WorldWideScience

Sample records for generate surface features

  1. Simulation study and guidelines to generate Laser-induced Surface Acoustic Waves for human skin feature detection

    Science.gov (United States)

    Li, Tingting; Fu, Xing; Chen, Kun; Dorantes-Gonzalez, Dante J.; Li, Yanning; Wu, Sen; Hu, Xiaotang

    2015-12-01

    Despite the seriously increasing number of people contracting skin cancer every year, limited attention has been given to the investigation of human skin tissues. To this regard, Laser-induced Surface Acoustic Wave (LSAW) technology, with its accurate, non-invasive and rapid testing characteristics, has recently shown promising results in biological and biomedical tissues. In order to improve the measurement accuracy and efficiency of detecting important features in highly opaque and soft surfaces such as human skin, this paper identifies the most important parameters of a pulse laser source, as well as provides practical guidelines to recommended proper ranges to generate Surface Acoustic Waves (SAWs) for characterization purposes. Considering that melanoma is a serious type of skin cancer, we conducted a finite element simulation-based research on the generation and propagation of surface waves in human skin containing a melanoma-like feature, determine best pulse laser parameter ranges of variation, simulation mesh size and time step, working bandwidth, and minimal size of detectable melanoma.

  2. Patch layout generation by detecting feature networks

    KAUST Repository

    Cao, Yuanhao

    2015-02-01

    The patch layout of 3D surfaces reveals the high-level geometric and topological structures. In this paper, we study the patch layout computation by detecting and enclosing feature loops on surfaces. We present a hybrid framework which combines several key ingredients, including feature detection, feature filtering, feature curve extension, patch subdivision and boundary smoothing. Our framework is able to compute patch layouts through concave features as previous approaches, but also able to generate nice layouts through smoothing regions. We demonstrate the effectiveness of our framework by comparing with the state-of-the-art methods.

  3. Mapping stellar surface features

    International Nuclear Information System (INIS)

    Noah, P.V.

    1987-01-01

    New photometric and spectroscopic observations of the RS Canum Venaticorum binaries Sigma Geminorum and UX Arietis are reported along with details of the Doppler-imaging program SPOTPROF. The observations suggest that the starspot activity on Sigma Gem has decreased to 0.05 magnitude in two years. A photometric spot model for September 1984 to January 1985 found that a single spot covering 2% of the surface and 1000 K cooler than the surrounding photosphere could model the light variations. Equivalent-width observations contemporaneous with the photometric observations did not show any significant variations. Line-profile models from SPOTPROF predict that the variation of the equivalent width of the 6393 A Fe I line should be ∼ 1mA. Photometric observations of UX Ari from January 1984 to March 1985 show an 0.3 magnitude variation indicating a large spot group must cover the surface. Contemporaneous spectroscopic observations show asymmetric line profiles. The Doppler imaging and the photometric light-curve models were used in an iterative method to describe the stellar surface-spot distribution and successfully model both the photometric and the spectroscopic variations

  4. Patch layout generation by detecting feature networks

    KAUST Repository

    Cao, Yuanhao; Yan, Dongming; Wonka, Peter

    2015-01-01

    The patch layout of 3D surfaces reveals the high-level geometric and topological structures. In this paper, we study the patch layout computation by detecting and enclosing feature loops on surfaces. We present a hybrid framework which combines

  5. Feature-Sensitive Tetrahedral Mesh Generation with Guaranteed Quality

    OpenAIRE

    Wang, Jun; Yu, Zeyun

    2012-01-01

    Tetrahedral meshes are being extensively used in finite element methods (FEM). This paper proposes an algorithm to generate feature-sensitive and high-quality tetrahedral meshes from an arbitrary surface mesh model. A top-down octree subdivision is conducted on the surface mesh and a set of tetrahedra are constructed using adaptive body-centered cubic (BCC) lattices. Special treatments are given to the tetrahedra near the surface such that the quality of the resulting tetrahedral mesh is prov...

  6. Important conventional island design features: generators

    International Nuclear Information System (INIS)

    Fritsch, Th.

    1985-01-01

    To-day, maximum reactor capacity is setting a provisional limit to the MW race. The latest nuclear generators in manufacturing are rated 1530 MW - 1710 MVA and are doubtless the most powerful ones in the world. The target to be aimed at in designing large turbogenerators may be defined by the following points: 1) meeting the rated load conditions without overpassing maximum admissible temperatures in any part of the machine; 2) keeping losses as small as possible; 3) keeping overall size small enough to allow rail transportation from the works to the site; 4) choosing well experienced solutions in order to set a highly reliable machine with maximum maintenance. In this report the main features of nuclear generators in the 1000-2000 MVA range are described. (Auth.)

  7. Volume Decomposition and Feature Recognition for Hexahedral Mesh Generation

    Energy Technology Data Exchange (ETDEWEB)

    GADH,RAJIT; LU,YONG; TAUTGES,TIMOTHY J.

    1999-09-27

    Considerable progress has been made on automatic hexahedral mesh generation in recent years. Several automatic meshing algorithms have proven to be very reliable on certain classes of geometry. While it is always worth pursuing general algorithms viable on more general geometry, a combination of the well-established algorithms is ready to take on classes of complicated geometry. By partitioning the entire geometry into meshable pieces matched with appropriate meshing algorithm the original geometry becomes meshable and may achieve better mesh quality. Each meshable portion is recognized as a meshing feature. This paper, which is a part of the feature based meshing methodology, presents the work on shape recognition and volume decomposition to automatically decompose a CAD model into meshable volumes. There are four phases in this approach: (1) Feature Determination to extinct decomposition features, (2) Cutting Surfaces Generation to form the ''tailored'' cutting surfaces, (3) Body Decomposition to get the imprinted volumes; and (4) Meshing Algorithm Assignment to match volumes decomposed with appropriate meshing algorithms. The feature determination procedure is based on the CLoop feature recognition algorithm that is extended to be more general. Results are demonstrated over several parts with complicated topology and geometry.

  8. Efficient Generation and Selection of Combined Features for Improved Classification

    KAUST Repository

    Shono, Ahmad N.

    2014-05-01

    This study contributes a methodology and associated toolkit developed to allow users to experiment with the use of combined features in classification problems. Methods are provided for efficiently generating combined features from an original feature set, for efficiently selecting the most discriminating of these generated combined features, and for efficiently performing a preliminary comparison of the classification results when using the original features exclusively against the results when using the selected combined features. The potential benefit of considering combined features in classification problems is demonstrated by applying the developed methodology and toolkit to three sample data sets where the discovery of combined features containing new discriminating information led to improved classification results.

  9. Dome shaped features on Europa's surface

    Science.gov (United States)

    1997-01-01

    The Solid State Imaging system aboard the spacecraft Galileo took this image of the surface of Europa on February 20, 1997 during its sixth orbit around Jupiter. The image is located near 16 North, 268 West; illumination is from the lower-right. The area covered is approximately 48 miles (80 kilometers) by 56 miles (95 kilometers) across. North is toward the top of the image.This image reveals that the icy surface of Europa has been disrupted by ridges and faults numerous times during its past. These ridges have themselves been disrupted by the localized formation of domes and other features that may be indicative of thermal upwelling of water from beneath the crust. These features provide strong evidence for the presence of subsurface liquid during Europa's recent past.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  10. Robust Features Of Surface Electromyography Signal

    International Nuclear Information System (INIS)

    Sabri, M I; Miskon, M F; Yaacob, M R

    2013-01-01

    Nowadays, application of robotics in human life has been explored widely. Robotics exoskeleton system are one of drastically areas in recent robotic research that shows mimic impact in human life. These system have been developed significantly to be used for human power augmentation, robotics rehabilitation, human power assist, and haptic interaction in virtual reality. This paper focus on solving challenges in problem using neural signals and extracting human intent. Commonly, surface electromyography signal (sEMG) are used in order to control human intent for application exoskeleton robot. But the problem lies on difficulty of pattern recognition of the sEMG features due to high noises which are electrode and cable motion artifact, electrode noise, dermic noise, alternating current power line interface, and other noise came from electronic instrument. The main objective in this paper is to study the best features of electromyography in term of time domain (statistical analysis) and frequency domain (Fast Fourier Transform).The secondary objectives is to map the relationship between torque and best features of muscle unit activation potential (MaxPS and RMS) of biceps brachii. This project scope use primary data of 2 male sample subject which using same dominant hand (right handed), age between 20–27 years old, muscle diameter 32cm to 35cm and using single channel muscle (biceps brachii muscle). The experiment conduct 2 times repeated task of contraction and relaxation of biceps brachii when lifting different load from no load to 3kg with ascending 1kg The result shows that Fast Fourier Transform maximum power spectrum (MaxPS) has less error than mean value of reading compare to root mean square (RMS) value. Thus, Fast Fourier Transform maximum power spectrum (MaxPS) show the linear relationship against torque experience by elbow joint to lift different load. As the conclusion, the best features is MaxPS because it has the lowest error than other features and

  11. Robust Features Of Surface Electromyography Signal

    Science.gov (United States)

    Sabri, M. I.; Miskon, M. F.; Yaacob, M. R.

    2013-12-01

    Nowadays, application of robotics in human life has been explored widely. Robotics exoskeleton system are one of drastically areas in recent robotic research that shows mimic impact in human life. These system have been developed significantly to be used for human power augmentation, robotics rehabilitation, human power assist, and haptic interaction in virtual reality. This paper focus on solving challenges in problem using neural signals and extracting human intent. Commonly, surface electromyography signal (sEMG) are used in order to control human intent for application exoskeleton robot. But the problem lies on difficulty of pattern recognition of the sEMG features due to high noises which are electrode and cable motion artifact, electrode noise, dermic noise, alternating current power line interface, and other noise came from electronic instrument. The main objective in this paper is to study the best features of electromyography in term of time domain (statistical analysis) and frequency domain (Fast Fourier Transform).The secondary objectives is to map the relationship between torque and best features of muscle unit activation potential (MaxPS and RMS) of biceps brachii. This project scope use primary data of 2 male sample subject which using same dominant hand (right handed), age between 20-27 years old, muscle diameter 32cm to 35cm and using single channel muscle (biceps brachii muscle). The experiment conduct 2 times repeated task of contraction and relaxation of biceps brachii when lifting different load from no load to 3kg with ascending 1kg The result shows that Fast Fourier Transform maximum power spectrum (MaxPS) has less error than mean value of reading compare to root mean square (RMS) value. Thus, Fast Fourier Transform maximum power spectrum (MaxPS) show the linear relationship against torque experience by elbow joint to lift different load. As the conclusion, the best features is MaxPS because it has the lowest error than other features and show

  12. Efficient Generation and Selection of Combined Features for Improved Classification

    KAUST Repository

    Shono, Ahmad N.

    2014-01-01

    This study contributes a methodology and associated toolkit developed to allow users to experiment with the use of combined features in classification problems. Methods are provided for efficiently generating combined features from an original

  13. Grammar-based feature generation for time-series prediction

    CERN Document Server

    De Silva, Anthony Mihirana

    2015-01-01

    This book proposes a novel approach for time-series prediction using machine learning techniques with automatic feature generation. Application of machine learning techniques to predict time-series continues to attract considerable attention due to the difficulty of the prediction problems compounded by the non-linear and non-stationary nature of the real world time-series. The performance of machine learning techniques, among other things, depends on suitable engineering of features. This book proposes a systematic way for generating suitable features using context-free grammar. A number of feature selection criteria are investigated and a hybrid feature generation and selection algorithm using grammatical evolution is proposed. The book contains graphical illustrations to explain the feature generation process. The proposed approaches are demonstrated by predicting the closing price of major stock market indices, peak electricity load and net hourly foreign exchange client trade volume. The proposed method ...

  14. Analytical Features: A Knowledge-Based Approach to Audio Feature Generation

    Directory of Open Access Journals (Sweden)

    Pachet François

    2009-01-01

    Full Text Available We present a feature generation system designed to create audio features for supervised classification tasks. The main contribution to feature generation studies is the notion of analytical features (AFs, a construct designed to support the representation of knowledge about audio signal processing. We describe the most important aspects of AFs, in particular their dimensional type system, on which are based pattern-based random generators, heuristics, and rewriting rules. We show how AFs generalize or improve previous approaches used in feature generation. We report on several projects using AFs for difficult audio classification tasks, demonstrating their advantage over standard audio features. More generally, we propose analytical features as a paradigm to bring raw signals into the world of symbolic computation.

  15. D Surface Generation from Aerial Thermal Imagery

    Science.gov (United States)

    Khodaei, B.; Samadzadegan, F.; Dadras Javan, F.; Hasani, H.

    2015-12-01

    Aerial thermal imagery has been recently applied to quantitative analysis of several scenes. For the mapping purpose based on aerial thermal imagery, high accuracy photogrammetric process is necessary. However, due to low geometric resolution and low contrast of thermal imaging sensors, there are some challenges in precise 3D measurement of objects. In this paper the potential of thermal video in 3D surface generation is evaluated. In the pre-processing step, thermal camera is geometrically calibrated using a calibration grid based on emissivity differences between the background and the targets. Then, Digital Surface Model (DSM) generation from thermal video imagery is performed in four steps. Initially, frames are extracted from video, then tie points are generated by Scale-Invariant Feature Transform (SIFT) algorithm. Bundle adjustment is then applied and the camera position and orientation parameters are determined. Finally, multi-resolution dense image matching algorithm is used to create 3D point cloud of the scene. Potential of the proposed method is evaluated based on thermal imaging cover an industrial area. The thermal camera has 640×480 Uncooled Focal Plane Array (UFPA) sensor, equipped with a 25 mm lens which mounted in the Unmanned Aerial Vehicle (UAV). The obtained results show the comparable accuracy of 3D model generated based on thermal images with respect to DSM generated from visible images, however thermal based DSM is somehow smoother with lower level of texture. Comparing the generated DSM with the 9 measured GCPs in the area shows the Root Mean Square Error (RMSE) value is smaller than 5 decimetres in both X and Y directions and 1.6 meters for the Z direction.

  16. Investigation into Generation of Micro Features by Localised Electrochemical Deposition

    Science.gov (United States)

    Debnath, Subhrajit; Laskar, Hanimur Rahaman; Bhattacharyya, B.

    2017-11-01

    With the fast advancement of technology, localised electrochemical deposition (LECD) is becoming very advantageous in generating high aspect ratio micro features to meet the steep demand in modern precision industries of the present world. Except many other advantages, this technology is highly uncomplicated and economical for fabricating metal micro-parts with in micron ranges. In the present study, copper micro-columns have been fabricated utilizing LECD process. Different process parameters such as voltage, frequency, duty ratio and electrolyte concentration, which affect the deposition performance have been identified and their effects on deposition performances such as deposition rate, height and diameter of the micro-columns have been experimentally investigated. Taguchi's methodology has been used to study the effects as well as to obtain the optimum values of process parameters so that localised deposition with best performance can be achieved. Moreover, the generated micro-columns were carefully observed under optical and scanning electron microscope from where the surface quality of the deposited micro-columns has been studied qualitatively. Also, an array of copper micro-columns has been fabricated on stainless steel (SS-304) substrate for further exploration of LECD process capability.

  17. Zero-Shot Learning by Generating Pseudo Feature Representations

    OpenAIRE

    Lu, Jiang; Li, Jin; Yan, Ziang; Zhang, Changshui

    2017-01-01

    Zero-shot learning (ZSL) is a challenging task aiming at recognizing novel classes without any training instances. In this paper we present a simple but high-performance ZSL approach by generating pseudo feature representations (GPFR). Given the dataset of seen classes and side information of unseen classes (e.g. attributes), we synthesize feature-level pseudo representations for novel concepts, which allows us access to the formulation of unseen class predictor. Firstly we design a Joint Att...

  18. An ontology design pattern for surface water features

    Science.gov (United States)

    Sinha, Gaurav; Mark, David; Kolas, Dave; Varanka, Dalia; Romero, Boleslo E.; Feng, Chen-Chieh; Usery, E. Lynn; Liebermann, Joshua; Sorokine, Alexandre

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities exist due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology for other more context-dependent ontologies. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex or specialized surface water ontologies. A fundamental distinction is made in this ontology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is implemented in OWL, but Description Logic axioms and a detailed explanation is provided in this paper. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. Also provided is a discussion of why there is a need to complement the pattern with other ontologies, especially the previously developed Surface Network pattern. Finally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through an annotated geospatial dataset and sample queries using the classes of the Surface Water pattern.

  19. Major NSSS design features of the Korean next generation reactor

    International Nuclear Information System (INIS)

    Kim, Insk; Kim, Dong-Su

    1999-01-01

    In order to meet national needs for increasing electric power generation in the Republic of Korea in the 2000s, the Korean nuclear development group (KNDG) is developing a standardized evolutionary advanced light water reactor (ALWR), the Korean Next Generation Reactor (KNGR). It is an advanced version of the successful Korean Standard Nuclear Power Plant (KSNP) design, which meets utility needs for safety enhancement, performance improvement and ease of operation and maintenance. The KNGR design starts fro the proven design concept of the currently operating KSNPs with uprated power and advanced design features required by the utility. The KNGR design is currently in the final stage of the basic design, and the paper describes the major nuclear steam supply system (NSSS) design features of the KNGR together with introduction of the KNGR development program. (author)

  20. Feature generation and representations for protein-protein interaction classification.

    Science.gov (United States)

    Lan, Man; Tan, Chew Lim; Su, Jian

    2009-10-01

    Automatic detecting protein-protein interaction (PPI) relevant articles is a crucial step for large-scale biological database curation. The previous work adopted POS tagging, shallow parsing and sentence splitting techniques, but they achieved worse performance than the simple bag-of-words representation. In this paper, we generated and investigated multiple types of feature representations in order to further improve the performance of PPI text classification task. Besides the traditional domain-independent bag-of-words approach and the term weighting methods, we also explored other domain-dependent features, i.e. protein-protein interaction trigger keywords, protein named entities and the advanced ways of incorporating Natural Language Processing (NLP) output. The integration of these multiple features has been evaluated on the BioCreAtIvE II corpus. The experimental results showed that both the advanced way of using NLP output and the integration of bag-of-words and NLP output improved the performance of text classification. Specifically, in comparison with the best performance achieved in the BioCreAtIvE II IAS, the feature-level and classifier-level integration of multiple features improved the performance of classification 2.71% and 3.95%, respectively.

  1. Recipe for generating Weyl semimetals with extended topologically protected features

    Science.gov (United States)

    Wang, R.; Zhao, J. Z.; Jin, Y. J.; Xu, W. P.; Gan, L.-Y.; Wu, X. Z.; Xu, H.; Tong, S. Y.

    2017-09-01

    We present a recipe that leads to Weyl semimetals with extended topologically protected features. We show that compounds in a family that possess time-reversal symmetry and share a noncentrosymmetric cubic structure with the space group F -43 m (no. 216) host robust Weyl fermions with extended and easily measurable protected features. The candidates in this family are compounds with different chemical formulas, A B2 , ABC, AB C2 , and ABCD, and their Fermi levels are predominantly populated by nontrivial Weyl fermions. Symmetry of the system requires that the Weyl nodes with opposite chirality are well separated in momentum space. Adjacent Weyl points have the same chirality; thus these Weyl nodes would not annihilate each other with respect to lattice perturbations. As Fermi arcs and surface states connect Weyl nodes with opposite chirality, the large separation of the latter in momentum space guarantees the appearance of very long arcs and surface states. This work demonstrates that the use of system symmetry by first-principles calculations is a powerful approach for discovering new Weyl semimetals with attractive features whose protected fermions may be candidates of many applications.

  2. Generating One Biometric Feature from Another: Faces from Fingerprints

    Directory of Open Access Journals (Sweden)

    Seref Sagiroglu

    2010-04-01

    Full Text Available This study presents a new approach based on artificial neural networks for generating one biometric feature (faces from another (only fingerprints. An automatic and intelligent system was designed and developed to analyze the relationships among fingerprints and faces and also to model and to improve the existence of the relationships. The new proposed system is the first study that generates all parts of the face including eyebrows, eyes, nose, mouth, ears and face border from only fingerprints. It is also unique and different from similar studies recently presented in the literature with some superior features. The parameter settings of the system were achieved with the help of Taguchi experimental design technique. The performance and accuracy of the system have been evaluated with 10-fold cross validation technique using qualitative evaluation metrics in addition to the expanded quantitative evaluation metrics. Consequently, the results were presented on the basis of the combination of these objective and subjective metrics for illustrating the qualitative properties of the proposed methods as well as a quantitative evaluation of their performances. Experimental results have shown that one biometric feature can be determined from another. These results have once more indicated that there is a strong relationship between fingerprints and faces.

  3. Generating One Biometric Feature from Another: Faces from Fingerprints

    Science.gov (United States)

    Ozkaya, Necla; Sagiroglu, Seref

    2010-01-01

    This study presents a new approach based on artificial neural networks for generating one biometric feature (faces) from another (only fingerprints). An automatic and intelligent system was designed and developed to analyze the relationships among fingerprints and faces and also to model and to improve the existence of the relationships. The new proposed system is the first study that generates all parts of the face including eyebrows, eyes, nose, mouth, ears and face border from only fingerprints. It is also unique and different from similar studies recently presented in the literature with some superior features. The parameter settings of the system were achieved with the help of Taguchi experimental design technique. The performance and accuracy of the system have been evaluated with 10-fold cross validation technique using qualitative evaluation metrics in addition to the expanded quantitative evaluation metrics. Consequently, the results were presented on the basis of the combination of these objective and subjective metrics for illustrating the qualitative properties of the proposed methods as well as a quantitative evaluation of their performances. Experimental results have shown that one biometric feature can be determined from another. These results have once more indicated that there is a strong relationship between fingerprints and faces. PMID:22399877

  4. Design features of Advanced Power Reactor (APR) 1400 steam generator

    International Nuclear Information System (INIS)

    Park, Tae-Jung; Park, Jun-Soo; Kim, Moo-Yong

    2004-01-01

    Advanced Power Reactor 1400 (APR 1400) which is to achieve the improvement of the safety and economical efficiency has been developed by Korea Hydro and Nuclear Power Co., Ltd. (KHNP) with the support from industries and research institutes. The steam generator for APR 1400 is an evolutionary type from System 80 + , which is the recirculating U-tube heat exchanger with integral economizer. Compared to the System 80 + steam generator, it is focused on the improved design features, operating and design conditions of APR 1400 steam generator. Especially, from the operation experience of Korean Standard Nuclear Power Plant (KSNP) steam generator, the lessons-learned measures are incorporated to prevent the tube wear caused by flow-induced vibration (FIV). The concepts for the preventive design features against FIV are categorized to two fields; flow distribution and dynamic response characteristics. From the standpoint of flow distribution characteristics, the egg-crate flow distribution plate (EFDP) is installed to prevent the local excessive flow loaded on the most susceptible tube to wear. The parametric study is performed to select the optimum design with the efficient mitigation of local excessive flow. ATHOS3 Mod-01 is used and partly modified to analyze the flow field of the APR 1400 steam generator. In addition, the upper tube bundle support is designed to eliminate the presence of tube with a low natural frequency. Based on the improved upper tube bundle support, the modal analysis is performed and compared with that of System 80 + . Using the results of flow distribution and modal analysis, the two mechanisms of flow-induced vibration are investigated; fluid-elastic instability (FEI) and random turbulence excitation (RTE). (authors)

  5. Feature Surfaces in Symmetric Tensor Fields Based on Eigenvalue Manifold.

    Science.gov (United States)

    Palacios, Jonathan; Yeh, Harry; Wang, Wenping; Zhang, Yue; Laramee, Robert S; Sharma, Ritesh; Schultz, Thomas; Zhang, Eugene

    2016-03-01

    Three-dimensional symmetric tensor fields have a wide range of applications in solid and fluid mechanics. Recent advances in the (topological) analysis of 3D symmetric tensor fields focus on degenerate tensors which form curves. In this paper, we introduce a number of feature surfaces, such as neutral surfaces and traceless surfaces, into tensor field analysis, based on the notion of eigenvalue manifold. Neutral surfaces are the boundary between linear tensors and planar tensors, and the traceless surfaces are the boundary between tensors of positive traces and those of negative traces. Degenerate curves, neutral surfaces, and traceless surfaces together form a partition of the eigenvalue manifold, which provides a more complete tensor field analysis than degenerate curves alone. We also extract and visualize the isosurfaces of tensor modes, tensor isotropy, and tensor magnitude, which we have found useful for domain applications in fluid and solid mechanics. Extracting neutral and traceless surfaces using the Marching Tetrahedra method can cause the loss of geometric and topological details, which can lead to false physical interpretation. To robustly extract neutral surfaces and traceless surfaces, we develop a polynomial description of them which enables us to borrow techniques from algebraic surface extraction, a topic well-researched by the computer-aided design (CAD) community as well as the algebraic geometry community. In addition, we adapt the surface extraction technique, called A-patches, to improve the speed of finding degenerate curves. Finally, we apply our analysis to data from solid and fluid mechanics as well as scalar field analysis.

  6. Determination of feature generation methods for PTZ camera object tracking

    Science.gov (United States)

    Doyle, Daniel D.; Black, Jonathan T.

    2012-06-01

    Object detection and tracking using computer vision (CV) techniques have been widely applied to sensor fusion applications. Many papers continue to be written that speed up performance and increase learning of artificially intelligent systems through improved algorithms, workload distribution, and information fusion. Military application of real-time tracking systems is becoming more and more complex with an ever increasing need of fusion and CV techniques to actively track and control dynamic systems. Examples include the use of metrology systems for tracking and measuring micro air vehicles (MAVs) and autonomous navigation systems for controlling MAVs. This paper seeks to contribute to the determination of select tracking algorithms that best track a moving object using a pan/tilt/zoom (PTZ) camera applicable to both of the examples presented. The select feature generation algorithms compared in this paper are the trained Scale-Invariant Feature Transform (SIFT) and Speeded Up Robust Features (SURF), the Mixture of Gaussians (MoG) background subtraction method, the Lucas- Kanade optical flow method (2000) and the Farneback optical flow method (2003). The matching algorithm used in this paper for the trained feature generation algorithms is the Fast Library for Approximate Nearest Neighbors (FLANN). The BSD licensed OpenCV library is used extensively to demonstrate the viability of each algorithm and its performance. Initial testing is performed on a sequence of images using a stationary camera. Further testing is performed on a sequence of images such that the PTZ camera is moving in order to capture the moving object. Comparisons are made based upon accuracy, speed and memory.

  7. An Ontology Design Pattern for Surface Water Features

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Gaurav [Ohio University; Mark, David [University at Buffalo (SUNY); Kolas, Dave [Raytheon BBN Technologies; Varanka, Dalia [U.S. Geological Survey, Rolla, MO; Romero, Boleslo E [University of California, Santa Barbara; Feng, Chen-Chieh [National University of Singapore; Usery, Lynn [U.S. Geological Survey, Rolla, MO; Liebermann, Joshua [Tumbling Walls, LLC; Sorokine, Alexandre [ORNL

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities can be found due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology. It can then be used to systematically incor-porate concepts that are specific to a culture, language, or scientific domain. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex surface water ontologies. A fundamental distinction is made in this on-tology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is imple-mented in OWL, but Description Logic axioms and a detailed explanation is provided. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. A discussion about why there is a need to complement the pattern with other ontologies, es-pecially the previously developed Surface Network pattern is also provided. Fi-nally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through a few queries and annotated geospatial datasets.

  8. Automatic selective feature retention in patient specific elastic surface registration

    CSIR Research Space (South Africa)

    Jansen van Rensburg, GJ

    2011-01-01

    Full Text Available The accuracy with which a recent elastic surface registration algorithm deforms the complex geometry of a skull is examined. This algorithm is then coupled to a line based algorithm as is frequently used in patient specific feature registration...

  9. Analysis of iris surface features in populations of diverse ancestry

    Science.gov (United States)

    Edwards, Melissa; Cha, David; Krithika, S.; Johnson, Monique; Parra, Esteban J.

    2016-01-01

    There are many textural elements that can be found in the human eye, including Fuchs’ crypts, Wolfflin nodules, pigment spots, contraction furrows and conjunctival melanosis. Although iris surface features have been well-studied in populations of European ancestry, the worldwide distribution of these traits is poorly understood. In this paper, we develop a new method of characterizing iris features from photographs of the iris. We then apply this method to a diverse sample of East Asian, European and South Asian ancestry. All five iris features showed significant differences in frequency between the three populations, indicating that iris features are largely population dependent. Although none of the features were correlated with each other in the East and South Asian groups, Fuchs’ crypts were significantly correlated with contraction furrows and pigment spots and contraction furrows were significantly associated with pigment spots in the European group. The genetic marker SEMA3A rs10235789 was significantly associated with Fuchs’ crypt grade in the European, East Asian and South Asian samples and a borderline association between TRAF3IP1 rs3739070 and contraction furrow grade was found in the European sample. The study of iris surface features in diverse populations may provide valuable information of forensic, biomedical and ophthalmological interest. PMID:26909168

  10. Sum frequency generation for surface vibrational spectroscopy

    International Nuclear Information System (INIS)

    Hunt, J.H.; Guyot-Sionnest, P.; Shen, Y.R.

    1987-01-01

    Surface vibrational spectroscopy is one of the best means for characterizing molecular adsorbates. For this reason, many techniques have been developed in the past. However, most of them suffer from poor sensitivity, low spectral and temporal resolution, and applications limited to vacuum solid interfaces. Recently, the second harmonic generation (SHG) technique was proved repeatedly to be a simple but versatile surface probe. It is highly sensitive and surface specific; it is also capable of achieving high temporal, spatial, and spectral resolution. Being an optical technique, it can be applied to any interface accessible by light. The only serious drawback is its lack of molecular selectivity. An obvious remedy is the extension of the technique to IR-visible sum frequency generation (SFG). Surface vibrational spectroscopy with submonolayer sensitivity is then possible using SFG with the help of a tunable IR laser. The authors report here an SFG measurement of the C-H stretch vibration of monolayers of molecules at air-solid and air-liquid interfaces

  11. Stereoscopic Feature Tracking System for Retrieving Velocity of Surface Waters

    Science.gov (United States)

    Zuniga Zamalloa, C. C.; Landry, B. J.

    2017-12-01

    The present work is concerned with the surface velocity retrieval of flows using a stereoscopic setup and finding the correspondence in the images via feature tracking (FT). The feature tracking provides a key benefit of substantially reducing the level of user input. In contrast to other commonly used methods (e.g., normalized cross-correlation), FT does not require the user to prescribe interrogation window sizes and removes the need for masking when specularities are present. The results of the current FT methodology are comparable to those obtained via Large Scale Particle Image Velocimetry while requiring little to no user input which allowed for rapid, automated processing of imagery.

  12. Image Relaxation Matching Based on Feature Points for DSM Generation

    Institute of Scientific and Technical Information of China (English)

    ZHENG Shunyi; ZHANG Zuxun; ZHANG Jianqing

    2004-01-01

    In photogrammetry and remote sensing, image matching is a basic and crucial process for automatic DEM generation. In this paper we presented a image relaxation matching method based on feature points. This method can be considered as an extention of regular grid point based matching. It avoids the shortcome of grid point based matching. For example, with this method, we can avoid low or even no texture area where errors frequently appear in cross correlaton matching. In the mean while, it makes full use of some mature techniques such as probability relaxation, image pyramid and the like which have already been successfully used in grid point matching process. Application of the technique to DEM generaton in different regions proved that it is more reasonable and reliable.

  13. Toward Generating More Diagnostic Features from Photoplethysmogram Waveforms

    Directory of Open Access Journals (Sweden)

    Mohamed Elgendi

    2018-03-01

    Full Text Available Photoplethysmogram (PPG signals collected using a pulse oximeter are increasingly being used for screening and diagnosis purposes. Because of the non-invasive, cost-effective, and easy-to-use nature of the pulse oximeter, clinicians and biomedical engineers are investigating how PPG signals can help in the management of many medical conditions, especially for global health application. The study of PPG signal analysis is relatively new compared to research in electrocardiogram signals, for instance; however, we anticipate that in the near future blood pressure, cardiac output, and other clinical parameters will be measured from wearable devices that collect PPG signals, based on the signal’s vast potential. This article attempts to organize and standardize the names of PPG waveforms to ensure consistent terminologies, thereby helping the rapid developments in this research area, decreasing the disconnect within and among different disciplines, and increasing the number of features generated from PPG waveforms.

  14. Toward Generating More Diagnostic Features from Photoplethysmogram Waveforms.

    Science.gov (United States)

    Elgendi, Mohamed; Liang, Yongbo; Ward, Rabab

    2018-03-11

    Photoplethysmogram (PPG) signals collected using a pulse oximeter are increasingly being used for screening and diagnosis purposes. Because of the non-invasive, cost-effective, and easy-to-use nature of the pulse oximeter, clinicians and biomedical engineers are investigating how PPG signals can help in the management of many medical conditions, especially for global health application. The study of PPG signal analysis is relatively new compared to research in electrocardiogram signals, for instance; however, we anticipate that in the near future blood pressure, cardiac output, and other clinical parameters will be measured from wearable devices that collect PPG signals, based on the signal's vast potential. This article attempts to organize and standardize the names of PPG waveforms to ensure consistent terminologies, thereby helping the rapid developments in this research area, decreasing the disconnect within and among different disciplines, and increasing the number of features generated from PPG waveforms.

  15. Features of infrasonic and ionospheric disturbances generated by launch vehicle

    International Nuclear Information System (INIS)

    Drobzheva, Ya.V.; Krasnov, V.M.; Sokolova, O.I.

    2001-01-01

    In this paper we present a model, which describe the propagation of acoustic pulses through a model terrestrial atmosphere produced by launch vehicle, and effects of these pulses on the ionosphere above the launch vehicle. We show that acoustic pulses generate disturbances of electron density. The value of these disturbances is about 0.04-0.7% of background electron density. So such disturbances can not create serious noise-free during monitoring of explosions by ionospheric method. We calculated parameters of the blast wave generated at the ionospheric heights by launch vehicle. It was shown that the blast wave is intense and it can generates disturbance of electron density which 2.6 times as much then background electron density. This disturbance is 'cord' with diameter about 150-250 m whereas length of radio line is hundreds and thousand km. Duration of ionospheric disturbances are from 0.2 s to 3-5 s. Such values of duration can not be observed during underground and surface explosions. (author)

  16. Oceanic whitecaps: Sea surface features detectable via satellite that ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    experiments that the air-sea gas transfer coefficient for each of a wide range of gases, including carbon dioxide and .... generators with which the basin was equipped, the .... whitecaps in air-sea gas exchange; Gas Transfer at Water. Surfaces ...

  17. Thin plate spline feature point matching for organ surfaces in minimally invasive surgery imaging

    Science.gov (United States)

    Lin, Bingxiong; Sun, Yu; Qian, Xiaoning

    2013-03-01

    Robust feature point matching for images with large view angle changes in Minimally Invasive Surgery (MIS) is a challenging task due to low texture and specular reflections in these images. This paper presents a new approach that can improve feature matching performance by exploiting the inherent geometric property of the organ surfaces. Recently, intensity based template image tracking using a Thin Plate Spline (TPS) model has been extended for 3D surface tracking with stereo cameras. The intensity based tracking is also used here for 3D reconstruction of internal organ surfaces. To overcome the small displacement requirement of intensity based tracking, feature point correspondences are used for proper initialization of the nonlinear optimization in the intensity based method. Second, we generate simulated images from the reconstructed 3D surfaces under all potential view positions and orientations, and then extract feature points from these simulated images. The obtained feature points are then filtered and re-projected to the common reference image. The descriptors of the feature points under different view angles are stored to ensure that the proposed method can tolerate a large range of view angles. We evaluate the proposed method with silicon phantoms and in vivo images. The experimental results show that our method is much more robust with respect to the view angle changes than other state-of-the-art methods.

  18. Airborne laser: a tool to study landscape surface features

    International Nuclear Information System (INIS)

    Ritchie, J.C.; Jackson, T.J.; Everitt, J.H.; Escobar, D.E.; Murphey, J.B.; Grissinger, E.H.

    1992-01-01

    Landscape surface features related to erosion and hydrology were measured using an airborne laser profiler. The airborne laser profiler made 4,000 measurements per second with a recording accuracy of 5 cm (1.9 inches) on a single measurement. Digital data from the laser are recorded and analyzed with a personal computer. These airborne laser profiles provide information on surface landscape features. Topography and canopy heights, cover, and distribution of natural vegetation were determined in studies in South Texas. Laser measurements of shrub cover along flightlines were highly correlated (R 2 = 0.98) with ground measurements made with line-intercept methods. Stream channel cross sections on Goodwin Creek in Mississippi were measured quickly and accurately with airborne laser data. Airborne laser profile data were used to measure small gullies in a level fallow field and in field with mature soybeans. While conventional ground-based techniques can be used to make these measurements, airborne laser profiler techniques allow data to be collected quickly, at a high density, and in areas that are essentially inaccessible for ground surveys. Airborne laser profiler data can quantify landscape features related to erosion and runoff, and the laser proler has the potential to be a useful tool for providing other data for studying and managing natural resources

  19. The phenomenon of generation: features of the sociological conceptualization

    Directory of Open Access Journals (Sweden)

    V. A. Boiko

    2014-11-01

    It is concluded that generation habitualization determines the identity and self-perception of individuals through representation in the title (name of generation and objectivists in social practices and particular life style generation. Examines the processes of self-determination of generation communities through identifying markers that contribute to the institutionalization generation organization of society.

  20. Touching Textured Surfaces: Cells in Somatosensory Cortex Respond Both to Finger Movement and to Surface Features

    Science.gov (United States)

    Darian-Smith, Ian; Sugitani, Michio; Heywood, John; Karita, Keishiro; Goodwin, Antony

    1982-11-01

    Single neurons in Brodmann's areas 3b and 1 of the macaque postcentral gyrus discharge when the monkey rubs the contralateral finger pads across a textured surface. Both the finger movement and the spatial pattern of the surface determine this discharge in each cell. The spatial features of the surface are represented unambiguously only in the responses of populations of these neurons, and not in the responses of the constituent cells.

  1. Land surface and climate parameters and malaria features in Vietnam

    Science.gov (United States)

    Liou, Y. A.; Anh, N. K.

    2017-12-01

    Land surface parameters may affect local microclimate, which in turn alters the development of mosquito habitats and transmission risks (soil-vegetation-atmosphere-vector borne diseases). Forest malaria is a chromic issue in Southeast Asian countries, in particular, such as Vietnam (in 1991, approximate 2 million cases and 4,646 deaths were reported (https://sites.path.org)). Vietnam has lowlands, sub-tropical high humidity, and dense forests, resulting in wide-scale distribution and high biting rate of mosquitos in Vietnam, becoming a challenging and out of control scenario, especially in Vietnamese Central Highland region. It is known that Vietnam's economy mainly relies on agriculture and malaria is commonly associated with poverty. There is a strong demand to investigate the relationship between land surface parameters (land cover, soil moisture, land surface temperature, etc.) and climatic variables (precipitation, humidity, evapotranspiration, etc.) in association with malaria distribution. GIS and remote sensing have been proven their powerful potentials in supporting environmental and health studies. The objective of this study aims to analyze physical attributes of land surface and climate parameters and their links with malaria features. The outcomes are expected to illustrate how remotely sensed data has been utilized in geohealth applications, surveillance, and health risk mapping. In addition, a platform with promising possibilities of allowing disease early-warning systems with citizen participation will be proposed.

  2. Pressure atomizer having multiple orifices and turbulent generation feature

    Science.gov (United States)

    VanBrocklin, Paul G.; Geiger, Gail E.; Moran, Donald James; Fournier, Stephane

    2002-01-01

    A pressure atomizer includes a silicon plate having a top surface and a bottom surface. A portion of the top surface defines a turbulent chamber. The turbulent chamber is peripherally bounded by the top surface of the plate. The turbulent chamber is recessed a predetermined depth relative to the top surface. The silicon plate further defines at least one flow orifice. Each flow orifice extends from the bottom surface of the silicon plate to intersect with and open into the turbulent chamber. Each flow orifice is in fluid communication with the turbulent chamber.

  3. Generalised Brown Clustering and Roll-up Feature Generation

    DEFF Research Database (Denmark)

    Derczynski, Leon; Chester, Sean

    2016-01-01

    active set size. Moreover, the generalisation permits a novel approach to feature selection from Brown clusters: We show that the standard approach of shearing the Brown clustering output tree at arbitrary bitlengths is lossy and that features should be chosen instead by rolling up Generalised Brown...

  4. Adaptive Dynamic Surface Control for Generator Excitation Control System

    Directory of Open Access Journals (Sweden)

    Zhang Xiu-yu

    2014-01-01

    Full Text Available For the generator excitation control system which is equipped with static var compensator (SVC and unknown parameters, a novel adaptive dynamic surface control scheme is proposed based on neural network and tracking error transformed function with the following features: (1 the transformation of the excitation generator model to the linear systems is omitted; (2 the prespecified performance of the tracking error can be guaranteed by combining with the tracking error transformed function; (3 the computational burden is greatly reduced by estimating the norm of the weighted vector of neural network instead of the weighted vector itself; therefore, it is more suitable for the real time control; and (4 the explosion of complicity problem inherent in the backstepping control can be eliminated. It is proved that the new scheme can make the system semiglobally uniformly ultimately bounded. Simulation results show the effectiveness of this control scheme.

  5. A NEW APPROACH OF DIGITAL BRIDGE SURFACE MODEL GENERATION

    Directory of Open Access Journals (Sweden)

    H. Ju

    2012-07-01

    Full Text Available Bridge areas present difficulties for orthophotos generation and to avoid “collapsed” bridges in the orthoimage, operator assistance is required to create the precise DBM (Digital Bridge Model, which is, subsequently, used for the orthoimage generation. In this paper, a new approach of DBM generation, based on fusing LiDAR (Light Detection And Ranging data and aerial imagery, is proposed. The no precise exterior orientation of the aerial image is required for the DBM generation. First, a coarse DBM is produced from LiDAR data. Then, a robust co-registration between LiDAR intensity and aerial image using the orientation constraint is performed. The from-coarse-to-fine hybrid co-registration approach includes LPFFT (Log-Polar Fast Fourier Transform, Harris Corners, PDF (Probability Density Function feature descriptor mean-shift matching, and RANSAC (RANdom Sample Consensus as main components. After that, bridge ROI (Region Of Interest from LiDAR data domain is projected to the aerial image domain as the ROI in the aerial image. Hough transform linear features are extracted in the aerial image ROI. For the straight bridge, the 1st order polynomial function is used; whereas, for the curved bridge, 2nd order polynomial function is used to fit those endpoints of Hough linear features. The last step is the transformation of the smooth bridge boundaries from aerial image back to LiDAR data domain and merge them with the coarse DBM. Based on our experiments, this new approach is capable of providing precise DBM which can be further merged with DTM (Digital Terrain Model derived from LiDAR data to obtain the precise DSM (Digital Surface Model. Such a precise DSM can be used to improve the orthophoto product quality.

  6. Cross-cutting Relationships of Surface Features on Europa

    Science.gov (United States)

    1997-01-01

    This image of Jupiter's moon Europa shows a very complex terrain of ridges and fractures. The absence of large craters and the low number of small craters indicates that this surface is geologically young. The relative ages of the ridges can be determined by using the principle of cross-cutting relationships; i.e. older features are cross-cut by younger features. Using this principle, planetary geologists are able to unravel the sequence of events in this seemingly chaotic terrain to unfold Europa's unique geologic history.The spacecraft Galileo obtained this image on February 20, 1997. The area covered in this image is approximately 11 miles (18 kilometers) by 8.5 miles (14 kilometers) across, near 15 North, 273 West. North is toward the top of the image, with the sun illuminating from the right.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  7. A positive (negative) surface ionization source concept for RIB generation

    International Nuclear Information System (INIS)

    Alton, G.D.; Mills, G.D.

    1995-01-01

    A novel, versatile, new concept, spherical-geometry, positive (negative) surface-ionization source has been designed and fabricated which will have the capability of generating both positive- and negative-ion beams without mechanical changes to the source. The source utilizes a highly permeable, high-work-function Ir ionizer (φ∼ = 5.29 eV) for ionizing highly electropositive atoms/molecules; while for negative-surface ionization, the work function is lowered to φ ∼ = 1.43 eV by continually feeding cesium vapor through the ionizer matrix. The use of Cs to effect low work function surfaces for negative ion beam generation has the potential of overcoming the chronic poisoning effects experienced with LaB 6 while enhancing the probability for negative ion formation of atomic and molecular species with low to intermediate electron affinities. The flexibility of operation in either mode makes it especially attractive for RIB applications and, therefore, the source will be used as a complementary replacement for the high-temperature electron impact ionization sources presently in use at the HRIBF The design features and operational principles of the source will be described in this report

  8. Replication of surface features from a master model to an amorphous metallic article

    Science.gov (United States)

    Johnson, William L.; Bakke, Eric; Peker, Atakan

    1999-01-01

    The surface features of an article are replicated by preparing a master model having a preselected surface feature thereon which is to be replicated, and replicating the preselected surface feature of the master model. The replication is accomplished by providing a piece of a bulk-solidifying amorphous metallic alloy, contacting the piece of the bulk-solidifying amorphous metallic alloy to the surface of the master model at an elevated replication temperature to transfer a negative copy of the preselected surface feature of the master model to the piece, and separating the piece having the negative copy of the preselected surface feature from the master model.

  9. The Next Generation Science Standards: The Features and Challenges

    Science.gov (United States)

    Pruitt, Stephen L.

    2014-01-01

    Beginning in January of 2010, the Carnegie Corporation of New York funded a two-step process to develop a new set of state developed science standards intended to prepare students for college and career readiness in science. These new internationally benchmarked science standards, the Next Generation Science Standards (NGSS) were completed in…

  10. Surface generation of negative hydrogen ion beams

    International Nuclear Information System (INIS)

    Bommel, P.J.M. van.

    1984-01-01

    This thesis describes investigations on negative hydrogen ion sources at the ampere level. Formation of H - ions occurs when positive hydrogen ions capture two electrons at metal surfaces. The negative ionization probability of hydrogen at metal surfaces increases strongly with decreasing work function of the surface. The converters used in this study are covered with cesium. Usually there are 'surface plasma sources' in which the hydrogen source plasma interacts with a converter. In this thesis the author concentrates upon investigating a new concept that has converters outside the plasma. In this approach a positive hydrogen ion beam is extracted from the plasma and is subsequently reflected from a low work function converter surface. (Auth.)

  11. Design and construction features of steam generators at a nuclear power station

    International Nuclear Information System (INIS)

    Chakrabarti, A.K.; Gupta, K.N.; Bapat, C.N.; Sharma, V.K.

    1996-01-01

    The Indian nuclear power programme is based on Pressurised Heavy Water Reactors (PHWRs) using natural uranium as fuel and heavy water as reactor coolant as well as moderator. The nuclear heat is generated in the fuel located in the pressure tubes. Pressurised heavy water in the primary heat transport (PHT) system is circulated through the tubes which picks up the heat from the fuel and transfers it to ordinary water in steam generators (SGs) to produce steam. The steam is used for providing power to the turbine. The steam generator is a critical equipment in the nuclear steam supply system (NSSS) of a nuclear reactor. SG tube surface area constitute about 80% of total primary circuit surface area. A typical value in a 220 MWe reactor is 9000 m 2 which can release considerable amount of corrosion products unless very low corrosion rates are achieved by proper design, material selection and water chemistry control. Design and construction features of SGs are given. 1 tab

  12. Passive safety features for next generation CANDU power plants

    International Nuclear Information System (INIS)

    Natalizio, A.; Hart, R.S.; Lipsett, J.J.; Soedijono, P.; Dick, J.E.

    1989-01-01

    CANDU offers an evolutionary approach to simpler and safer reactors. The CANDU 3, an advanced CANDU, currently in the detailed design stage, offers significant improvements in the areas of safety, design simplicity, constructibility, operability, maintainability, schedule and cost. These are being accomplished by retaining all of the well known CANDU benefits, and by relying on the use of proven components and technologies. A major safety benefit of CANDU is the moderator system which is separate from the coolant. The presence of a cold moderator reduces the consequences arising from a LOCA or loss of heat sink event. In existing CANDU plants even the severe accident - LOCA with failure of the emergency core cooling system - is a design basis event. Further advances toward a simpler and more passively safe reactor will be made using the same evolutionary approach. Building on the strength of the moderator system to mitigate against severe accidents, a passive moderator cooling system, depending only on the law of gravity to perform its function, will be the next step of development. AECL is currently investigating a number of other features that could be incorporated in future evolutionary CANDU designs to enhance protection against accidents, and to limit off-site consequences to an acceptable level, for even the worst event. The additional features being investigated include passive decay heat removal from the heat transport system, a simpler emergency core cooling system and a containment pressure suppression/venting capability for beyond design basis events. Central to these passive decay heat removal schemes is the availability of a short-term heat sink to provide a decay heat removal capability of at least three days, without any station services. Preliminary results from these investigations confirm the feasibility of these schemes. (author)

  13. The effects of droplet characteristics on the surface features in a rain field

    Science.gov (United States)

    Liu, R.; Brown, H.; Liu, X.; Duncan, J. H.

    2013-11-01

    The characteristics of the shape of a water surface in response to the impact of simulated raindrops are studied experimentally in a 1.22-m-by-1.22-m water pool with a water depth of 0.3 m. A rain generator consisting of an open-surface water tank with an array of 22-gauge hypodermic needles (typical needle-to-needle spacing of about L0 = 3 . 5 cm) attached to holes in the tank bottom is mounted 2 m above the water pool. The tank is connected to a 2D translation stage to provide a small-radius (volumetric flow rate (nπd3 / 6) through control of the water depth in the generator tank. The water surface features, including the crown, stalk and ring waves, due to the impacts of the drops are measured with a cinematic laser-induced- fluorescence (LIF) technique. The dependence of these features on the rain characteristics are discussed. The support of the National Science Foundation, Division of Ocean Sciences, and the assistance of Mr. Larry Gong are gratefully acknowledged.

  14. Creation of Principally New Generation of Switching Technique Elements (Reed Switches) with Nanostructured Contact Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Karabanov S M; Zeltser I A; Maizels R M; Moos E N; Arushanov K A, E-mail: zeltseria@rmcip.ru [Russia, Ryazan, 390027, Novaya Str., 51B, Ryazan Metal Ceramics Instrumentation Plant JSC (Russian Federation)

    2011-04-01

    The cycle of activities of the creation of principally new generation of reed switches with nanostructured contact surfaces was implemented. Experimental justification of the opportunity of reed switches creation with modified contact surface was given (instead of precious metals-based galvanic coating). Principally new technological process of modification of magnetically operated contacts contacting surfaces was developed, based on the usage of the ion-plasma methods of nanolayers and nanostructures forming having specified contact features.

  15. Upwelling filaments are cold, typically narrow features in surface ...

    African Journals Online (AJOL)

    spamer

    They are defined by strong ... transporting coastally upwelled water to the deep ... surface temperature anomaly up to 2°C. The cool temperature signal was restricted to a shallow surface ... towards the important process of exchanges between.

  16. Observation of surface features on an active landslide, and implications for understanding its history of movement

    Directory of Open Access Journals (Sweden)

    M. Parise

    2003-01-01

    Full Text Available Surface features are produced as a result of internal deformation of active landslides, and are continuously created and destroyed by the movement. Observation of their presence and distribution, and surveying of their evolution may provide insights for the zonation of the mass movement in sectors characterized by different behaviour. The present study analyses and describes some example of surface features observed on an active mass movement, the Slumgullion earthflow, in the San Juan Mountains of southwestern Colorado. The Slumgullion earthflow is one of the most famous and spectacular landslides in the world; it consists of a younger, active part which moves on and over an older, much larger, inactive part. Total length of the earthflow is 6.8 km, with an estimated volume of 170 × 10 6 m 3 . Its nearly constant rate of movement (ranging from about 2 m per year at the head, to a maximum of 6–7 m per year at its narrow and central part, to values between 1.3 and 2 m per year at the active toe, and the geological properties of moving material, are well suited for the observation of the development and evolution of surface features. In the last 11 years, repeated surveying at the Slumgullion site has been performed through recognition of surface features, measurements of their main characteristics, and detailed mapping. In this study, two sectors of the Slumgullion earthflow are analysed through comparison of the features observed in this time span, and evaluation of the changes occurred: they are the active toe and an area located at the left flank of the landslide. Choice of the sectors was dictated in the first case, by particular activity of movement and the nearby presence of elements at risk (highway located only 250 m downhill from the toe; and in the second case, by the presence of many surface features, mostly consisting of several generations of flank ridges. The active toe of the landslide is characterized by continuous movement

  17. Contributions of feature shapes and surface cues to the recognition and neural representation of facial identity.

    Science.gov (United States)

    Andrews, Timothy J; Baseler, Heidi; Jenkins, Rob; Burton, A Mike; Young, Andrew W

    2016-10-01

    A full understanding of face recognition will involve identifying the visual information that is used to discriminate different identities and how this is represented in the brain. The aim of this study was to explore the importance of shape and surface properties in the recognition and neural representation of familiar faces. We used image morphing techniques to generate hybrid faces that mixed shape properties (more specifically, second order spatial configural information as defined by feature positions in the 2D-image) from one identity and surface properties from a different identity. Behavioural responses showed that recognition and matching of these hybrid faces was primarily based on their surface properties. These behavioural findings contrasted with neural responses recorded using a block design fMRI adaptation paradigm to test the sensitivity of Haxby et al.'s (2000) core face-selective regions in the human brain to the shape or surface properties of the face. The fusiform face area (FFA) and occipital face area (OFA) showed a lower response (adaptation) to repeated images of the same face (same shape, same surface) compared to different faces (different shapes, different surfaces). From the behavioural data indicating the critical contribution of surface properties to the recognition of identity, we predicted that brain regions responsible for familiar face recognition should continue to adapt to faces that vary in shape but not surface properties, but show a release from adaptation to faces that vary in surface properties but not shape. However, we found that the FFA and OFA showed an equivalent release from adaptation to changes in both shape and surface properties. The dissociation between the neural and perceptual responses suggests that, although they may play a role in the process, these core face regions are not solely responsible for the recognition of facial identity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A software tool for simulation of surfaces generated by ball nose end milling

    DEFF Research Database (Denmark)

    Bissacco, Giuliano

    2004-01-01

    , for prediction of surface topography of ball nose end milled surfaces, was developed. Such software tool is based on a simplified model of the ideal tool motion and neglects the effects due to run-out, static and dynamic deflections and error motions, but has the merit of generating in output a file in a format...... readable by a surface processor software (SPIP [2]), for calculation of a number of surface roughness parameters. In the next paragraph a description of the basic features of ball nose end milled surfaces is given, while in paragraph 3 the model is described....

  19. Circular arc snakes and kinematic surface generation

    KAUST Repository

    Barton, Michael

    2013-05-01

    We discuss the theory, discretization, and numerics of curves which are evolving such that part of their shape, or at least their curvature as a function of arc length, remains unchanged. The discretization of a curve as a smooth sequence of circular arcs is well suited for such purposes, and allows us to reduce evolution of curves to the evolution of a control point collection in a certain finite-dimensional shape space. We approach this evolution by a 2-step process: linearized evolution via optimized velocity fields, followed by optimization in order to exactly fulfill all geometric side conditions. We give applications to freeform architecture, including "rationalization" of a surface by congruent arcs, form finding and, most interestingly, non-static architecture. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and Blackwell Publishing Ltd.

  20. A substrate independent approach for generation of surface gradients

    Energy Technology Data Exchange (ETDEWEB)

    Goreham, Renee V. [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); Mierczynska, Agnieszka; Pierce, Madelene [Ian Wark Research Institute, University of South Australia, Mawson Lakes 5095 (Australia); Short, Robert D.; Taheri, Shima; Bachhuka, Akash; Cavallaro, Alex; Smith, Louise E. [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); Vasilev, Krasimir, E-mail: krasimir.vasilev@unisa.edu.au [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia)

    2013-01-01

    Recently, surface gradients have attracted significant interest for various research and technological applications. In this paper, we report a facile and versatile method for generating surface gradients of immobilized nanoparticles, nanotopography and ligands that is independent from the substrate material. The method consists of first depositing a functional polymer layer on a substrate and subsequent time controlled immersion of this functionalized substrate in solution gold nanoparticles (AuNPs), silver nanoparticles (AgNPs) or poly (styrenesulfonate) (PSS). Chemical characterization by X-ray Photoelectron Spectroscopy (XPS) and morphological analysis by Atomic Force Microscopy (AFM) show that the density of nanoparticles and the concentration of PSS across the surface increases in a gradient manner. As expected, time of immersion determines the concentration of surface bound species. We also demonstrate the generation of surface gradients of pure nanotopography. This is achieved by depositing a 5 nm thick plasma polymer layer on top of the number density gradient of nanoparticles to achieve a homogeneous surface chemistry. The surface independent approach for generation of surface gradients presented in this paper may open opportunities for a wider use of surface gradient in research and in various technologies. - Highlights: ► We present a substrate independent approach for generation of surface gradients. ► We demonstrate well-defined density gradients of gold and silver nanoparticles. ► We provide an example of pure surface nanotopography gradients. ► We demonstrate concentration gradients of bound ligands.

  1. A substrate independent approach for generation of surface gradients

    International Nuclear Information System (INIS)

    Goreham, Renee V.; Mierczynska, Agnieszka; Pierce, Madelene; Short, Robert D.; Taheri, Shima; Bachhuka, Akash; Cavallaro, Alex; Smith, Louise E.; Vasilev, Krasimir

    2013-01-01

    Recently, surface gradients have attracted significant interest for various research and technological applications. In this paper, we report a facile and versatile method for generating surface gradients of immobilized nanoparticles, nanotopography and ligands that is independent from the substrate material. The method consists of first depositing a functional polymer layer on a substrate and subsequent time controlled immersion of this functionalized substrate in solution gold nanoparticles (AuNPs), silver nanoparticles (AgNPs) or poly (styrenesulfonate) (PSS). Chemical characterization by X-ray Photoelectron Spectroscopy (XPS) and morphological analysis by Atomic Force Microscopy (AFM) show that the density of nanoparticles and the concentration of PSS across the surface increases in a gradient manner. As expected, time of immersion determines the concentration of surface bound species. We also demonstrate the generation of surface gradients of pure nanotopography. This is achieved by depositing a 5 nm thick plasma polymer layer on top of the number density gradient of nanoparticles to achieve a homogeneous surface chemistry. The surface independent approach for generation of surface gradients presented in this paper may open opportunities for a wider use of surface gradient in research and in various technologies. - Highlights: ► We present a substrate independent approach for generation of surface gradients. ► We demonstrate well-defined density gradients of gold and silver nanoparticles. ► We provide an example of pure surface nanotopography gradients. ► We demonstrate concentration gradients of bound ligands

  2. Cloud and surface textural features in polar regions

    Science.gov (United States)

    Welch, Ronald M.; Kuo, Kwo-Sen; Sengupta, Sailes K.

    1990-01-01

    The study examines the textural signatures of clouds, ice-covered mountains, solid and broken sea ice and floes, and open water. The textural features are computed from sum and difference histogram and gray-level difference vector statistics defined at various pixel displacement distances derived from Landsat multispectral scanner data. Polar cloudiness, snow-covered mountainous regions, solid sea ice, glaciers, and open water have distinguishable texture features. This suggests that textural measures can be successfully applied to the detection of clouds over snow-covered mountains, an ability of considerable importance for the modeling of snow-melt runoff. However, broken stratocumulus cloud decks and thin cirrus over broken sea ice remain difficult to distinguish texturally. It is concluded that even with high spatial resolution imagery, it may not be possible to distinguish broken stratocumulus and thin clouds from sea ice in the marginal ice zone using the visible channel textural features alone.

  3. An Approach for Patient-Specific Multi-domain Vascular Mesh Generation Featuring Spatially Varying Wall Thickness Modeling

    OpenAIRE

    Raut, Samarth S.; Liu, Peng; Finol, Ender A.

    2015-01-01

    In this work, we present a computationally efficient image-derived volume mesh generation approach for vasculatures that implements spatially varying patient-specific wall thickness with a novel inward extrusion of the wall surface mesh. Multi-domain vascular meshes with arbitrary numbers, locations, and patterns of both iliac bifurcations and thrombi can be obtained without the need to specify features or landmark points as input. In addition, the mesh output is coordinate-frame independent ...

  4. GalaxyGAN: Generative Adversarial Networks for recovery of galaxy features

    Science.gov (United States)

    Schawinski, Kevin; Zhang, Ce; Zhang, Hantian; Fowler, Lucas; Krishnan Santhanam, Gokula

    2017-02-01

    GalaxyGAN uses Generative Adversarial Networks to reliably recover features in images of galaxies. The package uses machine learning to train on higher quality data and learns to recover detailed features such as galaxy morphology by effectively building priors. This method opens up the possibility of recovering more information from existing and future imaging data.

  5. Generating Land Surface Reflectance for the New Generation of Geostationary Satellite Sensors with the MAIAC Algorithm

    Science.gov (United States)

    Wang, W.; Wang, Y.; Hashimoto, H.; Li, S.; Takenaka, H.; Higuchi, A.; Lyapustin, A.; Nemani, R. R.

    2017-12-01

    The latest generation of geostationary satellite sensors, including the GOES-16/ABI and the Himawari 8/AHI, provide exciting capability to monitor land surface at very high temporal resolutions (5-15 minute intervals) and with spatial and spectral characteristics that mimic the Earth Observing System flagship MODIS. However, geostationary data feature changing sun angles at constant view geometry, which is almost reciprocal to sun-synchronous observations. Such a challenge needs to be carefully addressed before one can exploit the full potential of the new sources of data. Here we take on this challenge with Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm, recently developed for accurate and globally robust applications like the MODIS Collection 6 re-processing. MAIAC first grids the top-of-atmosphere measurements to a fixed grid so that the spectral and physical signatures of each grid cell are stacked ("remembered") over time and used to dramatically improve cloud/shadow/snow detection, which is by far the dominant error source in the remote sensing. It also exploits the changing sun-view geometry of the geostationary sensor to characterize surface BRDF with augmented angular resolution for accurate aerosol retrievals and atmospheric correction. The high temporal resolutions of the geostationary data indeed make the BRDF retrieval much simpler and more robust as compared with sun-synchronous sensors such as MODIS. As a prototype test for the geostationary-data processing pipeline on NASA Earth Exchange (GEONEX), we apply MAIAC to process 18 months of data from Himawari 8/AHI over Australia. We generate a suite of test results, including the input TOA reflectance and the output cloud mask, aerosol optical depth (AOD), and the atmospherically-corrected surface reflectance for a variety of geographic locations, terrain, and land cover types. Comparison with MODIS data indicates a general agreement between the retrieved surface reflectance

  6. FEATURES OF GEODEFORMATION CHANGES OF NEAR SURFACE SEDIMENTARY ROCKS

    Directory of Open Access Journals (Sweden)

    I. A. Larionov

    2016-11-01

    Full Text Available The results of investigations of the deformation process in the near surface sedimentary rocks, which has been carried out in a seismically active region of Kamchatka peninsular since 2007,are presented. The peculiarity of the experiments on the registration of geodeformations is the application of a laser deformograph-interferometer constructed according to the Michelson interferometer scheme.

  7. Second harmonic generation spectroscopy on Si surfaces and interfaces

    DEFF Research Database (Denmark)

    Pedersen, Kjeld

    2010-01-01

    Optical second harmonic generation (SHG) spectroscopy studies of Si(111) surfaces and interfaces are reviewed for two types of systems: (1) clean 7 x 7 and root 3 x root 3-Ag reconstructed surfaces prepared under ultra-high vacuum conditions where surface states are excited and (2) interfaces...... in silicon-on-insulator (SOI) structures and thin metal films on Si surfaces where several interfaces contribute to the SHG. In all the systems resonances are seen at interband transitions near the bulk critical points E-1 and E-2. On the clean surfaces a number of resonances appear below the onset of bulk...

  8. STUDY ON THE GENERATION OF SOME BLENDING SURFACES

    Directory of Open Access Journals (Sweden)

    Drăgan Florin

    2009-07-01

    Full Text Available In this paper, using the blending (Coons method, we generate some families of free-form surfaces feasible in civil engineering, industries of airplanes, ships, automobiles, industrial and artistic objects, scientific researches and others. The possibility of designing free-form surfaces with the aid of computers has led to new methods for defining surfaces of the following types: Bezier [3], spline [3], Shepard [13], blending (Coons and Gordon [8], [3] and others.

  9. Identification of natural images and computer-generated graphics based on statistical and textural features.

    Science.gov (United States)

    Peng, Fei; Li, Jiao-ting; Long, Min

    2015-03-01

    To discriminate the acquisition pipelines of digital images, a novel scheme for the identification of natural images and computer-generated graphics is proposed based on statistical and textural features. First, the differences between them are investigated from the view of statistics and texture, and 31 dimensions of feature are acquired for identification. Then, LIBSVM is used for the classification. Finally, the experimental results are presented. The results show that it can achieve an identification accuracy of 97.89% for computer-generated graphics, and an identification accuracy of 97.75% for natural images. The analyses also demonstrate the proposed method has excellent performance, compared with some existing methods based only on statistical features or other features. The method has a great potential to be implemented for the identification of natural images and computer-generated graphics. © 2014 American Academy of Forensic Sciences.

  10. Airfoil Trailing Edge Noise Generation and Its Surface Pressure Fluctuation

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong

    2015-01-01

    In the present work, Large Eddy Simulation (LES) of turbulent flows over a NACA 0015 airfoil is performed. The purpose of such numerical study is to relate the aerodynamic surface pressure with the noise generation. The results from LES are validated against detailed surface pressure measurements...... where the time history pressure data are recorded by the surface pressure microphones. After the flow-field is stabilized, the generated noise from the airfoil Trailing Edge (TE) is predicted using the acoustic analogy solver, where the results from LES are the input. It is found that there is a strong...

  11. HYDROLOGIC AND FEATURE-BASED SURFACE ANALYSIS FOR TOOL MARK INVESTIGATION ON ARCHAEOLOGICAL FINDS

    Directory of Open Access Journals (Sweden)

    K. Kovács

    2012-07-01

    Full Text Available The improvement of detailed surface documentation methods provides unique tool mark-study opportunities in the field of archaeological researches. One of these data collection techniques is short-range laser scanning, which creates a digital copy of the object’s morphological characteristics from high-resolution datasets. The aim of our work was the accurate documentation of a Bronze Age sluice box from Mitterberg, Austria with a spatial resolution of 0.2 mm. Furthermore, the investigation of the entirely preserved tool marks on the surface of this archaeological find was also accomplished by these datasets. The methodology of this tool mark-study can be summarized in the following way: At first, a local hydrologic analysis has been applied to separate the various patterns of tools on the finds’ surface. As a result, the XYZ coordinates of the special points, which represent the edge lines of the sliding tool marks, were calculated by buffer operations in a GIS environment. During the second part of the workflow, these edge points were utilized to manually clip the triangle meshes of these patterns in reverse engineering software. Finally, circle features were generated and analysed to determine the different sections along these sliding tool marks. In conclusion, the movement of the hand tool could be reproduced by the spatial analysis of the created features, since the horizontal and vertical position of the defined circle centre points indicated the various phases of the movements. This research shows an exact workflow to determine the fine morphological structures on the surface of the archaeological find.

  12. Engineered biomimicry: polymeric replication of surface features found on insects

    Science.gov (United States)

    Pulsifer, Drew P.; Lakhtakia, Akhlesh; Martín-Palma, Raúl J.; Pantano, Carlo G.

    2011-04-01

    By combining the modified conformal-evaporated-film-by-rotation (M-CEFR) technique with nickel electroforming, we have produced master negatives of nonplanar biotemplates. An approximately 250-nm-thick conformal coating of nanocrystaline nickel is deposited on a surface structure of interest found in class Insecta, and the coating is then reinforced with a roughly 60-μm-thick structural layer of nickel by electroforming. This structural layer endows the M-CEFR coating with the mechanical robustness necessary for casting or stamping multiple polymer replicas of the biotemplate. We have made master negatives of blowfly corneas, beetle elytrons, and butterfly wings.

  13. Feature-based handling of surface faults in compact disc players

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Andersen, Palle

    2006-01-01

    In this paper a novel method called feature-based control is presented. The method is designed to improve compact disc players’ handling of surface faults on the discs. The method is based on a fault-tolerant control scheme, which uses extracted features of the surface faults to remove those from...... the detector signals used for control during the occurrence of surface faults. The extracted features are coefficients of Karhunen–Loève approximations of the surface faults. The performance of the feature-based control scheme controlling compact disc players playing discs with surface faults has been...... validated experimentally. The proposed scheme reduces the control errors due to the surface faults, and in some cases where the standard fault handling scheme fails, our scheme keeps the CD-player playing....

  14. On the generation of surface depressions in polishing polycrystalline diamond compacts

    International Nuclear Information System (INIS)

    Tang, Fengzai; Chen, Yiqing; Zhang, Liangchi

    2014-01-01

    This paper investigates the surface depressions generated during the polishing of the (1 1 1) surfaces of polycrystalline diamond (PCD) compacts when using the dynamic friction polishing (DFP) method. It was found that surface depressions of six-sided faces along octahedral planes were the typical features created by the DFP. Although the size of the well-developed depressions can vary significantly, the rectilinear edges are always aligned with the directions. Pronounced {1 1 1} planar defects (i.e., twins) were revealed underneath a depression apex. The interception of the defect plane with the polished surface accounts for the generation of the aligned depressions and for the discernible asymmetry of the pyramidal faces with respect to the (1 1 1) plane. It was revealed that the attached debris layer on the PCD surfaces contained sp 2 -bounded amorphous carbon and nano-sized crystals. (paper)

  15. Main characteristics and design features of steam generators for VG-400 plant

    International Nuclear Information System (INIS)

    Golovko, V.F.; Grebennik, V.N.; Gol'tsev, A.O.; Ivanov, S.M.; Sergeev, A.I.; Pospelov, V.N.

    1988-01-01

    The description of a steam generator for the VG-400 plant performed in two variants depending on a heat-exchange surface arrangement (one-bundle coil and module-cassette construction) is given. (author)

  16. Generation of gear tooth surfaces by application of CNC machines

    Science.gov (United States)

    Litvin, F. L.; Chen, N. X.

    1994-01-01

    This study will demonstrate the importance of application of computer numerically controlled (CNC) machines in generation of gear tooth surfaces with new topology. This topology decreases gear vibration and will extend the gear capacity and service life. A preliminary investigation by a tooth contact analysis (TCA) program has shown that gear tooth surfaces in line contact (for instance, involute helical gears with parallel axes, worm gear drives with cylindrical worms, etc.) are very sensitive to angular errors of misalignment that cause edge contact and an unfavorable shape of transmission errors and vibration. The new topology of gear tooth surfaces is based on the localization of bearing contact, and the synthesis of a predesigned parabolic function of transmission errors that is able to absorb a piecewise linear function of transmission errors caused by gear misalignment. The report will describe the following topics: description of kinematics of CNC machines with six degrees of freedom that can be applied for generation of gear tooth surfaces with new topology. A new method for grinding of gear tooth surfaces by a cone surface or surface of revolution based on application of CNC machines is described. This method provides an optimal approximation of the ground surface to the given one. This method is especially beneficial when undeveloped ruled surfaces are to be ground. Execution of motions of the CNC machine is also described. The solution to this problem can be applied as well for the transfer of machine tool settings from a conventional generator to the CNC machine. The developed theory required the derivation of a modified equation of meshing based on application of the concept of space curves, space curves represented on surfaces, geodesic curvature, surface torsion, etc. Condensed information on these topics of differential geometry is provided as well.

  17. Oxidative nanopatterning of titanium generates mesoporous surfaces with antimicrobial properties

    Directory of Open Access Journals (Sweden)

    Variola F

    2014-05-01

    Full Text Available Fabio Variola,1,2 Sylvia Francis Zalzal,3 Annie Leduc,3 Jean Barbeau,3 Antonio Nanci31Faculty of Engineering, Department of Mechanical Engineering, 2Faculty of Science, Department of Physics, University of Ottawa, Ottawa, ON, 3Faculty of Dental Medicine, Université de Montréal, Montreal, QC, CanadaAbstract: Mesoporous surfaces generated by oxidative nanopatterning have the capacity to selectively regulate cell behavior, but their impact on microorganisms has not yet been explored. The main objective of this study was to test the effects of such surfaces on the adherence of two common bacteria and one yeast strain that are responsible for nosocomial infections in clinical settings and biomedical applications. In addition, because surface characteristics are known to affect bacterial adhesion, we further characterized the physicochemical properties of the mesoporous surfaces. Focused ion beam (FIB was used to generate ultrathin sections for elemental analysis by energy-dispersive X-ray spectroscopy (EDS, nanobeam electron diffraction (NBED, and high-angle annular dark field (HAADF scanning transmission electron microscopy (STEM imaging. The adherence of Staphylococcus aureus, Escherichia coli and Candida albicans onto titanium disks with mesoporous and polished surfaces was compared. Disks with the two surfaces side-by-side were also used for direct visual comparison. Qualitative and quantitative results from this study indicate that bacterial adhesion is significantly hindered by the mesoporous surface. In addition, we provide evidence that it alters structural parameters of C. albicans that determine its invasiveness potential, suggesting that microorganisms can sense and respond to the mesoporous surface. Our findings demonstrate the efficiency of a simple chemical oxidative treatment in generating nanotextured surfaces with antimicrobial capacity with potential applications in the implant manufacturing industry and hospital setting

  18. Steam generator thermal hydraulic design & functional architecture features and related operational and reliability issues requiring consideration

    International Nuclear Information System (INIS)

    Klarner, R.G.

    2012-01-01

    Proper thermal hydraulic design and functional architecture are critical to successful steam generator operation and long term reliability. The evolution of steam generators has been a gradual learning process that has benefited from continuous industry operational experience (OPEX). Inadequate thermal hydraulic design can lead to numerous degradation mechanisms such as excessive deposition, corrosion, flow and level instabilities, fluid-elastic instabilities and tube wear. The functional architecture determines the health of the tube bundle and the other internals during manufacturing, handling and operation. It also determines thermal performance as well as establishing global thermal-hydraulic characteristics such as water level shrink and swell response. This paper discusses the range of operational and reliability issues and relates them to the thermal hydraulic attributes and functional architecture of steam generators (many SG reliability issues are further discussed in other presentations at this conference). In pursuing such issues, the paper focuses on the four major features of the equipment, identifying in each case the goals and requirements such features must meet. Typical approaches and the means by which such requirements are addressed in current equipment are discussed. The four features are: 1. Tubing Material and Tube Bundle Heat Transfer Performance; a. Two materials are in current use – Alloy 690 TT and Alloy 800. Both are good materials with excellent performance records which serve their owners very well (the reliability attributes of Alloy 800 and 690 are discussed in other papers at this conference). Caution is advised in the supply of any material: – material quality is only assured by what is specified to material suppliers in procurement specifications – i.e. - all the knowledge and research in the world assures nothing if its findings are not reflected in procurement requirements. b. Heat transfer performance in addition to being

  19. Oscillon dynamics and rogue wave generation in Faraday surface ripples.

    Science.gov (United States)

    Xia, H; Maimbourg, T; Punzmann, H; Shats, M

    2012-09-14

    We report new experimental results which suggest that the generation of extreme wave events in the Faraday surface ripples is related to the increase in the horizontal mobility of oscillating solitons (oscillons). The analysis of the oscillon trajectories in a horizontal plane shows that at higher vertical acceleration, oscillons move chaotically, merge and form enclosed areas on the water surface. The probability of the formation of such craters, which precede large wave events, increases with the increase in horizontal mobility.

  20. Local-Scale Simulations of Nucleate Boiling on Micrometer Featured Surfaces: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sitaraman, Hariswaran [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Moreno, Gilberto [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Narumanchi, Sreekant V [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dede, Ercan M. [Toyota Research Institute of North America; Joshi, Shailesh N. [Toyota Research Institute of North America; Zhou, Feng [Toyota Research Institute of North America

    2017-08-03

    A high-fidelity computational fluid dynamics (CFD)-based model for bubble nucleation of the refrigerant HFE7100 on micrometer-featured surfaces is presented in this work. The single-fluid incompressible Navier-Stokes equations, along with energy transport and natural convection effects are solved on a featured surface resolved grid. An a priori cavity detection method is employed to convert raw profilometer data of a surface into well-defined cavities. The cavity information and surface morphology are represented in the CFD model by geometric mesh deformations. Surface morphology is observed to initiate buoyancy-driven convection in the liquid phase, which in turn results in faster nucleation of cavities. Simulations pertaining to a generic rough surface show a trend where smaller size cavities nucleate with higher wall superheat. This local-scale model will serve as a self-consistent connection to larger device scale continuum models where local feature representation is not possible.

  1. Local-Scale Simulations of Nucleate Boiling on Micrometer-Featured Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sitaraman, Hariswaran [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Moreno, Gilberto [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Narumanchi, Sreekant V [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dede, Ercan M. [Toyota Research Institute of North America; Joshi, Shailesh N. [Toyota Research Institute of North America; Zhou, Feng [Toyota Research Institute of North America

    2017-07-12

    A high-fidelity computational fluid dynamics (CFD)-based model for bubble nucleation of the refrigerant HFE7100 on micrometer-featured surfaces is presented in this work. The single-fluid incompressible Navier-Stokes equations, along with energy transport and natural convection effects are solved on a featured surface resolved grid. An a priori cavity detection method is employed to convert raw profilometer data of a surface into well-defined cavities. The cavity information and surface morphology are represented in the CFD model by geometric mesh deformations. Surface morphology is observed to initiate buoyancy-driven convection in the liquid phase, which in turn results in faster nucleation of cavities. Simulations pertaining to a generic rough surface show a trend where smaller size cavities nucleate with higher wall superheat. This local-scale model will serve as a self-consistent connection to larger device scale continuum models where local feature representation is not possible.

  2. Generating strain signals under consideration of road surface profiles

    Science.gov (United States)

    Putra, T. E.; Abdullah, S.; Schramm, D.; Nuawi, M. Z.; Bruckmann, T.

    2015-08-01

    The current study aimed to develop the mechanism for generating strain signal utilising computer-based simulation. The strain data, caused by the acceleration, were undertaken from a fatigue data acquisition involving car movements. Using a mathematical model, the measured strain signals yielded to acceleration data used to describe the bumpiness of road surfaces. The acceleration signals were considered as an external disturbance on generating strain signals. Based on this comparison, both the actual and simulated strain data have similar pattern. The results are expected to provide new knowledge to generate a strain signal via a simulation.

  3. Harmonics Generation by Surface Plasmon Polaritons on Single Nanowires.

    Science.gov (United States)

    de Hoogh, Anouk; Opheij, Aron; Wulf, Matthias; Rotenberg, Nir; Kuipers, L

    2016-08-17

    We present experimental observations of visible wavelength second- and third-harmonic generation on single plasmonic nanowires of variable widths. We identify that near-infrared surface plasmon polaritons, which are guided along the nanowire, act as the source of the harmonics generation. We discuss the underlying mechanism of this nonlinear process, using a combination of spatially resolved measurements and numerical simulations to show that the visible harmonics are generated via a combination of both local and propagating plasmonic modes. Our results provide the first demonstration of nanoscale nonlinear optics with guided, propagating plasmonic modes on a lithographically defined chip, opening up new routes toward integrated optical circuits for information processing.

  4. Thermal Infrared Spectra of Microcrystalline Sedimentary Phases: Effects of Natural Surface Roughness on Spectral Feature Shape

    Science.gov (United States)

    Hardgrove, C.; Rogers, A. D.

    2012-03-01

    Thermal infrared spectral features of common microcrystalline phases (chert, alabaster, micrite) are presented. Spectra are sensitive to mineralogy and micron-scale (~1-25 µm) surface roughness. Roughness is on the scale of the average crystal size.

  5. Orienting in virtual environments: How are surface features and environmental geometry weighted in an orientation task?

    Science.gov (United States)

    Kelly, Debbie M; Bischof, Walter F

    2008-10-01

    We investigated how human adults orient in enclosed virtual environments, when discrete landmark information is not available and participants have to rely on geometric and featural information on the environmental surfaces. In contrast to earlier studies, where, for women, the featural information from discrete landmarks overshadowed the encoding of the geometric information, Experiment 1 showed that when featural information is conjoined with the environmental surfaces, men and women encoded both types of information. Experiment 2 showed that, although both types of information are encoded, performance in locating a goal position is better if it is close to a geometrically or featurally distinct location. Furthermore, although features are relied upon more strongly than geometry, initial experience with an environment influences the relative weighting of featural and geometric cues. Taken together, these results show that human adults use a flexible strategy for encoding spatial information.

  6. An Effective Fault Feature Extraction Method for Gas Turbine Generator System Diagnosis

    Directory of Open Access Journals (Sweden)

    Jian-Hua Zhong

    2016-01-01

    Full Text Available Fault diagnosis is very important to maintain the operation of a gas turbine generator system (GTGS in power plants, where any abnormal situations will interrupt the electricity supply. The fault diagnosis of the GTGS faces the main challenge that the acquired data, vibration or sound signals, contain a great deal of redundant information which extends the fault identification time and degrades the diagnostic accuracy. To improve the diagnostic performance in the GTGS, an effective fault feature extraction framework is proposed to solve the problem of the signal disorder and redundant information in the acquired signal. The proposed framework combines feature extraction with a general machine learning method, support vector machine (SVM, to implement an intelligent fault diagnosis. The feature extraction method adopts wavelet packet transform and time-domain statistical features to extract the features of faults from the vibration signal. To further reduce the redundant information in extracted features, kernel principal component analysis is applied in this study. Experimental results indicate that the proposed feature extracted technique is an effective method to extract the useful features of faults, resulting in improvement of the performance of fault diagnosis for the GTGS.

  7. Phase spectral composition of wind generated ocean surface waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    A study of the composition of the phase spectra of wind generated ocean surface waves is carried out using wave records collected employing a ship borne wave recorder. It is found that the raw phase spectral estimates could be fitted by the Uniform...

  8. Generating description with multi-feature fusion and saliency maps of image

    Science.gov (United States)

    Liu, Lisha; Ding, Yuxuan; Tian, Chunna; Yuan, Bo

    2018-04-01

    Generating description for an image can be regard as visual understanding. It is across artificial intelligence, machine learning, natural language processing and many other areas. In this paper, we present a model that generates description for images based on RNN (recurrent neural network) with object attention and multi-feature of images. The deep recurrent neural networks have excellent performance in machine translation, so we use it to generate natural sentence description for images. The proposed method uses single CNN (convolution neural network) that is trained on ImageNet to extract image features. But we think it can not adequately contain the content in images, it may only focus on the object area of image. So we add scene information to image feature using CNN which is trained on Places205. Experiments show that model with multi-feature extracted by two CNNs perform better than which with a single feature. In addition, we make saliency weights on images to emphasize the salient objects in images. We evaluate our model on MSCOCO based on public metrics, and the results show that our model performs better than several state-of-the-art methods.

  9. Features generated for computational splice-site prediction correspond to functional elements

    Directory of Open Access Journals (Sweden)

    Wilbur W John

    2007-10-01

    Full Text Available Abstract Background Accurate selection of splice sites during the splicing of precursors to messenger RNA requires both relatively well-characterized signals at the splice sites and auxiliary signals in the adjacent exons and introns. We previously described a feature generation algorithm (FGA that is capable of achieving high classification accuracy on human 3' splice sites. In this paper, we extend the splice-site prediction to 5' splice sites and explore the generated features for biologically meaningful splicing signals. Results We present examples from the observed features that correspond to known signals, both core signals (including the branch site and pyrimidine tract and auxiliary signals (including GGG triplets and exon splicing enhancers. We present evidence that features identified by FGA include splicing signals not found by other methods. Conclusion Our generated features capture known biological signals in the expected sequence interval flanking splice sites. The method can be easily applied to other species and to similar classification problems, such as tissue-specific regulatory elements, polyadenylation sites, promoters, etc.

  10. Design Features and Technology Uncertainties for the Next Generation Nuclear Plant

    Energy Technology Data Exchange (ETDEWEB)

    John M. Ryskamp; Phil Hildebrandt; Osamu Baba; Ron Ballinger; Robert Brodsky; Hans-Wolfgang Chi; Dennis Crutchfield; Herb Estrada; Jeane-Claude Garnier; Gerald Gordon; Richard Hobbins; Dan Keuter; Marilyn Kray; Philippe Martin; Steve Melancon; Christian Simon; Henry Stone; Robert Varrin; Werner von Lensa

    2004-06-01

    This report presents the conclusions, observations, and recommendations of the Independent Technology Review Group (ITRG) regarding design features and important technology uncertainties associated with very-high-temperature nuclear system concepts for the Next Generation Nuclear Plant (NGNP). The ITRG performed its reviews during the period November 2003 through April 2004.

  11. Characterization of polymer surface structure and surface mechanical behaviour by sum frequency generation surface vibrational spectroscopy and atomic force microscopy

    International Nuclear Information System (INIS)

    Opdahl, Aric; Koffas, Telly S; Amitay-Sadovsky, Ella; Kim, Joonyeong; Somorjai, Gabor A

    2004-01-01

    Sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM) have been used to study polymer surface structure and surface mechanical behaviour, specifically to study the relationships between the surface properties of polymers and their bulk compositions and the environment to which the polymer is exposed. The combination of SFG surface vibrational spectroscopy and AFM has been used to study surface segregation behaviour of polyolefin blends at the polymer/air and polymer/solid interfaces. SFG surface vibrational spectroscopy and AFM experiments have also been performed to characterize the properties of polymer/liquid and polymer/polymer interfaces, focusing on hydrogel materials. A method was developed to study the surface properties of hydrogel contact lens materials at various hydration conditions. Finally, the effect of mechanical stretching on the surface composition and surface mechanical behaviour of phase-separated polyurethanes, used in biomedical implant devices, has been studied by both SFG surface vibrational spectroscopy and AFM. (topical review)

  12. Automatic digital surface model (DSM) generation from aerial imagery data

    Science.gov (United States)

    Zhou, Nan; Cao, Shixiang; He, Hongyan; Xing, Kun; Yue, Chunyu

    2018-04-01

    Aerial sensors are widely used to acquire imagery for photogrammetric and remote sensing application. In general, the images have large overlapped region, which provide a lot of redundant geometry and radiation information for matching. This paper presents a POS supported dense matching procedure for automatic DSM generation from aerial imagery data. The method uses a coarse-to-fine hierarchical strategy with an effective combination of several image matching algorithms: image radiation pre-processing, image pyramid generation, feature point extraction and grid point generation, multi-image geometrically constraint cross-correlation (MIG3C), global relaxation optimization, multi-image geometrically constrained least squares matching (MIGCLSM), TIN generation and point cloud filtering. The image radiation pre-processing is used in order to reduce the effects of the inherent radiometric problems and optimize the images. The presented approach essentially consists of 3 components: feature point extraction and matching procedure, grid point matching procedure and relational matching procedure. The MIGCLSM method is used to achieve potentially sub-pixel accuracy matches and identify some inaccurate and possibly false matches. The feasibility of the method has been tested on different aerial scale images with different landcover types. The accuracy evaluation is based on the comparison between the automatic extracted DSMs derived from the precise exterior orientation parameters (EOPs) and the POS.

  13. Generation of H-, D- ions on composite surfaces with application to surface/plasma ion source systems

    International Nuclear Information System (INIS)

    Hiskes, J.R.; Karo, A.M.; Wimmer, E.; Freeman, A.J.; Chubb, S.R.

    1983-01-01

    We review some salient features of the experimental and theoretical data pertaining to hydrogen negative ion generation on minimum-work-function composite surfaces consisting of Cs/transition metal substrates. Cesium or hydrogen ion bombardment of a cesium-activated negatively-biased electrode exposed to a cesium-hydrogen discharge results in the release of hydrogen negative ions. These ions originate through desorbtion of hydrogen particles by incident cesium ions, desorbtion by incident hydrogen ions, and by backscattering of incident hydrogen. Each process is characterized by a specific energy and angular distribution. The calculation of ion formation in the crystal selvage region is discussed for different approximations to the surface potential. An ab initio, all-electron, local density functional model for the composite surface electronics is discussed

  14. Vortices generation in the reactive flow on the evaporative surface

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cha Ryeom; Lee, Chang Jin [Konkuk University, Seoul (Korea, Republic of)

    2015-02-15

    Vortices generation and flow dynamics are investigated by a numerical calculation with LES methodology on the evaporative surface including chemical reactions. For simplicity, fuel is radially injected from the surface in order to decouple pyrolysis of solid fuel from the governing equation and consideration of heat transfer balance. Nevertheless its simple treatment of chemical reactions and fuel pyrolysis, numerical results captured very fundamental understandings in terms of averaged temperature, velocity profile, and mixture fraction distribution. Results showed that a well-defined turbulent velocity profile at the inlet becomes twisted and highly wrinkled in the downstream reaching the maximum velocity at far above the surface, where the flame is located. And the thickness of boundary layer increases in the downstream due to the enhanced interaction of axial flow and mass injection from the surface. Also, chemical reaction appears highly active and partially concentrated along the plane where flow condition is in stoichiometric. In particular, flame front locates at the surface where mixture fraction Z equals to 0.07. Flame front severely wrinkles in the downstream by the interaction with turbulences in the flow. Partial reactions on the flame front contribute to produce hot spots periodically in the downstream attaining the max temperature at the center of each spot. This may take the role of additional unsteady heat generations and pressure perturbations in the downstream. Future study will focus on the evolution of hot spots and pressure perturbations in the post chamber of lab scale hybrid rocket motors.

  15. COMPUTER GRAPHICS MEETS IMAGE FUSION: THE POWER OF TEXTURE BAKING TO SIMULTANEOUSLY VISUALISE 3D SURFACE FEATURES AND COLOUR

    Directory of Open Access Journals (Sweden)

    G. J. Verhoeven

    2017-08-01

    Full Text Available Since a few years, structure-from-motion and multi-view stereo pipelines have become omnipresent in the cultural heritage domain. The fact that such Image-Based Modelling (IBM approaches are capable of providing a photo-realistic texture along the threedimensional (3D digital surface geometry is often considered a unique selling point, certainly for those cases that aim for a visually pleasing result. However, this texture can very often also obscure the underlying geometrical details of the surface, making it very hard to assess the morphological features of the digitised artefact or scene. Instead of constantly switching between the textured and untextured version of the 3D surface model, this paper presents a new method to generate a morphology-enhanced colour texture for the 3D polymesh. The presented approach tries to overcome this switching between objects visualisations by fusing the original colour texture data with a specific depiction of the surface normals. Whether applied to the original 3D surface model or a lowresolution derivative, this newly generated texture does not solely convey the colours in a proper way but also enhances the smalland large-scale spatial and morphological features that are hard or impossible to perceive in the original textured model. In addition, the technique is very useful for low-end 3D viewers, since no additional memory and computing capacity are needed to convey relief details properly. Apart from simple visualisation purposes, the textured 3D models are now also better suited for on-surface interpretative mapping and the generation of line drawings.

  16. Computer Graphics Meets Image Fusion: the Power of Texture Baking to Simultaneously Visualise 3d Surface Features and Colour

    Science.gov (United States)

    Verhoeven, G. J.

    2017-08-01

    Since a few years, structure-from-motion and multi-view stereo pipelines have become omnipresent in the cultural heritage domain. The fact that such Image-Based Modelling (IBM) approaches are capable of providing a photo-realistic texture along the threedimensional (3D) digital surface geometry is often considered a unique selling point, certainly for those cases that aim for a visually pleasing result. However, this texture can very often also obscure the underlying geometrical details of the surface, making it very hard to assess the morphological features of the digitised artefact or scene. Instead of constantly switching between the textured and untextured version of the 3D surface model, this paper presents a new method to generate a morphology-enhanced colour texture for the 3D polymesh. The presented approach tries to overcome this switching between objects visualisations by fusing the original colour texture data with a specific depiction of the surface normals. Whether applied to the original 3D surface model or a lowresolution derivative, this newly generated texture does not solely convey the colours in a proper way but also enhances the smalland large-scale spatial and morphological features that are hard or impossible to perceive in the original textured model. In addition, the technique is very useful for low-end 3D viewers, since no additional memory and computing capacity are needed to convey relief details properly. Apart from simple visualisation purposes, the textured 3D models are now also better suited for on-surface interpretative mapping and the generation of line drawings.

  17. Entropy flow and generation in radiative transfer between surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.M.; Basu, S. [Georgia Institute of Technolgy, Atlanta, GA (United States). George W. Woodruff School of Mechanical Engineering

    2007-02-15

    Entropy of radiation has been used to derive the laws of blackbody radiation and determine the maximum efficiency of solar energy conversion. Along with the advancement in thermophotovoltaic technologies and nanoscale heat radiation, there is an urgent need to determine the entropy flow and generation in radiative transfer between nonideal surfaces when multiple reflections are significant. This paper investigates entropy flow and generation when incoherent multiple reflections are included, without considering the effects of interference and photon tunneling. The concept of partial equilibrium is applied to interpret the monochromatic radiation temperature of thermal radiation, T{sub l}(l,{omega}), which is dependent on both wavelength l and direction {omega}. The entropy flux and generation can thus be evaluated for nonideal surfaces. It is shown that several approximate expressions found in the literature can result in significant errors in entropy analysis even for diffuse-gray surfaces. The present study advances the thermodynamics of nonequilibrium thermal radiation and will have a significant impact on the future development of thermophotovoltaic and other radiative energy conversion devices. (author)

  18. Electrochemically Smart Bimetallic Materials Featuring Group 11 Metals: In-situ Conductive Network Generation and Its Impact on Cell Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Esther [Stony Brook Univ., NY (United States)

    2016-11-30

    Our results for this program “Electrochemically smart bimetallic materials featuring Group 11 metals: in-situ conductive matrix generation and its impact on battery capacity, power and reversibility” have been highly successful: 1) we demonstrated material structures which generated in-situ conductive networks through electrochemical activation with increases in conductivity up to 10,000 fold, 2) we pioneered in situ analytical methodology to map the cathodes at several stages of discharge through the use of Energy Dispersive X-ray Diffraction (EDXRD) to elucidate the kinetic dependence of the conductive network formation, and 3) we successfully designed synthetic methodology for direct control of material properties including crystallite size and surface area which showed significant impact on electrochemical behavior.

  19. The feature of emergency diesel generator relaying protection in Tianwan nuclear power station

    International Nuclear Information System (INIS)

    Jiang Xiaopeng; Shi Yan; Li Cong

    2014-01-01

    This paper mainly introduces the function and feature of emergency diesel generator in nuclear power plant, which plays an important role in nuclear accident. It minutely tells about the feature and configuration of relay protection and discusses the rationality of protection scheme, which shows that it can be completely contented all kinds of operation states. It is an analysis and argument about the principle of relay protection in detail, that would operate correctly when emergency diesel generator be in abnormal operating and serious fault conditions, such as cut off emergency diesel generator in order to avoid more harm to emergency diesel generator. It analyzes how the relay responses quickly and locks up the protection action under perturbations in the external power, so it can avoid unnecessary resection of emergency diesel generator to emergency power supply loss and effect of nuclear safety. It also analyzes the flexible use of protection setting of the protective relay to meet various operating status. It elaborates the particularity of relay protection which is due to the particularity of nuclear safety. It analyses the possibility of relay protection which has to be applied to other equipment and the protection setting that was provided by design institute, and puts forward the author's viewpoints. (authors)

  20. Investigation of selected surface integrity features of duplex stainless steel (DSS after turning

    Directory of Open Access Journals (Sweden)

    G. Krolczyk

    2015-01-01

    Full Text Available The article presents surface roughness profiles and Abbott - Firestone curves with vertical and amplitude parameters of surface roughness after turning by means of a coated sintered carbide wedge with a coating with ceramic intermediate layer. The investigation comprised the influence of cutting speed on the selected features of surface integrity in dry machining. The material under investigation was duplex stainless steel with two-phase ferritic-austenitic structure. The tests have been performed under production conditions during machining of parts for electric motors and deep-well pumps. The obtained results allow to draw conclusions about the characteristics of surface properties of the machined parts.

  1. Accessible surface area of proteins from purely sequence information and the importance of global features

    Science.gov (United States)

    Faraggi, Eshel; Zhou, Yaoqi; Kloczkowski, Andrzej

    2014-03-01

    We present a new approach for predicting the accessible surface area of proteins. The novelty of this approach lies in not using residue mutation profiles generated by multiple sequence alignments as descriptive inputs. Rather, sequential window information and the global monomer and dimer compositions of the chain are used. We find that much of the lost accuracy due to the elimination of evolutionary information is recouped by the use of global features. Furthermore, this new predictor produces similar results for proteins with or without sequence homologs deposited in the Protein Data Bank, and hence shows generalizability. Finally, these predictions are obtained in a small fraction (1/1000) of the time required to run mutation profile based prediction. All these factors indicate the possible usability of this work in de-novo protein structure prediction and in de-novo protein design using iterative searches. Funded in part by the financial support of the National Institutes of Health through Grants R01GM072014 and R01GM073095, and the National Science Foundation through Grant NSF MCB 1071785.

  2. Remote sensing of coastal sea-surface features off northern British Columbia

    International Nuclear Information System (INIS)

    Jardine, I.D.; Thomson, K.A.; LeBlond, P.H.; Foreman, M.G.

    1993-01-01

    This article presents an overview of surface oceanographic features identified by AVHRR imagery in Hecate Strait and adjacent waters surrounding the Queen Charlotte Islands, Canada, an area still poor in in situ observations. The observed features and their temporal variability are interpreted in terms of meteorological and hydrological forcing. The effects of tidal mixing are discussed through the application of a finite element numerical model

  3. Comparing experts and novices in Martian surface feature change detection and identification

    Science.gov (United States)

    Wardlaw, Jessica; Sprinks, James; Houghton, Robert; Muller, Jan-Peter; Sidiropoulos, Panagiotis; Bamford, Steven; Marsh, Stuart

    2018-02-01

    Change detection in satellite images is a key concern of the Earth Observation field for environmental and climate change monitoring. Satellite images also provide important clues to both the past and present surface conditions of other planets, which cannot be validated on the ground. With the volume of satellite imagery continuing to grow, the inadequacy of computerised solutions to manage and process imagery to the required professional standard is of critical concern. Whilst studies find the crowd sourcing approach suitable for the counting of impact craters in single images, images of higher resolution contain a much wider range of features, and the performance of novices in identifying more complex features and detecting change, remains unknown. This paper presents a first step towards understanding whether novices can identify and annotate changes in different geomorphological features. A website was developed to enable visitors to flick between two images of the same location on Mars taken at different times and classify 1) if a surface feature changed and if so, 2) what feature had changed from a pre-defined list of six. Planetary scientists provided ;expert; data against which classifications made by novices could be compared when the project subsequently went public. Whilst no significant difference was found in images identified with surface changes by expert and novices, results exhibited differences in consensus within and between experts and novices when asked to classify the type of change. Experts demonstrated higher levels of agreement in classification of changes as dust devil tracks, slope streaks and impact craters than other features, whilst the consensus of novices was consistent across feature types; furthermore, the level of consensus amongst regardless of feature type. These trends are secondary to the low levels of consensus found, regardless of feature type or classifier expertise. These findings demand the attention of researchers who

  4. A statistical-textural-features based approach for classification of solid drugs using surface microscopic images.

    Science.gov (United States)

    Tahir, Fahima; Fahiem, Muhammad Abuzar

    2014-01-01

    The quality of pharmaceutical products plays an important role in pharmaceutical industry as well as in our lives. Usage of defective tablets can be harmful for patients. In this research we proposed a nondestructive method to identify defective and nondefective tablets using their surface morphology. Three different environmental factors temperature, humidity and moisture are analyzed to evaluate the performance of the proposed method. Multiple textural features are extracted from the surface of the defective and nondefective tablets. These textural features are gray level cooccurrence matrix, run length matrix, histogram, autoregressive model and HAAR wavelet. Total textural features extracted from images are 281. We performed an analysis on all those 281, top 15, and top 2 features. Top 15 features are extracted using three different feature reduction techniques: chi-square, gain ratio and relief-F. In this research we have used three different classifiers: support vector machine, K-nearest neighbors and naïve Bayes to calculate the accuracies against proposed method using two experiments, that is, leave-one-out cross-validation technique and train test models. We tested each classifier against all selected features and then performed the comparison of their results. The experimental work resulted in that in most of the cases SVM performed better than the other two classifiers.

  5. Surface features on Sahara soil dust particles made visible by atomic force microscope (AFM phase images

    Directory of Open Access Journals (Sweden)

    M. O. Andreae

    2008-10-01

    Full Text Available We show that atomic force microscopy (AFM phase images can reveal surface features of soil dust particles, which are not evident using other microscopic methods. The non-contact AFM method is able to resolve topographical structures in the nanometer range as well as to uncover repulsive atomic forces and attractive van der Waals' forces, and thus gives insight to surface properties. Though the method does not allow quantitative assignment in terms of chemical compound description, it clearly shows deposits of distinguishable material on the surface. We apply this technique to dust aerosol particles from the Sahara collected over the Atlantic Ocean and describe micro-features on the surfaces of such particles.

  6. Surface features on Sahara soil dust particles made visible by atomic force microscope (AFM) phase images

    OpenAIRE

    G. Helas; M. O. Andreae

    2008-01-01

    We show that atomic force microscopy (AFM) phase images can reveal surface features of soil dust particles, which are not evident using other microscopic methods. The non-contact AFM method is able to resolve topographical structures in the nanometer range as well as to uncover repulsive atomic forces and attractive van der Waals' forces, and thus gives insight to surface properties. Though the method does not allow quantitative assignment in terms of chemical compound description, it clearly...

  7. Shape based automated detection of pulmonary nodules with surface feature based false positive reduction

    International Nuclear Information System (INIS)

    Nomura, Y.; Itoh, H.; Masutani, Y.; Ohtomo, K.; Maeda, E.; Yoshikawa, T.; Hayashi, N.

    2007-01-01

    We proposed a shape based automated detection of pulmonary nodules with surface feature based false positive (FP) reduction. In the proposed system, the FP existing in internal of vessel bifurcation is removed using extracted surface of vessels and nodules. From the validation with 16 chest CT scans, we find that the proposed CAD system achieves 18.7 FPs/scan at 90% sensitivity, and 7.8 FPs/scan at 80% sensitivity. (orig.)

  8. Surface feature congruency effects in the object-reviewing paradigm are dependent on task memory demands.

    Science.gov (United States)

    Kimchi, Ruth; Pirkner, Yossef

    2014-08-01

    Perception of object continuity depends on establishing correspondence between objects viewed across disruptions in visual information. The role of spatiotemporal information in guiding object continuity is well documented; the role of surface features, however, is controversial. Some researchers have shown an object-specific preview benefit (OSPB)-a standard index of object continuity-only when correspondence could be based on an object's spatiotemporal information, whereas others have found color-based OSPB, suggesting that surface features can also guide object continuity. This study shows that surface feature-based OSPB is dependent on the task memory demands. When the task involved letters and matching just one target letter to the preview ones, no color congruency effect was found under spatiotemporal discontinuity and spatiotemporal ambiguity (Experiments 1-3), indicating that the absence of feature-based OSPB cannot be accounted for by salient spatiotemporal discontinuity. When the task involved complex shapes and matching two target shapes to the preview ones, color-based OSPB was obtained. Critically, however, when a visual working memory task was performed concurrently with the matching task, the presence of a nonspatial (but not a spatial) working memory load eliminated the color-based OSPB (Experiments 4 and 5). These results suggest that the surface feature congruency effects that are observed in the object-reviewing paradigm (with the matching task) reflect memory-based strategies that participants use to solve a memory-demanding task; therefore, they are not reliable measures of online object continuity and cannot be taken as evidence for the role of surface features in establishing object correspondence.

  9. Simulation on scattering features of biological tissue based on generated refractive-index model

    International Nuclear Information System (INIS)

    Wang Baoyong; Ding Zhihua

    2011-01-01

    Important information on morphology of biological tissue can be deduced from elastic scattering spectra, and their analyses are based on the known refractive-index model of tissue. In this paper, a new numerical refractive-index model is put forward, and its scattering properties are intensively studied. Spectral decomposition [1] is a widely used method to generate random medium in geology, but it is never used in biology. Biological tissue is different from geology in the sense of random medium. Autocorrelation function describe almost all of features in geology, but biological tissue is not as random as geology, its structure is regular in the sense of fractal geometry [2] , and fractal dimension can be used to describe its regularity under random. Firstly scattering theories of this fractal media are reviewed. Secondly the detailed generation process of refractive-index is presented. Finally the scattering features are simulated in FDTD (Finite Difference Time Domain) Solutions software. From the simulation results, we find that autocorrelation length and fractal dimension controls scattering feature of biological tissue.

  10. Contributions of feature shapes and surface cues to the recognition of facial expressions.

    Science.gov (United States)

    Sormaz, Mladen; Young, Andrew W; Andrews, Timothy J

    2016-10-01

    Theoretical accounts of face processing often emphasise feature shapes as the primary visual cue to the recognition of facial expressions. However, changes in facial expression also affect the surface properties of the face. In this study, we investigated whether this surface information can also be used in the recognition of facial expression. First, participants identified facial expressions (fear, anger, disgust, sadness, happiness) from images that were manipulated such that they varied mainly in shape or mainly in surface properties. We found that the categorization of facial expression is possible in either type of image, but that different expressions are relatively dependent on surface or shape properties. Next, we investigated the relative contributions of shape and surface information to the categorization of facial expressions. This employed a complementary method that involved combining the surface properties of one expression with the shape properties from a different expression. Our results showed that the categorization of facial expressions in these hybrid images was equally dependent on the surface and shape properties of the image. Together, these findings provide a direct demonstration that both feature shape and surface information make significant contributions to the recognition of facial expressions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Generation of 3D nanopatterns with smooth surfaces

    International Nuclear Information System (INIS)

    Waid, Simon; Wanzenboeck, Heinz D; Gavagnin, Marco; Bertagnolli, Emmerich; Muehlberger, Michael

    2014-01-01

    Ga implantation into Si and reactive ion etching has been previously identified as candidate techniques for the generation of 3D nanopatterns. However, the structures manufactured using these techniques exhibited impedingly high surface roughness. In this work, we investigate the source of roughness and introduce a new patterning process to solve this issue. The novel patterning process introduces an additional layer absorbing the implanted Ga, thus preventing the clustering of the implanted Ga observed with uncoated Si substrates. This process enables 3D nanopatterning with sub-100 nm lateral resolution in conjunction with smooth height transitions and surface roughness down to 4 nm root mean square. Such patterns are ideally suited for optical applications and enable the manufacturing of nanoimprint lithography templates for low-profile Fresnel lenses. (paper)

  12. Surface- and interface-engineered heterostructures for solar hydrogen generation

    Science.gov (United States)

    Chen, Xiangyan; Li, Yanrui; Shen, Shaohua

    2018-04-01

    Photoelectrochemical (PEC) water splitting based on semiconductor photoelectrodes provides a promising platform for reducing environmental pollution and solving the energy crisis by developing clean, sustainable and environmentally friendly hydrogen energy. In this context, metal oxides with their advantages including low cost, good chemical stability and environmental friendliness, have attracted extensive attention among the investigated candidates. However, the large bandgap, poor charge transfer ability and high charge recombination rate limit the PEC performance of metal oxides as photoelectrodes. To solve this limitation, many approaches toward enhanced PEC water splitting performance, which focus on surface and interface engineering, have been presented. In this topical review, we concentrate on the heterostructure design of some typical metal oxides with narrow bandgaps (e.g. Fe2O3, WO3, BiVO4 and Cu2O) as photoelectrodes. An overview of the surface- and interface-engineered heterostructures, including semiconductor heterojunctions, surface protection, surface passivation and cocatalyst decoration, will be given to introduce the recent advances in metal oxide heterostructures for PEC water splitting. This article aims to provide fundamental references and principles for designing metal oxide heterostructures with high activity and stability as photoelectrodes for PEC solar hydrogen generation.

  13. Fusion of geometric and texture features for finger knuckle surface recognition

    Directory of Open Access Journals (Sweden)

    K. Usha

    2016-03-01

    Full Text Available Hand-based biometrics plays a significant role in establishing security for real-time environments involving human interaction and is found to be more successful in terms of high speed and accuracy. This paper investigates on an integrated approach for personal authentication using Finger Back Knuckle Surface (FBKS based on two methodologies viz., Angular Geometric Analysis based Feature Extraction Method (AGFEM and Contourlet Transform based Feature Extraction Method (CTFEM. Based on these methods, this personal authentication system simultaneously extracts shape oriented feature information and textural pattern information of FBKS for authenticating an individual. Furthermore, the proposed geometric and textural analysis methods extract feature information from both proximal phalanx and distal phalanx knuckle regions (FBKS, while the existing works of the literature concentrate only on the features of proximal phalanx knuckle region. The finger joint region found nearer to the tip of the finger is called distal phalanx region of FBKS, which is a unique feature and has greater potentiality toward identification. Extensive experiments conducted using newly created database with 5400 FBKS images and the obtained results infer that the integration of shape oriented features with texture feature information yields excellent accuracy rate of 99.12% with lowest equal error rate of 1.04%.

  14. CargoCBM – Feature Generation and Classification for a Condition Monitoring System for Freight Wagons

    International Nuclear Information System (INIS)

    Gericke, C; Hecht, M

    2012-01-01

    Despite the fact that rail freight transport is one of the most environmentally friendly matters of transport, its growth has been far behind the growth of freight transport in general. Studies showed that a competitive disadvantage is caused by a low availability of rolling stock, especially freight wagons. Changing from a time based to a condition based maintenance strategy is believed to decrease down times by at least one third. To make condition based maintenance for freight wagons possible the TU Berlin and five industry partners started the research project CargoCBM. One task in this project is to develop algorithms for the automatic on-board diagnosis of wheel flats. The focus of the work is on the process of feature generation and feature selection as well as the application of different classifiers to automatically evaluate the data. Based on the results of measured data, features were selected and tested with different classifiers. Thought advanced classifiers such as neural networks have been analysed in accordance to their classification accuracy. It can be shown that with carefully constructed and selected features comparatively simple classifiers can lead to excellent results.

  15. Improvement of Safety Features in Standard Operation Procedure of Tc-99m Generator

    International Nuclear Information System (INIS)

    Manisah Saedon; Mohd Khairul Hakimi; Shyen, A.K.S.

    2011-01-01

    This paper describes the improvements proposed to the original production procedures for Tc-99m generators. Improvements are intended to add safety and health features for workers into the existing procedures. The difference between the new safe work procedures from the original work procedures; is the concern about the safety and health of employees other than the product safety. One of the suggested safety characteristics is by using the visual aid so that the workers can easily see and read the procedures when they perform their duties, whereas the previous procedures are kept in the manual and difficult to access. The purpose of this paper is to share information about the importance of safety and health features for the workers in the procedures established in addition to provide awareness to all parties involved. (author)

  16. Study of Dynamic Features of Surface Plasma in High-Power Disk Laser Welding

    International Nuclear Information System (INIS)

    Wang Teng; Gao Xiangdong; Seiji, Katayama; Jin, Xiaoli

    2012-01-01

    High-speed photography was used to obtain the dynamic changes in the surface plasma during a high-power disk laser welding process. A color space clustering algorithm to extract the edge information of the surface plasma region was developed in order to improve the accuracy of image processing. With a comparative analysis of the plasma features, i.e., area and height, and the characteristics of the welded seam, the relationship between the surface plasma and the stability of the laser welding process was characterized, which provides a basic understanding for the real-time monitoring of laser welding.

  17. Structural features of the adsorption layer of pentacene on the graphite surface and the PMMA/graphite hybrid surface

    Science.gov (United States)

    Fadeeva, A. I.; Gorbunov, V. A.; Litunenko, T. A.

    2017-08-01

    Using the molecular dynamics and the Monte Carlo methods, we have studied the structural features and growth mechanism of the pentacene film on graphite and polymethylmethacrylate /graphite surfaces. Monolayer capacity and molecular area, optimal angles between the pentacene molecules and graphite and PMMA/graphite surfaces as well as the characteristic angles between the neighboring pentacene molecules in the adsorption layer were estimated. It is shown that the orientation of the pentacene molecules in the film is determined by a number of factors, including the surface concentration of the molecules, relief of the surface, presence or absence of the polymer layer and its thickness. The pentacene molecules adsorbed on the graphite surface keep a horizontal position relative to the long axis at any surface coverage/thickness of the film. In the presence of the PMMA layer on the graphite, the increase of the number of pentacene molecules as well as the thickness of the PMMA layer induce the change of molecular orientation from predominantly horizontal to vertical one. The reason for such behavior is supposed to be the roughness of the PMMA surface.

  18. Real-time UAV trajectory generation using feature points matching between video image sequences

    Science.gov (United States)

    Byun, Younggi; Song, Jeongheon; Han, Dongyeob

    2017-09-01

    Unmanned aerial vehicles (UAVs), equipped with navigation systems and video capability, are currently being deployed for intelligence, reconnaissance and surveillance mission. In this paper, we present a systematic approach for the generation of UAV trajectory using a video image matching system based on SURF (Speeded up Robust Feature) and Preemptive RANSAC (Random Sample Consensus). Video image matching to find matching points is one of the most important steps for the accurate generation of UAV trajectory (sequence of poses in 3D space). We used the SURF algorithm to find the matching points between video image sequences, and removed mismatching by using the Preemptive RANSAC which divides all matching points to outliers and inliers. The inliers are only used to determine the epipolar geometry for estimating the relative pose (rotation and translation) between image sequences. Experimental results from simulated video image sequences showed that our approach has a good potential to be applied to the automatic geo-localization of the UAVs system

  19. Predicting the Occurrence of Cave-Inhabiting Fauna Based on Features of the Earth Surface Environment.

    Science.gov (United States)

    Christman, Mary C; Doctor, Daniel H; Niemiller, Matthew L; Weary, David J; Young, John A; Zigler, Kirk S; Culver, David C

    2016-01-01

    One of the most challenging fauna to study in situ is the obligate cave fauna because of the difficulty of sampling. Cave-limited species display patchy and restricted distributions, but it is often unclear whether the observed distribution is a sampling artifact or a true restriction in range. Further, the drivers of the distribution could be local environmental conditions, such as cave humidity, or they could be associated with surface features that are surrogates for cave conditions. If surface features can be used to predict the distribution of important cave taxa, then conservation management is more easily obtained. We examined the hypothesis that the presence of major faunal groups of cave obligate species could be predicted based on features of the earth surface. Georeferenced records of cave obligate amphipods, crayfish, fish, isopods, beetles, millipedes, pseudoscorpions, spiders, and springtails within the area of Appalachian Landscape Conservation Cooperative in the eastern United States (Illinois to Virginia and New York to Alabama) were assigned to 20 x 20 km grid cells. Habitat suitability for these faunal groups was modeled using logistic regression with twenty predictor variables within each grid cell, such as percent karst, soil features, temperature, precipitation, and elevation. Models successfully predicted the presence of a group greater than 65% of the time (mean = 88%) for the presence of single grid cell endemics, and for all faunal groups except pseudoscorpions. The most common predictor variables were latitude, percent karst, and the standard deviation of the Topographic Position Index (TPI), a measure of landscape rugosity within each grid cell. The overall success of these models points to a number of important connections between the surface and cave environments, and some of these, especially soil features and topographic variability, suggest new research directions. These models should prove to be useful tools in predicting the

  20. Chemical name extraction based on automatic training data generation and rich feature set.

    Science.gov (United States)

    Yan, Su; Spangler, W Scott; Chen, Ying

    2013-01-01

    The automation of extracting chemical names from text has significant value to biomedical and life science research. A major barrier in this task is the difficulty of getting a sizable and good quality data to train a reliable entity extraction model. Another difficulty is the selection of informative features of chemical names, since comprehensive domain knowledge on chemistry nomenclature is required. Leveraging random text generation techniques, we explore the idea of automatically creating training sets for the task of chemical name extraction. Assuming the availability of an incomplete list of chemical names, called a dictionary, we are able to generate well-controlled, random, yet realistic chemical-like training documents. We statistically analyze the construction of chemical names based on the incomplete dictionary, and propose a series of new features, without relying on any domain knowledge. Compared to state-of-the-art models learned from manually labeled data and domain knowledge, our solution shows better or comparable results in annotating real-world data with less human effort. Moreover, we report an interesting observation about the language for chemical names. That is, both the structural and semantic components of chemical names follow a Zipfian distribution, which resembles many natural languages.

  1. An Axiomatic Design Approach of Nanofluid-Engineered Nuclear Safety Features for Generation III+ React

    International Nuclear Information System (INIS)

    Bang, In Cheol; Heo, Gyun Young; Jeong, Yong Hoon; Heo, Sun

    2009-01-01

    A variety of Generation III/III+ reactor designs featuring enhanced safety and improved economics are being proposed by nuclear power industries around the world to solve the future energy supply shortfall. Nanofluid coolants showing an improved thermal performance are being considered as a new key technology to secure nuclear safety and economics. However, it should be noted that there is a lack of comprehensible design works to apply nanofluids to Generation III+ reactor designs. In this work, the review of accident scenarios that consider expected nanofluid mechanisms is carried out to seek detailed application spots. The Axiomatic Design (AD) theory is then applied to systemize the design of nanofluid-engineered nuclear safety systems such as Emergency Core Cooling System (ECCS) and External Reactor Vessel Cooling System (ERVCS). The various couplings between Gen-III/III+ nuclear safety features and nanofluids are investigated and they try to be reduced from the perspective of the AD in terms of prevention/mitigation of severe accidents. This study contributes to the establishment of a standard communication protocol in the design of nanofluid-engineered nuclear safety systems

  2. Generative adversarial networks recover features in astrophysical images of galaxies beyond the deconvolution limit

    Science.gov (United States)

    Schawinski, Kevin; Zhang, Ce; Zhang, Hantian; Fowler, Lucas; Santhanam, Gokula Krishnan

    2017-05-01

    Observations of astrophysical objects such as galaxies are limited by various sources of random and systematic noise from the sky background, the optical system of the telescope and the detector used to record the data. Conventional deconvolution techniques are limited in their ability to recover features in imaging data by the Shannon-Nyquist sampling theorem. Here, we train a generative adversarial network (GAN) on a sample of 4550 images of nearby galaxies at 0.01 < z < 0.02 from the Sloan Digital Sky Survey and conduct 10× cross-validation to evaluate the results. We present a method using a GAN trained on galaxy images that can recover features from artificially degraded images with worse seeing and higher noise than the original with a performance that far exceeds simple deconvolution. The ability to better recover detailed features such as galaxy morphology from low signal to noise and low angular resolution imaging data significantly increases our ability to study existing data sets of astrophysical objects as well as future observations with observatories such as the Large Synoptic Sky Telescope (LSST) and the Hubble and James Webb space telescopes.

  3. Fast and robust generation of feature maps for region-based visual attention.

    Science.gov (United States)

    Aziz, Muhammad Zaheer; Mertsching, Bärbel

    2008-05-01

    Visual attention is one of the important phenomena in biological vision which can be followed to achieve more efficiency, intelligence, and robustness in artificial vision systems. This paper investigates a region-based approach that performs pixel clustering prior to the processes of attention in contrast to late clustering as done by contemporary methods. The foundation steps of feature map construction for the region-based attention model are proposed here. The color contrast map is generated based upon the extended findings from the color theory, the symmetry map is constructed using a novel scanning-based method, and a new algorithm is proposed to compute a size contrast map as a formal feature channel. Eccentricity and orientation are computed using the moments of obtained regions and then saliency is evaluated using the rarity criteria. The efficient design of the proposed algorithms allows incorporating five feature channels while maintaining a processing rate of multiple frames per second. Another salient advantage over the existing techniques is the reusability of the salient regions in the high-level machine vision procedures due to preservation of their shapes and precise locations. The results indicate that the proposed model has the potential to efficiently integrate the phenomenon of attention into the main stream of machine vision and systems with restricted computing resources such as mobile robots can benefit from its advantages.

  4. Surface plasma source with saddle antenna radio frequency plasma generator.

    Science.gov (United States)

    Dudnikov, V; Johnson, R P; Murray, S; Pennisi, T; Piller, C; Santana, M; Stockli, M; Welton, R

    2012-02-01

    A prototype RF H(-) surface plasma source (SPS) with saddle (SA) RF antenna is developed which will provide better power efficiency for high pulsed and average current, higher brightness with longer lifetime and higher reliability. Several versions of new plasma generators with small AlN discharge chambers and different antennas and magnetic field configurations were tested in the plasma source test stand. A prototype SA SPS was installed in the Spallation Neutron Source (SNS) ion source test stand with a larger, normal-sized SNS AlN chamber that achieved unanalyzed peak currents of up to 67 mA with an apparent efficiency up to 1.6 mA∕kW. Control experiments with H(-) beam produced by SNS SPS with internal and external antennas were conducted. A new version of the RF triggering plasma gun has been designed. A saddle antenna SPS with water cooling is fabricated for high duty factor testing.

  5. Analyzing surface features on icy satellites using a new two-layer analogue model

    Science.gov (United States)

    Morales, K. M.; Leonard, E. J.; Pappalardo, R. T.; Yin, A.

    2017-12-01

    The appearance of similar surface morphologies across many icy satellites suggests potentially unified formation mechanisms. Constraining the processes that shape the surfaces of these icy worlds is fundamental to understanding their rheology and thermal evolution—factors that have implications for potential habitability. Analogue models have proven useful for investigating and quantifying surface structure formation on Earth, but have only been sparsely applied to icy bodies. In this study, we employ an innovative two-layer analogue model that simulates a warm, ductile ice layer overlain by brittle surface ice on satellites such as Europa and Enceladus. The top, brittle layer is composed of fine-grained sand while the ductile, lower viscosity layer is made of putty. These materials were chosen because they scale up reasonably to the conditions on Europa and Enceladus. Using this analogue model, we investigate the role of the ductile layer in forming contractional structures (e.g. folds) that would compensate for the over-abundance of extensional features observed on icy satellites. We do this by simulating different compressional scenarios in the analogue model and analyzing whether the resulting features resemble those on icy bodies. If the resulting structures are similar, then the model can be used to quantify the deformation by calculating strain. These values can then be scaled up to Europa or Enceladus and used to quantity the observed surface morphologies and the amount of extensional strain accommodated by certain features. This presentation will focus on the resulting surface morphologies and the calculated strain values from several analogue experiments. The methods and findings from this work can then be expanded and used to study other icy bodies, such as Triton, Miranda, Ariel, and Pluto.

  6. A novel approach to generate random surface thermal loads in piping

    Energy Technology Data Exchange (ETDEWEB)

    Costa Garrido, Oriol, E-mail: oriol.costa@ijs.si; El Shawish, Samir; Cizelj, Leon

    2014-07-01

    Highlights: • Approach for generating continuous and time-dependent random thermal fields. • Temperature fields simulate fluid mixing thermal loads at fluid–wall interface. • Through plane-wave decomposition, experimental temperature statistics are reproduced. • Validation of the approach with a case study from literature. • Random surface thermal loads generation for future thermal fatigue analyses of piping. - Abstract: There is a need to perform three-dimensional mechanical analyses of pipes, subjected to complex thermo-mechanical loadings such as the ones evolving from turbulent fluid mixing in a T-junction. A novel approach is proposed in this paper for fast and reliable generation of random thermal loads at the pipe surface. The resultant continuous and time-dependent temperature fields simulate the fluid mixing thermal loads at the fluid–wall interface. The approach is based on reproducing discrete fluid temperature statistics, from experimental readings or computational fluid dynamic simulation's results, at interface locations through plane-wave decomposition of temperature fluctuations. The obtained random thermal fields contain large scale instabilities such as cold and hot spots traveling at flow velocities. These low frequency instabilities are believed to be among the major causes of the thermal fatigue in T-junction configurations. The case study found in the literature has been used to demonstrate the generation of random surface thermal loads. The thermal fields generated with the proposed approach are statistically equivalent (within the first two moments) to those from CFD simulations results of similar characteristics. The fields maintain the input data at field locations for a large set of parameters used to generate the thermal loads. This feature will be of great advantage in future sensitivity fatigue analyses of three-dimensional pipe structures.

  7. A novel approach to generate random surface thermal loads in piping

    International Nuclear Information System (INIS)

    Costa Garrido, Oriol; El Shawish, Samir; Cizelj, Leon

    2014-01-01

    Highlights: • Approach for generating continuous and time-dependent random thermal fields. • Temperature fields simulate fluid mixing thermal loads at fluid–wall interface. • Through plane-wave decomposition, experimental temperature statistics are reproduced. • Validation of the approach with a case study from literature. • Random surface thermal loads generation for future thermal fatigue analyses of piping. - Abstract: There is a need to perform three-dimensional mechanical analyses of pipes, subjected to complex thermo-mechanical loadings such as the ones evolving from turbulent fluid mixing in a T-junction. A novel approach is proposed in this paper for fast and reliable generation of random thermal loads at the pipe surface. The resultant continuous and time-dependent temperature fields simulate the fluid mixing thermal loads at the fluid–wall interface. The approach is based on reproducing discrete fluid temperature statistics, from experimental readings or computational fluid dynamic simulation's results, at interface locations through plane-wave decomposition of temperature fluctuations. The obtained random thermal fields contain large scale instabilities such as cold and hot spots traveling at flow velocities. These low frequency instabilities are believed to be among the major causes of the thermal fatigue in T-junction configurations. The case study found in the literature has been used to demonstrate the generation of random surface thermal loads. The thermal fields generated with the proposed approach are statistically equivalent (within the first two moments) to those from CFD simulations results of similar characteristics. The fields maintain the input data at field locations for a large set of parameters used to generate the thermal loads. This feature will be of great advantage in future sensitivity fatigue analyses of three-dimensional pipe structures

  8. Correlation between fat content and features of generative growth of arabesque greenling Pleurogrammus azonus

    Directory of Open Access Journals (Sweden)

    Alexander Vdovin

    2014-09-01

    Full Text Available Objective: To determine the correlation between fat content and features of generative growth of arabesque greenling Pleurogrammus azonus. Methods: The samples were collected by bottom trawl during trawl surveys of research vessel MRS-055 conducted by TINRO-Center in Peter the Great Bay (Sea of Japan. A total of 332 individuals of arabesque greenling were analyzed. Fat content was determined by the standard method of extraction by sulfuric ether from the dry rest. Results: The most part of deposit fat of arabesque greenling is concentrated in muscles and hypodermis: 86.2%-97.0% (mean value 92.3% of the total deposited fat mass. The liver fat was 1.1%-7.7% (mean value 4.8% and the internal fat was 0.9%-5.2% (mean value 2.8% of the total mass. Decreasing of the muscles fat was observed at sudden changes of qualitative and quantitative characteristics of sexual products, and for immature fish the relation between accumulation of fat in muscles and generative growth was not found. Conclusions: Dynamics of fat in liver corresponds closely with the processes of generative growth, and increasing of gonads weight causes decreasing of liver fat content, both for mature and immature fish.

  9. Supplementary Microstructural Features Induced During Laser Surface Melting of Thermally Sprayed Inconel 625 Coatings

    Science.gov (United States)

    Ahmed, Nauman; Voisey, K. T.; McCartney, D. G.

    2014-02-01

    Laser surface melting of thermally sprayed coatings has the potential to enhance their corrosion properties by incorporating favorable microstructural changes. Besides homogenizing the as-sprayed structure, laser melting may induce certain microstructural modifications (i.e., supplementary features) in addition to those that directly improve the corrosion performance. Such features, being a direct result of the laser treatment process, are described in this paper which is part of a broader study in which high velocity oxy-fuel sprayed Inconel 625 coatings on mild-steel substrates were treated with a diode laser and the modified microstructure characterized using optical and scanning electron microscopy and x-ray diffraction. The laser treated coating features several different zones, including a region with a microstructure in which there is a continuous columnar dendritic structure through a network of retained oxide stringers.

  10. Surface features of central North America: a synoptic view from computer graphics

    Science.gov (United States)

    Pike, R.J.

    1991-01-01

    A digital shaded-relief image of the 48 contiguous United States shows the details of large- and small-scale landforms, including several linear trends. The features faithfully reflect tectonism, continental glaciation, fluvial activity, volcanism, and other surface-shaping events and processes. The new map not only depicts topography accurately and in its true complexity, but does so in one synoptic view that provides a regional context for geologic analysis unobscured by clouds, culture, vegetation, or artistic constraints. -Author

  11. Seasonal features of atmospheric surface-layer characteristics over a tropical coastal station in Southern India

    International Nuclear Information System (INIS)

    Hari Prasad, K.B.R.R.; Srinivas, C.V.; Baskaran, R.; Venkatraman, B.

    2016-01-01

    Dispersion of air-borne effluents occurs in the atmospheric boundary layer (ABL) where turbulence is the main physical processes. In the surface layer of ABL, the mechanical (shear) generation of turbulence exceeds the buoyant generation or consumption of turbulence. In this layer, under steady state and horizontally homogeneous conditions various forces in the governing equation can be neglected and one can apply Monin-Obukhov Similarity Theory (MOST) to estimate the turbulent fluxes and other surface layer variables. Understanding the turbulent characteristics of the surface layer is vital for modeling of turbulent diffusion in regional numerical weather and pollution dispersion models. The objective of this study is to verify the validity of the MOST at the coastal site Kalpakkam under various atmospheric stability conditions with respect to different seasons for modeling atmospheric dispersion of radioactive effluents

  12. Memory for surface features of unfamiliar melodies: independent effects of changes in pitch and tempo.

    Science.gov (United States)

    Schellenberg, E Glenn; Stalinski, Stephanie M; Marks, Bradley M

    2014-01-01

    A melody's identity is determined by relations between consecutive tones in terms of pitch and duration, whereas surface features (i.e., pitch level or key, tempo, and timbre) are irrelevant. Although surface features of highly familiar recordings are encoded into memory, little is known about listeners' mental representations of melodies heard once or twice. It is also unknown whether musical pitch is represented additively or interactively with temporal information. In two experiments, listeners heard unfamiliar melodies twice in an initial exposure phase. In a subsequent test phase, they heard the same (old) melodies interspersed with new melodies. Some of the old melodies were shifted in key, tempo, or key and tempo. Listeners' task was to rate how well they recognized each melody from the exposure phase while ignoring changes in key and tempo. Recognition ratings were higher for old melodies that stayed the same compared to those that were shifted in key or tempo, and detrimental effects of key and tempo changes were additive in between-subjects (Experiment 1) and within-subjects (Experiment 2) designs. The results confirm that surface features are remembered for melodies heard only twice. They also imply that key and tempo are processed and stored independently.

  13. Surface and morphological features of laser-irradiated silicon under vacuum, nitrogen and ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, Asma, E-mail: asmahayat@gcu.edu.pk; Bashir, Shazia; Akram, Mahreen; Mahmood, Khaliq; Iqbal, Muhammad Hassan

    2015-12-01

    Highlights: • Laser irradiation effects on Si surface have been explored. • An Excimer Laser was used as a source. • SEM analysis was performed to explore surface morphology. • Raman spectroscopy analysis was carried out to find crystallographical alterations. - Abstract: Laser-induced surface and structural modification of silicon (Si) has been investigated under three different environments of vacuum, nitrogen (100 Torr) and ethanol. The interaction of 1000 pulses of KrF (λ ≈ 248 nm, τ ≈ 18 ns, repetition rate ≈ 30 Hz) Excimer laser at two different fluences of 2.8 J/cm{sup 2} and 4 J/cm{sup 2} resulted in formation of various kinds of features such as laser induced periodic surface structures (LIPSS), spikes, columns, cones and cracks. Surface morphology has been observed by Scanning Electron Microscope (SEM). Whereas, structural modification of irradiated targets is explored by Raman spectroscopy. SEM analysis exhibits a non-uniform distribution of micro-scale pillars and spikes at the central ablated regime of silicon irradiated at low laser fluence of 2.8 J/cm{sup 2} under vacuum. Whereas cones, pits, cavities and ripples like features are seen at the boundaries. At higher fluence of 4 J/cm{sup 2}, laser induced periodic structures as well as micro-columns are observed. In the case of ablation in nitrogen environment, melting, splashing, self-organized granular structures and cracks along with redeposition are observed at lower fluence. Such types of small scaled structures in nitrogen are attributed to confinement and shielding effects of nitrogen plasma. Whereas, a crater with multiple ablative layers is formed in the case of ablation at higher fluence. Significantly different surface morphology of Si is observed in the case of ablation in ethanol. It reveals the formation of cavities along with small scale pores and less redeposition. These results reveal that the growth of surface and morphological features of irradiated Si are strongly

  14. Surface and morphological features of laser-irradiated silicon under vacuum, nitrogen and ethanol

    International Nuclear Information System (INIS)

    Hayat, Asma; Bashir, Shazia; Akram, Mahreen; Mahmood, Khaliq; Iqbal, Muhammad Hassan

    2015-01-01

    Highlights: • Laser irradiation effects on Si surface have been explored. • An Excimer Laser was used as a source. • SEM analysis was performed to explore surface morphology. • Raman spectroscopy analysis was carried out to find crystallographical alterations. - Abstract: Laser-induced surface and structural modification of silicon (Si) has been investigated under three different environments of vacuum, nitrogen (100 Torr) and ethanol. The interaction of 1000 pulses of KrF (λ ≈ 248 nm, τ ≈ 18 ns, repetition rate ≈ 30 Hz) Excimer laser at two different fluences of 2.8 J/cm 2 and 4 J/cm 2 resulted in formation of various kinds of features such as laser induced periodic surface structures (LIPSS), spikes, columns, cones and cracks. Surface morphology has been observed by Scanning Electron Microscope (SEM). Whereas, structural modification of irradiated targets is explored by Raman spectroscopy. SEM analysis exhibits a non-uniform distribution of micro-scale pillars and spikes at the central ablated regime of silicon irradiated at low laser fluence of 2.8 J/cm 2 under vacuum. Whereas cones, pits, cavities and ripples like features are seen at the boundaries. At higher fluence of 4 J/cm 2 , laser induced periodic structures as well as micro-columns are observed. In the case of ablation in nitrogen environment, melting, splashing, self-organized granular structures and cracks along with redeposition are observed at lower fluence. Such types of small scaled structures in nitrogen are attributed to confinement and shielding effects of nitrogen plasma. Whereas, a crater with multiple ablative layers is formed in the case of ablation at higher fluence. Significantly different surface morphology of Si is observed in the case of ablation in ethanol. It reveals the formation of cavities along with small scale pores and less redeposition. These results reveal that the growth of surface and morphological features of irradiated Si are strongly dependent upon the

  15. Comparison of Surface Flow Features from Lidar-Derived Digital Elevation Models with Historical Elevation and Hydrography Data for Minnehaha County, South Dakota

    Science.gov (United States)

    Poppenga, Sandra K.; Worstell, Bruce B.; Stoker, Jason M.; Greenlee, Susan K.

    2009-01-01

    The U.S. Geological Survey (USGS) has taken the lead in the creation of a valuable remote sensing product by incorporating digital elevation models (DEMs) derived from Light Detection and Ranging (lidar) into the National Elevation Dataset (NED), the elevation layer of 'The National Map'. High-resolution lidar-derived DEMs provide the accuracy needed to systematically quantify and fully integrate surface flow including flow direction, flow accumulation, sinks, slope, and a dense drainage network. In 2008, 1-meter resolution lidar data were acquired in Minnehaha County, South Dakota. The acquisition was a collaborative effort between Minnehaha County, the city of Sioux Falls, and the USGS Earth Resources Observation and Science (EROS) Center. With the newly acquired lidar data, USGS scientists generated high-resolution DEMs and surface flow features. This report compares lidar-derived surface flow features in Minnehaha County to 30- and 10-meter elevation data previously incorporated in the NED and ancillary hydrography datasets. Surface flow features generated from lidar-derived DEMs are consistently integrated with elevation and are important in understanding surface-water movement to better detect surface-water runoff, flood inundation, and erosion. Many topographic and hydrologic applications will benefit from the increased availability of accurate, high-quality, and high-resolution surface-water data. The remotely sensed data provide topographic information and data integration capabilities needed for meeting current and future human and environmental needs.

  16. Parameters effects study on pulse laser for the generation of surface acoustic waves in human skin detection applications

    Science.gov (United States)

    Li, Tingting; Fu, Xing; Dorantes-Gonzalez, Dante J.; Chen, Kun; Li, Yanning; Wu, Sen

    2015-10-01

    Laser-induced Surface Acoustic Waves (LSAWs) has been promisingly and widely used in recent years due to its rapid, high accuracy and non-contact evaluation potential of layered and thin film materials. For now, researchers have applied this technology on the characterization of materials' physical parameters, like Young's Modulus, density, and Poisson's ratio; or mechanical changes such as surface cracks and skin feature like a melanoma. While so far, little research has been done on providing practical guidelines on pulse laser parameters to best generate SAWs. In this paper finite element simulations of the thermos-elastic process based on human skin model for the generation of LSAWs were conducted to give the effects of pulse laser parameters have on the generated SAWs. And recommendations on the parameters to generate strong SAWs for detection and surface characterization without cause any damage to skin are given.

  17. Reduced adhesion of macrophages on anodized titanium with select nanotube surface features

    Directory of Open Access Journals (Sweden)

    Balasubramanian K

    2011-08-01

    Full Text Available Amancherla Rajyalakshmi1, Batur Ercan2,3, K Balasubramanian1, Thomas J Webster2,31Non-Ferrous Materials Technology Development Centre, Hyderabad, India; 2School of Engineering, 3Department of Orthopedics, Brown University, Providence, RI, USAAbstract: One of the important prerequisites for a successful orthopedic implant apart from being osteoconductive is the elicitation of a favorable immune response that does not lead to the rejection of the implant by the host tissue. Anodization is one of the simplest surface modification processes used to create nanotextured and nanotubular features on metal oxides which has been shown to improve bone formation. Anodization of titanium (Ti leads to the formation of TiO2 nanotubes on the surface, and the presence of these nanotubes mimics the natural nanoscale features of bone, which in turn contributes to improved bone cell attachment, migration, and proliferation. However, inflammatory cell responses on anodized Ti remains to be tested. It is hypothesized that surface roughness and surface feature size on anodized Ti can be carefully manipulated to control immune cell (specifically, macrophages responses. Here, when Ti samples were anodized at 10 V in the presence of 1% hydrofluoric acid (HF for 1 minute, nanotextured (nonnanotube surfaces were created. When anodization of Ti samples was carried out with 1% HF for 10 minutes at 15 V, nanotubes with 40–50 nm diameters were formed, whereas at 20 V with 1% HF for 10 minutes, nanotubes with 60–70 nm diameters were formed. In this study, a reduced density of macrophages was observed after 24 hours of culture on nanotextured and nanotubular Ti samples which were anodized at 10, 15, and 20 V, compared with conventional unmodified Ti samples. This in vitro study thus demonstrated a reduced density of macrophages on anodized Ti, thereby providing further evidence of the greater efficacy of anodized Ti for orthopedic applications.Keywords: anodization, titanium

  18. Cassie state robustness of plasma generated randomly nano-rough surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Di Mundo, Rosa, E-mail: rosa.dimundo@poliba.it; Bottiglione, Francesco; Carbone, Giuseppe

    2014-10-15

    Graphical abstract: - Highlights: • Superhydrophobic randomly rough surfaces are generated by plasma etching. • Statistical analysis of roughness allows calculation of theWenzel roughness factor, r{sub W.} • A r{sub W} threshold is theoretically determined, above which superhydrophobicity is “robust”. • Dynamic wetting, e.g. with high speed impacting drops, confirms this prediction. - Abstract: Superhydrophobic surfaces are effective in practical applications provided they are “robust superhydrophobic”, i.e. able to retain the Cassie state, i.e. with water suspended onto the surface protrusions, even under severe conditions (high pressure, vibrations, high speed impact, etc.). We show that for randomly rough surfaces, given the Young angle, Cassie states are robust when a threshold value of the Wenzel roughness factor, r{sub W}, is exceeded. In particular, superhydrophobic nano-textured surfaces have been generated by self-masked plasma etching. In view of their random roughness, topography features, acquired by Atomic Force Microscopy, have been statistically analyzed in order to gain information on statistical parameters such as power spectral density, fractal dimension and Wenzel roughness factor (r{sub W}), which has been used to assess Cassie state robustness. Results indicate that randomly rough surfaces produced by plasma at high power or long treatment duration, which are also fractal self-affine, have a r{sub W} higher than the theoretical threshold, thus for them a robust superhydrophobicity is predicted. In agreement with this, under dynamic wetting conditionson these surfaces the most pronounced superhydrophobic character has been appreciated: they show the lowest contact angle hysteresis and result in the sharpest bouncing when hit by drops at high impact velocity.

  19. The third generation multi-purpose plasma immersion ion implanter for surface modification of materials

    CERN Document Server

    Tang Bao Yin; Wang Xiao Feng; Gan Kong Yin; Wang Song Yan; Chu, P K; Huang Nian Ning; Sun Hong

    2002-01-01

    The third generation multi-purpose plasma immersion ion implantation (PIII) equipment has been successfully used for research and development of surface modification of biomedical materials, metals and their alloys in the Southwest Jiaotong University. The implanter equipped with intense current, pulsed cathodic arc metal plasma sources which have both strong coating function and gas and metal ion implantation function. Its pulse high voltage power supply can provide big output current. It can acquire very good implantation dose uniformity. The equipment can both perform ion implantation and combine ion implantation with sputtering deposition and coating to form many kinds of synthetic surface modification techniques. The main design principles, features of important components and achievement of research works in recent time have been described

  20. LSAH: a fast and efficient local surface feature for point cloud registration

    Science.gov (United States)

    Lu, Rongrong; Zhu, Feng; Wu, Qingxiao; Kong, Yanzi

    2018-04-01

    Point cloud registration is a fundamental task in high level three dimensional applications. Noise, uneven point density and varying point cloud resolutions are the three main challenges for point cloud registration. In this paper, we design a robust and compact local surface descriptor called Local Surface Angles Histogram (LSAH) and propose an effectively coarse to fine algorithm for point cloud registration. The LSAH descriptor is formed by concatenating five normalized sub-histograms into one histogram. The five sub-histograms are created by accumulating a different type of angle from a local surface patch respectively. The experimental results show that our LSAH is more robust to uneven point density and point cloud resolutions than four state-of-the-art local descriptors in terms of feature matching. Moreover, we tested our LSAH based coarse to fine algorithm for point cloud registration. The experimental results demonstrate that our algorithm is robust and efficient as well.

  1. In vitro bioactivity of micro metal injection moulded stainless steel with defined surface features

    Directory of Open Access Journals (Sweden)

    C Brose

    2012-05-01

    Full Text Available Micrometre- and nanometre-scale surface structuring with ordered topography features may dramatically enhance orthopaedic implant integration. In this study we utilised a previously optimised micron metal injection moulding (µ-MIM process to produce medical grade stainless steel surfaces bearing micrometre scale, protruding, hemispheres of controlled dimensions and spatial distribution. Additionally, the structured surfaces were characterised by the presence of submicrometre surface roughness resulting from metal grain boundary formation. Following cytocompatibility (cytotoxicity evaluation using 3T3 mouse fibroblast cell line, the effect on primary human cell functionality was assessed focusing on cell attachment, shape and cytoskeleton conformation. In this respect, and by day 7 in culture, significant increase in focal adhesion size was associated with the microstructured surfaces compared to the planar control. The morphological conformation of the seeded cells, as revealed by fluorescence cytoskeleton labelling, also appeared to be guided in the vertical dimension between the hemisphere bodies. Quantitative evaluation of this guidance took place using live cytoplasm fluorescence labelling and image morphometry analysis utilising both, compactness and elongation shape descriptors. Significant increase in cell compactness was associated with the hemisphere arrays indicating collective increase in focused cell attachment to the hemisphere bodies across the entire cell population. Micrometre-scale hemisphere array patterns have therefore influenced cell attachment and conformation. Such influence may potentially aid in enhancing key cellular events such as, for example, neo-osteogenesis on implanted orthopaedic surfaces.

  2. CosmoQuest - Mapping Surface Features Across the Inner Solar System

    Science.gov (United States)

    Grier, Jennifer A.; Richardson, Matthew; Gay, Pamela L.; Lehan, Cory; Owens, Ryan; Robbins, Stuart J.; DellaGiustina, Daniella; Bennett, Carina; Runco, Susan; Graff, Paige

    2017-10-01

    The CosmoQuest Virtual Research Facility allows research scientists to work together with citizen scientists in ‘big data’ investigations. Some research requires the examination of vast numbers of images - partnering with engaged and trained citizen scientists allows for that research to be completed in a thorough and timely manner. The techniques used by CosmoQuest to collect impact crater data have been validated to ensure robustness (Robbins et al., 2014), and include software tools that accurately identify crater clusters, and multiple crater identifications. CosmoQuest has current or up-and-coming projects that span much of the inner solar system. “Moon Mappers” gives the public a chance to learn about the importance of cratered surfaces, and investigate factors that effect the identification and measurement of impact craters such as incidence angle. In the “Mars Mappers” program citizens map small craters in valley networks. These will be used to estimate times of ancient water flow. In “Mercury Mappers” the public learns about other issues related to crater counting, such as secondaries. On Mercury, secondaries appear to dominate counts up to 10km. By mapping these craters, we will be able to better understand the maximum diameter of secondaries relative to the parent primary. The public encounters Vesta in “Vesta Mappers,” a project that contributes data to the overall crater counting efforts on that body. Asteroid investigations do not end there - the OSIRIS-REx team is collaborating with CosmoQuest to create a science campaign to generate boulder and crater counting datasets of the asteroid Bennu. This “Bennu Mappers” project will inform the final selection of the sample return site. The Earth is the target for the “Image Detective” project, which uses the 2 million images returned from crewed space flight. These images are rich in information about our changing Earth, as well as phenomena like aurora. Citizens tag these images

  3. Examining the Impact of Question Surface Features on Students' Answers to Constructed-Response Questions on Photosynthesis

    Science.gov (United States)

    Weston, Michele; Haudek, Kevin C.; Prevost, Luanna; Urban-Lurain, Mark; Merrill, John

    2015-01-01

    One challenge in science education assessment is that students often focus on surface features of questions rather than the underlying scientific principles. We investigated how student written responses to constructed-response questions about photosynthesis vary based on two surface features of the question: the species of plant and the order of…

  4. Mechanical torques generated by optically pumped atomic spin relaxation at surfaces

    International Nuclear Information System (INIS)

    Herman, R.M.

    1982-01-01

    It is argued that a valuable method of observing certain types of surface-atom interactions may lie in mechanical torques generated through the spin-orbit relaxation of valence electronic spins of optically pumped atoms at surfaces. The unusual feature of this phenomenon is that the less probable spin-orbit relaxation becomes highly visible as compared with the much more rapid paramagnetic relaxation, because of an enhancement, typically by as much as a factor 10 9 , in the torques delivered to mechanical structures, by virtue of a very large effective moment arm. Spin-orbit relaxation operates through an exchange of translational momentum which, in turn, can be identified with the delivery of a gigantic angular momentum (in units of h) relative to a distant axis about which mechanical motion is referred. The spin-orbit relaxation strongly depends upon the atomic number of the surface atoms and the strength of interaction with the optically pumped atoms. Being dominated by high-atomic-number surface atoms, spin-orbit relaxation rates may not be too strongly influenced by minor surface contamination of lighter-weight optically active atoms

  5. Mechanical torques generated by optically pumped atomic spin relaxation at surfaces

    Science.gov (United States)

    Herman, R. M.

    1982-03-01

    It is argued that a valuable method of observing certain types of surface-atom interactions may lie in mechanical torques generated through the spin-orbit relaxation of valence electronic spins of optically pumped atoms at surfaces. The unusual feature of this phenomenon is that the less probable spin-orbit relaxation becomes highly visible as compared with the much more rapid paramagnetic relaxation, because of an enhancement, typically by as much as a factor 109, in the torques delivered to mechanical structures, by virtue of a very large effective moment arm. Spin-orbit relaxation operates through an exchange of translational momentum which, in turn, can be identified with the delivery of a gigantic angular momentum (in units of ℏ) relative to a distant axis about which mechanical motion is referred. The spin-orbit relaxation strongly depends upon the atomic number of the surface atoms and the strength of interaction with the optically pumped atoms. Being dominated by high-atomic-number surface atoms, spin-orbit-relaxation rates may not be too strongly influenced by minor surface contamination of lighter-weight optically active atoms.

  6. Linear and Nonlinear Gait Features in Older Adults Walking on Inclined Surfaces at Different Speeds.

    Science.gov (United States)

    Vieira, Marcus Fraga; Rodrigues, Fábio Barbosa; de Sá E Souza, Gustavo Souto; Magnani, Rina Márcia; Lehnen, Georgia Cristina; Andrade, Adriano O

    2017-06-01

    This study evaluated linear and nonlinear gait features in healthy older adults walking on inclined surfaces at different speeds. Thirty-seven active older adults (experimental group) and fifty young adults (control group) walked on a treadmill at 100% and ±20% of their preferred walking speed for 4 min under horizontal (0%), upward (UP) (+8%), and downward (DOWN) (-8%) conditions. Linear gait variability was assessed using the average standard deviation of trunk acceleration between strides (VAR). Gait stability was assessed using the margin of stability (MoS). Nonlinear gait features were assessed by using the maximum Lyapunov exponent, as a measure of local dynamic stability (LDS), and sample entropy (SEn), as a measure of regularity. VAR increased for all conditions, but the interaction effects between treadmill inclination and age, and speed and age were higher for young adults. DOWN conditions showed the lowest stability in the medial-lateral MoS, but not in LDS. LDS was smaller in UP conditions. However, there were no effects of age for either MoS or LDS. The values of SEn decreased almost linearly from the DOWN to the UP conditions, with significant interaction effects of age for anterior-posterior SEn. The overall results supported the hypothesis that inclined surfaces modulate nonlinear gait features and alter linear gait variability, particularly in UP conditions, but there were no significant effects of age for active older adults.

  7. Virtual laparoscopy: Initial experience with three-dimensional ultrasonography to characterize hepatic surface features

    International Nuclear Information System (INIS)

    Sekimoto, Tadashi; Maruyama, Hitoshi; Kondo, Takayuki; Shimada, Taro; Takahashi, Masanori; Yokosuka, Osamu; Otsuka, Masayuki; Miyazaki, Masaru; Mine, Yoshitaka

    2013-01-01

    Objective: To examine the potential utility of 3D-reconstructed sonograms to distinguish cirrhotic from non-cirrhotic livers by demonstrating hepatic surface characteristics. Materials and methods: A preliminary phantom study was performed to examine the potential resolution of 3D images, recognizing surface irregularities as a difference in height. In a prospective clinical study of 31 consecutive patients with ascites (21 cirrhosis, 10 non-cirrhosis), liver volume data were acquired by transabdominal mechanical scanning. The hepatic surface features of cirrhotic and non-cirrhotic patients were compared by 2 independent reviewers. Intra- and inter-operator/reviewer agreements were also examined. Results: The phantom study revealed that 0.4 mm was the minimum recognizable difference in height on the 3D sonograms. The hepatic surface image was successfully visualized in 74% patients (23/31). Success depended on the amount of ascites; visualization was 100% with ascites of 10 mm or more between the hepatic surface and abdominal wall. The images showed irregularity of the hepatic surface in all cirrhotic patients. The surface appearance was confirmed as being very similar in 3 patients who had both 3D sonogram and liver resection for transplantation. The ability to distinguish cirrhotic liver from non-cirrhotic liver improved with the use of combination of 2D- and 3D-imaging versus 2D-imaging alone (sensitivity, p = 0.02; accuracy, p = 0.02) or 3D-imaging alone (sensitivity, p = 0.03). Intra-/inter-operator and inter-reviewer agreement were excellent (κ = 1.0). Conclusion: 3D-based sonographic visualization of the hepatic surface showed high reliability and reproducibility, acting as a virtual laparoscopy method, and the technique has the potential to improve the diagnosis of cirrhosis

  8. Effect of surface structure on catalytic reactions: A sum frequency generation surface vibrational spectroscopy study

    International Nuclear Information System (INIS)

    McCrea, Keith R.

    2001-01-01

    In the results discussed above, it is clear that Sum Frequency Generation (SFG) is a unique tool that allows the detection of vibrational spectra of adsorbed molecules present on single crystal surfaces under catalytic reaction conditions. Not only is it possible to detect active surface intermediates, it is also possible to detect spectator species which are not responsible for the measured turnover rates. By correlating high-pressure SFG spectra under reaction conditions and gas chromatography (GC) kinetic data, it is possible to determine which species are important under reaction intermediates. Because of the flexibility of this technique for studying surface intermediates, it is possible to determine how the structures of single crystal surfaces affect the observed rates of catalytic reactions. As an example of a structure insensitive reaction, ethylene hydrogenation was explored on both Pt(111) and Pt(100). The rates were determined to be essentially the same. It was observed that both ethylidyne and di-(sigma) bonded ethylene were present on the surface under reaction conditions on both crystals, although in different concentrations. This result shows that these two species are not responsible for the measured turnover rate, as it would be expected that one of the two crystals would be more active than the other, since the concentration of the surface intermediate would be different on the two crystals. The most likely active intermediates are weakly adsorbed molecules such as(pi)-bonded ethylene and ethyl. These species are not easily detected because their concentration lies at the detection limit of SFG. The SFG spectra and GC data essentially show that ethylene hydrogenation is structure insensitive for Pt(111) and Pt(100). SFG has proven to be a unique and excellent technique for studying adsorbed species on single crystal surfaces under high-pressure catalytic reactions. Coupled with kinetic data obtained from gas chromatography measurements, it can

  9. Generating Ground Reference Data for a Global Impervious Surface Survey

    Science.gov (United States)

    Tilton, James C.; deColstoun, Eric Brown; Wolfe, Robert E.; Tan, Bin; Huang, Chengquan

    2012-01-01

    either positive or negative examples, and displays a classification of the study area based on these examples. For our study, the positive examples are examples of impervious surfaces and negative examples are examples of non-impervious surfaces. HSegLearn searches the hierarchical segmentation from HSeg for the coarsest level of segmentation at which selected positive example locations do not conflict with negative example locations and labels the image accordingly. The negative example regions are always defined at the finest level of segmentation detail. The resulting classification map can be then further edited at a region object level using the previously developed HSegViewer tool [3]. After providing an overview of the HSeg image segmentation program, we provide a detailed description of the HSegLearn software tool. We then give examples of using HSegLearn to generate ground reference data and conclude with comments on the effectiveness of the HSegLearn tool.

  10. A positive (negative) surface ionization source concept for radioactive ion beam generation

    International Nuclear Information System (INIS)

    Alton, G.D.; Mills, G.D.

    1996-01-01

    A novel, versatile, new concept, spherical-geometry, positive (negative) surface-ionization source has been designed and fabricated which will have the capability of generating both positive- and negative-ion beams without mechanical changes to the source. The source utilizes a highly permeable, high-work-function Ir ionizer (φ ≅ 5.29 eV) for ionizing highly electropositive atoms/molecules; while for negative-surface ionization, the work function is lowered by continually feeding a highly electropositive vapor through the ionizer matrix. The use of this technique to effect low work function surfaces for negative ion beam generation has the potential of overcoming the chronic poisoning effects experienced with LaB 6 while enhancing the probability for negative ion formation of atomic and molecular species with low to intermediate electron affinities. The flexibility of operation in either mode makes it especially attractive for radioactive ion beam (RIB) applications and, therefore, the source will be used as a complementary replacement for the high-temperature electron impact ionization sources presently in the use at the Holifield radioactive ion beam facility (HRIBF). The design features and operational principles of the source are described in this report. (orig.)

  11. An algorithm for generation of DEMs from contour lines considering geomorphic features

    Directory of Open Access Journals (Sweden)

    Xiao-Ping Rui

    2016-04-01

    Full Text Available Geomorphic information is omitted from many existing methods of generating gridded digital elevation models (DEMs from contour lines, resulting in significant errors during interpolation. Here, we present an advanced schema for improvement of the comprehensive regionalized method of linear interpolation. This approach uses a moving fitting method for an interpolated point and selects elevation points that are representative of geomorphic features as a whole to improve interpolation quality. A total of 16 points are selected, according to certain criteria, in eight directions surrounding the interpolated point; thus, there are two points in each direction, which is sufficient to provide an accurate representation of the geomorphic features of the DEM. Our method introduces virtual control points to prevent sudden changes in the interpolation results, which helps to overcome problems related to the distortion of the local geospatial distribution in areas where feature geomorphic information is inadequate. We construct the spline interpolation function using intersection points and virtual control points, all of which are applied to compute the point elevation. Moreover, we index all elevation values and spatial points of linear features using the R-tree method to ensure that points related to an interpolated position can be retrieved as quickly as possible. Finally, we test our method using a coal mine elevation dataset. The results confirm that our proposed method can generate DEMs smoothly and, in particular, avoid problems related to local distortion.    Resumen La información geomórfica se omite en muchos de los métodos de generación de Modelos Digitales de Elevación (DEM, en inglés que se elaboran a partir de líneas de contorno, lo que resulta en errores significativos durante la interpolación. En este trabajo se presenta un esquema avanzado para el mejoramiento del método comprensivo regionalizado de interpolación lineal. Esta

  12. The Impact of Solid Surface Features on Fluid-Fluid Interface Configuration

    Science.gov (United States)

    Araujo, J. B.; Brusseau, M. L. L.

    2017-12-01

    Pore-scale fluid processes in geological media are critical for a broad range of applications such as radioactive waste disposal, carbon sequestration, soil moisture distribution, subsurface pollution, land stability, and oil and gas recovery. The continued improvement of high-resolution image acquisition and processing have provided a means to test the usefulness of theoretical models developed to simulate pore-scale fluid processes, through the direct quantification of interfaces. High-resolution synchrotron X-ray microtomography is used in combination with advanced visualization tools to characterize fluid distributions in natural geologic media. The studies revealed the presence of fluid-fluid interface associated with macroscopic features on the surfaces of the solids such as pits and crevices. These features and respective fluid interfaces, which are not included in current theoretical or computational models, may have a significant impact on accurate simulation and understanding of multi-phase flow, energy, heat and mass transfer processes.

  13. An algorithm for analytical solution of basic problems featuring elastostatic bodies with cavities and surface flaws

    Science.gov (United States)

    Penkov, V. B.; Levina, L. V.; Novikova, O. S.; Shulmin, A. S.

    2018-03-01

    Herein we propose a methodology for structuring a full parametric analytical solution to problems featuring elastostatic media based on state-of-the-art computing facilities that support computerized algebra. The methodology includes: direct and reverse application of P-Theorem; methods of accounting for physical properties of media; accounting for variable geometrical parameters of bodies, parameters of boundary states, independent parameters of volume forces, and remote stress factors. An efficient tool to address the task is the sustainable method of boundary states originally designed for the purposes of computerized algebra and based on the isomorphism of Hilbertian spaces of internal states and boundary states of bodies. We performed full parametric solutions of basic problems featuring a ball with a nonconcentric spherical cavity, a ball with a near-surface flaw, and an unlimited medium with two spherical cavities.

  14. Surface Features and Cathodoluminescence (CL) Characteristics of Corundum Gems from Eastern of Thailand

    Science.gov (United States)

    Boonsoong, A.

    2017-12-01

    Thailand has long been well known as a supplier of gemstones and also one of the world's color stone centers for decades. The principal gemstones are corundum, garnet and zircon. The corundum deposits of Chanthaburi-Trat Provinces form the most significant ruby-sapphire concentration in Thailand. Corundums are commonly found in secondary deposits (alluvium, elluvial, residual-soil and colluvium deposits as well as stream sediments) with the thickness of the gem-bearing layer varying from 10-100cm and the thickness of the overburden ranging up to 15m. A number of corundum samples were collected from each of the twenty-nine corundum deposits in the Chanthaburi-Trat gem fields, eastern of Thailand. Corundum varies in colour across the region with colours associated with three geographic zones; a western zone, characterized by blue, green and yellow sapphires; a middle zone with blue, green sapphires plus rubies; and an eastern zone yielding mainly rubies. This project has aim to study surface features and characterize the Cathodoluminescence (CL) of corundum gems in the Chanthaburi-Trat gem fields, Thailand. Surfaces of the corundums under a scanning electron microscope show triangular etch features and randomly oriented needle-like patterns. These reveal that the corundums have interacted with the magma during their ascent to the Earth's surface. Surface features attributable to transport and weathering processes are scratches, conchoidal fractures and a spongy surface appearance. Clay minerals and Fe-Ti oxide minerals deposited on the spongy surfaces of some corundums also indicate that these grains experienced chemical weathering or reacted with the soil solution while they were in the alluvium. Cathodoluminescence shows some blue sapphires to exhibit dull blue luminescence. The main cause of the CL appearance of sapphires is likely to be a quench centre, Fe2+ in their structure. The bright red luminescence in corundum reflects a high Cr3+ content and is always

  15. Grain surface features and clay mineralogy of the quaternary sediments from Western Deccan Trap Region, India, and their palaeoclimatic significance

    Directory of Open Access Journals (Sweden)

    Veena U. Joshi

    2011-06-01

    Full Text Available Quartz sand grains obtained from a deeply gullied topography along the banks of two tributaries of River Pravara in Maharashtra (India have been examined with a scanning electron microscope (SEM. Quartz grains have been selected after a heavy mineral separation and micro-photographs of each grain were taken at various angles and magnifications. The sediments reveal features resulting from mechanical grinding as well as from chemical alteration. Conchoidal fractures, cleavage planes, grooves, v-shaped indentations etc. are the mechanical features documented on the grains whereas solution pits of varying sizes and intensity, precipitation surfaces, oriented v-pits, solution crevasses and etching are the features of chemical origin. Several evidences indicate that the samples have undergone digenetic changes. Few grains show the features of intense chemical breakdown. The overall assemblages of the grain surface features suggest that the samples have been subjected to subaqueous transport for a considerable period of time. The minor chemical features such as solution pits or semi circular arcuate steps found in abundance on these grains are due to the dissolution of the sediments in a low energy fluviatile environment. For clay mineralogy, fractions between <2 and <0.2 mm were separated out from the sediments. The clay fractions were then subjected to examination by X-ray diffraction (XRD of oriented K/Ca saturated samples using a Philips Diffractometer and Ni-filtered Cu Ka radiation with the scanning speed of 10 2Ө min -1. The main clay minerals for all the samples are identical and show the presence of hydroxy-interlayered smectites with minor quantities of mica, kaolinite, smectites, quartz and feldspar. The first weathering product of the Deccan Basalt (DB is the dioctahedral smectite. Since the present semi aridic climatic condition of the study area can not transform a smectite to HIS and either smectite to kaolin, it is quite likely that

  16. Modeling Turbulence Generation in the Atmospheric Surface and Boundary Layers

    Science.gov (United States)

    2015-10-01

    hydrostatic equation: dP dz = −ρa g −→ ∫ ZI 0 ρa dz = − 1 g ∫ dP = + 1 g [P (0)− P (ZI)]. (6.14) The pressure at the surface is... surface pressure is estimated, we can compute a vertical pressure profile using the hydrostatic equation and a selected temperature profile based on dP... surface -layer atmosphere. By surface layer what is intended is a layer of foliage plus the surface itself. That is, a flat ground surface that

  17. THE BALNEARY RESOURCE, A GENERATOR OF BUILT HERITAGE. THE STRATIGRAPHIC FEATURES OF HERCULANE BATHS

    Directory of Open Access Journals (Sweden)

    S. SPÂNU

    2012-03-01

    Full Text Available The balneary resource, a generator of built heritage. The stratigraphic features of Herculane Baths. The exploitation of natural resources, regardless of type, usually consists of two phases: firstly, the development of exploitation processes and secondly the development of exploitation structures – elements or built structures intended for the processing of the concerned natural resources. Many such structures have been declared architectural heritage monuments due to their historical, documentary, representative and aesthetical value, examples being numerous and varied. Water is the main resource that dictates the occurrence and development of human settlements and creates various typologies that derive from the accessibility, exploitation methods, and adaptation to the conditions and characteristics of the resource. With a peculiar evolution in terms of the dynamics of the binomial composed of natural resource and architectural heritage resource, mineral resources (especially balneal waters fall in a distinct category: although mainly utilitarian in function, they have also cultural, aesthetic and even religious purposes. Besides their curative properties, spa mineral waters can be used as is, in many cases directly from the source, this being the explanation why they have generated such great and continuous interest - forming today a highly stratified built heritage background. Keeping in mind the sustainable development for a medium or a long period of time, an analysis of the interrelations between the balneal natural resource and the deriving architectural heritage is necessary. The purpose of such analysis is determining the limitations of exploitation and identifying the optimal means of safeguarding both elements, the natural water resource and the anthropogenic one, for a more rational territory management.

  18. Associations between motor unit action potential parameters and surface EMG features.

    Science.gov (United States)

    Del Vecchio, Alessandro; Negro, Francesco; Felici, Francesco; Farina, Dario

    2017-10-01

    The surface interference EMG signal provides some information on the neural drive to muscles. However, the association between neural drive to muscle and muscle activation has long been debated with controversial indications due to the unavailability of motor unit population data. In this study, we clarify the potential and limitations of interference EMG analysis to infer motor unit recruitment strategies with an experimental investigation of several concurrently active motor units and of the associated features of the surface EMG. For this purpose, we recorded high-density surface EMG signals during linearly increasing force contractions of the tibialis anterior muscle, up to 70% of maximal force. The recruitment threshold (RT), conduction velocity (MUCV), median frequency (MDF MU ), and amplitude (RMS MU ) of action potentials of 587 motor units from 13 individuals were assessed and associated with features of the interference EMG. MUCV was positively associated with RT ( R 2 = 0.64 ± 0.14), whereas MDF MU and RMS MU showed a weaker relation with RT ( R 2 = 0.11 ± 0.11 and 0.39 ± 0.24, respectively). Moreover, the changes in average conduction velocity estimated from the interference EMG predicted well the changes in MUCV ( R 2 = 0.71), with a strong association to ankle dorsiflexion force ( R 2 = 0.81 ± 0.12). Conversely, both the average EMG MDF and RMS were poorly associated with motor unit recruitment. These results clarify the limitations of EMG spectral and amplitude analysis in inferring the neural strategies of muscle control and indicate that, conversely, the average conduction velocity could provide relevant information on these strategies. NEW & NOTEWORTHY The surface EMG provides information on the neural drive to muscles. However, the associations between EMG features and neural drive have been long debated due to unavailability of motor unit population data. Here, by using novel highly accurate decomposition of the EMG, we related motor unit

  19. Measurements of land surface features using an airborne laser altimeter: the HAPEX-Sahel experiment

    International Nuclear Information System (INIS)

    Ritchie, J.C.; Menenti, M.; Weltz, M.A.

    1997-01-01

    An airborne laser profiling altimeter was used to measure surface features and properties of the landscape during the HAPEX-Sahel Experiment in Niger, Africa in September 1992. The laser altimeter makes 4000 measurements per second with a vertical resolution of 5 cm. Airborne laser and detailed field measurements of vegetation heights had similar average heights and frequency distribution. Laser transects were used to estimate land surface topography, gully and channel morphology, and vegetation properties ( height, cover and distribution). Land surface changes related to soil erosion and channel development were measured. For 1 km laser transects over tiger bush communities, the maximum vegetation height was between 4-5 and 6-5 m, with an average height of 21 m. Distances between the centre of rows of tiger bush vegetation averaged 100 m. For two laser transects, ground cover for tiger bush was estimated to be 225 and 301 per cent for vegetation greater than 0-5m tall and 190 and 25-8 per cent for vegetation greater than 10m tall. These values are similar to published values for tiger bush. Vegetation cover for 14 and 18 km transects was estimated to be 4 per cent for vegetation greater than 0-5 m tall. These cover values agree within 1-2 per cent with published data for short transects (⩾ 100 m) for the area. The laser altimeter provided quick and accurate measurements for evaluating changes in land surface features. Such information provides a basis for understanding land degradation and a basis for management plans to rehabilitate the landscape. (author)

  20. Entanglement generation between two atoms via surface modes

    International Nuclear Information System (INIS)

    Xu Jingping; Yang Yaping; Al-Amri, M.; Zhu Shiyao; Zubairy, M. Suhail

    2011-01-01

    We discuss the coupling of two identical atoms, separated by a metal or metamaterial slab, through surface modes. We show that the coupling through the surface modes can induce entanglement. We discuss how to control the coupling for the metal or metamaterial slab by adjusting the symmetrical and antisymmetrical property of the surface modes. We analyze the dispersion relation of the surface modes and study the parameter ranges that support the surface modes with the same properties. Our results have potential applications in quantum communication and quantum computation.

  1. Effective Detection of Sub-Surface Archeological Features from Laser Scanning Point Clouds and Imagery Data

    Science.gov (United States)

    Fryskowska, A.; Kedzierski, M.; Walczykowski, P.; Wierzbicki, D.; Delis, P.; Lada, A.

    2017-08-01

    The archaeological heritage is non-renewable, and any invasive research or other actions leading to the intervention of mechanical or chemical into the ground lead to the destruction of the archaeological site in whole or in part. For this reason, modern archeology is looking for alternative methods of non-destructive and non-invasive methods of new objects identification. The concept of aerial archeology is relation between the presence of the archaeological site in the particular localization, and the phenomena that in the same place can be observed on the terrain surface form airborne platform. One of the most appreciated, moreover, extremely precise, methods of such measurements is airborne laser scanning. In research airborne laser scanning point cloud with a density of 5 points/sq. m was used. Additionally unmanned aerial vehicle imagery data was acquired. Test area is located in central Europe. The preliminary verification of potentially microstructures localization was the creation of digital terrain and surface models. These models gave an information about the differences in elevation, as well as regular shapes and sizes that can be related to the former settlement/sub-surface feature. The paper presents the results of the detection of potentially sub-surface microstructure fields in the forestry area.

  2. EFFECTIVE DETECTION OF SUB-SURFACE ARCHEOLOGICAL FEATURES FROM LASER SCANNING POINT CLOUDS AND IMAGERY DATA

    Directory of Open Access Journals (Sweden)

    A. Fryskowska

    2017-08-01

    Full Text Available The archaeological heritage is non-renewable, and any invasive research or other actions leading to the intervention of mechanical or chemical into the ground lead to the destruction of the archaeological site in whole or in part. For this reason, modern archeology is looking for alternative methods of non-destructive and non-invasive methods of new objects identification. The concept of aerial archeology is relation between the presence of the archaeological site in the particular localization, and the phenomena that in the same place can be observed on the terrain surface form airborne platform. One of the most appreciated, moreover, extremely precise, methods of such measurements is airborne laser scanning. In research airborne laser scanning point cloud with a density of 5 points/sq. m was used. Additionally unmanned aerial vehicle imagery data was acquired. Test area is located in central Europe. The preliminary verification of potentially microstructures localization was the creation of digital terrain and surface models. These models gave an information about the differences in elevation, as well as regular shapes and sizes that can be related to the former settlement/sub-surface feature. The paper presents the results of the detection of potentially sub-surface microstructure fields in the forestry area.

  3. Decoding subtle forearm flexions using fractal features of surface electromyogram from single and multiple sensors.

    Science.gov (United States)

    Arjunan, Sridhar Poosapadi; Kumar, Dinesh Kant

    2010-10-21

    Identifying finger and wrist flexion based actions using a single channel surface electromyogram (sEMG) can lead to a number of applications such as sEMG based controllers for near elbow amputees, human computer interface (HCI) devices for elderly and for defence personnel. These are currently infeasible because classification of sEMG is unreliable when the level of muscle contraction is low and there are multiple active muscles. The presence of noise and cross-talk from closely located and simultaneously active muscles is exaggerated when muscles are weakly active such as during sustained wrist and finger flexion. This paper reports the use of fractal properties of sEMG to reliably identify individual wrist and finger flexion, overcoming the earlier shortcomings. SEMG signal was recorded when the participant maintained pre-specified wrist and finger flexion movements for a period of time. Various established sEMG signal parameters such as root mean square (RMS), Mean absolute value (MAV), Variance (VAR) and Waveform length (WL) and the proposed fractal features: fractal dimension (FD) and maximum fractal length (MFL) were computed. Multi-variant analysis of variance (MANOVA) was conducted to determine the p value, indicative of the significance of the relationships between each of these parameters with the wrist and finger flexions. Classification accuracy was also computed using the trained artificial neural network (ANN) classifier to decode the desired subtle movements. The results indicate that the p value for the proposed feature set consisting of FD and MFL of single channel sEMG was 0.0001 while that of various combinations of the five established features ranged between 0.009 - 0.0172. From the accuracy of classification by the ANN, the average accuracy in identifying the wrist and finger flexions using the proposed feature set of single channel sEMG was 90%, while the average accuracy when using a combination of other features ranged between 58% and 73

  4. Decoding subtle forearm flexions using fractal features of surface electromyogram from single and multiple sensors

    Directory of Open Access Journals (Sweden)

    Kumar Dinesh

    2010-10-01

    Full Text Available Abstract Background Identifying finger and wrist flexion based actions using a single channel surface electromyogram (sEMG can lead to a number of applications such as sEMG based controllers for near elbow amputees, human computer interface (HCI devices for elderly and for defence personnel. These are currently infeasible because classification of sEMG is unreliable when the level of muscle contraction is low and there are multiple active muscles. The presence of noise and cross-talk from closely located and simultaneously active muscles is exaggerated when muscles are weakly active such as during sustained wrist and finger flexion. This paper reports the use of fractal properties of sEMG to reliably identify individual wrist and finger flexion, overcoming the earlier shortcomings. Methods SEMG signal was recorded when the participant maintained pre-specified wrist and finger flexion movements for a period of time. Various established sEMG signal parameters such as root mean square (RMS, Mean absolute value (MAV, Variance (VAR and Waveform length (WL and the proposed fractal features: fractal dimension (FD and maximum fractal length (MFL were computed. Multi-variant analysis of variance (MANOVA was conducted to determine the p value, indicative of the significance of the relationships between each of these parameters with the wrist and finger flexions. Classification accuracy was also computed using the trained artificial neural network (ANN classifier to decode the desired subtle movements. Results The results indicate that the p value for the proposed feature set consisting of FD and MFL of single channel sEMG was 0.0001 while that of various combinations of the five established features ranged between 0.009 - 0.0172. From the accuracy of classification by the ANN, the average accuracy in identifying the wrist and finger flexions using the proposed feature set of single channel sEMG was 90%, while the average accuracy when using a combination

  5. A Novel Feature Optimization for Wearable Human-Computer Interfaces Using Surface Electromyography Sensors

    Directory of Open Access Journals (Sweden)

    Han Sun

    2018-03-01

    Full Text Available The novel human-computer interface (HCI using bioelectrical signals as input is a valuable tool to improve the lives of people with disabilities. In this paper, surface electromyography (sEMG signals induced by four classes of wrist movements were acquired from four sites on the lower arm with our designed system. Forty-two features were extracted from the time, frequency and time-frequency domains. Optimal channels were determined from single-channel classification performance rank. The optimal-feature selection was according to a modified entropy criteria (EC and Fisher discrimination (FD criteria. The feature selection results were evaluated by four different classifiers, and compared with other conventional feature subsets. In online tests, the wearable system acquired real-time sEMG signals. The selected features and trained classifier model were used to control a telecar through four different paradigms in a designed environment with simple obstacles. Performance was evaluated based on travel time (TT and recognition rate (RR. The results of hardware evaluation verified the feasibility of our acquisition systems, and ensured signal quality. Single-channel analysis results indicated that the channel located on the extensor carpi ulnaris (ECU performed best with mean classification accuracy of 97.45% for all movement’s pairs. Channels placed on ECU and the extensor carpi radialis (ECR were selected according to the accuracy rank. Experimental results showed that the proposed FD method was better than other feature selection methods and single-type features. The combination of FD and random forest (RF performed best in offline analysis, with 96.77% multi-class RR. Online results illustrated that the state-machine paradigm with a 125 ms window had the highest maneuverability and was closest to real-life control. Subjects could accomplish online sessions by three sEMG-based paradigms, with average times of 46.02, 49.06 and 48.08 s

  6. Mining for diagnostic information in body surface potential maps: A comparison of feature selection techniques

    Directory of Open Access Journals (Sweden)

    McCullagh Paul J

    2005-09-01

    Full Text Available Abstract Background In body surface potential mapping, increased spatial sampling is used to allow more accurate detection of a cardiac abnormality. Although diagnostically superior to more conventional electrocardiographic techniques, the perceived complexity of the Body Surface Potential Map (BSPM acquisition process has prohibited its acceptance in clinical practice. For this reason there is an interest in striking a compromise between the minimum number of electrocardiographic recording sites required to sample the maximum electrocardiographic information. Methods In the current study, several techniques widely used in the domains of data mining and knowledge discovery have been employed to mine for diagnostic information in 192 lead BSPMs. In particular, the Single Variable Classifier (SVC based filter and Sequential Forward Selection (SFS based wrapper approaches to feature selection have been implemented and evaluated. Using a set of recordings from 116 subjects, the diagnostic ability of subsets of 3, 6, 9, 12, 24 and 32 electrocardiographic recording sites have been evaluated based on their ability to correctly asses the presence or absence of Myocardial Infarction (MI. Results It was observed that the wrapper approach, using sequential forward selection and a 5 nearest neighbour classifier, was capable of choosing a set of 24 recording sites that could correctly classify 82.8% of BSPMs. Although the filter method performed slightly less favourably, the performance was comparable with a classification accuracy of 79.3%. In addition, experiments were conducted to show how (a features chosen using the wrapper approach were specific to the classifier used in the selection model, and (b lead subsets chosen were not necessarily unique. Conclusion It was concluded that both the filter and wrapper approaches adopted were suitable for guiding the choice of recording sites useful for determining the presence of MI. It should be noted however

  7. Stream/Bounce Event Perception Reveals a Temporal Limit of Motion Correspondence Based on Surface Feature over Space and Time

    Directory of Open Access Journals (Sweden)

    Yousuke Kawachi

    2011-06-01

    Full Text Available We examined how stream/bounce event perception is affected by motion correspondence based on the surface features of moving objects passing behind an occlusion. In the stream/bounce display two identical objects moving across each other in a two-dimensional display can be perceived as either streaming through or bouncing off each other at coincidence. Here, surface features such as colour (Experiments 1 and 2 or luminance (Experiment 3 were switched between the two objects at coincidence. The moment of coincidence was invisible to observers due to an occluder. Additionally, the presentation of the moving objects was manipulated in duration after the feature switch at coincidence. The results revealed that a postcoincidence duration of approximately 200 ms was required for the visual system to stabilize judgments of stream/bounce events by determining motion correspondence between the objects across the occlusion on the basis of the surface feature. The critical duration was similar across motion speeds of objects and types of surface features. Moreover, controls (Experiments 4a–4c showed that cognitive bias based on feature (colour/luminance congruency across the occlusion could not fully account for the effects of surface features on the stream/bounce judgments. We discuss the roles of motion correspondence, visual feature processing, and attentive tracking in the stream/bounce judgments.

  8. A Classification-oriented Method of Feature Image Generation for Vehicle-borne Laser Scanning Point Clouds

    Directory of Open Access Journals (Sweden)

    YANG Bisheng

    2016-02-01

    Full Text Available An efficient method of feature image generation of point clouds to automatically classify dense point clouds into different categories is proposed, such as terrain points, building points. The method first uses planar projection to sort points into different grids, then calculates the weights and feature values of grids according to the distribution of laser scanning points, and finally generates the feature image of point clouds. Thus, the proposed method adopts contour extraction and tracing means to extract the boundaries and point clouds of man-made objects (e.g. buildings and trees in 3D based on the image generated. Experiments show that the proposed method provides a promising solution for classifying and extracting man-made objects from vehicle-borne laser scanning point clouds.

  9. On application of kernel PCA for generating stimulus features for fMRI during continuous music listening.

    Science.gov (United States)

    Tsatsishvili, Valeri; Burunat, Iballa; Cong, Fengyu; Toiviainen, Petri; Alluri, Vinoo; Ristaniemi, Tapani

    2018-06-01

    There has been growing interest towards naturalistic neuroimaging experiments, which deepen our understanding of how human brain processes and integrates incoming streams of multifaceted sensory information, as commonly occurs in real world. Music is a good example of such complex continuous phenomenon. In a few recent fMRI studies examining neural correlates of music in continuous listening settings, multiple perceptual attributes of music stimulus were represented by a set of high-level features, produced as the linear combination of the acoustic descriptors computationally extracted from the stimulus audio. NEW METHOD: fMRI data from naturalistic music listening experiment were employed here. Kernel principal component analysis (KPCA) was applied to acoustic descriptors extracted from the stimulus audio to generate a set of nonlinear stimulus features. Subsequently, perceptual and neural correlates of the generated high-level features were examined. The generated features captured musical percepts that were hidden from the linear PCA features, namely Rhythmic Complexity and Event Synchronicity. Neural correlates of the new features revealed activations associated to processing of complex rhythms, including auditory, motor, and frontal areas. Results were compared with the findings in the previously published study, which analyzed the same fMRI data but applied linear PCA for generating stimulus features. To enable comparison of the results, methodology for finding stimulus-driven functional maps was adopted from the previous study. Exploiting nonlinear relationships among acoustic descriptors can lead to the novel high-level stimulus features, which can in turn reveal new brain structures involved in music processing. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Surface display of a massively variable lipoprotein by a Legionella diversity-generating retroelement.

    Science.gov (United States)

    Arambula, Diego; Wong, Wenge; Medhekar, Bob A; Guo, Huatao; Gingery, Mari; Czornyj, Elizabeth; Liu, Minghsun; Dey, Sanghamitra; Ghosh, Partho; Miller, Jeff F

    2013-05-14

    Diversity-generating retroelements (DGRs) are a unique family of retroelements that confer selective advantages to their hosts by facilitating localized DNA sequence evolution through a specialized error-prone reverse transcription process. We characterized a DGR in Legionella pneumophila, an opportunistic human pathogen that causes Legionnaires disease. The L. pneumophila DGR is found within a horizontally acquired genomic island, and it can theoretically generate 10(26) unique nucleotide sequences in its target gene, legionella determinent target A (ldtA), creating a repertoire of 10(19) distinct proteins. Expression of the L. pneumophila DGR resulted in transfer of DNA sequence information from a template repeat to a variable repeat (VR) accompanied by adenine-specific mutagenesis of progeny VRs at the 3'end of ldtA. ldtA encodes a twin-arginine translocated lipoprotein that is anchored in the outer leaflet of the outer membrane, with its C-terminal variable region surface exposed. Related DGRs were identified in L. pneumophila clinical isolates that encode unique target proteins with homologous VRs, demonstrating the adaptability of DGR components. This work characterizes a DGR that diversifies a bacterial protein and confirms the hypothesis that DGR-mediated mutagenic homing occurs through a conserved mechanism. Comparative bioinformatics predicts that surface display of massively variable proteins is a defining feature of a subset of bacterial DGRs.

  11. Generation Mechanism of Work Hardened Surface Layer in Metal Cutting

    Science.gov (United States)

    Hikiji, Rikio; Kondo, Eiji; Kawagoishi, Norio; Arai, Minoru

    Finish machining used to be carried out in grinding, but it is being replaced by cutting with very small undeformed chip thickness. In ultra precision process, the effects of the cutting conditions and the complicated factors on the machined surface integrity are the serious problems. In this research, work hardened surface layer was dealt with as an evaluation of the machined surface integrity and the effect of the mechanical factors on work hardening was investigated experimentally in orthogonal cutting. As a result, it was found that work hardened surface layer was affected not only by the shear angle varied under the cutting conditions and the thrust force of cutting resistance, but also by the thrust force acting point, the coefficient of the thrust force and the compressive stress equivalent to the bulk hardness. Furthermore, these mechanical factors acting on the depth of the work hardened surface layer were investigated with the calculation model.

  12. Molecular surface mesh generation by filtering electron density map.

    Science.gov (United States)

    Giard, Joachim; Macq, Benoît

    2010-01-01

    Bioinformatics applied to macromolecules are now widely spread and in continuous expansion. In this context, representing external molecular surface such as the Van der Waals Surface or the Solvent Excluded Surface can be useful for several applications. We propose a fast and parameterizable algorithm giving good visual quality meshes representing molecular surfaces. It is obtained by isosurfacing a filtered electron density map. The density map is the result of the maximum of Gaussian functions placed around atom centers. This map is filtered by an ideal low-pass filter applied on the Fourier Transform of the density map. Applying the marching cubes algorithm on the inverse transform provides a mesh representation of the molecular surface.

  13. Molecular Surface Mesh Generation by Filtering Electron Density Map

    Directory of Open Access Journals (Sweden)

    Joachim Giard

    2010-01-01

    Full Text Available Bioinformatics applied to macromolecules are now widely spread and in continuous expansion. In this context, representing external molecular surface such as the Van der Waals Surface or the Solvent Excluded Surface can be useful for several applications. We propose a fast and parameterizable algorithm giving good visual quality meshes representing molecular surfaces. It is obtained by isosurfacing a filtered electron density map. The density map is the result of the maximum of Gaussian functions placed around atom centers. This map is filtered by an ideal low-pass filter applied on the Fourier Transform of the density map. Applying the marching cubes algorithm on the inverse transform provides a mesh representation of the molecular surface.

  14. Surface structure enhanced second harmonic generation in organic nanofibers

    DEFF Research Database (Denmark)

    Fiutowski, Jacek; Maibohm, Christian; Kostiučenko, Oksana

    Second-harmonic generation upon femto-second laser irradiation of nonlinearly optically active nanofibers grown from nonsymmetrically functionalized para-quarterphenylene (CNHP4) molecules is investigated. Following growth on mica templates, the nanofibers have been transferred onto lithography...

  15. Short term memory for single surface features and bindings in ageing: A replication study.

    Science.gov (United States)

    Isella, Valeria; Molteni, Federica; Mapelli, Cristina; Ferrarese, Carlo

    2015-06-01

    In the present study we replicated a previous experiment investigating visuo-spatial short term memory binding in young and older healthy individuals, in the attempt to verify the pattern of impairment that can be observed in normal elderly for short term memory for single items vs short term memory for bindings. Assessing a larger sample size (25 young and 25 older subjects), using a more appropriate measure of accuracy for a change detection task (A'), and adding the evaluation of speed of performance, we confirmed that old normals show a decline in short term memory for bindings of shape and colour that is of comparable extent, and not major, to the decline in memory for single shapes and single colours. The absence of a specific deficit of short term memory for conjunctions of surface features seems to distinguish cognitive ageing from Alzheimer's Disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Crystal surface analysis using matrix textural features classified by a Probabilistic Neural Network

    International Nuclear Information System (INIS)

    Sawyer, C.R.; Quach, V.T.; Nason, D.; van den Berg, L.

    1991-01-01

    A system is under development in which surface quality of a growing bulk mercuric iodide crystal is monitored by video camera at regular intervals for early detection of growth irregularities. Mercuric iodide single crystals are employed in radiation detectors. A microcomputer system is used for image capture and processing. The digitized image is divided into multiple overlappings subimage and features are extracted from each subimage based on statistical measures of the gray tone distribution, according to the method of Haralick [1]. Twenty parameters are derived from each subimage and presented to a Probabilistic Neural Network (PNN) [2] for classification. This number of parameters was found to be optimal for the system. The PNN is a hierarchical, feed-forward network that can be rapidly reconfigured as additional training data become available. Training data is gathered by reviewing digital images of many crystals during their growth cycle and compiling two sets of images, those with and without irregularities. 6 refs., 4 figs

  17. Staphylococcus cohnii--resident of hospital environment: cell-surface features and resistance to antibiotics.

    Science.gov (United States)

    Szewczyk, E M; Rózalska, M

    2000-01-01

    Staphylococcus cohnii strains dominated in the environment of investigated hospitals. We isolated 420 strains of the species mainly from hospitals environments, but also from infants--Intensive Care Units patients, its medical staff and non-hospital environments. S. cohnii subspecies cohnii was seen to dominate (361 strains). Seventy seven percent of these strains expressed cell-surface hydrofobicity, most of them were slime producers (61%) and this feature was correlated with their methicillin resistance. Among S. cohnii ssp. cohnii strains isolated from ICU environment 90% were resistant to methicillin, 43% expressed high-level resistance to mupirocin and high percentages were resistant to many other antibiotics. These strains may constitute a dangerous reservoir of resistance genes in a hospital.

  18. Surface Replication of Molded Products with Microneedle Features in Injection Molding

    Science.gov (United States)

    Uchiumi, Kazuyasu; Takayama, Tetsuo; Ito, Hiroshi; Inou, Akinori

    Micro-molding of microneedle features was conducted using several injection-molding techniques. Injection compression molding and injection molding were performed with supercritical carbon dioxide fluid and with or without vacuum processing inside the mold cavity. Effects of process parameters on processability and surface replication of the molded parts were evaluated. The height replication ratio for microneedles was improved using injection compression molding. At a shorter compression stroke, the needle height was improved, and the influence of compression delay time was also small. Moreover, the effects of vacuum processing inside the mold cavity under the filling process were slight. The height replication ratio for microneedles showed the highest values using injection molding using supercritical carbon dioxide fluid with vacuum inside the mold cavity.

  19. Fluorescent polymeric nanocomposite films generated by surface-mediated photoinitiation of polymerization

    International Nuclear Information System (INIS)

    Avens, Heather J.; Chang, Erin L.; May, Allison M.; Berron, Brad J.; Seedorf, Gregory J.; Balasubramaniam, Vivek; Bowman, Christopher N.

    2011-01-01

    Incorporation of nanoparticles (NPs) into polymer films represents a valuable strategy for achieving a variety of desirable physical, optical, mechanical, and electrical attributes. Here, we describe and characterize the creation of highly fluorescent polymer films by entrapment of fluorescent NPs into polymer matrices through surface-mediated eosin photoinitiation reactions. Performing surface-mediated polymerizations with NPs combines the benefits of a covalently anchored film with the unique material properties afforded by NPs. The effects of monomer type, crosslinker content, NP size, and NP surface chemistry were investigated to determine their impact on the relative amount of NPs entrapped in the surface-bound films. The density of entrapped NPs was increased up to 6-fold by decreasing the NP diameter. Increasing the crosslinking agent concentration enabled a greater than 2-fold increase in the amount of NPs entrapped. Additionally, the monomer chemistry played a significant role as poly(ethylene glycol) diacrylate (PEGDA)-based monomer formulations entrapped a 10-fold higher density of carboxy-functionalized NPs than did acrylamide/bisacrylamide formulations, though the latter formulations ultimately immobilized more fluorophores by generating thicker films. In the context of a polymerization-based microarray biodetection platform, these findings enabled tailoring of the monomer and NP selection to yield a 200-fold improvement in sensitivity from 31 (±1) to 0.16 (±0.01) biotinylated target molecules per square micron. Similarly, in polymerization-based cell staining applications, appropriate monomer and NP selection enabled facile visualization of microscale, sub-cellular features. Careful consideration of monomer and NP selection is critical to achieve the desired properties in applications that employ surface-mediated polymerization to entrap NPs.

  20. Specific Features of Chip Making and Work-piece Surface Layer Formation in Machining Thermal Coatings

    Directory of Open Access Journals (Sweden)

    V. M. Yaroslavtsev

    2016-01-01

    Full Text Available A wide range of unique engineering structural and performance properties inherent in metallic composites characterizes wear- and erosion-resistant high-temperature coatings made by thermal spraying methods. This allows their use both in manufacturing processes to enhance the wear strength of products, which have to operate under the cyclic loading, high contact pressures, corrosion and high temperatures and in product renewal.Thermal coatings contribute to the qualitative improvement of the technical level of production and product restoration using the ceramic composite materials. However, the possibility to have a significantly increased product performance, reduce their factory labour hours and materials/output ratio in manufacturing and restoration is largely dependent on the degree of the surface layer quality of products at their finishing stage, which is usually provided by different kinds of machining.When machining the plasma-sprayed thermal coatings, a removing process of the cut-off layer material is determined by its distinctive features such as a layered structure, high internal stresses, low ductility material, high tendency to the surface layer strengthening and rehardening, porosity, high abrasive properties, etc. When coatings are machined these coating properties result in specific characteristics of chip formation and conditions for formation of the billet surface layer.The chip formation of plasma-sprayed coatings was studied at micro-velocities using an experimental tool-setting microscope-based setup, created in BMSTU. The setup allowed simultaneous recording both the individual stages (phases of the chip formation process and the operating force factors.It is found that formation of individual chip elements comes with the multiple micro-cracks that cause chipping-off the small particles of material. The emerging main crack in the cut-off layer of material leads to separation of the largest chip element. Then all the stages

  1. Three-dimensional measurement of small inner surface profiles using feature-based 3-D panoramic registration

    Science.gov (United States)

    Gong, Yuanzheng; Seibel, Eric J.

    2017-01-01

    Rapid development in the performance of sophisticated optical components, digital image sensors, and computer abilities along with decreasing costs has enabled three-dimensional (3-D) optical measurement to replace more traditional methods in manufacturing and quality control. The advantages of 3-D optical measurement, such as noncontact, high accuracy, rapid operation, and the ability for automation, are extremely valuable for inline manufacturing. However, most of the current optical approaches are eligible for exterior instead of internal surfaces of machined parts. A 3-D optical measurement approach is proposed based on machine vision for the 3-D profile measurement of tiny complex internal surfaces, such as internally threaded holes. To capture the full topographic extent (peak to valley) of threads, a side-view commercial rigid scope is used to collect images at known camera positions and orientations. A 3-D point cloud is generated with multiview stereo vision using linear motion of the test piece, which is repeated by a rotation to form additional point clouds. Registration of these point clouds into a complete reconstruction uses a proposed automated feature-based 3-D registration algorithm. The resulting 3-D reconstruction is compared with x-ray computed tomography to validate the feasibility of our proposed method for future robotically driven industrial 3-D inspection.

  2. Polarization controlled deep sub-wavelength periodic features written by femtosecond laser on nanodiamond thin film surface

    Energy Technology Data Exchange (ETDEWEB)

    Kumar Kuntumalla, Mohan; Srikanth, Vadali V. S. S., E-mail: vvsssse@uohyd.ernet.in [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); Rajamudili, Kuladeep; Rao Desai, Narayana [School of Physics, University of Hyderabad, Hyderabad 500046 (India)

    2014-04-21

    Deep sub-wavelength (Λ/λ = ∼0.22) periodic features are induced uniformly on a nanodiamond (ND) thin film surface using femtosecond (fs) laser irradiation (pulse duration = ∼110 fs and central wavelength of ∼800 nm). The topography of the surface features is controlled by the laser polarization. Orientation of features is perpendicular to laser polarization. Periodicity (spatial periodicity of < λ/4) of the surface features is less than the laser wavelength. This work gives an experimental proof of polarization controlled surface plasmon-fs laser coupling mechanism prompting the interaction between fs laser and solid matter (here ND thin film) which in turn is resulting in the periodic surface features. Scanning electron microscopy in conjunction with micro Raman scattering, X-ray diffraction, and atomic force microscopy are carried out to extract surface morphology and phase information of the laser irradiated regions. This work demonstrates an easy and efficient surface fabrication technique.

  3. Mining consumer reviews to generate ratings of different product attributes while producing feature-based review-summary

    Science.gov (United States)

    Kangale, Akshay; Krishna Kumar, S.; Arshad Naeem, Mohd; Williams, Mark; Tiwari, M. K.

    2016-10-01

    With the massive growth of the internet, product reviews increasingly serve as an important source of information for customers to make choices online. Customers depend on these reviews to understand users' experience, and manufacturers rely on this user-generated content to capture user sentiments about their product. Therefore, it is in the best interest of both customers and manufacturers to have a portal where they can read a complete comprehensive summary of these reviews in minimum time. With this in mind, we arrived at our first objective which is to generate a feature-based review-summary. Our second objective is to develop a predictive model to know the next week's product sales based on numerical review ratings and textual features embedded in the reviews. When it comes to product features, every user has different priorities for different features. To capture this aspect of decision-making, we have designed a new mechanism to generate a numerical rating for every feature of the product individually. The data have been collected from a well-known commercial website for two different products. The validation of the model is carried out using a crowd-sourcing technique.

  4. Glazed ceramic roof tiles: influence of surface features in the solar reflectance index

    International Nuclear Information System (INIS)

    Bortoli, Leitcia Silva de; Stapait, Camila Cristina; Marinoski, Deivis Luis; Fredel, Marcio Celso; Schabbach, Luciana M.

    2016-01-01

    In this study the influence of surface features of ceramic roof tiles in the solar reflectance index were evaluated. Two glazed ceramic roof tiles (type stoneware) with the same color (ivory) but with different appearance (matte and brilliant) were the focus of the analysis. The Solar Reflectance Index (SRI) of the roofs tiles were determined by the solar reflectance values (UV-VIS-NIR) and emittance, measured in laboratory. The samples showed SRI> 39 in accordance with LEED certification criteria (Leadership in Energy and Environmental Design), contributing to minimizing the Heat Island Effects. Although the matte roof tile shows a slightly higher SRI value (82) than the brilliant one (78), the results for the variables that composes the SRI value (reflectance and emittance) were very similar. Analysis of XRD, SEM and EDS performed on the surfaces of the two roofs indicated for the matte glaze the presence of microcrystals (with barium and zinc) that can contribute to the slightly highest value of SRI. The roughness (optical interferometer white light) and the brightness (brightness meter) of the samples were also measured. (author)

  5. A touch-probe path generation method through similarity analysis between the feature vectors in new and old models

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Hye Sung; Lee, Jin Won; Yang, Jeong Sam [Dept. of Industrial Engineering, Ajou University, Suwon (Korea, Republic of)

    2016-10-15

    The On-machine measurement (OMM), which measures a work piece during or after the machining process in the machining center, has the advantage of measuring the work piece directly within the work space without moving it. However, the path generation procedure used to determine the measuring sequence and variables for the complex features of a target work piece has the limitation of requiring time-consuming tasks to generate the measuring points and mostly relies on the proficiency of the on-site engineer. In this study, we propose a touch-probe path generation method using similarity analysis between the feature vectors of three-dimensional (3-D) shapes for the OMM. For the similarity analysis between a new 3-D model and existing 3-D models, we extracted the feature vectors from models that can describe the characteristics of a geometric shape model; then, we applied those feature vectors to a geometric histogram that displays a probability distribution obtained by the similarity analysis algorithm. In addition, we developed a computer-aided inspection planning system that corrects non-applied measuring points that are caused by minute geometry differences between the two models and generates the final touch-probe path.

  6. Thermal measurements of dark and bright surface features on Vesta as derived from Dawn/VIR

    Science.gov (United States)

    Tosi, Federico; Capria, Maria Teresa; De Sanctis, M.C.; Combe, J.-Ph.; Zambon, F.; Nathues, A.; Schröder, S.E.; Li, J.-Y.; Palomba, E.; Longobardo, A.; Blewett, D.T.; Denevi, B.W.; Palmer, E.; Capaccioni, F.; Ammannito, E.; Titus, Timothy N.; Mittlefehldt, D.W.; Sunshine, J.M.; Russell, C.T.; Raymond, C.A.; Dawn/VIR Team,

    2014-01-01

    Remote sensing data acquired during Dawn’s orbital mission at Vesta showed several local concentrations of high-albedo (bright) and low-albedo (dark) material units, in addition to spectrally distinct meteorite impact ejecta. The thermal behavior of such areas seen at local scale (1-10 km) is related to physical properties that can provide information about the origin of those materials. We use Dawn’s Visible and InfraRed (VIR) mapping spectrometer hyperspectral data to retrieve surface temperatures and emissivities, with high accuracy as long as temperatures are greater than 220 K. Some of the dark and bright features were observed multiple times by VIR in the various mission phases at variable spatial resolution, illumination and observation angles, local solar time, and heliocentric distance. This work presents the first temperature maps and spectral emissivities of several kilometer-scale dark and bright material units on Vesta. Results retrieved from the infrared data acquired by VIR show that bright regions generally correspond to regions with lower temperature, while dark regions correspond to areas with higher temperature. During maximum daily insolation and in the range of heliocentric distances explored by Dawn, i.e. 2.23-2.54 AU, the warmest dark unit found on Vesta rises to a temperature of 273 K, while bright units observed under comparable conditions do not exceed 266 K. Similarly, dark units appear to have higher emissivity on average compared to bright units. Dark-material units show a weak anticorrelation between temperature and albedo, whereas the relation is stronger for bright material units observed under the same conditions. Individual features may show either evanescent or distinct margins in the thermal images, as a consequence of the cohesion of the surface material. Finally, for the two categories of dark and bright materials, we were able to highlight the influence of heliocentric distance on surface temperatures, and estimate an

  7. Nano surface generation of grinding process using carbon nano tubes

    Indian Academy of Sciences (India)

    Nano surface finish has become an important parameter in the semiconductor, optical, electrical and mechanical industries. The materials used in these industries are classified as difficult to machine materials such as ceramics, glasses and silicon wafers. Machining of these materials up to nano accuracy is a great ...

  8. Side Flow Effect on Surface Generation in Nano Cutting.

    Science.gov (United States)

    Xu, Feifei; Fang, Fengzhou; Zhang, Xiaodong

    2017-12-01

    The side flow of material in nano cutting is one of the most important factors that deteriorate the machined surface quality. The effects of the crystallographic orientation, feed, and the cutting tool geometry, including tool edge radius, rake angle and inclination angle, on the side flow are investigated employing molecular dynamics simulation. The results show that the stagnation region is formed in front of tool edge and it is characterized by the stagnation radius R s and stagnation height h s . The side flow is formed because the material at or under the stagnation region is extruded by the tool edge to flow to the side of the tool edge. Higher stagnation height would increase the size of the side flow. The anisotropic nature of the material which partly determines the stagnation region also influences the side flow due to the different deformation mechanism under the action of the tool edge. At different cutting directions, the size of the side flow has a great difference which would finally affect the machined surface quality. The cutting directions of {100} , {110} , and {110}  are beneficial to obtain a better surface quality with small side flow. Besides that, the side flow could be suppressed by reducing the feed and optimizing the cutting tool geometry. Cutting tool with small edge radius, large positive rake angle, and inclination angle would decrease the side flow and consequently improve the machined surface quality.

  9. Theory of surface second-harmonic generation in silica nanowires

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2010-01-01

    , while generating the second harmonic in one of the modes of the LP11 multiplet. This is shown to work in both circular and microstructured nanowires, although only one of the LP11 modes can be phase-matched in the microstructure. The prospect of obtaining large conversion efficiencies in silica...

  10. Texture-based segmentation with Gabor filters, wavelet and pyramid decompositions for extracting individual surface features from areal surface topography maps

    International Nuclear Information System (INIS)

    Senin, Nicola; Leach, Richard K; Pini, Stefano; Blunt, Liam A

    2015-01-01

    Areal topography segmentation plays a fundamental role in those surface metrology applications concerned with the characterisation of individual topography features. Typical scenarios include the dimensional inspection and verification of micro-structured surface features, and the identification and characterisation of localised defects and other random singularities. While morphological segmentation into hills or dales is the only partitioning operation currently endorsed by the ISO specification standards on surface texture metrology, many other approaches are possible, in particular adapted from the literature on digital image segmentation. In this work an original segmentation approach is introduced and discussed, where topography partitioning is driven by information collected through the application of texture characterisation transforms popular in digital image processing. Gabor filters, wavelets and pyramid decompositions are investigated and applied to a selected set of test cases. The behaviour, performance and limitations of the proposed approach are discussed from the viewpoint of the identification and extraction of individual surface topography features. (paper)

  11. Auto-recognition of surfaces and auto-generation of material removal volume for finishing process

    Science.gov (United States)

    Kataraki, Pramod S.; Salman Abu Mansor, Mohd

    2018-03-01

    Auto-recognition of a surface and auto-generation of material removal volumes for the so recognised surfaces has become a need to achieve successful downstream manufacturing activities like automated process planning and scheduling. Few researchers have contributed to generation of material removal volume for a product but resulted in material removal volume discontinuity between two adjacent material removal volumes generated from two adjacent faces that form convex geometry. The need for limitation free material removal volume generation was attempted and an algorithm that automatically recognises computer aided design (CAD) model’s surface and also auto-generate material removal volume for finishing process of the recognised surfaces was developed. The surfaces of CAD model are successfully recognised by the developed algorithm and required material removal volume is obtained. The material removal volume discontinuity limitation that occurred in fewer studies is eliminated.

  12. Dust generation at interaction of plasma jet with surfaces

    Science.gov (United States)

    Ticos, Catalin; Toader, Dorina; Banu, Nicoleta; Scurtu, Adrian; Oane, Mihai

    2013-10-01

    Coatings of W and C with widths of a few microns will be exposed to plasma jet for studying the erosion of the surface and detachment of micron size dust particles. A coaxial plasma gun has been built inside a vacuum chamber for producing supersonic plasma jets. Its design is based on a 50 kJ coaxial plasma gun which has been successfully used for accelerating hypervelocity dust. Initial shots were carried out for a capacitor bank with C = 12 μF and charged up to 2 kV. Currents of tens of amps were measured with a Rogowsky coil and plasma flow speeds of 4 km/s were inferred from high-speed images of jet propagation. An upgrade consisting in adding capacitors in parallel will be performed in order to increase the energy up to 2 kJ. A coil will be installed at the gun muzzle to compress the plasma flow and increase the energy density of the jet on the sample surface. A CCD camera with a maximum recording speed of 100 k fps and a maximum resolution of 1024 × 1024 pixels was set for image acquisition of the plasma and dust. A laser system used to illuminate the ejected dust from the surface includes a laser diode emitting at 650 nm with a beam power of 25 mW. The authors acknowledge support from EURATOM WP13-IPH-A03-P2-02-BS22.

  13. Specific features of emergency processes associated with water leacs into sodium in a reverse steam generator

    International Nuclear Information System (INIS)

    Sroelov, V.S.; Nikol'skij, R.V.; Chernobrovkin, Yu.V.; Privalov, Yu.V.; Bocharin, P.P.; Shtynda, Yu.E.

    1986-01-01

    Experimental and theoretical data characterizing the development of emergency processes arising in the course of water leaks into sodium in a reverse steam generator (sodium in tubes, water in intertube space) are considered. The results of calculations performed for BOR-60 reactor steam generator at initial leaks of 0.01 and 0.55 g/s are presented. It is shown that in the reverse steam generator the development of accident occurs much slower than in steam generators of traditional design. At same stage of accident sodium is displaced from the damaged tube and as a result the destruction of tube material discontinues. The conclusion is drawn that by the development of emergency protection systems for reverse steam generator the requirements for sensitivity and fast response of leak detectors could be reduced

  14. Employing Eigenvalue Ratios to Generate Prior Fracture-like Features for Stochastic Hydrogeophysical Characterization of a Fractured Aquifer System

    Science.gov (United States)

    Brewster, J.; Oware, E. K.

    2017-12-01

    Groundwater hosted in fractured rocks constitutes almost 65% of the principal aquifers in the US. The exploitation and contaminant management of fractured aquifers require fracture flow and transport modeling, which in turn requires a detailed understanding of the structure of the aquifer. The widely used equivalent porous medium approach to modeling fractured aquifer systems is inadequate to accurately predict fracture transport processes due to the averaging of the sharp lithological contrast between the matrix and the fractures. The potential of geophysical imaging (GI) to estimate spatially continuous subsurface profiles in a minimally invasive fashion is well proven. Conventional deterministic GI strategies, however, produce geologically unrealistic, smoothed-out results due to commonly enforced smoothing constraints. Stochastic GI of fractured aquifers is becoming increasing appealing due to its ability to recover realistic fracture features while providing multiple likely realizations that enable uncertainty assessment. Generating prior spatial features consistent with the expected target structures is crucial in stochastic imaging. We propose to utilize eigenvalue ratios to resolve the elongated fracture features expected in a fractured aquifer system. Eigenvalues capture the major and minor directions of variability in a region, which can be employed to evaluate shape descriptors, such as eccentricity (elongation) and orientation of features in the region. Eccentricity ranges from zero to one, representing a circularly sharped to a line feature, respectively. Here, we apply eigenvalue ratios to define a joint objective parameter consisting of eccentricity (shape) and direction terms to guide the generation of prior fracture-like features in some predefined principal directions for stochastic GI. Preliminary unconditional, synthetic experiments reveal the potential of the algorithm to simulate prior fracture-like features. We illustrate the strategy with a

  15. Computational mesh generation for vascular structures with deformable surfaces

    International Nuclear Information System (INIS)

    Putter, S. de; Laffargue, F.; Breeuwer, M.; Vosse, F.N. van de; Gerritsen, F.A.; Philips Medical Systems, Best

    2006-01-01

    Computational blood flow and vessel wall mechanics simulations for vascular structures are becoming an important research tool for patient-specific surgical planning and intervention. An important step in the modelling process for patient-specific simulations is the creation of the computational mesh based on the segmented geometry. Most known solutions either require a large amount of manual processing or lead to a substantial difference between the segmented object and the actual computational domain. We have developed a chain of algorithms that lead to a closely related implementation of image segmentation with deformable models and 3D mesh generation. The resulting processing chain is very robust and leads both to an accurate geometrical representation of the vascular structure as well as high quality computational meshes. The chain of algorithms has been tested on a wide variety of shapes. A benchmark comparison of our mesh generation application with five other available meshing applications clearly indicates that the new approach outperforms the existing methods in the majority of cases. (orig.)

  16. Image simulation and surface reconstruction of undercut features in atomic force microscopy

    Science.gov (United States)

    Qian, Xiaoping; Villarrubia, John; Tian, Fenglei; Dixson, Ronald

    2007-03-01

    CD-AFMs (critical dimension atomic force microscopes) are instruments with servo-control of the tip in more than one direction. With appropriately "boot-shaped" or flared tips, such instruments can image vertical or even undercut features. As with any AFM, the image is a dilation of the sample shape with the tip shape. Accurate extraction of the CD requires a correction for the tip effect. Analytical methods to correct images for the tip shape have been available for some time for the traditional (vertical feedback only) AFMs, but were until recently unavailable for instruments with multi-dimensional feedback. Dahlen et al. [J. Vac. Sci. Technol. B23, pp. 2297-2303, (2005)] recently introduced a swept-volume approach, implemented for 2-dimensional (2D) feedback. It permits image simulation and sample reconstruction, techniques previously developed for the traditional instruments, to be extended for the newer tools. We have introduced [X. Qian and J. S. Villarrubia, Ultramicroscopy, in press] an alternative dexel-based method, that does the same in either 2D or 3D. This paper describes the application of this method to sample shapes of interest in semiconductor manufacturing. When the tip shape is known (e.g., by prior measurement using a tip characterizer) a 3D sample surface may be reconstructed from its 3D image. Basing the CD measurement upon such a reconstruction is shown here to remove some measurement artifacts that are not removed (or are incompletely removed) by the existing measurement procedures.

  17. DISCRETIZATION APPROACH USING RAY-TESTING MODEL IN PARTING LINE AND PARTING SURFACE GENERATION

    Institute of Scientific and Technical Information of China (English)

    HAN Jianwen; JIAN Bin; YAN Guangrong; LEI Yi

    2007-01-01

    Surface classification, 3D parting line, parting surface generation and demoldability analysis which is helpful to select optimal parting direction and optimal parting line are involved in automatic cavity design based on the ray-testing model. A new ray-testing approach is presented to classify the part surfaces to core/cavity surfaces and undercut surfaces by automatic identifying the visibility of surfaces. A simple, direct and efficient algorithm to identify surface visibility is developed. The algorithm is robust and adapted to rather complicated geometry, so it is valuable in computer-aided mold design systems. To validate the efficiency of the approach, an experimental program is implemented. Case studies show that the approach is practical and valuable in automatic parting line and parting surface generation.

  18. Overview of centaur and graspin enviroment generators part 1 syntx related features

    OpenAIRE

    Zuppa, Elisabetta

    1989-01-01

    A short presentation of two generic interactive environments- GRASPIN and CENTAUR- is given. When provided with the description of a particular language-including its syntax and semantics- GRASPIN and CENTAUR produce an environment specific for that language. This is the first of a series of notes regarding the above systems which will cover the semantic specification and user-interface features of both of them.

  19. Effect of surface treatments on radiation buildup in steam generators

    International Nuclear Information System (INIS)

    Asay, R.H.; Pick, M.E.; van Melsen, C.

    1991-11-01

    Test coupons of typical PWR materials of construction were prepared using a number of pretreatments to minimize radiation buildup. The coupons were then exposed to primary coolant at the Doel-2 PWR in Belgium. The exposure periods for the coupons ranged from one to three fuel cycles. After removal from the primary system, doserate and gamma spectroscopy measurements were made to determine the radioactivity levels on the coupons. Varying levels of success were achieved for the preconditioning techniques tested. Electropolishing alone provided some degree of resistance to radiation buildup on the treated surface and electropolishing plus passivation was shown to be even better. Radiation buildup resistance of the palladium-coated coupons was poor; radiation levels on these coupons were even higher than on the untreated reference coupons. The poor performance of the palladium-coated coupons was possibly due to the method used to apply the coating. In contrast to palladium coating, very encouraging results were achieved with chromium plating plus passivation. Preliminary results show that this technique can inhibit activity deposition by as much as a factor of ten. 4 refs., 64 figs., 26 tabs

  20. Vector vortex beam generation with dolphin-shaped cell meta-surface.

    Science.gov (United States)

    Yang, Zhuo; Kuang, Deng-Feng; Cheng, Fang

    2017-09-18

    We present a dolphin-shaped cell meta-surface, which is a combination of dolphin-shaped metallic cells and dielectric substrate, for vector vortex beam generation with the illumination of linearly polarized light. Surface plasmon polaritons are excited at the boundary of the metallic cells, then guided by the metallic structures, and finally squeezed to the tips to form highly localized strong electromagnetic fields, which generate the intensity of vector vortex beams at z component. Synchronously, the abrupt phase change produced by the meta-surface is utilized to explain the vortex phase generated by elements. The new kind of structure can be utilized for communication, bioscience, and materiality.

  1. X-ray evaluation of residual stress distributions within surface machined layer generated by surface machining and sequential welding

    International Nuclear Information System (INIS)

    Taniguchi, Yuu; Okano, Shigetaka; Mochizuki, Masahito

    2017-01-01

    The excessive tensile residual stress generated by welding after surface machining may be an important factor to cause stress corrosion cracking (SCC) in nuclear power plants. Therefore we need to understand and control the residual stress distribution appropriately. In this study, residual stress distributions within surface machined layer generated by surface machining and sequential welding were evaluated by X-ray diffraction method. Depth directional distributions were also investigated by electrolytic polishing. In addition, to consider the effect of work hardened layer on the residual stress distributions, we also measured full width at half maximum (FWHM) obtained from X-ray diffraction. Testing material was a low-carbon austenitic stainless steel type SUS316L. Test specimens were prepared by surface machining with different cutting conditions. Then, bead-on-plate welding under the same welding condition was carried out on the test specimens with different surface machined layer. As a result, the tensile residual stress generated by surface machining increased with increasing cutting speed and showed nearly uniform distributions on the surface. Furthermore, the tensile residual stress drastically decreased with increasing measurement depth within surface machined layer. Then, the residual stress approached 0 MPa after the compressive value showed. FWHM also decreased drastically with increasing measurement depth and almost constant value from a certain depth, which was almost equal regardless of the machining condition, within surface machined layer in all specimens. After welding, the transverse distribution of the longitudinal residual stress varied in the area apart from the weld center according to machining conditions and had a maximum value in heat affected zone. The magnitude of the maximum residual stress was almost equal regardless of the machining condition and decreased with increasing measurement depth within surface machined layer. Finally, the

  2. A Primer on Vibrational Ball Bearing Feature Generation for Prognostics and Diagnostics Algorithms

    Science.gov (United States)

    2015-03-01

    ball bearings. • Plastic deformation – alterations in the contact surfaces as a result of excessive loading while stationary or during small movements... disintegrate or break. In this final stage, the usual suspects (bearing defect frequency, its harmonics, and sidebands) may 11 actually disappear

  3. Automatic generation of anatomic characteristics from cerebral aneurysm surface models.

    Science.gov (United States)

    Neugebauer, M; Lawonn, K; Beuing, O; Preim, B

    2013-03-01

    Computer-aided research on cerebral aneurysms often depends on a polygonal mesh representation of the vessel lumen. To support a differentiated, anatomy-aware analysis, it is necessary to derive anatomic descriptors from the surface model. We present an approach on automatic decomposition of the adjacent vessels into near- and far-vessel regions and computation of the axial plane. We also exemplarily present two applications of the geometric descriptors: automatic computation of a unique vessel order and automatic viewpoint selection. Approximation methods are employed to analyze vessel cross-sections and the vessel area profile along the centerline. The resulting transition zones between near- and far- vessel regions are used as input for an optimization process to compute the axial plane. The unique vessel order is defined via projection into the plane space of the axial plane. The viewing direction for the automatic viewpoint selection is derived from the normal vector of the axial plane. The approach was successfully applied to representative data sets exhibiting a broad variability with respect to the configuration of their adjacent vessels. A robustness analysis showed that the automatic decomposition is stable against noise. A survey with 4 medical experts showed a broad agreement with the automatically defined transition zones. Due to the general nature of the underlying algorithms, this approach is applicable to most of the likely aneurysm configurations in the cerebral vasculature. Additional geometric information obtained during automatic decomposition can support correction in case the automatic approach fails. The resulting descriptors can be used for various applications in the field of visualization, exploration and analysis of cerebral aneurysms.

  4. How Activism Features in the Career Lives of Four Generations of Canadian Nurses.

    Science.gov (United States)

    MacDonnell, Judith A; Buck-McFadyen, Ellen

    2016-11-01

    Recent nursing research using a critical feminist lens challenges the prevailing view of political inertia in nursing. This comparative life history study using a critical feminist lens explores the relevance of activism with four generations of Canadian nurses. Purposeful sampling of Ontario nurses resulted in 40 participants who were diverse in terms of generation, practice setting, and activist practice. Interviews and focus groups were completed with the sample of Ontario registered nurses or undergraduate and graduate nursing students: 8 Generation X, 9 Generation Y (Millennials), 20 Boomers, and 3 Overboomers. Factors such as professional norms and personal and organizational supports shaped contradictory nursing activist identities, practices, and impacts. Gendered norms, organizational dynamics, and the political landscape influenced the meanings nurses attributed to critical incidents and influences that prompted activism inside and outside the workplace, shaping the transformative potential of nursing. Despite its limitations, the study has implications for creating professional and organizational supports for consideration of health politics and policy, and spaces for dialogue to support practice and research aligned with social justice goals.

  5. Economical and Morpho-Biological Features of Whiner Wheat New Generation Varieties (Triticum durum

    Directory of Open Access Journals (Sweden)

    Л. І. Улич

    2010-10-01

    Full Text Available The article describes summary of the researches, characteristics of morphological and agro-biological characteristics and features, a note is made of a significant progress in the selection of productivity and adaptability of registered Durum Winter Wheat Varieties of new crops rotation. Significant developments of  plants architectonic are marked, especially in height, characteristics of economical value, and in terms of considerable achievements in breeding of this kind of wheat. A stress in made on the need to enhance Durum Winter Wheat breeding to develop more frostresistant and drought-overheat resistant varieties.

  6. Numerical generation of boundary-fitted curvilinear coordinate systems for arbitrarily curved surfaces

    International Nuclear Information System (INIS)

    Takagi, T.; Miki, K.; Chen, B.C.J.; Sha, W.T.

    1985-01-01

    A new method is presented for numerically generating boundary-fitted coordinate systems for arbitrarily curved surfaces. The three-dimensional surface has been expressed by functions of two parameters using the geometrical modeling techniques in computer graphics. This leads to new quasi-one- and two-dimensional elliptic partial differential equations for coordinate transformation. Since the equations involve the derivatives of the surface expressions, the grids geneated by the equations distribute on the surface depending on its slope and curvature. A computer program GRID-CS based on the method was developed and applied to a surface of the second order, a torus and a surface of a primary containment vessel for a nuclear reactor. These applications confirm that GRID-CS is a convenient and efficient tool for grid generation on arbitrarily curved surfaces

  7. Field emission study from an array of hierarchical micro protrusions on stainless steel surface generated by femtosecond pulsed laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.K., E-mail: anilks@barc.gov.in [Laser & Plasma Technology Division, BARC, Mumbai, 400085 (India); Suryawanshi, Sachin R.; More, M.A. [Department of Physics, Savitribai Phule Pune University, Pune, 411007 (India); Basu, S. [Solid State Physics Division, BARC, Mumbai, 40085 (India); Sinha, Sucharita [Laser & Plasma Technology Division, BARC, Mumbai, 400085 (India)

    2017-02-28

    Highlights: • Array of self assembled micro-protrusions have been generated on stainless steel surfaces by femtosecond pulsed laser irradiation. • Density of the formed micro-protrusions is ∼5.6 × 105 protrusions/cm{sup 2}. • Laser treated surface is mainly composed of iron oxide and cementite phases. • Micro-structured sample has shown good field emission properties – low turn on field, high field enhancement factor and stable emission current. - Abstract: This paper reports our results on femtosecond (fs) pulsed laser induced surface micro/nano structuring of stainless steel 304 (SS 304) samples and their characterization in terms of surface morphology, formed material phases on laser irradiation and field emission studies. Our investigations reveal that nearly uniform and dense array of hierarchical micro-protrusions (density: ∼5.6 × 10{sup 5} protrusions/cm{sup 2}) is formed upon laser treatment. Typical tip diameters of the generated protrusions are in the range of 2–5 μm and these protrusions are covered with submicron sized features. Grazing incidence X-ray diffraction (GIXRD) analysis of the laser irradiated sample surface has shown formation mainly of iron oxides and cementite (Fe{sub 3}C) phases in the treated region. These laser micro-structured samples have shown good field emission properties such as low turn on field (∼4.1 V/μm), high macroscopic field enhancement factor (1830) and stable field emission current under ultra high vacuum conditions.

  8. Surface runoff generation in a small watershed covered by sugarcane and riparian forest

    Directory of Open Access Journals (Sweden)

    Rafael Pires Fernandes

    2013-12-01

    Full Text Available Since an understanding of how runoff is generated is of great importance to soil conservation, to water availability and to the management of a watershed, the objective of this study was to understand the generation of surface runoff in a watershed covered by sugarcane and riparian forest. Nine surface runoff plots were set up, evenly distributed on the lower, middle and upper slopes. The lower portion was covered by riparian forest. We showed that the average surface runoff coefficient along the slope in the present study was higher than in other studies under different land uses. Furthermore, the surface runoff was higher under sugarcane compared to the riparian forest, especially after sugarcane harvesting. Besides land cover, other factors such as the characteristics of rainfall events, relief and physical soil characteristics such as soil bulk density and saturated hydraulic conductivity influenced the surface runoff generation.

  9. Correlation between the histological features of corneal surface pannus following ocular surface burns and the final outcome of cultivated limbal epithelial transplantation.

    Science.gov (United States)

    Sati, Alok; Basu, Sayan; Sangwan, Virender S; Vemuganti, Geeta K

    2015-04-01

    To report the influence of histological features of corneal surface pannus following ocular surface burn on the outcome of cultivated limbal epithelial transplantation (CLET). On retrospectively reviewing the medical records of the patients who underwent autologous CLET from April 2002 to June 2012 at L V Prasad Eye Institute, Hyderabad, India, we could trace the histological reports in only 90 records. These 90 records, besides clinical parameters, were reviewed for the influence of various histological features on the final outcome of CLET. The histological features include epithelial hyperplasia (21.1%), surface ulceration (2.2%), goblet cells (62.2%), squamous metaplasia (11.1%), active fibrosis (31.1%), severe inflammation (8.9%), multinucleated giant cells (3.3%), stromal calcification (8.9%) and active proliferating vessels (5.6%). Among these histological features, patients with either hyperplasia or calcification in their excised corneal pannus show an unfavourable outcome compared with patients without hyperplasia (p=0.003) or calcification (p=0.018). A similar unfavourable outcome was not seen with other histological features and various clinical parameters. Presence of either calcific deposits or hyperplasia in the excised corneal pannus provides poor prognostication; hence, a proper counselling of such patients is mandatory along with a close follow-up. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. Global-local feature attention network with reranking strategy for image caption generation

    Science.gov (United States)

    Wu, Jie; Xie, Si-ya; Shi, Xin-bao; Chen, Yao-wen

    2017-11-01

    In this paper, a novel framework, named as global-local feature attention network with reranking strategy (GLAN-RS), is presented for image captioning task. Rather than only adopting unitary visual information in the classical models, GLAN-RS explores the attention mechanism to capture local convolutional salient image maps. Furthermore, we adopt reranking strategy to adjust the priority of the candidate captions and select the best one. The proposed model is verified using the Microsoft Common Objects in Context (MSCOCO) benchmark dataset across seven standard evaluation metrics. Experimental results show that GLAN-RS significantly outperforms the state-of-the-art approaches, such as multimodal recurrent neural network (MRNN) and Google NIC, which gets an improvement of 20% in terms of BLEU4 score and 13 points in terms of CIDER score.

  11. HeldenSurface: A CAD Tool to Generate High-Quality Surfaces, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — One of the primary shortcomings identified during the NASA sponsored CFD Vision 2030 Study conducted during 2012-2014 was that the generation of meshes suitable for...

  12. A new procedure for characterizing textured surfaces with a deterministic pattern of valley features

    DEFF Research Database (Denmark)

    Godi, Alessandro; Kühle, A; De Chiffre, Leonardo

    2013-01-01

    , therefore some modifications are investigated. In particular the robust Gaussian regression filter has been modified providing an envelope first-guess in order to always fit the mean line through the plateau region. Starting from a filtered and aligned profile, the feature thresholds recognition...... a correctly aligned roughness profile and permitting comprehensive feature analyses....

  13. Automated Music Video Generation Using Multi-level Feature-based Segmentation

    Science.gov (United States)

    Yoon, Jong-Chul; Lee, In-Kwon; Byun, Siwoo

    The expansion of the home video market has created a requirement for video editing tools to allow ordinary people to assemble videos from short clips. However, professional skills are still necessary to create a music video, which requires a stream to be synchronized with pre-composed music. Because the music and the video are pre-generated in separate environments, even a professional producer usually requires a number of trials to obtain a satisfactory synchronization, which is something that most amateurs are unable to achieve.

  14. FEATURES OF ISLET-LIKE CLUSTERS GENERATION IN PANCREATIC DUCTAL CELL MOLOLAYER CULTURING

    Directory of Open Access Journals (Sweden)

    L. A. Kirsanova

    2012-01-01

    Full Text Available Newborn rabbit pancreatic cell monolayer was obtained as we described earlier.The cultivated epithelial cells were shown by immunofluorescence to express special ductal marker CK19 and were insulin-and glucagon- negative for 10–15 days. A few fusiforms of nestin-positive cells were found in monolayer. Over 2 weeks in serum-free medium the plaques of epithelial cells became crowded and formed 3-dimentional structures – islet- like clusters. Islet-like clusters contain some insulin- and glucagon-positive cells recognized by immunohysto- chemistry staining. Pancreatic endocrine cell generation in 3-dimentional structures is discussed. 

  15. Identification of individual features in areal surface topography data by means of template matching and the ring projection transform

    International Nuclear Information System (INIS)

    Senin, Nicola; Moretti, Michele; Blunt, Liam A

    2014-01-01

    Starting from areal surface topography data as provided by current commercial three-dimensional (3D) profilometers and 3D digital microscopes, this work investigates the problem of automatically identifying and extracting functionally relevant, individual features within the acquisition area. Feature identification is achieved by adopting an original template-matching algorithmic procedure, based on applying the ring projection transform in combination with a parametric template. The proposed algorithmic procedure addresses in particular template-matching scenarios where significant variability may be associated with the features to be compared to the reference template. The algorithm is applied to a test case involving the characterization of the surface texture of a superabrasive polishing tool used in hard-disk manufacturing. (paper)

  16. Internal Physical Features of a Land Surface Model Employing a Tangent Linear Model

    Science.gov (United States)

    Yang, Runhua; Cohn, Stephen E.; daSilva, Arlindo; Joiner, Joanna; Houser, Paul R.

    1997-01-01

    The Earth's land surface, including its biomass, is an integral part of the Earth's weather and climate system. Land surface heterogeneity, such as the type and amount of vegetative covering., has a profound effect on local weather variability and therefore on regional variations of the global climate. Surface conditions affect local weather and climate through a number of mechanisms. First, they determine the re-distribution of the net radiative energy received at the surface, through the atmosphere, from the sun. A certain fraction of this energy increases the surface ground temperature, another warms the near-surface atmosphere, and the rest evaporates surface water, which in turn creates clouds and causes precipitation. Second, they determine how much rainfall and snowmelt can be stored in the soil and how much instead runs off into waterways. Finally, surface conditions influence the near-surface concentration and distribution of greenhouse gases such as carbon dioxide. The processes through which these mechanisms interact with the atmosphere can be modeled mathematically, to within some degree of uncertainty, on the basis of underlying physical principles. Such a land surface model provides predictive capability for surface variables including ground temperature, surface humidity, and soil moisture and temperature. This information is important for agriculture and industry, as well as for addressing fundamental scientific questions concerning global and local climate change. In this study we apply a methodology known as tangent linear modeling to help us understand more deeply, the behavior of the Mosaic land surface model, a model that has been developed over the past several years at NASA/GSFC. This methodology allows us to examine, directly and quantitatively, the dependence of prediction errors in land surface variables upon different vegetation conditions. The work also highlights the importance of accurate soil moisture information. Although surface

  17. Replication of micro and nano-features on iPP by injection molding with fast cavity surface temperature evolution

    DEFF Research Database (Denmark)

    Speranzaa, Vito; Liparotia, Sara; Calaon, Matteo

    2017-01-01

    The production of polymeric components with functional structures in the micrometer and sub-micrometer range is a complex challenge for the injection molding process, since it suffers the use of low cavity surface temperatures that induce the fast formation of a frozen layer, thus preventing...... was sufficient to obtain accurate replication, with adequate surface temperatures. In the case of nano-features, the replication accuracy was affected by the morphology developed on the molding surface, that is aligned along the flow direction with dimensions comparable with the dimension of the nano...

  18. Acoustic emission-based in-process monitoring of surface generation in robot-assisted polishing

    DEFF Research Database (Denmark)

    Pilny, Lukas; Bissacco, Giuliano; De Chiffre, Leonardo

    2016-01-01

    The applicability of acoustic emission (AE) measurements for in-process monitoring of surface generation in the robot-assisted polishing (RAP) was investigated. Surface roughness measurements require interruption of the process, proper surface cleaning and measurements that sometimes necessitate...... automatic detection of optimal process endpoint allow intelligent process control, creating fundamental elements in development of robust fully automated RAP process for its widespread industrial application....... removal of the part from the machine tool. In this study, stabilisation of surface roughness during polishing rotational symmetric surfaces by the RAP process was monitored by AE measurements. An AE sensor was placed on a polishing arm in direct contact with a bonded abrasive polishing tool...

  19. Design features in Korean next generation reactor focused on performance and economic viability

    International Nuclear Information System (INIS)

    Lee, J.S.; Chung, M.S.; Na, J.H.; Kim, M.C.; Choi, Y.S.

    2001-01-01

    As of the end of Dec. 1999, Korea's total nuclear power capacity reached 13,716 MWe with 16 units in operation and 4 units under construction. In addition, as part of the national long-term R and D programme launched in 1992, the Korean Next Generation Reactor (KNGR) is being developed to meet the electricity demands in the years to come and is expected to be safer and more economically competitive than any other conventional electric power sources in Korea. The KNGR project has successfully completed its second phase and is now on the third phase. In Phase III of the KNGR design development project, KNGR aims at reinforcing the economic competitiveness while maintaining safety goals. To achieve these objectives, the design options studied and the design requirements set up in the first phase are pursued while the second phase are being reviewed. This paper summarizes such efforts for design improvement in terms of performance and economic viability along with the status of nuclear power generation in Korea, focusing on KNGR currently. (author)

  20. Surface texture generation during cylindrical milling in the aspect of cutting force variations

    International Nuclear Information System (INIS)

    Wojciechowski, S; Twardowski, P; Pelic, M

    2014-01-01

    The work presented here concentrates on surface texture analysis, after cylindrical milling of hardened steel. Cutting force variations occurring in the machining process have direct influence on the cutter displacements and thus on the generated surface texture. Therefore, in these experiments, the influence of active number of teeth (z c ) on the cutting force variations was investigated. Cutting forces and cutter displacements were measured during machining process (online) using, namely piezoelectric force dynamometer and 3D laser vibrometer. Surface roughness parameters were measured using stylus surface profiler. The surface roughness model including cutting parameters (f z , D) and cutting force variations was also developed. The research revealed that in cylindrical milling process, cutting force variations have immediate influence on surface texture generation

  1. Erosion resistant anti-ice surfaces generated by ultra short laser pulses

    NARCIS (Netherlands)

    Del Cerro, D.A.; Römer, G.R.B.E.; Huis in't Veld, A.J.

    2010-01-01

    Wetting properties of a wide range of materials can be modified by accurate laser micromachining with ultra short laser pulses. Controlling the surface topography in a micro and sub-micrometer scale allows the generation of water-repellent surfaces, which remain dry and prevent ice accumulation

  2. Generating CT-TH-PM surfaces using EPT-based aggregate modelling

    NARCIS (Netherlands)

    Veeger, C.P.L.; Etman, L.F.P.; Herk, van J.; Rooda, J.E.

    2010-01-01

    Cycle Time-Throughput-Product mix (CT-TH-PM) surfaces give the mean cycle time as a function of throughput and product mix for manufacturing workstations. To generate the CT-TH-PM surface, detailed simulation models may be used. However, detailed models require much development time, and it may not

  3. Surface plasmon polariton generation by light scattering off aligned organic nanofibers

    DEFF Research Database (Denmark)

    Skovsen, Esben; Søndergaard, Thomas; Fiutowski, Jacek

    2012-01-01

    Leakage radiation spectroscopy has been applied to study surface plasmon polariton (SPP) generation by light scattered off aligned organic nanofibers deposited on a thin silver film. The efficiency of SPP generation was studied by angularly resolved leakage radiation spectroscopy as a function of...

  4. Analysis of progression of fatigue conditions in biceps brachii muscles using surface electromyography signals and complexity based features.

    Science.gov (United States)

    Karthick, P A; Makaram, Navaneethakrishna; Ramakrishnan, S

    2014-01-01

    Muscle fatigue is a neuromuscular condition where muscle performance decreases due to sustained or intense contraction. It is experienced by both normal and abnormal subjects. In this work, an attempt has been made to analyze the progression of muscle fatigue in biceps brachii muscles using surface electromyography (sEMG) signals. The sEMG signals are recorded from fifty healthy volunteers during dynamic contractions under well defined protocol. The acquired signals are preprocessed and segmented in to six equal parts for further analysis. The features, such as activity, mobility, complexity, sample entropy and spectral entropy are extracted from all six zones. The results are found showing that the extracted features except complexity feature have significant variations in differentiating non-fatigue and fatigue zone respectively. Thus, it appears that, these features are useful in automated analysis of various neuromuscular activities in normal and pathological conditions.

  5. Multi-Input Converter with MPPT Feature for Wind-PV Power Generation System

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2013-01-01

    Full Text Available A multi-input converter (MIC to process wind-PV power is proposed, designed, analyzed, simulated, and implemented. The MIC cannot only process solar energy but deal with wind power, of which structure is derived from forward-type DC/DC converter to step-down/up voltage for charger systems, DC distribution applications, or grid connection. The MIC comprises an upper modified double-ended forward, a lower modified double-ended forward, a common output inductor, and a DSP-based system controller. The two modified double-ended forwards can operate individually or simultaneously so as to accommodate the variation of the hybrid renewable energy under different atmospheric conditions. While the MIC operates at interleaving mode, better performance can be achieved and volume also is reduced. The proposed MIC is capable of recycling the energy stored in the leakage inductance and obtaining high step-up output voltage. In order to draw maximum power from wind turbine and PV panel, perturb-and-observe method is adopted to achieve maximum power point tracking (MPPT feature. The MIC is constructed, analyzed, simulated, and tested. Simulations and hardware measurements have demonstrated the feasibility and functionality of the proposed multi-input converter.

  6. New subsea X tree generation brings innovative features providing efficiency for ultra deep waters

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Gustavo Bellot de Almeida; Labes, Alan Zaragoza [FMC Technologies, Houston, TX (United States)

    2008-07-01

    The EVDT has been developed for global applications. Based upon the widely field proven 10 K Vertical Tree and 15 K HPHT Tree, the system has incorporated the latest technological advancements. The Tubing Hanger System and installation tooling are available up to a 7 inch bore for 10,000 psi applications and a 5 inch bore for 15,000 psi applications. The Tubing Hanger can be installed using a Tubing Head when flexibility for sequencing of events is required during offshore installations. Or it can simply land into the wellhead, eliminating the Tubing Head. This allows for a more efficient installation when completion and drilling operations are conducted without retrieving the Sub sea Blow Out Preventer (BOP) and Riser. The EVDT incorporates a retrievable Flow Module downstream of the wing valve that can be configured to project specific variances such as production, gas injection and water injection service. The Flow Module can also be configured to include Multi-Phase Flow Meters, sensors, and gauges. This allows an upgrade sub sea without having to pull and re-run the entire Tree system. These features allowed the system to hit the mark regarding what the industry needs today and also allowed to accommodate technologies that will arise in the years to come. (author)

  7. Oculo-facio-cardio-dental syndrome in three succeeding generations: genotypic data and phenotypic features

    Energy Technology Data Exchange (ETDEWEB)

    Lozić, B. [Department of Pediatrics, University Hospital Split, Split (Croatia); Ljubković, J. [Department of Pathology, Forensic Medicine and Cytology, University Hospital Split, Split (Croatia); Gabrić Pandurić, D. [Department of Oral Surgery, School of Dental Medicine, University of Zagreb, Zagreb (Croatia); Saltvig, I. [Jessenius Faculty of Medicine of Commenius, University in Bratislava, Martin (Slovakia); Kutsche, K. [Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg (Germany); Krželj, V. [Department of Pediatrics, University Hospital Split, Split (Croatia); Zemunik, T. [Department of Medical Biology, School of Medicine, University of Split, Split (Croatia)

    2012-09-21

    Oculo-facio-cardio-dental (OFCD) syndrome is a rare X-linked disorder mainly manifesting in females. Patients show ocular, facial, cardiac, and dental abnormalities. OFCD syndrome is caused by heterozygous mutations in the BCOR gene, located in Xp11.4, encoding the BCL6 co-repressor. We report a Croatian family with four female members (grandmother, mother and monozygotic female twins) diagnosed with OFCD syndrome who carry the novel BCOR mutation c.4438C>T (p.R1480*). They present high intrafamilial phenotypic variability with special regard to cardiac defect and cataract that showed more severe disease expression in successive generations. Clinical and radiographic examination of the mother of the twins revealed a talon cusp involving the permanent maxillary right central incisor. This is the first known report of a talon cusp in OFCD syndrome with a novel mutation in the BCOR gene.

  8. Oculo-facio-cardio-dental syndrome in three succeeding generations: genotypic data and phenotypic features

    International Nuclear Information System (INIS)

    Lozić, B.; Ljubković, J.; Gabrić Pandurić, D.; Saltvig, I.; Kutsche, K.; Krželj, V.; Zemunik, T.

    2012-01-01

    Oculo-facio-cardio-dental (OFCD) syndrome is a rare X-linked disorder mainly manifesting in females. Patients show ocular, facial, cardiac, and dental abnormalities. OFCD syndrome is caused by heterozygous mutations in the BCOR gene, located in Xp11.4, encoding the BCL6 co-repressor. We report a Croatian family with four female members (grandmother, mother and monozygotic female twins) diagnosed with OFCD syndrome who carry the novel BCOR mutation c.4438C>T (p.R1480*). They present high intrafamilial phenotypic variability with special regard to cardiac defect and cataract that showed more severe disease expression in successive generations. Clinical and radiographic examination of the mother of the twins revealed a talon cusp involving the permanent maxillary right central incisor. This is the first known report of a talon cusp in OFCD syndrome with a novel mutation in the BCOR gene

  9. Use of the discriminant Fourier-derived cepstrum with feature-level post-processing for surface electromyographic signal classification

    International Nuclear Information System (INIS)

    Chen, Xinpu; Zhu, Xiangyang; Zhang, Dingguo

    2009-01-01

    Myoelectrical pattern classification is a crucial part in multi-functional prosthesis control. This paper investigates a discriminant Fourier-derived cepstrum (DFC) and feature-level post-processing (FLPP) to discriminate hand and wrist motions using the surface electromyographic signal. The Fourier-derived cepstrum takes advantage of the Fourier magnitude or sub-band power energy of signals directly and provides flexible use of spectral information changing with different motions. Appropriate cepstral coefficients are selected by a proposed separability criterion to construct DFC features. For the post-processing, FLPP which combines features from several analysis windows is used to improve the feature performance further. In this work, two classifiers (a linear discriminant classifier and quadratic discriminant classifier) without hyper-parameter optimization are employed to simplify the training procedure and avoid the possible bias of feature evaluation. Experimental results of the 11-motion problem show that the proposed DFC feature outperforms traditional features such as time-domain statistics and autoregressive-derived cepstrum in terms of the classification accuracy, and it is a promising method for the multi-functionality and high-accuracy control of myoelectric prostheses

  10. Nanopatterned surface with adjustable area coverage and feature size fabricated by photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Bai Yang; Zhang Yan; Li Wei; Zhou Xuefeng; Wang Changsong; Feng Xin [State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing University of Technology, Nanjing, Jiangsu 210009 (China); Zhang Luzheng [Petroleum Research Recovery Center, New Mexico Institute of Mining and Technology, Socorro, NM 87801 (United States); Lu Xiaohua, E-mail: xhlu@njut.edu.cn [State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing University of Technology, Nanjing, Jiangsu 210009 (China)

    2009-08-30

    We report an effective approach to fabricate nanopatterns of alkylsilane self-assembly monolayers (SAMs) with desirable coverage and feature size by gradient photocatalysis in TiO{sub 2} aqueous suspension. Growth and photocatalytic degradation of octadecyltrichlorosilane (OTS) were combined to fabricate adjustable monolayered nanopatterns on mica sheet in this work. Systematic atomic force microscopy (AFM) analysis showed that OTS-SAMs that have similar area coverage with different feature sizes and similar feature size with different area coverages can be fabricated by this approach. Contact angle measurement was applied to confirm the gradually varied nanopatterns contributed to the gradient of UV light illumination. Since this approach is feasible for various organic SAMs and substrates, a versatile method was presented to prepare tunable nanopatterns with desirable area coverage and feature size in many applications, such as molecular and biomolecular recognition, sensor and electrode modification.

  11. Nanopatterned surface with adjustable area coverage and feature size fabricated by photocatalysis

    International Nuclear Information System (INIS)

    Bai Yang; Zhang Yan; Li Wei; Zhou Xuefeng; Wang Changsong; Feng Xin; Zhang Luzheng; Lu Xiaohua

    2009-01-01

    We report an effective approach to fabricate nanopatterns of alkylsilane self-assembly monolayers (SAMs) with desirable coverage and feature size by gradient photocatalysis in TiO 2 aqueous suspension. Growth and photocatalytic degradation of octadecyltrichlorosilane (OTS) were combined to fabricate adjustable monolayered nanopatterns on mica sheet in this work. Systematic atomic force microscopy (AFM) analysis showed that OTS-SAMs that have similar area coverage with different feature sizes and similar feature size with different area coverages can be fabricated by this approach. Contact angle measurement was applied to confirm the gradually varied nanopatterns contributed to the gradient of UV light illumination. Since this approach is feasible for various organic SAMs and substrates, a versatile method was presented to prepare tunable nanopatterns with desirable area coverage and feature size in many applications, such as molecular and biomolecular recognition, sensor and electrode modification.

  12. Generation of New Genotypic and Phenotypic Features in Artificial and Natural Yeast Hybrids

    Directory of Open Access Journals (Sweden)

    Walter P. Pfliegler

    2014-01-01

    Full Text Available Evolution and genome stabilization have mostly been studied on the Saccharomyces hybrids isolated from natural and alcoholic fermentation environments. Genetic and phenotypic properties have usually been compared to the laboratory and reference strains, as the true ancestors of the natural hybrid yeasts are unknown. In this way the exact impact of different parental fractions on the genome organization or metabolic activity of the hybrid yeasts is difficult to resolve completely. In the present work the evolution of geno- and phenotypic properties is studied in the interspecies hybrids created by the cross-breeding of S. cerevisiae with S. uvarum or S. kudriavzevii auxotrophic mutants. We hypothesized that the extent of genomic alterations in S. cerevisiae × S. uvarum and S. cerevisiae × S. kudriavzevii should affect the physiology of their F1 offspring in different ways. Our results, obtained by amplified fragment length polymorphism (AFLP genotyping and karyotyping analyses, showed that both subgenomes of the S. cerevisiae x S. uvarum and of S. cerevisiae × S. kudriavzevii hybrids experienced various modifications. However, the S. cerevisiae × S. kudriavzevii F1 hybrids underwent more severe genomic alterations than the S. cerevisiae × S. uvarum ones. Generation of the new genotypes also influenced the physiological performances of the hybrids and the occurrence of novel phenotypes. Significant differences in carbohydrate utilization and distinct growth dynamics at increasing concentrations of sodium chloride, urea and miconazole were observed within and between the S. cerevisiae × S. uvarum and S. cerevisiae × S. kudriavzevii hybrids. Parental strains also demonstrated different contributions to the final metabolic outcomes of the hybrid yeasts. A comparison of the genotypic properties of the artificial hybrids with several hybrid isolates from the wine-related environments and wastewater demonstrated a greater genetic variability of

  13. Batch Image Encryption Using Generated Deep Features Based on Stacked Autoencoder Network

    Directory of Open Access Journals (Sweden)

    Fei Hu

    2017-01-01

    Full Text Available Chaos-based algorithms have been widely adopted to encrypt images. But previous chaos-based encryption schemes are not secure enough for batch image encryption, for images are usually encrypted using a single sequence. Once an encrypted image is cracked, all the others will be vulnerable. In this paper, we proposed a batch image encryption scheme into which a stacked autoencoder (SAE network was introduced to generate two chaotic matrices; then one set is used to produce a total shuffling matrix to shuffle the pixel positions on each plain image, and another produces a series of independent sequences of which each is used to confuse the relationship between the permutated image and the encrypted image. The scheme is efficient because of the advantages of parallel computing of SAE, which leads to a significant reduction in the run-time complexity; in addition, the hybrid application of shuffling and confusing enhances the encryption effect. To evaluate the efficiency of our scheme, we compared it with the prevalent “logistic map,” and outperformance was achieved in running time estimation. The experimental results and analysis show that our scheme has good encryption effect and is able to resist brute-force attack, statistical attack, and differential attack.

  14. Osteoblasts generate an osteogenic microenvironment when grown on surfaces with rough microtopographies

    Directory of Open Access Journals (Sweden)

    Boyan B. D.

    2003-10-01

    Full Text Available Osteoblasts respond to microarchitectural features of their substrate. On smooth surfaces (tissue culture plastic, tissue culture glass, and titanium, the cells attach and proliferate but they exhibit relatively low expression of differentiation markers in monolayer cultures, even when confluent. When grown on microrough Ti surfaces with an average roughness (Ra of 4-7 µm, proliferation is reduced but differentiation is enhanced and in some cases, is synergistic with the effects of surface microtopography. In addition, cells on microrough Ti substrates form hydroxyapatite in a manner that is more typical of bone than do cells cultured on smooth surfaces. Osteoblasts also respond to growth factors and cytokines in a surface-dependent manner. On rougher surfaces, the effects of regulatory factors like 1alpha,25(OH2D3 or 17beta-estradiol are enhanced. The response to the surface is mediated by integrins, which signal to the cell through many of the same mechanisms used by growth factors and hormones. Studies using PEG-modified surfaces indicate that increased differentiation may be related to altered attachment to the surface. When osteoblasts are grown on surfaces with chemistries or microarchitectures that reduce cell attachment and proliferation, and enhance differentiation, the cells tend to increase production of factors like TGF-beta1 that promote osteogenesis while decreasing osteoclastic activity. Thus, on microrough Ti surface, osteoblasts create a microenvironment conducive to new bone formation.

  15. Evaluation of Wear on Macro-Surface Textures Generated by ns Fiber Laser

    Science.gov (United States)

    Harish, V.; Soundarapandian, S.; Vijayaraghavan, L.; Bharatish, A.

    2018-03-01

    The demand for improved performance and long term reliability of mechanical systems dictate the use of advanced materials and surface engineering techniques. A small change in the surface topography can lead to substantial improvements in the tribological behaviour of the contact surfaces. One way of altering the surface topography is by surface texturing by introducing dimples or channels on the surfaces. Surface texturing is already a successful technique which finds a wide area of applications ranging from heavy industries to small scale devices. This paper reports the effect of macro texture shapes generated using a nanosecond fiber laser on wear of high carbon chromium steel used in large size bearings having rolling contacts. Circular and square shaped dimples were generated on the surface to assess the effect of sliding velocities on friction coefficient. Graphite was used as solid lubricant to minimise the effect of wear on textured surfaces. The laser parameters such as power, scan speed and passes were optimised to obtain macro circular and square dimples which was characterised using a laser confocal microscope. The friction coefficients of the circular and square dimples were observed to lie in the same range due to minimum wear on the surface. On the contrary, at medium and higher sliding velocities, square dimples exhibited lower friction coefficient values compared to circular dimples. The morphology of textured specimen was characterised using Scanning Electron Microscope.

  16. Dynamics of Soil Deflation Features in Kangerlussuaq, Greenland Revealed by Variations in Lichen Diameters on Exposed Surfaces

    Science.gov (United States)

    Heindel, R. C.; Kelly, M. A.; Virginia, R. A.

    2013-12-01

    Little is known about the pervasive soil deflation features in the Kangerlussuaq region, West Greenland, an area deglaciated between ~6,800 and 150 years ago. While the majority of the landscape is vegetated with low-lying shrubs and graminoids, wind erosion has removed loess and vegetation from distinct patches ranging in size from a few to tens of meters across, leaving the underlying glacial till or bedrock exposed. Although previous work has considered aeolian landforms and regional loess deposition along the Watson River Valley, these deflation features have not been investigated in detail. We aim to determine both the timing and mechanisms of formation of the deflation features and will examine whether these mechanisms were related to regional climatic conditions, such as increased aridity, to fluctuations in the Greenland Ice Sheet, or to other factors. Our ongoing research investigating these features includes geomorphic mapping using field observations and satellite imagery, lichenometry of the exposed surfaces, and cosmogenic nuclide dating of boulders and bedrock within and near the deflation features. Here we present initial results from our lichenometry studies. During the summer of 2013, we measured maximum lichen (Rhizocarpon sp.) diameters on boulder and bedrock surfaces in 15 soil deflation features located between Kangerlussuaq and the ice sheet margin. Lichen diameters vary from only a few millimeters at the outer margins of deflation features to multiple centimeters (maximum ~50 mm) in the centers of the unvegetated patches. This distinct pattern suggests that the outer margins of the soil deflation features are currently active. Based on a previously established lichen growth curve for Rhizocarpon sp. in West Greenland, our results indicate that the features are expanding at a rate of ~1.5 m per 100 yrs. In addition, the large lichen diameters (~40-50 mm) that occur in the centers of deflation features suggest that the formation mechanism has

  17. Investigation of Selected Surface Integrity Features of Duplex Stainless Steel (DSS) after Turning

    Czech Academy of Sciences Publication Activity Database

    Krolczyk, G.; Nieslony, P.; Legutko, S.; Hloch, Sergej; Samardžić, I.

    2015-01-01

    Roč. 54, č. 1 (2015), s. 91-94 ISSN 0543-5846 Institutional support: RVO:68145535 Keywords : duplex stainless steel * machining * turning * surface integrity * surface roughness Subject RIV: JQ - Machines ; Tools Impact factor: 0.959, year: 2014 http://hrcak.srce.hr/126702

  18. Surface-confined [2 + 2] cycloaddition towards one-dimensional polymers featuring cyclobutadiene units

    NARCIS (Netherlands)

    Tran, Bay V.; Pham, Tuan Anh; Grunst, Michael; Kivala, Milan; Stöhr, Meike

    2017-01-01

    Surface-confined synthesis has been offering a wide range of opportunities for the construction of novel molecular nanostructures. Exploring new types of on-surface coupling reactions is considered essential for being able to deliberately tune the materials properties. Here, we report on the

  19. Ultrastructural features of the internodes’ surface in horsetail (Equisetum arvense L.

    Directory of Open Access Journals (Sweden)

    Myroslava Stakhiv

    2013-04-01

    Full Text Available The ultrastructure of the outer surface of the common horsetail stem was studied. Through electron microscopic analysis we showed that silica plates on the surface of Equisetum arvense L. stem are distributed evenly, not tight, in thin layer. Thus, compact arrangement of particles on the internodes causes high mechanical strength and stiffness of the E. arvensestem and lateral branches.

  20. A model based on feature objects aided strategy to evaluate the methane generation from food waste by anaerobic digestion.

    Science.gov (United States)

    Yu, Meijuan; Zhao, Mingxing; Huang, Zhenxing; Xi, Kezhong; Shi, Wansheng; Ruan, Wenquan

    2018-02-01

    A model based on feature objects (FOs) aided strategy was used to evaluate the methane generation from food waste by anaerobic digestion. The kinetics of feature objects was tested by the modified Gompertz model and the first-order kinetic model, and the first-order kinetic hydrolysis constants were used to estimate the reaction rate of homemade and actual food waste. The results showed that the methane yields of four feature objects were significantly different. The anaerobic digestion of homemade food waste and actual food waste had various methane yields and kinetic constants due to the different contents of FOs in food waste. Combining the kinetic equations with the multiple linear regression equation could well express the methane yield of food waste, as the R 2 of food waste was more than 0.9. The predictive methane yields of the two actual food waste were 528.22 mL g -1  TS and 545.29 mL g -1  TS with the model, while the experimental values were 527.47 mL g -1  TS and 522.1 mL g -1  TS, respectively. The relative error between the experimental cumulative methane yields and the predicted cumulative methane yields were both less than 5%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Hydrogen generation due to water splitting on Si - terminated 4H-Sic(0001) surfaces

    Science.gov (United States)

    Li, Qingfang; Li, Qiqi; Yang, Cuihong; Rao, Weifeng

    2018-02-01

    The chemical reactions of hydrogen gas generation via water splitting on Si-terminated 4H-SiC surfaces with or without C/Si vacancies were studied by using first-principles. We studied the reaction mechanisms of hydrogen generation on the 4H-SiC(0001) surface. Our calculations demonstrate that there are major rearrangements in surface when H2O approaches the SiC(0001) surface. The first H splitting from water can occur with ground-state electronic structures. The second H splitting involves an energy barrier of 0.65 eV. However, the energy barrier for two H atoms desorbing from the Si-face and forming H2 gas is 3.04 eV. In addition, it is found that C and Si vacancies can form easier in SiC(0001)surfaces than in SiC bulk and nanoribbons. The C/Si vacancies introduced can enhance photocatalytic activities. It is easier to split OH on SiC(0001) surface with vacancies compared to the case of clean SiC surface. H2 can form on the 4H-SiC(0001) surface with C and Si vacancies if the energy barriers of 1.02 and 2.28 eV are surmounted, respectively. Therefore, SiC(0001) surface with C vacancy has potential applications in photocatalytic water-splitting.

  2. Scanning-electron-microscopy study of corrosion and surface features in glass microballoons

    International Nuclear Information System (INIS)

    Bystroff, R.I.

    1982-01-01

    Gaseous acid treatment (HBr) of surface-hardened binary glass microballoons results in etching and the growth of salt nodules, tubes or whiskers, depending on moisture conditions. Temperatures from 400 0 C to 625 0 C for 24 h or more are required for the effects to be significant. Numerous imperfections, including craters, are documented on the unexposed interiors surfaces. The evident phase separation and nucleation sites suggest a need for better production controls and post-production annealing. 6 figures

  3. Robust surface registration using salient anatomical features for image-guided liver surgery: Algorithm and validation

    OpenAIRE

    Clements, Logan W.; Chapman, William C.; Dawant, Benoit M.; Galloway, Robert L.; Miga, Michael I.

    2008-01-01

    A successful surface-based image-to-physical space registration in image-guided liver surgery (IGLS) is critical to provide reliable guidance information to surgeons and pertinent surface displacement data for use in deformation correction algorithms. The current protocol used to perform the image-to-physical space registration involves an initial pose estimation provided by a point based registration of anatomical landmarks identifiable in both the preoperative tomograms and the intraoperati...

  4. Off-Center Rotation of CuPc Molecular Rotor on a Bi(111) Surface and the Chiral Feature.

    Science.gov (United States)

    Sun, Kai; Tao, Min-Long; Tu, Yu-Bing; Wang, Jun-Zhong

    2017-05-04

    Molecular rotors with an off-center axis and the chiral feature of achiral CuPc molecules on a semi-metallic Bi(111) surface have been investigated by means of a scanning tunneling microscopy (STM) at liquid nitrogen (LN₂) temperature. The rotation axis of each CuPc molecular rotor is located at the end of a phthalocyanine group. As molecular coverage increases, the CuPc molecules are self-assembled into various nanoclusters and finally into two-dimensional (2D) domains, in which each CuPc molecule exhibits an apparent chiral feature. Such chiral features of the CuPc molecules can be attributed to the combined effect of asymmetric charge transfer between the CuPc and Bi(111) substrate, and the intermolecular van der Waals interactions.

  5. Computation and Evaluation of Features of Surface Electromyogram to Identify the Force of Muscle Contraction and Muscle Fatigue

    Directory of Open Access Journals (Sweden)

    Sridhar P. Arjunan

    2014-01-01

    Full Text Available The relationship between force of muscle contraction and muscle fatigue with six different features of surface electromyogram (sEMG was determined by conducting experiments on thirty-five volunteers. The participants performed isometric contractions at 50%, 75%, and 100% of their maximum voluntary contraction (MVC. Six features were considered in this study: normalised spectral index (NSM5, median frequency, root mean square, waveform length, normalised root mean square (NRMS, and increase in synchronization (IIS index. Analysis of variance (ANOVA and linear regression analysis were performed to determine the significance of the feature with respect to the three factors: muscle force, muscle fatigue, and subject. The results show that IIS index of sEMG had the highest correlation with muscle fatigue and the relationship was statistically significant (P0.05.

  6. Computation and evaluation of features of surface electromyogram to identify the force of muscle contraction and muscle fatigue.

    Science.gov (United States)

    Arjunan, Sridhar P; Kumar, Dinesh K; Naik, Ganesh

    2014-01-01

    The relationship between force of muscle contraction and muscle fatigue with six different features of surface electromyogram (sEMG) was determined by conducting experiments on thirty-five volunteers. The participants performed isometric contractions at 50%, 75%, and 100% of their maximum voluntary contraction (MVC). Six features were considered in this study: normalised spectral index (NSM5), median frequency, root mean square, waveform length, normalised root mean square (NRMS), and increase in synchronization (IIS) index. Analysis of variance (ANOVA) and linear regression analysis were performed to determine the significance of the feature with respect to the three factors: muscle force, muscle fatigue, and subject. The results show that IIS index of sEMG had the highest correlation with muscle fatigue and the relationship was statistically significant (P 0.05).

  7. Open-source algorithm for detecting sea ice surface features in high-resolution optical imagery

    Directory of Open Access Journals (Sweden)

    N. C. Wright

    2018-04-01

    Full Text Available Snow, ice, and melt ponds cover the surface of the Arctic Ocean in fractions that change throughout the seasons. These surfaces control albedo and exert tremendous influence over the energy balance in the Arctic. Increasingly available meter- to decimeter-scale resolution optical imagery captures the evolution of the ice and ocean surface state visually, but methods for quantifying coverage of key surface types from raw imagery are not yet well established. Here we present an open-source system designed to provide a standardized, automated, and reproducible technique for processing optical imagery of sea ice. The method classifies surface coverage into three main categories: snow and bare ice, melt ponds and submerged ice, and open water. The method is demonstrated on imagery from four sensor platforms and on imagery spanning from spring thaw to fall freeze-up. Tests show the classification accuracy of this method typically exceeds 96 %. To facilitate scientific use, we evaluate the minimum observation area required for reporting a representative sample of surface coverage. We provide an open-source distribution of this algorithm and associated training datasets and suggest the community consider this a step towards standardizing optical sea ice imagery processing. We hope to encourage future collaborative efforts to improve the code base and to analyze large datasets of optical sea ice imagery.

  8. Open-source algorithm for detecting sea ice surface features in high-resolution optical imagery

    Science.gov (United States)

    Wright, Nicholas C.; Polashenski, Chris M.

    2018-04-01

    Snow, ice, and melt ponds cover the surface of the Arctic Ocean in fractions that change throughout the seasons. These surfaces control albedo and exert tremendous influence over the energy balance in the Arctic. Increasingly available meter- to decimeter-scale resolution optical imagery captures the evolution of the ice and ocean surface state visually, but methods for quantifying coverage of key surface types from raw imagery are not yet well established. Here we present an open-source system designed to provide a standardized, automated, and reproducible technique for processing optical imagery of sea ice. The method classifies surface coverage into three main categories: snow and bare ice, melt ponds and submerged ice, and open water. The method is demonstrated on imagery from four sensor platforms and on imagery spanning from spring thaw to fall freeze-up. Tests show the classification accuracy of this method typically exceeds 96 %. To facilitate scientific use, we evaluate the minimum observation area required for reporting a representative sample of surface coverage. We provide an open-source distribution of this algorithm and associated training datasets and suggest the community consider this a step towards standardizing optical sea ice imagery processing. We hope to encourage future collaborative efforts to improve the code base and to analyze large datasets of optical sea ice imagery.

  9. Trichodesmium blooms and warm-core ocean surface features in the Arabian Sea and the Bay of Bengal.

    Science.gov (United States)

    Jyothibabu, R; Karnan, C; Jagadeesan, L; Arunpandi, N; Pandiarajan, R S; Muraleedharan, K R; Balachandran, K K

    2017-08-15

    Trichodesmium is a bloom-forming, diazotrophic, non-heterocystous cyanobacteria widely distributed in the warmer oceans, and their bloom is considered a 'biological indication' of stratification and nitrogen limitation in the ocean surface layer. In the first part of this paper, based on the retrospective analyses of the ocean surface mesoscale features associated with 59 Trichodesmium bloom incidences recorded in the past, 32 from the Arabian Sea and the Bay of Bengal, and 27 from the rest of the world, we have showed that warm-core features have an inducing effect on bloom formation. In the second part, we have considered the environmental preferences of Trichodesmium bloom based on laboratory and field studies across the globe, and proposed a view about how warm-core features could provide an inducing pre-requisite condition for the bloom formation in the Arabian Sea and the Bay of Bengal. Proposed that the subsurface waters of warm-core features maintain more likely chances for the conducive nutrient and light conditions required for the triggering of the blooms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Shear flow generation and transport barrier formation on rational surface current sheets in tokamaks

    International Nuclear Information System (INIS)

    Wang Xiaogang; Xiao Chijie; Wang Jiaqi

    2009-01-01

    Full text: A thin current sheet with a magnetic field component in the same direction can form the electrical field perpendicularly pointing to the sheet, therefore an ExB flow with a strong shear across the current sheet. An electrical potential well is also found on the rational surface of RFP as well as the neutral sheet of the magnetotail with the E-field pointing to the rational (neutral) surface. Theoretically, a current singularity is found to be formed on the rational surface in ideal MHD. It is then very likely that the sheet current on the rational surfaces will generate the electrical potential well in its vicinity so the electrical field pointing to the sheet. It results in an ExB flow with a strong shear in the immediate neighborhood of the rational surface. It may be the cause of the transport barrier often seen near the low (m, n) rational surfaces with MHD signals. (author)

  11. Second-harmonic and sum-frequency generation for surface studies

    International Nuclear Information System (INIS)

    Hunt, J.H.; Guyot-Sionnest, P.; Shen, Y.R.

    1987-07-01

    Second harmonic generation (SHG) has now been well established as a versatile surface-sensitive probe. It has been used to study electrochemical processes at electrode surfaces, molecular adsorption and desorption at metal and semiconductor surfaces, orientational phase transition of molecular monolayers on water, surface reconstruction and epitaxial growth, and so on. More recently, it has been employed as a tool to monitor monolayer polymerization and other surface reactions, to probe polar order of molecules at interfaces, and to measure molecular nonlinearity. While most surface techniques are restricted to the solid/vacuum environment, SHG is applicable to nearly all interfaces as long as the interfaces are accessible by light. In addition, SHG has the advantages of being capable of in-situ measurements with high temporal, spatial, and spectral resolutions

  12. Sum frequency generation of CO on (III) and polycrystalline platinum electrode surfaces: Evidence for SFG invisible surface CO

    Energy Technology Data Exchange (ETDEWEB)

    Baldelli, S.; Markovic, N.; Ross, P.; Shen, Y.R.; Somorjai, G.

    1999-10-21

    The vibrational spectroscopy sum frequency generation (SFG) is used to investigate the adsorption of carbon monoxide on the single crystal (111) and polycrystalline platinum surfaces. By varying the frequency and polarization of the light beams, different surface species of CO species are probed. SFG signal intensities for different polarization indicate that adsorbed CO polarizability is significantly perturbed from the gas-phase molecule. The SFG signal of CO disappears well below the main oxidation potential of CO to CO{sub 2}. The disappearance of the CO signal is interpreted as a transformation in the CO layer to a state which is invisible to SFG. The invisible state is suggested to be CO with the bond axis nearly parallel to the platinum surface.

  13. An experimental study of the surface elevation probability distribution and statistics of wind-generated waves

    Science.gov (United States)

    Huang, N. E.; Long, S. R.

    1980-01-01

    Laboratory experiments were performed to measure the surface elevation probability density function and associated statistical properties for a wind-generated wave field. The laboratory data along with some limited field data were compared. The statistical properties of the surface elevation were processed for comparison with the results derived from the Longuet-Higgins (1963) theory. It is found that, even for the highly non-Gaussian cases, the distribution function proposed by Longuet-Higgins still gives good approximations.

  14. Feasibility Analysis of Liquefying Oxygen Generated from Water Electrolysis Units on Lunar Surface

    Science.gov (United States)

    Jeng, Frank F.

    2009-01-01

    Concepts for liquefying oxygen (O2) generated from water electrolysis subsystems on the Lunar surface were explored. Concepts for O2 liquefaction units capable of generating 1.38 lb/hr (0.63 kg/hr) liquid oxygen (LOX) were developed. Heat and mass balance calculations for the liquefaction concepts were conducted. Stream properties, duties of radiators, heat exchangers and compressors for the selected concepts were calculated and compared.

  15. Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate.

    Science.gov (United States)

    Weiss, C; Torosyan, G; Avetisyan, Y; Beigang, R

    2001-04-15

    Generation of tunable narrow-band terahertz (THz) radiation perpendicular to the surface of periodically poled lithium niobate by optical rectification of femtosecond pulses is reported. The generated THz radiation can be tuned by use of different poling periods and different observation angles, limited only by the available bandwidth of the pump pulse. Typical bandwidths were 50-100 GHz, depending on the collection angle and the number of periods involved.

  16. Modification of the iron mechanical- and corrosion features by ion implantation in surface

    International Nuclear Information System (INIS)

    Baumvol, I.J.R.

    1981-01-01

    The physical mechanisms responsable by the tin ion implantation in the iron surface at moderated doses are studied. Several techniques are used such as alpha-particle Rutherford backscattering, conversion electron Moessbauer spectroscopy and scanning electron microscopy. (L.C.) [pt

  17. Quantifying groundwater dependency of riparian surface hydrologic features using the exit gradient

    Science.gov (United States)

    This study examines groundwater exit gradients as a way to quantify groundwater interactions with surface water. We calibrated high resolution groundwater models for the basin fill sediments in the lower Calapooia watershed, Oregon, using data collected between 1928--2000. The e...

  18. A Three-Dimensional View of Titan's Surface Features from Cassini RADAR Stereogrammetry

    Science.gov (United States)

    Kirk, R. L.; Howington-Kraus, E.; Redding, B. L.; Becker, T. L.; Lee, E. M.; Stiles, B. W.; Hensley, S.; Hayes, A.; Lopes, R. M.; Lorenz, R. D.; Mitchell, K. L.; Radebaugh, J.; Paganelli, F.; Soderblom, L. A.; Stofan, E. R.; Wood, C. A.; Wall, S. D.; Cassini RADAR Team

    2008-12-01

    As of the end of its four-year Prime Mission, Cassini has obtained 300-1500 m resolution synthetic aperture radar images of the surface of Titan during 19 flybys. The elongated image swaths overlap extensively, and ~2% of the surface has now been imaged two or more times. The majority of image pairs have different viewing directions, and thus contain stereo parallax that encodes information about Titan's surface relief over distances of ~1 km and greater. As we have previously reported, the first step toward extracting quantitative topographic information was the development of rigorous "sensor models" that allowed the stereo systems previously used at the USGS and JPL to map Venus with Magellan images to be used for Titan mapping. The second major step toward extensive topomapping of Titan has been the reprocessing of the RADAR images based on an improved model of the satellite's rotation. Whereas the original images (except for a few pairs obtained at similar orbital phase, some of which we have mapped previously) were offset by as much as 30 km, the new versions align much better. The remaining misalignments, typically carbono)logic" cycle of precipitation, evaporation, and surface and subsurface fluid flow?

  19. Test data on electrical contacts at high surface velocities and high current densities for homopolar generators

    International Nuclear Information System (INIS)

    Brennan, M.; Tolk, K.M.; Weldon, W.F.; Rylander, H.G.; Woodson, H.H.

    1977-01-01

    Test data is presented for one grade of copper graphite brush material, Morganite CMlS, over a wide range of surface velocities, atmospheres, and current densities that are expected for fast discharge (<100 ms) homopolar generators. The brushes were run on a copper coated 7075-T6 aluminum disk at surface speeds up to 277 m/sec. One electroplated copper and three flame sprayed copper coatings were used during the tests. Significant differences in contact voltage drops and surface mechanical properties of the copper coatings were observed

  20. Local changes of work function near rough features on Cu surfaces operated under high external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Djurabekova, Flyura, E-mail: flyura.djurabekova@helsinki.fi; Ruzibaev, Avaz; Parviainen, Stefan [Helsinki Institute of Physics and Department of Physics, University of Helsinki, P.O. Box 43, FI-00014 Helsinki (Finland); Holmström, Eero [Department of Physics, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki (Finland); Department of Earth Sciences, Faculty of Maths and Physical Sciences, UCL Earth Sciences, Gower Street, London WC1E 6BT (United Kingdom); Hakala, Mikko [Department of Physics, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki (Finland)

    2013-12-28

    Metal surfaces operated under high electric fields produce sparks even if they are held in ultra high vacuum. In spite of extensive research on the topic of vacuum arcs, the mystery of vacuum arc origin still remains unresolved. The indications that the sparking rates depend on the material motivate the research on surface response to extremely high external electric fields. In this work by means of density-functional theory calculations we analyze the redistribution of electron density on (100) Cu surfaces due to self-adatoms and in presence of high electric fields from −1 V/nm up to −2 V/nm (−1 to −2 GV/m, respectively). We also calculate the partial charge induced by the external field on a single adatom and a cluster of two adatoms in order to obtain reliable information on charge redistribution on surface atoms, which can serve as a benchmarking quantity for the assessment of the electric field effects on metal surfaces by means of molecular dynamics simulations. Furthermore, we investigate the modifications of work function around rough surface features, such as step edges and self-adatoms.

  1. Second generation diffusion model of interacting gravity waves on the surface of deep fluid

    Directory of Open Access Journals (Sweden)

    A. Pushkarev

    2004-01-01

    Full Text Available We propose a second generation phenomenological model for nonlinear interaction of gravity waves on the surface of deep water. This model takes into account the effects of non-locality of the original Hasselmann diffusion equation still preserving important properties of the first generation model: physically consistent scaling, adherence to conservation laws and the existence of Kolmogorov-Zakharov solutions. Numerical comparison of both models with the original Hasselmann equation shows that the second generation models improves the angular distribution in the evolving wave energy spectrum.

  2. Features of surface enhanced Raman scattering in the systems with «hot spots»

    Directory of Open Access Journals (Sweden)

    Solovyeva E.V.

    2017-01-01

    Full Text Available In this work we demonstrate the features of SERS on the substrates with «hot spots» on the example of system «diaminostilbene - colloidal silver». We found that «hot spots» forming on aggregated nanoparticles exist on the metal substrates only at low concentration of ligand. This effect caused by the gradual filling of first monolayer by adsorbate molecules. Significantly higher enhancement factor is obtained for substrates with «hot spots», for which the participation of resonance processes in the formation of SERS signal is revealed also.

  3. Influence of viscoelastic property on laser-generated surface acoustic waves in coating-substrate systems

    International Nuclear Information System (INIS)

    Sun Hongxiang; Zhang Shuyi; Xu Baiqiang

    2011-01-01

    Taking account of the viscoelasticity of materials, the pulsed laser generation of surface acoustic waves in coating-substrate systems has been investigated quantitatively by using the finite element method. The displacement spectra of the surface acoustic waves have been calculated in frequency domain for different coating-substrate systems, in which the viscoelastic properties of the coatings and substrates are considered separately. Meanwhile, the temporal displacement waveforms have been obtained by applying inverse fast Fourier transforms. The numerical results of the normal surface displacements are presented for different configurations: a single plate, a slow coating on a fast substrate, and a fast coating on a slow substrate. The influences of the viscoelastic properties of the coating and the substrate on the attenuation of the surface acoustic waves have been studied. In addition, the influence of the coating thickness on the attenuation of the surface acoustic waves has been also investigated in detail.

  4. KINEMATICAL FEATURES OF FORMATION OF A FLANGE WITH MINIMUM TENSION OF A TRANSIENT TOROIDAL SURFACE

    Directory of Open Access Journals (Sweden)

    M. I. Sidorenko

    2018-01-01

    Full Text Available The technology of plastic forming of wide flanges in tube billets with the predicted length of the transitional toroidal section between the outer plane of the flange and the internal cavity of the pipe is proposed. The procedure for calculating the length of this section is given. In order to eliminate the toroidal portion in the flange formed during the flanging of the pipe, it is proposed to perform its plastic shaping by depositing the cylindrical part of the workpiece. Equations for calculating the extent of the free surface on the toroidal part of the workpiece when it is shaped, depending on the coefficient of contact friction and the presence of a radial support of the flange are obtained. The variant of forming in the flange the toroidal section in the stamp with the compensation cavity is proposed. Equations for calculating the deformation force and the extent of the free surface are given.

  5. Morphological features of the copper surface layer under sliding with high density electric current

    Energy Technology Data Exchange (ETDEWEB)

    Fadin, V. V., E-mail: fvv@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Aleutdinova, M. I., E-mail: aleut@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Seversk Technological Institute, Branch of State Autonomous Educational Institution of Higher Professional Education “National Research Nuclear University “MEPhI”, Seversk, 636036 (Russian Federation); Rubtsov, V. Ye., E-mail: rvy@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Aleutdinova, V. A., E-mail: valery-aleut@yandex.ru [National Research St. Petersburg State Polytechnical University, St. Petersburg, 195251 (Russian Federation)

    2015-10-27

    Conductivity and wear intensity of copper under the influence of dry friction and electric current with contact density higher 100 A/cm{sup 2} are presented. It is shown that an increase in hardness and heat outflow from a friction zone leads to the reduction of wear intensity and current contact density increase corresponding to the beginning of catastrophic wear. Structural changes, such as the formation of FeO oxide and α-Fe particles in the copper surface layer, have also been found. It is observed that a worn surface is deformed according to a viscous liquid mechanism. Such singularity is explained in terms of appearance of high-excited atomic states in deforming micro-volumes near contact spots that lead to easy stress relaxation by local plastic shears in the vicinity of stress concentrators. In common this effect allows to achieve high wear resistance.

  6. Initial heats of H{sub 2}S adsorption on activated carbons: Effect of surface features

    Energy Technology Data Exchange (ETDEWEB)

    Bagreev, A.; Adib, F.; Bandosz, T.J.

    1999-11-15

    The sorption of hydrogen sulfide was studied on activated carbons of various origins by means of inverse gas chromatography at infinite dilution. The conditions of the experiment were dry and anaerobic. Prior to the experiments the surface of some carbon samples was oxidized using either nitric acid or ammonium persulfate. Then the structural parameters of carbons were evaluated from the sorption of nitrogen. From the IGC experiments at various temperatures, heats of adsorption were calculated. The results showed that the heat of H{sub 2}S adsorption under dry anaerobic conditions does not depend on surface chemistry. The dependence of the heat of adsorption on the characteristic energy of nitrogen adsorption calculated from the Dubinin-Raduskevich equation was found. This correlation can be used to predict the heat of H{sub 2}S adsorption based on the results obtained from nitrogen adsorption.

  7. Features of the kinetics of heterogeneous reactions with phase transformations on catalyst surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Berman, A D; Krylov, O V

    1978-01-01

    This paper presents a review of 41 bibliographic references to experiments on the adsorption of various gases (e.g., carbon monoxide, formic acid, ammonia, and oxygen) on metals (e.g., nickel, molybdenum, and platinum) and oxides covers observations of two-dimensional phases during adsorption; the kinetics of adsorption and catalysis associated with two-dimensional phase transitions; and several approximate models for describing the kinetics of heterogeneous catalysis which account for two-dimensional phase transformations on catalyst surfaces.

  8. Structural features and activity of Brazzein and its mutants upon substitution of a surfaced exposed alanine.

    Science.gov (United States)

    Ghanavatian, Parisa; Khalifeh, Khosrow; Jafarian, Vahab

    2016-12-01

    Brazzein (Brz) is a member of sweet-tasting protein containing four disulfide bonds. It was reported as a compact and heat-resistant protein. Here, we have used site-directed mutagenesis and replaced a surface-exposed alanine with aspartic acid (A19D mutant), lysine (A19K mutant) and glycine (A19G mutant). Activity comparisons of wild-type (WT) and mutants using taste panel test procedure showed that A19G variant has the same activity as WT protein. However, introduction of a positive charge in A19K mutant led to significant increase in Brz's sweetness, while A19D has reduced sweetness compared to WT protein. Docking studies showed that mutation at position 19 results in slight chain mobility of protein at the binding surface and changing the patterns of interactions toward more effective binding of E9K variant in the concave surface of sweet taste receptor. Far-UV CD data spectra have a characteristic shape of beta structure for all variants, however different magnitudes of spectra suggest that beta-sheet structure in WT and A19G is more stable than that of A19D and A19K. Equilibrium unfolding studies with fluorescence spectroscopy and using urea and dithiothritol (DTT) as chemical denaturants indicates that A19G mutant gains more stability against urea denaturation; while conformational stability of A19D and A19K decreases when compared with WT and A19G variants. We concluded that the positive charge at the surface of protein is important factor responsible for the interaction of protein with the human sweet receptor and Ala 19 can be considered as a key region for investigating the mechanism of the interaction of Brz with corresponding receptor. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  9. CURVES AND AESTHETIC SURFACES GENERATED BY THE R-R-RTR MECHANISM

    Directory of Open Access Journals (Sweden)

    Liliana LUCA

    2013-05-01

    Full Text Available Let’s consider a mechanism having two driving elements with revolving movements and a RTR dyad, with elements of null length and aesthetic tracks of a point are determined on a rod, for various linear movement laws of driving elements. The generated curves revolve around x and y axes and aesthetic surfaces result.

  10. Local excitation of surface plasmon polaritons by second-harmonic generation in crystalline organic nanofibers

    DEFF Research Database (Denmark)

    Skovsen, Esben; Søndergaard, Thomas; Fiutowski, Jacek

    2012-01-01

    Coherent local excitation of surface plasmon polaritons (SPPs) by second-harmonic generation (SHG) in aligned crystalline organic functionalized para-phenylene nanofibers deposited on a thin silver film is demonstrated. The excited SPPs are characterized using angle-resolved leakage radiation...

  11. Geometry Laboratory (GEOLAB) surface modeling and grid generation technology and services

    Science.gov (United States)

    Kerr, Patricia A.; Smith, Robert E.; Posenau, Mary-Anne K.

    1995-01-01

    The facilities and services of the GEOmetry LABoratory (GEOLAB) at the NASA Langley Research Center are described. Included in this description are the laboratory functions, the surface modeling and grid generation technologies used in the laboratory, and examples of the tasks performed in the laboratory.

  12. Balanced gait generations of a two-legged robot on sloping surface

    Indian Academy of Sciences (India)

    legged robot moving up and down through the sloping surface is presented. The gait of the lower links during locomotion is obtained after assuming suitable trajectories for the swing leg and hip joint. The trunk motion is initially generated based on ...

  13. Ultrahigh-frequency surface acoustic wave generation for acoustic charge transport in silicon

    NARCIS (Netherlands)

    Büyükköse, S.; Vratzov, B.; van der Veen, Johan (CTIT); Santos, P.V.; van der Wiel, Wilfred Gerard

    2013-01-01

    We demonstrate piezo-electrical generation of ultrahigh-frequency surface acoustic waves on silicon substrates, using high-resolution UV-based nanoimprint lithography, hydrogen silsequioxane planarization, and metal lift-off. Interdigital transducers were fabricated on a ZnO layer sandwiched between

  14. Second-Harmonic Generation Scanning Microscopy on Domains in Al Surfaces

    DEFF Research Database (Denmark)

    Pedersen, Kjeld; Bozhevolnyi, Sergey I.

    1999-01-01

    Scanning optical second-harmonic generation microscopy has been used to investigate domains in the surface of polycrystaline Al. Strong contrast among the crystalline grains is obtained due to variations in their crystallographic orientations and thus also nonlinear response. The origin of the co...

  15. Simulation of an Underwater Acoustic Communication Channel Characterized by Wind-Generated Surface Waves and Bubbles

    NARCIS (Netherlands)

    Dol, H.S.; Colin, M.E.G.D.; Ainslie, M.A.; Walree, P.A. van; Janmaat, J.

    2012-01-01

    Sea surface scattering by wind-generated waves and bubbles is regarded to be the main non-platform related cause of the time variability of shallow acoustic communication channels. Simulations for predicting the quality of acoustic communication links in such channels thus require adequate modeling

  16. Resonant generation of electromagnetic surface wave by inhomogeneous relativistic electron stream

    Energy Technology Data Exchange (ETDEWEB)

    Cadez, V.M.; Vukovic, S. (Belgrade Univ. (Yugoslavia). Inst. za Fiziku); Frolov, V.V.; Kyrie, A.Y. (AN SSSR, Moscow. Fizicheskij Inst.)

    1981-12-01

    Generation of electromagnetic surface waves by relativistic inhomogeneous particle flows is investigated for plane and cylindrical geometries. The basic excitation mechanisms are shown to be the induced anomalous Doppler effect and the hydrodynamic Cerenkov effect. The relevant maximal growth rates may differ significantly from those derived for monoenergetic beams.

  17. Resonant generation of electromagnetic surface wave by inhomogeneous relativistic electron stream

    International Nuclear Information System (INIS)

    Cadez, V.M.; Vukovic, S.; Frolov, V.V.; Kyrie, A.Y.

    1981-01-01

    Generation of electromagnetic surface waves by relativistic inhomogeneous particle flows is investigated for plane and cylindrical geometries. The basic excitation mechanisms are shown to be the induced anomalous Doppler effect and the hydrodynamic Cerenkov effect. The relevant maximal growth rates may differ significantly from those derived for monoenergetic beams. (author)

  18. Phase study of the generated surface plasmon waves in light transmission through a subwavelength aperture

    DEFF Research Database (Denmark)

    Hashemi, Mahdieh; Xiao, Sanshui; Farzad, Mahmood Hosseini

    2014-01-01

    Interference of surface plasmon (SP) waves plays a key role in light transmission through a subwavelength aperture surrounded by groove structures. In order to characterize interference of the hole and groove-generated SP waves, their phase information was carefully investigated using finite diff...

  19. Combining Landform Thematic Layer and Object-Oriented Image Analysis to Map the Surface Features of Mountainous Flood Plain Areas

    Science.gov (United States)

    Chuang, H.-K.; Lin, M.-L.; Huang, W.-C.

    2012-04-01

    The Typhoon Morakot on August 2009 brought more than 2,000 mm of cumulative rainfall in southern Taiwan, the extreme rainfall event caused serious damage to the Kaoping River basin. The losses were mostly blamed on the landslides along sides of the river, and shifting of the watercourse even led to the failure of roads and bridges, as well as flooding and levees damage happened around the villages on flood bank and terraces. Alluvial fans resulted from debris flow of stream feeders blocked the main watercourse and debris dam was even formed and collapsed. These disasters have highlighted the importance of identification and map the watercourse alteration, surface features of flood plain area and artificial structures soon after the catastrophic typhoon event for natural hazard mitigation. Interpretation of remote sensing images is an efficient approach to acquire spatial information for vast areas, therefore making it suitable for the differentiation of terrain and objects near the vast flood plain areas in a short term. The object-oriented image analysis program (Definiens Developer 7.0) and multi-band high resolution satellite images (QuickBird, DigitalGlobe) was utilized to interpret the flood plain features from Liouguei to Baolai of the the Kaoping River basin after Typhoon Morakot. Object-oriented image interpretation is the process of using homogenized image blocks as elements instead of pixels for different shapes, textures and the mutual relationships of adjacent elements, as well as categorized conditions and rules for semi-artificial interpretation of surface features. Digital terrain models (DTM) are also employed along with the above process to produce layers with specific "landform thematic layers". These layers are especially helpful in differentiating some confusing categories in the spectrum analysis with improved accuracy, such as landslides and riverbeds, as well as terraces, riverbanks, which are of significant engineering importance in disaster

  20. Wide-field surface plasmon microscopy of nano- and microparticles: features, benchmarking, limitations, and bioanalytical applications

    Science.gov (United States)

    Nizamov, Shavkat; Scherbahn, Vitali; Mirsky, Vladimir M.

    2017-05-01

    Detection of nano- and micro-particles is an important task for chemical analytics, food industry, biotechnology, environmental monitoring and many other fields of science and industry. For this purpose, a method based on the detection and analysis of minute signals in surface plasmon resonance images due to adsorption of single nanopartciles was developed. This new technology allows one a real-time detection of interaction of single nano- and micro-particles with sensor surface. Adsorption of each nanoparticle leads to characteristic diffraction image whose intensity depends on the size and chemical composition of the particle. The adsorption rate characterizes volume concentration of nano- and micro-particles. Large monitored surface area of sensor enables a high dynamic range of counting and to a correspondingly high dynamic range in concentration scale. Depending on the type of particles and experimental conditions, the detection limit for aqueous samples can be below 1000 particles per microliter. For application of method in complex media, nanoparticle images are discriminated from image perturbations due to matrix components. First, the characteristic SPRM images of nanoparticles (templates) are collected in aqueous suspensions or spiked real samples. Then, the detection of nanoparticles in complex media using template matching is performed. The detection of various NPs in consumer products like cosmetics, mineral water, juices, and wines was shown at sub-ppb level. The method can be applied for ultrasensitive detection and analysis of nano- and micro-particles of biological (bacteria, viruses, endosomes), biotechnological (liposomes, protein nanoparticles for drug delivery) or technical origin.

  1. Preparation of porous polymer monoliths featuring enhanced surface coverage with gold nanoparticles

    KAUST Repository

    Lv, Yongqin

    2012-10-01

    A new approach to the preparation of porous polymer monoliths with enhanced coverage of pore surface with gold nanoparticles has been developed. First, a generic poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith was reacted with cystamine followed by the cleavage of its disulfide bonds with tris(2-carboxylethyl)phosphine, which liberated the desired thiol groups. Dispersions of gold nanoparticles with sizes varying from 5 to 40. nm were then pumped through the functionalized monoliths. The materials were then analyzed using both energy dispersive X-ray spectroscopy and thermogravimetric analysis. We found that the quantity of attached gold was dependent on the size of nanoparticles, with the maximum attachment of more than 60. wt% being achieved with 40. nm nanoparticles. Scanning electron micrographs of the cross sections of all the monoliths revealed the formation of a non-aggregated, homogenous monolayer of nanoparticles. The surface of the bound gold was functionalized with 1-octanethiol and 1-octadecanethiol, and these monolithic columns were used successfully for the separations of proteins in reversed phase mode. The best separations were obtained using monoliths modified with 15, 20, and 30. nm nanoparticles since these sizes produced the most dense coverage of pore surface with gold. © 2012 Elsevier B.V.

  2. Influence of surface features of hydroxyapatite on the adsorption of proteins relevant to bone regeneration.

    Science.gov (United States)

    Fernández-Montes Moraleda, Belén; San Román, Julio; Rodríguez-Lorenzo, Luís M

    2013-08-01

    Protein-surface interaction may determine the success or failure of an implanted device. Not much attention have been paid to the specific surface parametes of hydroxyapatite (OHAp) that modulates and determines the formation and potential activity of the layer of proteins that is first formed when the material get in contact with the host tissue. the influence of specific surface area (SSA), crystallite size (CS) and particle size (PS) of OHAp on the adsorption of proteins relevant for bone regeneration is evaluated in this article. OHAp have been prepared by a wet chemical reaction of Ca(OH)2 with H3PO4. One set of reactions included poly acrylic acid in the reactant solution to modify the properties of the powder. Fibrinogen (Fg) Fraction I, type I: from Human plasma, (67% Protein), and Fibronectin (Fn) from Human plasma were selected to perform the adsorption experiments. The analysis of protein adsorption was carried out by UV/Vis spectrometry. A lower SSA and a different aspect ratio are obtained when the acrylic acid is included in the reaction badge. The deconvolution of the amide I band on the Raman spectra of free and adsorbed proteins reveals that the interaction apatite-protein happens through the carboxylate groups of the proteins. The combined analysis of CS, SSA and PS should be considered on the design of OHAp materials intended to interact with proteins. Copyright © 2013 Wiley Periodicals, Inc.

  3. The effect of plutonium dioxide water surface coverage on the generation of hydrogen and oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Veirs, Douglas K. [Los Alamos National Laboratory; Berg, John M. [Los Alamos National Laboratory; Crowder, Mark L. [Savannah River National Laboratory

    2012-06-20

    The conditions for the production of oxygen during radiolysis of water adsorbed onto plutonium dioxide powder are discussed. Studies in the literature investigating the radiolysis of water show that both oxygen and hydrogen can be generated from water adsorbed on high-purity plutonium dioxide powder. These studies indicate that there is a threshold in the amount of water below which oxygen is not generated. The threshold is associated with the number of monolayers of adsorbed water and is shown to occur at approximately two monolayers of molecularly adsorbed water. Material in equilibrium with 50% relative humidity (RH) will be at the threshold for oxygen generation. Using two monolayers of molecularly adsorbed water as the threshold for oxygen production, the total pressure under various conditions is calculated assuming stoichiometric production of hydrogen and oxygen. The specific surface area of the oxide has a strong effect on the final partial pressure. The specific surface areas resulting in the highest pressures within a 3013 container are evaluated. The potential for oxygen generation is mitigated by reduced relative humidity, and hence moisture adsorption, at the oxide surface which occurs if the oxide is warmer than the ambient air. The potential for oxygen generation approaches zero as the temperature difference between the ambient air and the material approaches 6 C.

  4. Numerical analysis for thermal waves in gas generated by impulsive heating of a boundary surface

    International Nuclear Information System (INIS)

    Utsumi, Takayuki; Kunugi, Tomoaki

    1996-01-01

    Thermal wave in gas generated by an impulsive heating of a solid boundary was analyzed numerically by the Differential Algebraic CIP (Cubic Interpolated Propagation) scheme. Numerical results for the ordinary heat conduction equation were obtained with a high accuracy. As for the hyperbolic thermal fluid dynamics equation, the fundamental feature of the experimental results by Brown and Churchill with regard to thermoacoustic convection was qualitatively reproduced by the DA-CIP scheme. (author)

  5. Conformation, orientation and interaction in molecular monolayers: A surface second harmonic and sum frequency generation study

    International Nuclear Information System (INIS)

    Superfine, R.; Huang, J.Y.; Shen, Y.R.

    1988-12-01

    We have used sum frequency generation (SFG) to study the order in a silane monolayer before and after the deposition of a coadsorbed liquid crystal monolayer. We observe an increase in the order of the chain of the silane molecule induced by the interpenetration of the liquid crystal molecules. By using second harmonic generation (SHG) and SFG, we have studied the orientation and conformation of the liquid crystal molecule on clean and silane coated glass surfaces. On both surfaces, the biphenyl group is tilted by 70 degree with the alkyl chain end pointing away from the surface. The shift in the C-H stretch frequencies in the coadsorbed system indicates a significant interaction between molecules. 9 refs., 3 figs

  6. Small-Scale Morphological Features on a Solid Surface Processed by High-Pressure Abrasive Water Jet

    Directory of Open Access Journals (Sweden)

    Can Kang

    2013-08-01

    Full Text Available Being subjected to a high-pressure abrasive water jet, solid samples will experience an essential variation of both internal stress and physical characteristics, which is closely associated with the kinetic energy attached to the abrasive particles involved in the jet stream. Here, experiments were performed, with particular emphasis being placed on the kinetic energy attenuation and turbulent features in the jet stream. At jet pressure of 260 MPa, mean velocity and root-mean-square (RMS velocity on two jet-stream sections were acquired by utilizing the phase Doppler anemometry (PDA technique. A jet-cutting experiment was then carried out with Al-Mg alloy samples being cut by an abrasive water jet. Morphological features and roughness on the cut surface were quantitatively examined through scanning electron microscopy (SEM and optical profiling techniques. The results indicate that the high-pressure water jet is characterized by remarkably high mean flow velocities and distinct velocity fluctuations. Those irregular pits and grooves on the cut surfaces indicate both the energy attenuation and the development of radial velocity components in the jet stream. When the sample is positioned with different distances from the nozzle outlet, the obtained quantitative surface roughness varies accordingly. A descriptive model highlighting the behaviors of abrasive particles in jet-cutting process is established in light of the experimental results and correlation analysis.

  7. Small-Scale Morphological Features on a Solid Surface Processed by High-Pressure Abrasive Water Jet.

    Science.gov (United States)

    Kang, Can; Liu, Haixia

    2013-08-14

    Being subjected to a high-pressure abrasive water jet, solid samples will experience an essential variation of both internal stress and physical characteristics, which is closely associated with the kinetic energy attached to the abrasive particles involved in the jet stream. Here, experiments were performed, with particular emphasis being placed on the kinetic energy attenuation and turbulent features in the jet stream. At jet pressure of 260 MPa, mean velocity and root-mean-square (RMS) velocity on two jet-stream sections were acquired by utilizing the phase Doppler anemometry (PDA) technique. A jet-cutting experiment was then carried out with Al-Mg alloy samples being cut by an abrasive water jet. Morphological features and roughness on the cut surface were quantitatively examined through scanning electron microscopy (SEM) and optical profiling techniques. The results indicate that the high-pressure water jet is characterized by remarkably high mean flow velocities and distinct velocity fluctuations. Those irregular pits and grooves on the cut surfaces indicate both the energy attenuation and the development of radial velocity components in the jet stream. When the sample is positioned with different distances from the nozzle outlet, the obtained quantitative surface roughness varies accordingly. A descriptive model highlighting the behaviors of abrasive particles in jet-cutting process is established in light of the experimental results and correlation analysis.

  8. Characteristics, seasonal distribution and surface degradation features of microplastic pellets along the Goa coast, India

    Digital Repository Service at National Institute of Oceanography (India)

    Veerasingam, S.; Saha, M.; Suneel, V.; Vethamony, P.; Rodrigues, A.C.; Bhattacharyya, S.; Naik, B.G.

    , especially on sandy beaches. MPPs are usually cylindrical, spherical or oval shape and made up of raw polymers of 1–5 mm. MPPs are industrial raw material transported to manufacturing sites for the production of a wide range of plastic products (Ogata et al...-oxidation, Weathering processes, Surface circulation 2    1. Introduction The global production of plastics has increased from 1.5 million tonnes in 1950 to 299 million tonnes in 2013, representing 4% increase over 2012 (Plastics Europe, 2015). A part...

  9. Comparison of hospital room surface disinfection using a novel ultraviolet germicidal irradiation (UVGI) generator.

    Science.gov (United States)

    Jelden, Katelyn C; Gibbs, Shawn G; Smith, Philip W; Hewlett, Angela L; Iwen, Peter C; Schmid, Kendra K; Lowe, John J

    2016-09-01

    The estimated 721,800 hospital acquired infections per year in the United States have necessitated development of novel environmental decontamination technologies such as ultraviolet germicidal irradiation (UVGI). This study evaluated the efficacy of a novel, portable UVGI generator (the TORCH, ChlorDiSys Solutions, Inc., Lebanon, NJ) to disinfect surface coupons composed of plastic from a bedrail, stainless steel, chrome-plated light switch cover, and a porcelain tile that were inoculated with methicillin-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant Enterococcus faecalis (VRE). Each surface type was placed at 6 different sites within a hospital room and treated by 10-min ultraviolet-C (UVC) exposures using the TORCH with doses ranging from 0-688 mJ/cm(2) between sites. Organism reductions were compared with untreated surface coupons as controls. Overall, UVGI significantly reduced MRSA by an average of 4.6 log10 (GSD: 1.7 log10, 77% inactivation, p surfaces, while VRE was reduced significantly less on chrome (p = 0.0004) and stainless steel (p = 0.0012) than porcelain tile. Organisms out of direct line of sight of the UVC generator were reduced significantly less (p surfaces evaluated within the hospital environment in direct line of sight of UVGI treatment with variation between organism and surface types.

  10. Elastic wave generated by granular impact on rough and erodible surfaces

    Science.gov (United States)

    Bachelet, Vincent; Mangeney, Anne; de Rosny, Julien; Toussaint, Renaud; Farin, Maxime

    2018-01-01

    The elastic waves generated by impactors hitting rough and erodible surfaces are studied. For this purpose, beads of variable materials, diameters, and velocities are dropped on (i) a smooth PMMA plate, (ii) stuck glass beads on the PMMA plate to create roughness, and (iii) the rough plate covered with layers of free particles to investigate erodible beds. The Hertz model validity to describe impacts on a smooth surface is confirmed. For rough and erodible surfaces, an empirical scaling law that relates the elastic energy to the radius Rb and normal velocity Vz of the impactor is deduced from experimental data. In addition, the radiated elastic energy is found to decrease exponentially with respect to the bed thickness. Lastly, we show that the variability of the elastic energy among shocks increases from some percents to 70% between smooth and erodible surfaces. This work is a first step to better quantify seismic emissions of rock impacts in natural environment, in particular on unconsolidated soils.

  11. Effective basis for modelling outlines of envelopes generated by motion of surfaces of revolution

    International Nuclear Information System (INIS)

    Turlapov, V.E.; Yakunin, V.I.

    1994-01-01

    This paper considers effective solutions of problems on parallel processing of envelopes generated by three-dimensional movement of surfaces of revolution. In general, determining the points outlining the envelope corresponding to concrete values for motion parameters reduces to numerical solution of nonlinear equations in generatrix parameters. For surfaces of revolution whose generatrix is a circular arc, this problem reduces to solution of a fourth-degree algebraic equation. It is shown that an envelope outline can be specified in the form of an explicit function of the motion parameters for any motion if the generatrix of the surface of revolution is a strait line, and, for motion with a fixed point or a fixed axis for the surface of revolution, if the generatrix is a conic section, spline, or a number of other curves

  12. Features of development process displacement of earth’s surface when dredging coal in Eastern Donbas

    Science.gov (United States)

    Posylniy, Yu V.; Versilov, S. O.; Shurygin, D. N.; Kalinchenko, V. M.

    2017-10-01

    The results of studies of the process of the earth’s surface displacement due to the influence of the adjacent longwalls are presented. It is established that the actual distributions of soil subsidence in the fall and revolt of the reservoir with the same boundary settlement processes differ both from each other and by the distribution of subsidence, recommended by the rules of structures protection. The application of the new boundary criteria - the relative subsidence of 0.03 - allows one to go from two distributions to one distribution, which is also different from the sedimentation distribution of protection rules. The use of a new geometrical element - a virtual point of the mould - allows one to transform the actual distribution of subsidence in the model distribution of rules of constructions protection. When transforming the curves of subsidence, the boundary points vary and, consequently, the boundary corners do.

  13. Visibility of lunar surface features - Apollo 14 orbital observations and lunar landing.

    Science.gov (United States)

    Ziedman, K.

    1972-01-01

    Description of an in-flight visibility test conducted during the Apollo 14 mission for the purpose of validating and extending the mathematical visibility models used previously in the course of the Apollo program to examine the constraints on descent operations imposed by lunar visibility limitations. Following a background review of the effects on mission planning of the visibility limitations due to downsun lunar surface detail 'washout' and a discussion of the visibility prediction techniques previously used for studying lunar visibility problems, the visibility test rationale and procedures are defined and the test results presented. The results appear to confirm the validity of the visibility prediction techniques employed in lunar visibility problem studies. These results provide also a basis for improving the accuracy of the prediction techniques by appropriate modifications.

  14. Some specific features of a surface-screw plasma instability in semiconductors

    International Nuclear Information System (INIS)

    Karavaev, G.F.; Tsipivka, Yu.I.

    1976-01-01

    A numerical analysis of the dispersion relation has been carried out, which enables to discover some new peculiarities in the behaviour of the surface helical instability (SHI) of a semiconductor plasma. To simplify the dispersion relation a semiconductor with nearly equal electron and hole mobilities has been considered. The dependences of threshold characteristics of SHI on a magnetic field H for different angular harmonics are represented graphically. A comparison of the formulas obtained shows that the approximation of truncated series yields an incorrect qualitative dependence of the wavelength on H, whereas asymptotic formulas in the range of strong magnetic fields yield not only a correct qualitative dependence of the threshold characteristics on H, but also a good quantitative agreement

  15. Coastal zone color scanner pigment concentrations in the southern ocean and relationships to geophysical surface features

    Science.gov (United States)

    Comiso, J. C.; Mcclain, C. R.; Sullivan, C. W.; Ryan, J. P.; Leonard, C. L.

    1993-01-01

    Climatological data on the distribution of surface pigment fields in the entire southern ocean over a seasonal cycle are examined. The occurrence of intense phytoplankton blooms during austral summer months and during other seasons in different regions is identified and analyzed. The highest pigment concentrations are observed at high latitudes and over regions with water depths usually less than 600 m. Basin-scale pigment distribution shows a slightly asymmetric pattern of enhanced pigment concentrations about Antarctica, with enhanced concentrations extending to lower latitudes in the Atlantic and Indian sectors than in the Pacific sector. A general increase in pigment concentrations is evident from the low latitudes toward the Antarctic circumpolar region. Spatial relationships between pigment and archived geophysical data reveal significant correlation between pigment distributions and both bathymetry and wind stress, while general hemispheric scale patterns of pigment distributions are most coherent with the geostrophic flow of the Antarctic Circumpolar Current.

  16. Integrated system for investigating sub-surface features of a rock formation

    Science.gov (United States)

    Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt; Johnson, Paul A.; Guyer, Robert; Ten Cate, James A.; Le Bas, Pierre -Yves; Larmat, Carene S.

    2015-08-18

    A system for investigating non-linear properties of a rock formation around a borehole is provided. The system includes a first sub-system configured to perform data acquisition, control and recording of data; a second subsystem in communication with the first sub-system and configured to perform non-linearity and velocity preliminary imaging; a third subsystem in communication with the first subsystem and configured to emit controlled acoustic broadcasts and receive acoustic energy; a fourth subsystem in communication with the first subsystem and the third subsystem and configured to generate a source signal directed towards the rock formation; and a fifth subsystem in communication with the third subsystem and the fourth subsystem and configured to perform detection of signals representative of the non-linear properties of the rock formation.

  17. Application of Amniotic Membrane in Ocular Surface Diseases: Clinical Features and Treatment Outcome

    Directory of Open Access Journals (Sweden)

    Derya Cindarik

    2012-05-01

    Full Text Available Pur po se: To investigate the effectiveness of amniotic membrane transplantation in cases with corneal thinning, desmatocele and refractive corneal ulcer. Ma te ri al and Met hod: Fifty-four eyes of 54 patients who were applied amniotic membrane transplantation for various ocular surface disease between January 2004 and February 2009 in Çukurova University Ophthalmology Department were included in the study. A complete ophthalmologic examination was performed. Corneal culture and corneal cytology samples were collected from the patients with the diagnosis of corneal ulcers. The patients were informed about the surgical procedure and the possible complications and informed consent was obtained. The amniotic membranes that were prepared under optimal conditions and protected in frozen forms were used in the operations. Follow-up examinations were done at postoperative 1st day, 1st week, 1st month, 3rd month, 6th month and then once in a year. Re sults: Of 54 patients, 26 (48.1% were men and 28 (51.8% were women. The mean age of patients was 52.53±19.75 (2-87 years. The cases were separated into 2 groups according to the etiology: group 1 - eyes with corneal ulcer (n:26 and group 2 - eyes with corneal stromal thinning, persistent epithelial defects and desmatocel (n:28. The transplantations were performed using cover technique in 17 eyes (31.4%, graft technique in 37 eyes (68.5% and graft technique with corneal patch in 2 eyes (3.7%. Partial penetrating keratoplasty was required in 38 of 54 eyes (70.3%. One eye was enucleated. Dis cus si on: The amniotic membrane transplantation has advantages like: it can be prepared easily and is cost-effective. It is a safe and effective procedure in ocular surface disease. (Turk J Ophthalmol 2012; 42: 177-82

  18. Small leak detection by measuring surface oscillation during sodium-water reaction in steam generator

    International Nuclear Information System (INIS)

    Nei, Hiromichi; Hori, Masao

    1977-01-01

    Small leak sodium-water reaction tests were conducted to develop various kinds of leak detectors for the sodium-heated steam generator in FBR. The super-heated steam was injected into sodium in a reaction vessel having a sodium free surface, simulating the steam generator. The level gauge in the reaction vessel generated the most reliable signal among detectors, as long as the leak rates were relatively high. The level gauge signal was estimated to be the sodium surface oscillation caused by hydrogen bubbles produced in sodium-water reaction. Experimental correlation was derived, predicting the amplitude as a function of leak rate, hydrogen dissolution ratio, bubble rise velocity and other parameters concerned, assuming that the surface oscillation is in proportion to the gas hold-up. The noise amplitude under normal operation without water leak was increased with sodium flow rate and found to be well correlated with Froud number. These two correlations predict that a water leak in a ''MONJU'' class (300 MWe) steam generator could possibly be detected by level gauges at a leak rate above 2 g/sec. (auth.)

  19. Computer vision-based apple grading for golden delicious apples based on surface features

    Directory of Open Access Journals (Sweden)

    Payman Moallem

    2017-03-01

    Full Text Available In this paper, a computer vision-based algorithm for golden delicious apple grading is proposed which works in six steps. Non-apple pixels as background are firstly removed from input images. Then, stem end is detected by combination of morphological methods and Mahalanobis distant classifier. Calyx region is also detected by applying K-means clustering on the Cb component in YCbCr color space. After that, defects segmentation is achieved using Multi-Layer Perceptron (MLP neural network. In the next step, stem end and calyx regions are removed from defected regions to refine and improve apple grading process. Then, statistical, textural and geometric features from refined defected regions are extracted. Finally, for apple grading, a comparison between performance of Support Vector Machine (SVM, MLP and K-Nearest Neighbor (KNN classifiers is done. Classification is done in two manners which in the first one, an input apple is classified into two categories of healthy and defected. In the second manner, the input apple is classified into three categories of first rank, second rank and rejected ones. In both grading steps, SVM classifier works as the best one with recognition rate of 92.5% and 89.2% for two categories (healthy and defected and three quality categories (first rank, second rank and rejected ones, among 120 different golden delicious apple images, respectively, considering K-folding with K = 5. Moreover, the accuracy of the proposed segmentation algorithms including stem end detection and calyx detection are evaluated for two different apple image databases.

  20. Cortical surface registration using spherical thin-plate spline with sulcal lines and mean curvature as features.

    Science.gov (United States)

    Park, Hyunjin; Park, Jun-Sung; Seong, Joon-Kyung; Na, Duk L; Lee, Jong-Min

    2012-04-30

    Analysis of cortical patterns requires accurate cortical surface registration. Many researchers map the cortical surface onto a unit sphere and perform registration of two images defined on the unit sphere. Here we have developed a novel registration framework for the cortical surface based on spherical thin-plate splines. Small-scale composition of spherical thin-plate splines was used as the geometric interpolant to avoid folding in the geometric transform. Using an automatic algorithm based on anisotropic skeletons, we extracted seven sulcal lines, which we then incorporated as landmark information. Mean curvature was chosen as an additional feature for matching between spherical maps. We employed a two-term cost function to encourage matching of both sulcal lines and the mean curvature between the spherical maps. Application of our registration framework to fifty pairwise registrations of T1-weighted MRI scans resulted in improved registration accuracy, which was computed from sulcal lines. Our registration approach was tested as an additional procedure to improve an existing surface registration algorithm. Our registration framework maintained an accurate registration over the sulcal lines while significantly increasing the cross-correlation of mean curvature between the spherical maps being registered. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Modification of the large-scale features of high Reynolds number wall turbulence by passive surface obtrusions

    Energy Technology Data Exchange (ETDEWEB)

    Monty, J.P.; Lien, K.; Chong, M.S. [University of Melbourne, Department of Mechanical Engineering, Parkville, VIC (Australia); Allen, J.J. [New Mexico State University, Department of Mechanical Engineering, Las Cruces, NM (United States)

    2011-12-15

    A high Reynolds number boundary-layer wind-tunnel facility at New Mexico State University was fitted with a regularly distributed braille surface. The surface was such that braille dots were closely packed in the streamwise direction and sparsely spaced in the spanwise direction. This novel surface had an unexpected influence on the flow: the energy of the very large-scale features of wall turbulence (approximately six-times the boundary-layer thickness in length) became significantly attenuated, even into the logarithmic region. To the author's knowledge, this is the first experimental study to report a modification of 'superstructures' in a rough-wall turbulent boundary layer. The result gives rise to the possibility that flow control through very small, passive surface roughness may be possible at high Reynolds numbers, without the prohibitive drag penalty anticipated heretofore. Evidence was also found for the uninhibited existence of the near-wall cycle, well known to smooth-wall-turbulence researchers, in the spanwise space between roughness elements. (orig.)

  2. Aerodynamics of yacht sails: viscous flow features and surface pressure distributions

    Science.gov (United States)

    Viola, Ignazio Maria

    2014-11-01

    The present paper presents the first Detached Eddy Simulation (DES) on a yacht sails. Wind tunnel experiments on a 1:15th model-scale sailing yacht with an asymmetric spinnaker (fore sail) and a mainsails (aft sail) were modelled using several time and grid resolutions. Also the Reynolds-average Navier-Stokes (RANS) equations were solved for comparison with DES. The computed forces and surface pressure distributions were compared with those measured with both flexible and rigid sails in the wind tunnel and good agreement was found. For the first time it was possible to recognise the coherent and steady nature of the leading edge vortex that develops on the leeward side of the asymmetric spinnaker and which significantly contributes to the overall drive force. The leading edge vortex increases in diameter from the foot to the head of the sail, where it becomes the tip vortex and convects downstream in the direction of the far field velocity. The tip vortex from the head of the mainsail rolls around the one of the spinnaker. The spanwise twist of the spinnaker leads to a mid-span helicoidal vortex, which has never been reported by previous authors, with an horizontal axis and rotating in the same direction of the tip vortex.

  3. An Experimental Optical Three-axis Tactile Sensor Featured with Hemispherical Surface

    Science.gov (United States)

    Ohka, Masahiro; Kobayashi, Hiroaki; Takata, Jumpei; Mitsuya, Yasunaga

    We are developing an optical three-axis tactile sensor capable of acquiring normal and shearing force to mount on a robotic finger. The tactile sensor is based on the principle of an optical waveguide-type tactile sensor, which is composed of an acrylic hemispherical dome, a light source, an array of rubber sensing elements, and a CCD camera. The sensing element of the silicone rubber comprises one columnar feeler and eight conical feelers. The contact areas of the conical feelers, which maintain contact with the acrylic dome, detect the three-axis force applied to the tip of the sensing element. Normal and shearing forces are then calculated from integration and centroid displacement of the grayscale value derived from the conical feeler's contacts. To evaluate the present tactile sensor, we conducted a series of experiments using an x-z stage, a rotational stage, and a force gauge. Although we discovered that the relationship between the integrated grayscale value and normal force depends on the sensor's latitude on the hemispherical surface, it is easy to modify the sensitivity based on the latitude to make the centroid displacement of the grayscale value proportional to the shearing force. When we examined the repeatability of the present tactile sensor with 1,000 load/unload cycles, the error was 2%.

  4. Transient thermal stresses in an orthotropic finite rectangular plate due to arbitrary surface heat-generations

    International Nuclear Information System (INIS)

    Sugano, Y.

    1980-01-01

    The transient thermal stresses in an orthotropic finite rectangular plate due to arbitrary surface heat-generations on two edges are studied by means of the Airy stress function. The purposes of this paper are to present a method of determing the transient thermal stresses in an orthographic rectangular plate with four edges of distinct thermal boundary condition of the third kind which exactly satisfy the traction-free conditions of shear stress over all boundaries including four corners of the plate, and to consider the effects of the anisotropies of material properties and the convective heat transfer on the upper and lower surfaces on the thermal stress distribution. (orig.)

  5. Evaluation of Surface Runoff Generation Processes Using a Rainfall Simulator: A Small Scale Laboratory Experiment

    Science.gov (United States)

    Danáčová, Michaela; Valent, Peter; Výleta, Roman

    2017-12-01

    Nowadays, rainfall simulators are being used by many researchers in field or laboratory experiments. The main objective of most of these experiments is to better understand the underlying runoff generation processes, and to use the results in the process of calibration and validation of hydrological models. Many research groups have assembled their own rainfall simulators, which comply with their understanding of rainfall processes, and the requirements of their experiments. Most often, the existing rainfall simulators differ mainly in the size of the irrigated area, and the way they generate rain drops. They can be characterized by the accuracy, with which they produce a rainfall of a given intensity, the size of the irrigated area, and the rain drop generating mechanism. Rainfall simulation experiments can provide valuable information about the genesis of surface runoff, infiltration of water into soil and rainfall erodibility. Apart from the impact of physical properties of soil, its moisture and compaction on the generation of surface runoff and the amount of eroded particles, some studies also investigate the impact of vegetation cover of the whole area of interest. In this study, the rainfall simulator was used to simulate the impact of the slope gradient of the irrigated area on the amount of generated runoff and sediment yield. In order to eliminate the impact of external factors and to improve the reproducibility of the initial conditions, the experiments were conducted in laboratory conditions. The laboratory experiments were carried out using a commercial rainfall simulator, which was connected to an external peristaltic pump. The pump maintained a constant and adjustable inflow of water, which enabled to overcome the maximum volume of simulated precipitation of 2.3 l, given by the construction of the rainfall simulator, while maintaining constant characteristics of the simulated precipitation. In this study a 12-minute rainfall with a constant intensity

  6. The Word Composite Effect Depends on Abstract Lexical Representations But Not Surface Features Like Case and Font

    Directory of Open Access Journals (Sweden)

    Paulo Ventura

    2017-06-01

    Full Text Available Prior studies have shown that words show a composite effect: When readers perform a same-different matching task on a target-part of a word, performance is affected by the irrelevant part, whose influence is severely reduced when the two parts are misaligned. However, the locus of this word composite effect is largely unknown. To enlighten it, in two experiments, Portuguese readers performed the composite task on letter strings: in Experiment 1, in written words varying in surface features (between-participants: courier, notera, alternating-cAsE, and in Experiment 2 in pseudowords. The word composite effect, signaled by a significant interaction between alignment of the two word parts and congruence between parts was found in the three conditions of Experiment 1, being unaffected by NoVeLtY of the configuration or by handwritten form. This effect seems to have a lexical locus, given that in Experiment 2 only the main effect of congruence between parts was significant and was not modulated by alignment. Indeed, the cross-experiment analysis showed that words presented stronger congruence effects than pseudowords only in the aligned condition, because when misaligned the whole lexical item configuration was disrupted. Therefore, the word composite effect strongly depends on abstract lexical representations, as it is unaffected by surface features and is specific to lexical items.

  7. The Word Composite Effect Depends on Abstract Lexical Representations But Not Surface Features Like Case and Font.

    Science.gov (United States)

    Ventura, Paulo; Fernandes, Tânia; Leite, Isabel; Almeida, Vítor B; Casqueiro, Inês; Wong, Alan C-N

    2017-01-01

    Prior studies have shown that words show a composite effect: When readers perform a same-different matching task on a target-part of a word, performance is affected by the irrelevant part, whose influence is severely reduced when the two parts are misaligned. However, the locus of this word composite effect is largely unknown. To enlighten it, in two experiments, Portuguese readers performed the composite task on letter strings: in Experiment 1, in written words varying in surface features (between-participants: courier, notera, alternating-cAsE), and in Experiment 2 in pseudowords. The word composite effect, signaled by a significant interaction between alignment of the two word parts and congruence between parts was found in the three conditions of Experiment 1, being unaffected by NoVeLtY of the configuration or by handwritten form. This effect seems to have a lexical locus, given that in Experiment 2 only the main effect of congruence between parts was significant and was not modulated by alignment. Indeed, the cross-experiment analysis showed that words presented stronger congruence effects than pseudowords only in the aligned condition, because when misaligned the whole lexical item configuration was disrupted. Therefore, the word composite effect strongly depends on abstract lexical representations, as it is unaffected by surface features and is specific to lexical items.

  8. Examining the Impact of Question Surface Features on Students’ Answers to Constructed-Response Questions on Photosynthesis

    Science.gov (United States)

    Weston, Michele; Haudek, Kevin C.; Prevost, Luanna; Urban-Lurain, Mark; Merrill, John

    2015-01-01

    One challenge in science education assessment is that students often focus on surface features of questions rather than the underlying scientific principles. We investigated how student written responses to constructed-response questions about photosynthesis vary based on two surface features of the question: the species of plant and the order of two question prompts. We asked four versions of the question with different combinations of the two plant species and order of prompts in an introductory cell biology course. We found that there was not a significant difference in the content of student responses to versions of the question stem with different species or order of prompts, using both computerized lexical analysis and expert scoring. We conducted 20 face-to-face interviews with students to further probe the effects of question wording on student responses. During the interviews, we found that students thought that the plant species was neither relevant nor confusing when answering the question. Students identified the prompts as both relevant and confusing. However, this confusion was not specific to a single version. PMID:25999312

  9. Surface phase separation, dewetting feature size, and crystal morphology in thin films of polystyrene/poly(ε-caprolactone) blend.

    Science.gov (United States)

    Ma, Meng; He, Zhoukun; Li, Yuhan; Chen, Feng; Wang, Ke; Zhang, Qing; Deng, Hua; Fu, Qiang

    2012-12-01

    Thin films of polystyrene (PS)/poly(ε-caprolactone) (PCL) blends were prepared by spin-coating and characterized by tapping mode force microscopy (AFM). Effects of the relative concentration of PS in polymer solution on the surface phase separation and dewetting feature size of the blend films were systematically studied. Due to the coupling of phase separation, dewetting, and crystallization of the blend films with the evaporation of solvent during spin-coating, different size of PS islands decorated with various PCL crystal structures including spherulite-like, flat-on individual lamellae, and flat-on dendritic crystal were obtained in the blend films by changing the film composition. The average distance of PS islands was shown to increase with the relative concentration of PS in casting solution. For a given ratio of PS/PCL, the feature size of PS appeared to increase linearly with the square of PS concentration while the PCL concentration only determined the crystal morphology of the blend films with no influence on the upper PS domain features. This is explained in terms of vertical phase separation and spinodal dewetting of the PS rich layer from the underlying PCL rich layer, leading to the upper PS dewetting process and the underlying PCL crystalline process to be mutually independent. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Color heterogeneity of the surface of Phobos: Relationships to geologic features and comparison to meteorite analogs

    International Nuclear Information System (INIS)

    Murchie, S.L.; Britt, D.T.; Head, J.W.; Pratt, S.F.; Fisher, P.C.; Zhukov, B.S.; Kuzmin, A.A.; Ksanfomality, L.V.; Zharkov, A.V.; Nikitin, G.E.; Fanale, F.P.; Blaney, D.L.; Bell, J.F.; Robinson, M.S.

    1991-01-01

    Multispectral observations of Phobos by the VSK (Videospectrometric) TV cameras and KRFM (Combined Radiometer and Photometer for Mars) UV-visible spectrometer on Phobos 2 have provided new determinations of the satellite's spectral reflectance properties, at greater spatial and spectral resolutions and over a greater geographic range than have previously been available. Images of the ratio of visible and NIR reflectances covering the longitude range 30-250 degrees W were constructed from 0.40-0.56 μm and 0.78-1.1 μm VSK images. The average color ratio of Phobos was found to be ∼0.97±0.14, consistent with previously obtained measurements. However, the surface is heterogeneous, with at least four recognizable spectral units whose absolute color ratios were determined to within ∼10%: a red unit with a color ratio of 0.7-0.8, a reddish gray unit with a color ratio of 0.8-1.0, a bluish gray unit with a color ratio of 1.0-1.1, and a blue unit with a color ratio of 1.1-1.4. The redder and bluer color units are interpreted to have been excavated by impacts, from an optically and/or compositionally heterogeneous interior overlain by a reddish gray surficial layer. The location of the blue lobe emanating from Stickney correlates with the location of one of the morphologic classes of grooves, as predicted by ejecta reimpact models of groove origin. The large color ratio of blue material is comparable to that of an assemblage of mafic minerals like that forming black chondrites. Qualitative and quantitative comparison of the color ratio and UV-visible spectral properties of bluish gray material with those of meteorites indicates that black chondrites are this material's closest spectral analog. The UV-visible spectra of reddish gray and red materials most resemble spectra of black chondrites but are also comparable to spectra of some carbonaceous chondrites

  11. INVESTIGATING THE FEATURES OF EXTRACTION OF FERROUSCONCRETE SURFACE CONSTRUCTIONS FOR EXTERNAL ARMORATION

    Directory of Open Access Journals (Sweden)

    MOLODID O. S.

    2017-04-01

    Full Text Available Amplification of beam structures is usually performed in several classical ways, in particular: increase in cross-section due to build-up; changing the static scheme of work due to the installation of laggings, beam knees, racks, etc. However, the arrangement of additional reinforcement structures leads to a decrease in inter-floor space, an increase in the load on the supports and foundations and changes in structural and planning decisions of the interior space of the building. An alternative to these methods of reinforcement of beam structures is external reinforcement namely high-tension cloths, plates or strips that are bonded with special adhesives to the surfaces of structures. However, domestic scientific-technical and normative literature actually leaves such methods of amplification out of its attention. That is why a number of experimental studies were carried out to determine efficiency of reinforcing structures under MAPEI technology with the use of carbon fiber and in order to find alternative to domestic technologies. In alternative studies the authors used fiberglass, steel strips and steel angles bonded with special adhesives of domestic production. The efficiency criterion of technologies being tested was adopted bending load capacity of amplified beam structures made of reinforced concrete. The results of experimental studies found that reinforcement technology MAPEI by applying carbon fiber increases carrying capacity of beams to 417.6% compared with non-enhanced beams. At the same time, amplification of beams with steel angles increased their bearing capacity by 343.9%, with steel plates - by 294.8%, and with fiberglass - by 319.4%. The obtained results indicate high efficiency of the investigated methods of strengthening for beam structures and build up the direction of further research of organizational and technological solutions for the implementation of external additional reinforcement of beam constructions.

  12. Real-Space Imaging of Carrier Dynamics of Materials Surfaces by Second-Generation Four-Dimensional Scanning Ultrafast Electron Microscopy

    KAUST Repository

    Sun, Jingya

    2015-09-14

    In the fields of photocatalysis and photovoltaics, ultrafast dynamical processes, including carrier trapping and recombination on material surfaces, are among the key factors that determine the overall energy conversion efficiency. A precise knowledge of these dynamical events on the nanometer (nm) and femtosecond (fs) scales was not accessible until recently. The only way to access such fundamental processes fully is to map the surface dynamics selectively in real space and time. In this study, we establish a second generation of four-dimensional scanning ultrafast electron microscopy (4D S-UEM) and demonstrate the ability to record time-resolved images (snapshots) of material surfaces with 650 fs and ∼5 nm temporal and spatial resolutions, respectively. In this method, the surface of a specimen is excited by a clocking optical pulse and imaged using a pulsed primary electron beam as a probe pulse, generating secondary electrons (SEs), which are emitted from the surface of the specimen in a manner that is sensitive to the local electron/hole density. This method provides direct and controllable information regarding surface dynamics. We clearly demonstrate how the surface morphology, grains, defects, and nanostructured features can significantly impact the overall dynamical processes on the surface of photoactive-materials. In addition, the ability to access two regimes of dynamical probing in a single experiment and the energy loss of SEs in semiconductor-nanoscale materials will also be discussed.

  13. Electrografting of in situ generated pyrrole derivative diazonium salt for the surface modification of nickel

    International Nuclear Information System (INIS)

    Jacques, A.; Devillers, S.; Delhalle, J.; Mekhalif, Z.

    2013-01-01

    Highlights: • Electrografting of in situ generated 4-pyrrolylphenyldiazonium (Py-PD) on Ni. • Generation of Py-PD from 4-pyrrolylaniline in 3 acidic conditions followed by UV. • XPS and SEM confirm efficiency, reproducibility and homogeneity of the grafting. • Electrografting process assessed by CV. • Barrier properties of the grafted film evidenced by CV. -- Abstract: This work reports for the first time on the modification of nickel surfaces by cathodic electrografting of in situ generated diazonium. An original diazonium salt (the 4-pyrrolylphenyldiazonium called Py-PD hereafter) was electrografted on nickel after its generation from 4-(1H-pyrrol-1-yl)aniline (Py-A) in presence of three acidic conditions (1, 2 and 10 equiv. of HClO 4 /Py-A) has been investigated by UV–vis spectroscopy. Results show that the potentiostatic electrografting of Py-PD is concomitant with nickel and proton reduction. This electrografting leads to the formation of multilayered films in each of the studied in situ generation conditions. The use of 1 equiv. of HClO 4 /Py-A for the in situ generation results in the formation of inhomogeneous and irreproducible coatings while 2 and 10 equiv. lead to the formation of highly covering, homogeneous and reproducible films. These films present good electrochemical barrier properties toward the ferri/ferrocyanide couple. The use of gentle stoichiometric acidic conditions for in situ diazonium generation widens the application field of this one-step procedure to the surface modification of oxidizable materials presenting an unstable oxide layer

  14. State-of-the-art of wind turbine design codes: main features overview for cost-effective generation

    Energy Technology Data Exchange (ETDEWEB)

    Molenaar, D-P.; Dijkstra, S. [Delft University of Technology (Netherlands). Mechanical Engineering Systems and Control Group

    1999-07-01

    For successful large-scale application of wind energy, the price of electricity generated by wind turbines should decrease. Model-based control can be important since it has the potential to reduce fatigue loads, while simultaneously maintaining a desired amount of energy production. The controller synthesis, however, requires a mathematical model describing the most important dynamics of the complete wind turbine. In the wind energy community there is a wide variety in codes used to model a wind turbine's dynamic behaviour or to carry out design calculations. In this paper, the main features of the state-of-the-art wind turbine design codes have been investigated in order to judge the appropriateness of using one of these for the modeling, identification and control of flexible, variable speed wind turbines. It can be concluded that, although the sophistication of the design codes has increased enormously over the last two decades, they are, in general, not suitable for the design, and easy implementation of optimal operating strategies.

  15. Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions

    Science.gov (United States)

    Choo, Yung K. (Compiler)

    1995-01-01

    The NASA Steering Committee for Surface Modeling and Grid Generation (SMAGG) sponsored a workshop on surface modeling, grid generation, and related issues in Computational Fluid Dynamics (CFD) solutions at Lewis Research Center, Cleveland, Ohio, May 9-11, 1995. The workshop provided a forum to identify industry needs, strengths, and weaknesses of the five grid technologies (patched structured, overset structured, Cartesian, unstructured, and hybrid), and to exchange thoughts about where each technology will be in 2 to 5 years. The workshop also provided opportunities for engineers and scientists to present new methods, approaches, and applications in SMAGG for CFD. This Conference Publication (CP) consists of papers on industry overview, NASA overview, five grid technologies, new methods/ approaches/applications, and software systems.

  16. The features of chlorophyll concentration long-standing dynamics in the ocean surface layer (comparison of czcs and seawifs data)

    Science.gov (United States)

    Shevyrnogov, A.; Vysotskaya, G.

    To preserve biosphere and make its utilization expedient makes imperative to comprehend in depth long-standing dynamics of the primary production process on our planet. Variability of chlorophyll concentration in the ocean is one of the most important components of this process. However, hard access and large size of the water surface make its investigation labor-consuming. Besides, the dependence of primary production on high variability of hydrophysical phenomena in the ocean (fluctuations of currents, frontal zones, etc.) makes the location of points for measuring the chlorophyll concentration dynamics significant. In this work the long-standing changes in chlorophyll concentration in the surface layer of the ocean have been analyzed on the basis of the CZCS data for 7.5 years and the SeaWiFS data from 1997 to 2003. It was shown that the average chlorophyll concentration calculated at all investigated area is varied moderately. However when analyzing spatially local trends, it was detected that areas exist with stable rise and fall of chlorophyll concentration. Some interesting features of the long-standing dynamics of chlorophyll concentration several interesting features were found. There are the various directions of long-term trends (constant increase or decrease) that cannot be explained only by large-scale hydrological phenomena in the ocean (currents, upwellings etc.). The next feature is a difference between the trends revealed by using the CZCS data and the trends based on the SeaWiFS data. Thus, the obtained results allow the possibility of identification of the ocean biota role in the global biospheric gas exchange.

  17. MODFLOW-OWHM v2: New Features and Improvements; The Next Generation of MODFLOW Conjunctive Use Simulation

    Science.gov (United States)

    Boyce, S. E.; Hanson, R. T.; Henson, W.; Ferguson, I. M.; Schmid, W.; Reimann, T.; Mehl, S.

    2017-12-01

    The One-Water Hydrologic Flow Model (One-Water) is a MODFLOW-based integrated hydrologic flow model designed for the analysis of a broad range of conjunctive-use and sustainability issues. It was motivated by the need to merge the multiple variants of MODFLOW-2005 to yield an enhanced unified version capable of simulating conjunctive use and management, sustainability, climate-related issues, and managing the relationships between groundwater, surface water, and land usage. One-Water links the movement and use of groundwater, surface water, and imported water for consumption by agriculture and natural vegetation on the landscape, and for potable and other uses within a supply-and-demand framework. The first version, released in 2014, was selected by The World Bank Water Resource Software Review in 2016 as one of three recommended simulation programs for conjunctive use and management modeling. One-Water is also being used as the primary simulation engine for FREEWAT, a European Union sponsored open-source water management software environment. The next version of One-Water will include a new surface-water operations module that simulates dynamic reservoir operations and a conduit-flow process for karst aquifers and leaky pipe networks. It will also include enhancements to local grid refinement, and additional features to facilitate easier model updates, faster execution, better error messages, and more integration/cross communication between the traditional MODFLOW packages. The new structure also helps facilitate the new integration into a "Self-Updating" structure of data streams, simulation, and analysis needed for modern water resource management. By retaining and tracking the water within the hydrosphere, One-Water accounts for "all of the water everywhere and all of the time." This philosophy provides more confidence in the water accounting to the scientific community and provides the public a foundation needed to address wider classes of problems. Ultimately

  18. A Method for a Multi-Platform Approach to Generate Gridded Surface Evaporation

    Science.gov (United States)

    Badger, A.; Livneh, B.; Small, E. E.; Abolafia-Rosenzweig, R.

    2017-12-01

    Evapotranspiration is an integral component of the surface water balance. While there are many estimates of evapotranspiration, there are fewer estimates that partition evapotranspiration into evaporation and transpiration components. This study aims to generate a CONUS-scale, observationally-based soil evaporation dataset by using the time difference of surface soil moisture by Soil Moisture Active Passive (SMAP) satellite with adjustments for transpiration and a bottom flux out of the surface layer. In concert with SMAP, the Moderate-Resolution Imaging Spectroradiometer (MODIS) satellite, North American Land Data Assimilation Systems (NLDAS) and the Hydrus-1D model are used to fully analyze the surface water balance. A biome specific estimate of the total terrestrial ET is calculated through a variation of the Penman-Monteith equation with NLDAS forcing and NLDAS Noah Model output for meteorological variables. A root density restriction and SMAP-based soil moisture restriction are applied to obtain terrestrial transpiration estimates. By forcing Hydrus-1D with NLDAS meteorology and our terrestrial transpiration estimates, an estimate of the flux between the soil surface and root zone layers (qbot) will dictate the proportion of water that is available for soil evaporation. After constraining transpiration and the bottom flux from the surface layer, we estimate soil evaporation as the residual of the surface water balance. Application of this method at Fluxnet sites shows soil evaporation estimates of approximately 0­3 mm/day and less than ET estimates. Expanding this methodology to produce a gridded product for CONUS, and eventually a global-scale product, will enable a better understanding of water balance processes and contribute a dataset to validate land-surface model's surface flux processes.

  19. Generation of attosecond electron packets via conical surface plasmon electron acceleration

    Science.gov (United States)

    Greig, S. R.; Elezzabi, A. Y.

    2016-01-01

    We present a method for the generation of high kinetic energy attosecond electron packets via magnetostatic and aperture filtering of conical surface plasmon (SP) accelerated electrons. The conical SP waves are excited by coupling an ultrafast radially polarized laser beam to a conical silica lens coated with an Ag film. Electromagnetic and particle tracking models are employed to characterize the ultrafast electron packets. PMID:26764129

  20. Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces

    International Nuclear Information System (INIS)

    Sprangle, P.; Penano, J.R.; Hafizi, B.; Kapetanakos, C.A.

    2004-01-01

    Intense, ultrashort laser pulses propagating in the atmosphere have been observed to emit sub-THz electromagnetic pulses (EMPS). The purpose of this paper is to analyze EMP generation from the interaction of ultrashort laser pulses with air and with dielectric surfaces and to determine the efficiency of conversion of laser energy to EMP energy. In our self-consistent model the laser pulse partially ionizes the medium, forms a plasma filament, and through the ponderomotive forces associated with the laser pulse, drives plasma currents which are the source of the EMP. The propagating laser pulse evolves under the influence of diffraction, Kerr focusing, plasma defocusing, and energy depletion due to electron collisions and ionization. Collective effects and recombination processes are also included in the model. The duration of the EMP in air, at a fixed point, is found to be a few hundred femtoseconds, i.e., on the order of the laser pulse duration plus the electron collision time. For steady state laser pulse propagation the flux of EMP energy is nonradiative and axially directed. Radiative EMP energy is present only for nonsteady state or transient laser pulse propagation. The analysis also considers the generation of EMP on the surface of a dielectric on which an ultrashort laser pulse is incident. For typical laser parameters, the power and energy conversion efficiency from laser radiation to EMP radiation in both air and from dielectric surfaces is found to be extremely small, -8 . Results of full-scale, self-consistent, numerical simulations of atmospheric and dielectric surface EMP generation are presented. A recent experiment on atmospheric EMP generation is also simulated

  1. Enhanced protein loading on a planar Si(111)-H surface with second generation NTA

    Science.gov (United States)

    Liu, Xiang; Han, Huan-Mei; Liu, Hong-Bo; Xiao, Shou-jun

    2010-08-01

    A Si(111)-H surface was modified via a direct reaction between Si-H and 1-undecylenic acid (UA) under microwave irradiation to form molecular monolayers with terminal carboxyl groups. After esterifying carboxylic acid being esterified with N-hydroxysuccinimide (NHS), aminobutyl nitrilotriacetic acid (ANTA) was bound to the silicon surface through amidation (pH = 8.0) between its primary amino group and NHS-ester, producing nitrilotriacetic acid (NTA) anions. Then hexa-histidine tagged thioredoxin-urodilatin (his-tagged protein) and FITC-labeled hexa-histidine tagged thioredoxin-urodilatin (FITC-his-tagged protein) can be anchored after NTA was coordinated with Ni 2+. Furthermore, the NTA-terminated chip was acidified with 0.1 M HCl and subsequently esterified with NHS and then amidated with ANTA again to produce a second generation NTA. Thus the surface density of nitrilotriacetic acid anions was improved and resultantly that of anchored proteins was also enhanced through the iterative reactions. Both multiple transmission-reflection infrared spectroscopy (MTR-IR) and fluorescence scanning measurements demonstrated a proximate 1.63 times of anchored proteins on the second generation NTA/Ni 2+ as that on the first generation NTA/Ni 2+ monolayer.

  2. Quantitative Surface Chirality Detection with Sum Frequency Generation Vibrational Spectroscopy: Twin Polarization Angle Approach

    International Nuclear Information System (INIS)

    Wei, Feng; Xu, Yanyan; Guo, Yuan; Liu, Shi-lin; Wang, Hongfei

    2009-01-01

    Here we report a novel twin polarization angle (TPA) approach in the quantitative chirality detection with the surface sum-frequency generation vibrational spectroscopy (SFG-VS). Generally, the achiral contribution dominates the surface SFG-VS signal, and the pure chiral signal is usually two or three orders of magnitude smaller. Therefore, it has been difficult to make quantitative detection and analysis of the chiral contributions to the surface SFG-VS signal. In the TPA method, by varying together the polarization angles of the incoming visible light and the sum frequency signal at fixed s or p polarization of the incoming infrared beam, the polarization dependent SFG signal can give not only direct signature of the chiral contribution in the total SFG-VS signal, but also the accurate measurement of the chiral and achiral components in the surface SFG signal. The general description of the TPA method is presented and the experiment test of the TPA approach is also presented for the SFG-VS from the S- and R-limonene chiral liquid surfaces. The most accurate degree of chiral excess values thus obtained for the 2878 cm -1 spectral peak of the S- and R-limonene liquid surfaces are (23.7±0.4)% and (25.4±1.3)%, respectively.

  3. Generation of Electricity at Graphene Interface Governed by Underlying Surface Dipole Induced Ion Adsorption

    Science.gov (United States)

    Yang, Shanshan; Su, Yudan; Wu, Qiong; Zhang, Yuanbo; Tian, Chuanshan

    Aqueous droplet moving along graphene surface can produce electricity This interesting phenomenon provided environment-friendly means to harvest energy from graphene interface in contact with sea wave or rain droplets. However, microscopically, the nature of charge adsorption at the graphene interface is still unclear. Here, utilizing sum-frequency spectroscopy in combined with measurement of electrical power generation, the origin of charge adsorption on graphene was investigated. It was found that the direct ion-graphene interaction is negligibly small, contrary to the early speculation, but the ordered surface dipole from the supporting substrate, such as PET, is responsible for ion adsorption at the interface. Graphene serves as a conductive layer with mild screening of Coulomb interaction when aqueous droplet slips over the surface. These results pave the way for optimization of energy harvesting efficiency of graphene-based device.

  4. Equipment for decontamination of inner vessel surfaces featuring sound or ultrasound transducer on float inside liquid-filled vessel

    International Nuclear Information System (INIS)

    Bar, J.; Straka, M.

    1982-01-01

    The equipment for the decontamination of the inner surfaces of vessels consists of an immersion float which is provided with a screw, an electric motor, a rudder and at least one float chamber, and a remotely controlled valve. The float is provided with a power source, a high frequency a.c. current generator and a control panel outside the vessel. The float is connected to parts of the equipment outside the vessel by a multi-core cable. The immersion float may also be provided with a detector for measuring the quantity of ionizing radiation whose display is placed outside the vessel being decontaminated. (B.S.)

  5. GIS based optimal impervious surface map generation using various spatial data for urban nonpoint source management.

    Science.gov (United States)

    Lee, Cholyoung; Kim, Kyehyun; Lee, Hyuk

    2018-01-15

    Impervious surfaces are mainly artificial structures such as rooftops, roads, and parking lots that are covered by impenetrable materials. These surfaces are becoming the major causes of nonpoint source (NPS) pollution in urban areas. The rapid progress of urban development is increasing the total amount of impervious surfaces and NPS pollution. Therefore, many cities worldwide have adopted a stormwater utility fee (SUF) that generates funds needed to manage NPS pollution. The amount of SUF is estimated based on the impervious ratio, which is calculated by dividing the total impervious surface area by the net area of an individual land parcel. Hence, in order to identify the exact impervious ratio, large-scale impervious surface maps (ISMs) are necessary. This study proposes and assesses various methods for generating large-scale ISMs for urban areas by using existing GIS data. Bupyeong-gu, a district in the city of Incheon, South Korea, was selected as the study area. Spatial data that were freely offered by national/local governments in S. Korea were collected. First, three types of ISMs were generated by using the land-cover map, digital topographic map, and orthophotographs, to validate three methods that had been proposed conceptually by Korea Environment Corporation. Then, to generate an ISM of higher accuracy, an integration method using all data was proposed. Error matrices were made and Kappa statistics were calculated to evaluate the accuracy. Overlay analyses were performed to examine the distribution of misclassified areas. From the results, the integration method delivered the highest accuracy (Kappa statistic of 0.99) compared to the three methods that use a single type of spatial data. However, a longer production time and higher cost were limiting factors. Among the three methods using a single type of data, the land-cover map showed the highest accuracy with a Kappa statistic of 0.91. Thus, it was judged that the mapping method using the land

  6. PES Surface Modification Using Green Chemistry: New Generation of Antifouling Membranes

    Directory of Open Access Journals (Sweden)

    Norhan Nady

    2016-04-01

    Full Text Available A major limitation in using membrane-based separation processes is the loss of performance due to membrane fouling. This drawback can be addressed thanks to surface modification treatments. A new and promising surface modification using green chemistry has been recently investigated. This modification is carried out at room temperature and in aqueous medium using green catalyst (enzyme and nontoxic modifier, which can be safely labelled “green surface modification”. This modification can be considered as a nucleus of new generation of antifouling membranes and surfaces. In the current research, ferulic acid modifier and laccase bio-catalyst were used to make poly(ethersulfone (PES membrane less vulnerable to protein adsorption. The blank and modified PES membranes are evaluated based on e.g., their flux and protein repellence. Both the blank and the modified PES membranes (or laminated PES on silicon dioxide surface are characterized using many techniques e.g., SEM, EDX, XPS and SPM, etc. The pure water flux of the most modified membranes was reduced by 10% on average relative to the blank membrane, and around a 94% reduction in protein adsorption was determined. In the conclusions section, a comparison between three modifiers—ferulic acid, and two other previously used modifiers (4-hydroxybenzoic acid and gallic acid—is presented.

  7. PES Surface Modification Using Green Chemistry: New Generation of Antifouling Membranes.

    Science.gov (United States)

    Nady, Norhan

    2016-04-18

    A major limitation in using membrane-based separation processes is the loss of performance due to membrane fouling. This drawback can be addressed thanks to surface modification treatments. A new and promising surface modification using green chemistry has been recently investigated. This modification is carried out at room temperature and in aqueous medium using green catalyst (enzyme) and nontoxic modifier, which can be safely labelled "green surface modification". This modification can be considered as a nucleus of new generation of antifouling membranes and surfaces. In the current research, ferulic acid modifier and laccase bio-catalyst were used to make poly(ethersulfone) (PES) membrane less vulnerable to protein adsorption. The blank and modified PES membranes are evaluated based on e.g., their flux and protein repellence. Both the blank and the modified PES membranes (or laminated PES on silicon dioxide surface) are characterized using many techniques e.g., SEM, EDX, XPS and SPM, etc. The pure water flux of the most modified membranes was reduced by 10% on average relative to the blank membrane, and around a 94% reduction in protein adsorption was determined. In the conclusions section, a comparison between three modifiers-ferulic acid, and two other previously used modifiers (4-hydroxybenzoic acid and gallic acid)-is presented.

  8. Study of the deposition features of the organic dye Rhodamine B on the porous surface of silicon with different pore sizes

    Energy Technology Data Exchange (ETDEWEB)

    Lenshin, A. S., E-mail: lenshinas@phys.vsu.ru; Seredin, P. V.; Kavetskaya, I. V.; Minakov, D. A.; Kashkarov, V. M. [Voronezh State University (Russian Federation)

    2017-02-15

    The deposition features of the organic dye Rhodamine B on the porous surface of silicon with average pore sizes of 50–100 and 100–250 nm are studied. Features of the composition and optical properties of the obtained systems are studied using infrared and photoluminescence spectroscopy. It is found that Rhodamine-B adsorption on the surface of por-Si with various porosities is preferentially physical. The optimal technological parameters of its deposition are determined.

  9. Catalyzed hydrogenation of nitrogen and ethylene on metal (Fe, Pt) single crystal surfaces and effects of coadsorption: A sum frequency generation vibrational spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Westerberg, Staffan Per Gustav [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    High-pressure catalytic reactions and associated processes, such as adsorption have been studied on a molecular level on single crystal surfaces. Sum Frequency Generation (SFG) vibrational spectroscopy together with Auger Electron Spectroscopy (AES), Temperature Programmed Desorption (TPD) and Gas Chromatography (GC) were used to investigate the nature of species on catalytic surfaces and to measure the catalytic reaction rates. Special attention has been directed at studying high-pressure reactions and in particular, ammonia synthesis in order to identify reaction intermediates and the influence of adsorbates on the surface during reaction conditions. The adsorption of gases N2, H2, O2 and NH3 that play a role in ammonia synthesis have been studied on the Fe(111) crystal surface by sum frequency generation vibrational spectroscopy using an integrated Ultra-High Vacuum (UHV)/high-pressure system. SFG spectra are presented for the dissociation intermediates, NH2 (~3325 cm-1) and NH (~3235 cm-1) under high pressure of ammonia (200 Torr) on the clean Fe(111) surface. Addition of 0.5 Torr of oxygen to 200 Torr of ammonia does not significantly change the bonding of dissociation intermediates to the surface. However, it leads to a phase change of nearly 180° between the resonant and non-resonant second order non-linear susceptibility of the surface, demonstrated by the reversal of the SFG spectral features. Heating the surface in the presence of 200 Torr ammonia and 0.5 Torr oxygen reduces the oxygen coverage, which can be seen from the SFG spectra as another relative phase change of 180°. The reduction of the oxide is also supported by Auger electron spectroscopy. The result suggests that the phase change of the spectral features could serve as a sensitive indicator of the chemical environment of the adsorbates.

  10. Thermally generated metals for plasmonic coloring and surface-enhanced Raman sensing

    Science.gov (United States)

    Huang, Zhenping; Chen, Jian; Liu, Guiqiang; Wang, Yan; Liu, Yi; Tang, Li; Liu, Zhengqi

    2018-03-01

    Spectral coloring glass and its application on the surface-enhanced Raman scattering are demonstrated experimentally via a simple and moderate heat-treating of the top ultrathin gold film to create discrete nanoparticles, which can produce localized surface plasmon resonances and strong plasmonic near-field coupling effects. Ultrathin metal films with a wide range of thicknesses are investigated by different heat-treatment processes. The annealed metal films have been demonstrated with a series of spectral coloring responses. Moreover, the microscopy images of the metal film structures confirm the formation of distinct geometry features in these operation procedures. Densely packed nanoparticles are observed for the ultrathin metal film with the single-digit level of thickness. With increasing the film thickness over 10 nm, metallic clusters and porous morphologies can be obtained. Importantly, the metallic resonators can provide enhanced Raman scattering with the detection limit down to 10 - 7 molL - 1 of Rhodamine 6G molecules due to the excitation of plasmon resonances and strong near-field coupling effects. These features hold great potential for large-scale and low-cost production of colored glass and Raman substrate.

  11. Sum frequency and second harmonic generation from the surface of a liquid microjet

    Energy Technology Data Exchange (ETDEWEB)

    Smolentsev, Nikolay; Chen, Yixing; Roke, Sylvie, E-mail: sylvie.roke@epfl.ch [Laboratory for Fundamental Biophotonics (LBP), Institute of Bioengineering (IBI), School of Engineering STI, École Polytechnique Fédérale de Lausanne EPFL, 1015 Lausanne (Switzerland); Jena, Kailash C. [Laboratory for Fundamental Biophotonics (LBP), Institute of Bioengineering (IBI), School of Engineering STI, École Polytechnique Fédérale de Lausanne EPFL, 1015 Lausanne (Switzerland); Department of Physics, Indian Institute of Technology Ropar, Rupnagar, 140001 (India); Brown, Matthew A. [Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, CH-8093 Zurich (Switzerland)

    2014-11-14

    The use of a liquid microjet as a possible source of interest for Second Harmonic Generation (SHG) and Sum Frequency Generation (SFG) spectroscopy is examined. We measured non-resonant SHG scattering patterns from the air/water interface of a microjet of pure water and observe a strong enhancement of the SHG signal for certain scattering angles. These enhancements can be explained by the optical properties and the shape of the liquid microjet. SFG experiments at the surface of a liquid microjet of ethanol in air show that it is also possible to measure the coherent vibrational SFG spectrum of the ethanol/air interface in this way. Our findings are useful for future far-UV or X-ray based nonlinear optical surface experiments on liquid jets. In addition, combined X-ray photoelectron spectroscopy and SHG/SFG measurements are feasible, which will be very useful in improving our understanding of the molecular foundations of electrostatic and chemical surface properties and phenomena.

  12. Sum frequency and second harmonic generation from the surface of a liquid microjet

    Science.gov (United States)

    Smolentsev, Nikolay; Chen, Yixing; Jena, Kailash C.; Brown, Matthew A.; Roke, Sylvie

    2014-11-01

    The use of a liquid microjet as a possible source of interest for Second Harmonic Generation (SHG) and Sum Frequency Generation (SFG) spectroscopy is examined. We measured non-resonant SHG scattering patterns from the air/water interface of a microjet of pure water and observe a strong enhancement of the SHG signal for certain scattering angles. These enhancements can be explained by the optical properties and the shape of the liquid microjet. SFG experiments at the surface of a liquid microjet of ethanol in air show that it is also possible to measure the coherent vibrational SFG spectrum of the ethanol/air interface in this way. Our findings are useful for future far-UV or X-ray based nonlinear optical surface experiments on liquid jets. In addition, combined X-ray photoelectron spectroscopy and SHG/SFG measurements are feasible, which will be very useful in improving our understanding of the molecular foundations of electrostatic and chemical surface properties and phenomena.

  13. Sum frequency and second harmonic generation from the surface of a liquid microjet

    International Nuclear Information System (INIS)

    Smolentsev, Nikolay; Chen, Yixing; Roke, Sylvie; Jena, Kailash C.; Brown, Matthew A.

    2014-01-01

    The use of a liquid microjet as a possible source of interest for Second Harmonic Generation (SHG) and Sum Frequency Generation (SFG) spectroscopy is examined. We measured non-resonant SHG scattering patterns from the air/water interface of a microjet of pure water and observe a strong enhancement of the SHG signal for certain scattering angles. These enhancements can be explained by the optical properties and the shape of the liquid microjet. SFG experiments at the surface of a liquid microjet of ethanol in air show that it is also possible to measure the coherent vibrational SFG spectrum of the ethanol/air interface in this way. Our findings are useful for future far-UV or X-ray based nonlinear optical surface experiments on liquid jets. In addition, combined X-ray photoelectron spectroscopy and SHG/SFG measurements are feasible, which will be very useful in improving our understanding of the molecular foundations of electrostatic and chemical surface properties and phenomena

  14. Heat Generation on Implant Surface During Abutment Preparation at Different Elapsed Time Intervals.

    Science.gov (United States)

    Al-Keraidis, Abdullah; Aleisa, Khalil; Al-Dwairi, Ziad Nawaf; Al-Tahawi, Hamdi; Hsu, Ming-Lun; Lynch, Edward; Özcan, Mutlu

    2017-10-01

    The purpose of this study was to evaluate heat generation at the implant surface caused by abutment preparation using a diamond bur in a high-speed dental turbine in vitro at 2 different water-coolant temperatures. Thirty-two titanium-alloy abutments were connected to a titanium-alloy implant embedded in an acrylic resin placed within a water bath at a controlled temperature of 37°C. The specimens were equally distributed into 2 groups (16 each). Group 1: the temperature was maintained at 20 ± 1°C; and group 2: the temperature was maintained at 32 ± 1°C. Each abutment was prepared in the axial plane for 1 minute and in the occlusal plane for 1 minute. The temperature of the heat generated from abutment preparation was recorded and measured at 3 distinct time intervals. Water-coolant temperature (20°C vs 32°C) had a statistically significant effect on the implant's temperature change during preparation of the abutment (P water-coolant temperature of 20 ± 1°C during preparation of the implant abutment decreased the temperature recorded at the implant surface to 34.46°C, whereas the coolant temperature of 32 ± 1°C increased the implant surface temperature to 40.94°C.

  15. Speckle noise reduction for computer generated holograms of objects with diffuse surfaces

    Science.gov (United States)

    Symeonidou, Athanasia; Blinder, David; Ahar, Ayyoub; Schretter, Colas; Munteanu, Adrian; Schelkens, Peter

    2016-04-01

    Digital holography is mainly used today for metrology and microscopic imaging and is emerging as an important potential technology for future holographic television. To generate the holographic content, computer-generated holography (CGH) techniques convert geometric descriptions of a 3D scene content. To model different surface types, an accurate model of light propagation has to be considered, including for example, specular and diffuse reflection. In previous work, we proposed a fast CGH method for point cloud data using multiple wavefront recording planes, look-up tables (LUTs) and occlusion processing. This work extends our method to account for diffuse reflections, enabling rendering of deep 3D scenes in high resolution with wide viewing angle support. This is achieved by modifying the spectral response of the light propagation kernels contained by the look-up tables. However, holograms encoding diffuse reflective surfaces depict significant amounts of speckle noise, a problem inherent to holography. Hence, techniques to improve the reduce speckle noise are evaluated in this paper. Moreover, we propose as well a technique to suppress the aperture diffraction during numerical, viewdependent rendering by apodizing the hologram. Results are compared visually and in terms of their respective computational efficiency. The experiments show that by modelling diffuse reflection in the LUTs, a more realistic yet computationally efficient framework for generating high-resolution CGH is achieved.

  16. Acoustic-gravity waves generated by atmospheric and near-surface sources

    Science.gov (United States)

    Kunitsyn, Viacheslav E.; Kholodov, Alexander S.; Krysanov, Boris Yu.; Andreeva, Elena S.; Nesterov, Ivan A.; Vorontsov, Artem M.

    2013-04-01

    Numerical simulation of the acoustic-gravity waves (AGW) generated by long-period oscillations of the Earth's (oceanic) surface, earthquakes, explosions, thermal heating, seiches, and tsunami is carried out. Wavelike disturbances are quite frequent phenomena in the atmosphere and ionosphere. These events can be caused by the impacts from space and atmosphere, by oscillations of the Earth'as surface and other near-surface events. These wavelike phenomena in the atmosphere and ionosphere appear as the alternating areas of enhanced and depleted density (in the atmosphere) or electron concentration (in the ionosphere). In the paper, AGW with typical frequencies of a few hertz - millihertz are analyzed. AGW are often observed after the atmospheric perturbations, during the earthquakes, and some time (a few days to hours) in advance of the earthquakes. Numerical simulation of the generation of AGW by long-period oscillations of the Earth's and oceanic surface, earthquakes, explosions, thermal heating, seiches, and tsunami is carried out. The AGW generated by the near-surface phenomena within a few hertz-millihertz frequency range build up at the mid-atmospheric and ionospheric altitudes, where they assume their typical spatial scales of the order of a few hundred kilometers. Oscillations of the ionospheric plasma within a few hertz-millihertz frequency range generate electromagnetic waves with corresponding frequencies as well as travelling ionospheric irregularities (TIDs). Such structures can be successfully monitored using satellite radio tomography (RT) techniques. For the purposes of RT diagnostics, 150/400 MHz transmissions from low-orbiting navigational satellites flying in polar orbits at the altitudes of about 1000 km as well as 1.2-1.5 GHz signals form high-orbiting (orbital altitudes about 20000 km) navigation systems like GPS/GLONASS are used. The results of experimental studies on generation of wavelike disturbances by particle precipitation are presented

  17. Spent coffee-based activated carbon: specific surface features and their importance for H2S separation process.

    Science.gov (United States)

    Kante, Karifala; Nieto-Delgado, Cesar; Rangel-Mendez, J Rene; Bandosz, Teresa J

    2012-01-30

    Activated carbons were prepared from spent ground coffee. Zinc chloride was used as an activation agent. The obtained materials were used as a media for separation of hydrogen sulfide from air at ambient conditions. The materials were characterized using adsorption of nitrogen, elemental analysis, SEM, FTIR, and thermal analysis. Surface features of the carbons depend on the amount of an activation agent used. Even though the residual inorganic matter takes part in the H(2)S retention via salt formation, the porous surface of carbons governs the separation process. The chemical activation method chosen resulted in formation of large volume of pores with sizes between 10 and 30Å, optimal for water and hydrogen sulfide adsorption. Even though the activation process can be optimized/changed, the presence of nitrogen in the precursor (caffeine) is a significant asset of that specific organic waste. Nitrogen functional groups play a catalytic role in hydrogen sulfide oxidation. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Zinc (hydr)oxide/graphite oxide/AuNPs composites: role of surface features in H₂S reactive adsorption.

    Science.gov (United States)

    Giannakoudakis, Dimitrios A; Bandosz, Teresa J

    2014-12-15

    Zinc hydroxide/graphite oxide/AuNPs composites with various levels of complexity were synthesized using an in situ precipitation method. Then they were used as H2S adsorbents in visible light. The materials' surfaces were characterized before and after H2S adsorption by various physical and chemical methods (XRD, FTIR, thermal analysis, potentiometric titration, adsorption of nitrogen and SEM/EDX). Significant differences in surface features and synergistic effects were found depending on the materials' composition. Addition of graphite oxide and the deposition of gold nanoparticles resulted in a marked increase in the adsorption capacity in comparison with that on the zinc hydroxide and zinc hydroxide/AuNP. Addition of AuNPs to zinc hydroxide led to a crystalline ZnO/AuNP composite while the zinc hydroxide/graphite oxide/AuNP composite was amorphous. The ZnOH/GO/AuNPs composite exhibited the greatest H2S adsorption capacity due to the increased number of OH terminal groups and the conductive properties of GO that facilitated the electron transfer and consequently the formation of superoxide ions promoting oxidation of hydrogen sulfide. AuNPs present in the composite increased the conductivity, helped with electron transfer to oxygen, and prevented the fast recombination of the electrons and holes. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Generation of radio vortex beams with designable polarization using anisotropic frequency selective surface

    Science.gov (United States)

    Yang, Jin; Zhang, Cheng; Ma, Hui Feng; Zhao, Jie; Dai, Jun Yan; Yuan, Wei; Yang, Liu Xi; Cheng, Qiang; Cui, Tie Jun

    2018-05-01

    We propose a strategy to convert a linearly polarized wave from a single point source to an orbital angular momentum (OAM) wave by arbitrary polarization via an anisotropic frequency selective surface (FSS) in the microwave frequency. By tailoring the geometries of FSS elements, reflection-phases in x and y polarizations are engineered and encoded independently, which allows us to design the eventual polarization state of the generated OAM vortex beam by elaborately selecting individual coding sequences for each polarization. Two types of FSSs are designed and experimentally characterized to demonstrate the capability of OAM generation with circular and linear polarizations, respectively, showing excellent performance in a wide bandwidth from 14 to 16 GHz. This method provides opportunities for polarization multiplexing in microwave OAM communication systems.

  20. Terahertz-wave surface-emitted difference-frequency generation without quasi-phase-matching technique.

    Science.gov (United States)

    Avetisyan, Yuri H

    2010-08-01

    A scheme of terahertz (THz)-wave surface-emitted difference-frequency generation (SEDFG), which lacks the drawbacks associated with the usage of periodically orientation-inverted structures, is proposed. It is shown that both material birefringence of the bulk LiNbO(3) crystal and modal birefringence of GaAs/AlAs waveguide are sufficient to obtain SEDFG up to a frequency of approximately 3THz. The simplicity of the proposed scheme, along with the fact that there is a much smaller THz-wave decay in nonlinear crystal, makes it a good candidate for the practical realization of efficient THz generation. The use of a GaAs waveguide with an oxidized AlAs layer is proposed for enhanced THz-wave SEDFG in the vicinity of the GaAs polariton resonance at 8THz.

  1. An extended validation of the last generation of particle finite element method for free surface flows

    Science.gov (United States)

    Gimenez, Juan M.; González, Leo M.

    2015-03-01

    In this paper, a new generation of the particle method known as Particle Finite Element Method (PFEM), which combines convective particle movement and a fixed mesh resolution, is applied to free surface flows. This interesting variant, previously described in the literature as PFEM-2, is able to use larger time steps when compared to other similar numerical tools which implies shorter computational times while maintaining the accuracy of the computation. PFEM-2 has already been extended to free surface problems, being the main topic of this paper a deep validation of this methodology for a wider range of flows. To accomplish this task, different improved versions of discontinuous and continuous enriched basis functions for the pressure field have been developed to capture the free surface dynamics without artificial diffusion or undesired numerical effects when different density ratios are involved. A collection of problems has been carefully selected such that a wide variety of Froude numbers, density ratios and dominant dissipative cases are reported with the intention of presenting a general methodology, not restricted to a particular range of parameters, and capable of using large time-steps. The results of the different free-surface problems solved, which include: Rayleigh-Taylor instability, sloshing problems, viscous standing waves and the dam break problem, are compared to well validated numerical alternatives or experimental measurements obtaining accurate approximations for such complex flows.

  2. Dual-affinity peptides to generate dense surface coverages of nanoparticles

    International Nuclear Information System (INIS)

    Del Re, Julia; Blum, Amy Szuchmacher

    2014-01-01

    Graphical abstract: - Highlights: • Stable nanoparticles were created with the Flg-A3 fusion peptide as a ligand. • Interactions of transition metal ions with Flg control aggregation of the nanoparticles in solution. • The QBP1-A3 fusion peptide improves surface attachment of gold nanoparticles. • Solution pre-aggregation of nanoparticles results in dense surface coverage. - Abstract: Depositing gold nanoparticles is of great interest because of the many potential applications of nanoparticle films; however, generating dense surface nanoparticle coverage remains a difficult challenge. Using dual-affinity peptides we have synthesized gold nanoparticles and then pre-aggregated the particles in solution via interactions with metal ions. These nanoparticle aggregates were then deposited onto silicon dioxide surfaces using another dual-affinity peptide to control binding to the substrate. The results demonstrate that when divalent ions like Zn 2+ or Ni 2+ are used, densely packed gold nanoparticle monolayers are formed on the silicon dioxide substrate, which may have applications in fields like molecular electronics

  3. Size Effects on Surface Elastic Waves in a Semi-Infinite Medium with Atomic Defect Generation

    Directory of Open Access Journals (Sweden)

    F. Mirzade

    2013-01-01

    Full Text Available The paper investigates small-scale effects on the Rayleigh-type surface wave propagation in an isotopic elastic half-space upon laser irradiation. Based on Eringen’s theory of nonlocal continuum mechanics, the basic equations of wave motion and laser-induced atomic defect dynamics are derived. Dispersion equation that governs the Rayleigh surface waves in the considered medium is derived and analyzed. Explicit expressions for phase velocity and attenuation (amplification coefficients which characterize surface waves are obtained. It is shown that if the generation rate is above the critical value, due to concentration-elastic instability, nanometer sized ordered concentration-strain structures on the surface or volume of solids arise. The spatial scale of these structures is proportional to the characteristic length of defect-atom interaction and increases with the increase of the temperature of the medium. The critical value of the pump parameter is directly proportional to recombination rate and inversely proportional to deformational potentials of defects.

  4. From Geodesic Flow on a Surface of Negative Curvature to Electronic Generator of Robust Chaos

    Science.gov (United States)

    Kuznetsov, Sergey P.

    2016-12-01

    Departing from the geodesic flow on a surface of negative curvature as a classic example of the hyperbolic chaotic dynamics, we propose an electronic circuit operating as a generator of rough chaos. Circuit simulation in NI Multisim software package and numerical integration of the model equations are provided. Results of computations (phase trajectories, time dependencies of variables, Lyapunov exponents and Fourier spectra) show good correspondence between the chaotic dynamics on the attractor of the proposed system and of the Anosov dynamics for the original geodesic flow.

  5. repDNA: a Python package to generate various modes of feature vectors for DNA sequences by incorporating user-defined physicochemical properties and sequence-order effects.

    Science.gov (United States)

    Liu, Bin; Liu, Fule; Fang, Longyun; Wang, Xiaolong; Chou, Kuo-Chen

    2015-04-15

    In order to develop powerful computational predictors for identifying the biological features or attributes of DNAs, one of the most challenging problems is to find a suitable approach to effectively represent the DNA sequences. To facilitate the studies of DNAs and nucleotides, we developed a Python package called representations of DNAs (repDNA) for generating the widely used features reflecting the physicochemical properties and sequence-order effects of DNAs and nucleotides. There are three feature groups composed of 15 features. The first group calculates three nucleic acid composition features describing the local sequence information by means of kmers; the second group calculates six autocorrelation features describing the level of correlation between two oligonucleotides along a DNA sequence in terms of their specific physicochemical properties; the third group calculates six pseudo nucleotide composition features, which can be used to represent a DNA sequence with a discrete model or vector yet still keep considerable sequence-order information via the physicochemical properties of its constituent oligonucleotides. In addition, these features can be easily calculated based on both the built-in and user-defined properties via using repDNA. The repDNA Python package is freely accessible to the public at http://bioinformatics.hitsz.edu.cn/repDNA/. bliu@insun.hit.edu.cn or kcchou@gordonlifescience.org Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. The Effects of Realistic Geological Heterogeneity on Seismic Modeling: Applications in Shear Wave Generation and Near-Surface Tunnel Detection

    Science.gov (United States)

    Sherman, Christopher Scott

    Naturally occurring geologic heterogeneity is an important, but often overlooked, aspect of seismic wave propagation. This dissertation presents a strategy for modeling the effects of heterogeneity using a combination of geostatistics and Finite Difference simulation. In the first chapter, I discuss my motivations for studying geologic heterogeneity and seis- mic wave propagation. Models based upon fractal statistics are powerful tools in geophysics for modeling heterogeneity. The important features of these fractal models are illustrated using borehole log data from an oil well and geomorphological observations from a site in Death Valley, California. A large part of the computational work presented in this disserta- tion was completed using the Finite Difference Code E3D. I discuss the Python-based user interface for E3D and the computational strategies for working with heterogeneous models developed over the course of this research. The second chapter explores a phenomenon observed for wave propagation in heteroge- neous media - the generation of unexpected shear wave phases in the near-source region. In spite of their popularity amongst seismic researchers, approximate methods for modeling wave propagation in these media, such as the Born and Rytov methods or Radiative Trans- fer Theory, are incapable of explaining these shear waves. This is primarily due to these method's assumptions regarding the coupling of near-source terms with the heterogeneities and mode conversion. To determine the source of these shear waves, I generate a suite of 3D synthetic heterogeneous fractal geologic models and use E3D to simulate the wave propaga- tion for a vertical point force on the surface of the models. I also present a methodology for calculating the effective source radiation patterns from the models. The numerical results show that, due to a combination of mode conversion and coupling with near-source hetero- geneity, shear wave energy on the order of 10% of the

  7. Clinical and Immunological Features of Opsoclonus-Myoclonus Syndrome in the Era of Neuronal Cell Surface Antibodies.

    Science.gov (United States)

    Armangué, Thaís; Sabater, Lidia; Torres-Vega, Estefanía; Martínez-Hernández, Eugenia; Ariño, Helena; Petit-Pedrol, Mar; Planagumà, Jesús; Bataller, Luis; Dalmau, Josep; Graus, Francesc

    2016-04-01

    Most studies on opsoclonus-myoclonus syndrome (OMS) in adults are based on small case series before the era of neuronal cell surface antibody discovery. To report the clinical and immunological features of idiopathic OMS (I-OMS) and paraneoplastic OMS (P-OMS), the occurrence of antibodies to cell surface antigens, and the discovery of a novel cell surface epitope. Retrospective cohort study and laboratory investigations of 114 adult patients with OMS at a center for autoimmune neurological disorders done between January 2013 and September 2015. Review of clinical records. Immunohistochemistry on rat brain and cultured neurons as well as cell-based assays were used to identify known autoantibodies. Immunoprecipitation and mass spectrometry were used to characterize novel antigens. Of the 114 patients (62 [54%] female; median age, 45 years; interquartile range, 32-60 years), 45 (39%) had P-OMS and 69 (61%) had I-OMS. In patients with P-OMS, the associated tumors included lung cancer (n = 19), breast cancer (n = 10), other cancers (n = 5), and ovarian teratoma (n = 8); 3 additional patients without detectable cancer were considered to have P-OMS because they had positive results for onconeuronal antibodies. Patients with I-OMS, compared with those who had P-OMS, were younger (median age, 38 [interquartile range, 31-50] vs 54 [interquartile range, 45-65] years; P OMS with lung cancer (21% vs 5% in patients with OMS without lung cancer; P = .02); however, a similar frequency of glycine receptor antibodies was found in patients with lung cancer without OMS (13 of 65 patients [20%]). A novel cell surface epitope, human natural killer 1 (HNK-1), was the target of the antibodies in 3 patients with lung cancer and P-OMS. Patients with I-OMS responded better to treatment and had fewer relapses than those with P-OMS. Older age and encephalopathy, significantly associated with P-OMS, are clinical clues suggesting an underlying tumor. Glycine receptor antibodies occur

  8. Switching Transient Generation in Surface Interrogation Scanning Electrochemical Microscopy and Time-of-Flight Techniques.

    Science.gov (United States)

    Ahn, Hyun S; Bard, Allen J

    2015-12-15

    In surface interrogation scanning electrochemical microscopy (SI-SECM), fine and accurate control of the delay time between substrate generation and tip interrogation (tdelay) is crucial because tdelay defines the decay time of the reactive intermediate. In previous applications of the SI-SECM, the resolution in the control of tdelay has been limited to several hundreds of milliseconds due to the slow switching of the bipotentiostat. In this work, we have improved the time resolution of tdelay control up to ca. 1 μs, enhancing the SI-SECM to be competitive in the time domain with the decay of many reactive intermediates. The rapid switching SI-SECM has been implemented in a substrate generation-tip collection time-of-flight (SG-TC TOF) experiment of a solution redox mediator, and the results obtained from the experiment exhibited good agreement with that obtained from digital simulation. The reaction rate constant of surface Co(IV) on oxygen-evolving catalyst film, which was inaccessible thus far due to the lack of tdelay control, has been measured by the rapid switching SI-SECM.

  9. Local inertial oscillations in the surface ocean generated by time-varying winds

    Science.gov (United States)

    Chen, Shengli; Polton, Jeff A.; Hu, Jianyu; Xing, Jiuxing

    2015-12-01

    A new relationship is presented to give a review study on the evolution of inertial oscillations in the surface ocean locally generated by time-varying wind stress. The inertial oscillation is expressed as the superposition of a previous oscillation and a newly generated oscillation, which depends upon the time-varying wind stress. This relationship is employed to investigate some idealized wind change events. For a wind series varying temporally with different rates, the induced inertial oscillation is dominated by the wind with the greatest variation. The resonant wind, which rotates anti-cyclonically at the local inertial frequency with time, produces maximal amplitude of inertial oscillations, which grows monotonically. For the wind rotating at non-inertial frequencies, the responses vary periodically, with wind injecting inertial energy when it is in phase with the currents, but removing inertial energy when it is out of phase. The wind rotating anti-cyclonically with time is much more favorable to generate inertial oscillations than the cyclonic rotating wind. The wind with a frequency closer to the inertial frequency generates stronger inertial oscillations. For a diurnal wind, the induced inertial oscillation is dependent on latitude and is most significant at 30 °. This relationship is also applied to examine idealized moving cyclones. The inertial oscillation is much stronger on the right-hand side of the cyclone path than on the left-hand side (in the northern hemisphere). This is due to the wind being anti-cyclonic with time on the right-hand side, but cyclonic on the other side. The inertial oscillation varies with the cyclone translation speed. The optimal translation speed generating the greatest inertial oscillations is 2 m/s at the latitude of 10 ° and gradually increases to 6 m/s at the latitude of 30 °.

  10. Effects of surface roughness and vortex generators on the LS(1)-0417MOD airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Reuss, R.L.; Hoffman, M.J.; Gregorek, G.M. [Ohio State Univ., Columbus, OH (United States)

    1995-12-01

    An 18-inch constant-chord model of the LS(l)-0417MOD airfoil section was tested under two dimensional steady state conditions ate University 7{times}10 Subsonic Wind Tunnel. The objective was to document section lift and moment characteristics model and air flow conditions. Surface pressure data was acquired at {minus}60{degrees} through + 230{degrees} geometric angles of attack, at a nominal 1 million Reynolds number. Cases with and without leading edge grit roughness were investigated. The leading edge mulated blade conditions in the field. Additionally, surface pressure data were acquired for Reynolds numbers of 1.5 and 2.0 million, with and without leading edge grit roughness; the angle of attack was limited to a {minus}20{degrees} to 40{degrees} range. In general, results showed lift curve slope sensitivities to Reynolds number and roughness. The maximum lift coefficient was reduced as much as 29% by leading edge roughness. Moment coefficient showed little sensitivity to roughness beyond 50{degrees} angle of attack, but the expected decambering effect of a thicker boundary layer with roughness did show at lower angles. Tests were also conducted with vortex generators located at the 30% chord location on the upper surface only, at 1 and 1.5 million Reynolds numbers, with and without leading edge grit roughness. In general, with leading edge grit roughness applied, the vortex generators restored 85 percent of the baseline level of maximum lift coefficient but with a more sudden stall break and at a higher angle of attack than the baseline.

  11. Spatial and Temporal Homogeneity of Solar Surface Irradiance across Satellite Generations

    Directory of Open Access Journals (Sweden)

    Rebekka Posselt

    2011-05-01

    Full Text Available Solar surface irradiance (SIS is an essential variable in the radiation budget of the Earth. Climate data records (CDR’s of SIS are required for climate monitoring, for climate model evaluation and for solar energy applications. A 23 year long (1983–2005 continuous and validated SIS CDR based on the visible channel (0.45–1 μm of the MVIRI instruments onboard the first generation of Meteosat satellites has recently been generated using a climate version of the well established Heliosat method. This version of the Heliosat method includes a newly developed self-calibration algorithm and an improved algorithm to determine the clear sky reflection. The climate Heliosat version is also applied to the visible narrow-band channels of SEVIRI onboard the Meteosat Second Generation Satellites (2004–present. The respective channels are observing the Earth in the wavelength region at about 0.6 μm and 0.8 μm. SIS values of the overlapping time period are used to analyse whether a homogeneous extension of the MVIRI CDR is possible with the SEVIRI narrowband channels. It is demonstrated that the spectral differences between the used visible channels leads to significant differences in the solar surface irradiance in specific regions. Especially, over vegetated areas the reflectance exhibits a high spectral dependency resulting in large differences in the retrieved SIS. The applied self-calibration method alone is not able to compensate the spectral differences of the channels. Furthermore, the extended range of the input values (satellite counts enhances the cloud detection of the SEVIRI instruments resulting in lower values for SIS, on average. Our findings have implications for the application of the Heliosat method to data from other geostationary satellites (e.g., GOES, GMS. They demonstrate the need for a careful analysis of the effect of spectral and technological differences in visible channels on the retrieved solar irradiance.

  12. Nanoscale surface analysis on second generation advanced high strength steel after hot dip galvanizing.

    Science.gov (United States)

    Arndt, M; Duchoslav, J; Preis, K; Samek, L; Stifter, D

    2013-09-01

    Second generation advanced high strength steel is one promising material of choice for modern automotive structural parts because of its outstanding maximal elongation and tensile strength. Nonetheless there is still a lack of corrosion protection for this material due to the fact that cost efficient hot dip galvanizing cannot be applied. The reason for the insufficient coatability with zinc is found in the segregation of manganese to the surface during annealing and the formation of manganese oxides prior coating. This work analyses the structure and chemical composition of the surface oxides on so called nano-TWIP (twinning induced plasticity) steel on the nanoscopic scale after hot dip galvanizing in a simulator with employed analytical methods comprising scanning Auger electron spectroscopy (SAES), energy dispersive X-ray spectroscopy (EDX), and focused ion beam (FIB) for cross section preparation. By the combination of these methods, it was possible to obtain detailed chemical images serving a better understanding which processes exactly occur on the surface of this novel kind of steel and how to promote in the future for this material system galvanic protection.

  13. Generating Converged Accurate Free Energy Surfaces for Chemical Reactions with a Force-Matched Semiempirical Model.

    Science.gov (United States)

    Kroonblawd, Matthew P; Pietrucci, Fabio; Saitta, Antonino Marco; Goldman, Nir

    2018-04-10

    We demonstrate the capability of creating robust density functional tight binding (DFTB) models for chemical reactivity in prebiotic mixtures through force matching to short time scale quantum free energy estimates. Molecular dynamics using density functional theory (DFT) is a highly accurate approach to generate free energy surfaces for chemical reactions, but the extreme computational cost often limits the time scales and range of thermodynamic states that can feasibly be studied. In contrast, DFTB is a semiempirical quantum method that affords up to a thousandfold reduction in cost and can recover DFT-level accuracy. Here, we show that a force-matched DFTB model for aqueous glycine condensation reactions yields free energy surfaces that are consistent with experimental observations of reaction energetics. Convergence analysis reveals that multiple nanoseconds of combined trajectory are needed to reach a steady-fluctuating free energy estimate for glycine condensation. Predictive accuracy of force-matched DFTB is demonstrated by direct comparison to DFT, with the two approaches yielding surfaces with large regions that differ by only a few kcal mol -1 .

  14. NANOSCALE STRUCTURES GENERATION WITHIN THE SURFACE LAYER OF METALS WITH SHORT UV LASER PULSES

    Directory of Open Access Journals (Sweden)

    Dmitry S. Ivanov

    2017-01-01

    Full Text Available We have completed modeling of a laser pulse influence on a gold target. We have applied a hybrid atomistic-continuum model to analyze the physical mechanisms responsible for the process of nanostructuring. The model combines the advantages of Molecular Dynamics and Two Temperature Model. We have carried out a direct comparison of the modeling results and experimental data on nano-modification due to a single ps laser pulse at the energy densities significantly exceeding the melting threshold. The experimental data is obtained due to a laser pulse irradiation at the wavelength of 248 nm and duration of 1.6 ps. The mask projection (diffraction grating creates the sinusoidal intensity distribution on a gold surface with periods of 270 nm, 350 nm, and 500 nm. The experimental data and modeling results have demonstrated a good match subject to complex interrelations between a fast material response to the laser excitation, generation of crystal defects, phase transitions and hydrodynamic motion of matter under condition of strong laser-induced non-equilibrium. The performed work confirms the proposed approach as a powerful tool for revealing the physical mechanisms underlying the process of nanostructuring of metal surfaces. Detailed understanding of the dynamics of these processes gives the possibility for designing the topology of functional surfaces on nano- and micro-scales.

  15. RADARGRAMMETRIC DIGITAL SURFACE MODELS GENERATION FROM TERRASAR-X IMAGERY: CASE STUDIES, PROBLEMS AND POTENTIALITIES

    Directory of Open Access Journals (Sweden)

    P. Capaldo

    2012-07-01

    Full Text Available The interest for the radargrammetric approach to Digital Surface Models (DSMs generation has been growing in last years thanks to the availability of very high resolution imagery acquired by new SAR (Synthetic Aperture Radar sensors, as COSMO-SkyMed, Radarsat-2 and TerraSAR-X, which are able to supply imagery up to 1 m ground resolution. DSMs radargrammetric generation approach consists of two basic steps, as for the standard photogrammetry applied to optical imagery: the imagery (at least a stereo pair orientation and the image matching for the generation of the points cloud. The steps of the radargrammetric DSMs generation have been implemented into SISAR (Software per Immagini Satellitari ad Alta Risoluzione, a scientific software developed at Geodesy and Geomatics Institute of the University of Rome “La Sapienza”. Moreover, starting from the radargrammetric orientation model, a tool for the Rational Polynomial Coefficients (RPCs for SAR images have been implemented. The possibility to generate RPCs, re-parametrizing a rigorous orientation model through a standardized set of coefficients which can be managed by a Rational Polynomial Coefficients (RPFs model (similarly to optical high resolution imagery sounds of particular interest since, at present, the most part of SAR imagery (except from Radarsat-2 is not supplied with RPCs, although the corresponding RPFs model is available in several commercial software. In particular the RPCs model has been used in the matching process and in the stereo restitution for the DSMs generation, with the advantage of shorter computational time. This paper discusses the application and the results of the implemented algorithm for radargrammetric DSMs generation from TerraSAR-X SpotLight imagery, acquired in Spotlight mode over Trento (Northern Italy. Urban and extra-urban (forested, cultivated areas were considered in two different tiles, and a final overall accuracy ranging from 4.5 to 6 meters was

  16. In situ generation of diazonium cations in organic electrolyte for electrochemical modification of electrode surface

    International Nuclear Information System (INIS)

    Baranton, Steve; Belanger, Daniel

    2008-01-01

    The modification of glassy carbon electrode was achieved by electrochemical reduction of in situ generated diazonium cations in acetonitrile. The in situ generation of 4-nitrophenyl diazonium cations in acetonitrile was investigated by spectroscopic methods. UV-visible spectroscopy revealed slow kinetics for the reaction of 4-nitroaniline with tert-butylnitrite in acetonitrile to form the corresponding diazonium cation. As a result, a coupling reaction, which implies a consumption of the amine and loss of the already formed diazonium cations, was evidenced by 1 H NMR spectroscopy. This spectroscopic study allowed the optimization of the in situ diazonium cations generation prior to the modification step. The electrochemical modification of the carbon electrodes with 4-nitrophenyl, 4-bromophenyl and anthraquinone groups was characterized by cyclic voltammetry and the resulting grafted layer were characterized by electrochemical techniques. The cyclic voltammetric behaviour during the electrochemical grafting was very similar to the one observed for an isolated diazonium salt dissolved in acetonitrile. In the case of the anthraquinone-modified electrode, the use of acetonitrile, into which the corresponding amine is soluble but not in aqueous media, allowed for its grafting by the in situ approach. The barrier properties of these grafted layers are similar to those obtained from isolated diazonium salts. Finally, the chemical composition of the grafted layers was determined by X-ray photoelectron spectroscopy and surface coverage in the range 5-7 x 10 -10 mol cm -2 was estimated for films grown in our experimental conditions

  17. In situ generation of diazonium cations in organic electrolyte for electrochemical modification of electrode surface

    Energy Technology Data Exchange (ETDEWEB)

    Baranton, Steve [Departement de Chimie, Universite du Quebec a Montreal, Case Postale 8888, succursale Centre-Ville, Montreal (Quebec), H3C 3P8 (Canada); Belanger, Daniel [Departement de Chimie, Universite du Quebec a Montreal, Case Postale 8888, succursale Centre-Ville, Montreal (Quebec), H3C 3P8 (Canada)], E-mail: belanger.daniel@uqam.ca

    2008-10-01

    The modification of glassy carbon electrode was achieved by electrochemical reduction of in situ generated diazonium cations in acetonitrile. The in situ generation of 4-nitrophenyl diazonium cations in acetonitrile was investigated by spectroscopic methods. UV-visible spectroscopy revealed slow kinetics for the reaction of 4-nitroaniline with tert-butylnitrite in acetonitrile to form the corresponding diazonium cation. As a result, a coupling reaction, which implies a consumption of the amine and loss of the already formed diazonium cations, was evidenced by {sup 1}H NMR spectroscopy. This spectroscopic study allowed the optimization of the in situ diazonium cations generation prior to the modification step. The electrochemical modification of the carbon electrodes with 4-nitrophenyl, 4-bromophenyl and anthraquinone groups was characterized by cyclic voltammetry and the resulting grafted layer were characterized by electrochemical techniques. The cyclic voltammetric behaviour during the electrochemical grafting was very similar to the one observed for an isolated diazonium salt dissolved in acetonitrile. In the case of the anthraquinone-modified electrode, the use of acetonitrile, into which the corresponding amine is soluble but not in aqueous media, allowed for its grafting by the in situ approach. The barrier properties of these grafted layers are similar to those obtained from isolated diazonium salts. Finally, the chemical composition of the grafted layers was determined by X-ray photoelectron spectroscopy and surface coverage in the range 5-7 x 10{sup -10} mol cm{sup -2} was estimated for films grown in our experimental conditions.

  18. Challenges related to flotation cleaning of oil shales. Issues due to compositional and surface features and post-grinding surface behavior

    Directory of Open Access Journals (Sweden)

    Altun N. Emre

    2016-01-01

    Full Text Available Oil shale is an important energy resource alternative. Despite its recognition as an unconventional oil source, oil shale is also considered as an important solid fossil fuel alternative to coal and lignites due to the solid form and remarkable extent of organic content. Utilization possibilites, similar to coal and lignites, have been considered in the past decades and direct use of oil shales in thermal power production has been possible in countries like Estonia and China. In the perspective of utilization of oil shales in a similar manner to coal and lignites, problems and restrictions related to the inorganic ash-making and potentially pollutant constituents are applied. In this respect, cleaning of this important energy source through mineral processing methods, particularly by flotation, is an outstanding option. However, on the basis of unique features and distinctive characteristics, treatment of oil shales like a type of coal is a big perception and may be highly misleading. This paper discusses specific challenges regarding flotation behavior of oil shales with reference to the surface characteristics and behavior of oil shale entities – probably the most important aspect that determines the efficiency and success of the flotation based cleaning process.

  19. Feature level review table generation for E-Commerce websites to produce qualitative rating of the products

    Directory of Open Access Journals (Sweden)

    D.R. Kumar Raja

    2017-12-01

    Full Text Available It is widely acknowledged today that E-Commerce business is growing rapidly. This is happened only because of people are completely depending on the ratings and reviews given by the customers who are already purchased and using the products. Online surveys, customer reviews on shopping sites are the key sources to understand customer requirements and feedback to help upgrade the product quality and achieve greater outcomes. Now the challenge is that whether those reviews came from product level or feature level will be the million dollar question. To overcome this problem we are proposing a new algorithm to give feature level rating for the product which is called Feature Level Review Rating Analysis (FLRRA algorithm.

  20. [Research on the spectral feature and identification of the surface vegetation stressed by stored CO2 underground leakage].

    Science.gov (United States)

    Chen, Yun-Hao; Jiang, Jin-Bao; Steven, Michael D; Gong, A-Du; Li, Yi-Fan

    2012-07-01

    With the global climate warming, reducing greenhouse gas emissions becomes a focused problem for the world. The carbon capture and storage (CCS) techniques could mitigate CO2 into atmosphere, but there is a risk in case that the CO2 leaks from underground. The objective of this paper is to study the chlorophyll contents (SPAD value), relative water contents (RWC) and leaf spectra changing features of beetroot under CO2 leakage stress through field experiment. The result shows that the chlorophyll contents and RWC of beetroot under CO2 leakage stress become lower than the control beetroot', and the leaf reflectance increases in the 550 nm region and decreases in the 680nm region. A new vegetation index (R550/R680) was designed for identifying beetroot under CO2 leakage stress, and the result indicates that the vegetation index R550/R680 could identify the beetroots after CO2 leakage for 7 days. The index has strong sensitivity, stability and identification for monitoring the beetroots under CO2 stress. The result of this paper has very important meaning and application values for selecting spots of CCS project, monitoring and evaluating land-surface ecology under CO2 stress and monitoring the leakage spots by using remote sensing.

  1. Features, events, processes, and safety factor analysis applied to a near-surface low-level radioactive waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, M.E.; Dolinar, G.M.; Lange, B.A. [Atomic Energy of Canada Limited, Ontario (Canada)] [and others

    1995-12-31

    An analysis of features, events, processes (FEPs) and other safety factors was applied to AECL`s proposed IRUS (Intrusion Resistant Underground Structure) near-surface LLRW disposal facility. The FEP analysis process which had been developed for and applied to high-level and transuranic disposal concepts was adapted for application to a low-level facility for which significant efforts in developing a safety case had already been made. The starting point for this process was a series of meetings of the project team to identify and briefly describe FEPs or safety factors which they thought should be considered. At this early stage participants were specifically asked not to screen ideas. This initial list was supplemented by selecting FEPs documented in other programs and comments received from an initial regulatory review. The entire list was then sorted by topic and common issues were grouped, and issues were classified in three priority categories and assigned to individuals for resolution. In this paper, the issue identification and resolution process will be described, from the initial description of an issue to its resolution and inclusion in the various levels of the safety case documentation.

  2. Structure Crack Identification Based on Surface-mounted Active Sensor Network with Time-Domain Feature Extraction and Neural Network

    Directory of Open Access Journals (Sweden)

    Chunling DU

    2012-03-01

    Full Text Available In this work the condition of metallic structures are classified based on the acquired sensor data from a surface-mounted piezoelectric sensor/actuator network. The structures are aluminum plates with riveted holes and possible crack damage at these holes. A 400 kHz sine wave burst is used as diagnostic signals. The combination of time-domain S0 waves from received sensor signals is directly used as features and preprocessing is not needed for the dam age detection. Since the time sequence of the extracted S0 has a high dimension, principal component estimation is applied to reduce its dimension before entering NN (neural network training for classification. An LVQ (learning vector quantization NN is used to classify the conditions as healthy or damaged. A number of FEM (finite element modeling results are taken as inputs to the NN for training, since the simulated S0 waves agree well with the experimental results on real plates. The performance of the classification is then validated by using these testing results.

  3. A general procedure to generate models for urban environmental-noise pollution using feature selection and machine learning methods.

    Science.gov (United States)

    Torija, Antonio J; Ruiz, Diego P

    2015-02-01

    The prediction of environmental noise in urban environments requires the solution of a complex and non-linear problem, since there are complex relationships among the multitude of variables involved in the characterization and modelling of environmental noise and environmental-noise magnitudes. Moreover, the inclusion of the great spatial heterogeneity characteristic of urban environments seems to be essential in order to achieve an accurate environmental-noise prediction in cities. This problem is addressed in this paper, where a procedure based on feature-selection techniques and machine-learning regression methods is proposed and applied to this environmental problem. Three machine-learning regression methods, which are considered very robust in solving non-linear problems, are used to estimate the energy-equivalent sound-pressure level descriptor (LAeq). These three methods are: (i) multilayer perceptron (MLP), (ii) sequential minimal optimisation (SMO), and (iii) Gaussian processes for regression (GPR). In addition, because of the high number of input variables involved in environmental-noise modelling and estimation in urban environments, which make LAeq prediction models quite complex and costly in terms of time and resources for application to real situations, three different techniques are used to approach feature selection or data reduction. The feature-selection techniques used are: (i) correlation-based feature-subset selection (CFS), (ii) wrapper for feature-subset selection (WFS), and the data reduction technique is principal-component analysis (PCA). The subsequent analysis leads to a proposal of different schemes, depending on the needs regarding data collection and accuracy. The use of WFS as the feature-selection technique with the implementation of SMO or GPR as regression algorithm provides the best LAeq estimation (R(2)=0.94 and mean absolute error (MAE)=1.14-1.16 dB(A)). Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Porphyromonas gingivalis Uses Specific Domain Rearrangements and Allelic Exchange to Generate Diversity in Surface Virulence Factors.

    Science.gov (United States)

    Dashper, Stuart G; Mitchell, Helen L; Seers, Christine A; Gladman, Simon L; Seemann, Torsten; Bulach, Dieter M; Chandry, P Scott; Cross, Keith J; Cleal, Steven M; Reynolds, Eric C

    2017-01-01

    Porphyromonas gingivalis is a keystone pathogen of chronic periodontitis. The virulence of P. gingivalis is reported to be strain related and there are currently a number of strain typing schemes based on variation in capsular polysaccharide, the major and minor fimbriae and adhesin domains of Lys-gingipain (Kgp), amongst other surface proteins. P. gingivalis can exchange chromosomal DNA between strains by natural competence and conjugation. The aim of this study was to determine the genetic variability of P. gingivalis strains sourced from international locations over a 25-year period and to determine if variability in surface virulence factors has a phylogenetic basis. Whole genome sequencing was performed on 13 strains and comparison made to 10 previously sequenced strains. A single nucleotide polymorphism-based phylogenetic analysis demonstrated a shallow tri-lobed phylogeny. There was a high level of reticulation in the phylogenetic network, demonstrating extensive horizontal gene transfer between the strains. Two highly conserved variants of the catalytic domain of the major virulence factor the Kgp proteinase (Kgp cat I and Kgp cat II) were found. There were three variants of the fourth Kgp C-terminal cleaved adhesin domain. Specific variants of the cell surface proteins FimA, FimCDE, MfaI, RagAB, Tpr, and PrtT were also identified. The occurrence of all these variants in the P. gingivalis strains formed a mosaic that was not related to the SNP-based phylogeny. In conclusion P. gingivalis uses domain rearrangements and genetic exchange to generate diversity in specific surface virulence factors.

  5. Generation and Evaluation of a Global Land Surface Phenology Product from Suomi-NPP VIIRS Observations

    Science.gov (United States)

    Zhang, X.; Liu, L.; Yan, D.; Moon, M.; Liu, Y.; Henebry, G. M.; Friedl, M. A.; Schaaf, C.

    2017-12-01

    Land surface phenology (LSP) datasets have been produced from a variety of coarse spatial resolution satellite observations at both regional and global scales and spanning different time periods since 1982. However, the LSP product generated from NASA's MODerate Resolution Imaging Spectroradiometer (MODIS) data at a spatial resolution of 500m, which is termed Land Cover Dynamics (MCD12Q2), is the only global product operationally produced and freely accessible at annual time steps from 2001. Because MODIS instrument is aging and will be replaced by the Visible Infrared Imaging Radiometer Suite (VIIRS), this research focuses on the generation and evaluation of a global LSP product from Suomi-NPP VIIRS time series observations that provide continuity with the MCD12Q2 product. Specifically, we generate 500m VIIRS global LSP data using daily VIIRS Nadir BRDF (bidirectional reflectance distribution function)-Adjusted reflectances (NBAR) in combination with land surface temperature, snow cover, and land cover type as inputs. The product provides twelve phenological metrics (seven phenological dates and five phenological greenness magnitudes), along with six quality metrics characterizing the confidence and quality associated with phenology retrievals at each pixel. In this paper, we describe the input data and algorithms used to produce this new product, and investigate the impact of VIIRS data time series quality on phenology detections across various climate regimes and ecosystems. As part of our analysis, the VIIRS LSP is evaluated using PhenoCam imagery in North America and Asia, and using higher spatial resolution satellite observations from Landsat 8 over an agricultural area in the central USA. We also explore the impact of high frequency cloud cover on the VIIRS LSP product by comparing with phenology detected from the Advanced Himawari Imager (AHI) onboard Himawari-8. AHI is a new geostationary sensor that observes land surface every 10 minutes, which increases

  6. On the evaluation of lifetime of evaporative tubes of once-through steam generators at steam-generating surface temperature oscillations in the burnout region

    International Nuclear Information System (INIS)

    Vorob'ev, V.A.; Loshchinin, V.M.; Remizov, O.V.

    1978-01-01

    Suggested is a method for evaluation of a stressed state of evaporation tubes of once-through steam generators at temperature oscillations in the burnout region. Calculated is the amplitude of steam-generating surface temperature oscillations in the burnout region depending on the frequency of a liquid-steam boundary transfer and on this basis determined are thermal stresses in a tube wall. Knowing a fatigue curve gives the possibility to evaluate a heat transfer tube lifetime

  7. ANALYSIS OF THE SPECIAL FEATURES OF THE THERMAL PROCESS IN AN INDUCTION GENERATOR AT HIGH SATURATION OF THE MAGNETIC SYSTEM

    Directory of Open Access Journals (Sweden)

    V. Chenchevoi

    2017-06-01

    Full Text Available Purpose. Development of the method for the assessment of the thermal operation modes of an autonomous electrical power system with an induction motor, aiming at improvement of the reliability of electricity supply and the quality of electric energy. Methodology. Induction generator mathematical modeling taking into account the magnetic system saturation was used in the research. A heat model taking into account the excess of the temperature of the induction generator units in the mode of high saturation was developed. The obtained results were compared with the experimental data. Results. The paper contains the solution to the problem of improvement of the mathematical model sand methods for steel losses determination in there search of the operation modes of an autonomous uncontrolled induction generator taking into consideration the properties of the magnetic system in the mode of high saturation. The expression for determination of steel losses in the mode of high saturation is obtained. It enables the assessment of the induction generator thermal condition. Originality. The analytical dependence for the calculation of the steel losses in the mode of magnetic system saturation has been obtained for the first time. Practical value. The obtained expression for the calculation of the steel losses can be used for determination of the admissible time of generator operation at overload. It will allow avoiding broken winding insulation and complete use of the generator overload capacity. As a result, it will reduce possible irregularities of electricity supply due to the generator preliminary cutoff.

  8. Generation of connectivity-preserving surface models of multiple sclerosis lesions.

    Science.gov (United States)

    Meruvia-Pastor, Oscar; Xiao, Mei; Soh, Jung; Sensen, Christoph W

    2011-01-01

    Progression of multiple sclerosis (MS) results in brain lesions caused by white matter inflammation. MS lesions have various shapes, sizes and locations, affecting cognitive abilities of patients to different extents. To facilitate the visualization of the brain lesion distribution, we have developed a software tool to build 3D surface models of MS lesions. This tool allows users to create 3D models of lesions quickly and to visualize the lesions and brain tissues using various visual attributes and configurations. The software package is based on breadth-first search based 3D connected component analysis and a 3D flood-fill based region growing algorithm to generate 3D models from binary or non-binary segmented medical image stacks.

  9. Self assembled temperature responsive surfaces for generation of cell patches for bone tissue engineering

    International Nuclear Information System (INIS)

    Valmikinathan, Chandra M; ChangWei; Xu Jiahua; Yu Xiaojun

    2012-01-01

    One of the major challenges in the fabrication of tissue engineered scaffolds is the ability of the scaffold to biologically mimic autograft-like tissues. One of the alternate approaches to achieve this is by the application of cell seeded scaffolds with optimal porosity and mechanical properties. However, the current approaches for seeding cells on scaffolds are not optimal in terms of seeding efficiencies, cell penetration into the scaffold and more importantly uniform distribution of cells on the scaffold. Also, recent developments in scaffold geometries to enhance surface areas, pore sizes and porosities tend to further complicate the scenario. Cell sheet-based approaches for cell seeding have demonstrated a successful approach to generate scaffold-free tissue engineering approaches. However, the method of generating the temperature responsive surface is quite challenging and requires carcinogenic reagents and gamma rays. Therefore, here, we have developed temperature responsive substrates by layer-by-layer self assembly of smart polymers. Multilayer thin films prepared from tannic acid and poly N-isopropylacrylamide were fabricated based on their electrostatic and hydrogen bonding interactions. Cell attachment and proliferation studies on these thin films showed uniform cell attachment on the substrate, matching tissue culture plates. Also, the cells could be harvested as cell patches and sheets from the scaffolds, by reducing the temperature for a short period of time, and seeded onto porous scaffolds for tissue engineering applications. An enhanced cell seeding efficiency on scaffolds was observed using the cell patch-based technique as compared to seeding cells in suspension. Owing to the already pre-existent cell–cell and cell–extracellular matrix interactions, the cell patch showed the ability to reattach rapidly onto scaffolds and showed enhanced ability to proliferate and differentiate into a bone-like matrix. (paper)

  10. [Cell surface peroxidase--generator of superoxide anion in wheat root cells under wound stress].

    Science.gov (United States)

    Chasov, A V; Gordon, L Kh; Kolesnikov, O P; Minibaeva, F V

    2002-01-01

    Development of wound stress in excised wheat roots is known to be accompanied with an increase in reactive oxygen species (ROS) production, fall of membrane potential, release of K+ from cells, alkalization of extracellular solution, changes in respiration and metabolism of structural lipids. Dynamics of superoxide release correlates with changes in other physiological parameters, indicating the cross-reaction of these processes. Activity of peroxidase in extracellular solution after a 1 h incubation and removal of roots was shown to be stimulated by the range of organic acids, detergents, metals, and to be inhibited by cyanide. Superoxide production was sensitive to the addition of Mn2+ and H2O2. Increase in superoxide production correlates with the enhancement of peroxidase activity at the application of organic acids and detergents. The results obtained indicate that cell surface peroxidase is one of the main generators of superoxide in wounded wheat root cells. Different ways of stimulation of the ROS producing activity in root cells is supposed. By controlling superoxide and hydrogen peroxide formation, the cell surface peroxidase can control the adaptation processes in stressed plant cells.

  11. A low cost surface plasmon resonance biosensor using a laser line generator

    Science.gov (United States)

    Chen, Ruipeng; Wang, Manping; Wang, Shun; Liang, Hao; Hu, Xinran; Sun, Xiaohui; Zhu, Juanhua; Ma, Liuzheng; Jiang, Min; Hu, Jiandong; Li, Jianwei

    2015-08-01

    Due to the instrument designed by using a common surface plasmon resonance biosensor is extremely expensive, we established a portable and cost-effective surface plasmon resonance biosensing system. It is mainly composed of laser line generator, P-polarizer, customized prism, microfluidic cell, and line Charge Coupled Device (CCD) array. Microprocessor PIC24FJ128GA006 with embedded A/D converter, communication interface circuit and photoelectric signal amplifier circuit are used to obtain the weak signals from the biosensing system. Moreover, the line CCD module is checked and optimized on the number of pixels, pixels dimension, output amplifier and the timing diagram. The micro-flow cell is made of stainless steel with a high thermal conductivity, and the microprocessor based Proportional-Integral-Derivative (PID) temperature-controlled algorithm was designed to keep the constant temperature (25 °C) of the sample solutions. Correspondingly, the data algorithms designed especially to this biosensing system including amplitude-limiting filtering algorithm, data normalization and curve plotting were programmed efficiently. To validate the performance of the biosensor, ethanol solution samples at the concentrations of 5%, 7.5%, 10%, 12.5% and 15% in volumetric fractions were used, respectively. The fitting equation ΔRU = - 752987.265 + 570237.348 × RI with the R-Square of 0.97344 was established by delta response units (ΔRUs) to refractive indexes (RI). The maximum relative standard deviation (RSD) of 4.8% was obtained.

  12. Elucidation of Compression-Induced Surface Crystallization in Amorphous Tablets Using Sum Frequency Generation (SFG) Microscopy.

    Science.gov (United States)

    Mah, Pei T; Novakovic, Dunja; Saarinen, Jukka; Van Landeghem, Stijn; Peltonen, Leena; Laaksonen, Timo; Isomäki, Antti; Strachan, Clare J

    2017-05-01

    To investigate the effect of compression on the crystallization behavior in amorphous tablets using sum frequency generation (SFG) microscopy imaging and more established analytical methods. Tablets containing neat amorphous griseofulvin with/without excipients (silica, hydroxypropyl methylcellulose acetate succinate (HPMCAS), microcrystalline cellulose (MCC) and polyethylene glycol (PEG)) were prepared. They were analyzed upon preparation and storage using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscopy (SEM) and SFG microscopy. Compression-induced crystallization occurred predominantly on the surface of the neat amorphous griseofulvin tablets, with minimal crystallinity being detected in the core of the tablets. The presence of various types of excipients was not able to mitigate the compression-induced surface crystallization of the amorphous griseofulvin tablets. However, the excipients affected the crystallization rate of amorphous griseofulvin in the core of the tablet upon compression and storage. SFG microscopy can be used in combination with ATR-FTIR spectroscopy and SEM to understand the crystallization behaviour of amorphous tablets upon compression and storage. When selecting excipients for amorphous formulations, it is important to consider the effect of the excipients on the physical stability of the amorphous formulations.

  13. Surface-wave generation by underground nuclear explosions releasing tectonic strain

    International Nuclear Information System (INIS)

    Patton, H.J.

    1980-01-01

    Seismic surface-wave generation by underground nuclear explosions releasing tectonic strain is studied through a series of synthetic radiation-pattern calculations based on the earthquake-trigger model. From amplitude and phase radiation patterns for 20-s Rayleigh waves, inferences are made about effects on surface-wave magnitude, M/sub s/, and waveform character. The focus of this study is a comparison between two mechanisms of tectonic strain release: strike-slip motion on vertical faults and thrust motion on 45 0 dipping faults. The results of our calculations show that Rayleigh-wave amplitudes of the dip-slip model at F values between 0.75 and 1.5 are significantly lower than amplitudes of the strike-slip model or of the explosion source alone. This effect translates into M/sub s/ values about 0.5 units lower than M/sub s/ of the explosion alone. Waveform polarity reversals occur in two of four azimuthal quadrants for the strike-slip model and in all azimuths of the dip-slip-thrust model for F values above about 3. A cursory examination of waveforms from presumed explosions in eastern Kazakhstan suggests that releases of tectonic strain are accompanying the detonation of many of these explosions. Qualitatively, the observations seem to favor the dip-slip-thrust model, which, in the case of a few explosions, must have F values above 3

  14. Study on Crystallographic Orientation Effect on Surface Generation of Aluminum in Nano-cutting.

    Science.gov (United States)

    Xu, Feifei; Fang, Fengzhou; Zhu, Yuanqing; Zhang, Xiaodong

    2017-12-01

    The material characteristics such as size effect are one of the most important factors that could not be neglected in cutting the material at nanoscale. The effects of anisotropic nature of single crystal materials in nano-cutting are investigated employing the molecular dynamics simulation. Results show that the size effect of the plastic deformation is based on different plastic carriers, such as the twin, stacking faults, and dislocations. The minimum uncut chip thickness is dependent on cutting direction, where even a negative value is obtained when the cutting direction is {110}. It also determines the material deformation and removal mechanism (e.g., shearing, extruding, and rubbing mechanism) with a decrease in uncut chip thickness. When material is deformed by shearing, the primary shearing zone expands from the stagnation point or the tip of stagnation zone. When a material is deformed by extruding and rubbing, the primary deformation zone almost parallels to the cutting direction and expands from the bottom of the cutting edge merging with the tertiary deformation zone. The generated surface quality relates to the crystallographic orientation and the minimum uncut chip thickness. The cutting directions of {110}, {110}, and {111}, whose minimum uncut chip thickness is relatively small, have better surface qualities compared to the other cutting direction.

  15. Rapid generation of protein aerosols and nanoparticles via surface acoustic wave atomization

    International Nuclear Information System (INIS)

    Alvarez, Mar; Friend, James; Yeo, Leslie Y

    2008-01-01

    We describe the fabrication of a surface acoustic wave (SAW) atomizer and show its ability to generate monodisperse aerosols and particles for drug delivery applications. In particular, we demonstrate the generation of insulin liquid aerosols for pulmonary delivery and solid protein nanoparticles for transdermal and gastrointestinal delivery routes using 20 MHz SAW devices. Insulin droplets around 3 μm were obtained, matching the optimum range for maximizing absorption in the alveolar region. A new approach is provided to explain these atomized droplet diameters by returning to fundamental physical analysis and considering viscous-capillary and inertial-capillary force balance rather than employing modifications to the Kelvin equation under the assumption of parametric forcing that has been extended to these frequencies in past investigations. In addition, we consider possible mechanisms by which the droplet ejections take place with the aid of high-speed flow visualization. Finally, we show that nanoscale protein particles (50-100 nm in diameter) were obtained through an evaporative process of the initial aerosol, the final size of which could be controlled merely by modifying the initial protein concentration. These results illustrate the feasibility of using SAW as a novel method for rapidly producing particles and droplets with a controlled and narrow size distribution.

  16. Enhancing biodegradation and energy generation via roughened surface graphite electrode in microbial desalination cell.

    Science.gov (United States)

    Ebrahimi, Atieh; Yousefi Kebria, Daryoush; Najafpour Darzi, Ghasem

    2017-09-01

    The microbial desalination cell (MDC) is known as a newly developed technology for water and wastewater treatment. In this study, desalination rate, organic matter removal and energy production in the reactors with and without desalination function were compared. Herein, a new design of plain graphite called roughened surface graphite (RSG) was used as the anode electrode in both microbial fuel cell (MFC) and MDC reactors for the first time. Among the three type of anode electrodes investigated in this study, RSG electrode produced the highest power density and salt removal rate of 10.81 W/m 3 and 77.6%, respectively. Such a power density was 2.33 times higher than the MFC reactor due to the junction potential effect. In addition, adding the desalination function to the MFC reactor enhanced columbic efficiency from 21.8 to 31.4%. These results provided a proof-of-concept that the use of MDC instead of MFC would improve wastewater treatment efficiency and power generation, with an added benefit of water desalination. Furthermore, RSG can successfully be employed in an MDC or MFC, enhancing the bio-electricity generation and salt removal.

  17. Influence of steam generator surface state on corrosion and oxide formation

    International Nuclear Information System (INIS)

    Mazenc, Arnaud; Leclercq, Stephanie; Seyeux, Antoine; Galtayries, Anouk; Marcus, Philippe

    2012-09-01

    The corrosion and release of nickel-based alloy Steam Generator tubes are partly due to their surface state. Among the most important parameters influencing the corrosion, the effect of grain size and the effect of grain crystallographic orientation have been chosen to be studied. The aim of this study is to determine how these parameters have an impact on the corrosion of Steam Generator tubes. Thermal treatments (700 deg. C and 1050 deg. C) have been performed on several samples in Alloy 690 to obtain homogeneous grain sizes, varying from 25 μm to 110 μm. Two samples have been oxidised for four days in a recirculating autoclave, reproducing primary conditions. The changes of oxide composition and thickness were examined by ToF-SIMS on samples exposed to primary water conditions. The intensity profiles versus thicknesses of characteristic oxide anions, such as CrO - , NiO - or FeO - enable us to evaluate the effect of grain size and crystallographic orientation on the formation of an enriched inner chromium layer. As regards to the grain size, there was no effect on the growth, but smaller grains led to a chromium-rich oxide layer. The effect of crystallographic orientation was observed on the oxidation kinetics and the composition of oxide scales. (authors)

  18. Simulation study of melanoma detection in human skin tissues by laser-generated surface acoustic waves.

    Science.gov (United States)

    Chen, Kun; Fu, Xing; Dorantes-Gonzalez, Dante J; Lu, Zimo; Li, Tingting; Li, Yanning; Wu, Sen; Hu, Xiaotang

    2014-01-01

    Air pollution has been correlated to an increasing number of cases of human skin diseases in recent years. However, the investigation of human skin tissues has received only limited attention, to the point that there are not yet satisfactory modern detection technologies to accurately, noninvasively, and rapidly diagnose human skin at epidermis and dermis levels. In order to detect and analyze severe skin diseases such as melanoma, a finite element method (FEM) simulation study of the application of the laser-generated surface acoustic wave (LSAW) technique is developed. A three-layer human skin model is built, where LSAW’s are generated and propagated, and their effects in the skin medium with melanoma are analyzed. Frequency domain analysis is used as a main tool to investigate such issues as minimum detectable size of melanoma, filtering spectra from noise and from computational irregularities, as well as on how the FEM model meshing size and computational capabilities influence the accuracy of the results. Based on the aforementioned aspects, the analysis of the signals under the scrutiny of the phase velocity dispersion curve is verified to be a reliable, a sensitive, and a promising approach for detecting and characterizing melanoma in human skin.

  19. Simulation study of melanoma detection in human skin tissues by laser-generated surface acoustic waves

    Science.gov (United States)

    Chen, Kun; Fu, Xing; Dorantes-Gonzalez, Dante J.; Lu, Zimo; Li, Tingting; Li, Yanning; Wu, Sen; Hu, Xiaotang

    2014-07-01

    Air pollution has been correlated to an increasing number of cases of human skin diseases in recent years. However, the investigation of human skin tissues has received only limited attention, to the point that there are not yet satisfactory modern detection technologies to accurately, noninvasively, and rapidly diagnose human skin at epidermis and dermis levels. In order to detect and analyze severe skin diseases such as melanoma, a finite element method (FEM) simulation study of the application of the laser-generated surface acoustic wave (LSAW) technique is developed. A three-layer human skin model is built, where LSAW's are generated and propagated, and their effects in the skin medium with melanoma are analyzed. Frequency domain analysis is used as a main tool to investigate such issues as minimum detectable size of melanoma, filtering spectra from noise and from computational irregularities, as well as on how the FEM model meshing size and computational capabilities influence the accuracy of the results. Based on the aforementioned aspects, the analysis of the signals under the scrutiny of the phase velocity dispersion curve is verified to be a reliable, a sensitive, and a promising approach for detecting and characterizing melanoma in human skin.

  20. Monoaminergic tone supports conductance correlations and stabilizes activity features in pattern generating neurons of the lobster, Panulirus interruptus

    Directory of Open Access Journals (Sweden)

    Wulf-Dieter C. Krenz

    2015-10-01

    Full Text Available Experimental and computational studies demonstrate that different sets of intrinsic and synaptic conductances can give rise to equivalent activity patterns. This is because the balance of conductances, not their absolute values, defines a given activity feature. Activity-dependent feedback mechanisms maintain neuronal conductance correlations and their corresponding activity features. This study demonstrates that tonic nM concentrations of monoamines enable slow, activity-dependent processes that can maintain a correlation between the transient potassium current (IA and the hyperpolarization activated current (Ih over the long-term (i.e., regulatory change persists for hours after removal of modulator. Tonic 5nM DA acted through an RNA interference silencing complex (RISC- and RNA polymerase II-dependent mechanism to maintain a long-term positive correlation between IA and Ih in the lateral pyloric neuron (LP but not in the pyloric dilator neuron (PD. In contrast, tonic 5nM 5HT maintained a RISC-dependent positive correlation between IA and Ih in PD but not LP over the long-term. Tonic 5nM OCT maintained a long-term negative correlation between IA and Ih in PD but not LP; however, it was only revealed when RISC was inhibited. This study also demonstrated that monoaminergic tone can also preserve activity features over the long-term: The timing of LP activity, LP duty cycle and LP spike number per burst were maintained by tonic 5nM DA. The data suggest that low-level monoaminergic tone acts through multiple slow processes to permit cell-specific, activity-dependent regulation of ionic conductances to maintain conductance correlations and their corresponding activity features over the long-term.

  1. Specific features of X-ray generation by plasma focus chambers with deuterium and deuterium–tritium fillings

    Energy Technology Data Exchange (ETDEWEB)

    Dulatov, A. K., E-mail: bogolubov@vniia.ru; Krapiva, P. S.; Lemeshko, B. D.; Mikhailov, Yu. V.; Moskalenko, I. N.; Prokuratov, I. A.; Selifanov, A. N. [All-Russia Research Institute of Automatics (Russian Federation)

    2016-01-15

    The process of hard X-ray (HXR) generation in plasma focus (PF) chambers was studied experimentally. The radiation was recorded using scintillation detectors with a high time resolution and thermoluminescent detectors in combination with the method of absorbing filters. Time-resolved analysis of the processes of neutron and X-ray generation in PFs is performed. The spectra of HXR emission from PF chambers with deuterium and deuterium–tritium fillings are determined. In experiments with PF chambers filled with a deuterium–tritium mixture, in addition to the HXR pulse with photon energies of up to 200–300 keV, a γ-ray pulse with photon energies of up to 2.5–3.0 MeV is recorded, and a mechanism of its generation is proposed.

  2. Evaluation of a feature extraction framework for FPGA firmware generation during a beam-test at CERN-SPS for the CBM-TRD experiment

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Chavez, Cruz de Jesus; Munoz Castillo, Carlos Enrique; Kebschull, Udo [Infrastructure and Computer Systems in Data Processing (IRI), Goethe University, Frankfurt am Main (Germany); Collaboration: CBM-Collaboration

    2016-07-01

    A feature extraction framework has been developed to allow easy FPGA firmware generation for specific feature extraction algorithms in order to find and extract regions of interest within time-based signals. This framework allows the instantiation of multiple well-known feature extraction algorithms such as center of gravity, time over threshold and cluster finder, just to mention a few of them. A graphical user interface has also been built on top of the framework to provide a user-friendly way to visualize the data-flow architecture across processing stages. The FPGA platform constraints are automatically set up by the framework itself. This feature reduces the need of low-level hardware configuration knowledge that would normally be provided by the user, centering the attention in setting up the processing algorithms for the given task more than in writing hardware description code. During November 2015, a beam-test was performed at the CERN-SPS hall. The presented framework was used to generate a firmware for the SysCore3 FPGA development board used to readout two TRD detectors by means of the SPADIC 1.0 front-end chip. The framework architecture, design methodology, as well as the achieved results during the mentioned beam-test are presented.

  3. Novel ultra-wideband photonic signal generation and transmission featuring digital signal processing bit error rate measurements

    DEFF Research Database (Denmark)

    Gibbon, Timothy Braidwood; Yu, Xianbin; Tafur Monroy, Idelfonso

    2009-01-01

    We propose the novel generation of photonic ultra-wideband signals using an uncooled DFB laser. For the first time we experimentally demonstrate bit-for-bit DSP BER measurements for transmission of a 781.25 Mbit/s photonic UWB signal.......We propose the novel generation of photonic ultra-wideband signals using an uncooled DFB laser. For the first time we experimentally demonstrate bit-for-bit DSP BER measurements for transmission of a 781.25 Mbit/s photonic UWB signal....

  4. Comparison of surface freshwater fluxes from different climate forecasts produced through different ensemble generation schemes.

    Science.gov (United States)

    Romanova, Vanya; Hense, Andreas; Wahl, Sabrina; Brune, Sebastian; Baehr, Johanna

    2016-04-01

    The decadal variability and its predictability of the surface net freshwater fluxes is compared in a set of retrospective predictions, all using the same model setup, and only differing in the implemented ocean initialisation method and ensemble generation method. The basic aim is to deduce the differences between the initialization/ensemble generation methods in view of the uncertainty of the verifying observational data sets. The analysis will give an approximation of the uncertainties of the net freshwater fluxes, which up to now appear to be one of the most uncertain products in observational data and model outputs. All ensemble generation methods are implemented into the MPI-ESM earth system model in the framework of the ongoing MiKlip project (www.fona-miklip.de). Hindcast experiments are initialised annually between 2000-2004, and from each start year 10 ensemble members are initialized for 5 years each. Four different ensemble generation methods are compared: (i) a method based on the Anomaly Transform method (Romanova and Hense, 2015) in which the initial oceanic perturbations represent orthogonal and balanced anomaly structures in space and time and between the variables taken from a control run, (ii) one-day-lagged ocean states from the MPI-ESM-LR baseline system (iii) one-day-lagged of ocean and atmospheric states with preceding full-field nudging to re-analysis in both the atmospheric and the oceanic component of the system - the baseline one MPI-ESM-LR system, (iv) an Ensemble Kalman Filter (EnKF) implemented into oceanic part of MPI-ESM (Brune et al. 2015), assimilating monthly subsurface oceanic temperature and salinity (EN3) using the Parallel Data Assimilation Framework (PDAF). The hindcasts are evaluated probabilistically using fresh water flux data sets from four different reanalysis data sets: MERRA, NCEP-R1, GFDL ocean reanalysis and GECCO2. The assessments show no clear differences in the evaluations scores on regional scales. However, on the

  5. Drag reduction and thrust generation by tangential surface motion in flow past a cylinder

    Science.gov (United States)

    Mao, Xuerui; Pearson, Emily

    2018-03-01

    Sensitivity of drag to tangential surface motion is calculated in flow past a circular cylinder in both two- and three-dimensional conditions at Reynolds number Re ≤ 1000 . The magnitude of the sensitivity maximises in the region slightly upstream of the separation points where the contour lines of spanwise vorticity are normal to the cylinder surface. A control to reduce drag can be obtained by (negatively) scaling the sensitivity. The high correlation of sensitivities of controlled and uncontrolled flow indicates that the scaled sensitivity is a good approximation of the nonlinear optimal control. It is validated through direct numerical simulations that the linear range of the steady control is much higher than the unsteady control, which synchronises the vortex shedding and induces lock-in effects. The steady control injects angular momentum into the separating boundary layer, stabilises the flow and increases the base pressure significantly. At Re=100 , when the maximum tangential motion reaches 50% of the free-stream velocity, the vortex shedding, boundary-layer separation and recirculation bubbles are eliminated and 32% of the drag is reduced. When the maximum tangential motion reaches 2.5 times of the free-stream velocity, thrust is generated and the power savings ratio, defined as the ratio of the reduced drag power to the control input power, reaches 19.6. The mechanism of drag reduction is attributed to the change of the radial gradient of spanwise vorticity (partial r \\hat{ζ } ) and the subsequent accelerated pressure recovery from the uncontrolled separation points to the rear stagnation point.

  6. Automatic Seamline Network Generation for Urban Orthophoto Mosaicking with the Use of a Digital Surface Model

    Directory of Open Access Journals (Sweden)

    Qi Chen

    2014-12-01

    Full Text Available Intelligent seamline selection for image mosaicking is an area of active research in the fields of massive data processing, computer vision, photogrammetry and remote sensing. In mosaicking applications for digital orthophoto maps (DOMs, the visual transition in mosaics is mainly caused by differences in positioning accuracy, image tone and relief displacement of high ground objects between overlapping DOMs. Among these three factors, relief displacement, which prevents the seamless mosaicking of images, is relatively more difficult to address. To minimize visual discontinuities, many optimization algorithms have been studied for the automatic selection of seamlines to avoid high ground objects. Thus, a new automatic seamline selection algorithm using a digital surface model (DSM is proposed. The main idea of this algorithm is to guide a seamline toward a low area on the basis of the elevation information in a DSM. Given that the elevation of a DSM is not completely synchronous with a DOM, a new model, called the orthoimage elevation synchronous model (OESM, is derived and introduced. OESM can accurately reflect the elevation information for each DOM unit. Through the morphological processing of the OESM data in the overlapping area, an initial path network is obtained for seamline selection. Subsequently, a cost function is defined on the basis of several measurements, and Dijkstra’s algorithm is adopted to determine the least-cost path from the initial network. Finally, the proposed algorithm is employed for automatic seamline network construction; the effective mosaic polygon of each image is determined, and a seamless mosaic is generated. The experiments with three different datasets indicate that the proposed method meets the requirements for seamline network construction. In comparative trials, the generated seamlines pass through fewer ground objects with low time consumption.

  7. Hurricane impacts on coastal wetlands: a half-century record of storm-generated features from southern Louisiana

    Science.gov (United States)

    Morton, Robert A.; Barras, John A.

    2011-01-01

    Temporally and spatially repeated patterns of wetland erosion, deformation, and deposition are observed on remotely sensed images and in the field after hurricanes cross the coast of Louisiana. The diagnostic morphological wetland features are products of the coupling of high-velocity wind and storm-surge water and their interaction with the underlying, variably resistant, wetland vegetation and soils. Erosional signatures include construction of orthogonal-elongate ponds and amorphous ponds, pond expansion, plucked marsh, marsh denudation, and shoreline erosion. Post-storm gravity reflux of floodwater draining from the wetlands forms dendritic incisions around the pond margins and locally integrates drainage pathways forming braided channels. Depositional signatures include emplacement of broad zones of organic wrack on topographic highs and inorganic deposits of variable thicknesses and lateral extents in the form of shore-parallel sandy washover terraces and interior-marsh mud blankets. Deformational signatures primarily involve laterally compressed marsh and displaced marsh mats and balls. Prolonged water impoundment and marsh salinization also are common impacts associated with wetland flooding by extreme storms. Many of the wetland features become legacies that record prior storm impacts and locally influence subsequent storm-induced morphological changes. Wetland losses caused by hurricane impacts depend directly on impact duration, which is controlled by the diameter of hurricane-force winds, forward speed of the storm, and wetland distance over which the storm passes. Distinguishing between wetland losses caused by storm impacts and losses associated with long-term delta-plain processes is critical for accurate modeling and prediction of future conversion of land to open water.

  8. Surface plasma resonance enhanced photocurrent generation in NiO photoanode based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhong; Cui, Jin [Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics Department, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei (China); Li, Junpeng [State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106 (China); Cao, Kun; Yuan, Shuai [Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics Department, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei (China); Cheng, Yibing [Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics Department, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei (China); Department of Materials Engineering, Monash University, Melbourne, Victoria 3800 (Australia); Wang, Mingkui, E-mail: mingkui.wang@mail.hust.edu.cn [Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics Department, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei (China)

    2015-09-15

    Highlights: • SPR effect from Au-nanostructures was first investigated in NiO-based solar cells. • Enhanced photocurrent generation was observed in p-DSC and perovskite solar cell. • Au-nanorods SPR effect induced charge kinetics were investigated. - Abstract: Surface plasma resonance (SPR) effect has been demonstrated to improve solar cell performance. This work reports on the SPR effect from Au nanorod@SiO{sub 2} on p-type dye-sensitized solar cells. Au nanorod@SiO{sub 2} works as an antenna to transform photons with long wavelength into electric field followed by an enhanced excitation of dye. The devices using the NiO electrode containing Au nanorod@SiO{sub 2} shows overall power conversion efficiencies of about 0.2% in combination with I{sup −}/I{sub 3}{sup −} electrolyte, and 0.29% with T{sup −}/T{sub 2} electrolyte, which are superior to those without adding Au nanorods. Detailed investigation including spectroscopy and transient photovoltage decay measurements reveals that plasma effect of Au nanorod@SiO{sub 2} contribute to charge injection efficiency, and thus on the photocurrent. The effect of Au NRs can be further extended to the inverted planar perovskite solar cells, showing obviously improvement in photocurrent.

  9. Terrestrial Analogs for Surface Properties Associated with Impact Cratering on the Moon - Self-secondary Impact Features at Kings Bowl, Idaho

    Science.gov (United States)

    Matiella Novak, M. A.; Zanetti, M.; Neish, C.; Kukko, A.; Fan, K.; Heldmann, J.; Hughes, S. S.

    2017-12-01

    The Kings Bowl (KB) eruptive fissure and lava field, located in the southern end of Craters of the Moon National Monument, Idaho, is an ideal location for planetary analogue field studies of surface properties related to volcanic and impact processes. Here we look at possible impact features present in the KB lava field near the main vent that resulted in squeeze-ups of molten lava from beneath a semi-solid lava lake crust. These may have been caused by the ejection of blocks during the phreatic eruption that formed the Kings Bowl pit, and their subsequent impact into a partially solidified lava pond. We compare and contrast these features with analogous self-secondary impact features, such as irregular, rimless secondary craters ("splash craters") observed in lunar impact melt deposits, to better understand how self-secondary impacts determine the surface properties of volcanic and impact crater terrains. We do this by analyzing field measurements of these features, as well as high-resolution DEM data collected through the Kinematic LiDAR System (KLS), both of which give us feature dimensions and distributions. We then compare these data with self-secondary impact features on the Moon and related surface roughness constrained through Lunar Reconnaissance Orbiter observations (Mini-RF and LROC NACs). Possible self-secondary impact features can be found in association with many lunar impact craters. These are formed when ballistic ejecta from the crater falls onto the ejecta blanket and melt surrounding the newly formed crater. Self-secondary impact features involving impact melt deposits are particularly useful to study because the visibly smooth melt texture serves to highlight the impact points in spacecraft imagery. The unusual morphology of some of these features imply that they formed when the melt had not yet completely solidified, strongly suggesting a source of impactors from the primary crater itself. We will also discuss ongoing efforts to integrate field

  10. Generation of synthetic surface electromyography signals under fatigue conditions for varying force inputs using feedback control algorithm.

    Science.gov (United States)

    Venugopal, G; Deepak, P; Ghosh, Diptasree M; Ramakrishnan, S

    2017-11-01

    Surface electromyography is a non-invasive technique used for recording the electrical activity of neuromuscular systems. These signals are random, complex and multi-component. There are several techniques to extract information about the force exerted by muscles during any activity. This work attempts to generate surface electromyography signals for various magnitudes of force under isometric non-fatigue and fatigue conditions using a feedback model. The model is based on existing current distribution, volume conductor relations, the feedback control algorithm for rate coding and generation of firing pattern. The result shows that synthetic surface electromyography signals are highly complex in both non-fatigue and fatigue conditions. Furthermore, surface electromyography signals have higher amplitude and lower frequency under fatigue condition. This model can be used to study the influence of various signal parameters under fatigue and non-fatigue conditions.

  11. The Effect of Thermal Radiation on Entropy Generation Due to Micro-Polar Fluid Flow Along a Wavy Surface

    Directory of Open Access Journals (Sweden)

    Kuei-Hao Chang

    2011-09-01

    Full Text Available In this study, the effect of thermal radiation on micro-polar fluid flow over a wavy surface is studied. The optically thick limit approximation for the radiation flux is assumed. Prandtl’s transposition theorem is used to stretch the ordinary coordinate system in certain directions. The wavy surface can be transferred into a calculable plane coordinate system. The governing equations of micro-polar fluid along a wavy surface are derived from the complete Navier-Stokes equations. A simple transformation is proposed to transform the governing equations into boundary layer equations so they can be solved numerically by the cubic spline collocation method. A modified form for the entropy generation equation is derived. Effects of thermal radiation on the temperature and the vortex viscosity parameter and the effects of the wavy surface on the velocity are all included in the modified entropy generation equation.

  12. A model for abnormal activity recognition and alert generation system for elderly care by hidden conditional random fields using R-transform and generalized discriminant analysis features.

    Science.gov (United States)

    Khan, Zafar Ali; Sohn, Won

    2012-10-01

    The growing population of elderly people living alone increases the need for automatic healthcare monitoring systems for elderly care. Automatic vision sensor-based systems are increasingly used for human activity recognition (HAR) in recent years. This study presents an improved model, tested using actors, of a sensor-based HAR system to recognize daily life activities of elderly people at home and generate an alert in case of abnormal HAR. Datasets consisting of six abnormal activities (falling backward, falling forward, falling rightward, falling leftward, chest pain, and fainting) and four normal activities (walking, rushing, sitting down, and standing up) are generated from different view angles (90°, -90°, 45°, -45°). Feature extraction and dimensions reduction are performed by R-transform followed by generalized discriminant analysis (GDA) methods. R-transform extracts symmetric, scale, and translation-invariant features from the sequences of activities. GDA increases the discrimination between different classes of highly similar activities. Silhouette sequences are quantified by the Linde-Buzo-Gray algorithm and recognized by hidden conditional random fields. Experimental results provide an average recognition rate of 94.2% for abnormal activities and 92.7% for normal activities. The recognition rate for the highly similar activities from different view angles shows the flexibility and efficacy of the proposed abnormal HAR and alert generation system for elderly care.

  13. Effect of microstructure and surface features on wetting angle of a Fe-3.2 wt%C.E. cast iron with water

    Science.gov (United States)

    Riahi, Samira; Niroumand, Behzad; Dorri Moghadam, Afsaneh; Rohatgi, Pradeep K.

    2018-05-01

    In the present study, variation in surface wetting behavior of a hypoeutectic cast iron with its microstructural features and surface roughness was investigated. Samples with an identical composition, i.e. Fe-3.2 wt%C.E., and different microstructures (a gray cast iron with A-type flake graphite and a white cast iron) were fabricated by gravity casting of molten cast iron in a chill mold at different cooling rates. A variation of surface roughness was also developed by polishing, a four-stage electroetching and a four-stage mechanical abrading on the samples. Roughness and water contact angles of all surfaces were then measured. The surface roughness factor and the solid fraction in contact with water by the Wenzel and Cassie-Baxter contact models were also calculated and compared with the corresponding measured contact angles to find out which regime was active. Results indicated that the surface microstructure and the type of constituents present at the surface influenced the cast iron surface wettability and that it was possible to change the surface contact angle by modification of the surface microstructure. The mechanically abraded gray cast iron followed the Wenzel-type regime while the electroetched surfaces of gray cast iron exhibited a transition from Wenzel to Cassie-Baxter type regime. In white cast iron, the results indicated Wenzel type behavior in the electroetched samples while for the mechanically abraded samples, none of these two models could predict the wetting behavior. Furthermore, the wetting angles of both gray and white cast irons were measured after 1, 2, 3 and 4 weeks of air exposure. The results showed that the wetting angles of both samples increased to above 90° after one week of air exposure which was likely due to adsorption of low surface energy hydrocarbons on the surfaces.

  14. Basic features of electromagnetic pulse generated in a laser-target chamber at 3-TW laser facility PALS

    International Nuclear Information System (INIS)

    De Marco, M; Pfeifer, M; Krousky, E; Krasa, J; Cikhardt, J; Klir, D; Nassisi, V

    2014-01-01

    We describe the radiofrequency emission taking place when 300 ps laser pulses irradiate various solid targets with an intensity of 10 16 W/cm 2 . The emission of intense electromagnetic pulses was observed outside the laser target chamber by two loop antennas up to 1 GHz. Electromagnetic pulses can be 800 MHz transients, which decay from a peak electromagnetic field of E 0 ≊ 7 kV/m and H 0 ≊ 15 A/m. The occurrence of these electromagnetic pulses is associated with generation of hard x-rays with photon energies extending beyond 1 MeV. This contribution reports the first observation of this effect at the PALS facility.

  15. A "next generation" ethics committee. St. Joseph Health system has integrated performance-improvement features into its ethics work.

    Science.gov (United States)

    Murphy, Kevin

    2006-01-01

    Understanding the limitations that accompany the traditional model of ethics committees, St. Joseph Health System (SJHS), Orange, CA, has been working to integrate ethics expertise and quality-improvement methodology into its "Next Generation Model" (NG Model) for such committees. However, moving from a traditional structure to the NG Model (introduced to SJHS facilities in 1999) brought some challenges, not the least of which was a deep-rooted culture of resistance to change. Following a 2004 audit of how the NG model was working, some common challenges were identified. To deal with those challenges, SJHS developed some tools and techniques that have helped ease the ongoing transition. These tools have helped the system's ethics committees address such issues as collaboration for the sake of organizational integration, setting goals, and measuring performance of various ethics roles.

  16. Influence of Structural Features and Fracture Processes on Surface Roughness: A Case Study from the Krosno Sandstones of the Górka–Mucharz Quarry (Little Beskids, Southern Poland

    Directory of Open Access Journals (Sweden)

    Pieczara Łukasz

    2015-09-01

    Full Text Available The paper presents the results of analysis of surface roughness parameters in the Krosno Sandstones of Mucharz, southern Poland. It was aimed at determining whether these parameters are influenced by structural features (mainly the laminar distribution of mineral components and directional distribution of non-isometric grains and fracture processes. The tests applied in the analysis enabled us to determine and describe the primary statistical parameters used in the quantitative description of surface roughness, as well as specify the usefulness of contact profilometry as a method of visualizing spatial differentiation of fracture processes in rocks. These aims were achieved by selecting a model material (Krosno Sandstones from the Górka-Mucharz Quarry and an appropriate research methodology. The schedule of laboratory analyses included: identification analyses connected with non-destructive ultrasonic tests, aimed at the preliminary determination of rock anisotropy, strength point load tests (cleaved surfaces were obtained due to destruction of rock samples, microscopic analysis (observation of thin sections in order to determine the mechanism of inducing fracture processes and a test method of measuring surface roughness (two- and three-dimensional diagrams, topographic and contour maps, and statistical parameters of surface roughness. The highest values of roughness indicators were achieved for surfaces formed under the influence of intragranular fracture processes (cracks propagating directly through grains. This is related to the structural features of the Krosno Sandstones (distribution of lamination and bedding.

  17. Modelling monthly runoff generation processes following land use changes: groundwater-surface runoff interactions

    Science.gov (United States)

    Bari, M.; Smettem, K. R. J.

    A conceptual water balance model is presented to represent changes in monthly water balance following land use changes. Monthly rainfall-runoff, groundwater and soil moisture data from four experimental catchments in Western Australia have been analysed. Two of these catchments, "Ernies" (control, fully forested) and "Lemon" (54% cleared) are in a zone of mean annual rainfall of 725 mm, while "Salmon" (control, fully forested) and "Wights" (100% cleared) are in a zone with mean annual rainfall of 1125 mm. At the Salmon forested control catchment, streamflow comprises surface runoff, base flow and interflow components. In the Wights catchment, cleared of native forest for pasture development, all three components increased, groundwater levels rose significantly and stream zone saturated area increased from 1% to 15% of the catchment area. It took seven years after clearing for the rainfall-runoff generation process to stabilise in 1984. At the Ernies forested control catchment, the permanent groundwater system is 20 m below the stream bed and so does not contribute to streamflow. Following partial clearing of forest in the Lemon catchment, groundwater rose steadily and reached the stream bed by 1987. The streamflow increased in two phases: (i) immediately after clearing due to reduced evapotranspiration, and (ii) through an increase in the groundwater-induced stream zone saturated area after 1987. After analysing all the data available, a conceptual monthly model was created, comprising four inter-connecting stores: (i) an upper zone unsaturated store, (ii) a transient stream zone store, (ii) a lower zone unsaturated store and (iv) a saturated groundwater store. Data such as rooting depth, Leaf Area Index, soil porosity, profile thickness, depth to groundwater, stream length and surface slope were incorporated into the model as a priori defined attributes. The catchment average values for different stores were determined through matching observed and predicted

  18. Modelling monthly runoff generation processes following land use changes: groundwater–surface runoff interactions

    Directory of Open Access Journals (Sweden)

    M. Bari

    2004-01-01

    Full Text Available A conceptual water balance model is presented to represent changes in monthly water balance following land use changes. Monthly rainfall–runoff, groundwater and soil moisture data from four experimental catchments in Western Australia have been analysed. Two of these catchments, 'Ernies' (control, fully forested and 'Lemon' (54% cleared are in a zone of mean annual rainfall of 725 mm, while 'Salmon' (control, fully forested and 'Wights' (100% cleared are in a zone with mean annual rainfall of 1125 mm. At the Salmon forested control catchment, streamflow comprises surface runoff, base flow and interflow components. In the Wights catchment, cleared of native forest for pasture development, all three components increased, groundwater levels rose significantly and stream zone saturated area increased from 1% to 15% of the catchment area. It took seven years after clearing for the rainfall–runoff generation process to stabilise in 1984. At the Ernies forested control catchment, the permanent groundwater system is 20 m below the stream bed and so does not contribute to streamflow. Following partial clearing of forest in the Lemon catchment, groundwater rose steadily and reached the stream bed by 1987. The streamflow increased in two phases: (i immediately after clearing due to reduced evapotranspiration, and (ii through an increase in the groundwater-induced stream zone saturated area after 1987. After analysing all the data available, a conceptual monthly model was created, comprising four inter-connecting stores: (i an upper zone unsaturated store, (ii a transient stream zone store, (ii a lower zone unsaturated store and (iv a saturated groundwater store. Data such as rooting depth, Leaf Area Index, soil porosity, profile thickness, depth to groundwater, stream length and surface slope were incorporated into the model as a priori defined attributes. The catchment average values for different stores were determined through matching observed and

  19. Crystal structure and nanotopographical features on the surface of heat-treated and anodized porous titanium biomaterials produced using selective laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Amin Yavari, S., E-mail: s.aminyavari@tudelft.nl [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); FT Innovations BV, Braamsluiper 1, 5831 PW Boxmeer (Netherlands); Wauthle, R. [KU Leuven, Department of Mechanical Engineering, Section Production Engineering, Machine Design and Automation (PMA), Celestijnenlaan 300B, 3001 Leuven (Belgium); LayerWise NV, Kapeldreef 60, Leuven (Belgium); Böttger, A.J. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Schrooten, J. [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 PB 2450, 3001 Heverlee (Belgium); Weinans, H. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Department of Orthopedics and Department of Rheumatology, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands); Zadpoor, A.A. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands)

    2014-01-30

    Porous titanium biomaterials manufactured using additive manufacturing techniques such as selective laser melting are considered promising materials for orthopedic applications where the biomaterial needs to mimic the properties of bone. Despite their appropriate mechanical properties and the ample pore space they provide for bone ingrowth and osseointegration, porous titanium structures have an intrinsically bioinert surface and need to be subjected to surface bio-functionalizing procedures to enhance their in vivo performance. In this study, we used a specific anodizing process to build a hierarchical oxide layer on the surface of porous titanium structures made by selective laser melting of Ti6Al4V ELI powder. The hierarchical structure included both nanotopographical features (nanotubes) and micro-features (micropits). After anodizing, the biomaterial was heat treated in Argon at different temperatures ranging between 400 and 600 °C for either 1 or 2 h to improve its bioactivity. The effects of applied heat treatment on the crystal structure of TiO{sub 2} nanotubes and the nanotopographical features of the surface were studied using scanning electron microscopy and X-ray diffraction. It was shown that the transition from the initial crystal structure, i.e. anatase, to rutile occurs between 500 and 600 °C and that after 2 h of heat treatment at 600 °C the crystal structure is predominantly rutile. The nanotopographical features of the surface were found to be largely unchanged for heat treatments carried out at 500 °C or below, whereas they were partially or largely disrupted after heat treatment at 600 °C. The possible implications of these findings for the bioactivity of porous titanium structures are discussed.

  20. Statistical characterization of surface features from tungsten-coated divertor inserts in the DIII-D Metal Rings Campaign

    Science.gov (United States)

    Adams, Jacob; Unterberg, Ezekial; Chrobak, Christopher; Stahl, Brian; Abrams, Tyler

    2017-10-01

    Continuing analysis of tungsten-coated inserts from the recent DIII-D Metal Rings Campaign utilizes a statistical approach to study carbon migration and deposition on W surfaces and to characterize the pre- versus post-exposure surface morphology. A TZM base was coated with W using both CVD and PVD and allowed for comparison between the two coating methods. The W inserts were positioned in the lower DIII-D divertor in both the upper (shelf) region and lower (floor) region and subjected to multiple plasma shots, primarily in H-mode. Currently, the post-exposure W inserts are being characterized using SEM/EDX to qualify the surface morphology and to quantify the surface chemical composition. In addition, profilometry is being used to measure the surface roughness of the inserts both before and after plasma exposure. Preliminary results suggest a correlation between the pre-exposure surface roughness and the level of carbon deposited on the surface. Furthermore, ongoing in-depth analysis may reveal insights into the formation mechanism of nanoscale bumps found in the carbon-rich regions of the W surfaces that have not yet been explained. Work supported in part by US DoE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER54698.

  1. The strategic study of pebble model high temperature gas-cooled reactor plant with power generation feature and industrial application prospect

    International Nuclear Information System (INIS)

    Zhao Mu; Ma Bo; Dong Yujie

    2010-01-01

    On the basis of the technical feature of pebble model high temperature gas-cooled reactor (HTR-PM) plant, its developmental advantage and future are deeply investigated from inherent safety and economics. It is explored about the business opportunity and future financing mode of HTR-PM plant. Industrial distribution and potential user are studied. It is resulted that the technical potential can be developed fully using Gas turbine power generation technology. It has wide market and great significance to build more group modules at home and developing countries. (authors)

  2. Fabrication of narrow surface relief features in a side-chain azobenzene polyester with a scanning near-field microscope

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Holme, N. C. R.; Pedersen, M.

    2001-01-01

    We show that it is possible to fabricate topographic submicron features in a side-chain azobenzene polyester with a scanning near-field optical microscope, Through irradiation at a wavelength of 488 run at intensity levels of 12 W/cm(2), topographic features as narrow as 240 nm and as high as 6 nm...... have been reproducibly recorded in a thin film of the polyester. These observations are consistent with the fact that at low intensities peaks are produced evolving into formation of trenches at high intensities in the case of amorphous side-chain azobenzene polyesters. This may find applications...

  3. Synthesis of Environmentally Responsive Polymers by Atom Transfer Radical Polymerization: Generation of Reversible Hydrophilic and Hydrophobic Surfaces

    Directory of Open Access Journals (Sweden)

    Vikas Mittal

    2010-05-01

    Full Text Available Environmentally responsive poly(N-isopropylacrylamide brushes were grafted from the surface of polymer particles or flat surfaces in order to generate reversible hydrophilic and hydrophobic surfaces. The use of atom transfer radical polymerization was demonstrated for the grafting of polymer brushes as it allows efficient control on the amount of grafted polymer. The polymer particles were generated with or without surfactant in the emulsion polymerization and their surface could be modified with the atom transfer radical polymerization (ATRP initiator. The uniform functionalization of the surface with ATRP initiator was responsible for the uniform grafting of polymer brushes. The grafted brushes responded reversibly with changes in temperature indicating that the reversible responsive behavior could be translated to the particle surfaces. The particles were observed to adsorb and desorb protein and virus molecules by changing the temperatures below or higher than 32 °C. The initiator functionalized particles could also be adsorbed on the flat surfaces. The adsorption process also required optimization of the heat treatment conditions to form a uniform layer of the particles on the substrate. The grafted polymer brushes also responded to the changes in temperatures similar to the spherical particles studied through water droplets placed on the flat substrates.

  4. Salt Effects on Surface Structures of Polyelectrolyte Multilayers (PEMs) Investigated by Vibrational Sum Frequency Generation (SFG) Spectroscopy.

    Science.gov (United States)

    Ge, Aimin; Matsusaki, Michiya; Qiao, Lin; Akashi, Mitsuru; Ye, Shen

    2016-04-26

    Sum frequency generation (SFG) vibrational spectroscopy was employed to investigate the surface structures of polyelectrolyte multilayers (PEMs) constructed by sequentially alternating adsorption of poly(diallyldimethylammonium chloride) (PDDA) and poly(styrenesulfonate) (PSS). It was found that the surface structures and surface charge density of the as-deposited PEMs of PDDA/PSS significantly depend on the concentration of sodium chloride (NaCl) present in the polyelectrolyte solutions. Furthermore, it was found that the surface structure of the as-deposited PEMs is in a metastable state and will reach the equilibrium state by diffusion of the polyelectrolyte chain after an aging process, resulting in a polyelectrolyte mixture on the PEM surfaces.

  5. Arrays of surface-normal electroabsorption modulators for the generation and signal processing of microwave photonics signals

    NARCIS (Netherlands)

    Noharet, Bertrand; Wang, Qin; Platt, Duncan; Junique, Stéphane; Marpaung, D.A.I.; Roeloffzen, C.G.H.

    2011-01-01

    The development of an array of 16 surface-normal electroabsorption modulators operating at 1550nm is presented. The modulator array is dedicated to the generation and processing of microwave photonics signals, targeting a modulation bandwidth in excess of 5GHz. The hybrid integration of the

  6. Gridded Surface Subsurface Hydrologic Analysis Modeling for Analysis of Flood Design Features at the Picayune Strand Restoration Project

    Science.gov (United States)

    2016-08-01

    restore its predrainage hydrology and ecological function for beneficial effects on flora and fauna in the project area and surrounding public lands. The...partnership with South Florida Water Management District (SFWMD), is constructing these features. Engineering support is required for hydrologic and...simulation accuracy and related resource requirements. Spatial data products such as digital elevation models, surveyed channel cross sections, soil

  7. A review of the surface features and properties, surfactant adsorption and floatability of four key minerals of diasporic bauxite resources.

    Science.gov (United States)

    Zhang, Ningning; Nguyen, Anh V; Zhou, Changchun

    2018-04-01

    Diasporic bauxite represents one of the major aluminum resources. Its upgrading for further processing involves a separation of diaspore (the valuable mineral) from aluminosilicates (the gangue minerals) such as kaolinite, illite, and pyrophyllite. Flotation is one of the most effective ways to realize the upgrading. Since flotation is a physicochemical process based on the difference in the surface hydrophobicity of different components, determining the adsorption characteristics of various flotation surfactants on the mineral surfaces is critical. The surfactant adsorption properties of the minerals, in turn, are controlled by the surface chemistry of the minerals, while the latter is related to the mineral crystal structures. In this paper, we first discuss the crystal structures of the four key minerals of diaspore, kaolinite, illite, and pyrophyllite as well as the broken bonds on their exposed surfaces after grinding. Next, we summarize the surface chemistry properties such as surface wettability and surface electrical properties of the four minerals, and the differences in these properties are explained from the perspective of mineral crystal structures. Then we review the adsorption mechanism and adsorption characteristics of surfactants such as collectors (cationic, anionic, and mixed surfactants), depressants (inorganic and organic), dispersants, and flocculants on these mineral surfaces. The separation of diaspore and aluminosilicates by direct flotation and reverse flotation are reviewed, and the collecting properties of different types of collectors are compared. Furthermore, the abnormal behavior of the cationic flotation of kaolinite is also explained in this section. This review provides a strong theoretical support for the optimization of the upgrading of diaspore bauxite ore by flotation and the early industrialization of the reverse flotation process. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Laser transformation hardening effect on hardening zone features and surface hardness of tool steel AISI D2

    Directory of Open Access Journals (Sweden)

    D. Lesyk

    2017-06-01

    Full Text Available The relationship of technological input regimes of the laser transformation hardening on change the hardening depth, hardening width, and hardening angle, as well as surface hardness of the tool steel AISI D2 using multifactor experiment with elements of the analysis of variance and regression equations was determined. The laser transformation hardening process implemented by controlling the heating temperature using Nd:YAG fiber laser with scanner, pyrometer and proportional-integral-differential controller. The linear and quadratic regression models are developed, as well as response surface to determine the effect of the heating temperature and feed rate of the treated surface on the energy density of the laser beam, hardening depths, hardening width, hardening angle, and surface hardness are designed. The main effect on the energy density of the laser beam has a velocity laser treatment, on the other hand, the main effect on the geometrical parameters of the laser hardened zone and surface hardness has temperature heating are shown. The optimum magnitudes of the heating temperature (1270 °C and feed rate of the treated surface (90 mm/min for laser transformation hardening of the tool steel AISI D2 using fiber laser with scanner were defined.

  9. System and method for generating 3D images of non-linear properties of rock formation using surface seismic or surface to borehole seismic or both

    Science.gov (United States)

    Vu, Cung Khac; Nihei, Kurt Toshimi; Johnson, Paul A.; Guyer, Robert A.; Ten Cate, James A.; Le Bas, Pierre-Yves; Larmat, Carene S.

    2016-06-07

    A system and method of characterizing properties of a medium from a non-linear interaction are include generating, by first and second acoustic sources disposed on a surface of the medium on a first line, first and second acoustic waves. The first and second acoustic sources are controllable such that trajectories of the first and second acoustic waves intersect in a mixing zone within the medium. The method further includes receiving, by a receiver positioned in a plane containing the first and second acoustic sources, a third acoustic wave generated by a non-linear mixing process from the first and second acoustic waves in the mixing zone; and creating a first two-dimensional image of non-linear properties or a first ratio of compressional velocity and shear velocity, or both, of the medium in a first plane generally perpendicular to the surface and containing the first line, based on the received third acoustic wave.

  10. Influence of power supply on the generation of ozone and degradation of phenol in a surface discharge reactor

    International Nuclear Information System (INIS)

    Zhao, Yan; Shang, Kefeng; Duan, Lijuan; Li, Yue; An, Jiutao; Zhang, Chunyang; Lu, Na; Wu, Yan; Li, Jie

    2013-01-01

    A surface Dielectric Barrier Discharge (DBD) reactor was utilized to degrade phenol in water. Different power supplies applied to the DBD reactor affect the discharge modes, the formation of chemically active species and thus the removal efficiency of pollutants. It is thus important to select an optimized power supply for the DBD reactor. In this paper, the influence of the types of power supplies including alternate current (AC) and bipolar pulsed power supply on the ozone generation in a surface discharge reactor was measured. It was found that compared with bipolar pulsed power supply, higher energy efficiency of O 3 generation was obtained when DBD reactor was supplied with 50Hz AC power supply. The highest O 3 generation was approximate 4 mg kJ −1 ; moreover, COD removal efficiency of phenol wastewater reached 52.3% after 3 h treatment under an AC peak voltage of 2.6 kV.

  11. Influence of power supply on the generation of ozone and degradation of phenol in a surface discharge reactor

    Science.gov (United States)

    Zhao, Yan; Shang, Kefeng; Duan, Lijuan; Li, Yue; An, Jiutao; Zhang, Chunyang; Lu, Na; Li, Jie; Wu, Yan

    2013-03-01

    A surface Dielectric Barrier Discharge (DBD) reactor was utilized to degrade phenol in water. Different power supplies applied to the DBD reactor affect the discharge modes, the formation of chemically active species and thus the removal efficiency of pollutants. It is thus important to select an optimized power supply for the DBD reactor. In this paper, the influence of the types of power supplies including alternate current (AC) and bipolar pulsed power supply on the ozone generation in a surface discharge reactor was measured. It was found that compared with bipolar pulsed power supply, higher energy efficiency of O3 generation was obtained when DBD reactor was supplied with 50Hz AC power supply. The highest O3 generation was approximate 4 mg kJ-1 moreover, COD removal efficiency of phenol wastewater reached 52.3% after 3 h treatment under an AC peak voltage of 2.6 kV.

  12. Towards self-tuning residual generators for UAV control surface fault diagnosis

    DEFF Research Database (Denmark)

    Blanke, Mogens; Hansen, Søren

    2013-01-01

    Control surface fault diagnosis is essential for timely detection of manoeuvring and stability risks for an unmanned aircraft. Timely detection is crucial since control surface related faults impact stability of flight and safety. Reliable diagnosis require well fitting dynamical models but with ...... flights with different members of a population of UAVs that have inherent model uncertainty from one member to another and from one flight to another. Events with actual faults on control surfaces demonstrates the efficacy of the approach....

  13. [Age-related characteristics of the surface bioelectrical potential of human, canine and rat teeth and features of its distribution over the surface of the crown].

    Science.gov (United States)

    Donskiĭ, G I; Pavliuchenko, O N; Palamarchuk, Iu N; Makarova, N Ia

    1989-01-01

    Using a digital electron voltmeter, bioelectrical potentials (BEPs) of dental crowns have been recorded in 180 patients, 36 dogs, and 93 white non-inbred rats. It has been established that the surface BEP is a marker of dental enamel maturation and does not depend on the species of mammals. On the other hand maturation processes differ in their rate on the cutting edge, equator, and neck: with advancing age algebraic difference between the magnitudes of surface BEPs decreases in humans and increases in dogs and rats.

  14. Meteorological data for four sites at surface-disruption features in Yucca Flat, Nevada Test Site, Nye County, Nevada, 1985--1986

    International Nuclear Information System (INIS)

    Carman, R.L.

    1994-01-01

    Surface-disruption features, or craters, resulting from underground nuclear testing at the Nevada Test Site may increase the potential for ground-water recharge in an area that would normally produce little, if any, recharge. This report presents selected meteorological data resulting from a study of two surface-disruption features during May 1985 through June 1986. The data were collected at four adjacent sites in Yucca Flat, about 56 kilometers north of Mercury, Nevada. Three sites (one in each of two craters and one at an undisturbed site at the original land surface) were instrumented to collect meteorological data for calculating bare-soil evaporation. These data include (1) long-wave radiation, (2) short-wave radiation, (3) net radiation, (4) air temperature, and (5) soil surface temperature. Meteorological data also were collected at a weather station at an undisturbed site near the study craters. Data collected at this site include (1) air temperature, (2) relative humidity, (3) wind velocity, and (4) wind direction

  15. Behavior of a thermoelectric power generation device based on solar irradiation and the earth’s surface-air temperature difference

    International Nuclear Information System (INIS)

    Zhang, Zhe; Li, Wenbin; Kan, Jiangming

    2015-01-01

    Highlights: • A technical solution to the power supply of wireless sensor networks is presented. • The low voltage produced by TEG is boosted from less than 1 V to more than 4 V. • An output current and voltage of TEG device is acquired as 21.47 mA and 221 mV. • The device successfully provides output power 4.7 mW in no electricity conditions. • The thermo-economic value of TEG device is demonstrated. - Abstract: Motivated by the limited power supply of wireless sensors used to monitor the natural environment, for example, in forests, this study presents a technical solution by recycling solar irradiation heat using thermoelectric generators. Based on solar irradiation and the earth’s surface-air temperature difference, a new type of thermoelectric power generation device has been devised, the distinguishing features of which include the application of an all-glass heat-tube-type vacuum solar heat collection pipe to absorb and transfer solar energy without a water medium and the use of a thin heat dissipation tube to cool the earth surface air temperature. The effects of key parameters such as solar illumination, air temperature, load resistance, the proportional coefficient, output power and power generation efficiency for thermoelectric energy conversion are analyzed. The results of realistic outdoor experiments show that under a state of regular illumination at 3.75 × 10 4 lx, using one TEG module, the thermoelectric device is able to boost the voltage obtained from the natural solar irradiation from 221 mV to 4.41 V, with an output power of 4.7 mW. This means that the electrical energy generated can provide the power supply for low power consumption components, such as low power wireless sensors, ZigBee modules and other low power loads

  16. Generation of Graphene Surface Plasmons and Their Applications in Beam Steering

    KAUST Repository

    Farhat, Mohamed; Chen, Pai Yen; Guenneau, Sebastien; Bagci, Hakan

    2015-01-01

    We propose a novel concept that uses mechanical and electronic properties of graphene to efficiently couple light to surface plasmon polaritons. A graphene-based infrared beam-former based on the concept of surface leaky-wave is also discussed

  17. Generation of Graphene Surface Plasmons and Their Applications in Beam Steering

    KAUST Repository

    Farhat, Mohamed

    2015-01-01

    We propose a novel concept that uses mechanical and electronic properties of graphene to efficiently couple light to surface plasmon polaritons. A graphene-based infrared beam-former based on the concept of surface leaky-wave is also discussed. © OSA 2015.

  18. Second-harmonic generation from sub-monolayer molecular adsorbates using a c-w diode laser: Maui surface experiment

    International Nuclear Information System (INIS)

    Boyd, G.T.; Shen, Y.R.; Hansch, T.W.

    1985-06-01

    Optical second-harmonic generation (SHG) can be an extremely sensitive tool for surface studies. The technique is capable of probing adsorbed molecules at various interfaces. It is based on the idea that SHG is forbidden in a medium with inversion symmetry, but necessarily allowed at a surface. To see such a surface nonlinear optical effect, high laser intensity is often needed. Thus, in the experiments reported so far, pulsed lasers were used exclusively. From the consideration for practical applications, however, the technique would look much more attractive if the bulky pulsed laser can be replaced by a simple inexpensive c-w diode laser. This paper describes the first demonstration of surface SHG with a c-w laser. 3 refs., 1 fig

  19. Three-phase short circuit calculation method based on pre-computed surface for doubly fed induction generator

    Science.gov (United States)

    Ma, J.; Liu, Q.

    2018-02-01

    This paper presents an improved short circuit calculation method, based on pre-computed surface to determine the short circuit current of a distribution system with multiple doubly fed induction generators (DFIGs). The short circuit current, injected into power grid by DFIG, is determined by low voltage ride through (LVRT) control and protection under grid fault. However, the existing methods are difficult to calculate the short circuit current of DFIG in engineering practice due to its complexity. A short circuit calculation method, based on pre-computed surface, was proposed by developing the surface of short circuit current changing with the calculating impedance and the open circuit voltage. And the short circuit currents were derived by taking into account the rotor excitation and crowbar activation time. Finally, the pre-computed surfaces of short circuit current at different time were established, and the procedure of DFIG short circuit calculation considering its LVRT was designed. The correctness of proposed method was verified by simulation.

  20. Fabrication of Cheap Optical Transducers (CHOTs) on film carriers for in-situ application and generation of surface acoustic waves

    International Nuclear Information System (INIS)

    Ageeva, V; Stratoudaki, T; Clark, M; Somekh, M G

    2015-01-01

    Cheap optical transducers (CHOTs) are patterns on the surface of a component activated by lasers to generate and detect ultrasound. Excited optically, with minimal surface impact, and fully customizable, CHOTs provide a simple alternative to conventional piezoelectric transducers, offering wireless, remote operation. Of particular interest is application of CHOTs for in-situ ultrasonic inspection of hard-to reach and complex-geometry components such as those of aero-engines. A suitable fabrication method has been developed to allow in-situ application of CHOTs onto large size and curved components, as well as those already in service, challenging for current laboratory-based micro-patterning methods. This work describes the fabrication of a transferable g-CHOT for generation of ultrasound. The g- CHOT has been made on an SU8 carrier film using a sacrificial polystyrene layer, allowing the transducer to be transferred from the substrate and subsequently delivered and applied to the surface of the sample in-situ. The functionality of the fabricated transducer is demonstrated by detection of the Surface Acoustic Waves (SAW) generated by the g-CHOT transferred onto glass and aluminium samples

  1. Entropy Generation Analysis of Power-Law Non-Newtonian Fluid Flow Caused by Micropatterned Moving Surface

    Directory of Open Access Journals (Sweden)

    M. H. Yazdi

    2014-01-01

    Full Text Available In the present study, the first and second law analyses of power-law non-Newtonian flow over embedded open parallel microchannels within micropatterned permeable continuous moving surface are examined at prescribed surface temperature. A similarity transformation is used to reduce the governing equations to a set of nonlinear ordinary differential equations. The dimensionless entropy generation number is formulated by an integral of the local rate of entropy generation along the width of the surface based on an equal number of microchannels and no-slip gaps interspersed between those microchannels. The velocity, the temperature, the velocity gradient, and the temperature gradient adjacent to the wall are substituted into this equation resulting from the momentum and energy equations obtained numerically by Dormand-Prince pair and shooting method. Finally, the entropy generation numbers, as well as the Bejan number, are evaluated. It is noted that the presence of the shear thinning (pseudoplastic fluids creates entropy along the surface, with an opposite effect resulting from shear thickening (dilatant fluids.

  2. Towards a better understanding of flood generation and surface water inundation mechanisms using NASA remote sensing data products

    Science.gov (United States)

    Lucey, J.; Reager, J. T., II; Lopez, S. R.

    2017-12-01

    Floods annually cause several weather-related fatalities and financial losses. According to NOAA and FEMA, there were 43 deaths and 18 billion dollars paid out in flood insurance policies during 2005. The goal of this work is to improve flood prediction and flood risk assessment by creating a general model of predictability of extreme runoff generation using various NASA products. Using satellite-based flood inundation observations, we can relate surface water formation processes to changes in other hydrological variables, such as precipitation, storage and soil moisture, and understand how runoff generation response to these forcings is modulated by local topography and land cover. Since it is known that a flood event would cause an abnormal increase in surface water, we examine these underlying physical relationships in comparison with the Dartmouth Flood Observatory archive of historic flood events globally. Using ground water storage observations (GRACE), precipitation (TRMM or GPCP), land use (MODIS), elevation (SRTM) and surface inundation levels (SWAMPS), an assessment of geological and climate conditions can be performed for any location around the world. This project utilizes multiple linear regression analysis evaluating the relationship between surface water inundation, total water storage anomalies and precipitation values, grouped by average slope or land use, to determine their statistical relationships and influences on inundation data. This research demonstrates the potential benefits of using global data products for early flood prediction and will improve our understanding of runoff generation processes.

  3. Significant Enhancement of the Chiral Correlation Length in Nematic Liquid Crystals by Gold Nanoparticle Surfaces Featuring Axially Chiral Binaphthyl Ligands.

    Science.gov (United States)

    Mori, Taizo; Sharma, Anshul; Hegmann, Torsten

    2016-01-26

    Chirality is a fundamental scientific concept best described by the absence of mirror symmetry and the inability to superimpose an object onto its mirror image by translation and rotation. Chirality is expressed at almost all molecular levels, from single molecules to supramolecular systems, and present virtually everywhere in nature. Here, to explore how chirality propagates from a chiral nanoscale surface, we study gold nanoparticles functionalized with axially chiral binaphthyl molecules. In particular, we synthesized three enantiomeric pairs of chiral ligand-capped gold nanoparticles differing in size, curvature, and ligand density to tune the chirality transfer from nanoscale solid surfaces to a bulk anisotropic liquid crystal medium. Ultimately, we are examining how far the chirality from a nanoparticle surface reaches into a bulk material. Circular dichroism spectra of the gold nanoparticles decorated with binaphthyl thiols confirmed that the binaphthyl moieties form a cisoid conformation in isotropic organic solvents. In the chiral nematic liquid crystal phase, induced by dispersing the gold nanoparticles into an achiral anisotropic nematic liquid crystal solvent, the binaphthyl moieties on the nanoparticle surface form a transoid conformation as determined by imaging the helical twist direction of the induced cholesteric phase. This suggests that the ligand density on the nanoscale metal surfaces provides a dynamic space to alter and adjust the helicity of binaphthyl derivatives in response to the ordering of the surrounding medium. The helical pitch values of the induced chiral nematic phase were determined, and the helical twisting power (HTP) of the chiral gold nanoparticles calculated to elucidate the chirality transfer efficiency of the binaphthyl ligand capped gold nanoparticles. Remarkably, the HTP increases with increasing diameter of the particles, that is, the efficiency of the chirality transfer of the binaphthyl units bound to the nanoparticle

  4. Kinetics and thermodynamics studies on the BMP-2 adsorption onto hydroxyapatite surface with different multi-morphological features.

    Science.gov (United States)

    Lu, Zhiwei; Huangfu, Changxin; Wang, Yanying; Ge, Hongwei; Yao, Yao; Zou, Ping; Wang, Guangtu; He, Hua; Rao, Hanbing

    2015-01-01

    The effect of the surface topography on protein adsorption process is of great significance for designing hydroxyapatite (HA) ceramic material surfaces. In this work, three different topographies of HA materials HA-sheet, HA-rod, and HA-whisker were synthesized and testified by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Brunauer-Emmett-Teller (BET) and a field emission scanning electron microscopy (FE-SEM). We have systematically investigated the adsorption kinetics and thermodynamics of bone morphogenetic proteins (BMP-2) on the three different topography surfaces of HA, respectively. The results showed that the maximum adsorption capacities of HA-sheet, HA-rod and HA-whisker were (219.96 ± 10.18), (247.13 ± 12.35), and (354.67 ± 17.73) μg · g(-1), respectively. Kinetic parameters, rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated as well as discussed. It demonstrated that the adsorption of BMP-2 onto HA could be described by the pseudo second-order equation. Adsorption of BMP-2 onto HA followed the Langmuir isotherm. It confirmed that compared with other samples HA-whisker had more adsorption sites for its high specific surface area which could provide more opportunities for protein molecules. The adsorption processes were endothermic (ΔH > 0), spontaneous (ΔG 0). A possible adsorption mechanism has been proposed. In addition, the BMP-2 could be adsorbed to the surface which existed slight conformational changes by FT-IR. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Carabelli's trait revisited: an examination of mesiolingual features at the enamel-dentine junction and enamel surface of Pan and Homo sapiens upper molars.

    Science.gov (United States)

    Ortiz, Alejandra; Skinner, Matthew M; Bailey, Shara E; Hublin, Jean-Jacques

    2012-10-01

    Carabelli's trait is a morphological feature that frequently occurs on the mesiolingual aspect of Homo sapiens upper molars. Similar structures also referred to as Carabelli's trait have been reported in apes and fossil hominins. However, the morphological development and homology of these mesiolingual structures among hominoids are poorly understood. In this study, we employ micro-computed tomography to image the enamel-dentine junction (EDJ) and outer enamel surface (OES) of Pan (n = 48) and H. sapiens (n = 52) upper molars. We investigate the developmental origin of mesiolingual features in these taxa and establish the relative contribution of the EDJ and enamel cap to feature expression. Results demonstrate that mesiolingual features of H. sapiens molars develop at the EDJ and are similarly expressed at the OES. Morphological variation at both surfaces in this taxon can satisfactorily be assessed using standards for Carabelli's trait developed by the Arizona State University Dental Anthropology System (ASUDAS). Relative to H. sapiens, Pan has an even greater degree of correspondence in feature expression between the EDJ and OES. Morphological manifestations in Pan molars are not necessarily limited to the protocone and are best characterized by a lingual cingulum that cannot be captured by the ASUDAS. Cusp-like structures, similar to those seen in marked Carabelli's trait expressions in H. sapiens, were not found in Pan. This study provides a foundation for further analyses on the evolutionary history of mesiolingual dental traits within the hominoid lineage. It also highlights the wealth of morphological data that can be obtained at the EDJ for understanding tooth development and for characterizing tooth crown variation in worn fossil teeth. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Computer-aided design of curved surfaces with automatic model generation

    Science.gov (United States)

    Staley, S. M.; Jerard, R. B.; White, P. R.

    1980-01-01

    The design and visualization of three-dimensional objects with curved surfaces have always been difficult. The paper given below describes a computer system which facilitates both the design and visualization of such surfaces. The system enhances the design of these surfaces by virtue of various interactive techniques coupled with the application of B-Spline theory. Visualization is facilitated by including a specially built model-making machine which produces three-dimensional foam models. Thus, the system permits the designer to produce an inexpensive model of the object which is suitable for evaluation and presentation.

  7. Numerical modelling of surface waves generated by low frequency electromagnetic field for silicon refinement process

    Science.gov (United States)

    Geža, V.; Venčels, J.; Zāģeris, Ģ.; Pavlovs, S.

    2018-05-01

    One of the most perspective methods to produce SoG-Si is refinement via metallurgical route. The most critical part of this route is refinement from boron and phosphorus, therefore, approach under development will address this problem. An approach of creating surface waves on silicon melt’s surface is proposed in order to enlarge its area and accelerate removal of boron via chemical reactions and evaporation of phosphorus. A two dimensional numerical model is created which include coupling of electromagnetic and fluid dynamic simulations with free surface dynamics. First results show behaviour similar to experimental results from literature.

  8. Kinetics and thermodynamics studies on the BMP-2 adsorption onto hydroxyapatite surface with different multi-morphological features

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zhiwei; Huangfu, Changxin; Wang, Yanying; Ge, Hongwei; Yao, Yao; Zou, Ping; Wang, Guangtu [College of Science, Sichuan Agricultural University, Ya' an 625014 (China); He, Hua [Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Wenjiang, Sichuan 611130 (China); Rao, Hanbing, E-mail: rhbscu@gmail.com [College of Science, Sichuan Agricultural University, Ya' an 625014 (China)

    2015-07-01

    The effect of the surface topography on protein adsorption process is of great significance for designing hydroxyapatite (HA) ceramic material surfaces. In this work, three different topographies of HA materials HA-sheet, HA-rod, and HA-whisker were synthesized and testified by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Brunauer–Emmett–Teller (BET) and a field emission scanning electron microscopy (FE-SEM). We have systematically investigated the adsorption kinetics and thermodynamics of bone morphogenetic proteins (BMP-2) on the three different topography surfaces of HA, respectively. The results showed that the maximum adsorption capacities of HA-sheet, HA-rod and HA-whisker were (219.96 ± 10.18), (247.13 ± 12.35), and (354.67 ± 17.73) μg · g{sup −1}, respectively. Kinetic parameters, rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated as well as discussed. It demonstrated that the adsorption of BMP-2 onto HA could be described by the pseudo second-order equation. Adsorption of BMP-2 onto HA followed the Langmuir isotherm. It confirmed that compared with other samples HA-whisker had more adsorption sites for its high specific surface area which could provide more opportunities for protein molecules. The adsorption processes were endothermic (ΔH > 0), spontaneous (ΔG < 0) and entropy increasing (ΔS > 0). A possible adsorption mechanism has been proposed. In addition, the BMP-2 could be adsorbed to the surface which existed slight conformational changes by FT-IR. - Highlights: • A novel protein adsorption studies based on sheet, rod and whisker of HA were designed. • Kinetic and thermodynamics parameters of BMP-2 and HA bonded materials were evaluated. • Surface topographies of the HA effect BMP-2 adsorption • The HA-whisker material had excellent adsorption performance for protein enrichment. • The electrostatic interaction is responsible for the

  9. Kinetics and thermodynamics studies on the BMP-2 adsorption onto hydroxyapatite surface with different multi-morphological features

    International Nuclear Information System (INIS)

    Lu, Zhiwei; Huangfu, Changxin; Wang, Yanying; Ge, Hongwei; Yao, Yao; Zou, Ping; Wang, Guangtu; He, Hua; Rao, Hanbing

    2015-01-01

    The effect of the surface topography on protein adsorption process is of great significance for designing hydroxyapatite (HA) ceramic material surfaces. In this work, three different topographies of HA materials HA-sheet, HA-rod, and HA-whisker were synthesized and testified by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Brunauer–Emmett–Teller (BET) and a field emission scanning electron microscopy (FE-SEM). We have systematically investigated the adsorption kinetics and thermodynamics of bone morphogenetic proteins (BMP-2) on the three different topography surfaces of HA, respectively. The results showed that the maximum adsorption capacities of HA-sheet, HA-rod and HA-whisker were (219.96 ± 10.18), (247.13 ± 12.35), and (354.67 ± 17.73) μg · g −1 , respectively. Kinetic parameters, rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated as well as discussed. It demonstrated that the adsorption of BMP-2 onto HA could be described by the pseudo second-order equation. Adsorption of BMP-2 onto HA followed the Langmuir isotherm. It confirmed that compared with other samples HA-whisker had more adsorption sites for its high specific surface area which could provide more opportunities for protein molecules. The adsorption processes were endothermic (ΔH > 0), spontaneous (ΔG < 0) and entropy increasing (ΔS > 0). A possible adsorption mechanism has been proposed. In addition, the BMP-2 could be adsorbed to the surface which existed slight conformational changes by FT-IR. - Highlights: • A novel protein adsorption studies based on sheet, rod and whisker of HA were designed. • Kinetic and thermodynamics parameters of BMP-2 and HA bonded materials were evaluated. • Surface topographies of the HA effect BMP-2 adsorption • The HA-whisker material had excellent adsorption performance for protein enrichment. • The electrostatic interaction is responsible for the BMP-2

  10. Surface and buried interfacial structures of epoxy resins used as underfills studied by sum frequency generation vibrational spectroscopy.

    Science.gov (United States)

    Vázquez, Anne V; Holden, Brad; Kristalyn, Cornelius; Fuller, Mike; Wilkerson, Brett; Chen, Zhan

    2011-05-01

    Flip chip technology has greatly improved the performance of semiconductor devices, but relies heavily on the performance of epoxy underfill adhesives. Because epoxy underfills are cured in situ in flip chip semiconductor devices, understanding their surface and interfacial structures is critical for understanding their adhesion to various substrates. Here, sum frequency generation (SFG) vibrational spectroscopy was used to study surface and buried interfacial structures of two model epoxy resins used as underfills in flip chip devices, bisphenol A digylcidyl ether (BADGE) and 1,4-butanediol diglycidyl ether (BDDGE). The surface structures of these epoxies were compared before and after cure, and the orientations of their surface functional groups were deduced to understand how surface structural changes during cure may affect adhesion properties. Further, the effect of moisture exposure, a known cause of adhesion failure, on surface structures was studied. It was found that the BADGE surface significantly restructured upon moisture exposure while the BDDGE surface did not, showing that BADGE adhesives may be more prone to moisture-induced delamination. Lastly, although surface structure can give some insight into adhesion, buried interfacial structures more directly correspond to adhesion properties of polymers. SFG was used to study buried interfaces between deuterated polystyrene (d-PS) and the epoxies before and after moisture exposure. It was shown that moisture exposure acted to disorder the buried interfaces, most likely due to swelling. These results correlated with lap shear adhesion testing showing a decrease in adhesion strength after moisture exposure. The presented work showed that surface and interfacial structures can be correlated to adhesive strength and may be helpful in understanding and designing optimized epoxy underfill adhesives.

  11. Data acquisition and processing system and method for investigating sub-surface features of a rock formation

    Science.gov (United States)

    Vu, Cung Khac; Nihei, Kurt; Johnson, Paul A; Guyer, Robert; Ten Cate, James A; Le Bas, Pierre-Yves; Larmat, Carene S

    2015-01-27

    A system and a method includes generating a first signal at a first frequency; and a second signal at a second frequency. Respective sources are positioned within the borehole and controllable such that the signals intersect in an intersection volume outside the borehole. A receiver detects a difference signal returning to the borehole generated by a non-linear mixing process within the intersection volume, and records the detected signal and stores the detected signal in a storage device and records measurement parameters including a position of the first acoustic source, a position of the second acoustic source, a position of the receiver, elevation angle and azimuth angle of the first acoustic signal and elevation angle and azimuth angle of the second acoustic signal.

  12. Negentropy Generation and Fractality in the Dry Friction of Polished Surfaces

    Directory of Open Access Journals (Sweden)

    Mordecai Segall

    2010-03-01

    Full Text Available We consider the Robin Hood model of dry friction to study entropy transfer during sliding. For the polished surface (steady state we study the probability distribution of slips and find an exponential behavior for all the physically relevant asperity interaction-distance thresholds. In addition, we characterize the time evolution of the sample by its spatial fractal dimension and by its entropy content. Starting from an unpolished surface, the entropy decreases during the Robin Hood process, until it reaches a plateau; thereafter the system fluctuates above the critical height. This validates the notion that friction increases information in the neighborhood of the contacting surface at the expense of losing information in remote regions. We explain the practical relevance of these results for engineering surface processing such as honing.

  13. On some investigation features of sorption of flotation reagents labelled by soft β-emitters on mineral surface

    International Nuclear Information System (INIS)

    Korobochkin, V.P.; Gladyshev, V.P.; Latypova, O.A.

    1983-01-01

    A correction for self-absorption, taking into account concrete dimensions of mineral grain during sorption of flotation reagents on mineral surface is deduced. On the basis of the regularity obtained problems of the sensitivity of the determination method of reagent activity sorbed by minerals which are labelled by radioactive isotopes are considered. Improved technique is described and statistical analysis of the experimental data obtained is carried out

  14. Renal Epithelial Cell Injury Induced by Calcium Oxalate Monohydrate Depends on their Structural Features: Size, Surface, and Crystalline Structure.

    Science.gov (United States)

    Sun, Xin-Yuan; Ouyang, Jian-Ming; Gan, Qiong-Zhi; Liu, Ai-Jie

    2016-11-01

    Urinary crystals in normal and kidney stone patients often differ in crystal sizes and surface structures, but the effects of different crystal properties on renal tubular epithelial cells remain unclear. This study aimed to compare the cytotoxicity of micron/nano-calcium oxalate monohydrate (COM) crystals with sizes of 50 nm, 200 nm, 1 μm, 3 μm, and 10 μm to African green monkey renal epithelial (Vero) cells, to reveal the effect of crystal size and surface structure on cell injury, and to investigate the pathological mechanism of calcium oxalate kidney stones. Cell viability, cellular biochemical parameters, and internalized crystal amount in Vero cells were closely associated with the size of COM crystals. At the same concentration (200 μg/mL), COM-1 μm induced the most serious injury to Vero cells and caused the most significant change to cellular biochemical parameters, which were related to the specific porous structure and highest internalized amount in Vero cells. By contrast, COM-50 nm and COM-200 nm crystals lost their small size effect because of serious aggregation and weakened their toxicity to cells. COM-3 μm and COM-10 μm crystals were too large for cells to completely internalize; these crystals also exhibited a low specific surface area and thus weakened their toxicity. The excessive expression of intracellular ROS and reduction of the free-radical scavenger SOD were the main reasons for cell injury and eventually caused necrotic cell death. Crystal size, surface structure, aggregation, and internalization amount were closely related to the cytotoxicity of COM crystals.

  15. Solvothermal growth of a ruthenium metal-organic framework featuring HKUST-1 structure type as thin films on oxide surfaces.

    Science.gov (United States)

    Kozachuk, Olesia; Yusenko, Kirill; Noei, Heshmat; Wang, Yuemin; Walleck, Stephan; Glaser, Thorsten; Fischer, Roland A

    2011-08-14

    Phase-pure crystalline thin films of a mixed-valence Ru(2)(II,III) metal-organic framework with 1,3,5-benzenetricarboxylate (btc) as a linker were solvothermally grown on amorphous alumina and silica surfaces. Based on the Rietveld refinement, the structure of Ru-MOF was assigned to be analogous to [Cu(3)(btc)(2)] (HKUST-1). This journal is © The Royal Society of Chemistry 2011

  16. Modeling of Ground Deformation and Shallow Surface Waves Generated by Martian Dust Devils and Perspectives for Near-Surface Structure Inversion

    Science.gov (United States)

    Kenda, Balthasar; Lognonné, Philippe; Spiga, Aymeric; Kawamura, Taichi; Kedar, Sharon; Banerdt, William Bruce; Lorenz, Ralph; Banfield, Don; Golombek, Matthew

    2017-10-01

    We investigated the possible seismic signatures of dust devils on Mars, both at long and short period, based on the analysis of Earth data and on forward modeling for Mars. Seismic and meteorological data collected in the Mojave Desert, California, recorded the signals generated by dust devils. In the 10-100 s band, the quasi-static surface deformation triggered by pressure fluctuations resulted in detectable ground-tilt effects: these are in good agreement with our modeling based on Sorrells' theory. In addition, high-frequency records also exhibit a significant excitation in correspondence to dust devil episodes. Besides wind noise, this signal includes shallow surface waves due to the atmosphere-surface coupling and is used for a preliminary inversion of the near-surface S-wave profile down to 50 m depth. In the case of Mars, we modeled the long-period signals generated by the pressure field resulting from turbulence-resolving Large-Eddy Simulations. For typical dust-devil-like vortices with pressure drops of a couple Pascals, the corresponding horizontal acceleration is of a few nm/s2 for rocky subsurface models and reaches 10-20 nm/s2 for weak regolith models. In both cases, this signal can be detected by the Very-Broad Band seismometers of the InSight/SEIS experiment up to a distance of a few hundred meters from the vortex, the amplitude of the signal decreasing as the inverse of the distance. Atmospheric vortices are thus expected to be detected at the InSight landing site; the analysis of their seismic and atmospheric signals could lead to additional constraints on the near-surface structure, more precisely on the ground compliance and possibly on the seismic velocities.

  17. Coherence and polarization speckle generated by a rough-surfaced retardation plate depolarizer

    DEFF Research Database (Denmark)

    Ma, Ning; Hanson, Steen Grüner; Takeda, Mitsuo

    2015-01-01

    of position introducing random phase differences between the two orthogonal components of the electric vector. Under the assumption of Gaussian statistics with zero mean, the surface model for the depolarizer of the rough-surfaced retardation plate is obtained. The propagation of the modulated fields through...... any quadratic optical system is examined within the framework of the complex ABCD matrix theory to show how the degree of coherence and polarization of the beam changes on propagation, including propagation in free space...

  18. Constraining the JULES land-surface model for different land-use types using citizen-science generated hydrological data

    Science.gov (United States)

    Chou, H. K.; Ochoa-Tocachi, B. F.; Buytaert, W.

    2017-12-01

    Community land surface models such as JULES are increasingly used for hydrological assessment because of their state-of-the-art representation of land-surface processes. However, a major weakness of JULES and other land surface models is the limited number of land surface parameterizations that is available. Therefore, this study explores the use of data from a network of catchments under homogeneous land-use to generate parameter "libraries" to extent the land surface parameterizations of JULES. The network (called iMHEA) is part of a grassroots initiative to characterise the hydrological response of different Andean ecosystems, and collects data on streamflow, precipitation, and several weather variables at a high temporal resolution. The tropical Andes are a useful case study because of the complexity of meteorological and geographical conditions combined with extremely heterogeneous land-use that result in a wide range of hydrological responses. We then calibrated JULES for each land-use represented in the iMHEA dataset. For the individual land-use types, the results show improved simulations of streamflow when using the calibrated parameters with respect to default values. In particular, the partitioning between surface and subsurface flows can be improved. But also, on a regional scale, hydrological modelling was greatly benefitted from constraining parameters using such distributed citizen-science generated streamflow data. This study demonstrates the modelling and prediction on regional hydrology by integrating citizen science and land surface model. In the context of hydrological study, the limitation of data scarcity could be solved indeed by using this framework. Improved predictions of such impacts could be leveraged by catchment managers to guide watershed interventions, to evaluate their effectiveness, and to minimize risks.

  19. Evaluation of the histological and mechanical features of tendon healing in a rabbit model with the use of second-harmonic-generation imaging and tensile testing.

    Science.gov (United States)

    Hase, E; Sato, K; Yonekura, D; Minamikawa, T; Takahashi, M; Yasui, T

    2016-11-01

    This study aimed to evaluate the histological and mechanical features of tendon healing in a rabbit model with second-harmonic-generation (SHG) imaging and tensile testing. A total of eight male Japanese white rabbits were used for this study. The flexor digitorum tendons in their right leg were sharply transected, and then were repaired by intratendinous stitching. At four weeks post-operatively, the rabbits were killed and the flexor digitorum tendons in both right and left legs were excised and used as specimens for tendon healing (n = 8) and control (n = 8), respectively. Each specimen was examined by SHG imaging, followed by tensile testing, and the results of the two testing modalities were assessed for correlation. While the SHG light intensity of the healing tendon samples was significantly lower than that of the uninjured tendon samples, 2D Fourier transform SHG images showed a clear difference in collagen fibre structure between the uninjured and the healing samples, and among the healing samples. The mean intensity of the SHG image showed a moderate correlation (R 2 = 0.37) with Young's modulus obtained from the tensile testing. Our results indicate that SHG microscopy may be a potential indicator of tendon healing.Cite this article: E. Hase, K. Sato, D. Yonekura, T. Minamikawa, M. Takahashi, T. Yasui. Evaluation of the histological and mechanical features of tendon healing in a rabbit model with the use of second-harmonic-generation imaging and tensile testing. Bone Joint Res 2016;5:577-585. DOI: 10.1302/2046-3758.511.BJR-2016-0162.R1. © 2016 Yasui et al.

  20. Generating Chondromimetic Mesenchymal Stem Cell Spheroids by Regulating Media Composition and Surface Coating.

    Science.gov (United States)

    Sridharan, BanuPriya; Laflin, Amy D; Detamore, Michael S

    2018-04-01

    Spheroids of mesenchymal stem cells (MSCs) in cartilage tissue engineering have been shown to enhance regenerative potential owing to their 3D structure. In this study, we explored the possibility of priming spheroids under different media to replace the use of inductive surface coatings for chondrogenic differentiation. Rat bone marrow-derived MSCs were organized into cell spheroids by the hanging drop technique and subsequently cultured on hyaluronic acid (HA) coated or non-coated well plates under different cell media conditions. Endpoint analysis included cell viability, DNA and Glycosaminoglycan (GAG) and collagen content, gene expression and immunohistochemistry. For chondrogenic applications, MSC spheroids derived on non-coated surfaces outperformed the spheroids derived from HA-coated surfaces in matrix synthesis and collagen II gene expression. Spheroids on non-coated surfaces gave rise to the highest collagen and GAG when primed with medium containing insulin-like growth factor (IGF) for 1 week during spheroid formation. Spheroids that were grown in chondroinductive raw material-inclusive media such as aggrecan or chondroitin sulfate exhibited the highest Collagen II gene expression in the non-coated surface at 1 week. Media priming by growth factors and raw materials might be a more predictive influencer of chondrogenesis compared to inductive-surfaces. Such tailored bioactivity of the stem cell spheroids in the stage of the spheroid formation may give rise to a platform technology that may eventually produce spheroids capable of chondrogenesis achieved by mere media manipulation, skipping the need for additional culture on a modified surface, that paves the way for cost-effective technologies.

  1. Hyperspatial Thermal Imaging of Surface Hydrothermal Features at Pilgrim Hot Springs, Alaska using a small Unmanned Aerial System (sUAS)

    Science.gov (United States)

    Haselwimmer, C. E.; Wilson, R.; Upton, C.; Prakash, A.; Holdmann, G.; Walker, G.

    2013-12-01

    Thermal remote sensing provides a valuable tool for mapping and monitoring surface hydrothermal features associated with geothermal activity. The increasing availability of low-cost, small Unmanned Aerial Systems (sUAS) with integrated thermal imaging sensors offers a means to undertake very high spatial resolution (hyperspatial), quantitative thermal remote sensing of surface geothermal features in support of exploration and long-term monitoring efforts. Results from the deployment of a quadcopter sUAS equipped with a thermal camera over Pilgrim Hot Springs, Alaska for detailed mapping and heat flux estimation for hot springs, seeps, and thermal pools are presented. Hyperspatial thermal infrared imagery (4 cm pixels) was acquired over Pilgrim Hot Springs in July 2013 using a FLIR TAU 640 camera operating from an Aeryon Scout sUAS flying at an altitude of 40m. The registered and mosaicked thermal imagery is calibrated to surface temperature values using in-situ measurements of uniform blackbody tarps and the temperatures of geothermal and other surface pools acquired with a series of water temperature loggers. Interpretation of the pre-processed thermal imagery enables the delineation of hot springs, the extents of thermal pools, and the flow and mixing of individual geothermal outflow plumes with an unprecedented level of detail. Using the surface temperatures of thermal waters derived from the FLIR data and measured in-situ meteorological parameters the hot spring heat flux and outflow rate is calculated using a heat budget model for a subset of the thermal drainage. The heat flux/outflow rate estimates derived from the FLIR data are compared against in-situ measurements of the hot spring outflow rate recorded at the time of the thermal survey.

  2. Effect of the surface roughness on the seismic signal generated by a single rock impact: insight from laboratory experiments

    Science.gov (United States)

    Bachelet, Vincent; Mangeney, Anne; de Rosny, Julien; Toussaint, Renaud

    2016-04-01

    The seismic signal generated by rockfalls, landslides or avalanches is a unique tool to detect, characterize and monitor gravitational flow activity, with strong implication in terms of natural hazard monitoring. Indeed, as natural flows travel down the slope, they apply stresses on the ground, generating seismic waves in a wide frequency band. Our ultimate objective is to relate the granular flow properties to the generated signals that result from the different physical processes involved. We investigate here the more simple process: the impact of a single bead on a rough surface. Farin et al. [2015] have already shown theoretically and experimentally the existence of a link between the properties of an impacting bead (mass and velocity) on smooth surfaces, and the emitted signal (radiated elastic energy and mean frequency). This demonstrates that the single impactor properties can be deduced from the form of the emitted signal. We extend this work here by investigating the impact of single beads and gravels on rough and erodible surfaces. Experimentally, we drop glass and steel beads of diameters from 2 mm to 10 mm on a PMMA plate. The roughness of this last is obtained by gluing 3mm-diameter glass beads on one of its face. Free beads have been also added to get erodible beds. We track the dropped impactor motion, times between impacts and the generated acoustic waves using two fast cameras and 8 accelerometers. Cameras are used in addition to estimate the impactor rotation. We investigate the energy balance during the impact process, especially how the energy restitution varies as a function of the energy lost through acoustic waves. From these experiments, we clearly observe that even if more dissipative processes are involved (friction, grain reorganization, etc.), the single bead scaling laws obtained on smooth surfaces remain valid. A main result of this work is to quantify the fluctuations of the characteristic quantities such as the bounce angle, the

  3. Confirmatory Survey Results for the Reactor Building Dome Upper Structural Surfaces, Rancho Saco Nuclear Generating Station, Herald, California

    International Nuclear Information System (INIS)

    Wade C. Adams

    2006-01-01

    Results from a confirmatory survey of the upper structural surfaces of the Reactor Building Dome at the Rancho Seco Nuclear Generating Station (RSNGS) performed by the Oak Ridge Institute for Science and Education for the NRC. Also includes results of interlaboratory comparison analyses on several archived soil samples that would be provided by RSNGS personnel. The confirmatory surveys were performed on June 7 and 8, 2006

  4. Generation of functional scFv intrabody to abate the expression of CD147 surface molecule of 293A cells

    Directory of Open Access Journals (Sweden)

    Mai Sabine

    2008-01-01

    Full Text Available Abstract Background Expression of intracellular antibodies (intrabodies has become a broadly applicable technology for generation of phenotypic knockouts in vivo. The method uses surface depletion of cellular membrane proteins to examine their biological function. In this study, we used this strategy to block the transport of cell surface molecule CD147 to the cell membrane. Phage display technology was introduced to generate the functional antibody fragment to CD147, and we subsequently constructed a CD147-specific scFv that was expressed intracellularly and retained in the endoplasmic reticulum by adenoviral gene transfer. Results The recombinant antibody fragments, Fab and scFv, of the murine monoclonal antibody (clone M6-1B9 reacted specifically to CD147 by indirect enzyme-linked immunosorbent assays (ELISA using a recombinant CD147-BCCP as a target. This indicated that the Fab- and scFv-M6-1B9 displaying on phage surfaces were correctly folded and functionally active. We subsequently constructed a CD147-specific scFv, scFv-M6-1B9-intrabody, in 293A cells. The expression of CD147 on 293A cell surface was monitored at 36 h after transduction by flow cytometry and demonstrated remarkable reduction. Colocalization of scFv-M6-1B9 intrabody with CD147 in the ER network was depicted using a 3D deconvolution microscopy system. Conclusion The results suggest that our approach can generate antibody fragments suitable for decreasing the expression of CD147 on 293A cells. This study represents a step toward understanding the role of the cell surface protein, CD147.

  5. Real time estimation of generation, extinction and flow of muscle fibre action potentials in high density surface EMG.

    Science.gov (United States)

    Mesin, Luca

    2015-02-01

    Developing a real time method to estimate generation, extinction and propagation of muscle fibre action potentials from bi-dimensional and high density surface electromyogram (EMG). A multi-frame generalization of an optical flow technique including a source term is considered. A model describing generation, extinction and propagation of action potentials is fit to epochs of surface EMG. The algorithm is tested on simulations of high density surface EMG (inter-electrode distance equal to 5mm) from finite length fibres generated using a multi-layer volume conductor model. The flow and source term estimated from interference EMG reflect the anatomy of the muscle, i.e. the direction of the fibres (2° of average estimation error) and the positions of innervation zone and tendons under the electrode grid (mean errors of about 1 and 2mm, respectively). The global conduction velocity of the action potentials from motor units under the detection system is also obtained from the estimated flow. The processing time is about 1 ms per channel for an epoch of EMG of duration 150 ms. A new real time image processing algorithm is proposed to investigate muscle anatomy and activity. Potential applications are proposed in prosthesis control, automatic detection of optimal channels for EMG index extraction and biofeedback. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. A Versatile Star PEG Grafting Method for the Generation of Nonfouling and Nonthrombogenic Surfaces

    Directory of Open Access Journals (Sweden)

    Pradeep Kumar Thalla

    2013-01-01

    Full Text Available Polyethylene glycol (PEG grafting has a great potential to create nonfouling and nonthrombogenic surfaces, but present techniques lack versatility and stability. The present work aimed to develop a versatile PEG grafting method applicable to most biomaterial surfaces, by taking advantage of novel primary amine-rich plasma-polymerized coatings. Star-shaped PEG covalent binding was studied using static contact angle, X-ray photoelectron spectroscopy (XPS, and quartz crystal microbalance with dissipation monitoring (QCM-D. Fluorescence and QCM-D both confirmed strong reduction of protein adsorption when compared to plasma-polymerized coatings and pristine poly(ethyleneterephthalate (PET. Moreover, almost no platelet adhesion was observed after 15 min perfusion in whole blood. Altogether, our results suggest that primary amine-rich plasma-polymerized coatings offer a promising stable and versatile method for PEG grafting in order to create nonfouling and nonthrombogenic surfaces and micropatterns.

  7. Probability function of breaking-limited surface elevation. [wind generated waves of ocean

    Science.gov (United States)

    Tung, C. C.; Huang, N. E.; Yuan, Y.; Long, S. R.

    1989-01-01

    The effect of wave breaking on the probability function of surface elevation is examined. The surface elevation limited by wave breaking zeta sub b(t) is first related to the original wave elevation zeta(t) and its second derivative. An approximate, second-order, nonlinear, non-Gaussian model for zeta(t) of arbitrary but moderate bandwidth is presented, and an expression for the probability density function zeta sub b(t) is derived. The results show clearly that the effect of wave breaking on the probability density function of surface elevation is to introduce a secondary hump on the positive side of the probability density function, a phenomenon also observed in wind wave tank experiments.

  8. Color surface-flow visualization of fin-generated shock wave boundary-layer interactions

    Science.gov (United States)

    Lu, F. K.; Settles, G. S.

    1990-03-01

    Kerosene-lampblack mixtures with addition of a ground colored chalk were used in an experiment on visualizing surface flows of swept shock boundary-layer interactions. The results show that contrasting colors intensify the visualization of different regions of the interaction surface, and help the eye in following the fine streaks to locate the upstream influence. The study confirms observations of the separation occurring at shock strength below accepted values. The superiority of the reported technique over the previous monochrome technique is demonstrated.

  9. Surface trapping phenomena in thermionic emission generating l/f noise

    International Nuclear Information System (INIS)

    Stepanescu, A.

    1975-01-01

    A general expression of the power spectrum of''flicker noise'', involving stochastic trapping phenomena and calculated on the basis of a two parameter model, is applied in the case of thermoionic emission from cathode surface. The fluctuation of the work function over the cathode surface is interpreted as being due to a trapping process of foreign atoms by the cathode. Taking into account the very physical nature of the trapping mechanism, under self-consistent assumptions, a 1/f power spectrum is obtained in a certain range of frequency. The two parameter model removes some discrepancies involved in the preceding theories. (author)

  10. Methods for generation of reporter phages and immobilization of active bacteriophages on a polymer surface

    Science.gov (United States)

    Morgan, Mark Thomas (Inventor); Kothapalli, Aparna (Inventor); Applegate, Bruce Michael (Inventor); Perry, Lynda Louise (Inventor)

    2012-01-01

    Novel reporter bacteriophages are provided. Provided are compositions and methods that allow bacteriophages that are used for specific detection or killing of E. coli 0157:H7 to be propagated in nonpathogenic E. coli, thereby eliminating the safety and security risks of propagation in E. coli 0157:H7. Provided are compositions and methods for attaching active bacteriophages to the surface of a polymer in order to kill target bacteria with which the phage comes into contact. Provided are modified bacteriophages immobilized to a surface, which capture E. coli 0157:H7 and cause the captured cells to emit light or fluorescence, allowing detection of the bacteria in a sample.

  11. Laser generation of nanostructures on the surface and in the bulk of solids

    International Nuclear Information System (INIS)

    Bityurin, N M

    2010-01-01

    This paper considers nanostructuring of solid surfaces by nano-optical techniques, primarily by laser particle nanolithography. Threshold processes are examined that can be used for laser structuring of solid surfaces, with particular attention to laser swelling of materials. Fundamental spatial resolution issues in three-dimensional (3D) laser nanostructuring are analysed with application to laser nanopolymerisation and 3D optical information recording. The formation of nanostructures in the bulk of solids due to their structural instability under irradiation is exemplified by photoinduced formation of nanocomposites. (photonics and nanotechnology)

  12. The diffusion mechanism and convective transport in the formation of surface anomalies of RADON-222 generated at depth

    International Nuclear Information System (INIS)

    Pereira, E.B.; Hamza, V.M.

    1982-01-01

    A preliminar study on the importance of a thermally-activated convective transport of radon is made in order to explain radon anomalies at surface generated at great depth. It is theoretically shown that convective currents should be of the order of 10 μm/s or larger to explain such anomalies. The influence of surface temperature changes on the convective transport is also discussed. Seasonal changes in temperature typical of climates such as that of southern Brazil can develop thermal inversion layers at depths up to 20 metres. The optimum period of the year for the employment of surface emanometric techniques is during the second and the third months after the winter peak when the thermal inversion barriers are less intense. (Author) [pt

  13. Surface roughness effects on onset of nucleate boiling and net vapor generation point in subcooled flow boiling

    International Nuclear Information System (INIS)

    Ohtake, Hiroyasu; Wada, Noriyoshi; Koizumi, Yasuo

    2003-01-01

    The ability to predict void formation and void fraction in subcooled flow boiling is of importance to the nuclear reactor technology because the presence of voids affects the steady state and transient response of a reactor. The onset of nucleate boiling and the point of net vapor generation on subcooled flow boiling, focusing on surface roughness, liquid subcooling and liquid velocity were investigated experimentally and analytically. Experiments were conducted using a copper thin-film and subcooled water in a range of the liquid velocity from 0.27 to 4.6 m/s at 0.10MPa; the liquid subcoolings were 20, 30 and 40K, respectively. The surface roughness on the test heater was observed by SEM. Experimental results showed that temperatures at the onset nucleate boiling increased with increasing the liquid subcoolings or the liquid velocities. The trend of increase in the temperature at the ONB was in good agreement with the present analytical result based on the stability theory of preexisting nuclei. The measured results for the net vapor generation point agreed well with the results of correlation by Saha and Zuber in the range of the present experiments. The temperature at the ONB decreased with an increasing size of surface roughness, while the NVG-point was independent on the surface roughness. The dependence on the ONB temperature of the roughness size was also represented well by the present analytical model

  14. Plasminogen Binding Proteins and Plasmin Generation on the Surface of Leptospira spp.: The Contribution to the Bacteria-Host Interactions

    Directory of Open Access Journals (Sweden)

    Monica L. Vieira

    2012-01-01

    Full Text Available Leptospirosis is considered a neglected infectious disease of human and veterinary concern. Although extensive investigations on host-pathogen interactions have been pursued by several research groups, mechanisms of infection, invasion and persistence of pathogenic Leptospira spp. remain to be elucidated. We have reported the ability of leptospires to bind human plasminogen (PLG and to generate enzimatically active plasmin (PLA on the bacteria surface. PLA-coated Leptospira can degrade immobilized ECM molecules, an activity with implications in host tissue penetration. Moreover, we have identified and characterized several proteins that may act as PLG-binding receptors, each of them competent to generate active plasmin. The PLA activity associated to the outer surface of Leptospira could hamper the host immune attack by conferring the bacteria some benefit during infection. The PLA-coated leptospires obstruct complement C3b and IgG depositions on the bacterial surface, most probably through degradation. The decrease of leptospiral opsonization might be an important aspect of the immune evasion strategy. We believe that the presence of PLA on the leptospiral surface may (i facilitate host tissue penetration, (ii help the bacteria to evade the immune system and, as a consequence, (iii permit Leptospira to reach secondary sites of infection.

  15. Method of processing results of tests of heating surfaces of a steam generator on a digital computer

    Energy Technology Data Exchange (ETDEWEB)

    Glusker, B.N.

    1975-03-01

    At present, processing of information obtained by testing steam generators in high-capacity generating units is carried out manually. This takes a long time and does not always permit one to process all the information obtained, which impoverishes the results of experimental work. In addition, this kind of processing of experimental results is as a rule done after completion of a considerable part of the tests, and occasionally after completion of all the tests. In this case, it is impossible to conduct a better directed, corrected experiment, and this leads to duplication of experiments and to increasing the period of adjusting and exploratory work on industrial plants. An algorithm was developed for automated processing of the hydraulic and temperature conditions of the heating surfaces in steam generators on digital computers, which is a part of the general algorithm of processing of results of thermal tests of steam generators. It includes calculation of all characteristics determining the thermal and hydraulic conditions of the heating surfaces. The program of processing includes a subprogram: determination of the thermophysical and thermodynamic properties of the water and steam.

  16. Surface runoff in flat terrain: How field topography and runoff generating processes control hydrological connectivity

    NARCIS (Netherlands)

    Appels, W.M.; Bogaart, P.W.; Bogaart, P.W.; Zee, van der S.E.A.T.M.

    2016-01-01

    In flat lowland agricultural catchments in temperate climate zones with highly permeable sandy soils, surface runoff is a rare process with a large impact on the redistribution of sediments and solutes and stream water quality. We examine hydrological data obtained on two field sites in the

  17. Generation of Recommendable Values for the Surface Tension of Water Using a Nonparametric Regression

    Czech Academy of Sciences Publication Activity Database

    Pátek, Jaroslav; Součková, Monika; Klomfar, Jaroslav

    2016-01-01

    Roč. 61, č. 2 (2016), s. 928-935 ISSN 0021-9568 R&D Projects: GA ČR GA13-00145S Institutional support: RVO:61388998 Keywords : water * surface tension * experimental data * recommended data Subject RIV: BJ - Thermodynamics Impact factor: 2.323, year: 2016

  18. Characterization of EUV induced carbon films using laser-generated surface acoustic waves

    NARCIS (Netherlands)

    Chen, Juequan; Lee, Christopher James; Louis, Eric; Bijkerk, Frederik; Kunze, Reinhard; Schmidt, Hagen; Schneider, Dieter; Moors, Roel

    2009-01-01

    The deposition of carbon layers on the surfaces of optics exposed to extreme ultraviolet (EUV) radiation has been observed in EUV lithography. It has become of critical importance to detect the presence of the carbon layer in the order of nanometer thickness due to carbon's extremely strong

  19. Design Options to Reduce Development Cost of First Generation Surface Reactors

    International Nuclear Information System (INIS)

    Poston, David I.; Marcille, Thomas F.

    2006-01-01

    Low-power surface reactors have the potential to have the lowest development cost of any space reactor application, primarily because system alpha (mass/kg) is not of utmost importance and mission lifetimes do not have to be a decade or more. Even then, the development cost of a surface reactor can vary substantially depending on the performance requirements (e.g. mass, power, lifetime, reliability) and technical development risk deemed acceptable by the end-user. It is important for potential users to be aware of these relationships before they determine their future architecture (i.e. decide what they need). Generally, the greatest potential costs of a space reactor program are a nuclear-powered ground test and extensive material development campaigns, so it is important to consider options that can minimize the need for or complexity of such tasks. The intended goal of this paper is to inform potential surface reactor users of the potential sensitivities of surface reactor development cost to design requirements, and areas where technical risk can be traded with development cost

  20. Generation of triangulated random surfaces by the Monte Carlo method in the grand canonical ensemble

    International Nuclear Information System (INIS)

    Zmushko, V.V.; Migdal, A.A.

    1987-01-01

    A model of triangulated random surfaces which is the discrete analog of the Polyakov string is considered. An algorithm is proposed which enables one to study the model by the Monte Carlo method in the grand canonical ensemble. Preliminary results on the determination of the critical index γ are presented

  1. Characterization methods of nano-patterned surfaces generated by induction heating assisted injection molding

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Ravn, Christian; Menotti, Stefano

    2015-01-01

    An induction heating-assisted injection molding (IHAIM) process developed by the authors is used to replicate surfaces containing random nano-patterns. The injection molding setup is developed so that an induction heating system rapidly heats the cavity wall at rates of up to 10◦C/s. In order...

  2. Ultra short pulse laser generated surface textures for anti-ice applications in aviation

    NARCIS (Netherlands)

    Römer, G.W.; Del Cerro, D.A.; Sipkema, R.C.J.; Groenendijk, M.N.W.; Huis in 't Veld, A.J.

    2009-01-01

    By laser ablation with ultra short laser pulses in the pico- and femto-second range, well controlled dual scaled micro- and nano-scaled surface textures can be obtained. The micro-scale of the texture is mainly determined by the dimensions of the laser spot, whereas the superimposed nano-structure

  3. Falling Leaves Inspired ZnO Nanorods-Nanoslices Hierarchical Structure for Implant Surface Modification with Two Stage Releasing Features.

    Science.gov (United States)

    Liao, Hang; Miao, Xinxin; Ye, Jing; Wu, Tianlong; Deng, Zhongbo; Li, Chen; Jia, Jingyu; Cheng, Xigao; Wang, Xiaolei

    2017-04-19

    Inspired from falling leaves, ZnO nanorods-nanoslices hierarchical structure (NHS) was constructed to modify the surfaces of two widely used implant materials: titanium (Ti) and tantalum (Ta), respectively. By which means, two-stage release of antibacterial active substances were realized to address the clinical importance of long-term broad-spectrum antibacterial activity. At early stages (within 48 h), the NHS exhibited a rapid releasing to kill the bacteria around the implant immediately. At a second stage (over 2 weeks), the NHS exhibited a slow releasing to realize long-term inhibition. The excellent antibacterial activity of ZnO NHS was confirmed once again by animal test in vivo. According to the subsequent experiments, the ZnO NHS coating exhibited the great advantage of high efficiency, low toxicity, and long-term durability, which could be a feasible manner to prevent the abuse of antibiotics on implant-related surgery.

  4. Evaluation of biocidal efficacy of copper alloy coatings in comparison with solid metal surfaces: generation of organic copper phosphate nanoflowers.

    Science.gov (United States)

    Gutierrez, H; Portman, T; Pershin, V; Ringuette, M

    2013-03-01

    To analyse the biocidal efficacy of thermal sprayed copper surfaces. Copper alloy sheet metals containing >60% copper have been shown to exhibit potent biocidal activity. Surface biocidal activity was assessed by epifluorescence microscopy. After 2-h exposure at 20 °C in phosphate-buffered saline (PBS), contact killing of Gram-negative Escherichia coli and Gram-positive Staphylococcus epidermidis by brass sheet metal and phosphor bronze was 3-4-times higher than that by stainless steel. SEM observations revealed that the surface membranes of both bacterial strains were slightly more irregular when exposed to brass sheet metal than stainless steel. However, when exposed to phosphor bronze coating, E. coli were 3-4 times larger with irregular membrane morphology. In addition, the majority of the cells were associated with spherical carbon-copper-phosphate crystalline nanostructures characteristic of nanoflowers. The membranes of many of the S. epidermidis exhibited blebbing, and a small subset was also associated with nanoflowers. Our data indicate that increasing the surface roughness of copper alloys had a pronounced impact on the membrane integrity of Gram-positive and, to a lesser degree, Gram-negative bacteria. In the presence of PBS, carbon-copper-phosphate-containing nanoflowers were formed, likely nucleated by components derived from killed bacteria. The intimate association of the bacteria with the nanoflowers and phosphor bronze coating likely contributed to their nonreversible adhesion. Thermal spraying of copper alloys provides a strategy for the rapid coating of three-dimensional organic and inorganic surfaces with biocidal copper alloys. Our study demonstrates that the macroscale surface roughness generated by the thermal spray process enhances the biocidal activity of copper alloys compared with the nanoscale surface roughness of copper sheet metals. Moreover, the coating surface topography provides conditions for the rapid formation of organic copper

  5. Thermal generation of the magnetic field in the surface layers of massive stars

    Science.gov (United States)

    Urpin, V.

    2017-11-01

    A new magnetic field-generation mechanism based on the Nernst effect is considered in hot massive stars. This mechanism can operate in the upper atmospheres of O and B stars where departures from the LTE form a region with the inverse temperature gradient.

  6. Laguerre-Gauss beam generation in IR and UV by subwavelength surface-relief gratings

    DEFF Research Database (Denmark)

    Vertchenko, Larissa; Shkondin, Evgeniy; Malureanu, Radu

    2017-01-01

    layerdepositions and dry etch techniques. We exploit the phenomenon of formbirefringence to give rise to the spin-to-orbital angular momentum conversion.We demonstrate that these plates can generate beams with high quality for theUV and IR range, allowing them to interact with high power laser sources orinside...... laser cavities....

  7. Controllable edge feature sharpening for dental applications.

    Science.gov (United States)

    Fan, Ran; Jin, Xiaogang

    2014-01-01

    This paper presents a new approach to sharpen blurred edge features in scanned tooth preparation surfaces generated by structured-light scanners. It aims to efficiently enhance the edge features so that the embedded feature lines can be easily identified in dental CAD systems, and to avoid unnatural oversharpening geometry. We first separate the feature regions using graph-cut segmentation, which does not require a user-defined threshold. Then, we filter the face normal vectors to propagate the geometry from the smooth region to the feature region. In order to control the degree of the sharpness, we propose a feature distance measure which is based on normal tensor voting. Finally, the vertex positions are updated according to the modified face normal vectors. We have applied the approach to scanned tooth preparation models. The results show that the blurred edge features are enhanced without unnatural oversharpening geometry.

  8. Controllable Edge Feature Sharpening for Dental Applications

    Directory of Open Access Journals (Sweden)

    Ran Fan

    2014-01-01

    Full Text Available This paper presents a new approach to sharpen blurred edge features in scanned tooth preparation surfaces generated by structured-light scanners. It aims to efficiently enhance the edge features so that the embedded feature lines can be easily identified in dental CAD systems, and to avoid unnatural oversharpening geometry. We first separate the feature regions using graph-cut segmentation, which does not require a user-defined threshold. Then, we filter the face normal vectors to propagate the geometry from the smooth region to the feature region. In order to control the degree of the sharpness, we propose a feature distance measure which is based on normal tensor voting. Finally, the vertex positions are updated according to the modified face normal vectors. We have applied the approach to scanned tooth preparation models. The results show that the blurred edge features are enhanced without unnatural oversharpening geometry.

  9. Generation of murine tumor cell lines deficient in MHC molecule surface expression using the CRISPR/Cas9 system.

    Directory of Open Access Journals (Sweden)

    Krishna Das

    Full Text Available In this study, the CRISPR/Cas9 technology was used to establish murine tumor cell lines, devoid of MHC I or MHC II surface expression, respectively. The melanoma cell line B16F10 and the murine breast cancer cell line EO-771, the latter stably expressing the tumor antigen NY-BR-1 (EO-NY, were transfected with an expression plasmid encoding a β2m-specific single guide (sgRNA and Cas9. The resulting MHC I negative cells were sorted by flow cytometry to obtain single cell clones, and loss of susceptibility of peptide pulsed MHC I negative clones to peptide-specific CTL recognition was determined by IFNγ ELISpot assay. The β2m knockout (KO clones did not give rise to tumors in syngeneic mice (C57BL/6N, unless NK cells were depleted, suggesting that outgrowth of the β2m KO cell lines was controlled by NK cells. Using sgRNAs targeting the β-chain encoding locus of the IAb molecule we also generated several B16F10 MHC II KO clones. Peptide loaded B16F10 MHC II KO cells were insusceptible to recognition by OT-II cells and tumor growth was unaltered compared to parental B16F10 cells. Thus, in our hands the CRISPR/Cas9 system has proven to be an efficient straight forward strategy for the generation of MHC knockout cell lines. Such cell lines could serve as parental cells for co-transfection of compatible HLA alleles together with human tumor antigens of interest, thereby facilitating the generation of HLA matched transplantable tumor models, e.g. in HLAtg mouse strains of the newer generation, lacking cell surface expression of endogenous H2 molecules. In addition, our tumor cell lines established might offer a useful tool to investigate tumor reactive T cell responses that function independently from MHC molecule surface expression by the tumor.

  10. Surface Generation Modeling in Ball Nose End Milling: a review of relevant literature

    DEFF Research Database (Denmark)

    Bissacco, Giuliano

    One of the most common metal removal operation used in industry is the milling process. This machining process is well known since the beginning of last century and has experienced, along the years, many improvements of the basic technology, as concerns tools, machine tools, coolants...... to be adjusted afterwards. Nevertheless, many efforts have been done during the last 50 years in order to realize prediction tools for machining processes and particularly for conventional turning and milling operations. Most of these models aim at prediction of cutting forces tool wear and tool life. However...... been addressed in this direction. Among all the machining operations, ball nose end milling has shown great potentials, particularly in machining of sculptured surfaces with high requirements in terms of surface finish; this is due to the good spatial agreement of the mill shape with the geometry...

  11. Comparison of deposited surface area of airborne ultrafine particles generated from two welding processes.

    Science.gov (United States)

    Gomes, J F; Albuquerque, P C; Miranda, Rosa M; Santos, Telmo G; Vieira, M T

    2012-09-01

    This article describes work performed on the assessment of the levels of airborne ultrafine particles emitted in two welding processes metal-active gas (MAG) of carbon steel and friction-stir welding (FSW) of aluminium in terms of deposited area in alveolar tract of the lung using a nanoparticle surface area monitor analyser. The obtained results showed the dependence from process parameters on emitted ultrafine particles and clearly demonstrated the presence of ultrafine particles, when compared with background levels. The obtained results showed that the process that results on the lower levels of alveolar-deposited surface area is FSW, unlike MAG. Nevertheless, all the tested processes resulted in important doses of ultrafine particles that are to be deposited in the human lung of exposed workers.

  12. Surface treatment by the ion flow from electron beam generated plasma in the forevacuum pressure range

    Directory of Open Access Journals (Sweden)

    Klimov Aleksandr

    2018-01-01

    Full Text Available The paper presents research results of peculiarities of gas ion flows usage and their generation from large plasma formation (>50 sq.cm obtained by electron beam ionization of gas in the forevacuum pressure range. An upgraded source was used for electron beam generation, which allowed obtaining ribbon electron beam with no transmitting magnetic field. Absence of magnetic field in the area of ion flow formation enables to obtain directed ion flows without distorting their trajectories. In this case, independent control of current and ion energy is possible. The influence of electron beam parameters on the parameters of beam plasma and ion flow – current energy and density – was determined. The results of alumina ceramics treatment with a beam plasma ions flow are given.

  13. Method of generating magnetoactive plasma for forming thin surface layers on solid substrates and equipment therefor

    International Nuclear Information System (INIS)

    Bardos, L.; Loncar, G.; Musil, J.; Zacek, F.

    1979-01-01

    The invention essentially consists in the use of the axially symmetrical high-frequency magnetized plasma column for thin layer formation. The plasma is generated using a cylindrical microwave slow-down structure in the outer magnetic field. Plasma particles density and temperature and their radial distribution are adjusted by changing the intensity of the magnetic field and of high-frequency power. The plasma may be generated from any gases in a pressure range of 10 -3 to 10 2 Pa. In an oxygen plasma, e.g., it is thus possible to form layers of 200 nm in thickness in 60 mins at an input high-frequency power of 100 to 300 W. (J.U.)

  14. Surface pretreatment of plastics with an atmospheric pressure plasma jet - Influence of generator power and kinematics

    International Nuclear Information System (INIS)

    Moritzer, E.; Leister, C.

    2014-01-01

    The industrial use of atmospheric pressure plasmas in the plastics processing industry has increased significantly in recent years. Users of this treatment process have the possibility to influence the target values (e.g. bond strength or surface energy) with the help of kinematic and electrical parameters. Until now, systematic procedures have been used with which the parameters can be adapted to the process or product requirements but only by very time-consuming methods. For this reason, the relationship between influencing values and target values will be examined based on the example of a pretreatment in the bonding process with the help of statistical experimental design. Because of the large number of parameters involved, the analysis is restricted to the kinematic and electrical parameters. In the experimental tests, the following factors are taken as parameters: gap between nozzle and substrate, treatment velocity (kinematic data), voltage and duty cycle (electrical data). The statistical evaluation shows significant relationships between the parameters and surface energy in the case of polypropylene. An increase in the voltage and duty cycle increases the polar proportion of the surface energy, while a larger gap and higher velocity leads to lower energy levels. The bond strength of the overlapping bond is also significantly influenced by the voltage, velocity and gap. The direction of their effects is identical with those of the surface energy. In addition to the kinematic influences of the motion of an atmospheric pressure plasma jet, it is therefore especially important that the parameters for the plasma production are taken into account when designing the pretreatment processes

  15. Wiring of leakage alarm of heating surface of modular steam generator with liquid metal, especially sodium

    International Nuclear Information System (INIS)

    Banovec, J.; Vytopil, O.

    1980-01-01

    Each module or module assembly forming a steam generator houses a water-sodium leak detector connected to an evaluation circuit via an amplifier. One amplifier and one evaluation unit are assigned to each module. The evaluation circuit output is connected to an output alarm unit. Each leak detector is also connected to the corresponding evaluation circuit via a reference standard signal supply. The detector systems, amplifiers and evaluation circuits have a common signal supply. (J.P.)

  16. Heat transfer tube surface layers and the operating medium of WWER-440 steam generators

    International Nuclear Information System (INIS)

    Splichal, K; Krhounek, V.; Ruscak, M.; Rybka, R.

    1998-12-01

    Corrosion damage of steam generator tubes is dependent on the local secondary circuit environment parameters. The composition and morphology of the oxide and deposit layers were investigated. The liquid to solid phase ratios in slots were determined by the MULTEQ code, and the effect of changes in the various components on the aqueous medium parameters was examined. The parameters were evaluated with respect to their effect on the corrosion cracking of the austenitic steel. (author)

  17. FULLY AUTOMATED GENERATION OF ACCURATE DIGITAL SURFACE MODELS WITH SUB-METER RESOLUTION FROM SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    J. Wohlfeil

    2012-07-01

    Full Text Available Modern pixel-wise image matching algorithms like Semi-Global Matching (SGM are able to compute high resolution digital surface models from airborne and spaceborne stereo imagery. Although image matching itself can be performed automatically, there are prerequisites, like high geometric accuracy, which are essential for ensuring the high quality of resulting surface models. Especially for line cameras, these prerequisites currently require laborious manual interaction using standard tools, which is a growing problem due to continually increasing demand for such surface models. The tedious work includes partly or fully manual selection of tie- and/or ground control points for ensuring the required accuracy of the relative orientation of images for stereo matching. It also includes masking of large water areas that seriously reduce the quality of the results. Furthermore, a good estimate of the depth range is required, since accurate estimates can seriously reduce the processing time for stereo matching. In this paper an approach is presented that allows performing all these steps fully automated. It includes very robust and precise tie point selection, enabling the accurate calculation of the images’ relative orientation via bundle adjustment. It is also shown how water masking and elevation range estimation can be performed automatically on the base of freely available SRTM data. Extensive tests with a large number of different satellite images from QuickBird and WorldView are presented as proof of the robustness and reliability of the proposed method.

  18. Removal of carbon contaminations by RF plasma generated reactive species and subsequent effects on optical surface

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, P. K., E-mail: praveenyadav@rrcat.gov.in; Rai, S. K.; Modi, M. H.; Nayak, M.; Lodha, G. S. [Indus Synchrotron Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore-452013 (India); Kumar, M.; Chakera, J. A.; Naik, P. A. [Laser Plasma Laboratory, Laser Plasma Division, Raja Ramanna Centre for Advanced Technology, Indore-452013 (India)

    2015-06-24

    Carbon contamination on optical elements is a serious issue in synchrotron beam lines for several decades. The basic mechanism of carbon deposition on optics and cleaning strategies are not fully understood. Carbon growth mechanism and optimized cleaning procedures are worldwide under development stage. Optimized RF plasma cleaning is considered an active remedy for the same. In present study carbon contaminated optical test surfaces (carbon capped tungsten thin film) are exposed for 30 minutes to four different gases, rf plasma at constant power and constant dynamic pressure. Structural characterization (thickness, roughness and density) of virgin samples and plasma exposed samples was done by soft x-ray (λ=80 Å) reflectivity measurements at Indus-1 reflectivity beam line. Different gas plasma removes carbon with different rate (0.4 to 0.65 nm /min). A thin layer 2 to 9 nm of different roughness and density is observed at the top surface of tungsten film. Ar gas plasma is found more suitable for cleaning of tungsten surface.

  19. Ultra slow muon generation and thermionic emission of hydrogen isotopes from tungsten surface

    International Nuclear Information System (INIS)

    Miyake, Yasuhiro

    2000-01-01

    To generate ultra slow muon, we developed Lyman α light (Lα light) resonance ionization method using 1s-2p-unbound transition. By this method, the desorption process of hydrogen isotope and hydrogen atom generation were studied. In order to generate T atom, the laser resonance ionization of hydrogen nucleus was investigated. When wavelength of VUV light was fixed to 121.52 nm, 1s-2p resonance frequency of T, and VUV light agreed with 355 nm ionization laser in space and time, promising event was observed. The fact showed the resonance ionization method could isolate and detect T atom. By the same method, the experiment of H and D atom were carried out under the condition of the same wavelength of VUV light of 121.57 and 121.53 nm of Lα light, respectively, and the same results were obtained. On the Mu resonance ionization experiment, the light wavelength of VUV was 122.09 nm of Lα of muonium. The results showed the promising event was observed on the expected position of TOF and Mass. The resonance ionization method using Lα light of hydrogen isotope on tungsten film is a very useful method to separate Mu, H, D and T under the same experiment conditions without wavelength of VUV light. (S.Y.)

  20. Correlation between phonon anomaly along [211] and the Fermi surface nesting features with associated electron-phonon interactions in Ni2FeGa: A first principles study

    International Nuclear Information System (INIS)

    Chabungbam, Satyananda; Sahariah, Munima B.

    2015-01-01

    First principles calculation reaffirms the presence of phonon anomaly along [211] direction in Ni 2 FeGa shape memory alloy supporting the experimental findings of J. Q. Li et al. Fermi surface scans have been performed in both austenite and martensite phase to see the possible Fermi nesting features in this alloy. The magnitude of observed Fermi surface nesting vectors in (211) plane exactly match the phonon anomaly wavevectors along [211] direction. Electron-phonon calculation in the austenite phase shows that there is significant electron-phonon coupling in this alloy which might arise out of the lattice coupling between lower acoustic modes and higher optical modes combined with the observed strong Fermi nesting features in the system. - Highlights: • Transverse acoustic (TA 2 ) modes show anomaly along [211] direction in Ni 2 FeGa. • The phonon anomaly wavevector has been correlated with the Fermi nesting vectors. • Electron-phonon coupling calculation shows significant coupling in this system. • Max. el-ph coupling occurs in transition frequencies from acoustic to optical modes

  1. Characterization and molecular features of the cell surface receptor for human granulocyte-macrophage colony-stimulating factor

    International Nuclear Information System (INIS)

    Chiba, S.; Tojo, A.; Kitamura, T.; Urabe, A.; Miyazono, K.; Takaku, F.

    1990-01-01

    The receptors for human granulocyte-macrophage colony-stimulating factor (GM-CSF) on the surfaces of normal and leukemic myeloid cells were characterized using 125I-labeled bacterially synthesized GM-CSF. The binding was rapid, specific, time dependent, and saturable. Scatchard analysis of the 125I-GM-CSF binding to peripheral blood neutrophils indicated the presence of a single class of binding site (Kd = 99 +/- 21 pM; 2,304 +/- 953 sites/cell). However, for peripheral blood monocytes and two GM-CSF-responsive myeloid cell lines (U-937 and TF-1), the Scatchard plots were biphasic curvilinear, which were best fit by curves derived from two binding site model: one with high affinity (Kd1 = 10-40 pM) and the other with low affinity (Kd2 = 0.9-2.0 nM). For U-937 cells, the number of high-affinity receptors was 1,058 +/- 402 sites/cell and that of low-affinity receptors was estimated to be 10,834 +/- 2,396 sites/cell. Cross-linking studies yielded three major bands with molecular masses of 150 kDa, 115 kDa, and 95 kDa, which were displaced by an excess amount of unlabeled GM-CSF, suggesting 135-kDa, 100-kDa, and 80-kDa species for the individual components of the human GM-CSF receptor. These bands comigrated for different cell types including peripheral blood neutrophils, U-937 cells and TF-1 cells. In experiments using U-937 cells, only the latter two bands appeared to be labeled in a dose-dependent manner in a low-affinity state. These results suggest that the human GM-CSF receptor possibly forms a multichain complex

  2. Examples of grid generation with implicitly specified surfaces using GridPro (TM)/az3000. 1: Filleted multi-tube configurations

    Science.gov (United States)

    Cheng, Zheming; Eiseman, Peter R.

    1995-01-01

    With examples, we illustrate how implicitly specified surfaces can be used for grid generation with GridPro/az3000. The particular examples address two questions: (1) How do you model intersecting tubes with fillets? and (2) How do you generate grids inside the intersected tubes? The implication is much more general. With the results in a forthcoming paper which develops an easy-to-follow procedure for implicit surface modeling, we provide a powerful means for rapid prototyping in grid generation.

  3. Micrococcus radiodurans surface exonuclease. Dimer to monomer conversion by ionizing radiation-generated aqueous free radicals

    Energy Technology Data Exchange (ETDEWEB)

    Mitchel, R E.J.

    1980-01-01

    Micrococcus radiodurans possesses an exonuclease firmly bound to a middle cell wall membrane layer. Aqueous OH/sup -/ radicals generated chemically or by ionizing radiation cause the immediate release of this enzyme into the surrounding medium. The enzyme is located in a hydrophobic site and can also be released by aqueous n-butanol. When extracted by this solvent it is a non-covalently linked dimer and has a molecular weight of 260,000 as determined by gel filtration. When released by radiation generated OH/sup -/ radicals, the enzyme initially appears in solution as the dimer but is rapidly split by further aqueous radical attack into two 130,000 molecular weight subunits. Hydroxyl radicals are most effective but reducing radicals are also able to monomerize the enzyme. Only the released dimer enzyme is subject to free radical monomerization. Bound dimer enzyme is not split prior to release. No detectable loss of activity or change in catalytic properties accompanies the free radical cleavage of the enzyme. Both subunits of the dimer enzyme possess a tightly bound metal ion (probably Ca/sup 2 +/) required for activity. The monomer but not the dimer enzyme will bind to an anion exchanger. The monomer is susceptible to loss of its metal ion, and consequent inactivation, when exposed to the exchanger in the absence of Ca/sup 2 +/. Besides providing information on some of the immediate non-lethal effects of ionizing radiation, the behavior of this enzyme system demonstrates a potential cellular mechanism by which internally or externally generated free radicals could be utilized by the cell to control various enzymic reactions.

  4. Spin wave absorber generated by artificial surface anisotropy for spin wave device network

    Directory of Open Access Journals (Sweden)

    Naoki Kanazawa

    2016-09-01

    Full Text Available Spin waves (SWs have the potential to reduce the electric energy loss in signal processing networks. The SWs called magnetostatic forward volume waves (MSFVWs are advantageous for networking due to their isotropic dispersion in the plane of a device. To control the MSFVW flow in a processing network based on yttrium iron garnet, we developed a SW absorber using artificial structures. The mechanical surface polishing method presented in this work can well control extrinsic damping without changing the SW dispersion of the host material. Furthermore, enhancement of the ferromagnetic resonance linewidth over 3 Oe was demonstrated.

  5. Generation of helical gears with new surfaces topology by application of CNC machines

    Science.gov (United States)

    Litvin, F. L.; Chen, N. X.; Hsiao, C. L.; Handschuh, Robert F.

    1993-01-01

    Analysis of helical involute gears by tooth contact analysis shows that such gears are very sensitive to angular misalignment that leads to edge contact and the potential for high vibration. A new topology of tooth surfaces of helical gears that enables a favorable bearing contact and a reduced level of vibration is described. Methods for grinding of the helical gears with the new topology are proposed. A TCA (tooth contact analysis) program for simulation of meshing and contact of helical gears with the new topology has been developed. Numerical examples that illustrate the proposed ideas are discussed.

  6. On path generation and feedforward control for a class of surface sailing vessels

    DEFF Research Database (Denmark)

    Xiao, Lin; Jouffroy, Jerome

    2010-01-01

    Sailing vessels with wind as their main means of propulsion possess a unique property that the paths they take depend on the wind direction, which, in the literature, has attracted less attention than normal vehicles propelled by propellers or thrusters. This paper considers the problem of motion...... planning and controllability for sailing vehicles representing the no-sailing zone effect in sailing. Following our previous work, we present an extended algorithm for automatic path generation with a prescribed initial heading for a simple model of sailing vehicles, together with a feedforward controller...

  7. Device and process for controlling the shoot peening efficiency, of a steam generator tube inner surface

    International Nuclear Information System (INIS)

    Isnardon, G.; Jacquier, P.; Voisembert, S.

    1988-01-01

    This device comprises an outer envelope of tubular shape applied on the face of the tubular plate around one end of the tube to be peened. A tool comprising a nozzle for the projection of the peening particles is axially mounted in the outer envelope. The controlling device comprises at least one piezoelectric sensor arranged to be in contact with the wall of the outer envelope and measuring means for the electrical signal generated by the sensor. The projection nozzle is brought into the outer envelope at the level of the sensor after each peening operation and the electrical voltage of the signal produced by the sensor is measured [fr

  8. Target surface structure effects on x-ray generation from laser produced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, Tadashi; Nakano, Hidetoshi; Uesugi, Naoshi [NTT Basic Research Laboratories, Atsugi, Kanagawa (Japan)

    2000-03-01

    We demonstrated two different methods to increase the x-ray conversion efficiency of laser-produced plasma by modifying the target surface structure. One way is making a rectangular groove on a target surface and confining a laser-produced plasma in it. By the plasma collision process, a time and wavelength (4-10 nm) integrated soft x-ray fluence enhancement of 35 times was obtained at a groove width of 20 {mu}m and a groove depth of 100 {mu}m on a Nd-doped glass target. The other way is making an array of nanoholes on an alumina target and increasing the laser interaction depth with it. The x-ray fluence enhancement increases as the ionization level of Al becomes higher and the x-ray wavelength becomes shorter. Over 50-fold enhancement was obtained at a soft x-ray wavelength around 6 nm, which corresponds to the emission from Al{sup 8+,9+} ions. (author)

  9. Target surface structure effects on x-ray generation from laser produced plasma

    International Nuclear Information System (INIS)

    Nishikawa, Tadashi; Nakano, Hidetoshi; Uesugi, Naoshi

    2000-01-01

    We demonstrated two different methods to increase the x-ray conversion efficiency of laser-produced plasma by modifying the target surface structure. One way is making a rectangular groove on a target surface and confining a laser-produced plasma in it. By the plasma collision process, a time and wavelength (4-10 nm) integrated soft x-ray fluence enhancement of 35 times was obtained at a groove width of 20 μm and a groove depth of 100 μm on a Nd-doped glass target. The other way is making an array of nanoholes on an alumina target and increasing the laser interaction depth with it. The x-ray fluence enhancement increases as the ionization level of Al becomes higher and the x-ray wavelength becomes shorter. Over 50-fold enhancement was obtained at a soft x-ray wavelength around 6 nm, which corresponds to the emission from Al 8+,9+ ions. (author)

  10. A model for generating Surface EMG signal of m. Tibialis Anterior.

    Science.gov (United States)

    Siddiqi, Ariba; Kumar, Dinesh; Arjunan, Sridhar P

    2014-01-01

    A model that simulates surface electromyogram (sEMG) signal of m. Tibialis Anterior has been developed and tested. This has a firing rate equation that is based on experimental findings. It also has a recruitment threshold that is based on observed statistical distribution. Importantly, it has considered both, slow and fast type which has been distinguished based on their conduction velocity. This model has assumed that the deeper unipennate half of the muscle does not contribute significantly to the potential induced on the surface of the muscle and has approximated the muscle to have parallel structure. The model was validated by comparing the simulated and the experimental sEMG signal recordings. Experiments were conducted on eight subjects who performed isometric dorsiflexion at 10, 20, 30, 50, 75, and 100% maximal voluntary contraction. Normalized root mean square and median frequency of the experimental and simulated EMG signal were computed and the slopes of the linearity with the force were statistically analyzed. The gradients were found to be similar (p>0.05) for both experimental and simulated sEMG signal, validating the proposed model.

  11. Surface decontamination of Type 304L stainless steel with electrolytically generated hydrogen: Design and operation of the electrolyzer

    International Nuclear Information System (INIS)

    Bellanger, G.

    1993-01-01

    The surface of tritiated Type 304L stainless steel is decontaminated by isotopic exchange with the hydrogen generated in an electrolyzer. This steel had previously been exposed to tritium in a tritium gas facility for several years. The electrolyzer for the decontamination uses a conducting solid polymer electrolyte made of a Nafion membrane. The cathode where the hydrogen is formed is nickel deposited on one of the polymer surfaces. This cathode is placed next to the region of the steel to be decontaminated. The decontamination involves, essentially, the tritiated oxide layers of which the initial radioactivity is ∼ 5 kBq/cm 2 . After treatment for 1 h, the decontamination factor is 8. 9 refs., 16 figs., 2 tabs

  12. Surface Area Expansion of Electrodes with Grass-like Nanostructures to Enhance Electricity Generation in Microbial Fuel Cells

    DEFF Research Database (Denmark)

    Al Atraktchi, Fatima Al-Zahraa; Zhang, Yifeng; Noori, Jafar Safaa

    2012-01-01

    Microbial fuel cells (MFCs) have applications possibilities for wastewater treatment, biotransformation, and biosensor, but the development of highly efficient electrode materials is critical for enhancing the power generation. Two types of electrodes modified with nanoparticles or grass-like nan......Microbial fuel cells (MFCs) have applications possibilities for wastewater treatment, biotransformation, and biosensor, but the development of highly efficient electrode materials is critical for enhancing the power generation. Two types of electrodes modified with nanoparticles or grass...... of plain silicium showed a maximum power density of 86.0 mW/m2. Further expanding the surface area of carbon paper electrodes with gold nanoparticles resulted in a maximum stable power density of 346.9 mW/m2 which is 2.9 times higher than that achieved with conventional carbon paper. These results show...

  13. Evaluation on machined surface of hardened stainless steel generated by hard turning using coated carbide tools with wiper geometry

    International Nuclear Information System (INIS)

    Noordin, M.Y.; Kurniawan, D.; Sharif, S.

    2007-01-01

    Hard turning has been explored to be the finish machining operation for parts made of hardened steel. Its feasibility is determined partially by the quality of the resulting machined surface. This study evaluates the surface integrity of martensitic stainless steel (48 HRC) resulting from hard turning using coated carbide tool with wiper geometry at various cutting speed and feed and compares to that obtained using coated carbide tool with conventional geometry. The wiper coated carbide tool is able to produce machined surface which is of finer finish (Ra is finer than 0.4 μm at most cutting parameters) and yet is similarly inducing only minor microstructural alteration compared to its conventional counterpart. From the view of the chip morphology where continuous type of chip is desired rather than sawtooth chip type, the wiper tool generates continuous chip at almost similar range of cutting parameters compared to the case when using conventional tool. Additionally, the use of wiper tool also induces the preferred compressive residual stress at the machined surface. (author)

  14. A cellular automata simulation study of surface roughening resulting from multi-atom etch pit generation during sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Toh, Y S; Nobes, M J; Carter, G [Dept. of Electronic and Electrical Engineering, Univ. of Salford (United Kingdom)

    1992-04-01

    A two-dimensional square matrix of pseudo-atomic positions is erected and atom removal from the ''surface'' is effected randomly. Either single atoms or groups of atoms (to simulate multi-atom pit generation) are removed. The characteristics of the evolving roughened, terraced ''surface'' are evaluated as a function of the total number of atoms, or equivalent numbers of atomic layers, removed. These characteristics include the ''mean'' position of the sputtered surface, the standard deviation of terrace length about the mean and the form of the terrace length distributions. The results of the single-atom removal mode compare exactly with theoretical predictions in that, for large numbers of atoms removed the depth position of the mean of the terrace length distribution is identical to the mean sputtered depth and the standard deviation increases as the square root of this depth. For multi-atom removal modes (which cannot be predicted theoretically) the standard deviation also increases as the square root of the mean sputtered depth but with a larger proportionality constant. The implications of these observations for the evolution of surface morphology during high yield sputtering is discussed. (orig.).

  15. Modelling Angular Dependencies in Land Surface Temperatures From the SEVIRI Instrument onboard the Geostationary Meteosat Second Generation Satellites

    DEFF Research Database (Denmark)

    Rasmussen, Mads Olander; Pinheiro, AC; Proud, Simon Richard

    2010-01-01

    on vegetation structure and viewing and illumination geometry. Despite this, these effects are not considered in current operational LST products from neither polar-orbiting nor geostationary satellites. In this paper, we simulate the angular dependence that can be expected when estimating LST with the viewing...... geometry of the geostationary Meteosat Second Generation Spinning Enhanced Visible and Infrared Imager sensor across the African continent and compare it to a normalized view geometry. We use the modified geometric projection model that estimates the scene thermal infrared radiance from a surface covered...

  16. The ear, the eye, earthquakes and feature selection: listening to automatically generated seismic bulletins for clues as to the differences between true and false events.

    Science.gov (United States)

    Kuzma, H. A.; Arehart, E.; Louie, J. N.; Witzleben, J. L.

    2012-04-01

    Listening to the waveforms generated by earthquakes is not new. The recordings of seismometers have been sped up and played to generations of introductory seismology students, published on educational websites and even included in the occasional symphony. The modern twist on earthquakes as music is an interest in using state-of-the-art computer algorithms for seismic data processing and evaluation. Algorithms such as such as Hidden Markov Models, Bayesian Network models and Support Vector Machines have been highly developed for applications in speech recognition, and might also be adapted for automatic seismic data analysis. Over the last three years, the International Data Centre (IDC) of the Comprehensive Test Ban Treaty Organization (CTBTO) has supported an effort to apply computer learning and data mining algorithms to IDC data processing, particularly to the problem of weeding through automatically generated event bulletins to find events which are non-physical and would otherwise have to be eliminated by the hand of highly trained human analysts. Analysts are able to evaluate events, distinguish between phases, pick new phases and build new events by looking at waveforms displayed on a computer screen. Human ears, however, are much better suited to waveform processing than are the eyes. Our hypothesis is that combining an auditory representation of seismic events with visual waveforms would reduce the time it takes to train an analyst and the time they need to evaluate an event. Since it takes almost two years for a person of extraordinary diligence to become a professional analyst and IDC contracts are limited to seven years by Treaty, faster training would significantly improve IDC operations. Furthermore, once a person learns to distinguish between true and false events by ear, various forms of audio compression can be applied to the data. The compression scheme which yields the smallest data set in which relevant signals can still be heard is likely an

  17. Acoustic field generated by flight of rocket at the Earth surface

    International Nuclear Information System (INIS)

    Drobzheva, Ya.V.; Krasnov, V.M.; Maslov, A.N.

    2006-01-01

    In this paper we present a model, which describes the propagation of acoustic impulses produced by explosion of carrier rocket at the active part of trajectory, down through the atmosphere. Calculations of acoustic field parameters on the earth surface were made for altitudes of rocket flight from 2.8 to 92.3 km and yield of explosions from 0.001 to 0.5 t tnt. It was shown the infrasound accompaniment of rocket flight with the goal to register the explosion it is possible only for an altitude about 70 km. For this case, test set should be situated at the distance not exceeding 120 km from the starting place. (author)

  18. Localised surface plasmon-like resonance generated by microwave electromagnetic waves in pipe defects

    Science.gov (United States)

    Alobaidi, Wissam M.; Nima, Zeid A.; Sandgren, Eric

    2018-01-01

    Localised surface plasmon (LSP)-like resonance phenomena were simulated in COMSOL Multiphysics™, and the electric field enhancement was evaluated in eight pipe defects using the microwave band from 1.80 to 3.00 GHz and analysed by finite element analysis (FEA). The simulation was carried out, in each defect case, on a pipe that has 762 mm length and 152.4 mm inner diameter, and 12.7 mm pipe wall thickness. Defects were positioned in the middle of the pipe and were named as follows; SD: Square Defect, FCD: fillet corner defect, FD: fillet defect, HCD: half circle defect, TCD: triangle corner defect, TD: triangle defect, ZD: zigzag defect, GD: gear defect. The LSP electric field, and scattering parametric (S21, and S11) waves were evaluated in all cases and found to be strongly dependent on the size and the shape of the defect rather than the pipe and or the medium materials.

  19. Surface modification of amorphous nanosilica particles suppresses nanosilica-induced cytotoxicity, ROS generation, and DNA damage in various mammalian cells

    International Nuclear Information System (INIS)

    Yoshida, Tokuyuki; Yoshioka, Yasuo; Matsuyama, Keigo; Nakazato, Yasutaro; Tochigi, Saeko; Hirai, Toshiro; Kondoh, Sayuri; Nagano, Kazuya; Abe, Yasuhiro; Kamada, Haruhiko; Tsunoda, Shin-ichi; Nabeshi, Hiromi; Yoshikawa, Tomoaki; Tsutsumi, Yasuo

    2012-01-01

    Highlights: ► There is increasing concern regarding the potential health risks of nanomaterials. ► We evaluated the effect of surface properties of nanomaterials on cellular responses. ► We showed that the surface properties play an important in determining its safety. ► These data provide useful information for producing safer nanomaterials. -- Abstract: Recently, nanomaterials have been utilized in various fields. In particular, amorphous nanosilica particles are increasingly being used in a range of applications, including cosmetics, food technology, and medical diagnostics. However, there is concern that the unique characteristics of nanomaterials might induce undesirable effects. The roles played by the physical characteristics of nanomaterials in cellular responses have not yet been elucidated precisely. Here, by using nanosilica particles (nSPs) with a diameter of 70 nm whose surface was either unmodified (nSP70) or modified with amine (nSP70-N) or carboxyl groups (nSP70-C), we examined the relationship between the surface properties of nSPs and cellular responses such as cytotoxicity, reactive oxygen species (ROS) generation, and DNA damage. To compare the cytotoxicity of nSP70, nSP70-N, or nSP70-C, we examined in vitro cell viability after nSP treatment. Although the susceptibility of each cell line to the nSPs was different, nSP70-C and nSP70-N showed lower cytotoxicity than nSP70 in all cell lines. Furthermore, the generation of ROS and induction of DNA damage in nSP70-C- and nSP70-N-treated cells were lower than those in nSP70-treated cells. These results suggest that the surface properties of nSP70 play an important role in determining its safety, and surface modification of nSP70 with amine or carboxyl groups may be useful for the development of safer nSPs. We hope that our results will contribute to the development of safer nanomaterials.

  20. Quantifying Fenton reaction pathways driven by self-generated H2O2 on pyrite surfaces

    Science.gov (United States)

    Gil-Lozano, C.; Davila, A. F.; Losa-Adams, E.; Fairén, A. G.; Gago-Duport, L.

    2017-03-01

    Oxidation of pyrite (FeS2) plays a significant role in the redox cycling of iron and sulfur on Earth and is the primary cause of acid mine drainage (AMD). It has been established that this process involves multi-step electron-transfer reactions between surface defects and adsorbed O2 and H2O, releasing sulfoxy species (e.g., S2O32-, SO42-) and ferrous iron (Fe2+) to the solution and also producing intermediate by-products, such as hydrogen peroxide (H2O2) and other reactive oxygen species (ROS), however, our understanding of the kinetics of these transient species is still limited. We investigated the kinetics of H2O2 formation in aqueous suspensions of FeS2 microparticles by monitoring, in real time, the H2O2 and dissolved O2 concentration under oxic and anoxic conditions using amperometric microsensors. Additional spectroscopic and structural analyses were done to track the dependencies between the process of FeS2 dissolution and the degradation of H2O2 through the Fenton reaction. Based on our experimental results, we built a kinetic model which explains the observed trend of H2O2, showing that FeS2 dissolution can act as a natural Fenton reagent, influencing the oxidation of third-party species during the long term evolution of geochemical systems, even in oxygen-limited environments.