WorldWideScience

Sample records for generate application-specific sense

  1. Generating Safety-Critical PLC Code From a High-Level Application Software Specification

    Science.gov (United States)

    2008-01-01

    The benefits of automatic-application code generation are widely accepted within the software engineering community. These benefits include raised abstraction level of application programming, shorter product development time, lower maintenance costs, and increased code quality and consistency. Surprisingly, code generation concepts have not yet found wide acceptance and use in the field of programmable logic controller (PLC) software development. Software engineers at Kennedy Space Center recognized the need for PLC code generation while developing the new ground checkout and launch processing system, called the Launch Control System (LCS). Engineers developed a process and a prototype software tool that automatically translates a high-level representation or specification of application software into ladder logic that executes on a PLC. All the computer hardware in the LCS is planned to be commercial off the shelf (COTS), including industrial controllers or PLCs that are connected to the sensors and end items out in the field. Most of the software in LCS is also planned to be COTS, with only small adapter software modules that must be developed in order to interface between the various COTS software products. A domain-specific language (DSL) is a programming language designed to perform tasks and to solve problems in a particular domain, such as ground processing of launch vehicles. The LCS engineers created a DSL for developing test sequences of ground checkout and launch operations of future launch vehicle and spacecraft elements, and they are developing a tabular specification format that uses the DSL keywords and functions familiar to the ground and flight system users. The tabular specification format, or tabular spec, allows most ground and flight system users to document how the application software is intended to function and requires little or no software programming knowledge or experience. A small sample from a prototype tabular spec application is

  2. Specification of steam generator, condenser and regenerative heat exchanger materials for nuclear applications

    International Nuclear Information System (INIS)

    Jovasevic, J.V.; Stefanovic, V.M.; Spasic, Z.LJ.

    1977-01-01

    The basic standards specifications of materials for nuclear applications are selected. Seamless Ni-Cr-Fe alloy Tubes (Inconel-600) for steam generators, condensers and other heat exchangers can be employed instead of austenitic stainless steal or copper alloys tubes; supplementary requirements for these materials are given. Specifications of Ni-Cr-Fe alloy plate, sheet and strip for steam generator lower sub-assembly, U-bend seamless copper-alloy tubes for heat exchanger and condensers are also presented. At the end, steam generator channel head material is proposed in the specification for carbon-steel castings suitable for welding

  3. Sense, decide, act, communicate (SDAC): next generation of smart sensor systems

    Science.gov (United States)

    Berry, Nina; Davis, Jesse; Ko, Teresa H.; Kyker, Ron; Pate, Ron; Stark, Doug; Stinnett, Regan; Baker, James; Cushner, Adam; Van Dyke, Colin; Kyckelhahn, Brian

    2004-09-01

    The recent war on terrorism and increased urban warfare has been a major catalysis for increased interest in the development of disposable unattended wireless ground sensors. While the application of these sensors to hostile domains has been generally governed by specific tasks, this research explores a unique paradigm capitalizing on the fundamental functionality related to sensor systems. This functionality includes a sensors ability to Sense - multi-modal sensing of environmental events, Decide - smart analysis of sensor data, Act - response to environmental events, and Communication - internal to system and external to humans (SDAC). The main concept behind SDAC sensor systems is to integrate the hardware, software, and networking to generate 'knowledge and not just data'. This research explores the usage of wireless SDAC units to collectively make up a sensor system capable of persistent, adaptive, and autonomous behavior. These systems are base on the evaluation of scenarios and existing systems covering various domains. This paper presents a promising view of sensor network characteristics, which will eventually yield smart (intelligent collectives) network arrays of SDAC sensing units generally applicable to multiple related domains. This paper will also discuss and evaluate the demonstration system developed to test the concepts related to SDAC systems.

  4. A Methodology for the Design of Application-Specific Cyber-Physical Social Sensing Co-Simulators.

    Science.gov (United States)

    Sánchez, Borja Bordel; Alcarria, Ramón; Sánchez-Picot, Álvaro; Sánchez-de-Rivera, Diego

    2017-09-22

    Cyber-Physical Social Sensing (CPSS) is a new trend in the context of pervasive sensing. In these new systems, various domains coexist in time, evolve together and influence each other. Thus, application-specific tools are necessary for specifying and validating designs and simulating systems. However, nowadays, different tools are employed to simulate each domain independently. Mainly, the cause of the lack of co-simulation instruments to simulate all domains together is the extreme difficulty of combining and synchronizing various tools. In order to reduce that difficulty, an adequate architecture for the final co-simulator must be selected. Therefore, in this paper the authors investigate and propose a methodology for the design of CPSS co-simulation tools. The paper describes the four steps that software architects should follow in order to design the most adequate co-simulator for a certain application, considering the final users' needs and requirements and various additional factors such as the development team's experience. Moreover, the first practical use case of the proposed methodology is provided. An experimental validation is also included in order to evaluate the performing of the proposed co-simulator and to determine the correctness of the proposal.

  5. A Methodology for the Design of Application-Specific Cyber-Physical Social Sensing Co-Simulators

    Directory of Open Access Journals (Sweden)

    Borja Bordel Sánchez

    2017-09-01

    Full Text Available Cyber-Physical Social Sensing (CPSS is a new trend in the context of pervasive sensing. In these new systems, various domains coexist in time, evolve together and influence each other. Thus, application-specific tools are necessary for specifying and validating designs and simulating systems. However, nowadays, different tools are employed to simulate each domain independently. Mainly, the cause of the lack of co-simulation instruments to simulate all domains together is the extreme difficulty of combining and synchronizing various tools. In order to reduce that difficulty, an adequate architecture for the final co-simulator must be selected. Therefore, in this paper the authors investigate and propose a methodology for the design of CPSS co-simulation tools. The paper describes the four steps that software architects should follow in order to design the most adequate co-simulator for a certain application, considering the final users’ needs and requirements and various additional factors such as the development team’s experience. Moreover, the first practical use case of the proposed methodology is provided. An experimental validation is also included in order to evaluate the performing of the proposed co-simulator and to determine the correctness of the proposal.

  6. Remote Sensing Image in the Application of Agricultural Tourism Planning

    Directory of Open Access Journals (Sweden)

    Guojing Fan

    2013-06-01

    Full Text Available This paper introduces the processing technology of high resolution remote sensing image, the specific making process of tourism map and different remote sensing data in the key application of tourism planning and so on. Remote sensing extracts agricultural tourism planning information, improving the scientificalness and operability of agricultural tourism planning. Therefore remote sensing image in the application of agricultural tourism planning will be the inevitable trend of tourism development.

  7. Arbitrary waveform generation based on Microwave Photonics Technology for Ultrawideband applications

    OpenAIRE

    Moreno Galué, Vanessa Alejandra

    2017-01-01

    The herein presented Ph.D. dissertation finds its application niche in pulse generation for optical communication schemes, specifically for Ultrawideband (UWB) purposes. In this sense, as the requirements in terms of capacity and bandwidth per user in the field of broadband communication services continuously increase, different technological techniques such as hybrid wireless-optical approaches including UWB systems and close competitors like the Worldwide Interoperability for Microwave Acce...

  8. Symbiotic Sensing for Energy-Intensive Tasks in Large-Scale Mobile Sensing Applications.

    Science.gov (United States)

    Le, Duc V; Nguyen, Thuong; Scholten, Hans; Havinga, Paul J M

    2017-11-29

    Energy consumption is a critical performance and user experience metric when developing mobile sensing applications, especially with the significantly growing number of sensing applications in recent years. As proposed a decade ago when mobile applications were still not popular and most mobile operating systems were single-tasking, conventional sensing paradigms such as opportunistic sensing and participatory sensing do not explore the relationship among concurrent applications for energy-intensive tasks. In this paper, inspired by social relationships among living creatures in nature, we propose a symbiotic sensing paradigm that can conserve energy, while maintaining equivalent performance to existing paradigms. The key idea is that sensing applications should cooperatively perform common tasks to avoid acquiring the same resources multiple times. By doing so, this sensing paradigm executes sensing tasks with very little extra resource consumption and, consequently, extends battery life. To evaluate and compare the symbiotic sensing paradigm with the existing ones, we develop mathematical models in terms of the completion probability and estimated energy consumption. The quantitative evaluation results using various parameters obtained from real datasets indicate that symbiotic sensing performs better than opportunistic sensing and participatory sensing in large-scale sensing applications, such as road condition monitoring, air pollution monitoring, and city noise monitoring.

  9. Symbiotic Sensing for Energy-Intensive Tasks in Large-Scale Mobile Sensing Applications

    Science.gov (United States)

    Scholten, Hans; Havinga, Paul J. M.

    2017-01-01

    Energy consumption is a critical performance and user experience metric when developing mobile sensing applications, especially with the significantly growing number of sensing applications in recent years. As proposed a decade ago when mobile applications were still not popular and most mobile operating systems were single-tasking, conventional sensing paradigms such as opportunistic sensing and participatory sensing do not explore the relationship among concurrent applications for energy-intensive tasks. In this paper, inspired by social relationships among living creatures in nature, we propose a symbiotic sensing paradigm that can conserve energy, while maintaining equivalent performance to existing paradigms. The key idea is that sensing applications should cooperatively perform common tasks to avoid acquiring the same resources multiple times. By doing so, this sensing paradigm executes sensing tasks with very little extra resource consumption and, consequently, extends battery life. To evaluate and compare the symbiotic sensing paradigm with the existing ones, we develop mathematical models in terms of the completion probability and estimated energy consumption. The quantitative evaluation results using various parameters obtained from real datasets indicate that symbiotic sensing performs better than opportunistic sensing and participatory sensing in large-scale sensing applications, such as road condition monitoring, air pollution monitoring, and city noise monitoring. PMID:29186037

  10. Symbiotic Sensing for Energy-Intensive Tasks in Large-Scale Mobile Sensing Applications

    Directory of Open Access Journals (Sweden)

    Duc V. Le

    2017-11-01

    Full Text Available Energy consumption is a critical performance and user experience metric when developing mobile sensing applications, especially with the significantly growing number of sensing applications in recent years. As proposed a decade ago when mobile applications were still not popular and most mobile operating systems were single-tasking, conventional sensing paradigms such as opportunistic sensing and participatory sensing do not explore the relationship among concurrent applications for energy-intensive tasks. In this paper, inspired by social relationships among living creatures in nature, we propose a symbiotic sensing paradigm that can conserve energy, while maintaining equivalent performance to existing paradigms. The key idea is that sensing applications should cooperatively perform common tasks to avoid acquiring the same resources multiple times. By doing so, this sensing paradigm executes sensing tasks with very little extra resource consumption and, consequently, extends battery life. To evaluate and compare the symbiotic sensing paradigm with the existing ones, we develop mathematical models in terms of the completion probability and estimated energy consumption. The quantitative evaluation results using various parameters obtained from real datasets indicate that symbiotic sensing performs better than opportunistic sensing and participatory sensing in large-scale sensing applications, such as road condition monitoring, air pollution monitoring, and city noise monitoring.

  11. Terahertz Sensing, Imaging and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Otani, C.; Hoshing, H.; Sasaki, Y.; Maki, K.; Hayashi, A. [RIKEN Advanced Science Institute, Sendai (Japan)

    2008-11-15

    Diagnosis using terahertz (THz) wave holds a great potential for various applications in various fields because of its transmittance to many soft materials with the good spatial resolution. In addition, the presence of specific spectral absorption features of crystalline materials is also important for many applications. Such features are different from material to material to material and is applicable for identifying materials inside packages that are opaque to visible light. One of the most impressive examples of such applications is the detection of illicit drugs inside envelopes. In this talk, we will present our recent topics of THz sensing, imaging and applications including this example. We will also present the cancer diagnosis, an application of the photonic crystal to high sensitivity detection, and gas spectroscopy if we have enough time. We also would like to briefly review the recent topics related to THz applications.

  12. Terahertz Sensing, Imaging and Applications

    International Nuclear Information System (INIS)

    Otani, C.; Hoshing, H.; Sasaki, Y.; Maki, K.; Hayashi, A.

    2008-01-01

    Diagnosis using terahertz (THz) wave holds a great potential for various applications in various fields because of its transmittance to many soft materials with the good spatial resolution. In addition, the presence of specific spectral absorption features of crystalline materials is also important for many applications. Such features are different from material to material to material and is applicable for identifying materials inside packages that are opaque to visible light. One of the most impressive examples of such applications is the detection of illicit drugs inside envelopes. In this talk, we will present our recent topics of THz sensing, imaging and applications including this example. We will also present the cancer diagnosis, an application of the photonic crystal to high sensitivity detection, and gas spectroscopy if we have enough time. We also would like to briefly review the recent topics related to THz applications

  13. MOSDEN: A Scalable Mobile Collaborative Platform for Opportunistic Sensing Applications

    Directory of Open Access Journals (Sweden)

    Prem Prakash Jayaraman

    2014-05-01

    Full Text Available Mobile smartphones along with embedded sensors have become an efficient enabler for various mobile applications including opportunistic sensing. The hi-tech advances in smartphones are opening up a world of possibilities. This paper proposes a mobile collaborative platform called MOSDEN that enables and supports opportunistic sensing at run time. MOSDEN captures and shares sensor data acrossmultiple apps, smartphones and users. MOSDEN supports the emerging trend of separating sensors from application-specific processing, storing and sharing. MOSDEN promotes reuse and re-purposing of sensor data hence reducing the efforts in developing novel opportunistic sensing applications. MOSDEN has been implemented on Android-based smartphones and tablets. Experimental evaluations validate the scalability and energy efficiency of MOSDEN and its suitability towards real world applications. The results of evaluation and lessons learned are presented and discussed in this paper.

  14. Study of interfacial phenomena for bio/chemical sensing applications

    Science.gov (United States)

    Min, Hwall

    This work presents the fundamental study of biological and chemical interfacial phenomena and (bio)chemical sensing applications using high frequency resonator arrays. To realize a versatile (bio)chemical sensing system for the fundamental study as well as their practical applications, the following three distinct components were studied and developed: i) detection platforms with high sensitivity, ii) novel innovative sensing materials with high selectivity, iii) analytical model for data interpretation. 8-pixel micromachined quartz crystal resonator (muQCR) arrays with a fundamental resonance frequency of 60 ¡V 90 MHz have been used to provide a reliable detection platform with high sensitivity. Room temperature ionic liquid (RTIL) has been explored and integrated into the sensing system as a smart chemical sensing material. The use of nanoporous gold (np-Au) enables the combination of the resonator and surface-enhanced Raman spectroscopy for both quantitative and qualitative measurement. A statistical model for the characterization of resonator behavior to study the protein adsorption kinetics is developed by random sequential adsorption (RSA) approach with the integration of an effective surface depletion theory. The investigation of the adsorption kinetics of blood proteins is reported as the fundamental study of biological phenomena using the proposed sensing system. The aim of this work is to study different aspects of protein adsorption and kinetics of adsorption process with blood proteins on different surfaces. We specifically focus on surface depletion effect in conjunction with the RSA model to explain the observed adsorption isotherm characteristics. A number of case studies on protein adsorption conducted using the proposed sensing system has been discussed. Effort is specifically made to understand adsorption kinetics, and the effect of surface on the adsorption process as well as the properties of the adsorbed protein layer. The second half of the

  15. NASA Fluid Lensing & MiDAR: Next-Generation Remote Sensing Technologies for Aquatic Remote Sensing

    Science.gov (United States)

    Chirayath, Ved

    2018-01-01

    We present two recent instrument technology developments at NASA, Fluid Lensing and MiDAR, and their application to remote sensing of Earth's aquatic systems. Fluid Lensing is the first remote sensing technology capable of imaging through ocean waves in 3D at sub-cm resolutions. MiDAR is a next-generation active hyperspectral remote sensing and optical communications instrument capable of active fluid lensing. Fluid Lensing has been used to provide 3D multispectral imagery of shallow marine systems from unmanned aerial vehicles (UAVs, or drones), including coral reefs in American Samoa and stromatolite reefs in Hamelin Pool, Western Australia. MiDAR is being deployed on aircraft and underwater remotely operated vehicles (ROVs) to enable a new method for remote sensing of living and nonliving structures in extreme environments. MiDAR images targets with high-intensity narrowband structured optical radiation to measure an objectâ€"TM"s non-linear spectral reflectance, image through fluid interfaces such as ocean waves with active fluid lensing, and simultaneously transmit high-bandwidth data. As an active instrument, MiDAR is capable of remotely sensing reflectance at the centimeter (cm) spatial scale with a signal-to-noise ratio (SNR) multiple orders of magnitude higher than passive airborne and spaceborne remote sensing systems with significantly reduced integration time. This allows for rapid video-frame-rate hyperspectral sensing into the far ultraviolet and VNIR wavelengths. Previously, MiDAR was developed into a TRL 2 laboratory instrument capable of imaging in thirty-two narrowband channels across the VNIR spectrum (400-950nm). Recently, MiDAR UV was raised to TRL4 and expanded to include five ultraviolet bands from 280-400nm, permitting UV remote sensing capabilities in UV A, B, and C bands and enabling mineral identification and stimulated fluorescence measurements of organic proteins and compounds, such as green fluorescent proteins in terrestrial and

  16. Molecularly engineered graphene surfaces for sensing applications: A review

    International Nuclear Information System (INIS)

    Liu, Jingquan; Liu, Zhen; Barrow, Colin J.; Yang, Wenrong

    2015-01-01

    Highlights: • The importance of surface chemistry of graphene materials is clearly described. • We discuss molecularly engineered graphene surfaces for sensing applications. • We describe the latest developments of these materials for sensing technology. - Abstract: Graphene is scientifically and commercially important because of its unique molecular structure which is monoatomic in thickness, rigorously two-dimensional and highly conjugated. Consequently, graphene exhibits exceptional electrical, optical, thermal and mechanical properties. Herein, we critically discuss the surface modification of graphene, the specific advantages that graphene-based materials can provide over other materials in sensor research and their related chemical and electrochemical properties. Furthermore, we describe the latest developments in the use of these materials for sensing technology, including chemical sensors and biosensors and their applications in security, environmental safety and diseases detection and diagnosis

  17. Molecularly engineered graphene surfaces for sensing applications: A review

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jingquan, E-mail: jliu@qdu.edu.cn [College of Chemical Science and Engineering, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao (China); Liu, Zhen; Barrow, Colin J. [Centre for Chemistry and Biotechnology, Deakin University, Geelong, VIC 3217 (Australia); Yang, Wenrong, E-mail: wenrong.yang@deakin.edu.au [Centre for Chemistry and Biotechnology, Deakin University, Geelong, VIC 3217 (Australia)

    2015-02-15

    Highlights: • The importance of surface chemistry of graphene materials is clearly described. • We discuss molecularly engineered graphene surfaces for sensing applications. • We describe the latest developments of these materials for sensing technology. - Abstract: Graphene is scientifically and commercially important because of its unique molecular structure which is monoatomic in thickness, rigorously two-dimensional and highly conjugated. Consequently, graphene exhibits exceptional electrical, optical, thermal and mechanical properties. Herein, we critically discuss the surface modification of graphene, the specific advantages that graphene-based materials can provide over other materials in sensor research and their related chemical and electrochemical properties. Furthermore, we describe the latest developments in the use of these materials for sensing technology, including chemical sensors and biosensors and their applications in security, environmental safety and diseases detection and diagnosis.

  18. Programmable genetic algorithm IP core for sensing and surveillance applications

    Science.gov (United States)

    Katkoori, Srinivas; Fernando, Pradeep; Sankaran, Hariharan; Stoica, Adrian; Keymeulen, Didier; Zebulum, Ricardo

    2009-05-01

    Real-time evolvable systems are possible with a hardware implementation of Genetic Algorithms (GA). We report the design of an IP core that implements a general purpose GA engine which has been successfully synthesized and verified on a Xilinx Virtex II Pro FPGA Device (XC2VP30). The placed and routed IP core has an area utilization of only 13% and clock speed of 50MHz. The GA core can be customized in terms of the population size, number of generations, cross-over and mutation rates, and the random number generator seed. The GA engine can be tailored to a given application by interfacing with the application specific fitness evaluation module as well as the required storage memory (to store the current and new populations). The core is soft in nature i.e., a gate-level netlist is provided which can be readily integrated with the user's system. The GA IP core can be readily used in FPGA based platforms for space and military applications (for e.g., surveillance, target tracking). The main advantages of the IP core are its programmability, small footprint, and low power consumption. Examples of concept systems in sensing and surveillance domains will be presented.

  19. Remote Sensing Applications to Water Quality Management in Florida

    Science.gov (United States)

    Lehrter, J. C.; Schaeffer, B. A.; Hagy, J.; Spiering, B.; Barnes, B.; Hu, C.; Le, C.; McEachron, L.; Underwood, L. W.; Ellis, C.; Fisher, B.

    2013-12-01

    Optical datasets from estuarine and coastal systems are increasingly available for remote sensing algorithm development, validation, and application. With validated algorithms, the data streams from satellite sensors can provide unprecedented spatial and temporal data for local and regional coastal water quality management. Our presentation will highlight two recent applications of optical data and remote sensing to water quality decision-making in coastal regions of the state of Florida; (1) informing the development of estuarine and coastal nutrient criteria for the state of Florida and (2) informing the rezoning of the Florida Keys National Marine Sanctuary. These efforts involved building up the underlying science to demonstrate the applicability of satellite data as well as an outreach component to educate decision-makers about the use, utility, and uncertainties of remote sensing data products. Scientific developments included testing existing algorithms and generating new algorithms for water clarity and chlorophylla in case II (CDOM or turbidity dominated) estuarine and coastal waters and demonstrating the accuracy of remote sensing data products in comparison to traditional field based measurements. Including members from decision-making organizations on the research team and interacting with decision-makers early and often in the process were key factors for the success of the outreach efforts and the eventual adoption of satellite data into the data records and analyses used in decision-making. Florida coastal water bodies (black boxes) for which remote sensing imagery were applied to derive numeric nutrient criteria and in situ observations (black dots) used to validate imagery. Florida ocean color applied to development of numeric nutrient criteria

  20. Retrieval operators of remote sensing applications

    International Nuclear Information System (INIS)

    Ahmad, T.; Shah, A.

    2014-01-01

    A set of operators of remote sensing applications have been proposed to fulfill most of the Functional Requirements (FR). These operators capture the functions of the applications, which can be considered as the services provided by the applications. In general, a good application meets maximum FR from user. In this paper, we have defined a remote sensing application by a set, having all images created at dissimilar time instances, and each image is categorized into set of different layers. (author)

  1. Water resources by orbital remote sensing: Examples of applications

    Science.gov (United States)

    Martini, P. R. (Principal Investigator)

    1984-01-01

    Selected applications of orbital remote sensing to water resources undertaken by INPE are described. General specifications of Earth application satellites and technical characteristics of LANDSAT 1, 2, 3, and 4 subsystems are described. Spatial, temporal and spectral image attributes of water as well as methods of image analysis for applications to water resources are discussed. Selected examples are referred to flood monitoring, analysis of water suspended sediments, spatial distribution of pollutants, inventory of surface water bodies and mapping of alluvial aquifers.

  2. Gas sensing in 2D materials

    Science.gov (United States)

    Yang, Shengxue; Jiang, Chengbao; Wei, Su-huai

    2017-06-01

    Two-dimensional (2D) layered inorganic nanomaterials have attracted huge attention due to their unique electronic structures, as well as extraordinary physical and chemical properties for use in electronics, optoelectronics, spintronics, catalysts, energy generation and storage, and chemical sensors. Graphene and related layered inorganic analogues have shown great potential for gas-sensing applications because of their large specific surface areas and strong surface activities. This review aims to discuss the latest advancements in the 2D layered inorganic materials for gas sensors. We first elaborate the gas-sensing mechanisms and introduce various types of gas-sensing devices. Then, we describe the basic parameters and influence factors of the gas sensors to further enhance their performance. Moreover, we systematically present the current gas-sensing applications based on graphene, graphene oxide (GO), reduced graphene oxide (rGO), functionalized GO or rGO, transition metal dichalcogenides, layered III-VI semiconductors, layered metal oxides, phosphorene, hexagonal boron nitride, etc. Finally, we conclude the future prospects of these layered inorganic materials in gas-sensing applications.

  3. Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy

    Science.gov (United States)

    Leahy-Hoppa, Megan R.; Miragliotta, Joseph; Osiander, Robert; Burnett, Jennifer; Dikmelik, Yamac; McEnnis, Caroline; Spicer, James B.

    2010-01-01

    Ultrafast pulsed lasers find application in a range of spectroscopy and sensing techniques including laser induced breakdown spectroscopy (LIBS), coherent Raman spectroscopy, and terahertz (THz) spectroscopy. Whether based on absorption or emission processes, the characteristics of these techniques are heavily influenced by the use of ultrafast pulses in the signal generation process. Depending on the energy of the pulses used, the essential laser interaction process can primarily involve lattice vibrations, molecular rotations, or a combination of excited states produced by laser heating. While some of these techniques are currently confined to sensing at close ranges, others can be implemented for remote spectroscopic sensing owing principally to the laser pulse duration. We present a review of ultrafast laser-based spectroscopy techniques and discuss the use of these techniques to current and potential chemical and environmental sensing applications. PMID:22399883

  4. Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy

    Directory of Open Access Journals (Sweden)

    Megan R. Leahy-Hoppa

    2010-04-01

    Full Text Available Ultrafast pulsed lasers find application in a range of spectroscopy and sensing techniques including laser induced breakdown spectroscopy (LIBS, coherent Raman spectroscopy, and terahertz (THz spectroscopy. Whether based on absorption or emission processes, the characteristics of these techniques are heavily influenced by the use of ultrafast pulses in the signal generation process. Depending on the energy of the pulses used, the essential laser interaction process can primarily involve lattice vibrations, molecular rotations, or a combination of excited states produced by laser heating. While some of these techniques are currently confined to sensing at close ranges, others can be implemented for remote spectroscopic sensing owing principally to the laser pulse duration. We present a review of ultrafast laser-based spectroscopy techniques and discuss the use of these techniques to current and potential chemical and environmental sensing applications.

  5. A mobile-agent-based wireless sensing network for structural monitoring applications

    International Nuclear Information System (INIS)

    Taylor, Stuart G; Farinholt, Kevin M; Figueiredo, Eloi; Moro, Erik A; Park, Gyuhae; Farrar, Charles R; Flynn, Eric B; Mascarenas, David L; Todd, Michael D

    2009-01-01

    A new wireless sensing network paradigm is presented for structural monitoring applications. In this approach, both power and data interrogation commands are conveyed via a mobile agent that is sent to sensor nodes to perform intended interrogations, which can alleviate several limitations of the traditional sensing networks. Furthermore, the mobile agent provides computational power to make near real-time assessments on the structural conditions. This paper will discuss such prototype systems, which are used to interrogate impedance-based sensors for structural health monitoring applications. Our wireless sensor node is specifically designed to accept various energy sources, including wireless energy transmission, and to be wirelessly triggered on an as-needed basis by the mobile agent or other sensor nodes. The capabilities of this proposed sensing network paradigm are demonstrated in the laboratory and the field

  6. Label-free screening of single biomolecules through resistive pulse sensing technology for precision medicine applications

    Science.gov (United States)

    Harrer, S.; Kim, S. C.; Schieber, C.; Kannam, S.; Gunn, N.; Moore, S.; Scott, D.; Bathgate, R.; Skafidas, S.; Wagner, J. M.

    2015-05-01

    Employing integrated nano- and microfluidic circuits for detecting and characterizing biological compounds through resistive pulse sensing technology is a vibrant area of research at the interface of biotechnology and nanotechnology. Resistive pulse sensing platforms can be customized to study virtually any particle of choice which can be threaded through a fluidic channel and enable label-free single-particle interrogation with the primary read-out signal being an electric current fingerprint. The ability to perform label-free molecular screening with single-molecule and even single binding site resolution makes resistive pulse sensing technology a powerful tool for analyzing the smallest units of biological systems and how they interact with each other on a molecular level. This task is at the core of experimental systems biology and in particular ‘omics research which in combination with next-generation DNA-sequencing and next-generation drug discovery and design forms the foundation of a novel disruptive medical paradigm commonly referred to as personalized medicine or precision medicine. DNA-sequencing has approached the 1000-Dollar-Genome milestone allowing for decoding a complete human genome with unmatched speed and at low cost. Increased sequencing efficiency yields massive amounts of genomic data. Analyzing this data in combination with medical and biometric health data eventually enables understanding the pathways from individual genes to physiological functions. Access to this information triggers fundamental questions for doctors and patients alike: what are the chances of an outbreak for a specific disease? Can individual risks be managed and if so how? Which drugs are available and how should they be applied? Could a new drug be tailored to an individual’s genetic predisposition fast and in an affordable way? In order to provide answers and real-life value to patients, the rapid evolvement of novel computing approaches for analyzing big data in

  7. Label-free screening of single biomolecules through resistive pulse sensing technology for precision medicine applications.

    Science.gov (United States)

    Harrer, S; Kim, S C; Schieber, C; Kannam, S; Gunn, N; Moore, S; Scott, D; Bathgate, R; Skafidas, S; Wagner, J M

    2015-05-08

    Employing integrated nano- and microfluidic circuits for detecting and characterizing biological compounds through resistive pulse sensing technology is a vibrant area of research at the interface of biotechnology and nanotechnology. Resistive pulse sensing platforms can be customized to study virtually any particle of choice which can be threaded through a fluidic channel and enable label-free single-particle interrogation with the primary read-out signal being an electric current fingerprint. The ability to perform label-free molecular screening with single-molecule and even single binding site resolution makes resistive pulse sensing technology a powerful tool for analyzing the smallest units of biological systems and how they interact with each other on a molecular level. This task is at the core of experimental systems biology and in particular 'omics research which in combination with next-generation DNA-sequencing and next-generation drug discovery and design forms the foundation of a novel disruptive medical paradigm commonly referred to as personalized medicine or precision medicine. DNA-sequencing has approached the 1000-Dollar-Genome milestone allowing for decoding a complete human genome with unmatched speed and at low cost. Increased sequencing efficiency yields massive amounts of genomic data. Analyzing this data in combination with medical and biometric health data eventually enables understanding the pathways from individual genes to physiological functions. Access to this information triggers fundamental questions for doctors and patients alike: what are the chances of an outbreak for a specific disease? Can individual risks be managed and if so how? Which drugs are available and how should they be applied? Could a new drug be tailored to an individual's genetic predisposition fast and in an affordable way? In order to provide answers and real-life value to patients, the rapid evolvement of novel computing approaches for analyzing big data in

  8. Optimization of design parameters for bulk micromachined silicon membranes for piezoresistive pressure sensing application

    International Nuclear Information System (INIS)

    Belwanshi, Vinod; Topkar, Anita

    2016-01-01

    Finite element analysis study has been carried out to optimize the design parameters for bulk micro-machined silicon membranes for piezoresistive pressure sensing applications. The design is targeted for measurement of pressure up to 200 bar for nuclear reactor applications. The mechanical behavior of bulk micro-machined silicon membranes in terms of deflection and stress generation has been simulated. Based on the simulation results, optimization of the membrane design parameters in terms of length, width and thickness has been carried out. Subsequent to optimization of membrane geometrical parameters, the dimensions and location of the high stress concentration region for implantation of piezoresistors have been obtained for sensing of pressure using piezoresistive sensing technique.

  9. Optimization of design parameters for bulk micromachined silicon membranes for piezoresistive pressure sensing application

    Science.gov (United States)

    Belwanshi, Vinod; Topkar, Anita

    2016-05-01

    Finite element analysis study has been carried out to optimize the design parameters for bulk micro-machined silicon membranes for piezoresistive pressure sensing applications. The design is targeted for measurement of pressure up to 200 bar for nuclear reactor applications. The mechanical behavior of bulk micro-machined silicon membranes in terms of deflection and stress generation has been simulated. Based on the simulation results, optimization of the membrane design parameters in terms of length, width and thickness has been carried out. Subsequent to optimization of membrane geometrical parameters, the dimensions and location of the high stress concentration region for implantation of piezoresistors have been obtained for sensing of pressure using piezoresistive sensing technique.

  10. New advance in the research of post-remote sensing application technology. Series of 'proposition and consideration of post-remote sensing application technology'

    International Nuclear Information System (INIS)

    Liu Dechang; Ye Fawang

    2005-01-01

    Based on deep consideration in post-remote sensing application technology, this article pays more attention to its technological meaning. The application idea of post-remote sensing application technology to uranium exploration is also discussed. The proposition and research on new concept of post-remote sensing application technology is an important search and of important theoretical and practical significance to uranium exploration. (authors)

  11. Energy Autonomous Wireless Sensing System Enabled by Energy Generated during Human Walking

    Science.gov (United States)

    Kuang, Yang; Ruan, Tingwen; Chew, Zheng Jun; Zhu, Meiling

    2016-11-01

    Recently, there has been a huge amount of work devoted to wearable energy harvesting (WEH) in a bid to establish energy autonomous wireless sensing systems for a range of health monitoring applications. However, limited work has been performed to implement and test such systems in real-world settings. This paper reports the development and real-world characterisation of a magnetically plucked wearable knee-joint energy harvester (Mag-WKEH) powered wireless sensing system, which integrates our latest research progresses in WEH, power conditioning and wireless sensing to achieve high energy efficiency. Experimental results demonstrate that with walking speeds of 3∼7 km/h, the Mag-WKEH generates average power of 1.9∼4.5 mW with unnoticeable impact on the wearer and is able to power the wireless sensor node (WSN) with three sensors to work at duty cycles of 6.6%∼13%. In each active period of 2 s, the WSN is able to measure and transmit 482 readings to the base station.

  12. Distributed optical fiber vibration sensing using phase-generated carrier demodulation algorithm

    Science.gov (United States)

    Yu, Zhihua; Zhang, Qi; Zhang, Mingyu; Dai, Haolong; Zhang, Jingjing; Liu, Li; Zhang, Lijun; Jin, Xing; Wang, Gaifang; Qi, Guang

    2018-05-01

    A novel optical fiber-distributed vibration-sensing system is proposed, which is based on self-interference of Rayleigh backscattering with phase-generated carrier (PGC) demodulation algorithm. Pulsed lights are sent into the sensing fiber and the Rayleigh backscattering light from a certain position along the sensing fiber would interfere through an unbalanced Michelson interferometry to generate the interference light. An improved PGC demodulation algorithm is carried out to recover the phase information of the interference signal, which carries the sensing information. Three vibration events were applied simultaneously to different positions over 2000 m sensing fiber and demodulated correctly. The spatial resolution is 10 m, and the noise level of the Φ-OTDR system we proposed is about 10-3 rad/\\surd {Hz}, and the signal-to-noise ratio is about 30.34 dB.

  13. Suitability Evaluation for Products Generation from Multisource Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Jining Yan

    2016-12-01

    Full Text Available With the arrival of the big data era in Earth observation, the remote sensing communities have accumulated a large amount of invaluable and irreplaceable data for global monitoring. These massive remote sensing data have enabled large-area and long-term series Earth observation, and have, in particular, made standard, automated product generation more popular. However, there is more than one type of data selection for producing a certain remote sensing product; no single remote sensor can cover such a large area at one time. Therefore, we should automatically select the best data source from redundant multisource remote sensing data, or select substitute data if data is lacking, during the generation of remote sensing products. However, the current data selection strategy mainly adopts the empirical model, and has a lack of theoretical support and quantitative analysis. Hence, comprehensively considering the spectral characteristics of ground objects and spectra differences of each remote sensor, by means of spectrum simulation and correlation analysis, we propose a suitability evaluation model for product generation. The model will enable us to obtain the Production Suitability Index (PSI of each remote sensing data. In order to validate the proposed model, two typical value-added information products, NDVI and NDWI, and two similar or complementary remote sensors, Landsat-OLI and HJ1A-CCD1, were chosen, and the verification experiments were performed. Through qualitative and quantitative analysis, the experimental results were consistent with our model calculation results, and strongly proved the validity of the suitability evaluation model. The proposed production suitability evaluation model could assist with standard, automated, serialized product generation. It will play an important role in one-station, value-added information services during the big data era of Earth observation.

  14. Developing status of satellite remote sensing and its application

    International Nuclear Information System (INIS)

    Zhang Wanliang; Liu Dechang

    2005-01-01

    This paper has discussed the latest development of satellite remote sensing in sensor resolutions, satellite motion models, load forms, data processing and its application. The authors consider that sensor resolutions of satellite remote sensing have increased largely. Valid integration of multisensors is a new idea and technology of satellite remote sensing in the 21st century, and post-remote sensing application technology is the important part of deeply applying remote sensing information and has great practical significance. (authors)

  15. Application of remote sensing and geographical information system for generation of runoff curve number

    Science.gov (United States)

    Meshram, S. Gajbhiye; Sharma, S. K.; Tignath, S.

    2017-07-01

    Watershed is an ideal unit for planning and management of land and water resources (Gajbhiye et al., IEEE international conference on advances in technology and engineering (ICATE), Bombay, vol 1, issue 9, pp 23-25, 2013a; Gajbhiye et al., Appl Water Sci 4(1):51-61, 2014a; Gajbhiye et al., J Geol Soc India (SCI-IF 0.596) 84(2):192-196, 2014b). This study aims to generate the curve number, using remote sensing and geographical information system (GIS) and the effect of slope on curve number values. The study was carried out in Kanhaiya Nala watershed located in Satna district of Madhya Pradesh. Soil map, Land Use/Land cover and slope map were generated in GIS Environment. The CN parameter values corresponding to various soil, land cover, and land management conditions were selected from Natural Resource Conservation Service (NRCS) standard table. Curve number (CN) is an index developed by the NRCS, to represent the potential for storm water runoff within a drainage area. The CN for a drainage basin is estimated using a combination of land use, soil, and antecedent soil moisture condition (AMC). In present study effect of slope on CN values were determined. The result showed that the CN unadjusted value are higher in comparison to CN adjusted with slope. Remote sensing and GIS is very reliable technique for the preparation of most of the input data required by the SCS curve number model.

  16. The Development of Wireless Body Area Network for Motion Sensing Application

    Science.gov (United States)

    Puspitaningayu, P.; Widodo, A.; Yundra, E.; Ramadhany, F.; Arianto, L.; Habibie, D.

    2018-04-01

    The information era has driven the society into the digitally-controlled lifestyle. Wireless body area networks (WBAN) as the specific scope of wireless sensor networks (WSN) is consistently growing into bigger applications. Currently, people are able to monitor their medical parameters by simply using small electronics devices attached to their body and connected to the authorities. On top of that, this time, smart phones are typically equipped with sensors such as accelerometer, gyroscope, barometric pressure, heart rate monitor, etc. It means that the sensing yet the signal processing can be performed by a single device. Moreover, Android opens lot wider opportunities for new applications as the most popular open-sourced smart phone platform. This paper is intended to show the development of motion sensing application which focused on analysing data from accelerometer and gyroscope. Beside reads the sensors, this application also has the ability to convert the sensors’ numerical value into graphs.

  17. Energy Autonomous Wireless Sensing System Enabled by Energy Generated during Human Walking

    International Nuclear Information System (INIS)

    Kuang, Yang; Ruan, Tingwen; Chew, Zheng Jun; Zhu, Meiling

    2016-01-01

    Recently, there has been a huge amount of work devoted to wearable energy harvesting (WEH) in a bid to establish energy autonomous wireless sensing systems for a range of health monitoring applications. However, limited work has been performed to implement and test such systems in real-world settings. This paper reports the development and real-world characterisation of a magnetically plucked wearable knee-joint energy harvester (Mag-WKEH) powered wireless sensing system, which integrates our latest research progresses in WEH, power conditioning and wireless sensing to achieve high energy efficiency. Experimental results demonstrate that with walking speeds of 3∼7 km/h, the Mag-WKEH generates average power of 1.9∼4.5 mW with unnoticeable impact on the wearer and is able to power the wireless sensor node (WSN) with three sensors to work at duty cycles of 6.6%∼13%. In each active period of 2 s, the WSN is able to measure and transmit 482 readings to the base station. (paper)

  18. Remote Sensing and Geospatial Technological Applications for Site-specific Management of Fruit and Nut Crops: A Review

    Directory of Open Access Journals (Sweden)

    Joel O. Paz

    2010-08-01

    Full Text Available Site-specific crop management (SSCM is one facet of precision agriculture which is helping increase production with minimal input. It has enhanced the cost-benefit scenario in crop production. Even though the SSCM is very widely used in row crop agriculture like corn, wheat, rice, soybean, etc. it has very little application in cash crops like fruit and nut. The main goal of this review paper was to conduct a comprehensive review of advanced technologies, including geospatial technologies, used in site-specific management of fruit and nut crops. The review explores various remote sensing data from different platforms like satellite, LIDAR, aerial, and field imaging. The study analyzes the use of satellite sensors, such as Quickbird, Landsat, SPOT, and IRS imagery as well as hyperspectral narrow-band remote sensing data in study of fruit and nut crops in blueberry, citrus, peach, apple, etc. The study also explores other geospatial technologies such as GPS, GIS spatial modeling, advanced image processing techniques, and information technology for suitability study, orchard delineation, and classification accuracy assessment. The study also provides an example of a geospatial model developed in ArcGIS ModelBuilder to automate the blueberry production suitability analysis. The GIS spatial model is developed using various crop characteristics such as chilling hours, soil permeability, drainage, and pH, and land cover to determine the best sites for growing blueberry in Georgia, U.S. The study also provides a list of spectral reflectance curves developed for some fruit and nut crops, blueberry, crowberry, redblush citrus, orange, prickly pear, and peach. The study also explains these curves in detail to help researchers choose the image platform, sensor, and spectrum wavelength for various fruit and nut crops SSCM.

  19. Analytic sensing for multi-layer spherical models with application to EEG source imaging

    OpenAIRE

    Kandaswamy, Djano; Blu, Thierry; Van De Ville, Dimitri

    2013-01-01

    Source imaging maps back boundary measurements to underlying generators within the domain; e. g., retrieving the parameters of the generating dipoles from electrical potential measurements on the scalp such as in electroencephalography (EEG). Fitting such a parametric source model is non-linear in the positions of the sources and renewed interest in mathematical imaging has led to several promising approaches. One important step in these methods is the application of a sensing principle that ...

  20. New generation non-stationary portable neutron generators for biophysical applications of Neutron Activation Analysis.

    Science.gov (United States)

    Marchese, N; Cannuli, A; Caccamo, M T; Pace, C

    2017-01-01

    Neutron sources are increasingly employed in a wide range of research fields. For some specific purposes an alternative to existing large-scale neutron scattering facilities, can be offered by the new generation of portable neutron devices. This review reports an overview for such recently available neutron generators mainly addressed to biophysics applications with specific reference to portable non-stationary neutron generators applied in Neutron Activation Analysis (NAA). The review reports a description of a typical portable neutron generator set-up addressed to biophysics applications. New generation portable neutron devices, for some specific applications, can constitute an alternative to existing large-scale neutron scattering facilities. Deuterium-Deuterium pulsed neutron sources able to generate 2.5MeV neutrons, with a neutron yield of 1.0×10 6 n/s, a pulse rate of 250Hz to 20kHz and a duty factor varying from 5% to 100%, when combined with solid-state photon detectors, show that this kind of compact devices allow rapid and user-friendly elemental analysis. "This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo". Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Remote sensing and implications for variable-rate application using agricultural aircraft

    Science.gov (United States)

    Thomson, Steven J.; Smith, Lowrey A.; Ray, Jeffrey D.; Zimba, Paul V.

    2004-01-01

    Aircraft routinely used for agricultural spray application are finding utility for remote sensing. Data obtained from remote sensing can be used for prescription application of pesticides, fertilizers, cotton growth regulators, and water (the latter with the assistance of hyperspectral indices and thermal imaging). Digital video was used to detect weeds in early cotton, and preliminary data were obtained to see if nitrogen status could be detected in early soybeans. Weeds were differentiable from early cotton at very low altitudes (65-m), with the aid of supervised classification algorithms in the ENVI image analysis software. The camera was flown at very low altitude for acceptable pixel resolution. Nitrogen status was not detectable by statistical analysis of digital numbers (DNs) obtained from images, but soybean cultivar differences were statistically discernable (F=26, p=0.01). Spectroradiometer data are being analyzed to identify narrow spectral bands that might aid in selecting camera filters for determination of plant nitrogen status. Multiple camera configurations are proposed to allow vegetative indices to be developed more readily. Both remotely sensed field images and ground data are to be used for decision-making in a proposed variable-rate application system for agricultural aircraft. For this system, prescriptions generated from digital imagery and data will be coupled with GPS-based swath guidance and programmable flow control.

  2. Chemical Sensing Applications of ZnO Nanomaterials

    Science.gov (United States)

    Chaudhary, Savita; Umar, Ahmad; Bhasin, K. K.

    2018-01-01

    Recent advancement in nanoscience and nanotechnology has witnessed numerous triumphs of zinc oxide (ZnO) nanomaterials due to their various exotic and multifunctional properties and wide applications. As a remarkable and functional material, ZnO has attracted extensive scientific and technological attention, as it combines different properties such as high specific surface area, biocompatibility, electrochemical activities, chemical and photochemical stability, high-electron communicating features, non-toxicity, ease of syntheses, and so on. Because of its various interesting properties, ZnO nanomaterials have been used for various applications ranging from electronics to optoelectronics, sensing to biomedical and environmental applications. Further, due to the high electrochemical activities and electron communication features, ZnO nanomaterials are considered as excellent candidates for electrochemical sensors. The present review meticulously introduces the current advancements of ZnO nanomaterial-based chemical sensors. Various operational factors such as the effect of size, morphologies, compositions and their respective working mechanisms along with the selectivity, sensitivity, detection limit, stability, etc., are discussed in this article. PMID:29439528

  3. New Generation Lidar Technology and Applications

    Science.gov (United States)

    Spinhirne, James D.

    1999-01-01

    Lidar has been a tool for atmospheric research for several decades. Until recently routine operational use of lidar was not known. Problems have involved a lack of appropriate technology rather than a lack of applications. Within the last few years, lidar based on a new generation of solid state lasers and detectors have changed the situation. Operational applications for cloud and aerosol research applications are now well established. In these research applications, the direct height profiling capability of lidar is typically an adjunct to other types of sensing, both passive and active. Compact eye safe lidar with the sensitivity for ground based monitoring of all significant cloud and aerosol structure and the reliability to operate full time for several years is now in routine use. The approach is known as micro pulse lidar (MPL). For MPL the laser pulse repetition rate is in the kilohertz range and the pulse energies are in the micro-Joule range. The low pulse energy permits the systems to be eye safe and reliable with solid state lasers. A number of MPL systems have been deployed since 1992 at atmospheric research sites at a variety of global locations. Accurate monitoring of cloud and aerosol vertical distribution is a critical measurement for atmospheric radiation. An airborne application of lidar cloud and aerosol profiling is retrievals of parameters from combined lidar and passive sensing involving visible, infrared and microwave frequencies. A lidar based on a large pulse, solid state diode pumped ND:YAG laser has been deployed on the NASA ER-2 high altitude research aircraft along with multi-spectral visible/IR and microwave imaging radiometers since 1993. The system has shown high reliability in an extensive series of experimental projects for cloud remote sensing. The retrieval of cirrus radiation parameters is an effective application for combined lidar and passive sensing. An approved NASA mission will soon begin long term lidar observation of

  4. Biocompatibility evaluations and biomedical sensing applications of nitric oxide-releasing/generating polymeric materials

    Science.gov (United States)

    Wu, Yiduo

    Nitric oxide (NO) is a potent signaling molecule secreted by healthy vascular endothelial cells (EC) that is capable of inhibiting the activation and adhesion of platelets, preventing inflammation and inducing vasodilation. Polymeric materials that mimic the EC through the continuous release or generation of NO are expected to exhibit enhanced biocompatibility in vivo. In this dissertation research, the biocompatibility of novel NO-releasing/generating materials has been evaluated via both in vitro and in vivo studies. A new in vitro platelet adhesion assay has been designed to quantify platelet adhesion on NO-releasing/generating polymer surfaces via their innate lactate dehydrogenase (LDH) content. Using this assay, it was discovered that continuous NO fluxes of up to 7.05 x10-10 mol cm-2 min-1 emitted from the polymer surfaces could reduce platelet adhesion by almost 80%. Such an in vitro biocompatibility assay can be employed as a preliminary screening method in the development of new NO-releasing/generating materials. In addition, the first in vivo biocompatibility evaluation of NO-generating polymers was conducted in a porcine artery model for intravascular oxygen sensing catheters. The Cu(I)-catalyzed decomposition of endogenous S-nitrosothiols (RSNOs) generated NO in situ at the polymer/blood interface and offered enhanced biocompatibility to the NO-generating catheters along with more accurate analytical results for intra-arterial measurements of PO2 levels. NO-generating polymers can also be utilized to fabricate electrochemical RSNO sensors based on the amperometric detection of NO generated by the reaction of RSNOs with immobilized catalysts. Unlike conventional methodologies employed to measure labile RSNO, the advantage of the RSNO sensor method is that measurement in whole blood samples is possible and this minimizes sample processing artifacts in RSNO measurements. An electrochemical RSNO sensor with organoselenium crosslinked polyethylenimine (RSe

  5. Remote sensing applications in environmental research

    CERN Document Server

    Srivastava, Prashant K; Gupta, Manika; Islam, Tanvir

    2014-01-01

    Remote Sensing Applications in Environmental Research is the basis for advanced Earth Observation (EO) datasets used in environmental monitoring and research. Now that there are a number of satellites in orbit, EO has become imperative in today's sciences, weather and natural disaster prediction. This highly interdisciplinary reference work brings together diverse studies on remote sensing and GIS, from a theoretical background to its applications, represented through various case studies and the findings of new models. The book offers a comprehensive range of contributions by well-known scientists from around the world and opens a new window for students in presenting interdisciplinary and methodological resources on the latest research. It explores various key aspects and offers state-of-the-art research in a simplified form, describing remote sensing and GIS studies for those who are new to the field, as well as for established researchers.

  6. Object specific reconstruction using compressively sensed data

    International Nuclear Information System (INIS)

    Mahalanobis, Abhijit

    2008-01-01

    Compressed sensing holds the promise for radically novel sensors that can perfectly reconstruct images using considerably less samples of data than required by the otherwise general Shannon sampling theorem. In surveillance systems however, it is also desirable to cue regions of the image where objects of interest may exist. Thus in this paper, we are interested in imaging interesting objects in a scene, without necessarily seeking perfect reconstruction of the whole image. We show that our goals are achieved by minimizing a modified L2-norm criterion with good results when the reconstruction of only specific objects is of interest. The method yields a simple closed form analytical solution that does not require iterative processing. Objects can be meaningfully sensed in considerable detail while heavily compressing the scene elsewhere. Essentially, this embeds the object detection and clutter discrimination function in the sensing and imaging process.

  7. Optic Fiber Sensing IOT Technology and Application Research

    Directory of Open Access Journals (Sweden)

    Wenjuan Zeng

    2014-10-01

    Full Text Available The growth of the Internet of Things (IOT industry has become a new mark of the communication domain. As the development of the technology of the IOT and the fiber-optical sensor, the combination of the both is a big question to be discussed, and the fiber-optical IOT also has a good development prospect. This article first introduces IOT’s current status, the key technology, the theoretical frame and the applications. Then, it discusses the classification of the optical fiber sensor as well as the development and its application’s situation. Lastly, it puts the optical fiber sensing technology into the IOT, and introduces a specific application which is used in the mine safety based on the fiber-optical IOT.

  8. High-sweeping-speed optically synchronized dual-channel terahertz-signal generator for driving a superconducting tunneling mixer and its application to active gas sensing.

    Science.gov (United States)

    Oh, Kyoung-Hwan; Shimizu, Naofumi; Kohjiro, Satoshi; Kikuchi, Ken'ichi; Wakatsuki, Atsushi; Kukutsu, Naoya; Kado, Yuichi

    2009-10-12

    We propose a high-sweeping-speed optically synchronized dual-channel terahertz (THz) signal generator for an active gas-sensing system with a superconductor-insulator-superconductor (SIS) mixer. The generator can sweep a frequency range from 200 to 500 GHz at a speed of 375 GHz/s and a frequency resolution of 500 MHz. With the developed gas-sensing system, a gas-absorption-line measurement was successfully carried out with N(2)O gas in that frequency range.

  9. An Enhanced Sensing Application Based on a Flexible Projected Capacitive-Sensing Mattress

    Directory of Open Access Journals (Sweden)

    Wen-Ying Chang

    2014-04-01

    Full Text Available This paper presents a cost-effective sensor system for mattresses that can classify the sleeping posture of an individual and prevent pressure ulcers. This system applies projected capacitive sensing to the field of health care. The charge time (CT method was used to sensitively and accurately measure the capacitance of the projected electrodes. The required characteristics of the projected capacitor were identified to develop large-area applications for sensory mattresses. The area of the electrodes, the use of shielding, and the increased length of the transmission line were calibrated to more accurately measure the capacitance of the electrodes in large-size applications. To offer the users comfort in the prone position, a flexible substrate was selected and covered with 16 × 20 electrodes. Compared with the static charge sensitive bed (SCSB, our proposed system-flexible projected capacitive-sensing mattress (FPCSM comes with more electrodes to increase the resolution of posture identification. As for the body pressure system (BPS, the FPCSM has advantages such as lower cost, higher aging-resistance capability, and the ability to sense the capacitance of the covered regions without physical contact. The proposed guard ring design effectively absorbs the noise and interrupts leakage paths. The projected capacitive electrode is suitable for proximity-sensing applications and succeeds at quickly recognizing the sleeping pattern of the user.

  10. Remote sensing for water quality

    International Nuclear Information System (INIS)

    Giardino, Claudia

    2006-01-01

    The application of remote sensing to the study of lakes is begun in years 80 with the lunch of the satellites of second generation. Many experiences have indicated the contribution of remote sensing for the limnology [it

  11. Integration of aerial imaging and variable-rate technology for site-specific aerial herbicide application

    Science.gov (United States)

    As remote sensing and variable rate technology are becoming more available for aerial applicators, practical methodologies on effective integration of these technologies are needed for site-specific aerial applications of crop production and protection materials. The objectives of this study were to...

  12. Application of a path sensitizing method on automated generation of test specifications for control software

    International Nuclear Information System (INIS)

    Morimoto, Yuuichi; Fukuda, Mitsuko

    1995-01-01

    An automated generation method for test specifications has been developed for sequential control software in plant control equipment. Sequential control software can be represented as sequential circuits. The control software implemented in a control equipment is designed from these circuit diagrams. In logic tests of VLSI's, path sensitizing methods are widely used to generate test specifications. But the method generates test specifications at a single time only, and can not be directly applied to sequential control software. The basic idea of the proposed method is as follows. Specifications of each logic operator in the diagrams are defined in the software design process. Therefore, test specifications of each operator in the control software can be determined from these specifications, and validity of software can be judged by inspecting all of the operators in the logic circuit diagrams. Candidates for sensitized paths, on which test data for each operator propagates, can be generated by the path sensitizing method. To confirm feasibility of the method, it was experimentally applied to control software in digital control equipment. The program could generate test specifications exactly, and feasibility of the method was confirmed. (orig.) (3 refs., 7 figs.)

  13. VCSEL-based gigabit IR-UWB link for converged communication and sensing applications in optical metro-access networks

    DEFF Research Database (Denmark)

    Pham, Tien Thang; Gibbon, Timothy Braidwood; Tafur Monroy, Idelfonso

    2012-01-01

    We report on experimental demonstration of an impulse radio ultrawideband (IR-UWB) based converged communication and sensing system. A 1550-nm VCSEL-generated IR-UWB signal is used for 2-Gbps wireless data distribution over 800-m and 50-km single mode fiber links which present short-range in-buil...... application, paving the way forward for the development and deployment of converged UWB VCSEL-based technologies in access and in-building networks of the future.......We report on experimental demonstration of an impulse radio ultrawideband (IR-UWB) based converged communication and sensing system. A 1550-nm VCSEL-generated IR-UWB signal is used for 2-Gbps wireless data distribution over 800-m and 50-km single mode fiber links which present short-range in......-building and long-reach access network applications. The IR-UWB signal is also used to simultaneously measure the rotational speed of a blade spinning between 18 and 30 Hz. To the best of our knowledge, this is the very first demonstration of a simultaneous gigabit UWB telecommunication and wireless UWB sensing...

  14. Remote Sensing: Physics And Environmental Applications

    International Nuclear Information System (INIS)

    EI Raey, M.

    2007-01-01

    Full text: Basic principles of remote sensing of environment are outlined emphasizing inherent physical and target properties leading to proper identification and classification. Basic processing techniques are discussed. Applications of remote sensing techniques in various aspects of environmental monitoring and assessment is surveyed with emphasis on aspects of main concern to developing communities such as planning, sea level impacts, mine detection and earthquake prediction are all outlined and discussed

  15. Radar Remote Sensing

    Science.gov (United States)

    Rosen, Paul A.

    2012-01-01

    This lecture was just a taste of radar remote sensing techniques and applications. Other important areas include Stereo radar grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled radar sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.

  16. Electric micro-generation system for nautical applications

    International Nuclear Information System (INIS)

    Giordana, A; Ponzinibbio, P

    2005-01-01

    Application specific requirements are studied in first part of this work.As well possible wind turbines and the switched reluctance generator choice fundaments are analyzed.In a second part, a Savonius helical turbine, switched reluctance generator and control system designs are reviewed. Finally, prototype test results are presented

  17. Hierarchical oxide-based composite nanostructures for energy, environmental, and sensing applications

    Science.gov (United States)

    Gao, Pu-Xian; Shimpi, Paresh; Cai, Wenjie; Gao, Haiyong; Jian, Dunliang; Wrobel, Gregory

    2011-02-01

    Self-assembled composite nanostructures integrate various basic nano-elements such as nanoparticles, nanofilms and nanowires toward realizing multifunctional characteristics, which promises an important route with potentially high reward for the fast evolving nanoscience and nanotechnology. A broad array of hierarchical metal oxide based nanostructures have been designed and fabricated in our research group, involving semiconductor metal oxides, ternary functional oxides such as perovskites and spinels and quaternary dielectric hydroxyl metal oxides with diverse applications in efficient energy harvesting/saving/utilization, environmental protection/control, chemical sensing and thus impacting major grand challenges in the area of materials and nanotechnology. Two of our latest research activities have been highlighted specifically in semiconductor oxide alloy nanowires and metal oxide/perovskite composite nanowires, which could impact the application sectors in ultraviolet/blue lighting, visible solar absorption, vehicle and industry emission control, chemical sensing and control for vehicle combustors and power plants.

  18. Remote sensing inputs to water demand modeling

    Science.gov (United States)

    Estes, J. E.; Jensen, J. R.; Tinney, L. R.; Rector, M.

    1975-01-01

    In an attempt to determine the ability of remote sensing techniques to economically generate data required by water demand models, the Geography Remote Sensing Unit, in conjunction with the Kern County Water Agency of California, developed an analysis model. As a result it was determined that agricultural cropland inventories utilizing both high altitude photography and LANDSAT imagery can be conducted cost effectively. In addition, by using average irrigation application rates in conjunction with cropland data, estimates of agricultural water demand can be generated. However, more accurate estimates are possible if crop type, acreage, and crop specific application rates are employed. An analysis of the effect of saline-alkali soils on water demand in the study area is also examined. Finally, reference is made to the detection and delineation of water tables that are perched near the surface by semi-permeable clay layers. Soil salinity prediction, automated crop identification on a by-field basis, and a potential input to the determination of zones of equal benefit taxation are briefly touched upon.

  19. Public health applications of remote sensing of the environment, an evaluation

    Science.gov (United States)

    1972-01-01

    The available techniques were examined in the field of remote sensing (including aerial photography, infrared detection, radar, etc.) and applications to a number of problems in the wide field of public health determined. The specific areas of public health examined included: air pollution, water pollution, communicable disease, and the combined problems of urban growth and the effect of disasters on human communities. The assessment of the possible applications of remote sensing to these problems was made primarily by examination of the available literature in each field, and by interviews with health authorities, physicists, biologists, and other interested workers. Three types of programs employing remote sensors were outlined in the air pollution field: (1) proving ability of sensors to monitor pollutants at three levels of interest - point source, ambient levels in cities, and global patterns; (2) detection of effects of pollutants on the environment at local and global levels; and (3) routine monitoring.

  20. pH sensing characteristics and biosensing application of solution-gated reduced graphene oxide field-effect transistors.

    Science.gov (United States)

    Sohn, Il-Yung; Kim, Duck-Jin; Jung, Jin-Heak; Yoon, Ok Ja; Thanh, Tien Nguyen; Quang, Trung Tran; Lee, Nae-Eung

    2013-07-15

    Solution-gated reduced graphene oxide field-effect transistors (R-GO FETs) were investigated for pH sensing and biochemical sensing applications. A channel of a networked R-GO film formed by self-assembly was incorporated as a sensing layer into a solution-gated FET structure for pH sensing and the detection of acetylcholine (Ach), which is a neurotransmitter in the nerve system, through enzymatic reactions. The fabricated R-GO FET was sensitive to protons (H(+)) with a pH sensitivity of 29 mV/pH in terms of the shift of the charge neutrality point (CNP), which is attributed to changes in the surface potential caused by the interaction of protons with OH surface functional groups present on the R-GO surface. The R-GO FET immobilized with acetylcholinesterase (AchE) was used to detect Ach in the concentration range of 0.1-10mM by sensing protons generated during the enzymatic reactions. The results indicate that R-GO FETs provide the capability to detect protons, demonstrating their applicability as a biosensing device for enzymatic reactions. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Site specific N application and remote sensing of cotton crop

    Science.gov (United States)

    A spatial variable nitrogen (N) rate trial and remote sensing of cotton crop was conducted during 2003 at Paul Good Farms, Mississippi, USA. The N rate trial consisted of three, 8-row transects at the east and west side of the field that were selected to represent variable soil and elevation feature...

  2. Accurate and emergent applications for high precision light small aerial remote sensing system

    Science.gov (United States)

    Pei, Liu; Yingcheng, Li; Yanli, Xue; Qingwu, Hu; Xiaofeng, Sun

    2014-03-01

    In this paper, we focus on the successful applications of accurate and emergent surveying and mapping for high precision light small aerial remote sensing system. First, the remote sensing system structure and three integrated operation modes will be introduced. It can be combined to three operation modes depending on the application requirements. Second, we describe the preliminary results of a precision validation method for POS direct orientation in 1:500 mapping. Third, it presents two fast response mapping products- regional continuous three-dimensional model and digital surface model, taking the efficiency and accuracy evaluation of the two products as an important point. The precision of both products meets the 1:2 000 topographic map accuracy specifications in Pingdingshan area. In the end, conclusions and future work are summarized.

  3. Accurate and emergent applications for high precision light small aerial remote sensing system

    International Nuclear Information System (INIS)

    Pei, Liu; Yingcheng, Li; Yanli, Xue; Xiaofeng, Sun; Qingwu, Hu

    2014-01-01

    In this paper, we focus on the successful applications of accurate and emergent surveying and mapping for high precision light small aerial remote sensing system. First, the remote sensing system structure and three integrated operation modes will be introduced. It can be combined to three operation modes depending on the application requirements. Second, we describe the preliminary results of a precision validation method for POS direct orientation in 1:500 mapping. Third, it presents two fast response mapping products- regional continuous three-dimensional model and digital surface model, taking the efficiency and accuracy evaluation of the two products as an important point. The precision of both products meets the 1:2 000 topographic map accuracy specifications in Pingdingshan area. In the end, conclusions and future work are summarized

  4. DARLA: Data Assimilation and Remote Sensing for Littoral Applications

    Science.gov (United States)

    2017-03-01

    at reasonable logistical or financial costs . Remote sensing provides an attractive alternative. We discuss the range of different sensors that are...DARLA: Data Assimilation and Remote Sensing for Littoral Applications Final Report Award Number: N000141010932 Andrew T. Jessup Chris Chickadel...20. Radermacher, M., M. Wengrove, J. V. de Vries, and R. Holman (2014), Applicability of video-derived bathymetry estimates to nearshore current

  5. JEarth | Analytical Remote Sensing Imagery Application for Researchers and Practitioners

    Science.gov (United States)

    Prashad, L.; Christensen, P. R.; Anwar, S.; Dickenshied, S.; Engle, E.; Noss, D.

    2009-12-01

    The ASU 100 Cities Project and the ASU Mars Space Flight Facility (MSFF) present JEarth, a set of analytical Geographic Information System (GIS) tools for viewing and processing Earth-based remote sensing imagery and vectors, including high-resolution and hyperspectral imagery such as TIMS and MASTER. JEarth is useful for a wide range of researchers and practitioners who need to access, view, and analyze remote sensing imagery. JEarth stems from existing MSFF applications: the Java application JMars (Java Mission-planning and Analysis for Remote Sensing) for viewing and analyzing remote sensing imagery and THMPROC, a web-based, interactive tool for processing imagery to create band combinations, stretches, and other imagery products. JEarth users can run the application on their desktops by installing Java-based open source software on Windows, Mac, or Linux operating systems.

  6. Biophysical applications of satellite remote sensing

    CERN Document Server

    Hanes, Jonathan

    2014-01-01

    Including an introduction and historical overview of the field, this comprehensive synthesis of the major biophysical applications of satellite remote sensing includes in-depth discussion of satellite-sourced biophysical metrics such as leaf area index.

  7. Hybrid nanomaterial and its applications: IR sensing and energy harvesting

    Science.gov (United States)

    Tseng, Yi-Hsuan

    In this dissertation, a hybrid nanomaterial, single-wall carbon nanotubes-copper sulfide nanoparticles (SWNTs-CuS NPs), was synthesized and its properties were analyzed. Due to its unique optical and thermal properties, the hybrid nanomaterial exhibited great potential for infrared (IR) sensing and energy harvesting. The hybrid nanomaterial was synthesized with the non-covalent bond technique to functionalize the surface of the SWNTs and bind the CuS nanoparticles on the surface of the SWNTs. For testing and analyzing the hybrid nanomaterial, SWNTs-CuS nanoparticles were formed as a thin film structure using the vacuum filtration method. Two conductive wires were bound on the ends of the thin film to build a thin film device for measurements and analyses. Measurements found that the hybrid nanomaterial had a significantly increased light absorption (up to 80%) compared to the pure SWNTs. Moreover, the hybrid nanomaterial thin film devices exhibited a clear optical and thermal switching effect, which could be further enhanced up to ten times with asymmetric illumination of light and thermal radiation on the thin film devices instead of symmetric illumination. A simple prototype thermoelectric generator enabled by the hybrid nanomaterials was demonstrated, indicating a new route for achieving thermoelectricity. In addition, CuS nanoparticles have great optical absorption especially in the near-infrared region. Therefore, the hybrid nanomaterial thin films also have the potential for IR sensing applications. The first application to be covered in this dissertation is the IR sensing application. IR thin film sensors based on the SWNTs-CuS nanoparticles hybrid nanomaterials were fabricated. The IR response in the photocurrent of the hybrid thin film sensor was significantly enhanced, increasing the photocurrent by 300% when the IR light illuminates the thin film device asymmetrically. The detection limit could be as low as 48mW mm-2. The dramatically enhanced

  8. Generation, Validation, and Application of Abundance Map Reference Data for Spectral Unmixing

    Science.gov (United States)

    Williams, McKay D.

    Reference data ("ground truth") maps traditionally have been used to assess the accuracy of imaging spectrometer classification algorithms. However, these reference data can be prohibitively expensive to produce, often do not include sub-pixel abundance estimates necessary to assess spectral unmixing algorithms, and lack published validation reports. Our research proposes methodologies to efficiently generate, validate, and apply abundance map reference data (AMRD) to airborne remote sensing scenes. We generated scene-wide AMRD for three different remote sensing scenes using our remotely sensed reference data (RSRD) technique, which spatially aggregates unmixing results from fine scale imagery (e.g., 1-m Ground Sample Distance (GSD)) to co-located coarse scale imagery (e.g., 10-m GSD or larger). We validated the accuracy of this methodology by estimating AMRD in 51 randomly-selected 10 m x 10 m plots, using seven independent methods and observers, including field surveys by two observers, imagery analysis by two observers, and RSRD using three algorithms. Results indicated statistically-significant differences between all versions of AMRD, suggesting that all forms of reference data need to be validated. Given these significant differences between the independent versions of AMRD, we proposed that the mean of all (MOA) versions of reference data for each plot and class were most likely to represent true abundances. We then compared each version of AMRD to MOA. Best case accuracy was achieved by a version of imagery analysis, which had a mean coverage area error of 2.0%, with a standard deviation of 5.6%. One of the RSRD algorithms was nearly as accurate, achieving a mean error of 3.0%, with a standard deviation of 6.3%, showing the potential of RSRD-based AMRD generation. Application of validated AMRD to specific coarse scale imagery involved three main parts: 1) spatial alignment of coarse and fine scale imagery, 2) aggregation of fine scale abundances to produce

  9. Exploring microdischarges for portable sensing applications.

    Science.gov (United States)

    Gianchandani, Y B; Wright, S A; Eun, C K; Wilson, C G; Mitra, B

    2009-10-01

    This paper describes the use of microdischarges as transducing elements in sensors and detectors. Chemical and physical sensing of gases, chemical sensing of liquids, and radiation detection are described. These applications are explored from the perspective of their use in portable microsystems, with emphasis on compactness, power consumption, the ability to operate at or near atmospheric pressure (to reduce pumping challenges), and the ability to operate in an air ambient (to reduce the need for reservoirs of carrier gases). Manufacturing methods and performance results are described for selected examples.

  10. Application of artificial tactile sensing approach in kidney-stone-removal laparoscopy.

    Science.gov (United States)

    Afshari, Elnaz; Najarian, Siamak; Simforoosh, Nasser

    2010-01-01

    Artificial tactile sensing is a novel method for obtaining different characteristics of a hard object embedded in a soft tissue. In this regard, artificial palpation is one of the most valuable achievements of artificial tactile sensing that can be used in various fields of medicine and more specifically in surgery. In this study, considering the present problems and limitations in kidney-stone-removal laparoscopy, a new application will be presented for artificial tactile sensing approach. Having imitated surgeon's palpation during open surgery and modeled it conceptually, indications of stone existence that appear on the surface of kidney (due to exerting mechanical load) were determined. A number of different cases were created and solved by the software. Using stress distribution contours and stress graphs, it is illustrated that the created stress patterns on the surface of kidney not only show the existence of stone inside, but also its exact location. In fact, the reliability and accuracy of artificial tactile sensing method in detection of kidney stone during laparoscopy is demonstrated by means of finite element analysis. Also, in this paper, the functional principles of tactile system capable of determining the exact location of stone during laparoscopy will be presented.

  11. Landsat's role in ecological applications of remote sensing.

    Science.gov (United States)

    Warren B. Cohen; Samuel N. Goward

    2004-01-01

    Remote sensing, geographic information systems, and modeling have combined to produce a virtual explosion of growth in ecological investigations and applications that are explicitly spatial and temporal. Of all remotely sensed data, those acquired by landsat sensors have played the most pivotal role in spatial and temporal scaling. Modern terrestrial ecology relies on...

  12. All-organic microelectromechanical systems integrating specific molecular recognition--a new generation of chemical sensors.

    Science.gov (United States)

    Ayela, Cédric; Dubourg, Georges; Pellet, Claude; Haupt, Karsten

    2014-09-03

    Cantilever-type all-organic microelectromechanical systems based on molecularly imprinted polymers for specific analyte recognition are used as chemical sensors. They are produced by a simple spray-coating-shadow-masking process. Analyte binding to the cantilever generates a measurable change in its resonance frequency. This allows label-free detection by direct mass sensing of low-molecular-weight analytes at nanomolar concentrations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Remote sensing of wetlands applications and advances

    CERN Document Server

    Tiner, Ralph W; Klemas, Victor V

    2015-01-01

    Effectively Manage Wetland Resources Using the Best Available Remote Sensing Techniques Utilizing top scientists in the wetland classification and mapping field, Remote Sensing of Wetlands: Applications and Advances covers the rapidly changing landscape of wetlands and describes the latest advances in remote sensing that have taken place over the past 30 years for use in mapping wetlands. Factoring in the impact of climate change, as well as a growing demand on wetlands for agriculture, aquaculture, forestry, and development, this text considers the challenges that wetlands pose for remote sensing and provides a thorough introduction on the use of remotely sensed data for wetland detection. Taking advantage of the experiences of more than 50 contributing authors, the book describes a variety of techniques for mapping and classifying wetlands in a multitude of environments ranging from tropical to arctic wetlands including coral reefs and submerged aquatic vegetation. The authors discuss the advantages and di...

  14. Carbon for sensing devices

    CERN Document Server

    Tagliaferro, Alberto

    2015-01-01

    This book reveals why carbon is playing such an increasingly prominent role as a sensing material. The various steps that transform a raw material in a sensing device are thoroughly presented and critically discussed.  The authors deal with all aspects of carbon-based sensors, starting from the various hybridization and allotropes of carbon, with specific focus on micro and nanosized carbons (e.g., carbon nanotubes, graphene) and their growth processes. The discussion then moves to the role of functionalization and the different routes to achieve it. Finally, a number of sensing applications in various fields are presented, highlighting the connection with the basic properties of the various carbon allotropes.  Readers will benefit from this book’s bottom-up approach, which starts from the local bonding in carbon solids and ends with sensing applications, linking the local hybridization of carbon atoms and its modification by functionalization to specific device performance. This book is a must-have in th...

  15. Smartphones for distributed multimode sensing: biological and environmental sensing and analysis

    Science.gov (United States)

    Feitshans, Tyler; Williams, Robert

    2013-05-01

    Active and Agile Environmental and Biological sensing are becoming obligatory to generate prompt warnings for the troops and law enforcements conducting missions in hostile environments. The traditional static sensing mesh networks which provide a coarse-grained (far-field) measurement of the environmental conditions like air quality, radiation , CO2, etc … would not serve the dynamic and localized changes in the environment, which requires a fine-grained (near-field) sensing solutions. Further, sensing the biological conditions of (healthy and injured) personnel in a contaminated environment and providing a personalized analysis of the life-threatening conditions in real-time would greatly aid the success of the mission. In this vein, under SATE and YATE programs, the research team at AFRL Tec^Edge Discovery labs had demonstrated the feasibility of developing Smartphone applications , that employ a suite of external environmental and biological sensors, which provide fine-grained and customized sensing in real-time fashion. In its current state, these smartphone applications leverage a custom designed modular standalone embedded platform (with external sensors) that can be integrated seamlessly with Smartphones for sensing and further provides connectivity to a back-end data architecture for archiving, analysis and dissemination of real-time alerts. Additionally, the developed smartphone applications have been successfully tested in the field with varied environmental sensors to sense humidity, CO2/CO, wind, etc…, ; and with varied biological sensors to sense body temperature and pulse with apt real-time analysis

  16. Review of Remote Sensing Needs and Applications in Africa

    Science.gov (United States)

    Brown, Molly E.

    2007-01-01

    Remote sensing data has had an important role in identifying and responding to inter-annual variations in the African environment during the past three decades. As a largely agricultural region with diverse but generally limited government capacity to acquire and distribute ground observations of rainfall, temperature and other parameters, remote sensing is sometimes the only reliable measure of crop growing conditions in Africa. Thus, developing and maintaining the technical and scientific capacity to analyze and utilize satellite remote sensing data in Africa is critical to augmenting the continent's local weather/climate observation networks as well as its agricultural and natural resource development and management. The report Review of Remote Sensing Needs and Applications in Africa' has as its central goal to recommend to the US Agency for International Development an appropriate approach to support sustainable remote sensing applications at African regional remote sensing centers. The report focuses on "RS applications" to refer to the acquisition, maintenance and archiving, dissemination, distribution, analysis, and interpretation of remote sensing data, as well as the integration of interpreted data with other spatial data products. The report focuses on three primary remote sensing centers: (1) The AGRHYMET Regional Center in Niamey, Niger, created in 1974, is a specialized institute of the Permanent Interstate Committee for Drought Control in the Sahel (CILSS), with particular specialization in science and techniques applied to agricultural development, rural development, and natural resource management. (2) The Regional Centre for Maiming of Resources for Development (RCMRD) in Nairobi, Kenya, established in 1975 under the auspices of the United Nations Economic Commission for Africa and the Organization of African Unity (now the African Union), is an intergovernmental organization, with 15 member states from eastern and southern Africa. (3) The

  17. Surface holograms for sensing application

    Science.gov (United States)

    Zawadzka, M.; Naydenova, I.

    2018-01-01

    Surface gratings with periodicity of 2 μm and amplitude in the range of 175 and 240 nm were fabricated in a plasticized polyvinylchloride doped with a metalloporphyrin (ZnTPP), via a single laser pulse holographic ablation process. The effect of the laser pulse energy on the profiles of the fabricated surface structure was investigated. The sensing capabilities of the fabricated diffractive structures towards amines (triethylamine, diethylamine) and pyridine vapours were then explored; the holographic structures were exposed to the analyte vapours and changes in the intensity of the diffracted light were monitored in real time at 473 nm. It was demonstrated that surface structures, fabricated in a polymer doped with a metalloporphyrin which acts as analyte receptor, have a potential in sensing application.

  18. Remote sensing applications for the dam industry

    Energy Technology Data Exchange (ETDEWEB)

    Pryse-Phillips, A.; Woolgar, R. [Hatch Ltd., St. John' s, NL (Canada); Puestow, T.; Warren, S. [Memorial Univ. of Newfoundland, St. John' s, NL (Canada). C-Core; Rogers, K. [Nalcor Energy, St. John' s, NL (Canada); Khan, A. [Government of Newfoundland and Labrador, St. Johns, NL (Canada)

    2009-07-01

    There has been an increase in the earth observation missions providing satellite imagery for operational monitoring applications. This technique has been found to be especially useful for the surveillance of large, remote areas, which is challenging to achieve in a cost-effective manner by conventional field-based or aerial means. This paper discussed the utility of satellite-based monitoring for different applications relevant to hydrology and water resources management. Emphasis was placed on the monitoring of river ice covers in near, real-time and water resources management. The paper first outlined river ice monitoring using remote sensing on the Lower Churchill River. The benefits of remote sensing over traditional survey methods for the dam industry was then outlined. Satellite image acquisition and interpretation for the Churchill River was then presented. Several images were offered. Watershed physiographic characterization using remote sensing was also described. It was concluded that satellite imagery proved to be a useful tool to develop physiographic characteristics when conducting rainfall-runoff modelling. 3 refs., 1 tab., 11 figs.

  19. DFB laser diodes for sensing applications using photoacoustic spectroscopy

    International Nuclear Information System (INIS)

    Koeth, J; Fischer, M; Legge, M; Seufert, J; Roessner, K; Groninga, H

    2010-01-01

    We present typical device characteristics of novel DFB laser diodes which are employed in various sensing applications including high resolution photoacoustic spectroscopy. The laser diodes discussed are based on a genuine fabrication technology which allows for the production of ultra stable devices within a broad spectral range from 760 nm up to 3000 nm wavelength. The devices exhibit narrow linewidths down to <1 MHz which makes them ideally suited for all photoacoustic sensing applications where a high spectral purity is required. As an example we will focus on a typical medical application where these diodes are used for breath analysis using photoacoustic spectroscopy.

  20. Mobile Autonomous Sensing Unit (MASU: A Framework That Supports Distributed Pervasive Data Sensing

    Directory of Open Access Journals (Sweden)

    Esunly Medina

    2016-07-01

    Full Text Available Pervasive data sensing is a major issue that transverses various research areas and application domains. It allows identifying people’s behaviour and patterns without overwhelming the monitored persons. Although there are many pervasive data sensing applications, they are typically focused on addressing specific problems in a single application domain, making them difficult to generalize or reuse. On the other hand, the platforms for supporting pervasive data sensing impose restrictions to the devices and operational environments that make them unsuitable for monitoring loosely-coupled or fully distributed work. In order to help address this challenge this paper present a framework that supports distributed pervasive data sensing in a generic way. Developers can use this framework to facilitate the implementations of their applications, thus reducing complexity and effort in such an activity. The framework was evaluated using simulations and also through an empirical test, and the obtained results indicate that it is useful to support such a sensing activity in loosely-coupled or fully distributed work scenarios.

  1. Advances on application of remote sensing technology to uranium prospecting in northwest of China

    International Nuclear Information System (INIS)

    Ye Fawang; Liu Dechang; Zhao Yingjun; Zhang Jielin; Fang Maolong

    2012-01-01

    Some advances on application of remote sensing technology to uranium prospecting in northwest of China since 21st century are presented in this paper. They included: (1) application of ETM multi-spectral remote sensing technology to identify the sandstone-type uranium ore-controlling structure in north of Ordos Basin and investigate the uranium metallogenetic geological conditions in Qiangtang Basin, Tibet, (2) application of ASTER multi-spectral and QuickBird high spatial resolution remote sensing technology to extract and analyze the oil-gas reduced alteration in Bashibulake uranium ore district, Xinjiang, (3) discovery of Salamubulake uranium metallogenetic belt in Keping, Xinjiang, using ASTER multi-spectral, QuickBird high spatial resolution, and CASI/SASI airborne hyper-spectral remote sensing comprehensively, and (4) application of CASI/SASI airborne hyper-spectral remote sensing technology to extract volcanicrock type uranium mineralization alteration in Baiyanghe area, Xinjiang. These application advances show the good application effects of remote sensing technology to uranium exploration in northwest of China, which provides important references for making further uranium prospecting using remote sensing technology. (authors)

  2. CVD transfer-free graphene for sensing applications.

    Science.gov (United States)

    Schiattarella, Chiara; Vollebregt, Sten; Polichetti, Tiziana; Alfano, Brigida; Massera, Ettore; Miglietta, Maria Lucia; Di Francia, Girolamo; Sarro, Pasqualina Maria

    2017-01-01

    The sp 2 carbon-based allotropes have been extensively exploited for the realization of gas sensors in the recent years because of their high conductivity and large specific surface area. A study on graphene that was synthetized by means of a novel transfer-free fabrication approach and is employed as sensing material is herein presented. Multilayer graphene was deposited by chemical vapour deposition (CVD) mediated by CMOS-compatible Mo. The utilized technique takes advantage of the absence of damage or contamination of the synthesized graphene, because there is no need for the transfer onto a substrate. Moreover, a proper pre-patterning of the Mo catalyst allows one to obtain graphene films with different shapes and dimensions. The sensing properties of the material have been investigated by exposing the devices to NO 2 , NH 3 and CO, which have been selected because they are well-known hazardous substances. The concentration ranges have been chosen according to the conventional monitoring of these gases. The measurements have been carried out in humid N 2 environment, setting the flow rate at 500 sccm, the temperature at 25 °C and the relative humidity (RH) at 50%. An increase of the conductance response has been recorded upon exposure towards NO 2 , whereas a decrease of the signal has been detected towards NH 3 . The material appears totally insensitive towards CO. Finally, the sensing selectivity has been proven by evaluating and comparing the degree of adsorption and the interaction energies for NO 2 and NH 3 on graphene. The direct-growth approach for the synthesis of graphene opens a promising path towards diverse applicative scenarios, including the straightforward integration in electronic devices.

  3. CVD transfer-free graphene for sensing applications

    Directory of Open Access Journals (Sweden)

    Chiara Schiattarella

    2017-05-01

    Full Text Available The sp2 carbon-based allotropes have been extensively exploited for the realization of gas sensors in the recent years because of their high conductivity and large specific surface area. A study on graphene that was synthetized by means of a novel transfer-free fabrication approach and is employed as sensing material is herein presented. Multilayer graphene was deposited by chemical vapour deposition (CVD mediated by CMOS-compatible Mo. The utilized technique takes advantage of the absence of damage or contamination of the synthesized graphene, because there is no need for the transfer onto a substrate. Moreover, a proper pre-patterning of the Mo catalyst allows one to obtain graphene films with different shapes and dimensions. The sensing properties of the material have been investigated by exposing the devices to NO2, NH3 and CO, which have been selected because they are well-known hazardous substances. The concentration ranges have been chosen according to the conventional monitoring of these gases. The measurements have been carried out in humid N2 environment, setting the flow rate at 500 sccm, the temperature at 25 °C and the relative humidity (RH at 50%. An increase of the conductance response has been recorded upon exposure towards NO2, whereas a decrease of the signal has been detected towards NH3. The material appears totally insensitive towards CO. Finally, the sensing selectivity has been proven by evaluating and comparing the degree of adsorption and the interaction energies for NO2 and NH3 on graphene. The direct-growth approach for the synthesis of graphene opens a promising path towards diverse applicative scenarios, including the straightforward integration in electronic devices.

  4. Remote sensing sensors and applications in environmental resources mapping and modeling

    Science.gov (United States)

    Melesse, Assefa M.; Weng, Qihao; Thenkabail, Prasad S.; Senay, Gabriel B.

    2007-01-01

    The history of remote sensing and development of different sensors for environmental and natural resources mapping and data acquisition is reviewed and reported. Application examples in urban studies, hydrological modeling such as land-cover and floodplain mapping, fractional vegetation cover and impervious surface area mapping, surface energy flux and micro-topography correlation studies is discussed. The review also discusses the use of remotely sensed-based rainfall and potential evapotranspiration for estimating crop water requirement satisfaction index and hence provides early warning information for growers. The review is not an exhaustive application of the remote sensing techniques rather a summary of some important applications in environmental studies and modeling.

  5. 2nd International MATHEON Conference on Compressed Sensing and its Applications

    CERN Document Server

    Caire, Giuseppe; Calderbank, Robert; März, Maximilian; Kutyniok, Gitta; Mathar, Rudolf

    2017-01-01

    This contributed volume contains articles written by the plenary and invited speakers from the second international MATHEON Workshop 2015 that focus on applications of compressed sensing. Article authors address their techniques for solving the problems of compressed sensing, as well as connections to related areas like detecting community-like structures in graphs, curbatures on Grassmanians, and randomized tensor train singular value decompositions. Some of the novel applications covered include dimensionality reduction, information theory, random matrices, sparse approximation, and sparse recovery.  This book is aimed at both graduate students and researchers in the areas of applied mathematics, computer science, and engineering, as well as other applied scientists exploring the potential applications for the novel methodology of compressed sensing. An introduction to the subject of compressed sensing is also provided for researchers interested in the field who are not as familiar with it. .

  6. Technology development and application research of remote sensing in uranium geological prospecting

    International Nuclear Information System (INIS)

    Liu Dechang; Dong Xiuzhen; Wang Zitao

    2012-01-01

    From the application, the concept, the theory study and application effect, this article discusses technology development and application research of remote sensing in uranium geological prospecting. The prospecting way from 'information prospecting' to 'theoretical prospecting' to 'simulated prospecting' to 'technology prospecting' with remote sensing is provided and achieved significant prospecting effect. (authors)

  7. A proposed maintenance strategy for generator sets utilised in biogas applications

    OpenAIRE

    2012-01-01

    M. Ing. The overall purpose of this research project was to develop a proposed maintenance strategy for generator sets utilised in biogas applications. One specific biogas application, involving the use of landfill gas (LFG) to generate electrical energy, was the focal point of the research project. This is due to the fact that the author’s organisation is extensively involved with landfills and power generation through the use of LFG.

  8. Application of Nanomaterials in Production of Self-Sensing Concretes: Contemporary Developments and Prospects

    OpenAIRE

    Horszczaruk E.; Sikora P.; Łukowski P.

    2016-01-01

    In the recent years structural health monitoring (SHM) has gathered spectacular attention in civil engineering applications. Application of such composites enable to improve the safety and performance of structures. Recent advances in nanotechnology have led to development of new family of sensors - self-sensing materials. These materials enable to create the so-called “smart concrete” exhibiting self-sensing ability. Application of self-sensing materials in cement-based materials enables to ...

  9. Six-Port Based Interferometry for Precise Radar and Sensing Applications

    Directory of Open Access Journals (Sweden)

    Alexander Koelpin

    2016-09-01

    Full Text Available Microwave technology plays a more important role in modern industrial sensing applications. Pushed by the significant progress in monolithic microwave integrated circuit technology over the past decades, complex sensing systems operating in the microwave and even millimeter-wave range are available for reasonable costs combined with exquisite performance. In the context of industrial sensing, this stimulates new approaches for metrology based on microwave technology. An old measurement principle nearly forgotten over the years has recently gained more and more attention in both academia and industry: the six-port interferometer. This paper reviews the basic concept, investigates promising applications in remote, as well as contact-based sensing and compares the system with state-of-the-art metrology. The significant advantages will be discussed just as the limitations of the six-port architecture. Particular attention will be paid to impairment effects and non-ideal behavior, as well as compensation and linearization concepts. It will be shown that in application fields, like remote distance sensing, precise alignment measurements, as well as interferometrically-evaluated mechanical strain analysis, the six-port architecture delivers extraordinary measurement results combined with high measurement data update rates for reasonable system costs. This makes the six-port architecture a promising candidate for industrial metrology.

  10. Designing Zoning of Remote Sensing Drones for Urban Applications: a Review

    Science.gov (United States)

    Norzailawati, M. N.; Alias, A.; Akma, R. S.

    2016-06-01

    This paper discusses on-going research related to zoning regulation for the remote sensing drone in the urban applications. Timestamped maps are presented here follow a citation-based approach, where significant information is retrieved from the scientific literature. The emergence of drones in domestic air raises lots understandable issues on privacy, security and uncontrolled pervasive surveillance that require a careful and alternative solution. The effective solution is to adopt a privacy and property rights approach that create a drone zoning and clear drone legislatures. In providing a differential trend to other reviews, this paper is not limited to drones zoning and regulations, but also, discuss on trend remote sensing drones specification in designing a drone zones. Remote sensing drone will specific according to their features and performances; size and endurance, maximum airspeed and altitude level and particular references are made to the drones range. The implementation of laws zoning could lie with the urban planners whereby, a zoning for drone could become a new tactic used to specify areas, where drones could be used, will provide remedies for the harm that arise from drones, and act as a different against irresponsible behaviour. Finally, underlines the need for next regulations on guidelines and standards which can be used as a guidance for urban decision makers to control the drones' operating, thus ensuring a quality and sustainability of resilience cities simultaneously encouraging the revolution of technology.

  11. GNSS remote sensing theory, methods and applications

    CERN Document Server

    Jin, Shuanggen; Xie, Feiqin

    2014-01-01

    This book presents the theory and methods of GNSS remote sensing as well as its applications in the atmosphere, oceans, land and hydrology. It contains detailed theory and study cases to help the reader put the material into practice.

  12. Development of micronic GMR-magnetoresistive sensors for non-destructive sensing applications (Presentation Recording)

    Science.gov (United States)

    Jaffrès, Henri; LeMaitre, Yves; Collin, Sophie; Nguyen Vandau, Frédéric; Sergeeva-Chollet, Natalia; Decitre, Jean-Marc

    2015-09-01

    We will present our last development of GMR-based magnetic sensors devoted to sensing application for non-destructive control application. In these first realizations, we have chosen a so-called shape anisotropy - exchange biased strategy to fulfill the field-sensing criteria in the μT range in devices made of micronic single elements. Our devices realized by optical lithography, and whose typical sizes range from 150 μm x 150 μm to 500 μm x 500 μm elements, are made of trilayers GMR-based technology and consist of several circuitries of GMR elements of different lengths, widths and gaps. To obtain a full sensing linearity and reversibility requiring a perpendicular magnetic arrangement between both sensitive and hard layer, the magnetization of the latter have been hardened by pinning it with an antiferromagnetic material. The specific geometry of the design have been engineered in order to optimize the magnetic response of the soft layer via the different magnetic torques exerted on it essentially played by the dipolar fields or shape anisotropy, and the external magnetic field to detect. The smaller dimensions in width and in gap are then respectively of 2 μm and 3 μm to benefit of the full shape anisotropy formatting the magnetic response.

  13. Photonic arbitrary waveform generation applicable to multiband UWB communications.

    Science.gov (United States)

    Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2010-12-06

    A novel photonic structure for arbitrary waveform generation (AWG) is proposed based on the electrooptical intensity modulation of a broadband optical signal which is transmitted by a dispersive element and the optoelectrical processing is realized by combining an interferometric structure with balanced photodetection. The generated waveform can be fully reconfigured through the control of the optical source power spectrum and the interferometric structure. The use of balanced photodetection permits to remove the baseband component of the generated signal which is relevant in certain applications. We have theoretically described and experimentally demonstrated the feasibility of the system by means of the generation of different pulse shapes. Specifically, the proposed structure has been applicable to generate Multiband UWB signaling formats regarding to the FCC requirements in order to show the flexibility of the system.

  14. Microfiber-Based Bragg Gratings for Sensing Applications: A Review

    Directory of Open Access Journals (Sweden)

    Jun-Long Kou

    2012-06-01

    Full Text Available Microfiber-based Bragg gratings (MFBGs are an emerging concept in ultra-small optical fiber sensors. They have attracted great attention among researchers in the fiber sensing area because of their large evanescent field and compactness. In this review, the basic techniques for the fabrication of MFBGs are introduced first. Then, the sensing properties and applications of MFBGs are discussed, including measurement of refractive index (RI, temperature, and strain/force. Finally a summary of selected MFBG sensing elements from previous literature are tabulated.

  15. Advancement in Sensing Technology New Developments and Practical Applications

    CERN Document Server

    Jayasundera, Krishanthi; Fuchs, Anton

    2013-01-01

    The book presents the recent advancements in the area of sensors and sensing technology, specifically in environmental monitoring, structural health monitoring, dielectric, magnetic, electrochemical, ultrasonic, microfluidic, flow, surface acoustic wave, gas, cloud computing and bio-medical.   This book will be useful to a variety of readers, namely, Master and PhD degree students, researchers, practitioners, working on sensors and sensing technology. The book will provide an opportunity of a dedicated and a deep approach in order to improve their knowledge in this specific field.

  16. Commercial grade item (CGI) dedication of generators for nuclear safety related applications

    International Nuclear Information System (INIS)

    Das, R.K.; Hajos, L.G.

    1993-01-01

    The number of nuclear safety related equipment suppliers and the availability of spare and replacement parts designed specifically for nuclear safety related application are shrinking rapidly. These have made it necessary for utilities to apply commercial grade spare and replacement parts in nuclear safety related applications after implementing proper acceptance and dedication process to verify that such items conform with the requirements of their use in nuclear safety related application. The general guidelines for the commercial grade item (CGI) acceptance and dedication are provided in US Nuclear Regulatory Commission (NRC) Generic Letters and Electric Power Research Institute (EPRI) Report NP-5652, Guideline for the Utilization of Commercial Grade Items in Nuclear Safety Related Applications. This paper presents an application of these generic guidelines for procurement, acceptance, and dedication of a commercial grade generator for use as a standby generator at Salem Generating Station Units 1 and 2. The paper identifies the critical characteristics of the generator which once verified, will provide reasonable assurance that the generator will perform its intended safety function. The paper also delineates the method of verification of the critical characteristics through tests and provide acceptance criteria for the test results. The methodology presented in this paper may be used as specific guidelines for reliable and cost effective procurement and dedication of commercial grade generators for use as standby generators at nuclear power plants

  17. A framework for developing remote sensing applications

    International Nuclear Information System (INIS)

    Ahmad, T.; Hayat, M.F.; Afzal, M.; Asif, H.M.S.; Asif, K.H.

    2014-01-01

    Remote Sensing Application (RSA) is important as one of the critical enabler of e-systems such as e- governments, e-commerce, and e-sciences. In this study, we argued that owning to the specialized needs of RSA such as volatility and interactive nature, a customized Software Engineering (SE) approach should be adapted for their development. Based on this argument we have also identified the shortcomings of the conventional SE approaches and the classical waterfall software development life cycle model. In this study, we have proposed a modification to the classical waterfall software development life cycle model for proposing a customized software development Framework for RSAs. We have identified four (4) different types of changes that can occur to an already developed RS application. The proposed framework was capable to incorporate all four types of changes. Remote Sensing, software engineering, functional requirements, types of changes. (author)

  18. Remote sensing science - new concepts and applications

    Energy Technology Data Exchange (ETDEWEB)

    Gerstl, S.A.; Cooke, B.J.; Henderson, B.G.; Love, S.P.; Zardecki, A.

    1996-10-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The science and technology of satellite remote sensing is an emerging interdisciplinary field that is growing rapidly with many global and regional applications requiring quantitative sensing of earth`s surface features as well as its atmosphere from space. It is possible today to resolve structures on the earth`s surface as small as one meter from space. If this high spatial resolution is coupled with high spectral resolution, instant object identification can also be achieved. To interpret these spectral signatures correctly, it is necessary to perform a computational correction on the satellite imagery that removes the distorting effects of the atmosphere. This project studied such new concepts and applied innovative new approaches in remote sensing science.

  19. Remote sensing applications for monitoring rangeland vegetation ...

    African Journals Online (AJOL)

    Remote sensing techniques hold considerable promise for the inventory and monitoring of natural resources on rangelands. A significant lack of information concerning basic spectral characteristics of range vegetation and soils has resulted in a lack of rangeland applications. The parameters of interest for range condition ...

  20. Multiple Sensing Application on Wireless Sensor Network Simulation using NS3

    Science.gov (United States)

    Kurniawan, I. F.; Bisma, R.

    2018-01-01

    Hardware enhancement provides opportunity to install various sensor device on single monitoring node which then enables users to acquire multiple data simultaneously. Constructing multiple sensing application in NS3 is a challenging task since numbers of aspects such as wireless communication, packet transmission pattern, and energy model must be taken into account. Despite of numerous types of monitoring data available, this study only considers two types such as periodic, and event-based data. Periodical data will generate monitoring data follows configured interval, while event-based transmit data when certain determined condition is met. Therefore, this study attempts to cover mentioned aspects in NS3. Several simulations are performed with different number of nodes on arbitrary communication scheme.

  1. AC application of second generation HTS wire

    Science.gov (United States)

    Thieme, C. L. H.; Gagnon, K.; Voccio, J.; Aized, D.; Claassen, J.

    2008-02-01

    For the production of Second Generation (2G) YBCO High Temperature Superconductor wire American Superconductor uses a wide-strip MOD-YBCO/RABiTSTM process, a low-cost approach for commercial manufacturing. It can be engineered with a high degree of flexibility to manufacture practical 2G conductors with architectures and properties tailored for specific applications and operating conditions. For ac applications conductor and coil design can be geared towards low hysteretic losses. For applications which experience high frequency ac fields, the stabilizer needs to be adjusted for low eddy current losses. For these applications a stainless-steel laminate is used. An example is a Low Pass Filter Inductor which was developed and built in this work.

  2. Advanced Spatial-Division Multiplexed Measurement Systems Propositions—From Telecommunication to Sensing Applications: A Review

    Directory of Open Access Journals (Sweden)

    Yi Weng

    2016-08-01

    Full Text Available The concepts of spatial-division multiplexing (SDM technology were first proposed in the telecommunications industry as an indispensable solution to reduce the cost-per-bit of optical fiber transmission. Recently, such spatial channels and modes have been applied in optical sensing applications where the returned echo is analyzed for the collection of essential environmental information. The key advantages of implementing SDM techniques in optical measurement systems include the multi-parameter discriminative capability and accuracy improvement. In this paper, to help readers without a telecommunication background better understand how the SDM-based sensing systems can be incorporated, the crucial components of SDM techniques, such as laser beam shaping, mode generation and conversion, multimode or multicore elements using special fibers and multiplexers are introduced, along with the recent developments in SDM amplifiers, opto-electronic sources and detection units of sensing systems. The examples of SDM-based sensing systems not only include Brillouin optical time-domain reflectometry or Brillouin optical time-domain analysis (BOTDR/BOTDA using few-mode fibers (FMF and the multicore fiber (MCF based integrated fiber Bragg grating (FBG sensors, but also involve the widely used components with their whole information used in the full multimode constructions, such as the whispering gallery modes for fiber profiling and chemical species measurements, the screw/twisted modes for examining water quality, as well as the optical beam shaping to improve cantilever deflection measurements. Besides, the various applications of SDM sensors, the cost efficiency issue, as well as how these complex mode multiplexing techniques might improve the standard fiber-optic sensor approaches using single-mode fibers (SMF and photonic crystal fibers (PCF have also been summarized. Finally, we conclude with a prospective outlook for the opportunities and challenges of

  3. Advanced Spatial-Division Multiplexed Measurement Systems Propositions—From Telecommunication to Sensing Applications: A Review

    Science.gov (United States)

    Weng, Yi; Ip, Ezra; Pan, Zhongqi; Wang, Ting

    2016-01-01

    The concepts of spatial-division multiplexing (SDM) technology were first proposed in the telecommunications industry as an indispensable solution to reduce the cost-per-bit of optical fiber transmission. Recently, such spatial channels and modes have been applied in optical sensing applications where the returned echo is analyzed for the collection of essential environmental information. The key advantages of implementing SDM techniques in optical measurement systems include the multi-parameter discriminative capability and accuracy improvement. In this paper, to help readers without a telecommunication background better understand how the SDM-based sensing systems can be incorporated, the crucial components of SDM techniques, such as laser beam shaping, mode generation and conversion, multimode or multicore elements using special fibers and multiplexers are introduced, along with the recent developments in SDM amplifiers, opto-electronic sources and detection units of sensing systems. The examples of SDM-based sensing systems not only include Brillouin optical time-domain reflectometry or Brillouin optical time-domain analysis (BOTDR/BOTDA) using few-mode fibers (FMF) and the multicore fiber (MCF) based integrated fiber Bragg grating (FBG) sensors, but also involve the widely used components with their whole information used in the full multimode constructions, such as the whispering gallery modes for fiber profiling and chemical species measurements, the screw/twisted modes for examining water quality, as well as the optical beam shaping to improve cantilever deflection measurements. Besides, the various applications of SDM sensors, the cost efficiency issue, as well as how these complex mode multiplexing techniques might improve the standard fiber-optic sensor approaches using single-mode fibers (SMF) and photonic crystal fibers (PCF) have also been summarized. Finally, we conclude with a prospective outlook for the opportunities and challenges of SDM

  4. Hybrid van der Waals SnO/MoS2 Heterojunctions for Thermal and Optical Sensing Applications

    KAUST Repository

    Wang, Zhenwei

    2017-11-10

    Emerging van der Waals heterojunctions (vdWH) containing 2D materials have shown exciting functionalities that surpass those of traditional devices based on bulk materials. In this Communication, a report on the properties of a 2D sulfide/oxide hybrid vdWH based on n-type molybdenum disulfide (MoS2) and p-type tin monoxide (SnO) is presented, with promising rectification, thermal-sensing, and photosensing performance. Specifically, the hybrid SnO/MoS2 vdWH shows static rectification ratio of 2 × 102 with ideality factor of 2.3, and can operate at 100 Hz with good stability. The vdWH shows good temperature stability with reversible and reproducible current levels up to 110 °C, indicating its potential for thermal sensing applications. The sensitivity of current variation is calculated to be 0.0144 dec °C−1. Finally, maximum responsivity of 8.17 mA W−1 and external quantum efficiency of 2.14% have been achieved in photovoltaic measurements. The results suggest that MoS2–SnO hybrid vdWH are promising for various sensing applications.

  5. Design of smart sensing components for volcano monitoring

    Science.gov (United States)

    Xu, M.; Song, W.-Z.; Huang, R.; Peng, Y.; Shirazi, B.; LaHusen, R.; Kiely, A.; Peterson, N.; Ma, A.; Anusuya-Rangappa, L.; Miceli, M.; McBride, D.

    2009-01-01

    In a volcano monitoring application, various geophysical and geochemical sensors generate continuous high-fidelity data, and there is a compelling need for real-time raw data for volcano eruption prediction research. It requires the network to support network synchronized sampling, online configurable sensing and situation awareness, which pose significant challenges on sensing component design. Ideally, the resource usages shall be driven by the environment and node situations, and the data quality is optimized under resource constraints. In this paper, we present our smart sensing component design, including hybrid time synchronization, configurable sensing, and situation awareness. Both design details and evaluation results are presented to show their efficiency. Although the presented design is for a volcano monitoring application, its design philosophy and framework can also apply to other similar applications and platforms. ?? 2009 Elsevier B.V.

  6. An Update of NASA Public Health Applications Projects using Remote Sensing Data

    Science.gov (United States)

    Estes, Sue M.; Haynes, J. A.

    2009-01-01

    Satellite earth observations present a unique vantage point of the earth s environment from space which offers a wealth of health applications for the imaginative investigator. The session will present research results of the remote sensing environmental observations of earth and health applications. This session will an overview of many of the NASA public health applications using Remote Sensing Data and will also discuss opportunities to become a research collaborator with NASA.

  7. Model oriented application generation for industrial control systems

    International Nuclear Information System (INIS)

    Copy, B.; Barillere, R.; Blanco, E.; Fernandez Adiego, B.; Nogueira Fernandes, R.; Prieto Barreiro, I.

    2012-01-01

    The CERN Unified Industrial Control Systems framework (UNICOS) is a software generation methodology and a collection of development tools that standardizes the design of industrial control applications. A Software Factory, named the UNICOS Application Builder (UAB), was introduced to ease extensibility and maintenance of the framework, introducing a stable meta-model, a set of platform-independent models and platform-specific configurations against which code generation plug-ins and configuration generation plug-ins can be written. Such plug-ins currently target PLC programming environments (Schneider and SIEMENS PLCs) as well as SIEMENS WinCC Open Architecture SCADA (previously known as ETM PVSS) but are being expanded to cover more and more aspects of process control systems. We present what constitutes the UNICOS meta-model and the models in use, how these models can be used to capture knowledge about industrial control systems and how this knowledge can be used to generate both code and configuration for a variety of target usages. (authors)

  8. Synthesis and integration of one-dimensional nanostructures for chemical gas sensing applications

    Science.gov (United States)

    Parthangal, Prahalad Madhavan

    The need for improved measurement technology for the detection and monitoring of gases has increased tremendously for maintenance of domestic and industrial health and safety, environmental surveys, national security, food-processing, medical diagnostics and various other industrial applications. Among the several varieties of gas sensors available in the market, solid-state sensors are the most popular owing to their excellent sensitivity, ruggedness, versatility and low cost. Semiconducting metal oxides such as tin oxide (SnO2), zinc oxide (ZnO), and tungsten oxide (WO3) are routinely employed as active materials in these sensors. Since their performance is directly linked to the exposed surface area of the sensing material, one-dimensional nanostructures possessing very high surface to volume ratios are attractive candidates for designing the next generation of sensors. Such nano-sensors also enable miniaturization thereby reducing power consumption. The key to achieve success in one-dimensional nanotechnologies lies in assembly. While synthesis techniques and capabilities continue to expand rapidly, progress in controlled assembly has been sluggish due to numerous technical challenges. In this doctoral thesis work, synthesis and characterization of various one-dimensional nanostructures including nanotubes of SnO2, and nanowires of WO3 and ZnO, as well as their direct integration into miniature sensor platforms called microhotplates have been demonstrated. The key highlights of this research include devising elegant strategies for growing metal oxide nanotubes using carbon nanotubes as templates, substantially reducing process temperatures to enable growth of WO3 nanowires on microhotplates, and successfully fabricating a ZnO nanowire array based sensor using a hybrid nanowire-nanoparticle assembly approach. In every process, the gas-sensing properties of one-dimensional nanostructures were observed to be far superior in comparison with thin films of the same

  9. Application of superconductors to motors, generators, and transmission lines

    International Nuclear Information System (INIS)

    Kirtley, J.L.

    1989-01-01

    Superconductors are of interest to the designers of electric power equipment because they can carry current without loss, currents that are large enough to make very intense magnetic fields. This means that superconductors, used in suitable applications, can make electric power equipment smaller, lighter, more efficient, and perhaps with better dynamic response. Two specific applications are considered here: electric machinery (motors and generators) and transmission lines. The so-called high-T c superconductors will have beneficial impact on motors, generators, and transmission lines only if conductors with sufficient mechanical properties and current-carrying capabilities can be developed

  10. Demonstration of a high speed hybrid electrical and optical sensing system for next generation launcher applications

    Science.gov (United States)

    Ibrahim, Selwan K.; O'Dowd, John A.; Honniball, Arthur; Bessler, Vivian; Farnan, Martin; O'Connor, Peter; Melicher, Milos; Gleeson, Danny

    2017-09-01

    The Future Launchers Preparatory Programme (FLPP) supported by the European Space Agency (ESA) has a goal of developing various launch vehicle system concepts and identifying the technologies required for the design of Europe's Next-Generation Launcher (NGL) while maintaining competitiveness on the commercial market. Avionics fiber optic sensing technology was investigated as part of the FLPP programme. Here we demonstrate and evaluate a high speed hybrid electrical/optical data acquisition system based on commercial off the shelf (COTS) technology capable of acquiring data from traditional electrical sensors and optical Fibre Bragg Grating (FBG) sensors. The proposed system consists of the KAM-500 data acquisition system developed by Curtis-Wright and the I4 tunable laser based fiber optic sensor interrogator developed by FAZ Technology. The key objective was to demonstrate the capability of the hybrid system to acquire data from traditional electrical sensors used in launcher applications e.g. strain, temperature and pressure in combination with optical FBG sensors, as well as data delivery to spacecraft avionics systems. The KAM-500 was configured as the main acquisition unit (MAU) and provided a 1 kHz sampling clock to the I4 interrogator that was configured as the secondary acquisition unit (SAU) to synchronize the data acquisition sample rate between both systems. The SAU acquired data from an array of optical FBG sensors, while the MAU data acquisition system acquired data from the electrical sensors. Data acquired from the optical sensors was processed by the FAZ I4 interrogation system and then encapsulated into UDP/IP packets and transferred to the KAM-500. The KAM-500 encapsulated the optical sensor data together with the data acquired from electrical sensors and transmitted the data over MIL-STD-1553 and Ethernet data interface. The temperature measurements resulted in the optical and electrical sensors performing on a par with each other, with all

  11. Advances in the development of remote sensing technology for agricultural applications

    Science.gov (United States)

    Powers, J. E.; Erb, R. B.; Hall, F. G.; Macdonald, R. B.

    1979-01-01

    The application of remote sensing technology to crop forecasting is discussed. The importance of crop forecasts to the world economy and agricultural management is explained, and the development of aerial and spaceborne remote sensing for global crop forecasting by the United States is outlined. The structure, goals and technical aspects of the Large Area Crop Inventory Experiment (LACIE) are presented, and main findings on the accuracy, efficiency, applicability and areas for further study of the LACIE procedure are reviewed. The current status of NASA crop forecasting activities in the United States and worldwide is discussed, and the objectives and organization of the newly created Agriculture and Resources Inventory Surveys through Aerospace Remote Sensing (AgRISTARS) program are presented.

  12. Symmetric and asymmetric hybrid cryptosystem based on compressive sensing and computer generated holography

    Science.gov (United States)

    Ma, Lihong; Jin, Weimin

    2018-01-01

    A novel symmetric and asymmetric hybrid optical cryptosystem is proposed based on compressive sensing combined with computer generated holography. In this method there are six encryption keys, among which two decryption phase masks are different from the two random phase masks used in the encryption process. Therefore, the encryption system has the feature of both symmetric and asymmetric cryptography. On the other hand, because computer generated holography can flexibly digitalize the encrypted information and compressive sensing can significantly reduce data volume, what is more, the final encryption image is real function by phase truncation, the method favors the storage and transmission of the encryption data. The experimental results demonstrate that the proposed encryption scheme boosts the security and has high robustness against noise and occlusion attacks.

  13. Application of Nanomaterials in Production of Self-Sensing Concretes: Contemporary Developments and Prospects

    Directory of Open Access Journals (Sweden)

    Horszczaruk E.

    2016-09-01

    Full Text Available In the recent years structural health monitoring (SHM has gathered spectacular attention in civil engineering applications. Application of such composites enable to improve the safety and performance of structures. Recent advances in nanotechnology have led to development of new family of sensors - self-sensing materials. These materials enable to create the so-called “smart concrete” exhibiting self-sensing ability. Application of self-sensing materials in cement-based materials enables to detect their own state of strain or stress reflected as a change in their electrical properties. The variation of strain or stress is associated with the variation in material’s electrical characteristics, such as resistance or impedance. Therefore, it is possible to efficiently detect and localize crack formation and propagation in selected concrete element. This review is devoted to present contemporary developments in application of nanomaterials in self-sensing cement-based composites and future directions in the field of smart structures.

  14. Dynamic Frames Based Generation of 3D Scenes and Applications

    Directory of Open Access Journals (Sweden)

    Danijel Radošević

    2015-05-01

    Full Text Available Modern graphic/programming tools like Unity enables the possibility of creating 3D scenes as well as making 3D scene based program applications, including full physical model, motion, sounds, lightning effects etc. This paper deals with the usage of dynamic frames based generator in the automatic generation of 3D scene and related source code. The suggested model enables the possibility to specify features of the 3D scene in a form of textual specification, as well as exporting such features from a 3D tool. This approach enables higher level of code generation flexibility and the reusability of the main code and scene artifacts in a form of textual templates. An example of the generated application is presented and discussed.

  15. Remote sensing applications for transportation and traffic engineering studies: A review of the literature

    Science.gov (United States)

    Epps, J. W.

    1973-01-01

    Current references were surveyed for the application of remote sensing to traffic and transportation studies. The major problems are presented that concern traffic engineers and transportation managers, and the literature references that discuss remote sensing applications are summarized.

  16. Asymmetric PCR for good quality ssDNA generation towards DNA aptamer production

    Directory of Open Access Journals (Sweden)

    Junji Tominaga4

    2012-04-01

    Full Text Available Aptamers are ssDNA or RNA that binds to wide variety of target molecules with high affinity and specificity producedby systematic evolution of ligands by exponential enrichment (SELEX. Compared to RNA aptamer, DNA aptamer is muchmore stable, favourable to be used in many applications. The most critical step in DNA SELEX experiment is the conversion ofdsDNA to ssDNA. The purpose of this study was to develop an economic and efficient approach of generating ssDNA byusing asymmetric PCR. Our results showed that primer ratio (sense primer:antisense primer of 20:1 and sense primer amountof 10 to 100 pmol, up to 20 PCR cycles using 20 ng of initial template, in combination with polyacrylamide gel electrophoresis,were the optimal conditions for generating good quality and quantity of ssDNA. The generation of ssDNA via this approachcan greatly enhance the success rate of DNA aptamer generation.

  17. A Semantic Lexicon-Based Approach for Sense Disambiguation and Its WWW Application

    Science.gov (United States)

    di Lecce, Vincenzo; Calabrese, Marco; Soldo, Domenico

    This work proposes a basic framework for resolving sense disambiguation through the use of Semantic Lexicon, a machine readable dictionary managing both word senses and lexico-semantic relations. More specifically, polysemous ambiguity characterizing Web documents is discussed. The adopted Semantic Lexicon is WordNet, a lexical knowledge-base of English words widely adopted in many research studies referring to knowledge discovery. The proposed approach extends recent works on knowledge discovery by focusing on the sense disambiguation aspect. By exploiting the structure of WordNet database, lexico-semantic features are used to resolve the inherent sense ambiguity of written text with particular reference to HTML resources. The obtained results may be extended to generic hypertextual repositories as well. Experiments show that polysemy reduction can be used to hint about the meaning of specific senses in given contexts.

  18. Paper as a platform for sensing applications and other devices: a review.

    Science.gov (United States)

    Mahadeva, Suresha K; Walus, Konrad; Stoeber, Boris

    2015-04-29

    Paper is a ubiquitous material that has various applications in day to day life. A sheet of paper is produced by pressing moist wood cellulose fibers together. Paper offers unique properties: paper allows passive liquid transport, it is compatible with many chemical and biochemical moieties, it exhibits piezoelectricity, and it is biodegradable. Hence, paper is an attractive low-cost functional material for sensing devices. In recent years, researchers in the field of science and engineering have witnessed an exponential growth in the number of research contributions that focus on the development of cost-effective and scalable fabrication methods and new applications of paper-based devices. In this review article, we highlight recent advances in the development of paper-based sensing devices in the areas of electronics, energy storage, strain sensing, microfluidic devices, and biosensing, including piezoelectric paper. Additionally, this review includes current limitations of paper-based sensing devices and points out issues that have limited the commercialization of some of the paper-based sensing devices.

  19. Fabrication strategies, sensing modes and analytical applications of ratiometric electrochemical biosensors.

    Science.gov (United States)

    Jin, Hui; Gui, Rijun; Yu, Jianbo; Lv, Wei; Wang, Zonghua

    2017-05-15

    Previously developed electrochemical biosensors with single-electric signal output are probably affected by intrinsic and extrinsic factors. In contrast, the ratiometric electrochemical biosensors (RECBSs) with dual-electric signal outputs have an intrinsic built-in correction to the effects from system or background electric signals, and therefore exhibit a significant potential to improve the accuracy and sensitivity in electrochemical sensing applications. In this review, we systematically summarize the fabrication strategies, sensing modes and analytical applications of RECBSs. First, the different fabrication strategies of RECBSs were introduced, referring to the analytes-induced single- and dual-dependent electrochemical signal strategies for RECBSs. Second, the different sensing modes of RECBSs were illustrated, such as differential pulse voltammetry, square wave voltammetry, cyclic voltammetry, alternating current voltammetry, electrochemiluminescence, and so forth. Third, the analytical applications of RECBSs were discussed based on the types of target analytes. Finally, the forthcoming development and future prospects in the research field of RECBSs were also highlighted. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Digital holography and wavefront sensing principles, techniques and applications

    CERN Document Server

    Schnars, Ulf; Watson, John; Jüptner, Werner

    2015-01-01

    This book presents a self-contained treatment of the principles and major applications of digital hologram recording and numerical reconstruction (Digital Holography). This second edition has been significantly revised and enlarged. The authors have extended the chapter on Digital Holographic Microscopy to incorporate new sections on particle sizing, particle image velocimetry and underwater holography. A new chapter now deals comprehensively and extensively with computational wave field sensing. These techniques represent a fascinating alternative to standard interferometry and Digital Holography. They enable wave field sensing without the requirement of a particular reference wave, thus allowing the use of low brilliance light sources and even liquid-crystal displays (LCD) for interferometric applications.              

  1. Probabilistic Downscaling of Remote Sensing Data with Applications for Multi-Scale Biogeochemical Flux Modeling.

    Science.gov (United States)

    Stoy, Paul C; Quaife, Tristan

    2015-01-01

    Upscaling ecological information to larger scales in space and downscaling remote sensing observations or model simulations to finer scales remain grand challenges in Earth system science. Downscaling often involves inferring subgrid information from coarse-scale data, and such ill-posed problems are classically addressed using regularization. Here, we apply two-dimensional Tikhonov Regularization (2DTR) to simulate subgrid surface patterns for ecological applications. Specifically, we test the ability of 2DTR to simulate the spatial statistics of high-resolution (4 m) remote sensing observations of the normalized difference vegetation index (NDVI) in a tundra landscape. We find that the 2DTR approach as applied here can capture the major mode of spatial variability of the high-resolution information, but not multiple modes of spatial variability, and that the Lagrange multiplier (γ) used to impose the condition of smoothness across space is related to the range of the experimental semivariogram. We used observed and 2DTR-simulated maps of NDVI to estimate landscape-level leaf area index (LAI) and gross primary productivity (GPP). NDVI maps simulated using a γ value that approximates the range of observed NDVI result in a landscape-level GPP estimate that differs by ca 2% from those created using observed NDVI. Following findings that GPP per unit LAI is lower near vegetation patch edges, we simulated vegetation patch edges using multiple approaches and found that simulated GPP declined by up to 12% as a result. 2DTR can generate random landscapes rapidly and can be applied to disaggregate ecological information and compare of spatial observations against simulated landscapes.

  2. Application of Thermal Infrared Remote Sensing for Quantitative Evaluation of Crop Characteristics

    Science.gov (United States)

    Shaw, J.; Luvall, J.; Rickman, D.; Mask, P.; Wersinger, J.; Sullivan, D.; Arnold, James E. (Technical Monitor)

    2002-01-01

    Evidence suggests that thermal infrared emittance (TIR) at the field-scale is largely a function of the integrated crop/soil moisture continuum. Because soil moisture dynamics largely determine crop yields in non-irrigated farming (85 % of Alabama farms are non-irrigated), TIR may be an effective method of mapping within field crop yield variability, and possibly, absolute yields. The ability to map yield variability at juvenile growth stages can lead to improved soil fertility and pest management, as well as facilitating the development of economic forecasting. Researchers at GHCC/MSFC/NASA and Auburn University are currently investigating the role of TIR in site-specific agriculture. Site-specific agriculture (SSA), or precision farming, is a method of crop production in which zones and soils within a field are delineated and managed according to their unique properties. The goal of SSA is to improve farm profits and reduce environmental impacts through targeted agrochemical applications. The foundation of SSA depends upon the spatial and temporal characterization of soil and crop properties through the creation of management zones. Management zones can be delineated using: 1) remote sensing (RS) data, 2) conventional soil testing and soil mapping, and 3) yield mapping. Portions of this research have concentrated on using remote sensing data to map yield variability in corn (Zea mays L.) and soybean (Glycine max L.) crops. Remote sensing data have been collected for several fields in the Tennessee Valley region at various crop growth stages during the last four growing seasons. Preliminary results of this study will be presented.

  3. Label-free surface plasmon sensing towards cancer diagnostics

    Science.gov (United States)

    Sankaranarayanan, Goutham

    The main objective of this thesis is to develop a conventional, home-built SPR bio-sensor to demonstrate bio-sensing applications. This emphasizes the understanding of basic concepts of Surface Plasmon Resonance and various interrogation techniques. Intensity Modulation was opted to perform the label-free SPR bio-sensing experiments due to its cost-efficient and compact setup. Later, label-free surface plasmon sensing was carried out to study and understand the bio-molecular interactions between (1). BSA and Anti BSA molecules and (2). Exosome/Liposome on thin metal (Au) films. Exosomes are cell-derived vesicles present in bodily fluids like blood, saliva, urine, epididymal fluid containing miRNAs, RNA, proteins, etc., at stable quantities during normal health conditions. The exosomes comprise varied constituents based on their cell origin from where they are secreted and is specific to that particular origin. However an exacerbated release is observed during tumor or cancer conditions. This increased level of exosomes present in the sample, can be detected using the SPR bio-sensor demonstrated in this thesis and effective thickness of adsorption on Au surface can be estimated. Also, chemically synthesized liposome particles were studied to determine if they can generate an equivalent sensor response to that of exosomes to consider them as an alternate. Finally a 10ppb Mercury (Hg) sensing was performed as part of Environment Monitoring application and results have been tabulated and compared.

  4. Apodization Optimization of FBG Strain Sensor for Quasi-Distributed Sensing Measurement Applications

    Directory of Open Access Journals (Sweden)

    Fahd Chaoui

    2016-01-01

    Full Text Available A novel optimized apodization of Fiber Bragg Grating Sensor (FBGS for quasi-distributed strain sensing applications is developed and introduced in this paper. The main objective of the proposed optimization is to obtain a reflectivity level higher than 90% and a side lobe level around −40 dB, which is suitable for use in quasi-distributed strain sensing application. For this purpose, different design parameters as apodization profile, grating length, and refractive index have been investigated to enhance and optimize the FBGS design. The performance of the proposed apodization has then been compared in terms of reflectivity, side lobe level (SLL, and full width at half maximum (FWHM with apodization profiles proposed by other authors. The optimized sensor is integrated on quasi-distributed sensing system of 8 sensors demonstrating high reliability. Wide strain sensitivity range for each channel has also been achieved in the quasi-distributed system. Results prove the efficiency of the proposed optimization which can be further implemented for any quasi-distributed sensing application.

  5. Time-sensitive remote sensing

    CERN Document Server

    Lippitt, Christopher; Coulter, Lloyd

    2015-01-01

    This book documents the state of the art in the use of remote sensing to address time-sensitive information requirements. Specifically, it brings together a group of authors who are both researchers and practitioners, who work toward or are currently using remote sensing to address time-sensitive information requirements with the goal of advancing the effective use of remote sensing to supply time-sensitive information. The book addresses the theoretical implications of time-sensitivity on the remote sensing process, assessments or descriptions of methods for expediting the delivery and improving the quality of information derived from remote sensing, and describes and analyzes time-sensitive remote sensing applications, with an emphasis on lessons learned. This book is intended for remote sensing scientists, practitioners (e.g., emergency responders or administrators of emergency response agencies), and students, but will also be of use to those seeking to understand the potential of remote sensing to addres...

  6. A droplet-based passive force sensor for remote tactile sensing applications

    Science.gov (United States)

    Nie, Baoqing; Yao, Ting; Zhang, Yiqiu; Liu, Jian; Chen, Xinjian

    2018-01-01

    A droplet-based flexible wireless force sensor has been developed for remote tactile-sensing applications. By integration of a droplet-based capacitive sensing unit and two circular planar coils, this inductor-capacitor (LC) passive sensor offers a platform for the mechanical force detection in a wireless transmitting mode. Under external loads, the membrane surface of the sensor deforms the underlying elastic droplet uniformly, introducing a capacitance response in tens of picofarads. The LC circuit transduces the applied force into corresponding variations of its resonance frequency, which is detected by an external electromagnetic coupling coil. Specifically, the liquid droplet features a mechanosensitive plasticity, which results in an increased device sensitivity as high as 2.72 MHz N-1. The high dielectric property of the droplet endows our sensor with high tolerance for noise and large capacitance values (20-40 pF), the highest value in the literature for the LC passive devices in comparable dimensions. It achieves excellent reproducibility under periodical loads ranging from 0 to 1.56 N and temperature fluctuations ranging from 10 °C to 55 °C. As an interesting conceptual demonstration, the flexible device has been configured into a fingertip-amounted setting in a highly compact package (of 11 mm × 11 mm × 0.25 mm) for remote contact force sensing in the table tennis game.

  7. Earth Remote Sensing for Weather Forecasting and Disaster Applications

    Science.gov (United States)

    Molthan, Andrew; Bell, Jordan; Case, Jonathan; Cole, Tony; Elmer, Nicholas; McGrath, Kevin; Schultz, Lori; Zavodsky, Brad

    2016-01-01

    NASA's constellation of current missions provide several opportunities to apply satellite remote sensing observations to weather forecasting and disaster response applications. Examples include: Using NASA's Terra and Aqua MODIS, and the NASA/NOAA Suomi-NPP VIIRS missions to prepare weather forecasters for capabilities of GOES-R; Incorporating other NASA remote sensing assets for improving aspects of numerical weather prediction; Using NASA, NOAA, and international partner resources (e.g. ESA/Sentinel Series); and commercial platforms (high-res, or UAV) to support disaster mapping.

  8. International Conference on Remote Sensing Applications for Archaeological Research and World Heritage Conservation

    Science.gov (United States)

    2002-01-01

    Contents include the following: Monitoring the Ancient Countryside: Remote Sensing and GIS at the Chora of Chersonesos (Crimea, Ukraine). Integration of Remote Sensing and GIS for Management Decision Support in the Pendjari Biosphere Reserve (Republic of Benin). Monitoring of deforestation invasion in natural reserves of northern Madagascar based on space imagery. Cartography of Kahuzi-Biega National Park. Cartography and Land Use Change of World Heritage Areas and the Benefits of Remote Sensing and GIS for Conservation. Assessing and Monitoring Vegetation in Nabq Protected Area, South Sinai, Egypt, using combine approach of Satellite Imagery and Land Surveys. Evaluation of forage resources in semi-arid savannah environments with satellite imagery: contribution to the management of a protected area (Nakuru National Park) in Kenya. SOGHA, the Surveillance of Gorilla Habitat in World Heritage sites using Space Technologies. Application of Remote Sensing to monitor the Mont-Saint-Michel Bay (France). Application of Remote Sensing & GIS for the Conservation of Natural and Cultural Heritage Sites of the Southern Province of Sri Lanka. Social and Environmental monitoring of a UNESCO Biosphere Reserve: Case Study over the Vosges du Nord and Pfalzerwald Parks using Corona and Spot Imagery. Satellite Remote Sensing as tool to Monitor Indian Reservation in the Brazilian Amazonia. Remote Sensing and GIS Technology for Monitoring UNESCO World Heritage Sites - A Pilot Project. Urban Green Spaces: Modern Heritage. Monitoring of the technical condition of the St. Sophia Cathedral and related monastic buildings in Kiev with Space Applications, geo-positioning systems and GIS tools. The Murghab delta palaeochannel Reconstruction on the Basis of Remote Sensing from Space. Acquisition, Registration and Application of IKONOS Space Imagery for the cultural World Heritage site at Mew, Turkmenistan. Remote Sensing and VR applications for the reconstruction of archaeological landscapes

  9. Unmanned Aerial Systems and Spectroscopy for Remote Sensing Applications in Archaeology

    Science.gov (United States)

    Themistocleous, K.; Agapiou, A.; Cuca, B.; Hadjimitsis, D. G.

    2015-04-01

    Remote sensing has open up new dimensions in archaeological research. Although there has been significant progress in increasing the resolution of space/aerial sensors and image processing, the detection of the crop (and soil marks) formations, which relate to buried archaeological remains, are difficult to detect since these marks may not be visible in the images if observed over different period or at different spatial/spectral resolution. In order to support the improvement of earth observation remote sensing technologies specifically targeting archaeological research, a better understanding of the crop/soil marks formation needs to be studied in detail. In this paper the contribution of both Unmanned Aerial Systems as well ground spectroradiometers is discussed in a variety of examples applied in the eastern Mediterranean region (Cyprus and Greece) as well in Central Europe (Hungary). In- situ spectroradiometric campaigns can be applied for the removal of atmospheric impact to simultaneous satellite overpass images. In addition, as shown in this paper, the systematic collection of ground truth data prior to the satellite/aerial acquisition can be used to detect the optimum temporal and spectral resolution for the detection of stress vegetation related to buried archaeological remains. Moreover, phenological studies of the crops from the area of interest can be simulated to the potential sensors based on their Relative Response Filters and therefore prepare better the satellite-aerial campaigns. Ground data and the use of Unmanned Aerial Systems (UAS) can provide an increased insight for studying the formation of crop and soil marks. New algorithms such as vegetation indices and linear orthogonal equations for the enhancement of crop marks can be developed based on the specific spectral characteristics of the area. As well, UAS can be used for remote sensing applications in order to document, survey and model cultural heritage and archaeological sites.

  10. Remote Sensing Training for Middle School through the Center of Excellence in Remote Sensing Education

    Science.gov (United States)

    Hayden, L. B.; Johnson, D.; Baltrop, J.

    2012-12-01

    Remote sensing has steadily become an integral part of multiple disciplines, research, and education. Remote sensing can be defined as the process of acquiring information about an object or area of interest without physical contact. As remote sensing becomes a necessity in solving real world problems and scientific questions an important question to consider is why remote sensing training is significant to education and is it relevant to training students in this discipline. What has been discovered is the interest in Science, Technology, Engineering and Mathematics (STEM) fields, specifically remote sensing, has declined in our youth. The Center of Excellence in Remote Sensing Education and Research (CERSER) continuously strives to provide education and research opportunities on ice sheet, coastal, ocean, and marine science. One of those continued outreach efforts are Center for Remote Sensing of Ice Sheets (CReSIS) Middle School Program. Sponsored by the National Science Foundation CReSIS Middle School Program offers hands on experience for middle school students. CERSER and NSF offer students the opportunity to study and learn about remote sensing and its vital role in today's society as it relate to climate change and real world problems. The CReSIS Middle School Program is an annual two-week effort that offers middle school students experience with remote sensing and its applications. Specifically, participants received training with Global Positioning Systems (GPS) where the students learned the tools, mechanisms, and applications of a Garmin 60 GPS. As a part of the program the students were required to complete a fieldwork assignment where several longitude and latitude points were given throughout campus. The students had to then enter the longitude and latitude points into the Garmin 60 GPS, navigate their way to each location while also accurately reading the GPS to make sure travel was in the right direction. Upon completion of GPS training the

  11. Validation plays the role of a "bridge" in connecting remote sensing research and applications

    Science.gov (United States)

    Wang, Zhiqiang; Deng, Ying; Fan, Yida

    2018-07-01

    Remote sensing products contribute to improving earth observations over space and time. Uncertainties exist in products of different levels; thus, validation of these products before and during their applications is critical. This study discusses the meaning of validation in depth and proposes a new definition of reliability for use with such products. In this context, validation should include three aspects: a description of the relevant uncertainties, quantitative measurement results and a qualitative judgment that considers the needs of users. A literature overview is then presented evidencing improvements in the concepts associated with validation. It shows that the root mean squared error (RMSE) is widely used to express accuracy; increasing numbers of remote sensing products have been validated; research institutes contribute most validation efforts; and sufficient validation studies encourage the application of remote sensing products. Validation plays a connecting role in the distribution and application of remote sensing products. Validation connects simple remote sensing subjects with other disciplines, and it connects primary research with practical applications. Based on the above findings, it is suggested that validation efforts that include wider cooperation among research institutes and full consideration of the needs of users should be promoted.

  12. Surface functionalization of epitaxial graphene on SiC by ion irradiation for gas sensing application

    Energy Technology Data Exchange (ETDEWEB)

    Kaushik, Priya Darshni, E-mail: kaushik.priyadarshni@gmail.com [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Department of Physics, Jamia Millia Islamia, New Delhi, 110025 (India); Ivanov, Ivan G.; Lin, Pin-Cheng [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Kaur, Gurpreet [Department of Physics and Astrophysics, University of Delhi, Delhi, 110007 (India); Eriksson, Jens [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Lakshmi, G.B.V.S. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi, 110067 (India); Avasthi, D.K. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi, 110067 (India); Amity Institute of Nanotechnology, Noida 201313 (India); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi, 110007 (India); Aziz, Anver; Siddiqui, Azher M. [Department of Physics, Jamia Millia Islamia, New Delhi, 110025 (India); Syväjärvi, Mikael [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Yazdi, G. Reza, E-mail: yazdi@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden)

    2017-05-01

    Highlights: • For the first time the gas sensing application of SHI irradiated epitaxial graphene on SiC is explored. • Surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles. • Existence of an optimal fluence which maximize the gas sensing response towards NO{sub 2} and NH{sub 3} gases. - Abstract: In this work, surface functionalization of epitaxial graphene grown on silicon carbide was performed by ion irradiation to investigate their gas sensing capabilities. Swift heavy ion irradiation using 100 MeV silver ions at four varying fluences was implemented on epitaxial graphene to investigate morphological and structural changes and their effects on the gas sensing capabilities of graphene. Sensing devices are expected as one of the first electronic applications using graphene and most of them use functionalized surfaces to tailor a certain function. In our case, we have studied irradiation as a tool to achieve functionalization. Morphological and structural changes on epitaxial graphene layers were investigated by atomic force microscopy, Raman spectroscopy, Raman mapping and reflectance mapping. The surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles at highest fluence (2 × 10{sup 13} ions/cm{sup 2}). Raman spectra analysis shows that the graphene defect density is increased with increasing fluence, while Raman mapping and reflectance mapping show that there is also a reduction of monolayer graphene coverage. The samples were investigated for ammonia and nitrogen dioxide gas sensing applications. Sensors fabricated on pristine and irradiated samples showed highest gas sensing response at an optimal fluence. Our work provides new pathways for introducing defects in controlled manner in epitaxial graphene, which can be used not only for gas sensing application but also for other applications, such as electrochemical, biosensing, magnetosensing and

  13. Surface functionalization of epitaxial graphene on SiC by ion irradiation for gas sensing application

    International Nuclear Information System (INIS)

    Kaushik, Priya Darshni; Ivanov, Ivan G.; Lin, Pin-Cheng; Kaur, Gurpreet; Eriksson, Jens; Lakshmi, G.B.V.S.; Avasthi, D.K.; Gupta, Vinay; Aziz, Anver; Siddiqui, Azher M.; Syväjärvi, Mikael; Yazdi, G. Reza

    2017-01-01

    Highlights: • For the first time the gas sensing application of SHI irradiated epitaxial graphene on SiC is explored. • Surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles. • Existence of an optimal fluence which maximize the gas sensing response towards NO_2 and NH_3 gases. - Abstract: In this work, surface functionalization of epitaxial graphene grown on silicon carbide was performed by ion irradiation to investigate their gas sensing capabilities. Swift heavy ion irradiation using 100 MeV silver ions at four varying fluences was implemented on epitaxial graphene to investigate morphological and structural changes and their effects on the gas sensing capabilities of graphene. Sensing devices are expected as one of the first electronic applications using graphene and most of them use functionalized surfaces to tailor a certain function. In our case, we have studied irradiation as a tool to achieve functionalization. Morphological and structural changes on epitaxial graphene layers were investigated by atomic force microscopy, Raman spectroscopy, Raman mapping and reflectance mapping. The surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles at highest fluence (2 × 10"1"3 ions/cm"2). Raman spectra analysis shows that the graphene defect density is increased with increasing fluence, while Raman mapping and reflectance mapping show that there is also a reduction of monolayer graphene coverage. The samples were investigated for ammonia and nitrogen dioxide gas sensing applications. Sensors fabricated on pristine and irradiated samples showed highest gas sensing response at an optimal fluence. Our work provides new pathways for introducing defects in controlled manner in epitaxial graphene, which can be used not only for gas sensing application but also for other applications, such as electrochemical, biosensing, magnetosensing and spintronic

  14. Satellite Remote Sensing for Coastal Management: A Review of Successful Applications.

    Science.gov (United States)

    McCarthy, Matthew J; Colna, Kaitlyn E; El-Mezayen, Mahmoud M; Laureano-Rosario, Abdiel E; Méndez-Lázaro, Pablo; Otis, Daniel B; Toro-Farmer, Gerardo; Vega-Rodriguez, Maria; Muller-Karger, Frank E

    2017-08-01

    Management of coastal and marine natural resources presents a number of challenges as a growing global population and a changing climate require us to find better strategies to conserve the resources on which our health, economy, and overall well-being depend. To evaluate the status and trends in changing coastal resources over larger areas, managers in government agencies and private stakeholders around the world have increasingly turned to remote sensing technologies. A surge in collaborative and innovative efforts between resource managers, academic researchers, and industry partners is becoming increasingly vital to keep pace with evolving changes of our natural resources. Synoptic capabilities of remote sensing techniques allow assessments that are impossible to do with traditional methods. Sixty years of remote sensing research have paved the way for resource management applications, but uncertainties regarding the use of this technology have hampered its use in management fields. Here we review examples of remote sensing applications in the sectors of coral reefs, wetlands, water quality, public health, and fisheries and aquaculture that have successfully contributed to management and decision-making goals.

  15. Satellite Remote Sensing for Coastal Management: A Review of Successful Applications

    Science.gov (United States)

    McCarthy, Matthew J.; Colna, Kaitlyn E.; El-Mezayen, Mahmoud M.; Laureano-Rosario, Abdiel E.; Méndez-Lázaro, Pablo; Otis, Daniel B.; Toro-Farmer, Gerardo; Vega-Rodriguez, Maria; Muller-Karger, Frank E.

    2017-08-01

    Management of coastal and marine natural resources presents a number of challenges as a growing global population and a changing climate require us to find better strategies to conserve the resources on which our health, economy, and overall well-being depend. To evaluate the status and trends in changing coastal resources over larger areas, managers in government agencies and private stakeholders around the world have increasingly turned to remote sensing technologies. A surge in collaborative and innovative efforts between resource managers, academic researchers, and industry partners is becoming increasingly vital to keep pace with evolving changes of our natural resources. Synoptic capabilities of remote sensing techniques allow assessments that are impossible to do with traditional methods. Sixty years of remote sensing research have paved the way for resource management applications, but uncertainties regarding the use of this technology have hampered its use in management fields. Here we review examples of remote sensing applications in the sectors of coral reefs, wetlands, water quality, public health, and fisheries and aquaculture that have successfully contributed to management and decision-making goals.

  16. Surface Acoustic Wave (SAW for Chemical Sensing Applications of Recognition Layers

    Directory of Open Access Journals (Sweden)

    Adnan Mujahid

    2017-11-01

    Full Text Available Surface acoustic wave (SAW resonators represent some of the most prominent acoustic devices for chemical sensing applications. As their frequency ranges from several hundred MHz to GHz, therefore they can record remarkably diminutive frequency shifts resulting from exceptionally small mass loadings. Their miniaturized design, high thermal stability and possibility of wireless integration make these devices highly competitive. Owing to these special characteristics, they are widely accepted as smart transducers that can be combined with a variety of recognition layers based on host-guest interactions, metal oxide coatings, carbon nanotubes, graphene sheets, functional polymers and biological receptors. As a result of this, there is a broad spectrum of SAW sensors, i.e., having sensing applications ranging from small gas molecules to large bio-analytes or even whole cell structures. This review shall cover from the fundamentals to modern design developments in SAW devices with respect to interfacial receptor coatings for exemplary sensor applications. The related problems and their possible solutions shall also be covered, with a focus on emerging trends and future opportunities for making SAW as established sensing technology.

  17. Surface Acoustic Wave (SAW) for Chemical Sensing Applications of Recognition Layers.

    Science.gov (United States)

    Mujahid, Adnan; Dickert, Franz L

    2017-11-24

    Surface acoustic wave (SAW) resonators represent some of the most prominent acoustic devices for chemical sensing applications. As their frequency ranges from several hundred MHz to GHz, therefore they can record remarkably diminutive frequency shifts resulting from exceptionally small mass loadings. Their miniaturized design, high thermal stability and possibility of wireless integration make these devices highly competitive. Owing to these special characteristics, they are widely accepted as smart transducers that can be combined with a variety of recognition layers based on host-guest interactions, metal oxide coatings, carbon nanotubes, graphene sheets, functional polymers and biological receptors. As a result of this, there is a broad spectrum of SAW sensors, i.e., having sensing applications ranging from small gas molecules to large bio-analytes or even whole cell structures. This review shall cover from the fundamentals to modern design developments in SAW devices with respect to interfacial receptor coatings for exemplary sensor applications. The related problems and their possible solutions shall also be covered, with a focus on emerging trends and future opportunities for making SAW as established sensing technology.

  18. Chirality sensing with stereodynamic copper(I) complexes.

    Science.gov (United States)

    De Los Santos, Zeus A; Legaux, Nicholas M; Wolf, Christian

    2017-11-01

    Three Cu(I) complexes derived from stereodynamic diphosphine ligands were synthesized and used for chirality sensing. The coordination of diamines and amino acids to these complexes generates distinct circular dichroism signals. The chiroptical sensor response allows determination of the absolute configuration and the enantiomeric excess of the analyte at low concentrations. This method is operationally simple, fast, and attractive for high-throughput sensing applications. © 2017 Wiley Periodicals, Inc.

  19. Wireless Sensing Opportunities for Aerospace Applications

    Directory of Open Access Journals (Sweden)

    William Wilson

    2008-07-01

    Full Text Available Wireless sensors and sensor networks is an emerging technology area with many applications within the aerospace industry. Integrated vehicle health monitoring (IVHM of aerospace vehicles is needed to ensure the safety of the crew and the vehicle, yet often high costs, weight, size and other constraints prevent the incorporation of instrumentation onto spacecraft. This paper presents a few of the areas such as IVHM, where new wireless sensing technology is needed on both existing vehicles as well as future spacecraft. From ground tests to inflatable structures to the International Space Station, many applications could receive benefits from small, low power, wireless sensors. This paper also highlights some of the challenges that need to overcome when implementing wireless sensor networks for aerospace vehicles.

  20. Energy-efficient sensing in wireless sensor networks using compressed sensing.

    Science.gov (United States)

    Razzaque, Mohammad Abdur; Dobson, Simon

    2014-02-12

    Sensing of the application environment is the main purpose of a wireless sensor network. Most existing energy management strategies and compression techniques assume that the sensing operation consumes significantly less energy than radio transmission and reception. This assumption does not hold in a number of practical applications. Sensing energy consumption in these applications may be comparable to, or even greater than, that of the radio. In this work, we support this claim by a quantitative analysis of the main operational energy costs of popular sensors, radios and sensor motes. In light of the importance of sensing level energy costs, especially for power hungry sensors, we consider compressed sensing and distributed compressed sensing as potential approaches to provide energy efficient sensing in wireless sensor networks. Numerical experiments investigating the effectiveness of compressed sensing and distributed compressed sensing using real datasets show their potential for efficient utilization of sensing and overall energy costs in wireless sensor networks. It is shown that, for some applications, compressed sensing and distributed compressed sensing can provide greater energy efficiency than transform coding and model-based adaptive sensing in wireless sensor networks.

  1. A phase mask fiber grating and sensing applications

    Directory of Open Access Journals (Sweden)

    Preecha P. Yupapin

    2003-09-01

    Full Text Available This paper presents an investigation of a fabricated fiber grating device characteristics and its applications, using a phase mask writing technique. The use of a most common UV phase laser (KrF eximer laser, with high intensity light source was focussed to the phase mask for writing on a fiber optic sample. The device (i.e. grating characteristic especially, in sensing application, was investigated. The possibility of using such device for temperature and strain sensors is discussed.

  2. A review of remote sensing applications for oil palm studies

    Institute of Scientific and Technical Information of China (English)

    Khai Loong Chong; Kasturi Devi Kanniah; Christine Pohl; Kian Pang Tan

    2017-01-01

    Oil palm becomes an increasingly important source of vegetable oil for its production exceeds soybean,sunflower,and rapeseed.The growth of the oil palm industry causes degradation to the environment,especially when the expansion of plantations goes uncontrolled.Remote sensing is a useful tool to monitor the development of oil palm plantations.In order to promote the use of remote sensing in the oil palm industry to support their drive for sustainability,this paper provides an understanding toward the use of remote sensing and its applications to oil palm plantation monitoring.In addition,the existing knowledge gaps are identified and recommendations for further research are given.

  3. Microwave and millimeter-wave remote sensing for security applications

    CERN Document Server

    Nanzer, Jeffrey

    2012-01-01

    Microwave and millimeter-wave remote sensing techniques are fast becoming a necessity in many aspects of security as detection and classification of objects or intruders becomes more difficult. This groundbreaking resource offers you expert guidance in this burgeoning area. It provides you with a thorough treatment of the principles of microwave and millimeter-wave remote sensing for security applications, as well as practical coverage of the design of radiometer, radar, and imaging systems. You learn how to design active and passive sensors for intruder detection, concealed object detection,

  4. Sub-nanosecond jitter, repetitive impulse generators for high reliability applications

    International Nuclear Information System (INIS)

    Krausse, G.J.; Sarjeant, W.J.

    1981-01-01

    Low jitter, high reliability impulse generator development has recently become of ever increasing importance for developing nuclear physics and weapons applications. The research and development of very low jitter (< 30 ps), multikilovolt generators for high reliability, minimum maintenance trigger applications utilizing a new class of high-pressure tetrode thyratrons now commercially available are described. The overall system design philosophy is described followed by a detailed analysis of the subsystem component elements. A multi-variable experimental analysis of this new tetrode thyratron was undertaken, in a low-inductance configuration, as a function of externally available parameters. For specific thyratron trigger conditions, rise times of 18 ns into 6.0-Ω loads were achieved at jitters as low as 24 ps. Using this database, an integrated trigger generator system with solid-state front-end is described in some detail. The generator was developed to serve as the Master Trigger Generator for a large neutrino detector installation at the Los Alamos Meson Physics Facility

  5. Microwave propagation and remote sensing atmospheric influences with models and applications

    CERN Document Server

    Karmakar, Pranab Kumar

    2011-01-01

    Because prevailing atmospheric/troposcopic conditions greatly influence radio wave propagation above 10 GHz, the unguided propagation of microwaves in the neutral atmosphere can directly impact many vital applications in science and engineering. These include transmission of intelligence, and radar and radiometric applications used to probe the atmosphere, among others. Where most books address either one or the other, Microwave Propagation and Remote Sensing: Atmospheric Influences with Models and Applications melds coverage of these two subjects to help readers develop solutions to the problems they present. This reference offers a brief, elementary account of microwave propagation through the atmosphere and discusses radiometric applications in the microwave band used to characterize and model atmospheric constituents, which is also known as remote sensing. Summarizing the latest research results in the field, as well as radiometric models and measurement methods, this book covers topics including: Free sp...

  6. Automatic generation of a subject-specific model for accurate markerless motion capture and biomechanical applications.

    Science.gov (United States)

    Corazza, Stefano; Gambaretto, Emiliano; Mündermann, Lars; Andriacchi, Thomas P

    2010-04-01

    A novel approach for the automatic generation of a subject-specific model consisting of morphological and joint location information is described. The aim is to address the need for efficient and accurate model generation for markerless motion capture (MMC) and biomechanical studies. The algorithm applied and expanded on previous work on human shapes space by embedding location information for ten joint centers in a subject-specific free-form surface. The optimal locations of joint centers in the 3-D mesh were learned through linear regression over a set of nine subjects whose joint centers were known. The model was shown to be sufficiently accurate for both kinematic (joint centers) and morphological (shape of the body) information to allow accurate tracking with MMC systems. The automatic model generation algorithm was applied to 3-D meshes of different quality and resolution such as laser scans and visual hulls. The complete method was tested using nine subjects of different gender, body mass index (BMI), age, and ethnicity. Experimental training error and cross-validation errors were 19 and 25 mm, respectively, on average over the joints of the ten subjects analyzed in the study.

  7. Recent Progress of Self-Powered Sensing Systems for Wearable Electronics.

    Science.gov (United States)

    Lou, Zheng; Li, La; Wang, Lili; Shen, Guozhen

    2017-12-01

    Wearable/flexible electronic sensing systems are considered to be one of the key technologies in the next generation of smart personal electronics. To realize personal portable devices with mobile electronics application, i.e., wearable electronic sensors that can work sustainably and continuously without an external power supply are highly desired. The recent progress and advantages of wearable self-powered electronic sensing systems for mobile or personal attachable health monitoring applications are presented. An overview of various types of wearable electronic sensors, including flexible tactile sensors, wearable image sensor array, biological and chemical sensor, temperature sensors, and multifunctional integrated sensing systems is provided. Self-powered sensing systems with integrated energy units are then discussed, separated as energy harvesting self-powered sensing systems, energy storage integrated sensing systems, and all-in-on integrated sensing systems. Finally, the future perspectives of self-powered sensing systems for wearable electronics are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Leveraging of remote sensing and GIS on mapping in urban and regional planning applications

    International Nuclear Information System (INIS)

    Noor, Norzailawati Mohd; Abdullah, Alias; Rosni, Nur Aulia

    2014-01-01

    While remote sensing applications represent a major though still underused source of urban data, the proposed combination between remote sensing and Geo-information System (GIS) in urban and regional planning is not fully explored. In order to measure changes in land use, the need of platform in monitoring, recording, and predicting the changes is necessary for planners and developers. In advance technology of mapping process, remote sensing and GIS as tools for urban planning are already recognised. But, due to lack of implementation and awareness about the benefits of these tools, these terms look unusual. Therefore, this paper reviews the history of remote sensing and GIS in urban applications, technical skills and the challenges, and future development of remote sensing and GIS especially for urban development particularly in developing countries

  9. Quantitative remote sensing in thermal infrared theory and applications

    CERN Document Server

    Tang, Huajun

    2014-01-01

    This comprehensive technical overview of the core theory of thermal remote sensing and its applications in hydrology, agriculture, and forestry includes a host of illuminating examples and covers everything from the basics to likely future trends in the field.

  10. Development of Polymethylmethacrylate Based Composite for Gas Sensing Application

    OpenAIRE

    Devikala, S.; Kamaraj, P.

    2011-01-01

    Gas detection instruments are increasingly needed for industrial health and safety, environmental monitoring and process control. Conductive polymer composites have various industrial applications. The composite prepared by mixing carbon black with polymethylmethacrylate (PMMA) has very good gas sensing applications. The gas sensors based on carbon nanotube/polymer, ceramic and metal oxide composites such as epoxy, polyimide, PMMA / Barium titanate and tin oxide have also been developed. In t...

  11. Commodity Cluster Computing for Remote Sensing Applications using Red Hat LINUX

    Science.gov (United States)

    Dorband, John

    2003-01-01

    Since 1994, we have been doing research at Goddard Space Flight Center on implementing a wide variety of applications on commodity based computing clusters. This talk is about these clusters and haw they are used on these applications including ones for remote sensing.

  12. Analysis on the status of the application of satellite remote sensing technology to nuclear safeguards

    International Nuclear Information System (INIS)

    Tao Zhangsheng; Zhao Yingjun

    2008-01-01

    Based on the application status of satellite remote sensing technology to nuclear safeguards, advantage of satellite remote sensing technology is analyzed, main types of satellite image used in nuclear safeguards are elaborated and the main application of satellite images is regarded to detect, verify and monitor nuclear activities; verify additional protocol declaration and design information, support performing complementary access inspections; investigate alleged undeclared activities based on open source or the third party information. Application examples of satellite image in nuclear safeguards to analyze nuclear facilities by other countries, the ability of remote sensing technology in nuclear safeguards is discussed. (authors)

  13. Graphene field-effect transistor application for flow sensing

    Directory of Open Access Journals (Sweden)

    Łuszczek Maciej

    2017-01-01

    Full Text Available Microflow sensors offer great potential for applications in microfluidics and lab-on-a-chip systems. However, thermal-based sensors, which are commonly used in modern flow sensing technology, are mainly made of materials with positive temperature coefficients (PTC and suffer from a self-heating effect and slow response time. Therefore, the design of novel devices and careful selection of materials are required to improve the overall flow sensor performance. In this work we propose graphene field-effect transistor (GFET to be used as microflow sensor. Temperature distribution in graphene channel was simulated and the analysis of heat convection was performed to establish the relation between the fluidic flow velocity and the temperature gradient. It was shown that the negative temperature coefficient (NTC of graphene could enable the self-protection of the device and should minimize sensing error from currentinduced heating. It was also argued that the planar design of the GFET sensor makes it suitable for the real application due to supposed mechanical stability of such a construction.

  14. SYMPOSIUM ON REMOTE SENSING IN THE POLAR REGIONS

    Science.gov (United States)

    The Arctic Institute of North America long has been interested in encouraging full and specific attention to applications of remote sensing to polar...research problems. The major purpose of the symposium was to acquaint scientists and technicians concerned with remote sensing with some of the...special problems of the polar areas and, in turn, to acquaint polar scientists with the potential of the use of remote sensing . The Symposium therefore was

  15. Organism-specific rRNA capture system for application in next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Sai-Kam Li

    Full Text Available RNA-sequencing is a powerful tool in studying RNomics. However, the highly abundance of ribosomal RNAs (rRNA and transfer RNA (tRNA have predominated in the sequencing reads, thereby hindering the study of lowly expressed genes. Therefore, rRNA depletion prior to sequencing is often performed in order to preserve the subtle alteration in gene expression especially those at relatively low expression levels. One of the commercially available methods is to use DNA or RNA probes to hybridize to the target RNAs. However, there is always a concern with the non-specific binding and unintended removal of messenger RNA (mRNA when the same set of probes is applied to different organisms. The degree of such unintended mRNA removal varies among organisms due to organism-specific genomic variation. We developed a computer-based method to design probes to deplete rRNA in an organism-specific manner. Based on the computation results, biotinylated-RNA-probes were produced by in vitro transcription and were used to perform rRNA depletion with subtractive hybridization. We demonstrated that the designed probes of 16S rRNAs and 23S rRNAs can efficiently remove rRNAs from Mycobacterium smegmatis. In comparison with a commercial subtractive hybridization-based rRNA removal kit, using organism-specific probes is better in preserving the RNA integrity and abundance. We believe the computer-based design approach can be used as a generic method in preparing RNA of any organisms for next-generation sequencing, particularly for the transcriptome analysis of microbes.

  16. Discussion on the application potential of thermal infrared remote sensing technology in uranium deposits exploration

    International Nuclear Information System (INIS)

    Wang Junhu; Zhang Jielin; Liu Dechang

    2011-01-01

    With the continual development of new thermal infrared sensors and thermal radiation theory, the technology of thermal infrared remote sensing has shown great potential for applications in resources exploration, especially in the field of uranium exploration. The paper makes a systemic summary of the theoretical basis and research status of the thermal infrared remote sensing applications in resources exploration from the surface temperature, thermal inertia and thermal infrared spectrum. What's more, the research objective and the research content of thermal infrared remote sensing in the uranium deposits exploration applications are discussed in detail. Besides, based on the thermal infrared ASTER data, the paper applies this technology to the granite-type uranium deposits in South China and achieves good result. Above all, the practice proves that the thermal infrared remote sensing technology has a good application prospects and particular value in the field of uranium prospecting and will play an important role in the prospecting target of the uranium deposits. (authors)

  17. Femtosecond laser-ablated Fresnel zone plate fiber probe and sensing applications

    Science.gov (United States)

    Tan, Xiaoling; Geng, Youfu; Chen, Yan; Li, Shiguo; Wang, Xinzhong

    2018-02-01

    We investigate the Fresnel zone plate (FZP) inscribed on multimode fiber endface using femtosecond laser ablation and its application in sensing. The mode transmission through fiber tips with FZP is investigated both by the beam propagation method theoretically and by measuring the beam images with a charge-coupled device camera experimentally, which show a good agreement. Such devices are tested for surface-enhanced Raman scattering (SERS) using the aqueous solution of rhodamine 6G under a Raman spectroscopy. The experimental results demonstrate that the SERS signal is enhanced benefiting from focal ability of FZP, which is a promising method for the particular biochemical spectra sensing applications.

  18. REMOTE SENSING APPLICATIONS WITH HIGH RELIABILITY IN CHANGJIANG WATER RESOURCE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    L. Ma

    2018-04-01

    Full Text Available Remote sensing technology has been widely used in many fields. But most of the applications cannot get the information with high reliability and high accuracy in large scale, especially for the applications using automatic interpretation methods. We have designed an application-oriented technology system (PIR composed of a series of accurate interpretation techniques,which can get over 85 % correctness in Water Resource Management from the view of photogrammetry and expert knowledge. The techniques compose of the spatial positioning techniques from the view of photogrammetry, the feature interpretation techniques from the view of expert knowledge, and the rationality analysis techniques from the view of data mining. Each interpreted polygon is accurate enough to be applied to the accuracy sensitive projects, such as the Three Gorge Project and the South - to - North Water Diversion Project. In this paper, we present several remote sensing applications with high reliability in Changjiang Water Resource Management,including water pollution investigation, illegal construction inspection, and water conservation monitoring, etc.

  19. Remote Sensing Applications with High Reliability in Changjiang Water Resource Management

    Science.gov (United States)

    Ma, L.; Gao, S.; Yang, A.

    2018-04-01

    Remote sensing technology has been widely used in many fields. But most of the applications cannot get the information with high reliability and high accuracy in large scale, especially for the applications using automatic interpretation methods. We have designed an application-oriented technology system (PIR) composed of a series of accurate interpretation techniques,which can get over 85 % correctness in Water Resource Management from the view of photogrammetry and expert knowledge. The techniques compose of the spatial positioning techniques from the view of photogrammetry, the feature interpretation techniques from the view of expert knowledge, and the rationality analysis techniques from the view of data mining. Each interpreted polygon is accurate enough to be applied to the accuracy sensitive projects, such as the Three Gorge Project and the South - to - North Water Diversion Project. In this paper, we present several remote sensing applications with high reliability in Changjiang Water Resource Management,including water pollution investigation, illegal construction inspection, and water conservation monitoring, etc.

  20. New Optical Sensing Materials for Application in Marine Research

    Science.gov (United States)

    Borisov, S.; Klimant, I.

    2012-04-01

    Optical chemosensors are versatile analytical tools which find application in numerous fields of science and technology. They proved to be a promising alternative to electrochemical methods and are applied increasingly often in marine research. However, not all state-of-the- art optical chemosensors are suitable for these demanding applications since they do not fully fulfil the requirements of high luminescence brightness, high chemical- and photochemical stability or their spectral properties are not adequate. Therefore, development of new advanced sensing materials is still of utmost importance. Here we present a set of novel optical sensing materials recently developed in the Institute of Analytical Chemistry and Food Chemistry which are optimized for marine applications. Particularly, we present new NIR indicators and sensors for oxygen and pH which feature high brightness and low level of autofluorescence. The oxygen sensors rely on highly photostable metal complexes of benzoporphyrins and azabenzoporphyrins and enable several important applications such as simultaneous monitoring of oxygen and chlorophyll or ultra-fast oxygen monitoring (Eddy correlation). We also developed ulta-sensitive oxygen optodes which enable monitoring in nM range and are primary designed for investigation of oxygen minimum zones. The dynamic range of our new NIR pH indicators based on aza-BODIPY dyes is optimized for the marine environment. A highly sensitive NIR luminescent phosphor (chromium(III) doped yttrium aluminium borate) can be used for non-invasive temperature measurements. Notably, the oxygen, pH sensors and temperature sensors are fully compatible with the commercially available fiber-optic readers (Firesting from PyroScience). An optical CO2 sensor for marine applications employs novel diketopyrrolopyrrol indicators and enables ratiometric imaging using a CCD camera. Oxygen, pH and temperature sensors suitable for lifetime and ratiometric imaging of analytes

  1. Grid workflow validation using ontology-based tacit knowledge: A case study for quantitative remote sensing applications

    Science.gov (United States)

    Liu, Jia; Liu, Longli; Xue, Yong; Dong, Jing; Hu, Yingcui; Hill, Richard; Guang, Jie; Li, Chi

    2017-01-01

    Workflow for remote sensing quantitative retrieval is the ;bridge; between Grid services and Grid-enabled application of remote sensing quantitative retrieval. Workflow averts low-level implementation details of the Grid and hence enables users to focus on higher levels of application. The workflow for remote sensing quantitative retrieval plays an important role in remote sensing Grid and Cloud computing services, which can support the modelling, construction and implementation of large-scale complicated applications of remote sensing science. The validation of workflow is important in order to support the large-scale sophisticated scientific computation processes with enhanced performance and to minimize potential waste of time and resources. To research the semantic correctness of user-defined workflows, in this paper, we propose a workflow validation method based on tacit knowledge research in the remote sensing domain. We first discuss the remote sensing model and metadata. Through detailed analysis, we then discuss the method of extracting the domain tacit knowledge and expressing the knowledge with ontology. Additionally, we construct the domain ontology with Protégé. Through our experimental study, we verify the validity of this method in two ways, namely data source consistency error validation and parameters matching error validation.

  2. A phased array bread board for future remote sensing applications

    Science.gov (United States)

    Zahn, R. W.; Schmidt, E.

    The next generation of SAR antennas will be of the active phased-array type. The ongoing development of a phased-array breadboard for remote sensing is described. Starting from a detailed system design, a functional representative breadboard was developed. The design and the performance of the breadboard are discussed.

  3. Photonic Crystal Fibers for Sensing Applications

    Directory of Open Access Journals (Sweden)

    Ana M. R. Pinto

    2012-01-01

    Full Text Available Photonic crystal fibers are a kind of fiber optics that present a diversity of new and improved features beyond what conventional optical fibers can offer. Due to their unique geometric structure, photonic crystal fibers present special properties and capabilities that lead to an outstanding potential for sensing applications. A review of photonic crystal fiber sensors is presented. Two different groups of sensors are detailed separately: physical and biochemical sensors, based on the sensor measured parameter. Several sensors have been reported until the date, and more are expected to be developed due to the remarkable characteristics such fibers can offer.

  4. Thermoelectric generators: A review of applications

    International Nuclear Information System (INIS)

    Champier, Daniel

    2017-01-01

    Highlights: • This paper reviews the state of the art of thermoelectric generators. • The latest thermoelectric modules are introduced. • Waste heat recovery in transport and industry with thermoelectric generators. • Domestic and industrial applications of thermoelectric generators. • Thermoelectric generators in space, micro-generation and solar conversion. - Abstract: In past centuries, men have mainly looked to increase their production of energy in order to develop their industry, means of transport and quality of life. Since the recent energy crisis, researchers and industrials have looked mainly to manage energy in a better way, especially by increasing energy system efficiency. This context explains the growing interest for thermoelectric generators. Today, thermoelectric generators allow lost thermal energy to be recovered, energy to be produced in extreme environments, electric power to be generated in remote areas and microsensors to be powered. Direct solar thermal energy can also be used to produce electricity. This review begins with the basic principles of thermoelectricity and a presentation of existing and future materials. Design and optimization of generators are addressed. Finally in this paper, we developed an exhaustive presentation of thermoelectric generation applications covering electricity generation in extreme environments, waste heat recovery in transport and industry, domestic production in developing and developed countries, micro-generation for sensors and microelectronics and solar thermoelectric generators. Many recent applications are presented, as well as the future applications which are currently being studied in research laboratories or in industry. The main purpose of this paper is to clearly demonstrate that, almost anywhere in industry or in domestic uses, it is worth checking whether a TEG can be added whenever heat is moving from a hot source to a cold source.

  5. Gold/diamond nanohybrids for quantum sensing applications

    International Nuclear Information System (INIS)

    Tsai, Pei-Chang; Chen, Oliver Y.; Tzeng, Yan-Kai; Hui, Yuen Yung; Chang, Ming-Shien; Guo, Jiun You; Wu, Chih-Che; Chang, Huan-Cheng

    2015-01-01

    Recent advances in quantum technology have demonstrated the potential use of negatively charged nitrogen-vacancy (NV - ) centers in diamond for temperature and magnetic sensing at sub-cellular levels. Fluorescent nanodiamonds (FNDs) containing high-density ensembles of NV - centers are appealing for such applications because they are inherently biocompatible and non-toxic. Here, we show that FNDs conjugated with gold nanorods (GNRs) are useful as a combined nanoheater and nanothermometer for highly localized hyperthermia treatment using near-infrared (NIR) lasers as the heating source. A temperature rise of ∝10 K can be readily achieved at a NIR laser power of 0.4 mW in cells. The technique is compatible with the presence of static magnetic fields and allows for simultaneous temperature and magnetic sensing with nanometric spatial resolution. To elucidate the nanoscale heating process, numerical simulations are conducted with finite element analysis, providing an important guideline for the use of this new tool for active and high-precision control of temperature under diverse environmental conditions. (orig.)

  6. Application of Nd/sup 3+/-doped silica fibers to radiation sensing devices

    International Nuclear Information System (INIS)

    Imamura, K.; Suzuki, T.; Gozen, T.; Tanaka, H.; Okamoto, S.

    1987-01-01

    Applications of rare-earth-ion-doped optical fibers to radiation sensing devices have been studied. It was revealed that rare-earth-ion-doped optical fibers are highly sensitive to radioactive rays such as gamma ray and thermal neutron flux and that they have little dependence on ambient temperature and optical power. An experimental distributed radiation sensing system incorporating Nd/sup 3+/-doped optical fibers, radiation resistant optical fibers and an OTDR was made and tested. The results proved that the distributed sensing system is practically adaptable to the measurement of the radioactive rays

  7. Integrated microcantilevers for high-resolution sensing and probing

    International Nuclear Information System (INIS)

    Li, Xinxin; Lee, Dong-Weon

    2012-01-01

    This topical review is focused on microcantilever-based sensing and probing functions that are realized by integrating a mechanically compliant cantilever with self-sensing and self-actuating elements, specific sensing materials as well as functionalized nano-tips. Such integrated cantilever devices have shown great promise in ultra-sensitive applications such as on-the-spot portable bio/chemical detection and in situ micro/nanoscale surface analysis and manipulation. The technical details of this review will be given in a sequence of cantilever sensors and, then, cantilever-tip probes. For the integrated cantilever sensors, the frequency-output style dynamic cantilevers are described first, with the contents including optimized resonance modes, sensing-group-modified nanostructures for specific bio/chemical mass adsorption and nanoscale sensing effects, etc. Thereafter, the static cantilever sensors for surface-stress detection are described in the sequence of the sensing mechanism, surface modification of the sensitive molecule layer and the model of specific reaction-induced surface-energy variation. After technical description of the cantilever sensors, the emphasis of the review moves to functionalized nano-tip equipped cantilever-tip probing devices. The probing functions are not only integrated on the cantilever but also integrated at the sharp apex of the tip. After description of single integrated cantilever probes and their applications in surface scanning and imaging, arrayed cantilever-tip devices and their simultaneous parallel operation for high throughput imaging and nanomechanical data storage are also addressed. With cantilever-tip probes as key elements, micro-analysis instruments are introduced that can be widely used for macro/nanoscale characterizations. (topical review)

  8. Characterization of piezoelectric materials for simultaneous strain and temperature sensing for ultra-low frequency applications

    International Nuclear Information System (INIS)

    Islam, Mohammad Nouroz; Seethaler, Rudolf; Alam, M Shahria

    2015-01-01

    Piezoelectric materials are used extensively in a number of sensing applications ranging from aerospace industries to medical diagnostics. Piezoelectric materials generate charge when they are subjected to strain. However, since measuring charge is difficult at low frequencies, traditional piezoelectric sensors are limited to dynamic applications. In this research an alternative technique is proposed to determine static strain that relies upon the measurement of piezoelectric capacitance and resistance using piezoelectric sensors. To demonstrate the validity of this approach, the capacitance and resistance of a piezoelectric patch sensor was characterized for a wide range of strain and temperature. The study shows that the piezoelectric capacitance is sensitive to both strain and temperature while the resistance is mostly dependent on the temperature variation. The findings can be implemented to obtain thermally compensated static strain from piezoelectric sensors, which does not require an additional temperature sensor. (paper)

  9. China national space remote sensing infrastructure and its application

    Science.gov (United States)

    Li, Ming

    2016-07-01

    Space Infrastructure is a space system that provides communication, navigation and remote sensing service for broad users. China National Space Remote Sensing Infrastructure includes remote sensing satellites, ground system and related systems. According to the principle of multiple-function on one satellite, multiple satellites in one constellation and collaboration between constellations, series of land observation, ocean observation and atmosphere observation satellites have been suggested to have high, middle and low resolution and fly on different orbits and with different means of payloads to achieve a high ability for global synthetically observation. With such an infrastructure, we can carry out the research on climate change, geophysics global surveying and mapping, water resources management, safety and emergency management, and so on. I This paper gives a detailed introduction about the planning of this infrastructure and its application in different area, especially the international cooperation potential in the so called One Belt and One Road space information corridor.

  10. Pervasive sensing

    Science.gov (United States)

    Nagel, David J.

    2000-11-01

    The coordinated exploitation of modern communication, micro- sensor and computer technologies makes it possible to give global reach to our senses. Web-cameras for vision, web- microphones for hearing and web-'noses' for smelling, plus the abilities to sense many factors we cannot ordinarily perceive, are either available or will be soon. Applications include (1) determination of weather and environmental conditions on dense grids or over large areas, (2) monitoring of energy usage in buildings, (3) sensing the condition of hardware in electrical power distribution and information systems, (4) improving process control and other manufacturing, (5) development of intelligent terrestrial, marine, aeronautical and space transportation systems, (6) managing the continuum of routine security monitoring, diverse crises and military actions, and (7) medicine, notably the monitoring of the physiology and living conditions of individuals. Some of the emerging capabilities, such as the ability to measure remotely the conditions inside of people in real time, raise interesting social concerns centered on privacy issues. Methods for sensor data fusion and designs for human-computer interfaces are both crucial for the full realization of the potential of pervasive sensing. Computer-generated virtual reality, augmented with real-time sensor data, should be an effective means for presenting information from distributed sensors.

  11. Indoor Fast Neutron Generator for Biophysical and Electronic Applications

    Science.gov (United States)

    Cannuli, A.; Caccamo, M. T.; Marchese, N.; Tomarchio, E. A.; Pace, C.; Magazù, S.

    2018-05-01

    This study focuses the attention on an indoor fast neutron generator for biophysical and electronic applications. More specifically, the findings obtained by several simulations with the MCNP Monte Carlo code, necessary for the realization of a shield for indoor measurements, are presented. Furthermore, an evaluation of the neutron spectrum modification caused by the shielding is reported. Fast neutron generators are a valid and interesting available source of neutrons, increasingly employed in a wide range of research fields, such as science and engineering. The employed portable pulsed neutron source is a MP320 Thermo Scientific neutron generator, able to generate 2.5 MeV neutrons with a neutron yield of 2.0 x 106 n/s, a pulse rate of 250 Hz to 20 KHz and a duty factor varying from 5% to 100%. The neutron generator, based on Deuterium-Deuterium nuclear fusion reactions, is employed in conjunction with a solid-state photon detector, made of n-type high-purity germanium (PINS-GMX by ORTEC) and it is mainly addressed to biophysical and electronic studies. The present study showed a proposal for the realization of a shield necessary for indoor applications for MP320 neutron generator, with a particular analysis of the transport of neutrons simulated with Monte Carlo code and described the two main lines of research in which the source will be used.

  12. Remote earth sensing experiments

    Energy Technology Data Exchange (ETDEWEB)

    Trifonov, Yu V

    1981-01-01

    Description of data devices for deriving multi-spectral measuring television measurement data of middle and high resolution through use of second generation Meteor-type satellites. Options for developing a permanent and active remote sensing system in USSR are discussed. It is noted that the present experiment is an important step in that direction. Design and structural data for this particular device and its application in the experiment are covered.

  13. [Use of Remote Sensing for Crop and Soil Analysis

    Science.gov (United States)

    Johannsen, Chris J.

    1997-01-01

    The primary agricultural objective of this research is to determine what soil and crop information can be verified from remotely sensed images during the growing season. Specifically: (1) Elements of crop stress due to drought, weeds, disease and nutrient deficiencies will be documented with ground truth over specific agricultural sites and (2) Use of remote sensing with GPS and GIS technology for providing a safe and environmentally friendly application of fertilizers and chemicals will be documented.

  14. Metal-core@metal oxide-shell nanomaterials for gas-sensing applications: a review

    Energy Technology Data Exchange (ETDEWEB)

    Mirzaei, A.; Janghorban, K.; Hashemi, B. [Shiraz University, Department of Materials Science and Engineering (Iran, Islamic Republic of); Neri, G., E-mail: gneri@unime.it [University of Messina, Department of Electronic Engineering, Chemistry and Industrial Engineering (Italy)

    2015-09-15

    With an ever-increasing number of applications in many advanced fields, gas sensors are becoming indispensable devices in our daily life. Among different types of gas sensors, conductometric metal oxide semiconductor (MOS) gas sensors are found to be the most appealing for advanced applications in the automotive, biomedical, environmental, and safety sectors because of the their high sensitivity, reduced size, and low cost. To improve their sensing characteristics, new metal oxide-based nanostructures have thus been proposed in recent years as sensing materials. In this review, we extensively review gas-sensing properties of core@ shell nanocomposites in which metals as the core and metal oxides as the shell structure, both of nanometer sizes, are assembled into a single metal@metal oxide core–shell. These nanostructures not only combine the properties of both noble metals and metal oxides, but also bring unique synergetic functions in comparison with single-component materials. Up-dated achievements in the synthesis and characterization of metal@metal oxide core–shell nanostructures as well as their use in MOS sensors are here reported with the main objective of providing an overview about their gas-sensing properties.

  15. The Application of KINECT Motion Sensing Technology in Game-Oriented Study

    Directory of Open Access Journals (Sweden)

    Hui Yu Yang

    2014-03-01

    Full Text Available The learning environment based on the KINECT Motion Sensing technology is able to fully mobilize the learners' multi-sensory organs, closely combine study with sports and enhance human-computer interactions, which can be conducive to the learners' health, greatly increase the relishes of learning and promote effective learning in the game, and finally compensate for the shortage of human-computer interactions in the traditional mouse and keyboard mode. The article elaborates on the KINECT Motion Sensing Technology and its educational applications status by analyzing its effective supports for game-oriented studying environment, based on which the article establishes a game-oriented learning environment. Eventually the article reveals an applicable case of game-oriented teaching and learning as a reference for related researches.

  16. An overview of remote sensing and geodesy for epidemiology and public health application.

    Science.gov (United States)

    Hay, S I

    2000-01-01

    The techniques of remote sensing (RS) and geodesy have the potential to revolutionize the discipline of epidemiology and its application in human health. As a new departure from conventional epidemiological methods, these techniques require some detailed explanation. This review provides the theoretical background to RS including (i) its physical basis, (ii) an explanation of the orbital characteristics and specifications of common satellite sensor systems, (iii) details of image acquisition and procedures adopted to overcome inherent sources of data degradation, and (iv) a background to geophysical data preparation. This information allows RS applications in epidemiology to be readily interpreted. Some of the techniques used in geodesy, to locate features precisely on Earth so that they can be registered to satellite sensor-derived images, are also included. While the basic principles relevant to public health are presented here, inevitably many of the details must be left to specialist texts.

  17. Solid State Laser Technology Development for Atmospheric Sensing Applications

    Science.gov (United States)

    Barnes, James C.

    1998-01-01

    NASA atmospheric scientists are currently planning active remote sensing missions that will enable global monitoring of atmospheric ozone, water vapor, aerosols and clouds as well as global wind velocity. The measurements of these elements and parameters are important because of the effects they have on climate change, atmospheric chemistry and dynamics, atmospheric transport and, in general, the health of the planet. NASA will make use of Differential Absorption Lidar (DIAL) and backscatter lidar techniques for active remote sensing of molecular constituents and atmospheric phenomena from advanced high-altitude aircraft and space platforms. This paper provides an overview of NASA Langley Research Center's (LaRC's) development of advanced solid state lasers, harmonic generators, and wave mixing techniques aimed at providing the broad range of wavelengths necessary to meet measurement goals of NASA's Earth Science Enterprise.

  18. Climate Literacy: STEM and Climate Change Education and Remote Sensing Applications

    Science.gov (United States)

    Reddy, S. R.

    2015-12-01

    NASA Innovations in Climate Education (NICE) is a competitive project to promote climate and Earth system science literacy and seeks to increase the access of underrepresented minority groups to science careers and educational opportunities. A three year funding was received from NASA to partnership with JSU and MSU under cooperative agreement "Strengthening Global Climate Change education through Remote Sensing Application in Coastal Environment using NASA Satellite Data and Models". The goal is to increase the number of highschool and undergraduate students at Jackson State University, a Historically Black University, who are prepared to pursue higher academic degrees and careers in STEM fields. A five Saturday course/workshop was held during March/April 2015 at JSU, focusing on historical and technical concepts of math, enginneering, technology and atmosphere and climate change and remote sensing technology and applications to weather and climate. Nine students from meteorology, biology, industrial technology and computer science/engineering of JSU and 19 high scool students from Jackson Public Schools participated in the course/workshop. The lecture topics include: introduction to remote sensing and GIS, introduction to atmospheric science, math and engineering, climate, introduction to NASA innovations in climate education, introduction to remote sensing technology for bio-geosphere, introduction to earth system science, principles of paleoclimatology and global change, daily weather briefing, satellite image interpretation and so on. In addition to lectures, lab sessions were held for hand-on experiences for remote sensing applications to atmosphere, biosphere, earth system science and climate change using ERDAS/ENVI GIS software and satellite tools. Field trip to Barnett reservoir and National weather Service (NWS) was part of the workshop. Basics of Earth System Science is a non-mathematical introductory course designed for high school seniors, high school

  19. POLARIZATION REMOTE SENSING PHYSICAL MECHANISM, KEY METHODS AND APPLICATION

    Directory of Open Access Journals (Sweden)

    B. Yang

    2017-09-01

    Full Text Available China's long-term planning major projects "high-resolution earth observation system" has been invested nearly 100 billion and the satellites will reach 100 to 2020. As to 2/3 of China's area covered by mountains,it has a higher demand for remote sensing. In addition to light intensity, frequency, phase, polarization is also the main physical characteristics of remote sensing electromagnetic waves. Polarization is an important component of the reflected information from the surface and the atmospheric information, and the polarization effect of the ground object reflection is the basis of the observation of polarization remote sensing. Therefore, the effect of eliminating the polarization effect is very important for remote sensing applications. The main innovations of this paper is as follows: (1 Remote sensing observation method. It is theoretically deduced and verified that the polarization can weaken the light in the strong light region, and then provide the polarization effective information. In turn, the polarization in the low light region can strengthen the weak light, the same can be obtained polarization effective information. (2 Polarization effect of vegetation. By analyzing the structure characteristics of vegetation, polarization information is obtained, then the vegetation structure information directly affects the absorption of biochemical components of leaves. (3 Atmospheric polarization neutral point observation method. It is proved to be effective to achieve the ground-gas separation, which can achieve the effect of eliminating the atmospheric polarization effect and enhancing the polarization effect of the object.

  20. Long-Period Gratings in Highly Germanium-Doped, Single-Mode Optical Fibers for Sensing Applications

    Science.gov (United States)

    Schlangen, Sebastian; Bremer, Kort; Zheng, Yulong; Böhm, Sebastian; Steinke, Michael; Wellmann, Felix; Neumann, Jörg; Overmeyer, Ludger

    2018-01-01

    Long-period fiber gratings (LPGs) are well known for their sensitivity to external influences, which make them interesting for a large number of sensing applications. For these applications, fibers with a high numerical aperture (i.e., fibers with highly germanium (Ge)-doped fused silica fiber cores) are more attractive since they are intrinsically photosensitive, as well as less sensitive to bend- and microbend-induced light attenuations. In this work, we introduce a novel method to inscribe LPGs into highly Ge-doped, single-mode fibers. By tapering the optical fiber, and thus, tailoring the effective indices of the core and cladding modes, for the first time, an LPG was inscribed into such fibers using the amplitude mask technique and a KrF excimer laser. Based on this novel method, sensitive LPG-based fiber optic sensors only a few millimeters in length can be incorporated in bend-insensitive fibers for use in various monitoring applications. Moreover, by applying the described inscription method, the LPG spectrum can be influenced and tailored according to the specific demands of a particular application. PMID:29702600

  1. Long-Period Gratings in Highly Germanium-Doped, Single-Mode Optical Fibers for Sensing Applications

    Directory of Open Access Journals (Sweden)

    Sebastian Schlangen

    2018-04-01

    Full Text Available Long-period fiber gratings (LPGs are well known for their sensitivity to external influences, which make them interesting for a large number of sensing applications. For these applications, fibers with a high numerical aperture (i.e., fibers with highly germanium (Ge-doped fused silica fiber cores are more attractive since they are intrinsically photosensitive, as well as less sensitive to bend- and microbend-induced light attenuations. In this work, we introduce a novel method to inscribe LPGs into highly Ge-doped, single-mode fibers. By tapering the optical fiber, and thus, tailoring the effective indices of the core and cladding modes, for the first time, an LPG was inscribed into such fibers using the amplitude mask technique and a KrF excimer laser. Based on this novel method, sensitive LPG-based fiber optic sensors only a few millimeters in length can be incorporated in bend-insensitive fibers for use in various monitoring applications. Moreover, by applying the described inscription method, the LPG spectrum can be influenced and tailored according to the specific demands of a particular application.

  2. TERA-MIR radiation: materials, generation, detection and applications III (Conference Presentation)

    Science.gov (United States)

    Pereira, Mauro F.

    2016-10-01

    This talk summarizes the achievements of COST ACTION MP1204 during the last four years. [M.F. Pereira, Opt Quant Electron 47, 815-820 (2015).]. TERA-MIR main objectives are to advance novel materials, concepts and device designs for generating and detecting THz and Mid Infrared radiation using semiconductor, superconductor, metamaterials and lasers and to beneficially exploit their common aspects within a synergetic approach. We used the unique networking and capacity-building capabilities provided by the COST framework to unify these two spectral domains from their common aspects of sources, detectors, materials and applications. We created a platform to investigate interdisciplinary topics in Physics, Electrical Engineering and Technology, Applied Chemistry, Materials Sciences and Biology and Radio Astronomy. The main emphasis has been on new fundamental material properties, concepts and device designs that are likely to open the way to new products or to the exploitation of new technologies in the fields of sensing, healthcare, biology, and industrial applications. End users are: research centres, academic, well-established and start-up Companies and hospitals. Results are presented along our main lines of research: Intersubband materials and devices with applications to fingerprint spectroscopy; Metamaterials, photonic crystals and new functionalities; Nonlinearities and interaction of radiation with matter including biomaterials; Generation and Detection based on Nitrides and Bismides. The talk is closed by indicating the future direction of the network that will remain active beyond the funding period and our expectations for future joint research.

  3. Long-Term Monitoring of Desert Land and Natural Resources and Application of Remote Sensing Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Yuki [Argonne National Lab. (ANL), Argonne, IL (United States); Rollins, Katherine E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-11-01

    Monitoring environmental impacts over large, remote desert regions for long periods of time can be very costly. Remote sensing technologies present a promising monitoring tool because they entail the collection of spatially contiguous data, automated processing, and streamlined data analysis. This report provides a summary of remote sensing products and refinement of remote sensing data interpretation methodologies that were generated as part of the U.S. Department of the Interior Bureau of Land Management Solar Energy Program. In March 2015, a team of researchers from Argonne National Laboratory (Argonne) collected field data of vegetation and surface types from more than 5,000 survey points within the eastern part of the Riverside East Solar Energy Zone (SEZ). Using the field data, remote sensing products that were generated in 2014 using very high spatial resolution (VHSR; 15 cm) multispectral aerial images were validated in order to evaluate potential refinements to the previous methodologies to improve the information extraction accuracy.

  4. Simulation Techniques and Prosthetic Approach Towards Biologically Efficient Artificial Sense Organs- An Overview

    OpenAIRE

    Neogi, Biswarup; Ghosal, Soumya; Mukherjee, Soumyajit; Das, Achintya; Tibarewala, D. N.

    2011-01-01

    An overview of the applications of control theory to prosthetic sense organs including the senses of vision, taste and odor is being presented in this paper. Simulation aspect nowadays has been the centre of research in the field of prosthesis. There have been various successful applications of prosthetic organs, in case of natural biological organs dis-functioning patients. Simulation aspects and control modeling are indispensible for knowing system performance, and to generate an original a...

  5. Privacy Protection in Participatory Sensing Applications Requiring Fine-Grained Locations

    DEFF Research Database (Denmark)

    Dong, Kai; Gu, Tao; Tao, Xianping

    2010-01-01

    The emerging participatory sensing applications have brought a privacy risk where users expose their location information. Most of the existing solutions preserve location privacy by generalizing a precise user location to a coarse-grained location, and hence they cannot be applied in those appli...... provider is an trustworthy entity, making our solution more feasible to practical applications. We present and analyze our security model, and evaluate the performance and scalability of our system....

  6. Radiotracer Generators for Industrial Applications

    International Nuclear Information System (INIS)

    2013-01-01

    restricted because their half-lives are relatively short and only a limited number of radiotracers derived from them have been proven under industrial conditions. Recognizing the potential usefulness of several radionuclide generators, including 68 Ge/ 68 Ga and 137 Cs/ 137 mBa and of radiotracers derived from them, the Agency organized a Coordinated Research Project (CRP) on the Evaluation and Validation of Radionuclide Generator-based Radiotracers for Industrial Applications. The objectives of the CRP , which was implemented over the period 2007-2011, was to coordinate the development of industrial radionuclide generators and to validate generator based radiotracers for use in harsh industrial conditions. It was anticipated that an important outcome would be the production of radionuclide generators designed specifically for industrial purposes. Their cost would be considerably lower than those of medical generators since the high costs of the facilities required to produce generators suitable for in vivo use can be avoided. The IAEA facilitates the transfer of technology, and an important part of this process is the provision of relevant literature that may be used for reference purposes or as an aid to teaching. This monograph contains guidelines for the selection and preparation of radiotracers derived from radionuclide generators, as well as reports from participants of the CRP

  7. Defence and security applications of quantum cascade lasers

    Science.gov (United States)

    Grasso, Robert J.

    2016-09-01

    Quantum Cascade Lasers (QCL) have seen tremendous recent application in the realm of Defence and Security. And, in many instances replacing traditional solid state lasers as the source of choice for Countermeasures, Remote Sensing, In-situ Sensing, Through-Barrier Sensing, and many others. Following their development and demonstration in the early 1990's, QCL's reached some maturity and specific defence and security application prior to 2005; with much initial development fostered by DARPA initiatives in the US, dstl, MoD, and EOARD funding initiatives in the UK, and University level R&D such as those by Prof Manijeh Razeghi at Northwestern University [1], and Prof Ted Masselink at Humboldt University [2]. As QCL's provide direct mid-IR laser output for electrical input, they demonstrate high quantum efficiency compared with diode pumped solid state lasers with optical parametric oscillators (OPOs) to generate mid-Infrared output. One particular advantage of QCL's is their very broad operational bandwidth, extending from the terahertz to the near-infrared spectral regions. Defence and Security areas benefiting from QCL's include: Countermeasures, Remote Sensing, Through-the-Wall Sensing, and Explosive Detection. All information used to construct this paper obtained from open sources.

  8. Proceedings of the Eleventh International Symposium on Remote Sensing of Environment, volume 2. [application and processing of remotely sensed data

    Science.gov (United States)

    1977-01-01

    Application and processing of remotely sensed data are discussed. Areas of application include: pollution monitoring, water quality, land use, marine resources, ocean surface properties, and agriculture. Image processing and scene analysis are described along with automated photointerpretation and classification techniques. Data from infrared and multispectral band scanners onboard LANDSAT satellites are emphasized.

  9. MEMS sensor technologies for human centred applications in healthcare, physical activities, safety and environmental sensing: a review on research activities in Italy.

    Science.gov (United States)

    Ciuti, Gastone; Ricotti, Leonardo; Menciassi, Arianna; Dario, Paolo

    2015-03-17

    Over the past few decades the increased level of public awareness concerning healthcare, physical activities, safety and environmental sensing has created an emerging need for smart sensor technologies and monitoring devices able to sense, classify, and provide feedbacks to users' health status and physical activities, as well as to evaluate environmental and safety conditions in a pervasive, accurate and reliable fashion. Monitoring and precisely quantifying users' physical activity with inertial measurement unit-based devices, for instance, has also proven to be important in health management of patients affected by chronic diseases, e.g., Parkinson's disease, many of which are becoming highly prevalent in Italy and in the Western world. This review paper will focus on MEMS sensor technologies developed in Italy in the last three years describing research achievements for healthcare and physical activity, safety and environmental sensing, in addition to smart systems integration. Innovative and smart integrated solutions for sensing devices, pursued and implemented in Italian research centres, will be highlighted, together with specific applications of such technologies. Finally, the paper will depict the future perspective of sensor technologies and corresponding exploitation opportunities, again with a specific focus on Italy.

  10. MEMS Sensor Technologies for Human Centred Applications in Healthcare, Physical Activities, Safety and Environmental Sensing: A Review on Research Activities in Italy

    Directory of Open Access Journals (Sweden)

    Gastone Ciuti

    2015-03-01

    Full Text Available Over the past few decades the increased level of public awareness concerning healthcare, physical activities, safety and environmental sensing has created an emerging need for smart sensor technologies and monitoring devices able to sense, classify, and provide feedbacks to users’ health status and physical activities, as well as to evaluate environmental and safety conditions in a pervasive, accurate and reliable fashion. Monitoring and precisely quantifying users’ physical activity with inertial measurement unit-based devices, for instance, has also proven to be important in health management of patients affected by chronic diseases, e.g., Parkinson’s disease, many of which are becoming highly prevalent in Italy and in the Western world. This review paper will focus on MEMS sensor technologies developed in Italy in the last three years describing research achievements for healthcare and physical activity, safety and environmental sensing, in addition to smart systems integration. Innovative and smart integrated solutions for sensing devices, pursued and implemented in Italian research centres, will be highlighted, together with specific applications of such technologies. Finally, the paper will depict the future perspective of sensor technologies and corresponding exploitation opportunities, again with a specific focus on Italy.

  11. Remote sensing in uranium exploration. Basic guidance

    International Nuclear Information System (INIS)

    1981-01-01

    The purpose of this publication is to provide the reader with a basis for making an intelligent approach to the use of remote sensing in uranium exploration. It includes: A description of the various techniques; specific applications in view of exploration strategy and selection of appropriate techniques, and some examples of applications; availability and costs; a bibliography

  12. Remote sensing in uranium exploration. Basic guidance

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The purpose of this publication is to provide the reader with a basis for making an intelligent approach to the use of remote sensing in uranium exploration. It includes: A description of the various techniques; specific applications in view of exploration strategy and selection of appropriate techniques, and some examples of applications; availability and costs; a bibliography.

  13. A Silicon Carbide Wireless Temperature Sensing System for High Temperature Applications

    Science.gov (United States)

    Yang, Jie

    2013-01-01

    In this article, an extreme environment-capable temperature sensing system based on state-of-art silicon carbide (SiC) wireless electronics is presented. In conjunction with a Pt-Pb thermocouple, the SiC wireless sensor suite is operable at 450 °C while under centrifugal load greater than 1,000 g. This SiC wireless temperature sensing system is designed to be non-intrusively embedded inside the gas turbine generators, acquiring the temperature information of critical components such as turbine blades, and wirelessly transmitting the information to the receiver located outside the turbine engine. A prototype system was developed and verified up to 450 °C through high temperature lab testing. The combination of the extreme temperature SiC wireless telemetry technology and integrated harsh environment sensors will allow for condition-based in-situ maintenance of power generators and aircraft turbines in field operation, and can be applied in many other industries requiring extreme environment monitoring and maintenance. PMID:23377189

  14. Modeling and diagnostic techniques applicable to the analysis of pressure noise in pressurized water reactors and pressure-sensing systems

    International Nuclear Information System (INIS)

    Mullens, J.A.; Thie, J.A.

    1984-01-01

    Pressure noise data from a PWR are interpreted by means of a computer-implemented model. The model's parameters, namely hydraulic impedances and noise sources, are either calculated or deduced from fits to data. Its accuracy is encouraging and raises the possibility of diagnostic assistance for nuclear plant monitoring. A number of specific applications of pressure noise in the primary system of a PWR and in a pressure sensing system are suggested

  15. Private Data Analytics on Biomedical Sensing Data via Distributed Computation.

    Science.gov (United States)

    Gong, Yanmin; Fang, Yuguang; Guo, Yuanxiong

    2016-01-01

    Advances in biomedical sensors and mobile communication technologies have fostered the rapid growth of mobile health (mHealth) applications in the past years. Users generate a high volume of biomedical data during health monitoring, which can be used by the mHealth server for training predictive models for disease diagnosis and treatment. However, the biomedical sensing data raise serious privacy concerns because they reveal sensitive information such as health status and lifestyles of the sensed subjects. This paper proposes and experimentally studies a scheme that keeps the training samples private while enabling accurate construction of predictive models. We specifically consider logistic regression models which are widely used for predicting dichotomous outcomes in healthcare, and decompose the logistic regression problem into small subproblems over two types of distributed sensing data, i.e., horizontally partitioned data and vertically partitioned data. The subproblems are solved using individual private data, and thus mHealth users can keep their private data locally and only upload (encrypted) intermediate results to the mHealth server for model training. Experimental results based on real datasets show that our scheme is highly efficient and scalable to a large number of mHealth users.

  16. A Fresh Look at Spatio-Temporal Remote Sensing Data: Data Formats, Processing Flow, and Visualization

    Science.gov (United States)

    Gens, R.

    2017-12-01

    With increasing number of experimental and operational satellites in orbit, remote sensing based mapping and monitoring of the dynamic Earth has entered into the realm of `big data'. Just the Landsat series of satellites provide a near continuous archive of 45 years of data. The availability of such spatio-temporal datasets has created opportunities for long-term monitoring diverse features and processes operating on the Earth's terrestrial and aquatic systems. Processes such as erosion, deposition, subsidence, uplift, evapotranspiration, urbanization, land-cover regime shifts can not only be monitored and change can be quantified using time-series data analysis. This unique opportunity comes with new challenges in management, analysis, and visualization of spatio-temporal datasets. Data need to be stored in a user-friendly format, and relevant metadata needs to be recorded, to allow maximum flexibility for data exchange and use. Specific data processing workflows need to be defined to support time-series analysis for specific applications. Value-added data products need to be generated keeping in mind the needs of the end-users, and using best practices in complex data visualization. This presentation systematically highlights the various steps for preparing spatio-temporal remote sensing data for time series analysis. It showcases a prototype workflow for remote sensing based change detection that can be generically applied while preserving the application-specific fidelity of the datasets. The prototype includes strategies for visualizing change over time. This has been exemplified using a time-series of optical and SAR images for visualizing the changing glacial, coastal, and wetland landscapes in parts of Alaska.

  17. Applications of lightweight composite materials in pulsed rotating electrical generators

    International Nuclear Information System (INIS)

    Walls, W.A.; Maifold, S.M.

    1987-01-01

    Present rotating electrical pulse power generators are limited in energy storage capability, specific energy, and peak power density by the use of iron-magnetic circuits. This paper discusses lightweight and compact iron-core homopolar generators (HPGs) which have attained specific energies of 6 kJ/kg and have the potential to achieve 8 kJ/kg in the near future. Prototype iron based pulsed alternators are the favored choice for high power to mass ratio applications and have estimated peak ratings of 180 kW/kg. In terms of total energy storage capability, these machines are limited to several hundred MJ due to the availability of large steel forgings for rotors and basic design considerations including rotor dynamics, allowable rotor tip speeds, and present high speed current collection technology

  18. Compressed-sensing application - Pre-stack kirchhoff migration

    KAUST Repository

    Aldawood, Ali; Hoteit, Ibrahim; Alkhalifah, Tariq Ali

    2013-01-01

    Least-squares migration is a linearized form of waveform inversion that aims to enhance the spatial resolution of the subsurface reflectivity distribution and reduce the migration artifacts due to limited recording aperture, coarse sampling of sources and receivers, and low subsurface illumination. Least-squares migration, however, due to the nature of its minimization process, tends to produce smoothed and dispersed versions of the reflectivity of the subsurface. Assuming that the subsurface reflectivity distribution is sparse, we propose the addition of a non-quadratic L1-norm penalty term on the model space in the objective function. This aims to preserve the sparse nature of the subsurface reflectivity series and enhance resolution. We further use a compressed-sensing algorithm to solve the linear system, which utilizes the sparsity assumption to produce highly resolved migrated images. Thus, the Kirchhoff migration implementation is formulated as a Basis Pursuit denoise (BPDN) problem to obtain the sparse reflectivity model. Applications on synthetic data show that reflectivity models obtained using this compressed-sensing algorithm are highly accurate with optimal resolution.

  19. Gold/diamond nanohybrids for quantum sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Pei-Chang; Chen, Oliver Y.; Tzeng, Yan-Kai; Hui, Yuen Yung; Chang, Ming-Shien [Academia Sinica, Institute of Atomic and Molecular Sciences, Taipei (China); Guo, Jiun You; Wu, Chih-Che [National Chi Nan University, Department of Applied Chemistry, Puli, Nantou (China); Chang, Huan-Cheng [Academia Sinica, Institute of Atomic and Molecular Sciences, Taipei (China); National Taiwan University of Science and Technology, Department of Chemical Engineering, Taipei (China)

    2015-12-15

    Recent advances in quantum technology have demonstrated the potential use of negatively charged nitrogen-vacancy (NV{sup -}) centers in diamond for temperature and magnetic sensing at sub-cellular levels. Fluorescent nanodiamonds (FNDs) containing high-density ensembles of NV{sup -} centers are appealing for such applications because they are inherently biocompatible and non-toxic. Here, we show that FNDs conjugated with gold nanorods (GNRs) are useful as a combined nanoheater and nanothermometer for highly localized hyperthermia treatment using near-infrared (NIR) lasers as the heating source. A temperature rise of ∝10 K can be readily achieved at a NIR laser power of 0.4 mW in cells. The technique is compatible with the presence of static magnetic fields and allows for simultaneous temperature and magnetic sensing with nanometric spatial resolution. To elucidate the nanoscale heating process, numerical simulations are conducted with finite element analysis, providing an important guideline for the use of this new tool for active and high-precision control of temperature under diverse environmental conditions. (orig.)

  20. Registration for Optical Multimodal Remote Sensing Images Based on FAST Detection, Window Selection, and Histogram Specification

    Directory of Open Access Journals (Sweden)

    Xiaoyang Zhao

    2018-04-01

    Full Text Available In recent years, digital frame cameras have been increasingly used for remote sensing applications. However, it is always a challenge to align or register images captured with different cameras or different imaging sensor units. In this research, a novel registration method was proposed. Coarse registration was first applied to approximately align the sensed and reference images. Window selection was then used to reduce the search space and a histogram specification was applied to optimize the grayscale similarity between the images. After comparisons with other commonly-used detectors, the fast corner detector, FAST (Features from Accelerated Segment Test, was selected to extract the feature points. The matching point pairs were then detected between the images, the outliers were eliminated, and geometric transformation was performed. The appropriate window size was searched and set to one-tenth of the image width. The images that were acquired by a two-camera system, a camera with five imaging sensors, and a camera with replaceable filters mounted on a manned aircraft, an unmanned aerial vehicle, and a ground-based platform, respectively, were used to evaluate the performance of the proposed method. The image analysis results showed that, through the appropriate window selection and histogram specification, the number of correctly matched point pairs had increased by 11.30 times, and that the correct matching rate had increased by 36%, compared with the results based on FAST alone. The root mean square error (RMSE in the x and y directions was generally within 0.5 pixels. In comparison with the binary robust invariant scalable keypoints (BRISK, curvature scale space (CSS, Harris, speed up robust features (SURF, and commercial software ERDAS and ENVI, this method resulted in larger numbers of correct matching pairs and smaller, more consistent RMSE. Furthermore, it was not necessary to choose any tie control points manually before registration

  1. Capabilities needed for the next generation of thermo-hydraulic codes for use in real time applications

    Energy Technology Data Exchange (ETDEWEB)

    Arndt, S.A.

    1997-07-01

    The real-time reactor simulation field is currently at a crossroads in terms of the capability to perform real-time analysis using the most sophisticated computer codes. Current generation safety analysis codes are being modified to replace simplified codes that were specifically designed to meet the competing requirement for real-time applications. The next generation of thermo-hydraulic codes will need to have included in their specifications the specific requirement for use in a real-time environment. Use of the codes in real-time applications imposes much stricter requirements on robustness, reliability and repeatability than do design and analysis applications. In addition, the need for code use by a variety of users is a critical issue for real-time users, trainers and emergency planners who currently use real-time simulation, and PRA practitioners who will increasingly use real-time simulation for evaluating PRA success criteria in near real-time to validate PRA results for specific configurations and plant system unavailabilities.

  2. Capabilities needed for the next generation of thermo-hydraulic codes for use in real time applications

    International Nuclear Information System (INIS)

    Arndt, S.A.

    1997-01-01

    The real-time reactor simulation field is currently at a crossroads in terms of the capability to perform real-time analysis using the most sophisticated computer codes. Current generation safety analysis codes are being modified to replace simplified codes that were specifically designed to meet the competing requirement for real-time applications. The next generation of thermo-hydraulic codes will need to have included in their specifications the specific requirement for use in a real-time environment. Use of the codes in real-time applications imposes much stricter requirements on robustness, reliability and repeatability than do design and analysis applications. In addition, the need for code use by a variety of users is a critical issue for real-time users, trainers and emergency planners who currently use real-time simulation, and PRA practitioners who will increasingly use real-time simulation for evaluating PRA success criteria in near real-time to validate PRA results for specific configurations and plant system unavailabilities

  3. Diagnostic knowledge generation of nuclear power plants using knowledge compilers

    International Nuclear Information System (INIS)

    Yoshikawa, Shinji; Endou, Akira; Ikeda, Mitsuru; Mizoguchi, Riichiro

    1994-01-01

    This paper discusses a method to generate diagnostic knowledge of nuclear power plants, from commonly accepted physical knowledge and design information about plant configuration. This method is based on qualitative reasoning, which is advantageous to numerical information processing in the sense that system can explain why and how directly applicable knowledge is correctly generated, and that knowledge base is highly reusable and expandable because it is independent on detailed numerical design specifications. However, reasoning ambiguity has been found as the largest problem in applying the technique to nuclear power plants. The proposed approach mainly consists of a knowledge representation scheme, reasoning algorithm, and qualitative model construction method. (author). 4 refs, 8 figs, 1 tab

  4. High-efficency stable 213-nm generation for LASIK application

    Science.gov (United States)

    Wang, Zhenglin; Alameh, Kamal; Zheng, Rong

    2005-01-01

    213nm Solid-state laser technology provides an alternative method to replace toxic excimer laser in LASIK system. In this paper, we report a compact fifth harmonic generation system to generate high pulse energy 213nm laser from Q-switched Nd:YAG laser for LASIK application based on three stages harmonic generation procedures. A novel crystal housing was specifically designed to hold the three crystals with each crystal has independent, precise angular adjustment structure and automatic tuning control. The crystal temperature is well maintained at ~130°C to improve harmonic generation stability and crystal operation lifetime. An output pulse energy 35mJ is obtained at 213nm, corresponding to total conversion efficiency ~10% from 1064nm pump laser. In system verification tests, the 213nm output power drops less than 5% after 5 millions pulse shots and no significant damage appears in the crystals.

  5. Decoupled Multicamera Sensing for Flexible View Generation

    Directory of Open Access Journals (Sweden)

    Vivek K. Singh

    2016-01-01

    Full Text Available Any sensing paradigm has three important components, namely, the actor, the sensor, and the environment. Traditionally, the sensors have been attached to either the actor or the environment. This restricts the kind of sensing that can be undertaken. We study a newer decoupled sensing paradigm, which separates the sensors from both the actor and the environment and tremendously increases the flexibility with which the scenes can be viewed. For example, instead of showing just one view, “how the environment sees the actor” or “how the actor sees the environment,” a viewer can choose to see either one or both of these views and even choose to see the scene from any desired position in any desired direction. We describe a methodology using mobile autonomous sensors to undertake such decoupled sensing and study the feasible number as well as the placement of such sensors. Also, we describe how the sensors can coordinate their movements around a moving actor so as to continue capturing the required views with minimum overall cost. The practical results obtained demonstrate the viability of the proposed approach.

  6. Thermal Infrared Remote Sensing for Analysis of Landscape Ecological Processes: Methods and Applications

    Science.gov (United States)

    Quattrochi, Dale A.; Luvall, Jeffrey C.

    1998-01-01

    Thermal Infrared (TIR) remote sensing data can provide important measurements of surface energy fluxes and temperatures, which are integral to understanding landscape processes and responses. One example of this is the successful application of TIR remote sensing data to estimate evapotranspiration and soil moisture, where results from a number of studies suggest that satellite-based measurements from TIR remote sensing data can lead to more accurate regional-scale estimates of daily evapotranspiration. With further refinement in analytical techniques and models, the use of TIR data from airborne and satellite sensors could be very useful for parameterizing surface moisture conditions and developing better simulations of landscape energy exchange over a variety of conditions and space and time scales. Thus, TIR remote sensing data can significantly contribute to the observation, measurement, and analysis of energy balance characteristics (i.e., the fluxes and redistribution of thermal energy within and across the land surface) as an implicit and important aspect of landscape dynamics and landscape functioning. The application of TIR remote sensing data in landscape ecological studies has been limited, however, for several fundamental reasons that relate primarily to the perceived difficulty in use and availability of these data by the landscape ecology community, and from the fragmentation of references on TIR remote sensing throughout the scientific literature. It is our purpose here to provide evidence from work that has employed TIR remote sensing for analysis of landscape characteristics to illustrate how these data can provide important data for the improved measurement of landscape energy response and energy flux relationships. We examine the direct or indirect use of TIR remote sensing data to analyze landscape biophysical characteristics, thereby offering some insight on how these data can be used more robustly to further the understanding and modeling of

  7. Construction of conductive multilayer films of biogenic triangular gold nanoparticles and their application in chemical vapour sensing

    Science.gov (United States)

    Singh, Amit; Chaudhari, Minakshi; Sastry, Murali

    2006-05-01

    Metal nanoparticles are interesting building blocks for realizing films for a number of applications that include bio- and chemical sensing. To date, spherical metal nanoparticles have been used to generate functional electrical coatings. In this paper we demonstrate the synthesis of electrically conductive coatings using biologically prepared gold nanotriangles as the building blocks. The gold nanotriangles are prepared by the reduction of aqueous chloroaurate ions using an extract of the lemongrass plant (Cymbopogon flexuosus) which are thereafter assembled onto a variety of substrates by simple solution casting. The conductivity of the film shows a drastic fall upon mild heat treatment, leading to the formation of electrically conductive thin films of nanoparticles. We have also investigated the possibility of using the gold nanotriangle films in vapour sensing. A large fall in film resistance is observed upon exposure to polar molecules such as methanol, while little change occurs upon exposure to weakly polar molecules such as chloroform.

  8. In-database processing of a large collection of remote sensing data: applications and implementation

    Science.gov (United States)

    Kikhtenko, Vladimir; Mamash, Elena; Chubarov, Dmitri; Voronina, Polina

    2016-04-01

    Large archives of remote sensing data are now available to scientists, yet the need to work with individual satellite scenes or product files constrains studies that span a wide temporal range or spatial extent. The resources (storage capacity, computing power and network bandwidth) required for such studies are often beyond the capabilities of individual geoscientists. This problem has been tackled before in remote sensing research and inspired several information systems. Some of them such as NASA Giovanni [1] and Google Earth Engine have already proved their utility for science. Analysis tasks involving large volumes of numerical data are not unique to Earth Sciences. Recent advances in data science are enabled by the development of in-database processing engines that bring processing closer to storage, use declarative query languages to facilitate parallel scalability and provide high-level abstraction of the whole dataset. We build on the idea of bridging the gap between file archives containing remote sensing data and databases by integrating files into relational database as foreign data sources and performing analytical processing inside the database engine. Thereby higher level query language can efficiently address problems of arbitrary size: from accessing the data associated with a specific pixel or a grid cell to complex aggregation over spatial or temporal extents over a large number of individual data files. This approach was implemented using PostgreSQL for a Siberian regional archive of satellite data products holding hundreds of terabytes of measurements from multiple sensors and missions taken over a decade-long span. While preserving the original storage layout and therefore compatibility with existing applications the in-database processing engine provides a toolkit for provisioning remote sensing data in scientific workflows and applications. The use of SQL - a widely used higher level declarative query language - simplifies interoperability

  9. Hybrid Arrays for Chemical Sensing

    Science.gov (United States)

    Kramer, Kirsten E.; Rose-Pehrsson, Susan L.; Johnson, Kevin J.; Minor, Christian P.

    In recent years, multisensory approaches to environment monitoring for chemical detection as well as other forms of situational awareness have become increasingly popular. A hybrid sensor is a multimodal system that incorporates several sensing elements and thus produces data that are multivariate in nature and may be significantly increased in complexity compared to data provided by single-sensor systems. Though a hybrid sensor is itself an array, hybrid sensors are often organized into more complex sensing systems through an assortment of network topologies. Part of the reason for the shift to hybrid sensors is due to advancements in sensor technology and computational power available for processing larger amounts of data. There is also ample evidence to support the claim that a multivariate analytical approach is generally superior to univariate measurements because it provides additional redundant and complementary information (Hall, D. L.; Linas, J., Eds., Handbook of Multisensor Data Fusion, CRC, Boca Raton, FL, 2001). However, the benefits of a multisensory approach are not automatically achieved. Interpretation of data from hybrid arrays of sensors requires the analyst to develop an application-specific methodology to optimally fuse the disparate sources of data generated by the hybrid array into useful information characterizing the sample or environment being observed. Consequently, multivariate data analysis techniques such as those employed in the field of chemometrics have become more important in analyzing sensor array data. Depending on the nature of the acquired data, a number of chemometric algorithms may prove useful in the analysis and interpretation of data from hybrid sensor arrays. It is important to note, however, that the challenges posed by the analysis of hybrid sensor array data are not unique to the field of chemical sensing. Applications in electrical and process engineering, remote sensing, medicine, and of course, artificial

  10. Fast Automatic Airport Detection in Remote Sensing Images Using Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Fen Chen

    2018-03-01

    Full Text Available Fast and automatic detection of airports from remote sensing images is useful for many military and civilian applications. In this paper, a fast automatic detection method is proposed to detect airports from remote sensing images based on convolutional neural networks using the Faster R-CNN algorithm. This method first applies a convolutional neural network to generate candidate airport regions. Based on the features extracted from these proposals, it then uses another convolutional neural network to perform airport detection. By taking the typical elongated linear geometric shape of airports into consideration, some specific improvements to the method are proposed. These approaches successfully improve the quality of positive samples and achieve a better accuracy in the final detection results. Experimental results on an airport dataset, Landsat 8 images, and a Gaofen-1 satellite scene demonstrate the effectiveness and efficiency of the proposed method.

  11. Flow-induced vibration and fretting-wear specifications to ensure steam-generator and heat exchanger lifetime performance

    International Nuclear Information System (INIS)

    Janzen, V.P.; Han, Y.; Pettigrew, M.J.

    2008-01-01

    The current interest in refurbishment, life extension and new-build activity has meant a renewed emphasis on technical specifications that will ensure improved reliability and longer life. Preventing vibration and fretting-wear problems in steam generators and heat exchangers requires design specifications that bring together specific guidelines, analysis methods, requirements and appropriate performance criteria. The specifications must be firmly based on experimental data and field inspections. In addition, the specifications must be supported by theoretical analyses and fundamental scaling correlations, to cover conditions and geometries over the wide range applicable to existing components and probable future designs. The specifications are expected to evolve to meet changing industry requirements. This paper outlines the steps required to generate and support design specifications, and relates them to typical steam-generator design features and computer modeling capabilities. It also describes current issues that are driving changes to flow-induced vibration and fretting-wear specifications that can be applied to the design process for component refurbishment, replacement or new designs. These issues include recent experimental or field evidence for new excitation mechanisms, e.g., the possibility of in-plane fluidelastic instability of U-tubes, the demand for longer reactor and component lifetimes, the need for better predictions of dynamic properties and vibration response, e.g., two-phase random-turbulence excitation, and requirements to consider system 'excursions' or abnormal scenarios, e.g., a main steam line break in the case of steam generators. The paper describes steps being taken to resolve these issues. (author)

  12. Mesoporous Silica Nanomaterials for Applications in Catalysis, Sensing, Drug Delivery and Gene Transfection

    Energy Technology Data Exchange (ETDEWEB)

    Radu, Daniela Rodica [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    The central theme of this dissertation is represented by the versatility of mesoporous silica nanomaterials in various applications such as catalysis and bio-applications, with main focus on biological applications of Mesoporous Silica Nanospheres (MSN). The metamorphosis that we impose to these materials from catalysis to sensing and to drug and gene delivery is detailed in this dissertation. First, we developed a synthetic method that can fine tune the amount of chemically accessible organic functional groups on the pores surface of MSN by exploiting electrostatic and size matching between the cationic alkylammonium head group of the cetyltrimethylammonium bromide (CTAB) surfactant and various anionic organoalkoxysilane precursors at the micelle-water interface in a base-catalyzed condensation reaction of silicate. Aiming nature imitation, we demonstrated the catalytic abilities of the MSNs, We utilized an ethylenediamine functional group for chelating Cu2+ as a catalytic functional group anchored inside the mesopores. Thus, a polyalkynylene-based conducting polymer (molecular wire) was synthesized within the Cu-functionalized MSNs silica catalyst. For sensing applications, we have synthesized a poly(lactic acid) coated mesoporous silica nanosphere (PLA-MSN) material that serves as a fluorescence sensor system for detection of amino-containing neurotransmitters in neutral aqueous buffer. We exploited the mesoporosity of MSNs for encapsulating pharmaceutical drugs. We examined bio-friendly capping molecules such as polyamidoamine dendrimers of generations G2 to G4, to prevent the drug leaching. Next, the drug delivery system employed MSNs loaded with Doxorubicin, an anticancer drug. The results demonstrated that these nano-Trojan horses have ability to deliver Doxorubicin to cancer cells and induce their death. Finally, to demonstrate the potential of MSN as an universal cellular transmembrane nanovehicle, we anchored positively charged dendrimers on

  13. Long term storage of virus templated fluorescent materials for sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Seetharam, Raviraja N; Guerra, Charles; Satir, Peter [Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Blum, Amy Szuchmacher; Soto, Carissa M; Ratna, Banahalli R [Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Whitley, Jessica L [Geo-Centers, Incorporated, Newton, MA 02459 (United States); Sapsford, Kim E [George Mason University, 10910 University Boulevard, Manassas, VA 20110 (United States); Chatterji, Anju; Lin Tianwei; Johnson, John E [Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (United States)], E-mail: amy.blum@nrl.navy.mil

    2008-03-12

    Wild type, mutant, and chemically modified Cowpea mosaic viruses (CPMV) were studied for long term preservation in the presence and absence of cryoprotectants. Viral complexes were reconstituted and tested via fluorescence spectroscopy and a UV/vis-based RNase assay for structural integrity. When viruses lyophilized in the absence of cryoprotectant were rehydrated and RNase treated, UV absorption increased, indicating that the capsids were damaged. The addition of trehalose during lyophilization protected capsid integrity for at least 7 weeks. Measurements of the fluorescence peak maximum of CPMV lyophilized with trehalose and reconstituted also indicate that the virus remained intact. Microarray binding assays indicated that CPMV particles chemically modified for use as a fluorescent tracer were intact and retained binding specificity after lyophilization in the presence of trehalose. Thus, we demonstrate that functionalized CPMV nanostructures can be stored for the long term, enabling their use in practical sensing applications.

  14. Long term storage of virus templated fluorescent materials for sensing applications

    International Nuclear Information System (INIS)

    Seetharam, Raviraja N; Guerra, Charles; Satir, Peter; Blum, Amy Szuchmacher; Soto, Carissa M; Ratna, Banahalli R; Whitley, Jessica L; Sapsford, Kim E; Chatterji, Anju; Lin Tianwei; Johnson, John E

    2008-01-01

    Wild type, mutant, and chemically modified Cowpea mosaic viruses (CPMV) were studied for long term preservation in the presence and absence of cryoprotectants. Viral complexes were reconstituted and tested via fluorescence spectroscopy and a UV/vis-based RNase assay for structural integrity. When viruses lyophilized in the absence of cryoprotectant were rehydrated and RNase treated, UV absorption increased, indicating that the capsids were damaged. The addition of trehalose during lyophilization protected capsid integrity for at least 7 weeks. Measurements of the fluorescence peak maximum of CPMV lyophilized with trehalose and reconstituted also indicate that the virus remained intact. Microarray binding assays indicated that CPMV particles chemically modified for use as a fluorescent tracer were intact and retained binding specificity after lyophilization in the presence of trehalose. Thus, we demonstrate that functionalized CPMV nanostructures can be stored for the long term, enabling their use in practical sensing applications

  15. Sensing and controlling resin-layer thickness in additive manufacturing processes

    NARCIS (Netherlands)

    Kozhevnikov, A.

    2017-01-01

    This AM-TKI project in collaboration with TNO focusses on the sensing and control of resin-layer thickness in AM applications. Industrial Additive Manufacturing is considered to be a potential breakthrough production technology for many applications. A specific AM implementation is VAT photo

  16. Generating Graphical User Interfaces from Precise Domain Specifications

    OpenAIRE

    Kamil Rybiński; Norbert Jarzębowski; Michał Śmiałek; Wiktor Nowakowski; Lucyna Skrzypek; Piotr Łabęcki

    2014-01-01

    Turning requirements into working systems is the essence of software engineering. This paper proposes automation of one of the aspects of this vast problem: generating user interfaces directly from requirements models. It presents syntax and semantics of a comprehensible yet precise domain specification language. For this language, the paper presents the process of generating code for the user interface elements. This includes model transformation procedures to generate window initiation code...

  17. Remote Sensing of Water Quality in Multipurpose Reservoirs: Case Study Applications in Indonesia, Mexico, and Uruguay

    Science.gov (United States)

    Miralles-Wilhelm, F.; Serrat-Capdevila, A.; Rodriguez, D.

    2017-12-01

    This research is focused on development of remote sensing methods to assess surface water pollution issues, particularly in multipurpose reservoirs. Three case study applications are presented to comparatively analyze remote sensing techniquesforo detection of nutrient related pollution, i.e., Nitrogen, Phosphorus, Chlorophyll, as this is a major water quality issue that has been identified in terms of pollution of major water sources around the country. This assessment will contribute to a better understanding of options for nutrient remote sensing capabilities and needs and assist water agencies in identifying the appropriate remote sensing tools and devise an application strategy to provide information needed to support decision-making regarding the targeting and monitoring of nutrient pollution prevention and mitigation measures. A detailed review of the water quality data available from ground based measurements was conducted in order to determine their suitability for a case study application of remote sensing. In the first case study, the Valle de Bravo reservoir in Mexico City reservoir offers a larger database of water quality which may be used to better calibrate and validate the algorithms required to obtain water quality data from remote sensing raw data. In the second case study application, the relatively data scarce Lake Toba in Indonesia can be useful to illustrate the value added of remote sensing data in locations where water quality data is deficient or inexistent. The third case study in the Paso Severino reservoir in Uruguay offers a combination of data scarcity and persistent development of harmful algae blooms. Landsat-TM data was obteined for the 3 study sites and algorithms for three key water quality parameters that are related to nutrient pollution: Chlorophyll-a, Total Nitrogen, and Total Phosphorus were calibrated and validated at the study sites. The three case study applications were developed into capacity building/training workshops

  18. Automated Translation of Safety Critical Application Software Specifications into PLC Ladder Logic

    Science.gov (United States)

    Leucht, Kurt W.; Semmel, Glenn S.

    2008-01-01

    The numerous benefits of automatic application code generation are widely accepted within the software engineering community. A few of these benefits include raising the abstraction level of application programming, shorter product development time, lower maintenance costs, and increased code quality and consistency. Surprisingly, code generation concepts have not yet found wide acceptance and use in the field of programmable logic controller (PLC) software development. Software engineers at the NASA Kennedy Space Center (KSC) recognized the need for PLC code generation while developing their new ground checkout and launch processing system. They developed a process and a prototype software tool that automatically translates a high-level representation or specification of safety critical application software into ladder logic that executes on a PLC. This process and tool are expected to increase the reliability of the PLC code over that which is written manually, and may even lower life-cycle costs and shorten the development schedule of the new control system at KSC. This paper examines the problem domain and discusses the process and software tool that were prototyped by the KSC software engineers.

  19. Luminescence materials for pH and oxygen sensing in microbial cells - structures, optical properties, and biological applications.

    Science.gov (United States)

    Zou, Xianshao; Pan, Tingting; Chen, Lei; Tian, Yanqing; Zhang, Weiwen

    2017-09-01

    Luminescence including fluorescence and phosphorescence sensors have been demonstrated to be important for studying cell metabolism, and diagnosing diseases and cancer. Various design principles have been employed for the development of sensors in different formats, such as organic molecules, polymers, polymeric hydrogels, and nanoparticles. The integration of the sensing with fluorescence imaging provides valuable tools for biomedical research and applications at not only bulk-cell level but also at single-cell level. In this article, we critically reviewed recent progresses on pH, oxygen, and dual pH and oxygen sensors specifically for their application in microbial cells. In addition, we focused not only on sensor materials with different chemical structures, but also on design and applications of sensors for better understanding cellular metabolism of microbial cells. Finally, we also provided an outlook for future materials design and key challenges in reaching broad applications in microbial cells.

  20. Nano-bio-sensing

    CERN Document Server

    Carrara, Sandro

    2011-01-01

    This book examines state-of-the-art applications of nano-bio-sensing. It brings together researchers from nano-electronics and bio-technology, providing multidisciplinary content from nano-structures fabrication to bio-sensing applications.

  1. A Comparison of Three Random Number Generators for Aircraft Dynamic Modeling Applications

    Science.gov (United States)

    Grauer, Jared A.

    2017-01-01

    Three random number generators, which produce Gaussian white noise sequences, were compared to assess their suitability in aircraft dynamic modeling applications. The first generator considered was the MATLAB (registered) implementation of the Mersenne-Twister algorithm. The second generator was a website called Random.org, which processes atmospheric noise measured using radios to create the random numbers. The third generator was based on synthesis of the Fourier series, where the random number sequences are constructed from prescribed amplitude and phase spectra. A total of 200 sequences, each having 601 random numbers, for each generator were collected and analyzed in terms of the mean, variance, normality, autocorrelation, and power spectral density. These sequences were then applied to two problems in aircraft dynamic modeling, namely estimating stability and control derivatives from simulated onboard sensor data, and simulating flight in atmospheric turbulence. In general, each random number generator had good performance and is well-suited for aircraft dynamic modeling applications. Specific strengths and weaknesses of each generator are discussed. For Monte Carlo simulation, the Fourier synthesis method is recommended because it most accurately and consistently approximated Gaussian white noise and can be implemented with reasonable computational effort.

  2. Crop stress detection and classification using hyperspectral remote sensing

    Science.gov (United States)

    Irby, Jon Trenton

    Agricultural production has observed many changes in technology over the last 20 years. Producers are able to utilize technologies such as site-specific applicators and remotely sensed data to assist with decision making for best management practices which can improve crop production and provide protection to the environment. It is known that plant stress can interfere with photosynthetic reactions within the plant and/or the physical structure of the plant. Common types of stress associated with agricultural crops include herbicide induced stress, nutrient stress, and drought stress from lack of water. Herbicide induced crop stress is not a new problem. However, with increased acreage being planting in varieties/hybrids that contain herbicide resistant traits, herbicide injury to non-target crops will continue to be problematic for producers. With rapid adoption of herbicide-tolerant cropping systems, it is likely that herbicide induced stress will continue to be a major concern. To date, commercially available herbicide-tolerant varieties/hybrids contain traits which allow herbicides like glyphosate and glufosinate-ammonium to be applied as a broadcast application during the growing season. Both glyphosate and glufosinate-ammonium are broad spectrum herbicides which have activity on a large number of plant species, including major crops like non-transgenic soybean, corn, and cotton. Therefore, it is possible for crop stress from herbicide applications to occur in neighboring fields that contain susceptible crop varieties/hybrids. Nutrient and moisture stress as well as stress caused by herbicide applications can interact to influence yields in agricultural fields. If remotely sensed data can be used to accurately identify specific levels of crop stress, it is possible that producers can use this information to better assist them in crop management to maximize yields and protect their investments. This research was conducted to evaluate classification of specific

  3. 3D-printed patient-specific applications in orthopedics

    Directory of Open Access Journals (Sweden)

    Wong KC

    2016-10-01

    Full Text Available Kwok Chuen Wong Department of Orthopedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong Abstract: With advances in both medical imaging and computer programming, two-dimensional axial images can be processed into other reformatted views (sagittal and coronal and three-dimensional (3D virtual models that represent a patients’ own anatomy. This processed digital information can be analyzed in detail by orthopedic surgeons to perform patient-specific orthopedic procedures. The use of 3D printing is rising and has become more prevalent in medical applications over the last decade as surgeons and researchers are increasingly utilizing the technology’s flexibility in manufacturing objects. 3D printing is a type of manufacturing process in which materials such as plastic or metal are deposited in layers to create a 3D object from a digital model. This additive manufacturing method has the advantage of fabricating objects with complex freeform geometry, which is impossible using traditional subtractive manufacturing methods. Specifically in surgical applications, the 3D printing techniques can not only generate models that give a better understanding of the complex anatomy and pathology of the patients and aid in education and surgical training, but can also produce patient-specific surgical guides or even custom implants that are tailor-made to the surgical requirements. As the clinical workflow of the 3D printing technology continues to evolve, orthopedic surgeons should embrace the latest knowledge of the technology and incorporate it into their clinical practice for patient-specific orthopedic applications. This paper is written to help orthopedic surgeons stay up-to-date on the emerging 3D technology, starting from the acquisition of clinical imaging to 3D printing for patient-specific applications in orthopedics. It 1 presents the necessary steps to prepare the medical images that are

  4. Site-Specific, Covalent Immobilization of Dehalogenase ST2570 Catalyzed by Formylglycine-Generating Enzymes and Its Application in Batch and Semi-Continuous Flow Reactors

    Directory of Open Access Journals (Sweden)

    Hui Jian

    2016-07-01

    Full Text Available Formylglycine-generating enzymes can selectively recognize and oxidize cysteine residues within the sulfatase sub motif at the terminus of proteins to form aldehyde-bearing formylglycine (FGly residues, and are normally used in protein labeling. In this study, an aldehyde tag was introduced to proteins using formylglycine-generating enzymes encoded by a reconstructed set of the pET28a plasmid system for enzyme immobilization. The haloacid dehalogenase ST2570 from Sulfolobus tokodaii was used as a model enzyme. The C-terminal aldehyde-tagged ST2570 (ST2570CQ exhibited significant enzymological properties, such as new free aldehyde groups, a high level of protein expression and improved enzyme activity. SBA-15 has widely been used as an immobilization support for its large surface and excellent thermal and chemical stability. It was functionalized with amino groups by aminopropyltriethoxysilane. The C-terminal aldehyde-tagged ST2570 was immobilized to SBA-15 by covalent binding. The site-specific immobilization of ST2570 avoided the chemical denaturation that occurs in general covalent immobilization and resulted in better fastening compared to physical adsorption. The site-specific immobilized ST2570 showed 3-fold higher thermal stability, 1.2-fold higher catalytic ability and improved operational stability than free ST2570. The site-specific immobilized ST2570 retained 60% of its original activity after seven cycles of batch operation, and it was superior to the ST2570 immobilized to SBA-15 by physical adsorption, which loses 40% of its original activity when used for the second time. It is remarkable that the site-specific immobilized ST2570 still retained 100% of its original activity after 10 cycles of reuse in the semi-continuous flow reactor. Overall, these results provide support for the industrial-scale production and application of site-specific, covalently immobilized ST2570.

  5. Applications of remote sensing techniques to the assessment of dam safety: A progress report

    International Nuclear Information System (INIS)

    Bowlby, J.R.; Grass, J.D.; Singhroy, V.H.

    1990-01-01

    Remote sensing detection and data collection techniques, combined with data from image analyses, have become effective tools that can be used for rapid identification, interpretation and evaluation of the geological and environmental information required in some areas of performance analysis of hydraulic dams. Potential geological hazards to dams such as faults, landslides and liquefaction, regional crustal warping or tilting, stability of foundation materials, flooding and volcanic hazards are applications in which remote sensing may aid analysis. Details are presented of remote sensing techiques, optimal time of data acquisition, interpreting techniques, and application. Techniques include LANDSAT thematic mapper (TM), SPOT images, thermal infrared scanning, colour infrared photography, normal colour photography, panchromatic black and white, normal colour video, infrared video, airborne multi-spectral electronic imagery, airborne synthetic aperture radar, side scan sonar, and LIDAR (optical radar). 3 tabs

  6. On-Board, Real-Time Preprocessing System for Optical Remote-Sensing Imagery.

    Science.gov (United States)

    Qi, Baogui; Shi, Hao; Zhuang, Yin; Chen, He; Chen, Liang

    2018-04-25

    With the development of remote-sensing technology, optical remote-sensing imagery processing has played an important role in many application fields, such as geological exploration and natural disaster prevention. However, relative radiation correction and geometric correction are key steps in preprocessing because raw image data without preprocessing will cause poor performance during application. Traditionally, remote-sensing data are downlinked to the ground station, preprocessed, and distributed to users. This process generates long delays, which is a major bottleneck in real-time applications for remote-sensing data. Therefore, on-board, real-time image preprocessing is greatly desired. In this paper, a real-time processing architecture for on-board imagery preprocessing is proposed. First, a hierarchical optimization and mapping method is proposed to realize the preprocessing algorithm in a hardware structure, which can effectively reduce the computation burden of on-board processing. Second, a co-processing system using a field-programmable gate array (FPGA) and a digital signal processor (DSP; altogether, FPGA-DSP) based on optimization is designed to realize real-time preprocessing. The experimental results demonstrate the potential application of our system to an on-board processor, for which resources and power consumption are limited.

  7. On-Board, Real-Time Preprocessing System for Optical Remote-Sensing Imagery

    Science.gov (United States)

    Qi, Baogui; Zhuang, Yin; Chen, He; Chen, Liang

    2018-01-01

    With the development of remote-sensing technology, optical remote-sensing imagery processing has played an important role in many application fields, such as geological exploration and natural disaster prevention. However, relative radiation correction and geometric correction are key steps in preprocessing because raw image data without preprocessing will cause poor performance during application. Traditionally, remote-sensing data are downlinked to the ground station, preprocessed, and distributed to users. This process generates long delays, which is a major bottleneck in real-time applications for remote-sensing data. Therefore, on-board, real-time image preprocessing is greatly desired. In this paper, a real-time processing architecture for on-board imagery preprocessing is proposed. First, a hierarchical optimization and mapping method is proposed to realize the preprocessing algorithm in a hardware structure, which can effectively reduce the computation burden of on-board processing. Second, a co-processing system using a field-programmable gate array (FPGA) and a digital signal processor (DSP; altogether, FPGA-DSP) based on optimization is designed to realize real-time preprocessing. The experimental results demonstrate the potential application of our system to an on-board processor, for which resources and power consumption are limited. PMID:29693585

  8. Ethical awareness of people involved in electric power enterprise. A sense of mission as a bridge to the next generation

    International Nuclear Information System (INIS)

    Sato, Kiyoshi

    2017-01-01

    This paper discussed the situation regarding the insight into future possibilities owned by pioneers of electric power enterprises, characteristics of the technology supporting electric power enterprises, and initiative for environmental ethics owned by power entrepreneurs. Furthermore, in the sense of ethics of the people who support the operation sites, as an insight to look at technology and human beings, this paper introduced the sense of mission, sense of responsibility, and sense of ethics toward power business of the people who engaged in the following events. (1) From the sense of mission, they created a restoration support system at the time of disaster prior to the Fukushima Daiichi Nuclear Power Station accident (1F accident) and quickly took countermeasures in face of 1F accident. (2) Tohoku Electric Power's thermal power plant was restored in a short period of time from the damage of the tsunami. (3) Hokkaido Electric Power Co. restored power transmission network in a short period of time, when a large blackout due to atmospheric depression occurred. Regarding nuclear power generation, the Japanese government and electric power companies have consistently promoted it from the viewpoint of peaceful use of nuclear power. As the social environment changes, people need to look at the reality of nuclear power generation. People in a position to oppose to nuclear power generation persist that (1) there is no cause of promoting nuclear power generation after 1F accident, and (2) feasibility of high level radioactive waste disposal sites is questionable. Recognizing that there may be errors on the grounds of promotion, promoting people are required to exchange dialogues with people with different positions. As fundamental issues concerning electric power technology and ethics, this paper summarized the author's opinions on (1) restructuring of technical ideology, (2) establishment of public-interest-first principle, and (3) ethics of science and technology. (A.O.)

  9. Terahertz wave reflective sensing and imaging

    Science.gov (United States)

    Zhong, Hua

    Sensing and imaging technologies using terahertz (THz) radiation have found diverse applications as they approach maturity. Since the burgeoning of this technique in the 1990's, many THz sensing and imaging investigations have been designed and conducted in transmission geometry, which provides sufficient phase and amplitude contrast for the study of the spectral properties of targets in the THz domain. Driven by rising expectations that THz technology will be a potential candidate in the next generation of security screening, remote sensing, biomedical imaging and non-destructive testing (NDT), most THz sensing and imaging modalities are being extended to reflection geometry, which offers unique and adaptive solutions, and multi-dimensional information in many real scenarios. This thesis takes an application-focused approach to the advancement of THz wave reflective sensing and imaging systems: The absorption signature of the explosive material hexahydro-1,3,5-trinitro-1,3,5triazine (RDX) is measured at 30 m---the longest standoff distance so far attained by THz time-domain spectroscopy (THz-TDS). The standoff distance sensing ability of THz-TDS is investigated along with discussions specifying the influences of a variety of factors such as propagation distance, water vapor absorption and collection efficiency. Highly directional THz radiation from four-wave mixing in laser-induced air plasmas is first observed and measured, which provides a potential solution for the atmospheric absorption effect in standoff THz sensing. The simulations of the beam profiles also illuminate the underlying physics behind the interaction of the optical beam with the plasma. THz wave reflective spectroscopic focal-plane imaging is realized the first time. Absorption features of some explosives and related compounds (ERCs) and biochemical materials are identified by using adaptive feature extraction method. Good classification results using multiple pattern recognition methods are

  10. Formal specification of a query expression generator using RSL ...

    African Journals Online (AJOL)

    From the specification, an implementation of our generator is generated in C++ using a command within the RSL project support environment that translates RSL to C++. The preliminary results with our generator show that it holds promise as a stand-alone tool as well. (Botswana Journal of Technology: 2002 11(2): 9-17) ...

  11. Coherent Raman scattering: Applications in imaging and sensing

    Science.gov (United States)

    Cui, Meng

    In this thesis, I discuss the theory, implementation and applications of coherent Raman scattering to imaging and sensing. A time domain interferometric method has been developed to collect high resolution shot-noise-limited Raman spectra over the Raman fingerprint regime and completely remove the electronic background signal in coherent Raman scattering. Compared with other existing coherent Raman microscopy methods, this time domain approach is proved to be simpler and more robust in rejecting background signal. We apply this method to image polymers and biological samples and demonstrate that the same setup can be used to collect two photon fluorescence and self phase modulation signals. A signal to noise ratio analysis is performed to show that this time domain method has a comparable signal to noise ratio to spectral domain methods, which we confirm experimentally. The coherent Raman method is also compared with spontaneous Raman scattering. The conditions under which coherent methods provide signal enhancement are discussed and experiments are performed to compare coherent Raman scattering with spontaneous Raman scattering under typical biological imaging conditions. A critical power, above which coherent Raman scattering is more sensitive than spontaneous Raman scattering, is experimentally determined to be ˜1mW in samples of high molecule concentration with a 75MHz laser system. This finding is contrary to claims that coherent methods provide many orders of magnitude enhancement under comparable conditions. In addition to the far field applications, I also discuss the combination of our time domain coherent Raman method with near field enhancement to explore the possibility of sensing and near field imaging. We report the first direct time-resolved coherent Raman measurement performed on a nanostructured substrate for molecule sensing. The preliminary results demonstrate that sub 20 fs pulses can be used to obtain coherent Raman spectra from a small number

  12. Single-Thread-Based Wearable and Highly Stretchable Triboelectric Nanogenerators and Their Applications in Cloth-Based Self-Powered Human-Interactive and Biomedical Sensing

    KAUST Repository

    Lai, Ying-Chih

    2016-11-03

    The development of wearable and large-area fabric energy harvester and sensor has received great attention due to their promising applications in next-generation autonomous and wearable healthcare technologies. Here, a new type of “single” thread-based triboelectric nanogenerator (TENG) and its uses in elastically textile-based energy harvesting and sensing have been demonstrated. The energy-harvesting thread composed by one silicone-rubber-coated stainless-steel thread can extract energy during contact with skin. With sewing the energy-harvesting thread into a serpentine shape on an elastic textile, a highly stretchable and scalable TENG textile is realized to scavenge various kinds of human-motion energy. The collected energy is capable to sustainably power a commercial smart watch. Moreover, the simplified single triboelectric thread can be applied in a wide range of thread-based self-powered and active sensing uses, including gesture sensing, human-interactive interfaces, and human physiological signal monitoring. After integration with microcontrollers, more complicated systems, such as wireless wearable keyboards and smart beds, are demonstrated. These results show that the newly designed single-thread-based TENG, with the advantage of interactive, responsive, sewable, and conformal features, can meet application needs of a vast variety of fields, ranging from wearable and stretchable energy harvesters to smart cloth-based articles.

  13. Single-Thread-Based Wearable and Highly Stretchable Triboelectric Nanogenerators and Their Applications in Cloth-Based Self-Powered Human-Interactive and Biomedical Sensing

    KAUST Repository

    Lai, Ying-Chih; Deng, Jianan; Zhang, Steven L.; Niu, Simiao; Guo, Hengyu; Wang, Zhong Lin

    2016-01-01

    The development of wearable and large-area fabric energy harvester and sensor has received great attention due to their promising applications in next-generation autonomous and wearable healthcare technologies. Here, a new type of “single” thread-based triboelectric nanogenerator (TENG) and its uses in elastically textile-based energy harvesting and sensing have been demonstrated. The energy-harvesting thread composed by one silicone-rubber-coated stainless-steel thread can extract energy during contact with skin. With sewing the energy-harvesting thread into a serpentine shape on an elastic textile, a highly stretchable and scalable TENG textile is realized to scavenge various kinds of human-motion energy. The collected energy is capable to sustainably power a commercial smart watch. Moreover, the simplified single triboelectric thread can be applied in a wide range of thread-based self-powered and active sensing uses, including gesture sensing, human-interactive interfaces, and human physiological signal monitoring. After integration with microcontrollers, more complicated systems, such as wireless wearable keyboards and smart beds, are demonstrated. These results show that the newly designed single-thread-based TENG, with the advantage of interactive, responsive, sewable, and conformal features, can meet application needs of a vast variety of fields, ranging from wearable and stretchable energy harvesters to smart cloth-based articles.

  14. Chemical and Biological Sensing with a Fiber Optic Surface Plasmon Resonance Device

    Science.gov (United States)

    Shevchenko, Yanina

    Fiber biosensors have emerged as an alternative to other optical sensor platforms which utilize bulkier optical elements. Sensors manufactured using optical fiber offer considerable advantages over traditional platforms, such as simple manufacturing process, small size and possibility for in situ and remote measurements. The possibility to manufacture a compact sensor with very few optical elements and package it into a portable hand-held device makes it particularly useful in many biomedical applications. Such applications generate a growing demand for an improved understanding of how fiber sensors function as well as for sensor optimization techniques so later these devices can suit the needs of the applications they are developed for. Research presented in this thesis is focused on a development of a plasmonic fiber biosensor and its application towards biochemical sensing. The fiber sensor used in this study integrates plasmonics with tilted Bragg grating technology, creating a versatile sensing solution. Plasmonics alone is an established phenomenon that is widely employed in many sensing applications. The Bragg grating is also a well-researched optical component that has been extensively applied in telecommunication. By combining both plasmonics and Bragg gratings, it is possible to design a compact and very sensitive chemical sensor. The presented work focuses on the characterization and optimization of the fiber sensor so later it could be applied in biochemical sensing. It also explores several applications including real-time monitoring of polymer adsorption, detection of thrombin and cellular sensing. All applications are focused on studying processes that are very different in their nature and thus the various strengths of the developed sensing platform were leveraged to suit the requirements of these applications.

  15. An Exploratory Study of Thermoelectrostatic Power Generation for Space Flight Applications

    Science.gov (United States)

    Beam, Benjamin H.

    1960-01-01

    A study has been made of a process in which a solar heating cycle is combined with an electrostatic cycle for generating electrical power for space vehicle applications. The power unit, referred to as a thermoelectrostatic generator, is a thin film, solid dielectric capacitor alternately heated by solar radiation and cooled by radiant emission. The theory of operation to extract electrical power is presented. Results of an experiment to illustrate the principle are described. Estimates of the performance of this type of device in space in the vicinity of earth are included. Values of specific power of several kilowatts per kilogram of generator weight are calculated for such a device employing polyethylene terephthalate dielectric.

  16. THz wave sensing for petroleum industrial applications

    Science.gov (United States)

    Al-Douseri, Fatemah M.; Chen, Yunqing; Zhang, X.-C.

    2006-04-01

    We present the results of terahertz (THz) sensing of gasoline products. The frequency-dependent absorption coefficients, refractive indices, and complex dielectric constants of gasoline and xylene isomers were extracted in the spectral range from 0.5 3.0 THz. The THz spectra of gasoline (#87, #89, #93) and related BTEX (benzene, toluene, ethylbenzene, and xylene) compounds were studied by using Fourier transform infrared spectroscopy (FTIR) in the 1.5 20 THz (50 660 cm-1). The xylene isomers, which are used as antiknock agent in gasoline were determined quantitatively in gasoline in the THz range. Our investigations show the potential of THz technology for the petroleum industrial applications.

  17. A Review of Hybrid Fiber-Optic Distributed Simultaneous Vibration and Temperature Sensing Technology and Its Geophysical Applications

    Directory of Open Access Journals (Sweden)

    Khalid Miah

    2017-11-01

    Full Text Available Distributed sensing systems can transform an optical fiber cable into an array of sensors, allowing users to detect and monitor multiple physical parameters such as temperature, vibration and strain with fine spatial and temporal resolution over a long distance. Fiber-optic distributed acoustic sensing (DAS and distributed temperature sensing (DTS systems have been developed for various applications with varied spatial resolution, and spectral and sensing range. Rayleigh scattering-based phase optical time domain reflectometry (OTDR for vibration and Raman/Brillouin scattering-based OTDR for temperature and strain measurements have been developed over the past two decades. The key challenge has been to find a methodology that would enable the physical parameters to be determined at any point along the sensing fiber with high sensitivity and spatial resolution, yet within acceptable frequency range for dynamic vibration, and temperature detection. There are many applications, especially in geophysical and mining engineering where simultaneous measurements of vibration and temperature are essential. In this article, recent developments of different hybrid systems for simultaneous vibration, temperature and strain measurements are analyzed based on their operation principles and performance. Then, challenges and limitations of the systems are highlighted for geophysical applications.

  18. A Review of Hybrid Fiber-Optic Distributed Simultaneous Vibration and Temperature Sensing Technology and Its Geophysical Applications.

    Science.gov (United States)

    Miah, Khalid; Potter, David K

    2017-11-01

    Distributed sensing systems can transform an optical fiber cable into an array of sensors, allowing users to detect and monitor multiple physical parameters such as temperature, vibration and strain with fine spatial and temporal resolution over a long distance. Fiber-optic distributed acoustic sensing (DAS) and distributed temperature sensing (DTS) systems have been developed for various applications with varied spatial resolution, and spectral and sensing range. Rayleigh scattering-based phase optical time domain reflectometry (OTDR) for vibration and Raman/Brillouin scattering-based OTDR for temperature and strain measurements have been developed over the past two decades. The key challenge has been to find a methodology that would enable the physical parameters to be determined at any point along the sensing fiber with high sensitivity and spatial resolution, yet within acceptable frequency range for dynamic vibration, and temperature detection. There are many applications, especially in geophysical and mining engineering where simultaneous measurements of vibration and temperature are essential. In this article, recent developments of different hybrid systems for simultaneous vibration, temperature and strain measurements are analyzed based on their operation principles and performance. Then, challenges and limitations of the systems are highlighted for geophysical applications.

  19. Extinction Generates Outcome-Specific Conditioned Inhibition.

    Science.gov (United States)

    Laurent, Vincent; Chieng, Billy; Balleine, Bernard W

    2016-12-05

    Extinction involves altering a previously established predictive relationship between a cue and its outcome by repeatedly presenting that cue alone. Although it is widely accepted that extinction generates some form of inhibitory learning [1-4], direct evidence for this claim has been lacking, and the nature of the associative changes induced by extinction have, therefore, remained a matter of debate [5-8]. In the current experiments, we used a novel behavioral approach that we recently developed and that provides a direct measure of conditioned inhibition [9] to compare the influence of extinguished and non-extinguished cues on choice between goal-directed actions. Using this approach, we provide direct evidence that extinction generates outcome-specific conditioned inhibition. Furthermore, we demonstrate that this inhibitory learning is controlled by the infralimbic cortex (IL); inactivation of the IL using M4 DREADDs abolished outcome-specific inhibition and rendered the cue excitatory. Importantly, we found that context modulated this inhibition. Outside its extinction context, the cue was excitatory and functioned as a specific predictor of its previously associated outcome, biasing choice toward actions earning the same outcome. In its extinction context, however, the cue acted as a specific inhibitor and biased choice toward actions earning different outcomes. Context modulation of these excitatory and inhibitory memories was mediated by the dorsal hippocampus (HPC), suggesting that the HPC and IL act in concert to control the influence of conditioned inhibitors on choice. These findings demonstrate for the first time that extinction turns a cue into a net inhibitor that can influence choice via counterfactual action-outcome associations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Graphene-based hybrid for enantioselective sensing applications.

    Science.gov (United States)

    Zor, Erhan; Morales-Narváez, Eden; Alpaydin, Sabri; Bingol, Haluk; Ersoz, Mustafa; Merkoçi, Arben

    2017-01-15

    Chirality is a major field of research of chemical biology and is essential in pharmacology. Accordingly, approaches for distinguishing between different chiral forms of a compound are of great interest. We report on an efficient and generic enantioselective sensor that is achieved by coupling reduced graphene oxide with γ-cyclodextrin (rGO/γ-CD). The enantioselective sensing capability of the resulting structure was operated in both electrical and optical mode for of tryptophan enantiomers (D-/L-Trp). In this sense, voltammetric and photoluminescence measurements were conducted and the experimental results were compared to molecular docking method. We gain insight into the occurring recognition mechanism with selectivity toward D- and L-Trp as shown in voltammetric, photoluminescence and molecular docking responses. As an enantioselective solid phase on an electrochemical transducer, thanks to the different dimensional interaction of enantiomers with hybrid material, a discrepancy occurs in the Gibbs free energy leading to a difference in oxidation peak potential as observed in electrochemical measurements. The optical sensing principle is based on the energy transfer phenomenon that occurs between photoexcited D-/L-Trp enantiomers and rGO/γ-CD giving rise to an enantioselective photoluminescence quenching due to the tendency of chiral enantiomers to form complexes with γ-CD in different molecular orientations as demonstrated by molecular docking studies. The approach, which is the first demonstration of applicability of molecular docking to show both enantioselective electrochemical and photoluminescence quenching capabilities of a graphene-related hybrid material, is truly new and may have broad interest in combination of experimental and computational methods for enantiosensing of chiral molecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Relational and item-specific influences on generate-recognize processes in recall.

    Science.gov (United States)

    Guynn, Melissa J; McDaniel, Mark A; Strosser, Garrett L; Ramirez, Juan M; Castleberry, Erica H; Arnett, Kristen H

    2014-02-01

    The generate-recognize model and the relational-item-specific distinction are two approaches to explaining recall. In this study, we consider the two approaches in concert. Following Jacoby and Hollingshead (Journal of Memory and Language 29:433-454, 1990), we implemented a production task and a recognition task following production (1) to evaluate whether generation and recognition components were evident in cued recall and (2) to gauge the effects of relational and item-specific processing on these components. An encoding task designed to augment item-specific processing (anagram-transposition) produced a benefit on the recognition component (Experiments 1-3) but no significant benefit on the generation component (Experiments 1-3), in the context of a significant benefit to cued recall. By contrast, an encoding task designed to augment relational processing (category-sorting) did produce a benefit on the generation component (Experiment 3). These results converge on the idea that in recall, item-specific processing impacts a recognition component, whereas relational processing impacts a generation component.

  2. Graphene papers: smart architecture and specific functionalization for biomimetics, electrocatalytic sensing and energy storage

    DEFF Research Database (Denmark)

    Zhang, Minwei; Hou, Chengyi; Halder, Arnab

    2017-01-01

    for their critical applications associated with sensing, environmental and energy technologies. The contents of this review are based on a balance combination of our own studies and selected research studies done by worldwide academic groups. We first give a brief introduction to graphene as a versatile building...... block and to the current status of research studies on graphene papers. This is followed by addressing some crucial methods of how to prepare graphene papers. We then summarize multiple possibilities of functionalizing graphene papers, membranes or films. Finally, we evaluate some key applications...

  3. Collective Sensing of β-Cells Generates the Metabolic Code

    Directory of Open Access Journals (Sweden)

    Dean Korošak

    2018-01-01

    Full Text Available Major part of a pancreatic islet is composed of β-cells that secrete insulin, a key hormone regulating influx of nutrients into all cells in a vertebrate organism to support nutrition, housekeeping or energy storage. β-cells constantly communicate with each other using both direct, short-range interactions through gap junctions, and paracrine long-range signaling. However, how these cell interactions shape collective sensing and cell behavior in islets that leads to insulin release is unknown. When stimulated by specific ligands, primarily glucose, β-cells collectively respond with expression of a series of transient Ca2+ changes on several temporal scales. Here we reanalyze a set of Ca2+ spike trains recorded in acute rodent pancreatic tissue slice under physiological conditions. We found strongly correlated states of co-spiking cells coexisting with mostly weak pairwise correlations widespread across the islet. Furthermore, the collective Ca2+ spiking activity in islet shows on-off intermittency with scaling of spiking amplitudes, and stimulus dependent autoassociative memory features. We use a simple spin glass-like model for the functional network of a β-cell collective to describe these findings and argue that Ca2+ spike trains produced by collective sensing of β-cells constitute part of the islet metabolic code that regulates insulin release and limits the islet size.

  4. Thin film shape memory alloys for optical sensing applications

    International Nuclear Information System (INIS)

    Fu, Y Q; Luo, J K; Huang, W M; Flewitt, A J; Milne, W I

    2007-01-01

    Based on shape memory effect of the sputtered thin film shape memory alloys, different types of micromirror structures were designed and fabricated for optical sensing application. Using surface micromachining, TiNi membrane mirror structure has been fabricated, which can be actuated based on intrinsic two-way shape memory effect of the free-standing TiNi film. Using bulk micromachining, TiNi/Si and TiNi/Si 3 N 4 microcantilever mirror structures were fabricated

  5. Providing Data Quality Information for Remote Sensing Applications

    Science.gov (United States)

    Albrecht, F.; Blaschke, T.; Lang, S.; Abdulmutalib, H. M.; Szabó, G.; Barsi, Á.; Batini, C.; Bartsch, A.; Kugler, Zs.; Tiede, D.; Huang, G.

    2018-04-01

    The availability and accessibility of remote sensing (RS) data, cloud processing platforms and provided information products and services has increased the size and diversity of the RS user community. This development also generates a need for validation approaches to assess data quality. Validation approaches employ quality criteria in their assessment. Data Quality (DQ) dimensions as the basis for quality criteria have been deeply investigated in the database area and in the remote sensing domain. Several standards exist within the RS domain but a general classification - established for databases - has been adapted only recently. For an easier identification of research opportunities, a better understanding is required how quality criteria are employed in the RS lifecycle. Therefore, this research investigates how quality criteria support decisions that guide the RS lifecycle and how they relate to the measured DQ dimensions. Subsequently follows an overview of the relevant standards in the RS domain that is matched to the RS lifecycle. Conclusively, the required research needs are identified that would enable a complete understanding of the interrelationships between the RS lifecycle, the data sources and the DQ dimensions, an understanding that would be very valuable for designing validation approaches in RS.

  6. Tunable resistive pulse sensing: potential applications in nanomedicine.

    Science.gov (United States)

    Sivakumaran, Muttuswamy; Platt, Mark

    2016-08-01

    An accurate characterization of nanomaterials used in clinical diagnosis and therapeutics is of paramount importance to realize the full potential of nanotechnology in medicine and to avoid unexpected and potentially harmful toxic effects due to these materials. A number of technical modalities are currently in use to study the physical, chemical and biological properties of nanomaterials but they all have advantages and disadvantages. In this review, we discuss the potential of a relative newcomer, tunable resistive pulse sensing, for the characterization of nanomaterials and its applications in nanodiagnostics.

  7. Generating Aptamers by Cell-SELEX for Applications in Molecular Medicine

    Directory of Open Access Journals (Sweden)

    Huixia Liu

    2012-03-01

    Full Text Available Aptamers are single-stranded oligonucleotides of DNA or RNA that bind to target molecules with high affinity and specificity. Typically, aptamers are generated by an iterative selection process, called systematic evolution of ligands by exponential enrichment (SELEX. Recent advancements in SELEX technology have extended aptamer selection from comparatively simple mixtures of purified proteins to whole living cells, and now cell-based SELEX (or cell-SELEX can isolate aptamers that bind to specific target cells. Combined with nanotechnology, microchips, microfluidic devices, RNAi and other advanced technologies, cell-SELEX represents an integrated platform providing ultrasensitive and highly specific tools for clinical medicine. In this review, we describe the recent progress made in the application of cell-SELEX for diagnosis, therapy and biomarker discovery.

  8. The separation-combination method of linear structures in remote sensing image interpretation and its application

    International Nuclear Information System (INIS)

    Liu Linqin

    1991-01-01

    The separation-combination method a new kind of analysis method of linear structures in remote sensing image interpretation is introduced taking northwestern Fujian as the example, its practical application is examined. The practice shows that application results not only reflect intensities of linear structures in overall directions at different locations, but also contribute to the zonation of linear structures and display their space distribution laws. Based on analyses of linear structures, it can provide more information concerning remote sensing on studies of regional mineralization laws and the guide to ore-finding combining with mineralization

  9. Slow-light enhanced absorption for bio-chemical sensing applications: potential of low-contrast lossy materials

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Xiao, Sanshui; Mortensen, Niels Asger

    2008-01-01

    Slow-light enhanced absorption in liquid-infiltrated photonic crystals has recently been proposed as a route to compensate for the reduced optical path in typical lab-on-a-chip systems for bio-chemical sensing applications. A simple perturbative expression has been applied to ideal structures...... composed of lossless dielectrics. In this work we study the enhancement in structures composed of lossy dielectrics such as a polymer. For this particular sensing application we find that the material loss has an unexpected limited drawback and surprisingly, it may even add to increase the bandwidth...

  10. Remote Sensing Terminology in a Global and Knowledge-Based World

    Science.gov (United States)

    Kancheva, Rumiana

    The paper is devoted to terminology issues related to all aspects of remote sensing research and applications. Terminology is the basis for a better understanding among people. It is crucial to keep up with the latest developments and novelties of the terminology in advanced technology fields such as aerospace science and industry. This is especially true in remote sensing and geoinformatics which develop rapidly and have ever extending applications in various domains of science and human activities. Remote sensing terminology issues are directly relevant to the contemporary worldwide policies on information accessibility, dissemination and utilization of research results in support of solutions to global environmental challenges and sustainable development goals. Remote sensing and spatial information technologies are an integral part of the international strategies for cooperation in scientific, research and application areas with a particular accent on environmental monitoring, ecological problems natural resources management, climate modeling, weather forecasts, disaster mitigation and many others to which remote sensing data can be put. Remote sensing researchers, professionals, students and decision makers of different counties and nationalities should fully understand, interpret and translate into their native language any term, definition or acronym found in papers, books, proceedings, specifications, documentation, and etc. The importance of the correct use, precise definition and unification of remote sensing terms refers not only to people working in this field but also to experts in a variety of disciplines who handle remote sensing data and information products. In this paper, we draw the attention on the specifics, peculiarities and recent needs of compiling specialized dictionaries in the area of remote sensing focusing on Earth observations and the integration of remote sensing with other geoinformation technologies such as photogrammetry, geodesy

  11. A CMOS Humidity Sensor for Passive RFID Sensing Applications

    Directory of Open Access Journals (Sweden)

    Fangming Deng

    2014-05-01

    Full Text Available This paper presents a low-cost low-power CMOS humidity sensor for passive RFID sensing applications. The humidity sensing element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication costs. The interface of this humidity sensor employs a PLL-based architecture transferring sensor signal processing from the voltage domain to the frequency domain. Therefore this architecture allows the use of a fully digital circuit, which can operate on ultra-low supply voltage and thus achieves low-power consumption. The proposed humidity sensor has been fabricated in the TSMC 0.18 μm CMOS process. The measurements show this humidity sensor exhibits excellent linearity and stability within the relative humidity range. The sensor interface circuit consumes only 1.05 µW at 0.5 V supply voltage and reduces it at least by an order of magnitude compared to previous designs.

  12. A CMOS Humidity Sensor for Passive RFID Sensing Applications

    Science.gov (United States)

    Deng, Fangming; He, Yigang; Zhang, Chaolong; Feng, Wei

    2014-01-01

    This paper presents a low-cost low-power CMOS humidity sensor for passive RFID sensing applications. The humidity sensing element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication costs. The interface of this humidity sensor employs a PLL-based architecture transferring sensor signal processing from the voltage domain to the frequency domain. Therefore this architecture allows the use of a fully digital circuit, which can operate on ultra-low supply voltage and thus achieves low-power consumption. The proposed humidity sensor has been fabricated in the TSMC 0.18 μm CMOS process. The measurements show this humidity sensor exhibits excellent linearity and stability within the relative humidity range. The sensor interface circuit consumes only 1.05 μW at 0.5 V supply voltage and reduces it at least by an order of magnitude compared to previous designs. PMID:24841250

  13. A CMOS humidity sensor for passive RFID sensing applications.

    Science.gov (United States)

    Deng, Fangming; He, Yigang; Zhang, Chaolong; Feng, Wei

    2014-05-16

    This paper presents a low-cost low-power CMOS humidity sensor for passive RFID sensing applications. The humidity sensing element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication costs. The interface of this humidity sensor employs a PLL-based architecture transferring sensor signal processing from the voltage domain to the frequency domain. Therefore this architecture allows the use of a fully digital circuit, which can operate on ultra-low supply voltage and thus achieves low-power consumption. The proposed humidity sensor has been fabricated in the TSMC 0.18 μm CMOS process. The measurements show this humidity sensor exhibits excellent linearity and stability within the relative humidity range. The sensor interface circuit consumes only 1.05 µW at 0.5 V supply voltage and reduces it at least by an order of magnitude compared to previous designs.

  14. Generating, Separating and Polarizing Terahertz Vortex Beams via Liquid Crystals with Gradient-Rotation Directors

    Directory of Open Access Journals (Sweden)

    Shi-Jun Ge

    2017-10-01

    Full Text Available Liquid crystal (LC is a promising candidate for terahertz (THz devices. Recently, LC has been introduced to generate THz vortex beams. However, the efficiency is intensely dependent on the incident wavelength, and the transformed THz vortex beam is usually mixed with the residual component. Thus, a separating process is indispensable. Here, we introduce a gradient blazed phase, and propose a THz LC forked polarization grating that can simultaneously generate and separate pure THz vortices with opposite circular polarization. The specific LC gradient-rotation directors are implemented by a photoalignment technique. The generated THz vortex beams are characterized with a THz imaging system, verifying features of polarization controllability. This work may pave a practical road towards generating, separating and polarizing THz vortex beams, and may prompt applications in THz communications, sensing and imaging.

  15. An Adaptive Web-Based Learning Environment for the Application of Remote Sensing in Schools

    Science.gov (United States)

    Wolf, N.; Fuchsgruber, V.; Riembauer, G.; Siegmund, A.

    2016-06-01

    Satellite images have great educational potential for teaching on environmental issues and can promote the motivation of young people to enter careers in natural science and technology. Due to the importance and ubiquity of remote sensing in science, industry and the public, the use of satellite imagery has been included into many school curricular in Germany. However, its implementation into school practice is still hesitant, mainly due to lack of teachers' know-how and education materials that align with the curricula. In the project "Space4Geography" a web-based learning platform is developed with the aim to facilitate the application of satellite imagery in secondary school teaching and to foster effective student learning experiences in geography and other related subjects in an interdisciplinary way. The platform features ten learning modules demonstrating the exemplary application of original high spatial resolution remote sensing data (RapidEye and TerraSAR-X) to examine current environmental issues such as droughts, deforestation and urban sprawl. In this way, students will be introduced into the versatile applications of spaceborne earth observation and geospatial technologies. The integrated web-based remote sensing software "BLIF" equips the students with a toolset to explore, process and analyze the satellite images, thereby fostering the competence of students to work on geographical and environmental questions without requiring prior knowledge of remote sensing. This contribution presents the educational concept of the learning environment and its realization by the example of the learning module "Deforestation of the rainforest in Brasil".

  16. Mississippi Sound Remote Sensing Study

    Science.gov (United States)

    Atwell, B. H.

    1973-01-01

    The Mississippi Sound Remote Sensing Study was initiated as part of the research program of the NASA Earth Resources Laboratory. The objective of this study is development of remote sensing techniques to study near-shore marine waters. Included within this general objective are the following: (1) evaluate existing techniques and instruments used for remote measurement of parameters of interest within these waters; (2) develop methods for interpretation of state-of-the-art remote sensing data which are most meaningful to an understanding of processes taking place within near-shore waters; (3) define hardware development requirements and/or system specifications; (4) develop a system combining data from remote and surface measurements which will most efficiently assess conditions in near-shore waters; (5) conduct projects in coordination with appropriate operating agencies to demonstrate applicability of this research to environmental and economic problems.

  17. Implementation of a Wavefront-Sensing Algorithm

    Science.gov (United States)

    Smith, Jeffrey S.; Dean, Bruce; Aronstein, David

    2013-01-01

    A computer program has been written as a unique implementation of an image-based wavefront-sensing algorithm reported in "Iterative-Transform Phase Retrieval Using Adaptive Diversity" (GSC-14879-1), NASA Tech Briefs, Vol. 31, No. 4 (April 2007), page 32. This software was originally intended for application to the James Webb Space Telescope, but is also applicable to other segmented-mirror telescopes. The software is capable of determining optical-wavefront information using, as input, a variable number of irradiance measurements collected in defocus planes about the best focal position. The software also uses input of the geometrical definition of the telescope exit pupil (otherwise denoted the pupil mask) to identify the locations of the segments of the primary telescope mirror. From the irradiance data and mask information, the software calculates an estimate of the optical wavefront (a measure of performance) of the telescope generally and across each primary mirror segment specifically. The software is capable of generating irradiance data, wavefront estimates, and basis functions for the full telescope and for each primary-mirror segment. Optionally, each of these pieces of information can be measured or computed outside of the software and incorporated during execution of the software.

  18. Atlas-Based Automatic Generation of Subject-Specific Finite Element Tongue Meshes.

    Science.gov (United States)

    Bijar, Ahmad; Rohan, Pierre-Yves; Perrier, Pascal; Payan, Yohan

    2016-01-01

    Generation of subject-specific 3D finite element (FE) models requires the processing of numerous medical images in order to precisely extract geometrical information about subject-specific anatomy. This processing remains extremely challenging. To overcome this difficulty, we present an automatic atlas-based method that generates subject-specific FE meshes via a 3D registration guided by Magnetic Resonance images. The method extracts a 3D transformation by registering the atlas' volume image to the subject's one, and establishes a one-to-one correspondence between the two volumes. The 3D transformation field deforms the atlas' mesh to generate the subject-specific FE mesh. To preserve the quality of the subject-specific mesh, a diffeomorphic non-rigid registration based on B-spline free-form deformations is used, which guarantees a non-folding and one-to-one transformation. Two evaluations of the method are provided. First, a publicly available CT-database is used to assess the capability to accurately capture the complexity of each subject-specific Lung's geometry. Second, FE tongue meshes are generated for two healthy volunteers and two patients suffering from tongue cancer using MR images. It is shown that the method generates an appropriate representation of the subject-specific geometry while preserving the quality of the FE meshes for subsequent FE analysis. To demonstrate the importance of our method in a clinical context, a subject-specific mesh is used to simulate tongue's biomechanical response to the activation of an important tongue muscle, before and after cancer surgery.

  19. Making sense of mobile- and web-based wellness information technology: cross-generational study.

    Science.gov (United States)

    Kutz, Daniel; Shankar, Kalpana; Connelly, Kay

    2013-05-14

    A recent trend in personal health and wellness management is the development of computerized applications or information and communication technologies (ICTs) that support behavioral change, aid the management of chronic conditions, or help an individual manage their wellness and engage in a healthier lifestyle. To understand how individuals across 3 generations (young, middle-aged, and older) think about the design and use of collaborative health and wellness management technologies and what roles these could take in their lives. Face-to-face semistructured interviews, paper prototype systems, and video skits were used to assess how individuals from 3 age cohorts (young: 18-25 years; middle-aged: 35-50 years; and older: ≥65 years) conceptualize the role that health and wellness computing could take in their lives. A total of 21 participants in the 3 age cohorts took part (young: n=7; middle-aged: n=7; and older: n=7). Young adults expected to be able to actively manage the presentation of their health-related information. Middle-aged adults had more nuanced expectations that reflect their engagement with work and other life activities. Older adults questioned the sharing of health information with a larger audience, although they saw the value in 1-way sharing between family members or providing aggregated information. Our findings inform our suggestions for improving the design of future collaborative health and wellness applications that target specific age groups. We recommend that collaborative ICT health applications targeting young adults should integrate with existing social networking sites, whereas those targeting middle-aged and older adults should support small social networks that rely on intimate personal relationships. Systems that target middle-aged adults should support episodic needs, such as time-sensitive, perhaps intermittent, goal setting. They should also have a low barrier to entry, allowing individuals who do not normally engage with the

  20. Integrated polymer micro-ring resonators for optical sensing applications

    OpenAIRE

    Girault , Pauline; Lorrain , Nathalie; Poffo , Luiz; Guendouz , Mohammed; Lemaitre , Jonathan; Carré , Christiane; Gadonna , Michel; Bosc , Dominique; Vignaud , Guillaume

    2015-01-01

    International audience; Micro-resonators (MR) have become a key element for integrated optical sensors due to their integration capability and their easy fabrication with low cost polymer materials. Nowadays, there is a growing need on MRs as highly sensitive and selective functions especially in the areas of food and health. The context of this work is to implement and study integrated micro-ring resonators devoted to sensing applications. They are fabricated by processing SU8 polymer as cor...

  1. Infrared Range Sensor Array for 3D Sensing in Robotic Applications

    Directory of Open Access Journals (Sweden)

    Yongtae Do

    2013-04-01

    Full Text Available This paper presents the design and testing of multiple infrared range detectors arranged in a two-dimensional (2D array. The proposed system can collect the sparse three-dimensional (3D data of objects and surroundings for robotics applications. Three kinds of tasks are considered using the system: detecting obstacles that lie ahead of a mobile robot, sensing the ground profile for the safe navigation of a mobile robot, and sensing the shape and position of an object on a conveyor belt for pickup by a robot manipulator. The developed system is potentially a simple alternative to high-resolution (and expensive 3D sensing systems, such as stereo cameras or laser scanners. In addition, the system can provide shape information about target objects and surroundings that cannot be obtained using simple ultrasonic sensors. Laboratory prototypes of the system were built with nine infrared range sensors arranged in a 3×3 array and test results confirmed the validity of system.

  2. Application of Multi-Source Remote Sensing Image in Yunnan Province Grassland Resources Investigation

    Science.gov (United States)

    Li, J.; Wen, G.; Li, D.

    2018-04-01

    Trough mastering background information of Yunnan province grassland resources utilization and ecological conditions to improves grassland elaborating management capacity, it carried out grassland resource investigation work by Yunnan province agriculture department in 2017. The traditional grassland resource investigation method is ground based investigation, which is time-consuming and inefficient, especially not suitable for large scale and hard-to-reach areas. While remote sensing is low cost, wide range and efficient, which can reflect grassland resources present situation objectively. It has become indispensable grassland monitoring technology and data sources and it has got more and more recognition and application in grassland resources monitoring research. This paper researches application of multi-source remote sensing image in Yunnan province grassland resources investigation. First of all, it extracts grassland resources thematic information and conducts field investigation through BJ-2 high space resolution image segmentation. Secondly, it classifies grassland types and evaluates grassland degradation degree through high resolution characteristics of Landsat 8 image. Thirdly, it obtained grass yield model and quality classification through high resolution and wide scanning width characteristics of MODIS images and sample investigate data. Finally, it performs grassland field qualitative analysis through UAV remote sensing image. According to project area implementation, it proves that multi-source remote sensing data can be applied to the grassland resources investigation in Yunnan province and it is indispensable method.

  3. Array-based sensing using nanoparticles: an alternative approach for cancer diagnostics.

    Science.gov (United States)

    Le, Ngoc D B; Yazdani, Mahdieh; Rotello, Vincent M

    2014-07-01

    Array-based sensing using nanoparticles (NPs) provides an attractive alternative to specific biomarker-focused strategies for cancer diagnosis. The physical and chemical properties of NPs provide both the recognition and transduction capabilities required for biosensing. Array-based sensors utilize a combined response from the interactions between sensors and analytes to generate a distinct pattern (fingerprint) for each analyte. These interactions can be the result of either the combination of multiple specific biomarker recognition (specific binding) or multiple selective binding responses, known as chemical nose sensing. The versatility of the latter array-based sensing using NPs can facilitate the development of new personalized diagnostic methodologies in cancer diagnostics, a necessary evolution in the current healthcare system to better provide personalized treatments. This review will describe the basic principle of array-based sensors, along with providing examples of both invasive and noninvasive samples used in cancer diagnosis.

  4. T-cell libraries allow simple parallel generation of multiple peptide-specific human T-cell clones.

    Science.gov (United States)

    Theaker, Sarah M; Rius, Cristina; Greenshields-Watson, Alexander; Lloyd, Angharad; Trimby, Andrew; Fuller, Anna; Miles, John J; Cole, David K; Peakman, Mark; Sewell, Andrew K; Dolton, Garry

    2016-03-01

    Isolation of peptide-specific T-cell clones is highly desirable for determining the role of T-cells in human disease, as well as for the development of therapies and diagnostics. However, generation of monoclonal T-cells with the required specificity is challenging and time-consuming. Here we describe a library-based strategy for the simple parallel detection and isolation of multiple peptide-specific human T-cell clones from CD8(+) or CD4(+) polyclonal T-cell populations. T-cells were first amplified by CD3/CD28 microbeads in a 96U-well library format, prior to screening for desired peptide recognition. T-cells from peptide-reactive wells were then subjected to cytokine-mediated enrichment followed by single-cell cloning, with the entire process from sample to validated clone taking as little as 6 weeks. Overall, T-cell libraries represent an efficient and relatively rapid tool for the generation of peptide-specific T-cell clones, with applications shown here in infectious disease (Epstein-Barr virus, influenza A, and Ebola virus), autoimmunity (type 1 diabetes) and cancer. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. NATO Advanced Study Institute on Remote Sensing Applications in Marine Science and Technology

    CERN Document Server

    1983-01-01

    This summer school was a sequel to the summer school on Remote Sensing in Meteorology, Oceanography and Hydrology which was held in Dundee in 1980 and the proceedings of which were published by Ellis Horwood Ltd., Chichester, England. At the present summer scnool we concentrated on only part of the subject area that was covered in 1980. Although there was some repetit­ ion of material that was presented in 1980, because by and large we had a new set of participants, most subjects were treated in considerably greater detail than had been possible previously. The major topics covered in the present summer school were (i) the general principles of remote sensing with particular reference to marine applications, (ii) applications to physical oceanography, (iii) marine resources applications and (iv) coastal monitoring and protection. The material contained in this volume represents the written texts of most of the lectures presented at the summer school. One important set of lecture notes was not available; this...

  6. Stainless steel component with compressed fiber Bragg grating for high temperature sensing applications

    Science.gov (United States)

    Jinesh, Mathew; MacPherson, William N.; Hand, Duncan P.; Maier, Robert R. J.

    2016-05-01

    A smart metal component having the potential for high temperature strain sensing capability is reported. The stainless steel (SS316) structure is made by selective laser melting (SLM). A fiber Bragg grating (FBG) is embedded in to a 3D printed U-groove by high temperature brazing using a silver based alloy, achieving an axial FBG compression of 13 millistrain at room temperature. Initial results shows that the test component can be used for up to 700°C for sensing applications.

  7. Watermarking techniques for electronic delivery of remote sensing images

    Science.gov (United States)

    Barni, Mauro; Bartolini, Franco; Magli, Enrico; Olmo, Gabriella

    2002-09-01

    Earth observation missions have recently attracted a growing interest, mainly due to the large number of possible applications capable of exploiting remotely sensed data and images. Along with the increase of market potential, the need arises for the protection of the image products. Such a need is a very crucial one, because the Internet and other public/private networks have become preferred means of data exchange. A critical issue arising when dealing with digital image distribution is copyright protection. Such a problem has been largely addressed by resorting to watermarking technology. A question that obviously arises is whether the requirements imposed by remote sensing imagery are compatible with existing watermarking techniques. On the basis of these motivations, the contribution of this work is twofold: assessment of the requirements imposed by remote sensing applications on watermark-based copyright protection, and modification of two well-established digital watermarking techniques to meet such constraints. More specifically, the concept of near-lossless watermarking is introduced and two possible algorithms matching such a requirement are presented. Experimental results are shown to measure the impact of watermark introduction on a typical remote sensing application, i.e., unsupervised image classification.

  8. Introduction to remote sensing

    CERN Document Server

    Cracknell, Arthur P

    2007-01-01

    Addressing the need for updated information in remote sensing, Introduction to Remote Sensing, Second Edition provides a full and authoritative introduction for scientists who need to know the scope, potential, and limitations in the field. The authors discuss the physical principles of common remote sensing systems and examine the processing, interpretation, and applications of data. This new edition features updated and expanded material, including greater coverage of applications from across earth, environmental, atmospheric, and oceanographic sciences. Illustrated with remotely sensed colo

  9. Remote Sensing

    CERN Document Server

    Khorram, Siamak; Koch, Frank H; van der Wiele, Cynthia F

    2012-01-01

    Remote Sensing provides information on how remote sensing relates to the natural resources inventory, management, and monitoring, as well as environmental concerns. It explains the role of this new technology in current global challenges. "Remote Sensing" will discuss remotely sensed data application payloads and platforms, along with the methodologies involving image processing techniques as applied to remotely sensed data. This title provides information on image classification techniques and image registration, data integration, and data fusion techniques. How this technology applies to natural resources and environmental concerns will also be discussed.

  10. Remote sensing in the marine environment. A description of facilities, applications, needs and opportunities in South Africa

    CSIR Research Space (South Africa)

    Shannon, LV

    1988-01-01

    Full Text Available Against a background of the techniques and instrumentation available for remote sensing in the marine environment, this report considers the rationale for their use by the South African marine community. Local applications of remote sensing...

  11. Layered Metal Nanoparticle Structures on Electrodes for Sensing, Switchable Controlled Uptake/Release, and Photo-electrochemical Applications.

    Science.gov (United States)

    Tel-Vered, Ran; Kahn, Jason S; Willner, Itamar

    2016-01-06

    Layered metal nanoparticle (NP) assemblies provide highly porous and conductive composites of unique electrical and optical (plasmonic) properties. Two methods to construct layered metal NP matrices are described, and these include the layer-by-layer deposition of NPs, or the electropolymerization of monolayer-functionalized NPs, specifically thioaniline-modified metal NPs. The layered NP composites are used as sensing matrices through the use of electrochemistry or surface plasmon resonance (SPR) as transduction signals. The crosslinking of the metal NP composites with molecular receptors, or the imprinting of molecular recognition sites into the electropolymerized NP matrices lead to selective and chiroselective sensing interfaces. Furthermore, the electrosynthesis of redox-active, imprinted, bis-aniline bridged Au NP composites yields electrochemically triggered "sponges" for the switchable uptake and release of electron-acceptor substrates, and results in conductive surfaces of electrochemically controlled wettability. Also, photosensitizer-relay-crosslinked Au NP composites, or electrochemically polymerized layered semiconductor quantum dot/metal NP matrices on electrodes, are demonstrated as functional nanostructures for photoelectrochemical applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Using Semantic Web technologies for the generation of domain-specific templates to support clinical study metadata standards.

    Science.gov (United States)

    Jiang, Guoqian; Evans, Julie; Endle, Cory M; Solbrig, Harold R; Chute, Christopher G

    2016-01-01

    The Biomedical Research Integrated Domain Group (BRIDG) model is a formal domain analysis model for protocol-driven biomedical research, and serves as a semantic foundation for application and message development in the standards developing organizations (SDOs). The increasing sophistication and complexity of the BRIDG model requires new approaches to the management and utilization of the underlying semantics to harmonize domain-specific standards. The objective of this study is to develop and evaluate a Semantic Web-based approach that integrates the BRIDG model with ISO 21090 data types to generate domain-specific templates to support clinical study metadata standards development. We developed a template generation and visualization system based on an open source Resource Description Framework (RDF) store backend, a SmartGWT-based web user interface, and a "mind map" based tool for the visualization of generated domain-specific templates. We also developed a RESTful Web Service informed by the Clinical Information Modeling Initiative (CIMI) reference model for access to the generated domain-specific templates. A preliminary usability study is performed and all reviewers (n = 3) had very positive responses for the evaluation questions in terms of the usability and the capability of meeting the system requirements (with the average score of 4.6). Semantic Web technologies provide a scalable infrastructure and have great potential to enable computable semantic interoperability of models in the intersection of health care and clinical research.

  13. Hyperspectral remote sensing application for monitoring and preservation of plant ecosystems

    Science.gov (United States)

    Krezhova, Dora; Maneva, Svetla; Zdravev, Tomas; Petrov, Nikolay; Stoev, Antoniy

    Remote sensing technologies have advanced significantly at last decade and have improved the capability to gather information about Earth’s resources and environment. They have many applications in Earth observation, such as mapping and updating land-use and cover, weather forecasting, biodiversity determination, etc. Hyperspectral remote sensing offers unique opportunities in the environmental monitoring and sustainable use of natural resources. Remote sensing sensors on space-based platforms, aircrafts, or on ground, are capable of providing detailed spectral, spatial and temporal information on terrestrial ecosystems. Ground-based sensors are used to record detailed information about the land surface and to create a data base for better characterizing the objects which are being imaged by the other sensors. In this paper some applications of two hyperspectral remote sensing techniques, leaf reflectance and chlorophyll fluorescence, for monitoring and assessment of the effects of adverse environmental conditions on plant ecosystems are presented. The effect of stress factors such as enhanced UV-radiation, acid rain, salinity, viral infections applied to some young plants (potato, pea, tobacco) and trees (plums, apples, paulownia) as well as of some growth regulators were investigated. Hyperspectral reflectance and fluorescence data were collected by means of a portable fiber-optics spectrometer in the visible and near infrared spectral ranges (450-850 nm and 600-900 nm), respectively. The differences between the reflectance data of healthy (control) and injured (stressed) plants were assessed by means of statistical (Student’s t-criterion), first derivative, and cluster analysis and calculation of some vegetation indices in four most informative for the investigated species regions: green (520-580 nm), red (640-680 nm), red edge (690-720 nm) and near infrared (720-780 nm). Fluorescence spectra were analyzed at five characteristic wavelengths located at the

  14. A liquid crystal polymer membrane MEMS sensor for flow rate and flow direction sensing applications

    International Nuclear Information System (INIS)

    Kottapalli, A G P; Tan, C W; Olfatnia, M; Miao, J M; Barbastathis, G; Triantafyllou, M

    2011-01-01

    The paper reports the design, fabrication and experimental results of a liquid crystal polymer (LCP) membrane-based pressure sensor for flow rate and flow direction sensing applications. Elaborate experimental testing results demonstrating the sensors' performance as an airflow sensor have been illustrated and validated with theory. MEMS sensors using LCP as a membrane structural material show higher sensitivity and reliability over silicon counterparts. The developed device is highly robust for harsh environment applications such as atmospheric wind flow monitoring and underwater flow sensing. A simple, low-cost and repeatable fabrication scheme has been developed employing low temperatures. The main features of the sensor developed in this work are a LCP membrane with integrated thin film gold piezoresistors deposited on it. The sensor developed demonstrates a good sensitivity of 3.695 mV (ms −1 ) −1 , large operating range (0.1 to >10 ms −1 ) and good accuracy in measuring airflow with an average error of only 3.6% full-scale in comparison with theory. Various feasible applications of the developed sensor have been demonstrated with experimental results. The sensor was tested for two other applications—in clinical diagnosis for breath rate, breath velocity monitoring, and in underwater applications for object detection by sensing near-field spatial flow pressure

  15. In situ synthesis of cylindrical spongy polypyrrole doped protonated graphitic carbon nitride for cholesterol sensing application.

    Science.gov (United States)

    Shrestha, Bishnu Kumar; Ahmad, Rafiq; Shrestha, Sita; Park, Chan Hee; Kim, Cheol Sang

    2017-08-15

    Herein, we demonstrate the exfoliation of bulk graphitic carbon nitrides (g-C 3 N 4 ) into ultra-thin (~3.4nm) two-dimensional (2D) nanosheets and their functionalization with proton (g-C 3 N 4 H + ). The layered semiconductor g-C 3 N 4 H + nanosheets were doped with cylindrical spongy shaped polypyrrole (CSPPy-g-C 3 N 4 H + ) using chemical polymerization method. The as-prepared nanohybrid composite was utilized to fabricate cholesterol biosensors after immobilization of cholesterol oxidase (ChOx) at physiological pH. Large specific surface area and positive charge nature of CSPPy-g-C 3 N 4 H + composite has tendency to generate strong electrostatic attraction with negatively charged ChOx, and as a result they formed stable bionanohybrid composite with high enzyme loading. A detailed electrochemical characterization of as-fabricated biosensor electrode (ChOx-CSPPy-g-C 3 N 4 H + /GCE) exhibited high-sensitivity (645.7 µAmM -1 cm -2 ) in wide-linear range of 0.02-5.0mM, low detection limit (8.0μM), fast response time (~3s), long-term stability, and good selectivity during cholesterol detection. To the best of our knowledge, this novel nanocomposite was utilized for the first time for cholesterol biosensor fabrication that resulted in high sensing performance. Hence, this approach opens a new prospective to utilize CSPPy-g-C 3 N 4 H + composite as cost-effective, biocompatible, eco-friendly, and superior electrocatalytic as well as electroconductive having great application potentials that could pave the ways to explore many other new sensors fabrication and biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Diverse Planning for UAV Control and Remote Sensing

    Directory of Open Access Journals (Sweden)

    Jan Tožička

    2016-12-01

    Full Text Available Unmanned aerial vehicles (UAVs are suited to various remote sensing missions, such as measuring air quality. The conventional method of UAV control is by human operators. Such an approach is limited by the ability of cooperation among the operators controlling larger fleets of UAVs in a shared area. The remedy for this is to increase autonomy of the UAVs in planning their trajectories by considering other UAVs and their plans. To provide such improvement in autonomy, we need better algorithms for generating alternative trajectory variants that the UAV coordination algorithms can utilize. In this article, we define a novel family of multi-UAV sensing problems, solving task allocation of huge number of tasks (tens of thousands to a group of configurable UAVs with non-zero weight of equipped sensors (comprising the air quality measurement as well together with two base-line solvers. To solve the problem efficiently, we use an algorithm for diverse trajectory generation and integrate it with a solver for the multi-UAV coordination problem. Finally, we experimentally evaluate the multi-UAV sensing problem solver. The evaluation is done on synthetic and real-world-inspired benchmarks in a multi-UAV simulator. Results show that diverse planning is a valuable method for remote sensing applications containing multiple UAVs.

  17. SYMBIOTIC SENSING: Exploring and Exploiting Cooperative Sensing in Heterogeneous Sensor Networks

    NARCIS (Netherlands)

    Le Viet Duc, L Duc

    2016-01-01

    During the last several years we have witnessed the emergence of smartphone-based sensing applications that include activity recognition, urban sensing, social sensing, and health monitoring. In fact, most smartphones have various sensors, wireless communication interfaces, a large memory capacity,

  18. Handbook on advances in remote sensing and geographic information systems paradigms and applications in forest landscape modeling

    CERN Document Server

    Favorskaya, Margarita N

    2017-01-01

    This book presents the latest advances in remote-sensing and geographic information systems and applications. It is divided into four parts, focusing on Airborne Light Detection and Ranging (LiDAR) and Optical Measurements of Forests; Individual Tree Modelling; Landscape Scene Modelling; and Forest Eco-system Modelling. Given the scope of its coverage, the book offers a valuable resource for students, researchers, practitioners, and educators interested in remote sensing and geographic information systems and applications.

  19. Electromagnetic Faraday Generator and Its Application

    Science.gov (United States)

    Mayer , V. V.; Varaksina, E. I.

    2017-01-01

    This paper presents a simple electromagnetic generator meant for use in students' experiments. This apparatus provides realization of a series of experiments demonstrating the principles of electricity generation and the conversion of electricity to other forms of energy with practical application. The experiments can be reproduced in a school…

  20. Generation of Raman lasers from nitrogen molecular ions driven by ultraintense laser fields

    Science.gov (United States)

    Yao, Jinping; Chu, Wei; Liu, Zhaoxiang; Xu, Bo; Chen, Jinming; Cheng, Ya

    2018-03-01

    Atmospheric lasing has aroused much interest in the past few years. The ‘air–laser’ opens promising potential for remote chemical sensing of trace gases with high sensitivity and specificity. At present, several approaches have been successfully implemented for generating highly coherent laser beams in atmospheric condition, including both amplified-spontaneous emission, and narrow-bandwidth stimulated emission in the forward direction in the presence of self-generated or externally injected seed pulses. Here, we report on generation of multiple-wavelength Raman lasers from nitrogen molecular ions ({{{N}}}2+), driven by intense mid-infrared laser fields. Intuitively, the approach appears problematic for the small nonlinear susceptibility of {{{N}}}2+ ions, whereas the efficiency of Raman laser can be significantly promoted in near-resonant condition. More surprisingly, a Raman laser consisting of a supercontinuum spanning from ∼310 to ∼392 nm has been observed resulting from a series near-resonant nonlinear processes including four-wave mixing, stimulated Raman scattering and cross phase modulation. To date, extreme nonlinear optics in molecular ions remains largely unexplored, which provides an alternative means for air–laser-based remote sensing applications.

  1. How safe is defect specific maintenance of steam generator tubes?

    International Nuclear Information System (INIS)

    Dvorsek, T.; Cizelj, L.

    1995-01-01

    Outside diameter stress corrosion cracking at the tube to tube support plate intersections is assessed in the paper. The impact of defect specific maintenance on steam generator operation safety and reliability was investigated. This was performed by comparing efficiencies of defect specific and traditional maintenance strategy. The efficiency was studied through expected primary-to-secondary leak rate and tube rupture probability in a case of postulated accidental operating conditions, and number of tubes which shall be plugged using both maintenance strategies. In general, the efficiency of specific maintenance is function of particular steam generator and operating cycle. (author)

  2. Touch Locating and Stretch Sensing Studies of Conductive Hydrogels with Applications to Soft Robots.

    Science.gov (United States)

    Zhou, Yanmin; He, Bin; Yan, Zhe; Shang, Yinghui; Wang, Qigang; Wang, Zhipeng

    2018-02-13

    Soft robots possess great potential in environmental adaptations, while their environmental sensing abilities are critical. Conductive hydrogels have been suggested to possess sensing abilities. However, their application in soft robots is lacking. In this work, we fabricated a soft and stretchable gel material, introduced its sensing mechanisms, and developed a measurement setup. Both experimental and simulation studies indicate strong nonlinearity of touch locating on a square touch panel with Cartesian coordinates. To simplify the touch locating, we proposed a touch locating system based on round touch panels with polar coordinates. Mathematical calculations and finite element method (FEM) simulations showed that in this system the locating of a touch point was only determined by its polar radius. This was verified by experimental studies. As a resistor, a gel strip's resistance increases with stretching. To demonstrate their applications on soft robots, a 3D printed three-fingered soft gripper was employed with gel strips attached. During finger bending for rod grasping, the resistances of the gel strips increased, indicating stretching of the soft material. Furthermore, the strain and stress of a gel strip increased with a decrease of the rod diameter. These studies advance the application of conductive hydrogels on soft robots.

  3. Rectangular coordination polymer nanoplates: large-scale, rapid synthesis and their application as a fluorescent sensing platform for DNA detection.

    Directory of Open Access Journals (Sweden)

    Yingwei Zhang

    Full Text Available In this paper, we report on the large-scale, rapid synthesis of uniform rectangular coordination polymer nanoplates (RCPNs assembled from Cu(II and 4,4'-bipyridine for the first time. We further demonstrate that such RCPNs can be used as a very effective fluorescent sensing platform for multiple DNA detection with a detection limit as low as 30 pM and a high selectivity down to single-base mismatch. The DNA detection is accomplished by the following two steps: (1 RCPN binds dye-labeled single-stranded DNA (ssDNA probe, which brings dye and RCPN into close proximity, leading to fluorescence quenching; (2 Specific hybridization of the probe with its target generates a double-stranded DNA (dsDNA which detaches from RCPN, leading to fluorescence recovery. It suggests that this sensing system can well discriminate complementary and mismatched DNA sequences. The exact mechanism of fluorescence quenching involved is elucidated experimentally and its use in a human blood serum system is also demonstrated successfully.

  4. High Sensitivity, Wearable, Piezoresistive Pressure Sensors Based on Irregular Microhump Structures and Its Applications in Body Motion Sensing.

    Science.gov (United States)

    Wang, Zongrong; Wang, Shan; Zeng, Jifang; Ren, Xiaochen; Chee, Adrian J Y; Yiu, Billy Y S; Chung, Wai Choi; Yang, Yong; Yu, Alfred C H; Roberts, Robert C; Tsang, Anderson C O; Chow, Kwok Wing; Chan, Paddy K L

    2016-07-01

    A pressure sensor based on irregular microhump patterns has been proposed and developed. The devices show high sensitivity and broad operating pressure regime while comparing with regular micropattern devices. Finite element analysis (FEA) is utilized to confirm the sensing mechanism and predict the performance of the pressure sensor based on the microhump structures. Silicon carbide sandpaper is employed as the mold to develop polydimethylsiloxane (PDMS) microhump patterns with various sizes. The active layer of the piezoresistive pressure sensor is developed by spin coating PSS on top of the patterned PDMS. The devices show an averaged sensitivity as high as 851 kPa(-1) , broad operating pressure range (20 kPa), low operating power (100 nW), and fast response speed (6.7 kHz). Owing to their flexible properties, the devices are applied to human body motion sensing and radial artery pulse. These flexible high sensitivity devices show great potential in the next generation of smart sensors for robotics, real-time health monitoring, and biomedical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. LAnd surface remote sensing Products VAlidation System (LAPVAS) and its preliminary application

    Science.gov (United States)

    Lin, Xingwen; Wen, Jianguang; Tang, Yong; Ma, Mingguo; Dou, Baocheng; Wu, Xiaodan; Meng, Lumin

    2014-11-01

    The long term record of remote sensing product shows the land surface parameters with spatial and temporal change to support regional and global scientific research widely. Remote sensing product with different sensors and different algorithms is necessary to be validated to ensure the high quality remote sensing product. Investigation about the remote sensing product validation shows that it is a complex processing both the quality of in-situ data requirement and method of precision assessment. A comprehensive validation should be needed with long time series and multiple land surface types. So a system named as land surface remote sensing product is designed in this paper to assess the uncertainty information of the remote sensing products based on a amount of in situ data and the validation techniques. The designed validation system platform consists of three parts: Validation databases Precision analysis subsystem, Inter-external interface of system. These three parts are built by some essential service modules, such as Data-Read service modules, Data-Insert service modules, Data-Associated service modules, Precision-Analysis service modules, Scale-Change service modules and so on. To run the validation system platform, users could order these service modules and choreograph them by the user interactive and then compete the validation tasks of remote sensing products (such as LAI ,ALBEDO ,VI etc.) . Taking SOA-based architecture as the framework of this system. The benefit of this architecture is the good service modules which could be independent of any development environment by standards such as the Web-Service Description Language(WSDL). The standard language: C++ and java will used as the primary programming language to create service modules. One of the key land surface parameter, albedo, is selected as an example of the system application. It is illustrated that the LAPVAS has a good performance to implement the land surface remote sensing product

  6. Designing area optimized application-specific network-on-chip architectures while providing hard QoS guarantees.

    Directory of Open Access Journals (Sweden)

    Sajid Gul Khawaja

    Full Text Available With the increase of transistors' density, popularity of System on Chip (SoC has increased exponentially. As a communication module for SoC, Network on Chip (NoC framework has been adapted as its backbone. In this paper, we propose a methodology for designing area-optimized application specific NoC while providing hard Quality of Service (QoS guarantees for real time flows. The novelty of the proposed system lies in derivation of a Mixed Integer Linear Programming model which is then used to generate a resource optimal Network on Chip (NoC topology and architecture while considering traffic and QoS requirements. We also present the micro-architectural design features used for enabling traffic and latency guarantees and discuss how the solution adapts for dynamic variations in the application traffic. The paper highlights the effectiveness of proposed method by generating resource efficient NoC solutions for both industrial and benchmark applications. The area-optimized results are generated in few seconds by proposed technique, without resorting to heuristics, even for an application with 48 traffic flows.

  7. Individual hollow and mesoporous aero-graphitic microtube based devices for gas sensing applications

    Science.gov (United States)

    Lupan, Oleg; Postica, Vasile; Marx, Janik; Mecklenburg, Matthias; Mishra, Yogendra K.; Schulte, Karl; Fiedler, Bodo; Adelung, Rainer

    2017-06-01

    In this work, individual hollow and mesoporous graphitic microtubes were integrated into electronic devices using a FIB/SEM system and were investigated as gas and vapor sensors by applying different bias voltages (in the range of 10 mV-1 V). By increasing the bias voltage, a slight current enhancement is observed, which is mainly attributed to the self-heating effect. A different behavior of ammonia NH3 vapor sensing by increasing the applied bias voltage for hollow and mesoporous microtubes with diameters down to 300 nm is reported. In the case of the hollow microtube, an increase in the response was observed, while a reverse effect has been noticed for the mesoporous microtube. It might be explained on the basis of the higher specific surface area (SSA) of the mesoporous microtube compared to the hollow one. Thus, at room temperature when the surface chemical reaction rate (k) prevails on the gas diffusion rate (DK) the structures with a larger SSA possess a higher response. By increasing the bias voltage, i.e., the overall temperature of the structure, DK becomes a limiting step in the gas response. Therefore, at higher bias voltages the larger pores will facilitate an enhanced gas diffusion, i.e., a higher gas response. The present study demonstrates the importance of the material porosity towards gas sensing applications.

  8. Advances in electrospun carbon fiber-based electrochemical sensing platforms for bioanalytical applications.

    Science.gov (United States)

    Mao, Xianwen; Tian, Wenda; Hatton, T Alan; Rutledge, Gregory C

    2016-02-01

    Electrochemical sensing is an efficient and inexpensive method for detection of a range of chemicals of biological, clinical, and environmental interest. Carbon materials-based electrodes are commonly employed for the development of electrochemical sensors because of their low cost, biocompatibility, and facile electron transfer kinetics. Electrospun carbon fibers (ECFs), prepared by electrospinning of a polymeric precursor and subsequent thermal treatment, have emerged as promising carbon systems for biosensing applications since the electrochemical properties of these carbon fibers can be easily modified by processing conditions and post-treatment. This review addresses recent progress in the use of ECFs for sensor fabrication and analyte detection. We focus on the modification strategies of ECFs and identification of the key components that impart the bioelectroanalytical activities, and point out the future challenges that must be addressed in order to advance the fundamental understanding of the ECF electrochemistry and to realize the practical applications of ECF-based sensing devices.

  9. Small-scale electric generators for arctic applications

    International Nuclear Information System (INIS)

    Lamp, T.R.

    1995-01-01

    Forest fires that have endangered remote US Air Force sites equipped with radioisotope thermoelectric generators (RTGs) has prompted the assessment of power generating systems as substitutes for RTGs in small scale (10--120 watt) applications. A team of scientists and engineers of the US Air Forces' Wright Laboratory conductd an assessment of electrical power technologies for use by the Air Force in remote, harsh environments. The surprisingly high logistics costs of operating fossil fuel generators resulted in the extension of the assessment to non-RTG sites. The candidate power sources must operate unattended for long periods at a high level of operational reliability. Selection of the optimum power generation technology is complicated and heavily driven by the severe operating environment and compounded by the remoteness of the location. It is these site-related characteristics, more than any other, that drive the selection of a safe and economical power source for Arctic applications. A number of proven power generation technologies were evaluated. The assessment concluded that RGTs are clearly the safest, most reliable, and most economical approach to supplying electrical power for remote, difficult to assess locations. The assessment also indicated that the logistics costs associated with combustion driven generator systems could be substantially reduced through the use of conversion technologies which have been previously developed for space power applications. copyright 1995 American Institute of Physics

  10. The development of model generators for specific reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chow, J.C. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2012-07-01

    Authoring reactor models is a routine task for practitioners in nuclear engineering for reactor design, safety analysis, and code validation. The conventional approach is to use a text-editor to either manually manipulate an existing model or to assemble a new model by copying and pasting or direct typing. This approach is error-prone and substantial effort is required for verification. Alternatively, models can be generated programmatically for a specific system via a centralized data source and with rigid algorithms to generate models consistently and efficiently. This approach is demonstrated here for model generators for MCNP and KENO for the ZED-2 reactor. (author)

  11. Miniature and micro mass spectrometry for nanoscale sensing applications

    International Nuclear Information System (INIS)

    Taylor, S; France, N

    2009-01-01

    In recent years the use of miniature and/or microscale versions of the more popular mass spectrometers have been realised. This has led to the development of portable analytical devices for a range of 'in the field' sensing applications in aerospace, environmental monitoring, medical diagnosis and process control. In this paper the principles underpinning the development of miniature quadrupole mass spectrometers are reviewed. Two different microfabrication methods are compared with a conventional QMS used for residual gas analysis in the range 1-100 Da.

  12. Development of Polymethylmethacrylate Based Composite for Gas Sensing Application

    Directory of Open Access Journals (Sweden)

    S. Devikala

    2011-01-01

    Full Text Available Gas detection instruments are increasingly needed for industrial health and safety, environmental monitoring and process control. Conductive polymer composites have various industrial applications. The composite prepared by mixing carbon black with polymethylmethacrylate (PMMA has very good gas sensing applications. The gas sensors based on carbon nanotube/polymer, ceramic and metal oxide composites such as epoxy, polyimide, PMMA / Barium titanate and tin oxide have also been developed. In the present work, a new composite has been prepared by using PMMA and ammonium dihydrogen phosphate (ADP. The PMMA/Ammonium dihydrogen phosphate (PMADP composites PMADP 1 and PMADP 2 were characterized by using Powder XRD. The thick films of the composite on glass plates were prepared by using a spin coating unit at 9000 rpm. The application of the thick film as gas sensor has been studied between 0 and 2000 seconds. The results reveal that the thick film of PMADP composite can function as a very good gas sensor.

  13. Single Mode SU8 Polymer Based Mach-Zehnder Interferometer for Bio-Sensing Application

    Science.gov (United States)

    Boiragi, Indrajit; Kundu, Sushanta; Makkar, Roshan; Chalapathi, Krishnamurthy

    2011-10-01

    This paper explains the influence of different parameters to the sensitivity of an optical waveguide Mach-Zehnder Interferometer (MZI) for real time detection of biomolecules. The sensing principle is based on the interaction of evanescence field with the biomolecules that get immobilized on sensing arm. The sensitivity has been calculated by varying the sensing window length, wavelength and concentration of bio-analyte. The maximum attainable sensitivity for the preferred design is the order of 10-8 RIU at 840 nm wavelength with a sensing window length of 1cm. All the simulation work has been carried out with Opti-BPMCAD for the optimization of MZI device parameters. The SU8 polymers are used as a core and clad material to fabricate the waveguide. The refractive index of cladding layer is optimized by varying the curing temperature for a fixed time period and the achieved index difference between core and clad is Δn = 0.0151. The fabricated MZI device has been characterized with LASER beam profiler at 840 nm wavelength. This study demonstrates the effectiveness of the different parameter to the sensitivity of a single mode optical waveguide Mach-Zehnder Interferometer for bio-sensing application.

  14. Compressive sensing of full wave field data for structural health monitoring applications

    DEFF Research Database (Denmark)

    di Ianni, Tommaso; De Marchi, Luca; Perelli, Alessandro

    2015-01-01

    ; however, the acquisition process is generally time-consuming, posing a limit in the applicability of such approaches. To reduce the acquisition time, we use a random sampling scheme based on compressive sensing (CS) to minimize the number of points at which the field is measured. The CS reconstruction...

  15. Parallel Planar-Processed and Ion-Induced Electrically Isolated Future Generation AlGaN/GaN HEMT for Gas Sensing and Opto-Telecommunication Applications

    International Nuclear Information System (INIS)

    Ahmed, S; Bokhari, S H; Amin, F; Khan, L A; Hussain, Z

    2013-01-01

    Ion-implanted AlGaN/GaN High Electron Mobility Transistors (HEMT) devices were studied thoroughly to look into the possibilities of enhancing efficiency for high-power and high-frequency electronic and gas sensing applications. A dedicated experimental design was created in order to study the influence of the physical parameters in response to high energy (by virtue of in-situ beam heating due to highly energetic implantation) ion implantation to the active device regions in nitride HEMT structures. Disorder or damage created in the HEMT structure was then studied carefully with electrical characterization techniques such as Hall, I-V and G-V measurements. The evolution of the electrical characteristics affecting the high-power, high-frequency and ultra-high efficiency gas sensing operations were also analyzed by subjecting the HEMT active device regions to progressive time-temperature annealing cycles. Our suggested model can also provide a functional process engineering window to control the extent of 2D Electron mobility in AlGaN/GaN HEMT devices undergoing a full cycle of thermal impact (i.e. from a desirable conductive region to a highly compensated one)

  16. Generation of specific antitumor cytotoxic T-lymphocytes in the monoculture

    International Nuclear Information System (INIS)

    Lupatov, A.Yu.; Brondz, B.D.

    1992-01-01

    A new model for the generation of specific antitumor cytotoxic T-lymphocytes (CTL) was proposed. In contrast to other models, it allows to generate effector CTL without immunization in vitro. For estimation of cytotoxic activity, chromium-51 release assay was used. It has been shown that effector CTL were absent in the lymph nodes in 1-fold as well as 2-fold immunization. Specific CTL were detected only after secondary immunization and subsequent cultivation in vitro. Effector cells had Thy1.2 + , Lyt2 + , L3T4 - phenotypes. Presence in vitro of exogenous IL-2 was needed for the generation of CTL against MX-11 sarcoma but not against EL4 lymphoma. The release of IL-2 from lymphomas cells could stimulate generation of the effector cells through activation of the endogenous production of IL-2, or due to some other factors

  17. Vulnerability-specific stress generation: An examination of negative cognitive and interpersonal styles

    Science.gov (United States)

    Liu, Richard T.; Alloy, Lauren B.; Mastin, Becky M.; Choi, Jimmy Y.; Boland, Elaine M.; Jenkins, Abby L.

    2014-01-01

    Although there is substantial evidence documenting the stress generation effect in depression (i.e., the tendency for depression-prone individuals to experience higher rates of life stress to which they contribute), additional research is required to advance current understanding of the specific types of dependent stress (i.e., events influenced by characteristics and attendant behaviors of the individual) relevant to this effect. The present study tested an extension of the stress generation hypothesis, in which the content of dependent stress that is produced by depression-prone individuals is contingent upon, and matches, the nature of their particular vulnerabilities. This extension was tested within the context of two cognitive models (i.e., hopelessness theory [Abramson, Metalsky, & Alloy, 1989] and Cole’s [1990, 1991] competency-based model) and two interpersonal models (i.e., Swann’s [1987] self-verification theory and Coyne’s [1976] interpersonal theory) of depression. Overall, support was obtained for vulnerability-specific stress generation. Specifically, in analyses across vulnerability domains, evidence of stress-generation specificity was found for all domain-specific cognitive vulnerabilities except self-perceived social competence. The within-domain analyses for cognitive vulnerabilities produced more mixed results, but were largely supportive. Additionally, excessive reassurance-seeking was specifically predictive of dependent stress in the social domain, and moderated, but did not mediate, the relation between negative inferential styles overall and in the interpersonal domain and their corresponding generated stress. Finally, no evidence was found for a stress generation effect with negative feedback-seeking. PMID:24679143

  18. Refractive Index Sensing with D-Shaped Plastic Optical Fibers for Chemical and Biochemical Applications.

    Science.gov (United States)

    Sequeira, Filipa; Duarte, Daniel; Bilro, Lúcia; Rudnitskaya, Alisa; Pesavento, Maria; Zeni, Luigi; Cennamo, Nunzio

    2016-12-13

    We report the optimization of the length of a D-shaped plastic optical fiber (POF) sensor for refractive index (RI) sensing from a numerical and experimental point of view. The sensing principle is based on total internal reflection (TIR). POFs with 1 mm in diameter were embedded in grooves, realized in planar supports with different lengths, and polished to remove the cladding and part of the core. All D-shaped POF sensors were tested using aqueous medium with different refractive indices (from 1.332 to 1.471) through intensity-based configuration. Results showed two different responses. Considering the refractive index (RI) range (1.33-1.39), the sensitivity and the resolution of the sensor were strongly dependent on the sensing region length. The highest sensitivity (resolution of 6.48 × 10 -3 refractive index units, RIU) was obtained with 6 cm sensing length. In the RI range (1.41-1.47), the length of the sensing region was not a critical aspect to obtain the best resolution. These results enable the application of this optical platform for chemical and biochemical evanescent field sensing. The sensor production procedure is very simple, fast, and low-cost.

  19. Nonenzymetic glucose sensing using carbon functionalized carbon doped ZnO nanorod arrays

    Science.gov (United States)

    Chakraborty, Pinak; Majumder, Tanmoy; Dhar, Saurab; Mondal, Suvra Prakash

    2018-04-01

    Fabrication of highly sensitive, long stability and low cost glucose sensors are attractive for biomedical applications and food industries. Most of the commercial glucose sensors are based on enzymatic detection which suffers from problems underlying in enzyme activities. Development of high sensitive, enzyme free sensors is a great challenge for next generation glucose sensing applications. In our study Zinc oxide nanorod sensing electrodes have been grown using low cost hydrothermal route and their nonenzymatic glucose sensing properties have been demonstrated with carbon functionalized, carbon doped ZnO nanorods (C-ZnO NRs) in neutral medium (0.1M PBS, pH 7.4) using cyclic voltammetry and amperometry measurements. The C-ZnO NRs electrodes demonstrated glucose sensitivity˜ 13.66 µAmM-1cm-2 in the concentration range 0.7 - 14 mM.

  20. REMOTE SENSING IN OCEANOGRAPHY.

    Science.gov (United States)

    remote sensing from satellites. Sensing of oceanographic variables from aircraft began with the photographing of waves and ice. Since then remote measurement of sea surface temperatures and wave heights have become routine. Sensors tested for oceanographic applications include multi-band color cameras, radar scatterometers, infrared spectrometers and scanners, passive microwave radiometers, and radar imagers. Remote sensing has found its greatest application in providing rapid coverage of large oceanographic areas for synoptic and analysis and

  1. Fabrication of Titania Nanotubes for Gas Sensing Applications

    Science.gov (United States)

    Dzilal, A. A.; Muti, M. N.; John, O. D.

    2010-03-01

    Detection of hydrogen is needed for industrial process control and medical applications where presence of hydrogen indicates different type of health problems. Titanium dioxide nanotube structure is chosen as an active component in the gas sensor because of its highly sensitive electrical resistance to hydrogen over a wide range of concentrations. The objective of the work is to fabricate good quality titania nanotubes suitable for hydrogen sensing applications. The fabrication method used is anodizing method. The anodizing parameters namely the voltage, time duration, concentration of hydrofluoric acid in water, separation between the electrodes and the ambient temperature are varied accordingly to find the optimum anodizing conditions for production of good quality titania nanotubes. The highly ordered porous titania nanotubes produced by this method are in tabular shape and have good uniformity and alignment over large areas. From the investigation done, certain set of anodizing parameters have been found to produce good quality titania nanotubes with diameter ranges from 47 nm to 94 nm.

  2. Compact neutron generator development and applications

    International Nuclear Information System (INIS)

    Leung, Ka-Ngo; Reijonen, Jani; Gicquel, Frederic; Hahto, Sami; Lou, Tak-Pui

    2004-01-01

    The Plasma and Ion Source Technology Group at the Lawrence Berkeley National Laboratory has been engaging in the development of high yield compact neutron generators for the last ten years. Because neutrons in these generators are formed by using either D-D, T-T or D-T fusion reaction, one can produce either mono-energetic (2.4 MeV or 14 MeV) or white neutrons. All the neutron generators being developed by our group utilize 13.5 MHz RF induction discharge to produce a pure deuterium or a mixture of deuterium-tritium plasma. As a result, ion beams with high current density and almost pure atomic ions can be extracted from the plasma source. The ion beams are accelerated to ∼100 keV and neutrons are produced when the beams impinge on a titanium target. Neutron generators with different configurations and sizes have been designed and tested at LBNL. Their applications include neutron activation analysis, oil-well logging, boron neutron capture therapy, brachytherapy, cargo and luggage screening. A novel small point neutron source has recently been developed for radiography application. The source size can be 2 mm or less, making it possible to examine objects with sharper images. The performance of these neutron generators will be described in this paper

  3. APPLICATION OF CONVOLUTIONAL NEURAL NETWORK IN CLASSIFICATION OF HIGH RESOLUTION AGRICULTURAL REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    C. Yao

    2017-09-01

    Full Text Available With the rapid development of Precision Agriculture (PA promoted by high-resolution remote sensing, it makes significant sense in management and estimation of agriculture through crop classification of high-resolution remote sensing image. Due to the complex and fragmentation of the features and the surroundings in the circumstance of high-resolution, the accuracy of the traditional classification methods has not been able to meet the standard of agricultural problems. In this case, this paper proposed a classification method for high-resolution agricultural remote sensing images based on convolution neural networks(CNN. For training, a large number of training samples were produced by panchromatic images of GF-1 high-resolution satellite of China. In the experiment, through training and testing on the CNN under the toolbox of deep learning by MATLAB, the crop classification finally got the correct rate of 99.66 % after the gradual optimization of adjusting parameter during training. Through improving the accuracy of image classification and image recognition, the applications of CNN provide a reference value for the field of remote sensing in PA.

  4. EgoSENSE: A Framework for Context-Aware Mobile Applications Development

    Directory of Open Access Journals (Sweden)

    E. M. Milic

    2017-08-01

    Full Text Available This paper presents a context-aware mobile framework (or middleware, intended to support the implementation of context-aware mobile services. The overview of basic concepts, architecture and components of context-aware mobile framework is given. The mobile framework provide acquisition and management of context, where raw data sensed from physical (hardware sensors and virtual (software sensors are combined, processed and analyzed to provide high-level context and situation of the user to the mobile context-aware applications in near real-time. Using demo mobile health application, its most important components and functions, such as these supposed to detect urgent or alarming health conditions of a mobile user and to initiate appropriate actions demonstrated.

  5. Interoperable domain-specific languages families for code generation

    Czech Academy of Sciences Publication Activity Database

    Malohlava, M.; Plášil, F.; Bureš, Tomáš; Hnětynka, P.

    2013-01-01

    Roč. 43, č. 5 (2013), s. 479-499 ISSN 0038-0644 R&D Projects: GA ČR GD201/09/H057 EU Projects: European Commission(XE) ASCENS 257414 Grant - others:GA AV ČR(CZ) GAP103/11/1489 Program:FP7 Institutional research plan: CEZ:AV0Z10300504 Keywords : code generation * domain specific languages * models reuse * extensible languages * specification * program synthesis Subject RIV: JC - Computer Hardware ; Software Impact factor: 1.148, year: 2013

  6. Considerations and techniques for incorporating remotely sensed imagery into the land resource management process.

    Science.gov (United States)

    Brooner, W. G.; Nichols, D. A.

    1972-01-01

    Development of a scheme for utilizing remote sensing technology in an operational program for regional land use planning and land resource management program applications. The scheme utilizes remote sensing imagery as one of several potential inputs to derive desired and necessary data, and considers several alternative approaches to the expansion and/or reduction and analysis of data, using automated data handling techniques. Within this scheme is a five-stage program development which includes: (1) preliminary coordination, (2) interpretation and encoding, (3) creation of data base files, (4) data analysis and generation of desired products, and (5) applications.

  7. A common pathway for charge transport through voltage-sensing domains.

    Science.gov (United States)

    Chanda, Baron; Bezanilla, Francisco

    2008-02-07

    Voltage-gated ion channels derive their voltage sensitivity from the movement of specific charged residues in response to a change in transmembrane potential. Several studies on mechanisms of voltage sensing in ion channels support the idea that these gating charges move through a well-defined permeation pathway. This gating pathway in a voltage-gated ion channel can also be mutated to transport free cations, including protons. The recent discovery of proton channels with sequence homology to the voltage-sensing domains suggests that evolution has perhaps exploited the same gating pathway to generate a bona fide voltage-dependent proton transporter. Here we will discuss implications of these findings on the mechanisms underlying charge (and ion) transport by voltage-sensing domains.

  8. Engineering biomimetic hair bundle sensors for underwater sensing applications

    Science.gov (United States)

    Kottapalli, Ajay Giri Prakash; Asadnia, Mohsen; Karavitaki, K. Domenica; Warkiani, Majid Ebrahimi; Miao, Jianmin; Corey, David P.; Triantafyllou, Michael

    2018-05-01

    We present the fabrication of an artificial MEMS hair bundle sensor designed to approximate the structural and functional principles of the flow-sensing bundles found in fish neuromast hair cells. The sensor consists of micro-pillars of graded height connected with piezoelectric nanofiber "tip-links" and encapsulated by a hydrogel cupula-like structure. Fluid drag force actuates the hydrogel cupula and deflects the micro-pillar bundle, stretching the nanofibers and generating electric charges. These biomimetic sensors achieve an ultrahigh sensitivity of 0.286 mV/(mm/s) and an extremely low threshold detection limit of 8.24 µm/s. A complete version of this paper has been published [1].

  9. Discussion on the correlation between geophysical and remote sensing information. Primary study on information correlation of research content and concept of post-remote sensing application technology for uranium exploration

    International Nuclear Information System (INIS)

    Ye Fawang; Liu Dechang

    2005-01-01

    Based on the research content of post-remote sensing application technology for uranium exploration, a preliminary discussion on the correlation between RS information and geophysical information from gravity, aero-magnetics, aero-radioactivity is made on five aspects: physical meaning, depth of geological rule meaning, time and phase, planar pattern and inter-reaction mechanism. It creates a good beginner for deeply studying the correlation in quality and quantity between RS information from post-remote sensing application technology and other geologic information. (authors)

  10. Development of Optically Active Nanostructures for Potential Applications in Sensing, Therapeutics and Imaging

    Science.gov (United States)

    Joshi, Padmanabh

    Materials at nanoscale are finding manifold applications in the various fields like sensing, plasmonics, therapeutics, to mention a few. Large amount of development has taken place regarding synthesis and exploring the novel applications of the various types of nanomaterials like organic, inorganic and hybrid of both. Yet, it is believed that the full potential of different nanomaterials is yet to be fully established stimulating researchers to explore more in the field of nanotechnology. Building on the same premise, in the following studies we have developed the nanomaterials in the class of optically active nanoparticles. First part of the study we have successfully designed, synthesized, and characterized Ag-Fe3O4 nanocomposite substrate for potential applications in quantitative Surface Enhanced Raman Scattering (SERS) measurements. Quantitative SERS-based detection of dopamine was performed successfully. In subsequent study, facile, single-step synthesis of polyethyleneimine (PEI) coated lanthanide based NaYF4 (Yb, Er) nanoparticles was developed and their application as potential photodynamic therapy agent was studied using excitations by light in near infra-red and visible region. In the following and last study, synthesis and characterization of the conjugated polymer nanoparticles was attempted successfully. Functionalization of the conjugated nanoparticles, which is a bottleneck for their potential applications, was successfully performed by encapsulating them in the silica nanoparticles, surface of which was then functionalized by amine group. Three types of optically active nanoparticles were developed for potential applications in sensing, therapeutics and imaging.

  11. Motion sensing energy controller

    International Nuclear Information System (INIS)

    Saphir, M.E.; Reed, M.A.

    1984-01-01

    A moving object sensing processor responsive to slowly varying motions of a human being or other moving object in a zone of interest employs high frequency pulse modulated non-visible radiation generated by a radiation generating source, such as an LED, and detected by a detector sensitive to radiation of a preselected wavelength which generates electrical signals representative of the reflected radiation received from the zone of interest. The detectorsignals are processed to normalize the base level and remove variations due to background level changes, and slowly varying changes in the signals are detected by a bi-polar threshold detector. The control signals generated by the threshold detector in response to slowly varying motion are used to control the application of power to a utilization device, such as a set of fluoroescent lights in a room, the power being applied in response to detection of such motion and being automatically terminated in the absence of such motion after a predetermined time period established by a settable incrementable counter

  12. Damping of surface waves due to oil emulsions in application to ocean remote sensing

    Science.gov (United States)

    Sergievskaya, I.; Ermakov, S.; Lazareva, T.; Lavrova, O.

    2017-10-01

    Applications of different radar and optical methods for detection of oil pollutions based on the effect of damping of short wind waves by surface films have been extensively studied last decades. The main problem here is poor knowledge of physical characteristics of oil films, in particular, emulsified oil layers (EOL). The latter are ranged up to 70% of all pollutants. Physical characteristics of EOL which are responsible for wave damping and respectively for possibilities of their remote sensing depend on conditions of emulsification processes, e.g., mixing due to wave breaking, on percentage of water in the oil, etc. and are not well studied by now. In this paper results of laboratory studies of damping of gravity-capillary waves due to EOL on water are presented and compared to oil layers (OL). A laboratory method used previously for monomolecular films and OL, and based on measuring the damping coefficient and wavelength of parametrically generated standing waves has been applied for determination of EOL characteristics. Investigations of characteristics of crude oil, oil emulsions and crude OL and EOL have been carried out in a wide range of surface wave frequencies (from 10 to 25 Hz) and OL and EOL film thickness (from hundredths of millimeter to a few millimeters. The selected frequency range corresponds to Bragg waves for microwave, X- to Ka-band radars typically used for ocean remote sensing. An effect of enhanced wave damping due to EOL compared to non emulsified crude OL is revealed.

  13. Investigation of the Optical and Sensing Characteristics of Nanoparticle Arrays for High Temperature Applications

    Science.gov (United States)

    Dharmalingam, Gnanaprakash

    The monitoring of polluting gases such as CO and NOx emitted from gas turbines in power plants and aircraft is important in order to both reduce the effects of such gases on the environment as well as to optimize the performance of the respective power system. The need for emissions monitoring systems is further realized from increased regulatory requirements that are being instituted as a result of the environmental impact from increased air travel. Specifically, it is estimated that the contributions from aircraft emissions to total NOx emissions will increase from 4% to 17% between 2008 and 2020. Extensive fuel cost savings as well as a reduced environmental impact would therefore be realized if this increased air traffic utilized next generation jet turbines which used a emission/performance control sensing system. These future emissions monitoring systems must be sensitive and selective to the emission gases, reliable and stable under harsh environmental conditions where the operation temperatures are in excess of 500 °C within a highly reactive environment. Plasmonics based chemical sensors which use nanocomposites comprised of a combination of gold nano particles and Yttria Stabilized Zirconia (YSZ) has enabled the sensitive (PPM) and stable detection (100s of hrs) of H2, NO2 and CO at temperatures of 500 °C. The detection method involves measuring the change in the localized Surface Plasmon Resonance (LSPR) characteristics of the Au- YSZ nano composite and in particular, the plasmon peak position. Selectivity remains a challenging parameter to optimize and a layer by layer sputter deposition approach has been recently demonstrated to modify the resulting sensing properties through a change in the morphology of the deposited films. The material properties of the films have produced a unique sensing behavior in terms of a preferential response to H2 compared to CO. Although this is a very good benefit, it is expected that further enhancements would be

  14. Serving Satellite Remote Sensing Data to User Community through the OGC Interoperability Protocols

    Science.gov (United States)

    di, L.; Yang, W.; Bai, Y.

    2005-12-01

    Remote sensing is one of the major methods for collecting geospatial data. Hugh amount of remote sensing data has been collected by space agencies and private companies around the world. For example, NASA's Earth Observing System (EOS) is generating more than 3 Tb of remote sensing data per day. The data collected by EOS are processed, distributed, archived, and managed by the EOS Data and Information System (EOSDIS). Currently, EOSDIS is managing several petabytes of data. All of those data are not only valuable for global change research, but also useful for local and regional application and decision makings. How to make the data easily accessible to and usable by the user community is one of key issues for realizing the full potential of these valuable datasets. In the past several years, the Open Geospatial Consortium (OGC) has developed several interoperability protocols aiming at making geospatial data easily accessible to and usable by the user community through Internet. The protocols particularly relevant to the discovery, access, and integration of multi-source satellite remote sensing data are the Catalog Service for Web (CS/W) and Web Coverage Services (WCS) Specifications. The OGC CS/W specifies the interfaces, HTTP protocol bindings, and a framework for defining application profiles required to publish and access digital catalogues of metadata for geographic data, services, and related resource information. The OGC WCS specification defines the interfaces between web-based clients and servers for accessing on-line multi-dimensional, multi-temporal geospatial coverage in an interoperable way. Based on definitions by OGC and ISO 19123, coverage data include all remote sensing images as well as gridded model outputs. The Laboratory for Advanced Information Technology and Standards (LAITS), George Mason University, has been working on developing and implementing OGC specifications for better serving NASA Earth science data to the user community for many

  15. Silicon Drift Detectors development for position sensing

    International Nuclear Information System (INIS)

    Castoldi, A.; Guazzoni, C.; Hartmann, R.; Strueder, L.

    2007-01-01

    Novel Silicon Drift Detectors (SDDs) with multi-linear architecture specifically intended for 2D position sensing and imaging applications are presented and their achievable spatial, energy and time resolution are discussed. The capability of providing a fast timing of the interaction with nanosecond time resolution is a new available feature that allows operating the drift detector in continuous readout mode for coincidence imaging applications either with an external trigger or in self-timing. The application of SDDs with multi-linear architecture to Compton electrons' tracking within a single silicon layer and the achieved experimental results will be discussed

  16. A 0.18 μm CMOS fluorescent detector system for bio-sensing application

    Science.gov (United States)

    Nan, Liu; Guoping, Chen; Zhiliang, Hong

    2009-01-01

    A CMOS fluorescent detector system for biological experiment is presented. This system integrates a CMOS compatible photodiode, a capacitive trans-impedance amplifier (CTIA), and a 12 bit pipelined analog-to-digital converter (ADC), and is implemented in a 0.18 μm standard CMOS process. Some special techniques, such as a 'contact imaging' detecting method, pseudo-differential architecture, dummy photodiodes, and a T-type reset switch, are adopted to achieve low-level sensing application. Experiment results show that the Nwell/Psub photodiode with CTIA pixel achieves a sensitivity of 0.1 A/W at 515 nm and a dark current of 300 fA with 300 mV reverse biased voltage. The maximum differential and integral nonlinearity of the designed ADC are 0.8 LSB and 3 LSB, respectively. With an integrating time of 50 ms, this system is sensitive to the fluorescence emitted by the fluorescein solution with concentration as low as 20 ng/mL and can generate 7 fA photocurrent. This chip occupies 3 mm2 and consumes 37 mW.

  17. A 0.18 μm CMOS fluorescent detector system for bio-sensing application

    International Nuclear Information System (INIS)

    Liu Nan; Chen Guoping; Hong Zhiliang

    2009-01-01

    A CMOS fluorescent detector system for biological experiment is presented. This system integrates a CMOS compatible photodiode, a capacitive trans-impedance amplifier (CTIA), and a 12 bit pipelined analog-to-digital converter (ADC), and is implemented in a 0.18 μm standard CMOS process. Some special techniques, such as a 'contact imaging' detecting method, pseudo-differential architecture, dummy photodiodes, and a T-type reset switch, are adopted to achieve low-level sensing application. Experiment results show that the Nwell/Psub photodiode with CTIA pixel achieves a sensitivity of 0.1 A/W at 515 nm and a dark current of 300 fA with 300 mV reverse biased voltage. The maximum differential and integral nonlinearity of the designed ADC are 0.8 LSB and 3 LSB, respectively. With an integrating time of 50 ms, this system is sensitive to the fluorescence emitted by the fluorescein solution with concentration as low as 20 ng/mL and can generate 7 fA photocurrent. This chip occupies 3 mm 2 and consumes 37 mW.

  18. Spatial Indexing for Data Searching in Mobile Sensing Environments.

    Science.gov (United States)

    Zhou, Yuchao; De, Suparna; Wang, Wei; Moessner, Klaus; Palaniswami, Marimuthu S

    2017-06-18

    Data searching and retrieval is one of the fundamental functionalities in many Web of Things applications, which need to collect, process and analyze huge amounts of sensor stream data. The problem in fact has been well studied for data generated by sensors that are installed at fixed locations; however, challenges emerge along with the popularity of opportunistic sensing applications in which mobile sensors keep reporting observation and measurement data at variable intervals and changing geographical locations. To address these challenges, we develop the Geohash-Grid Tree, a spatial indexing technique specially designed for searching data integrated from heterogeneous sources in a mobile sensing environment. Results of the experiments on a real-world dataset collected from the SmartSantander smart city testbed show that the index structure allows efficient search based on spatial distance, range and time windows in a large time series database.

  19. Refractive Index Sensing with D-Shaped Plastic Optical Fibers for Chemical and Biochemical Applications

    Directory of Open Access Journals (Sweden)

    Filipa Sequeira

    2016-12-01

    Full Text Available We report the optimization of the length of a D-shaped plastic optical fiber (POF sensor for refractive index (RI sensing from a numerical and experimental point of view. The sensing principle is based on total internal reflection (TIR. POFs with 1 mm in diameter were embedded in grooves, realized in planar supports with different lengths, and polished to remove the cladding and part of the core. All D-shaped POF sensors were tested using aqueous medium with different refractive indices (from 1.332 to 1.471 through intensity-based configuration. Results showed two different responses. Considering the refractive index (RI range (1.33–1.39, the sensitivity and the resolution of the sensor were strongly dependent on the sensing region length. The highest sensitivity (resolution of 6.48 × 10−3 refractive index units, RIU was obtained with 6 cm sensing length. In the RI range (1.41–1.47, the length of the sensing region was not a critical aspect to obtain the best resolution. These results enable the application of this optical platform for chemical and biochemical evanescent field sensing. The sensor production procedure is very simple, fast, and low-cost.

  20. Dimensionless parameterization of lidar for laser remote sensing of the atmosphere and its application to systems with SiPM and PMT detectors.

    Science.gov (United States)

    Agishev, Ravil; Comerón, Adolfo; Rodriguez, Alejandro; Sicard, Michaël

    2014-05-20

    In this paper, we show a renewed approach to the generalized methodology for atmospheric lidar assessment, which uses the dimensionless parameterization as a core component. It is based on a series of our previous works where the problem of universal parameterization over many lidar technologies were described and analyzed from different points of view. The modernized dimensionless parameterization concept applied to relatively new silicon photomultiplier detectors (SiPMs) and traditional photomultiplier (PMT) detectors for remote-sensing instruments allowed predicting the lidar receiver performance with sky background available. The renewed approach can be widely used to evaluate a broad range of lidar system capabilities for a variety of lidar remote-sensing applications as well as to serve as a basis for selection of appropriate lidar system parameters for a specific application. Such a modernized methodology provides a generalized, uniform, and objective approach for evaluation of a broad range of lidar types and systems (aerosol, Raman, DIAL) operating on different targets (backscatter or topographic) and under intense sky background conditions. It can be used within the lidar community to compare different lidar instruments.

  1. Perturbation Theory for Scattering from Multilayers with Randomly Rough Fractal Interfaces: Remote Sensing Applications.

    Science.gov (United States)

    Imperatore, Pasquale; Iodice, Antonio; Riccio, Daniele

    2017-12-27

    A general, approximate perturbation method, able to provide closed-form expressions of scattering from a layered structure with an arbitrary number of rough interfaces, has been recently developed. Such a method provides a unique tool for the characterization of radar response patterns of natural rough multilayers. In order to show that, here, for the first time in a journal paper, we describe the application of the developed perturbation theory to fractal interfaces; we then employ the perturbative method solution to analyze the scattering from real-world layered structures of practical interest in remote sensing applications. We focus on the dependence of normalized radar cross section on geometrical and physical properties of the considered scenarios, and we choose two classes of natural stratifications: wet paleosoil covered by a low-loss dry sand layer and a sea-ice layer above water with dry snow cover. Results are in accordance with the experimental evidence available in the literature for the low-loss dry sand layer, and they may provide useful indications about the actual ability of remote sensing instruments to perform sub-surface sensing for different sensor and scene parameters.

  2. Perturbation Theory for Scattering from Multilayers with Randomly Rough Fractal Interfaces: Remote Sensing Applications

    Directory of Open Access Journals (Sweden)

    Pasquale Imperatore

    2017-12-01

    Full Text Available A general, approximate perturbation method, able to provide closed-form expressions of scattering from a layered structure with an arbitrary number of rough interfaces, has been recently developed. Such a method provides a unique tool for the characterization of radar response patterns of natural rough multilayers. In order to show that, here, for the first time in a journal paper, we describe the application of the developed perturbation theory to fractal interfaces; we then employ the perturbative method solution to analyze the scattering from real-world layered structures of practical interest in remote sensing applications. We focus on the dependence of normalized radar cross section on geometrical and physical properties of the considered scenarios, and we choose two classes of natural stratifications: wet paleosoil covered by a low-loss dry sand layer and a sea-ice layer above water with dry snow cover. Results are in accordance with the experimental evidence available in the literature for the low-loss dry sand layer, and they may provide useful indications about the actual ability of remote sensing instruments to perform sub-surface sensing for different sensor and scene parameters.

  3. Synthesis, Characterization, and Gas Sensing Applications of WO3 Nanobricks

    Science.gov (United States)

    Xiao, Jingkun; Song, Chengwen; Dong, Wei; Li, Chen; Yin, Yanyan; Zhang, Xiaoni; Song, Mingyan

    2015-08-01

    WO3 nanobricks are fabricated by a simple hydrothermal method. Morphology and structure of the WO3 nanobricks are characterized by scanning electron microscopy and x-ray diffraction. Gas sensing properties of the as-prepared WO3 sensor are systematically investigated by a static gas sensing system. The results show that the WO3 nanobricks with defect corners demonstrate good crystallinity, and the mean edge length and wall thickness are 1-1.5 and 400 nm, respectively. The WO3 sensor achieves its maximum sensitivity to 100 ppm ethanol at the optimal operating temperature of 300 °C. Ultra-fast response time (2-3 s) and fast recovery time (4-11 s) of the WO3 sensor toward 100 ppm ethanol are also observed at this optimal operating temperature. Moreover, the WO3 sensor exhibits high selectivity to other gases such as methanol, benzene, hexane, and dichloromethane, indicating its excellent potential application as a gas sensor for ethanol detection.

  4. Approximate equiangular tight frames for compressed sensing and CDMA applications

    Science.gov (United States)

    Tsiligianni, Evaggelia; Kondi, Lisimachos P.; Katsaggelos, Aggelos K.

    2017-12-01

    Performance guarantees for recovery algorithms employed in sparse representations, and compressed sensing highlights the importance of incoherence. Optimal bounds of incoherence are attained by equiangular unit norm tight frames (ETFs). Although ETFs are important in many applications, they do not exist for all dimensions, while their construction has been proven extremely difficult. In this paper, we construct frames that are close to ETFs. According to results from frame and graph theory, the existence of an ETF depends on the existence of its signature matrix, that is, a symmetric matrix with certain structure and spectrum consisting of two distinct eigenvalues. We view the construction of a signature matrix as an inverse eigenvalue problem and propose a method that produces frames of any dimensions that are close to ETFs. Due to the achieved equiangularity property, the so obtained frames can be employed as spreading sequences in synchronous code-division multiple access (s-CDMA) systems, besides compressed sensing.

  5. Generation of broad-group neutron/photon cross-section libraries for shielding applications

    International Nuclear Information System (INIS)

    Ingersoll, D.T.; Roussin, R.W.; Fu, C.Y.; White, J.E.

    1989-01-01

    The generation and use of multigroup cross-section libraries with broad energy group structures is primarily for the economy of computer resources. Also, the establishment of reference broad-group libraries is desirable in order to avoid duplication of effort, both in terms of the data generation and verification, and to assure a common data base for all participants in a specific project. Uncertainties are inevitably introduced into the broad-group cross sections due to approximations in the grouping procedure. The dominant uncertainty is generally with regard to the energy weighting function used to average the pointwise or fine-group data within a single broad group. Intelligent choice of the weighting functions can reduce such uncertainties. Also, judicious selection of the energy group structure can help to reduce the sensitivity of the computed responses to the weighting function, at least for a selected set of problems. Two new multigroup cross section libraries have been recently generated from ENDF/B-V data for two specific shielding applications. The first library was prepared for use in sodium-cooled reactor systems and is available in both broad-group structures. The second library, just recently completed, was prepared for use in air-over-ground environments and is available in a broad-group (46-neutron, 23-photon) energy structure. The selection of the specific group structures and weighting functions was an important part of the generation of both libraries

  6. Spatiotemporal Fusion of Multisource Remote Sensing Data: Literature Survey, Taxonomy, Principles, Applications, and Future Directions

    Directory of Open Access Journals (Sweden)

    Xiaolin Zhu

    2018-03-01

    Full Text Available Satellite time series with high spatial resolution is critical for monitoring land surface dynamics in heterogeneous landscapes. Although remote sensing technologies have experienced rapid development in recent years, data acquired from a single satellite sensor are often unable to satisfy our demand. As a result, integrated use of data from different sensors has become increasingly popular in the past decade. Many spatiotemporal data fusion methods have been developed to produce synthesized images with both high spatial and temporal resolutions from two types of satellite images, frequent coarse-resolution images, and sparse fine-resolution images. These methods were designed based on different principles and strategies, and therefore show different strengths and limitations. This diversity brings difficulties for users to choose an appropriate method for their specific applications and data sets. To this end, this review paper investigates literature on current spatiotemporal data fusion methods, categorizes existing methods, discusses the principal laws underlying these methods, summarizes their potential applications, and proposes possible directions for future studies in this field.

  7. Recent advances in intracellular and in vivo ROS sensing: focus on nanoparticle and nanotube applications.

    Science.gov (United States)

    Uusitalo, Larissa M; Hempel, Nadine

    2012-01-01

    Reactive oxygen species (ROS) are increasingly being implicated in the regulation of cellular signaling cascades. Intracellular ROS fluxes are associated with cellular function ranging from proliferation to cell death. Moreover, the importance of subtle, spatio-temporal shifts in ROS during localized cellular signaling events is being realized. Understanding the biochemical nature of the ROS involved will enhance our knowledge of redox-signaling. An ideal intracellular sensor should therefore resolve real-time, localized ROS changes, be highly sensitive to physiologically relevant shifts in ROS and provide specificity towards a particular molecule. For in vivo applications issues such as bioavailability of the probe, tissue penetrance of the signal and signal-to-noise ratio also need to be considered. In the past researchers have heavily relied on the use of ROS-sensitive fluorescent probes and, more recently, genetically engineered ROS sensors. However, there is a great need to improve on current methods to address the above issues. Recently, the field of molecular sensing and imaging has begun to take advantage of the unique physico-chemical properties of nanoparticles and nanotubes. Here we discuss the recent advances in the use of these nanostructures as alternative platforms for ROS sensing, with particular emphasis on intracellular and in vivo ROS detection and quantification.

  8. Advanced Power Management of a Telehandler using Electronic Load Sensing

    DEFF Research Database (Denmark)

    Hansen, Rico Hjerm

    2009-01-01

    New possibilities within electronic control of mobile hydraulic systems are becoming available as hydraulic components are implemented with more electrical sensors and actuators. This paper presents how the traditional hydro-mechanical load sensing (HLS) control of a specific mobile hydraulic...... application, a telehandler, can be replaced with electronic control, i.e. Electronic Load Sensing (ELS). The motivation for ELS is the potentials of better dynamic performance and system utilization, along with reduced mechanical complexity by transferring features as pump pressure control, flow...

  9. Osmosis-Based Pressure Generation: Dynamics and Application

    Science.gov (United States)

    Li, Suyi; Billeh, Yazan N.; Wang, K. W.; Mayer, Michael

    2014-01-01

    This paper describes osmotically-driven pressure generation in a membrane-bound compartment while taking into account volume expansion, solute dilution, surface area to volume ratio, membrane hydraulic permeability, and changes in osmotic gradient, bulk modulus, and degree of membrane fouling. The emphasis lies on the dynamics of pressure generation; these dynamics have not previously been described in detail. Experimental results are compared to and supported by numerical simulations, which we make accessible as an open source tool. This approach reveals unintuitive results about the quantitative dependence of the speed of pressure generation on the relevant and interdependent parameters that will be encountered in most osmotically-driven pressure generators. For instance, restricting the volume expansion of a compartment allows it to generate its first 5 kPa of pressure seven times faster than without a restraint. In addition, this dynamics study shows that plants are near-ideal osmotic pressure generators, as they are composed of many small compartments with large surface area to volume ratios and strong cell wall reinforcements. Finally, we demonstrate two applications of an osmosis-based pressure generator: actuation of a soft robot and continuous volume delivery over long periods of time. Both applications do not need an external power source but rather take advantage of the energy released upon watering the pressure generators. PMID:24614529

  10. Osmosis-based pressure generation: dynamics and application.

    Science.gov (United States)

    Bruhn, Brandon R; Schroeder, Thomas B H; Li, Suyi; Billeh, Yazan N; Wang, K W; Mayer, Michael

    2014-01-01

    This paper describes osmotically-driven pressure generation in a membrane-bound compartment while taking into account volume expansion, solute dilution, surface area to volume ratio, membrane hydraulic permeability, and changes in osmotic gradient, bulk modulus, and degree of membrane fouling. The emphasis lies on the dynamics of pressure generation; these dynamics have not previously been described in detail. Experimental results are compared to and supported by numerical simulations, which we make accessible as an open source tool. This approach reveals unintuitive results about the quantitative dependence of the speed of pressure generation on the relevant and interdependent parameters that will be encountered in most osmotically-driven pressure generators. For instance, restricting the volume expansion of a compartment allows it to generate its first 5 kPa of pressure seven times faster than without a restraint. In addition, this dynamics study shows that plants are near-ideal osmotic pressure generators, as they are composed of many small compartments with large surface area to volume ratios and strong cell wall reinforcements. Finally, we demonstrate two applications of an osmosis-based pressure generator: actuation of a soft robot and continuous volume delivery over long periods of time. Both applications do not need an external power source but rather take advantage of the energy released upon watering the pressure generators.

  11. Osmosis-based pressure generation: dynamics and application.

    Directory of Open Access Journals (Sweden)

    Brandon R Bruhn

    Full Text Available This paper describes osmotically-driven pressure generation in a membrane-bound compartment while taking into account volume expansion, solute dilution, surface area to volume ratio, membrane hydraulic permeability, and changes in osmotic gradient, bulk modulus, and degree of membrane fouling. The emphasis lies on the dynamics of pressure generation; these dynamics have not previously been described in detail. Experimental results are compared to and supported by numerical simulations, which we make accessible as an open source tool. This approach reveals unintuitive results about the quantitative dependence of the speed of pressure generation on the relevant and interdependent parameters that will be encountered in most osmotically-driven pressure generators. For instance, restricting the volume expansion of a compartment allows it to generate its first 5 kPa of pressure seven times faster than without a restraint. In addition, this dynamics study shows that plants are near-ideal osmotic pressure generators, as they are composed of many small compartments with large surface area to volume ratios and strong cell wall reinforcements. Finally, we demonstrate two applications of an osmosis-based pressure generator: actuation of a soft robot and continuous volume delivery over long periods of time. Both applications do not need an external power source but rather take advantage of the energy released upon watering the pressure generators.

  12. Towards operational environmental applications using terrestrial remote sensing

    NARCIS (Netherlands)

    Veldkamp JG; Velde RJ van de; LBG

    1996-01-01

    Dit rapport beschrijft de resultaten van het Beleidscommissie Remote Sensing (BCRS) project 'Verankering van toepassingen van terrestrische remote sensing bij RIVM'. Het had ten eerste tot doel te voldoen aan de voorwaarden, zoals gesteld in de inventarisatie van remote sensing als

  13. Illusion of Sense of Self-Agency: Discrepancy between the Predicted and Actual Sensory Consequences of Actions Modulates the Sense of Self-Agency, but not the Sense of Self-Ownership

    Science.gov (United States)

    Sato, Atsushi; Yasuda, Asako

    2005-01-01

    It is proposed that knowledge of motor commands is used to distinguish self-generated sensation from externally generated sensation. In this paper, we show that the sense of self-agency, that is the sense that I am the one who is generating an action, largely depends on the degree of discrepancy resulting from comparison between the predicted and…

  14. High-efficiency VCSEL arrays for illumination and sensing in consumer applications

    Science.gov (United States)

    Seurin, Jean-Francois; Zhou, Delai; Xu, Guoyang; Miglo, Alexander; Li, Daizong; Chen, Tong; Guo, Baiming; Ghosh, Chuni

    2016-03-01

    There has been increased interest in vertical-cavity surface-emitting lasers (VCSELs) for illumination and sensing in the consumer market, especially for 3D sensing ("gesture recognition") and 3D image capture. For these applications, the typical wavelength range of interest is 830~950nm and power levels vary from a few milli-Watts to several Watts. The devices are operated in short pulse mode (a few nano-seconds) with fast rise and fall times for time-of-flight applications (ToF), or in CW/quasi-CW for structured light applications. In VCSELs, the narrow spectrum and its low temperature dependence allows the use of narrower filters and therefore better signal-to-noise performance, especially for outdoor applications. In portable devices (mobile devices, wearable devices, laptops etc.) the size of the illumination module (VCSEL and optics) is a primary consideration. VCSELs offer a unique benefit compared to other laser sources in that they are "surface-mountable" and can be easily integrated along with other electronics components on a printed circuit board (PCB). A critical concern is the power-conversion efficiency (PCE) of the illumination source operating at high temperatures (>50 deg C). We report on various VCSEL based devices and diffuser-integrated modules with high efficiency at high temperatures. Over 40% PCE was achieved in broad temperature range of 0-70 °C for either low power single devices or high power VCSEL arrays, with sub- nano-second rise and fall time. These high power VCSEL arrays show excellent reliability, with extracted mean-time-to-failure (MTTF) of over 500 years at 60 °C ambient temperature and 8W peak output.

  15. Sensing technologies for precision irrigation

    CERN Document Server

    Ćulibrk, Dubravko; Minic, Vladan; Alonso Fernandez, Marta; Alvarez Osuna, Javier; Crnojevic, Vladimir

    2014-01-01

    This brief provides an overview of state-of-the-art sensing technologies relevant to the problem of precision irrigation, an emerging field within the domain of precision agriculture. Applications of wireless sensor networks, satellite data and geographic information systems in the domain are covered. This brief presents the basic concepts of the technologies and emphasizes the practical aspects that enable the implementation of intelligent irrigation systems. The authors target a broad audience interested in this theme and organize the content in five chapters, each concerned with a specific technology needed to address the problem of optimal crop irrigation. Professionals and researchers will find the text a thorough survey with practical applications.

  16. Improving Video Generation for Multi-functional Applications

    OpenAIRE

    Kratzwald, Bernhard; Huang, Zhiwu; Paudel, Danda Pani; Dinesh, Acharya; Van Gool, Luc

    2017-01-01

    In this paper, we aim to improve the state-of-the-art video generative adversarial networks (GANs) with a view towards multi-functional applications. Our improved video GAN model does not separate foreground from background nor dynamic from static patterns, but learns to generate the entire video clip conjointly. Our model can thus be trained to generate - and learn from - a broad set of videos with no restriction. This is achieved by designing a robust one-stream video generation architectur...

  17. Investigation of the direct runoff generation mechanism for the analysis of the SCS-CN method applicability to a partial area experimental watershed

    OpenAIRE

    Soulis, K. X.; Valiantzas, J. D.; Dercas, N.; Londra, P. A.

    2009-01-01

    The Soil Conservation Service Curve Number (SCS-CN) method is widely used for predicting direct runoff volume for a given rainfall event. The applicability of the SCS-CN method and the direct runoff generation mechanism were thoroughly analysed in a Mediterranean experimental watershed in Greece. The region is characterized by a Mediterranean semi-arid climate. A detailed land cover and soil survey using remote sensing and GIS techniques, showed that the watershed is dominated by coarse soils...

  18. A Compressed Sensing-based Image Reconstruction Algorithm for Solar Flare X-Ray Observations

    Energy Technology Data Exchange (ETDEWEB)

    Felix, Simon; Bolzern, Roman; Battaglia, Marina, E-mail: simon.felix@fhnw.ch, E-mail: roman.bolzern@fhnw.ch, E-mail: marina.battaglia@fhnw.ch [University of Applied Sciences and Arts Northwestern Switzerland FHNW, 5210 Windisch (Switzerland)

    2017-11-01

    One way of imaging X-ray emission from solar flares is to measure Fourier components of the spatial X-ray source distribution. We present a new compressed sensing-based algorithm named VIS-CS, which reconstructs the spatial distribution from such Fourier components. We demonstrate the application of the algorithm on synthetic and observed solar flare X-ray data from the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite and compare its performance with existing algorithms. VIS-CS produces competitive results with accurate photometry and morphology, without requiring any algorithm- and X-ray-source-specific parameter tuning. Its robustness and performance make this algorithm ideally suited for the generation of quicklook images or large image cubes without user intervention, such as for imaging spectroscopy analysis.

  19. A Compressed Sensing-based Image Reconstruction Algorithm for Solar Flare X-Ray Observations

    Science.gov (United States)

    Felix, Simon; Bolzern, Roman; Battaglia, Marina

    2017-11-01

    One way of imaging X-ray emission from solar flares is to measure Fourier components of the spatial X-ray source distribution. We present a new compressed sensing-based algorithm named VIS_CS, which reconstructs the spatial distribution from such Fourier components. We demonstrate the application of the algorithm on synthetic and observed solar flare X-ray data from the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite and compare its performance with existing algorithms. VIS_CS produces competitive results with accurate photometry and morphology, without requiring any algorithm- and X-ray-source-specific parameter tuning. Its robustness and performance make this algorithm ideally suited for the generation of quicklook images or large image cubes without user intervention, such as for imaging spectroscopy analysis.

  20. DESIGNING ZONING OF REMOTE SENSING DRONES FOR URBAN APPLICATIONS: A REVIEW

    OpenAIRE

    M. N. Norzailawati; A. Alias; R. S. Akma

    2016-01-01

    This paper discusses on-going research related to zoning regulation for the remote sensing drone in the urban applications. Timestamped maps are presented here follow a citation-based approach, where significant information is retrieved from the scientific literature. The emergence of drones in domestic air raises lots understandable issues on privacy, security and uncontrolled pervasive surveillance that require a careful and alternative solution. The effective solution is to adopt ...

  1. Testing random number generators for Monte Carlo applications

    International Nuclear Information System (INIS)

    Sim, L.H.

    1992-01-01

    Central to any system for modelling radiation transport phenomena using Monte Carlo techniques is the method by which pseudo random numbers are generated. This method is commonly referred to as the Random Number Generator (RNG). It is usually a computer implemented mathematical algorithm which produces a series of numbers uniformly distributed on the interval [0,1]. If this series satisfies certain statistical tests for randomness, then for practical purposes the pseudo random numbers in the series can be considered to be random. Tests of this nature are important not only for new RNGs but also to test the implementation of known RNG algorithms in different computer environments. Six RNGs have been tested using six statistical tests and one visual test. The statistical tests are the moments, frequency (digit and number), serial, gap, and poker tests. The visual test is a simple two dimensional ordered pair display. In addition the RNGs have been tested in a specific Monte Carlo application. This type of test is often overlooked, however it is important that in addition to satisfactory performance in statistical tests, the RNG be able to perform effectively in the applications of interest. The RNGs tested here are based on a variety of algorithms, including multiplicative and linear congruential, lagged Fibonacci, and combination arithmetic and lagged Fibonacci. The effect of the Bays-Durham shuffling algorithm on the output of a known bad RNG has also been investigated. 18 refs., 11 tabs., 4 figs. of

  2. Tamper indicating and sensing optical-based smart structures

    International Nuclear Information System (INIS)

    Sliva, P.; Anheier, N.C.; Gordon, N.R.; Simmons, K.L.; Stahl, K.A.; Undem, H.A.

    1995-05-01

    This paper has presented an overview of the type of optical-based structures that can be designed and constructed. These smart structures are capable of responding to their environment. The examples given represent a modest sampling of the complexity that can be achieved in both design and practice. Tamper-indicating containers and smart, sensing windows demonstrate just a few of the applications. We have shown that optical-based smart structures can be made multifunctional with the sensing built in. The next generation smart structure will combine the sensing functionality of these optical-based smart structures with other sensors such as piezoelectrics and electro-rheological fluids to not only be able to respond to the environment, but to adapt to it as well. An example of functionality in this regime would be a piezosensor that senses pressure changes (e.g., shock waves), which then causes an electro-rheological fluid to change viscosity. A fiber sensor located in or near the electro-rheological fluid senses the stiffness change and sends a signal through a feedback loop back to the piezosensor for additional adjustments to the electro-rheological fluid

  3. Visible-infrared remote-sensing model and applications for ocean waters. Ph.D. Thesis

    Science.gov (United States)

    Lee, Zhongping

    1994-01-01

    and value of the chlorophyll-specific absorption coefficient. The simulation was tested for a wide range of water types, including waters from Monterey Bay, the West Florida Shelf, and the Mississippi River plume. Using the simulation, the R(sub rs)-derived in-water absorption coefficients were consistent with the values from in-water measurements (r(exp 2) greater than 0.94, slope approximately 1.0). In the remote-sensing applications, a new approach is suggested for the estimation of primary production based on remote sensing. Using this approach, the calculated primary production (PP) values based upon remotely sensed data were very close to the measured values for the euphotic zone (r(exp 2) = 0.95, slope 1.26, and 32% average difference), while traditional, pigment-based PP model provided values only one-third the size of the measured data. This indicates a potential to significantly improve the accuracy of the estimation of primary production based upon remote sensing.

  4. Equivalent Sensor Radiance Generation and Remote Sensing from Model Parameters. Part 1; Equivalent Sensor Radiance Formulation

    Science.gov (United States)

    Wind, Galina; DaSilva, Arlindo M.; Norris, Peter M.; Platnick, Steven E.

    2013-01-01

    In this paper we describe a general procedure for calculating equivalent sensor radiances from variables output from a global atmospheric forecast model. In order to take proper account of the discrepancies between model resolution and sensor footprint the algorithm takes explicit account of the model subgrid variability, in particular its description of the probably density function of total water (vapor and cloud condensate.) The equivalent sensor radiances are then substituted into an operational remote sensing algorithm processing chain to produce a variety of remote sensing products that would normally be produced from actual sensor output. This output can then be used for a wide variety of purposes such as model parameter verification, remote sensing algorithm validation, testing of new retrieval methods and future sensor studies. We show a specific implementation using the GEOS-5 model, the MODIS instrument and the MODIS Adaptive Processing System (MODAPS) Data Collection 5.1 operational remote sensing cloud algorithm processing chain (including the cloud mask, cloud top properties and cloud optical and microphysical properties products.) We focus on clouds and cloud/aerosol interactions, because they are very important to model development and improvement.

  5. Integrated Mach-Zehnder interferometer on the end facet of multicore fiber for refractive index sensing application

    Science.gov (United States)

    Qi, Yanwen; Zhang, Siyao; Feng, Shengfei; Wang, Xinke; Sun, Wenfeng; Ye, Jiasheng; Han, Peng; Zhang, Yan

    2018-01-01

    A sensitive, real-time seven core optical fiber based Mach-Zehnder interferometer (MZI) sensor for liquid refractive index detection is proposed, fabricated and characterized. A trapezoid body with an inverted wedge shape groove in the center is used to design the MZI. The two ends of the trapezoid body play the roles of micro-prisms, and the middle parts of the trapezoid body and the groove play the roles of reference and sensing arms. A series of performance tests were carried out by immersing the sensor in different kinds of solutions to verify the universal applicability of the sensor. The MZI sensor is as small as only 43 μm × 8 μm, and at the same time with sensitivity of 1616 nm/RIU. Nominally, we realized a completely integrated optical sensing system. And, this system actually could be the building block of more powerful integrated chemical sensing chip for health, security and industry application.

  6. Design and Verification of Application Specific Integrated Circuits in a Network of Online Labs

    Directory of Open Access Journals (Sweden)

    A.Y. Al-Zoubi

    2009-08-01

    Full Text Available A solution to implement a remote laboratory for testing and designing analog Application-Specific Integrated Circuits of the type (ispPAC10 is presented. The application allows electrical engineering students to access and perform measurements and conduct analog electronics experiments over the internet. PAC-Designer software, running on a Citrix server, is used in the circuit design in which the signals are generated and the responses are acquired by a data acquisition board controlled by LabVIEW. Three interconnected remote labs located in three different continents will be implementing the proposed system.

  7. Genetic algorithms in teaching artificial intelligence (automated generation of specific algebras)

    Science.gov (United States)

    Habiballa, Hashim; Jendryscik, Radek

    2017-11-01

    The problem of teaching essential Artificial Intelligence (AI) methods is an important task for an educator in the branch of soft-computing. The key focus is often given to proper understanding of the principle of AI methods in two essential points - why we use soft-computing methods at all and how we apply these methods to generate reasonable results in sensible time. We present one interesting problem solved in the non-educational research concerning automated generation of specific algebras in the huge search space. We emphasize above mentioned points as an educational case study of an interesting problem in automated generation of specific algebras.

  8. Precision agriculture - from mapping to site-specific application

    DEFF Research Database (Denmark)

    Pedersen, Søren Marcus; Lind, Kim Martin Hjorth

    2017-01-01

    of each chapter in the book. Each chapter address a different topic starting with an overview of technologies that are currently available, followed by specific Variable-Rate Technologies such as VRT fertilizer application, VRT pesticide application, site-specific irrigation management, Auto...

  9. NASA Fluid Lensing & MiDAR - Next-Generation Remote Sensing Technologies for Aquatic Remote Sensing

    Science.gov (United States)

    Chirayath, Ved

    2018-01-01

    Piti's Tepungan Bay and Tumon Bay, two of five marine preserves in Guam, have not been mapped to a level of detail sufficient to support proposed management strategies. This project addresses this gap by providing high resolution maps to promote sustainable, responsible use of the area while protecting natural resources. Dr. Chirayath, a research scientist at the NASA Ames Laboratory, developed a theoretical model and algorithm called 'Fluid Lensing'. Fluid lensing removes optical distortions caused by moving water, improving the clarity of the images taken of the corals below the surface. We will also be using MiDAR, a next-generation remote sensing instrument that provides real-time multispectral video using an array of LED emitters coupled with NASA's FluidCam Imaging System, which may assist Guam's coral reef response team in understanding the severity and magnitude of coral bleaching events. This project will produce a 3D orthorectified model of the shallow water coral reef ecosystems in Tumon Bay and Piti marine preserves. These 3D models may be printed, creating a tactile diorama and increasing understanding of coral reefs among various audiences, including key decision makers. More importantly, the final data products can enable accurate and quantitative health assessment capabilities for coral reef ecosystems.

  10. Geospatial Image Stream Processing: Models, techniques, and applications in remote sensing change detection

    Science.gov (United States)

    Rueda-Velasquez, Carlos Alberto

    Detection of changes in environmental phenomena using remotely sensed data is a major requirement in the Earth sciences, especially in natural disaster related scenarios where real-time detection plays a crucial role in the saving of human lives and the preservation of natural resources. Although various approaches formulated to model multidimensional data can in principle be applied to the inherent complexity of remotely sensed geospatial data, there are still challenging peculiarities that demand a precise characterization in the context of change detection, particularly in scenarios of fast changes. In the same vein, geospatial image streams do not fit appropriately in the standard Data Stream Management System (DSMS) approach because these systems mainly deal with tuple-based streams. Recognizing the necessity for a systematic effort to address the above issues, the work presented in this thesis is a concrete step toward the foundation and construction of an integrated Geospatial Image Stream Processing framework, GISP. First, we present a data and metadata model for remotely sensed image streams. We introduce a precise characterization of images and image streams in the context of remotely sensed geospatial data. On this foundation, we define spatially-aware temporal operators with a consistent semantics for change analysis tasks. We address the change detection problem in settings where multiple image stream sources are available, and thus we introduce an architectural design for the processing of geospatial image streams from multiple sources. With the aim of targeting collaborative scientific environments, we construct a realization of our architecture based on Kepler, a robust and widely used scientific workflow management system, as the underlying computational support; and open data and Web interface standards, as a means to facilitate the interoperability of GISP instances with other processing infrastructures and client applications. We demonstrate our

  11. Mobile Computing: The Emerging Technology, Sensing, Challenges and Applications

    International Nuclear Information System (INIS)

    Bezboruah, T.

    2010-12-01

    The mobile computing is a computing system in which a computer and all necessary accessories like files and software are taken out to the field. It is a system of computing through which it is being able to use a computing device even when someone being mobile and therefore changing location. The portability is one of the important aspects of mobile computing. The mobile phones are being used to gather scientific data from remote and isolated places that could not be possible to retrieve by other means. The scientists are initiating to use mobile devices and web-based applications to systematically explore interesting scientific aspects of their surroundings, ranging from climate change, environmental pollution to earthquake monitoring. This mobile revolution enables new ideas and innovations to spread out more quickly and efficiently. Here we will discuss in brief about the mobile computing technology, its sensing, challenges and the applications. (author)

  12. Structured materials for catalytic and sensing applications

    Science.gov (United States)

    Hokenek, Selma

    The optical and chemical properties of the materials used in catalytic and sensing applications directly determine the characteristics of the resultant catalyst or sensor. It is well known that a catalyst needs to have high activity, selectivity, and stability to be viable in an industrial setting. The hydrogenation activity of palladium catalysts is known to be excellent, but the industrial applications are limited by the cost of obtaining catalyst in amounts large enough to make their use economical. As a result, alloying palladium with a cheaper, more widely available metal while maintaining the high catalytic activity seen in monometallic catalysts is, therefore, an attractive option. Similarly, the optical properties of nanoscale materials used for sensing must be attuned to their application. By adjusting the shape and composition of nanoparticles used in such applications, very fine changes can be made to the frequency of light that they absorb most efficiently. The design, synthesis, and characterization of (i) size controlled monometallic palladium nanoparticles for catalytic applications, (ii) nickel-palladium bimetallic nanoparticles and (iii) silver-palladium nanoparticles with applications in drug detection and biosensing through surface plasmon resonance, respectively, will be discussed. The composition, size, and shape of the nanoparticles formed were controlled through the use of wet chemistry techniques. After synthesis, the nanoparticles were analyzed using physical and chemical characterization techniques such as X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and Scanning Transmission Electron Microscopy- Energy-Dispersive Spectrometry (STEM-EDX). The Pd and Ni-Pd nanoparticles were then supported on silica for catalytic testing using mass spectrometry. The optical properties of the Ag-Pd nanoparticles in suspension were further investigated using ultraviolet-visible spectrometry (UV-Vis). Monometallic palladium particles have

  13. Making Sense of Natural Selection

    Science.gov (United States)

    Passmore, Cynthia; Coleman, Elizabeth; Horton, Jennifer; Parker, Heather

    2013-01-01

    At its core, science is about making sense of the world around us. Therefore, science education should engage students in that sense-making process. Helping students make sense of disciplinary core ideas and crosscutting concepts by engaging in scientific practices is the key innovation of the "Next Generation Science Standards"…

  14. Changes in speckle patterns induced by load application onto an optical fiber and its possible application for sensing purpose

    Science.gov (United States)

    Hasegawa, Makoto; Okumura, Jyun-ya; Hyuga, Akio

    2015-08-01

    Speckle patterns to be observed in an output light spot from an optical fiber are known to be changed due to external disturbances applied onto the optical fiber. In order to investigate possibilities of utilizing such changes in speckle patterns for sensing application, a certain load was applied onto a jacket-covered communication-grade multi-mode glass optical fiber through which laser beams emitted from a laser diode were propagating, and observed changes in speckle patterns in the output light spot from the optical fiber were investigated both as image data via a CCD camera and as an output voltage from a photovoltaic panel irradiated with the output light spot. The load was applied via a load application mechanism in which several ridges were provided onto opposite flat plates and a certain number of weights were placed there so that corrugated bending of the optical fiber was intentionally induced via load application due to the ridges. The obtained results showed that the number of speckles in the observed pattern in the output light spot as well as the output voltage from the photovoltaic panel irradiated with the output light spot showed decreases upon load application with relatively satisfactory repeatability. When the load was reduced, i.e., the weights were removed, the number of speckles then showed recovery. These results indicate there is a certain possibility of utilizing changes in speckle patterns for sensing of load application onto the optical fiber.

  15. Technical specification use and application

    International Nuclear Information System (INIS)

    Williamson, D.; Hoffman, D.R.

    1991-01-01

    Since early 1988 intensive efforts have been under way to produce a new and improved Standard Technical Specification. The program involves a coordinated effort between utility personnel representing each of the four nuclear steam supply system (NSSS) product lines, the NSSS vendors, and the US Nuclear Regulatory Commission (NRC). This intensive work period is actually the culmination of a decade of rhetoric about shortcomings of the existing technical specifications. Work on the improved technical specifications provided a unique forum for intense philosophical discussions between the users and enforcers of technical specifications, the outcome of which could have an impact on all licensees. Some of the more intriguing difficulties in the use and application of existing technical specifications, as well as discussions of the resolutions being applied in the improved technical specifications and the dilemmas remaining to be resolved are discussed in the paper

  16. Software engineering with application-specific languages

    Science.gov (United States)

    Campbell, David J.; Barker, Linda; Mitchell, Deborah; Pollack, Robert H.

    1993-01-01

    Application-Specific Languages (ASL's) are small, special-purpose languages that are targeted to solve a specific class of problems. Using ASL's on software development projects can provide considerable cost savings, reduce risk, and enhance quality and reliability. ASL's provide a platform for reuse within a project or across many projects and enable less-experienced programmers to tap into the expertise of application-area experts. ASL's have been used on several software development projects for the Space Shuttle Program. On these projects, the use of ASL's resulted in considerable cost savings over conventional development techniques. Two of these projects are described.

  17. Machine learning in geosciences and remote sensing

    Directory of Open Access Journals (Sweden)

    David J. Lary

    2016-01-01

    Full Text Available Learning incorporates a broad range of complex procedures. Machine learning (ML is a subdivision of artificial intelligence based on the biological learning process. The ML approach deals with the design of algorithms to learn from machine readable data. ML covers main domains such as data mining, difficult-to-program applications, and software applications. It is a collection of a variety of algorithms (e.g. neural networks, support vector machines, self-organizing map, decision trees, random forests, case-based reasoning, genetic programming, etc. that can provide multivariate, nonlinear, nonparametric regression or classification. The modeling capabilities of the ML-based methods have resulted in their extensive applications in science and engineering. Herein, the role of ML as an effective approach for solving problems in geosciences and remote sensing will be highlighted. The unique features of some of the ML techniques will be outlined with a specific attention to genetic programming paradigm. Furthermore, nonparametric regression and classification illustrative examples are presented to demonstrate the efficiency of ML for tackling the geosciences and remote sensing problems.

  18. Remote sensing for industrial applications in the energy business: digital territorial data integration for planning of overhead power transmission lines (OHTLs)

    Science.gov (United States)

    Terrazzino, Alfonso; Volponi, Silvia; Borgogno Mondino, Enrico

    2001-12-01

    An investigation has been carried out, concerning remote sensing techniques, in order to assess their potential application to the energy system business: the most interesting results concern a new approach, based on digital data from remote sensing, to infrastructures with a large territorial distribution: in particular OverHead Transmission Lines, for the high voltage transmission and distribution of electricity on large distances. Remote sensing could in principle be applied to all the phases of the system lifetime, from planning to design, to construction, management, monitoring and maintenance. In this article, a remote sensing based approach is presented, targeted to the line planning: optimization of OHTLs path and layout, according to different parameters (technical, environmental and industrial). Planning new OHTLs is of particular interest in emerging markets, where typically the cartography is missing or available only on low accuracy scale (1:50.000 and lower), often not updated. Multi- spectral images can be used to generate thematic maps of the region of interest for the planning (soil coverage). Digital Elevation Models (DEMs), allow the planners to easily access the morphologic information of the surface. Other auxiliary information from local laws, environmental instances, international (IEC) standards can be integrated in order to perform an accurate optimized path choice and preliminary spotting of the OHTLs. This operation is carried out by an ABB proprietary optimization algorithm: the output is a preliminary path that bests fits the optimization parameters of the line in a life cycle approach.

  19. Intelligent hand-portable proliferation sensing system

    International Nuclear Information System (INIS)

    Dieckman, S.L.; Bostrom, G.A.; Waterfield, L.G.; Jendrzejczyk, J.A.; Ahuja, S.; Raptis, A.C.

    1997-01-01

    Argonne National Laboratory, with support from DOE's Office of Nonproliferation and National Security, is currently developing an intelligent hand-portable sensor system. This system is designed specifically to support the intelligence community with the task of in-field sensing of nuclear proliferation and related activities. Based upon pulsed laser photo-ionization time-of-flight mass spectrometry technology, this novel sensing system is capable of quickly providing a molecular or atomic analysis of specimens. The system is capable of analyzing virtually any gas phase molecule, or molecule that can be induced into the gas phase by (for example) sample heating. This system has the unique advantages of providing unprecedented portability, excellent sensitivity, tremendous fieldability, and a high performance/cost ratio. The system will be capable of operating in a highly automated manner for on-site inspections, and easily modified for other applications such as perimeter monitoring aboard a plane or drone. The paper describes the sensing system

  20. Neutron Generators Developed at LBNL for Homeland Security and Imaging Applications

    International Nuclear Information System (INIS)

    Reijonen, Jani

    2006-01-01

    The Plasma and Ion Source Technology Group at Lawrence Berkeley National Laboratory has developed various types of advanced D-D (neutron energy 2.5 MeV), D-T (14 MeV) and T-T (0-9 MeV) neutron generators for wide range of applications. These applications include medical (Boron Neutron Capture Therapy), homeland security (Prompt Gamma Activation Analysis, Fast Neutron Activation Analysis and Pulsed Fast Neutron Transmission Spectroscopy) and planetary exploration with a sub-surface material characterization on Mars. These neutron generators utilize RF induction discharge to ionize the deuterium/tritium gas. This discharge method provides high plasma density for high output current, high atomic species from molecular gases, long life operation and versatility for various discharge chamber geometries. Four main neutron generator developments are discussed here: high neutron output co-axial neutron generator for BNCT applications, point neutron generator for security applications, compact and sub-compact axial neutron generator for elemental analysis applications. Current status of the neutron generator development with experimental data will be presented

  1. Spatial Indexing for Data Searching in Mobile Sensing Environments

    Directory of Open Access Journals (Sweden)

    Yuchao Zhou

    2017-06-01

    Full Text Available Data searching and retrieval is one of the fundamental functionalities in many Web of Things applications, which need to collect, process and analyze huge amounts of sensor stream data. The problem in fact has been well studied for data generated by sensors that are installed at fixed locations; however, challenges emerge along with the popularity of opportunistic sensing applications in which mobile sensors keep reporting observation and measurement data at variable intervals and changing geographical locations. To address these challenges, we develop the Geohash-Grid Tree, a spatial indexing technique specially designed for searching data integrated from heterogeneous sources in a mobile sensing environment. Results of the experiments on a real-world dataset collected from the SmartSantander smart city testbed show that the index structure allows efficient search based on spatial distance, range and time windows in a large time series database.

  2. Human behavior understanding in networked sensing theory and applications of networks of sensors

    CERN Document Server

    Spagnolo, Paolo; Distante, Cosimo

    2014-01-01

    This unique text/reference provides a broad overview of both the technical challenges in sensor network development, and the real-world applications of distributed sensing. Important aspects of distributed computing in large-scale networked sensor systems are analyzed in the context of human behavior understanding, including such topics as systems design tools and techniques, in-network signals, and information processing. Additionally, the book examines a varied range of application scenarios, covering surveillance, indexing and retrieval, patient care, industrial safety, social and ambient

  3. Development of an optical fiber SERS microprobe for minimally invasive sensing applications

    Science.gov (United States)

    Mamun, Md Abdullah Al; Juodkazis, Saulius; Mahadevan-Jansen, Anita; Stoddart, Paul R.

    2018-02-01

    Numerous potential biomedical sensing applications of surface-enhanced Raman scattering (SERS) have been reported, but its practical use has been limited by the lack of a robust sensing platform. Optical fiber SERS probes show great promise, but are limited by the prominent silica Raman background, which requires the use of bulky optics for filtering the signal collection and excitation delivery paths. In the present study, a SERS microprobe has been designed and developed to eliminate the bottlenecks outlined above. For efficient excitation and delivery of the SERS signal, both hollow core photonic crystal fiber and double clad fiber have been investigated. While the hollow core fiber was still found to have excessive silica background, the double clad fiber allows efficient signal collection via the multi-mode inner cladding. A micro filtering mechanism has been designed, which can be integrated into the tip of the optical fiber SERS probe, providing filtering to suppress silica Raman background and thus avoiding the need for bulky optics. The design also assists in the efficient collection of SERS signal from the sample by rejecting Rayleigh scattered light from the sample. Optical fiber cleaving using ultra-short laser pulses was tested for improved control of the fiber tip geometry. With this miniaturized and integrated filtering mechanism, it is expected that the developed probe will promote the use of SERS for minimally invasive biomedical monitoring and sensing applications in future. The probe could potentially be placed inside a small gauge hypodermic needle and would be compatible with handheld portable spectrometers.

  4. Millennials at Work: Investigating the Specificity of Generation Y versus Other Generations

    Directory of Open Access Journals (Sweden)

    Florina PÎNZARU

    2016-06-01

    Full Text Available The present study intends to discuss the psychological profile of Generation Y versus other generations.The differences between Millennials and other generations are addressed in terms of values, personality characteristics, and reactions under stress. The topicality and relevance of the research theme are supported by the fact that most of the people who are currently employed in companies all over the world are members of the Generation Y. This situation requires a proper investigation of the characteristics and specificity of the so-called Millennials with a view to provide organizations with pertinent inputs for designing well-informed policies and for smoothly integrating Millennials in the workplace. To this end, Hogan Assessments personality inventories were applied online to more than 1000 persons from Generation Y (up to 29 years old and more than 3000 persons from other generations (above 29 years old. Among others, the findings show that Millennials are motivated by recognition, public acknowledgment, instant and frequent positive feedback and gratification. As they need balance between personal and professional life, as well as a comfortable environment, they require a flexible work schedule, resent staying after hours. Being motivated to become part of various social networks, work in various teams, Millennials are able to easily find satisfaction in missions that involve interactions with new persons coming from different cultures and geographical areas. They are motivated by work in a nonconformist environment without strict rules and traditional work approaches, they tend to challenge the status quo and they will not be patient to keep the same job many years.

  5. Monitoring of petroleum hydrocarbon pollution in surface waters by a direct comparison of fluorescence spectroscopy and remote sensing techniques

    Energy Technology Data Exchange (ETDEWEB)

    De Domenico, L.; Crisafi, E. (Consiglio Nazionale delle Ricerche, Messina (Italy). Thalassografic Inst.); Magazzu, G. (Lecce Univ. (Italy). Dept. of Biology); Puglisi, A. (Mediterranean Oceanological Centre (CEOM), Palermo (Italy)); La Rosa, A. (Air-Survey, Italy s.r.l., Catania (Italy))

    1994-10-01

    Oil pollution levels were estimated using simultaneous acquisition of data from remote sensing by helicopter and fluorescence spectroscopy on surface samples. Laboratory quantitative analysis of hydrocarbons was used to calibrate remotely sensed data. The data were treated using a computer to generate a colour-coded map not attainable with conventional methods representing seawater pollution. Results were in good agreement and indicated that remotely sensed data together with those achieved by fluorescence spectroscopy are applicable for monitoring hydrocarbon pollution. (author)

  6. Monitoring of petroleum hydrocarbon pollution in surface waters by a direct comparison of fluorescence spectroscopy and remote sensing techniques

    International Nuclear Information System (INIS)

    De Domenico, L.; Crisafi, E.; La Rosa, A.

    1994-01-01

    Oil pollution levels were estimated using simultaneous acquisition of data from remote sensing by helicopter and fluorescence spectroscopy on surface samples. Laboratory quantitative analysis of hydrocarbons was used to calibrate remotely sensed data. The data were treated using a computer to generate a colour-coded map not attainable with conventional methods representing seawater pollution. Results were in good agreement and indicated that remotely sensed data together with those achieved by fluorescence spectroscopy are applicable for monitoring hydrocarbon pollution. (author)

  7. Application of Microwave Remote Sensing to Dynamic Testing of Stay-Cables

    Directory of Open Access Journals (Sweden)

    Carmelo Gentile

    2009-12-01

    Full Text Available Recent advances in radar techniques and systems have favoured the development of microwave interferometers, suitable for the non-contact vibration monitoring of large structures. The paper addresses the application of microwave remote sensing to the measurement of the vibration response in the stay-cables of cable-stayed bridges. The reliability and accuracy of the proposed technique were investigated by comparing the natural frequencies (and the cable tensions predicted from natural frequencies identified from radar data and the corresponding quantities obtained using more conventional techniques. The investigation, carried out on the cables of two different cable-stayed bridges, clearly highlights: (a the accuracy of the results provided by the microwave remote sensing; (b the simplicity of use of the radar technique (especially when compared with conventional approaches and its effectiveness to simultaneously measuring the dynamic response of all the stay-cables of an array.

  8. Generation of Tumor Antigen-Specific iPSC-Derived Thymic Emigrants Using a 3D Thymic Culture System

    Directory of Open Access Journals (Sweden)

    Raul Vizcardo

    2018-03-01

    Full Text Available Summary: Induced pluripotent stem cell (iPSC-derived T cells may provide future therapies for cancer patients, but those generated by current methods, such as the OP9/DLL1 system, have shown abnormalities that pose major barriers for clinical translation. Our data indicate that these iPSC-derived CD8 single-positive T cells are more like CD4+CD8+ double-positive T cells than mature naive T cells because they display phenotypic markers of developmental arrest and an innate-like phenotype after stimulation. We developed a 3D thymic culture system to avoid these aberrant developmental fates, generating a homogeneous subset of CD8αβ+ antigen-specific T cells, designated iPSC-derived thymic emigrants (iTEs. iTEs exhibit phenotypic and functional similarities to naive T cells both in vitro and in vivo, including the capacity for expansion, memory formation, and tumor suppression. These data illustrate the limitations of current methods and provide a tool to develop the next generation of iPSC-based antigen-specific immunotherapies. : A barrier for clinical application of iPSC-derived CD8 T cells using OP9/DLL1 is their abnormal biology. Vizcardo et al. show that a 3D thymic culture system enables the generation of a homogeneous antigen-specific T cell subset, named iTEs, which closely mimics naive T cells and exhibits potent anti-tumor activity. Keywords: thymopoiesis, T cell differentiation, iPSC differentiation, adoptive cell transfer, naïve T cell, recent rhymic emigrants, fetal thymus organ culture, immunotherapy, 3D culture, tumor antigen specific T cell

  9. Active sensing and its application to sensor node reconfiguration.

    Science.gov (United States)

    Lee, Sooyong

    2014-10-08

    This paper presents a perturbation/correlation-based active sensing method and its application to sensor node configuration for environment monitoring. Sensor networks are widely used as data measurement tools, especially in dangerous environments. For large scale environment monitoring, a large number of nodes is required. For optimal measurements, the placement of nodes is very important. Nonlinear spring force-based configuration is introduced. Perturbation/correlation-based estimation of the gradient is developed and it is much more robust because it does not require any differentiation. An algorithm for tuning the stiffness using the estimated gradient for node reconfiguration is presented. The performance of the proposed algorithm is discussed with simulation results.

  10. Fiber-top cantilever: a new generation of micromachined sensors for multipurpose applications

    NARCIS (Netherlands)

    Iannuzzi, D.; Deladi, S.; Schreuders, H.; Slaman, M.; Rector, J.H.; Elwenspoek, Michael Curt

    2006-01-01

    Fiber-top cantilevers are new monolithic devices obtained by carving a cantilever out of the edge of a single-mode optical fiber. Here we report evidences of their potential impact as sensing devices for multipurpose applications.

  11. Enhanced transduction of photonic crystal dye lasers for gas sensing via swelling polymer film

    DEFF Research Database (Denmark)

    Smith, Cameron; Lind, Johan Ulrik; Christiansen, Mads Brøkner

    2011-01-01

    We present the enhanced transduction of a photonic crystal dye laser for gas sensing via deposition of an additional swelling polymer film. Device operation involves swelling of the polymer film during exposure to specific gases, leading to a change in total effective refractive index. Experimental...... in its application to other intracavity-based detection schemes to enable gas sensing. © 2011 Optical Society of America....

  12. Mobile Sensing of Pedestrian Flocks in Indoor Environments using WiFi Signals

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun; Wirz, Martin; Roggen, Daniel

    2012-01-01

    a cohesive whole - specifically flocks - with clustering approaches operating on three different feature sets derived from WiFi signals which are comparatively analysed. Automatic detection of flocks has several important applications, including social and psychological sensing and emergency research studies...

  13. Green Functions For Multiple Scattering As Mathematical Tools For Dense Cloud Remote Sensing: Theory, With Passive And Active Applications

    International Nuclear Information System (INIS)

    Davis, A.B.; Marshak, A.; Cahalan, R.F.

    2001-01-01

    We survey radiative Green function theory (1) in linear transport theory where numerical procedures are required to obtain specific results and (2) in the photon diffusion limit (large optical depths) where it is analytically tractable, at least for homogeneous plane-parallel media. We then describe two recent applications of Green function theory to passive cloud remote sensing in the presence of strong three-dimensional transport effects. Finally, we describe recent instrumental breakthroughs in 'off-beam' cloud lidar which is based on direct measurements of radiative Green functions with special attention to the data collected during the Shuttle-based Lidar In-space Technology Experiment (LITE) mission.

  14. Microwave-heating synthesis and sensing applications of bright gold nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    He, Ding-Fei; Xiang, Yang; Wang, Xu [Department of Physics, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Yu, Xue-Feng, E-mail: yxf@whu.edu.cn [Department of Physics, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer We establish a microwave-heating method to synthesize protein-stabilized Au nanoclusters. Black-Right-Pointing-Pointer The obtained Au nanoclusters show bright red fluorescence. Black-Right-Pointing-Pointer The Au nanoclusters can be used as efficient fluorescence probe for Cu{sup 2+} ion sensing. -- Abstract: A rapid microwave-heating method has been developed for the synthesis of bright Au nanoclusters by using bull serum albumin as the template in an aqueous environment. The reaction time needed is only 7.0 min, and the weight of the products at one batch can reach 15 g. The Au nanoclusters exhibit bright fluorescence at {approx}613 nm with quantum yield of {approx}6.0%. By adjusting the pH value, the products can be controlled to precipitate or re-disperse in aqueous solution. Furthermore, the Au nanoclusters have exhibited high sensitivity and selectivity in the determination of Cu{sup 2+} ions in water. These results suggest an efficient method for obtaining metal nanoclusters for the detection and sensing applications.

  15. Improved in vivo performance of amperometric oxygen (PO2) sensing catheters via electrochemical nitric oxide generation/release.

    Science.gov (United States)

    Ren, Hang; Coughlin, Megan A; Major, Terry C; Aiello, Salvatore; Rojas Pena, Alvaro; Bartlett, Robert H; Meyerhoff, Mark E

    2015-08-18

    A novel electrochemically controlled release method for nitric oxide (NO) (based on electrochemical reduction of nitrite ions) is combined with an amperometric oxygen sensor within a dual lumen catheter configuration for the continuous in vivo sensing of the partial pressure of oxygen (PO2) in blood. The on-demand electrochemical NO generation/release method is shown to be fully compatible with amperometric PO2 sensing. The performance of the sensors is evaluated in rabbit veins and pig arteries for 7 and 21 h, respectively. Overall, the NO releasing sensors measure both venous and arterial PO2 values more accurately with an average deviation of -2 ± 11% and good correlation (R(2) = 0.97) with in vitro blood measurements, whereas the corresponding control sensors without NO release show an average deviation of -31 ± 28% and poor correlation (R(2) = 0.43) at time points >4 h after implantation in veins and >6 h in arteries. The NO releasing sensors induce less thrombus formation on the catheter surface in both veins and arteries (p < 0.05). This electrochemical NO generation/release method could offer a new and attractive means to improve the biocompatibility and performance of implantable chemical sensors.

  16. Condensate polisher application for PWR steam generator corrosion control

    International Nuclear Information System (INIS)

    Sawochka, S.G.; Leibovitz, J.; Siegwarth, D.P.; Pearl, W.L.

    1981-01-01

    The evolution of corrosion attack modes particularly in recirculating U-tube PWR steam generators has dictated a thorough review of the advantages and disadvantages of condensate polishing. Analytical modeling techniques to qualitatively predict crevice chemistry variations resulting from steam generator bulk water variations have allowed valuable insights to be developed. Modeling results complemented by steam generator and laboratory corrosion data will be employed to set condensate demineralizer effluent specifications consistent with control of steam generator corrosion. Laboratory and plant studies are being performed to demonstrate achievability of necessary effluent specifications. (author)

  17. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine.

    Science.gov (United States)

    Sun, Ming-Hui; Huang, Shao-Zhuan; Chen, Li-Hua; Li, Yu; Yang, Xiao-Yu; Yuan, Zhong-Yong; Su, Bao-Lian

    2016-06-13

    Over the last decade, significant effort has been devoted to the applications of hierarchically structured porous materials owing to their outstanding properties such as high surface area, excellent accessibility to active sites, and enhanced mass transport and diffusion. The hierarchy of porosity, structural, morphological and component levels in these materials is key for their high performance in all kinds of applications. The introduction of hierarchical porosity into materials has led to a significant improvement in the performance of materials. Herein, recent progress in the applications of hierarchically structured porous materials from energy conversion and storage, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine is reviewed. Their potential future applications are also highlighted. We particularly dwell on the relationship between hierarchically porous structures and properties, with examples of each type of hierarchically structured porous material according to its chemical composition and physical characteristics. The present review aims to open up a new avenue to guide the readers to quickly obtain in-depth knowledge of applications of hierarchically porous materials and to have a good idea about selecting and designing suitable hierarchically porous materials for a specific application. In addition to focusing on the applications of hierarchically porous materials, this comprehensive review could stimulate researchers to synthesize new advanced hierarchically porous solids.

  18. Accuracy Dimensions in Remote Sensing

    Science.gov (United States)

    Barsi, Á.; Kugler, Zs.; László, I.; Szabó, Gy.; Abdulmutalib, H. M.

    2018-04-01

    The technological developments in remote sensing (RS) during the past decade has contributed to a significant increase in the size of data user community. For this reason data quality issues in remote sensing face a significant increase in importance, particularly in the era of Big Earth data. Dozens of available sensors, hundreds of sophisticated data processing techniques, countless software tools assist the processing of RS data and contributes to a major increase in applications and users. In the past decades, scientific and technological community of spatial data environment were focusing on the evaluation of data quality elements computed for point, line, area geometry of vector and raster data. Stakeholders of data production commonly use standardised parameters to characterise the quality of their datasets. Yet their efforts to estimate the quality did not reach the general end-user community running heterogeneous applications who assume that their spatial data is error-free and best fitted to the specification standards. The non-specialist, general user group has very limited knowledge how spatial data meets their needs. These parameters forming the external quality dimensions implies that the same data system can be of different quality to different users. The large collection of the observed information is uncertain in a level that can decry the reliability of the applications. Based on prior paper of the authors (in cooperation within the Remote Sensing Data Quality working group of ISPRS), which established a taxonomy on the dimensions of data quality in GIS and remote sensing domains, this paper is aiming at focusing on measures of uncertainty in remote sensing data lifecycle, focusing on land cover mapping issues. In the paper we try to introduce how quality of the various combination of data and procedures can be summarized and how services fit the users' needs. The present paper gives the theoretic overview of the issue, besides selected, practice

  19. ACCURACY DIMENSIONS IN REMOTE SENSING

    Directory of Open Access Journals (Sweden)

    Á. Barsi

    2018-04-01

    Full Text Available The technological developments in remote sensing (RS during the past decade has contributed to a significant increase in the size of data user community. For this reason data quality issues in remote sensing face a significant increase in importance, particularly in the era of Big Earth data. Dozens of available sensors, hundreds of sophisticated data processing techniques, countless software tools assist the processing of RS data and contributes to a major increase in applications and users. In the past decades, scientific and technological community of spatial data environment were focusing on the evaluation of data quality elements computed for point, line, area geometry of vector and raster data. Stakeholders of data production commonly use standardised parameters to characterise the quality of their datasets. Yet their efforts to estimate the quality did not reach the general end-user community running heterogeneous applications who assume that their spatial data is error-free and best fitted to the specification standards. The non-specialist, general user group has very limited knowledge how spatial data meets their needs. These parameters forming the external quality dimensions implies that the same data system can be of different quality to different users. The large collection of the observed information is uncertain in a level that can decry the reliability of the applications. Based on prior paper of the authors (in cooperation within the Remote Sensing Data Quality working group of ISPRS, which established a taxonomy on the dimensions of data quality in GIS and remote sensing domains, this paper is aiming at focusing on measures of uncertainty in remote sensing data lifecycle, focusing on land cover mapping issues. In the paper we try to introduce how quality of the various combination of data and procedures can be summarized and how services fit the users’ needs. The present paper gives the theoretic overview of the issue, besides

  20. The application of the unmanned aerial vehicle remote sensing technology in the FAST project construction

    Science.gov (United States)

    Zhu, Boqin

    2015-08-01

    The purpose of using unmanned aerial vehicle (UAV) remote sensing application in Five-hundred-meter aperture spherical telescope (FAST) project is to dynamically record the construction process with high resolution image, monitor the environmental impact, and provide services for local environmental protection and the reserve immigrants. This paper introduces the use of UAV remote sensing system and the course design and implementation for the FAST site. Through the analysis of the time series data, we found that: (1) since the year 2012, the project has been widely carried out; (2) till 2013, the internal project begun to take shape;(3) engineering excavation scope was kept stable in 2014, and the initial scale of the FAST engineering construction has emerged as in the meantime, the vegetation recovery went well on the bare soil area; (4) in 2015, none environmental problems caused by engineering construction and other engineering geological disaster were found in the work area through the image interpretation of UAV images. This paper also suggested that the UAV technology need some improvements to fulfill the requirements of surveying and mapping specification., including a new data acquisition and processing measures assigned with the background of highly diverse elevation, usage of telephoto camera, hierarchical photography with different flying height, and adjustment with terrain using the joint empty three settlement method.

  1. Hyperspectral remote sensing

    CERN Document Server

    Eismann, Michael

    2012-01-01

    Hyperspectral remote sensing is an emerging, multidisciplinary field with diverse applications that builds on the principles of material spectroscopy, radiative transfer, imaging spectrometry, and hyperspectral data processing. This book provides a holistic treatment that captures its multidisciplinary nature, emphasizing the physical principles of hyperspectral remote sensing.

  2. Formal Specification Based Automatic Test Generation for Embedded Network Systems

    Directory of Open Access Journals (Sweden)

    Eun Hye Choi

    2014-01-01

    Full Text Available Embedded systems have become increasingly connected and communicate with each other, forming large-scaled and complicated network systems. To make their design and testing more reliable and robust, this paper proposes a formal specification language called SENS and a SENS-based automatic test generation tool called TGSENS. Our approach is summarized as follows: (1 A user describes requirements of target embedded network systems by logical property-based constraints using SENS. (2 Given SENS specifications, test cases are automatically generated using a SAT-based solver. Filtering mechanisms to select efficient test cases are also available in our tool. (3 In addition, given a testing goal by the user, test sequences are automatically extracted from exhaustive test cases. We’ve implemented our approach and conducted several experiments on practical case studies. Through the experiments, we confirmed the efficiency of our approach in design and test generation of real embedded air-conditioning network systems.

  3. An eFTD-VP framework for efficiently generating patient-specific anatomically detailed facial soft tissue FE mesh for craniomaxillofacial surgery simulation.

    Science.gov (United States)

    Zhang, Xiaoyan; Kim, Daeseung; Shen, Shunyao; Yuan, Peng; Liu, Siting; Tang, Zhen; Zhang, Guangming; Zhou, Xiaobo; Gateno, Jaime; Liebschner, Michael A K; Xia, James J

    2018-04-01

    Accurate surgical planning and prediction of craniomaxillofacial surgery outcome requires simulation of soft tissue changes following osteotomy. This can only be achieved by using an anatomically detailed facial soft tissue model. The current state-of-the-art of model generation is not appropriate to clinical applications due to the time-intensive nature of manual segmentation and volumetric mesh generation. The conventional patient-specific finite element (FE) mesh generation methods are to deform a template FE mesh to match the shape of a patient based on registration. However, these methods commonly produce element distortion. Additionally, the mesh density for patients depends on that of the template model. It could not be adjusted to conduct mesh density sensitivity analysis. In this study, we propose a new framework of patient-specific facial soft tissue FE mesh generation. The goal of the developed method is to efficiently generate a high-quality patient-specific hexahedral FE mesh with adjustable mesh density while preserving the accuracy in anatomical structure correspondence. Our FE mesh is generated by eFace template deformation followed by volumetric parametrization. First, the patient-specific anatomically detailed facial soft tissue model (including skin, mucosa, and muscles) is generated by deforming an eFace template model. The adaptation of the eFace template model is achieved by using a hybrid landmark-based morphing and dense surface fitting approach followed by a thin-plate spline interpolation. Then, high-quality hexahedral mesh is constructed by using volumetric parameterization. The user can control the resolution of hexahedron mesh to best reflect clinicians' need. Our approach was validated using 30 patient models and 4 visible human datasets. The generated patient-specific FE mesh showed high surface matching accuracy, element quality, and internal structure matching accuracy. They can be directly and effectively used for clinical

  4. Applications of patient-specific 3D printing in medicine.

    Science.gov (United States)

    Heller, Martin; Bauer, Heide-Katharina; Goetze, Elisabeth; Gielisch, Matthias; Roth, Klaus E; Drees, Philipp; Maier, Gerrit S; Dorweiler, Bernhard; Ghazy, Ahmed; Neufurth, Meik; Müller, Werner E G; Schröder, Heinz C; Wang, Xiaohong; Vahl, Christian-Friedrich; Al-Nawas, Bilal

    Already three decades ago, the potential of medical 3D printing (3DP) or rapid prototyping for improved patient treatment began to be recognized. Since then, more and more medical indications in different surgical disciplines have been improved by using this new technique. Numerous examples have demonstrated the enormous benefit of 3DP in the medical care of patients by, for example, planning complex surgical interventions preoperatively, reducing implantation steps and anesthesia times, and helping with intraoperative orientation. At the beginning of every individual 3D model, patient-specific data on the basis of computed tomography (CT), magnetic resonance imaging (MRI), or ultrasound data is generated, which is then digitalized and processed using computer-aided design/computer-aided manufacturing (CAD/CAM) software. Finally, the resulting data sets are used to generate 3D-printed models or even implants. There are a variety of different application areas in the various medical fields, eg, drill or positioning templates, or surgical guides in maxillofacial surgery, or patient-specific implants in orthopedics. Furthermore, in vascular surgery it is possible to visualize pathologies such as aortic aneurysms so as to improve the planning of surgical treatment. Although rapid prototyping of individual models and implants is already applied very successfully in regenerative medicine, most of the materials used for 3DP are not yet suitable for implantation in the body. Therefore, it will be necessary in future to develop novel therapy approaches and design new materials in order to completely reconstruct natural tissue.

  5. XML-Based Visual Specification of Multidisciplinary Applications

    Science.gov (United States)

    Al-Theneyan, Ahmed; Jakatdar, Amol; Mehrotra, Piyush; Zubair, Mohammad

    2001-01-01

    The advancements in the Internet and Web technologies have fueled a growing interest in developing a web-based distributed computing environment. We have designed and developed Arcade, a web-based environment for designing, executing, monitoring, and controlling distributed heterogeneous applications, which is easy to use and access, portable, and provides support through all phases of the application development and execution. A major focus of the environment is the specification of heterogeneous, multidisciplinary applications. In this paper we focus on the visual and script-based specification interface of Arcade. The web/browser-based visual interface is designed to be intuitive to use and can also be used for visual monitoring during execution. The script specification is based on XML to: (1) make it portable across different frameworks, and (2) make the development of our tools easier by using the existing freely available XML parsers and editors. There is a one-to-one correspondence between the visual and script-based interfaces allowing users to go back and forth between the two. To support this we have developed translators that translate a script-based specification to a visual-based specification, and vice-versa. These translators are integrated with our tools and are transparent to users.

  6. Generating Expressive Speech for Storytelling Applications

    OpenAIRE

    Bailly, G.; Theune, Mariet; Meijs, Koen; Campbell, N.; Hamza, W.; Heylen, Dirk K.J.; Ordelman, Roeland J.F.; Hoge, H.; Jianhua, T.

    2006-01-01

    Work on expressive speech synthesis has long focused on the expression of basic emotions. In recent years, however, interest in other expressive styles has been increasing. The research presented in this paper aims at the generation of a storytelling speaking style, which is suitable for storytelling applications and more in general, for applications aimed at children. Based on an analysis of human storytellers' speech, we designed and implemented a set of prosodic rules for converting "neutr...

  7. A flexible dual-mode proximity sensor based on cooperative sensing for robot skin applications

    Science.gov (United States)

    Huang, Ying; Cai, Xia; Kan, Wenqing; Qiu, Shihua; Guo, Xiaohui; Liu, Caixia; Liu, Ping

    2017-08-01

    A flexible dual-mode proximity sensor has been designed and implemented, which is capable of combining capacitive-resistive detection in this paper. The capacitive type proximity sensor detecting is defined as mode-C, and the resistive type proximity sensor detecting is defined as mode-R. The characteristics of the proximity sensor are as follows: (1) the theoretical mode is developed which indicates that this proximity sensor can reflect proximity information accurately; (2) both sensing modes are vertically integrated into a sandwich-like chip with an 8 mm × 12 mm unit area. The thickness of a mode-R sensing material (graphene nanoplatelets) and mode-C dielectric (the mixture of carbon black and silicone rubber) is 1 mm and 2.5 mm, respectively; (3) for mode-R, the linearity of temperature-resistance curve can achieve 0.998 in the temperature range from 25°C to 65°C. And for mode-C, various materials can be successfully detected with fast response and high reversibility. Meanwhile, the study compensated the influence of object temperature to ensure mode-C properly works. A cooperative sensing test shows that R-C dual modes sense effectively which can enlarge the sensing distance compared with the single mode proximity sensor. The fabrication of this sensor is convenient, and the integrity of a flexible sandwich-like structure based on dual modes is beneficial to form arrays, which is suitable to be used in skin-like sensing applications.

  8. Automatic Generation of Validated Specific Epitope Sets

    Directory of Open Access Journals (Sweden)

    Sebastian Carrasco Pro

    2015-01-01

    Full Text Available Accurate measurement of B and T cell responses is a valuable tool to study autoimmunity, allergies, immunity to pathogens, and host-pathogen interactions and assist in the design and evaluation of T cell vaccines and immunotherapies. In this context, it is desirable to elucidate a method to select validated reference sets of epitopes to allow detection of T and B cells. However, the ever-growing information contained in the Immune Epitope Database (IEDB and the differences in quality and subjects studied between epitope assays make this task complicated. In this study, we develop a novel method to automatically select reference epitope sets according to a categorization system employed by the IEDB. From the sets generated, three epitope sets (EBV, mycobacteria and dengue were experimentally validated by detection of T cell reactivity ex vivo from human donors. Furthermore, a web application that will potentially be implemented in the IEDB was created to allow users the capacity to generate customized epitope sets.

  9. Sensing our Environment: Remote sensing in a physics classroom

    Science.gov (United States)

    Isaacson, Sivan; Schüttler, Tobias; Cohen-Zada, Aviv L.; Blumberg, Dan G.; Girwidz, Raimund; Maman, Shimrit

    2017-04-01

    Remote sensing is defined as data acquisition of an object, deprived physical contact. Fundamentally, most remote sensing applications are referred to as the use of satellite- or aircraft-based sensor technologies to detect and classify objects mainly on Earth or other planets. In the last years there have been efforts to bring the important subject of remote sensing into schools, however, most of these attempts focused on geography disciplines - restricting to the applications of remote sensing and to a less extent the technique itself and the physics behind it. Optical remote sensing is based on physical principles and technical devices, which are very meaningful from a theoretical point of view as well as for "hands-on" teaching. Some main subjects are radiation, atom and molecular physics, spectroscopy, as well as optics and the semiconductor technology used in modern digital cameras. Thus two objectives were outlined for this project: 1) to investigate the possibilities of using remote sensing techniques in physics teaching, and 2) to identify its impact on pupil's interest in the field of natural sciences. This joint project of the DLR_School_Lab, Oberpfaffenhofen of the German Aerospace Center (DLR) and the Earth and Planetary Image Facility (EPIF) at BGU, was conducted in 2016. Thirty teenagers (ages 16-18) participated in the project and were exposed to the cutting edge methods of earth observation. The pupils on both sides participated in the project voluntarily, knowing that at least some of the project's work had to be done in their leisure time. The pupil's project started with a day at EPIF and DLR respectively, where the project task was explained to the participants and an introduction to remote sensing of vegetation was given. This was realized in lectures and in experimental workshops. During the following two months both groups took several measurements with modern optical remote sensing systems in their home region with a special focus on flora

  10. Remote sensing of on-road vehicle emissions: Mechanism, applications and a case study from Hong Kong

    Science.gov (United States)

    Huang, Yuhan; Organ, Bruce; Zhou, John L.; Surawski, Nic C.; Hong, Guang; Chan, Edward F. C.; Yam, Yat Shing

    2018-06-01

    Vehicle emissions are a major contributor to air pollution in cities and have serious health impacts to their inhabitants. On-road remote sensing is an effective and economic tool to monitor and control vehicle emissions. In this review, the mechanism, accuracy, advantages and limitations of remote sensing were introduced. Then the applications and major findings of remote sensing were critically reviewed. It was revealed that the emission distribution of on-road vehicles was highly skewed so that the dirtiest 10% vehicles accounted for over half of the total fleet emissions. Such findings highlighted the importance and effectiveness of using remote sensing for in situ identification of high-emitting vehicles for further inspection and maintenance programs. However, the accuracy and number of vehicles affected by screening programs were greatly dependent on the screening criteria. Remote sensing studies showed that the emissions of gasoline and diesel vehicles were significantly reduced in recent years, with the exception of NOx emissions of diesel vehicles in spite of greatly tightened automotive emission regulations. Thirdly, the experience and issues of using remote sensing for identifying high-emitting vehicles in Hong Kong (where remote sensing is a legislative instrument for enforcement purposes) were reported. That was followed by the first time ever identification and discussion of the issue of frequent false detection of diesel high-emitters using remote sensing. Finally, the challenges and future research directions of on-road remote sensing were elaborated.

  11. Assessment of a novel solid oxide fuel cell tri-generation system for building applications

    International Nuclear Information System (INIS)

    Elmer, Theo; Worall, Mark; Wu, Shenyi; Riffat, Saffa

    2016-01-01

    Highlights: • Experimental assessment of a first-of-its-kind tri-generation system. • High tri-generation efficiencies of 68–71%. • Inclusion of liquid desiccant provides efficiency increase of 9–15%. • System only economically viable with a government’s financial support. - Abstract: The paper provides a performance analysis assessment of a novel solid oxide fuel cell (SOFC) liquid desiccant tri-generation system for building applications. The work presented serves to build upon the current literature related to experimental evaluations of SOFC tri-generation systems, particularly in domestic built environment applications. The proposed SOFC liquid desiccant tri-generation system will be the first-of-its-kind. No research activity is reported on the integration of SOFC, or any fuel cell, with liquid desiccant air conditioning in a tri-generation system configuration. The novel tri-generation system is suited to applications that require simultaneous electrical power, heating and dehumidification/cooling. There are several specific benefits to the integration of SOFC and liquid desiccant air conditioning technology, including; very high operational electrical efficiencies even at low system capacities and the ability to utilise low-grade thermal energy in a (useful) cooling process. Furthermore, the novel tri-generation system has the potential to increase thermal energy utilisation and thus the access to the benefits achievable from on-site electrical generation, primarily; reduced emissions and operating costs. Using empirical SOFC and liquid desiccant component data, an energetic, economic and environmental performance analysis assessment of the novel system is presented. Significant conclusions from the work include: (1) SOFC and liquid desiccant are a viable technological pairing in the development of an efficient and effective tri-generation system. High tri-generation efficiencies in the range of 68–71% are attainable. (2) The inclusion of

  12. Precision farming - Technology assessment of site-specific input application in cereals

    DEFF Research Database (Denmark)

    Pedersen, Søren Marcus

    economic and socio-economic analysis. The current status of precision farming in Denmark is as follows: • The technology is primarily applicable for large farm holdings • Economic viability depends on site-specific yield variation • So far, the business economic benefits from most PF-practices are modest...... but it seems possible to obtain a socio-economic benefits from lime, variable rate herbicide and possibly nitrogen application • The technology may improve farm logistics, planning and crop quality (e.g. protein content) - but • The costs of implementing PF-practices are high and • Technical functionality...... several years before the next generation of precision farming systems will be available in practice. Meanwhile, those farmers who already have invested in yield monitors and soil analysis for precision farming should be able to use the current technology in the best possible way....

  13. SENSOR: a tool for the simulation of hyperspectral remote sensing systems

    Science.gov (United States)

    Börner, Anko; Wiest, Lorenz; Keller, Peter; Reulke, Ralf; Richter, Rolf; Schaepman, Michael; Schläpfer, Daniel

    The consistent end-to-end simulation of airborne and spaceborne earth remote sensing systems is an important task, and sometimes the only way for the adaptation and optimisation of a sensor and its observation conditions, the choice and test of algorithms for data processing, error estimation and the evaluation of the capabilities of the whole sensor system. The presented software simulator SENSOR (Software Environment for the Simulation of Optical Remote sensing systems) includes a full model of the sensor hardware, the observed scene, and the atmosphere in between. The simulator consists of three parts. The first part describes the geometrical relations between scene, sun, and the remote sensing system using a ray-tracing algorithm. The second part of the simulation environment considers the radiometry. It calculates the at-sensor radiance using a pre-calculated multidimensional lookup-table taking the atmospheric influence on the radiation into account. The third part consists of an optical and an electronic sensor model for the generation of digital images. Using SENSOR for an optimisation requires the additional application of task-specific data processing algorithms. The principle of the end-to-end-simulation approach is explained, all relevant concepts of SENSOR are discussed, and first examples of its use are given. The verification of SENSOR is demonstrated. This work is closely related to the Airborne PRISM Experiment (APEX), an airborne imaging spectrometer funded by the European Space Agency.

  14. Reproduction of the Culturally Specific Sense of Simile in Translation (a Case Study of the Fauna Name Ox, Bull and Tur in Ukrainian and English

    Directory of Open Access Journals (Sweden)

    Molchko Oksana

    2016-12-01

    Full Text Available Background: Nationally marked linguistic units turn to have been a living problem in current linguistic researches, Translation Studies in particular. As a unit of translation, simile is represented in speech by means of a certain culturally specific senses whose reproduction is paramount in the process of interlingual communication. The latter is characterized by its communication parties making use of interlingual communication means with culturally specific senses, as well as communicative strategies and tactics which are different from the ones they use within their culture. The reproduction of culturally loaded similes in the process of translation presupposes recognizing the semantics and pragmatics of its components on all the lingual levels, allows picking out the ways of their adequate verbalization with the target language means. Purpose: The purpose of the analysis is to establish find out the most successful ways of rendering culturally loaded similes into the target language. The purpose aims at completing the following tasks: 1 to find out the universal and nationally specific attributes of the fauna name bull in the Ukrainian and English languages; 2 to highlight the attributes which provide a high level of ethnocultural and ethnolingual information; 3 to single out the culturally specific senses actualized in the discourse and 4 to provide their Translation Studies analysis. Results: The novelty of the analysis is driven by the growing interest in the culturally oriented studies. The research is conducted by applying a complex approach with elements of structural, conceptual, contrastive, contextual and translation studies analyses. The research proves similes with a fauna component in Ukrainian and English to be based on both isomorphic and allomorphic associations. These associations exist between the denotative meaning of the lexemes and their connotative ties and are actualized in idiomatic and occasional similes. The reason

  15. Model Oriented Application Generation for Industrial Control Systems

    CERN Document Server

    Copy, B; Blanco Vinuela, E; Fernandez Adiego, B; Nogueira Ferandes, R; Prieto Barreiro, I

    2011-01-01

    The CERN Unified Industrial Control Systems framework (UNICOS) is a software generation methodology and a collection of development tools that standardizes the design of industrial control applications [1]. A Software Factory, named the UNICOS Application Builder (UAB) [2], was introduced to ease extensibility and maintenance of the framework, introducing a stable metamodel, a set of platformindependent models and platformspecific configurations against which code generation plugins and configuration generation plugins can be written. Such plugins currently target PLC programming environments (Schneider and SIEMENS PLCs) as well as SIEMENS WinCC Open Architecture SCADA (previously known as ETM PVSS) but are being expanded to cover more and more aspects of process control systems. We present what constitutes the UNICOS metamodel and the models in use, how these models can be used to capture knowledge about industrial control systems and how this knowledge can be leveraged to generate both code and configuratio...

  16. Generating Performance Models for Irregular Applications

    Energy Technology Data Exchange (ETDEWEB)

    Friese, Ryan D.; Tallent, Nathan R.; Vishnu, Abhinav; Kerbyson, Darren J.; Hoisie, Adolfy

    2017-05-30

    Many applications have irregular behavior --- non-uniform input data, input-dependent solvers, irregular memory accesses, unbiased branches --- that cannot be captured using today's automated performance modeling techniques. We describe new hierarchical critical path analyses for the \\Palm model generation tool. To create a model's structure, we capture tasks along representative MPI critical paths. We create a histogram of critical tasks with parameterized task arguments and instance counts. To model each task, we identify hot instruction-level sub-paths and model each sub-path based on data flow, instruction scheduling, and data locality. We describe application models that generate accurate predictions for strong scaling when varying CPU speed, cache speed, memory speed, and architecture. We present results for the Sweep3D neutron transport benchmark; Page Rank on multiple graphs; Support Vector Machine with pruning; and PFLOTRAN's reactive flow/transport solver with domain-induced load imbalance.

  17. Google Advertising Tools Cashing in with AdSense and AdWords

    CERN Document Server

    Davis, Harold

    2010-01-01

    With this book, you'll learn how to take full advantage of Google AdWords and AdSense, the sophisticated online advertising tools used by thousands of large and small businesses. This new edition provides a substantially updated guide to advertising on the Web, including how it works in general, and how Google's advertising programs in particular help you make money. You'll find everything you need to work with AdWords, which lets you generate text ads to accompany specific search term results, and AdSense, which automatically delivers precisely targeted text and image ads to your website.

  18. Application of specific gravity method for normalization of urinary excretion rates of radionuclides

    International Nuclear Information System (INIS)

    Thakur, Smita S.; Yadav, J.R.; Rao, D.D.

    2015-01-01

    In vitro bioassay monitoring is based on the determination of activity concentration in biological samples excreted from the body and is most suitable for alpha and beta emitters. For occupational workers handling actinides in reprocessing facilities possibility of internal exposure exists and urine assay is preferred method for monitoring such exposure. Urine samples collected for 24 h duration, is the true representative of bioassay sample and hence in the case of insufficient collection time, specific gravity applied method of normalization of urine sample is used. The present study reports the data of specific gravity generated for controlled group of Indian population by the use of densitometer and its application in urinary sample activity normalization. The average specific gravity value obtained for the controlled group was 1.008±0.005 gm/ml. (author)

  19. Oxide Dispersion Strengthened Fe(sub 3)Al-Based Alloy Tubes: Application Specific Development for the Power Generation Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kad, B.K.

    1999-07-01

    A detailed and comprehensive research and development methodology is being prescribed to produce Oxide Dispersion Strengthened (ODS)-Fe3Al thin walled tubes, using powder extrusion methodologies, for eventual use at operating temperatures of up to 1100C in the power generation industry. A particular 'in service application' anomaly of Fe3Al-based alloys is that the environmental resistance is maintained up to 1200C, well beyond where such alloys retain sufficient mechanical strength. Grain boundary creep processes at such high temperatures are anticipated to be the dominant failure mechanism.

  20. Applications of satellite 'hyper-sensing' in Chinese agriculture: Challenges and opportunities

    Science.gov (United States)

    Onojeghuo, Alex Okiemute; Blackburn, George Alan; Huang, Jingfeng; Kindred, Daniel; Huang, Wenjiang

    2018-02-01

    Ensuring adequate food supplies to a large and increasing population continues to be the key challenge for China. Given the increasing integration of China within global markets for agricultural products, this issue is of considerable significance for global food security. Over the last 50 years, China has increased the production of its staple crops mainly by increasing yield per unit land area. However, this has largely been achieved through inappropriate agricultural practices, which have caused environmental degradation, with deleterious consequences for future agricultural productivity. Hence, there is now a pressing need to intensify agriculture in China using practices that are environmentally and economically sustainable. Given the dynamic nature of crops over space and time, the use of remote sensing technology has proven to be a valuable asset providing end-users in many countries with information to guide sustainable agricultural practices. Recently, the field has experienced considerable technological advancements reflected in the availability of 'hyper-sensing' (high spectral, spatial and temporal) satellite imagery useful for monitoring, modelling and mapping of agricultural crops. However, there still remains a significant challenge in fully exploiting such technologies for addressing agricultural problems in China. This review paper evaluates the potential contributions of satellite 'hyper-sensing' to agriculture in China and identifies the opportunities and challenges for future work. We perform a critical evaluation of current capabilities in satellite 'hyper-sensing' in agriculture with an emphasis on Chinese sensors. Our analysis draws on a series of in-depth examples based on recent and on-going projects in China that are developing 'hyper-sensing' approaches for (i) measuring crop phenology parameters and predicting yields; (ii) specifying crop fertiliser requirements; (iii) optimising management responses to abiotic and biotic stress in crops

  1. Design considerations of a linear generator for a range extender application

    Directory of Open Access Journals (Sweden)

    Seo Un-Jae

    2015-12-01

    Full Text Available The free piston linear generator is a new range extender concept for the application in a full electric vehicle. The free piston engine driven linear generators can achieve high efficiency at part and full load which is suitable for the range extender application. This paper presents requirements for designing a linear generator deduced from a basic analysis of a free piston linear generator.

  2. Magnetic polymer nanocomposites for sensing applications

    KAUST Repository

    Alfadhel, Ahmed

    2014-11-01

    We report the fabrication and characterization of magnetic polymer nanocomposites for a wide range of sensing applications. The composites are made of magnetic nanowires (NWs) incorporated into polymers such as polydimethylsiloxane (PDMS) or UV sensitive SU-S. The developed composites utilize the permanent magnetic behavior of the NWs, allowing remote operation without an additional magnetic field to magnetize the NWs, which simplifies miniaturization and integration in microsystems. In addition, the nanocomposite benefits from the easy patterning of the polymer leading to a corrosion resistant, highly elastic, and permanent magnetic material that can be used to develop highly sensitive systems. Nanocomposite pillars are realized and integrated on magnetic sensor elements to achieve highly sensitive and power efficient flow and tactile sensors. The developed flow sensor can detect air and water flow at a power consumption as little as SO nW and a resolution up to 15 μm/s with easily modifiable performance. A tactile sensor element prototype is realized using the same concept, where a pressure range of 0-169 kPa is detected with a resolution of up to 1.3 kPa. © 2014 IEEE.

  3. Antiviral effects of herpes simplex virus specific anti-sense nucleic acids.

    Science.gov (United States)

    Cantin, E M; Podsakoff, G; Willey, D E; Openshaw, H

    1992-01-01

    We have targeted mRNA sequences encompassing the translation initiation codon of the essential herpes simplex virus type 1 (HSV-1) IE3 gene with three kinds of anti-sense molecule. Addition of a 15mer oligodeoxyribonucleoside methylphosphonate to tissue culture cells resulted in suppression of viral replication. HSV-1 replication was also inhibited in cultured cells containing anti-sense vectors expressing transcripts complementary to the IE3 mRNA. We have also constructed a ribozyme which upon base pairing with the target IE3 mRNA induces cleavage at the predicted GUC site. A major obstacle to anti-sense studies in animals is drug delivery of preformed antisense molecules to ganglionic neurons, the site of HSV latency and reactivation. We speculate as to how this may be accomplished through carrier compounds which are taken up by nerve terminals and transported by retrograde axoplasmic flow. By the same route, HSV itself may be used as an anti-sense vector.

  4. Can hyperspectral remote sensing detect species specific biochemicals?

    Science.gov (United States)

    Discrimination of a few plants scattered among many plants is a goal common to detection of agricultural weeds and invasive species. Detection of clandestinely grown Cannabis sativa L. is in many ways a special case of weed detection. Remote sensing technology provides an automated, computer based,...

  5. Nanoplasmonic and Microfluidic Devices for Biological Sensing

    KAUST Repository

    Perozziello, G.; Giugni, Andrea; Allione, Marco; Torre, Bruno; Das, Gobind; Coluccio, M. L.; Marini, Monica; Tirinato, Luca; Moretti, Manola; Limongi, Tania; Candeloro, P.; Di Fabrizio, Enzo M.

    2017-01-01

    In this chapter we report about recent advances on the development and application of 2D and 3D plasmonic nanostructures used for sensing of biological samples by Raman spectroscopy at unprecedented resolution of analysis. Besides, we explain how the integration of these nanodevices in a microfluidic apparatus can simplify the analysis of biological samples. In the first part we introduce and motivate the convenience of using nanoplasmonic enhancers and Raman spectroscopy for biological sensing, describing the phenomena and the current approaches to fabricate nanoplasmonic structures. In the second part, we explain how specific multi-element devices produce the optimal enhancement of the Raman scattering. We report cases where biological sensing of DNA was performed at few molecules level with nanometer spatial resolutions. Finally, we show an example of microfluidic device integrating plasmonic nanodevices to sort and drive biological samples, like living cells, towards the optical probe in order to obtain optimal conditions of analysis.

  6. Nanoplasmonic and Microfluidic Devices for Biological Sensing

    KAUST Repository

    Perozziello, G.

    2017-02-16

    In this chapter we report about recent advances on the development and application of 2D and 3D plasmonic nanostructures used for sensing of biological samples by Raman spectroscopy at unprecedented resolution of analysis. Besides, we explain how the integration of these nanodevices in a microfluidic apparatus can simplify the analysis of biological samples. In the first part we introduce and motivate the convenience of using nanoplasmonic enhancers and Raman spectroscopy for biological sensing, describing the phenomena and the current approaches to fabricate nanoplasmonic structures. In the second part, we explain how specific multi-element devices produce the optimal enhancement of the Raman scattering. We report cases where biological sensing of DNA was performed at few molecules level with nanometer spatial resolutions. Finally, we show an example of microfluidic device integrating plasmonic nanodevices to sort and drive biological samples, like living cells, towards the optical probe in order to obtain optimal conditions of analysis.

  7. Transformer Specification Language: A System for Generating Analyzers and Its Applications

    Science.gov (United States)

    2011-01-01

    kernel extensions without run-time checking. In Op. Syst. Design and Impl., 1996. [146] G. Nelson . A generalization of Dijkstra’s calculus . Trans. on...Creation of a UB Transformer Generator for ASI . . . . . . . . . . . . . . 87 3.3.5 Quantifier-Free Bit- Vector (QFBV) Semantics...Free Bit- Vector Logic with Finite Functions . . . . . . . . 108 4.2.2 PL : A Simple Source-Level Language . . . . . . . . . . . . . . . . . . . 111

  8. Applications and challenges of next-generation sequencing in Brassica species.

    Science.gov (United States)

    Wei, Lijuan; Xiao, Meili; Hayward, Alice; Fu, Donghui

    2013-12-01

    Next-generation sequencing (NGS) produces numerous (often millions) short DNA sequence reads, typically varying between 25 and 400 bp in length, at a relatively low cost and in a short time. This revolutionary technology is being increasingly applied in whole-genome, transcriptome, epigenome and small RNA sequencing, molecular marker and gene discovery, comparative and evolutionary genomics, and association studies. The Brassica genus comprises some of the most agro-economically important crops, providing abundant vegetables, condiments, fodder, oil and medicinal products. Many Brassica species have undergone the process of polyploidization, which makes their genomes exceptionally complex and can create difficulties in genomics research. NGS injects new vigor into Brassica research, yet also faces specific challenges in the analysis of complex crop genomes and traits. In this article, we review the advantages and limitations of different NGS technologies and their applications and challenges, using Brassica as an advanced model system for agronomically important, polyploid crops. Specifically, we focus on the use of NGS for genome resequencing, transcriptome sequencing, development of single-nucleotide polymorphism markers, and identification of novel microRNAs and their targets. We present trends and advances in NGS technology in relation to Brassica crop improvement, with wide application for sophisticated genomics research into agronomically important polyploid crops.

  9. Introductory remote sensing principles and concepts principles and concepts

    CERN Document Server

    Gibson, Paul

    2013-01-01

    Introduction to Remote Sensing Principles and Concepts provides a comprehensive student introduction to both the theory and application of remote sensing. This textbook* introduces the field of remote sensing and traces its historical development and evolution* presents detailed explanations of core remote sensing principles and concepts providing the theory required for a clear understanding of remotely sensed images.* describes important remote sensing platforms - including Landsat, SPOT and NOAA * examines and illustrates many of the applications of remotely sensed images in various fields.

  10. Microelectromechanical acceleration-sensing apparatus

    Science.gov (United States)

    Lee, Robb M [Albuquerque, NM; Shul, Randy J [Albuquerque, NM; Polosky, Marc A [Albuquerque, NM; Hoke, Darren A [Albuquerque, NM; Vernon, George E [Rio Rancho, NM

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  11. Mining software specifications methodologies and applications

    CERN Document Server

    Lo, David

    2011-01-01

    An emerging topic in software engineering and data mining, specification mining tackles software maintenance and reliability issues that cost economies billions of dollars each year. The first unified reference on the subject, Mining Software Specifications: Methodologies and Applications describes recent approaches for mining specifications of software systems. Experts in the field illustrate how to apply state-of-the-art data mining and machine learning techniques to address software engineering concerns. In the first set of chapters, the book introduces a number of studies on mining finite

  12. Reproduction of the Culturally Specific Sense of Simile in Translation (a Case Study of the Fauna Name Ox, Bull and Tur in Ukrainian and English)

    OpenAIRE

    Molchko Oksana

    2016-01-01

    Background: Nationally marked linguistic units turn to have been a living problem in current linguistic researches, Translation Studies in particular. As a unit of translation, simile is represented in speech by means of a certain culturally specific senses whose reproduction is paramount in the process of interlingual communication. The latter is characterized by its communication parties making use of interlingual communication means with culturally specific senses, as well as communicativ...

  13. Use of new tandem cation/anion exchange system with clinical-scale generators provides high specific volume solutions of technetium-99m and rhenium-188

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.; Beets, A.L.; Mirzadeh, S.; Guhlke, S.

    1998-01-01

    In this paper we describe the first application of our simple and inexpensive post-elution tandem cation/anion exchange column system which is based on generator elution with salts of weak acids such as ammonium acetate instead of saline solution to provide very high specific volume solutions of technetium-99m and rhenium-188 from clinical-scale molybdenum-99/technetium-99m generator prepared from low specific activity (n,y) molybdenum-99, and tungsten-188/rhenium-188 generators, respectively. Initial passage of the bolus through a strong cation exchange cartridge converts the ammonium acetate to acetic acid which is essentially not ionized at the acidic pH, allowing specific subsequent amine-type (QMA SepPak TM ) anion exchange cartridge column trapping of the microscopic levels of the pertechnetate or perrhenate. Subsequent elution of the anion cartridge with a small volume ( 500 mCi/mL) from the alumina-based tungsten-188/rhenium-188 generator. (author)

  14. DARLA: Data Assimilation and Remote Sensing for Littoral Applications

    Science.gov (United States)

    Jessup, A.; Holman, R. A.; Chickadel, C.; Elgar, S.; Farquharson, G.; Haller, M. C.; Kurapov, A. L.; Özkan-Haller, H. T.; Raubenheimer, B.; Thomson, J. M.

    2012-12-01

    DARLA is 5-year collaborative project that couples state-of-the-art remote sensing and in situ measurements with advanced data assimilation (DA) modeling to (a) evaluate and improve remote sensing retrieval algorithms for environmental parameters, (b) determine the extent to which remote sensing data can be used in place of in situ data in models, and (c) infer bathymetry for littoral environments by combining remotely-sensed parameters and data assimilation models. The project uses microwave, electro-optical, and infrared techniques to characterize the littoral ocean with a focus on wave and current parameters required for DA modeling. In conjunction with the RIVET (River and Inlets) Project, extensive in situ measurements provide ground truth for both the remote sensing retrieval algorithms and the DA modeling. Our goal is to use remote sensing to constrain data assimilation models of wave and circulation dynamics in a tidal inlet and surrounding beaches. We seek to improve environmental parameter estimation via remote sensing fusion, determine the success of using remote sensing data to drive DA models, and produce a dynamically consistent representation of the wave, circulation, and bathymetry fields in complex environments. The objectives are to test the following three hypotheses: 1. Environmental parameter estimation using remote sensing techniques can be significantly improved by fusion of multiple sensor products. 2. Data assimilation models can be adequately constrained (i.e., forced or guided) with environmental parameters derived from remote sensing measurements. 3. Bathymetry on open beaches, river mouths, and at tidal inlets can be inferred from a combination of remotely-sensed parameters and data assimilation models. Our approach is to conduct a series of field experiments combining remote sensing and in situ measurements to investigate signature physics and to gather data for developing and testing DA models. A preliminary experiment conducted at

  15. Interactive Adjustment of Regularization in SENSE and k-t SENSE Using Commodity Graphics Hardware

    DEFF Research Database (Denmark)

    Hansen, Michael Schacht; Atkinson, David; Sørensen, Thomas Sangild

    2008-01-01

    This project demonstrates that modern commodity graphics cards (GPUs) can be used to perform fast Cartesian SENSE and k-t SENSE reconstruction. Specifically, the SENSE inversion is accelerated by up to two orders of magnitude and is no longer the time-limiting step. The achieved reconstruction...

  16. Novel developments in mobile sensing based on the integration of microfluidic devices and smartphones.

    Science.gov (United States)

    Yang, Ke; Peretz-Soroka, Hagit; Liu, Yong; Lin, Francis

    2016-03-21

    Portable electronic devices and wireless communication systems enable a broad range of applications such as environmental and food safety monitoring, personalized medicine and healthcare management. Particularly, hybrid smartphone and microfluidic devices provide an integrated solution for the new generation of mobile sensing applications. Such mobile sensing based on microfluidic devices (broadly defined) and smartphones (MS(2)) offers a mobile laboratory for performing a wide range of bio-chemical detection and analysis functions such as water and food quality analysis, routine health tests and disease diagnosis. MS(2) offers significant advantages over traditional platforms in terms of test speed and control, low cost, mobility, ease-of-operation and data management. These improvements put MS(2) in a promising position in the fields of interdisciplinary basic and applied research. In particular, MS(2) enables applications to remote in-field testing, homecare, and healthcare in low-resource areas. The marriage of smartphones and microfluidic devices offers a powerful on-chip operating platform to enable various bio-chemical tests, remote sensing, data analysis and management in a mobile fashion. The implications of such integration are beyond telecommunication and microfluidic-related research and technology development. In this review, we will first provide the general background of microfluidic-based sensing, smartphone-based sensing, and their integration. Then, we will focus on several key application areas of MS(2) by systematically reviewing the important literature in each area. We will conclude by discussing our perspectives on the opportunities, issues and future directions of this emerging novel field.

  17. Novel Developments of Mobile Sensing Based on the Integration of Microfluidic Devices and Smartphone

    Science.gov (United States)

    Yang, Ke; Peretz-Soroka, Hagit; Liu, Yong; Lin, Francis

    2016-01-01

    Portable electronic devices and wireless communication systems enable a broad range of applications such as environmental and food safety monitoring, personalized medicine and healthcare management. Particularly, hybrid smartphone and microfluidic devices provide an integrated solution for the new generation of mobile sensing applications. Such mobile sensing based on microfluidic devices (broadly defined) and smartphones (MS2) offers a mobile laboratory for performing a wide range of bio-chemical detection and analysis functions such as water and food quality analysis, routine health tests and disease diagnosis. MS2 offers significant advantages over traditional platforms in terms of test speed and control, low cost, mobility, ease-of-operation and data management. These improvements put MS2 in a promising position in the fields of interdisciplinary basic and applied research. In particular, MS2 enables applications to remote infield testing, homecare, and healthcare in low-resource areas. The marriage of smartphones and microfluidic devices offers a powerful on-chip operating platform to enable various bio-chemical tests, remote sensing, data analysis and management in a mobile fashion. The implications of such integration are beyond telecommunication and microfluidic-related research and technology development. In this review, we will first provide the general background of microfluidic-based sensing, smartphone-based sensing, and their integration. Then, we will focus on several key application areas of MS2 by systematically reviewing the important literature in each area. We will conclude by discussing our perspectives on the opportunities, issues and future directions of this emerging novel field. PMID:26899264

  18. Infrared laser spectroscopic trace gas sensing

    Science.gov (United States)

    Sigrist, Markus

    2016-04-01

    Chemical sensing and analyses of gas samples by laser spectroscopic methods are attractive owing to several advantages such as high sensitivity and specificity, large dynamic range, multi-component capability, and lack of pretreatment or preconcentration procedures. The preferred wavelength range comprises the fundamental molecular absorption range in the mid-infared between 3 and 15 μm, whereas the near-infrared range covers the (10-100 times weaker) higher harmonics and combination bands. The availability of near-infrared and, particularly, of broadly tunable mid-infrared sources like external cavity quantum cascade lasers (EC-QCLs), interband cascade lasers (ICLs), difference frequency generation (DFG), optical parametric oscillators (OPOs), recent developments of diode-pumped lead salt semiconductor lasers, of supercontinuum sources or of frequency combs have eased the implementation of laser-based sensing devices. Sensitive techniques for molecular absorption measurements include multipass absorption, various configurations of cavity-enhanced techniques such as cavity ringdown (CRD), or of photoacoustic spectroscopy (PAS) including quartz-enhanced (QEPAS) or cantilever-enhanced (CEPAS) techniques. The application requirements finally determine the optimum selection of laser source and detection scheme. In this tutorial talk I shall discuss the basic principles, present various experimental setups and illustrate the performance of selected systems for chemical sensing of selected key atmospheric species. Applications include an early example of continuous vehicle emission measurements with a mobile CO2-laser PAS system [1]. The fast analysis of C1-C4 alkanes at sub-ppm concentrations in gas mixtures is of great interest for the petrochemical industry and was recently achieved with a new type of mid-infrared diode-pumped piezoelectrically tuned lead salt vertical external cavity surface emitting laser (VECSEL) [2]. Another example concerns measurements on short

  19. A novel mobile dual-wavelength laser altimetry system for improved site-specific Nitrogen fertilizer applications

    Science.gov (United States)

    Eitel, J.; Magney, T. S.; Vierling, L. A.; Brown, T. T.; Huggins, D. R.

    2012-12-01

    Reducing fertilizer inputs while maintaining yield would increase farmer's profits and similarly lessen the adverse environmental effects of production agriculture. The development of technologies that allow precise, site-specific application of Nitrogen (N) fertilizer has thus been an important research goal over the past decades. Remote sensing of foliar crop properties and function with tractor-mountable optical sensors has thought to be useful to optimize N fertilizer applications. However, on-the-go sensing of foliar crop properties and function has proven difficult, particularly during early crop growth stages when fertilizer decisions are often made. This difficulty arises from the fact that the spectral signal measured by on-the-go sensors is dominated by soil reflectance during early crop growth stages. Here, we present the basic principles behind a novel, dual-wavelength, tractor mountable laser altimetry system that measures the laser return intensity of the reflected green and red laser light. The green (532 nm) and the red (660 nm) wavelength combination allows calculation of a modified Photochemical Reflectance Index (mPRI) that have shown to be sensitive to both crop function and foliar chemistry. The small field of view of the laser points (diameter: 4 mm) combined with its high sampling rate (1000 points sec-1) allows vegetation returns to be isolated from ground returns by using simple thresholds. First tests relating foliar N of winter wheat (Triticum aestivum L.) with laser derived mPRI are promising (r2 = 0.72). Further research is needed to test the relationship between laser derived spectral indices and crop function.

  20. Multiple Fano-Like MIM Plasmonic Structure Based on Triangular Resonator for Refractive Index Sensing

    OpenAIRE

    Jankovic, Nikolina; Cselyuszka, Norbert

    2018-01-01

    In this paper, we present a Fano metal-insulator-metal (MIM) structure based on an isosceles triangular cavity resonator for refractive index sensing applications. Due to the specific feeding scheme and asymmetry introduced in the triangular cavity, the resonator exhibits four sharp Fano-like resonances. The behavior of the structure is analyzed in detail and its sensing capabilities demonstrated through the responses for various refractive indices. The results show that the sensor has very g...

  1. Automated Cell Enrichment of Cytomegalovirus-specific T cells for Clinical Applications using the Cytokine-capture System.

    Science.gov (United States)

    Kumaresan, Pappanaicken; Figliola, Mathew; Moyes, Judy S; Huls, M Helen; Tewari, Priti; Shpall, Elizabeth J; Champlin, Richard; Cooper, Laurence J N

    2015-10-05

    The adoptive transfer of pathogen-specific T cells can be used to prevent and treat opportunistic infections such as cytomegalovirus (CMV) infection occurring after allogeneic hematopoietic stem-cell transplantation. Viral-specific T cells from allogeneic donors, including third party donors, can be propagated ex vivo in compliance with current good manufacturing practice (cGMP), employing repeated rounds of antigen-driven stimulation to selectively propagate desired T cells. The identification and isolation of antigen-specific T cells can also be undertaken based upon the cytokine capture system of T cells that have been activated to secrete gamma-interferon (IFN-γ). However, widespread human application of the cytokine capture system (CCS) to help restore immunity has been limited as the production process is time-consuming and requires a skilled operator. The development of a second-generation cell enrichment device such as CliniMACS Prodigy now enables investigators to generate viral-specific T cells using an automated, less labor-intensive system. This device separates magnetically labeled cells from unlabeled cells using magnetic activated cell sorting technology to generate clinical-grade products, is engineered as a closed system and can be accessed and operated on the benchtop. We demonstrate the operation of this new automated cell enrichment device to manufacture CMV pp65-specific T cells obtained from a steady-state apheresis product obtained from a CMV seropositive donor. These isolated T cells can then be directly infused into a patient under institutional and federal regulatory supervision. All the bio-processing steps including removal of red blood cells, stimulation of T cells, separation of antigen-specific T cells, purification, and washing are fully automated. Devices such as this raise the possibility that T cells for human application can be manufactured outside of dedicated good manufacturing practice (GMP) facilities and instead be produced

  2. Intelligent environmental sensing

    CERN Document Server

    Mukhopadhyay, Subhas

    2015-01-01

    Developing environmental sensing and monitoring technologies become essential especially for industries that may cause severe contamination. Intelligent environmental sensing uses novel sensor techniques, intelligent signal and data processing algorithms, and wireless sensor networks to enhance environmental sensing and monitoring. It finds applications in many environmental problems such as oil and gas, water quality, and agriculture. This book addresses issues related to three main approaches to intelligent environmental sensing and discusses their latest technological developments. Key contents of the book include:   Agricultural monitoring Classification, detection, and estimation Data fusion Geological monitoring Motor monitoring Multi-sensor systems Oil reservoirs monitoring Sensor motes Water quality monitoring Wireless sensor network protocol  

  3. 46 CFR 90.05-5 - Specific application noted in text.

    Science.gov (United States)

    2010-10-01

    ... to which the text pertains, and in many cases limits the application of the text to vessels... 46 Shipping 4 2010-10-01 2010-10-01 false Specific application noted in text. 90.05-5 Section 90... VESSELS GENERAL PROVISIONS Application § 90.05-5 Specific application noted in text. (a) At the beginning...

  4. 46 CFR 70.05-5 - Specific application noted in text.

    Science.gov (United States)

    2010-10-01

    ... the text pertains, and in many cases limits the application of the text to vessels contracted for... 46 Shipping 3 2010-10-01 2010-10-01 false Specific application noted in text. 70.05-5 Section 70... PROVISIONS Application § 70.05-5 Specific application noted in text. (a) At the beginning of the various...

  5. Applications of microwave remote sensing of soil moisture for water resources and agriculture

    International Nuclear Information System (INIS)

    Engman, E.T.

    1991-01-01

    There has been significant progress in the application of microwave remote sensing for measuring soil moisture. Both passive and active systems have demonstrated the capability to measure soil moisture, and there have been a number of studies using aircraft and spaceborne data that have demonstrated its usefulness for agricultural and hydrologic applications. However, there are still several unresolved questions regarding the optimal instrument configuration and other target characteristics such as roughness and vegetation. In addition, the most likely disciplines for using these data, agriculture and hydrology, do not currently possess adequate models or procedures to use this new technology

  6. 46 CFR 24.05-5 - Specific application noted in text.

    Science.gov (United States)

    2010-10-01

    ..., and in many cases limits the application of the text to vessels contracted for before or after a... 46 Shipping 1 2010-10-01 2010-10-01 false Specific application noted in text. 24.05-5 Section 24... Application § 24.05-5 Specific application noted in text. (a) At the beginning of the various parts, subparts...

  7. 46 CFR 188.05-5 - Specific application noted in text.

    Science.gov (United States)

    2010-10-01

    ... which the text pertains, and in many cases limits the application of the text to vessels contracted for... 46 Shipping 7 2010-10-01 2010-10-01 false Specific application noted in text. 188.05-5 Section 188... GENERAL PROVISIONS Application § 188.05-5 Specific application noted in text. (a) At the beginning of the...

  8. Isotope powered Stirling generator for terrestrial applications

    International Nuclear Information System (INIS)

    Tingey, G.L.; Sorensen, G.C.; Ross, B.A.

    1995-01-01

    An electric power supply, small enough to be man-portable, is being developed for remote, terrestrial applications. This system is designed for an operating lifetime of five years without maintenance or refueling. A small Radioisotope Stirling Generator (RSG) has been developed. The energy source of the generator is a 60 watt plutonium-238 fuel clad used in the General Purpose Heat Sources (GPHS) developed for space applications. A free piston Stirling Engine drives a linear alternator to convert the heat to power. The system weighs about 7.5 kg and produces 11 watts AC power with a conversion efficiency of 18.5%. Two engine models have been designed, fabricated, and tested to date: (a) a developmental model instrumented to confirm and test parameters, and (b) an electrically heated model with an electrical heater equipped power input leads. Critical components have been tested for 10,000 to 20,000 hours. One complete generator has been operating for over 11,000 hours. Radioisotope heated prototypes are expected to be fabricated and tested in late 1995

  9. Nanodevices for generating power from molecules and batteryless sensing

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yinmin; Wang, Xianying; Hamza, Alex V.

    2017-01-03

    A nanoconverter or nanosensor is disclosed capable of directly generating electricity through physisorption interactions with molecules that are dipole containing organic species in a molecule interaction zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or randomly-aligned on a substrate. Epoxy or other nonconductive polymers are used to seal portions of the nanowires or nanotubes to create molecule noninteraction zones. By correlating certain molecule species to voltages generated, a nanosensor may quickly identify which species is detected. Nanoconverters in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries. In some cases breath, from human or other life forms, contain sufficient molecules to power a nanoconverter. A membrane permeable to certain molecules around the molecule interaction zone increases specific molecule nanosensor selectivity response.

  10. Utility estimation of the application of auditory-visual-tactile sense feedback in respiratory gated radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jung Hun; KIm, Byeong Jin; Roh, Shi Won; Lee, Hyeon Chan; Jang, Hyeong Jun; Kim, Hoi Nam [Dept. of Radiation Oncology, Biomedical Engineering, Seoul St. Mary' s Hospital, Seoul (Korea, Republic of); Song, Jae Hoon [Dept. of Biomedical Engineering, Seoul St. Mary' s Hospital, Seoul (Korea, Republic of); Kim, Young Jae [Dept. of Radiological Technology, Gwang Yang Health Collage, Gwangyang (Korea, Republic of)

    2013-03-15

    The purpose of this study was to evaluate the possibility to optimize the gated treatment delivery time and maintenance of stable respiratory by the introduction of breath with the assistance of auditory-visual-tactile sense. The experimenter's respiration were measured by ANZAI 4D system. We obtained natural breathing signal, monitor-induced breathing signal, monitor and ventilator-induced breathing signal, and breath-hold signal using real time monitor during 10 minutes beam-on-time. In order to check the stability of respiratory signals distributed in each group were compared with means, standard deviation, variation value, beam{sub t}ime of the respiratory signal. The stability of each respiratory was measured in consideration of deviation change studied in each respiratory time lapse. As a result of an analysis of respiratory signal, all experimenters has showed that breathing signal used both Real time monitor and Ventilator was the most stable and shortest time. In this study, it was evaluated that respiratory gated radiation therapy with auditory-visual-tactual sense and without auditory-visual-tactual sense feedback. The study showed that respiratory gated radiation therapy delivery time could significantly be improved by the application of video feedback when this is combined with audio-tactual sense assistance. This delivery technique did prove its feasibility to limit the tumor motion during treatment delivery for all patients to a defined value while maintaining the accuracy and proved the applicability of the technique in a conventional clinical schedule.

  11. Utility estimation of the application of auditory-visual-tactile sense feedback in respiratory gated radiation therapy

    International Nuclear Information System (INIS)

    Jo, Jung Hun; KIm, Byeong Jin; Roh, Shi Won; Lee, Hyeon Chan; Jang, Hyeong Jun; Kim, Hoi Nam; Song, Jae Hoon; Kim, Young Jae

    2013-01-01

    The purpose of this study was to evaluate the possibility to optimize the gated treatment delivery time and maintenance of stable respiratory by the introduction of breath with the assistance of auditory-visual-tactile sense. The experimenter's respiration were measured by ANZAI 4D system. We obtained natural breathing signal, monitor-induced breathing signal, monitor and ventilator-induced breathing signal, and breath-hold signal using real time monitor during 10 minutes beam-on-time. In order to check the stability of respiratory signals distributed in each group were compared with means, standard deviation, variation value, beam t ime of the respiratory signal. The stability of each respiratory was measured in consideration of deviation change studied in each respiratory time lapse. As a result of an analysis of respiratory signal, all experimenters has showed that breathing signal used both Real time monitor and Ventilator was the most stable and shortest time. In this study, it was evaluated that respiratory gated radiation therapy with auditory-visual-tactual sense and without auditory-visual-tactual sense feedback. The study showed that respiratory gated radiation therapy delivery time could significantly be improved by the application of video feedback when this is combined with audio-tactual sense assistance. This delivery technique did prove its feasibility to limit the tumor motion during treatment delivery for all patients to a defined value while maintaining the accuracy and proved the applicability of the technique in a conventional clinical schedule

  12. What Sensing Tells Us: Towards a Formal Theory of Testing for Dynamical Systems

    Science.gov (United States)

    McIlraith, Sheila; Scherl, Richard

    2005-01-01

    Just as actions can have indirect effects on the state of the world, so too can sensing actions have indirect effects on an agent's state of knowledge. In this paper, we investigate "what sensing actions tell us", i.e., what an agent comes to know indirectly from the outcome of a sensing action, given knowledge of its actions and state constraints that hold in the world. To this end, we propose a formalization of the notion of testing within a dialect of the situation calculus that includes knowledge and sensing actions. Realizing this formalization requires addressing the ramification problem for sensing actions. We formalize simple tests as sensing actions. Complex tests are expressed in the logic programming language Golog. We examine what it means to perform a test, and how the outcome of a test affects an agent's state of knowledge. Finally, we propose automated reasoning techniques for test generation and complex-test verification, under certain restrictions. The work presented in this paper is relevant to a number of application domains including diagnostic problem solving, natural language understanding, plan recognition, and active vision.

  13. Application of Compressive Sensing to Gravitational Microlensing Data and Implications for Miniaturized Space Observatories

    Science.gov (United States)

    Korde-Patel, Asmita (Inventor); Barry, Richard K.; Mohsenin, Tinoosh

    2016-01-01

    Compressive Sensing is a technique for simultaneous acquisition and compression of data that is sparse or can be made sparse in some domain. It is currently under intense development and has been profitably employed for industrial and medical applications. We here describe the use of this technique for the processing of astronomical data. We outline the procedure as applied to exoplanet gravitational microlensing and analyze measurement results and uncertainty values. We describe implications for on-spacecraft data processing for space observatories. Our findings suggest that application of these techniques may yield significant, enabling benefits especially for power and volume-limited space applications such as miniaturized or micro-constellation satellites.

  14. Application of Next-generation Sequencing in Clinical Molecular Diagnostics

    Directory of Open Access Journals (Sweden)

    Morteza Seifi

    2017-05-01

    Full Text Available ABSTRACT Next-generation sequencing (NGS is the catch all terms that used to explain several different modern sequencing technologies which let us to sequence nucleic acids much more rapidly and cheaply than the formerly used Sanger sequencing, and as such have revolutionized the study of molecular biology and genomics with excellent resolution and accuracy. Over the past years, many academic companies and institutions have continued technological advances to expand NGS applications from research to the clinic. In this review, the performance and technical features of current NGS platforms were described. Furthermore, advances in the applying of NGS technologies towards the progress of clinical molecular diagnostics were emphasized. General advantages and disadvantages of each sequencing system are summarized and compared to guide the selection of NGS platforms for specific research aims.

  15. [Application of hyperspectral remote sensing in research on ecological boundary in north farming-pasturing transition in China].

    Science.gov (United States)

    Wang, Hong-Mei; Wang, Kun; Xie, Ying-Zhong

    2009-06-01

    Studies of ecological boundaries are important and have become a rapidly evolving part of contemporary ecology. The ecotones are dynamic and play several functional roles in ecosystem dynamics, and the changes in their locations can be used as an indicator of environment changes, and for these reasons, ecotones have recently become a focus of investigation of landscape ecology and global climate change. As the interest in ecotone increases, there is an increased need for formal techniques to detect it. Hence, to better study and understand the functional roles and dynamics of ecotones in ecosystem, we need quantitative methods to characterize them. In the semi-arid region of northern China, there exists a farming-pasturing transition resulting from grassland reclamation and deforestation. With the fragmentation of grassland landscape, the structure and function of the grassland ecosystem are changing. Given this perspective; new-image processing approaches are needed to focus on transition themselves. Hyperspectral remote sensing data, compared with wide-band remote sensing data, has the advantage of high spectral resolution. Hyperspectral remote sensing can be used to visualize transitional zones and to detect ecotone based on surface properties (e. g. vegetation, soil type, and soil moisture etc). In this paper, the methods of hyperspectral remote sensing information processing, spectral analysis and its application in detecting the vegetation classifications, vegetation growth state, estimating the canopy biochemical characteristics, soil moisture, soil organic matter etc are reviewed in detail. Finally the paper involves further application of hyperspectral remote sensing information in research on local climate in ecological boundary in north farming-pasturing transition in China.

  16. Development of a quartz digital accelerometer for environmental sensing and navigation applications

    International Nuclear Information System (INIS)

    Kass, W.J.; Vianco, P.T.

    1993-03-01

    A quartz digital accelerometer has been developed which uses double ended tuning forks as the active sensing elements. The authors have demonstrated the ability of this accelerometer to be capable of acceleration measurements between ±150G with ±0.5G accuracy. They have further refined the original design and assembly processes to produce accelerometers with < 1mG stability in inertial measurement applications. This report covers the development, design, processing, assembly, and testing of these devices

  17. Research of hydroelectric generating set low-frequency vibration monitoring system based on optical fiber sensing

    Science.gov (United States)

    Min, Li; Zhang, Xiaolei; Zhang, Faxiang; Sun, Zhihui; Li, ShuJuan; Wang, Meng; Wang, Chang

    2017-10-01

    In order to satisfy hydroelectric generating set low-frequency vibration monitoring, the design of Passive low-frequency vibration monitoring system based on Optical fiber sensing in this paper. The hardware of the system adopts the passive optical fiber grating sensor and unbalanced-Michelson interferometer. The software system is used to programming by Labview software and finishing the control of system. The experiment show that this system has good performance on the standard vibration testing-platform and it meets system requirements. The frequency of the monitoring system can be as low as 0.2Hz and the resolution is 0.01Hz.

  18. Application of remote sensing to agricultural field trials

    NARCIS (Netherlands)

    Clevers, J.G.P.W.

    1986-01-01

    Remote sensing techniques enable quantitative information about a field trial to be obtained instantaneously and non-destructively. The aim of this study was to identify a method that can reduce inaccuracies in field trial analysis, and to identify how remote sensing can support and/or

  19. Remote sensing observation used in offshore wind energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Pena Diaz, Alfredo; Christiansen, Merete Bruun

    2008-01-01

    Remote sensing observations used in offshore wind energy are described in three parts: ground-based techniques and applications, airborne techniques and applications, and satellite-based techniques and applications. Ground-based remote sensing of winds is relevant, in particular, for new large wind...

  20. Gamma rays shielding and sensing application of some rare earth doped lead-alumino-phosphate glasses

    Science.gov (United States)

    Kaur, Preet; Singh, Devinder; Singh, Tejbir

    2018-03-01

    Seven rare earth (Sm3+, Eu3+ and Nd3+) doped lead alumino phosphate glasses were prepared. The protective and sensing measures from gamma rays were analysed in terms of parameters viz. density (ρ), refractive index, energy band gap (Eg), mean free path (mfp), effective atomic number (Zeff) and buildup factors (energy absorption EABF as well as exposure buildup factor EBF). The energy dependent parameters (mfp, Zeff, EABF and EBF) were investigated in the energy region from 15 keV to 15 MeV. EABF and EBF values were observed to be maximum in the intermediate energy region. Besides, the EABF and EBF values for the prepared samples are shown to have strong dependence on chemical composition of the glass at lower energy, whereas, it is almost independent of chemical composition in higher energy region. The prepared glass samples are found to have potential applications in radiation shielding as well as radiation sensing, which further find numerous applications in the field of medicine and industry.

  1. Generating Virtual Eye Contacts Through Online Synchronous Communications in Virtual Classroom Applications

    Directory of Open Access Journals (Sweden)

    T. Volkan YUZER

    2007-01-01

    Full Text Available The Internet usage has been increasing among persons in the worldwide. This situation highlights that the number of potential distance learners has been increasing in the Internet society. Besides, the terms and concepts of the Internet environments become to be spread out in this society like virtual reality. It is also possible to explain the characters of the Internet clearly via generating relatively new terms or concepts. “Virtual eye contact” concept is one of these. In this article, this concept is considered with a specific application of synchronous internet-based e-learning environments which is virtual classroom platform application. Explanation, technological infrastructure and benefits of this concept and training of the trainers to use this nonverbal communication type more powerfully are explained and discussed.

  2. Assessment of fiber optic sensors and other advanced sensing technologies for nuclear power plants

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    1996-01-01

    As a result of problems such as calibration drift in nuclear plant pressure sensors and the recent oil loss syndrome in some models of Rosemount pressure transmitters, the nuclear industry has become interested in fiber optic pressure sensors. Fiber optic sensing technologies have been considered for the development of advanced instrumentation and control (I ampersand C) systems for the next generation of reactors and in older plants which are retrofitted with new I ampersand C systems. This paper presents the results of a six-month Phase I study to establish the state-of-the-art in fiber optic pressure sensing. This study involved a literature review, contact with experts in the field, an industrial survey, a site visit to a fiber optic sensor manufacturer, and laboratory testing of a fiber optic pressure sensor. The laboratory work involved both static and dynamic performance tests. This initial Phase I study has recently been granted a two-year extension by the U.S. Nuclear Regulatory Commission (NRC). The next phase will evaluate fiber optic pressure sensors in specific nuclear plant applications in addition to other advanced methods for monitoring critical nuclear plant equipment

  3. Electrical impedance tomography-based sensing skin for quantitative imaging of damage in concrete

    International Nuclear Information System (INIS)

    Hallaji, Milad; Pour-Ghaz, Mohammad; Seppänen, Aku

    2014-01-01

    This paper outlines the development of a large-area sensing skin for damage detection in concrete structures. The developed sensing skin consists of a thin layer of electrically conductive copper paint that is applied to the surface of the concrete. Cracking of the concrete substrate results in the rupture of the sensing skin, decreasing its electrical conductivity locally. The decrease in conductivity is detected with electrical impedance tomography (EIT) imaging. In previous works, electrically based sensing skins have provided only qualitative information on the damage on the substrate surface. In this paper, we study whether quantitative imaging of the damage is possible. We utilize application-specific models and computational methods in the image reconstruction, including a total variation (TV) prior model for the damage and an approximate correction of the modeling errors caused by the inhomogeneity of the painted sensing skin. The developed damage detection method is tested experimentally by applying the sensing skin to polymeric substrates and a reinforced concrete beam under four-point bending. In all test cases, the EIT-based sensing skin provides quantitative information on cracks and/or other damages on the substrate surface: featuring a very low conductivity in the damage locations, and a reliable indication of the lengths and shapes of the cracks. The results strongly support the applicability of the painted EIT-based sensing skin for damage detection in reinforced concrete elements and other substrates. (paper)

  4. Compact D-D/D-T neutron generators and their applications

    International Nuclear Information System (INIS)

    Lou, Tak Pui

    2003-01-01

    Neutron generators based on the 2 H(d,n) 3 He and 3 H(d,n) 4 He fusion reactions are the most commonly available neutron sources. The applications of current commercial neutron generators are often limited by their low neutron yield and their short operational lifetime. A new generation of D-D/D-T fusion-based neutron generators has been designed at Lawrence Berkeley National Laboratory (LBNL) by using high current ion beams hitting on a self-loading target that has a large surface area to dissipate the heat load. This thesis describes the rationale behind the new designs and their potential applications. A survey of other neutron sources is presented to show their advantages and disadvantages compared to the fusion-based neutron generator. A prototype neutron facility was built at LBNL to test these neutron generators. High current ion beams were extracted from an RF-driven ion source to produce neutrons. With an average deuteron beam current of 24 mA and an energy of 100 keV, a neutron yield of >10 9 n/s has been obtained with a D-D coaxial neutron source. Several potential applications were investigated by using computer simulations. The computer code used for simulations and the variance reduction techniques employed were discussed. A study was carried out to determine the neutron flux and resolution of a D-T neutron source in thermal neutron scattering applications for condensed matter experiments. An error analysis was performed to validate the scheme used to predict the resolution. With a D-T neutron yield of 10 14 n/s, the thermal neutron flux at the sample was predicted to be 7.3 x 10 5 n/cm 2 s. It was found that the resolution of cold neutrons was better than that of thermal neutrons when the duty factor is high. This neutron generator could be efficiently used for research and educational purposes at universities. Additional applications studied were positron production and Boron Neutron Capture Therapy (BNCT). The neutron flux required for positron

  5. Specification and Compilation of Real-Time Stream Processing Applications

    NARCIS (Netherlands)

    Geuns, S.J.

    2015-01-01

    This thesis is concerned with the specification, compilation and corresponding temporal analysis of real-time stream processing applications that are executed on embedded multiprocessor systems. An example of such applications are software defined radio applications. These applications typically

  6. First European Workshop on 'Remote sensing in mineral exploration'

    International Nuclear Information System (INIS)

    Van Wambeke, L.; Sanderson, D.J.; Dolan, J.M.

    1986-01-01

    The First European Workshop on 'Remote sensing in mineral exploration' organized by the Commission of the European Communities in February 1985 took stock of the results obtained within the European Community on the application of remote sensing techniques in exploration. The papers presented in this publication are essentially based on data obtained with the first generation of satellites and some airborne experiments. Important progress in data processing and interpretation has been made in the EEC since 1979 and is continuing to be made. The main aim is to provide the EC mining industry with a new tool for exploration. Significant results have already been obtained with the EEC playing an important role in the promotion of this relatively new technique. The main R and D trend is towards an integration of multidata sets (remote sensing, geochemical, geophysical and other data) to improve the methodology for delineating new targets in exploration. Another general trend is the participation of mining companies in remote sensing experiments. Further improvement for exploration is expected in the near future with the thematic mapper and the spot imageries as well as new airborne sensors

  7. Mesoporous Silicate Materials in Sensing

    Directory of Open Access Journals (Sweden)

    Paul T. Charles

    2008-08-01

    Full Text Available Mesoporous silicas, especially those exhibiting ordered pore systems and uniform pore diameters, have shown great potential for sensing applications in recent years. Morphological control grants them versatility in the method of deployment whether as bulk powders, monoliths, thin films, or embedded in coatings. High surface areas and pore sizes greater than 2 nm make them effective as adsorbent coatings for humidity sensors. The pore networks also provide the potential for immobilization of enzymes within the materials. Functionalization of materials by silane grafting or through cocondensation of silicate precursors can be used to provide mesoporous materials with a variety of fluorescent probes as well as surface properties that aid in selective detection of specific analytes. This review will illustrate how mesoporous silicas have been applied to sensing changes in relative humidity, changes in pH, metal cations, toxic industrial compounds, volatile organic compounds, small molecules and ions, nitroenergetic compounds, and biologically relevant molecules.

  8. Use of a new tandem cation/anion exchange system with clinical-scale generators provides high specific volume solutions of technetium-99m and rhenium-188

    International Nuclear Information System (INIS)

    Knapp, F.R. Jr.; Beets, A.L.; Mirzadeh, S.; Guhlke, S.; Univ. of Bonn

    1998-03-01

    In this paper the authors describe the first application of a simple and inexpensive post elution tandem cation-anion exchange column system which is based on generator elution with salts of weak acids such as ammonium acetate instead of saline solution to provide very high specific volume solutions of technetium-99m and rhenium-188 from clinical scale molybdenum-99/technetium-99m generator prepared from low specific activity (n,y) molybdenum-99, and tungsten-188/rhenium-188 generators, respectively. Initial passage of the bolus through a strong cation exchange cartridge converts the ammonium acetate to acetic acid which is essentially not ionized at the acidic pH, allowing specific subsequent amine type (QMA SepPak trademark) anion exchange cartridge column trapping of the microscopic levels of the pertechnetate or perrhenate. Subsequent elution of the anion cartridge with a small volume ( 500 mCi/mL) from the alumina-based tungsten-188/rhenium-188 generator

  9. Cryotherapy impairs knee joint position sense.

    Science.gov (United States)

    Oliveira, R; Ribeiro, F; Oliveira, J

    2010-03-01

    The effects of cryotherapy on joint position sense are not clearly established; however it is paramount to understand its impact on peripheral feedback to ascertain the safety of using ice therapy before resuming exercise on sports or rehabilitation settings. Thus, the aim of the present study was to determine the effects of cryotherapy, when applied over the quadriceps and over the knee joint, on knee position sense. This within-subjects repeated-measures study encompassed fifteen subjects. Knee position sense was measured by open kinetic chain technique and active positioning at baseline and after cryotherapy application. Knee angles were determined by computer analysis of the videotape images. Twenty-minute ice bag application was applied randomly, in two sessions 48 h apart, over the quadriceps and the knee joint. The main effect for cryotherapy application was significant (F (1.14)=7.7, p=0.015) indicating an increase in both absolute and relative angular errors after the application. There was no significant main effect for the location of cryotherapy application, indicating no differences between the application over the quadriceps and the knee joint. In conclusion, cryotherapy impairs knee joint position sense in normal knees. This deleterious effect is similar when cryotherapy is applied over the quadriceps or the knee joint. Georg Thieme Verlag KG Stuttgart.New York.

  10. Mechanical characterization of bucky gel morphing nanocomposite for actuating/sensing applications

    International Nuclear Information System (INIS)

    Ghamsari, Ali Kadkhoda; Woldesenbet, Eyassu; Jin, Yoonyoung

    2012-01-01

    Since the demonstration of the bucky gel actuator (BGA) in 2005, a great deal of effort has been exerted to develop novel applications for this electro-active morphing nanocomposite. This three-layered bimorph nanocomposite can be easily fabricated, operated in air and driven with a few volts. The BGA with improved mechanical strength is an excellent candidate for application in macro- to micro-scale smart structures with actuating and sensing capabilities. However, developing new applications requires identifying and understanding the effective design parameters and mechanical properties, respectively. There has been limited published studies on the mechanical properties of BGA. In this study, the effect of three parameters—layer thickness, carbon nanotube type and weight fraction of components—on the mechanical properties was investigated. Samples were characterized via nano-indentation and DMA. The BGA composed of 22 wt% single-walled carbon nanotubes and 45 wt% ionic liquid exhibited the highest hardness, adhesion, viscosity, and elastic and storage moduli. This study revealed the important role of the carbon nanotube type on BGA adhesion. Samples made with multi-walled carbon nanotubes had the lowest adhesion, which is a required factor in applications such as microfluidics. (paper)

  11. UNICOS CPC6: Automated Code Generation for Process Control Applications

    CERN Document Server

    Fernandez Adiego, B; Prieto Barreiro, I

    2011-01-01

    The Continuous Process Control package (CPC) is one of the components of the CERN Unified Industrial Control System framework (UNICOS) [1]. As a part of this framework, UNICOS-CPC provides a well defined library of device types, amethodology and a set of tools to design and implement industrial control applications. The new CPC version uses the software factory UNICOS Application Builder (UAB) [2] to develop CPC applications. The CPC component is composed of several platform oriented plugins PLCs and SCADA) describing the structure and the format of the generated code. It uses a resource package where both, the library of device types and the generated file syntax, are defined. The UAB core is the generic part of this software, it discovers and calls dynamically the different plug-ins and provides the required common services. In this paper the UNICOS CPC6 package is introduced. It is composed of several plug-ins: the Instance generator and the Logic generator for both, Siemens and Schneider PLCs, the SCADA g...

  12. Continuous and embedded solutions for SHM of concrete structures using changing electrical potential in self-sensing cement-based composites

    Science.gov (United States)

    Downey, Austin; Garcia-Macias, Enrique; D'Alessandro, Antonella; Laflamme, Simon; Castro-Triguero, Rafael; Ubertini, Filippo

    2017-04-01

    Interest in the concept of self-sensing structural materials has grown in recent years due to its potential to enable continuous low-cost monitoring of next-generation smart-structures. The development of cement-based smart sensors appears particularly well suited for monitoring applications due to their numerous possible field applications, their ease of use and long-term stability. Additionally, cement-based sensors offer a unique opportunity for structural health monitoring of civil structures because of their compatibility with new or existing infrastructure. Particularly, the addition of conductive carbon nanofillers into a cementitious matrix provides a self-sensing structural material with piezoresistive characteristics sensitive to deformations. The strain-sensing ability is achieved by correlating the external loads with the variation of specific electrical parameters, such as the electrical resistance or impedance. Selection of the correct electrical parameter for measurement to correlate with features of interest is required for the condition assessment task. In this paper, we investigate the potential of using altering electrical potential in cement-based materials doped with carbon nanotubes to measure strain and detect damage in concrete structures. Experimental validation is conducted on small-scale specimens including a steel-reinforced beam of conductive cement paste. Comparisons are made with constant electrical potential and current methods commonly found in the literature. Experimental results demonstrate the ability of the changing electrical potential at detecting features important for assessing the condition of a structure.

  13. Using Airborne Remote Sensing to Increase Situational Awareness in Civil Protection and Humanitarian Relief - the Importance of User Involvement

    Science.gov (United States)

    Römer, H.; Kiefl, R.; Henkel, F.; Wenxi, C.; Nippold, R.; Kurz, F.; Kippnich, U.

    2016-06-01

    Enhancing situational awareness in real-time (RT) civil protection and emergency response scenarios requires the development of comprehensive monitoring concepts combining classical remote sensing disciplines with geospatial information science. In the VABENE++ project of the German Aerospace Center (DLR) monitoring tools are being developed by which innovative data acquisition approaches are combined with information extraction as well as the generation and dissemination of information products to a specific user. DLR's 3K and 4k camera system which allow for a RT acquisition and pre-processing of high resolution aerial imagery are applied in two application examples conducted with end users: a civil protection exercise with humanitarian relief organisations and a large open-air music festival in cooperation with a festival organising company. This study discusses how airborne remote sensing can significantly contribute to both, situational assessment and awareness, focussing on the downstream processes required for extracting information from imagery and for visualising and disseminating imagery in combination with other geospatial information. Valuable user feedback and impetus for further developments has been obtained from both applications, referring to innovations in thematic image analysis (supporting festival site management) and product dissemination (editable web services). Thus, this study emphasises the important role of user involvement in application-related research, i.e. by aligning it closer to user's requirements.

  14. Gamification for Word Sense Labeling

    NARCIS (Netherlands)

    Venhuizen, Noortje; Basile, Valerio; Evang, Kilian; Bos, Johan; Erk, Kartin; Koller, Alexander

    2013-01-01

    Obtaining gold standard data for word sense disambiguation is important but costly. We show how it can be done using a “Game with a Purpose” (GWAP) called Wordrobe. This game consists of a large set of multiple-choice questions on word senses generated from the Groningen Meaning Bank. The players

  15. Prediction of reef fish spawning aggregations using remote sensing: A review

    International Nuclear Information System (INIS)

    Rosli, M R; Ibrahim, A L; Masron, T

    2014-01-01

    Spawning aggregation is a very important occurrence to particular reef fish species as they use this opportunity to reproduce. However, due to their predictable nature, these aggregations have always been vulnerable to overexploitation. This problem leads to the importance of identifying the exact time and location for reef fish spawning aggregation. Thus, this paper review a little bit about spawning aggregation of reef fish as well as their characteristics, and problems regarding this phenomena. The use of remote sensing in marine applications is also described here in order to discuss how remote sensing can be utilize to predict reef fish spawning aggregation. Based on the unique geomorphological characteristics of the spawning aggregation, remote sensing seems to be a powerful tool to determine their exact times and locations. It has been proved that satellite imagery was able to delineate specific reef geomorphologies such as shelf edges and reef promontories. Despite of the widely use of remote sensing in marine applications, in fact there are still lack of studies had been carried out regarding spawning aggregations of reef fish due to the skeptical point-of-view by certain researchers over the capability of this technique. However, there is actually no doubt that the use of remote sensing will provide a better hand to the authorities in order to establish a more effective monitoring and conservation plan for these spawning aggregations

  16. Mobile Wireless Sensor Networks for Advanced Soil Sensing and Ecosystem Monitoring

    Science.gov (United States)

    Mollenhauer, Hannes; Schima, Robert; Remmler, Paul; Mollenhauer, Olaf; Hutschenreuther, Tino; Toepfer, Hannes; Dietrich, Peter; Bumberger, Jan

    2015-04-01

    For an adequate characterization of ecosystems it is necessary to detect individual processes with suitable monitoring strategies and methods. Due to the natural complexity of all environmental compartments, single point or temporally and spatially fixed measurements are mostly insufficient for an adequate representation. The application of mobile wireless sensor networks for soil and atmosphere sensing offers significant benefits, due to the simple adjustment of the sensor distribution, the sensor types and the sample rate (e.g. by using optimization approaches or event triggering modes) to the local test conditions. This can be essential for the monitoring of heterogeneous and dynamic environmental systems and processes. One significant advantage in the application of mobile ad-hoc wireless sensor networks is their self-organizing behavior. Thus, the network autonomously initializes and optimizes itself. Due to the localization via satellite a major reduction in installation and operation costs and time is generated. In addition, single point measurements with a sensor are significantly improved by measuring at several optimized points continuously. Since performing analog and digital signal processing and computation in the sensor nodes close to the sensors a significant reduction of the data to be transmitted can be achieved which leads to a better energy management of nodes. Furthermore, the miniaturization of the nodes and energy harvesting are current topics under investigation. First results of field measurements are given to present the potentials and limitations of this application in environmental science. In particular, collected in-situ data with numerous specific soil and atmosphere parameters per sensor node (more than 25) recorded over several days illustrates the high performance of this system for advanced soil sensing and soil-atmosphere interaction monitoring. Moreover, investigations of biotic and abiotic process interactions and optimization

  17. Nanogenerators for Self-Powered Gas Sensing

    Science.gov (United States)

    Wen, Zhen; Shen, Qingqing; Sun, Xuhui

    2017-10-01

    Looking toward world technology trends over the next few decades, self-powered sensing networks are a key field of technological and economic driver for global industries. Since 2006, Zhong Lin Wang's group has proposed a novel concept of nanogenerators (NGs), including piezoelectric nanogenerator and triboelectric nanogenerator, which could convert a mechanical trigger into an electric output. Considering motion ubiquitously exists in the surrounding environment and for any most common materials used every day, NGs could be inherently served as an energy source for our daily increasing requirements or as one of self-powered environmental sensors. In this regard, by coupling the piezoelectric or triboelectric properties with semiconducting gas sensing characterization, a new research field of self-powered gas sensing has been proposed. Recent works have shown promising concept to realize NG-based self-powered gas sensors that are capable of detecting gas environment without the need of external power sources to activate the gas sensors or to actively generate a readout signal. Compared with conventional sensors, these self-powered gas sensors keep the approximate performance. Meanwhile, these sensors drastically reduce power consumption and additionally reduce the required space for integration, which are significantly suitable for the wearable devices. This paper gives a brief summary about the establishment and latest progress in the fundamental principle, updated progress and potential applications of NG-based self-powered gas sensing system. The development trend in this field is envisaged, and the basic configurations are also introduced.

  18. Three Modeling Applications to Promote Automatic Item Generation for Examinations in Dentistry.

    Science.gov (United States)

    Lai, Hollis; Gierl, Mark J; Byrne, B Ellen; Spielman, Andrew I; Waldschmidt, David M

    2016-03-01

    Test items created for dentistry examinations are often individually written by content experts. This approach to item development is expensive because it requires the time and effort of many content experts but yields relatively few items. The aim of this study was to describe and illustrate how items can be generated using a systematic approach. Automatic item generation (AIG) is an alternative method that allows a small number of content experts to produce large numbers of items by integrating their domain expertise with computer technology. This article describes and illustrates how three modeling approaches to item content-item cloning, cognitive modeling, and image-anchored modeling-can be used to generate large numbers of multiple-choice test items for examinations in dentistry. Test items can be generated by combining the expertise of two content specialists with technology supported by AIG. A total of 5,467 new items were created during this study. From substitution of item content, to modeling appropriate responses based upon a cognitive model of correct responses, to generating items linked to specific graphical findings, AIG has the potential for meeting increasing demands for test items. Further, the methods described in this study can be generalized and applied to many other item types. Future research applications for AIG in dental education are discussed.

  19. SENSOR++: Simulation of Remote Sensing Systems from Visible to Thermal Infrared

    Science.gov (United States)

    Paproth, C.; Schlüßler, E.; Scherbaum, P.; Börner, A.

    2012-07-01

    During the development process of a remote sensing system, the optimization and the verification of the sensor system are important tasks. To support these tasks, the simulation of the sensor and its output is valuable. This enables the developers to test algorithms, estimate errors, and evaluate the capabilities of the whole sensor system before the final remote sensing system is available and produces real data. The presented simulation concept, SENSOR++, consists of three parts. The first part is the geometric simulation which calculates where the sensor looks at by using a ray tracing algorithm. This also determines whether the observed part of the scene is shadowed or not. The second part describes the radiometry and results in the spectral at-sensor radiance from the visible spectrum to the thermal infrared according to the simulated sensor type. In the case of earth remote sensing, it also includes a model of the radiative transfer through the atmosphere. The final part uses the at-sensor radiance to generate digital images by using an optical and an electronic sensor model. Using SENSOR++ for an optimization requires the additional application of task-specific data processing algorithms. The principle of the simulation approach is explained, all relevant concepts of SENSOR++ are discussed, and first examples of its use are given, for example a camera simulation for a moon lander. Finally, the verification of SENSOR++ is demonstrated.

  20. Application of remote sensing and Geographic Information Systems to ecosystem-based urban natural resource management

    Science.gov (United States)

    Xiaohui Zhang; George Ball; Eve Halper

    2000-01-01

    This paper presents an integrated system to support urban natural resource management. With the application of remote sensing (RS) and geographic information systems (GIS), the paper emphasizes the methodology of integrating information technology and a scientific basis to support ecosystem-based management. First, a systematic integration framework is developed and...

  1. Low-cost interferometric TDM technology for dynamic sensing applications

    Science.gov (United States)

    Bush, Jeff; Cekorich, Allen

    2004-12-01

    A low-cost design approach for Time Division Multiplexed (TDM) fiber-optic interferometric interrogation of multi-channel sensor arrays is presented. This paper describes the evolutionary design process of the subject design. First, the requisite elements of interferometric interrogation are defined for a single channel sensor. The concept is then extended to multi-channel sensor interrogation implementing a TDM multiplex scheme where "traditional" design elements are utilized. The cost of the traditional TDM interrogator is investigated and concluded to be too high for entry into many markets. A new design approach is presented which significantly reduces the cost for TDM interrogation. This new approach, in accordance with the cost objectives, shows promise to bring this technology to within the threshold of commercial acceptance for a wide range of distributed fiber sensing applications.

  2. MEMS-Based Power Generation Techniques for Implantable Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Jonathan Lueke

    2011-01-01

    Full Text Available Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient.

  3. MEMS-based power generation techniques for implantable biosensing applications.

    Science.gov (United States)

    Lueke, Jonathan; Moussa, Walied A

    2011-01-01

    Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS)-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient.

  4. Comparative efficacy and safety of contact force-sensing catheter and second-generation cryoballoon ablation for atrial fibrillation: a meta-analysis

    Directory of Open Access Journals (Sweden)

    X. Zhou

    Full Text Available This meta-analysis compared the efficacy and safety of the contact force (CF-sensing catheter and second-generation cryoballoon (CB ablation for treating atrial fibrillation (AF. Six controlled clinical trials comparing ablation for AF using a CF-sensing catheter or second-generation CB were identified from PubMed, EMBASE, Cochrane Library, Wanfang Data, and China National Knowledge Infrastructure. The procedure duration was significantly lower in the CB group compared with that in the CF group [mean difference (MD=29.4; 95%CI=17.84–40.96; P=0.01], whereas there was no difference between the groups for fluoroscopy duration (MD=0.59; 95%CI=–4.48–5.66; P=0.82. Moreover, there was no difference in the incidence of non-lethal complications (embolic event, tamponade, femoral/subclavian hematoma, arteriovenous fistula, pulmonary vein stenosis, phrenic nerve palsy, and esophageal injury between the CB and the CF groups (8.38 vs 5.35%; RR=0.66; 95%CI=0.37–1.17; P=0.15. Transient phrenic nerve palsy occurred in 17 of 326 patients (5.2% of the CB group vs none in the CF group (RR=0.12; 95%CI=0.03–0.43; P=0.001. A comparable proportion of patients in CF and CB groups suffered from AF recurrence during the 12-month follow-up after a single ablation procedure [risk ratio (RR=1.03; 95%CI=0.78–1.35; P=0.84]. AF ablation using CF-sensing catheters and second-generation CB showed comparable fluoroscopy duration and efficacy (during a 12-month follow-up, with shorter procedure duration and different complications in the CB group.

  5. Development of a 0.1 kW thermoelectric power generator for military applications

    International Nuclear Information System (INIS)

    Menchen, W.R.

    1986-01-01

    A man-portable thermoelectric power source is being developed for the U.S. Army. Initially used as a dedicated power supply for the XM-21 Chemical Agent Alarm System, the set can also meet a variety of general purpose user requirements. Development of a thermoelectric power conversion device is being undertaken by the U.S. Army LABCOM Electronics Technology and Devices Laboratory to fill a need for a generator that is silent, lightweight, multi-fueled and reliable. The 0.1 kW Power Generator is rectangular in configuration and consists of a power module, electronic control assembly and fuel delivery system housed within a tubular structural frame. The generator operates on military fuels ranging from kerosene to diesel oil. Multi-fuel capability is achieved using an ultrasonic atomizer and regenerative burner developed specifically for this application. This paper provides the first public presentation of results achieved during the Advanced Development Phase of the 0.1 kW Power Generator. The development process is briefly traced with emphasis on a description of the system and test results obtained to date

  6. A Distributed Multi-dimensional SOLAP Model of Remote Sensing Data and Its Application in Drought Analysis

    Directory of Open Access Journals (Sweden)

    LI Jiyuan

    2014-06-01

    Full Text Available SOLAP (Spatial On-Line Analytical Processing has been applied to multi-dimensional analysis of remote sensing data recently. However, its computation performance faces a considerable challenge from the large-scale dataset. A geo-raster cube model extended by Map-Reduce is proposed, which refers to the application of Map-Reduce (a data-intensive computing paradigm in the OLAP field. In this model, the existing methods are modified to adapt to distributed environment based on the multi-level raster tiles. Then the multi-dimensional map algebra is introduced to decompose the SOLAP computation into multiple distributed parallel map algebra functions on tiles under the support of Map-Reduce. The drought monitoring by remote sensing data is employed as a case study to illustrate the model construction and application. The prototype is also implemented, and the performance testing shows the efficiency and scalability of this model.

  7. The role of advanced sensing in smart cities.

    Science.gov (United States)

    Hancke, Gerhard P; Silva, Bruno de Carvalho E; Hancke, Gerhard P

    2012-12-27

    In a world where resources are scarce and urban areas consume the vast majority of these resources, it is vital to make cities greener and more sustainable. Advanced systems to improve and automate processes within a city will play a leading role in smart cities. From smart design of buildings, which capture rain water for later use, to intelligent control systems, which can monitor infrastructures autonomously, the possible improvements enabled by sensing technologies are immense. Ubiquitous sensing poses numerous challenges, which are of a technological or social nature. This paper presents an overview of the state of the art with regards to sensing in smart cities. Topics include sensing applications in smart cities, sensing platforms and technical challenges associated with these technologies. In an effort to provide a holistic view of how sensing technologies play a role in smart cities, a range of applications and technical challenges associated with these applications are discussed. As some of these applications and technologies belong to different disciplines, the material presented in this paper attempts to bridge these to provide a broad overview, which can be of help to researchers and developers in understanding how advanced sensing can play a role in smart cities.

  8. Thermal infrared remote sensing sensors, methods, applications

    CERN Document Server

    Kuenzer, Claudia

    2013-01-01

    This book provides a comprehensive overview of the state of the art in the field of thermal infrared remote sensing. Temperature is one of the most important physical environmental variables monitored by earth observing remote sensing systems. Temperature ranges define the boundaries of habitats on our planet. Thermal hazards endanger our resources and well-being. In this book renowned international experts have contributed chapters on currently available thermal sensors as well as innovative plans for future missions. Further chapters discuss the underlying physics and image processing techni

  9. Integrated polymer micro-ring resonators for optical sensing applications

    Science.gov (United States)

    Girault, Pauline; Lorrain, Nathalie; Poffo, Luiz; Guendouz, Mohammed; Lemaitre, Jonathan; Carré, Christiane; Gadonna, Michel; Bosc, Dominique; Vignaud, Guillaume

    2015-03-01

    Micro-resonators (MR) have become a key element for integrated optical sensors due to their integration capability and their easy fabrication with low cost polymer materials. Nowadays, there is a growing need on MRs as highly sensitive and selective functions especially in the areas of food and health. The context of this work is to implement and study integrated micro-ring resonators devoted to sensing applications. They are fabricated by processing SU8 polymer as core layer and PMATRIFE polymer as lower cladding layer. The refractive index of the polymers and of the waveguide structure as a function of the wavelength is presented. Using these results, a theoretical study of the coupling between ring and straight waveguides has been undertaken in order to define the MR design. Sub-micronic gaps of 0.5 μm to 1 μm between the ring and the straight waveguides have been successfully achieved with UV (i-lines) photolithography. Different superstrates such as air, water, and aqueous solutions with glucose at different concentrations have been studied. First results show a good normalized transmission contrast of 0.98, a resonator quality factor around 1.5 × 104 corresponding to a coupling ratio of 14.7%, and ring propagation losses around 5 dB/cm. Preliminary sensing experiments have been performed for different concentrations of glucose; a sensitivity of 115 ± 8 nm/RIU at 1550 nm has been obtained with this couple of polymers.

  10. Aerosol generation and delivery in medical applications

    International Nuclear Information System (INIS)

    Soni, P.S.; Raghunath, B.

    1998-01-01

    It is well established that radioaerosol lung technique by inhalation is a very versatile technique in the evaluation of health effects and medical diagnostic applications, especially to detect chronic obstructive pulmonary diseases, their defence mechanism permeability and many others. Most important part of aerosol technology is to generate reproducibly stable diagnostic radioaerosols of known characteristics. Many compressed air atomisers are commercially available for generating aerosols but they have limited utility in aerosol inhalation, either because of large droplet size, low aerosol output or high airflow rates. There is clearly a need for a versatile and economical aerosol generation/inhalation system that can produce dry labelled aerosol particles with high deep lung delivery efficiency suitable for clinical studies. BARC (Bhabha Atomic Research Centre) has developed a dry aerosol generation/delivery system which operates on compressed air and generates dry polydisperse aerosols. This system is described along with an assessment of the aerosol characteristics and efficiency for diagnosis of various respiratory disorders

  11. Compact D-D/D-T neutron generators and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Lou, Tak Pui [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    Neutron generators based on the 2H(d,n)3He and 3H(d,n)4He fusion reactions are the most commonly available neutron sources. The applications of current commercial neutron generators are often limited by their low neutron yield and their short operational lifetime. A new generation of D-D/D-T fusion-based neutron generators has been designed at Lawrence Berkeley National Laboratory (LBNL) by using high current ion beams hitting on a self-loading target that has a large surface area to dissipate the heat load. This thesis describes the rationale behind the new designs and their potential applications. A survey of other neutron sources is presented to show their advantages and disadvantages compared to the fusion-based neutron generator. A prototype neutron facility was built at LBNL to test these neutron generators. High current ion beams were extracted from an RF-driven ion source to produce neutrons. With an average deuteron beam current of 24 mA and an energy of 100 keV, a neutron yield of >109 n/s has been obtained with a D-D coaxial neutron source. Several potential applications were investigated by using computer simulations. The computer code used for simulations and the variance reduction techniques employed were discussed. A study was carried out to determine the neutron flux and resolution of a D-T neutron source in thermal neutron scattering applications for condensed matter experiments. An error analysis was performed to validate the scheme used to predict the resolution. With a D-T neutron yield of 1014 n/s, the thermal neutron flux at the sample was predicted to be 7.3 x 105 n/cm2s. It was found that the resolution of cold neutrons was better than that of thermal neutrons when the duty factor is high. This neutron generator could be efficiently used for research and educational purposes at universities. Additional applications studied were positron production and

  12. Beam-generated plasmas for processing applications

    Science.gov (United States)

    Meger, R. A.; Blackwell, D. D.; Fernsler, R. F.; Lampe, M.; Leonhardt, D.; Manheimer, W. M.; Murphy, D. P.; Walton, S. G.

    2001-05-01

    The use of moderate energy electron beams (e-beams) to generate plasma can provide greater control and larger area than existing techniques for processing applications. Kilovolt energy electrons have the ability to efficiently ionize low pressure neutral gas nearly independent of composition. This results in a low-temperature, high-density plasma of nearly controllable composition generated in the beam channel. By confining the electron beam magnetically the plasma generation region can be designated independent of surrounding structures. Particle fluxes to surfaces can then be controlled by the beam and gas parameters, system geometry, and the externally applied rf bias. The Large Area Plasma Processing System (LAPPS) utilizes a 1-5 kV, 2-10 mA/cm2 sheet beam of electrons to generate a 1011-1012cm-3 density, 1 eV electron temperature plasma. Plasma sheets of up to 60×60 cm2 area have been generated in a variety of molecular and atomic gases using both pulsed and cw e-beam sources. The theoretical basis for the plasma production and decay is presented along with experiments measuring the plasma density, temperature, and potential. Particle fluxes to nearby surfaces are measured along with the effects of radio frequency biasing. The LAPPS source is found to generate large-area plasmas suitable for materials processing.

  13. Investigation and applications of a plasma generator

    International Nuclear Information System (INIS)

    Frere, Isabelle

    1992-01-01

    This work describes the experimental study of a plasma generator: a cylindrical or parallelepipedic rectangle cathode. A permanent magnet creates an axial magnetic field of a few hundred Gauss. A cold and abnormal glow discharge plasma is obtained. The experimental research on the correlation between the discharge parameters (electrode geometry, gas pressure, discharge voltage and current, magnetic field) of the discharge is presented. Another part of the text mentions some generator applications to surface treatment: evaporation, sputtering, surface modification of polymers by exposure to plasma. (author) [fr

  14. Digital quantification of rolling circle amplified single DNA molecules in a resistive pulse sensing nanopore.

    Science.gov (United States)

    Kühnemund, M; Nilsson, M

    2015-05-15

    Novel portable, sensitive and selective DNA sensor methods for bio-sensing applications are required that can rival conventionally used non-portable and expensive fluorescence-based sensors. In this paper, rolling circle amplification (RCA) products are detected in solution and on magnetic particles using a resistive pulse sensing (RPS) nanopore. Low amounts of DNA molecules are detected by padlock probes which are circularized in a strictly target dependent ligation reaction. The DNA-padlock probe-complex is captured on magnetic particles by sequence specific capture oligonucleotides and amplified by a short RCA. Subsequent RPS analysis is used to identify individual particles with single attached RCA products from blank particles. This proof of concept opens up for a novel non-fluorescent digital DNA quantification method that can have many applications in bio-sensing and diagnostic approaches. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. GDE2 regulates subtype-specific motor neuron generation through inhibition of Notch signaling.

    Science.gov (United States)

    Sabharwal, Priyanka; Lee, Changhee; Park, Sungjin; Rao, Meenakshi; Sockanathan, Shanthini

    2011-09-22

    The specification of spinal interneuron and motor neuron identities initiates within progenitor cells, while motor neuron subtype diversification is regulated by hierarchical transcriptional programs implemented postmitotically. Here we find that mice lacking GDE2, a six-transmembrane protein that triggers motor neuron generation, exhibit selective losses of distinct motor neuron subtypes, specifically in defined subsets of limb-innervating motor pools that correlate with the loss of force-generating alpha motor neurons. Mechanistically, GDE2 is expressed by postmitotic motor neurons but utilizes extracellular glycerophosphodiester phosphodiesterase activity to induce motor neuron generation by inhibiting Notch signaling in neighboring motor neuron progenitors. Thus, neuronal GDE2 controls motor neuron subtype diversity through a non-cell-autonomous feedback mechanism that directly regulates progenitor cell differentiation, implying that subtype specification initiates within motor neuron progenitor populations prior to their differentiation into postmitotic motor neurons. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Application of the remote-sensing communication model to a time-sensitive wildfire remote-sensing system

    Science.gov (United States)

    Christopher D. Lippitt; Douglas A. Stow; Philip J. Riggan

    2016-01-01

    Remote sensing for hazard response requires a priori identification of sensor, transmission, processing, and distribution methods to permit the extraction of relevant information in timescales sufficient to allow managers to make a given time-sensitive decision. This study applies and demonstrates the utility of the Remote Sensing Communication...

  17. Efficiency of defect specific maintenance od steam generator tubes: the case of ODSCC

    International Nuclear Information System (INIS)

    Cizelj, L.; Dvorsek, T.

    1996-01-01

    The outside diameter stress corrosion cracking at tube support plates became the dominating ageing mechanism in steam generators tubes made of Inconel 600. A variety of maintenance approaches were developed and implemented worldwide to deal with this mechanism. Despite different philosophical and physical backgrounds implemented, all of the applied approaches satisfy the relevant regulatory requirements. For our purpose, the maintenance approach consist of: (1) inspection of tubes, (2) accepting or rejecting the defective tube and (3) plugging of rejected tubes. The problem of selecting an optimal maintenance approach is raised in the paper. Consequently, a method comparing the efficiency of applicable maintenance approaches is proposed. The efficiency is defined by three parameters: (a) number of plugged tubes, (b) probability of steam generator tube rupture and (c) predicted accidental leak rates through the defects. An original probabilistic model is proposed to quantify the probability of tube rupture, while procedures available in literature were used to define the accidental leak rates. The numerical example considers the data from Krsko NPP (Westinghouse 632 MWe). The maintenance approaches analyzed include: (i) no repair at all, (ii) traditional defect depth (40%) based maintenance, (iii) alternate plugging criterion (bobbin coil voltage as defined by EPRI and U.S. NRC) and (iv) combined traditional and alternate approach. Advantages of the defect specific approaches (iii) and (iv) over the traditional one (defect depth) are clearly shown. A brief discussion on the optimization of safe life of steam generator is given. (author)

  18. Information mining in remote sensing imagery

    Science.gov (United States)

    Li, Jiang

    The volume of remotely sensed imagery continues to grow at an enormous rate due to the advances in sensor technology, and our capability for collecting and storing images has greatly outpaced our ability to analyze and retrieve information from the images. This motivates us to develop image information mining techniques, which is very much an interdisciplinary endeavor drawing upon expertise in image processing, databases, information retrieval, machine learning, and software design. This dissertation proposes and implements an extensive remote sensing image information mining (ReSIM) system prototype for mining useful information implicitly stored in remote sensing imagery. The system consists of three modules: image processing subsystem, database subsystem, and visualization and graphical user interface (GUI) subsystem. Land cover and land use (LCLU) information corresponding to spectral characteristics is identified by supervised classification based on support vector machines (SVM) with automatic model selection, while textural features that characterize spatial information are extracted using Gabor wavelet coefficients. Within LCLU categories, textural features are clustered using an optimized k-means clustering approach to acquire search efficient space. The clusters are stored in an object-oriented database (OODB) with associated images indexed in an image database (IDB). A k-nearest neighbor search is performed using a query-by-example (QBE) approach. Furthermore, an automatic parametric contour tracing algorithm and an O(n) time piecewise linear polygonal approximation (PLPA) algorithm are developed for shape information mining of interesting objects within the image. A fuzzy object-oriented database based on the fuzzy object-oriented data (FOOD) model is developed to handle the fuzziness and uncertainty. Three specific applications are presented: integrated land cover and texture pattern mining, shape information mining for change detection of lakes, and

  19. USING AIRBORNE REMOTE SENSING TO INCREASE SITUATIONAL AWARENESS IN CIVIL PROTECTION AND HUMANITARIAN RELIEF – THE IMPORTANCE OF USER INVOLVEMENT

    Directory of Open Access Journals (Sweden)

    H. Römer

    2016-06-01

    Full Text Available Enhancing situational awareness in real-time (RT civil protection and emergency response scenarios requires the development of comprehensive monitoring concepts combining classical remote sensing disciplines with geospatial information science. In the VABENE++ project of the German Aerospace Center (DLR monitoring tools are being developed by which innovative data acquisition approaches are combined with information extraction as well as the generation and dissemination of information products to a specific user. DLR’s 3K and 4k camera system which allow for a RT acquisition and pre-processing of high resolution aerial imagery are applied in two application examples conducted with end users: a civil protection exercise with humanitarian relief organisations and a large open-air music festival in cooperation with a festival organising company. This study discusses how airborne remote sensing can significantly contribute to both, situational assessment and awareness, focussing on the downstream processes required for extracting information from imagery and for visualising and disseminating imagery in combination with other geospatial information. Valuable user feedback and impetus for further developments has been obtained from both applications, referring to innovations in thematic image analysis (supporting festival site management and product dissemination (editable web services. Thus, this study emphasises the important role of user involvement in application-related research, i.e. by aligning it closer to user’s requirements.

  20. From principles to practice in site remediation: Specific application in the UK

    International Nuclear Information System (INIS)

    Hill, M.; Higgins, P.; Longley, P.; Kerrigan, E.; Smith, G.M.

    2005-01-01

    As a result of wide-scale application of radioactive materials in research, medicine, defence, nuclear power and industry, significant areas of land have become contaminated with radioactivity. Whilst many practices aim to minimise the potential for contamination, there remain a number of sites that are contaminated as a result of historical discharges and accidental releases. In the UK, defence sites are being remediated to be released for redevelopment. International principles, national guidelines and best practice are taken into account, but quantities of low or very low activity radioactive waste are generated, and require disposal. This paper discusses these issues and illustrates their implementation at a specific site in the UK. (author)

  1. The Importance of Sensing Own's Movements in the World for the Sense of Personal Identity

    Directory of Open Access Journals (Sweden)

    Mariana Broens

    2012-01-01

    Full Text Available Within philosophy and cognitive science, the focus in relation to the problem of personal identity has been almost exclusively on the brain. We submit that the resulting neglect of the body and of bodily movements in the world has been detrimental in understanding how organisms develop a sense of identity. We examine the importance of sensing one’s own movements for the development of a basic, nonconceptual sense of self. More specifically, we argue that the origin of the sense of self stems from the sensitivity to spontaneous movements. Based on this, the organism develops a sense of “I move” and, finally, a sense of “I can move”. Proprioception and kinesthesis are essential in this development. At the same time, we argue against the traditional dichotomy between so-called external and internal senses, agreeing with Gibson that perception of the self and of the environment invariably go together. We discuss a traditional distinction between two aspects of bodily self: the body sense and the body image. We suggest that they capture different aspects of the sense of self. We argue that especially the body sense is of great importance to our nonconceptual sense of self. Finally, we attempt to draw some consequences for research in cognitive science, specifically in the area of robotics, by examining a case of missing proprioception. We make a plea for robots to be equipped not just with external perceptual and motor abilities but also with a sense of proprioception. This, we submit, would constitute one further step towards understanding creatures acting in the world with a sense of themselves.

  2. Investigation on sense of control parameters for joystick interface in remote operated container crane application

    Science.gov (United States)

    Abdullah, U. N. N.; Handroos, H.

    2017-09-01

    Introduction: This paper presents the study of sense of control parameters to improve the lack of direct motion feeling through remote operated container crane station (ROCCS) joystick interface. The investigations of the parameters in this study are important to develop the engineering parameters related to the sense of control goal in the next design process. Methodology: Structured interviews and observations were conducted to obtain the user experience data from thirteen remote container crane operators from two international terminals. Then, interview analysis, task analysis, activity analysis and time line analysis were conducted to compare and contrast the results from interviews and observations. Results: Four experience parameters were identified to support the sense of control goal in the later design improvement of the ROCC joystick interface. The significance of difficulties to control, unsynchronized movements, facilitate in control and decision making in unexpected situation as parameters to the sense of control goal were validated by' feedbacks from operators as well as analysis. Contribution: This study provides feedback directly from end users towards developing a sustainable control interface for ROCCS in specific and remote operated off-road vehicles in general.

  3. Plasmonic Manipulation of Light for Sensing and Photovoltaic Applications

    Science.gov (United States)

    Sobhani Khakestar, Heidar

    Plasmonics is a successful new field of science and technology that exploits the exclusive optical properties of metallic nanostructures to manipulate and concentrate light at nano-meter length scales. When light hits the surface of gold or silver nanoparticles it can excite collective oscillations of the conduction electrons called surface plasmons. This surface plasmon undergoes two damping processes; it can decay into photon and reemit the plasmon energy as scattered energy or decay into electron-hole pair with the excitation energy equal to the energy of the plasmon resonance, known as absorption. This high energy electron subsequently undergoes into the carrier multiplication and eventually scatters into the electrons with lower energy. We used Finite-Difference Time-Domain (FDTD) and Finite-Element Method (Comsol) to design nanoscale structures to act as nanoantenna for light harvesting and consequently manipulating radiative and absorption properties of them for Sensing and Photovoltaic applications. To manipulate near and far field we designed our structures in a way that the bright and dark plasmon modes overlap and couple to each other. This process is called Fano resonance and introduces a transparency window in the far-field spectra. At the same time it increases the near-field enhancement. We applied the changes in near-field and far-field to SERS (Surface Enhanced Raman Spectroscopy) and LSPR (Localized Surface plasmon Resonance) shift for sensing purposes. We modeled Fano resonances with classical harmonic oscillator and reproduced the same feature with a simple equation of motion. We used this model to replicate scattering spectra from different geometries and explain the cathodoluminescence results obtained from nanoscale gold clusters structure. All of these nanoantenna optical properties and applications are due to the reemission ability of the plasmon energy to the vacuum and confining optical field, but the plasmon energy can decay into a high

  4. Chemical Gas Sensors for Aerospace Applications

    Science.gov (United States)

    Hunter, Gary W.; Liu, C. C.

    1998-01-01

    Chemical sensors often need to be specifically designed (or tailored) to operate in a given environment. It is often the case that a chemical sensor that meets the needs of one application will not function adequately in another application. The more demanding the environment and specialized the requirement, the greater the need to adapt exiting sensor technologies to meet these requirements or, as necessary, develop new sensor technologies. Aerospace (aeronautic and space) applications are particularly challenging since often these applications have specifications which have not previously been the emphasis of commercial suppliers. Further, the chemical sensing needs of aerospace applications have changed over the years to reflect the changing emphasis of society. Three chemical sensing applications of particular interest to the National Aeronautics and Space Administration (NASA) which illustrate these trends are launch vehicle leak detection, emission monitoring, and fire detection. Each of these applications reflects efforts ongoing throughout NASA. As described in NASA's "Three Pillars for Success", a document which outlines NASA's long term response to achieve the nation's priorities in aerospace transportation, agency wide objectives include: improving safety and decreasing the cost of space travel, significantly decreasing the amount of emissions produced by aeronautic engines, and improving the safety of commercial airline travel. As will be discussed below, chemical sensing in leak detection, emission monitoring, and fire detection will help enable the agency to meet these objectives. Each application has vastly different problems associated with the measurement of chemical species. Nonetheless, the development of a common base technology can address the measurement needs of a number of applications.

  5. Yeast-based biosensors: design and applications.

    Science.gov (United States)

    Adeniran, Adebola; Sherer, Michael; Tyo, Keith E J

    2015-02-01

    Yeast-based biosensing (YBB) is an exciting research area, as many studies have demonstrated the use of yeasts to accurately detect specific molecules. Biosensors incorporating various yeasts have been reported to detect an incredibly large range of molecules including but not limited to odorants, metals, intracellular metabolites, carcinogens, lactate, alcohols, and sugars. We review the detection strategies available for different types of analytes, as well as the wide range of output methods that have been incorporated with yeast biosensors. We group biosensors into two categories: those that are dependent upon transcription of a gene to report the detection of a desired molecule and those that are independent of this reporting mechanism. Transcription-dependent biosensors frequently depend on heterologous expression of sensing elements from non-yeast organisms, a strategy that has greatly expanded the range of molecules available for detection by YBBs. Transcription-independent biosensors circumvent the problem of sensing difficult-to-detect analytes by instead relying on yeast metabolism to generate easily detected molecules when the analyte is present. The use of yeast as the sensing element in biosensors has proven to be successful and continues to hold great promise for a variety of applications. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  6. Induced pluripotent stem cells, from generation to application: review article

    Directory of Open Access Journals (Sweden)

    Sharif Moradi

    2014-11-01

    Full Text Available Embryonic stem cells are pluripotent stem cells which have the ability to indefinitely self-renew and differentiate into all differentiated cells of the body. Regarding their two main properties (unlimited self-renewal and multi-lineage differentiation, these cells have various biomedical applications in basic research and cell based therapy. Because the transplantation of differentiated cells that are derived from embryonic stem cells is allogenic, they face the problem of immune rejection following the transplantation of embryonic stem cell-derived cells into patients. In 2006, researchers from Japan reported the derivation of a new type of pluripotent stem cells which could overcome the problem of immune rejection that is associated with the application of embryonic stem cells. They designated these cells as induced pluripotent stem (iPS cells, because their production was ‘induced’ from differentiated somatic cells using a combination of four embryonic stem cell-associated transcription factors. Importantly, these pluripotent stem cells exhibit all the key features of embryonic stem cells including unlimited self-renewal and multi-lineage differentiation potential, and can pass the most stringent test of pluripotency which is known as the tetraploid (4n complementation. Hence, in addition to bypassing the problem of immune rejection, iPS cells have all of the potential applications of embryonic stem cells, including in developmental studies, toxicology research, drug discovery and disease modeling. Also, considering that they could be generated from patient’s own cells, iPS cells hold great promise in the future of patient-specific cell replacement therapies using pluripotent stem cells. In this review article, we will present a comprehensive review on the how and why of the generation of iPS cell from somatic cells of the body and discuss how they should be characterized in terms of morphologically, pluripotent stem cell behavior, and

  7. A sense inventory for clinical abbreviations and acronyms created using clinical notes and medical dictionary resources.

    Science.gov (United States)

    Moon, Sungrim; Pakhomov, Serguei; Liu, Nathan; Ryan, James O; Melton, Genevieve B

    2014-01-01

    To create a sense inventory of abbreviations and acronyms from clinical texts. The most frequently occurring abbreviations and acronyms from 352,267 dictated clinical notes were used to create a clinical sense inventory. Senses of each abbreviation and acronym were manually annotated from 500 random instances and lexically matched with long forms within the Unified Medical Language System (UMLS V.2011AB), Another Database of Abbreviations in Medline (ADAM), and Stedman's Dictionary, Medical Abbreviations, Acronyms & Symbols, 4th edition (Stedman's). Redundant long forms were merged after they were lexically normalized using Lexical Variant Generation (LVG). The clinical sense inventory was found to have skewed sense distributions, practice-specific senses, and incorrect uses. Of 440 abbreviations and acronyms analyzed in this study, 949 long forms were identified in clinical notes. This set was mapped to 17,359, 5233, and 4879 long forms in UMLS, ADAM, and Stedman's, respectively. After merging long forms, only 2.3% matched across all medical resources. The UMLS, ADAM, and Stedman's covered 5.7%, 8.4%, and 11% of the merged clinical long forms, respectively. The sense inventory of clinical abbreviations and acronyms and anonymized datasets generated from this study are available for public use at http://www.bmhi.umn.edu/ihi/research/nlpie/resources/index.htm ('Sense Inventories', website). Clinical sense inventories of abbreviations and acronyms created using clinical notes and medical dictionary resources demonstrate challenges with term coverage and resource integration. Further work is needed to help with standardizing abbreviations and acronyms in clinical care and biomedicine to facilitate automated processes such as text-mining and information extraction.

  8. Low-voltage analog front-end processor design for ISFET-based sensor and H+ sensing applications

    Science.gov (United States)

    Chung, Wen-Yaw; Yang, Chung-Huang; Peng, Kang-Chu; Yeh, M. H.

    2003-04-01

    This paper presents a modular-based low-voltage analog-front-end processor design in a 0.5mm double-poly double-metal CMOS technology for Ion Sensitive Field Effect Transistor (ISFET)-based sensor and H+ sensing applications. To meet the potentiometric response of the ISFET that is proportional to various H+ concentrations, the constant-voltage and constant current (CVCS) testing configuration has been used. Low-voltage design skills such as bulk-driven input pair, folded-cascode amplifier, bootstrap switch control circuits have been designed and integrated for 1.5V supply and nearly rail-to-rail analog to digital signal processing. Core modules consist of an 8-bit two-step analog-digital converter and bulk-driven pre-amplifiers have been developed in this research. The experimental results show that the proposed circuitry has an acceptable linearity to 0.1 pH-H+ sensing conversions with the buffer solution in the range of pH2 to pH12. The processor has a potential usage in battery-operated and portable healthcare devices and environmental monitoring applications.

  9. Effects of canopy structural variables on retrieval of leaf dry matter content and specific leaf area from remotely sensed data

    NARCIS (Netherlands)

    Ali, A.M.; Darvishzadeh, R.; Skidmore, A.K.; van Duren, I.C.

    2016-01-01

    Leaf dry matter content (LDMC) and specific leaf area (SLA) are two important traits in measuring biodiversity. To use remote sensing for the estimation of these traits, it is essential to understand the underlying factors that influence their relationships with canopy reflectance. The effect of

  10. Compliance uncertainty of diameter characteristic in the next-generation geometrical product specifications and verification

    International Nuclear Information System (INIS)

    Lu, W L; Jiang, X; Liu, X J; Xu, Z G

    2008-01-01

    Compliance uncertainty is one of the most important elements in the next-generation geometrical product specifications and verification (GPS). It consists of specification uncertainty, method uncertainty and implementation uncertainty, which are three of the four fundamental uncertainties in the next-generation GPS. This paper analyzes the key factors that influence compliance uncertainty and then proposes a procedure to manage the compliance uncertainty. A general model on evaluation of compliance uncertainty has been devised and a specific formula for diameter characteristic has been derived based on this general model. The case study was conducted and it revealed that the completeness of currently dominant diameter characteristic specification needs to be improved

  11. Two-Dimensional Materials for Sensing: Graphene and Beyond

    Directory of Open Access Journals (Sweden)

    Seba Sara Varghese

    2015-09-01

    Full Text Available Two-dimensional materials have attracted great scientific attention due to their unusual and fascinating properties for use in electronics, spintronics, photovoltaics, medicine, composites, etc. Graphene, transition metal dichalcogenides such as MoS2, phosphorene, etc., which belong to the family of two-dimensional materials, have shown great promise for gas sensing applications due to their high surface-to-volume ratio, low noise and sensitivity of electronic properties to the changes in the surroundings. Two-dimensional nanostructured semiconducting metal oxide based gas sensors have also been recognized as successful gas detection devices. This review aims to provide the latest advancements in the field of gas sensors based on various two-dimensional materials with the main focus on sensor performance metrics such as sensitivity, specificity, detection limit, response time, and reversibility. Both experimental and theoretical studies on the gas sensing properties of graphene and other two-dimensional materials beyond graphene are also discussed. The article concludes with the current challenges and future prospects for two-dimensional materials in gas sensor applications.

  12. Bit of History and Some Lessons Learned in Using NASA Remote Sensing Data in Public Health Applications

    Science.gov (United States)

    Quattrochi, Dale A.; Estes, Sue

    2011-01-01

    The NASA Applied Sciences Program's public health initiative began in 2004 to illustratethe potential benefits for using remote sensing in public health applications. Objectives/Purpose: The CDC initiated a st udy with NASA through the National Center for Environmental Health (NCEH) to establish a pilot effort to use remote sensing data as part of its Environmental Public Health Tracking Network (EPHTN). As a consequence, the NCEH and NASA developed a project called HELIX-Atlanta (Health and Environment Linkage for Information Exchange) to demonstrate a process for developing a local environmental public health tracking and surveillance network that integrates non-infectious health and environment systems for the Atlanta metropolitan area. Methods: As an ongo ing, systematic integration, analysis and interpretation of data, an EPHTN focuses on: 1 -- environmental hazards; 2 -- human exposure to environmental hazards; and 3 -- health effects potentially related to exposure to environmental hazards. To satisfy the definition of a surveillance system the data must be disseminated to plan, implement, and evaluate environmental public health action. Results: A close working r elationship developed with NCEH where information was exchanged to assist in the development of an EPHTN that incorporated NASA remote sensing data into a surveillance network for disseminating public health tracking information to users. This project?s success provided NASA with the opportunity to work with other public health entities such as the University of Mississippi Medical Center, the University of New Mexico and the University of Arizona. Conclusions: HELIX-Atlanta became a functioning part of the national EPHTN for tracking environmental hazards and exposure, particularly as related to air quality over Atlanta. Learning Objectives: 1 -- remote sensing data can be integral to an EPHTN; 2 -- public tracking objectives can be enhanced through remote sensing data; 3 -- NASA's involvement in

  13. SU-E-T-04: 3D Printed Patient-Specific Surface Mould Applicators for Brachytherapy Treatment of Superficial Lesions

    International Nuclear Information System (INIS)

    Cumming, I; Lasso, A; Rankin, A; Fichtinger, G; Joshi, C P; Falkson, C; Schreiner, L John

    2014-01-01

    Purpose: Evaluate the feasibility of constructing 3D-printed patient-specific surface mould applicators for HDR brachytherapy treatment of superficial lesions. Methods: We propose using computer-aided design software to create 3D printed surface mould applicators for brachytherapy. A mould generation module was developed in the open-source 3D Slicer ( http://www.slicer.org ) medical image analysis platform. The system extracts the skin surface from CT images, and generates smooth catheter paths over the region of interest based on user-defined start and end points at a specified stand-off distance from the skin surface. The catheter paths are radially extended to create catheter channels that are sufficiently wide to ensure smooth insertion of catheters for a safe source travel. An outer mould surface is generated to encompass the channels. The mould is also equipped with fiducial markers to ensure its reproducible placement. A surface mould applicator with eight parallel catheter channels of 4mm diameters was fabricated for the nose region of a head phantom; flexible plastic catheters of 2mm diameter were threaded through these channels maintaining 10mm catheter separations and a 5mm stand-off distance from the skin surface. The apparatus yielded 3mm thickness of mould material between channels and the skin. The mould design was exported as a stereolithography file to a Dimension SST1200es 3D printer and printed using ABS Plus plastic material. Results: The applicator closely matched its design and was found to be sufficiently rigid without deformation during repeated application on the head phantom. Catheters were easily threaded into channels carved along catheter paths. Further tests are required to evaluate feasibility of channel diameters smaller than 4mm. Conclusion: Construction of 3D-printed mould applicators show promise for use in patient specific brachytherapy of superficial lesions. Further evaluation of 3D printing techniques and materials is required

  14. SU-E-T-04: 3D Printed Patient-Specific Surface Mould Applicators for Brachytherapy Treatment of Superficial Lesions

    Energy Technology Data Exchange (ETDEWEB)

    Cumming, I; Lasso, A; Rankin, A; Fichtinger, G [Laboratory for Percutaneous Surgery, School of Computing, Queen' s University, Kingston, Ontario (Canada); Joshi, C P; Falkson, C; Schreiner, L John [CCSEO, Kingston General Hospital and Department of Oncology, Queen' s University, Kingston, Ontario (Canada)

    2014-06-01

    Purpose: Evaluate the feasibility of constructing 3D-printed patient-specific surface mould applicators for HDR brachytherapy treatment of superficial lesions. Methods: We propose using computer-aided design software to create 3D printed surface mould applicators for brachytherapy. A mould generation module was developed in the open-source 3D Slicer ( http://www.slicer.org ) medical image analysis platform. The system extracts the skin surface from CT images, and generates smooth catheter paths over the region of interest based on user-defined start and end points at a specified stand-off distance from the skin surface. The catheter paths are radially extended to create catheter channels that are sufficiently wide to ensure smooth insertion of catheters for a safe source travel. An outer mould surface is generated to encompass the channels. The mould is also equipped with fiducial markers to ensure its reproducible placement. A surface mould applicator with eight parallel catheter channels of 4mm diameters was fabricated for the nose region of a head phantom; flexible plastic catheters of 2mm diameter were threaded through these channels maintaining 10mm catheter separations and a 5mm stand-off distance from the skin surface. The apparatus yielded 3mm thickness of mould material between channels and the skin. The mould design was exported as a stereolithography file to a Dimension SST1200es 3D printer and printed using ABS Plus plastic material. Results: The applicator closely matched its design and was found to be sufficiently rigid without deformation during repeated application on the head phantom. Catheters were easily threaded into channels carved along catheter paths. Further tests are required to evaluate feasibility of channel diameters smaller than 4mm. Conclusion: Construction of 3D-printed mould applicators show promise for use in patient specific brachytherapy of superficial lesions. Further evaluation of 3D printing techniques and materials is required

  15. Forced Attention to Specific Applicant Qualifications: Impact on Physical Attractiveness and Sex of Applicant Biases.

    Science.gov (United States)

    Cann, Arnie; And Others

    1981-01-01

    Undergraduates evaluated the qualifications of an attractive, average, or unattractive male or female applicant. Ratings of specific qualifications preceded or followed an overall and hiring decision rating. The order variable influenced ratings of specific qualifications but not the overall or hiring decision. Male and attractive applicants were…

  16. How to explore dancers’ sense experiences?

    DEFF Research Database (Denmark)

    Ravn, Susanne; Hansen, Helle Ploug

    2013-01-01

    sense of how the body feels in preference to working with specific modalities of sensing. Furthermore, the dancers’ sensing of the physicality of their moving bodies appears to be shaped by their unique intention is at the same time given form through their interactions with other dancers....

  17. Quantum Sensing and Communications Being Developed for Nanotechnology

    Science.gov (United States)

    Nguyen, Quang-Viet; Seibert, Marc A.

    2003-01-01

    An interdisciplinary quantum communications and sensing research effort has been underway at the NASA Glenn Research Center since the summer of 2000. Researchers in the Communications Technology, Instrumentation and Controls, and Propulsion and Turbomachinery Divisions have been working together to study and develop techniques that use the principle of quantum entanglement (QE). This work is supported principally by the Nanotechnology Base R&T program at Glenn. As applied to communications and sensing, QE is an emerging technology that holds promise as a new and innovative way to communicate faster and farther, and to sense, measure, and image environmental properties in ways that are not possible with existing technology. Quantum entangled photons are "inseparable" as described by a wave function formalism. For two entangled photons, the term "inseparable" means that one cannot describe one photon without completely describing the other. This inseparability gives rise to what appears as "spooky," or nonintuitive, behavior because of the quantum nature of the process. For example, two entangled photons of lower energy can be created simultaneously from a single photon of higher energy in a process called spontaneous parametric down-conversion. Our research is focused on the use of polarization-entangled photons generated by passing a high-energy (blue) photon through a nonlinear beta barium borate crystal to generate two red photons that have orthogonal, but entangled, polarization states. Although the actual polarization state of any one photon is not known until it is measured, the act of measuring the polarization of one photon completely determines the polarization state of its twin because of entanglement. This unique relationship between the photons provides extra information about the system. For example, entanglement makes it easy to distinguish entangled photons from other photons impinging on a detector. For many other applications, ranging from quantum

  18. Materials science. Materials that couple sensing, actuation, computation, and communication.

    Science.gov (United States)

    McEvoy, M A; Correll, N

    2015-03-20

    Tightly integrating sensing, actuation, and computation into composites could enable a new generation of truly smart material systems that can change their appearance and shape autonomously. Applications for such materials include airfoils that change their aerodynamic profile, vehicles with camouflage abilities, bridges that detect and repair damage, or robotic skins and prosthetics with a realistic sense of touch. Although integrating sensors and actuators into composites is becoming increasingly common, the opportunities afforded by embedded computation have only been marginally explored. Here, the key challenge is the gap between the continuous physics of materials and the discrete mathematics of computation. Bridging this gap requires a fundamental understanding of the constituents of such robotic materials and the distributed algorithms and controls that make these structures smart. Copyright © 2015, American Association for the Advancement of Science.

  19. 188W/188Re Generator System and Its Therapeutic Applications

    Directory of Open Access Journals (Sweden)

    A. Boschi

    2014-01-01

    Full Text Available The 188Re radioisotope represents a useful radioisotope for the preparation of radiopharmaceuticals for therapeutic applications, particularly because of its favorable nuclear properties. The nuclide decay pattern is through the emission of a principle beta particle having 2.12 MeV maximum energy, which is enough to penetrate and destroy abnormal tissues, and principle gamma rays (Eγ=155 keV, which can efficiently be used for imaging and calculations of radiation dose. 188Re may be conveniently produced by 188W/188Re generator systems. The challenges related to the double neutron capture reaction route to provide only modest yield of the parent 188W radionuclide indeed have been one of the major issues about the use of 188Re in nuclear medicine. Since the specific activity of 188W used in the generator is relatively low (<185 GBq/g, the eluted Re188O4- can have a low radioactive concentration, often ineffective for radiopharmaceutical preparation. However, several efficient postelution concentration techniques have been developed, which yield clinically useful Re188O4- solutions. This review summarizes the technologies developed for the preparation of 188W/188Re generators, postelution concentration of the 188Re perrhenate eluate, and a brief discussion of new chemical strategies available for the very high yield preparation of 188Re radiopharmaceuticals.

  20. Biosensors and Biofuel Cells based on Vertically Aligned Carbon Nanotubes for Integrated Energy Sensing, Generation, and Storage (SGS) Systems

    Science.gov (United States)

    Pandey, Archana; Prasad, Abhishek; Khin Yap, Yoke

    2010-03-01

    Diabetes is a growing health issue in the nation. Thus in-situ glucose sensors that can monitor the glucose level in our body are in high demand. Furthermore, it will be exciting if the excessive blood sugar can be converted into usable energy, and be stored in miniature batteries for applications. This will be the basis for an integrated energy sensing, generation, and storage (SGS) system in the future. Here we report the use of functionalized carbon nanotubes arrays as the glucose sensors as well as fuel cells that can convert glucose into energy. In principle, these devices can be integrated to detect excessive blood glucose and then convert the glucose into energy. They are also inline with our efforts on miniature 3D microbatteries using CNTs [1]. All these devices will be the basis for future SGS systems. Details of these results will be discussed in the meeting. [1] Wang et al., in 206^th Meeting of the Electrochemical Society, October 3-8, Honolulu, Hawaii (2004), Symposium Q1, abstract 1492. Y. K. Yap acknowledges supports from DARPA (DAAD17-03-C-0115), USDA (2007-35603-17740), and the Multi-Scale Technologies Institute (MuSTI) at MTU.