to hundreds of nT for the magnetic fields bH, about 10-5 V/m for the electric fields E, and about 10-5 A/m2 for the electric current density J induced by the ocean currents. These figures are in general agreement with the calculations of Lilley et al. (1993). In Section 4.2 we obtained solutions for the magnetic field above the ocean surface for the case of a Stommel gyre and a field of symmetric gyres. It was found in the last case that ocean gyres with a total transport

  17. Methods of high current magnetic field generator for transcranial magnetic stimulation application

    International Nuclear Information System (INIS)

    Bouda, N. R.; Pritchard, J.; Weber, R. J.; Mina, M.

    2015-01-01

    This paper describes the design procedures and underlying concepts of a novel High Current Magnetic Field Generator (HCMFG) with adjustable pulse width for transcranial magnetic stimulation applications. This is achieved by utilizing two different switching devices, the MOSFET and insulated gate bipolar transistor (IGBT). Results indicate that currents as high as ±1200 A can be generated with inputs of +/−20 V. Special attention to tradeoffs between field generators utilizing IGBT circuits (HCMFG 1 ) and MOSFET circuits (HCMFG 2 ) was considered. The theory of operation, design, experimental results, and electronic setup are presented and analyzed

  18. Methods of high current magnetic field generator for transcranial magnetic stimulation application

    Energy Technology Data Exchange (ETDEWEB)

    Bouda, N. R., E-mail: nybouda@iastate.edu; Pritchard, J.; Weber, R. J.; Mina, M. [Department of Electrical and Computer engineering, Iowa State University, Ames, Iowa 50011 (United States)

    2015-05-07

    This paper describes the design procedures and underlying concepts of a novel High Current Magnetic Field Generator (HCMFG) with adjustable pulse width for transcranial magnetic stimulation applications. This is achieved by utilizing two different switching devices, the MOSFET and insulated gate bipolar transistor (IGBT). Results indicate that currents as high as ±1200 A can be generated with inputs of +/−20 V. Special attention to tradeoffs between field generators utilizing IGBT circuits (HCMFG{sub 1}) and MOSFET circuits (HCMFG{sub 2}) was considered. The theory of operation, design, experimental results, and electronic setup are presented and analyzed.

  19. N-particle effective generators of the Poincare group derived from a field theory

    International Nuclear Information System (INIS)

    Krueger, A.; Gloeckle, W.

    1999-01-01

    In quantum mechanics the principle of relativity is guaranteed by unitary operators being associated with inhomogeneous Lorentz transformations ensuring that quantum mechanical expectation values remain unchanged. In field theory the ten generators of inhomogeneous Lorentz transformations can be derived from a scalar Lagrangian density describing the physical system of interest. They obey the well known Poincare Lie algebra. For interacting systems some of the generators become operators allowing for particle production or annihilation so that the generators act on the full Fock space. However, given a field theory on the whole Fock space we prove that it is possible to construct generators acting on a subspace with a finite number of particles by one and the same unitary transformation of all generators leaving the Poincare algebra valid. In this manner it is in principle possible to derive a relativistically invariant theory of interacting particles on a Hilbert space with a finite number of particles from a field theoretical Lagrangian. Refs. 3 (author)

  20. Self-Assembly of Flux-Closure Polygons from Magnetite Nanocubes.

    Science.gov (United States)

    Szyndler, Megan W; Corn, Robert M

    2012-09-06

    Well-defined nanoscale flux-closure polygons (nanogons) have been fabricated on hydrophilic surfaces from the face-to-face self-assembly of magnetite nanocubes. Uniform ferrimagnetic magnetite nanocubes (∼86 nm) were synthesized and characterized with a combination of electron microscopy, diffraction, and magnetization measurements. The nanocubes were subsequently cast onto hydrophilic substrates, wherein the cubes lined up face-to-face and formed a variety of polygons due to magnetostatic and hydrophobic interactions. The generated surfaces consist primarily of three- and four-sided nanogons; polygons ranging from two to six sides were also observed. Further examination of the nanogons showed that the constraints of the face-to-face assembly of nanocubes often led to bowed sides, strained cube geometries, and mismatches at the acute angle vertices. Additionally, extra nanocubes were often present at the vertices, suggesting the presence of external magnetostatic fields at the polygon corners. These nanogons are inimitable nanoscale magnetic structures with potential applications in the areas of magnetic memory storage and high-frequency magnetics.

  1. Analytical and numerical calculation of magnetic field distribution in the slotted air-gap of tangential surface permanent-magnet motors

    Directory of Open Access Journals (Sweden)

    Boughrara Kamel

    2009-01-01

    Full Text Available This paper deals with the analytical and numerical analysis of the flux density distribution in the slotted air gap of permanent magnet motors with surface mounted tangentially magnetized permanent magnets. Two methods for magnetostatic field calculations are developed. The first one is an analytical method in which the effect of stator slots is taken into account by modulating the magnetic field distribution by the complex relative air gap permeance. The second one is a numerical method using 2-D finite element analysis with consideration of Dirichlet and anti-periodicity (periodicity boundary conditions and Lagrange Multipliers for simulation of movement. The results obtained by the analytical method are compared to the results of finite-element analysis.

  2. Scalable cavity-QED-based scheme of generating entanglement of atoms and of cavity fields

    OpenAIRE

    Lee, Jaehak; Park, Jiyong; Lee, Sang Min; Lee, Hai-Woong; Khosa, Ashfaq H.

    2008-01-01

    We propose a cavity-QED-based scheme of generating entanglement between atoms. The scheme is scalable to an arbitrary number of atoms, and can be used to generate a variety of multipartite entangled states such as the Greenberger-Horne-Zeilinger, W, and cluster states. Furthermore, with a role switching of atoms with photons, the scheme can be used to generate entanglement between cavity fields. We also introduce a scheme that can generate an arbitrary multipartite field graph state.

  3. Single attosecond pulse generation in an orthogonally polarized two-color laser field combined with a static electric field

    International Nuclear Information System (INIS)

    Xia Changlong; Zhang Gangtai; Wu Jie; Liu Xueshen

    2010-01-01

    We investigate theoretic high-order harmonic generation and single attosecond pulse generation in an orthogonally polarized two-color laser field, which is synthesized by a mid-infrared (IR) pulse (12.5 fs, 2000 nm) in the y component and a much weaker (12 fs, 800 nm) pulse in the x component. We find that the width of the harmonic plateau can be extended when a static electric field is added in the y component. We also investigate emission time of harmonics in terms of a time-frequency analysis to illustrate the physical mechanism of high-order harmonic generation. We calculate the ionization rate using the Ammosov-Delone-Krainov model and interpret the variation of harmonic intensity for different static electric field strengths. When the ratio of strengths of the static and the y-component laser fields is 0.1, a continuous harmonic spectrum is formed from 220 to 420 eV. By superposing a properly selected range of the harmonic spectrum from 300 to 350 eV, an isolated attosecond pulse with a duration of about 75 as is obtained, which is near linearly polarized.

  4. Electromagnetic Fields Associated with Commercial Solar Photovoltaic Electric Power Generating Facilities.

    Science.gov (United States)

    Tell, R A; Hooper, H C; Sias, G G; Mezei, G; Hung, P; Kavet, R

    2015-01-01

    The southwest region of the United States is expected to experience an expansion of commercial solar photovoltaic generation facilities over the next 25 years. A solar facility converts direct current generated by the solar panels to three-phase 60-Hz power that is fed to the grid. This conversion involves sequential processing of the direct current through an inverter that produces low-voltage three-phase power, which is stepped up to distribution voltage (∼12 kV) through a transformer. This study characterized magnetic and electric fields between the frequencies of 0 Hz and 3 GHz at two facilities operated by the Southern California Edison Company in Porterville, CA and San Bernardino, CA. Static magnetic fields were very small compared to exposure limits established by IEEE and ICNIRP. The highest 60-Hz magnetic fields were measured adjacent to transformers and inverters, and radiofrequency fields from 5-100 kHz were associated with the inverters. The fields measured complied in every case with IEEE controlled and ICNIRP occupational exposure limits. In all cases, electric fields were negligible compared to IEEE and ICNIRP limits across the spectrum measured and when compared to the FCC limits (≥0.3 MHz).

  5. Automatically generating Feynman rules for improved lattice field theories

    International Nuclear Information System (INIS)

    Hart, A.; Hippel, G.M. von; Horgan, R.R.; Storoni, L.C.

    2005-01-01

    Deriving the Feynman rules for lattice perturbation theory from actions and operators is complicated, especially when improvement terms are present. This physically important task is, however, suitable for automation. We describe a flexible algorithm for generating Feynman rules for a wide range of lattice field theories including gluons, relativistic fermions and heavy quarks. We also present an efficient implementation of this in a freely available, multi-platform programming language (PYTHON), optimised to deal with a wide class of lattice field theories

  6. Generation of magnetic fields for accelerators with permanent magnets

    International Nuclear Information System (INIS)

    Meinander, T.

    1994-01-01

    Commercially available permanent magnet materials and their properties are reviewed. Advantages and disadvantages of using permanent magnets as compared to electromagnets for the generation of specific magnetic fields are discussed. Basic permanent magnet configurations in multipole magnets and insertion devices are presented. (orig.)

  7. SSWL and BWL: finite element models of compressed magnetic field current generators

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, T.J.; Leeman, J.E.

    1976-01-01

    Documentation is presented for two new computer codes modeling the behavior of compressed magnetic field current generators. Code output results for the typical generator configurations are presented and compared to experimental results. (auth)

  8. Quasi-linear theory and transport theory. [particle acceleration in interplanetary medium

    Science.gov (United States)

    Smith, Charles W.

    1992-01-01

    The theory of energetic particle scattering by magnetostatic fluctuations is reviewed in so far as it fails to produce the rigidity-independent mean-free-paths observed. Basic aspects of interplanetary magnetic field fluctuations are reviewed with emphasis placed on the existence of dissipation range spectra at high wavenumbers. These spectra are then incorporated into existing theories for resonant magnetostatic scattering and are shown to yield infinite mean-free-paths. Nonresonant scattering in the form of magnetic mirroring is examined and offered as a partial solution to the magnetostatic problem. In the process, mean-free-paths are obtained in good agreement with observations in the interplanetary medium at 1 AU and upstream of planetary bow shocks.

  9. Generation of a strong attosecond pulse train with an orthogonally polarized two-color laser field

    International Nuclear Information System (INIS)

    Kim, Chul Min; Kim, I Jong; Nam, Chang Hee

    2005-01-01

    We theoretically investigate the high-order harmonic generation from a neon atom irradiated by an intense two-color femtosecond laser pulse, in which the fundamental field and its second harmonic are linearly polarized and orthogonal to each other. In contrast to usual high-harmonic generation with linearly polarized fundamental field alone, a very strong and clean high-harmonic spectrum, consisting of both odd and even orders of harmonics, can be generated in the orthogonally polarized two-color laser field with proper selection of the relative phase between the fundamental and second-harmonic fields. In time domain, this results in a strong and regular attosecond pulse train. The origin of these behaviors is elucidated by analyzing semiclassical electron paths and by simulating high-harmonic generation quantum mechanically

  10. Dynamics of self-generated magnetic fields in stagnation phase and their effects on hot spark formation

    International Nuclear Information System (INIS)

    Hata, Akiro; Mima, Kunioki; Nagatomo, Hideo; Sunahara, Atsushi; Nishiguchi, Akio

    2006-01-01

    The generalized temporal evolution equation of a magnetic field is derived for high density laser-fusion plasmas. Magnetic field generation and convection are simulated by using the 2D hydrodynamic code together with the magnetic field equation. It is found that magnetic fields are generated and compressed in association with the Rayleigh-Taylor instability of an imploding shell. In particular, the magnetic field convection by the Nernst effect is found to play an important role in the amplification of magnetic fields. The maximum magnetic field reaches 30 MG at maximum compression. This magnetic field may reduce the electron heat conduction around the hot spark. Therefore, it is concluded that the ignition condition for non-uniform implosion is influenced by self-generated magnetic fields. (author)

  11. A magnetostatic calculation of fringing field for the Rogowski pole boundary with floating snake

    International Nuclear Information System (INIS)

    Yan Chen; Fan Ming-Wu

    1984-01-01

    A boundary integral method has been used to calculate the fringing field distribution of Rogowski pole boundary with floating snake for QMG2 type of QDDD magnetic spectrograph and the experimental EFB is nearly reproduced from BIM calculation. As a further criteria, a calculation for clamped Rogowski pole but without snake is also performed and the calculated EFB shows perfect identity with the experiment. For evaluating the effect of snake quantitatively, this work also predicts the EFB values for two different positions of snake

  12. Magnetic Field Generation and Electron Acceleration in Relativistic Laser Channel

    International Nuclear Information System (INIS)

    Kostyukov, I.Yu.; Shvets, G.; Fisch, N.J.; Rax, J.M.

    2001-01-01

    The interaction between energetic electrons and a circularly polarized laser pulse inside an ion channel is studied. Laser radiation can be resonantly absorbed by electrons executing betatron oscillations in the ion channel and absorbing angular momentum from the laser. The absorbed angular momentum manifests itself as a strong axial magnetic field (inverse Faraday effect). The magnitude of this magnetic field is calculated and related to the amount of the absorbed energy. Absorbed energy and generated magnetic field are estimated for the small and large energy gain regimes. Qualitative comparisons with recent experiments are also made

  13. Infrared signal generation from AC induction field heating of graphite foam

    Science.gov (United States)

    Klett, James W.; Rios, Orlando

    2018-02-27

    A magneto-energy apparatus includes an electromagnetic field source for generating a time-varying electromagnetic field. A graphite foam conductor is disposed within the electromagnetic field. The graphite foam when exposed to the time-varying electromagnetic field conducts an induced electric current, the electric current heating the graphite foam to produce light. An energy conversion device utilizes light energy from the heated graphite foam to perform a light energy consuming function. A device for producing light and a method of converting energy are also disclosed.

  14. Valley-polarized quantum transport generated by gauge fields in graphene

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Garcia, Jose H; Roche, Stephan

    2017-01-01

    We report on the possibility to simultaneously generate in graphene a bulk valley-polarized dissipative transport and a quantum valley Hall effect by combining strain-induced gauge fields and real magnetic fields. Such unique phenomenon results from a ‘resonance/anti-resonance’ effect driven by t...... Kubo transport methods combined with a valley projection scheme to access valley-dependent conductivities and show that the results are robust against disorder....

  15. Electric field measurements in a near atmospheric pressure nanosecond pulse discharge with picosecond electric field induced second harmonic generation

    Science.gov (United States)

    Goldberg, Benjamin M.; Chng, Tat Loon; Dogariu, Arthur; Miles, Richard B.

    2018-02-01

    We present an optical electric field measurement method for use in high pressure plasma discharges. The method is based upon the field induced second harmonic generation technique and can be used for localized electric field measurements with sub-nanosecond resolution in any gaseous species. When an external electric field is present, a dipole is induced in the typically centrosymmetric medium, allowing for second harmonic generation with signal intensities which scale by the square of the electric field. Calibrations have been carried out in 100 Torr room air, and a minimum sensitivity of 450 V/cm is demonstrated. Measurements were performed with nanosecond or faster temporal resolution in a 100 Torr room air environment both with and without a plasma present. It was shown that with no plasma present, the field follows the applied voltage to gap ratio, as measured using the back current shunt method. When the electric field is strong enough to exceed the breakdown threshold, the measured field was shown to exceed the anticipated voltage to gap ratio which is taken as an indication of the ionization wave front as it sweeps through the plasma volume.

  16. Electric and magnetic mirrors and grating for slowly moving neutral atoms and molecules

    International Nuclear Information System (INIS)

    Opat, G.I.; Washington Univ., Seattle, WA; Wark, S.J.; Hajnal, J.V.; Cimmino, A.

    1990-01-01

    Those atoms or molecules which happen to have positive Stark or Zeeman energies (by virtue of their internal quantum state) are repelled by regions of high electrostatic or magnetostatic energy density, respectively. Using electrostatic or magnetostatic fields, which are periodic in a plane, it is possible to construct mirrors and gratings for slowly moving atoms and molecules. The theory of such devices is presented, together with some ideas for their fabrication. 10 refs., 4 figs

  17. Role of particle masses in the magnetic field generation driven by the parity violating interaction

    Energy Technology Data Exchange (ETDEWEB)

    Dvornikov, Maxim, E-mail: maxdvo@izmiran.ru [Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation (IZMIRAN), 142190 Troitsk, Moscow (Russian Federation); Physics Faculty, National Research Tomsk State University, 36 Lenin Avenue, 634050 Tomsk (Russian Federation); II. Institute for Theoretical Physics, University of Hamburg, 149 Luruper Chaussee, D-22761 Hamburg (Germany)

    2016-09-10

    Recently the new model for the generation of strong large scale magnetic fields in neutron stars, driven by the parity violating interaction, was proposed. In this model, the magnetic field instability results from the modification of the chiral magnetic effect in presence of the electroweak interaction between ultrarelativistic electrons and nucleons. In the present work we study how a nonzero mass of charged particles, which are degenerate relativistic electrons and nonrelativistic protons, influences the generation of the magnetic field in frames of this approach. For this purpose we calculate the induced electric current of these charged particles, electroweakly interacting with background neutrons and an external magnetic field, exactly accounting for the particle mass. This current is calculated by two methods: using the exact solution of the Dirac equation for a charged particle in external fields and computing the polarization operator of a photon in matter composed of background neutrons. We show that the induced current is vanishing in both approaches leading to the zero contribution of massive particles to the generated magnetic field. We discuss the implication of our results for the problem of the magnetic field generation in compact stars.

  18. Vacuum polarization of the electromagnetic field near a rotating black hole

    International Nuclear Information System (INIS)

    Frolov, V.P.; Zel'nikov, A.I.

    1985-01-01

    The electromagnetic field contribution to the vacuum polarization near a rotating black hole is considered. It is shown that the problem of calculating the renormalized average value of the stress-energy tensor /sup ren/ for the Hartle-Hawking vacuum state at the pole of the event horizon can be reduced to the problem of electro- and magnetostatics in the Kerr spacetime. An explicit expression for /sup ren/ at the pole of the event horizon is obtained and its properties are discussed. It is shown that in the case of a nonrotating black hole the Page-Brown approximation for the electromagnetic stress-energy tensor gives a result which coincides at the event horizon with the exact value of /sup ren/. .AE

  19. Nonlinear massive spin-2 field generated by higher derivative gravity

    International Nuclear Information System (INIS)

    Magnano, Guido; Sokolowski, Leszek M.

    2003-01-01

    We present a systematic exposition of the Lagrangian field theory for the massive spin-2 field generated in higher-derivative gravity upon reduction to a second-order theory by means of the appropriate Legendre transformation. It has been noticed by various authors that this nonlinear field overcomes the well-known inconsistency of the theory for a linear massive spin-2 field interacting with Einstein's gravity. Starting from a Lagrangian quadratically depending on the Ricci tensor of the metric, we explore the two possible second-order pictures usually called '(Helmholtz-)Jordan frame' and 'Einstein frame'. In spite of their mathematical equivalence, the two frames have different structural properties: in Einstein frame, the spin-2 field is minimally coupled to gravity, while in the other frame it is necessarily coupled to the curvature, without a separate kinetic term. We prove that the theory admits a unique and linearly stable ground state solution, and that the equations of motion are consistent, showing that these results can be obtained independently in either frame (each frame therefore provides a self-contained theory). The full equations of motion and the (variational) energy-momentum tensor for the spin-2 field in Einstein frame are given, and a simple but non-trivial exact solution to these equations is found. The comparison of the energy-momentum tensors for the spin-2 field in the two frames suggests that the Einstein frame is physically more acceptable. We point out that the energy-momentum tensor generated by the Lagrangian of the linearized theory is unrelated to the corresponding tensor of the full theory. It is then argued that the ghost-like nature of the nonlinear spin-2 field, found long ago in the linear approximation, may not be so harmful to classical stability issues, as has been expected

  20. Magnetic fields, stellar feedback, and the geometry of H II regions

    Science.gov (United States)

    Ferland, Gary J.

    2009-04-01

    Magnetic pressure has long been known to dominate over gas pressure in atomic and molecular regions of the interstellar medium. Here I review several recent observational studies of the relationships between the H+, H0 and H2 regions in M42 (the Orion complex) and M17. A simple picture results. When stars form they push back surrounding material, mainly through the outward momentum of starlight acting on grains, and field lines are dragged with the gas due to flux freezing. The magnetic field is compressed and the magnetic pressure increases until it is able to resist further expansion and the system comes into approximate magnetostatic equilibrium. Magnetic field lines can be preferentially aligned perpendicular to the long axis of quiescent cloud before stars form. After star formation and pushback occurs ionized gas will be constrained to flow along field lines and escape from the system along directions perpendicular to the long axis. The magnetic field may play other roles in the physics of the H II region and associated PDR. Cosmic rays may be enhanced along with the field and provide additional heating of atomic and molecular material. Wave motions may be associated with the field and contribute a component of turbulence to observed line profiles.

  1. Instrumentation for electromagnetic field generation in biological measurements

    International Nuclear Information System (INIS)

    Malaric, K.; Malaric, R.; Tkalec, M.; Lenicek, I.; Sala, A.

    2005-01-01

    Electromagnetic fields (EMFs) are part of everyday life in modern world. Extremely low-frequency EMFs (50 Hz) are produced by most electric home appliance, electric power transmission and distribution lines. For the last ten years mobile phones have been widely used all around the world. They operate on the EMF frequencies from 400 MHz to 1900 MHz. The effects of EMFs on living organisms have been the subject of debate and research for the last thirty years. The instrumentation for generation of EMFs have been designed at the Faculty of Electrical Engineering and Computing, Zagreb, and can be used for controlled exposure to different EMFs. To study the effect of extremely low-frequency EMF, duckweed (Lemna minor) - the model plant in biological measurement, test setup was made for magnetic field in Helmholtz coil and for electric field between two parallel circle electrodes. For the effect of mobile phones frequencies, test setup with exposition to the electromagnetic field was done with Gigahertz Transversal Electromagnetic Mode (GTEM) cell. The research confirmed that instrumentation used in these experiments is suitable for evaluation of biological effects of EMFs. The effect of different field strengths, exposure times and modulation can be tested with these instrumentation.(author)

  2. Enabling full field physics based OPC via dynamic model generation

    Science.gov (United States)

    Lam, Michael; Clifford, Chris; Raghunathan, Ananthan; Fenger, Germain; Adam, Kostas

    2017-03-01

    As EUV lithography marches closer to reality for high volume production, its peculiar modeling challenges related to both inter- and intra- field effects has necessitated building OPC infrastructure that operates with field position dependency. Previous state of the art approaches to modeling field dependency used piecewise constant models where static input models are assigned to specific x/y-positions within the field. OPC and simulation could assign the proper static model based on simulation-level placement. However, in the realm of 7nm and 5nm feature sizes, small discontinuities in OPC from piecewise constant model changes can cause unacceptable levels of EPE errors. The introduction of Dynamic Model Generation (DMG) can be shown to effectively avoid these dislocations by providing unique mask and optical models per simulation region, allowing a near continuum of models through field. DMG allows unique models for EMF, apodization, aberrations, etc to vary through the entire field and provides a capability to precisely and accurately model systematic field signatures.

  3. Synchronous Generator with HTS-2G field coils for Windmills with output power 1 MW

    Science.gov (United States)

    Kovalev, K.; Kovalev, L.; Poltavets, V.; Samsonovich, S.; Ilyasov, R.; Levin, A.; Surin, M.

    2014-05-01

    Nowadays synchronous generators for wind-mills are developed worldwide. The cost of the generator is determined by its size and weight. In this deal the implementation of HTS-2G generators is very perspective. The application of HTS 2G field coils in the rotor allows to reduce the size of the generator is 1.75 times. In this work the design 1 MW HTS-2G generator is considered. The designed 1 MW HTS-2G generator has the following parameters: rotor diameter 800 mm, active length 400 mm, phase voltage 690V, rotor speed 600 min-1 rotor field coils with HTS-2G tapes. HTS-2G field coils located in the rotating cryostat and cooled by liquid nitrogen. The simulation and optimization of HTS-2G field coils geometry allowed to increase feed DC current up to 50A. Copper stator windings are water cooled. Magnetic and electrical losses in 1 MW HTS-2G generator do not exceed 1.6% of the nominal output power. In the construction of HTS-2G generator the wave multiplier with ratio 1:40 is used. The latter allows to reduce the total mass of HTS-2G generator down to 1.5 tons. The small-scale model of HTS-2G generator with output power 50 kW was designed, manufactured and tested. The test results showed good agreement with calculation results. The manufacturing of 1 MW HTS-2G generator is planned in 2014. This work is done under support of Rosatom within the frames of Russian Project "Superconducting Industry".

  4. Voltage control of cavity magnon polariton

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, S., E-mail: kaurs3@myumanitoba.ca; Rao, J. W.; Gui, Y. S.; Hu, C.-M., E-mail: hu@physics.umanitoba.ca [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Yao, B. M. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); National Laboratory for Infrared Physics, Chinese Academy of Sciences, Shanghai 200083 (China)

    2016-07-18

    We have experimentally investigated the microwave transmission of the cavity-magnon-polariton (CMP) generated by integrating a low damping magnetic insulator onto a 2D microwave cavity. The high tunability of our planar cavity allows the cavity resonance frequency to be precisely controlled using a DC voltage. By appropriately tuning the voltage and magnetic bias, we can observe the cavity photon magnon coupling and the magnetic coupling between a magnetostatic mode and the generated CMP. The dispersion of the generated CMP was measured by either tuning the magnetic field or the applied voltage. This electrical control of CMP may open up avenues for designing advanced on-chip microwave devices that utilize light-matter interaction.

  5. Electricity Generation in Microbial Fuel Cell (MFC) by Bacterium Isolated from Rice Paddy Field Soil

    Science.gov (United States)

    Fakhirruddin, Fakhriah; Amid, Azura; Salim, Wan Wardatul Amani Wan; Suhaida Azmi, Azlin

    2018-03-01

    Microbial fuel cell (MFC) is an alternative approach in generating renewable energy by utilising bacteria that will oxidize organic or inorganic substrates, producing electrons yielded as electrical energy. Different species of exoelectrogenic bacteria capable of generating significant amount of electricity in MFC has been identified, using various organic compounds for fuel. Soil sample taken from rice paddy field is proven to contain exoelectrogenic bacteria, thus electricity generation using mixed culture originally found in the soil, and pure culture isolated from the soil is studied. This research will isolate the exoelectrogenic bacterial species in the rice paddy field soil responsible for energy generation. Growth of bacteria isolated from the MFC is observed by measuring the optical density (OD), cell density weight (CDW) and viable cell count. Mixed bacterial species found in paddy field soil generates maximum power of 77.62 μW and 0.70 mA of current. In addition, the research also shows that the pure bacterium in rice paddy field soil can produce maximum power and current at 51.32 μW and 0.28 mA respectively.

  6. Random source generating far field with elliptical flat-topped beam profile

    International Nuclear Information System (INIS)

    Zhang, Yongtao; Cai, Yangjian

    2014-01-01

    Circular and rectangular multi-Gaussian Schell-model (MGSM) sources which generate far fields with circular and rectangular flat-topped beam profiles were introduced just recently (Sahin and Korotkova 2012 Opt. Lett. 37 2970; Korotkova 2014 Opt. Lett. 39 64). In this paper, a random source named an elliptical MGSM source is introduced. An analytical expression for the propagation factor of an elliptical MGSM beam is derived. Furthermore, an analytical propagation formula for an elliptical MGSM beam passing through a stigmatic ABCD optical system is derived, and its propagation properties in free space are studied. It is interesting to find that an elliptical MGSM source generates a far field with an elliptical flat-topped beam profile, being qualitatively different from that of circular and rectangular MGSM sources. The ellipticity and the flatness of the elliptical flat-topped beam profile in the far field are determined by the initial coherence widths and the beam index, respectively. (paper)

  7. Dynamic wave field synthesis: enabling the generation of field distributions with a large space-bandwidth product

    OpenAIRE

    Kamau, Edwin Ngugi

    2016-01-01

    The generation and manipulation of electromagnetic field distributions plays an essential role in physics in general, and particularly in the vast field of physical optics. In the current state of the art, one of the most convenient methods of performing this task is provided by either static or dynamic diffractive as well as holographic optical elements. Currently available dynamic optical elements, such as spatial light modulators, do offer on the one hand high temporal flexibility. They ho...

  8. Particle accelerator

    International Nuclear Information System (INIS)

    Ress, R.I.

    1976-01-01

    Charged particles are entrained in a predetermined direction, independent of their polarity, in a circular orbit by a magnetic field rotating at high speed about an axis in a closed cylindrical or toroidal vessel. The field may be generated by a cylindrical laser structure, whose beam is polygonally reflected from the walls of an excited cavity centered on the axis, or by high-frequency energization of a set of electromagnets perpendicular to the axis. In the latter case, a separate magnetostatic axial field limits the orbital radius of the particles. These rotating and stationary magnetic fields may be generated centrally or by individual magnets peripherally spaced along its circular orbit. Chemical or nuclear reactions can be induced by collisions between the orbiting particles and an injected reactant, or by diverting high-speed particles from one doughnut into the path of counterrotating particles in an adjoining doughnut

  9. Theory and experimental show up of axial magnetic fields self-generated in dense laser-produced plasmas

    International Nuclear Information System (INIS)

    El Tamer, M.

    1986-09-01

    The work presented in this thesis concerns the magnetic fields generated in laser produced plasma. A summary of the theoretical and experimental studies concerning the toroidal magnetic fields and realised by different groups of research is presented. Then, we present our original contribution on the generation of axial magnetic fields by the dynamo effect. The experimental work for the detection of magnetic field is based on the Faraday rotation and Zeeman effects. The experimental diagrams are detailed and discussed. The experimental results are presented and compared to the theory. Finaly, we present some consequences of the generation of the axial magnetic fields in laser produced plasma as a discussion of the thermal conductivity [fr

  10. Generation of the reciprocal-binomial state for optical fields

    International Nuclear Information System (INIS)

    Valverde, C.; Avelar, A.T.; Baseia, B.; Malbouisson, J.M.C.

    2003-01-01

    We compare the efficiencies of two interesting schemes to generate truncated states of the light field in running modes, namely the 'quantum scissors' and the 'beam-splitter array' schemes. The latter is applied to create the reciprocal-binomial state as a travelling wave, required to implement recent experimental proposals of phase-distribution determination and of quantum lithography

  11. Dependence of Magnetic Field Quality on Collar Supplier and Dimensions in the Main LHC Dipole

    CERN Document Server

    Bellesia, B; Santoni, C; Todesco, E

    2006-01-01

    In order to keep the electro-magnetic forces and to minimize conductor movements, the superconducting coils of the main Large Hadron Collider dipoles are held in place by means of austenitic steel collars. Two suppliers provide the collars necessary for the whole LHC production, which has now reached more than 800 collared coils. In this paper we first assess if the different collar suppliers origin a noticeable difference in the magnetic field quality measured at room temperature. We then analyze the measurements of the collar dimensions carried out at the manufacturers, comparing them to the geometrical tolerances. Finally we use a magneto-static model to evaluate the expected spread in the field components induced by the actual collar dimensions. These spreads are compared to the magnetic measurements at room temperature over the magnet production in order to identify if the collars, rather than other components or assembly process, can account for the measured magnetic field effects. It has been found tha...

  12. The Study of Spherical Cores with a Toroidal Magnetic Field Configuration

    Energy Technology Data Exchange (ETDEWEB)

    Gholipour, Mahmoud [Research Institute for Astronomy and Astrophysics of Maragha (RIAAM)—Maragha, P.O. Box 55134-441 (Iran, Islamic Republic of)

    2017-04-01

    Observational studies of the magnetic fields in molecular clouds have significantly improved the theoretical models developed for the structure and evolution of dense clouds and for the star formation process as well. The recent observational analyses on some cores indicate that there is a power-law relationship between magnetic field and density in the molecular clouds. In this study, we consider the stability of spherical cores with a toroidal magnetic field configuration in the molecular clouds. For this purpose, we model a spherical core that is in magnetostatic equilibrium. Herein, we propose an equation of density structure, which is a modified form of the isothermal Lane–Emden equation in the presence of the toroidal magnetic field. The proposed equation describes the effect of the toroidal magnetic field on the cloud structure and the mass cloud. Furthermore, we found an upper limit for this configuration of magnetic field in the molecular clouds. Then, the virial theorem is used to consider the cloud evolution leading to an equation in order to obtain the lower limit of the field strength in the molecular cloud. However, the results show that the field strength of the toroidal configuration has an important effect on the cloud structure, whose upper limit is related to the central density and field gradient. The obtained results address some regions of clouds where the cloud decomposition or star formation can be seen.

  13. The International Geomagnetic Reference Field: the twelfth generation

    Science.gov (United States)

    Thebault, Erwan; Finlay, Christopher; The IGRF Working Group

    2015-04-01

    The IGRF is an internationally-agreed reference model of the Earth's magnetic field produced under the auspices of the International Association of Geomagnetism and Aeronomy. The IGRF-12 is the latest update of this well-known model which is used each year by many thousands of users for both industrial and scientific purposes. In October 2014, ten institutions worldwide have made contributions to the IGRF. These models were evaluated and the twelfth generation of the International Geomagnetic Reference Field (IGRF) was adopted in December 2014. In this presentation, we will report on the IGRF activities, briefly describe the candidate models, summarize the evaluation of models performed by different independent teams, show how the IGRF-12 models were calculated and finally discuss some of the main magnetic features of this new model.

  14. Generating the optimal magnetic field for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Insinga, Andrea Roberto; Smith, Anders

    2016-01-01

    In a magnetic refrigeration device the magnet is the single most expensive component, and therefore it is crucially important to ensure that an effective magnetic field as possible is generated using the least amount of permanent magnets. Here we present a method for calculating the optimal...... remanence distribution for any desired magnetic field. The method is based on the reciprocity theorem, which through the use of virtual magnets can be used to calculate the optimal remanence distribution. Furthermore, we present a method for segmenting a given magnet design that always results...... in the optimal segmentation, for any number of segments specified. These two methods are used to determine the optimal magnet design of a 12-piece, two-pole concentric cylindrical magnet for use in a continuously rotating magnetic refrigeration device....

  15. Application of a flow generated by IR laser and AC electric field in micropumping and micromixing

    International Nuclear Information System (INIS)

    Nakano, M; Mizuno, A

    2008-01-01

    In this paper, it is described that measurement of fluid flow generated by simultaneous operation of an infrared (IR) laser and AC electric field in a microfabricated channel. When an IR laser (1026 nm) was focused under an intense AC electric field, a circulating flow was generated around the laser focus. The IR laser and the electric field generate two flow patterns of the electrohydrodynamicss. When the laser focus is placed at the center of the gap between electrodes, the flow pattern is parallel to the AC electric field toward electrodes from the centre. On the other hand, when the laser focus is placed close to one of the electrodes, one directional flow is generated. First flow pattern can be used as a micromixer and the second one as a micropump. Flow velocity profiles of the two flow patterns were measured as a function of the laser power, intensity of the AC electric field and AC frequency.

  16. Electron holography of magnetic field generated by a magnetic recording head.

    Science.gov (United States)

    Goto, Takayuki; Jeong, Jong Seok; Xia, Weixing; Akase, Zentaro; Shindo, Daisuke; Hirata, Kei

    2013-06-01

    The magnetic field generated by a magnetic recording head is evaluated using electron holography. A magnetic recording head, which is connected to an electric current source, is set on the specimen holder of a transmission electron microscope. Reconstructed phase images of the region around the magnetic pole show the change in the magnetic field distribution corresponding to the electric current applied to the coil of the head. A simulation of the magnetic field, which is conducted using the finite element method, reveals good agreement with the experimental observations.

  17. Reciprocity Method for Obtaining the Far Fields Generated by a Source Inside or Near a Microparticle

    National Research Council Canada - National Science Library

    Hill, Steven

    1997-01-01

    We show that the far fields generated by a source inside or near a microparticle can be obtained readily by using the reciprocity theorem along with the internal or near fields generated by plane wave illumination...

  18. The use of mirror image symmetry in coil winding, applications and advantages in magnetic field generation

    International Nuclear Information System (INIS)

    Grotz, T.

    1992-01-01

    In this paper, an improved method of winding inductors, transformers and motors is discovered. This invention greatly enhances the ability to generate magnetic fields with a given amount of wire. This invention may be as fundamental to the use of magnetic fields as was Nikola Tesla's use of rotating magnetic fields for the generation of alternating current

  19. Topology of plasma equilibria and the current closure condition

    International Nuclear Information System (INIS)

    Kocic, S.; Mahajan, S.M.; Hazeltine, R.D.

    2005-01-01

    A virtually complete description of the topology of stationary incompressible Euler flows and the magnetic field satisfying the magnetostatic equation is given by a theorem due to Arnol'd. We apply this theorem to describe the topology of stationary states of plasmas with significant fluid flow, obeying the Hall magnetohydrodynamics model equations. In the context of the integrability (nonchaotic topology) of the magnetic and velocity fields, we discuss the validity of conditions analogous to that of Greene and Johnson, which, in the case of magnetostatic equations, states that the line integral ∫dl/B is the same for each closed magnetic field line on a given magnetic surface. We also show how this property follows from the existence of a continuous volume-preserving symmetry of the magnetic field

  20. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    Science.gov (United States)

    Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel, and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a three-dimensional relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. New simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. Furthermore, the nonlinear fluctuation amplitudes of densities, currents, and electric and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at a comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. In addition, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by tine Weibel instability scale proportionally to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields, which contribute to the electron s (positron s) transverse deflection behind the jet head. This

  1. Domain configuration and magnetization switching in arrays of permalloy nanostripes

    International Nuclear Information System (INIS)

    Iglesias-Freire, Ó.; Jaafar, M.; Pérez, L.; Abril, O. de; Vázquez, M.; Asenjo, A.

    2014-01-01

    The proximity effect in the collective behavior of arrays of magnetic nanostripes is currently a subject of intensive research. The imperative of reducing the size and distances between elements in order to achieve higher storage capacity, faster access to the information as well as low energy consumption, brings consequences about the isolated behavior of the elements and devices. Parallel to each other permalloy nanostripes with high aspect ratio have been prepared by the nanolithography technique. The evolution of the closure domains and the magnetization direction in individual nanostructures has been imaged under applied magnetic fields using Variable Field Magnetic Force Microscopy. Moreover, the magnetostatic interactions between neighboring elements and the proximity effects in arrays of such nanostructures have been quantitatively analyzed by Magnetic Force Microscopy and micromagnetic simulations. The agreement between simulations and the experimental results allows us to conclude the relevance of those interactions depending on the geometry characteristics. In particular, results suggest that the magnetostatic coupling between adjacent nanostripes vanishes for separation distances higher than 500 nm. - Highlights: • A shape anisotropy-induced single domain remanent state is present in the stripes. Closure domains are formed under external fields. • Separation distances between neighboring stripes (500 nm) are enough to overcome the magnetostatic coupling and avoid a multi-stripe character. • Micromagnetic simulations predict critical distances of around 500 nm for the onset of magnetostatic coupling between neighboring elements. • Simulations predict stripes with a small longitudinal separation to behave as single elements, with domain walls “jumping” between them

  2. Domain configuration and magnetization switching in arrays of permalloy nanostripes

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias-Freire, Ó., E-mail: aasenjo@icmm.csic.es [Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Inés de la Cruz 3, Madrid 28049 (Spain); Jaafar, M. [Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Inés de la Cruz 3, Madrid 28049 (Spain); Dpto. Física de la Materia Condensada, Universidad Autónoma de Madrid, Cantoblanco 28049 (Spain); Pérez, L. [Dpto. Física de Materiales, Universidad Complutense de Madrid, Madrid 28040 (Spain); Abril, O. de [Dpto. Física e Instalaciones Aplicadas a la Edificación, al Medio Ambiente y al Urbanismo, Universidad Politécnica de Madrid, Madrid 28040 (Spain); Vázquez, M.; Asenjo, A. [Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Inés de la Cruz 3, Madrid 28049 (Spain)

    2014-04-15

    The proximity effect in the collective behavior of arrays of magnetic nanostripes is currently a subject of intensive research. The imperative of reducing the size and distances between elements in order to achieve higher storage capacity, faster access to the information as well as low energy consumption, brings consequences about the isolated behavior of the elements and devices. Parallel to each other permalloy nanostripes with high aspect ratio have been prepared by the nanolithography technique. The evolution of the closure domains and the magnetization direction in individual nanostructures has been imaged under applied magnetic fields using Variable Field Magnetic Force Microscopy. Moreover, the magnetostatic interactions between neighboring elements and the proximity effects in arrays of such nanostructures have been quantitatively analyzed by Magnetic Force Microscopy and micromagnetic simulations. The agreement between simulations and the experimental results allows us to conclude the relevance of those interactions depending on the geometry characteristics. In particular, results suggest that the magnetostatic coupling between adjacent nanostripes vanishes for separation distances higher than 500 nm. - Highlights: • A shape anisotropy-induced single domain remanent state is present in the stripes. Closure domains are formed under external fields. • Separation distances between neighboring stripes (500 nm) are enough to overcome the magnetostatic coupling and avoid a multi-stripe character. • Micromagnetic simulations predict critical distances of around 500 nm for the onset of magnetostatic coupling between neighboring elements. • Simulations predict stripes with a small longitudinal separation to behave as single elements, with domain walls “jumping” between them.

  3. Valley-polarized quantum transport generated by gauge fields in graphene

    Science.gov (United States)

    Settnes, Mikkel; Garcia, Jose H.; Roche, Stephan

    2017-09-01

    We report on the possibility to simultaneously generate in graphene a bulk valley-polarized dissipative transport and a quantum valley Hall effect by combining strain-induced gauge fields and real magnetic fields. Such unique phenomenon results from a ‘resonance/anti-resonance’ effect driven by the superposition/cancellation of superimposed gauge fields which differently affect time reversal symmetry. The onset of a valley-polarized Hall current concomitant to a dissipative valley-polarized current flow in the opposite valley is revealed by a {{e}2}/h Hall conductivity plateau. We employ efficient linear scaling Kubo transport methods combined with a valley projection scheme to access valley-dependent conductivities and show that the results are robust against disorder.

  4. Calculation of the Magnetic Fields of the Electric Power Line

    Directory of Open Access Journals (Sweden)

    Patsiuk V.

    2016-12-01

    Full Text Available The task of calculation of per unit length parameters of multi-conductor electrical overhead transmission lines has been treated in the paper. The calculation of distribution of electric and magnetic fields has been performed by means of the finite volume method for entire span of the line. The theoretical justification of the method for calculation the parameters of electromagnetic field taking into account the change of the vector of magnetic potential along the line has been given. The problems of electrostatic and magnetostatic for a single electric conductor and unlimited long conductor with current have been solved. For the inner and total inductivities of a single conductor under the current have been obtained relationships and drawn dependences. Dependence between the speeds of light and of electromagnetic wave’s propagation has been presented. Based on the characteristics of distribution of electric and magnetic fields of multi-conductor lines has been provided the method of calculation of the matrix of own and mutual capacitances and inductivities the calculated values of per unit length parameters of compact 110 kV electric line which is in concordance with one of basic physical constant – the speed of light.

  5. Influence of Austenitic Steel Collar Dimensions on Magnetic Field Harmonics in the LHC Main Dipole

    CERN Document Server

    Bellesia, B; Todesco, Ezio

    2005-01-01

    The influence of the geometry of the collars in the main LHC dipole on the magnetic field harmonics is analyzed. The study aims at finding if the collar geometry is the driving mechanism of field quality for some harmonics and if the two different collar suppliers give a special signature on the magnetic field. Data of more than 700 magnets of the LHC series dipoles are analyzed and discussed. The main result of the analysis is that the collar shape is the driving mechanism of the magnetic field harmonics only for b2 and a3 in one of the three Cold Mass Assemblers (Firm3), where only collars of the supplier S2 are used. Two independent observations support this fact: firstly, strong correlations between apertures of the same magnet as expected from the assembly procedure have been found. Secondly, the expected values based on the measured dimensions of the collars and on a magneto-static model agree with magnetic measurements both for the average and for the standard deviation.

  6. Globally Optimal Segmentation of Permanent-Magnet Systems

    DEFF Research Database (Denmark)

    Insinga, Andrea Roberto; Bjørk, Rasmus; Smith, Anders

    2016-01-01

    Permanent-magnet systems are widely used for generation of magnetic fields with specific properties. The reciprocity theorem, an energy-equivalence principle in magnetostatics, can be employed to calculate the optimal remanent flux density of the permanent-magnet system, given any objective...... remains unsolved. We show that the problem of optimal segmentation of a two-dimensional permanent-magnet assembly with respect to a linear objective functional can be reduced to the problem of piecewise linear approximation of a plane curve by perimeter maximization. Once the problem has been cast...

  7. Effects of multi-photon interferences from internally generated fields in strongly resonant systems

    International Nuclear Information System (INIS)

    Deng, Lu; Payne, Marvin G.; Garrett, William R.

    2006-01-01

    In studies of various nonlinear optical phenomena, strong resonant features in the atomic or molecular response to multi-photon driven processes have been used to greatly enhance the visibility of otherwise weak higher-order processes. However, there are well defined circumstances where a multi-photon-resonant response of a target system leads to the generation of one or more new electromagnetic fields that can drastically change the overall system response from what would be expected from the imposed laser fields alone. New effects can occur and dominate some aspects of the nonlinear optical response because of the constructive or destructive interference between transition amplitudes along multiple excitation pathways between a given set of optically coupled states, where one of the pathways involve internally generated field(s). Under destructive interference some resonant enhancements can become completely canceled (suppressed). This review focuses on the class of optical interference effects associated with internally generated fields, that have been found to be capable of influencing a very significant number of basic physical phenomena in gas or vapor phase systems. It provides a historical overview of experimental and theoretical developments and a modern understanding of the underlying physics and its various manifestations that include: suppression of multi-photon excitation processes, suppression of stimulated emissions (Raman, hyper-Raman, and optically pumped stimulated emissions), saturation of parametric wave-mixing, pressure and beam-geometry dependent shifting of multi-photon-resonant absorption lines, and the suppression of Autler-Townes splitting and ac-stark shifts. Additionally, optical interference effects in some modern contexts, such as achieving multi-photon induced transparency, establishing single-photon self-interference based induced transparency, and generating entangled single photon states, are reviewed

  8. Laser generated hot electron transport in an externally applied magnetic field

    International Nuclear Information System (INIS)

    Burnett, N.H.; Enright, G.D.

    1986-01-01

    The authors have investigated the effect of an externally applied DC magnetic field on the generation and transport of hot electrons in CO/sub 2/ laser irradiation of cylindrical targets. The targets used in these studies were 6.3 mm diameter metal rods through which a pulsed current was driven from an external capacitor. Magnetic fields up to 150 kgauss were produced at the target surface. The CO/sub 2/ laser was focused with an f/5 lens resulting in a laser intensity of ≅3 x 10/sup 14/ W/cm/sup 2/ in a 100 μm diameter focal spot. The effect of the external magnetic field on the generation and inward transport of superhot (≥ 100 keV) electrons was studied. Principal diagnostics included a six channel hard x-ray spectrometer, a high energy x-ray pinhole camera, a LiF Laue x-ray spectrograph and a Ross-filtered (W-Ta) pair of x-ray detectors. The latter two diagnostics were designed to detect Au Kα /sub emission at 68.2 keV

  9. Geometric representation of the generator of duality in massless and massive p-form field theories

    International Nuclear Information System (INIS)

    Contreras, Ernesto; Martinez, Yisely; Leal, Lorenzo

    2010-01-01

    We study the invariance under duality transformations in massless and massive p-form field theories and obtain the Noether generators of the infinitesimal transformations that correspond to this symmetry. These generators can be realized in geometrical representations that generalize the loop representation of the Maxwell field, allowing for a geometrical interpretation which is studied.

  10. A ferrite LTCC based dual purpose helical antenna providing bias for tunability

    KAUST Repository

    Ghaffar, Farhan A.

    2015-03-30

    Typically, magnetically tunable antennas utilize large external magnets or coils to provide the magneto-static bias. In this work, we present a novel concept of combining the antenna and the bias coil in one structure. A helical antenna has been optimized to act as the bias coil in a ten layer ferrite LTCC package, thus performing two functions. This not only reduces the overall size of the system by getting rid of the external bias source but also eliminates demagnetization effect (fields lost at air-to-substrate interface), which reduces the required magneto-static field strength and makes the design efficient. RF choking inductor and DC blocking capacitor have been monolithically integrated as package elements to allow the magnetostatic and microwave excitation at the same time. The design has been optimized for its low frequency and high frequency performance in two different simulators. A measured tuning range of 10% is achieved at a center frequency of 13 GHz. The design is highly suitable for low cost, compact, light-weight and tunable microwave systems. © 2002-2011 IEEE.

  11. A ferrite LTCC based dual purpose helical antenna providing bias for tunability

    KAUST Repository

    Ghaffar, Farhan A.; Shamim, Atif

    2015-01-01

    Typically, magnetically tunable antennas utilize large external magnets or coils to provide the magneto-static bias. In this work, we present a novel concept of combining the antenna and the bias coil in one structure. A helical antenna has been optimized to act as the bias coil in a ten layer ferrite LTCC package, thus performing two functions. This not only reduces the overall size of the system by getting rid of the external bias source but also eliminates demagnetization effect (fields lost at air-to-substrate interface), which reduces the required magneto-static field strength and makes the design efficient. RF choking inductor and DC blocking capacitor have been monolithically integrated as package elements to allow the magnetostatic and microwave excitation at the same time. The design has been optimized for its low frequency and high frequency performance in two different simulators. A measured tuning range of 10% is achieved at a center frequency of 13 GHz. The design is highly suitable for low cost, compact, light-weight and tunable microwave systems. © 2002-2011 IEEE.

  12. Electrostatic turbulence with finite parallel correlation length and radial electric field generation

    International Nuclear Information System (INIS)

    Vlad, M.; Spineanu, F.; Misguich, J.H.; Balescu, R.

    2001-01-01

    Particle diffusion in a given electrostatic turbulence with a finite correlation length along the confining magnetic field is studied in the test particle approach. An anomalous diffusion regime of amplified diffusion coefficients is found in the conditions when particle trapping in the structure of the stochastic potential is effective. The auto-generated radial electric field is calculated. (author)

  13. Coherence properties of the harmonic generation in intense laser field

    International Nuclear Information System (INIS)

    Salieres, P.

    1995-01-01

    In this thesis is presented an experimental and theoretical study of the harmonic generation in intense field and coherence properties of this radiation. The first part reminds the main harmonic specter characteristics. Follow then experimental studies of the tray extension with the laser lighting, the harmonic generation by ions, and the influence of the laser field on the efficiency of generation. The second part presents the quantum model of the harmonic generation in tunnel regime that we have used for the calculation of the dipoles. We compare dependence in lighting of some harmonic, by insisting on the characteristic behavior of the atomic phase. The theory of the propagation is presented in third part. After the reminder of the case of a perturbative polarization, we develop the case of the polarization in tunnel regime. With the help of numerical simulations, we show the influence of the atomic phase on the agreement of phase, and therefore on the efficiency of conversion and profiles of generation in the medium. The importance of the geometry of the interaction is underlined. The part IV presents the study of the spatial coherence of the harmonic radiation. We develop first consequences of the theory of the agreement of phase for profiles of emission. Then the comparison with experimental profiles is detailed in function of the different parameters( order of non linearity, laser lighting, position of the focus by report in the gaseous medium). The study of the spectral and temporal coherence of the part V begins with the experimental effect investigation of the ionization on specters of the harmonic of weak order. We present then theoretical predictions of the preceding model for spectral and temporal profiles of the harmonic of highest order, generated in tunnel regime. The part VI is devoted to the UVX source aspect of the harmonic radiation. General characteristics (number of photons, agreement) are first detailed, then we present the first experiences

  14. Auger generation as an intrinsic limit to tunneling field-effect transistor performance

    International Nuclear Information System (INIS)

    Teherani, James T.; Agarwal, Sapan; Chern, Winston; Antoniadis, Dimitri A.; Solomon, Paul M.; Yablonovitch, Eli

    2016-01-01

    Many in the microelectronics field view tunneling field-effect transistors (TFETs) as society's best hope for achieving a >10× power reduction for electronic devices; however, despite a decade of considerable worldwide research, experimental TFET results have significantly underperformed simulations and conventional MOSFETs. To explain the discrepancy between TFET experiments and simulations, we investigate the parasitic leakage current due to Auger generation, an intrinsic mechanism that cannot be mitigated with improved material quality or better device processing. We expose the intrinsic link between the Auger and band-to-band tunneling rates, highlighting the difficulty of increasing one without the other. From this link, we show that Auger generation imposes a fundamental limit on ultimate TFET performance.

  15. Auger generation as an intrinsic limit to tunneling field-effect transistor performance

    Energy Technology Data Exchange (ETDEWEB)

    Teherani, James T., E-mail: j.teherani@columbia.edu [Department of Electrical Engineering, Columbia University, New York, New York 10027 (United States); Agarwal, Sapan [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States); Chern, Winston; Antoniadis, Dimitri A. [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Solomon, Paul M. [IBM T.J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Yablonovitch, Eli [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States)

    2016-08-28

    Many in the microelectronics field view tunneling field-effect transistors (TFETs) as society's best hope for achieving a >10× power reduction for electronic devices; however, despite a decade of considerable worldwide research, experimental TFET results have significantly underperformed simulations and conventional MOSFETs. To explain the discrepancy between TFET experiments and simulations, we investigate the parasitic leakage current due to Auger generation, an intrinsic mechanism that cannot be mitigated with improved material quality or better device processing. We expose the intrinsic link between the Auger and band-to-band tunneling rates, highlighting the difficulty of increasing one without the other. From this link, we show that Auger generation imposes a fundamental limit on ultimate TFET performance.

  16. Magnetic guns with cylindrical permanent magnets

    DEFF Research Database (Denmark)

    Vokoun, David; Beleggia, Marco; Heller, Luděk

    2012-01-01

    The motion of a cylindrical permanent magnet (projectile) inside a tubular permanent magnet, with both magnets magnetized axially, illustrates nicely the physical principles behind the operation of magnetic guns. The force acting upon the projectile is expressed semi-analytically as derivative...... of the magnetostatic interaction energy. For comparison, the forces involved are also calculated numerically using finite elements methods. Based on the conservation of the magnetostatic and kinetic energies, the exit and asymptotic velocities are determined. The derived formulas can be used to optimize the generated...... forces and motion of the inner cylindrical magnet....

  17. Wake-field generation by the ponderomotive memory effect

    International Nuclear Information System (INIS)

    Wolf, U.; Schamel, H.

    1997-01-01

    An analytical and numerical investigation of the plasma response to an imposed high frequency wave packet with a slow explicit time-dependent envelope is presented. An underlying picture of ponderomotive effects is developed, which shows that the explicit time dependence forces us to treat the problem kinetically, and furthermore, that a wake field is generated by the ponderomotive memory effect. The latter supplements the well-known ponderomotive force and fake heating effect. Several perturbation schemes are compared showing that the influence of resonant particles, treated by the method of characteristics, has to be taken into account for Langmuir wave packets with kλ d ≥0.2, where k is the wave number and λ d the Debye length. A self-consistent Vlasov simulation shows the disappearance of the density depression in the case of immobile ions, whereas the wake-field pattern survives self-consistency. copyright 1997 The American Physical Society

  18. Brief communication "Modeling tornado dynamics and the generation of infrasound, electric and magnetic fields"

    Directory of Open Access Journals (Sweden)

    E. D. Schmitter

    2010-02-01

    Full Text Available Recent observations endorse earlier measurements of time varying electric and magnetic fields generated by tornadoes and dust devils. These signals may provide a means for early warning but together with a proper modeling approach can also provide insight into geometry and dynamics of the vortices. Our model calculations show the existence of pressure resonances characterized as acoustic duct modes with well defined frequencies. These resonances not only generate infrasound but also modulate the charge density and the velocity field and in this way lead to electric and magnetic field oscillations in the 0.5–20-Hz range that can be monitored from a distance of several kilometers.

  19. Superfield generating equation of field-antifield formalism as a hyper-gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Batalin, Igor A. [P.N. Lebedev Physics Institute, Moscow (Russian Federation); Tomsk State Pedagogical University, Tomsk (Russian Federation); Lavrov, Peter M. [Tomsk State Pedagogical University, Tomsk (Russian Federation); National Research Tomsk State University, Tomsk (Russian Federation)

    2017-02-15

    Within a superfield approach, we formulate a simple quantum generating equation of the field-antifield formalism. Then we derive the Schroedinger equation with the Hamiltonian whose Δ-exact part serves as a generator to the quantum master transformations. We show that these generators do satisfy a nice composition law in terms of the quantum antibrackets. We also present an Sp(2) symmetric extension to the main construction, with specific features caused by the principal fact that all basic equations become Sp(2) vector-valued ones. (orig.)

  20. [Negative air ions generated by plants upon pulsed electric field stimulation applied to soil].

    Science.gov (United States)

    Wu, Ren-ye; Deng, Chuan-yuan; Yang, Zhi-jian; Weng, Hai-yong; Zhu, Tie-jun-rong; Zheng, Jin-gui

    2015-02-01

    This paper investigated the capacity of plants (Schlumbergera truncata, Aloe vera var. chinensis, Chlorophytum comosum, Schlumbergera bridgesii, Gymnocalycium mihanovichii var. friedrichii, Aspidistra elatior, Cymbidium kanran, Echinocactus grusonii, Agave americana var. marginata, Asparagus setaceus) to generate negative air ions (NAI) under pulsed electric field stimulation. The results showed that single plant generated low amounts of NAI in natural condition. The capacity of C. comosum and G. mihanovichii var. friedrichii generated most NAI among the above ten species, with a daily average of 43 ion · cm(-3). The least one was A. americana var. marginata with the value of 19 ion · cm(-3). When proper pulsed electric field stimulation was applied to soil, the NAI of ten plant species were greatly improved. The effect of pulsed electric field u3 (average voltage over the pulse period was 2.0 x 10(4) V, pulse frequency was 1 Hz, and pulse duration was 50 ms) was the greatest. The mean NAI concentration of C. kanran was the highest 1454967 ion · cm(-3), which was 48498.9 times as much as that in natural condition. The lowest one was S. truncata with the value of 34567 ion · cm(-3), which was 843.1 times as much as that in natural condition. The capacity of the same plants to generate negative air ion varied extremely under different intensity pulsed electric fields.

  1. High order harmonic generation in noble gases using plasmonic field enhancement

    International Nuclear Information System (INIS)

    Ciappina, Marcelo F.; Shaaran, Tahir; Lewenstein, Maciej

    2013-01-01

    Theoretical studies of high-order harmonic generation (HHG) in rare gases driven by plasmonic field enhancement are presented. This kind of fields appears when plasmonic nanostructures are illuminated by an intense few-cycle laser and have a particular spatial dependency, depending on the geometrical shape of the nanostructure. It is demonstrated that the strong nonhomogeneous character of the laser enhanced field plays an important role in the HHG process and significantly extends the harmonic cutoff. The models are based on numerical solution of the time dependent Schroedinger equation (TDSE) and supported by classical and semiclassical calculations. (copyright 2012 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Generating loop graphs via Hopf algebra in quantum field theory

    International Nuclear Information System (INIS)

    Mestre, Angela; Oeckl, Robert

    2006-01-01

    We use the Hopf algebra structure of the time-ordered algebra of field operators to generate all connected weighted Feynman graphs in a recursive and efficient manner. The algebraic representation of the graphs is such that they can be evaluated directly as contributions to the connected n-point functions. The recursion proceeds by loop order and vertex number

  3. Dynamic wave field synthesis: enabling the generation of field distributions with a large space-bandwidth product.

    Science.gov (United States)

    Kamau, Edwin N; Heine, Julian; Falldorf, Claas; Bergmann, Ralf B

    2015-11-02

    We present a novel approach for the design and fabrication of multiplexed computer generated volume holograms (CGVH) which allow for a dynamic synthesis of arbitrary wave field distributions. To achieve this goal, we developed a hybrid system that consists of a CGVH as a static element and an electronically addressed spatial light modulator as the dynamic element. We thereby derived a new model for describing the scattering process within the inhomogeneous dielectric material of the hologram. This model is based on the linearization of the scattering process within the Rytov approximation and incorporates physical constraints that account for voxel based laser-lithography using micro-fabrication of the holograms in a nonlinear optical material. In this article we demonstrate that this system basically facilitates a high angular Bragg selectivity on the order of 1°. Additionally, it allows for a qualitatively low cross-talk dynamic synthesis of predefined wave fields with a much larger space-bandwidth product (SBWP ≥ 8.7 × 10(6)) as compared to the current state of the art in computer generated holography.

  4. High-order-harmonic generation from H2+ molecular ions near plasmon-enhanced laser fields

    Science.gov (United States)

    Yavuz, I.; Tikman, Y.; Altun, Z.

    2015-08-01

    Simulations of plasmon-enhanced high-order-harmonic generation are performed for a H2+ molecular cation near the metallic nanostructures. We employ the numerical solution of the time-dependent Schrödinger equation in reduced coordinates. We assume that the main axis of H2+ is aligned perfectly with the polarization direction of the plasmon-enhanced field. We perform systematic calculations on plasmon-enhanced harmonic generation based on an infinite-mass approximation, i.e., pausing nuclear vibrations. Our simulations show that molecular high-order-harmonic generation from plasmon-enhanced laser fields is possible. We observe the dispersion of a plateau of harmonics when the laser field is plasmon enhanced. We find that the maximum kinetic energy of the returning electron follows 4 Up . We also find that when nuclear vibrations are enabled, the efficiency of the harmonics is greatly enhanced relative to that of static nuclei. However, the maximum kinetic energy 4 Up is largely maintained.

  5. Accuracy of electromagnetic tracking with a prototype field generator in an interventional OR setting

    International Nuclear Information System (INIS)

    Boe, Lars Eirik; Leira, Haakon Olav; Tangen, Geir Arne; Hofstad, Erlend Fagertun; Amundsen, Tore; Langoe, Thomas

    2012-01-01

    Purpose: The authors have studied the accuracy and robustness of a prototype electromagnetic window field generator (WFG) in an interventional radiology suite with a robotic C-arm. The overall purpose is the development of guidance systems combining real-time imaging with tracking of flexible instruments for bronchoscopy, laparoscopic ultrasound, endoluminal surgery, endovascular therapy, and spinal surgery. Methods: The WFG has a torus shape, which facilitates x-ray imaging through its centre. The authors compared the performance of the WFG to that of a standard field generator (SFG) under the influence of the C-arm. Both accuracy and robustness measurements were performed with the C-arm in different positions and poses. Results: The system was deemed robust for both field generators, but the accuracy was notably influenced as the C-arm was moved into the electromagnetic field. The SFG provided a smaller root-mean-square position error but was more influenced by the C-arm than the WFG. The WFG also produced smaller maximum and variance of the error. Conclusions: Electromagnetic (EM) tracking with the new WFG during C-arm based fluoroscopy guidance seems to be a step forward, and with a correction scheme implemented it should be feasible.

  6. The International Geomagnetic Reference Field (IGRF) generation 12: BGS candidates and final models

    OpenAIRE

    Beggan, Ciaran D.; Hamilton, Brian; Taylor, Victoria; Macmillan, Susan; Thomson, Alan

    2015-01-01

    The International Geomagnetic Reference Field (IGRF) model is a reference main field magnetic model updated on a quinquennial basis. The latest revision (generation 12) was released in January 2015. The IGRF-12 consists of a definitive model (DGRF2010) of the main field for 2010.0, a model for the field at 2015.0 (IGRF2015) and a prediction of secular variation (IGRF-12 SV) for the forthcoming five years until 2020.0. The remaining coefficients of IGRF-12 are unchanged from IGRF-11. Nin...

  7. Magnetic Field Generation through Angular Momentum Exchange between Circularly Polarized Radiation and Charged Particles

    CERN Document Server

    Shvets, G

    2002-01-01

    The interaction between circularly polarized (CP) radiation and charged particles can lead to generation of magnetic field through an inverse Faraday effect. The spin of the circularly polarized electromagnetic wave can be converted into the angular momentum of the charged particles so long as there is dissipation. We demonstrate this by considering two mechanisms of angular momentum absorption relevant for laser-plasma interactions: electron-ion collisions and ionization. The precise dissipative mechanism, however, plays a role in determining the efficiency of the magnetic field generation.

  8. Magnetic Field Generation through Angular Momentum Exchange between Circularly Polarized Radiation and Charged Particles

    International Nuclear Information System (INIS)

    G. Shvets; N.J. Fisch; J.-M. Rax

    2002-01-01

    The interaction between circularly polarized (CP) radiation and charged particles can lead to generation of magnetic field through an inverse Faraday effect. The spin of the circularly polarized electromagnetic wave can be converted into the angular momentum of the charged particles so long as there is dissipation. We demonstrate this by considering two mechanisms of angular momentum absorption relevant for laser-plasma interactions: electron-ion collisions and ionization. The precise dissipative mechanism, however, plays a role in determining the efficiency of the magnetic field generation

  9. Spontaneous generation and reversals of mean flows in a convectively-generated internal gravity wave field

    Science.gov (United States)

    Couston, Louis-Alexandre; Lecoanet, Daniel; Favier, Benjamin; Le Bars, Michael

    2017-11-01

    We investigate via direct numerical simulations the spontaneous generation and reversals of mean zonal flows in a stably-stratified fluid layer lying above a turbulent convective fluid. Contrary to the leading idealized theories of mean flow generation by self-interacting internal waves, the emergence of a mean flow in a convectively-generated internal gravity wave field is not always possible because nonlinear interactions of waves of different frequencies can disrupt the mean flow generation mechanism. Strong mean flows thus emerge when the divergence of the Reynolds stress resulting from the nonlinear interactions of internal waves produces a strong enough anti-diffusive acceleration for the mean flow, which, as we will demonstrate, is the case when the Prandtl number is sufficiently low, or when the energy input into the internal wavefield by the convection and density stratification are sufficiently large. Implications for mean zonal flow production as observed in the equatorial stratospheres of the Earth, Saturn and Jupiter, and possibly occurring in other geophysical systems such as planetary and stellar interiors will be briefly discussed. Funding provided by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program through Grant Agreement No. 681835-FLUDYCO-ERC-2015-CoG.

  10. Determination of ICRF antenna fields in the vicinity of a 3-D Faraday shield structure

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, P M; Rothe, K E; Whealton, J H; Shepard, T D [Oak Ridge National Lab., TN (USA)

    1990-04-01

    A three-dimensional (3-D) magnetostatic analysis developed at Oak Ridge National Laboratory has been used to calculate the electromagnetic transmission properties of representative Faraday shield designs. The analysis uses the long-wavelength approximation to obtain a 3-D Laplace solution for the magnetic scalar potential over one poloidal period of the Faraday shield, from which the complete magnetic field distribution may be obtained. Once the magnetic field distributions in the presence and absence of a Faraday shield are known, the flux transmission coefficient can be found, as well as any change in the distributed inductance of the current strap. The distrbuted capacitance of the strap can be found from an analogous 3-D electrostatic calculation, enabling the phase velocity of the slow-wave structure to be determined. Power dissipation in the shield may be estimated by equating the surface current on a perfect conductor with the surface magnetic field and using this surface current in conjunction with the finite conductivities of the shield materials to obtain the power distribution due to eddy current heating. (orig.).

  11. Super-Gaussian transport theory and the field-generating thermal instability in laser–plasmas

    International Nuclear Information System (INIS)

    Bissell, J J; Ridgers, C P; Kingham, R J

    2013-01-01

    Inverse bremsstrahlung (IB) heating is known to distort the electron distribution function in laser–plasmas from a Gaussian towards a super-Gaussian, thereby modifying the equations of classical transport theory (Ridgers et al 2008 Phys. Plasmas 15 092311). Here we explore these modified equations, demonstrating that super-Gaussian effects both suppress traditional transport processes, while simultaneously introducing new effects, such as isothermal (anomalous Nernst) magnetic field advection up gradients in the electron number density n e , which we associate with a novel heat-flow q n ∝∇n e . Suppression of classical phenomena is shown to be most pronounced in the limit of low Hall-parameter χ, in which case the Nernst effect is reduced by a factor of five, the ∇T e × ∇n e field generation mechanism by ∼30% (where T e is the electron temperature), and the diffusive and Righi–Leduc heat-flows by ∼80 and ∼90% respectively. The new isothermal field advection phenomenon and associated density-gradient driven heat-flux q n are checked against kinetic simulation using the Vlasov–Fokker–Planck code impact, and interpreted in relation to the underlying super-Gaussian distribution through simplified kinetic analysis. Given such strong inhibition of transport at low χ, we consider the impact of IB on the seeding and evolution of magnetic fields (in otherwise un-magnetized conditions) by examining the well-known field-generating thermal instability in the light of super-Gaussian transport theory (Tidman and Shanny 1974 Phys. Fluids 12 1207). Estimates based on conditions in an inertial confinement fusion (ICF) hohlraum suggest that super-Gaussian effects can reduce the growth-rate of the instability by ≳80%. This result may be important for ICF experiments, since by increasing the strength of IB heating it would appear possible to inhibit the spontaneous generation of large magnetic fields. (paper)

  12. Super-Gaussian transport theory and the field-generating thermal instability in laser-plasmas

    Science.gov (United States)

    Bissell, J. J.; Ridgers, C. P.; Kingham, R. J.

    2013-02-01

    Inverse bremsstrahlung (IB) heating is known to distort the electron distribution function in laser-plasmas from a Gaussian towards a super-Gaussian, thereby modifying the equations of classical transport theory (Ridgers et al 2008 Phys. Plasmas 15 092311). Here we explore these modified equations, demonstrating that super-Gaussian effects both suppress traditional transport processes, while simultaneously introducing new effects, such as isothermal (anomalous Nernst) magnetic field advection up gradients in the electron number density ne, which we associate with a novel heat-flow qn∝∇ne. Suppression of classical phenomena is shown to be most pronounced in the limit of low Hall-parameter χ, in which case the Nernst effect is reduced by a factor of five, the ∇Te × ∇ne field generation mechanism by ˜30% (where Te is the electron temperature), and the diffusive and Righi-Leduc heat-flows by ˜80 and ˜90% respectively. The new isothermal field advection phenomenon and associated density-gradient driven heat-flux qn are checked against kinetic simulation using the Vlasov-Fokker-Planck code impact, and interpreted in relation to the underlying super-Gaussian distribution through simplified kinetic analysis. Given such strong inhibition of transport at low χ, we consider the impact of IB on the seeding and evolution of magnetic fields (in otherwise un-magnetized conditions) by examining the well-known field-generating thermal instability in the light of super-Gaussian transport theory (Tidman and Shanny 1974 Phys. Fluids 12 1207). Estimates based on conditions in an inertial confinement fusion (ICF) hohlraum suggest that super-Gaussian effects can reduce the growth-rate of the instability by ≳80%. This result may be important for ICF experiments, since by increasing the strength of IB heating it would appear possible to inhibit the spontaneous generation of large magnetic fields.

  13. Spontaneous and Widespread Electricity Generation in Natural Deep-Sea Hydrothermal Fields.

    Science.gov (United States)

    Yamamoto, Masahiro; Nakamura, Ryuhei; Kasaya, Takafumi; Kumagai, Hidenori; Suzuki, Katsuhiko; Takai, Ken

    2017-05-15

    Deep-sea hydrothermal vents discharge abundant reductive energy into oxidative seawater. Herein, we demonstrated that in situ measurements of redox potentials on the surfaces of active hydrothermal mineral deposits were more negative than the surrounding seawater potential, driving electrical current generation. We also demonstrated that negative potentials in the surface of minerals were widespread in the hydrothermal fields, regardless of the proximity to hydrothermal fluid discharges. Lab experiments verified that the negative potential of the mineral surface was induced by a distant electron transfer from the hydrothermal fluid through the metallic and catalytic properties of minerals. These results indicate that electric current is spontaneously and widely generated in natural mineral deposits in deep-sea hydrothermal fields. Our discovery provides important insights into the microbial communities that are supported by extracellular electron transfer and the prebiotic chemical and metabolic evolution of the ocean hydrothermal systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Magnetostatic Interaction in Fe-Co Nanowires

    Directory of Open Access Journals (Sweden)

    Laura Elbaile

    2012-01-01

    Full Text Available Arrays of Fe-Co alloy nanowires with diameter around 35 nm and several micrometers in length have been synthesized by codepositing Fe and Co into porous anodic alumina. The morphology, structure, and magnetic properties of the nanowires (hysteresis loops and remanence curves were characterized by SEM, TEM, X-ray diffraction (XRD, and VSM, respectively. The XRD patterns indicate that the Fe-Co nanowires present a body-centered cubic (bcc structure and a preferred (110 orientation perpendicular to the template surface. From the hysteresis loops obtained with the magnetic field applied in the axis direction of the nanowires, we can observe that the coercive field slightly decreases when the nanowire length increases. This magnetic behaviour is analyzed considering the shape anisotropy and the dipolar interactions among nanowires.

  15. Hybrid reflection type metasurface of nano-antennas designed for optical needle field generation

    Science.gov (United States)

    Wang, Shiyi; Zhan, Qiwen

    2015-03-01

    We propose a reflection type metal-insulator-metal (MIM) metasurface composed of hybrid optical antennas for comprehensive spatial engineering the properties of optical fields. Its capability is illustrated with an example to create a radially polarized vectorial beam for optical needle field generation. Functioning as local quarter-wave-plates (QWP), the MIM metasurface is designed to convert circularly polarized incident into local linear polarization to create an overall radial polarization with corresponding binary phases and desired normalized amplitude modulation ranged from 0.07 to 1. To obtain enough degrees of freedom, the optical-antenna layer comprises periodic arrangements of double metallic nano-bars with perpendicular placement and single nano-bars respectively for different amplitude modulation requirements. Both of the antennas enable to introduce π/2 retardation while reaching the desired modulation range both for phase and amplitude. Through adjusting the antennas' geometry and array carefully, we shift the gap-surface plasmon resonances facilitated by optical antennas to realize the manipulation of vectorial properties. Designed at 1064 nm wavelength, the particularly generated vectorial light output can be further tightly focused by a high numerical aperture objective to obtain longitudinally polarized flat-top focal field. The so-called optical needle field is a promising candidate for novel applications that transcend disciplinary boundaries. The proposed metasurface establishes a new class of compact optical components based on nano-scale structures, leading to compound functions for vectorial light generation.

  16. A high voltage pulse generator based on silicon-controlled rectifier for field-reversed configuration experiment.

    Science.gov (United States)

    Lin, Munan; Liu, Ming; Zhu, Guanghui; Wang, Yanpeng; Shi, Peiyun; Sun, Xuan

    2017-08-01

    A high voltage pulse generator based on a silicon-controlled rectifier has been designed and implemented for a field reversed configuration experiment. A critical damping circuit is used in the generator to produce the desired pulse waveform. Depending on the load, the rise time of the output trigger signal can be less than 1 μs, and the peak amplitudes of trigger voltage and current are up to 8 kV and 85 A in a single output. The output voltage can be easily adjusted by changing the voltage on a capacitor of the generator. In addition, the generator integrates an electrically floating heater circuit so it is capable of triggering either pseudosparks (TDI-type hydrogen thyratron) or ignitrons. Details of the circuits and their implementation are described in the paper. The trigger generator has successfully controlled the discharging sequence of the pulsed power supply for a field reversed configuration experiment.

  17. Impact of high strength electromagnetic fields generated by Tesla transformer on plant cell ultrastructure

    Directory of Open Access Journals (Sweden)

    Anna Rusakova

    2017-09-01

    Full Text Available Non-thermal effects of direct electric fields and alternating electromagnetic fields (EMF have been successfully used in a number of studies and applications in agriculture and biotechnology. Among different kinds of high strength EMF generators, the Tesla transformer (TT is known as a widely applied, low cost, and troubleproof device, which generates EMF in the range of 2–8 MHz. Despite of a number of developed and perspective applications of high strength EMFs in agriculture and biotechnology, the EMFs generated by TT, as well as the 1–50 MHz range of high strength EMF still remain unexplored in the fields of plant physiology, ultrastructure studies and biochemistry. In this work, we have shown that TT-EMFs (4 MHz induced fast stem and petiole bending, disappearance of cell organelles, vacuolar membranes, and increase of a non-photochemical chlorophyll fluorescence quenching in petioles. It is intriguing that such fatal effects can be evoked in plants by EMFs which are well known as harmless for man at the applied strength and frequency.

  18. Effects of static electric fields on growth and development of wheat aphid Sitobion aveanae (Hemiptera: Aphididae) through multiple generations.

    Science.gov (United States)

    He, Juan; Cao, Zhu; Yang, Jie; Zhao, Hui-Yan; Pan, Wei-Dong

    2016-01-01

    Insects show a variety of responses to electric fields and most of them are associated with immediate effects. To investigate the long-term effects of static electric field on the wheat aphid Sitbion avenae, the insert was exposed to 4 min of a static electric field at intensities of 0, 2, 4, or 6 kV/cm. Development effects over 30 consecutive generations of the insect were studied. The results showed that the electric field could exert adverse effects on the developmental duration and total longevity of S. avenae nymphs regardless of exposure intensities or generations. The effects appeared to be more intense and fluctuated at higher electric field intensities and more insect generations. The most favorable exposure for development was 6 kV/cm for 4 min while the most detrimental electric fields were 2 kV/cm for 4 min and 4 kV/cm for 4 min. Among the treatments, the first instar duration was significantly prolonged while the adult longevities were significantly shortened in the sixth generation. The intrinsic rate of increase and net reproductive rate in the sixth generation were also the lowest among the 30 consecutive generations studied. Based on the results, the adverse effects of electric fields on insects may be used in the bio-control of pest insects in terms of pest management.

  19. Method and split cavity oscillator/modulator to generate pulsed particle beams and electromagnetic fields

    Science.gov (United States)

    Clark, M. Collins; Coleman, P. Dale; Marder, Barry M.

    1993-01-01

    A compact device called the split cavity modulator whose self-generated oscillating electromagnetic field converts a steady particle beam into a modulated particle beam. The particle beam experiences both signs of the oscillating electric field during the transit through the split cavity modulator. The modulated particle beam can then be used to generate microwaves at that frequency and through the use of extractors, high efficiency extraction of microwave power is enabled. The modulated beam and the microwave frequency can be varied by the placement of resistive wires at nodes of oscillation within the cavity. The short beam travel length through the cavity permit higher currents because both space charge and pinching limitations are reduced. The need for an applied magnetic field to control the beam has been eliminated.

  20. Microbial electricity generation in rice paddy fields: recent advances and perspectives in rhizosphere microbial fuel cells.

    Science.gov (United States)

    Kouzuma, Atsushi; Kaku, Nobuo; Watanabe, Kazuya

    2014-12-01

    Microbial fuel cells (MFCs) are devices that use living microbes for the conversion of organic matter into electricity. MFC systems can be applied to the generation of electricity at water/sediment interfaces in the environment, such as bay areas, wetlands, and rice paddy fields. Using these systems, electricity generation in paddy fields as high as ∼80 mW m(-2) (based on the projected anode area) has been demonstrated, and evidence suggests that rhizosphere microbes preferentially utilize organic exudates from rice roots for generating electricity. Phylogenetic and metagenomic analyses have been conducted to identify the microbial species and catabolic pathways that are involved in the conversion of root exudates into electricity, suggesting the importance of syntrophic interactions. In parallel, pot cultures of rice and other aquatic plants have been used for rhizosphere MFC experiments under controlled laboratory conditions. The findings from these studies have demonstrated the potential of electricity generation for mitigating methane emission from the rhizosphere. Notably, however, the presence of large amounts of organics in the rhizosphere drastically reduces the effect of electricity generation on methane production. Further studies are necessary to evaluate the potential of these systems for mitigating methane emission from rice paddy fields. We suggest that paddy-field MFCs represent a promising approach for harvesting latent energy of the natural world.

  1. Numerical analysis of flow fields generated by accelerating flames

    Energy Technology Data Exchange (ETDEWEB)

    Kurylo, J.

    1977-12-01

    Presented here is a numerical technique for the analysis of non-steady flow fields generated by accelerating flames in gaseous media. Of particular interest in the study is the evaluation of the non-steady effects on the flow field and the possible transition of the combustion process to detonation caused by an abrupt change in the burning speed of an initially steady flame propagating in an unconfined combustible gas mixture. Optically recorded observations of accelerating flames established that the flow field can be considered to consist of non-steady flow fields associated with an assembly of interacting shock waves, contact discontinuities, deflagration and detonation fronts. In the analysis, these flow fields are treated as spatially one-dimensional, the influence of transport phenomena is considered to be negligible, and unburned and burned substances are assumed to behave as perfect gases with constant, but different, specific heats. The basis of the numerical technique is an explicit, two step, second order accurate, finite difference scheme employed to integrate the flow field equations expressed in divergence form. The burning speed, governing the motion of the deflagration, is expressed in the form of a power law dependence on pressure and temperature immediately ahead of its front. The steady wave solution is obtained by the vector polar interaction technique, that is, by determining the point of intersection between the loci of end states in the plane of the two interaction invariants, pressure and particle velocity. The technique is illustrated by a numerical example in which a steady flame experiences an abrupt change in its burning speed. Solutions correspond either to the eventual reestablishment of a steady state flow field commensurate with the burning speed or to the transition to detonation. The results are in satisfactory agreement with experimental observations.

  2. Generation of superDreicer electric fields in the solar chromosphere

    Science.gov (United States)

    Zaitsev, V. V.; Kronshtadtov, P. V.; Stepanov, A. V.

    2016-12-01

    The electric field generation at the front of the current pulse, which originates in a coronal magnetic loop owing to the development of the Rayleigh-Taylor magnetic instability at loop footpoints, has been considered. During the τA ≈ l/V A ≈ 5-25 s time (where l is the plasma plume height entering a magnetic loop as a result of the Rayleigh-Taylor instability), a disturbance related to the magnetic field tension B ϕ( r,t), "escapes" the instability region with the Alfvén velocity in this case. As a result, an electric current pulse Iz( z - V A t), at the front of which an induction magnetic field E z, which is directed along the magnetic tube axis and can therefore accelerate particles, starts propagating along a magnetic loop with a characteristic scale of Δξ ≈ l. In the case of sufficiently large currents, when B ϕ 2/8π > p, an electric current pulse propagates nonlinearly, and a relatively large longitudinal electric field originates E z ≈ 2 I z 3 V A/ c 4a2Bz 2l, which can be larger than the Dreicer field, depending on the electric current value.

  3. Modeling and characterization of field-enhanced corona discharge in ozone-generator diode

    Science.gov (United States)

    Patil, Jagadish G.; Vijayan, T.

    2010-02-01

    Electric field enhanced corona plasma discharge in ozone generator diode of axial symmetry has been investigated and characterized in theory. The cathode K of diode is made of a large number of sharpened nozzles arranged on various radial planes on the axial mast and pervaded in oxygen gas inside the anode cup A, produces high fields over MV/m and aids in the formation of a corona plume of dense ozone cloud over the cathode surface. An r-z finite difference scheme has been devised and employed to numerically determine the potential and electric field distributions inside the diode. The analyses of cathode emissions revealed a field emission domain conformed to modified Child-Langmuir diode-current. Passage of higher currents (over μA) in shorter A-K gaps d gave rise to cathode heated plasma extending from the corona to Saha regimes depending on local temperature. Plasma densities of order 102-106 m-3 are predicted in these. For larger d however, currents are smaller and heating negligible and a negative corona favoring ozone formation is attained. High ozone yields about 20 per cent of oxygen input is predicted in this domain. The generator so developed will be applied to various important applications such as, purification of ambient air /drinking water, ozone therapy, and so on.

  4. Modeling and characterization of field-enhanced corona discharge in ozone-generator diode

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Jagadish G; Vijayan, T, E-mail: jagdishlove@gmail.co [Mahatma Education Society' s ' Pillai' s Institute of Information Technology, Engineering, Media Studies and Research' Dr. K M Vasudevan Pillai' s Campus, Sector 16, New Panvel, Navi Mumbai - 410 206 (India)

    2010-02-01

    Electric field enhanced corona plasma discharge in ozone generator diode of axial symmetry has been investigated and characterized in theory. The cathode K of diode is made of a large number of sharpened nozzles arranged on various radial planes on the axial mast and pervaded in oxygen gas inside the anode cup A, produces high fields over MV/m and aids in the formation of a corona plume of dense ozone cloud over the cathode surface. An r-z finite difference scheme has been devised and employed to numerically determine the potential and electric field distributions inside the diode. The analyses of cathode emissions revealed a field emission domain conformed to modified Child-Langmuir diode-current. Passage of higher currents (over {mu}A) in shorter A-K gaps d gave rise to cathode heated plasma extending from the corona to Saha regimes depending on local temperature. Plasma densities of order 10{sup 2}-10{sup 6} m{sup -3} are predicted in these. For larger d however, currents are smaller and heating negligible and a negative corona favoring ozone formation is attained. High ozone yields about 20 per cent of oxygen input is predicted in this domain. The generator so developed will be applied to various important applications such as, purification of ambient air /drinking water, ozone therapy, and so on.

  5. Modeling and characterization of field-enhanced corona discharge in ozone-generator diode

    International Nuclear Information System (INIS)

    Patil, Jagadish G; Vijayan, T

    2010-01-01

    Electric field enhanced corona plasma discharge in ozone generator diode of axial symmetry has been investigated and characterized in theory. The cathode K of diode is made of a large number of sharpened nozzles arranged on various radial planes on the axial mast and pervaded in oxygen gas inside the anode cup A, produces high fields over MV/m and aids in the formation of a corona plume of dense ozone cloud over the cathode surface. An r-z finite difference scheme has been devised and employed to numerically determine the potential and electric field distributions inside the diode. The analyses of cathode emissions revealed a field emission domain conformed to modified Child-Langmuir diode-current. Passage of higher currents (over μA) in shorter A-K gaps d gave rise to cathode heated plasma extending from the corona to Saha regimes depending on local temperature. Plasma densities of order 10 2 -10 6 m -3 are predicted in these. For larger d however, currents are smaller and heating negligible and a negative corona favoring ozone formation is attained. High ozone yields about 20 per cent of oxygen input is predicted in this domain. The generator so developed will be applied to various important applications such as, purification of ambient air /drinking water, ozone therapy, and so on.

  6. Primary Generators of Visually Evoked Field Potentials Recorded in the Macaque Auditory Cortex

    Science.gov (United States)

    Smiley, John F.; Schroeder, Charles E.

    2017-01-01

    Prior studies have reported “local” field potential (LFP) responses to faces in the macaque auditory cortex and have suggested that such face-LFPs may be substrates of audiovisual integration. However, although field potentials (FPs) may reflect the synaptic currents of neurons near the recording electrode, due to the use of a distant reference electrode, they often reflect those of synaptic activity occurring in distant sites as well. Thus, FP recordings within a given brain region (e.g., auditory cortex) may be “contaminated” by activity generated elsewhere in the brain. To determine whether face responses are indeed generated within macaque auditory cortex, we recorded FPs and concomitant multiunit activity with linear array multielectrodes across auditory cortex in three macaques (one female), and applied current source density (CSD) analysis to the laminar FP profile. CSD analysis revealed no appreciable local generator contribution to the visual FP in auditory cortex, although we did note an increase in the amplitude of visual FP with cortical depth, suggesting that their generators are located below auditory cortex. In the underlying inferotemporal cortex, we found polarity inversions of the main visual FP components accompanied by robust CSD responses and large-amplitude multiunit activity. These results indicate that face-evoked FP responses in auditory cortex are not generated locally but are volume-conducted from other face-responsive regions. In broader terms, our results underscore the caution that, unless far-field contamination is removed, LFPs in general may reflect such “far-field” activity, in addition to, or in absence of, local synaptic responses. SIGNIFICANCE STATEMENT Field potentials (FPs) can index neuronal population activity that is not evident in action potentials. However, due to volume conduction, FPs may reflect activity in distant neurons superimposed upon that of neurons close to the recording electrode. This is

  7. Microwave magnetoelectric fields: An analytical study of topological characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Joffe, R., E-mail: ioffr1@gmail.com [Microwave Magnetic Laboratory, Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer Sheva (Israel); Department of Electrical and Electronics Engineering, Shamoon College of Engineering, Beer Sheva (Israel); Shavit, R.; Kamenetskii, E.O. [Microwave Magnetic Laboratory, Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer Sheva (Israel)

    2015-10-15

    The near fields originated from a small quasi-two-dimensional ferrite disk with magnetic-dipolar-mode (MDM) oscillations are the fields with broken dual (electric-magnetic) symmetry. Numerical studies show that such fields – called the magnetoelectric (ME) fields – are distinguished by the power-flow vortices and helicity parameters (E.O. Kamenetskii, R. Joffe, R. Shavit, Phys. Rev. E 87 (2013) 023201). These numerical studies can well explain recent experimental results with MDM ferrite disks. In the present paper, we obtain analytically topological characteristics of the ME-field modes. For this purpose, we used a method of successive approximations. In the second approximation we take into account the influence of the edge regions of an open ferrite disk, which are excluded in the first-approximation solving of the magnetostatic (MS) spectral problem. Based on the analytical method, we obtain a “pure” structure of the electric and magnetic fields outside the MDM ferrite disk. The analytical studies can display some fundamental features that are non-observable in the numerical results. While in numerical investigations, one cannot separate the ME fields from the external electromagnetic (EM) radiation, the present theoretical analysis allows clearly distinguish the eigen topological structure of the ME fields. Importantly, this ME-field structure gives evidence for certain phenomena that can be related to the Tellegen and bianisotropic coupling effects. We discuss the question whether the MDM ferrite disk can exhibit properties of the cross magnetoelectric polarizabilities. - Highlights: • We obtain analytically topological characteristics of the ME-field modes. • We take into account the influence of the edge regions of an open ferrite disk. • We obtain a “pure” structure of the electromagnetic fields outside the ferrite disk. • Analytical studies show features that are non-observable in the numerical results. • ME-field gives evidence for

  8. Microwave magnetoelectric fields: An analytical study of topological characteristics

    International Nuclear Information System (INIS)

    Joffe, R.; Shavit, R.; Kamenetskii, E.O.

    2015-01-01

    The near fields originated from a small quasi-two-dimensional ferrite disk with magnetic-dipolar-mode (MDM) oscillations are the fields with broken dual (electric-magnetic) symmetry. Numerical studies show that such fields – called the magnetoelectric (ME) fields – are distinguished by the power-flow vortices and helicity parameters (E.O. Kamenetskii, R. Joffe, R. Shavit, Phys. Rev. E 87 (2013) 023201). These numerical studies can well explain recent experimental results with MDM ferrite disks. In the present paper, we obtain analytically topological characteristics of the ME-field modes. For this purpose, we used a method of successive approximations. In the second approximation we take into account the influence of the edge regions of an open ferrite disk, which are excluded in the first-approximation solving of the magnetostatic (MS) spectral problem. Based on the analytical method, we obtain a “pure” structure of the electric and magnetic fields outside the MDM ferrite disk. The analytical studies can display some fundamental features that are non-observable in the numerical results. While in numerical investigations, one cannot separate the ME fields from the external electromagnetic (EM) radiation, the present theoretical analysis allows clearly distinguish the eigen topological structure of the ME fields. Importantly, this ME-field structure gives evidence for certain phenomena that can be related to the Tellegen and bianisotropic coupling effects. We discuss the question whether the MDM ferrite disk can exhibit properties of the cross magnetoelectric polarizabilities. - Highlights: • We obtain analytically topological characteristics of the ME-field modes. • We take into account the influence of the edge regions of an open ferrite disk. • We obtain a “pure” structure of the electromagnetic fields outside the ferrite disk. • Analytical studies show features that are non-observable in the numerical results. • ME-field gives evidence for

  9. Near-field multiple traps of paraxial acoustic vortices with strengthened gradient force generated by sector transducer array

    Science.gov (United States)

    Wang, Qingdong; Li, Yuzhi; Ma, Qingyu; Guo, Gepu; Tu, Juan; Zhang, Dong

    2018-01-01

    In order to improve the capability of particle trapping close to the source plane, theoretical and experimental studies on near-field multiple traps of paraxial acoustic vortices (AVs) with a strengthened acoustic gradient force (AGF) generated by a sector transducer array were conducted. By applying the integration of point source radiation, numerical simulations for the acoustic fields generated by the sector transducer array were conducted and compared with those produced by the circular transducer array. It was proved that strengthened AGFs of near-field multiple AVs with higher peak pressures and smaller vortex radii could be produced by the sector transducer array with a small topological charge. The axial distributions of the equivalent potential gradient indicated that the AGFs of paraxial AVs in the near field were much higher than those in the far field, and the distances at the near-field vortex antinodes were also proved to be the ideal trapping positions with relatively higher AGFs. With the established 8-channel AV generation system, theoretical studies were also verified by the experimental measurements of pressure and phase for AVs with various topological charges. The formation of near-field multiple paraxial AVs was verified by the cross-sectional circular pressure distributions with perfect phase spirals around central pressure nulls, and was also proved by the vortex nodes and antinodes along the center axis. The favorable results demonstrated the feasibility of generating near-field multiple traps of paraxial AVs with strengthened AGF using the sector transducer array, and suggested the potential applications of close-range particle trapping in biomedical engineering.

  10. Propagation of magnetostatic spin waves in an yttrium iron garnet film for out-of-plane magnetic fields

    Science.gov (United States)

    Bang, Wonbae; Lim, Jinho; Trossman, Jonathan; Tsai, C. C.; Ketterson, John B.

    2018-06-01

    We have observed the propagation of spin waves across a thin yttrium iron garnet film on (1 1 1) gadolinium gallium garnet for magnetic fields inclined with respect to the film plane. Two principle planes were studied: that for H in the plane defined by the wave vector k and the plane normal, n, with limiting forms corresponding to the Backward Volume and Forward Volume modes, and that for H in the plane perpendicular to k, with limiting forms corresponding to the Damon-Eshbach and Forward Volume modes. By exciting the wave at one edge of the film and observing the field dependence of the phase of the received signal at the opposing edge we determined the frequency vs. wavevector relation, ω = ω (k), of various propagating modes in the film. Avoided crossings are observed in the Damon-Eshbach and Forward Volume regimes when the propagating mode intersects the higher, exchange split, volume modes, leading to an extinction of the propagating mode; analysis of the resulting behavior allows a determination of the exchange parameter. The experimental results are compared with theoretical simulations.

  11. Introduction to Electrodynamics

    Science.gov (United States)

    Griffiths, David J.

    2017-06-01

    1. Vector analysis; 2. Electrostatics; 3. Potentials; 4. Electric fields in matter; 5. Magnetostatics; 6. Magnetic fields in matter; 7. Electrodynamics; 8. Conservation laws; 9. Electromagnetic waves; 10. Potentials and fields; 11. Radiation; 12. Electrodynamics and relativity; Appendix A. Vector calculus in curvilinear coordinates; Appendix B. The Helmholtz theorem; Appendix C. Units; Index.

  12. Relaxation of the chiral imbalance and the generation of magnetic fields in magnetars

    Energy Technology Data Exchange (ETDEWEB)

    Dvornikov, M. S., E-mail: maxdvo@izmiran.ru [Ionosphere and Radiowave Propagation (IZMIRAN), Pushkov Institute of Terrestrial Magnetism (Russian Federation)

    2016-12-15

    The model for the generation of magnetic fields in a neutron star, based on the magnetic field instability caused by the electroweak interaction between electrons and nucleons, is developed. Using the methods of the quantum field theory, the helicity flip rate of electrons in their scattering off protons in dense matter of a neutron star is calculated. The influence of the electroweak interaction between electrons and background nucleons on the process of the helicity flip is studied. The kinetic equation for the evolution of the chiral imbalance is derived. The obtained results are applied for the description of the magnetic fields evolution in magnetars.

  13. Experimental investigation of a blunt trailing edge flow field with application to sound generation

    Energy Technology Data Exchange (ETDEWEB)

    Shannon, Daniel W. [University of Notre Dame, Department of Aerospace and Mechanical Engineering, B026 Hessert Laboratory, Notre Dame, IN (United States); Morris, Scott C. [University of Notre Dame, Department of Aerospace and Mechanical Engineering, 109 Hessert Laboratory, Notre Dame, IN (United States)

    2006-11-15

    The unsteady lift generated by turbulence at the trailing edge of an airfoil is a source of radiated sound. The objective of the present research was to measure the velocity field in the near wake region of an asymmetric beveled trailing edge in order to determine the flow mechanisms responsible for the generation of trailing edge noise. Two component velocity measurements were acquired using particle image velocimetry. The chord Reynolds number was 1.9 x 10{sup 6}. The data show velocity field realizations that were typical of a wake flow containing an asymmetric periodic vortex shedding. A phase average decomposition of the velocity field with respect to this shedding process was utilized to separate the large scale turbulent motions that occurred at the vortex shedding frequency (i.e., those responsible for the production of tonal noise) from the smaller scale turbulent motions, which were interpreted to be responsible for the production of broadband sound. The small scale turbulence was found to be dependent on the phase of the vortex shedding process implying a dependence of the broadband sound generated by the trailing edge on the phase of the vortex shedding process. (orig.)

  14. Transient interaction model of electromagnetic field generated by lightning current pulses and human body

    International Nuclear Information System (INIS)

    Iváncsy, T; Kiss, I; Tamus, Z Á; Szücs, L

    2015-01-01

    The lightning current generates time-varying magnetic field near the down-conductor and the down-conductors are mounted on the wall of the buildings where residential places might be situated. It is well known that the rapidly changing magnetic fields can generate dangerous eddy currents in the human body.The higher duration and gradient of the magnetic field can cause potentially life threatening cardiac stimulation. The coupling mechanism between the electromagnetic field and the human body is based on a well-known physical phenomena (e.g. Faradays law of induction). However, the calculation of the induced current is very complicated because the shape of the organs is complex and the determination of the material properties of living tissues is difficult, as well. Our previous study revealed that the cardiac stimulation is independent of the rising time of the lightning current and only the peak of the current counts.In this study, the authors introduce an improved model of the interaction of electromagnetic fields of lighting current near down-conductor and human body. Our previous models are based on the quasi stationer field calculations, the new improved model is a transient model. This is because the magnetic field around the down-conductor and in the human body can be determined more precisely, therefore the dangerous currents in the body can be estimated. (paper)

  15. Research in the field of development of a new generation of metal-processing machines

    Directory of Open Access Journals (Sweden)

    L.Tanovič

    2017-12-01

    Full Text Available The paper presents a review of research in the field of development of a new generation of metal-working machines for manufacturing high-precision products with dimensions of several micrometers from various materials. Presented are several new, newly created micro-machines that have the ability to manufacture products of a wide range. Studies in the field of metalworking machines and robots of a new generation with parallel kinematics, creation of machining systems for multi-axis machining, improvement and application of controllable systems, testing of processing systems in production conditions, which are conducted at the Machine-Building Faculty of the Belgrade University (Serbia are considered.

  16. Enabling full-field physics-based optical proximity correction via dynamic model generation

    Science.gov (United States)

    Lam, Michael; Clifford, Chris; Raghunathan, Ananthan; Fenger, Germain; Adam, Kostas

    2017-07-01

    As extreme ultraviolet lithography becomes closer to reality for high volume production, its peculiar modeling challenges related to both inter and intrafield effects have necessitated building an optical proximity correction (OPC) infrastructure that operates with field position dependency. Previous state-of-the-art approaches to modeling field dependency used piecewise constant models where static input models are assigned to specific x/y-positions within the field. OPC and simulation could assign the proper static model based on simulation-level placement. However, in the realm of 7 and 5 nm feature sizes, small discontinuities in OPC from piecewise constant model changes can cause unacceptable levels of edge placement errors. The introduction of dynamic model generation (DMG) can be shown to effectively avoid these dislocations by providing unique mask and optical models per simulation region, allowing a near continuum of models through the field. DMG allows unique models for electromagnetic field, apodization, aberrations, etc. to vary through the entire field and provides a capability to precisely and accurately model systematic field signatures.

  17. Generation of mesoscale magnetic fields and the dynamics of Cosmic Ray acceleration

    Science.gov (United States)

    Diamond, P. H.; Malkov, M. A.

    The problem of the cosmic ray origin is discussed in connection with their acceleration in supernova remnant shocks. The diffusive shock acceleration mechanism is reviewed and its potential to accelerate particles to the maximum energy of (presumably) galactic cosmic rays (1018eV ) is considered. It is argued that to reach such energies, a strong magnetic field at scales larger than the particle gyroradius must be created as a result of the acceleration process, itself. One specific mechanism suggested here is based on the generation of Alfven wave at the gyroradius scale with a subsequent transfer to longer scales via interaction with strong acoustic turbulence in the shock precursor. The acoustic turbulence in turn, may be generated by Drury instability or by parametric instability of the Alfven waves. The generation mechanism is modulational instability of CR generated Alfven wave packets induced, in turn, by scattering off acoustic fluctuations in the shock precursor which are generated by Drury instability.

  18. Generator coordinate representation of the time independent mean field theory of collisions

    International Nuclear Information System (INIS)

    Giraud, B.G.; Lemm, J.; Weiguny, A.; Wierling, A.

    1991-01-01

    We show how matrix elements of the T-matrix can be easily estimated on a basis of Slater determinants, with a mean field approximation. Linear superpositions of these Slater determinants then generate plane waves, or distorted (Coulomb) waves. This provides physical matrix elements of T

  19. DEVELOPMENT AND INVESTIGATION OF LAYOUT OF ACTIVE SCREENING SYSTEM OF THE MAGNETIC FIELD GENERATED BY GROUP OF OVERHEAD TRANSMISSION LINES

    Directory of Open Access Journals (Sweden)

    B. I. Kuznetsov

    2018-04-01

    Full Text Available Purpose. Development and field experimental research of layout of the single-circuit active screening system of the magnetic field generated by group of high voltage transmission lines in residential area is given. Methodology. Mathematical model of magnetic field, generated by group of high voltage transmission lines in residential area, based of the experimental values of magnetic field flux density in given points on the basis of optimization problem solving is improved. The objective of the synthesis of the single circuit active screening system is to determine their number, configuration, spatial arrangement, wiring diagrams and compensation cables currents, setting algorithm of the control systems as well as the resulting value of the magnetic flux density at the points of the protected space. Synthesis of the full-scale model of active screening system is reduced to the problem of multiobjective nonlinear programming with constraints in which calculation of the objective functions and constraints are carried out on the basis of the Maxwell equations solutions in the quasi-stationary approximation. The problem is solved by a stochastic multiswarm multi-agent particles optimization. Results. The single-circuit active screening system synthesis results for reduction of a magnetic field generated by group of high voltage transmission lines in residential area is given. Field experimental researches of the single-circuit active screening system of the magnetic field generated by group of high voltage transmission lines in residential area with various control algorithms is given. Originality. For the first time out the development and field experimental studies of the single-circuit active screening system of the magnetic field generated by group of high voltage transmission lines in residential area are carried out. Practical value. Practical recommendations on reasonable choice of the spatial arrangement of compensating cables of single

  20. Numerical computation of gravitational field for general axisymmetric objects

    Science.gov (United States)

    Fukushima, Toshio

    2016-10-01

    We developed a numerical method to compute the gravitational field of a general axisymmetric object. The method (I) numerically evaluates a double integral of the ring potential by the split quadrature method using the double exponential rules, and (II) derives the acceleration vector by numerically differentiating the numerically integrated potential by Ridder's algorithm. Numerical comparison with the analytical solutions for a finite uniform spheroid and an infinitely extended object of the Miyamoto-Nagai density distribution confirmed the 13- and 11-digit accuracy of the potential and the acceleration vector computed by the method, respectively. By using the method, we present the gravitational potential contour map and/or the rotation curve of various axisymmetric objects: (I) finite uniform objects covering rhombic spindles and circular toroids, (II) infinitely extended spheroids including Sérsic and Navarro-Frenk-White spheroids, and (III) other axisymmetric objects such as an X/peanut-shaped object like NGC 128, a power-law disc with a central hole like the protoplanetary disc of TW Hya, and a tear-drop-shaped toroid like an axisymmetric equilibrium solution of plasma charge distribution in an International Thermonuclear Experimental Reactor-like tokamak. The method is directly applicable to the electrostatic field and will be easily extended for the magnetostatic field. The FORTRAN 90 programs of the new method and some test results are electronically available.

  1. Quantal density-functional theory in the presence of a magnetic field

    International Nuclear Information System (INIS)

    Yang Tao; Pan Xiaoyin; Sahni, Viraht

    2011-01-01

    We generalize the quantal density-functional theory (QDFT) of electrons in the presence of an external electrostatic field E(r)=-∇v(r) to include an external magnetostatic field B(r)=∇xA(r), where (v(r),A(r)) are the respective scalar and vector potentials. The generalized QDFT, valid for nondegenerate ground and excited states, is the mapping from the interacting system of electrons to a model of noninteracting fermions with the same density ρ(r) and physical current density j(r), and from which the total energy can be obtained. The properties (ρ(r),j(r)) constitute the basic quantum-mechanical variables because, as proved previously, for a nondegenerate ground state they uniquely determine the potentials (v(r),A(r)). The mapping to the noninteracting system is arbitrary in that the model fermions may be either in their ground or excited state. The theory is explicated by application to a ground state of the exactly solvable (two-dimensional) Hooke's atom in a magnetic field, with the mapping being to a model system also in its ground state. The majority of properties of the model are obtained in closed analytical or semianalytical form. A comparison with the corresponding mapping from a ground state of the (three-dimensional) Hooke's atom in the absence of a magnetic field is also made.

  2. Accurate Modeling of Ionospheric Electromagnetic Fields Generated by a Low Altitude VLF Transmitter

    Science.gov (United States)

    2009-03-31

    AFRL-RV-HA-TR-2009-1055 Accurate Modeling of Ionospheric Electromagnetic Fields Generated by a Low Altitude VLF Transmitter ...m (or even 500 m) at mid to high latitudes . At low latitudes , the FDTD model exhibits variations that make it difficult to determine a reliable...Scientific, Final 3. DATES COVERED (From - To) 02-08-2006 – 31-12-2008 4. TITLE AND SUBTITLE Accurate Modeling of Ionospheric Electromagnetic Fields

  3. Influence of pump-field scattering on nonclassical-light generation in a photonic-band-gap nonlinear planar waveguide

    International Nuclear Information System (INIS)

    Perina, Jan Jr.; Sibilia, Concita; Tricca, Daniela; Bertolotti, Mario

    2005-01-01

    Optical parametric process occurring in a nonlinear planar waveguide can serve as a source of light with nonclassical properties. The properties of the generated fields are substantially modified by scattering of the nonlinearly interacting fields in a photonic-band-gap structure inside the waveguide. A general quantum model of linear operator amplitude corrections to the amplitude mean values and its numerical analysis provide conditions for efficient squeezed-light generation as well as generation of light with sub-Poissonian photon-number statistics. The destructive influence of phase mismatch of the nonlinear interaction can fully be compensated using a suitable photonic-band-gap structure inside the waveguide. Also an increase of the signal-to-noise ratio of the incident optical field can be reached in the waveguide

  4. Attosecond extreme ultraviolet generation in cluster by using spatially inhomogeneous field

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Liqiang, E-mail: lqfeng-lngy@126.com [College of Science, Liaoning University of Technology, Jinzhou, 121000 (China); State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics Chinese Academy of Sciences, Dalian 116023 (China); Liu, Hang [School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121000 (China)

    2015-01-15

    A promising method to generate the attosecond extreme ultraviolet (XUV) sources has been theoretically investigated emerging from the two-dimensional Ar{sup +} cluster driven by the spatially inhomogeneous field. The results show that with the introduction of the Ar{sup +} cluster model, not only the harmonic cutoffs are enhanced, but also the harmonic yields are reinforced. Furthermore, by properly moderating the inhomogeneity as well as the laser parameters of the inhomogeneous field, the harmonic cutoff can be further extended. As a result, three almost linearly polarized XUV pulses with durations of 40 as, 42 as, and 45 as can be obtained.

  5. On the pinned field image binarization for signature generation in image ownership verification method

    Directory of Open Access Journals (Sweden)

    Chang Hsuan

    2011-01-01

    Full Text Available Abstract The issue of pinned field image binarization for signature generation in the ownership verification of the protected image is investigated. The pinned field explores the texture information of the protected image and can be employed to enhance the watermark robustness. In the proposed method, four optimization schemes are utilized to determine the threshold values for transforming the pinned field into a binary feature image, which is then utilized to generate an effective signature image. Experimental results show that the utilization of optimization schemes can significantly improve the signature robustness from the previous method (Lee and Chang, Opt. Eng. 49 (9, 097005, 2010. While considering both the watermark retrieval rate and the computation speed, the genetic algorithm is strongly recommended. In addition, compared with Chang and Lin's scheme (J. Syst. Softw. 81 (7, 1118-1129, 2008, the proposed scheme also has better performance.

  6. Coherent control of third-harmonic-generation by a waveform-controlled two-colour laser field

    International Nuclear Information System (INIS)

    Chen, W-J; Chen, W-F; Pan, C-L; Lin, R-Y; Lee, C-K

    2013-01-01

    We investigate generation of the third harmonic (TH; λ = 355 nm) signal by two-colour excitation (λ = 1064 nm and its second harmonic, λ = 532 nm) in argon gas, with emphasis on the influence of relative phases and intensities of the two-colour pump on the third-order nonlinear frequency conversion process. Perturbative nonlinear optics predicts that the TH signal will oscillate periodically with the relative phases of the two-colour driving laser fields due to the interference of TH signals from a direct third-harmonic-generation (THG) channel and a four-wave mixing (FWM) channel. For the first time, we show unequivocal experimental evidence of this effect. A modulation level as high as 0.35 is achieved by waveform control of the two-colour laser field. The modulation also offers a promising way to retrieve the relative phase value of the two-colour laser field. (letter)

  7. A comparison of small-field tissue phantom ratio data generation methods for an Elekta Agility 6 MV photon beam.

    Science.gov (United States)

    Richmond, Neil; Brackenridge, Robert

    2014-01-01

    Tissue-phantom ratios (TPRs) are a common dosimetric quantity used to describe the change in dose with depth in tissue. These can be challenging and time consuming to measure. The conversion of percentage depth dose (PDD) data using standard formulae is widely employed as an alternative method in generating TPR. However, the applicability of these formulae for small fields has been questioned in the literature. Functional representation has also been proposed for small-field TPR production. This article compares measured TPR data for small 6 MV photon fields against that generated by conversion of PDD using standard formulae to assess the efficacy of the conversion data. By functionally fitting the measured TPR data for square fields greater than 4cm in length, the TPR curves for smaller fields are generated and compared with measurements. TPRs and PDDs were measured in a water tank for a range of square field sizes. The PDDs were converted to TPRs using standard formulae. TPRs for fields of 4 × 4cm(2) and larger were used to create functional fits. The parameterization coefficients were used to construct extrapolated TPR curves for 1 × 1 cm(2), 2 × 2-cm(2), and 3 × 3-cm(2) fields. The TPR data generated using standard formulae were in excellent agreement with direct TPR measurements. The TPR data for 1 × 1-cm(2), 2 × 2-cm(2), and 3 × 3-cm(2) fields created by extrapolation of the larger field functional fits gave inaccurate initial results. The corresponding mean differences for the 3 fields were 4.0%, 2.0%, and 0.9%. Generation of TPR data using a standard PDD-conversion methodology has been shown to give good agreement with our directly measured data for small fields. However, extrapolation of TPR data using the functional fit to fields of 4 × 4cm(2) or larger resulted in generation of TPR curves that did not compare well with the measured data. © 2013 Published by American Association of Medical Dosimetrists on behalf of American Association of Medical

  8. Study and realization of a power circuit of a superconducting dipole generator of a magnetic field

    International Nuclear Information System (INIS)

    Rouanet, E.

    1993-01-01

    The project of experimental reactor building on controlled fusion (I.T.E.R) needed the development of a superconducting cable made of niobium-tin. Tested with a current of fifty kilo amperes under a twelve tesla constant field, this cable has to be tested under a variable field. The installation of the power circuit of the dipole field generator, consisted to the study and realization of the four following points: an important power cable; a tension protection organ of the dipole, under a seventeen milli Henrys inductance and four kilo amperes; a current regulating system given by the generator; a complete pilot system of the test station

  9. Modulation of terahertz generation in dual-color filaments by an external electric field and preformed plasma

    International Nuclear Information System (INIS)

    Li Min; Li An-Yuan; Yuan Shuai; Zeng He-Ping; He Bo-Qu

    2016-01-01

    Terahertz generation driven by dual-color filaments in air is demonstrated to be remarkably enhanced by applying an external electric field to the filaments. As terahertz generation is sensitive to the dual-color phase difference, a preformed plasma is verified efficiently in modulating terahertz radiation from linear to elliptical polarization. In the presence of preformed plasma, a dual-color filament generates terahertz pulses of elliptical polarization and the corresponding ellipse rotates regularly with the change of the preformed plasma density. The observed terahertz modulation with the external electric field and the preformed plasma provides a simple way to estimate the plasma density and evaluate the photocurrent dynamics of the dual-color filaments. It provides further experimental evidence of the photo-current model in governing the dual-color filament driven terahertz generation processes. (paper)

  10. Encouragement of Enzyme Reaction Utilizing Heat Generation from Ferromagnetic Particles Subjected to an AC Magnetic Field.

    Science.gov (United States)

    Suzuki, Masashi; Aki, Atsushi; Mizuki, Toru; Maekawa, Toru; Usami, Ron; Morimoto, Hisao

    2015-01-01

    We propose a method of activating an enzyme utilizing heat generation from ferromagnetic particles under an ac magnetic field. We immobilize α-amylase on the surface of ferromagnetic particles and analyze its activity. We find that when α-amylase/ferromagnetic particle hybrids, that is, ferromagnetic particles, on which α-amylase molecules are immobilized, are subjected to an ac magnetic field, the particles generate heat and as a result, α-amylase on the particles is heated up and activated. We next prepare a solution, in which α-amylase/ferromagnetic particle hybrids and free, nonimmobilized chitinase are dispersed, and analyze their activities. We find that when the solution is subjected to an ac magnetic field, the activity of α-amylase immobilized on the particles increases, whereas that of free chitinase hardly changes; in other words, only α-amylase immobilized on the particles is selectively activated due to heat generation from the particles.

  11. Magnetic-field generation and electron-collimation analysis for propagating fast electron beams in overdense plasmas

    International Nuclear Information System (INIS)

    Cai Hongbo; Zhu Shaoping; Chen Mo; Wu Sizhong; He, X. T.; Mima, Kunioki

    2011-01-01

    An analytical fluid model is proposed for artificially collimating fast electron beams produced in the interaction of ultraintense laser pulses with specially engineered low-density-core-high-density-cladding structure targets. Since this theory clearly predicts the characteristics of the spontaneously generated magnetic field and its dependence on the plasma parameters of the targets transporting fast electrons, it is of substantial relevance to the target design for fast ignition. The theory also reveals that the rapid changing of the flow velocity of the background electrons in a transverse direction (perpendicular to the flow velocity) caused by the density jump dominates the generation of a spontaneous interface magnetic field for these kinds of targets. It is found that the spontaneously generated magnetic field reaches as high as 100 MG, which is large enough to collimate fast electron transport in overdense plasmas. This theory is also supported by numerical simulations performed using a two-dimensional particle-in-cell code. It is found that the simulation results agree well with the theoretical analysis.

  12. Versatile generation of optical vector fields and vector beams using a non-interferometric approach.

    Science.gov (United States)

    Tripathi, Santosh; Toussaint, Kimani C

    2012-05-07

    We present a versatile, non-interferometric method for generating vector fields and vector beams which can produce all the states of polarization represented on a higher-order Poincaré sphere. The versatility and non-interferometric nature of this method is expected to enable exploration of various exotic properties of vector fields and vector beams. To illustrate this, we study the propagation properties of some vector fields and find that, in general, propagation alters both their intensity and polarization distribution, and more interestingly, converts some vector fields into vector beams. In the article, we also suggest a modified Jones vector formalism to represent vector fields and vector beams.

  13. The effect of electric field maximum on the Rabi flopping and generated higher frequency spectra

    International Nuclear Information System (INIS)

    Niu Yueping; Cui Ni; Xiang Yang; Li Ruxin; Gong Shangqing; Xu Zhizhan

    2008-01-01

    We investigate the effect of the electric field maximum on the Rabi flopping and the generated higher frequency spectra properties by solving Maxwell-Bloch equations without invoking any standard approximations. It is found that the maximum of the electric field will lead to carrier-wave Rabi flopping (CWRF) through reversion dynamics which will be more evident when the applied field enters the sub-one-cycle regime. Therefore, under the interaction of sub-one-cycle pulses, the Rabi flopping follows the transient electric field tightly through the oscillation and reversion dynamics, which is in contrast to the conventional envelope Rabi flopping. Complete or incomplete population inversion can be realized through the control of the carrier-envelope phase (CEP). Furthermore, the generated higher frequency spectra will be changed from distinct to continuous or irregular with the variation of the CEP. Our results demonstrate that due to the evident maximum behavior of the electric field, pulses with different CEP give rise to different CWRFs, and then different degree of interferences lead to different higher frequency spectral features.

  14. QUASI-STATIC FIELD ANALYSIS OF PERMANENT MAGNET GENERATOR USING H-HIERARCHICAL ADAPTIVE FINITE ELEMENT METHOD

    Directory of Open Access Journals (Sweden)

    CHETAN VASUDEVA

    2017-10-01

    Full Text Available Researchers have always shown keen interest in predetermining the electromagnetic field behavior inside an electrical machine at the design stage. Material properties of permanent magnet, selection of optimum air gap during the electromagnetic, thermal and structural design of generator are considered to be vital factors for an ideal machine. Generator output, heat rise, weight, and cost are a few of the characteristics which are directly influenced by the selection of the most advantageous material properties. Moreover, most theoretical studies have been conducted assuming that the air gap flux is sinusoidally distributed. The actual conduct of the air gap flux with the length of air gap and its impression on the performance of the generator has not been analyzed so far. In this paper, field analysis of permanent magnet generator using finite element method has been carried out to show the best material properties and air gap for optimum pattern.

  15. Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field.

    Science.gov (United States)

    Ghali, Mohsen; Ohtani, Keita; Ohno, Yuzo; Ohno, Hideo

    2012-02-07

    Semiconductor quantum dots are potential sources for generating polarization-entangled photons efficiently. The main prerequisite for such generation based on biexciton-exciton cascaded emission is to control the exciton fine-structure splitting. Among various techniques investigated for this purpose, an electric field is a promising means to facilitate the integration into optoelectronic devices. Here we demonstrate the generation of polarization-entangled photons from single GaAs quantum dots by an electric field. In contrast to previous studies, which were limited to In(Ga)As quantum dots, GaAs island quantum dots formed by a thickness fluctuation were used because they exhibit a larger oscillator strength and emit light with a shorter wavelength. A forward voltage was applied to a Schottky diode to control the fine-structure splitting. We observed a decrease and suppression in the fine-structure splitting of the studied single quantum dot with the field, which enabled us to generate polarization-entangled photons with a high fidelity of 0.72 ± 0.05.

  16. Theory of magnetostatic equilibria and applications in astrophysics

    International Nuclear Information System (INIS)

    Amari, T.

    1988-04-01

    Magnetohydrostatic equations are used to study the properties of magnetic configurations of astrophysical interest, particularly in solar physics. Results on force-free solutions with singularities (with current sheets) and on solutions which take into account current sheets and gravitational fields are obtained. A general method to construct an infinite class of non-y-symmetric models of protuberances when the magnetic field of the support is assumed to be potential is outlined. The general integral properties of current sheets of arbitrary geometry plunged into a nonlinear force-free magnetic field are established. It is shown that for a given mass, the equilibrium height of the protuberance increases with the shear of the force-free field. The case where the current sheet is reduced to a filament is examined. It is also shown that there exists a critical pressure beyond which no equilibrium is possible [fr

  17. Generation of scaled protogalactic seed magnetic fields in laser-produced shock waves.

    Science.gov (United States)

    Gregori, G; Ravasio, A; Murphy, C D; Schaar, K; Baird, A; Bell, A R; Benuzzi-Mounaix, A; Bingham, R; Constantin, C; Drake, R P; Edwards, M; Everson, E T; Gregory, C D; Kuramitsu, Y; Lau, W; Mithen, J; Niemann, C; Park, H-S; Remington, B A; Reville, B; Robinson, A P L; Ryutov, D D; Sakawa, Y; Yang, S; Woolsey, N C; Koenig, M; Miniati, F

    2012-01-25

    The standard model for the origin of galactic magnetic fields is through the amplification of seed fields via dynamo or turbulent processes to the level consistent with present observations. Although other mechanisms may also operate, currents from misaligned pressure and temperature gradients (the Biermann battery process) inevitably accompany the formation of galaxies in the absence of a primordial field. Driven by geometrical asymmetries in shocks associated with the collapse of protogalactic structures, the Biermann battery is believed to generate tiny seed fields to a level of about 10(-21) gauss (refs 7, 8). With the advent of high-power laser systems in the past two decades, a new area of research has opened in which, using simple scaling relations, astrophysical environments can effectively be reproduced in the laboratory. Here we report the results of an experiment that produced seed magnetic fields by the Biermann battery effect. We show that these results can be scaled to the intergalactic medium, where turbulence, acting on timescales of around 700 million years, can amplify the seed fields sufficiently to affect galaxy evolution.

  18. Effect of changing the pole profile in a gradient septum magnet

    International Nuclear Information System (INIS)

    Armstrong, A.G.A.M.

    1977-05-01

    A tapered-pole gradient septum magnet was fitted with wedge-shaped shims to make the gap parallel. The resulting field was measured and compared with the predicted field from the GFUN magnetostatic computer program. A method of estimating the beam loss due to kick non-uniformity is presented. (author)

  19. Non-Stoichiometric SixN Metal-Oxide-Semiconductor Field-Effect Transistor for Compact Random Number Generator with 0.3 Mbit/s Generation Rate

    Science.gov (United States)

    Matsumoto, Mari; Ohba, Ryuji; Yasuda, Shin-ichi; Uchida, Ken; Tanamoto, Tetsufumi; Fujita, Shinobu

    2008-08-01

    The demand for random numbers for security applications is increasing. A conventional random number generator using thermal noise can generate unpredictable high-quality random numbers, but the circuit is extremely large because of large amplifier circuit for a small thermal signal. On the other hand, a pseudo-random number generator is small but the quality of randomness is bad. For a small circuit and a high quality of randomness, we purpose a non-stoichiometric SixN metal-oxide-semiconductor field-effect transistor (MOSFET) noise source device. This device generates a very large noise signal without an amplifier circuit. As a result, it is shown that, utilizing a SiN MOSFET, we can attain a compact random number generator with a high generation rate near 1 Mbit/s, which is suitable for almost all security applications.

  20. Numerical study of magnetic field on mixed convection and entropy generation of nanofluid in a trapezoidal enclosure

    Energy Technology Data Exchange (ETDEWEB)

    Aghaei, Alireza, E-mail: AlirezaAghaei21@gmail.com; Khorasanizadeh, Hossein, E-mail: khorasan@kashanu.ac.ir; Sheikhzadeh, Ghanbarali, E-mail: Sheikhz@kashanu.ac.ir; Abbaszadeh, Mahmoud, E-mail: abbaszadeh.mahmoud@gmail.com

    2016-04-01

    The flow under influence of magnetic field is experienced in cooling electronic devices and voltage transformers, nuclear reactors, biochemistry and in physical phenomenon like geology. In this study, the effects of magnetic field on the flow field, heat transfer and entropy generation of Cu–water nanofluid mixed convection in a trapezoidal enclosure have been investigated. The top lid is cold and moving toward right or left, the bottom wall is hot and the side walls are insulated and their angle from the horizon are 15°, 30°, 45° and 60°. Simulations have been carried out for constant Grashof number of 10{sup 4}, Reynolds numbers of 30, 100, 300 and 1000, Hartmann numbers of 25, 50, 75 and 100 and nanoparticles volume fractions of zero up to 0.04. The finite volume method and SIMPLER algorithm have been utilized to solve the governing equations numerically. The results showed that with imposing the magnetic field and enhancing it, the nanofluid convection and the strength of flow decrease and the flow tends toward natural convection and finally toward pure conduction. For this reason, for all of the considered Reynolds numbers and volume fractions, by increasing the Hartmann number the average Nusselt number decreases. Furthermore, for any case with constant Reynolds and Hartmann numbers by increasing the volume fraction of nanoparticles the maximum stream function decreases. For all of the studied cases, entropy generation due to friction is negligible and the total entropy generation is mainly due to irreversibility associated with heat transfer and variation of the total entropy generation with Hartmann number is similar to that of the average Nusselt number. With change in lid movement direction at Reynolds number of 30 the average Nusselt number and total entropy generation are changed, but at Reynolds number of 1000 it has a negligible effect. - Highlights: • effects of magnetic field on the flow field, heat transfer and entropy generation. • mixed

  1. Numerical study of magnetic field on mixed convection and entropy generation of nanofluid in a trapezoidal enclosure

    International Nuclear Information System (INIS)

    Aghaei, Alireza; Khorasanizadeh, Hossein; Sheikhzadeh, Ghanbarali; Abbaszadeh, Mahmoud

    2016-01-01

    The flow under influence of magnetic field is experienced in cooling electronic devices and voltage transformers, nuclear reactors, biochemistry and in physical phenomenon like geology. In this study, the effects of magnetic field on the flow field, heat transfer and entropy generation of Cu–water nanofluid mixed convection in a trapezoidal enclosure have been investigated. The top lid is cold and moving toward right or left, the bottom wall is hot and the side walls are insulated and their angle from the horizon are 15°, 30°, 45° and 60°. Simulations have been carried out for constant Grashof number of 10"4, Reynolds numbers of 30, 100, 300 and 1000, Hartmann numbers of 25, 50, 75 and 100 and nanoparticles volume fractions of zero up to 0.04. The finite volume method and SIMPLER algorithm have been utilized to solve the governing equations numerically. The results showed that with imposing the magnetic field and enhancing it, the nanofluid convection and the strength of flow decrease and the flow tends toward natural convection and finally toward pure conduction. For this reason, for all of the considered Reynolds numbers and volume fractions, by increasing the Hartmann number the average Nusselt number decreases. Furthermore, for any case with constant Reynolds and Hartmann numbers by increasing the volume fraction of nanoparticles the maximum stream function decreases. For all of the studied cases, entropy generation due to friction is negligible and the total entropy generation is mainly due to irreversibility associated with heat transfer and variation of the total entropy generation with Hartmann number is similar to that of the average Nusselt number. With change in lid movement direction at Reynolds number of 30 the average Nusselt number and total entropy generation are changed, but at Reynolds number of 1000 it has a negligible effect. - Highlights: • effects of magnetic field on the flow field, heat transfer and entropy generation. • mixed

  2. Inverse Doppler shift and control field as coherence generators for the stability in superluminal light

    Science.gov (United States)

    Ghafoor, Fazal; Bacha, Bakht Amin; Khan, Salman

    2015-05-01

    A gain-based four-level atomic medium for the stability in superluminal light propagation using control field and inverse Doppler shift as coherence generators is studied. In regimes of weak and strong control field, a broadband and multiple controllable transparency windows are, respectively, identified with significantly enhanced group indices. The observed Doppler effect for the class of high atomic velocity of the medium is counterintuitive in comparison to the effect of the class of low atomic velocity. The intensity of each of the two pump fields is kept less than the optimum limit reported in [M. D. Stenner and D. J. Gauthier, Phys. Rev. A 67, 063801 (2003), 10.1103/PhysRevA.67.063801] for stability in the superluminal light pulse. Consequently, superluminal stable domains with the generated coherence are explored.

  3. Improvements of high-power diode laser line generators open up new application fields

    Science.gov (United States)

    Meinschien, J.; Bayer, A.; Bruns, P.; Aschke, L.; Lissotschenko, V. N.

    2009-02-01

    Beam shaping improvements of line generators based on high power diode lasers lead to new application fields as hardening, annealing or cutting of various materials. Of special interest is the laser treatment of silicon. An overview of the wide variety of applications is presented with special emphasis of the relevance of unique laser beam parameters like power density and beam uniformity. Complementary to vision application and plastic processing, these new application markets become more and more important and can now be addressed by high power diode laser line generators. Herewith, a family of high power diode laser line generators is presented that covers this wide spectrum of application fields with very different requirements, including new applications as cutting of silicon or glass, as well as the beam shaping concepts behind it. A laser that generates a 5m long and 4mm wide homogeneous laser line is shown with peak intensities of 0.2W/cm2 for inspection of railway catenaries as well as a laser that generates a homogeneous intensity distribution of 60mm x 2mm size with peak intensities of 225W/cm2 for plastic processing. For the annealing of silicon surfaces, a laser was designed that generates an extraordinary uniform intensity distribution with residual inhomogeneities (contrast ratio) of less than 3% over a line length of 11mm and peak intensities of up to 75kW/cm2. Ultimately, a laser line is shown with a peak intensity of 250kW/cm2 used for cutting applications. Results of various application tests performed with the above mentioned lasers are discussed, particularly the surface treatment of silicon and the cutting of glass.

  4. A note on number fields having reciprocal integer generators | Zaïmi ...

    African Journals Online (AJOL)

    We prove that a totally complex algebraic number field K; having a conjugate which is not closed under complex conjugation, can be generated by a reciprocal integer, when the Galois group of its normal closure is contained in the hyperoctahedral group Bdeg(K)/2. Keywords: Reciprocal integers, unit primitive elements, ...

  5. Study of two medium size 'C' core electromagnets generating low magnetic fields

    International Nuclear Information System (INIS)

    Bhatia, M.S.; Dass, S.; Chatterjee, U.K.

    1987-01-01

    Magnetic field requirements of laboratories may impose constraints that often call for a variety of non-standard designs. The designer has to fulfil these demands without letting the design to become too inefficient. Since no ready design procedures are available he has to resort to intuition calculation and modelling. In spite of this there may be wide discrepancy between the design values and the actual results. This report describes the experience gained on two 'C' core electromagnets being used by authors. These magnets generate low magnetic fields over reasonably large volumes, a requirement that runs opposite to that of most other magnets. The study reveals the dependence of overall performance efficiency, field uniformity etc. on the design parameters. 31 figures. (author)

  6. Encouragement of Enzyme Reaction Utilizing Heat Generation from Ferromagnetic Particles Subjected to an AC Magnetic Field.

    Directory of Open Access Journals (Sweden)

    Masashi Suzuki

    Full Text Available We propose a method of activating an enzyme utilizing heat generation from ferromagnetic particles under an ac magnetic field. We immobilize α-amylase on the surface of ferromagnetic particles and analyze its activity. We find that when α-amylase/ferromagnetic particle hybrids, that is, ferromagnetic particles, on which α-amylase molecules are immobilized, are subjected to an ac magnetic field, the particles generate heat and as a result, α-amylase on the particles is heated up and activated. We next prepare a solution, in which α-amylase/ferromagnetic particle hybrids and free, nonimmobilized chitinase are dispersed, and analyze their activities. We find that when the solution is subjected to an ac magnetic field, the activity of α-amylase immobilized on the particles increases, whereas that of free chitinase hardly changes; in other words, only α-amylase immobilized on the particles is selectively activated due to heat generation from the particles.

  7. Chaotic parametric soliton-like pulses in ferromagnetic-film active ring resonators

    International Nuclear Information System (INIS)

    Grishin, S. V.; Golova, T. M.; Morozova, M. A.; Romanenko, D. V.; Seleznev, E. P.; Sysoev, I. V.; Sharaevskii, Yu. P.

    2015-01-01

    The generation of quasi-periodic sequences of parametric soliton-like pulses in an active ring resonator with a ferromagnetic film via the three-wave parametric instability of a magnetostatic surface wave is studied theoretically and experimentally. These dissipative structures form in time due to the competition between the cubic nonlinearity caused by parametric coupling between spin waves and the time dispersion caused by the resonant cavity that is present in a self-oscillatory system. The development of dynamic chaos due to the parametric instability of a magnetostatic surface wave results in irregular behavior of a phase. However, this behavior does not break a quasi-periodic pulse sequence when the gain changes over a wide range. The generated soliton-like pulses have a chaotic nature, which is supported by the maximum Lyapunov exponent estimated from experimental time series

  8. Bioactive conformational generation of small molecules: A comparative analysis between force-field and multiple empirical criteria based methods

    Directory of Open Access Journals (Sweden)

    Jiang Hualiang

    2010-11-01

    Full Text Available Abstract Background Conformational sampling for small molecules plays an essential role in drug discovery research pipeline. Based on multi-objective evolution algorithm (MOEA, we have developed a conformational generation method called Cyndi in the previous study. In this work, in addition to Tripos force field in the previous version, Cyndi was updated by incorporation of MMFF94 force field to assess the conformational energy more rationally. With two force fields against a larger dataset of 742 bioactive conformations of small ligands extracted from PDB, a comparative analysis was performed between pure force field based method (FFBM and multiple empirical criteria based method (MECBM hybrided with different force fields. Results Our analysis reveals that incorporating multiple empirical rules can significantly improve the accuracy of conformational generation. MECBM, which takes both empirical and force field criteria as the objective functions, can reproduce about 54% (within 1Å RMSD of the bioactive conformations in the 742-molecule testset, much higher than that of pure force field method (FFBM, about 37%. On the other hand, MECBM achieved a more complete and efficient sampling of the conformational space because the average size of unique conformations ensemble per molecule is about 6 times larger than that of FFBM, while the time scale for conformational generation is nearly the same as FFBM. Furthermore, as a complementary comparison study between the methods with and without empirical biases, we also tested the performance of the three conformational generation methods in MacroModel in combination with different force fields. Compared with the methods in MacroModel, MECBM is more competitive in retrieving the bioactive conformations in light of accuracy but has much lower computational cost. Conclusions By incorporating different energy terms with several empirical criteria, the MECBM method can produce more reasonable conformational

  9. Dynamic processes in the generation of quasisteady magnetic fields in a laser plasma

    International Nuclear Information System (INIS)

    Aleksich, N.; Andreev, N.E.; Bychenko, V.Yu.

    1991-01-01

    Research on the generation of quasisteady magnetic fields (QSMF) in plasma under the action of strong electro-magnetic fields has long attracted attention in connection with its role when high-power laser radiation interacts with matter. In connection with the problem of laser thermonuclear fusion, a great deal of attention has been devoted to the generation of QSMF through resonant conversion of the heating radiation into electron plasma oscillations near the critical surface. Under conditions which are of interest for present-day experiments, this conversion is nonlinear due to the ponderomotive action of the radiation on the plasma plays an important role; when it is taken into account the picture of the nonlinear interaction between the radiation and the plasma changes fundamentally. Moreover, thus far QSMF generation under the action of the heating radiation has been studied mainly without including both (nonlinearity and plasma expansion) of these factors, although in the numerical simulation of the problem QSMF has been studied for a comparatively long time. The present work presents results of a theoretical study of QSMF excitation made using the LAST code, which treats the self-consistent dynamical nonlinear picture of the plasma electrodynamics and hydrodynamics

  10. Two-phase flow field simulation of horizontal steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Rabiee, Ataollah; Kamalinia, Amir Hossein; Hadad, Kamal [School of Mechanical Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of)

    2017-02-15

    The analysis of steam generators as an interface between primary and secondary circuits in light water nuclear power plants is crucial in terms of safety and design issues. VVER-1000 nuclear power plants use horizontal steam generators which demand a detailed thermal hydraulics investigation in order to predict their behavior during normal and transient operational conditions. Two phase flow field simulation on adjacent tube bundles is important in obtaining logical numerical results. However, the complexity of the tube bundles, due to geometry and arrangement, makes it complicated. Employment of porous media is suggested to simplify numerical modeling. This study presents the use of porous media to simulate the tube bundles within a general-purpose computational fluid dynamics code. Solved governing equations are generalized phase continuity, momentum, and energy equations. Boundary conditions, as one of the main challenges in this numerical analysis, are optimized. The model has been verified and tuned by simple two-dimensional geometry. It is shown that the obtained vapor volume fraction near the cold and hot collectors predict the experimental results more accurately than in previous studies.

  11. Experimental platform for investigations of high-intensity laser plasma interactions in the magnetic field of a pulsed power generator

    Science.gov (United States)

    Ivanov, V. V.; Maximov, A. V.; Swanson, K. J.; Wong, N. L.; Sarkisov, G. S.; Wiewior, P. P.; Astanovitskiy, A. L.; Covington, A. M.

    2018-03-01

    An experimental platform for the studying of high-intensity laser plasma interactions in strong magnetic fields has been developed based on the 1 MA Zebra pulsed power generator coupled with the 50-TW Leopard laser. The Zebra generator produces 100-300 T longitudinal and transverse magnetic fields with different types of loads. The Leopard laser creates plasma at an intensity of 1019 W/cm2 in the magnetic field of coil loads. Focusing and targeting systems are integrated in the vacuum chamber of the pulsed power generator and protected from the plasma debris and strong mechanical shock. The first experiments with plasma at laser intensity >2 × 1018 W/cm2 demonstrated collimation of the laser produced plasma in the axial magnetic field strength >100 T.

  12. The effect of actuator bending on Lamb wave displacement fields generated by a piezoelectric patch

    International Nuclear Information System (INIS)

    Huang, H; Pamphile, T; Derriso, M

    2008-01-01

    A Lamb wave is a special type of elastic wave that is widely employed in structural health monitoring systems for damage detection. Recently, piezoelectric (piezo) patches have become popular for Lamb wave excitation and sensing because one piezo patch can serve as both the actuator and the sensor. All published work has assumed that the Lamb wave displacement field generated by a piezo patch actuator is axi-symmetric. However, we observed that piezo sensors placed at equal distances from the piezo patch actuator displayed different responses. In order to understand this phenomenon, we used a laser vibrometer to measure the full-field displacements around a circular piezo actuator noncontactly. The displacement fields excited by the piezo patch actuator are found to be directional, and this directionality is also frequency dependent, indicating that the out-of-plane bending dynamics of the piezo actuator may play an important role in the Lamb wave displacement fields. A simulation model that incorporates the bending deformation of the piezo patch into the calculations of the Lamb wave generation is then developed. The agreement between the simulated and measured displacement fields confirmed that the directionality of the Lamb wave displacement fields is governed by the bending deformation of the piezo patch actuator

  13. The Seismo-Generated Electric Field Probed by the Ionospheric Ion Velocity

    Science.gov (United States)

    (Tiger) Liu, Jann-Yenq

    2017-04-01

    The ion density, ion temperature, and the ion velocity probed by IPEI (ionospheric Plasma and Electrodynamics Instrument) onboard ROCSAT (i.e. FORMOSAT-1), and the global ionospheric map (GIM) of the total electron content (TEC) derived from measurements of ground-based GPS receivers are employed to study seismo-ionospheric precursors (SIPs) of the 31 March 2002 M6.8 Earthquake in Taiwan. The GIM TEC and ROCSAT/IPEI ion density significantly decrease specifically over the epicenter area 1-5 days before the earthquake, which suggests that the associated SIPs have observed. The ROCSAT/IPEI ion temperature reveals no significant changes before and after the earthquake, while the latitude-time-TEC plots extracted from the GIMs along the Taiwan longitude illustrate that the equatorial ionization anomaly significantly weakens and moves equatorward, which indicates that the daily dynamo electric field has been disturbed and cancelled by possible seismo-generated electric field on 2 days before (29 March) the earthquake. Here, for the first time a vector parameter of ion velocity is employed to study SIPs. It is found that ROCSAT/IPEI ion velocity becomes significantly downward, which confirms that a westward electric field of about 0.91mV/m generated during the earthquake preparation period being essential 1-5 days before the earthquake. Liu, J. Y., and C. K. Chao (2016), An observing system simulation experiment for FORMOSAT-5/AIP detecting seismo-ionospheric precursors, Terrestrial Atmospheric and Oceanic Sciences, DOI: 10.3319/TAO.2016.07.18.01(EOF5).

  14. Thermal generation of the magnetic field in the surface layers of massive stars

    Science.gov (United States)

    Urpin, V.

    2017-11-01

    A new magnetic field-generation mechanism based on the Nernst effect is considered in hot massive stars. This mechanism can operate in the upper atmospheres of O and B stars where departures from the LTE form a region with the inverse temperature gradient.

  15. Direct measurement of kilo-tesla level magnetic field generated with laser-driven capacitor-coil target by proton deflectometry

    Science.gov (United States)

    Law, K. F. F.; Bailly-Grandvaux, M.; Morace, A.; Sakata, S.; Matsuo, K.; Kojima, S.; Lee, S.; Vaisseau, X.; Arikawa, Y.; Yogo, A.; Kondo, K.; Zhang, Z.; Bellei, C.; Santos, J. J.; Fujioka, S.; Azechi, H.

    2016-02-01

    A kilo-tesla level, quasi-static magnetic field (B-field), which is generated with an intense laser-driven capacitor-coil target, was measured by proton deflectometry with a proper plasma shielding. Proton deflectometry is a direct and reliable method to diagnose strong, mm3-scale laser-produced B-field; however, this was not successful in the previous experiment. A target-normal-sheath-accelerated proton beam is deflected by Lorentz force in the laser-produced magnetic field with the resulting deflection pattern recorded on a radiochromic film stack. A 610 ± 30 T of B-field amplitude was inferred by comparing the experimental proton pattern with Monte-Carlo calculations. The amplitude and temporal evolutions of the laser-generated B-field were also measured by a differential magnetic probe, independently confirming the proton deflectometry measurement results.

  16. Can Effective Field Theory of inflation generate large tensor-to-scalar ratio within Randall–Sundrum single braneworld?

    International Nuclear Information System (INIS)

    Choudhury, Sayantan

    2015-01-01

    In this paper my prime objective is to explain the generation of large tensor-to-scalar ratio from the single field sub-Planckian inflationary paradigm within Randall–Sundrum (RS) single braneworld scenario in a model independent fashion. By explicit computation I have shown that the effective field theory prescription of brane inflation within RS single brane setup is consistent with sub-Planckian excursion of the inflaton field, which will further generate large value of tensor-to-scalar ratio, provided the energy density for inflaton degrees of freedom is high enough compared to the brane tension in high energy regime. Finally, I have mentioned the stringent theoretical constraint on positive brane tension, cut-off of the quantum gravity scale and bulk cosmological constant to get sub-Planckian field excursion along with large tensor-to-scalar ratio as recently observed by BICEP2 or at least generates the tensor-to-scalar ratio consistent with the upper bound of Planck (2013 and 2015) data and Planck+BICEP2+Keck Array joint constraint

  17. Variations of helicon wave induced radial plasma transport in different experimental conditions

    International Nuclear Information System (INIS)

    Petrzilka, V.

    1993-08-01

    Variations of the helicon wave induced radial plasma transport are presented in dependence on values of the plasma radius, magnetostatic field, plasma density, frequency of the helicon wave and on the ion charge. 22 refs., 14 figs

  18. Magnetic Field Generation, Particle Energization and Radiation at Relativistic Shear Boundary Layers

    Science.gov (United States)

    Liang, Edison; Fu, Wen; Spisak, Jake; Boettcher, Markus

    2015-11-01

    Recent large scale Particle-in-Cell (PIC) simulations have demonstrated that in unmagnetized relativistic shear flows, strong transverse d.c. magnetic fields are generated and sustained by ion-dominated currents on the opposite sides of the shear interface. Instead of dissipating the shear flow free energy via turbulence formation and mixing as it is usually found in MHD simulations, the kinetic results show that the relativistic boundary layer stabilizes itself via the formation of a robust vacuum gap supported by a strong magnetic field, which effectively separates the opposing shear flows, as in a maglev train. Our new PIC simulations have extended the runs to many tens of light crossing times of the simulation box. Both the vacuum gap and supporting magnetic field remain intact. The electrons are energized to reach energy equipartition with the ions, with 10% of the total energy in electromagnetic fields. The dominant radiation mechanism is similar to that of a wiggler, due to oscillating electron orbits around the boundary layer.

  19. Practical methods for generating alternating magnetic fields for biomedical research

    Science.gov (United States)

    Christiansen, Michael G.; Howe, Christina M.; Bono, David C.; Perreault, David J.; Anikeeva, Polina

    2017-08-01

    Alternating magnetic fields (AMFs) cause magnetic nanoparticles (MNPs) to dissipate heat while leaving surrounding tissue unharmed, a mechanism that serves as the basis for a variety of emerging biomedical technologies. Unfortunately, the challenges and costs of developing experimental setups commonly used to produce AMFs with suitable field amplitudes and frequencies present a barrier to researchers. This paper first presents a simple, cost-effective, and robust alternative for small AMF working volumes that uses soft ferromagnetic cores to focus the flux into a gap. As the experimental length scale increases to accommodate animal models (working volumes of 100s of cm3 or greater), poor thermal conductivity and volumetrically scaled core losses render that strategy ineffective. Comparatively feasible strategies for these larger volumes instead use low loss resonant tank circuits to generate circulating currents of 1 kA or greater in order to produce the comparable field amplitudes. These principles can be extended to the problem of identifying practical routes for scaling AMF setups to humans, an infrequently acknowledged challenge that influences the extent to which many applications of MNPs may ever become clinically relevant.

  20. Dynamics and structure of self-generated magnetics fields on solids following high contrast, high intensity laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Albertazzi, B. [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); INRS-EMT, 1650 bd L. Boulet, J3X1S2, Varennes, Québec (Canada); Graduate School of Engineering, University of Osaka, Suita, Osaka 565-087 (Japan); Chen, S. N.; Fuchs, J., E-mail: julien.fuchs@polytechnique.fr [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Institute of Applied Physics, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation); Antici, P. [INRS-EMT, 1650 bd L. Boulet, J3X1S2, Varennes, Québec (Canada); Dept. SBAI, Universita di Roma “La Sapienza,” Via A. Scarpa 14, 00161 Rome (Italy); Böker, J.; Swantusch, M.; Willi, O. [Institut für Laser-und Plasmaphysik, Heinrich-Heine-Universität, Düsseldorf (Germany); Borghesi, M. [School of Mathematics and Physics, The Queen' s University, Belfast (United Kingdom); Breil, J.; Feugeas, J. L.; Nicolaï, Ph.; Tikhonchuk, V. T.; D' Humières, E. [CELIA, University of Bordeaux - CNRS - CEA, 33405 Talence (France); Dervieux, V.; Nakatsutsumi, M.; Romagnagni, L. [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Lancia, L. [Dept. SBAI, Universita di Roma “La Sapienza,” Via A. Scarpa 14, 00161 Rome (Italy); Shepherd, R. [LLNL, East Av., Livermore, California 94550 (United States); Sentoku, Y. [Department of Physics, University of Nevada, Reno, Nevada 89557-0058 (United States); Starodubtsev, M. [Institute of Applied Physics, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation); and others

    2015-12-15

    The dynamics of self-generated magnetic B-fields produced following the interaction of a high contrast, high intensity (I > 10{sup 19 }W cm{sup −2}) laser beam with thin (3 μm thick) solid (Al or Au) targets is investigated experimentally and numerically. Two main sources drive the growth of B-fields on the target surfaces. B-fields are first driven by laser-generated hot electron currents that relax over ∼10–20 ps. Over longer timescales, the hydrodynamic expansion of the bulk of the target into vacuum also generates B-field induced by non-collinear gradients of density and temperature. The laser irradiation of the target front side strongly localizes the energy deposition at the target front, in contrast to the target rear side, which is heated by fast electrons over a much larger area. This induces an asymmetry in the hydrodynamic expansion between the front and rear target surfaces, and consequently the associated B-fields are found strongly asymmetric. The sole long-lasting (>30 ps) B-fields are the ones growing on the target front surface, where they remain of extremely high strength (∼8–10 MG). These B-fields have been recently put by us in practical use for focusing laser-accelerated protons [B. Albertazzi et al., Rev. Sci. Instrum. 86, 043502 (2015)]; here we analyze in detail their dynamics and structure.

  1. External Magnetic Field Reduction Techniques for the Advanced Stirling Radioisotope Generator

    Science.gov (United States)

    Niedra, Janis M.; Geng, Steven M.

    2013-01-01

    Linear alternators coupled to high efficiency Stirling engines are strong candidates for thermal-to-electric power conversion in space. However, the magnetic field emissions, both AC and DC, of these permanent magnet excited alternators can interfere with sensitive instrumentation onboard a spacecraft. Effective methods to mitigate the AC and DC electromagnetic interference (EMI) from solenoidal type linear alternators (like that used in the Advanced Stirling Convertor) have been developed for potential use in the Advanced Stirling Radioisotope Generator. The methods developed avoid the complexity and extra mass inherent in data extraction from multiple sensors or the use of shielding. This paper discusses these methods, and also provides experimental data obtained during breadboard testing of both AC and DC external magnetic field devices.

  2. Modeling and field studies of fouling in once-through steam generators

    International Nuclear Information System (INIS)

    Thompson, R.; Gaudreau, T.

    1995-01-01

    Efforts of the past 10 years to minimize fouling of the Crystal River-3 once-through steam generators are reviewed. The major focus has been on improving at-temperature pH control in the secondary cycle. Various concentrations of different pH control agents were tested in the field for hundreds of days to determine their effect on steam generator fouling. High concentrations of morpholine (50--100 ppm) in the feedwater were found to apparently produce de-fouling of the steam generators without an associated decrease in feedwater iron concentration as compared to that at lower levels of morpholine. Computer modeling of the pH(t) within the OTSG for the various chemistries tested indicates that the pH can change significantly with elevation within the steam generator by varying the pH control agent or its concentration. It is postulated that these variations in pH may change the surface charge of the tubes, tube support plates, and/or corrosion product particles in solution, to favor either deposition or repulsion of the particles, and thereby producing conditions that either favor fouling or de-fouling of the OTSG. Crystal River-3 experience indicates that corrosion product deposition and release processes inside the steam generator can be chemically manipulated to favor release, and thereby maximize plant performance, and delay or avoid costly hydraulic or chemical cleanings

  3. World's largest DC flywheel generator for the toroidal field power supply of JAERI's JFT-2M Tokamak nuclear fusion reactor

    International Nuclear Information System (INIS)

    Tani, Takashi; Nakanishi, Yuji; Horita, Tsuyoshi; Kawase, Chiharu; Oyabu, Isao; Kishimoto, Takeshi.

    1996-01-01

    Mitsubishi Electric has delivered the world's largest DC generator for the toroidal field coil power supply of the JFT-2M Tokamak at the Japan Atomic Energy Research Institute. The unit rotates at 225 or 460 rpm, providing a maximum rated output of 2,700 V, 19,000 A and 51.3 MW. The toroidal field is a DC field, so use of a DC generator permits a simpler design consuming less floor space than an AC drive system. The generator was manufactured following extensive studies on commutation, mechanical strength and insulation. (author)

  4. Field-based generation and social validation managers and staff competencies for small community residences.

    Science.gov (United States)

    Thousand, J S; Burchard, S N; Hasazi, J E

    1986-01-01

    Characteristics and competencies for four staff positions in community residences for individuals with mental retardation were identified utilizing multiple empirical and deductive methods with field-based practitioners and field-based experts. The more commonly used competency generation methods of expert opinion and job performance analysis generated a high degree of knowledge and skill-based competencies similar to course curricula. Competencies generated by incumbent practitioners through open-ended methods of personal structured interview and critical incident analysis were ones which related to personal style, interpersonal interaction, and humanistic orientation. Although seldom included in staff, paraprofessional, or professional training curricula, these latter competencies include those identified by Carl Rogers as essential for developing an effective helping relationship in a therapeutic situation (i.e., showing liking, interest, and respect for the clients; being able to communicate positive regard to the client). Of 21 core competency statements selected as prerequisites to employment for all four staff positions, the majority (17 of 21) represented interpersonal skills important to working with others, including responsiveness to resident needs, personal valuation of persons with mental retardation, and normalization principles.

  5. The generation and amplification of intergalactic magnetic fields in analogue laboratory experiments with high power lasers

    Science.gov (United States)

    Gregori, G.; Reville, B.; Miniati, F.

    2015-11-01

    The advent of high-power laser facilities has, in the past two decades, opened a new field of research where astrophysical environments can be scaled down to laboratory dimensions, while preserving the essential physics. This is due to the invariance of the equations of magneto-hydrodynamics to a class of similarity transformations. Here we review the relevant scaling relations and their application in laboratory astrophysics experiments with a focus on the generation and amplification of magnetic fields in cosmic environment. The standard model for the origin of magnetic fields is a multi stage process whereby a vanishing magnetic seed is first generated by a rotational electric field and is then amplified by turbulent dynamo action to the characteristic values observed in astronomical bodies. We thus discuss the relevant seed generation mechanisms in cosmic environment including resistive mechanism, collision-less and fluid instabilities, as well as novel laboratory experiments using high power laser systems aimed at investigating the amplification of magnetic energy by magneto-hydrodynamic (MHD) turbulence. Future directions, including efforts to model in the laboratory the process of diffusive shock acceleration are also discussed, with an emphasis on the potential of laboratory experiments to further our understanding of plasma physics on cosmic scales.

  6. Magnetic study of extraction elements of compact cyclotron beam with AGOR superconducting coils

    International Nuclear Information System (INIS)

    Gustafsson, S.

    1991-12-01

    The extraction system of the superconducting cyclotrons is normally making a large use of electric extractors followed by magnetostatic elements. The electric field limit initially hoped for (14 MV/m) has been shown to be too optimistic. A more realistic value is around 10 MV/m in the concerned geometries. The first element of the AGOR extraction system is an electrostatic channel where the maximum electric field is limited to 10.5 MV/m. The smaller separation between the internal beam and the extracted beam at the entrance of the first magnetic element is compensated by the replacement of the usual magnetostatic channels with high power electromagnetic channels placed in the reduced space close to the internal beam and where the horizontal position can be adjusted according to the kind of ion accelerated and its energy. The fringing field very close to the channels is controlled with the help of correction coils reducing the perturbations of the internal beam trajectories to an acceptable level

  7. Temporal behaviour of self generated magnetic field and its influence on inhibition of thermal flux in ICF plasma

    International Nuclear Information System (INIS)

    Jha, L.N.

    1989-06-01

    The self generated magnetic field of megagauss order is reported to play a crucial role in ICF target designs because of its strong influence on the transport of energy from the critical density region to the ablation layer. The inhibition of the thermal flux due to such a field, thus, affects the whole of the other phenomenon of ICF. The knowledge of the proper variation of the magnetic field may help in assigning the existing controversial value of flux limit, f. Many papers dealing with the spatial variation of such a field exist and are well documented but the study on the variation of self generated field with time is rare. Here, the spatial variation of the megagauss field generated in the corona of a wire target irradiated by a laser as well as a model to study the temporal nature of the B-field at the peak have been obtained by solving the self inhibited diffusion which is regarded as the most dominant mechanism by which the thermal transport is influenced. The field exists for about ten nanoseconds even after the laser is switched off. The ratio of the two components of the thermal conductivity is also plotted against time and shows the inhibition. So, a track on the B-field variation both in space and time is necessary to keep for at least a few nanoseconds for computation of f. (author). 19 refs, 4 figs

  8. Quantum gravity. On the entity of gravitation generating interacting fields and the elementary fields of quantum electrodynamics

    International Nuclear Information System (INIS)

    Bencivinni, Daniele

    2011-01-01

    The chapters about the propagation of the electromagnetic field, its properties in view of the propagation in space, the accompanying momentum, its kinetic energy and its mass-equivalent distribution of the total energy coupled to the relativistic mass represent today known and scientifically for a long time acknowledged as well as proved description of each phenomena. They are successively in a mathematically simple way formally listed and explained. The fundamental results of quantum mechanics, the quantum-mechanical momentum, Planck's action quantum etc. are also presented in a simplified way. Also the essential forms of special relativity theory concerning the propagation of energy and momentum are presented. In a last setpit is checked, whether a possible common entity between the listed scientific experiences can be established. Possible explanation approaches on the described connections and the subsequent results are presented. If the gravitational waves are interpreted as quantized electromagnetic quantum waves, as matter waves, which can be assigned to a mass in the sense of Louis de Broglie and are for instance detectable as electron waves, by means of the relativistic quantum-mechanical spatial radiation gravitation could be described. So the ''quantum-mechanical wave'' could be responsible for the generation of mass via the interaction of elementary quantum fields. The propagation of one of these as mass appearing interaction of bound quantum fields can carry a conventional momentum because of its kinetic energy. The interaction in the Bose-Einstein condensate shows that the cooled rest mass exhibits the picture of a standing wave, the wave front of which propagates into the space. Because of the massive superposition of interference pattern warns the gravitational respectively matter wave can no more be isolated. A spatial radiation is however possible. Matter can generate a radiation in front of the inertial mass (quantum waves). If it succeeds to

  9. Field test of two high-pressure direct-contact downhole steam generators. Volume II. Oxygen/diesel system

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, J.B.

    1983-07-01

    A field test of an oxygen/diesel fuel, direct contact steam generator has been completed. The field test, which was a part of Project DEEP STEAM and was sponsored by the US Department of Energy, involved the thermal stimulation of a well pattern in the Tar Zone of the Wilmington Oil Field. The activity was carried out in cooperation with the City of Long Beach and the Long Beach Oil Development Company. The steam generator was operated at ground level, with the steam and combustion products delivered to the reservoir through 2022 feet of calcium-silicate insulated tubing. The objectives of the test included demonstrations of safety, operational ease, reliability and lifetime; investigations of reservoir response, environmental impact, and economics; and comparison of those points with a second generator that used air rather than oxygen. The test was extensively instrumented to provide the required data. Excluding interruptions not attributable to the oxygen/diesel system, steam was injected 78% of the time. System lifetime was limited by the combustor, which required some parts replacement every 2 to 3 weeks. For the conditions of this particular test, the use of trucked-in LOX resulted in liess expense than did the production of the equivalent amount of high pressure air using on site compressors. No statistically significant production change in the eight-acre oxygen system well pattern occurred during the test, nor were any adverse effects on the reservoir character detected. Gas analyses during the field test showed very low levels of SOX (less than or equal to 1 ppM) in the generator gaseous effluent. The SOX and NOX data did not permit any conclusion to be drawn regarding reservoir scrubbing. Appreciable levels of CO (less than or equal to 5%) were measured at the generator, and in this case produced-gas analyses showed evidence of significant gas scrubbing. 64 figures, 10 tables.

  10. Dynamo generation of magnetic fields in three-dimensional space: Solar cycle main flux tube formation and reversals

    International Nuclear Information System (INIS)

    Yoshimura, H.

    1983-01-01

    Dynamo processes as a magnetic field generation mechanism in astrophysics can be described essentially by movement and deformation of magnetic field lines due to plasma fluid motions. A basic element of the processes is a kinematic problem. As an important prototype of these processes, we investigate the case of the solar magnetic cycle. To follow the movement and deformation, we solve magnetohydrodynamic (MHD) equations by a numerical method with a prescribed velocity field. A simple combination of differential rotation and global convection, given by a linear analysis of fluid dynamics in a rotating sphere, can perpetually create and reverse great magnetic flux tubes encircling the Sun. We call them the main flux tubes of the solar cycle. They are progenitors of small-scale flux ropes of the solar activity. This shows that magnetic field generation by fluid motions is, in fact, possible and that MHD equations have a new type of oscillatory solution. The solar cycle can be identified with one of such oscillatory solutions. This means that we can follow detailed stages of the field generation and reversal processes of the dynamo by continuously observing the Sun. It is proposed that the magnetic flux tube formation by streaming plasma flows exemplified here could be a universal mechanism of flux tube formation in astrophysics

  11. Electric fields and field-aligned current generation in the magnetosphere

    International Nuclear Information System (INIS)

    Alexeev, I.I.; Belenkaya, E.S.; Kalegaev, V.V.; Lyutov, Yu.G.

    1993-01-01

    The authors present a calculation of the electric potential, field-aligned currents, and plasma convection caused by the penetration of the solar wind electric field into the magnetosphere. Ohm's law and the continuity equation of ionospheric currents are used. It is shown that the large-scale convection system is reversed in the plasma sheet flanks. In this region the plasma flow is antisunward earthward of the neutral line and sunward tailward of it. The interplanetary magnetic field (IMF) B z dependences on the dimension of the magnetopause open-quotes windowsclose quotes which are intersected by open field lines, on the potential drop across the polar cap, and on the distance to the neutral line are determined. Because of the IMF effect and the effect of seasonal or daily variations of the geomagnetic field which violate its symmetry relative to the equatorial plane, there may arise a potential drop along field lines which causes field-aligned currents. The values and directions of these currents, the field-aligned potential drop, and a self-consistent solution for the potential at the ionosphere level for high field-aligned conductivity have been determined. 41 refs., 7 figs

  12. THE EFFECTS OF ELECTRON-BEAM-INDUCED ELECTRIC FIELD ON THE GENERATION OF LANGMUIR TURBULENCE IN FLARING ATMOSPHERES

    International Nuclear Information System (INIS)

    Zharkova, Valentina V.; Siversky, Taras V.

    2011-01-01

    The precipitation of an electron beam injected into the solar atmosphere is studied for the generation of Langmuir wave turbulence in the presence of collisional and Ohmic losses. The system of quasi-linear time-dependent kinetic equations describing the evolution of beams and Langmuir waves is solved by using the summary approximation method. It is found that at upper atmospheric levels the self-induced electric field suppresses the generation of Langmuir turbulence to very small regions below injection. With further precipitation into deeper atmosphere the initial single power-law distributions of beam electrons are transformed into energy distributions with maxima at lower energies formed by collisional and Ohmic energy depletion. The electrons with lower energies (<20 keV) generate on large spatial scales intense low-hybrid and high-hybrid Langmuir waves with well-defined patterns in the corona while higher energy electrons generate moderate low-hybrid waves in the chromosphere. The maximum wave density appears at the maximum of the ambient density. The self-induced electric field reduces the level and makes the regions with low-hybrid Langmuir turbulence narrower in the corona and upper chromosphere. The higher the beam energy flux or its self-induced electric field, the narrower the regions with Langmuir turbulence. High-hybrid Langmuir waves in the form of multiple patterns in space (in the corona) and energy (below 20 keV) are found to be generated only by a very intense electron beam. The number of patterns in both dimensions is also shown to be significantly reduced by the self-induced electric field.

  13. Quasistationary magnetic field generation with a laser-driven capacitor-coil assembly.

    Science.gov (United States)

    Tikhonchuk, V T; Bailly-Grandvaux, M; Santos, J J; Poyé, A

    2017-08-01

    Recent experiments are showing possibilities to generate strong magnetic fields on the excess of 500 T with high-energy nanosecond laser pulses in a compact setup of a capacitor connected to a single turn coil. Hot electrons ejected from the capacitor plate (cathode) are collected at the other plate (anode), thus providing the source of a current in the coil. However, the physical processes leading to generation of currents exceeding hundreds of kiloamperes in such a laser-driven diode are not sufficiently understood. Here we present a critical analysis of previous results and propose a self-consistent model for the high current generation in a laser-driven capacitor-coil assembly. It accounts for three major effects controlling the diode current: the space charge neutralization, the plasma magnetization between the capacitor plates, and the Ohmic heating of the external circuit-the coil-shaped connecting wire. The model provides the conditions necessary for transporting strongly super-Alfvenic currents through the diode on the time scale of a few nanoseconds. The model validity is confirmed by a comparison with the available experimental data.

  14. Dynamical mechanism of symmetry breaking and particle mass generation in gauge field theories

    International Nuclear Information System (INIS)

    Miranskij, V.A.; Fomin, P.I.

    1985-01-01

    The dynamics of the spotaneous symmetry breaking and the particle mass generation in gauge theories with no fundamental scalar fields is considered. The emphasis is on the consideration of the symmetry breaking mechanism connected with the dynamics of the supercritical Coulomb-like forces caused by the gauge boson exchange between fermions. This mechanism is applied to different gauge theories, in particular, to the description of the spontaneous chira symmetry breaking in quantum chromodynamics. The mass relations for pseudoscalar meson nonet are obtained and it is shown that this mechanism resuls in the dynamical realisation of the hypothesis of the partial conservation of the axial-vector currents. The qualitative description of scalar mesons is given. The nature of the ultraviolet divergencies in quantum electrodynamics (QED) is investigated from the viewpoint of the dynamics of the fermion mass generation. The mechanism of the appearance of the additional (in comparison with perturbation theory) ultraviolet divergencies in QED with large bare coupling constant is indicated. The physical phenomenon underlying this mechanism is identified as the field theory analogue of the quantum mechanical ''fall into the centre'' (collapse) phenomenon. The similr phenomenon is shown to take place in some two-dimensional quantum field models. The dynamics of the bifermion condensates formation in tumblin gauge theories is briefly discussed

  15. Spheroidal and conical shapes of ferrofluid-filled capsules in magnetic fields

    Science.gov (United States)

    Wischnewski, Christian; Kierfeld, Jan

    2018-04-01

    We investigate the deformation of soft spherical elastic capsules filled with a ferrofluid in external uniform magnetic fields at fixed volume by a combination of numerical and analytical approaches. We develop a numerical iterative solution strategy based on nonlinear elastic shape equations to calculate the stretched capsule shape numerically and a coupled finite element and boundary element method to solve the corresponding magnetostatic problem and employ analytical linear response theory, approximative energy minimization, and slender-body theory. The observed deformation behavior is qualitatively similar to the deformation of ferrofluid droplets in uniform magnetic fields. Homogeneous magnetic fields elongate the capsule and a discontinuous shape transition from a spheroidal shape to a conical shape takes place at a critical field strength. We investigate how capsule elasticity modifies this hysteretic shape transition. We show that conical capsule shapes are possible but involve diverging stretch factors at the tips, which gives rise to rupture for real capsule materials. In a slender-body approximation we find that the critical susceptibility above which conical shapes occur for ferrofluid capsules is the same as for droplets. At small fields capsules remain spheroidal and we characterize the deformation of spheroidal capsules both analytically and numerically. Finally, we determine whether wrinkling of a spheroidal capsule occurs during elongation in a magnetic field and how it modifies the stretching behavior. We find the nontrivial dependence between the extent of the wrinkled region and capsule elongation. Our results can be helpful in quantitatively determining capsule or ferrofluid material properties from magnetic deformation experiments. All results also apply to elastic capsules filled with a dielectric liquid in an external uniform electric field.

  16. Evaluation of the residual stress field in a steam generator end tube after hydraulic expansion

    International Nuclear Information System (INIS)

    Thiel, F.; Kang, S.; Chabrerie, J.

    1994-01-01

    This paper presents a finite element elastoplastic model of a nuclear steam generator end tube, used to evaluate the residual stress field existing after hydraulic expansion of the tube into the tubesheet of the heat exchanger. This model has been tested against an experimental hydraulic expansion, carried out on full scale end tubes. The operation was monitored thanks to strain gages localized on the outer surface of the tubes, subjected to elastoplastic deformations. After a presentation of the expansion test and the description of the numerical model, the authors compare the stress fields issues from the gages and from the model. The comparison shows a good agreement. These results allow them to calculate the stress field resulting from normal operating conditions, while taking into account a correct initial state of stress. Therefore the authors can improve the understanding of the behavior of a steam generator end tube, with respect to stress corrosion cracking and crack growth

  17. Hysteresis loop design by geometry of garnet film element with single domain wall

    International Nuclear Information System (INIS)

    Skidanov, V A; Vetoshko, P M; Stempkovskiy, A L

    2011-01-01

    Numerical modeling and experimental investigation of magnetostatic stable states of two-domain structure in Bi-substituted uniaxial garnet film elements was made. Single domain walls (DW) between two opposite normally magnetized parts in isolated rectangular strip and strip-like bridge are found to exhibit different behavior. DW inside strip (bridge) suffers increasing repulsion (attraction) from nearest edge when shifted from element center. DW position center position is stable in isolated strip but bridge is magnetized spontaneously to one of two saturated states in zero external field. Isolated strip magnetization process occurs reversibly while bridge magnetization reversal occurs by coercive manner. Strip susceptibility and bridge coercive field are entirely defined by magnetostatic barrier created by element boundary stray field in case of constant DW length during magnetization reversal. Variation of strip and bridge boundary shape along DW trajectory gives the opportunity to create additional controllable potential profile due to DW surface energy modulation by DW length. Garnet elements with high Faraday rotation and low light switching field were developed for fine magnetic sensing and optical data processing applications.

  18. Remote field eddy current testing for steam generator inspection of fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Noriyasu, E-mail: noriyasu.kobayashi@toshiba.co.jp [Power and Industrial Systems Research and Development Center, Toshiba Corporation, 8, Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan); Ueno, Souichi; Nagai, Satoshi; Ochiai, Makoto [Power and Industrial Systems Research and Development Center, Toshiba Corporation, 8, Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan); Jimbo, Noboru [Isogo Nuclear Engineering Center, Toshiba Corporation, 8, Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer We confirmed defect detection performances of remote field eddy current testing. Black-Right-Pointing-Pointer It is difficult to inspect outer surface of double wall tube steam generator. Black-Right-Pointing-Pointer We used coils with flux guide made of iron-nickel alloy for high sensitivity. Black-Right-Pointing-Pointer Output voltage of detector coil increased more than 100 times. Black-Right-Pointing-Pointer We were able to detect small hole defect of 1mm in diameter on outer surface. - Abstract: We confirmed the defect detection performances of the remote field eddy current testing (RFECT) in order to inspect the helical-coil-type double wall tube steam generator (DWTSG) with the wire mesh layer for the new small fast reactor 4S (Super-Safe, Small and Simple). As the high sensitivity techniques, we tried to increase the direct magnetic field intensity in the vicinity of the inner wall of the tube and decrease the direct magnetic field around the central axis of the tube using the exciter coil with the flux guide made of the iron-nickel alloy. We adopted the horizontal type multiple detector coils with the flux guides arrayed circumferentially to enhance the sensitivity of the radial component. According to the experimental results, the output voltage of the detector coil in the region of indirect magnetic field increased more than 100 times by the application of the exciter and detector coils with the flux guides. Finally, we were able to detect the small hole defect of 1 mm in diameter and 20% of the outer tube thickness in depth over the wire mesh layer by the adoption of the exciter coil and horizontal type multiple detector coils with the flux guides. We also confirmed that the RFECT probe is useful for detecting thinning defects. These experimental results indicated that there is the possibility that we can inspect the double wall tube with the wire mesh layer using the RFECT.

  19. Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Pair Jets

    Science.gov (United States)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Mizuno, Y.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created by relativistic pair jets are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet propagating through an ambient plasma with and without initial magnetic fields. The growth rates of the Weibel instability depends on the distribution of pair jets. Simulations show that the Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  20. Generation of poloidal magnetic field in a hot collisional plasma by inverse Faraday effect

    International Nuclear Information System (INIS)

    Srivastava, M.K.; Lawande, S.V.; Dutta, D.; Sarkar, S.; Khan, M.; Chakraborty, B.

    1996-01-01

    Generation of poloidal magnetic field in a hot and collisional plasma by an inverse Faraday effect is discussed. This field can either be induced by a circularly polarized laser beam (CPLB) or a plane-polarized laser beam (PPLB). For the CPLB, an average field left-angle Re x right-angle ∼I 0 λ∼11.6 MG could be produced in a DT plasma for a high intensity (I 0 =10 22 W/m 2 ) and shorter wavelength (λ=0.35 μm) laser. This field is essentially induced by the field inhomogeneity effect and dominates over that induced by the plasma inhomogeneity effect (left-angle Re x right-angle ∼I 2/3 0 λ 7/3 ∼2.42 MG). The collisional and thermal contribution to left-angle Re x right-angle is just negligible for the CPLB. However, in the case of PPLB the poloidal field is generated only for a hot and collisional plasma and can be quite large for a longer wavelength laser (e.g., CO 2 laser, λ=10.6 μm). The collisional effect induces a field left-angle Re x right-angle ∼0.08 kG, which dominates near the turning point and is independent of the laser parameters. However, in the outer cronal region the thermal pressure effect dominates (e.g., left-angle Re x right-angle ∼I 5/3 0 λ 4/3 ∼3.0 MG). Further, left-angle Re x right-angle for the p-polarized beam is, in general, relatively smaller than that for the s-polarized beam. Practical implications of these results and their limitations are discussed. copyright 1996 American Institute of Physics

  1. Self-generated magnetic fields and energy transport by ultra-intense laser-plasma interaction

    International Nuclear Information System (INIS)

    Abudurexiti, A.; Tuniyazi, P.; Wang Qian

    2011-01-01

    The electromagnetic instability (Weibel instability) and its mechanism in ultra-intense laser-plasma interactions are studied by using three-dimensional particle-in-cell simulations. The transport of energy in electron thermal conduction is analyzed by the Spitzer-Harm theory, and the election's vertical pyrogenation phenomenon that resulted from anisotropic heating of laser is observed. The results indicate that the strong magnetic field excited by Weibel instability makes the electron beam deposit its energy within a very short distance, and it restrains the electron thermal flux formed when the laser ponderomotive force bursts through the electron. With the increase of the self-generated magnetic field, the electron will be seized by the wave of magnetic field, and the transport of heat will be restricted. (authors)

  2. Electronically rotated and translated field-free line generation for open bore magnetic particle imaging.

    Science.gov (United States)

    Top, Can Barış; Ilbey, Serhat; Güven, Hüseyin Emre

    2017-12-01

    We propose a coil arrangement for open bore field-free line (FFL) magnetic particle imaging (MPI) system, which is suitable for accessing the subject from the sides. The purpose of this study is twofold, to show that the FFL can be rotated and translated electronically in a volume of interest with this arrangement and to analyze the current, voltage and power requirements for a 1 T/m gradient human sized scanner for a 200 mm diameter × 200 mm height cylindrical field of view (FOV). We used split coils side by side with alternating current directions to generate a field-free line. Employing two of these coil groups, one of which is rotated 90 degrees with respect to the other, a rotating FFL was generated. We conducted numerical simulations to show the feasibility of this arrangement for three-dimensional (3D) electronical scan of the FFL. Using simulations, we obtained images of a two-dimensional (2D) in silico dot phantom for a human size scanner with system matrix-based reconstruction. Simulations showed that the FFL can be generated and rotated in one plane and can be translated in two axes, allowing for 3D imaging of a large subject with the proposed arrangement. Human sized scanner required 63-215 kW power for the selection field coils to scan the focus inside the FOV. The proposed setup is suitable for FFL MPI imaging with an open bore configuration without the need for mechanical rotation, which is preferable for clinical usage in terms of imaging time and patient access. Further studies are necessary to determine the limitations imposed by peripheral nerve stimulation, and to optimize the system parameters and the sequence design. © 2017 American Association of Physicists in Medicine.

  3. Generation of longitudinally polarized terahertz pulses with field amplitudes exceeding 2 kV/cm

    Science.gov (United States)

    Cliffe, M. J.; Rodak, A.; Graham, D. M.; Jamison, S. P.

    2014-11-01

    We demonstrate the generation of near-single cycle longitudinally polarized terahertz radiation using a large-area radially biased photoconductive antenna with a longitudinal field amplitude in excess of 2 kV/cm. The 76 mm diameter antenna was photo-excited by a 0.5 mJ amplified near-infrared femtosecond laser system and biased with a voltage of up to 100 kV applied over concentric electrodes. Amplitudes for both the transverse and longitudinal field components of the source were measured using a calibrated electro-optic detection scheme. By tightly focusing the radiation emitted from the photoconductive antenna, we obtained a maximum longitudinal field amplitude of 2.22 kV/cm with an applied bias field of 38.5 kV/cm.

  4. Asymmetric flux generation and its relaxation in reversed field pinch

    International Nuclear Information System (INIS)

    Arimoto, H.; Masamune, S.; Nagata, A.

    1985-02-01

    The toroidally asymmetric flux enhancement [''dynamo effect''] and the axisymmetrization of the enhanced fluxes that follows in the setting up phase of Reversed Field Pinch are investigated on the STP-3[M] device. A rapid increase in the toroidal flux generated by the dynamo effect is first observed near the poloidal and toroidal current feeders. Then, this inhomogeneity of the flux propagates toroidally towards the plasma current. The axisymmetrization of the flux is attained just after the maximum of plasma current. The MHD activities decrease significantly after this axisymmetrization and the quiescent period is obtained. (author)

  5. Magnetic field generation during intense laser channelling in underdense plasma

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, A. G.; Sarri, G.; Doria, D.; Kar, S.; Borghesi, M. [School of Mathematics and Physics, The Queen' s University of Belfast, University Road, Belfast BT7 1NN (United Kingdom); Vranic, M.; Guillaume, E.; Silva, L. O.; Vieira, J. [GoLP/IPFN, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon (Portugal); Amano, Y.; Habara, H.; Tanaka, K. A. [Graduate School of Engineering Osaka University. Suita, Osaka 5650871 (Japan); Heathcote, R.; Norreys, P. A. [STFC Rutherford Appleton Laboratory, Didcot, Oxon OX1 0Qx (United Kingdom); Hicks, G.; Najmudin, Z.; Nakamura, H. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BZ (United Kingdom)

    2016-06-15

    Channel formation during the propagation of a high-energy (120 J) and long duration (30 ps) laser pulse through an underdense deuterium plasma has been spatially and temporally resolved via means of a proton imaging technique, with intrinsic resolutions of a few μm and a few ps, respectively. Conclusive proof is provided that strong azimuthally symmetric magnetic fields with a strength of around 0.5 MG are created inside the channel, consistent with the generation of a collimated beam of relativistic electrons. The inferred electron beam characteristics may have implications for the cone-free fast-ignition scheme of inertial confinement fusion.

  6. Mathematical and numerical analysis of the resistive magnetohydrodynamics system with self-generated magnetic field terms

    International Nuclear Information System (INIS)

    Wolff, Marc

    2011-01-01

    This work is devoted to the construction of numerical methods that allow the accurate simulation of inertial confinement fusion (ICF) implosion processes by taking self-generated magnetic field terms into account. In the sequel, we first derive a two-temperature resistive magnetohydrodynamics model and describe the considered closure relations. The resulting system of equations is then split in several subsystems according to the nature of the underlying mathematical operator. Adequate numerical methods are then proposed for each of these subsystems. Particular attention is paid to the development of finite volume schemes for the hyperbolic operator which actually is the hydrodynamics or ideal magnetohydrodynamics system depending on whether magnetic fields are considered or not. More precisely, a new class of high-order accurate dimensionally split schemes for structured meshes is proposed using the Lagrange re-map formalism. One of these schemes' most innovative features is that they have been designed in order to take advantage of modern massively parallel computer architectures. This property can for example be illustrated by the dimensionally split approach or the use of artificial viscosity techniques and is practically highlighted by sequential performance and parallel efficiency figures. Hyperbolic schemes are then combined with finite volume methods for dealing with the thermal and resistive conduction operators and taking magnetic field generation into account. In order to study the characteristics and effects of self-generated magnetic field terms, simulation results are finally proposed with the complete two-temperature resistive magnetohydrodynamics model on a test problem that represents the state of an ICF capsule at the beginning of the deceleration phase. (author)

  7. Study of magnetic field expansion using a plasma generator for space radiation active protection

    International Nuclear Information System (INIS)

    Jia Xianghong; Jia Shaoxia; Wan Jun; Wang Shouguo; Xu Feng; Bai Yanqiang; Liu Hongtao; Jiang Rui; Ma Hongbo

    2013-01-01

    There are many active protecting methods including Electrostatic Fields, Confined Magnetic Field, Unconfined Magnetic Field and Plasma Shielding etc. for defending the high-energy solar particle events (SPE) and Galactic Cosmic Rays (GCR) in deep space exploration. The concept of using cold plasma to expand a magnetic field is the best one of all possible methods so far. The magnetic field expansion caused by plasma can improve its protective efficiency of space particles. One kind of plasma generator has been developed and installed into the cylindrical permanent magnet in the eccentric. A plasma stream is produced using a helical-shaped antenna driven by a radio-frequency (RF) power supply of 13.56 MHz, which exits from both sides of the magnet and makes the magnetic field expand on one side. The discharging belts phenomenon is similar to the Earth's radiation belt, but the mechanism has yet to be understood. A magnetic probe is used to measure the magnetic field expansion distributions, and the results indicate that the magnetic field intensity increases under higher increments of the discharge power. (authors)

  8. A cooling concept for improved field winding performance in large superconducting ac generators

    International Nuclear Information System (INIS)

    Laskaris, T.E.

    1977-01-01

    An analytical study of a flow circuit for large superconducting generator rotors is presented. The flow circuit provides regulation of the level of liquid in the rotor externally by adjusting the helium supply pressure. It also protects the vapour cooled structural members of the rotor from overcooling during transient periods of operation. Furthermore, it is capable of reducing the winding temperature below 4.2 K thereby enhancing the superconductor's performance. For example, a large generator rotor with NbTi superconducting field winding experiences approximately a 50% increase in its critical current density compared to that at 4.2 K. (author)

  9. Orbital dynamics in a storage ring with electrostatic bending

    International Nuclear Information System (INIS)

    Mane, S.R.

    2008-01-01

    A storage ring where electrostatic fields contribute to the bending and focusing of the orbital motion has some novel features because, unlike a magnetostatic field, an electrostatic field can change the kinetic energy of the particles. I present analytical formulas to calculate the linear focusing gradient, dispersion, momentum compaction and natural chromaticity for a storage ring with a radial electrostatic field. I solve the formulas explicitly for a weak focusing model.

  10. Development and Analysis of Volume Multi-Sphere Method Model Generation using Electric Field Fitting

    Science.gov (United States)

    Ingram, G. J.

    Electrostatic modeling of spacecraft has wide-reaching applications such as detumbling space debris in the Geosynchronous Earth Orbit regime before docking, servicing and tugging space debris to graveyard orbits, and Lorentz augmented orbits. The viability of electrostatic actuation control applications relies on faster-than-realtime characterization of the electrostatic interaction. The Volume Multi-Sphere Method (VMSM) seeks the optimal placement and radii of a small number of equipotential spheres to accurately model the electrostatic force and torque on a conducting space object. Current VMSM models tuned using force and torque comparisons with commercially available finite element software are subject to the modeled probe size and numerical errors of the software. This work first investigates fitting of VMSM models to Surface-MSM (SMSM) generated electrical field data, removing modeling dependence on probe geometry while significantly increasing performance and speed. A proposed electric field matching cost function is compared to a force and torque cost function, the inclusion of a self-capacitance constraint is explored and 4 degree-of-freedom VMSM models generated using electric field matching are investigated. The resulting E-field based VMSM development framework is illustrated on a box-shaped hub with a single solar panel, and convergence properties of select models are qualitatively analyzed. Despite the complex non-symmetric spacecraft geometry, elegantly simple 2-sphere VMSM solutions provide force and torque fits within a few percent.

  11. Study of synthetic ferrimagnet-synthetic antiferromagnet structures for magnetic sensor application

    Science.gov (United States)

    Guedes, A.; Mendes, M. J.; Freitas, P. P.; Martins, J. L.

    2006-04-01

    There has been a growing interest in using both synthetic ferrimagnet (SF) free and synthetic antiferromagnet (SAF) pinned layers for head and memory applications. In particular, for linear sensor applications, these structures lower the magnetostatic fields present at the free layer through the reduction of its effective thickness (teffSF). This allows higher sensitivity but at the expense of an increased offset field H0(Néel coupling field Hf+interlayer demagnetizing field HdSAF). In this work, results on a series of patterned 3×1 and 6×2 μm2 top-pinned SF-SAF spin valves are analyzed and compared with a three-dimensional micromagnetic simulation in order to clarify the role of the different ferromagnetic layers in the overall offset field and sensitivity. H0 varies as 1/teffSF[teffSF=(Mata-Mbtb)/MeffSF]. The magnetostatic field acting on the SF coming from the SAF (HdSAF) can act as a biasing field, partially counterbalancing the Néel coupling field (Hf) leading to a reduction of H0. In this work the offset field was reduced from an initial value of 25 Oe in a quasicompensated SAF to a value of -6 Oe, by unbalancing the SAF and consequently increasing its effective moment (teffSF=15 A˚).

  12. Generation of a Magnetic Field by Dynamo Action in a Turbulent Flow of Liquid Sodium

    International Nuclear Information System (INIS)

    Monchaux, R.; Chiffaudel, A.; Daviaud, F.; Dubrulle, B.; Gasquet, C.; Marie, L.; Ravelet, F.; Berhanu, M.; Fauve, S.; Mordant, N.; Petrelis, F.; Bourgoin, M.; Moulin, M.; Odier, Ph.; Pinton, J.-F.; Volk, R.

    2007-01-01

    We report the observation of dynamo action in the von Karman sodium experiment, i.e., the generation of a magnetic field by a strongly turbulent swirling flow of liquid sodium. Both mean and fluctuating parts of the field are studied. The dynamo threshold corresponds to a magnetic Reynolds number R m ∼30. A mean magnetic field of the order of 40 G is observed 30% above threshold at the flow lateral boundary. The rms fluctuations are larger than the corresponding mean value for two of the components. The scaling of the mean square magnetic field is compared to a prediction previously made for high Reynolds number flows

  13. Magnetotail equilibrium theory - The general three-dimensional solution

    Science.gov (United States)

    Birn, J.

    1987-01-01

    The general magnetostatic equilibrium problem for the geomagnetic tail is reduced to the solution of ordinary differential equations and ordinary integrals. The theory allows the integration of the self-consistent magnetotail equilibrium field from the knowledge of four functions of two space variables: the neutral sheet location, the total pressure, the magnetic field strength, and the z component of the magnetic field at the neutral sheet.

  14. Measurement of electromagnetic fields generated by air traffic control radar systems with spectrum analysers.

    Science.gov (United States)

    Barellini, A; Bogi, L; Licitra, G; Silvi, A M; Zari, A

    2009-12-01

    Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar.

  15. Measurement of electromagnetic fields generated by air traffic control radar systems with spectrum analysers

    International Nuclear Information System (INIS)

    Barellini, A.; Bogi, L.; Licitra, G.; Silvi, A. M.; Zari, A.

    2009-01-01

    Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar. (authors)

  16. Generation of static magnetic fields by a test charge in a plasma with anisotropic electron temperature

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, Yu.M.; Bychenkov, V.Yu.; Frolov, A.A. (AN SSSR, Moscow. Fizicheskij Inst.)

    Structure of electomagnetic field generated with a charge in a plasma with anisotropic electron temperature has been studied. Unlike a hydrodynamical approach to study on the magnetic field qeneration with a test charge a kinetic theory describing spatial distribution of both magnetic and electrostatic components of charge field was constructed. Such theory results permit to investigate the charge field structure both at distances larger than length of free electron path and not exceeding it. The developed theory can serve as the basis for development of new methods for anisotropic plasma diagnostics.

  17. Boundary element numerical method for the electric field generated by oblique multi-needle electrodes

    Institute of Scientific and Technical Information of China (English)

    LIU FuPing; WANG AnLing; WANG AnXuan; CAO YueZu; CHEN Qiang; YANG ChangChun

    2009-01-01

    According to the electric potential of oblique multi-needle electrodes (OMNE) in biological tissue, the discrete equations based on the indetermination linear current density were established by the boundary element integral equations (BEIE). The non-uniform distribution of the current flowing from multi-needle electrodes to conductive biological tissues was imaged by solving a set of linear equa-tions. Then, the electric field and potential generated by OMNE in biological tissues at any point may be determined through the boundary element method (BEM). The time of program running and stability of computing method are examined by an example. It demonstrates that the algorithm possesses a quick speed and the steady computed results. It means that this method has an important referenced significance for computing the field and the potential generated by OMNE in bio-tissue, which is a fast, effective and accurate computing method.

  18. Numerical Analysis of Flow Field in Generator End-Winding Region

    Directory of Open Access Journals (Sweden)

    Wei Tong

    2008-01-01

    Full Text Available Cooling in an end-winding region of a high-powered, large-sized generator still remains a challenge today because of a number of factors: a larger number of parts/components with irregular geometries, complexity in cooling flow paths, flow splitting and mixing, and interactions between rotor-induced rotating flows and nonrotating flows from stationary sections. One of the key challenges is to model cooling flows passing through armature bars, which are made up of bundles of strands of insulated copper wires and are bent oppositely to cross each other. This work succeeded in modeling a complex generator end-winding region with great efforts to simplify the model by treating the armature bar region as a porous medium. The flow and pressure fields at the end-winding region were investigated numerically using an axial symmetric computational fluid dynamics (CFD model. Based on the analysis, the cooling flow rate at each flow branch (rotor-stator gap, rotor subslot, outside space block, and small ventilation holes to the heat exchanger was determined, and the high-pressure gradient zones were identified. The CFD results have been successfully used to optimize the flow path configuration for improving the generator operation performance, and the control of the cooling flow, as well as minimizing windage losses and flow-introduced noises.

  19. Topology optimization based design of unilateral NMR for generating a remote homogeneous field.

    Science.gov (United States)

    Wang, Qi; Gao, Renjing; Liu, Shutian

    2017-06-01

    This paper presents a topology optimization based design method for the design of unilateral nuclear magnetic resonance (NMR), with which a remote homogeneous field can be obtained. The topology optimization is actualized by seeking out the optimal layout of ferromagnetic materials within a given design domain. The design objective is defined as generating a sensitive magnetic field with optimal homogeneity and maximal field strength within a required region of interest (ROI). The sensitivity of the objective function with respect to the design variables is derived and the method for solving the optimization problem is presented. A design example is provided to illustrate the utility of the design method, specifically the ability to improve the quality of the magnetic field over the required ROI by determining the optimal structural topology for the ferromagnetic poles. Both in simulations and experiments, the sensitive region of the magnetic field achieves about 2 times larger than that of the reference design, validating validates the feasibility of the design method. Copyright © 2017. Published by Elsevier Inc.

  20. Symmetry and electromagnetism

    International Nuclear Information System (INIS)

    Fuentes Cobas, L.E.; Font Hernandez, R.

    1993-01-01

    An analytical treatment of electrostatic and magnetostatic field symmetry, as a function of charge and current distribution symmetry, is proposed. The Newmann Principle, related to the cause-effect symmetry relation, is presented and applied to the characterization of simple configurations. (Author) 5 refs

  1. Symmetry and electromagnetism. Simetria y electromagnetismo

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes Cobas, L.E.; Font Hernandez, R.

    1993-01-01

    An analytical treatment of electrostatic and magnetostatic field symmetry, as a function of charge and current distribution symmetry, is proposed. The Newmann Principle, related to the cause-effect symmetry relation, is presented and applied to the characterization of simple configurations. (Author) 5 refs.

  2. Nine-channel mid-power bipolar pulse generator based on a field programmable gate array

    Energy Technology Data Exchange (ETDEWEB)

    Haylock, Ben, E-mail: benjamin.haylock2@griffithuni.edu.au; Lenzini, Francesco; Kasture, Sachin; Fisher, Paul; Lobino, Mirko [Centre for Quantum Dynamics, Griffith University, Brisbane (Australia); Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane (Australia); Streed, Erik W. [Centre for Quantum Dynamics, Griffith University, Brisbane (Australia); Institute for Glycomics, Griffith University, Gold Coast (Australia)

    2016-05-15

    Many channel arbitrary pulse sequence generation is required for the electro-optic reconfiguration of optical waveguide networks in Lithium Niobate. Here we describe a scalable solution to the requirement for mid-power bipolar parallel outputs, based on pulse patterns generated by an externally clocked field programmable gate array. Positive and negative pulses can be generated at repetition rates up to 80 MHz with pulse width adjustable in increments of 1.6 ns across nine independent outputs. Each channel can provide 1.5 W of RF power and can be synchronised with the operation of other components in an optical network such as light sources and detectors through an external clock with adjustable delay.

  3. Magnetic field induced augmented thermal conduction phenomenon in magneto-nanocolloids

    International Nuclear Information System (INIS)

    Katiyar, Ajay; Dhar, Purbarun; Nandi, Tandra; Das, Sarit K.

    2016-01-01

    Magnetic field induced augmented thermal conductivity of magneto-nanocolloids involving nanoparticles, viz. Fe_2O_3, Fe_3O_4, NiO and Co_3O_4 dispersed in different base fluids have been reported. Experiments reveal the augmented thermal transport under external applied magnetic field. A maximum thermal conductivity enhancement ∼114% is attained at 7.0 vol% concentration and 0.1 T magnetic flux density for Fe_3O_4/EG magneto-nanocolloid. However, a maximum ∼82% thermal conductivity enhancement is observed for Fe_3O_4/kerosene magneto-nanocolloid for the same concentration but relatively at low magnetic flux density (∼0.06 T). Thereby, a strong effect of fluid as well as particle physical properties on the chain formation propensity, leading to enhanced conduction, in such systems is observed. Co_3O_4 nanoparticles show insignificant effect on the thermal conductivity enhancement of MNCs due to their minimal magnetic moment. A semi-empirical approach has been proposed to understand the mechanism and physics behind the thermal conductivity enhancement under external applied magnetic field, in tune with near field magnetostatic interactions as well as Neel relaxivity of the magnetic nanoparticles. Furthermore, the model is able to predict the phenomenon of enhanced thermal conductivity as a function of physical parameters and shows good agreement with the experimental observations. - Highlights: • Heat conduction in magneto-nanocolloids augments tremendously under magnetic field. • Oxide nanoparticles of Fe, Ni and Co dispersed in variant base fluids are used. • Enhancement in heat conduction is due to the formation of thermally conductive chains. • Proposed semi-empirical model shows good agreement with the experimental results.

  4. Inertial electro-magnetostatic plasma neutron sources

    International Nuclear Information System (INIS)

    Barnes, D.C.; Nebel, R.A.; Schauer, M.M.; Pickrel, M.M.

    1997-01-01

    Two types of systems are being studied experimentally as D-T plasma neutron sources. In both concepts, spherical convergence of either electrons or ions or both is used to produce a dense central focus within which D-T fusion reactions produce 14 MeV neutrons. One concept uses nonneutral plasma confinement principles in a Penning type trap. In this approach, combined electrostatic and magnetic fields provide a vacuum potential well within which electrons are confined and focused. A small (6 mm radius) spherical machine has demonstrated a focus of 30 microm radius, with a central density of up to 35 times the Brillouin density limit of a static trap. The resulting electron plasma of up to several 10 13 cm -3 provides a multi-kV electrostatic well for confining thermonuclear ions as a neutron source. The second concept (Inertial Electrostatic Confinement, or IEC) uses a high-transparence grid to form a global well for acceleration and confinement of ions. Such a system has demonstrated steady neutron output of 2 x 10 10 s -1 . The present experiment will scale this to >10 11 s -1 . Advanced designs based on each concept have been developed recently. In these proposed approaches, a uniform-density electron sphere forms an electrostatic well for ions. Ions so trapped may be focused by spherical convergence to produce a dense core. An alternative approach produces large amplitude spherical oscillations of a confined ion cloud by a small, resonant modulation of the background electrons. In both the advanced Penning trap approach and the advanced IEC approach, the electrons are magnetically insulated from a large (up to 100 kV) applied electrostatic field. The physics of these devices is discussed, experimental design details are given, present observations are analyzed theoretically, and the performance of future advanced systems are predicted

  5. Steam generator waterlancing at Darlington NGS (system development and field application)

    International Nuclear Information System (INIS)

    Seppala, D.; Malaugh, J.; Kiisel, E.; Kamler, F.

    1996-01-01

    From the initial steam generator (SG) inspections at Darlington Nuclear Generating Station (DNGS), the authors know that the sludge accumulations on the secondary side tubesheets have been minimal. DNGS is a fairly new station but the experience at the older Ontario Hydro plants have shown that significant accumulations will happen. A pro-active strategy has been adopted for maintaining SGs that will minimize corrosion product accumulation and the potential for component degradation. During the four year planned Unit maintenance outages, SGs will be inspected and waterlanced using a waterlance system designed and built by Babcock and Wilcox International. This automated state-of-the-art system also allows fully recorded inspections of the tubesheet/first half-lattice supports. Some of the key elements covered include results of the initial field application (May, 1995), system development and design, system qualification, cleaning performance, and lessons learned for future outages

  6. Characteristics of carrier-generated field-effect transistors with pentacene/vanadium pentoxide

    International Nuclear Information System (INIS)

    Minagawa, M.; Nakai, K.; Baba, A.; Shinbo, K.; Kato, K.; Kaneko, F.; Lee, C.

    2011-01-01

    In this paper, the driving mechanism of carrier-generated organic field-effect transistors (OFETs) with pentacene and vanadium pentoxide (V 2 O 5 ) layers is discussed. In this study, large on-currents were observed in an OFET with a 35-nm V 2 O 5 layer. Devices with aluminum (Al)/pentacene/V 2 O 5 /Al layer structures were also prepared. These devices exhibited a large current density in spite of their high carrier injection barriers between each layer and the Al electrodes. Moreover, new absorption bands corresponding to the radical cation absorption of pentacene were observed within the absorption spectrum of the pentacene and V 2 O 5 mixed layers. It was inferred that the charge transfer (CT) complexes that formed at the interface between the pentacene and V 2 O 5 layers were dissociated by the applied gate voltage and that the generated holes contributed to driving the OFETs.

  7. Four giga joule flywheel motor-generator for JT-60 toroidal field coil power supply system

    International Nuclear Information System (INIS)

    Matsukawa, T.; Kanke, M.; Shimada, R.; Yoshida, Y.; Yamashita, K.; Nakayama, T.

    1986-01-01

    A fusion test reactor often needs motor-generators as a power source in order to reduce disturbances to utility lines. The toroidal field coil power supply system of JT-60 also adopted a motor-generator for this purpose. The motor-generator started operation in April, 1985 at Japan Atomic Energy Research Institute together with the whole system. The motor-generator has several special features both electrically and mechanically. One electrical feature is that it is used as a pulse source of large current and power for periodic short-time duty. A mechanical feature is that a large flywheel is directly coupled to the motor-generator shaft and operated intermittently and at high speed. Therefore detailed investigations were carried out concerning constitution, characteristics as well as the coordination with the system performance. This paper describes the outlines of the flywheel motor-generator and discusses several topics

  8. Numerical simulations of the effect of an isotropic heat field on the entropy generation due to natural convection in a square cavity

    International Nuclear Information System (INIS)

    El-Maghlany, Wael M.; Saqr, Khalid M.; Teamah, Mohamed A.

    2014-01-01

    Highlights: • Entropy generation in laminar natural convection in square cavity numerically studied. • The cavity subjected to an isotropic heat field with different intensities. • Study ranges 10 3 ⩽ Ra ⩽ 10 5 , 0 ⩽ ϕ ⩽ 10 and Pr = 0.7. • Entropy generation drastically affected by the superposition of an isotropic heat field. • CFD based empirical were derived for entropy generation as a function of Ra and φ. - Abstract: Entropy generation associated with laminar natural convection in an infinite square cavity, subjected to an isotropic heat field with different intensities; was numerically investigated for different values of Rayleigh number. The numerical work was carried out using, an in-house CFD code written in FORTRAN, which discretizes non-dimensional forms of the governing equations using the finite volume method and solves the resulting system of equations using Gauss-Seidal method utilizing a TDMA algorithm. Proper code validation was undertaken in order to establish the entropy generation calculations. It was found that the increase in the isotropic heat field intensity resulted in a corresponding exponential increase of the entropy augmentation number, and promoted high values of Bejan number within the flow. The entropy generation due to heat transfer was approximately one order of magnitude higher than the entropy generation due to fluid friction. The spatial uniformity of the Bejan number was more sensitive to the change in Rayleigh number than to the heat field intensity. The thermodynamic penalty of the isotropic heat field is shown by means of global integrals of the entropy source terms over the entire flow domain

  9. Probing the longitudinal electric field of Bessel beams using second-harmonic generation from nano-objects

    Science.gov (United States)

    Turquet, Léo; Kakko, Joona-Pekko; Karvonen, Lasse; Jiang, Hua; Kauppinen, Esko; Lipsanen, Harri; Kauranen, Martti; Bautista, Godofredo

    2017-08-01

    Non-diffractive Bessel beams are receiving significant interest in optical microscopy due to their remarkably large depth of field. For example, studies have shown the superiority of Bessel beams over Gaussian beams for volumetric imaging of three-dimensionally thick or extended samples. However, the vectorial aspects of the focal fields of Bessel beams are generally obscured when traditional methods are used to characterize their three-dimensional point-spread function in space, which contains contributions from all optical field components. Here, we show experimentally the three-dimensional spatial distribution and enhanced depth of field of the longitudinal electric field components of a focused linearly-polarized Bessel beam. This is done through second-harmonic generation from well-defined vertically-aligned gallium-arsenide nanowires, whose second-order response is primarily driven by the longitudinal fields at the beam focus.

  10. State diagram of spin-torque oscillator with perpendicular reference layer and planar field generation layer

    Directory of Open Access Journals (Sweden)

    Mengwei Zhang

    2015-06-01

    Full Text Available The state diagram of spin-torque oscillator (STO with perpendicular reference layer (REF and planar field generation layer (FGL was studied by a macrospin model and a micro-magnetic model. The state diagrams are calculated versus the current density, external field and external field angle. It was found that the oscillation in FGL could be controlled by current density combined with external field so as to achieve a wide frequency range. An optimized current and applied field region was given for microwave assisted magnetic recording (MAMR, considering both frequency and output field oscillation amplitude. The results of the macro-spin model were compared with those of the micro-magnetic model. The macro-spin model was qualitatively different from micro-magnetics and experimental results when the current density was large and the FGL was non-uniform.

  11. Field-controllable second harmonic generation at a graphene oxide heterointerface

    Science.gov (United States)

    Fernandes, Gustavo E.; Kim, Jin Ho; Osgood, Richard, III; Xu, Jimmy

    2018-03-01

    We report on the voltage-dependent SHG signal obtained in a reduced-graphene oxide (rGO)/p-type Si heterointerface. A simple qualitative model considering the interaction between the heterointerface depletion region potential and the naturally occurring surface dipole layer on the rGO is introduced to account for the characteristics of the SHG signal, specifically, a minimum point at ≈ -3 V bias on the rGO side of the interface. This feature-rich system has the potential to provide field-controllable surface-dipole moments and second-order nonlinearities, which may find applications in tunable nonlinear photonic devices for realizing second-harmonic generation and optical-rectification.

  12. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets

    Science.gov (United States)

    Nishikawa, K.-I.; Hardee, P.; Hededal, C.; Mizuno, Yosuke; Fishman, G. Jerry; Hartmann, D. H.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), supernova remnants, and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that particle acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration' is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different spectral properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations of relativistic jets and try to make a connection with observations.

  13. Improving heat generation of magnetic nanoparticles by pre-orientation of particles in a static three tesla magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Mathias M., E-mail: Mathias.Beck@tum.de [Institute for Machine Tools and Industrial Management, Technical University of Munich, Boltzmannstr. 15, 85748 Garching (Germany); Lammel, Christian [Institute for Machine Tools and Industrial Management, Technical University of Munich, Boltzmannstr. 15, 85748 Garching (Germany); Gleich, Bernhard [Institute of Medical Engineering, Technical University of Munich, Boltzmannstr. 11, 85748 Garching (Germany)

    2017-04-01

    Inductive heating of electrically insulating materials like fiberglass reinforced thermoplastics (FRTP) without susceptors is not possible. However, due to their low thermal conductivity a volumetric heat generation method is advisable to reach short heating times to melt this material for reshaping. This can be done with magnetic nanoparticles as susceptors within the thermoplastic of the FRTP using Néel relaxation. During the heating process the particle's magnetic moment rotates with the field while the particle itself is fixed within the thermoplastic. Therefore the heat dissipation of each particle depends on its orientation within the field. To achieve the maximum heat generation of the particles we pre-oriented the particles within a plastic at the best angle to the applied AC field for induction. To do this, five mass percent nanoparticles were dispersed in an epoxy resin, which was then hardened at room temperature in a static three Tesla magnetic field. After its solidification the heating behavior of the sample was compared to a reference sample, which was hardened without a field. The oriented particles showed an increased heating rate when oriented parallel to the applied AC field. The absorption rate was 3.3 times as high as the undirected reference sample. When the alternating electromagnetic field was perpendicular to the oriented particles, the specific absorption rate was similar to that of the reference sample. We compare this result with theory and with calculations from literature, and conduct a numerical simulation. - Highlights: • Magnetic nanoparticles are aligned using a static three tesla magnetic field. • Inductive heating depends on the particles pre-orientation in a solid matrix. • Alignment increases the heat generation significantly.

  14. Highly versatile atomic micro traps generated by multifrequency magnetic field modulation

    International Nuclear Information System (INIS)

    Courteille, Ph W; Deh, B; Fortagh, J; Guenther, A; Kraft, S; Marzok, C; Slama, S; Zimmermann, C

    2006-01-01

    We propose the realization of custom-designed adiabatic potentials for cold atoms based on multimode radio frequency radiation in combination with static inhomogeneous magnetic fields. For example, the use of radio frequency combs gives rise to periodic potentials acting as gratings for cold atoms. In strong magnetic field gradients, the lattice constant can be well below 1 μm. By changing the frequencies of the comb in time the gratings can easily be propagated in space, which may prove useful for Bragg scattering atomic matter waves. Furthermore, almost arbitrarily shaped potentials are possible such as disordered potentials on a scale of several 100 nm or lattices with a spatially varying lattice constant. The potentials can be made state selective and, in the case of atomic mixtures, also species selective. This opens new perspectives for generating tailored quantum systems based on ultracold single atoms or degenerate atomic and molecular quantum gases

  15. The stress field and transient stress generation at shallow depths in the Canadian shield

    International Nuclear Information System (INIS)

    Hasegawa, H.S.

    1984-01-01

    A prominent feature of the stress field in eastern Canada is the high horizontal stress at shallow depths. Possible causative factors to this shallow stress field are remanent stresses from a previous tectonic orogeny, plate tectonic stresses and glacial-related stresses (glacial drag and flexual stress). The inherent difficulty in differentiating residual from current stress is one of the reasons why the relative contributions to the stress field from the phenomena described above are not properly understood. Maximum stress-strain changes an underground vault is likely to encounter from natural phenomena should occur when the periphery of the advancing or retreating glacier is near the vault. Theoretical calculations indicate that lithospheric flexure, differential postglacial uplift and possibly glacial drag may be able to generate significant horizontal stresses around a vault. In order to calculate the earthquake potential of these induced stress changes, the ambient tectonic stress field should also be included and a suitable failure criterion (e.g. Coulomb-Mohr) used. For earthquakes to generate appreciable stress-strain concentrations near a vault; the seismic signal must contain appreciable energy at appropriate frequencies (wavelengths comparable to vault dimensions) and be of appreciable duration; the particle velocity must be high (> 10 cm/s), induced strain is a function of particle velocity; and, the hypocentre must be less than half a fault length from the vault for residual deformation (strain and tilt) to be significant. The most severe case is when the causative fault intersects the vault

  16. Second Harmonic Generation characterization of SOI wafers: Impact of layer thickness and interface electric field

    Science.gov (United States)

    Damianos, D.; Vitrant, G.; Lei, M.; Changala, J.; Kaminski-Cachopo, A.; Blanc-Pelissier, D.; Cristoloveanu, S.; Ionica, I.

    2018-05-01

    In this work, we investigate Second Harmonic Generation (SHG) as a non-destructive characterization method for Silicon-On-Insulator (SOI) materials. For thick SOI stacks, the SHG signal is related to the thickness variations of the different layers. However, in thin SOI films, the comparison between measurements and optical modeling suggests a supplementary SHG contribution attributed to the electric fields at the SiO2/Si interfaces. The impact of the electric field at each interface of the SOI on the SHG is assessed. The SHG technique can be used to evaluate interfacial electric fields and consequently interface charge density in SOI materials.

  17. Simple method for the generation of multiple homogeneous field volumes inside the bore of superconducting magnets.

    Science.gov (United States)

    Chou, Ching-Yu; Ferrage, Fabien; Aubert, Guy; Sakellariou, Dimitris

    2015-07-17

    Standard Magnetic Resonance magnets produce a single homogeneous field volume, where the analysis is performed. Nonetheless, several modern applications could benefit from the generation of multiple homogeneous field volumes along the axis and inside the bore of the magnet. In this communication, we propose a straightforward method using a combination of ring structures of permanent magnets in order to cancel the gradient of the stray field in a series of distinct volumes. These concepts were demonstrated numerically on an experimentally measured magnetic field profile. We discuss advantages and limitations of our method and present the key steps required for an experimental validation.

  18. Vortex precession in thin elliptical ferromagnetic nanodisks

    Energy Technology Data Exchange (ETDEWEB)

    Zaspel, C.E., E-mail: craig.zaspel@umwestern.edu

    2017-07-01

    Highlights: • A general form for the magnetostatic energy is calculated for the vortex state in a ferromagnetic ellipse. • The ellipse magnetostatic energy is minimized by conformal mapping the circular disk onto the ellipse. • The gyrotropic precession frequency is obtained in general for a range of ellipticities. - Abstract: The magnetostatic energy is calculated for a magnetic vortex in a noncircular elliptical nanodisk. It is well-known that the energy of a vortex in the circular disk is minimized though an ansatz that eliminates the magnetostatic charge at the disk edge. Beginning with this ansatz for the circular disk, a conformal mapping of a circle interior onto the interior of an ellipse results in the magnetization of the elliptical disk. This magnetization in the interior of an ellipse also has no magnetostatic charge at the disk edge also minimizing the magnetostatic energy. As expected the energy has a quadratic dependence on the displacement of the vortex core from the ellipse center, but reflecting the lower symmetry of the ellipse. Through numerical integration of the magnetostatic integral a general expression for the energy is obtained for ellipticity values from 1.0 to about 0.3. Finally a general expression for the gyrotropic frequency as described by the Thiele equation is obtained.

  19. Analysis of the Magnetic Field Effect on Entropy Generation at Thermosolutal Convection in a Square Cavity

    Directory of Open Access Journals (Sweden)

    Ammar Ben Brahim

    2011-05-01

    Full Text Available Thermosolutal convection in a square cavity filled with air and submitted to an inclined magnetic field is investigated numerically. The cavity is heated and cooled along the active walls with a mass gradient whereas the two other walls of the cavity are adiabatic and insulated. Entropy generation due to heat and mass transfer, fluid friction and magnetic effect has been determined in transient state for laminar flow by solving numerically the continuity, momentum energy and mass balance equations, using a Control Volume Finite—Element Method. The structure of the studied flows depends on four dimensionless parameters which are the Grashof number, the buoyancy ratio, the Hartman number and the inclination angle. The results show that the magnetic field parameter has a retarding effect on the flow in the cavity and this lead to a decrease of entropy generation, Temperature and concentration decrease with increasing value of the magnetic field parameter.

  20. Modeling and analysis of solar wind generated contributions to the near-Earth magnetic field

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Moretto, T.; Rastatter, L.

    2006-01-01

    Solar wind generated magnetic disturbances are currently one of the major obstacles for improving the accuracy in the determination of the magnetic field due to sources internal to the Earth. In the present study a global MHD model of solar wind magnetosphere interaction is used to obtain...... a physically consistent, divergence-free model of ionospheric, field-aligned and magnetospheric currents in a realistic magnetospheric geometry. The magnetic field near the Earth due to these currents is analyzed by estimating and comparing the contributions from the various parts of the system, with the aim...... of identifying the most important aspects of the solar wind disturbances in an internal field modeling context. The contribution from the distant magnetospheric currents is found to consist of two, mainly opposing, contributions from respectively the dayside magnetopause currents and the cross-tail current...

  1. Generation of arbitrary vector fields based on a pair of orthogonal elliptically polarized base vectors.

    Science.gov (United States)

    Xu, Danfeng; Gu, Bing; Rui, Guanghao; Zhan, Qiwen; Cui, Yiping

    2016-02-22

    We present an arbitrary vector field with hybrid polarization based on the combination of a pair of orthogonal elliptically polarized base vectors on the Poincaré sphere. It is shown that the created vector field is only dependent on the latitude angle 2χ but is independent on the longitude angle 2ψ on the Poincaré sphere. By adjusting the latitude angle 2χ, which is related to two identical waveplates in a common path interferometric arrangement, one could obtain arbitrary type of vector fields. Experimentally, we demonstrate the generation of such kind of vector fields and confirm the distribution of state of polarization by the measurement of Stokes parameters. Besides, we investigate the tight focusing properties of these vector fields. It is found that the additional degree of freedom 2χ provided by arbitrary vector field with hybrid polarization allows one to control the spatial structure of polarization and to engineer the focusing field.

  2. Updated Army Cook Staffing Model to Reflect Workloads Generated by Current Field Feeding Operations, Group Rations, and Kitchens

    National Research Council Canada - National Science Library

    Kirejczyk, Harry J

    2006-01-01

    ...: the Unitized Group Ration-A (UGR-A) and the Unitized Group Ration-Heat/Serve (UGR-H/S). These fieldings were designed to increase the frequency and quality of group hot meals and reduce the cook workloads generated by field feeding operations...

  3. In-line production of a bi-circular field for generation of helically polarized high-order harmonics

    Energy Technology Data Exchange (ETDEWEB)

    Kfir, Ofer, E-mail: ofertx@technion.ac.il, E-mail: oren@si.technion.ac.il; Bordo, Eliyahu; Ilan Haham, Gil; Lahav, Oren; Cohen, Oren, E-mail: ofertx@technion.ac.il, E-mail: oren@si.technion.ac.il [Solid State Institute and Physics Department, Technion, Haifa 32000 (Israel); Fleischer, Avner [Solid State Institute and Physics Department, Technion, Haifa 32000 (Israel); Department of Physics and Optical Engineering, Ort Braude College, Karmiel 21982 (Israel)

    2016-05-23

    The recent demonstration of bright circularly polarized high-order harmonics of a bi-circular pump field gave rise to new opportunities in ultrafast chiral science. In previous works, the required nontrivial bi-circular pump field was produced using a relatively complicated and sensitive Mach-Zehnder-like interferometer. We propose a compact and stable in-line apparatus for converting a quasi-monochromatic linearly polarized ultrashort driving laser field into a bi-circular field and employ it for generation of helically polarized high-harmonics. Furthermore, utilizing the apparatus for a spectroscopic spin-mixing measurement, we identify the photon spins of the bi-circular weak component field that are annihilated during the high harmonics process.

  4. High-efficiency and flexible generation of vector vortex optical fields by a reflective phase-only spatial light modulator.

    Science.gov (United States)

    Cai, Meng-Qiang; Wang, Zhou-Xiang; Liang, Juan; Wang, Yan-Kun; Gao, Xu-Zhen; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2017-08-01

    The scheme for generating vector optical fields should have not only high efficiency but also flexibility for satisfying the requirements of various applications. However, in general, high efficiency and flexibility are not compatible. Here we present and experimentally demonstrate a solution to directly, flexibly, and efficiently generate vector vortex optical fields (VVOFs) with a reflective phase-only liquid crystal spatial light modulator (LC-SLM) based on optical birefringence of liquid crystal molecules. To generate the VVOFs, this approach needs in principle only a half-wave plate, an LC-SLM, and a quarter-wave plate. This approach has some advantages, including a simple experimental setup, good flexibility, and high efficiency, making the approach very promising in some applications when higher power is need. This approach has a generation efficiency of 44.0%, which is much higher than the 1.1% of the common path interferometric approach.

  5. Type test of Class 1E electric cables, field splices, and connections for nuclear power generating stations - 1975

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    This Standard provides direction for establishing type tests which may be used in qualifying Class 1E electric cables, field splices, and other connections for service in nuclear power generating stations. General guidelines for qualifications are given in IEEE Std 323-1974, Standard for Qualifying Class 1E Electric Equipment for Nuclear Power Generating Stations. Categories of cables covered are those used for power control and instrumentation services. Though intended primarily to pertain to cable for field installation, this guide may also be used for the qualification of internal wiring of manufactured devices

  6. On identities of free finitely generated alternative algebras over a field of characteristic 3

    International Nuclear Information System (INIS)

    Pchelintsev, S V

    2001-01-01

    In 1981 Filippov solved in the affirmative Shestakov's problem on the strictness of the inclusions in the chains of varieties generated by free alternative and Mal'cev algebras of finite rank over a field of characteristic distinct from 2 and 3. In the present paper an analogous result is proved for alternative algebras over a field of characteristic 3. The proof is based on the construction of three families of identities that hold on the algebras of the corresponding rank. A disproof of the identities on algebras of larger rank is carried out with the help of a prime commutative alternative algebra. It is also proved that in varieties of alternative algebras of finite basis rank over a field of characteristic 3 every soluble algebra is nilpotent

  7. Hideout of sea water impurities in steam generator tube deposits: laboratory and field studies

    International Nuclear Information System (INIS)

    Balakrishnan, P.V.; Turner, C.W.; Thompson, R.; Sawochka, S.

    1996-01-01

    Sea water impurities hide out within thin (∼10 μm) deposits on steam generator tubes, as demonstrated by both laboratory studies using segments of fouled steam generator tubes pulled in 1992 from Crystal River-3 nuclear power station and field hideout return studies performed during recent plant shutdowns. Laboratory tests performed at 279 o C (534 o F) and heat fluxes ranging from 35 to 114 kW/m 2 (11,100 - 36,150 Btu/h.ft 2 ), conditions typical of the lower tubesheet to the first support plate region of a once-through steam generator, showed that impurity hideout can occur in thin free-span tube deposits. The extent of hideout increased with increasing heat flux. Soluble species, such as sodium and chloride ions, returned promptly to the bulk water from the deposits when the heat flux was turned off, whereas less soluble species, such as calcium sulfate and magnesium hydroxide, returned more slowly. Recent field hideout return studies performed at Crystal River-3 where the water level in the steam generators was maintained below the first tube support plate during the shutdown, thus wetting only the thin deposits in the free span and the small sludge pile, corroborate the laboratory findings, showing that hideout does indeed occur in the free-span regions of the tubes. These findings suggest that hideout within tube deposits has to be accounted for in the calculation of crevice chemistry from hideout return studies and in controlling the bulk chemistry using the molar ratio criterion. (author). 3 refs., 4 tabs., 3 figs

  8. Field Robotics in Sports: Automatic Generation of guidance Lines for Automatic Grass Cutting, Striping and Pitch Marking of Football Playing Fields

    Directory of Open Access Journals (Sweden)

    Ole Green

    2011-03-01

    Full Text Available Progress is constantly being made and new applications are constantly coming out in the area of field robotics. In this paper, a promising application of field robotics in football playing fields is introduced. An algorithmic approach for generating the way points required for the guidance of a GPS-based field robotic through a football playing field to automatically carry out periodical tasks such as cutting the grass field, pitch and line marking illustrations and lawn striping is represented. The manual operation of these tasks requires very skilful personnel able to work for long hours with very high concentration for the football yard to be compatible with standards of Federation Internationale de Football Association (FIFA. In the other side, a GPS-based guided vehicle or robot with three implements; grass mower, lawn stripping roller and track marking illustrator is capable of working 24 h a day, in most weather and in harsh soil conditions without loss of quality. The proposed approach for the automatic operation of football playing fields requires no or very limited human intervention and therefore it saves numerous working hours and free a worker to focus on other tasks. An economic feasibility study showed that the proposed method is economically superimposing the current manual practices.

  9. Demonstration of a vectorial optical field generator with adaptive close loop control.

    Science.gov (United States)

    Chen, Jian; Kong, Lingjiang; Zhan, Qiwen

    2017-12-01

    We experimentally demonstrate a vectorial optical field generator (VOF-Gen) with an adaptive close loop control. The close loop control capability is illustrated with the calibration of polarization modulation of the system. To calibrate the polarization ratio modulation, we generate 45° linearly polarized beam and make it propagate through a linear analyzer whose transmission axis is orthogonal to the incident beam. For the retardation calibration, circularly polarized beam is employed and a circular polarization analyzer with the opposite chirality is placed in front of the CCD as the detector. In both cases, the close loop control automatically changes the value of the corresponding calibration parameters in the pre-set ranges to generate the phase patterns applied to the spatial light modulators and records the intensity distribution of the output beam by the CCD camera. The optimized calibration parameters are determined corresponding to the minimum total intensity in each case. Several typical kinds of vectorial optical beams are created with and without the obtained calibration parameters, and the full Stokes parameter measurements are carried out to quantitatively analyze the polarization distribution of the generated beams. The comparisons among these results clearly show that the obtained calibration parameters could remarkably improve the accuracy of the polarization modulation of the VOF-Gen, especially for generating elliptically polarized beam with large ellipticity, indicating the significance of the presented close loop in enhancing the performance of the VOF-Gen.

  10. Exterior field evaluation of new generation video motion detection systems

    International Nuclear Information System (INIS)

    Malone, T.P.

    1988-01-01

    Recent advancements in video motion detection (VMD) system design and technology have resulted in several new commercial VMD systems. Considerable interest in the new VMD systems has been generated because the systems are advertised to work effectively in exterior applications. Previous VMD systems, when used in an exterior environment, tended to have very high nuisance alarm rates due to weather conditions, wildlife activity and lighting variations. The new VMD systems advertise more advanced processing of the incoming video signal which is aimed at rejecting exterior environmental nuisance alarm sources while maintaining a high detection capability. This paper discusses the results of field testing, in an exterior environment, of two new VMD systems

  11. Mercury's thermal history and the generation of its magnetic field

    International Nuclear Information System (INIS)

    Schubert, G.; Ross, M.N.; Stevenson, D.J.; Spohn, T.

    1988-01-01

    Thermal history of Mercury's interior is examined using the model of Stevenson et al. (1983), extended to include the effects of tidal heating in Mercury's solid inner core. The implications of Mercury's thermal history for the source of the planet's magnetic field are discussed. It is shown that the major results of this model are similar to the results obtained with the Stevenson et al. model, except for the addition of inner-core tidal dissipation. It is concluded that the extended model properly characterizes Mercury's internal structure and thermal history, and that the criteria for dynamo generation are not properly satisfied. Alternative explanations, including the possibility of a weak thermoelectric dynamo, are examined

  12. Particle Acceleration, Magnetic Field Generation and Associated Emission in Collisionless Relativistic Jets

    Science.gov (United States)

    Nishikawa, K. I.; Ramirez-Ruiz, E.; Hardee, P.; Mizuno, Y.; Fishman. G. J.

    2007-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  13. Thermal electron acceleration by electric field spikes in the outer radiation belt: generation of field-aligned pitch angle distributions

    Science.gov (United States)

    Vasko, I.; Agapitov, O. V.; Mozer, F.; Artemyev, A.

    2015-12-01

    Van Allen Probes observations in the outer radiation belt have demonstrated an abundance non-linear electrostatic stucture called Time Domain Structures (TDS). One of the type of TDS is electrostatic electron-acoustic double layers (DL). Observed DLs are frequently accompanied by field-aligned (bi-directional) pitch angle distributions (PAD) of electrons with energies from hundred eVs up to several keV (rarely up to tens of keV). We perform numerical simulations of the DL interaction with thermal electrons making use of the test particle approach. DL parameters assumed in the simulations are adopted from observations. We show that DLs accelerate thermal electrons parallel to the magnetic field via the electrostatic Fermi mechanism, i.e. due to reflections from DL potential humps. Due to this interaction some fraction of electrons is scattered into the loss cone. The electron energy gain is larger for larger DL scalar potential amplitudes and higher propagation velocities. In addition to the Fermi mechanism electrons can be trapped by DLs in their generation region and accelerated due to transport to higher latitudes. Both mechanisms result in formation of field-aligned PADs for electrons with energies comparable to those found in observations. The Fermi mechanism provides field-aligned PADs for <1 keV electrons, while the trapping mechanism extends field-aligned PADs to higher energy electrons.

  14. Numerical analysis of stress fields generated by quenching process

    Directory of Open Access Journals (Sweden)

    A. Bokota

    2011-04-01

    Full Text Available In work the presented numerical models of tool steel hardening processes take into account mechanical phenomena generated by thermalphenomena and phase transformations. In the model of mechanical phenomena, apart from thermal, plastic and structural strain, alsotransformations plasticity was taken into account. The stress and strain fields are obtained using the solution of the Finite Elements Method of the equilibrium equation in rate form. The thermophysical constants occurring in constitutive relation depend on temperature and phase composite. For determination of plastic strain the Huber-Misses condition with isotropic strengthening was applied whereas fordetermination of transformation plasticity a modified Leblond model was used. In order to evaluate the quality and usefulness of thepresented models a numerical analysis of stresses and strains associated hardening process of a fang lathe of cone shaped made of tool steel was carried out.

  15. Electric field detection of coherent synchrotron radiation in a storage ring generated using laser bunch slicing

    International Nuclear Information System (INIS)

    Katayama, I.; Shimosato, H.; Bito, M.; Furusawa, K.; Adachi, M.; Zen, H.; Kimura, S.; Katoh, M.; Shimada, M.; Yamamoto, N.; Hosaka, M.; Ashida, M.

    2012-01-01

    The electric field of coherent synchrotron radiation (CSR) generated by laser bunch slicing in a storage ring has been detected by an electro-optic sampling method. The gate pulses for sampling are sent through a large-mode-area photonic-crystal fiber. The observed electric field profile of the CSR is in good agreement with the spectrum of the CSR observed using Fourier transform far-infrared spectrometry, indicating good phase stability in the CSR. The longitudinal density profiles of electrons modulated by laser pulses were evaluated from the electric field profile.

  16. Field Assessment of Yeast- and Oxalic Acid-generated Carbon Dioxide for Mosquito Surveillance

    Science.gov (United States)

    2014-12-01

    SentinelTM, Centers for Disease Control and Prevention light trap, sugar- fermenting yeast, electrolyzed oxalic acid INTRODUCTION Successful vector-borne...and Eisen 2008). Population data from trap surveil- lance provide key information for the develop- ment of disease risk assessment models (Diuk- Wasser...generated by a fermentation chamber, in which yeast metabolized sucrose. This source had been shown to attract various mosquito species in field and

  17. Infrared Testing of the Wide-field Infrared Survey Telescope Grism Using Computer Generated Holograms

    Science.gov (United States)

    Dominguez, Margaret Z.; Content, David A.; Gong, Qian; Griesmann, Ulf; Hagopian, John G.; Marx, Catherine T; Whipple, Arthur L.

    2017-01-01

    Infrared Computer Generated Holograms (CGHs) were designed, manufactured and used to measure the performance of the grism (grating prism) prototype which includes testing Diffractive Optical Elements (DOE). The grism in the Wide Field Infrared Survey Telescope (WFIRST) will allow the surveying of a large section of the sky to find bright galaxies.

  18. Experimental and theoretical study of helical explosive electrical current generators with magnetic field compression

    International Nuclear Information System (INIS)

    Antoni, Bernard; Nazet, Christian.

    1975-07-01

    A generator of electrical energy in which magnetic field compression is achieved by a solid explosive is described. The magnetic flux losses have been calculated for generators of various configurations by the skin depth concept. Calculations take the Joule heating of conductors into account. In helical generators the magnetic flux losses are higher than those calculated by considering diffusion only. Additional losses approximately as important as diffusion losses have already been observed elsewhere on similar devices. Detailed calculations of the motion of the explosively driven inner conductor show that losses come from the jumps encountered by sliding contact moving along the helix. The jumps are caused by little geometrical defects and the consequence on losses is strongly dependent on current intensity. The jumps decrease when the pitch of helix increases. The jumps are detrimental to the efficient use of the explosive energy. With helical generators only 5% of the energy is transferred into magnetic energy [fr

  19. Controlled and spontaneous magnetic field generation in a gun-driven spheromak

    International Nuclear Information System (INIS)

    Woodruff, S.; Cohen, B.I.; Hooper, E.B.; Mclean, H.S.; Stallard, B.W.; Hill, D.N.; Holcomb, C.T.; Romero-Talamas, C.; Wood, R.D.; Cone, G.; Sovinec, C.R.

    2005-01-01

    In the Sustained Spheromak Physics Experiment, SSPX [E. B. Hooper, D. Pearlstein, and D. D. Ryutov, Nucl. Fusion 39, 863 (1999)], progress has been made in understanding the mechanisms that generate fields by helicity injection. SSPX injects helicity (linked magnetic flux) from 1 m diameter magnetized coaxial electrodes into a flux-conserving confinement region. Control of magnetic fluctuations (δB/B∼1% on the midplane edge) yields T e profiles peaked at >200 eV. Trends indicate a limiting beta (β e ∼4%-6%), and so we have been motivated to increase T e by operating with stronger magnetic field. Two new operating modes are observed to increase the magnetic field: (A) Operation with constant current and spontaneous gun voltage fluctuations. In this case, the gun is operated continuously at the threshold for ejection of plasma from the gun: stored magnetic energy of the spheromak increases gradually with δB/B∼2% and large voltage fluctuations (δV∼1 kV), giving a 50% increase in current amplification, I tor /I gun . (B) Operation with controlled current pulses. In this case, spheromak magnetic energy increases in a stepwise fashion by pulsing the gun, giving the highest magnetic fields observed for SSPX (∼0.7 T along the geometric axis). By increasing the time between pulses, a quasisteady sustainment is produced (with periodic good confinement), comparing well with resistive magnetohydrodynamic simulations. In each case, the processes that transport the helicity into the spheromak are inductive and exhibit a scaling of field with current that exceeds those previously obtained. We use our newly found scaling to suggest how to achieve higher temperatures with a series of pulses

  20. Controlled and Spontaneous Magnetic Field Generation in a Gun-Driven Spheromak

    International Nuclear Information System (INIS)

    Woodruff, S; Cohen, B I; Hooper, E B; McLean, H S; Stallard, B W; Hill, D N; Holcomb, C T; Romero-Talamas, C; Wood, R D; Cone, G; Sovinec, C R

    2005-04-01

    In the Sustained Spheromak Physics Experiment, SSPX, progress has been made in understanding the mechanisms that generate fields by helicity injection. SSPX injects helicity (linked magnetic flux) from 1-m diameter magnetized coaxial electrodes into a flux-conserving confinement region. Control of magnetic fluctuations ((delta)B/B∼1% on the midplane edge) yields T e profiles peaked at > 200eV. Trends indicate a limiting beta (β e ∼ 4-6%), and so we have been motivated to increase T e by operating with stronger magnetic field. Two new operating modes are observed to increase the magnetic field: (A) Operation with constant current and spontaneous gun voltage fluctuations. In this case, the gun is operated continuously at the threshold for ejection of plasma from the gun: stored magnetic energy of the spheromak increases gradually with (delta)B/B ∼2% and large voltage fluctuations ((delta)V ∼ 1kV), giving a 50% increase in current amplification, I tor /I gun . (B) Operation with controlled current pulses. In this case, spheromak magnetic energy increases in a stepwise fashion by pulsing the gun, giving the highest magnetic fields observed for SSPX (∼0.7T along the geometric axis). By increasing the time between pulses, a quasi-steady sustainment is produced (with periodic good confinement), comparing well with resistive MHD simulations. In each case, the processes that transport the helicity into the spheromak are inductive and exhibit a scaling of field with current that exceeds those previously obtained. We use our newly found scaling to suggest how to achieve higher temperatures with a series of pulses

  1. Magnetic saturation in semi-analytical harmonic modeling for electric machine analysis

    NARCIS (Netherlands)

    Sprangers, R.L.J.; Paulides, J.J.H.; Gysen, B.L.J.; Lomonova, E.

    2016-01-01

    A semi-analytical method based on the harmonic modeling (HM) technique is presented for the analysis of the magneto-static field distribution in the slotted structure of rotating electric machines. In contrast to the existing literature, the proposed model does not require the assumption of infinite

  2. COMETS2: An advanced MATLAB toolbox for the numerical analysis of electric fields generated by transcranial direct current stimulation.

    Science.gov (United States)

    Lee, Chany; Jung, Young-Jin; Lee, Sang Jun; Im, Chang-Hwan

    2017-02-01

    Since there is no way to measure electric current generated by transcranial direct current stimulation (tDCS) inside the human head through in vivo experiments, numerical analysis based on the finite element method has been widely used to estimate the electric field inside the head. In 2013, we released a MATLAB toolbox named COMETS, which has been used by a number of groups and has helped researchers to gain insight into the electric field distribution during stimulation. The aim of this study was to develop an advanced MATLAB toolbox, named COMETS2, for the numerical analysis of the electric field generated by tDCS. COMETS2 can generate any sizes of rectangular pad electrodes on any positions on the scalp surface. To reduce the large computational burden when repeatedly testing multiple electrode locations and sizes, a new technique to decompose the global stiffness matrix was proposed. As examples of potential applications, we observed the effects of sizes and displacements of electrodes on the results of electric field analysis. The proposed mesh decomposition method significantly enhanced the overall computational efficiency. We implemented an automatic electrode modeler for the first time, and proposed a new technique to enhance the computational efficiency. In this paper, an efficient toolbox for tDCS analysis is introduced (freely available at http://www.cometstool.com). It is expected that COMETS2 will be a useful toolbox for researchers who want to benefit from the numerical analysis of electric fields generated by tDCS. Copyright © 2016. Published by Elsevier B.V.

  3. A model to generate beam profiles of the Varian Clinac 4 for three-dimensional dose calculation: open fields

    International Nuclear Information System (INIS)

    Lam, K.S.; Lam, W.C.

    1984-01-01

    For the Clinac 4, open field profiles measured in the principal plane have higher intensity ''horns'' than those in off-axis planes. The maximum deviation occurs at 1-cm depth, where in the worst case of large field sizes and off-axis distances the deviation can be as high as 16% in the region near the horns. A model is proposed to generate open field beam profiles in off-axis planes, based on measured profiles in the transverse principal plane and in the largest field size diagonal plane of the machine. Within the central 90% portion of the field, the maximum deviation of the generated profiles from the measured ones at the same off-axis distance varies from about 3% at 1-cm depth to about 2% at 13-cm depth and then increases to less than 5% at 25-cm depth, even for very large field sizes and off-axis distances. Very little additional computer time and data storage are required for this procedure. Using these profiles, the Milan and Bentley method can be extended to three-dimensional treatment planning with good accuracy

  4. Generation of longitudinally polarized terahertz pulses with field amplitudes exceeding 2 kV/cm

    Energy Technology Data Exchange (ETDEWEB)

    Cliffe, M. J., E-mail: Matthew.Cliffe@manchester.ac.uk; Rodak, A.; Graham, D. M. [School of Physics and Astronomy and the Photon Science Institute, The University of Manchester, Manchester M13 9PL (United Kingdom); The Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Warrington WA4 4AD (United Kingdom); Jamison, S. P. [The Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Warrington WA4 4AD (United Kingdom); Accelerator Science and Technology Centre, Science and Technology Facilities Council, Darebsury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD (United Kingdom)

    2014-11-10

    We demonstrate the generation of near-single cycle longitudinally polarized terahertz radiation using a large-area radially biased photoconductive antenna with a longitudinal field amplitude in excess of 2 kV/cm. The 76 mm diameter antenna was photo-excited by a 0.5 mJ amplified near-infrared femtosecond laser system and biased with a voltage of up to 100 kV applied over concentric electrodes. Amplitudes for both the transverse and longitudinal field components of the source were measured using a calibrated electro-optic detection scheme. By tightly focusing the radiation emitted from the photoconductive antenna, we obtained a maximum longitudinal field amplitude of 2.22 kV/cm with an applied bias field of 38.5 kV/cm.

  5. Generation of longitudinally polarized terahertz pulses with field amplitudes exceeding 2 kV/cm

    International Nuclear Information System (INIS)

    Cliffe, M. J.; Rodak, A.; Graham, D. M.; Jamison, S. P.

    2014-01-01

    We demonstrate the generation of near-single cycle longitudinally polarized terahertz radiation using a large-area radially biased photoconductive antenna with a longitudinal field amplitude in excess of 2 kV/cm. The 76 mm diameter antenna was photo-excited by a 0.5 mJ amplified near-infrared femtosecond laser system and biased with a voltage of up to 100 kV applied over concentric electrodes. Amplitudes for both the transverse and longitudinal field components of the source were measured using a calibrated electro-optic detection scheme. By tightly focusing the radiation emitted from the photoconductive antenna, we obtained a maximum longitudinal field amplitude of 2.22 kV/cm with an applied bias field of 38.5 kV/cm

  6. High-order sideband generation in a semiconductor quantum well driven by two orthogonal terahertz fields

    Science.gov (United States)

    Yan, Jie-Yun

    2017-08-01

    The theory of excitonic high-order sideband generation (HSG) in a semiconductor quantum well irradiated by two orthogonal terahertz (THz) fields (one frequency is an integral multiple of the other) is presented. The exact analytical solution to the sideband spectrum is given with the help of the generalized Bessel functions. As a special case, the HSG when the frequencies of these two THz fields are the same is derived and its dependence on the ellipticity of the THz field is discussed. The theory could explain the experiments, especially concerning the sensitive dependence of HSG signals on the ellipticity of the THz field: the signals are strong when the THz field has a linear polarization and totally vanish in case of a circular polarization. More interestingly, it was found that the strongest signal is not produced in the case of linear polarization for some sidebands. The theory is supported by numerical calculations.

  7. Magnetic field induced augmented thermal conduction phenomenon in magneto-nanocolloids

    Energy Technology Data Exchange (ETDEWEB)

    Katiyar, Ajay, E-mail: ajay_cim@rediffmail.com [Research and Innovation Centre (DRDO), Indian Institute of Technology Madras Research Park, Chennai 600 113 (India); Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India); Dhar, Purbarun, E-mail: purbarun@iitrpr.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India); Nandi, Tandra, E-mail: tandra_n@rediffmail.com [Defence Materials and Stores Research and Development Establishment (DRDO), G.T. Road, Kanpur 208 013 (India); Das, Sarit K., E-mail: skdas@iitrpr.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India)

    2016-12-01

    Magnetic field induced augmented thermal conductivity of magneto-nanocolloids involving nanoparticles, viz. Fe{sub 2}O{sub 3}, Fe{sub 3}O{sub 4}, NiO and Co{sub 3}O{sub 4} dispersed in different base fluids have been reported. Experiments reveal the augmented thermal transport under external applied magnetic field. A maximum thermal conductivity enhancement ∼114% is attained at 7.0 vol% concentration and 0.1 T magnetic flux density for Fe{sub 3}O{sub 4}/EG magneto-nanocolloid. However, a maximum ∼82% thermal conductivity enhancement is observed for Fe{sub 3}O{sub 4}/kerosene magneto-nanocolloid for the same concentration but relatively at low magnetic flux density (∼0.06 T). Thereby, a strong effect of fluid as well as particle physical properties on the chain formation propensity, leading to enhanced conduction, in such systems is observed. Co{sub 3}O{sub 4} nanoparticles show insignificant effect on the thermal conductivity enhancement of MNCs due to their minimal magnetic moment. A semi-empirical approach has been proposed to understand the mechanism and physics behind the thermal conductivity enhancement under external applied magnetic field, in tune with near field magnetostatic interactions as well as Neel relaxivity of the magnetic nanoparticles. Furthermore, the model is able to predict the phenomenon of enhanced thermal conductivity as a function of physical parameters and shows good agreement with the experimental observations. - Highlights: • Heat conduction in magneto-nanocolloids augments tremendously under magnetic field. • Oxide nanoparticles of Fe, Ni and Co dispersed in variant base fluids are used. • Enhancement in heat conduction is due to the formation of thermally conductive chains. • Proposed semi-empirical model shows good agreement with the experimental results.

  8. Investigation of Oriented Magnetic Field Effects on Entropy Generation in an Inclined Channel Filled with Ferrofluids

    Directory of Open Access Journals (Sweden)

    Elgiz Baskaya

    2017-07-01

    Full Text Available Dispersion of super-paramagnetic nanoparticles in nonmagnetic carrier fluids, known as ferrofluids, offers the advantages of tunable thermo-physical properties and eliminate the need for moving parts to induce flow. This study investigates ferrofluid flow characteristics in an inclined channel under inclined magnetic field and constant pressure gradient. The ferrofluid considered in this work is comprised of Cu particles as the nanoparticles and water as the base fluid. The governing differential equations including viscous dissipation are non-dimensionalised and discretized with Generalized Differential Quadrature Method. The resulting algebraic set of equations are solved via Newton-Raphson Method. The work done here contributes to the literature by searching the effects of magnetic field angle and channel inclination separately on the entropy generation of the ferrofluid filled inclined channel system in order to achieve best design parameter values so called entropy generation minimization is implemented. Furthermore, the effect of magnetic field, inclination angle of the channel and volume fraction of nanoparticles on velocity and temperature profiles are examined and represented by figures to give a thorough understanding of the system behavior.

  9. Neutron generators and their uses in research and applied fields. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    Asfour, F I [Division of Basic Nuclear Sciences, Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    The development of the low voltage neutron generators (NGS) has contributed considerably to the scope of nuclear research and the economical application of nuclear methods. Such simple instruments are used to produce 14 MeV and 3 MeV neutrons via the 3{sup H}(d,n)4{sup H}e and 2{sup H}(d,n)3{sup H}e reactions,respectively. The neutrons are very widely used and are inexpensive, easy to install and operate, therefore, in addition to nuclear physicists, there are a number of groups of scientists who use low voltage accelerators as tools for pure and applied research, service and education. The aim of this work is to review shortly those problems and methods of science and technology where the neutrons produced in the D-T and D-D reactions play the main role. A wide range of experiments with the detection of neutrons and charged particles is available including the study of shielding and the generator technology itself. N.G. are recently widely used for the determination of neutron data needed for fast reactor and thermonuclear devices. The principles and techniques of the possible uses of neutron generators in technology and research are summarized. The review is devoted to:- Give a short review of the most important operational characteristics of the neutron generators and the necessary instruments needed for application. Outline the main applications of the neutron generators in neutron activation and prompt radiation analysis in various fields(metallurgy, chemistry, biology, meteoritic and lunar studies, geology and mining, etc...) fast neutron therapy, and radiation effects. 2 figs.

  10. On radio frequency wave induced radial transport and wave helicity

    International Nuclear Information System (INIS)

    Petrzilka, V.

    1992-09-01

    Expressions for wave induced radial transport are derived allowing simple estimates. The transport is enhanced due to the presence of poloidal magnetostatic field and in the vicinity of the ion cyclotron resonance. The direction of the wave induced transport depends also on the wave polarization. (author) 19 refs

  11. Scott Correction for Large Atoms and Molecules in a Self-Generated Magnetic Field

    DEFF Research Database (Denmark)

    Erdös, Laszlo; Fournais, Søren; Solovej, Jan Philip

    2012-01-01

    constant. We show that, in the simultaneous limit $Z\\to\\infty$, $\\al\\to 0$ such that $\\kappa =Z\\al^2$ is fixed, the ground state energy of the system is given by a two term expansion $c_1Z^{7/3} + c_2(\\kappa) Z^2 + o(Z^2)$. The leading term is given by the non-magnetic Thomas-Fermi theory. Our result shows......We consider a large neutral molecule with total nuclear charge $Z$ in non-relativistic quantum mechanics with a self-generated classical electromagnetic field. To ensure stability, we assume that $Z\\al^2\\le \\kappa_0$ for a sufficiently small $\\kappa_0$, where $\\al$ denotes the fine structure...... that the magnetic field affects only the second (so-called Scott) term in the expansion....

  12. Leveraging extreme laser-driven magnetic fields for gamma-ray generation and pair production

    Science.gov (United States)

    Jansen, O.; Wang, T.; Stark, D. J.; d’Humières, E.; Toncian, T.; Arefiev, A. V.

    2018-05-01

    The ability of an intense laser pulse to propagate in a classically over-critical plasma through the phenomenon of relativistic transparency is shown to facilitate the generation of strong plasma magnetic fields. Particle-in-cell simulations demonstrate that these fields significantly enhance the radiation rates of the laser-irradiated electrons, and furthermore they collimate the emission so that a directed and dense beam of multi-MeV gamma-rays is achievable. This capability can be exploited for electron–positron pair production via the linear Breit–Wheeler process by colliding two such dense beams. Presented simulations show that more than 103 pairs can be produced in such a setup, and the directionality of the positrons can be controlled by the angle of incidence between the beams.

  13. The magnetic field gradients generation for magnetic resonance tomography; Generacja gradientow pola magnetyczbego dla tomografii MR

    Energy Technology Data Exchange (ETDEWEB)

    Jasinski, A.; Skorka, T.; Kwiecinski, S. [Institute of Nuclear Physics, Cracow (Poland)

    1994-12-31

    To obtain three-dimensional images in the computerized tomography a gradient of magnetic field should be generated. In this paper the analytical as well as computerized calculations of magnetic coils for such purposes are presented. 4 refs, 8 figs.

  14. Magnetic field generation by pointwise zero-helicity three-dimensional steady flow of an incompressible electrically conducting fluid

    Science.gov (United States)

    Rasskazov, Andrey; Chertovskih, Roman; Zheligovsky, Vladislav

    2018-04-01

    We introduce six families of three-dimensional space-periodic steady solenoidal flows, whose kinetic helicity density is zero at any point. Four families are analytically defined. Flows in four families have zero helicity spectrum. Sample flows from five families are used to demonstrate numerically that neither zero kinetic helicity density nor zero helicity spectrum prohibit generation of large-scale magnetic field by the two most prominent dynamo mechanisms: the magnetic α -effect and negative eddy diffusivity. Our computations also attest that such flows often generate small-scale field for sufficiently small magnetic molecular diffusivity. These findings indicate that kinetic helicity and helicity spectrum are not the quantities controlling the dynamo properties of a flow regardless of whether scale separation is present or not.

  15. Control of quantum paths of high-order harmonics and attosecond pulse generation in the presence of a static electric field

    International Nuclear Information System (INIS)

    Hong Weiyi; Lu Peixiang; Cao Wei; Lan Pengfei; Wang Xinlin

    2007-01-01

    The time-frequency properties of high-order harmonic generation in the presence of a static electric field are investigated. It is found that the quantum paths contributing to the harmonics can be controlled by adding a static electric field. The highest photon energies of harmonics emitted in the adjacent half-cycles of the laser field are modulated by the static electric field, and then an attosecond pulse train with one burst per optical cycle can be extracted. For the ratio between the laser and the static field of 0.39, the harmonic spectrum is extended to I p + 9.1U p , and the harmonics above I p + 0.7U p are emitted almost in phase. The phase-locked harmonics covered by a broad bandwidth are produced, and then a regular attosecond pulse train with a pulse duration of 80 as is generated

  16. Generator localization by current source density (CSD): Implications of volume conduction and field closure at intracranial and scalp resolutions

    Science.gov (United States)

    Tenke, Craig E.; Kayser, Jürgen

    2012-01-01

    The topographic ambiguity and reference-dependency that has plagued EEG/ERP research throughout its history are largely attributable to volume conduction, which may be concisely described by a vector form of Ohm’s Law. This biophysical relationship is common to popular algorithms that infer neuronal generators via inverse solutions. It may be further simplified as Poisson’s source equation, which identifies underlying current generators from estimates of the second spatial derivative of the field potential (Laplacian transformation). Intracranial current source density (CSD) studies have dissected the “cortical dipole” into intracortical sources and sinks, corresponding to physiologically-meaningful patterns of neuronal activity at a sublaminar resolution, much of which is locally cancelled (i.e., closed field). By virtue of the macroscopic scale of the scalp-recorded EEG, a surface Laplacian reflects the radial projections of these underlying currents, representing a unique, unambiguous measure of neuronal activity at scalp. Although the surface Laplacian requires minimal assumptions compared to complex, model-sensitive inverses, the resulting waveform topographies faithfully summarize and simplify essential constraints that must be placed on putative generators of a scalp potential topography, even if they arise from deep or partially-closed fields. CSD methods thereby provide a global empirical and biophysical context for generator localization, spanning scales from intracortical to scalp recordings. PMID:22796039

  17. The LIONS code (version 1.0)

    International Nuclear Information System (INIS)

    Bertrand, P.

    1993-01-01

    The new LIONS code (Lancement d'IONS or Ion Launching), a dynamical code implemented in the SPIRaL project for the CIME cyclotron studies, is presented. The various software involves a 3D magnetostatic code, 2D or 3D electrostatic codes for generation of realistic field maps, and several dynamical codes for studying the behaviour of the reference particle from the cyclotron center up to the ejection and for launching particles packets complying with given correlations. Its interactions with the other codes are described. The LIONS code, written in Fortran 90 is already used in studying the CIME cyclotron, from the center to the ejection. It is designed to be used, with minor modifications, in other contexts such as for the simulation of mass spectrometer facilities

  18. Investigation of Workplace-like Calibration Fields via a Deuterium-Tritium (D-T) Neutron Generator.

    Science.gov (United States)

    Mozhayev, Andrey V; Piper, Roman K; Rathbone, Bruce A; McDonald, Joseph C

    2017-04-01

    Radiation survey meters and personal dosimeters are typically calibrated in reference neutron fields based on conventional radionuclide sources, such as americium-beryllium (Am-Be) or californium-252 (Cf), either unmodified or heavy-water moderated. However, these calibration neutron fields differ significantly from the workplace fields in which most of these survey meters and dosimeters are being used. Although some detectors are designed to yield an approximately dose-equivalent response over a particular neutron energy range, the response of other detectors is highly dependent upon neutron energy. This, in turn, can result in significant over- or underestimation of the intensity of neutron radiation and/or personal dose equivalent determined in the work environment. The use of simulated workplace neutron calibration fields that more closely match those present at the workplace could improve the accuracy of worker, and workplace, neutron dose assessment. This work provides an overview of the neutron fields found around nuclear power reactors and interim spent fuel storage installations based on available data. The feasibility of producing workplace-like calibration fields in an existing calibration facility has been investigated via Monte Carlo simulations. Several moderating assembly configurations, paired with a neutron generator using the deuterium tritium (D-T) fusion reaction, were explored.

  19. Virtual cathode microwave generation using inhomogeneous magnetic field and wave guide wall configuration

    International Nuclear Information System (INIS)

    Thode, L.E.; Kwan, T.J.T.

    1984-01-01

    Microwave generation from a virtual cathode system is investigated using two-dimensional particle-in-cell simulation. In the typical virtual cathode geometry, the electron beam diode is separated from the output waveguide by a ground plane which is a thin foil or screen. By lowering the diode impedance sufficiently, it is possible to form a virtual cathode in the waveguide region a short distance from the ground plane. In this configuration two mechanisms can lead to microwave generation: 1) electron bunching due to reflection between the real and virtual cathode and 2) electron bunching due to virtual cathode oscillation. Both mechanisms are typically present, but it appears possible to make one mechanism dominant by adjusting the output waveguide radius. Although such a configuration might generate 1-10 GW output, electron deposition into the ground plane, waveguide wall, and output window causes breakdown. To overcome these disadvantages, the authors have investigated a configuration with no ground plane coupled with the use of an inhomogeneous external magnetic field and waveguide wall

  20. Integration of Research for an Exhaust Thermoelectric Generator and the Outer Flow Field of a Car

    Science.gov (United States)

    Jiang, T.; Su, C. Q.; Deng, Y. D.; Wang, Y. P.

    2017-05-01

    The exhaust thermoelectric generator (TEG) can generate electric power from a car engine's waste heat. It is important to maintain a sufficient temperature difference across the thermoelectric modules. The radiator is connected to the cooling units of the thermoelectric modules and used to take away the heat from the TEG system. This paper focuses on the research for the integration of a TEG radiator and the flow field of the car chassis, aiming to cool the radiator by the high speed flow around the chassis. What is more, the TEG radiator is designed as a spoiler to optimize the flow field around the car chassis and even reduce the aerodynamic drag. Concentrating on the flow pressure of the radiator and the aerodynamic drag force, a sedan model with eight different schemes of radiator configurations are studied by computational fluid dynamics simulation. Finally, the simulation results indicate that a reasonable radiator configuration can not only generate high flow pressure to improve the cooling performance, which provides a better support for the TEG system, but also acts as a spoiler to reduce the aerodynamic drag force.

  1. High heat generation ability in AC magnetic field for nano-sized magnetic Y3Fe5O12 powder prepared by bead milling

    International Nuclear Information System (INIS)

    Aono, Hiromichi; Ebara, Hiroki; Senba, Ryota; Naohara, Takashi; Maehara, Tsunehiro; Hirazawa, Hideyuki; Watanabe, Yuji

    2012-01-01

    Nano-sized magnetic Y 3 Fe 5 O 12 ferrite having a high heat generation ability in an AC magnetic field was prepared by bead milling. A commercial powder sample (non-milled sample) of ca. 2.9 μm in particle size did not show any temperature enhancement in the AC magnetic field. The heat generation ability in the AC magnetic field improved with a decrease in the average crystallite size for the bead-milled Y 3 Fe 5 O 12 ferrites. The highest heat ability in the AC magnetic field was for the fine Y 3 Fe 5 O 12 powder with a 15-nm crystallite size (the samples were milled for 4 h using 0.1 mmφ beads). The heat generation ability of the excessively milled Y 3 Fe 5 O 12 samples decreased. The main reason for the high heat generation property of the milled samples was ascribed to an increase in the Néel relaxation of the superparamagnetic material. The heat generation ability was not influenced by the concentration of the ferrite powder. For the samples milled for 4 h using 0.1 mmφ beads, the heat generation ability (W g −1 ) was estimated using a 3.58×10 −4 fH 2 frequency (f/kHz) and the magnetic field (H/kA m −1 ), which is the highest reported value of superparamagnetic materials. - Highlights: ► The nano-sized Y 3 Fe 5 O 12 powder prepared by bead-milling has the highest heat generation ability in an AC magnetic field. ► The heat generation properties are ascribed to an increase in the Néel relaxation of the superparamagnetic material. ► The heat ability (W g −1 ) can be estimated using 3.58×10 −4 fH 2 (f=kHz, H=kA m −1 ). ► This is an expectable material for use in a drug delivery system for the thermal coagulation therapy of cancer tumors.

  2. A device for regulating the field generated by a superconducting winding or the gradient of same

    International Nuclear Information System (INIS)

    Duret, Denis; Dunand, J.-J.

    1974-01-01

    Description is given of a stabilizing device which does not require the use of a specific solvent. Changes occurring in the field generated by the main winding and the correcting winding are transmitted by a superconducting unit to a quantum superconducting interferometer. An impedance measurement provides an error-signal, the latter being integrated for feeding the correcting winding. A form of embodiment relates to the regulation of a modulated field. This can be applied to nuclear magnetic resonance spectrometers [fr

  3. ON THE ROLE OF REPETITIVE MAGNETIC RECONNECTIONS IN EVOLUTION OF MAGNETIC FLUX ROPES IN SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sanjay; Bhattacharyya, R.; Joshi, Bhuwan [Udaipur Solar Observatory, Physical Research Laboratory, Dewali, Bari Road, Udaipur-313001 (India); Smolarkiewicz, P. K. [European Centre for Medium-Range Weather Forecasts, Reading RG2 9AX (United Kingdom)

    2016-10-20

    Parker's magnetostatic theorem, extended to astrophysical magnetofluids with large magnetic Reynolds number, supports ceaseless regeneration of current sheets and, hence, spontaneous magnetic reconnections recurring in time. Consequently, a scenario is possible where the repeated reconnections provide an autonomous mechanism governing emergence of coherent structures in astrophysical magnetofluids. In this work, such a scenario is explored by performing numerical computations commensurate with the magnetostatic theorem. In particular, the computations explore the evolution of a flux rope governed by repeated reconnections in a magnetic geometry resembling bipolar loops of solar corona. The revealed morphology of the evolution process—including onset and ascent of the rope, reconnection locations, and the associated topology of the magnetic field lines—agrees with observations, and thus substantiates physical realizability of the advocated mechanism.

  4. Effect of a pulsating electric field on ECR heating in the CERA-RX(C) X-ray generator

    Energy Technology Data Exchange (ETDEWEB)

    Balmashnov, A. A., E-mail: abalmashnov@sci.pfu.edu.ru; Kalashnikov, A. V.; Kalashnikov, V. V.; Stepina, S. P.; Umnov, A. M., E-mail: anumnov@yandex.ru [Peoples’ Friendship University of Russia (Russian Federation)

    2016-03-15

    3D particle-in-cell plasma simulations for the field configurations implemented in the CERA-RX(C) ECR X-ray generator (2.45 GHz) have been conducted. Dependences of the energy spectra of electrons incident on the target electrode on the amplitude and frequency of pulsations of the electric field in a megahertz range are derived. The simulation data are compared with the results of the full-scale experiment.

  5. Numerical study and modeling of hydrodynamic instabilities in the context of inertial confinement fusion in the presence of self-generated magnetic fields

    International Nuclear Information System (INIS)

    Levy, Y.

    2012-01-01

    In the context of inertial confinement fusion we investigate effects of magnetic fields on the development in the linear regime of two hydrodynamic instabilities: Richtmyer-Meshkov instability using ideal magnetohydrodynamics and ablative Rayleigh-Taylor instability in both acceleration and deceleration stages. Direct numerical simulations with a linear perturbation code enable us to confirm the stabilizing effect of the component of the magnetic field along the perturbations wave vector. The amplitude doesn't grow linearly in time but experiences oscillations instead. The compressibility taken into account in the code does not affect predictions given by an already existing impulsive and incompressible model. As far as Rayleigh-Taylor instability is concerned we study the effects of self-generated magnetic fields that arise from the development of the instability itself. In the acceleration stage we perform two dimensional simulations in planar geometry. We show that magnetic fields of about 1 T can be generated and that the instability growth transits more rapidly into nonlinear growth with the enhancement of the development of the third harmonic. We also propose an adaptation of an existing model that aims at studying thermal conductivity anisotropy effects, to take into account the effects of the self-generated magnetic fields on the Rayleigh-Taylor instability growth rate. Finally, in the deceleration stage, we perform two dimensional simulations in cylindrical geometry that take into account self-generation of magnetic fields due to the instability development. It reveals magnetic fields of about several thousands of Teslas that are not strong enough though to affect the instability behavior. (author) [fr

  6. Development and field tests of a damping controller to mitigate electromechanical oscillations on large diesel generating units

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Fabricio G.; Barreiros, Jose A.L.; Barra, Walter Jr.; Costa, Carlos T. Jr. [Universidade Federal do Para (UFPA), Instituto de Tecnologia, Faculdade de Engenharia Eletrica, Campus Universitario do Guama, CEP: 66075-900, Belem (Brazil); Ferreira, Andre M.D. [Instituto Federal de Educacao, Ciencia e Tecnologia do Para (IFPA), Campus Belem, Departamento de Controle e Processos Industriais, Av. Almirante Barroso, 1155 (Marco), CEP: 66093-020, Belem (Brazil)

    2011-02-15

    This paper presents the development and field tests of a digital damping controller designed to mitigate intra-plant electromechanical oscillations via the speed governor system of fast acting units. The controller performance is assessed on an 18-MVA diesel generating unit, at Santana Power Plant (Amapa State, Amazon Region at Northern Brazil). In order to design the damping control law, a set of parametric ARX models representing the plant dynamics at several load conditions, are previously identified from data collected on field tests. The damping controller gains are calculated by using the identified ARX models parameters as inputs to a discrete-time pole-placement design method (pole-shifting) and then embedded on a DSP based microcontroller digital system, for field tests assessment. The digital damping controller modulates the diesel engine inlet valve position according to the observed oscillation on the measured electric power, using a PWM device, which is specially developed to this application. The experimental results shown the good performance of the developed controller on damping efficiently the electromechanical oscillations observed between generating units at Santana Power Plant. (author)

  7. Field-Distortion Air-Insulated Switches for Next-Generation Pulsed-Power Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Wisher, Matthew Louis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Johns, Owen M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Breden, Eric Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Calhoun, Jacob Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gruner, Frederick Rusticus [Kinetech LLC, Cedar Crest, NM (United States); Hohlfelder, Robert James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mulville, Thomas D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Muron, David J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stoltzfus, Brian S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stygar, William A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    We have developed two advanced designs of a field-distortion air-insulated spark-gap switch that reduce the size of a linear-transformer-driver (LTD) brick. Both designs operate at 200 kV and a peak current of ~50 kA. At these parameters, both achieve a jitter of less than 2 ns and a prefire rate of ~0.1% over 5000 shots. We have reduced the number of switch parts and assembly steps, which has resulted in a more uniform, design-driven assembly process. We will characterize the performance of tungsten-copper and graphite electrodes, and two different electrode geometries. The new switch designs will substantially improve the electrical and operational performance of next-generation pulsed-power accelerators.

  8. A nonlinear eigenvalue problem for self-similar spherical force-free magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Lerche, I. [Institut für Geowissenschaften, Naturwissenschaftliche Fakultät III, Martin-Luther Universität, D-06099 Halle (Germany); Low, B. C. [High Altitude Observatory, National Center for Atmospheric Research, Boulder, Colorado 80307 (United States)

    2014-10-15

    An axisymmetric force-free magnetic field B(r, θ) in spherical coordinates is defined by a function r sin θB{sub φ}=Q(A) relating its azimuthal component to its poloidal flux-function A. The power law r sin θB{sub φ}=aA|A|{sup 1/n}, n a positive constant, admits separable fields with A=(A{sub n}(θ))/(r{sup n}) , posing a nonlinear boundary-value problem for the constant parameter a as an eigenvalue and A{sub n}(θ) as its eigenfunction [B. C. Low and Y. Q Lou, Astrophys. J. 352, 343 (1990)]. A complete analysis is presented of the eigenvalue spectrum for a given n, providing a unified understanding of the eigenfunctions and the physical relationship between the field's degree of multi-polarity and rate of radial decay via the parameter n. These force-free fields, self-similar on spheres of constant r, have basic astrophysical applications. As explicit solutions they have, over the years, served as standard benchmarks for testing 3D numerical codes developed to compute general force-free fields in the solar corona. The study presented includes a set of illustrative multipolar field solutions to address the magnetohydrodynamics (MHD) issues underlying the observation that the solar corona has a statistical preference for negative and positive magnetic helicities in its northern and southern hemispheres, respectively; a hemispherical effect, unchanging as the Sun's global field reverses polarity in successive eleven-year cycles. Generalizing these force-free fields to the separable form B=(H(θ,φ))/(r{sup n+2}) promises field solutions of even richer topological varieties but allowing for φ-dependence greatly complicates the governing equations that have remained intractable. The axisymmetric results obtained are discussed in relation to this generalization and the Parker Magnetostatic Theorem. The axisymmetric solutions are mathematically related to a family of 3D time-dependent ideal MHD solutions for a polytropic fluid of index γ = 4

  9. On the Generation of Intermediate Number Squeezed State of the Quantized Radiation Field

    Science.gov (United States)

    Baseia, B.; de Lima, A. F.; Bagnato, V. S.

    Recently, a new state of the quantized radiation field — the intermediate number squeezed state (INSS) — has been introduced in the literature: it interpolates between the number state |n> and the squeezed state |z, α>=Ŝ(z)|α>, and exhibits interesting nonclassical properties as antibunching, sub-Poissonian statistics and squeezing. Here we introduce a slight modification in the previous definition allowing us a proposal to generate the INSS. Nonclassical properties using a new set of parameters are also studied.

  10. A next generation field-portable goniometer system

    Science.gov (United States)

    Harms, Justin D.; Bachmann, Charles M.; Faulring, Jason W.; Ruiz Torres, Andres J.

    2016-05-01

    Various field portable goniometers have been designed to capture in-situ measurements of a materials bi-directional reflectance distribution function (BRDF), each with a specific scientific purpose in mind.1-4 The Rochester Institute of Technology's (RIT) Chester F. Carlson Center for Imaging Science recently created a novel instrument incorporating a wide variety of features into one compact apparatus in order to obtain very high accuracy BRDFs of short vegetation and sediments, even in undesirable conditions and austere environments. This next generation system integrates a dual-view design using two VNIR/SWIR pectroradiometers to capture target reflected radiance, as well as incoming radiance, to provide for better optical accuracy when measuring in non-ideal atmospheric conditions or when background illumination effects are non-negligible. The new, fully automated device also features a laser range finder to construct a surface roughness model of the target being measured, which enables the user to include inclination information into BRDF post-processing and further allows for roughness effects to be better studied for radiative transfer modeling. The highly portable design features automatic leveling, a precision engineered frame, and a variable measurement plane that allow for BRDF measurements on rugged, un-even terrain while still maintaining true angular measurements with respect to the target, all without sacrificing measurement speed. Despite the expanded capabilities and dual sensor suite, the system weighs less than 75 kg, which allows for excellent mobility and data collection on soft, silty clay or fine sand.

  11. Poloidal spin up and electric-field generation related to displacement current and neoclassical transport

    International Nuclear Information System (INIS)

    Gervasini, G.; Lazzaro, E.; Minardi, E.

    1996-01-01

    In accordance with the conventional ordering of neoclassical theory, poloidal and toroidal accelerations with constant parallel flow can be driven by heat transport in the absence of external momentum input and with vanishing parallel viscous stress. In a transient phase in which the heat transport is the primary source of the time dependence, the torque generating the rotation is provided at third order in the adiabatic expansion by the surface-averaged (non ambipolar) displacement current, which in also responsible for charge build-up and for the radial electric field. The heat transport equation has been solved in a narrow layer interfaced with the intensely heated plasma core through heat flux continuity, assuming neoclassical multi collisional coefficients with self-consistent suppression mechanism of anomalous transport. Starting from low temperature in the edge layer, a strong temperature gradient, a mass poloidal rotation in the ion direction and a strongly negative sheared radial electric field can be generated, in agreement with the observations, and reach a stationary state after a displacement current-dominated triggering phase (intrinsically non-ambipolar) lasting few milliseconds. Momentum input becomes important on longer time scale and is responsible for the toroidal rotation, decoupled from temperature gradient and for a further development of the radial electric field. The results show the ability of edge transport processes to adapt flexibly to a high temperature imposed on the inner side of the edge layer and support the view that the edge processes are a integral part of a more fundamental global process involving possibly an internal bifurcation of state

  12. Three-dimensional MHD simulation of the interaction of the solar wind with the earth's magnetosphere: The generation of field-aligned currents

    International Nuclear Information System (INIS)

    Ogino, T.

    1986-01-01

    A global computer simulation of the interaction of the solar wind with the earth's magnetosphere was executed by using a three-dimensional magnetohydrodynamic model. As a result, we were able to reproduce quasi-steady-state magnetospheric configurations and a Birkeland field-aligned current system which depend on the polarity of the z component of the interplanetary magnetic field (IMF). Twin convection cells and a dawn to dusk electric potential of 30--100 kV appeared at the equator in the magnetosphere. Four types of field-aligned currents were observed. Region 1 and 2 field-aligned currents generated for all IMF conditions were 0.6--1.0 x 10 6 A and 0.15--0.61 x 10 6 A, respectively, in the total current. Region 1 currents at high latitudes are generated from the field-aligned vorticity at the flanks through a viscous interaction and are strengthened by a twisting of open magnetic field lines in the tail region for southward IMF. On the other hand, the low-latitude region 2 currents probably are generated mainly from the inner pressure gradient of the plasma sheet. The region 1 current obtained from the simulation was in good agreement with an estimate from our theoretical analysis of the localized Alfven mode. The other two types of field-aligned currents are the dayside magnetopause currents in the dayside cusp region, which increase for northward IMF, and the dayside cusp currents for southward IMF. The cusp currents are associated with a twisting of open magnetic field lines in the magnetopause region

  13. Reduction of thermal expansion in Z-pinches by electron beam assisted magnetic field generation

    International Nuclear Information System (INIS)

    Heikkinen, J.A.; Karttunen, S.J.

    1989-01-01

    Weak radial expansion of a Z-pinch plasma column during its strong initial ohmic heating phase is expected when the generation of a confining magnetic field is assisted by a correctly formed electron beam pulse. Appropriate one-dimensional magnetohydrodynamic equations are numerically solved, and the observed increase of plasma radius as a function of time for various discharge parameters is compared to a normal Z-pinch discharge initiation. (author)

  14. CONTROLLING INFLUENCE OF MAGNETIC FIELD ON SOLAR WIND OUTFLOW: AN INVESTIGATION USING CURRENT SHEET SOURCE SURFACE MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Poduval, B., E-mail: bpoduval@spacescience.org [Space Science Institute, Boulder, CO 80303 (United States)

    2016-08-10

    This Letter presents the results of an investigation into the controlling influence of large-scale magnetic field of the Sun in determining the solar wind outflow using two magnetostatic coronal models: current sheet source surface (CSSS) and potential field source surface. For this, we made use of the Wang and Sheeley inverse correlation between magnetic flux expansion rate (FTE) and observed solar wind speed (SWS) at 1 au. During the period of study, extended over solar cycle 23 and beginning of solar cycle 24, we found that the coefficients of the fitted quadratic equation representing the FTE–SWS inverse relation exhibited significant temporal variation, implying the changing pattern of the influence of FTE on SWS over time. A particularly noteworthy feature is an anomaly in the behavior of the fitted coefficients during the extended minimum, 2008–2010 (CRs 2073–2092), which is considered due to the particularly complex nature of the solar magnetic field during this period. However, this variation was significant only for the CSSS model, though not a systematic dependence on the phase of the solar cycle. Further, we noticed that the CSSS model demonstrated better solar wind prediction during the period of study, which we attribute to the treatment of volume and sheet currents throughout the corona and the more accurate tracing of footpoint locations resulting from the geometry of the model.

  15. A compound magnetic field generating system for targeted killing of Staphylococcus aureus by magnetotactic bacteria in a microfluidic chip

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Linjie; Chen, Changyou [Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); France-China Bio-Mineralization and Nano-Structures Laboratory, Beijing (China); Wang, Pingping; Chen, Chuanfang [Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); France-China Bio-Mineralization and Nano-Structures Laboratory, Beijing (China); Wu, Long-Fei [Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Laboratoire de Chimie Bactérienne, UMR7283, Aix-Marseille University, Institut de Microbiologie de la Méditerranée, CNRS, Marseille (France); Song, Tao, E-mail: songtao@mail.iee.ac.cn [Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); France-China Bio-Mineralization and Nano-Structures Laboratory, Beijing (China)

    2017-04-01

    A compound magnetic field generating system was built to kill Staphylococcus aureus (S. aureus) by magnetotactic bacteria (MTB) in a microfluidic chip in this paper. The system was consisted of coil pairs, a switch circuit, a control program and controllable electrical sources. It could produce a guiding magnetic field (gMF) of ±1 mT along arbitrary direction in the horizontal plane, a rotating magnetic field (rMF) and a swing magnetic field (sMF, 2 Hz, 10 mT) by controlling the currents. The gMF was used to guide MTB swimming to the S. aureus pool in the microfluidic chip, and then the rMF enhanced the mixture of S. aureus and MTB cells, therefore beneficial to the attachments of them. Finally, the sMF was used to induce the death of S. aureus via MTB. The results showed that MTB could be navigated by the gMF and that 47.1% of S. aureus were killed when exposed to the sMF. It provides a new solution for the targeted treatment of infected diseases and even cancers. - Highlights: • We built a system which generated a compound magnetic field in one device. • The compoud magnetic field includes guiding, rotating and swing magnetic fields. • MTB was guided and S. aureus attached to MTB was killed in the same device.

  16. High-order harmonic generation driven by inhomogeneous plasmonics fields spatially bounded: influence on the cut-off law

    Science.gov (United States)

    Neyra, E.; Videla, F.; Ciappina, M. F.; Pérez-Hernández, J. A.; Roso, L.; Lewenstein, M.; Torchia, G. A.

    2018-03-01

    We study high-order harmonic generation (HHG) in model atoms driven by plasmonic-enhanced fields. These fields result from the illumination of plasmonic nanostructures by few-cycle laser pulses. We demonstrate that the spatial inhomogeneous character of the laser electric field, in a form of Gaussian-shaped functions, leads to an unexpected relationship between the HHG cutoff and the laser wavelength. Precise description of the spatial form of the plasmonic-enhanced field allows us to predict this relationship. We combine the numerical solutions of the time-dependent Schrödinger equation (TDSE) with the plasmonic-enhanced electric fields obtained from 3D finite element simulations. We additionally employ classical simulations to supplement the TDSE outcomes and characterize the extended HHG spectra by means of their associated electron trajectories. A proper definition of the spatially inhomogeneous laser electric field is instrumental to accurately describe the underlying physics of HHG driven by plasmonic-enhanced fields. This characterization opens up new perspectives for HHG control with various experimental nano-setups.

  17. Generation of Raman lasers from nitrogen molecular ions driven by ultraintense laser fields

    Science.gov (United States)

    Yao, Jinping; Chu, Wei; Liu, Zhaoxiang; Xu, Bo; Chen, Jinming; Cheng, Ya

    2018-03-01

    Atmospheric lasing has aroused much interest in the past few years. The ‘air–laser’ opens promising potential for remote chemical sensing of trace gases with high sensitivity and specificity. At present, several approaches have been successfully implemented for generating highly coherent laser beams in atmospheric condition, including both amplified-spontaneous emission, and narrow-bandwidth stimulated emission in the forward direction in the presence of self-generated or externally injected seed pulses. Here, we report on generation of multiple-wavelength Raman lasers from nitrogen molecular ions ({{{N}}}2+), driven by intense mid-infrared laser fields. Intuitively, the approach appears problematic for the small nonlinear susceptibility of {{{N}}}2+ ions, whereas the efficiency of Raman laser can be significantly promoted in near-resonant condition. More surprisingly, a Raman laser consisting of a supercontinuum spanning from ∼310 to ∼392 nm has been observed resulting from a series near-resonant nonlinear processes including four-wave mixing, stimulated Raman scattering and cross phase modulation. To date, extreme nonlinear optics in molecular ions remains largely unexplored, which provides an alternative means for air–laser-based remote sensing applications.

  18. Self-consistent modeling of induced magnetic field in Titan's atmosphere accounting for the generation of Schumann resonance

    Science.gov (United States)

    Béghin, Christian

    2015-02-01

    This model is worked out in the frame of physical mechanisms proposed in previous studies accounting for the generation and the observation of an atypical Schumann Resonance (SR) during the descent of the Huygens Probe in the Titan's atmosphere on 14 January 2005. While Titan is staying inside the subsonic co-rotating magnetosphere of Saturn, a secondary magnetic field carrying an Extremely Low Frequency (ELF) modulation is shown to be generated through ion-acoustic instabilities of the Pedersen current sheets induced at the interface region between the impacting magnetospheric plasma and Titan's ionosphere. The stronger induced magnetic field components are focused within field-aligned arcs-like structures hanging down the current sheets, with minimum amplitude of about 0.3 nT throughout the ramside hemisphere from the ionopause down to the Moon surface, including the icy crust and its interface with a conductive water ocean. The deep penetration of the modulated magnetic field in the atmosphere is thought to be allowed thanks to the force balance between the average temporal variations of thermal and magnetic pressures within the field-aligned arcs. However, there is a first cause of diffusion of the ELF magnetic components, probably due to feeding one, or eventually several SR eigenmodes. A second leakage source is ascribed to a system of eddy-Foucault currents assumed to be induced through the buried water ocean. The amplitude spectrum distribution of the induced ELF magnetic field components inside the SR cavity is found fully consistent with the measurements of the Huygens wave-field strength. Waiting for expected future in-situ exploration of Titan's lower atmosphere and the surface, the Huygens data are the only experimental means available to date for constraining the proposed model.

  19. Significance of self magnetic field in long-distance collimation of laser-generated electron beams

    OpenAIRE

    Chen, Shi; Huang, Jiaofeng; Niu, Yifei; Dan, Jiakun; Chen, Ziyu; Li, Jianfeng

    2014-01-01

    Long-distance collimation of fast electron beams generated by laser-metallic-wire targets has been observed in recent experiments, while the mechanism behind this phenomenon remains unclear. In this work, we investigate in detail the laser-wire interaction processes with a simplified model and Classical Trajectory Monte Carlo simulations, and demonstrate the significance of the self magnetic fields of the beams in the long-distance collimation. Good agreements of simulated image plate pattern...

  20. Nonstationarity of a two-dimensional quasiperpendicular supercritical collisionless shock by self-reformation

    International Nuclear Information System (INIS)

    Lembege, B.; Savoini, P.

    1992-01-01

    Two-dimensional electromagnetic particle simulations evidence a self-reformation of the shock front for a collisionless supercritical magnetosonic shock propagating at angle θ 0 around 90 degree, where θ 0 is the angle between the normal to the shock front and the upstream magnetostatic field. This self-reformation is due to reflected ions which accumulate in front of the shock and is observed (i) in both electric and magnetic components, (ii) for both resistive and nonresistive two-dimensional shocks, and (iii) over a cyclic time period equal to the mean ion gyroperiod measured downstream in the overshoot; resistive effects may be self-consistently included or excluded for θ 0 congruent 90 degree according to a judicious choice of the upstream magnetostatic field orientation. The self-reformation leads to a nonstationary behavior of the shock; however, present results show evidence that the shock becomes stationary for θ less than a critical value θ r , below which the self-reformation disappears. Present results are compared to previous works where one/two-dimensional hybrid and particle codes have been used, and to experimental measurements

  1. Generators of the exceptional group E8 as bilinear quark and lepton fields

    International Nuclear Information System (INIS)

    Koca, M.

    1981-01-01

    The quarks and leptons are assigned to the adjoint representation of the exceptional group E 8 using decompositions under the subgroups SU(9) and [SU(3)] 4 . Generators are constructed as linear combinations of bilinear quark and lepton fields. Closure of the algebra is used to determine the unknown coefficients of the linear combinations. It is noted that the Majorana spinors chi/sup μ//sub ν/ introduced to represent the adjoint representations of SU(9) and [SU(3)] 4 subgroups cannot be taken traceless. The trace chi/sup μ//sub ν/ should couple to the quark and lepton fields in order to close the algebra. The constraints on the bilinear fields which are of physical importance are introduced to obtain the right number of fermionic states in the adjoint representation. An attractive possibility of having an octet of strictly massless Majorana quarks and at least three massless Majorana leptons as a consequence of pure algebraic constraints is discussed. The exceptional subgroups E 7 and E 6 are identified and the explicit commutation relations are obtained. Using one assignment of E 6 the role of color-singlet lepton-lepton and quark-antiquark currents is pointed out

  2. Enhanced method of magnetic powder alignment for production of PLP Nd-Fe-B magnets

    International Nuclear Information System (INIS)

    Popov, A.G.; Golovnia, O.A.; Protasov, A.V.

    2017-01-01

    It is demonstrated how the high degree of powder alignment in PLP magnets can be achieved by loading the powder into a container placed in a magnetic field of moderate strength. The strip-cast alloy with a composition of 30.00 Nd, 1.95 Dy, 66.42 Fe, 0.99 B, 0.54 Co, 0.1 Ga (wt%) was subjected to hydrogen decrepitation and then milled in a vibratory mill in toluene to an average particle size of 2.9 µm determined by the FSSS method. The powder was compacted in the magnetic field of 0.2 – 1.2 T to the filling density 2.6 – 3.2×10 3 kg/m 3 . It is shown that loading the powder into a container placed in a magnetic field enhances the degree of powder alignment in sintered Nd-Fe-B magnets produced from non-pressed powder. At the filling density less than 3.2×10 3 kg/m 3 , the density of magnets is high but insufficient, because of the formation of magnetostatic chains of particles, which impedes the powder compaction. The simulation by the discrete-element method qualitatively proves that the magnetostatic interaction of the chains of particles that are formed in the course of loading in the magnetic field stimulates a decrease in the density of the sintered magnets and its non-uniform distribution over the sample. As a result of the optimization of the parameters of the alignment and compaction of the powder loaded in a magnetic field, PLP magnets with B r ≥1.34 T, H c ≥950 kA/m, (BH) max ≥340 kJ/m 3 , and the degree of alignment exceeding 96% were produced. - Highlights: • The pressless process (PLP) in magnet production is studied. • A new method of the loading of powder in an applied DC magnetic field is suggested. • The method allows achieving higher degree of alignment in moderate magnetic field. • Density of sintered magnets is studied experimentally and via DEM simulation. • Low density is caused by the formation of magnetostatic chains of powder particles.

  3. Enhanced method of magnetic powder alignment for production of PLP Nd-Fe-B magnets

    Energy Technology Data Exchange (ETDEWEB)

    Popov, A.G. [M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, Str. S. Kovalevskoy, 18, 620137 Ekaterinburg (Russian Federation); Institute of Natural Sciences and Mathematics, Ural Federal University, Av. Mira, 19, 620002 Ekaterinburg (Russian Federation); Golovnia, O.A., E-mail: golovnya@imp.uran.ru [M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, Str. S. Kovalevskoy, 18, 620137 Ekaterinburg (Russian Federation); Institute of Natural Sciences and Mathematics, Ural Federal University, Av. Mira, 19, 620002 Ekaterinburg (Russian Federation); Protasov, A.V. [M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, Str. S. Kovalevskoy, 18, 620137 Ekaterinburg (Russian Federation); Institute of Natural Sciences and Mathematics, Ural Federal University, Av. Mira, 19, 620002 Ekaterinburg (Russian Federation)

    2017-04-15

    It is demonstrated how the high degree of powder alignment in PLP magnets can be achieved by loading the powder into a container placed in a magnetic field of moderate strength. The strip-cast alloy with a composition of 30.00 Nd, 1.95 Dy, 66.42 Fe, 0.99 B, 0.54 Co, 0.1 Ga (wt%) was subjected to hydrogen decrepitation and then milled in a vibratory mill in toluene to an average particle size of 2.9 µm determined by the FSSS method. The powder was compacted in the magnetic field of 0.2 – 1.2 T to the filling density 2.6 – 3.2×10{sup 3} kg/m{sup 3}. It is shown that loading the powder into a container placed in a magnetic field enhances the degree of powder alignment in sintered Nd-Fe-B magnets produced from non-pressed powder. At the filling density less than 3.2×10{sup 3} kg/m{sup 3}, the density of magnets is high but insufficient, because of the formation of magnetostatic chains of particles, which impedes the powder compaction. The simulation by the discrete-element method qualitatively proves that the magnetostatic interaction of the chains of particles that are formed in the course of loading in the magnetic field stimulates a decrease in the density of the sintered magnets and its non-uniform distribution over the sample. As a result of the optimization of the parameters of the alignment and compaction of the powder loaded in a magnetic field, PLP magnets with B{sub r} ≥1.34 T, H{sub c} ≥950 kA/m, (BH){sub max} ≥340 kJ/m{sup 3}, and the degree of alignment exceeding 96% were produced. - Highlights: • The pressless process (PLP) in magnet production is studied. • A new method of the loading of powder in an applied DC magnetic field is suggested. • The method allows achieving higher degree of alignment in moderate magnetic field. • Density of sintered magnets is studied experimentally and via DEM simulation. • Low density is caused by the formation of magnetostatic chains of powder particles.

  4. Didactical formulation of the Ampère law

    International Nuclear Information System (INIS)

    Barchiesi, Dominique

    2014-01-01

    The Ampère law is useful to calculate the magnetostatic field in the cases of distributions of current with high degree of symmetry. Nevertheless the magnetic field produced by a thin straight wire carrying a current I requires the Biot–Savart law and the use of the Ampère law leads to a mistake. A didactical formulation of the Ampère law is proposed to prevent misinterpretations. (letters and comments)

  5. Effects of induced magnetic field on large scale pulsed MHD generator with two phase flow

    International Nuclear Information System (INIS)

    Ishikawa, M.; Koshiba, Y.; Matsushita, T.

    2004-01-01

    A large pulsed MHD generator 'SAKHALIN' was constructed in Russia (the former Soviet-Union) and operated with solid fuels. The 'SAKHALIN' with the channel length of 4.5 m could demonstrate the electric power output of 510 MW. The effects of induced magnetic field and two phase flow on the shock wave within the 'SAKHALIN' generator have been studied by time dependent, one dimensional analyses. It has been shown that the magnetic Reynolds number is about 0.58 for Run No. 1, and the induced magnetic flux density is about 20% at the entrance and exit of the MHD channel. The shock wave becomes stronger when the induced magnetic field is taken into account, when the operation voltage becomes low. The working gas plasma contains about 40% of liquid particles (Al 2 O 3 ) in weight, and the present analysis treats the liquid particles as another gas. In the case of mono-phase flow, the sharp shock wave is induced when the load voltage becomes small such as 500 V with larger Lorentz force, whereas in the case of two phase flow, the shock wave becomes less sharp because of the interaction with liquid particles

  6. Finite element calculation of fields around the end region of a turbine generator test rig

    Energy Technology Data Exchange (ETDEWEB)

    Eastham, J.F.; Rodger, D.; Lai, H.C.; Nouri, H. (Univ. of Bath (United Kingdom))

    1993-03-01

    Under transient conditions, most often caused by faults in the power system, unbalanced load is presented to a turbine generator. This gives rise to airgap fields which do not travel at the speed of the rotor, and cause induced currents which occur in the solid steel surface. This can cause high local heating. The current path is generally in the axial direction of the machine but the distribution in the end region is not so well known. Here, comparisons are drawn between the use of surface impedance elements and volume elements when modeling a test rig using the MEGA package. The test rig is representative of a turbine generator. The work is supported by practical measurements.

  7. Angular beam width of a slit-diffracted wave with noncollinear group and phase velocities

    International Nuclear Information System (INIS)

    Lock, Edwin H

    2012-01-01

    Taking magnetostatic surface wave diffraction as an example, this paper theoretically investigates the 2D diffraction pattern arising in the far-field region of a ferrite slab in the case of a plane wave with noncollinear group and phase velocities incident on a wide, arbitrarily oriented slit in an opaque screen. A universal analytical formula for the angular width of a diffracted beam is derived, which is valid for magnetostatic and other types of waves in anisotropic media and structures (including metamaterials) in 2D geometries. It is shown that the angular width of a diffracted beam in an anisotropic medium can not only take values greater or less than λ 0 /D (where λ 0 is the incident wavelength, and D is the slit width), but can also be zero under certain conditions. (methodological notes)

  8. Entangled plasmon generation in nonlinear spaser system under the action of external magnetic field

    Science.gov (United States)

    Gubin, M. Yu.; Shesterikov, A. V.; Karpov, S. N.; Prokhorov, A. V.

    2018-02-01

    The present paper theoretically investigates features of quantum dynamics for localized plasmons in three-particle or four-particle spaser systems consisting of metal nanoparticles and semiconductor quantum dots. In the framework of the mean field approximation, the conditions for the observation of stable stationary regimes for single-particle plasmons in spaser systems are revealed, and realization of these regimes is discussed. The strong dipole-dipole interaction between adjacent nanoparticles for the four-particle spaser system is investigated. We show that this interaction can lead to the decreasing of the autocorrelation function values for plasmons. The generation of entangled plasmons in a three-particle spaser system with nonlinear plasmon-exciton interaction is predicted. The use of an external magnetic field is proposed for control of the cross correlations between plasmons in the three-particle spaser system.

  9. Nanosecond pulsed electric fields (nsPEFs) low cost generator design using power MOSFET and Cockcroft-Walton multiplier circuit as high voltage DC source

    International Nuclear Information System (INIS)

    Sulaeman, M. Y.; Widita, R.

    2014-01-01

    Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20–100 kV/cm and with shorter duration of pulse than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of −1.5 kV with falltime 3 ns and risetime 15 ns into a 50Ω load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation

  10. Revival structures of linear molecules in a field-free alignment condition as probed by high-order harmonic generation

    International Nuclear Information System (INIS)

    Lee, G. H.; Kim, H. T.; Park, J. Y.; Nam, C. H.; Kim, T. K.; Lee, J. H.; Ihee, H.

    2006-01-01

    Revival structures (rotational coherence) of three linear molecules (N 2 , O 2 , and CO 2 ) in a field free alignment condition have been investigated using high-order harmonic generation. The harmonic yields of these molecules were measured in a pump-probe manner by using a weak femtosecond (fs) laser pulse for field-free alignment of molecules and another intense fs laser pulse for harmonic generation. The harmonic intensities from 23rd to 29th order with respect to the time delay between the pump and the probe pulses showed revival structures in the condition of a field-free alignment of molecules. While the revival structure of a N 2 molecule had one-fourth the period of the full revival time and different degrees of modulation among different fractional revival times, the revival structures of O 2 and CO 2 molecules showed one-eighth the periods of the full revival time and similar degrees of modulation among all fractional revival times. The revival structures could be interpreted in terms of the nature of the highest occupied molecular orbital and the total nuclear spin.

  11. Quantal density functional theory. 2. ed.

    International Nuclear Information System (INIS)

    Sahni, Viraht

    2016-01-01

    This book is on quantal density functional theory (QDFT) which is a time-dependent local effective potential theory of the electronic structure of matter. The time-independent QDFT constitutes a special case. The 2 nd edition describes the further development of the theory, and extends it to include the presence of an external magnetostatic field. The theory is based on the 'quantal Newtonian' second and first laws for the individual electron. These laws are in terms of 'classical' fields that pervade all space, and their quantal sources. The fields are separately representative of the electron correlations that must be accounted for in local potential theory. Recent developments show that irrespective of the type of external field the electrons are subject to, the only correlations beyond those due to the Pauli exclusion principle and Coulomb repulsion that need be considered are solely of the correlation-kinetic effects. Foundational to QDFT, the book describes Schroedinger theory from the new perspective of the single electron in terms of the 'quantal Newtonian' laws. Hohenberg-Kohn density functional theory (DFT), new understandings of the theory and its extension to the presence of an external uniform magnetostatic field are described. The physical interpretation via QDFT, in terms of electron correlations, of Kohn-Sham DFT, approximations to it and Slater theory are provided.

  12. Quantal density functional theory. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Sahni, Viraht

    2016-07-01

    This book is on quantal density functional theory (QDFT) which is a time-dependent local effective potential theory of the electronic structure of matter. The time-independent QDFT constitutes a special case. The 2{sup nd} edition describes the further development of the theory, and extends it to include the presence of an external magnetostatic field. The theory is based on the 'quantal Newtonian' second and first laws for the individual electron. These laws are in terms of 'classical' fields that pervade all space, and their quantal sources. The fields are separately representative of the electron correlations that must be accounted for in local potential theory. Recent developments show that irrespective of the type of external field the electrons are subject to, the only correlations beyond those due to the Pauli exclusion principle and Coulomb repulsion that need be considered are solely of the correlation-kinetic effects. Foundational to QDFT, the book describes Schroedinger theory from the new perspective of the single electron in terms of the 'quantal Newtonian' laws. Hohenberg-Kohn density functional theory (DFT), new understandings of the theory and its extension to the presence of an external uniform magnetostatic field are described. The physical interpretation via QDFT, in terms of electron correlations, of Kohn-Sham DFT, approximations to it and Slater theory are provided.

  13. Stimulated Brillouin backscattering and magnetic field generation in laser-produced plasmas

    International Nuclear Information System (INIS)

    Bawa'aneh, M.S.

    1999-01-01

    This thesis is concerned with aspects of laser-plasma interactions related to fusion reactions; in particular thermoelectric magnetic field generation around a hole dug in plasma by intense laser beams, and stimulated Brillouin back scattering (SBBS) from plasmas containing hot spots. A hole, of the size of the laser focal spot, is dug in the plasma when illuminated by intense laser if the laser pressure exceeds the plasma thermal pressure. This hole is found to have steep, radial density gradients. My first concern arose from the prediction that magnetic fields might be generated around the hole-plasma interface in places where the steep density gradients overlap with the non-aligned temperature gradients. When a high-power laser beam is focused on a solid pellet, plasma is formed at the surface. In order to create conditions for thermonuclear reactions in the interior of the pellet, an effective deposition of the laser energy to thermal energy of the pellet via laser-plasma coupling is necessary. When light irradiates a plasma collective processes occur, which can either enhance or reduce the light absorption. For a better understanding of the fusion problem a knowledge of the nature of these collective processes and of the fraction of light reflected from the plasma modes is required. Local hot spots seen experimentally lead to higher gain levels of scattered light. These local temperature inhomogeneities could lead to non-equilibrium distributions, which result in a free energy leading to some interesting phenomena in plasma. In the second part of the thesis stimulated Brillouin back scattering from an ion acoustic mode in a hot spot is studied. Temperature inhomogeneities lead to an ion acoustic instability, and to higher levels of SBBS gain, which leads to lower thresholds for the same electron to ion temperature ratios. This could be the answer for the observed high levels of scattering from hot spots. (author)

  14. Explicit polarization: a quantum mechanical framework for developing next generation force fields.

    Science.gov (United States)

    Gao, Jiali; Truhlar, Donald G; Wang, Yingjie; Mazack, Michael J M; Löffler, Patrick; Provorse, Makenzie R; Rehak, Pavel

    2014-09-16

    Conspectus Molecular mechanical force fields have been successfully used to model condensed-phase and biological systems for a half century. By means of careful parametrization, such classical force fields can be used to provide useful interpretations of experimental findings and predictions of certain properties. Yet, there is a need to further improve computational accuracy for the quantitative prediction of biomolecular interactions and to model properties that depend on the wave functions and not just the energy terms. A new strategy called explicit polarization (X-Pol) has been developed to construct the potential energy surface and wave functions for macromolecular and liquid-phase simulations on the basis of quantum mechanics rather than only using quantum mechanical results to fit analytic force fields. In this spirit, this approach is called a quantum mechanical force field (QMFF). X-Pol is a general fragment method for electronic structure calculations based on the partition of a condensed-phase or macromolecular system into subsystems ("fragments") to achieve computational efficiency. Here, intrafragment energy and the mutual electronic polarization of interfragment interactions are treated explicitly using quantum mechanics. X-Pol can be used as a general, multilevel electronic structure model for macromolecular systems, and it can also serve as a new-generation force field. As a quantum chemical model, a variational many-body (VMB) expansion approach is used to systematically improve interfragment interactions, including exchange repulsion, charge delocalization, dispersion, and other correlation energies. As a quantum mechanical force field, these energy terms are approximated by empirical functions in the spirit of conventional molecular mechanics. This Account first reviews the formulation of X-Pol, in the full variationally correct version, in the faster embedded version, and with systematic many-body improvements. We discuss illustrative examples

  15. Effect of Magnetic Field on Entropy Generation Due to Laminar Forced Convection Past a Horizontal Flat Plate

    Directory of Open Access Journals (Sweden)

    Moh'd A. Al-Nimr

    2004-06-01

    Full Text Available Magnetic field effect on local entropy generation due to steady two-dimensional laminar forced convection flow past a horizontal plate was numerically investigated. This study was focused on the entropy generation characteristics and its dependency on various dimensionless parameters. The effect of various dimensionless parameters, such as Hartmann number (Ha, Eckert number (Ec, Prandtl number (Pr, Joule heating parameter (R and the free stream temperature parameter (θ∞ on the entropy generation characteristics is analyzed. The dimensionless governing equations in Cartesian coordinate were solved by an implicit finite difference technique. The solutions were carried out for Ha2=0.5-3, Ec=0.01-0.05, Pr=1-5 and θ∞=1.1-2.5. It was found that, the entropy generation increased with increasing Ha, Ec and R. While, increasing the free stream temperature parameter, and Prandtl number tend to decrease the local entropy generation.

  16. Spin wave absorber generated by artificial surface anisotropy for spin wave device network

    Directory of Open Access Journals (Sweden)

    Naoki Kanazawa

    2016-09-01

    Full Text Available Spin waves (SWs have the potential to reduce the electric energy loss in signal processing networks. The SWs called magnetostatic forward volume waves (MSFVWs are advantageous for networking due to their isotropic dispersion in the plane of a device. To control the MSFVW flow in a processing network based on yttrium iron garnet, we developed a SW absorber using artificial structures. The mechanical surface polishing method presented in this work can well control extrinsic damping without changing the SW dispersion of the host material. Furthermore, enhancement of the ferromagnetic resonance linewidth over 3 Oe was demonstrated.

  17. Simulated impact of self-generated magnetic fields in the hot-spot of NIF implosions

    Science.gov (United States)

    Partha, M. A.; Haan, S. W.; Koning, J.; Marinak, M. M.; Weber, C. R.; Clark, D. S.

    2016-10-01

    Deviations from sphericity in an imploded hot-spot result in magnetic fields generated by the Biermann battery effect. The magnetic field can reduce thermal conductivity, affect α transport, change instability growth, and cause magnetic pressure. Previous estimates of these effects have indicated that they are not of great consequence, but have suggested that they could plausibly affect NIF observables such as yield and ion temperature by 5-25%. Using the MHD capability in the Hydra code, we evaluated the impact of these processes in a post-shot model for a typical NIF implosion. Various implosion asymmetries were implemented, with the goal of surveying plausible implosion configurations to find the geometry in which the MHD effects were the most significant. Magnetic fields are estimated to approach 104 Tesla, and to affect conductivity locally by more than 50%, but global impact on observables is small in most cases. Work performed under the auspices of the U.S. D.O.E. by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  18. Strong magnetic field generation in laser plasma

    International Nuclear Information System (INIS)

    Nakarmi, J.J.; Jha, L.N.

    1996-12-01

    An attempt has been made to solve the magnetic field evolution equation by using Green function and taking convective, diffusion and nabla n x nabla T as a dominant source term. The maximum magnetic field is obtained to be an order of megagauss. (author). 14 refs, 1 fig

  19. Strong magnetic field generated by the extreme oxygen-rich red supergiant VY Canis Majoris

    Science.gov (United States)

    Shinnaga, Hiroko; Claussen, Mark J.; Yamamoto, Satoshi; Shimojo, Masumi

    2017-12-01

    Evolved stars experience high mass-loss rates forming thick circumstellar envelopes (CSEs). The circumstellar material is made of the result of stellar nucleosynthesis and, as such, plays a crucial role in the chemical evolution of galaxies and the universe. Since asymmetric geometries of CSEs are common, and with very complex structures for some cases, radiative pressure from the stars can explain only a small portion of the mass-loss processes; thus the essential driving mechanism is still unknown, particularly for high-mass stars. Here we report on magnetic field measurements associated with the well-known extreme red supergiant (RSG) VY Canis Majoris (VY CMa). We measured the linear polarization and the Zeeman splitting of the SiO v = 0, J = 1-0 transition using a sensitive radio interferometer. The measured magnetic field strengths are surprisingly high; their upper limits range between 150 and 650 G within 530 au (˜80 R*) of the star. The lower limit of the field strength is expected to be at least ˜10 G based on the high degree of linear polarization. Since the field strengths are very high, the magnetic field must be a key element in understanding the stellar evolution of VY CMa, as well as the dynamical and chemical evolution of the complex CSE of the star. M-type RSGs, with large stellar surface, were thought to be very slow rotators. This would seem to make a dynamo in operation difficult, and would also dilute any fossil magnetic field. At least for VY CMa, we expect that powerful dynamo processes must still be active to generate the intense magnetic field.

  20. Achievement reports on joint research of solar energy power generation field test project in fiscal 1997. Part 2 of 3; 1997 nendo taiyoko hatsuden field test jigyo kyodo kenkyu seika hokokusho 2/3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-01

    This report is a collection of 26 achievement reports on joint research of a solar energy power generation field test project. The major contents of the achievement reports relate to the solar energy power generation field test project (summarized as manufacture and installation of solar energy power generation systems, summary of solar energy power generation facilities, peripheral devices, and daily schedule of the construction). The reports describe achievements of the joint research (names and achievements of the joint research, study presentation, lectures, literatures, status of patents, similar research in and cooperation with other research institutions), generalization of the research, and future problems. Locations of the joint research carried out are libraries, kindergartens, health and welfare centers, children's culture centers, general traffic centers, primary and middle schools, river water purifying facilities, credit banks, manufactories, retail shops at car parking areas, office buildings, hospitals, joint prefectural office buildings, municipal health centers, and prefectural general power generation control stations. (NEDO)