WorldWideScience

Sample records for generalized uncertainty principle

  1. Generalized uncertainty principles

    CERN Document Server

    Machluf, Ronny

    2008-01-01

    The phenomenon in the essence of classical uncertainty principles is well known since the thirties of the last century. We introduce a new phenomenon which is in the essence of a new notion that we introduce: "Generalized Uncertainty Principles". We show the relation between classical uncertainty principles and generalized uncertainty principles. We generalized "Landau-Pollak-Slepian" uncertainty principle. Our generalization relates the following two quantities and two scaling parameters: 1) The weighted time spreading $\\int_{-\\infty}^\\infty |f(x)|^2w_1(x)dx$, ($w_1(x)$ is a non-negative function). 2) The weighted frequency spreading $\\int_{-\\infty}^\\infty |\\hat{f}(\\omega)|^2w_2(\\omega)d\\omega$. 3) The time weight scale $a$, ${w_1}_a(x)=w_1(xa^{-1})$ and 4) The frequency weight scale $b$, ${w_2}_b(\\omega)=w_2(\\omega b^{-1})$. "Generalized Uncertainty Principle" is an inequality that summarizes the constraints on the relations between the two spreading quantities and two scaling parameters. For any two reason...

  2. Review on Generalized Uncertainty Principle

    CERN Document Server

    Tawfik, Abdel Nasser

    2015-01-01

    Based on string theory, black hole physics, doubly special relativity and some "thought" experiments, minimal distance and/or maximum momentum are proposed. As alternatives to the generalized uncertainty principle (GUP), the modified dispersion relation, the space noncommutativity, the Lorentz invariance violation, and the quantum-gravity-induced birefringence effects are summarized. The origin of minimal measurable quantities and the different GUP approaches are reviewed and the corresponding observations are analysed. Bounds on the GUP parameter are discussed and implemented in understanding recent PLANCK observations on the cosmic inflation. The higher-order GUP approaches predict minimal length uncertainty with and without maximum momenta.

  3. Generalized Uncertainty Principle and Angular Momentum

    CERN Document Server

    Bosso, Pasquale

    2016-01-01

    Various models of quantum gravity suggest a modification of the Heisenberg's Uncertainty Principle, to the so-called Generalized Uncertainty Principle, between position and momentum. In this work we show how this modification influences the theory of angular momentum in Quantum Mechanics. In particular, we compute Planck scale corrections to angular momentum eigenvalues, the Hydrogen atom spectrum, the Stern-Gerlach experiment and the Clebsch-Gordan coefficients. We also examine effects of the Generalized Uncertainty Principle on multi-particle systems.

  4. A review of the generalized uncertainty principle.

    Science.gov (United States)

    Tawfik, Abdel Nasser; Diab, Abdel Magied

    2015-12-01

    Based on string theory, black hole physics, doubly special relativity and some 'thought' experiments, minimal distance and/or maximum momentum are proposed. As alternatives to the generalized uncertainty principle (GUP), the modified dispersion relation, the space noncommutativity, the Lorentz invariance violation, and the quantum-gravity-induced birefringence effects are summarized. The origin of minimal measurable quantities and the different GUP approaches are reviewed and the corresponding observations are analysed. Bounds on the GUP parameter are discussed and implemented in the understanding of recent PLANCK observations of cosmic inflation. The higher-order GUP approaches predict minimal length uncertainty with and without maximum momenta. Possible arguments against the GUP are discussed; for instance, the concern about its compatibility with the equivalence principles, the universality of gravitational redshift and the free fall and law of reciprocal action are addressed.

  5. Phenomenological Implications of the Generalized Uncertainty Principle

    CERN Document Server

    Das, Saurya

    2009-01-01

    Various theories of Quantum Gravity argue that near the Planck scale, the Heisenberg Uncertainty Principle should be replaced by the so called Generalized Uncertainty Principle (GUP). We show that the GUP gives rise to two additional terms in any quantum mechanical Hamiltonian, proportional to \\beta p^4 and \\beta^2 p^6 respectively, where \\beta \\sim 1/(M_{Pl}c)^2 is the GUP parameter. These terms become important at or above the Planck energy. Considering only the first of these, and treating it as a perturbation, we show that the GUP affects the Lamb shift, Landau levels, reflection and transmission coefficients of a potential step and potential barrier, and the current in a Scanning Tunnel Microscope (STM). Although these are too small to be measurable at present, we speculate on the possibility of extracting measurable predictions in the future.

  6. Gravitational tests of the generalized uncertainty principle

    Energy Technology Data Exchange (ETDEWEB)

    Scardigli, Fabio [American University of the Middle East, Department of Mathematics, College of Engineering, P.O. Box 220, Dasman (Kuwait); Politecnico di Milano, Dipartimento di Matematica, Milan (Italy); Casadio, Roberto [Alma Mater Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); INFN, Sezione di Bologna, Bologna (Italy)

    2015-09-15

    We compute the corrections to the Schwarzschild metric necessary to reproduce the Hawking temperature derived from a generalized uncertainty principle (GUP), so that the GUP deformation parameter is directly linked to the deformation of the metric. Using this modified Schwarzschild metric, we compute corrections to the standard general relativistic predictions for the light deflection and perihelion precession, both for planets in the solar system and for binary pulsars. This analysis allows us to set bounds for the GUP deformation parameter from well-known astronomical measurements. (orig.)

  7. Lorentz invariance violation and generalized uncertainty principle

    Science.gov (United States)

    Tawfik, Abdel Nasser; Magdy, H.; Ali, A. Farag

    2016-01-01

    There are several theoretical indications that the quantum gravity approaches may have predictions for a minimal measurable length, and a maximal observable momentum and throughout a generalization for Heisenberg uncertainty principle. The generalized uncertainty principle (GUP) is based on a momentum-dependent modification in the standard dispersion relation which is conjectured to violate the principle of Lorentz invariance. From the resulting Hamiltonian, the velocity and time of flight of relativistic distant particles at Planck energy can be derived. A first comparison is made with recent observations for Hubble parameter in redshift-dependence in early-type galaxies. We find that LIV has two types of contributions to the time of flight delay Δ t comparable with that observations. Although the wrong OPERA measurement on faster-than-light muon neutrino anomaly, Δ t, and the relative change in the speed of muon neutrino Δ v in dependence on redshift z turn to be wrong, we utilize its main features to estimate Δ v. Accordingly, the results could not be interpreted as LIV. A third comparison is made with the ultra high-energy cosmic rays (UHECR). It is found that an essential ingredient of the approach combining string theory, loop quantum gravity, black hole physics and doubly spacial relativity and the one assuming a perturbative departure from exact Lorentz invariance. Fixing the sensitivity factor and its energy dependence are essential inputs for a reliable confronting of our calculations to UHECR. The sensitivity factor is related to the special time of flight delay and the time structure of the signal. Furthermore, the upper and lower bounds to the parameter, a that characterizes the generalized uncertainly principle, have to be fixed in related physical systems such as the gamma rays bursts.

  8. Generalized Uncertainty Principle: Approaches and Applications

    CERN Document Server

    Tawfik, Abdel Nasser

    2014-01-01

    We review some highlights from the String theory, the black hole physics and the doubly special relativity and some thought experiments which were suggested to probe the shortest distances and/or maximum momentum at the Planck scale. Furthermore, all models developed in order to implement the minimal length scale and/or the maximum momentum in different physical systems are analysed. We compare between them. They entered the literature as the Generalized Uncertainty Principle (GUP) assuming modified dispersion relation, and therefore are allowed for a wide range of Applications in estimating, for example, the inflationary parameters, Lorentz invariance violation, black hole thermodynamics, Saleker--Wigner inequalities, entropic nature of gravitational laws, Friedmann equations, minimal time measurement and thermodynamics of the high--energy collisions. One of the higher--order GUP approaches gives predictions for the minimal length uncertainty. A second one predicts a maximum momentum and a minimal length unc...

  9. Generalized uncertainty principle and black hole thermodynamics

    CERN Document Server

    Gangopadhyay, Sunandan; Saha, Anirban

    2013-01-01

    We study the Schwarzschild and Reissner-Nordstr\\"{o}m black hole thermodynamics using the simplest form of the generalized uncertainty principle (GUP) proposed in the literature. The expressions for the mass-temperature relation, heat capacity and entropy are obtained in both cases from which the critical and remnant masses are computed. Our results are exact and reveal that these masses are identical and larger than the so called singular mass for which the thermodynamics quantities become ill-defined. The expression for the entropy reveals the well known area theorem in terms of the horizon area in both cases upto leading order corrections from GUP. The area theorem written in terms of a new variable which can be interpreted as the reduced horizon area arises only when the computation is carried out to the next higher order correction from GUP.

  10. Lorentz Invariance Violation and Generalized Uncertainty Principle

    CERN Document Server

    Tawfik, A; Ali, A Farag

    2016-01-01

    Recent approaches for quantum gravity are conjectured to give predictions for a minimum measurable length, a maximum observable momentum and an essential generalization for the Heisenberg uncertainty principle (GUP). The latter is based on a momentum-dependent modification in the standard dispersion relation and leads to Lorentz invariance violation (LIV). The main features of the controversial OPERA measurements on the faster-than-light muon neutrino anomaly are used to calculate the time of flight delays $\\Delta t$ and the relative change $\\Delta v$ in the speed of neutrino in dependence on the redshift $z$. The results are compared with the OPERA measurements. We find that the measurements are too large to be interpreted as LIV. Depending on the rest mass, the propagation of high-energy muon neutrino can be superluminal. The comparison with the ultra high energy cosmic rays seems to reveals an essential ingredient of the approach combining string theory, loop quantum gravity, black hole physics and doubly ...

  11. Incorporation of generalized uncertainty principle into Lifshitz field theories

    Energy Technology Data Exchange (ETDEWEB)

    Faizal, Mir, E-mail: f2mir@uwaterloo.ca [Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Majumder, Barun, E-mail: barunbasanta@iitgn.ac.in [Indian Institute of Technology Gandhinagar, Ahmedabad, 382424 (India)

    2015-06-15

    In this paper, we will incorporate the generalized uncertainty principle into field theories with Lifshitz scaling. We will first construct both bosonic and fermionic theories with Lifshitz scaling based on generalized uncertainty principle. After that we will incorporate the generalized uncertainty principle into a non-abelian gauge theory with Lifshitz scaling. We will observe that even though the action for this theory is non-local, it is invariant under local gauge transformations. We will also perform the stochastic quantization of this Lifshitz fermionic theory based generalized uncertainty principle.

  12. Some Implications of Two Forms of the Generalized Uncertainty Principle

    Directory of Open Access Journals (Sweden)

    Mohammed M. Khalil

    2014-01-01

    Full Text Available Various theories of quantum gravity predict the existence of a minimum length scale, which leads to the modification of the standard uncertainty principle to the Generalized Uncertainty Principle (GUP. In this paper, we study two forms of the GUP and calculate their implications on the energy of the harmonic oscillator and the hydrogen atom more accurately than previous studies. In addition, we show how the GUP modifies the Lorentz force law and the time-energy uncertainty principle.

  13. Generalized Uncertainty Principle: Implications for Black Hole Complementarity

    CERN Document Server

    Chen, Pisin; Yeom, Dong-han

    2014-01-01

    At the heart of the black hole information loss paradox and the firewall controversy lies the conflict between quantum mechanics and general relativity. Much has been said about quantum corrections to general relativity, but much less in the opposite direction. It is therefore crucial to examine possible corrections to quantum mechanics due to gravity. Indeed, the Heisenberg Uncertainty Principle is one profound feature of quantum mechanics, which nevertheless may receive correction when gravitational effects become important. Such generalized uncertainty principle [GUP] has been motivated from not only quite general considerations of quantum mechanics and gravity, but also string theoretic arguments. We examine the role of GUP in the context of black hole complementarity. We find that while complementarity can be violated by large N rescaling if one assumes only the Heisenberg's Uncertainty Principle, the application of GUP may save complementarity, but only if certain N-dependence is also assumed. This rais...

  14. Generalized uncertainty principles, effective Newton constant and regular black holes

    CERN Document Server

    Li, Xiang; Shen, You-Gen; Liu, Cheng-Zhou; He, Hong-Sheng; Xu, Lan-Fang

    2016-01-01

    In this paper, we explore the quantum spacetimes that are potentially connected with the generalized uncertainty principles. By analyzing the gravity-induced quantum interference pattern and the Gedanken for weighting photon, we find that the generalized uncertainty principles inspire the effective Newton constant as same as our previous proposal. A characteristic momentum associated with the tidal effect is suggested, which incorporates the quantum effect with the geometric nature of gravity. When the simplest generalized uncertainty principle is considered, the minimal model of the regular black holes is reproduced by the effective Newton constant. The black hole's tunneling probability, accurate to the second order correction, is carefully analyzed. We find that the tunneling probability is regularized by the size of the black hole remnant. Moreover, the black hole remnant is the final state of a tunneling process that the probability is minimized. A theory of modified gravity is suggested, by substituting...

  15. Constraining the generalized uncertainty principle with gravitational wave

    CERN Document Server

    Feng, Zhong-Wen; Li, Hui-Ling; Zu, Xiao-Tao

    2016-01-01

    Various theories of quantum gravity suggest a modification in the Heisenberg uncertainty principle to a so-called generalized uncertainty principle (GUP), which produces significant modifications to different physical systems. For this reason, in this paper, we investigate the speed of graviton by utilizing two proposals for the GUP. Then, to comply event GW 150914 data, we set upper bounds on the GUP parameters. It is found that the upper limit of the GUP parameters $\\beta_0$ and $\\alpha_0$ are $1.44675 \\times10^{10}$ and $1.35934 \\times10^{-4}$.

  16. Constraining the generalized uncertainty principle with cold atoms

    CERN Document Server

    Gao, Dongfeng

    2016-01-01

    Various theories of quantum gravity predict the existence of a minimum length scale, which implies the Planck-scale modifications of the Heisenberg uncertainty principle to a so-called generalized uncertainty principle (GUP). Previous studies of the GUP focused on its implications for high-energy physics, cosmology, and astrophysics. Here, the application of the GUP to low-energy quantum systems, and particularly cold atoms, is studied. Results from the $^{87}$Rb atom recoil experiment are used to set upper bounds on parameters in three different GUP proposals. A $10^{14}$-level bound on the Ali-Das-Vagenas proposal is found, which is the second best bound so far. A $10^{26}$-level bound on Maggiore's proposal is obtained, which turns out to be the best available bound on it.

  17. Generalized Uncertainty Principle and Analogue of Quantum Gravity in Optics

    CERN Document Server

    Braidotti, Maria Chiara; Conti, Claudio

    2016-01-01

    The design of optical systems capable of processing and manipulating ultra-short pulses and ultra-focused beams is highly challenging with far reaching fundamental technological applications. One key obstacle routinely encountered while implementing sub-wavelength optical schemes is how to overcome the limitations set by standard Fourier optics. A strategy to overcome these difficulties is to utilize the concept of generalized uncertainty principle (G-UP) that has been originally developed to study quantum gravity. In this paper we propose to use the concept of G-UP within the framework of optics to show that the generalized Schrodinger equation describing short pulses and ultra-focused beams predicts the existence of a minimal spatial or temporal scale which in turn implies the existence of maximally localized states. Using a Gaussian wavepacket with complex phase, we derive the corresponding generalized uncertainty relation and its maximally localized states. We numerically show that the presence of nonlin...

  18. Effects of the Generalized Uncertainty Principle on Compact Stars

    CERN Document Server

    Ali, Ahmed Farag

    2013-01-01

    Based on the generalized uncertainty principle (GUP), proposed by some approaches to quantum gravity such as string theory and doubly special relativity theories, we investigate the effect of GUP on the thermodynamic properties of compact stars with two different components. We note that the existence of quantum gravity correction tends to resist the collapse of stars if the GUP parameter $\\alpha$ is taking values between Planck scale and electroweak scale. Comparing with approaches, it is found that the radii of compact stars are found smaller. Increasing energy almost exponentially decreases the radii of compact stars.

  19. The Perihelion Precession of Mercury and the Generalized Uncertainty Principle

    CERN Document Server

    Majumder, Barun

    2011-01-01

    Very recently authors in [1] proposed a new Generalized Uncertainty Principle (or GUP) with a linear term in Plank length. In this Letter the effect of this linear term is studied perturbatively in the context of Keplerian orbits. The angle by which the perihelion of the orbit revolves over a complete orbital cycle is computed. The result is applied in the context of the precession of the perihelion of Mercury. As a consequence we get a lower bound of the new intermediate length scale offered by the GUP which is approximately 40 orders of magnitude below Plank length.

  20. Generalized Uncertainty Principle in the Presence of Extra Dimensions

    Institute of Scientific and Technical Information of China (English)

    MU Ben-Bong; WU Hou-Wen; YANG Hai-Tang

    2011-01-01

    @@ We argue that in the generalized uncertainty principle(GUP)model,the parameter β0 whose square root,minimal measurable length and extra dimensions are both suggested by quantum gravity theories,we investigate the models based on the GUP and one extra dimension,compactified with radius p.We obtain an inspiring quantum mechanics scale.We also estimate the application range of the GUP model.It turns out that the minimum measurable length is exactly the compactification radius of the extra dimension.%We argue that in the generalized uncertainty principle (GUP) model, the parameter 0o whose square root, multiplied by Planck length tv, approximates the minimum measurable distance, varies with energy scales. Since the minimal measurable length and extra dimensions are both suggested by quantum gravity theories, we investigate the models based on the GUP and one extra dimension, compactified with radius p. We obtain an inspiring relation βolp/p ~ 0(1). This relation is also consistent with the predictions at Planck scale and the usual quantum mechanics scale. We also estimate the application range of the GUP model. It turns out that the minimum measurable length is exactly the compactiScation radius of the extra dimension.

  1. Bounds on Large Extra Dimensions from the Generalized Uncertainty Principle

    CERN Document Server

    Cavaglia, Marco; Hou, Shaoqi

    2016-01-01

    The Generalized Uncertainty Principle (GUP) implies the existence of a physical minimum length scale $l_m$. In this scenario, black holes must have a radius larger than $l_m$. They are hotter and evaporate faster than in standard Hawking thermodynamics. We study the effects of the GUP on black hole production and decay at the LHC in models with large extra dimensions. Lower bounds on the fundamental Planck scale and the minimum black hole mass at formation are determined from black hole production cross section limits by the CMS Collaboration. The existence of a minimum length generally decreases the lower bounds on the fundamental Planck scale obtained in the absence of a minimum length.

  2. Generalized uncertainty principle and thermostatistics: a semiclassical approach

    CERN Document Server

    Abbasiyan-Motlaq, M

    2015-01-01

    We present an exact treatment of the thermodynamics of physical systems in the framework of the generalized uncertainty principle (GUP). Our purpose is to study and compare the consequences of two GUPs that one implies a minimal length while the other predicts a minimal length and a maximal momentum. Using a semiclassical method, we exactly calculate the modified internal energies and heat capacities in the presence of generalized commutation relations. We show that the total shift in these quantities only depends on the deformed algebra not on the system under study. Finally, the modified internal energy for an specific physical system such as ideal gas is obtained in the framework of two different GUPs.

  3. Generalized uncertainty principle and analogue of quantum gravity in optics

    Science.gov (United States)

    Braidotti, Maria Chiara; Musslimani, Ziad H.; Conti, Claudio

    2017-01-01

    The design of optical systems capable of processing and manipulating ultra-short pulses and ultra-focused beams is highly challenging with far reaching fundamental technological applications. One key obstacle routinely encountered while implementing sub-wavelength optical schemes is how to overcome the limitations set by standard Fourier optics. A strategy to overcome these difficulties is to utilize the concept of a generalized uncertainty principle (G-UP) which has been originally developed to study quantum gravity. In this paper we propose to use the concept of G-UP within the framework of optics to show that the generalized Schrödinger equation describing short pulses and ultra-focused beams predicts the existence of a minimal spatial or temporal scale which in turn implies the existence of maximally localized states. Using a Gaussian wavepacket with complex phase, we derive the corresponding generalized uncertainty relation and its maximally localized states. Furthermore, we numerically show that the presence of nonlinearity helps the system to reach its maximal localization. Our results may trigger further theoretical and experimental tests for practical applications and analogues of fundamental physical theories.

  4. String theory, scale relativity and the generalized uncertainty principle

    CERN Document Server

    Castro, C

    1995-01-01

    An extension/ modification of the Stringy Heisenberg Uncertainty principle is derived within the framework of the theory of Special Scale-Relativity proposed by Nottale. Based on the fractal structure of two dimensional Quantum Gravity which has attracted considerable interest recently we conjecture that the underlying fundamental principle behind String theory should be based on an extension of Scale Relativity where both dynamics as well as scales are incorporated in the same footing.

  5. Horizon Quantum Mechanics of Generalized Uncertainty Principle Black Holes

    CERN Document Server

    Manfredi, Luciano

    2016-01-01

    We study the Horizon Wavefunction (HWF) description of a generalized uncertainty principle inspired metric that admits sub-Planckian black holes, where the black hole mass $m$ is replaced by $M = m\\left( 1 + \\frac{\\beta}{2} \\frac{M_{\\rm Pl}^2}{m^2} \\right)$. Considering the case of a wave-packet shaped by a Gaussian distribution, we compute the HWF and the probability ${\\cal {P}}_{BH}$ that the source is a (quantum) black hole, i.e., that it lies within its horizon radius. The case $\\beta0$, where a minimum in ${\\cal {P}}_{BH}$ is encountered, thus meaning that every particle has some probability of decaying to a black hole. Furthermore, for sufficiently large $\\beta$ we find that every particle is a quantum black hole, in agreement with the intuitive effect of increasing $\\beta$, which creates larger $M$ and $R_{H}$ terms. This is likely due to a "dimensional reduction" feature of the model, where the black hole characteristics for sub-Planckian black holes mimic those in $(1+1)$-dimensions and the horizon s...

  6. Horizon Wavefunction of Generalized Uncertainty Principle Black Holes

    Directory of Open Access Journals (Sweden)

    Luciano Manfredi

    2016-01-01

    Full Text Available We study the Horizon Wavefunction (HWF description of a Generalized Uncertainty Principle inspired metric that admits sub-Planckian black holes, where the black hole mass m is replaced by M=m1+β/2MPl2/m2. Considering the case of a wave-packet shaped by a Gaussian distribution, we compute the HWF and the probability PBH that the source is a (quantum black hole, that is, that it lies within its horizon radius. The case β0, where a minimum in PBH is encountered, thus meaning that every particle has some probability of decaying to a black hole. Furthermore, for sufficiently large β we find that every particle is a quantum black hole, in agreement with the intuitive effect of increasing β, which creates larger M and RH terms. This is likely due to a “dimensional reduction” feature of the model, where the black hole characteristics for sub-Planckian black holes mimic those in (1+1 dimensions and the horizon size grows as RH~M-1.

  7. Pseudoharmonic oscillator in quantum mechanics with a generalized uncertainty principle

    CERN Document Server

    Boukhellout, Abdelmalek

    2013-01-01

    The pseudoharmonic oscillator potential is studied in quantum mechanics with a generalized uncertainty relation characterized by the existence of a minimal length. By using the perturbative approach of Brau, we compute the correction to the energy spectrum in the first order of the minimal length parameter {\\beta}. The effect of the minimal length on the vibration-rotation of diatomic molecules is discussed.

  8. Supersymmetry breaking as a new source for the generalized uncertainty principle

    Science.gov (United States)

    Faizal, Mir

    2016-06-01

    In this letter, we will demonstrate that the breaking of supersymmetry by a non-anticommutative deformation can be used to generate the generalized uncertainty principle. We will analyze the physical reasons for this observation, in the framework of string theory. We also discuss the relation between the generalized uncertainty principle and the Lee-Wick field theories.

  9. The most general form of deformation of the Heisenberg algebra from the generalized uncertainty principle

    Directory of Open Access Journals (Sweden)

    Syed Masood

    2016-12-01

    Full Text Available In this paper, we will propose the most general form of the deformation of Heisenberg algebra motivated by the generalized uncertainty principle. This deformation of the Heisenberg algebra will deform all quantum mechanical systems. The form of the generalized uncertainty principle used to motivate these results will be motivated by the space fractional quantum mechanics, and non-locality in quantum mechanical systems. We also analyse a specific limit of this generalized deformation for one dimensional system, and in that limit, a nonlocal deformation of the momentum operator generates a local deformation of all one dimensional quantum mechanical systems. We analyse the low energy effects of this deformation on a harmonic oscillator, Landau levels, Lamb shift, and potential barrier. We also demonstrate that this deformation leads to a discretization of space.

  10. The most general form of deformation of the Heisenberg algebra from the generalized uncertainty principle

    Science.gov (United States)

    Masood, Syed; Faizal, Mir; Zaz, Zaid; Ali, Ahmed Farag; Raza, Jamil; Shah, Mushtaq B.

    2016-12-01

    In this paper, we will propose the most general form of the deformation of Heisenberg algebra motivated by the generalized uncertainty principle. This deformation of the Heisenberg algebra will deform all quantum mechanical systems. The form of the generalized uncertainty principle used to motivate these results will be motivated by the space fractional quantum mechanics, and non-locality in quantum mechanical systems. We also analyse a specific limit of this generalized deformation for one dimensional system, and in that limit, a nonlocal deformation of the momentum operator generates a local deformation of all one dimensional quantum mechanical systems. We analyse the low energy effects of this deformation on a harmonic oscillator, Landau levels, Lamb shift, and potential barrier. We also demonstrate that this deformation leads to a discretization of space.

  11. The Most General Form of Deformation of the Heisenberg Algebra from the Generalized Uncertainty Principle

    CERN Document Server

    Masood, Syed; Zaz, Zaid; Ali, Ahmed Farag; Raza, Jamil; Shah, Mushtaq B

    2016-01-01

    In this paper, we will propose the most general form of the deformation of Heisenberg algebra motivated by the generalized uncertainty principle. This deformation of the Heisenberg algebra will deform all quantum mechanical systems. The form of the generalized uncertainty principle used to motivate these results will be motivated by space fractional quantum mechanics and non-locality in quantum mechanical systems. We also analyse a specific limit of this generalized deformation for one dimensional system, and in that limit, a nonlocal deformation of the momentum operator generates a local deformation of all one dimensional quantum mechanical systems. We analyse the low energy effects of this deformation on a harmonic oscillator, Landau levels, Lamb shift, and potential barrier. We also demonstrate that this deformation leads to a discretization of space.

  12. Generalized Uncertainty Principle and Recent Cosmic Inflation Observations

    CERN Document Server

    Tawfik, Abdel Nasser

    2014-01-01

    The recent background imaging of cosmic extragalactic polarization (BICEP2) observations are believed as an evidence for the cosmic inflation. BICEP2 provided a first direct evidence for the inflation, determined its energy scale and debriefed witnesses for the quantum gravitational processes. The ratio of scalar-to-tensor fluctuations $r$ which is the canonical measurement of the gravitational waves, was estimated as $r=0.2_{-0.05}^{+0.07}$. Apparently, this value agrees well with the upper bound value corresponding to PLANCK $r\\leq 0.012$ and to WMAP9 experiment $r=0.2$. It is believed that the existence of a minimal length is one of the greatest predictions leading to modifications in the Heisenberg uncertainty principle or a GUP at the Planck scale. In the present work, we investigate the possibility of interpreting recent BICEP2 observations through quantum gravity or GUP. We estimate the slow-roll parameters, the tensorial and the scalar density fluctuations which are characterized by the scalar field $...

  13. Fine Structure Constant, Domain Walls, and Generalized Uncertainty Principle in the Universe

    Directory of Open Access Journals (Sweden)

    Luigi Tedesco

    2011-01-01

    Full Text Available We study the corrections to the fine structure constant from the generalized uncertainty principle in the spacetime of a domain wall. We also calculate the corrections to the standard formula to the energy of the electron in the hydrogen atom to the ground state, in the case of spacetime of a domain wall and generalized uncertainty principle. The results generalize the cases known in literature.

  14. Semiclassical corrections to black hole entropy and the generalized uncertainty principle

    Energy Technology Data Exchange (ETDEWEB)

    Bargueño, Pedro, E-mail: p.bargueno@uniandes.edu.co [Departamento de Física, Universidad de los Andes, Apartado Aéreo 4976, Bogotá, Distrito Capital (Colombia); Vagenas, Elias C., E-mail: elias.vagenas@ku.edu.kw [Theoretical Physics Group, Department of Physics, Kuwait University, P.O. Box 5969, Safat 13060 (Kuwait)

    2015-03-06

    In this paper, employing the path integral method in the framework of a canonical description of a Schwarzschild black hole, we obtain the corrected inverse temperature and entropy of the black hole. The corrections are those coming from the quantum effects as well as from the Generalized Uncertainty Principle effects. Furthermore, an equivalence between the polymer quantization and the Generalized Uncertainty Principle description is shown provided the parameters characterizing these two descriptions are proportional.

  15. The entropy of the noncommutative acoustic black hole based on generalized uncertainty principle

    CERN Document Server

    Anacleto, M A; Passos, E; Santos, W P

    2014-01-01

    In this paper we investigate statistics entropy of a 3-dimensional rotating acoustic black hole based on generalized uncertainty principle. In our results we obtain an area entropy and a correction term associated with the noncommutative acoustic black hole when $ \\lambda $ introduced in the generalized uncertainty principle takes a specific value. However, in this method, is not need to introduce the ultraviolet cut-off and divergences are eliminated. Moreover, the small mass approximation is not necessary in the original brick-wall model.

  16. (Anti-)de Sitter Black Hole Thermodynamics and the Generalized Uncertainty Principle

    CERN Document Server

    Bolen, B; Bolen, Brett; Cavaglia, Marco

    2004-01-01

    We extend the derivation of the Hawking temperature of a Schwarzschild black hole via the Heisenberg uncertainty principle to the de Sitter and anti-de Sitter spacetimes. The thermodynamics of the Schwarzschild-(anti-)de Sitter black holes is obtained from the generalized uncertainty principle of string theory and non-commutative geometry. This may explain why the thermodynamics of (anti-)de Sitter-like black holes admits a holographic description in terms of a dual quantum conformal field theory, whereas the thermodynamics of Schwarzschild-like black holes does not.

  17. Generalized Uncertainty Principle Corrections to the Simple Harmonic Oscillator in Phase Space

    CERN Document Server

    Das, Saurya; Walton, Mark A

    2016-01-01

    We compute Wigner functions for the harmonic oscillator including corrections from generalized uncertainty principles (GUPs), and study the corresponding marginal probability densities and other properties. We show that the GUP corrections to the Wigner functions can be significant, and comment on their potential measurability in the laboratory.

  18. Nonlinear Schrödinger equation from generalized exact uncertainty principle

    Science.gov (United States)

    Rudnicki, Łukasz

    2016-09-01

    Inspired by the generalized uncertainty principle, which adds gravitational effects to the standard description of quantum uncertainty, we extend the exact uncertainty principle approach by Hall and Reginatto (2002 J. Phys. A: Math. Gen. 35 3289), and obtain a (quasi)nonlinear Schrödinger equation. This quantum evolution equation of unusual form, enjoys several desired properties like separation of non-interacting subsystems or plane-wave solutions for free particles. Starting with the harmonic oscillator example, we show that every solution of this equation respects the gravitationally induced minimal position uncertainty proportional to the Planck length. Quite surprisingly, our result successfully merges the core of classical physics with non-relativistic quantum mechanics in its extremal form. We predict that the commonly accepted phenomenon, namely a modification of a free-particle dispersion relation due to quantum gravity might not occur in reality.

  19. Impacts of Generalized Uncertainty Principle on Black Hole Thermodynamics and Salecker-Wigner Inequalities

    CERN Document Server

    Tawfik, A

    2013-01-01

    We investigate the impacts of Generalized Uncertainty Principle (GUP) proposed by some approaches to quantum gravity such as String Theory and Doubly Special Relativity on black hole thermodynamics and Salecker-Wigner inequalities. Utilizing Heisenberg uncertainty principle, the Hawking temperature, Bekenstein entropy, specific heat, emission rate and decay time are calculated. As the evaporation entirely eats up the black hole mass, the specific heat vanishes and the temperature approaches infinity with an infinite radiation rate. It is found that the GUP approach prevents the black hole from the entire evaporation. It implies the existence of remnants at which the specific heat vanishes. The same role is played by the Heisenberg uncertainty principle in constructing the hydrogen atom. We discuss how the linear GUP approach solves the entire-evaporation-problem. Furthermore, the black hole lifetime can be estimated using another approach; the Salecker-Wigner inequalities. Assuming that the quantum position u...

  20. The Quark-Gluon Plasma Equation of State and the Generalized Uncertainty Principle

    Directory of Open Access Journals (Sweden)

    L. I. Abou-Salem

    2015-01-01

    Full Text Available The quark-gluon plasma (QGP equation of state within a minimal length scenario or Generalized Uncertainty Principle (GUP is studied. The Generalized Uncertainty Principle is implemented on deriving the thermodynamics of ideal QGP at a vanishing chemical potential. We find a significant effect for the GUP term. The main features of QCD lattice results were quantitatively achieved in case of nf=0, nf=2, and nf=2+1 flavors for the energy density, the pressure, and the interaction measure. The exciting point is the large value of bag pressure especially in case of nf=2+1 flavor which reflects the strong correlation between quarks in this bag which is already expected. One can notice that the asymptotic behavior which is characterized by Stephan-Boltzmann limit would be satisfied.

  1. Impacts of generalized uncertainty principle on black hole thermodynamics and Salecker-Wigner inequalities

    Energy Technology Data Exchange (ETDEWEB)

    Tawfik, A., E-mail: a.tawfik@eng.mti.edu.eg [Egyptian Center for Theoretical Physics (ECTP), MTI University, 11571 Cairo (Egypt)

    2013-07-01

    We investigate the impacts of Generalized Uncertainty Principle (GUP) proposed by some approaches to quantum gravity such as String Theory and Doubly Special Relativity on black hole thermodynamics and Salecker-Wigner inequalities. Utilizing Heisenberg uncertainty principle, the Hawking temperature, Bekenstein entropy, specific heat, emission rate and decay time are calculated. As the evaporation entirely eats up the black hole mass, the specific heat vanishes and the temperature approaches infinity with an infinite radiation rate. It is found that the GUP approach prevents the black hole from the entire evaporation. It implies the existence of remnants at which the specific heat vanishes. The same role is played by the Heisenberg uncertainty principle in constructing the hydrogen atom. We discuss how the linear GUP approach solves the entire-evaporation-problem. Furthermore, the black hole lifetime can be estimated using another approach; the Salecker-Wigner inequalities. Assuming that the quantum position uncertainty is limited to the minimum wavelength of measuring signal, Wigner second inequality can be obtained. If the spread of quantum clock is limited to some minimum value, then the modified black hole lifetime can be deduced. Based on linear GUP approach, the resulting lifetime difference depends on black hole relative mass and the difference between black hole mass with and without GUP is not negligible.

  2. The Generalized Uncertainty Principle, entropy bounds and black hole (non-)evaporation in a thermal bath

    CERN Document Server

    Custodio, P S

    2003-01-01

    We apply the Generalized Uncertainty Principle (GUP) to the problem of maximum entropy and evaporation/absorption of energy of black holes near the Planck scale. We find within this general approach corrections to the maximum entropy, and indications for quenching of the evaporation because not only the evaporation term goes to a finite limit, but also because absorption of quanta seems to help the balance for black holes in a thermal bath. Then, residual masses around the Planck scale may be the final outcome of primordial black hole evaporation.

  3. Heisenberg's uncertainty principle

    OpenAIRE

    Busch, Paul; Heinonen, Teiko; Lahti, Pekka

    2007-01-01

    Heisenberg's uncertainty principle is usually taken to express a limitation of operational possibilities imposed by quantum mechanics. Here we demonstrate that the full content of this principle also includes its positive role as a condition ensuring that mutually exclusive experimental options can be reconciled if an appropriate trade-off is accepted. The uncertainty principle is shown to appear in three manifestations, in the form of uncertainty relations: for the widths of the position and...

  4. On the origin of generalized uncertainty principle from compactified M5-brane

    Science.gov (United States)

    Sepehri, Alireza; Pradhan, Anirudh; Beesham, A.

    2017-08-01

    In this paper, we demonstrate that compactification in M-theory can lead to a deformation of field theory consistent with the generalized uncertainty principle (GUP). We observe that the matter fields in the M3-brane action contain higher derivative terms. We demonstrate that such terms can also be constructed from a reformulation of the field theory by the GUP. In fact, we will construct the Heisenberg algebra consistent with this deformation, and explicitly demonstrate it to be the Heisenberg algebra obtained from the GUP. Thus, we use compactification in M-theory to motivate for the existence of the GUP.

  5. The Generalized Uncertainty Principle and Black Hole Entropy in Tunneling formalism

    CERN Document Server

    Majumder, Barun

    2013-01-01

    In this Letter we study the effects of the Generalized Uncertainty Principle in the tunneling formalism for Hawking radiation to evaluate the quantum-corrected Hawking temperature and entropy for a Schwarzchild black hole. We compare our results with the existing results given by other candidate theories of quantum gravity. In the entropy-area relation we found some new corection terms and in the leading order we found a term which varies as the square-root of Area. We also get the well known logarithmic correction in the sub-leading order. We discuss the significance of this new quantum corrected leading order term.

  6. On the stability of the dark energy based on generalized uncertainty principle

    CERN Document Server

    Pasqua, Antonio; Khomenko, Iuliia

    2013-01-01

    The new agegraphic Dark Energy (NADE) model (based on generalized uncertainty principle) interacting with Dark Matter (DM) is considered in this study via power-law form of the scale factor $a(t)$. The equation of state (EoS) parameter $\\omega_{G}$ is observed to have a phantom-like behaviour. The stability of this model is investigated through the squared speed of sound $v_{s}^{2}$: it is found that $v_{s}^{2}$ always stays at negative level, which indicates instability of the considered model.

  7. Corrections to entropy and thermodynamics of charged black hole using generalized uncertainty principle

    CERN Document Server

    Tawfik, Abdel Nasser

    2015-01-01

    Recently, there has been much attention devoted to resolving the quantum corrections to the Bekenstein-Hawking (black hole) entropy, which relates the entropy to the cross-sectional area of the black hole horizon. Using generalized uncertainty principle (GUP), corrections to the geometric entropy and thermodynamics of black hole will be introduced. The impact of GUP on the entropy near the horizon of three types of black holes; Schwarzschild, Garfinkle-Horowitz-Strominger and Reissner-Nordstr\\"om is determined. It is found that the logarithmic divergence in the entropy-area relation turns to be positive. The entropy $S$, which is assumed to be related to horizon's two-dimensional area, gets an additional terms, for instance $2\\, \\sqrt{\\pi}\\, \\alpha\\, \\sqrt{S}$, where $\\alpha$ is the GUP parameter.

  8. Effect of Generalized Uncertainty Principle on Main-Sequence Stars and White Dwarfs

    CERN Document Server

    Moussa, Mohamed

    2015-01-01

    This paper addresses the effect of generalized uncertainty principle, emerged by a different approaches of quantum gravity within Planck scale, on thermodynamic properties of photon, non-relativistic ideal gases and degenerate fermions. A modification in pressure, particle number and energy density are calculated. Astrophysical objects such as main sequence stars and white dwarfs are examined and discussed as an application. A modification in Lane-Emden equation due to a change in a polytropic relation caused by the presence of quantum gravity, is investigated. The applicable range of quantum gravity parameters is estimated. The bounds in the perturbed parameters are relatively large but it may be considered reasonable values in the astrophysical regime.

  9. Massive vector particles tunneling from black holes influenced by the generalized uncertainty principle

    Science.gov (United States)

    Li, Xiang-Qian

    2016-12-01

    This study considers the generalized uncertainty principle, which incorporates the central idea of large extra dimensions, to investigate the processes involved when massive spin-1 particles tunnel from Reissner-Nordstrom and Kerr black holes under the effects of quantum gravity. For the black hole, the quantum gravity correction decelerates the increase in temperature. Up to O (1Mf/2), the corrected temperatures are affected by the mass and angular momentum of the emitted vector bosons. In addition, the temperature of the Kerr black hole becomes uneven due to rotation. When the mass of the black hole approaches the order of the higher dimensional Planck mass Mf, it stops radiating and yields a black hole remnant.

  10. Galilean and Lorentz Transformations in a Space with Generalized Uncertainty Principle

    Science.gov (United States)

    Tkachuk, V. M.

    2016-12-01

    We consider a space with Generalized Uncertainty Principle (GUP) which can be obtained in the frame of the deformed commutation relations. In the space with GUP we have found transformations relating coordinates and times of moving and rest frames of reference in the first order over the parameter of deformation. In the non-relativistic case we find the deformed Galilean transformation which is rotation in Euclidian space-time. This transformation is similar to the Lorentz one but written for Euclidean space-time where the speed of light is replaced by some velocity related to the parameter of deformation. We show that for relativistic particle in the space with GUP the coordinates of the rest and moving frames of reference satisfy the Lorentz transformation with some effective speed of light.

  11. Quantum corrections to the thermodynamics of Schwarzschild-Tangherlini black hole and the generalized uncertainty principle

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Z.W.; Zu, X.T. [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Li, H.L. [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Shenyang Normal University, College of Physics Science and Technology, Shenyang (China); Yang, S.Z. [China West Normal University, Physics and Space Science College, Nanchong (China)

    2016-04-15

    We investigate the thermodynamics of Schwarzschild-Tangherlini black hole in the context of the generalized uncertainty principle (GUP). The corrections to the Hawking temperature, entropy and the heat capacity are obtained via the modified Hamilton-Jacobi equation. These modifications show that the GUP changes the evolution of the Schwarzschild-Tangherlini black hole. Specially, the GUP effect becomes susceptible when the radius or mass of the black hole approaches the order of Planck scale, it stops radiating and leads to a black hole remnant. Meanwhile, the Planck scale remnant can be confirmed through the analysis of the heat capacity. Those phenomena imply that the GUP may give a way to solve the information paradox. Besides, we also investigate the possibilities to observe the black hole at the Large Hadron Collider (LHC), and the results demonstrate that the black hole cannot be produced in the recent LHC. (orig.)

  12. Effect of Generalized Uncertainty Principle on Main-Sequence Stars and White Dwarfs

    Directory of Open Access Journals (Sweden)

    Mohamed Moussa

    2015-01-01

    Full Text Available This paper addresses the effect of generalized uncertainty principle, emerged from different approaches of quantum gravity within Planck scale, on thermodynamic properties of photon, nonrelativistic ideal gases, and degenerate fermions. A modification in pressure, particle number, and energy density are calculated. Astrophysical objects such as main-sequence stars and white dwarfs are examined and discussed as an application. A modification in Lane-Emden equation due to a change in a polytropic relation caused by the presence of quantum gravity is investigated. The applicable range of quantum gravity parameters is estimated. The bounds in the perturbed parameters are relatively large but they may be considered reasonable values in the astrophysical regime.

  13. Corrections to the thermodynamics of Schwarzschild-Tangherlini black hole and the generalized uncertainty principle

    CERN Document Server

    Feng, Z W; Zu, X T

    2016-01-01

    We investigate the thermodynamics of Schwarzschild-Tangherlini black hole in the context of the generalized uncertainty principle. The corrections to the Hawking temperature, entropy and the heat capacity are obtained via the modified Hamilton-Jacobi equation. These modifications show that the GUP changes the evolution of Schwarzschild-Tangherlini black hole. Specially, the GUP effect becomes susceptible when the black hole evaporates down to the order of Planck scale, it makes the Hawking radiating stop and leads to remnant. It finds the endpoint of evaporation is a Planck-scale remnant with zero heat capacity. Those phenomenons imply that the GUP may give a way to solve the information. Besides, we also analysis the possibilities to find the black hole at LHC, and show that the black hole can not be produced in the recent LHC.

  14. Massive vector particles tunneling from black holes influenced by the generalized uncertainty principle

    CERN Document Server

    Li, Xiang-Qian

    2016-01-01

    Considering the generalized uncertainty principle which incorporates the central idea of Large eXtra Dimensions, the processes of massive spin-1 particles tunneling from Reissner-Nordstrom and Kerr black holes are investigated. For the black hole, the quantum gravity correction decelerates the increase of the temperature. When the mass of the black hole approaches the order of the higher dimensional Planck mass $M_f$, it stops radiating and leads to a black hole remnant. To $\\mathcal{O}(\\frac{1}{M_f^2})$, the corrected temperatures are affected by the mass and angular momentum of emitted vector bosons. Meanwhile, the temperature of the Kerr black hole becomes uneven due to the rotation.

  15. f(R in Holographic and Agegraphic Dark Energy Models and the Generalized Uncertainty Principle

    Directory of Open Access Journals (Sweden)

    Barun Majumder

    2013-01-01

    Full Text Available We studied a unified approach with the holographic, new agegraphic, and f(R dark energy model to construct the form of f(R which in general is responsible for the curvature driven explanation of the very early inflation along with presently observed late time acceleration. We considered the generalized uncertainty principle in our approach which incorporated the corrections in the entropy-area relation and thereby modified the energy densities for the cosmological dark energy models considered. We found that holographic and new agegraphic f(R gravity models can behave like phantom or quintessence models in the spatially flat FRW universe. We also found a distinct term in the form of f(R which goes as R 3 / 2 due to the consideration of the GUP modified energy densities. Although the presence of this term in the action can be important in explaining the early inflationary scenario, Capozziello et al. recently showed that f(R ~ R 3 / 2 leads to an accelerated expansion, that is, a negative value for the deceleration parameter q which fits well with SNeIa and WMAP data.

  16. Gamma-Ray Telescope and Uncertainty Principle

    Science.gov (United States)

    Shivalingaswamy, T.; Kagali, B. A.

    2012-01-01

    Heisenberg's Uncertainty Principle is one of the important basic principles of quantum mechanics. In most of the books on quantum mechanics, this uncertainty principle is generally illustrated with the help of a gamma ray microscope, wherein neither the image formation criterion nor the lens properties are taken into account. Thus a better…

  17. The Black Hole Uncertainty Principle Correspondence

    CERN Document Server

    Carr, B J

    2014-01-01

    The Black Hole Uncertainty Principle correspondence proposes a connection between the Uncertainty Principle on microscopic scales and black holes on macroscopic scales. This is manifested in a unified expression for the Compton wavelength and Schwarzschild radius. It is a natural consequence of the Generalized Uncertainty Principle, which suggests corrections to the Uncertainty Principle as the energy increases towards the Planck value. It also entails corrections to the event horizon size as the black hole mass falls to the Planck value, leading to the concept of a Generalized Event Horizon. One implication of this is that there could be sub-Planckian black holes with a size of order their Compton wavelength. Loop quantum gravity suggests the existence of black holes with precisely this feature. The correspondence leads to a heuristic derivation of the black hole temperature and suggests how the Hawking formula is modified in the sub-Planckian regime.

  18. Uncertainty principle in larmor clock

    Institute of Scientific and Technical Information of China (English)

    QIAO Chuan; REN Zhong-Zhou

    2011-01-01

    It is well known that the spin operators of a quantum particle must obey uncertainty relations.We use the uncertainty principle to study the Larmor clock.To avoid breaking the uncertainty principle,Larmor time can be defined as the ratio of the phase difference between a spin-up particle and a spin-down particle to the corresponding Larmor frequency.The connection between the dwell time and the Larmor time has also been confirmed.Moreover,the results show that the behavior of the Larmor time depends on the height and width of the barrier.

  19. Maximally Localized States and Quantum Corrections of Black Hole Thermodynamics in the Framework of a New Generalized Uncertainty Principle

    Directory of Open Access Journals (Sweden)

    Yan-Gang Miao

    2015-01-01

    Full Text Available As a generalized uncertainty principle (GUP leads to the effects of the minimal length of the order of the Planck scale and UV/IR mixing, some significant physical concepts and quantities are modified or corrected correspondingly. On the one hand, we derive the maximally localized states—the physical states displaying the minimal length uncertainty associated with a new GUP proposed in our previous work. On the other hand, in the framework of this new GUP we calculate quantum corrections to the thermodynamic quantities of the Schwardzschild black hole, such as the Hawking temperature, the entropy, and the heat capacity, and give a remnant mass of the black hole at the end of the evaporation process. Moreover, we compare our results with that obtained in the frameworks of several other GUPs. In particular, we observe a significant difference between the situations with and without the consideration of the UV/IR mixing effect in the quantum corrections to the evaporation rate and the decay time. That is, the decay time can greatly be prolonged in the former case, which implies that the quantum correction from the UV/IR mixing effect may give rise to a radical rather than a tiny influence to the Hawking radiation.

  20. Uncertainty Relation from Holography Principle

    OpenAIRE

    Chen, Jia-Zhong; Jia, Duoje

    2004-01-01

    We propose that the information and entropy of an isolated system are two sides of one coin in the sense that they can convert into each other by measurement and evolution of the system while the sum of them is identically conserved. The holographic principle is reformulated in the way that this conserved sum is bounded by a quarter of the area A of system boundary. Uncertainty relation is derived from the holographic principle.

  1. Robertson-Schrödinger formulation of Ozawa's uncertainty principle

    Science.gov (United States)

    Bastos, Catarina; Bernardini, Alex E.; Bertolami, Orfeu; Costa Dias, Nuno; Nuno Prata, João

    2015-07-01

    A more general measurement disturbance uncertainty principle is presented in a Robertson-Schrödinger formulation. It is shown that it is stronger and having nicer properties than Ozawa's uncertainty relations. In particular it is invariant under symplectic transformations. One shows also that there are states of the probe (measuring device) that saturate the matrix formulation of measurement disturbance uncertainty principle.

  2. Robertson-Schr\\"odinger formulation of Ozawa's Uncertainty Principle

    CERN Document Server

    Bastos, Catarina; Bertolami, O; Dias, N C; Prata, J N

    2014-01-01

    A more general measurement disturbance uncertainty principle is presented in a Robertson-Schr\\"odinger formulation. It is shown that it is stronger and having nicer properties than Ozawa's uncertainty relations. In particular is invariant under symplectic transformations. One shows also that there are states of the probe (measuring device) that saturate the matrix formulation of measurement disturbance uncertainty principle.

  3. Generalized uncertainty relations

    Science.gov (United States)

    Herdegen, Andrzej; Ziobro, Piotr

    2017-04-01

    The standard uncertainty relations (UR) in quantum mechanics are typically used for unbounded operators (like the canonical pair). This implies the need for the control of the domain problems. On the other hand, the use of (possibly bounded) functions of basic observables usually leads to more complex and less readily interpretable relations. In addition, UR may turn trivial for certain states if the commutator of observables is not proportional to a positive operator. In this letter we consider a generalization of standard UR resulting from the use of two, instead of one, vector states. The possibility to link these states to each other in various ways adds additional flexibility to UR, which may compensate some of the above-mentioned drawbacks. We discuss applications of the general scheme, leading not only to technical improvements, but also to interesting new insight.

  4. Uncertainty Principles on Two Step Nilpotent Lie Groups

    Indian Academy of Sciences (India)

    S K Ray

    2001-08-01

    We extend an uncertainty principle due to Cowling and Price to two step nilpotent Lie groups, which generalizes a classical theorem of Hardy. We also prove an analogue of Heisenberg inequality on two step nilpotent Lie groups.

  5. Uncertainty Analysis Principles and Methods

    Science.gov (United States)

    2007-09-01

    WARFARE CENTER WEAPONS DIVISION, CHINA LAKE NAVAL AIR WARFARE CENTER AIRCRAFT DIVISION, PATUXENT RIVER NAVAL UNDERSEA WARFARE CENTER DIVISION...total systematic uncertainties be combined in RSS. In many instances, the student’s t-statistic, t95, is set equal to 2 and URSS is replaced by U95...GUM, the total uncertainty UADD, URSS or U95, was offered as type of confi- dence limit. 9595 UxvaluetrueUx +≤≤− In some respects, these limits

  6. GENERAL PRINCIPLES OF LAW

    Directory of Open Access Journals (Sweden)

    Elena ANGHEL

    2016-05-01

    Full Text Available According to Professor Djuvara “law can be a science, and legal knowledge can also become science when, referring to a number as large as possible of acts of those covered by law, sorts and connects them by their essential characters upon legal concepts or principles which are universally valid, just like the laws of nature”. The general principles of law take a privileged place in the positive legal order and represent the foundation of any legal construction. The essence of the legal principles resides in their generality. In respect of the term “general”, Franck Moderne raised the question on the degree of generality used in order to define a principle as being general – at the level of an institution, of a branch of the law or at the level of the entire legal order. The purpose of this study is to find out the characteristics of law principles. In our opinion, four characteristics can be mentioned.

  7. Background-independent quantization and the uncertainty principle

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Golam Mortuza; Husain, Viqar; Seahra, Sanjeev S, E-mail: ghossain@unb.c, E-mail: vhusain@unb.c, E-mail: sseahra@unb.c [Department of Mathematics and Statistics, University of New Brunswick, Fredericton, NB E3B 5A3 (Canada)

    2010-08-21

    It is shown that polymer quantization leads to a modified uncertainty principle similar to that motivated by string theory and non-commutative geometry. When applied to quantum field theory on general background spacetimes, corrections to the uncertainty principle acquire a metric dependence. For Friedmann-Robertson-Walker cosmology this translates to a scale factor dependence which gives a large effect in the early Universe.

  8. Itch Management: General Principles.

    Science.gov (United States)

    Misery, Laurent

    2016-01-01

    Like pain, itch is a challenging condition that needs to be managed. Within this setting, the first principle of itch management is to get an appropriate diagnosis to perform an etiology-oriented therapy. In several cases it is not possible to treat the cause, the etiology is undetermined, there are several causes, or the etiological treatment is not effective enough to alleviate itch completely. This is also why there is need for symptomatic treatment. In all patients, psychological support and associated pragmatic measures might be helpful. General principles and guidelines are required, yet patient-centered individual care remains fundamental.

  9. Uncertainty relations for general unitary operators

    Science.gov (United States)

    Bagchi, Shrobona; Pati, Arun Kumar

    2016-10-01

    We derive several uncertainty relations for two arbitrary unitary operators acting on physical states of a Hilbert space. We show that our bounds are tighter in various cases than the ones existing in the current literature. Using the uncertainty relation for the unitary operators, we obtain the tight state-independent lower bound for the uncertainty of two Pauli observables and anticommuting observables in higher dimensions. With regard to the minimum-uncertainty states, we derive the minimum-uncertainty state equation by the analytic method and relate this to the ground-state problem of the Harper Hamiltonian. Furthermore, the higher-dimensional limit of the uncertainty relations and minimum-uncertainty states are explored. From an operational point of view, we show that the uncertainty in the unitary operator is directly related to the visibility of quantum interference in an interferometer where one arm of the interferometer is affected by a unitary operator. This shows a principle of preparation uncertainty, i.e., for any quantum system, the amount of visibility for two general noncommuting unitary operators is nontrivially upper bounded.

  10. Uncertainty Principles for the Cherednik Transform

    Indian Academy of Sciences (India)

    R Daher; S L Hamad; T Kawazoe; N Shimeno

    2012-08-01

    We shall investigate two uncertainty principles for the Cherednik transform on the Euclidean space $\\mathfrak{a}$; Miyachi’s theorem and Beurling’s theorem. We give an analogue of Miyachi’s theorem for the Cherednik transform and under the assumption that $\\mathfrak{a}$ has a hypergroup structure, an analogue of Beurling’s theorem for the Cherednik transform.

  11. A Principle of Uncertainty for Information Seeking.

    Science.gov (United States)

    Kuhlthau, Carol C.

    1993-01-01

    Proposes an uncertainty principle for information seeking based on the results of a series of studies that investigated the user's perspective of the information search process. Constructivist theory is discussed as a conceptual framework for studying the user's perspective, and areas for further research are suggested. (Contains 44 references.)…

  12. Open timelike curves violate Heisenberg's uncertainty principle.

    Science.gov (United States)

    Pienaar, J L; Ralph, T C; Myers, C R

    2013-02-08

    Toy models for quantum evolution in the presence of closed timelike curves have gained attention in the recent literature due to the strange effects they predict. The circuits that give rise to these effects appear quite abstract and contrived, as they require nontrivial interactions between the future and past that lead to infinitely recursive equations. We consider the special case in which there is no interaction inside the closed timelike curve, referred to as an open timelike curve (OTC), for which the only local effect is to increase the time elapsed by a clock carried by the system. Remarkably, circuits with access to OTCs are shown to violate Heisenberg's uncertainty principle, allowing perfect state discrimination and perfect cloning of coherent states. The model is extended to wave packets and smoothly recovers standard quantum mechanics in an appropriate physical limit. The analogy with general relativistic time dilation suggests that OTCs provide a novel alternative to existing proposals for the behavior of quantum systems under gravity.

  13. Popper's Experiment and the Uncertainty Principle

    CERN Document Server

    Cardoso, António

    2015-01-01

    In this paper we look at a particular realization of Popper's thought experiment with correlated quantum particles and argue that, from the point of view of a nonlinear quantum physics and contrary to the orthodox interpretation, Heisenberg's uncertainty principle is violated. Moreover, we show that this kind of experiments can easily be explained in an intuitive manner if we are willing to take a nonlinear approach.

  14. Quantum theory of the generalised uncertainty principle

    Science.gov (United States)

    Bruneton, Jean-Philippe; Larena, Julien

    2017-04-01

    We extend significantly previous works on the Hilbert space representations of the generalized uncertainty principle (GUP) in 3 + 1 dimensions of the form [X_i,P_j] = i F_{ij} where F_{ij} = f({{P}}^2) δ _{ij} + g({{P}}^2) P_i P_j for any functions f. However, we restrict our study to the case of commuting X's. We focus in particular on the symmetries of the theory, and the minimal length that emerge in some cases. We first show that, at the algebraic level, there exists an unambiguous mapping between the GUP with a deformed quantum algebra and a quadratic Hamiltonian into a standard, Heisenberg algebra of operators and an aquadratic Hamiltonian, provided the boost sector of the symmetries is modified accordingly. The theory can also be mapped to a completely standard Quantum Mechanics with standard symmetries, but with momentum dependent position operators. Next, we investigate the Hilbert space representations of these algebraically equivalent models, and focus specifically on whether they exhibit a minimal length. We carry the functional analysis of the various operators involved, and show that the appearance of a minimal length critically depends on the relationship between the generators of translations and the physical momenta. In particular, because this relationship is preserved by the algebraic mapping presented in this paper, when a minimal length is present in the standard GUP, it is also present in the corresponding Aquadratic Hamiltonian formulation, despite the perfectly standard algebra of this model. In general, a minimal length requires bounded generators of translations, i.e. a specific kind of quantization of space, and this depends on the precise shape of the function f defined previously. This result provides an elegant and unambiguous classification of which universal quantum gravity corrections lead to the emergence of a minimal length.

  15. Uncertainty principle in human visual perception

    Science.gov (United States)

    Trifonov, Mikhael I.; Ugolev, Dmitry A.

    1994-05-01

    The orthodox data concerning the contrast sensitivity estimation for sine-wave gratings were formally analyzed. The result of our analysis made feasible a threshold energy value (Delta) E -- energetic equivalent to quantum of perception -- as (Delta) E equals (alpha) (Delta) L(Delta) X2, where (alpha) is a proportionality coefficient, (Delta) L is a threshold luminance, and (Delta) X is a half-period of grating. The value of (Delta) E is a constant for a given value of mean luminance L of the grating and for a middle spatial frequency region. So the `exchange' between luminance threshold (Delta) L and spatial resolution (Delta) X2 values takes place; the increasing of one is followed by the decreasing of the other. We treated this phenomenon as a principle of uncertainty in human visual perception and proved its correctness for other spatial frequencies. Taking into account threshold wavelength ((Delta) (lambda) ) and time ((Delta) t) the uncertainty principle may be extended to a wider class of visual perception problems, including color and flicker objects recognition. So, we suggest the uncertainty principle proposed above is to be one of the cornerstones of the evolution of cognitive systems.

  16. Quantum randomness certified by the uncertainty principle

    Science.gov (United States)

    Vallone, Giuseppe; Marangon, Davide G.; Tomasin, Marco; Villoresi, Paolo

    2014-11-01

    We present an efficient method to extract the amount of true randomness that can be obtained by a quantum random number generator (QRNG). By repeating the measurements of a quantum system and by swapping between two mutually unbiased bases, a lower bound of the achievable true randomness can be evaluated. The bound is obtained thanks to the uncertainty principle of complementary measurements applied to min-entropy and max-entropy. We tested our method with two different QRNGs by using a train of qubits or ququart and demonstrated the scalability toward practical applications.

  17. Archimedes' Principle in General Coordinates

    Science.gov (United States)

    Ridgely, Charles T.

    2010-01-01

    Archimedes' principle is well known to state that a body submerged in a fluid is buoyed up by a force equal to the weight of the fluid displaced by the body. Herein, Archimedes' principle is derived from first principles by using conservation of the stress-energy-momentum tensor in general coordinates. The resulting expression for the force is…

  18. Archimedes' Principle in General Coordinates

    Science.gov (United States)

    Ridgely, Charles T.

    2010-01-01

    Archimedes' principle is well known to state that a body submerged in a fluid is buoyed up by a force equal to the weight of the fluid displaced by the body. Herein, Archimedes' principle is derived from first principles by using conservation of the stress-energy-momentum tensor in general coordinates. The resulting expression for the force is…

  19. The uncertainty principle - A simplified review of the four versions

    Science.gov (United States)

    Jijnasu, Vasudeva

    2016-08-01

    The complexity of the historical confusions around different versions of the uncertainty principle, in addition to the increasing technicality of physics in general, has made its affairs predominantly accessible only to specialists. Consequently, the clarity that has dawned upon physicists over the decades regarding quantum uncertainty remains mostly imperceptible for general readers, students, philosophers and even non-expert scientists. In an attempt to weaken this barrier, the article presents a summary of this technical subject, focussing at the prime case of the position-momentum pair, as modestly and informatively as possible. This includes a crisp analysis of the historical as well as of the latest developments. In the process the article provides arguments to show that the usually sidelined version of uncertainty-the intrinsic 'unsharpness' or 'indeterminacy'-forms the basis for all the other three versions, and subsequently presents its hard philosophical implications.

  20. Heisenberg's Uncertainty Principle and Interpretive Research in Science Education.

    Science.gov (United States)

    Roth, Wolff-Michael

    1993-01-01

    Heisenberg's uncertainty principle and the derivative notions of interdeterminacy, uncertainty, precision, and observer-observed interaction are discussed and their applications to social science research examined. Implications are drawn for research in science education. (PR)

  1. Science 101: What, Exactly, Is the Heisenberg Uncertainty Principle?

    Science.gov (United States)

    Robertson, Bill

    2016-01-01

    Bill Robertson is the author of the NSTA Press book series, "Stop Faking It! Finally Understanding Science So You Can Teach It." In this month's issue, Robertson describes and explains the Heisenberg Uncertainty Principle. The Heisenberg Uncertainty Principle was discussed on "The Big Bang Theory," the lead character in…

  2. Uncertainty as organizing principle of action

    DEFF Research Database (Denmark)

    Winther-Lindqvist, Ditte Alexandra

    2014-01-01

    uncertainty as condition for teenage life when confronted with parental serious illness is presented as the main challenge charracterising this situation. based on 26 semi-structured interviews everyday life with an ill parent is described and analysed. a model of uncertainty is suggested which...

  3. Quantised inertia from relativity and the uncertainty principle

    CERN Document Server

    McCulloch, M E

    2016-01-01

    It is shown here that if we assume that what is conserved in nature is not simply mass-energy, but rather mass-energy plus the energy uncertainty of the uncertainty principle, and if we also assume that position uncertainty is reduced by the formation of relativistic horizons, then the resulting increase of energy uncertainty is close to that needed for a new model for inertial mass (MiHsC, quantised inertia) which has been shown to predict galaxy rotation without dark matter and cosmic acceleration without dark energy. The same principle can also be used to model the inverse square law of gravity, and predicts the mass of the electron.

  4. Nanosensing Backed by the Uncertainty Principle

    Directory of Open Access Journals (Sweden)

    I. Filikhin

    2016-01-01

    Full Text Available Possibility for a novel type of sensors for detecting nanosized substances (e.g., macromolecules or molecule clusters through their effects on electron tunneling in a double nanoscale semiconductor heterostructure is discussed. We studied spectral distributions of localized/delocalized states of a single electron in a double quantum well (DQW with relation to slight asymmetry perturbations. The asymmetry was modeled by modification of the dot shape and the confinement potential. Electron energy uncertainty is restricted by the differences between energy levels within the spectra of separated QWs. Hence, we established a direct relationship between the uncertainty of electron localization and the energy uncertainty. We have shown in various instances that a small violation of symmetry drastically affects the electron localization. These phenomena can be utilized to devise new sensing functionalities. The charge transport in such sensors is highly sensitive to minuscule symmetry violation caused by the detected substance. The detection of the electron localization constitutes the sensor signal.

  5. Investigation of Free Particle Propagator with Generalized Uncertainty Problem

    CERN Document Server

    Ghobakhloo, F

    2016-01-01

    We consider the Schrodinger equation with a generalized uncertainty principle for a free particle. We then transform the problem into a second ordinary differential equation and thereby obtain the corresponding propagator. The result of ordinary quantum mechanics is recovered for vanishing minimal length parameter.

  6. USTC Experiment Verifies Entanglement-assisted Entropic Uncertainty Principle

    Institute of Scientific and Technical Information of China (English)

    SONG Jianlan

    2011-01-01

    @@ The entanglement-assisted entropic uncertainty principle, a new violation of the classical version of uncertainty principle established by Werner Heisenberg, was recently confirmed through an experimental investigation by a group of physicists at the Key Laboratory of Quantum Information under the University of Science and Technology of China (USTC).This experiment, published in the journal Nature Physics, revealed that the classical"Heisenberg-Robertson uncertainty relation" could be violated, on condition that the quantum information of the particle of interest is previously stored by its twin particle, to which it is fully entangled.

  7. Computational uncertainty principle in nonlinear ordinary differential equations

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The error propagation for general numerical method in ordinarydifferential equations ODEs is studied. Three kinds of convergence, theoretical, numerical and actual convergences, are presented. The various components of round-off error occurring in floating-point computation are fully detailed. By introducing a new kind of recurrent inequality, the classical error bounds for linear multistep methods are essentially improved, and joining probabilistic theory the “normal” growth of accumulated round-off error is derived. Moreover, a unified estimate for the total error of general method is given. On the basis of these results, we rationally interpret the various phenomena found in the numerical experiments in part I of this paper and derive two universal relations which are independent of types of ODEs, initial values and numerical schemes and are consistent with the numerical results. Furthermore, we give the explicitly mathematical expression of the computational uncertainty principle and expound the intrinsic relation between two uncertainties which result from the inaccuracies of numerical method and calculating machine.

  8. 29 CFR 2.11 - General principles.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true General principles. 2.11 Section 2.11 Labor Office of the Secretary of Labor GENERAL REGULATIONS Audiovisual Coverage of Administrative Hearings § 2.11 General principles. The following general principles will be observed in granting or denying requests for...

  9. Uncertainty principle estimates for vector fields

    OpenAIRE

    Pérez Moreno, Carlos; Wheeden, Richard L.

    2001-01-01

    We derive weighted norm estimates for integral operators of potential type and for their related maximal operators. These operators are generalizations of the classical fractional integrals and fractional maximal functions. The norm estimates are derived in the context of a space of homogeneous type. The conditions required of the weight functions involve generalizations of the Fefferman-Phong "r-bump" condition. The results improve some earlier ones of the same kind, and they also extend to ...

  10. General principles of antimicrobial therapy.

    Science.gov (United States)

    Leekha, Surbhi; Terrell, Christine L; Edson, Randall S

    2011-02-01

    Antimicrobial agents are some of the most widely, and often injudiciously, used therapeutic drugs worldwide. Important considerations when prescribing antimicrobial therapy include obtaining an accurate diagnosis of infection; understanding the difference between empiric and definitive therapy; identifying opportunities to switch to narrow-spectrum, cost-effective oral agents for the shortest duration necessary; understanding drug characteristics that are peculiar to antimicrobial agents (such as pharmacodynamics and efficacy at the site of infection); accounting for host characteristics that influence antimicrobial activity; and in turn, recognizing the adverse effects of antimicrobial agents on the host. It is also important to understand the importance of antimicrobial stewardship, to know when to consult infectious disease specialists for guidance, and to be able to identify situations when antimicrobial therapy is not needed. By following these general principles, all practicing physicians should be able to use antimicrobial agents in a responsible manner that benefits both the individual patient and the community.

  11. Uncertainty Principle in Loop Quantum Cosmology by Moyal Formalism

    CERN Document Server

    Perlov, Leonid

    2016-01-01

    In this paper we derive the uncertainty principle for the Loop Quantum Cosmology homogeneous and isotropic FLWR model with the holonomy-flux algebra. In our derivation we use the Wigner-Moyal-Groenewold phase space formalism. The formalism uses the characteristic functions and the Wigner transform, which maps the quantum operators to the functions on the phase space. The Wigner-Moyal-Groenewold formalism was originally applied to the Heisenberg algebra of the Quantum Mechanics. One can derive from it both the canonical and path integral QM as well as the uncertainty principle. In this paper we apply the phase-space formalism to the quantum cosmology holonomy-flux algebra in case of the homogeneous and isotropic space to obtain the Loop Quantum Cosmology uncertainty principle.

  12. 16 CFR 260.6 - General principles.

    Science.gov (United States)

    2010-01-01

    ... ENVIRONMENTAL MARKETING CLAIMS § 260.6 General principles. The following general principles apply to all environmental marketing claims, including, but not limited to, those described in § 260.7. In addition, § 260.7... 16 Commercial Practices 1 2010-01-01 2010-01-01 false General principles. 260.6 Section...

  13. Inspiration of Heisenberg Uncertainty Principle to College Education

    Institute of Scientific and Technical Information of China (English)

    梁讯

    2008-01-01

    No matter how accurately one tried to measure the classical quantities of position and momentum, there would always be an uncertainty in the measurement.The Heisenberg Principle of Uncertainty is one of the most significant changes in our comprehension of the universe, it inspired people once again to think the unthinkable, and challenge the very foundations of subjects in both research and educational fields.

  14. PRINCIPLES OF SAFETY MANAGEMENT OF AIR TRAFFIC FLOWS AND CAPACITY UNDER UNCERTAINTY CONDITIONS

    Directory of Open Access Journals (Sweden)

    Wang Bo

    2016-11-01

    Full Text Available Purpose: The aim of this study is to investigate the general principles of safety and capacity management in Aeronautical systems regarding air traffic flows operations under uncertainty conditions. In this work the theoretical framework assessing at the same time both the uncertainty model and flight plans model are proposed. Methods: To study features of safety of air traffic flows and capacity under uncertainty conditions were built the original probabilistic models including Bayesian Network for flight plan and air traffic control sector model based on Poisson Binomial Distribution. Results: We obtained models for safety management of air traffic flows and capacity under uncertainty conditions. We discussed appropriate approach for estimating the parameters of safety of air traffic flows and capacity under uncertainty and Markovian uncertainty model for the flight plan. Discussion: We developed the Bayesian Network for flight plan and air traffic control sector models for safety management of air traffic flows and capacity under uncertainty conditions.

  15. 29 CFR 1604.1 - General principles.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false General principles. 1604.1 Section 1604.1 Labor Regulations... OF SEX § 1604.1 General principles. (a) References to “employer” or “employers” in this part 1604 state principles that are applicable not only to employers but also to labor organizations and...

  16. 5 CFR 551.202 - General principles.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false General principles. 551.202 Section 551... ADMINISTRATION UNDER THE FAIR LABOR STANDARDS ACT Exemptions and Exclusions § 551.202 General principles. In all exemption determinations, the agency must observe the following principles: (a) Each employee is presumed...

  17. 20 CFR 401.140 - General principles.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false General principles. 401.140 Section 401.140... INFORMATION Disclosure of Official Records and Information § 401.140 General principles. When no law... follow FOIA principles to resolve that question. We do this to insure uniform treatment in all...

  18. 24 CFR 3282.402 - General principles.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false General principles. 3282.402... and Remedial Actions § 3282.402 General principles. (a) Nothing in this subpart or in these... manufactured home manufacturers to provide remedial actions under this subpart is limited by the principle...

  19. Experimental realization of Popper's Experiment Violation of the Uncertainty Principle?

    CERN Document Server

    Kim, Y H; Kim, Yoon-Ho; Shih, Yanhua

    1999-01-01

    An entangled pair of photons (1 and 2) are emitted to opposite directions. A narrow slit is placed in the path of photon 1 to provide precise knowledge of its position on the $y$ axis and this also determines the precise $y$ position of its twin, photon 2, due to quantum entanglement. Is photon 2 going to experience a greater uncertainty in momentum, i.e., a greater $\\Delta p_{y}$, due to the precise knowledge of its position $y$? The experimental data shows historical thought experiment of Karl Popper signal a violation of the uncertainty principle?

  20. 23 CFR 660.509 - General principles.

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false General principles. 660.509 Section 660.509 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS SPECIAL PROGRAMS (DIRECT FEDERAL) Defense Access Roads § 660.509 General principles. (a) State and local...

  1. 39 CFR 268.1 - General principles.

    Science.gov (United States)

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false General principles. 268.1 Section 268.1 Postal Service UNITED STATES POSTAL SERVICE ORGANIZATION AND ADMINISTRATION PRIVACY OF INFORMATION-EMPLOYEE RULES OF CONDUCT § 268.1 General principles. In order to conduct its business, the Postal Service has...

  2. 39 CFR 602.1 - General principles.

    Science.gov (United States)

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false General principles. 602.1 Section 602.1 Postal Service UNITED STATES POSTAL SERVICE PROCUREMENT SYSTEM FOR THE U.S. POSTAL SERVICE: INTELLECTUAL PROPERTY RIGHTS OTHER THAN PATENTS INTELLECTUAL PROPERTY RIGHTS OTHER THAN PATENTS § 602.1 General principles....

  3. The 'Herbivory Uncertainty Principle': application in a cerrado site

    Directory of Open Access Journals (Sweden)

    CA Gadotti

    Full Text Available Researchers may alter the ecology of their studied organisms, even carrying out apparently beneficial activities, as in herbivory studies, when they may alter herbivory damage. We tested whether visit frequency altered herbivory damage, as predicted by the 'Herbivory Uncertainty Principle'. In a cerrado site, we established 80 quadrats, in which we sampled all woody individuals. We used four visit frequencies (high, medium, low, and control, quantifying, at the end of three months, herbivory damage for each species in each treatment. We did not corroborate the 'Herbivory Uncertainty Principle', since visiting frequency did not alter herbivory damage, at least when the whole plant community was taken into account. However, when we analysed each species separately, four out of 11 species presented significant differences in herbivory damage, suggesting that the researcher is not independent of its measurements. The principle could be tested in other ecological studies in which it may occur, such as those on animal behaviour, human ecology, population dynamics, and conservation.

  4. Linear Programming Problems for Generalized Uncertainty

    Science.gov (United States)

    Thipwiwatpotjana, Phantipa

    2010-01-01

    Uncertainty occurs when there is more than one realization that can represent an information. This dissertation concerns merely discrete realizations of an uncertainty. Different interpretations of an uncertainty and their relationships are addressed when the uncertainty is not a probability of each realization. A well known model that can handle…

  5. 18 CFR 358.2 - General principles.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false General principles. 358... principles. (a) As more fully described and implemented in subsequent sections of this part, a transmission... independently from its marketing function employees, except as permitted in this part or otherwise permitted...

  6. Action Principle for the Generalized Harmonic Formulation of General Relativity

    CERN Document Server

    Brown, J David

    2010-01-01

    An action principle for the generalized harmonic formulation of general relativity is presented. The action is a functional of the spacetime metric and the gauge source vector. The Z4 formulation of general relativity also can be defined by an action principle, as discussed by Bona, Bona--Casas and Palenzuela. The relationship between the generalized harmonic and Z4 actions is presented in detail.

  7. The Precautionary Principle and statistical approaches to uncertainty

    DEFF Research Database (Denmark)

    Keiding, Niels; Budtz-Jørgensen, Esben

    2004-01-01

    The central challenge from the Precautionary Principle to statistical methodology is to help delineate (preferably quantitatively) the possibility that some exposure is hazardous, even in cases where this is not established beyond reasonable doubt. The classical approach to hypothesis testing...... for setting safe exposure levels are essentially derived from these classical statistical ideas, and we outline how uncertainties in the exposure and response measurements affect the no observed adverse effect level, the Benchmark approach and the "Hockey Stick" model. A particular problem concerns model...

  8. On the energy-time uncertainty principle A didactical note

    CERN Document Server

    Giribet, G

    2005-01-01

    This brief note has the didactical purpose of discussing the meaning of the uncertainty principle involving energy and time in quantum mechanics by means of a review of the seminal works on this subject. The importance of this topic is, indeed, frequently neglected in several textbooks on quantum mechanics. Then, these pages are addressed to students attenting to an undergraduate course on quantum theory; and the original aim is that of presenting a list of references of the points that take part in the principal discussions on the subject. Special attention is devoted to the discussion of the fallacies, which are certainly persistent in the didactical literature.

  9. Reducing Uncertainty: Implementation of Heisenberg Principle to Measure Company Performance

    Directory of Open Access Journals (Sweden)

    Anna Svirina

    2015-08-01

    Full Text Available The paper addresses the problem of uncertainty reduction in estimation of future company performance, which is a result of wide range of enterprise's intangible assets probable efficiency. To reduce this problem, the paper suggests to use quantum economy principles, i.e. implementation of Heisenberg principle to measure efficiency and potential of intangible assets of the company. It is proposed that for intangibles it is not possible to estimate both potential and efficiency at a certain time point. To provide a proof for these thesis, the data on resources potential and efficiency from mid-Russian companies was evaluated within deterministic approach, which did not allow to evaluate probability of achieving certain resource efficiency, and quantum approach, which allowed to estimate the central point around which the probable efficiency of resources in concentrated. Visualization of these approaches was performed by means of LabView software. It was proven that for tangible assets performance estimation a deterministic approach should be used; while for intangible assets the quantum approach allows better quality of future performance prediction. On the basis of these findings we proposed the holistic approach towards estimation of company resource efficiency in order to reduce uncertainty in modeling company performance.

  10. Flexible and generalized uncertainty optimization theory and methods

    CERN Document Server

    Lodwick, Weldon A

    2017-01-01

    This book presents the theory and methods of flexible and generalized uncertainty optimization. Particularly, it describes the theory of generalized uncertainty in the context of optimization modeling. The book starts with an overview of flexible and generalized uncertainty optimization. It covers uncertainties that are both associated with lack of information and that more general than stochastic theory, where well-defined distributions are assumed. Starting from families of distributions that are enclosed by upper and lower functions, the book presents construction methods for obtaining flexible and generalized uncertainty input data that can be used in a flexible and generalized uncertainty optimization model. It then describes the development of such a model in detail. All in all, the book provides the readers with the necessary background to understand flexible and generalized uncertainty optimization and develop their own optimization model. .

  11. 21 CFR 104.5 - General principles.

    Science.gov (United States)

    2010-04-01

    ... requirements of the nutritional quality guideline established for its class of food may state “This product... meeting the requirements of the applicable nutritional quality guideline, shall comply with the following... CONSUMPTION NUTRITIONAL QUALITY GUIDELINES FOR FOODS General Provisions § 104.5 General principles. (a) A...

  12. Circumventing Heisenberg's uncertainty principle in atom interferometry tests of the equivalence principle

    CERN Document Server

    Roura, Albert

    2015-01-01

    Atom interferometry tests of universality of free fall based on the differential measurement of two different atomic species provide a useful complement to those based on macroscopic masses. However, when striving for the highest possible sensitivities, gravity gradients pose a serious challenge. Indeed, the relative initial position and velocity for the two species need to be controlled with extremely high accuracy, which can be rather demanding in practice and whose verification may require rather long integration times. Furthermore, in highly sensitive configurations gravity gradients lead to a drastic loss of contrast. These difficulties can be mitigated by employing wave packets with narrower position and momentum widths, but this is ultimately limited by Heisenberg's uncertainty principle. We present a novel scheme that simultaneously overcomes the loss of contrast and the initial co-location problem. In doing so, it circumvents the fundamental limitations due to Heisenberg's uncertainty principle and e...

  13. Synchronous Lagrangian variational principles in General Relativity

    CERN Document Server

    Cremaschini, Claudio

    2016-01-01

    The problem of formulating synchronous variational principles in the context of General Relativity is discussed. Based on the analogy with classical relativistic particle dynamics, the existence of variational principles is pointed out in relativistic classical field theory which are either asynchronous or synchronous. The historical Einstein-Hilbert and Palatini variational formulations are found to belong to the first category. Nevertheless, it is shown that an alternative route exists which permits one to cast these principles in terms of equivalent synchronous Lagrangian variational formulations. The advantage is twofold. First, synchronous approaches allow one to overcome the lack of gauge symmetry of the asynchronous principles. Second, the property of manifest covariance of the theory is also restored at all levels, including the symbolic Euler-Lagrange equations, with the variational Lagrangian density being now identified with a $4-$scalar. As an application, a joint synchronous variational principle...

  14. Energy-Time Uncertainty Principle and Lower Bounds on Sojourn Time

    Science.gov (United States)

    Asch, Joachim; Bourget, Olivier; Cortés, Victor; Fernandez, Claudio

    2016-09-01

    One manifestation of quantum resonances is a large sojourn time, or autocorrelation, for states which are initially localized. We elaborate on Lavine's time-energy uncertainty principle and give an estimate on the sojourn time. For the case of perturbed embedded eigenstates the bound is explicit and involves Fermi's Golden Rule. It is valid for a very general class of systems. We illustrate the theory by applications to resonances for time dependent systems including the AC Stark effect as well as multistate systems.

  15. The general principles of quantum theory

    CERN Document Server

    Temple, George

    2014-01-01

    Published in 1934, this monograph was one of the first introductory accounts of the principles which form the physical basis of the Quantum Theory, considered as a branch of mathematics. The exposition is restricted to a discussion of general principles and does not attempt detailed application to the wide domain of atomic physics, although a number of special problems are considered in elucidation of the principles. The necessary fundamental mathematical methods - the theory of linear operators and of matrics - are developed in the first chapter so this could introduce anyone to the new theor

  16. A thought to illustrate the uncertainty principle on the base of Otto-Wiener's experiment

    CERN Document Server

    Das, Tapas

    2014-01-01

    In this short paper a new thought experiment has been introduced to illustrate the famous Heisenberg's uncertainty principle based on Otto-Wiener's experiment (1890) associated with standing light waves. This illustration is quite easy as well as far more realizing than all other thought experiments generally found in textbooks. In this work seeding of quantum nature of light has been done with the Otto-Wiener's experiment. May be this new thought experiment will help the students to understand the Heisenberg's principle in a better way and also enhance their interest of learning quantum mechanics from the beginning of their course.

  17. Multipartition generalizations of the Schwinger variational principle

    Science.gov (United States)

    Goldflam, R.; Thaler, R. M.; Tobocman, W.

    1981-04-01

    Generalizations of the Schwinger variational principle are proposed which include rearrangement scattering. Functionals are given for the transition amplitude. The requirement that a functional be stationary with respect to variation of the scattering wave function leads to a set of simultaneous equations for the scattering wave function rather than a single equation. This is consistent with recent formalisms for many-body scattering.

  18. Teaching General Principles and Applications of Dendrogeomorphology.

    Science.gov (United States)

    Butler, David R.

    1987-01-01

    Tree-ring analysis in geomorphology can be incorporated into a number of undergraduate methods in order to reconstruct the history of a variety of geomorphic processes. Discusses dendrochronology, general principles of dendrogeomorphology, field sampling methods, laboratory techniques, and examples of applications. (TW)

  19. Computational uncertainty principle in nonlinear ordinary differential equations

    Institute of Scientific and Technical Information of China (English)

    LI; Jianping

    2001-01-01

    [1]Li Jianping, Zeng Qingcun, Chou Jifan, Computational Uncertainty Principle in Nonlinear Ordinary Differential Equations I. Numerical Results, Science in China, Ser. E, 2000, 43(5): 449[2]Henrici, P., Discrete Variable Methods in Ordinary Differential Equations, New York: John Wiley, 1962, 1; 187.[3]Henrici, P., Error Propagation for Difference Methods, New York: John Whiley, 1963.[4]Gear, C. W., Numerical Initial Value Problems in Ordinary Differential Equations, Englewood Cliffs, NJ: Prentice-Hall, 1971, 1; 72.[5]Hairer, E., Nrsett, S. P., Wanner, G., Solving Ordinary Differential Equations I. Nonstiff Problems, 2nd ed., Berlin-Heidelberg-New York: Springer-Verlag, 1993, 130.[6]Stoer, J., Bulirsch, R., Introduction to Numerical Analysis, 2nd ed., Vol. 1, Berlin-Heidelberg-New York: Springer-Verlag (reprinted in China by Beijing Wold Publishing Corporation), 1998, 428.[7]Li Qingyang, Numerical Methods in Ordinary Differential Equations (Stiff Problems and Boundary Value Problems), in Chinese Beijing: Higher Education Press, 1991, 1.[8]Li Ronghua, Weng Guochen, Numerical Methods in Differential Equations (in Chinese), 3rd ed., Beijing: Higher Education Press, 1996, 1.[9]Dahlquist, G., Convergence and stability in the numerical integration of ordinary differential equations, Math. Scandinavica, 1956, 4: 33.[10]Dahlquist, G., 33 years of numerical instability, Part I, BIT, 1985, 25: 188.[11]Heisenberg, W., The Physical Principles of Quantum Theory, Chicago: University of Chicago Press, 1930.[12]McMurry, S. M., Quantum Mechanics, London: Addison-Wesley Longman Ltd (reprined in China by Beijing World Publishing Corporation), 1998.

  20. General Quantum Interference Principle and Duality Computer

    Institute of Scientific and Technical Information of China (English)

    LONG Gui-Lu

    2006-01-01

    In this article, we propose a general principle of quantum interference for quantum system, and based on this we propose a new type of computing machine, the duality computer, that may outperform in principle both classical computer and the quantum computer. According to the general principle of quantum interference, the very essence of quantum interference is the interference of thesub-waves of the quantum system itself. A quantum system considered here can be any quantum system: a single microscopic particle, a composite quantum system such as an atom or a molecule, or a loose collection of a few quantum objects such as two independent photons. In the duality computer,the wave of the duality computer is split into several sub-waves and they pass through different routes, where different computing gate operations are performed. These sub-waves are then re-combined to interfere to give the computational results. The quantum computer, however, has only used the particle nature of quantum object. In a duality computer,it may be possible to find a marked item from an unsorted database using only a single query, and all NP-complete problems may have polynomial algorithms. Two proof-of-the-principle designs of the duality computer are presented:the giant molecule scheme and the nonlinear quantum optics scheme. We also propose thought experiment to check the related fundamental issues, the measurement efficiency of a partial wave function.

  1. Solid electrolytes general principles, characterization, materials, applications

    CERN Document Server

    Hagenmuller, Paul

    1978-01-01

    Solid Electrolytes: General Principles, Characterization, Materials, Applications presents specific theories and experimental methods in the field of superionic conductors. It discusses that high ionic conductivity in solids requires specific structural and energetic conditions. It addresses the problems involved in the study and use of solid electrolytes. Some of the topics covered in the book are the introduction to the theory of solid electrolytes; macroscopic evidence for liquid nature; structural models; kinetic models; crystal structures and fast ionic conduction; interstitial motion in

  2. 21 CFR 502.5 - General principles.

    Science.gov (United States)

    2010-04-01

    ... or absence of such ingredient(s) or component(s) in the food has a material bearing on price or... misled about the presence or absence of the ingredient(s) or component(s) in the food. The following... 21 Food and Drugs 6 2010-04-01 2010-04-01 false General principles. 502.5 Section 502.5 Food...

  3. 21 CFR 102.5 - General principles.

    Science.gov (United States)

    2010-04-01

    ... or usual name of a food shall include a statement of the presence or absence of any characterizing... component(s) when the presence or absence of such ingredient(s) or component(s) in the food has a material... 21 Food and Drugs 2 2010-04-01 2010-04-01 false General principles. 102.5 Section 102.5 Food...

  4. Recent Advances in Compressed Sensing: Discrete Uncertainty Principles and Fast Hyperspectral Imaging

    Science.gov (United States)

    2015-03-26

    Recent Advances in Compressed Sensing : Discrete Uncertainty Principles and Fast Hyperspectral Imaging THESIS MARCH 2015 Megan E. Lewis, Second...IN COMPRESSED SENSING : DISCRETE UNCERTAINTY PRINCIPLES AND FAST HYPERSPECTRAL IMAGING THESIS Presented to the Faculty Department of Mathematics and...MARCH 2015 DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENC–MS-15-M-002 RECENT ADVANCES IN COMPRESSED SENSING

  5. Comment on "Experimental realization of Popper's experiment Violation of the uncertainty principle?"

    CERN Document Server

    Short, A J

    2000-01-01

    Application of the uncertainty principle to conditional measurements is investigated, and found to be valid for measurements on separated sub-systems. In light of this, an apparent violation of the uncertainty principle obtained by Kim and Shih in their realization of Popper's experiment (quant-ph/9905039) is explained through analogy with a simple optical system.

  6. Verification of the Uncertainty Principle by Using Diffraction of Light Waves

    Science.gov (United States)

    Nikolic, D.; Nesic, Lj

    2011-01-01

    We described a simple idea for experimental verification of the uncertainty principle for light waves. We used a single-slit diffraction of a laser beam for measuring the angular width of zero-order diffraction maximum and obtained the corresponding wave number uncertainty. We will assume that the uncertainty in position is the slit width. For the…

  7. Sedimentation equilibrium and the generalized Archimedes' principle.

    Science.gov (United States)

    Parola, Alberto; Buzzaccaro, Stefano; Secchi, Eleonora; Piazza, Roberto

    2013-03-21

    The buoyancy concept is critically re-examined for applications to dispersions of nano-particles, such as colloids, proteins, or macromolecules. It is shown that when the size of the buoyant particle is not too different (say, at most a factor of ten) from the size of the dispersed particles, new intriguing phenomena emerge, leading to the violation of the Archimedes' principle. The resulting buoyancy force depends not only on the volume of the particle and on the mass density of the dispersion, but also on the relative size of the particles, on their geometry, and on the interactions between the buoyant particle and the fluid. Explicit expressions for such a generalized Archimedes' principle are obtained and the results are tested against targeted experiments in colloidal dispersions.

  8. Sedimentation equilibrium and the generalized Archimedes' principle

    Science.gov (United States)

    Parola, Alberto; Buzzaccaro, Stefano; Secchi, Eleonora; Piazza, Roberto

    2013-03-01

    The buoyancy concept is critically re-examined for applications to dispersions of nano-particles, such as colloids, proteins, or macromolecules. It is shown that when the size of the buoyant particle is not too different (say, at most a factor of ten) from the size of the dispersed particles, new intriguing phenomena emerge, leading to the violation of the Archimedes' principle. The resulting buoyancy force depends not only on the volume of the particle and on the mass density of the dispersion, but also on the relative size of the particles, on their geometry, and on the interactions between the buoyant particle and the fluid. Explicit expressions for such a generalized Archimedes' principle are obtained and the results are tested against targeted experiments in colloidal dispersions.

  9. Robertson-Schrödinger-type formulation of Ozawa's noise-disturbance uncertainty principle

    Science.gov (United States)

    Bastos, Catarina; Bernardini, Alex E.; Bertolami, Orfeu; Costa Dias, Nuno; Prata, João Nuno

    2014-04-01

    In this work we derive a matrix formulation of a noise-disturbance uncertainty relation, which is akin to the Robertson-Schrödinger uncertainty principle. Our inequality is stronger than Ozawa's uncertainty principle and takes noise-disturbance correlations into account. Moreover, we show that for certain types of measurement interactions it is covariant with respect to linear symplectic transformations of the noise and disturbance operators. Finally, we also study the tightness of our matrix inequality.

  10. Robertson-Schroedinger type formulation of Ozawa's noise-disturbance uncertainty principle

    CERN Document Server

    Bastos, Catarina; Bertolami, Orfeu; Dias, Nuno Costa; Prata, Joao Nuno

    2013-01-01

    In this work we derive a matrix formulation of a noise-disturbance uncertainty relation, which is akin to the Robertson-Schr\\"odinger uncertainty principle. Our inequality is stronger than Ozawa's uncertainty principle and takes noise-disturbance correlations into account. Moreover, we show that, for certain types of measurement interactions, it is covariant with respect to linear symplectic transformations of the noise and disturbance operators.

  11. The Precautionary Principle and Statistical Approaches to Uncertainty

    DEFF Research Database (Denmark)

    Keiding, Niels; Budtz-Jørgensen, Esben

    2005-01-01

    Bayesian model averaging; Benchmark approach to safety standars in toxicology; dose-response relationships; environmental standards; exposure measurement uncertainty; Popper falsification......Bayesian model averaging; Benchmark approach to safety standars in toxicology; dose-response relationships; environmental standards; exposure measurement uncertainty; Popper falsification...

  12. The Precautionary Principle and statistical approaches to uncertainty

    DEFF Research Database (Denmark)

    Keiding, Niels; Budtz-Jørgensen, Esben

    2003-01-01

    Bayesian model averaging; Benchmark approach to safety standards in toxicology; dose-response relationship; environmental standards; exposure measurement uncertainty; Popper falsification......Bayesian model averaging; Benchmark approach to safety standards in toxicology; dose-response relationship; environmental standards; exposure measurement uncertainty; Popper falsification...

  13. Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov chain Monte Carlo sampling

    DEFF Research Database (Denmark)

    Blasone, Roberta-Serena; Vrugt, Jasper A.; Madsen, Henrik

    2008-01-01

    estimate of the associated uncertainty. This uncertainty arises from incomplete process representation, uncertainty in initial conditions, input, output and parameter error. The generalized likelihood uncertainty estimation (GLUE) framework was one of the first attempts to represent prediction uncertainty...

  14. Robust stabilization of general nonlinear systems with structural uncertainty

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper deals with the robust stabilization and passivity of general nonlinear systems with structural uncertainty. By using Lyapunov function, it verifies that under some conditions the robust passivity implies the zero-state detectability, Furthermore, it also implies the robust stabilization for such nonlinear systems. We then establish a stabilization method for the nonlinear systems with structural uncertainty. The smooth state feedback law can be constructed with the solution of an equation. Finally, it is worth noting that the main contribution of the paper establishes the relation between robust passivity and feedback stabilization for the general nonlinear systems with structural uncertainty. The simulation shows the effectiveness of the method.

  15. An uncertainty relation in terms of generalized metric adjusted skew information and correlation measure

    Science.gov (United States)

    Fan, Ya-Jing; Cao, Huai-Xin; Meng, Hui-Xian; Chen, Liang

    2016-12-01

    The uncertainty principle in quantum mechanics is a fundamental relation with different forms, including Heisenberg's uncertainty relation and Schrödinger's uncertainty relation. In this paper, we prove a Schrödinger-type uncertainty relation in terms of generalized metric adjusted skew information and correlation measure by using operator monotone functions, which reads, U_ρ ^{(g,f)}(A)U_ρ ^{(g,f)}(B)≥ f(0)^2l/k| Corr_ρ ^{s(g,f)}(A,B)| ^2 for some operator monotone functions f and g, all n-dimensional observables A, B and a non-singular density matrix ρ . As applications, we derive some new uncertainty relations for Wigner-Yanase skew information and Wigner-Yanase-Dyson skew information.

  16. An uncertainty relation in terms of generalized metric adjusted skew information and correlation measure

    Science.gov (United States)

    Fan, Ya-Jing; Cao, Huai-Xin; Meng, Hui-Xian; Chen, Liang

    2016-09-01

    The uncertainty principle in quantum mechanics is a fundamental relation with different forms, including Heisenberg's uncertainty relation and Schrödinger's uncertainty relation. In this paper, we prove a Schrödinger-type uncertainty relation in terms of generalized metric adjusted skew information and correlation measure by using operator monotone functions, which reads, U_ρ ^{(g,f)}(A)U_ρ ^{(g,f)}(B)≥ f(0)^2l/k| {Corr}_ρ ^{s(g,f)}(A,B)| ^2 for some operator monotone functions f and g, all n-dimensional observables A, B and a non-singular density matrix ρ . As applications, we derive some new uncertainty relations for Wigner-Yanase skew information and Wigner-Yanase-Dyson skew information.

  17. Violation of the Robertson-Schr\\"odinger uncertainty principle and non-commutative quantum mechanics

    CERN Document Server

    Bastos, Catarina; Dias, Nuno Costa; Prata, João Nuno

    2012-01-01

    We show that a possible violation of the Robertson-Schr\\"odinger uncertainty principle may signal the existence of a deformation of the Heisenberg-Weyl algebra. More precisely, we prove that any Gaussian in phase-space (even if it violates the Robertson-Schr\\"odinger uncertainty principle) is always a quantum state of an appropriate non-commutative extension of quantum mechanics. Conversely, all canonical non-commutative extensions of quantum mechanics display states that violate the Robertson-Schr\\"odinger uncertainty principle.

  18. Uncertainty quantification for generalized Langevin dynamics

    Science.gov (United States)

    Hall, Eric J.; Katsoulakis, Markos A.; Rey-Bellet, Luc

    2016-12-01

    We present efficient finite difference estimators for goal-oriented sensitivity indices with applications to the generalized Langevin equation (GLE). In particular, we apply these estimators to analyze an extended variable formulation of the GLE where other well known sensitivity analysis techniques such as the likelihood ratio method are not applicable to key parameters of interest. These easily implemented estimators are formed by coupling the nominal and perturbed dynamics appearing in the finite difference through a common driving noise or common random path. After developing a general framework for variance reduction via coupling, we demonstrate the optimality of the common random path coupling in the sense that it produces a minimal variance surrogate for the difference estimator relative to sampling dynamics driven by independent paths. In order to build intuition for the common random path coupling, we evaluate the efficiency of the proposed estimators for a comprehensive set of examples of interest in particle dynamics. These reduced variance difference estimators are also a useful tool for performing global sensitivity analysis and for investigating non-local perturbations of parameters, such as increasing the number of Prony modes active in an extended variable GLE.

  19. 34 CFR 75.530 - General cost principles.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false General cost principles. 75.530 Section 75.530 Education Office of the Secretary, Department of Education DIRECT GRANT PROGRAMS What Conditions Must Be Met by a Grantee? Allowable Costs § 75.530 General cost principles. The general principles to be used...

  20. 34 CFR 76.530 - General cost principles.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false General cost principles. 76.530 Section 76.530... Be Met by the State and Its Subgrantees? Allowable Costs § 76.530 General cost principles. Both 34 CFR 74.27 and 34 CFR 80.22 reference the general cost principles that apply to grants, subgrants...

  1. An exploration of the uncertainty relation satisfied by BP network learning ability and generalization ability

    Institute of Scientific and Technical Information of China (English)

    LI Zuoyong; PENG Lihong

    2004-01-01

    This paper analyses the intrinsic relationship between the BP network learning ability and generalization ability and other influencing factors when the overfit occurs, and introduces the multiple correlation coefficient to describe the complexity of samples; it follows the calculation uncertainty principle and the minimum principle of neural network structural design, provides an analogy of the general uncertainty relation in the information transfer process, and ascertains the uncertainty relation between the training relative error of the training sample set, which reflects the network learning ability,and the test relative error of the test sample set, which represents the network generalization ability; through the simulation of BP network overfit numerical modeling test with different types of functions, it is ascertained that the overfit parameter q in the relation generally has a span of 7×10-3 to 7 × 10-2; the uncertainty relation then helps to obtain the formula for calculating the number of hidden nodes of a network with good generalization ability under the condition that multiple correlation coefficient is used to describe sample complexity and the given approximation error requirement is satisfied;the rationality of this formula is verified; this paper also points out that applying the BP network to the training process of the given sample set is the best method for stopping training that improves the generalization ability.

  2. On the role of the uncertainty principle in superconductivity and superfluidity

    Institute of Scientific and Technical Information of China (English)

    Roberto Onofrio

    2012-01-01

    We discuss the general interplay between the uncertainty principle and the onset of dissipationless transport phenomena such as superconductivity and superfluidity.We argue that these phenomena are possible because of the robustness of many-body quantum states with respect to the external environment,which is directly related to the uncertainty principle as applied to coordinates and momenta of the carriers.In the case of superconductors,this implies relationships between macroscopic quantities such as critical temperature and critical magnetic field,and microscopic quantities such as the amount of spatial squeezing of a Cooper pair and its correlation time.In the case of ultracold atomic Fermi gases,this should be paralleled by a connection between the critical temperature for the onset of superfluidity and the corresponding critical velocity.Tests of this conjecture are finally sketched with particular regard to the understanding of the behaviour of superconductors under external pressures or mesoscopic superconductors,and the possibility to mimic these effects in ultracold atomic Fermi gases using Feshbach resonances and atomic squeezed states.

  3. A discussion on the Heisenberg uncertainty principle from the perspective of special relativity

    Science.gov (United States)

    Nanni, Luca

    2016-09-01

    In this note, we consider the implications of the Heisenberg uncertainty principle (HUP) when computing uncertainties that affect the main dynamical quantities, from the perspective of special relativity. Using the well-known formula for propagating statistical errors, we prove that the uncertainty relations between the moduli of conjugate observables are not relativistically invariant. The new relationships show that, in experiments involving relativistic particles, limitations of the precision of a quantity obtained by indirect calculations may affect the final result.

  4. Rowlands' Duality Principle: A Generalization of Noether's Theorem?

    Science.gov (United States)

    Karam, Sabah E.

    This paper will examine a physical principle that has been used in making valid predictions and generalizes established conservation laws. In a previous paper it was shown how Rowlands' zero-totality condition could be viewed as a generalization of Newton's third law of motion. In this paper it will be argued that Rowlands' Duality Principle is a generalization of Noether's Theorem and that the two principles taken together are truly foundational principles that have tamed Metaphysics.

  5. An optimization based sampling approach for multiple metrics uncertainty analysis using generalized likelihood uncertainty estimation

    Science.gov (United States)

    Zhou, Rurui; Li, Yu; Lu, Di; Liu, Haixing; Zhou, Huicheng

    2016-09-01

    This paper investigates the use of an epsilon-dominance non-dominated sorted genetic algorithm II (ɛ-NSGAII) as a sampling approach with an aim to improving sampling efficiency for multiple metrics uncertainty analysis using Generalized Likelihood Uncertainty Estimation (GLUE). The effectiveness of ɛ-NSGAII based sampling is demonstrated compared with Latin hypercube sampling (LHS) through analyzing sampling efficiency, multiple metrics performance, parameter uncertainty and flood forecasting uncertainty with a case study of flood forecasting uncertainty evaluation based on Xinanjiang model (XAJ) for Qing River reservoir, China. Results obtained demonstrate the following advantages of the ɛ-NSGAII based sampling approach in comparison to LHS: (1) The former performs more effective and efficient than LHS, for example the simulation time required to generate 1000 behavioral parameter sets is shorter by 9 times; (2) The Pareto tradeoffs between metrics are demonstrated clearly with the solutions from ɛ-NSGAII based sampling, also their Pareto optimal values are better than those of LHS, which means better forecasting accuracy of ɛ-NSGAII parameter sets; (3) The parameter posterior distributions from ɛ-NSGAII based sampling are concentrated in the appropriate ranges rather than uniform, which accords with their physical significance, also parameter uncertainties are reduced significantly; (4) The forecasted floods are close to the observations as evaluated by three measures: the normalized total flow outside the uncertainty intervals (FOUI), average relative band-width (RB) and average deviation amplitude (D). The flood forecasting uncertainty is also reduced a lot with ɛ-NSGAII based sampling. This study provides a new sampling approach to improve multiple metrics uncertainty analysis under the framework of GLUE, and could be used to reveal the underlying mechanisms of parameter sets under multiple conflicting metrics in the uncertainty analysis process.

  6. Black hole entropy divergence and the uncertainty principle

    CERN Document Server

    Brustein, Ram

    2011-01-01

    Black hole entropy has been shown by 't Hooft to diverge at the horizon. The region near the horizon is in a thermal state, so entropy is linear to energy which consequently also diverges. We find a similar divergence for the energy of the reduced density matrix of relativistic and non-relativistic field theories, extending previous results in quantum mechanics. This divergence is due to an infinitely sharp boundary, and it stems from the position/momentum uncertainty relation in the same way that the momentum fluctuations of a precisely localized quantum particle diverge. We show that when the boundary is smoothed the divergence is tamed. We argue that the divergence of black hole entropy can also be interpreted as a consequence of position/momentum uncertainty, and that 't Hooft's brick wall tames the divergence in the same way, by smoothing the boundary.

  7. Uncertainty Principle--Limited Experiments: Fact or Academic Pipe-Dream?

    Science.gov (United States)

    Albergotti, J. Clifton

    1973-01-01

    The question of whether modern experiments are limited by the uncertainty principle or by the instruments used to perform the experiments is discussed. Several key experiments show that the instruments limit our knowledge and the principle remains of strictly academic concern. (DF)

  8. Deriving generalized variational principles in general mechanics by using Lagrangian multiplier method

    Institute of Scientific and Technical Information of China (English)

    梁立孚

    1999-01-01

    By using the involutory transformations, the classical variational principle——Hamiltonian principle of two kinds of variables in general mechanics is advanced and by using undetermined Lagrangian multiplier method, the generalized variational principles and generalized variational principles with subsidiary conditions are established. The stationary conditions of various kinds of variational principles are derived and the relational problems discussed.

  9. Robust adaptive synchronization of general dynamical networks with multiple delays and uncertainties

    Indian Academy of Sciences (India)

    LU YIMING; HE PING; MA SHU-HUA; LI GUO-ZHI; MOBAYBEN SALEH

    2016-06-01

    In this article, a general complex dynamical network which contains multiple delays and uncertainties is introduced, which contains time-varying coupling delays, time-varying node delay, and uncertainties of both the inner- and outer-coupling matrices. A robust adaptive synchronization scheme for these general complex networks with multiple delays and uncertainties is established and raised by employing the robust adaptive control principle and the Lyapunov stability theory. We choose some suitable adaptive synchronization controllers to ensure the robust synchronization of this dynamical network. The numerical simulations of the time-delay Lorenz chaotic system as local dynamical node are provided to observe and verify the viability and productivity of the theoretical research in this paper. Compared to the achievement of previous research, theresearch in this paper seems quite comprehensive and universal.

  10. Bounds in the generalized Weber problem under locational uncertainty

    DEFF Research Database (Denmark)

    Juel, Henrik

    1981-01-01

    An existing analysis of the bounds on the Weber problem solution under uncertainty is incorrect. For the generalized problem with arbitrary measures of distance, we give easily computable ranges on the bounds and state the conditions under which the exact values of the bounds can be found...

  11. Experimental Realization of Popper's Experiment: Violation of Uncertainty Principle?

    Science.gov (United States)

    Kim, Yoon-Ho; Yu, Rong; Shih, Yanhua

    An entangled pair of photon 1 and 2 are emitted in opposite directions along the positive and negative x-axis. A narrow slit is placed in the path of photon 1 which provides precise knowledge about its position along the y-axis and because of the quantum entanglement this in turn provides precise knowledge of the position y of its twin, photon 2. Does photon 2 experience a greater uncertainty in its momentum, i.e., a greater Δpy, due to the precise knowledge of its position y? This is the historical thought experiment of Sir Karl Popper which was aimed to undermine the Copenhagen interpretation in favor of a realistic viewpoint of quantum mechanics. Thispaper reports an experimental realization of the Popper's experiment. One may not agree with Popper's position on quantum mechanics; however, it calls for a correct understanding and interpretation of the experimental results.

  12. Wave-particle duality and uncertainty principle: Phenomenographic categories of description of tertiary physics students' depictions

    Science.gov (United States)

    Ayene, Mengesha; Kriek, Jeanne; Damtie, Baylie

    2011-12-01

    Quantum mechanics is often thought to be a difficult subject to understand, not only in the complexity of its mathematics but also in its conceptual foundation. In this paper we emphasize students’ depictions of the uncertainty principle and wave-particle duality of quantum events, phenomena that could serve as a foundation in building an understanding of quantum mechanics. A phenomenographic study was carried out to categorize a picture of students’ descriptions of these key quantum concepts. Data for this study were obtained from a semistructured in-depth interview conducted with undergraduate physics students (N=25) from Bahir Dar, Ethiopia. The phenomenographic data analysis revealed that it is possible to construct three qualitatively different categories to map students’ depictions of the concept wave-particle duality, namely, (1) classical description, (2) mixed classical-quantum description, and (3) quasiquantum description. Similarly, it is proposed that students’ depictions of the concept uncertainty can be described with four different categories of description, which are (1) uncertainty as an extrinsic property of measurement, (2) uncertainty principle as measurement error or uncertainty, (3) uncertainty as measurement disturbance, and (4) uncertainty as a quantum mechanics uncertainty principle. Overall, we found students are more likely to prefer a classical picture of interpretations of quantum mechanics. However, few students in the quasiquantum category applied typical wave phenomena such as interference and diffraction that cannot be explained within the framework classical physics for depicting the wavelike properties of quantum entities. Despite inhospitable conceptions of the uncertainty principle and wave- and particlelike properties of quantum entities in our investigation, the findings presented in this paper are highly consistent with those reported in previous studies. New findings and some implications for instruction and the

  13. Wave-particle duality and uncertainty principle: Phenomenographic categories of description of tertiary physics students’ depictions

    Directory of Open Access Journals (Sweden)

    Mengesha Ayene1

    2011-11-01

    Full Text Available Quantum mechanics is often thought to be a difficult subject to understand, not only in the complexity of its mathematics but also in its conceptual foundation. In this paper we emphasize students’ depictions of the uncertainty principle and wave-particle duality of quantum events, phenomena that could serve as a foundation in building an understanding of quantum mechanics. A phenomenographic study was carried out to categorize a picture of students’ descriptions of these key quantum concepts. Data for this study were obtained from a semistructured in-depth interview conducted with undergraduate physics students (N=25 from Bahir Dar, Ethiopia. The phenomenographic data analysis revealed that it is possible to construct three qualitatively different categories to map students’ depictions of the concept wave-particle duality, namely, (1 classical description, (2 mixed classical-quantum description, and (3 quasiquantum description. Similarly, it is proposed that students’ depictions of the concept uncertainty can be described with four different categories of description, which are (1 uncertainty as an extrinsic property of measurement, (2 uncertainty principle as measurement error or uncertainty, (3 uncertainty as measurement disturbance, and (4 uncertainty as a quantum mechanics uncertainty principle. Overall, we found students are more likely to prefer a classical picture of interpretations of quantum mechanics. However, few students in the quasiquantum category applied typical wave phenomena such as interference and diffraction that cannot be explained within the framework classical physics for depicting the wavelike properties of quantum entities. Despite inhospitable conceptions of the uncertainty principle and wave- and particlelike properties of quantum entities in our investigation, the findings presented in this paper are highly consistent with those reported in previous studies. New findings and some implications for instruction

  14. Uncertainty in a monthly water balance model using the generalized likelihood uncertainty estimation methodology

    Indian Academy of Sciences (India)

    Diego Rivera; Yessica Rivas; Alex Godoy

    2015-02-01

    Hydrological models are simplified representations of natural processes and subject to errors. Uncertainty bounds are a commonly used way to assess the impact of an input or model architecture uncertainty in model outputs. Different sets of parameters could have equally robust goodness-of-fit indicators, which is known as Equifinality. We assessed the outputs from a lumped conceptual hydrological model to an agricultural watershed in central Chile under strong interannual variability (coefficient of variability of 25%) by using the Equifinality concept and uncertainty bounds. The simulation period ran from January 1999 to December 2006. Equifinality and uncertainty bounds from GLUE methodology (Generalized Likelihood Uncertainty Estimation) were used to identify parameter sets as potential representations of the system. The aim of this paper is to exploit the use of uncertainty bounds to differentiate behavioural parameter sets in a simple hydrological model. Then, we analyze the presence of equifinality in order to improve the identification of relevant hydrological processes. The water balance model for Chillan River exhibits, at a first stage, equifinality. However, it was possible to narrow the range for the parameters and eventually identify a set of parameters representing the behaviour of the watershed (a behavioural model) in agreement with observational and soft data (calculation of areal precipitation over the watershed using an isohyetal map). The mean width of the uncertainty bound around the predicted runoff for the simulation period decreased from 50 to 20 m3s−1 after fixing the parameter controlling the areal precipitation over the watershed. This decrement is equivalent to decreasing the ratio between simulated and observed discharge from 5.2 to 2.5. Despite the criticisms against the GLUE methodology, such as the lack of statistical formality, it is identified as a useful tool assisting the modeller with the identification of critical parameters.

  15. 29 CFR 780.138 - Application of the general principles.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Application of the general principles. 780.138 Section 780.138 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR... principles. Some examples will serve to illustrate the above principles. Employees of a fruit grower who...

  16. The Uncertainty Threshold Principle: Some Fundamental Limitations of Optimal Decision Making Under Dynamic Uncertainity

    Science.gov (United States)

    Athans, M.; Ku, R.; Gershwin, S. B.

    1977-01-01

    This note shows that the optimal control of dynamic systems with uncertain parameters has certain limitations. In particular, by means of a simple scalar linear-quadratic optimal control example, it is shown that the infinite horizon solution does not exist if the parameter uncertainty exceeds a certain quantifiable threshold; we call this the uncertainty threshold principle. The philosophical and design implications of this result are discussed.

  17. 43 CFR 24.3 - General jurisdictional principles.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false General jurisdictional principles. 24.3 Section 24.3 Public Lands: Interior Office of the Secretary of the Interior DEPARTMENT OF THE INTERIOR FISH AND WILDLIFE POLICY: STATE-FEDERAL RELATIONSHIPS § 24.3 General jurisdictional principles. (a)...

  18. Phase-space noncommutative formulation of Ozawa's uncertainty principle

    Science.gov (United States)

    Bastos, Catarina; Bernardini, Alex E.; Bertolami, Orfeu; Costa Dias, Nuno; Prata, João Nuno

    2014-08-01

    Ozawa's measurement-disturbance relation is generalized to a phase-space noncommutative extension of quantum mechanics. It is shown that the measurement-disturbance relations have additional terms for backaction evading quadrature amplifiers and for noiseless quadrature transducers. Several distinctive features appear as a consequence of the noncommutative extension: measurement interactions which are noiseless, and observables which are undisturbed by a measurement, or of independent intervention in ordinary quantum mechanics, may acquire noise, become disturbed by the measurement, or no longer be an independent intervention in noncommutative quantum mechanics. It is also found that there can be states which violate Ozawa's universal noise-disturbance trade-off relation, but verify its noncommutative deformation.

  19. Homeopathy in veterinary medicine: general principles

    Directory of Open Access Journals (Sweden)

    Romeo T. Cristina

    2007-07-01

    Full Text Available Homeopathy therapeutic means are more significantly considered as an animals treatment alternative. This because homeopathy has in its view not only the fact that is harmless for animals, but also the important aspect of lack presence of residues in animal origin products. The paper makes a short presentation of the advantages and disadvantages of this therapeutic alternative and also propose a short description of the three Hahnemian principles: of similitude, of dilutions and of individualization, with them specific aspects (decimal and centesimal dilutions, influence of constitution andtemperament, the organic and functional signs analysis.

  20. Dealing with uncertainty in general practice: an essential skill for the general practitioner

    NARCIS (Netherlands)

    O'Riordan, M.; Dahinden, A.; Akturk, Z.; Ortiz, J.M.; Dagdeviren, N.; Elwyn, G.; Micallef, A.; Murtonen, M.; Samuelson, M.; Struk, P.; Tayar, D.; Thesen, J.

    2011-01-01

    Many patients attending general practice do not have an obvious diagnosis at presentation. Skills to deal with uncertainty are particularly important in general practice as undifferentiated and unorganised problems are a common challenge for general practitioners (GPs). This paper describes the mana

  1. Lacunary Fourier Series and a Qualitative Uncertainty Principle for Compact Lie Groups

    Indian Academy of Sciences (India)

    E K Narayanan; A Sitaram

    2011-02-01

    We define lacunary Fourier series on a compact connected semisimple Lie group . If $f\\in L^1(G)$ has lacunary Fourier series and vanishes on a non empty open subset of , then we prove that vanishes identically. This result can be viewed as a qualitative uncertainty principle.

  2. Localization Operators and an Uncertainty Principle for the Discrete Short Time Fourier Transform

    Directory of Open Access Journals (Sweden)

    Carmen Fernández

    2014-01-01

    Full Text Available Localization operators in the discrete setting are used to obtain information on a signal f from the knowledge on the support of its short time Fourier transform. In particular, the extremal functions of the uncertainty principle for the discrete short time Fourier transform are characterized and their connection with functions that generate a time-frequency basis is studied.

  3. Wave-Particle Duality and Uncertainty Principle: Phenomenographic Categories of Description of Tertiary Physics Students' Depictions

    Science.gov (United States)

    Ayene, Mengesha; Kriek, Jeanne; Damtie, Baylie

    2011-01-01

    Quantum mechanics is often thought to be a difficult subject to understand, not only in the complexity of its mathematics but also in its conceptual foundation. In this paper we emphasize students' depictions of the uncertainty principle and wave-particle duality of quantum events, phenomena that could serve as a foundation in building an…

  4. Generalized Uncertainty Principle and Self-Adjoint Operators

    CERN Document Server

    Balasubramanian, Venkat; Vagenas, Elias C

    2014-01-01

    In this work we explore the self-adjointness of the GUP-modified momentum and Hamiltonian operators over different domains. In particular, we utilize the theorem by von-Newmann for symmetric operators in order to determine whether the momentum and Hamiltonian operators are self-adjoint or not, or they have self-adjoint extensions over the given domain. In addition, a simple example of the Hamiltonian operator describing a particle in a box is given. The solutions of the boundary conditions that describe the self-adjoint extensions of the specific Hamiltonian operator are obtained.

  5. Generalized uncertainty principle and self-adjoint operators

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, Venkat, E-mail: vbalasu8@uwo.ca [Department of Applied Mathematics, University of Western Ontario London, Ontario N6A 5B7 (Canada); Das, Saurya, E-mail: saurya.das@uleth.ca [Theoretical Physics Group, Department of Physics and Astronomy, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4 (Canada); Vagenas, Elias C., E-mail: elias.vagenas@ku.edu.kw [Theoretical Physics Group, Department of Physics, Kuwait University, P.O. Box 5969, Safat 13060 (Kuwait)

    2015-09-15

    In this work we explore the self-adjointness of the GUP-modified momentum and Hamiltonian operators over different domains. In particular, we utilize the theorem by von-Neumann for symmetric operators in order to determine whether the momentum and Hamiltonian operators are self-adjoint or not, or they have self-adjoint extensions over the given domain. In addition, a simple example of the Hamiltonian operator describing a particle in a box is given. The solutions of the boundary conditions that describe the self-adjoint extensions of the specific Hamiltonian operator are obtained.

  6. A Generalized Statistical Uncertainty Model for Satellite Precipitation Products

    Science.gov (United States)

    Sarachi, S.

    2013-12-01

    A mixture model of Generalized Normal Distribution and Gamma distribution (GND-G) is used to model the joint probability distribution of satellite-based and stage IV radar rainfall under a given spatial and temporal resolution (e.g. 1°x1° and daily rainfall). The distribution parameters of GND-G are extended across various rainfall rates and spatial and temporal resolutions. In the study, GND-G is used to describe the uncertainty of the estimates from Precipitation Estimation from Remote Sensing Information using Artificial Neural Network algorithm (PERSIANN). The stage IV-based multi-sensor precipitation estimates (MPE) are used as reference measurements .The study area for constructing the uncertainty model covers a 15°×15°box of 0.25°×0.25° cells over the eastern United States for summer 2004 to 2009. Cells are aggregated in space and time to obtain data with different resolutions for the construction of the model's parameter space. Result shows that comparing to the other statistical uncertainty models, GND-G fits better than the other models, such as Gaussian and Gamma distributions, to the reference precipitation data. The impact of precipitation uncertainty to the stream flow is further demonstrated by Monte Carlo simulation of precipitation forcing in the hydrologic model. The NWS DMIP2 basins over Illinois River basin south of Siloam is selected in this case study. The data covers the time period of 2006 to 2008.The uncertainty range of stream flow from precipitation of GND-G distributions calculated and will be discussed.

  7. Generalization of the ERIT principle and method.

    Energy Technology Data Exchange (ETDEWEB)

    Ruggiero,A.G.

    2007-11-04

    The paper describes the generalization of the method to produce secondary particles with a low-energy and low-intensity primary beam circulating in a Storage Ring with the Emittance-Recovery by Internal-Target (ERIT).

  8. Dealing with uncertainty in general practice: an essential skill for the general practitioner.

    Science.gov (United States)

    O'Riordan, Margaret; Dahinden, André; Aktürk, Zekeriya; Ortiz, José Miguel Bueno; Dağdeviren, Nezih; Elwyn, Glyn; Micallef, Adrian; Murtonen, Mikko; Samuelson, Marianne; Struk, Per; Tayar, Danny; Thesen, Janecke

    2011-01-01

    Many patients attending general practice do not have an obvious diagnosis at presentation. Skills to deal with uncertainty are particularly important in general practice as undifferentiated and unorganised problems are a common challenge for general practitioners (GPs). This paper describes the management of uncertainty as an essential skill which should be included in educational programmes for both trainee and established GPs. Philosophers, psychologists and sociologists use different approaches to the conceptualisation of managing uncertainty. The literature on dealing with uncertainty focuses largely on identifying relevant evidence and decision making. Existing models of the consultation should be improved in order to understand consultations involving uncertainty. An alternative approach focusing on shared decision making and understanding the consultation from the patient's perspective is suggested. A good doctor-patient relationship is vital, creating trust and mutual respect, developed over time with good communication skills. Evidence-based medicine should be used, including discussion of probabilities where available. Trainers need to be aware of their own use of heuristics as they act as role models for trainees. Expression of feelings by trainees should be encouraged and acknowledged by trainers as a useful tool in dealing with uncertainty. Skills to deal with uncertainty should be regarded as quality improvement tools and included in educational programmes involving both trainee and established GPs.

  9. 12 CFR 330.3 - General principles.

    Science.gov (United States)

    2010-01-01

    ...) Waiver of minimum requirements. In the case of a deposit with a fixed payment date, fixed or minimum term... and Banking FEDERAL DEPOSIT INSURANCE CORPORATION REGULATIONS AND STATEMENTS OF GENERAL POLICY DEPOSIT... provided by the Act and this part is based upon the ownership rights and capacities in which deposit...

  10. 21 CFR 101.13 - general principles.

    Science.gov (United States)

    1996-04-01

    ... content claims FOOD AND DRUGS FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES--CONTINUED FOOD FOR HUMAN CONSUMPTION FOOD LABELING General Provisions Sec. 101.13 Nutrient content claims... supplements). (b) A claim that expressly or implicitly characterizes the level of a nutrient (nutrient content...

  11. GENERAL PRINCIPLES OF ADMINISTRATIVE SANCTIONS IN THE ROMANIAN LAW

    OpenAIRE

    2007-01-01

    The article is presenting a general description of the characteristics of administrative sanctions, as well as a comment on contraventions and the group of other administrative sanctions. Legislation that supports different principles is presented. Regarding contraventions, the principles that mirror the criminal origin of this category of sanctions are emphasized.

  12. Using Uncertainty Principle to Find the Ground-State Energy of the Helium and a Helium-like Hookean Atom

    Science.gov (United States)

    Harbola, Varun

    2011-01-01

    In this paper, we accurately estimate the ground-state energy and the atomic radius of the helium atom and a helium-like Hookean atom by employing the uncertainty principle in conjunction with the variational approach. We show that with the use of the uncertainty principle, electrons are found to be spread over a radial region, giving an electron…

  13. Using Uncertainty Principle to Find the Ground-State Energy of the Helium and a Helium-like Hookean Atom

    Science.gov (United States)

    Harbola, Varun

    2011-01-01

    In this paper, we accurately estimate the ground-state energy and the atomic radius of the helium atom and a helium-like Hookean atom by employing the uncertainty principle in conjunction with the variational approach. We show that with the use of the uncertainty principle, electrons are found to be spread over a radial region, giving an electron…

  14. [Competency: general principles and applicability in dementia].

    Science.gov (United States)

    Alvaro, L C

    2012-06-01

    Competency means the capacity to make responsible and balanced decisions. This may be performed in clinical settings (decision-making abilities on treatment or risky diagnostic procedures) and also in daily-life activities (financial matters, nursing home admittance, contracts, etc.). Competency is linked to the ethical principle of autonomy and to a horizontal doctor-patient interaction, far from ancient paternalistic relationships. It is contemplated in the Spanish law as the patient's right to be informed and to make free choices, particularly in cases of dementia. The competency that we assess is the so-called natural or working capacity. It is specific for an action or task. The level of required capacity depends on the decision: higher for critical ones, lower for low-risk decisions. The assessment process requires noting the patient's capacity to understand, analyse, self-refer and apply the information. There are some guides available that may be useful in competency assessments, but nevertheless the final statement must be defined by the physician in charge of the patient and clinical judgement. Capacity is directly related to the level of cognitive deterioration. Nevertheless, specific cognitive tests like MMSE (mini-mental) have a low predictive value. The loss of competency is more associated with the so-called legal standards of incapacity (LS). These encompass a five steps range (LS1-LS5), which may detect the incapacity from the mild levels of dementia. The cortical functions that are the best predictors of incapacity are language and executive dysfunctions. These explain the incapacity in cases of Alzheimer's and Parkinson's disease, and have been studied more. Incapacity is common and it influences the clinical decision-making process. We must be particularly cautious with clinical trials of dementia. It also involves other areas of daily life, particularly financially related ones, where limitations are present from the mild cognitive impairment

  15. Quantum theory of the Generalised Uncertainty Principle and the existence of a Minimal Length

    CERN Document Server

    Bruneton, Jean-Philippe

    2016-01-01

    We extend significantly previous works on the Hilbert space representations of the Generalized Uncertainty Principle (GUP) in 3+1 dimensions of the form $[X_i,P_j] = i F_{ij}$ where $ F_{ij} = f(P^2) \\delta_{ij} + g(P^2) P_i P_j $ for any functions $f$. However, we restrict our study to the case of commuting $X$'s. We focus in particular on the symmetries of the theory, and the minimal length that emerge in some cases. We first show that, at the algebraic level, there exists an unambiguous mapping between the GUP with a deformed quantum algebra and a quadratic Hamiltonian into a standard, Heisenberg algebra of operators and an aquadratic Hamiltonian, provided the boost sector of the symmetries is modified accordingly. The theory can also be mapped to a completely standard Quantum Mechanics with standard symmetries, but with momentum dependent position operators. Next, we investigate the Hilbert space representations of these algebraically equivalent models, and focus, specifically on whether they exhibit a mi...

  16. Computational uncertainty principle in nonlinear ordinary differential equations--Numerical results

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In a majority of cases of long-time numerical integration for initial-value problems, round-off error has received little attention. Using twenty-nine numerical methods, the influence of round-off error on numerical solutions is generally studied through a large number of numerical experiments. Here we find that there exists a strong dependence on machine precision (which is a new kind of dependence different from the sensitive dependence on initial conditions), maximally effective computation time (MECT) and optimal stepsize (OS) in solving nonlinear ordinary differential equations (ODEs) in finite machine precision. And an optimal searching method for evaluating MECT and OS under finite machine precision is presented. The relationships between MECT, OS, the order of numerical method and machine precision are found. Numerical results show that round-off error plays a significant role in the above phenomena. Moreover, we find two universal relations which are independent of the types of ODEs, initial values and numerical schemes. Based on the results of numerical experiments, we present a computational uncertainty principle, which is a great challenge to the reliability of long-time numerical integration for nonlinear ODEs.

  17. The Main General Didactical Principles of Glotoeducological Theory and Practice

    Directory of Open Access Journals (Sweden)

    Regina Juškienė

    2011-04-01

    Full Text Available As a pedagogical discipline glotoeducology is related to didactics, i. e. teaching theory. Three concepts of didactics are being distinguished: teaching, teaching principles and types of teaching activity. The authors limited themselves in their paper on one of them, namely: teaching principles that determine the usage of teaching regularities in the course of implementation of the objectives of teaching and education. The article also provides analysis of interaction of linguodidactical principles with general didactical principles, the impact thereof to teaching of foreign languages.

  18. General principles of quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Bogolubov, N.N.; Logunov, A.A. (AN SSSR, Moscow (USSR) Moskovskij Gosudarstvennyj Univ., Moscow (USSR)); Oksak, A.I. (Institute for High Energy Physics, Moscow (USSR)); Todorov, I.T. (Bylgarska Akademiya na Naukite, Sofia (Bulgaria) Bulgarian Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria))

    1990-01-01

    This major volume provides a account of general quantum field theory, with an emphasis on model-independent methods. The important aspects of the development of the subject are described in detail and are shown to have promising links with many branches of modern mathematics and theoretical physics, such as random fields (probability), statistical physics, and elemantary particles. The material is presented in a thorough, systematic way and the mathematical methods of quantum field theory are also given. The text is self-contained and contains numerous exercises. Topics of independent interest are given in appendices. The book also contains a large bibliography. (author). 1181 refs. Includes index of notation and subject index; includes 1181 refs.

  19. Generalized principles of unchanging total concentration.

    Science.gov (United States)

    Kottke, Peter A; Fedorov, Andrei G

    2005-09-08

    We consider the transport of multiple reacting species under the continuum assumption in situations such as those that frequently arise in electroanalytical chemistry. Under certain limitations, it has been shown that the total species concentration (as defined by Oldham and Feldberg) of such a system is uniform and constant. In this work, we extend the limits of the previous analysis to enable greater applicability. This is accomplished by using either of two new dependent variables, which are generalizations of the concept of total concentration. Then, conditions are determined under which the dependent variable will be uniform and constant in time. From a practical viewpoint, the described formalism allows one to simplify the multispecies transport problem formulation by eliminating one equation from the system of governing equations.

  20. Lorentz Transformation and General Covariance Principle

    CERN Document Server

    Kleyn, Aleks

    2008-01-01

    I tell about different mathematical tool that is important in general relativity. The text of the book includes definition of geometrical object, concept of reference frame, geometry of metric-affinne manifold. Using this concept I learn few physical applications: dynamics and Lorentz transformation in gravitational fields, Doppler shift. A reference frame in event space is a smooth field of orthonormal bases. Every reference frame is equipped by anholonomic coordinates. Using anholonomic coordinates allows to find out relative speed of two observers and appropriate Lorentz transformation. Synchronization of a reference frame is an anholonomic time coordinate. Simple calculations show how synchronization influences time measurement in the vicinity of the Earth. Measurement of Doppler shift from the star orbiting the black hole helps to determine mass of the black hole. We call a manifold with torsion and nonmetricity the metric\\hyph affine manifold. The nonmetricity leads to a difference between the auto para...

  1. Regulating food law : risk analysis and the precautionary principle as general principles of EU food law

    NARCIS (Netherlands)

    Szajkowska, A.

    2012-01-01

    In food law scientific evidence occupies a central position. This study offers a legal insight into risk analysis and the precautionary principle, positioned in the EU as general principles applicable to all food safety measures, both national and EU. It develops a new method of looking at these

  2. Kinship categories across languages reflect general communicative principles.

    Science.gov (United States)

    Kemp, Charles; Regier, Terry

    2012-05-25

    Languages vary in their systems of kinship categories, but the scope of possible variation appears to be constrained. Previous accounts of kin classification have often emphasized constraints that are specific to the domain of kinship and are not derived from general principles. Here, we propose an account that is founded on two domain-general principles: Good systems of categories are simple, and they enable informative communication. We show computationally that kin classification systems in the world's languages achieve a near-optimal trade-off between these two competing principles. We also show that our account explains several specific constraints on kin classification proposed previously. Because the principles of simplicity and informativeness are also relevant to other semantic domains, the trade-off between them may provide a domain-general foundation for variation in category systems across languages.

  3. REGION-WISE VARIATIONAL PRINCIPLES AND GENERALIZED VARIATIONAL PRINCIPLES ON LARGE STRAIN FOR CONSOLIDATION THEORY

    Institute of Scientific and Technical Information of China (English)

    LUO Xiao-hui; LI Yong-le; LUO Xin

    2005-01-01

    The difference of constitutive character and large deformation as to soil mass are basic questions to analyze deformational feature. According to the description method of limited deformation, the large deformation consolidation equations of soil mass were created and its variational principles were rigorously testified. The regionwise variational principles of consolidation theory were deduced using sub-structure continuous condition of region-wise. Quoting the method of Lagrangian multiplier operator, generalized variational principles of region-wise of large deformation consolidation in the nonconstrained condition were created and approved.

  4. Generalized invariance principles and the theory of stability.

    Science.gov (United States)

    Lasalle, J. P.

    1971-01-01

    Description of some recent extensions of the invariance principle to more generalized dynamical systems where the state space is not locally compact and the flow is unique only in the forward direction of time. A sufficient condition for asymptotic stability of an invariant set is obtained which does not require that the Liapunov function be positive-definite. A recently developed generalized invariance principle is described which is applicable to functional differential equations, partial differential equations, and, in particular, to certain stability problems arising in thermoelasticity, viscoelasticity, and distributed nonlinear networks.

  5. Uncertainty Quantification in Application of the Enrichment Meter Principle for Nondestructive Assay of Special Nuclear Material

    Directory of Open Access Journals (Sweden)

    Tom Burr

    2015-01-01

    Full Text Available Nondestructive assay (NDA of special nuclear material (SNM is used in nonproliferation applications, including identification of SNM at border crossings, and quantifying SNM at safeguarded facilities. No assay method is complete without “error bars,” which provide one widely used way to express confidence in assay results. NDA specialists typically partition total uncertainty into “random” and “systematic” components so that, for example, an error bar can be developed for the SNM mass estimate in one item or for the total SNM mass estimate in multiple items. Uncertainty quantification (UQ for NDA has always been important, but greater rigor is needed and achievable using modern statistical methods. To this end, we describe the extent to which the guideline for expressing uncertainty in measurements (GUM can be used for NDA. Also, we describe possible extensions to the GUM by illustrating UQ challenges in NDA that it does not address, including calibration with errors in predictors, model error, and item-specific biases. A case study is presented using gamma spectra and applying the enrichment meter principle to estimate the 235U mass in an item. The case study illustrates how to update the ASTM international standard test method for application of the enrichment meter principle using gamma spectra.

  6. The Heisenberg Uncertainty Principle and the Nyquist-Shannon Sampling Theorem

    Directory of Open Access Journals (Sweden)

    Millette P. A.

    2013-07-01

    Full Text Available The derivation of the Heisenberg Uncertainty Principle (HUP from the Uncertainty Theorem of Fourier Transform theory demonstrates that the HUP arises from the dependency of momentum on a wave number that exists at the quantum level. It also establishes that the HUP is purely a relationship between the effective widths of Fourier transform pairs of variables (i.e. conjugate variables. We note that the HUP is not a quantum mechanical measurement principle per se. We introduce the Quantum Mechanical equivalent of the Nyquist-Shannon Sampling Theorem of Fourier Transform theory, and show that it is a better principle to describe the measurement limitations of Quantum Mechanics. We show that Brillouin zones in Solid State Physics are a manifestation of the Nyquist-Shannon Sampling Theorem at the quantum level. By comparison with other fields where Fourier Transform theory is used, we propose that we need todiscern between measurement limitations and inherent limitations when interpreting the impact of the HUP on the nature of the quantum level. We further propose that while measurement limitations result in our perception of indeterminism at the quantum level, there is no evidence that there are any inherent limitations at the quantum level, based on the Nyquist-Shannon Sampling Theorem

  7. The action principle for generalized fluid motion including gyroviscosity

    Energy Technology Data Exchange (ETDEWEB)

    Lingam, M., E-mail: manasvi@physics.utexas.edu; Morrison, P.J., E-mail: morrison@physics.utexas.edu

    2014-11-07

    Highlights: • Method for constructing action principles for a diverse class of fluids with gyroscopic momentum transport is described. • General criteria for the conservation of momentum and angular momentum via Noether's theorem are obtained. • Fluids with intrinsic angular momentum are built as an illustration of the method. - Abstract: A general set of fluid equations that allow for energy-conserving momentum transport by gyroscopic motion of fluid elements is obtained. The equations are produced by a class of action principles that yield a large subset of the known fluid and magnetofluid models, including gyroviscosity. Analysis of the action principle yields broad, model-independent results regarding the conservation laws of energy and linear and angular momenta. The formalism is illustrated by studying fluid models with intrinsic angular momentum that may appear in the contexts of condensed matter, biological, and other areas of physics.

  8. The general law principles, the family law principles and the personality rights

    OpenAIRE

    2007-01-01

    With the present study, we intend, from an analysis of general law principles and the specifics family law principles, to establish its imbrications with the personality rights. Con el presente estudio, se pretende, a partir de los principios generales de derecho y de los principios específicos de derecho de familia, establecer su relación con los derechos de personalidad. Com o presente estudo, pretende-se, a partir da análise dos princípios gerais de direito e dos princípios específi...

  9. Using the uncertainty principle to design simple interactions for targeted self-assembly.

    Science.gov (United States)

    Edlund, E; Lindgren, O; Jacobi, M Nilsson

    2013-07-14

    We present a method that systematically simplifies isotropic interactions designed for targeted self-assembly. The uncertainty principle is used to show that an optimal simplification is achieved by a combination of heat kernel smoothing and Gaussian screening of the interaction potential in real and reciprocal space. We use this method to analytically design isotropic interactions for self-assembly of complex lattices and of materials with functional properties. The derived interactions are simple enough to narrow the gap between theory and experimental implementation of theory based designed self-assembling materials.

  10. Modified uncertainty principle from the free expansion of a Bose-Einstein condensate

    Science.gov (United States)

    Castellanos, Elías; Escamilla-Rivera, Celia

    2017-01-01

    In this paper, we present a theoretical and numerical analysis of the free expansion of a Bose-Einstein condensate, where we assume that the single particle energy spectrum is deformed due to a possible quantum structure of spacetime. Also, we consider the presence of interparticle interactions in order to study more realistic and specific scenarios. The modified free velocity expansion of the condensate leads in a natural way to a modification of the uncertainty principle, which allows us to investigate some possible features of the Planck scale regime in low-energy earth-based experiments.

  11. Modified uncertainty principle from the free expansion of a Bose-Einstein Condensate

    CERN Document Server

    Castellanos, Elías

    2015-01-01

    We develop an analytical and numerical analysis of the free expansion of a Bose-Einstein condensate, in which we assume that the single particle energy spectrum is deformed due to a possible quantum structure of space time. Also we consider the presence of inter particle interactions in order to study more realistic and specific scenarios. The modified free velocity expansion of the condensate leads in a natural way to a modification of the uncertainty principle, which allows us to investigate some possible features of the Planck scale regime in low-energy earth-based experiments.

  12. The action principle for generalized fluid motion including gyroviscosity

    CERN Document Server

    Lingam, M

    2014-01-01

    A general set of fluid equations that allow for energy-conserving momentum transport by gyroscopic motion of fluid elements is obtained. The equations are produced by a class of action principles that yield a large subset of the known fluid and magnetofluid models, including gyroviscosity. Analysis of the action principle yields broad, model-independent results regarding the conservation laws of energy and linear and angular momenta. The formalism is illustrated by studying fluid models with intrinsic angular momentum that may appear in the contexts of condensed matter, biological, and other areas of physics.

  13. Intolerance of uncertainty, causal uncertainty, causal importance, self-concept clarity and their relations to generalized anxiety disorder.

    Science.gov (United States)

    Kusec, Andrea; Tallon, Kathleen; Koerner, Naomi

    2016-06-01

    Although numerous studies have provided support for the notion that intolerance of uncertainty plays a key role in pathological worry (the hallmark feature of generalized anxiety disorder (GAD)), other uncertainty-related constructs may also have relevance for the understanding of individuals who engage in pathological worry. Three constructs from the social cognition literature, causal uncertainty, causal importance, and self-concept clarity, were examined in the present study to assess the degree to which these explain unique variance in GAD, over and above intolerance of uncertainty. N = 235 participants completed self-report measures of trait worry, GAD symptoms, and uncertainty-relevant constructs. A subgroup was subsequently classified as low in GAD symptoms (n = 69) or high in GAD symptoms (n = 54) based on validated cut scores on measures of trait worry and GAD symptoms. In logistic regressions, only elevated intolerance of uncertainty and lower self-concept clarity emerged as unique correlates of high (vs. low) GAD symptoms. The possible role of self-concept uncertainty in GAD and the utility of integrating social cognition theories and constructs into clinical research on intolerance of uncertainty are discussed.

  14. Generalized variational principles of three kinds of variables in general mechanic

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, by using the involutory transformations, the stationary conditions of two kinds of variables are transformed into basic equations of three kinds of variables. According to the corresponding relations between general forces and general displacements, the basic equations are multiplied by corresponding virtual quantities, added algebraically, and then integrated with time. Thus, the generalized variational principles of three kinds of variables in holonomic systems and nonholonomic systems are established. As an example, the generalized variational principles are applied to elastodynamics. Finally, some related problems are discussed.

  15. Phase-space noncommutative extension of the Robertson-Schroedinger formulation of Ozawa's uncertainty principle

    CERN Document Server

    Bastos, Catarina; Bertolami, Orfeu; Dias, Nuno Costa; Prata, João Nuno

    2014-01-01

    We revisit Ozawa's uncertainty principle (OUP) in the framework of noncommutative (NC) quantum mechanics. We derive a matrix version of OUP accommodating any NC structure in the phase-space, and compute NC corrections to lowest order for two measurement interactions, namely the Backaction Evading Quadrature Amplifier and Noiseless Quadrature Transducers. These NC corrections alter the nature of the measurement interaction, as a noiseless interaction may acquire noise, and an interaction of independent intervention may become dependent of the object system. However the most striking result is that noncommutativity may lead to a violation of the OUP itself. The NC corrections for the Backaction Evading Quadrature Amplifier reveal a new term which may potentially be amplified in such a way that the violation of the OUP becomes experimentally testable. On the other hand, the NC corrections to the Noiseless Quadrature Transducer shows an incompatibility of this model with NC quantum mechanics. We discuss the impli...

  16. Trans-Planckian Effects in Inflationary Cosmology and the Modified Uncertainty Principle

    CERN Document Server

    Hassan, S F; Sloth, Martin S.

    2003-01-01

    There are good indications that fundamental physics gives rise to a modified space-momentum uncertainty relation that implies the existence of a minimum length scale. We implement this idea in the free scalar field theory that describes density perturbations in flat Robertson-Walker space-time. This leads to a non-linear time-dependent dispersion relation that encodes the effects of Planck scale physics in the inflationary epoch. Unbounded dispersion relations are excluded by the minimum length principle. We also find red-shift induced modifications of the field theory that tend to dampen the fluctuations at trans-Planckian momenta. In the specific example considered, this feature helps determine the initial state of the fluctuations, leading to a flat power spectrum.

  17. Mimimal Length Uncertainty Principle and the Transplanckian Problem of Black Hole Physics

    CERN Document Server

    Brout, R; Lubo, M; Spindel, P; Gabriel, Cl.; Spindel, Ph.

    1999-01-01

    The minimal length uncertainty principle of Kempf, Mangano and Mann (KMM), as derived from a mutilated quantum commutator between coordinate and momentum, is applied to describe the modes and wave packets of Hawking particles evaporated from a black hole. The transplanckian problem is successfully confronted in that the Hawking particle no longer hugs the horizon at arbitrarily close distances. Rather the mode of Schwarzschild frequency $\\omega$ deviates from the conventional trajectory when the coordinate $r$ is given by $| r - 2M|\\simeq \\beta_H \\omega / 2 \\pi$ in units of the non local distance legislated into the uncertainty relation. Wave packets straddle the horizon and spread out to fill the whole non local region. The charge carried by the packet (in the sense of the amount of "stuff" carried by the Klein--Gordon field) is not conserved in the non--local region and rapidly decreases to zero as time decreases. Read in the forward temporal direction, the non--local region thus is the seat of production o...

  18. A South African perspective on children's rights: general principles.

    Science.gov (United States)

    Klinck, M E; Iuris, B; Louw, D A; Peens, B J

    2000-01-01

    South Africa has made rapid progress in the field of human and especially children's rights. This is in sharp contrast with it's apartheid history where even the basic principles of human rights were negated. In this article an overview will be given of the general principles on which the realization of children's rights in South Africa are based. More specifically information on the population, economic status, political climate and recent developments in this field is presented. This is followed by a discussion on the social-economic nature of children's rights, the courts as enforcement mechanisms, and the contents of the best interest standard as described both in convention on the rights of the child and the South African Constitution.

  19. On the $c$ equivalence principle and its relation to the weak equivalence principle of general relativity

    CERN Document Server

    Choy, T C

    2011-01-01

    We clarify the status of the $c$ equivalence principle ($c_u=c$) recently proposed by Heras et al \\cite{JoseAJP2010,JoseEJP2010} and show that its proposal leads to an extension of the current framework of classical relativistic electrodynamics (CRE). This is because in the MLT (mass, length and time) system of units, CRE theory can contain only one fundamental constant of nature and special relativity dictates that this must be $c$, the standard speed of light in vacuum, a point not sufficiently emphasized in most textbooks with the exception of a few such as Panofsky and Phillips \\cite{PanofskyPhillips}. The $c$ equivalence principle Heras \\cite{JoseAJP2010,JoseEJP2010} can be shown to be linked to the second postulate of special relativity which extends the constancy of the unique velocity of light to all of physics (especially to mechanics) other than electromagnetism. An interesting corollary is that both the weak equivalence principle of general relativity and the $c$ equivalence principle are in fact o...

  20. General Principles of Transnationalised Criminal Justice?
    Exploratory Reflections

    Directory of Open Access Journals (Sweden)

    Marianne L. Wade

    2013-09-01

    Full Text Available This article sets out to explore the premise of general principles in what is labelled transnationalised criminal justice (encompassing the substantive and procedural law as well as the institutions of transnational criminal law and European criminal law. Whilst there can be no denying that these are diverse and divergent areas of law in many ways, their fundamental common denominator of seeking to convict individuals whilst subjecting these to arrest, detention and deprivation of other rights across borders, is taken as a baseline around which certain general principles may gravitate. The current state of executive over-reach within transnationalised criminal justice structures is studied, particularly in relation to the European criminal justice context. This over-reach is explored utilising the theoretical framework of social contract theory. It is suggested that the transfer of investigative and prosecutorial powers to transnationalised contexts undertaken by the relevant executives without seeking to temper this assignment with mechanisms to secure the rights of individuals which counter-balance these, as required by the constitutional traditions of their country, can be regarded as in breach of the social contract. Using this thought experiment, this article provides a framework with which to identify the deficits of transnationalised criminal law.  The way in which such deficits undermine the legitimacy of the institutions created by states to operate the mechanisms of transnationalised criminal justice as well as the fundamental values of their own constitutions is, however, demonstrated as concrete. The latter are identified as mechanisms for deducing the general principles of transnationalised criminal justice (albeit via difficult international negotiation. If the supranationalisation of criminal justice powers is not to be regarded as a tool undermining constitutional values and effectively allowing executives acting in an

  1. General Principles of Transnationalised Criminal Justice?Exploratory Reflections

    Directory of Open Access Journals (Sweden)

    Marianne L. Wade

    2013-09-01

    Full Text Available This article sets out to explore the premise of general principles in what is labelled transnationalised criminal justice (encompassing the substantive and procedural law as well as the institutions of transnational criminal law and European criminal law. Whilst there can be no denying that these are diverse and divergent areas of law in many ways, their fundamental common denominator of seeking to convict individuals whilst subjecting these to arrest, detention and deprivation of other rights across borders, is taken as a baseline around which certain general principles may gravitate. The current state of executive over-reach within transnationalised criminal justice structures is studied, particularly in relation to the European criminal justice context. This over-reach is explored utilising the theoretical framework of social contract theory. It is suggested that the transfer of investigative and prosecutorial powers to transnationalised contexts undertaken by the relevant executives without seeking to temper this assignment with mechanisms to secure the rights of individuals which counter-balance these, as required by the constitutional traditions of their country, can be regarded as in breach of the social contract. Using this thought experiment, this article provides a framework with which to identify the deficits of transnationalised criminal law.  The way in which such deficits undermine the legitimacy of the institutions created by states to operate the mechanisms of transnationalised criminal justice as well as the fundamental values of their own constitutions is, however, demonstrated as concrete. The latter are identified as mechanisms for deducing the general principles of transnationalised criminal justice (albeit via difficult international negotiation. If the supranationalisation of criminal justice powers is not to be regarded as a tool undermining constitutional values and effectively allowing executives acting in an

  2. Principle Generalized Net Model of a Human Stress Reaction

    Directory of Open Access Journals (Sweden)

    Anthony Shannon

    2008-04-01

    Full Text Available The present study was aimed at investigating the mechanism of a human stress reaction by means of Generalized Nets (GNs. A principle GN-model of the main structures, organs and systems of the human body taking part in the acute and chronic reaction of the organism to a stress stimulus is generated. A possible application of the GN-model of the human stress reaction for testing the effect of known or newly synthesized pharmacological products as well as of food supplements is discussed.

  3. General Analyzing and Research on Uncertainty of Multi-Scale Representation for Street-Block Settlement

    Science.gov (United States)

    Xu, F.; Niu, J.; Chi, Z.; Xie, W.

    2013-05-01

    Analyzing and evaluating the reliability of multi-scale representation of spatial data are already becoming an important issue of the current digital cartography and GIS. Settlement place is the main content of maps. For this reason, studying on the uncertainty of multi-scale representation of settlement place is one of important contents of the uncertainty of multi-scale representation of spatial data. In this paper, uncertainty of multi-scale representation of street-block settlement was get comprehensive analysis and system research. This paper holds that map generalization is the essential cause leading to uncertainty of multi-scale representation of streetblock settlement. First, it is explored of essence and types of uncertainty on multi-scale representation of street-block settlement, and it divides these uncertainties into four large classes and seven subclasses. Second, among all kinds of uncertainties of multi-scale representation of street-block settlement, this paper mainly studies the uncertainty of settlement of street-block symbolic representation, and establishes the evaluation content and evaluation indexes and computing method of uncertainty of street-block and street network generalization and building generalization. The result can use for evaluating the good and bad of scale transfer methods and the uncertainty of products of multi-scale representation of street-block settlement.

  4. A general maximum entropy framework for thermodynamic variational principles

    Energy Technology Data Exchange (ETDEWEB)

    Dewar, Roderick C., E-mail: roderick.dewar@anu.edu.au [Research School of Biology, The Australian National University, Canberra ACT 0200 (Australia)

    2014-12-05

    Minimum free energy principles are familiar in equilibrium thermodynamics, as expressions of the second law. They also appear in statistical mechanics as variational approximation schemes, such as the mean-field and steepest-descent approximations. These well-known minimum free energy principles are here unified and extended to any system analyzable by MaxEnt, including non-equilibrium systems. The MaxEnt Lagrangian associated with a generic MaxEnt distribution p defines a generalized potential Ψ for an arbitrary probability distribution p-hat, such that Ψ is a minimum at (p-hat) = p. Minimization of Ψ with respect to p-hat thus constitutes a generic variational principle, and is equivalent to minimizing the Kullback-Leibler divergence between p-hat and p. Illustrative examples of min–Ψ are given for equilibrium and non-equilibrium systems. An interpretation of changes in Ψ is given in terms of the second law, although min–Ψ itself is an intrinsic variational property of MaxEnt that is distinct from the second law.

  5. A general maximum entropy framework for thermodynamic variational principles

    Science.gov (United States)

    Dewar, Roderick C.

    2014-12-01

    Minimum free energy principles are familiar in equilibrium thermodynamics, as expressions of the second law. They also appear in statistical mechanics as variational approximation schemes, such as the mean-field and steepest-descent approximations. These well-known minimum free energy principles are here unified and extended to any system analyzable by MaxEnt, including non-equilibrium systems. The MaxEnt Lagrangian associated with a generic MaxEnt distribution p defines a generalized potential Ψ for an arbitrary probability distribution ̂p, such that Ψ is a minimum at ̂p = p. Minimization of Ψ with respect to ̂p thus constitutes a generic variational principle, and is equivalent to minimizing the Kullback-Leibler divergence between ̂p and p. Illustrative examples of min-Ψ are given for equilibrium and non-equilibrium systems. An interpretation of changes in Ψ is given in terms of the second law, although min-Ψ itself is an intrinsic variational property of MaxEnt that is distinct from the second law.

  6. Cosmological constant implementing Mach principle in general relativity

    Science.gov (United States)

    Namavarian, Nadereh; Farhoudi, Mehrdad

    2016-10-01

    We consider the fact that noticing on the operational meaning of the physical concepts played an impetus role in the appearance of general relativity (GR). Thus, we have paid more attention to the operational definition of the gravitational coupling constant in this theory as a dimensional constant which is gained through an experiment. However, as all available experiments just provide the value of this constant locally, this coupling constant can operationally be meaningful only in a local area. Regarding this point, to obtain an extension of GR for the large scale, we replace it by a conformal invariant model and then, reduce this model to a theory for the cosmological scale via breaking down the conformal symmetry through singling out a specific conformal frame which is characterized by the large scale characteristics of the universe. Finally, we come to the same field equations that historically were proposed by Einstein for the cosmological scale (GR plus the cosmological constant) as the result of his endeavor for making GR consistent with the Mach principle. However, we declare that the obtained field equations in this alternative approach do not carry the problem of the field equations proposed by Einstein for being consistent with Mach's principle (i.e., the existence of de Sitter solution), and can also be considered compatible with this principle in the Sciama view.

  7. Principle and Uncertainty Quantification of an Experiment Designed to Infer Actinide Neutron Capture Cross-Sections

    Energy Technology Data Exchange (ETDEWEB)

    G. Youinou; G. Palmiotti; M. Salvatorre; G. Imel; R. Pardo; F. Kondev; M. Paul

    2010-01-01

    An integral reactor physics experiment devoted to infer higher actinide (Am, Cm, Bk, Cf) neutron cross sections will take place in the US. This report presents the principle of the planned experiment as well as a first exercise aiming at quantifying the uncertainties related to the inferred quantities. It has been funded in part by the DOE Office of Science in the framework of the Recovery Act and has been given the name MANTRA for Measurement of Actinides Neutron TRAnsmutation. The principle is to irradiate different pure actinide samples in a test reactor like INL’s Advanced Test Reactor, and, after a given time, determine the amount of the different transmutation products. The precise characterization of the nuclide densities before and after neutron irradiation allows the energy integrated neutron cross-sections to be inferred since the relation between the two are the well-known neutron-induced transmutation equations. This approach has been used in the past and the principal novelty of this experiment is that the atom densities of the different transmutation products will be determined with the Accelerator Mass Spectroscopy (AMS) facility located at ANL. While AMS facilities traditionally have been limited to the assay of low-to-medium atomic mass materials, i.e., A < 100, there has been recent progress in extending AMS to heavier isotopes – even to A > 200. The detection limit of AMS being orders of magnitude lower than that of standard mass spectroscopy techniques, more transmutation products could be measured and, potentially, more cross-sections could be inferred from the irradiation of a single sample. Furthermore, measurements will be carried out at the INL using more standard methods in order to have another set of totally uncorrelated information.

  8. Routine internal- and external-quality control data in clinical laboratories for estimating measurement and diagnostic uncertainty using GUM principles.

    Science.gov (United States)

    Magnusson, Bertil; Ossowicki, Haakan; Rienitz, Olaf; Theodorsson, Elvar

    2012-05-01

    Healthcare laboratories are increasingly joining into larger laboratory organizations encompassing several physical laboratories. This caters for important new opportunities for re-defining the concept of a 'laboratory' to encompass all laboratories and measurement methods measuring the same measurand for a population of patients. In order to make measurement results, comparable bias should be minimized or eliminated and measurement uncertainty properly evaluated for all methods used for a particular patient population. The measurement as well as diagnostic uncertainty can be evaluated from internal and external quality control results using GUM principles. In this paper the uncertainty evaluations are described in detail using only two main components, within-laboratory reproducibility and uncertainty of the bias component according to a Nordtest guideline. The evaluation is exemplified for the determination of creatinine in serum for a conglomerate of laboratories both expressed in absolute units (μmol/L) and relative (%). An expanded measurement uncertainty of 12 μmol/L associated with concentrations of creatinine below 120 μmol/L and of 10% associated with concentrations above 120 μmol/L was estimated. The diagnostic uncertainty encompasses both measurement uncertainty and biological variation, and can be estimated for a single value and for a difference. This diagnostic uncertainty for the difference for two samples from the same patient was determined to be 14 μmol/L associated with concentrations of creatinine below 100 μmol/L and 14 % associated with concentrations above 100 μmol/L.

  9. Imperfect pitch: Gabor's uncertainty principle and the pitch of extremely brief sounds.

    Science.gov (United States)

    Hsieh, I-Hui; Saberi, Kourosh

    2016-02-01

    How brief must a sound be before its pitch is no longer perceived? The uncertainty tradeoff between temporal and spectral resolution (Gabor's principle) limits the minimum duration required for accurate pitch identification or discrimination. Prior studies have reported that pitch can be extracted from sinusoidal pulses as brief as half a cycle. This finding has been used in a number of classic papers to develop models of pitch encoding. We have found that phase randomization, which eliminates timbre confounds, degrades this ability to chance, raising serious concerns over the foundation on which classic pitch models have been built. The current study investigated whether subthreshold pitch cues may still exist in partial-cycle pulses revealed through statistical integration in a time series containing multiple pulses. To this end, we measured frequency-discrimination thresholds in a two-interval forced-choice task for trains of partial-cycle random-phase tone pulses. We found that residual pitch cues exist in these pulses but discriminating them requires an order of magnitude (ten times) larger frequency difference than that reported previously, necessitating a re-evaluation of pitch models built on earlier findings. We also found that as pulse duration is decreased to less than two cycles its pitch becomes biased toward higher frequencies, consistent with predictions of an auto-correlation model of pitch extraction.

  10. Quantum Measurements, Stochastic Networks, the Uncertainty Principle, and the Not So Strange “Weak Values”

    Directory of Open Access Journals (Sweden)

    Dmitri Sokolovski

    2016-09-01

    Full Text Available Suppose we make a series of measurements on a chosen quantum system. The outcomes of the measurements form a sequence of random events, which occur in a particular order. The system, together with a meter or meters, can be seen as following the paths of a stochastic network connecting all possible outcomes. The paths are shaped from the virtual paths of the system, and the corresponding probabilities are determined by the measuring devices employed. If the measurements are highly accurate, the virtual paths become “real”, and the mean values of a quantity (a functional are directly related to the frequencies with which the paths are traveled. If the measurements are highly inaccurate, the mean (weak values are expressed in terms of the relative probabilities’ amplitudes. For pre- and post-selected systems they are bound to take arbitrary values, depending on the chosen transition. This is a direct consequence of the uncertainty principle, which forbids one from distinguishing between interfering alternatives, while leaving the interference between them intact.

  11. Sampled-data based average consensus with measurement noises:convergence analysis and uncertainty principle

    Institute of Scientific and Technical Information of China (English)

    LI Tao; ZHANG JiFeng

    2009-01-01

    In this paper,sampled-data based average-consensus control is considered for networks consisting of continuous-time first-order Integrator agents in a noisy distributed communication environment.The Impact of the sampling size and the number of network nodes on the system performances is analyzed.The control input of each agent can only use information measured at the sampling instants from its neighborhood rather than the complete continuous process,and the measurements of its neighbors'states are corrupted by random noises.By probability limit theory and the property of graph Laplacian matrix,it is shown that for a connected network,the static mean square error between the individual state and the average of the Initial states of all agents can be made arbitrarily small,provided the sampling size is sufficiently small.Furthermore,by properly choosing the consensus gains,almost sure consensus can be achieved.It is worth pointing out that an uncertainty principle of Gaussian networks is obtained,which implies that in the case of white Gausslan noises,no matter what the sampling size is,the product of the steady-state and transient performance indices is always equal to or larger than a constant depending on the noise intensity,network topology and the number of network nodes.

  12. Context, Experience, Expectation, and Action—Towards an Empirically Grounded, General Model for Analyzing Biographical Uncertainty

    Directory of Open Access Journals (Sweden)

    Herwig Reiter

    2010-01-01

    Full Text Available The article proposes a general, empirically grounded model for analyzing biographical uncertainty. The model is based on findings from a qualitative-explorative study of transforming meanings of unemployment among young people in post-Soviet Lithuania. In a first step, the particular features of the uncertainty puzzle in post-communist youth transitions are briefly discussed. A historical event like the collapse of state socialism in Europe, similar to the recent financial and economic crisis, is a generator of uncertainty par excellence: it undermines the foundations of societies and the taken-for-grantedness of related expectations. Against this background, the case of a young woman and how she responds to the novel threat of unemployment in the transition to the world of work is introduced. Her uncertainty management in the specific time perspective of certainty production is then conceptually rephrased by distinguishing three types or levels of biographical uncertainty: knowledge, outcome, and recognition uncertainty. Biographical uncertainty, it is argued, is empirically observable through the analysis of acting and projecting at the biographical level. The final part synthesizes the empirical findings and the conceptual discussion into a stratification model of biographical uncertainty as a general tool for the biographical analysis of uncertainty phenomena. URN: urn:nbn:de:0114-fqs100120

  13. [General principles of tumour biology in visceral surgery].

    Science.gov (United States)

    Emons, G; Ghadimi, M; Grade, M

    2015-02-01

    Within the last decade, there has been a tremendous progress in understanding the molecular basis of cancer. In particular, the development and the characteristic features of cancer cells are being increasingly understood. The understanding of these molecular characteristics is mandatory for the development of novel, targeted therapeutic strategies and their integration into clinical practice. In addition, tumour genetics play a critically important role for hereditary cancer syndromes, with respect to both diagnostics and clinical decision-making. The aim of this review is to highlight general principles of tumour genetics from a visceral surgeon's point of view, although a comprehensive summary of all aspects would be beyond the scope of this article due to the complexity of the topic. Georg Thieme Verlag KG Stuttgart · New York.

  14. Project management under uncertainty beyond beta: The generalized bicubic distribution

    Directory of Open Access Journals (Sweden)

    José García Pérez

    2016-01-01

    Full Text Available The beta distribution has traditionally been employed in the PERT methodology and generally used for modeling bounded continuous random variables based on expert’s judgment. The impossibility of estimating four parameters from the three values provided by the expert when the beta distribution is assumed to be the underlying distribution has been widely debated. This paper presents the generalized bicubic distribution as a good alternative to the beta distribution since, when the variance depends on the mode, the generalized bicubic distribution approximates the kurtosis of the Gaussian distribution better than the beta distribution. In addition, this distribution presents good properties in the PERT methodology in relation to moderation and conservatism criteria. Two empirical applications are presented to demonstrate the adequateness of this new distribution.

  15. The General Principles of EU Administrative Law - An in-depth analysis

    OpenAIRE

    2015-01-01

    SUMMARY: 1. What are General Principles of EU Administrative Procedural Law? — 1.1. Sources of General Principles of EU Administrative Procedural Law. — 1.2. Nature of general principles of EU administrative procedural law. — 2. Why Formulate General Principles of EU Administrative Procedural Law as Recitals of a Regulation? — 2.1. Reasons in favour of recitals as a locus for general principles. — 2.2. Structure and wording of recitals. — 3. Proposed Recitals on General Princip...

  16. Precautionary Principles: General Definitions and Specific Applications to Genetically Modified Organisms

    Science.gov (United States)

    Lofstedt, Ragnar E.; Fischhoff, Baruch; Fischhoff, Ilya R.

    2002-01-01

    Precautionary principles have been proposed as a fundamental element of sound risk management. Their advocates see them as guiding action in the face of uncertainty, encouraging the adoption of measures that reduce serious risks to health, safety, and the environment. Their opponents may reject the very idea of precautionary principles, find…

  17. Time-dependent q-deformed bi-coherent states for generalized uncertainty relations

    Science.gov (United States)

    Gouba, Laure

    2015-07-01

    We consider the time-dependent bi-coherent states that are essentially the Gazeau-Klauder coherent states for the two dimensional noncommutative harmonic oscillator. Starting from some q-deformations of the oscillator algebra for which the entire deformed Fock space can be constructed explicitly, we define the q-deformed bi-coherent states. We verify the generalized Heisenberg's uncertainty relations projected onto these states. For the initial value in time, the states are shown to satisfy a generalized version of Heisenberg's uncertainty relations. For the initial value in time and for the parameter of noncommutativity θ = 0, the inequalities are saturated for the simultaneous measurement of the position-momentum observables. When the time evolves, the uncertainty products are different from their values at the initial time and do not always respect the generalized uncertainty relations.

  18. A survey of resilience, burnout, and tolerance of uncertainty in Australian general practice registrars

    Directory of Open Access Journals (Sweden)

    Cooke Georga PE

    2013-01-01

    Full Text Available Abstract Background Burnout and intolerance of uncertainty have been linked to low job satisfaction and lower quality patient care. While resilience is related to these concepts, no study has examined these three concepts in a cohort of doctors. The objective of this study was to measure resilience, burnout, compassion satisfaction, personal meaning in patient care and intolerance of uncertainty in Australian general practice (GP registrars. Methods We conducted a paper-based cross-sectional survey of GP registrars in Australia from June to July 2010, recruited from a newsletter item or registrar education events. Survey measures included the Resilience Scale-14, a single-item scale for burnout, Professional Quality of Life (ProQOL scale, Personal Meaning in Patient Care scale, Intolerance of Uncertainty-12 scale, and Physician Response to Uncertainty scale. Results 128 GP registrars responded (response rate 90%. Fourteen percent of registrars were found to be at risk of burnout using the single-item scale for burnout, but none met the criteria for burnout using the ProQOL scale. Secondary traumatic stress, general intolerance of uncertainty, anxiety due to clinical uncertainty and reluctance to disclose uncertainty to patients were associated with being at higher risk of burnout, but sex, age, practice location, training duration, years since graduation, and reluctance to disclose uncertainty to physicians were not. Only ten percent of registrars had high resilience scores. Resilience was positively associated with compassion satisfaction and personal meaning in patient care. Resilience was negatively associated with burnout, secondary traumatic stress, inhibitory anxiety, general intolerance to uncertainty, concern about bad outcomes and reluctance to disclose uncertainty to patients. Conclusions GP registrars in this survey showed a lower level of burnout than in other recent surveys of the broader junior doctor population in both Australia

  19. Uncertainty Relations and Sparse Signal Recovery for Pairs of General Signal Sets

    CERN Document Server

    Kuppinger, Patrick; Bölcskei, Helmut

    2011-01-01

    We present an uncertainty relation for the representation of signals in two different general (possibly redundant or incomplete) signal sets. This uncertainty relation is relevant for the analysis of signals containing two distinct features each of which can be described sparsely in a suitable general signal set. Furthermore, the new uncertainty relation is shown to lead to improved sparsity thresholds for recovery of signals that are sparse in general dictionaries. Specifically, our results improve on the well-known $(1+1/d)/2$-threshold for dictionaries with coherence $d$ by up to a factor of two. Furthermore, we provide probabilistic recovery guarantees for pairs of general dictionaries that also allow us to understand which parts of a general dictionary one needs to randomize over to "weed out" the sparsity patterns that prohibit breaking the square-root bottleneck.

  20. A violation of the uncertainty principle implies a violation of the second law of thermodynamics.

    Science.gov (United States)

    Hänggi, Esther; Wehner, Stephanie

    2013-01-01

    Uncertainty relations state that there exist certain incompatible measurements, to which the outcomes cannot be simultaneously predicted. While the exact incompatibility of quantum measurements dictated by such uncertainty relations can be inferred from the mathematical formalism of quantum theory, the question remains whether there is any more fundamental reason for the uncertainty relations to have this exact form. What, if any, would be the operational consequences if we were able to go beyond any of these uncertainty relations? Here we give a strong argument that justifies uncertainty relations in quantum theory by showing that violating them implies that it is also possible to violate the second law of thermodynamics. More precisely, we show that violating the uncertainty relations in quantum mechanics leads to a thermodynamic cycle with positive net work gain, which is very unlikely to exist in nature.

  1. Gyroscope precession in special and general relativity from basic principles

    Science.gov (United States)

    Jonsson, Rickard M.

    2007-05-01

    In special relativity a gyroscope that is suspended in a torque-free manner will precess as it is moved along a curved path relative to an inertial frame S. We explain this effect, which is known as Thomas precession, by considering a real grid that moves along with the gyroscope, and that by definition is not rotating as observed from its own momentary inertial rest frame. From the basic properties of the Lorentz transformation we deduce how the form and rotation of the grid (and hence the gyroscope) will evolve relative to S. As an intermediate step we consider how the grid would appear if it were not length contracted along the direction of motion. We show that the uncontracted grid obeys a simple law of rotation. This law simplifies the analysis of spin precession compared to more traditional approaches based on Fermi transport. We also consider gyroscope precession relative to an accelerated reference frame and show that there are extra precession effects that can be explained in a way analogous to the Thomas precession. Although fully relativistically correct, the entire analysis is carried out using three-vectors. By using the equivalence principle the formalism can also be applied to static spacetimes in general relativity. As an example, we calculate the precession of a gyroscope orbiting a static black hole.

  2. Pregnancy in women with renal disease. Part I: general principles.

    Science.gov (United States)

    Vidaeff, Alex C; Yeomans, Edward R; Ramin, Susan M

    2008-08-01

    The purpose of this review is to improve the basis upon which advice on pregnancy is given to women with renal disease and to address issues of obstetric management by drawing upon the accumulated world experience. To ensure the proper rapport between the respect for patient's autonomy and the ethical principle of beneficence, the review attempts to impart up-to-date, evidence-based information on the predictable outcomes and hazards of pregnancy in women with chronic renal disease. The physiology of pregnancy from the perspective of the affected kidney will be discussed as well as the principal predictors of maternal and fetal outcomes and general recommendations of management. The available evidence supports the implication that the degree of renal function impairment is the major determinant for pregnancy outcome. In addition, the presence of hypertension further compounds the risks. On the contrary, the degree of proteinuria does not demonstrate a linear correlation with obstetric outcomes. Management and outcome of pregnancies occurring in women on dialysis and after renal transplant are also discussed. Although the outcome of pregnancies under chronic dialysis has markedly improved in the past decade, the chances of achieving a viable pregnancy are much higher after transplantation. But even in renal transplant recipients, the rate of maternal and fetal complications remains high, in addition to concerns regarding possible adverse effects of immunosuppressive drugs on the developing embryo and fetus.

  3. Generalized Huygens principle with pulsed-beam wavelets

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Thorkild [Seknion Inc., Boston, MA (United States); Kaiser, Gerald [Signals and Waves, Austin, TX (United States)], E-mail: thorkild.hansen@att.net, E-mail: kaiser@wavelets.com

    2009-11-27

    Huygens' geometric construction explaining wave motion has a well-known problem with unphysical back-propagation due to the spherical nature of the secondary wavelets. We solve this by analytically continuing the surface of integration. If the surface is a sphere S{sub R} of radius R, this is done by complexifying R to {alpha} = R + ia. The resulting complex sphere S{sub {alpha}} is shown to be equivalent to the real tangent disk bundle with base S{sub R} consisting of all disks with radius a tangent to S{sub R}. Huygens' secondary source points are thus replaced by disks, and his secondary wavelets by well-focused pulsed beams propagating outward. This solves the back-propagation problem. The generalized Huygens principle is a completeness relation for these pulsed-beam wavelets enabling a pulsed-beam representation of all radiation fields. Furthermore, this yields a natural and extremely efficient way to compute radiation fields numerically because all pulsed beams missing a given observer can be ignored with minimal error. Increasing the disk radius a sharpens the focus of the pulsed beams, which in turn raises the compression ratio of the representation.

  4. Modeling of space environment impact on nanostructured materials. General principles

    Science.gov (United States)

    Voronina, Ekaterina; Novikov, Lev

    2016-07-01

    In accordance with the resolution of ISO TC20/SC14 WG4/WG6 joint meeting, Technical Specification (TS) 'Modeling of space environment impact on nanostructured materials. General principles' which describes computer simulation methods of space environment impact on nanostructured materials is being prepared. Nanomaterials surpass traditional materials for space applications in many aspects due to their unique properties associated with nanoscale size of their constituents. This superiority in mechanical, thermal, electrical and optical properties will evidently inspire a wide range of applications in the next generation spacecraft intended for the long-term (~15-20 years) operation in near-Earth orbits and the automatic and manned interplanetary missions. Currently, ISO activity on developing standards concerning different issues of nanomaterials manufacturing and applications is high enough. Most such standards are related to production and characterization of nanostructures, however there is no ISO documents concerning nanomaterials behavior in different environmental conditions, including the space environment. The given TS deals with the peculiarities of the space environment impact on nanostructured materials (i.e. materials with structured objects which size in at least one dimension lies within 1-100 nm). The basic purpose of the document is the general description of the methodology of applying computer simulation methods which relate to different space and time scale to modeling processes occurring in nanostructured materials under the space environment impact. This document will emphasize the necessity of applying multiscale simulation approach and present the recommendations for the choice of the most appropriate methods (or a group of methods) for computer modeling of various processes that can occur in nanostructured materials under the influence of different space environment components. In addition, TS includes the description of possible

  5. 75 FR 10205 - Codex Alimentarius Commission: Meeting of the Codex Committee on General Principles

    Science.gov (United States)

    2010-03-05

    ...-0002] Codex Alimentarius Commission: Meeting of the Codex Committee on General Principles AGENCY... Committee on General Principles (CCGP) of the Codex Alimentarius Commission (Codex), which will be held in... establishment of principles which define the purpose and scope of the Codex and the nature of Codex...

  6. Quantification of uncertainty in first-principles predicted mechanical properties of solids: Application to solid ion conductors

    CERN Document Server

    Ahmad, Zeeshan

    2016-01-01

    Computationally-guided material discovery is being increasingly employed using a descriptor-based screening through the calculation of a few properties of interest. A precise understanding of the uncertainty associated with first principles density functional theory calculated property values is important for the success of descriptor-based screening. Bayesian error estimation approach has been built-in to several recently developed exchange-correlation functionals, which allows an estimate of the uncertainty associated with properties related to the ground state energy, for e.g. adsorption energies. Here, we propose a robust and computationally efficient method for quantifying uncertainty in mechanical properties, which depends on the derivatives of the energy. The procedure involves calculating the energy around the equilibrium cell volume with different strains and fitting the obtained energies to the corresponding energy-strain relationship. At each strain, we use instead of a single energy, an ensemble o...

  7. 77 FR 7125 - Codex Alimentarius Commission: Meeting of the Codex Committee on General Principles

    Science.gov (United States)

    2012-02-10

    ... General Principles AGENCY: Office of the Under Secretary for Food Safety, USDA. ACTION: Notice of public... Principles (CCGP) of the Codex Alimentarius Commission (Codex), which will be held in Paris, France, April...

  8. The Passive Personality Principle and the General Principle of Ne Bis In Idem

    Directory of Open Access Journals (Sweden)

    Regula Echle

    2013-09-01

    Full Text Available This paper demonstrates the interest which a victim of a transnational crime may have in moving proceedings across the border. It also considers the means with which this can be done. By virtue of the passive personality principle, a Swiss victim can move proceedings back to Switzerland for a civil claim which would not otherwise have a forum in Switzerland. Further, it is suggested that there is a conflict between the passive personality principle and the prohibition of double jeopardy. This paper argues for a restrictive interpretation of the passive personality principle  and a broadening of the principle of ne bis in idem.

  9. Training the Endoscopy Trainer: From General Principles to Specific Concepts

    Directory of Open Access Journals (Sweden)

    Sylvain Coderre

    2010-01-01

    Full Text Available Endoscopy instruction has progressed a great deal in recent years, evolving from the age-old dictum of ‘see one, do one’ to the current skillful application of sound educational principles. Some of these educational principles are generic and applicable to the teaching of any content at all levels, while others are quite specific to technical skills training. The present review summarizes these important principles under the following headings: creating a learner-centred curriculum; delivering an achievable learning task; and moving from theory to practice. The present article challenges national gastroenterology organizations to embrace these concepts in structured, outcome-based educational programs.

  10. Uncertainty analysis of statistical downscaling models using general circulation model over an international wetland

    Science.gov (United States)

    Etemadi, H.; Samadi, S.; Sharifikia, M.

    2014-06-01

    Regression-based statistical downscaling model (SDSM) is an appropriate method which broadly uses to resolve the coarse spatial resolution of general circulation models (GCMs). Nevertheless, the assessment of uncertainty propagation linked with climatic variables is essential to any climate change impact study. This study presents a procedure to characterize uncertainty analysis of two GCM models link with Long Ashton Research Station Weather Generator (LARS-WG) and SDSM in one of the most vulnerable international wetland, namely "Shadegan" in an arid region of Southwest Iran. In the case of daily temperature, uncertainty is estimated by comparing monthly mean and variance of downscaled and observed daily data at a 95 % confidence level. Uncertainties were then evaluated from comparing monthly mean dry and wet spell lengths and their 95 % CI in daily precipitation downscaling using 1987-2005 interval. The uncertainty results indicated that the LARS-WG is the most proficient model at reproducing various statistical characteristics of observed data at a 95 % uncertainty bounds while the SDSM model is the least capable in this respect. The results indicated a sequences uncertainty analysis at three different climate stations and produce significantly different climate change responses at 95 % CI. Finally the range of plausible climate change projections suggested a need for the decision makers to augment their long-term wetland management plans to reduce its vulnerability to climate change impacts.

  11. Time-dependent q-deformed coherent states for generalized uncertainty relations

    CERN Document Server

    Dey, Sanjib; Gouba, Laure; Castro, Paulo G

    2012-01-01

    We investigate properties of generalized time-dependent q-deformed coherent states for a noncommutative harmonic oscillator. The states are shown to satisfy a generalized version of Heisenberg's uncertainty relations. For the initial value in time the states are demonstrated to be squeezed, i.e. the inequalities are saturated, whereas when time evolves the uncertainty product oscillates away from this value albeit still respecting the relations. For the canonical variables on a noncommutative space we verify explicitly that Ehrenfest's theorem hold at all times. We conjecture that the model exhibits revival times to infinite order. Explicit sample computations for the fractional revival times and superrevival times are presented.

  12. 76 FR 69333 - Derivatives Clearing Organization General Provisions and Core Principles

    Science.gov (United States)

    2011-11-08

    ... Clearing Organization General Provisions and Core Principles; Final Rule #0;#0;Federal Register / Vol. 76... and Core Principles AGENCY: Commodity Futures Trading Commission. ACTION: Final rule. SUMMARY: The... regulations establish the regulatory standards for compliance with DCO Core Principles A (Compliance),...

  13. General Rule for Constraint from the Action Principle

    CERN Document Server

    Steiner, Roee

    2015-01-01

    We construct models where initial and boundary conditions can be found from the fundamental rules of physics, without the need to assume them, they will be derived from the action principle. Those constraints are established from physical view point, and it is not in the form of Lagrange multipliers. We show some examples from the past and some new examples which can be useful, where constraint can be obtained from the action principle. Those actions represent physical models. We show that it is possible to use our rule to get those constraints directly.

  14. When the uncertainty principle goes up to 11 or how to explain quantum physics with heavy metal

    CERN Document Server

    Moriarty, Philip

    2018-01-01

    There are deep and fascinating links between heavy metal and quantum physics. No, there are. Really. While teaching at the University of Nottingham, physicist Philip Moriarty noticed something odd--a surprising number of his students were heavily into metal music. Colleagues, too: a Venn diagram of physicists and metal fans would show a shocking amount of overlap. What's more, it turns out that heavy metal music is uniquely well-suited to explaining quantum principles. In When the Uncertainty Principle Goes Up to Eleven, Moriarty explains the mysteries of the universe's inner workings via drum beats and feedback: You'll discover how the Heisenberg uncertainty principle comes into play with every chugging guitar riff, what wave interference has to do with Iron Maiden, and why metalheads in mosh pits behave just like molecules in a gas. If you're a metal fan trying to grasp the complexities of quantum physics, a quantum physicist baffled by heavy metal, or just someone who'd like to know how the fundamental sci...

  15. Quantifying uncertainties in first-principles alloy thermodynamics using cluster expansions

    Science.gov (United States)

    Aldegunde, Manuel; Zabaras, Nicholas; Kristensen, Jesper

    2016-10-01

    The cluster expansion is a popular surrogate model for alloy modeling to avoid costly quantum mechanical simulations. As its practical implementations require approximations, its use trades efficiency for accuracy. Furthermore, the coefficients of the model need to be determined from some known data set (training set). These two sources of error, if not quantified, decrease the confidence we can put in the results obtained from the surrogate model. This paper presents a framework for the determination of the cluster expansion coefficients using a Bayesian approach, which allows for the quantification of uncertainties in the predictions. In particular, a relevance vector machine is used to automatically select the most relevant terms of the model while retaining an analytical expression for the predictive distribution. This methodology is applied to two binary alloys, SiGe and MgLi, including the temperature dependence in their effective cluster interactions. The resulting cluster expansions are used to calculate the uncertainty in several thermodynamic quantities: ground state line, including the uncertainty in which structures are thermodynamically stable at 0 K, phase diagrams and phase transitions. The uncertainty in the ground state line is found to be of the order of meV/atom, showing that the cluster expansion is reliable to ab initio level accuracy even with limited data. We found that the uncertainty in the predicted phase transition temperature increases when including the temperature dependence of the effective cluster interactions. Also, the use of the bond stiffness versus bond length approximation to calculate temperature dependent properties from a reduced set of alloy configurations showed similar uncertainty to the approach where all training configurations are considered but at a much reduced computational cost.

  16. 14 CFR Sec. 2-1 - Generally accepted accounting principles.

    Science.gov (United States)

    2010-01-01

    ... (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS UNIFORM SYSTEM OF ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED... Standards Board, newly issued GAAP pronouncements until and unless the Director, Office of Airline... principles may be addressed to Director, Office of Airline Information, K-25, U.S. Department of...

  17. Evaluation of Uncertainty on the Stages of Business Cycle: Implementation of Quantum Principles

    Directory of Open Access Journals (Sweden)

    Anna Svirina

    2014-08-01

    Full Text Available The goal of the research is to propose implementation of quantum principles for evaluation of economic development on stages of business cycle, define the difference between traditional (deterministic and quantum approaches and to provide quantitative analysis based argumentation for use of quantum economic principles in evaluation of internal and external factors on the stages of business cycle. The object of the study is possibility and reliability of quantum economic principles implementation to evaluate economic system performance. The authors analyze existing approaches towards implementation of deterministic, probabilistic and quantum models for estimating internal and external factors on stages of business cycle, define the benchmark for shift from traditional economy models and principles to quantum principles, describe the stages of business cycle from the quantum economics point of view and provide quantitative analysis of deterministic and quantum models quality on the level of enterprise to prove efficiency and reliability of quantum principles based approach. Calculations and data processing were carried out using Microsoft Excel and SSPS Statistics software.

  18. Pauli effects in uncertainty relations

    CERN Document Server

    Toranzo, I V; Esquivel, R O; Dehesa, J S

    2014-01-01

    In this letter we analyze the effect of the spin dimensionality of a physical system in two mathematical formulations of the uncertainty principle: a generalized Heisenberg uncertainty relation valid for all antisymmetric N-fermion wavefunctions, and the Fisher-information- based uncertainty relation valid for all antisymmetric N-fermion wavefunctions of central potentials. The accuracy of these spin-modified uncertainty relations is examined for all atoms from Hydrogen to Lawrencium in a self-consistent framework.

  19. Principle of reciprocity solves the most important problems in bioimpedance and in general in bioelectromagnetism

    Science.gov (United States)

    Malmivuo, Jaakko

    2010-04-01

    Though the principle of reciprocity was invented by Hermann von Helmholtz already over 150 years ago, and though it is a very powerful tool in solving various important problems in bioelectromagnetism, it is not generally used. In impedance tomography the measurement sensitivity distribution has generally been misunderstood. This can be easily demonstrated with the principle of reciprocity. Some other applications of the principle of reciprocity are also discussed.

  20. Polydimensional Relativity, a Classical Generalization of the Automorphism Invariance Principle

    CERN Document Server

    Pezzaglia, W M

    1996-01-01

    The automorphism invariant theory of Crawford[J. Math. Phys. 35, 2701 (1994)] has show great promise, however its application is limited by the paradigm to the domain of spin space. Our conjecture is that there is a broader principle at work which applies even to classical physics. Specifically, the laws of physics should be invariant under polydimensional transformations which reshuffle the geometry (e.g. exchanges vectors for trivectors) but preserves the algebra. To complete the symmetry, it follows that the laws of physics must be themselves polydimensional, having scalar, vector, bivector etc. parts in one multivector equation. Clifford algebra is the natural language in which to formulate this principle, as vectors/tensors were for relativity. This allows for a new treatment of the relativistic spinning particle (the Papapetrou equations) which is problematic in standard theory. In curved space the rank of the geometry will change under parallel transport, yielding a new basis for Weyl's connection and ...

  1. General principles in the interpretation of quantum mechanics

    CERN Document Server

    Blood, Casey

    2009-01-01

    The three major theoretical principles of quantum mechanics relevant to its interpretation are: (T1), linearity; (T2), invariance under certain groups; and (T3) the orthogonality and isolation of the different branches of the state vector. These three imply the particle-like properties of mass, energy, momentum, spin, charge, and locality are actually properties of the state vector; and this in turn implies there is no evidence for the existence of particles. Experimentally there is no evidence for collapse (E1) and theoretically linearity prohibits collapse. One also has the experimentally verified probability law (E2), which is found to rule out the many-worlds interpretation. The failure of these three major interpretation, particles, collapse, and many-worlds, apparently implies an acceptable interpretation must be based on perception. Rather than being a separate principle, probability follows in this interpretation from a weak assumption on perception plus the combinatorics when an experiment is run man...

  2. Public Governance Principles in General Education School Management of Latvia

    OpenAIRE

    Rečs, Normunds

    2015-01-01

    In contemporary world the effect of globalisation and information technologies cause transformational processes of states` public management that promote the application of new managament approaches and principles in public institution management.The changes in the public managament have effected and still effects processes of management also in education. The increase of school autonomy, a stronger focus on the process of education and its results created the need to expand the application o...

  3. 20 CFR 604.3 - Able and available requirement-general principles.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Able and available requirement-general principles. 604.3 Section 604.3 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF...—general principles. (a) A State may pay UC only to an individual who is able to work and available...

  4. Communicating and dealing with uncertainty in general practice: the association with neuroticism.

    Directory of Open Access Journals (Sweden)

    Antonius Schneider

    Full Text Available Diagnostic reasoning in primary care setting where presented problems and patients are mostly unselected appears as a complex process. The aim was to develop a questionnaire to describe how general practitioners (GPs deal with uncertainty to gain more insight into the decisional process. The association of personality traits with medical decision making was investigated additionally.Raw items were identified by literature research and focus group. Items were improved by interviewing ten GPs with thinking-aloud-method. A personal case vignette related to a complex and uncertainty situation was introduced. The final questionnaire was administered to 228 GPs in Germany. Factorial validity was calculated with explorative and confirmatory factor analysis. The results of the Communicating and Dealing with Uncertainty (CoDU-questionnaire were compared with the scales of the 'Physician Reaction to Uncertainty' (PRU questionnaire and with the personality traits which were determined with the Big Five Inventory (BFI-K.The items could be assigned to four scales with varying internal consistency, namely 'communicating uncertainty' (Cronbach alpha 0.79, 'diagnostic action' (0.60, 'intuition' (0.39 and 'extended social anamnesis' (0.69. Neuroticism was positively associated with all PRU scales 'anxiety due to uncertainty' (Pearson correlation 0.487, 'concerns about bad outcomes' (0.488, 'reluctance to disclose uncertainty to patients' (0.287, 'reluctance to disclose mistakes to physicians' (0.212 and negatively associated with the CoDU scale 'communicating uncertainty' (-0.242 (p<0.01 for all. 'Extraversion' (0.146; p<0.05, 'agreeableness' (0.145, p<0.05, 'conscientiousness' (0.168, p<0.05 and 'openness to experience' (0.186, p<0.01 were significantly positively associated with 'communicating uncertainty'. 'Extraversion' (0.162, 'consciousness' (0.158 and 'openness to experience' (0.155 were associated with 'extended social anamnesis' (p<0.05.The

  5. What Is Going On Around Here? Intolerance of Uncertainty Predicts Threat Generalization

    Science.gov (United States)

    Morriss, Jayne; Macdonald, Birthe; van Reekum, Carien M.

    2016-01-01

    Attending to stimuli that share perceptual similarity to learned threats is an adaptive strategy. However, prolonged threat generalization to cues signalling safety is considered a core feature of pathological anxiety. One potential factor that may sustain over-generalization is sensitivity to future threat uncertainty. To assess the extent to which Intolerance of Uncertainty (IU) predicts threat generalization, we recorded skin conductance in 54 healthy participants during an associative learning paradigm, where threat and safety cues varied in perceptual similarity. Lower IU was associated with stronger discrimination between threat and safety cues during acquisition and extinction. Higher IU, however, was associated with generalized responding to threat and safety cues during acquisition, and delayed discrimination between threat and safety cues during extinction. These results were specific to IU, over and above other measures of anxious disposition. These findings highlight: (1) a critical role of uncertainty-based mechanisms in threat generalization, and (2) IU as a potential risk factor for anxiety disorder development. PMID:27167217

  6. Hydrologic evaluation of a Generalized Statistical Uncertainty Model for Satellite Precipitation Products

    Science.gov (United States)

    Sarachi, S.; Hsu, K. L.; Sorooshian, S.

    2014-12-01

    Development of satellite based precipitation retrieval algorithms and using them in hydroclimatic studies have been of great interest to hydrologists. It is important to understand the uncertainty associated with precipitation products and how they further contribute to the variability in stream flow simulation. In this study a mixture model of Generalized Normal Distribution and Gamma distribution (GND-G) is used to model the joint probability distribution of satellite-based (PERSIANN) and stage IV radar rainfall. The study area for constructing the uncertainty model covers a 15°×15°box of 0.25°×0.25° cells over the eastern United States for summer 2004 to 2009. Cells are aggregated in space and time to obtain data with different resolutions for the construction of the model's parameter space. This uncertainty model is evaluated using data from National Weather Service (NWS) Distributed Hydrologic Model Intercomparison Project - Phase 2 (DMIP 2) basin over Illinois River basin south of Siloam, OK. This data covers the time period of 2006 to 2008.The uncertainty range of precipitation is estimated. The impact of precipitation uncertainty to the stream flow estimation is demonstrated by Monte Carlo simulation of precipitation forcing in the Sacramento Soil Moisture Accounting (SAC-SMA) model. The results show that using precipitation along with its uncertainty distribution as forcing to SAC-SMA make it possible to have an estimation of the uncertainty associated with the stream flow simulation ( in this case study %90 confidence interval is used). The mean of this stream flow confidence interval is compared to the reference stream flow for evaluation of the model and the results show that this method helps to better estimate the variability of the stream flow simulation along with its statistics e.g. percent bias and root mean squared error.

  7. P-Distances, Q-Distances and a Generalized Ekeland's Variational Principle in Uniform Spaces

    Institute of Scientific and Technical Information of China (English)

    Jing Hui QIU; Fei HE

    2012-01-01

    In this paper,we attempt to give a unified approach to the existing several versions of Ekeland's variational principle. In the framework of uniform spaces,we introduce p-distances and more generally,q-distances.Then we introduce a new type of completeness for uniform spaces,i.e.,sequential completeness with respect to a q-distance (particularly,a p-distance),which is a very extensive concept of completeness.By using q-distances and the new type of completeness,we prove a generalized Takahashi's nonconvex minimization theorem,a generalized Ekeland's variational principle and a generalized Caristi's fixed point theorem.Moreover,we show that the above three theorems are equivalent to each other.From the generalized Ekeland's variational principle,we deduce a number of particular versions of Ekeland's principle,which include many known versions of the principle and their improvements.

  8. A generalized Gaussian distribution based uncertainty sampling approach and its application in actual evapotranspiration assimilation

    Science.gov (United States)

    Chen, Shaohui

    2017-09-01

    It is extremely important for ensemble based actual evapotranspiration assimilation (AETA) to accurately sample the uncertainties. Traditionally, the perturbing ensemble is sampled from one prescribed multivariate normal distribution (MND). However, MND is under-represented in capturing the non-MND uncertainties caused by the nonlinear integration of land surface models while these hypernormal uncertainties can be better characterized by generalized Gaussian distribution (GGD) which takes MND as the special case. In this paper, one novel GGD based uncertainty sampling approach is outlined to create one hypernormal ensemble for the purpose of better improving land surface models with observation. With this sampling method, various assimilation methods can be tested in a common equation form. Experimental results on Noah LSM show that the outlined method is more powerful than MND in reducing the misfit between model forecasts and observations in terms of actual evapotranspiration, skin temperature, and soil moisture/ temperature in the 1st layer, and also indicate that the energy and water balances constrain ensemble based assimilation to simultaneously optimize all state and diagnostic variables. Overall evaluation expounds that the outlined approach is a better alternative than the traditional MND method for seizing assimilation uncertainties, and it can serve as a useful tool for optimizing hydrological models with data assimilation.

  9. Development of a General Package for Resolution of Uncertainty-Related Issues in Reservoir Engineering

    Directory of Open Access Journals (Sweden)

    Liang Xue

    2017-02-01

    Full Text Available Reservoir simulations always involve a large number of parameters to characterize the properties of formation and fluid, many of which are subject to uncertainties owing to spatial heterogeneity and insufficient measurements. To provide solutions to uncertainty-related issues in reservoir simulations, a general package called GenPack has been developed. GenPack includes three main functions required for full stochastic analysis in petroleum engineering, generation of random parameter fields, predictive uncertainty quantifications and automatic history matching. GenPack, which was developed in a modularized manner, is a non-intrusive package which can be integrated with any existing commercial simulator in petroleum engineering to facilitate its application. Computational efficiency can be improved both theoretically by introducing a surrogate model-based probabilistic collocation method, and technically by using parallel computing. A series of synthetic cases are designed to demonstrate the capability of GenPack. The test results show that the random parameter field can be flexibly generated in a customized manner for petroleum engineering applications. The predictive uncertainty can be reasonably quantified and the computational efficiency is significantly improved. The ensemble Kalman filter (EnKF-based automatic history matching method can improve predictive accuracy and reduce the corresponding predictive uncertainty by accounting for observations.

  10. General proof of entropy principle in Einstein-Maxwell theory

    CERN Document Server

    Fang, Xiongjun

    2015-01-01

    We consider a static self-gravitating charged perfect fluid system in the Einstein-Maxwell theory. Assume Maxwell's equation and the Einstein constraint equation are satisfied, and the temperature of the fluid obeys Tolman's law. Then we prove that the total entropy of the fluid achieves an extremum implies other components of Einstein's equation for any variations of metric and electrical potential with fixed boundary values. Conversely, if Einstein's equation and Maxwell's equations hold, the total entropy achieves an extremum. Our work suggests that the maximum entropy principle is consistent with Einstein's equation when electric field is taken into account.

  11. Uncertainties of the 50-year wind from short time series using generalized extreme value distribution and generalized Pareto distribution

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Mann, Jakob; Rathmann, Ole

    2015-01-01

    as a guideline for applying GEVD and GPD to wind time series of limited length. The data analysis shows that, with reasonable choice of relevant parameters, GEVD and GPD give consistent estimates of the return winds. For GEVD, the base period should be chosen in accordance with the occurrence of the extreme wind......This study examines the various sources to the uncertainties in the application of two widely used extreme value distribution functions, the generalized extreme value distribution (GEVD) and the generalized Pareto distribution (GPD). The study is done through the analysis of measurements from...

  12. Trans-Planckian Effects in Inflationary Cosmology and the Modified Uncertainty Principle

    DEFF Research Database (Denmark)

    F. Hassan, S.; Sloth, Martin Snoager

    2002-01-01

    -time. This leads to a non-linear time-dependent dispersion relation that encodes the effects of Planck scale physics in the inflationary epoch. Unruh type dispersion relations naturally emerge in this approach, while unbounded ones are excluded by the minimum length principle. We also find red-shift induced...

  13. Phase-space noncommutative extension of the Robertson-Schrödinger formulation of Ozawa's uncertainty principle

    Science.gov (United States)

    Bastos, Catarina; Bernardini, Alex E.; Bertolami, Orfeu; Dias, Nuno Costa; Prata, João Nuno

    2015-03-01

    We revisit Ozawa's uncertainty principle (OUP) in the framework of noncommutative (NC) quantum mechanics. We derive a matrix version of OUP accommodating any NC structure in the phase space, and compute NC corrections to lowest order for two measurement interactions, namely the backaction evading quadrature amplifier and noiseless quadrature transducers. These NC corrections alter the nature of the measurement interaction, as a noiseless interaction may acquire noise, and an interaction of independent intervention may become dependent on the object system. However the most striking result is that noncommutativity may lead to a violation of the OUP itself. The NC corrections for the backaction evading quadrature amplifier reveal a new term which may potentially be amplified in such a way that the violation of the OUP becomes experimentally testable. On the other hand, the NC corrections to the noiseless quadrature transducer shows an incompatibility of this model with NC quantum mechanics. We discuss the implications of this incompatibility for NC quantum mechanics and for Ozawa's uncertainty principle.

  14. Wavelets-Computational Aspects of Sterian Realistic Approach to Uncertainty Principle in High Energy Physics: A Transient Approach

    Directory of Open Access Journals (Sweden)

    Cristian Toma

    2013-01-01

    Full Text Available This study presents wavelets-computational aspects of Sterian-realistic approach to uncertainty principle in high energy physics. According to this approach, one cannot make a device for the simultaneous measuring of the canonical conjugate variables in reciprocal Fourier spaces. However, such aspects regarding the use of conjugate Fourier spaces can be also noticed in quantum field theory, where the position representation of a quantum wave is replaced by momentum representation before computing the interaction in a certain point of space, at a certain moment of time. For this reason, certain properties regarding the switch from one representation to another in these conjugate Fourier spaces should be established. It is shown that the best results can be obtained using wavelets aspects and support macroscopic functions for computing (i wave-train nonlinear relativistic transformation, (ii reflection/refraction with a constant shift, (iii diffraction considered as interaction with a null phase shift without annihilation of associated wave, (iv deflection by external electromagnetic fields without phase loss, and (v annihilation of associated wave-train through fast and spatially extended phenomena according to uncertainty principle.

  15. General principles for integrating geoheritage conservation in protected area management

    Science.gov (United States)

    Gordon, John E.; Crofts, Roger

    2015-04-01

    Development of more integrated approaches to the management of protected areas requires not only the protection of geosites, but also the effective application of geoconservation principles that apply more widely to the sustainable management of natural systems. Key guiding principles include: working with natural processes; managing natural systems and processes in a spatially integrated manner; accepting the inevitability of natural change; considering the responses of geomorphological processes to the effects of global climate change; recognising the sensitivity of natural systems and managing them within the limits of their capacity to absorb change; basing conservation management of active systems on a sound understanding of the underlying physical processes; making provision for managing visitors at sensitive sites; and acknowledging the interdependency of geodiversity and biodiversity management. As well as recognising the value of geoheritage in its own right, a more integrated approach to conservation across the full range of IUCN Protected Area Management Categories would benefit both biodiversity and geodiversity, through application of the concept of 'conserving nature's stage' and adopting an ecosystem approach.

  16. GENERALIZED VARIATIONAL PRINCIPLES OF THE VISCOELASTIC BODY WITH VOIDS AND THEIR APPLICATIONS

    Institute of Scientific and Technical Information of China (English)

    盛东发; 程昌钧; 扶名福

    2004-01-01

    From the Boltzmann's constitutive law of viscoelastic materials and the linear theory of elastic materials with voids, a constitutive model of generalized force fields for viscoelastic solids with voids was given. By using the variational integral method, the convolution-type functional was given and the corresponding generalized variational principles and potential energy principle of viscoelastic solids with voids were presented. It can be shown that the variational principles correspond to the differential equations and the initial and boundary conditions of viscoelastic body with voids. As an application, a generalized variational principle of viscoelastic Timoshenko beams with damage was obtained which corresponds to the differential equations of generalized motion and the initial and boundary conditions of beams. The variational principles provide a way for solving problems of viscoelastic solids with voids.

  17. Robust sliding mode control of general time-varying delay stochastic systems with structural uncertainties

    Institute of Scientific and Technical Information of China (English)

    Sheng-Guo WANG; Libin BAI; Mingzhi CHEN

    2014-01-01

    This paper presents a new robust sliding mode control (SMC) method with well-developed theoretical proof for general uncertain time-varying delay stochastic systems with structural uncertainties and the Brownian noise (Wiener process). The key features of the proposed method are to apply singular value decomposition (SVD) to all structural uncertainties and to introduce adjustable parameters for control design along with the SMC method. It leads to a less-conservative condition for robust stability and a new robust controller for the general uncertain stochastic systems via linear matrix inequality (LMI) forms. The system states are able to reach the SMC switching surface as guaranteed in probability 1. Furthermore, it is theoretically proved that the proposed method with the SVD and adjustable parameters is less conservatism than the method without the SVD. The paper is mainly to provide all strict theoretical proofs for the method and results.

  18. On completeness of coherent states in noncommutative spaces with generalised uncertainty principle

    CERN Document Server

    Dey, Sanjib

    2016-01-01

    Coherent states are required to form a complete set of vectors in the Hilbert space by providing the resolution of identity. We study the completeness of coherent states for two different models in a noncommutative space associated with the generalised uncertainty relation by finding the resolution of unity with a positive definite weight function. The weight function, which is sometimes known as the Borel measure, is obtained through explicit analytic solutions of the Stieltjes and Hausdorff moment problem with the help of the standard techniques of inverse Mellin transform.

  19. Uncertainty Quantification of Composite Laminate Damage with the Generalized Information Theory

    Energy Technology Data Exchange (ETDEWEB)

    J. Lucero; F. Hemez; T. Ross; K.Kline; J.Hundhausen; T. Tippetts

    2006-05-01

    This work presents a survey of five theories to assess the uncertainty of projectile impact induced damage on multi-layered carbon-epoxy composite plates. Because the types of uncertainty dealt with in this application are multiple (variability, ambiguity, and conflict) and because the data sets collected are sparse, characterizing the amount of delamination damage with probability theory alone is possible but incomplete. This motivates the exploration of methods contained within a broad Generalized Information Theory (GIT) that rely on less restrictive assumptions than probability theory. Probability, fuzzy sets, possibility, and imprecise probability (probability boxes (p-boxes) and Dempster-Shafer) are used to assess the uncertainty in composite plate damage. Furthermore, this work highlights the usefulness of each theory. The purpose of the study is not to compare directly the different GIT methods but to show that they can be deployed on a practical application and to compare the assumptions upon which these theories are based. The data sets consist of experimental measurements and finite element predictions of the amount of delamination and fiber splitting damage as multilayered composite plates are impacted by a projectile at various velocities. The physical experiments consist of using a gas gun to impact suspended plates with a projectile accelerated to prescribed velocities, then, taking ultrasound images of the resulting delamination. The nonlinear, multiple length-scale numerical simulations couple local crack propagation implemented through cohesive zone modeling to global stress-displacement finite element analysis. The assessment of damage uncertainty is performed in three steps by, first, considering the test data only; then, considering the simulation data only; finally, performing an assessment of total uncertainty where test and simulation data sets are combined. This study leads to practical recommendations for reducing the uncertainty and

  20. Bounds for reference-frame independent protocols in quantum cryptography using generalized uncertainty relations

    CERN Document Server

    Le, Thinh Phuc; Scarani, Valerio

    2011-01-01

    We define a family of reference-frame-independent quantum cryptography protocols for arbitrary dimensional signals. The generalized entropic uncertainty relations [M. Tomamichel and R. Renner, Phys. Rev. Lett. 106, 110506 (2011)] are used for the first time to derive security bounds for protocols which use more than two measurements and combine the statistics in a non-linear parameter. This shows the power and versatility of this technique compared to the heavier, though usually tighter, conventional techniques.

  1. Hamilton-Jacobi Many-Worlds Theory and the Heisenberg Uncertainty Principle

    CERN Document Server

    Tipler, Frank J

    2010-01-01

    I show that the classical Hamilton-Jacobi (H-J) equation can be used as a technique to study quantum mechanical problems. I first show that the the Schr\\"odinger equation is just the classical H-J equation, constrained by a condition that forces the solutions of the H-J equation to be everywhere $C^2$. That is, quantum mechanics is just classical mechanics constrained to ensure that ``God does not play dice with the universe.'' I show that this condition, which imposes global determinism, strongly suggests that $\\psi^*\\psi$ measures the density of universes in a multiverse. I show that this interpretation implies the Born Interpretation, and that the function space for $\\psi$ is larger than a Hilbert space, with plane waves automatically included. Finally, I use H-J theory to derive the momentum-position uncertainty relation, thus proving that in quantum mechanics, uncertainty arises from the interference of the other universes of the multiverse, not from some intrinsic indeterminism in nature.

  2. Physical anthropology: the search for general processes and principles.

    Science.gov (United States)

    Lasker, G W

    1970-02-01

    Physical anthropology consists of two interdependent types of study: (1) the biological history of man and (2) general biological processes in man (such as mechanisms of evolution and growth). Popular interest may focus on the former, the fascinating story of the origin of man and of specific people, but the latter affords physical anthropology potential practical value in respect to medicine, dentistry, public health, and population policy. The study of general processes is the study of human beings in particular situations, not for what we can learn about these particular populations but for the sake of generalization about mankind anywhere in comparable situations. This is, of course, the purpose of experimental science in general, but in anthropology the method is usually comparative. Long ago the study of the growth of the two sexes and of children in different countries was started on a comparative basis as was the study of the so-called secular change in adult stature. By 1911 Franz Boas had compared the changes in stature and head form of children of several different immigrant groups in the United States. There have since been comparative studies of the amount and distribution of body fat (but not yet adequate comparative measurements of the relation of tissue components to diet and to diseases). Demographic patterns, inbreeding, outbreeding, and their effects are other general problems. The Human Adaptability Project of the International Biological Program promises studies of human response to heat, cold, altitude, and other conditions on a wide international basis. If supported, these could turn physical anthropology's search in a useful direction. The functional biology of people of even out-of-the-way communities will be compared with each other. These studies can yield general statements concerning human response to types of ecological situation including such sociocultural conditions as those of hunting-gathering tribes and urban slums.

  3. STUDY OF THE EQUIVALENT THEOREM OF GENERALIZED VARIATIONAL PRINCIPLES IN ELASTICITY

    Institute of Scientific and Technical Information of China (English)

    张国清; 余建星

    2004-01-01

    The relations of all generalized variational principles in elasticity are studied by employing the invariance theorem of field theory. The infinitesimal scale transformation in field theory was employed to investigate the equivalent theorem. Among the results found particularly interesting are those related to that all generalized variational principles in elasticity are equal to each other. Also studied result is that only two variables are independent in the functional and the stress-strain relation is the variational constraint condition for all generalized variational principles in elasticity. This work has proven again the conclusion of Prof. Chien Wei-zang.

  4. A Generalized Fuzzy Integer Programming Approach for Environmental Management under Uncertainty

    Directory of Open Access Journals (Sweden)

    Y. R. Fan

    2014-01-01

    Full Text Available In this study, a generalized fuzzy integer programming (GFIP method is developed for planning waste allocation and facility expansion under uncertainty. The developed method can (i deal with uncertainties expressed as fuzzy sets with known membership functions regardless of the shapes (linear or nonlinear of these membership functions, (ii allow uncertainties to be directly communicated into the optimization process and the resulting solutions, and (iii reflect dynamics in terms of waste-flow allocation and facility-capacity expansion. A stepwise interactive algorithm (SIA is proposed to solve the GFIP problem and generate solutions expressed as fuzzy sets. The procedures of the SIA method include (i discretizing the membership function grade of fuzzy parameters into a set of α-cut levels; (ii converting the GFIP problem into an inexact mixed-integer linear programming (IMILP problem under each α-cut level; (iii solving the IMILP problem through an interactive algorithm; and (iv approximating the membership function for decision variables through statistical regression methods. The developed GFIP method is applied to a municipal solid waste (MSW management problem to facilitate decision making on waste flow allocation and waste-treatment facilities expansion. The results, which are expressed as discrete or continuous fuzzy sets, can help identify desired alternatives for managing MSW under uncertainty.

  5. How to manage uncertainty: transgenic products and the debate over the principle of substantial equivalence

    Directory of Open Access Journals (Sweden)

    Jósean Larrión Cartujo

    2008-10-01

    Full Text Available This article analyses the various postures that contemporary societies adopt when faced with the complex and the unknown. In particular, I examine why the risks associated with new transgenic crops may prompt, on the one hand, inaction, complacency and conformism or, on the other hand, activism, suspicion and disquiet. I argue that that the principal problem in the management of scientific uncertainty involves a cognitive and epistemological question about what we know and what we don't know, as well as an ethical and normative question about what we do and what we ought to do, about both the known and the unknown. In conclusion, I explore the essential tension between the dominant social position in favour of complete freedom to investigate, produce and commercialise, versus the emergent alternative social position which advocates control, security and social and environmental responsibility.   

  6. How to manage uncertainty: transgenic products and the debate over the principle of substantial equivalence

    Directory of Open Access Journals (Sweden)

    Larrión Cartujo, Jósean

    2008-11-01

    Full Text Available This article analyses the various postures that contemporary societies adopt when faced with the complex and the unknown. In particular, I examine why the risks associated with new transgenic crops may prompt, on the one hand, inaction, complacency and conformism or, on the other hand, activism, suspicion and disquiet. I argue that that the principal problem in the management of scientific uncertainty involves a cognitive and epistemological question about what we know and what we don't know, as well as an ethical and normative question about what we do and what we ought to do, about both the known and the unknown. In conclusion, I explore the essential tension between the dominant social position in favour of complete freedom to investigate, produce and commercialise, versus the emergent alternative social position which advocates control, security and social and environmental responsibility.

  7. Generalized Tellegen Principle and Physical Correctness of System Representations

    Directory of Open Access Journals (Sweden)

    Vaclav Cerny

    2006-06-01

    Full Text Available The paper deals with a new problem of physical correctness detection in the area of strictly causal system representations. The proposed approach to the problem solution is based on generalization of Tellegen's theorem well known from electrical engineering. Consequently, mathematically as well as physically correct results are obtained. Some known and often used system representation structures are discussed from the developed point of view as an addition.

  8. 12 CFR 621.3 - Application of generally accepted accounting principles.

    Science.gov (United States)

    2010-01-01

    ... principles. 621.3 Section 621.3 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM ACCOUNTING... principles. Each institution shall: (a) Prepare and maintain, on an accrual basis, accurate and complete... reports to the Farm Credit Administration, in accordance with generally accepted accounting...

  9. Principles of General Systems Theory: Some Implications for Higher Education Administration

    Science.gov (United States)

    Gilliland, Martha W.; Gilliland, J. Richard

    1978-01-01

    Three principles of general systems theory are presented and systems theory is distinguished from systems analysis. The principles state that all systems tend to become more disorderly, that they must be diverse in order to be stable, and that only those maximizing their resource utilization for doing useful work will survive. (Author/LBH)

  10. Students' Misunderstandings about the Energy Conservation Principle: A General View to Studies in Literature

    Science.gov (United States)

    Tatar, Erdal; Oktay, Munir

    2007-01-01

    This paper serves to review previously reported studies on students' misunderstandings about the energy conservation principle (the first law of thermodynamics). Generally, studies in literature highlighted students' misunderstandings about the energy conservation principle stem from preliminaries about energy concept in daily life. Since prior…

  11. General principles of medical interconsultation for hospitalised patients.

    Science.gov (United States)

    Monte-Secades, R; Montero-Ruiz, E; Gil-Díaz, A; Castiella-Herrero, J

    2016-01-01

    Medical interconsultation for hospitalised patients is a regular activity among internal medicine specialists. However, despite its growing impact and importance, a model that defines its characteristics, objectives and information has not been established. This study, conducted by the Shared Care and Interconsultations Group of the Spanish Society of Internal Medicine, proposes a number of general recommendations concerning the method for requesting and responding to hospital medical interconsultations, as well as a format for these interconsultations. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Medicina Interna (SEMI). All rights reserved.

  12. Endocrine Disruptor Screening Program (EDSP) Universe of Chemicals and General Validation Principles

    Science.gov (United States)

    This document was developed by the EPA to provide guidance to staff and managers regarding the EDSP universe of chemicals and general validation principles for consideration of computational toxicology tools for chemical prioritization.

  13. Distress and avoidance in generalized anxiety disorder: exploring the relationships with intolerance of uncertainty and worry.

    Science.gov (United States)

    Lee, Jonathan K; Orsillo, Susan M; Roemer, Lizabeth; Allen, Laura B

    2010-01-01

    Theory and research suggest that treatments targeting experiential avoidance may enhance outcomes for patients with generalized anxiety disorder (GAD). The present study examined the role of experiential avoidance and distress about emotions in a treatment-seeking sample with a principal diagnosis of GAD compared with demographically matched nonanxious controls and sought to explore their shared relationship with two putative psychopathological processes in GAD: intolerance of uncertainty and worry. Patients with GAD reported significantly higher levels of experiential avoidance and distress about emotions compared with nonclinical controls while controlling for depressive symptoms, and measures of these constructs significantly predicted GAD status. Additionally, experiential avoidance and distress about anxious, positive, and angry emotions shared unique variance with intolerance of uncertainty when negative affect was partialed out, whereas only experiential avoidance and distress about anxious emotions shared unique variance with worry. Discussion focuses on implications for treatment as well as future directions for research.

  14. Cosmological Constant Implementing Mach Principle in General Relativity

    CERN Document Server

    Namavarian, Nadereh

    2016-01-01

    We consider the fact that noticing on the operational meaning of the physical concepts played an impetus role in the appearance of general relativity (GR). Thus, we have paid more attention to the operational definition of the gravitational coupling constant in this theory as a dimensional constant which is gained through an experiment. However, as all available experiments just provide the value of this constant locally, this coupling constant can operationally be meaningful only in a local area. Regarding this point, to obtain an extension of GR for the large scale, we replace it by a conformal invariant model and then, reduce this model to a theory for the cosmological scale via breaking down the conformal symmetry through singling out a specific conformal frame which is characterized by the large scale characteristics of the universe. Finally, we come to the same field equations that historically were proposed by Einstein for the cosmological scale (GR plus the cosmological constant) as the result of his ...

  15. A generalized optimization principle for asymmetric branching in fluidic networks

    Science.gov (United States)

    Stephenson, David; Lockerby, Duncan A.

    2016-07-01

    When applied to a branching network, Murray's law states that the optimal branching of vascular networks is achieved when the cube of the parent channel radius is equal to the sum of the cubes of the daughter channel radii. It is considered integral to understanding biological networks and for the biomimetic design of artificial fluidic systems. However, despite its ubiquity, we demonstrate that Murray's law is only optimal (i.e. maximizes flow conductance per unit volume) for symmetric branching, where the local optimization of each individual channel corresponds to the global optimum of the network as a whole. In this paper, we present a generalized law that is valid for asymmetric branching, for any cross-sectional shape, and for a range of fluidic models. We verify our analytical solutions with the numerical optimization of a bifurcating fluidic network for the examples of laminar, turbulent and non-Newtonian fluid flows.

  16. The Generalized Principle of the Golden Section and its applications in mathematics, science, and engineering

    Energy Technology Data Exchange (ETDEWEB)

    Stakhov, A.P. [International Club of the Golden Section, 6 McCreary Trail, Bolton, ON, L7E 2C8 (Canada)] e-mail: goldenmuseum@rogers.com

    2005-10-01

    The 'Dichotomy Principle' and the classical 'Golden Section Principle' are two of the most important principles of Nature, Science and also Art. The Generalized Principle of the Golden Section that follows from studying the diagonal sums of the Pascal triangle is a sweeping generalization of these important principles. This underlies the foundation of 'Harmony Mathematics', a new proposed mathematical direction. Harmony Mathematics includes a number of new mathematical theories: an algorithmic measurement theory, a new number theory, a new theory of hyperbolic functions based on Fibonacci and Lucas numbers, and a theory of the Fibonacci and 'Golden' matrices. These mathematical theories are the source of many new ideas in mathematics, philosophy, botanic and biology, electrical and computer science and engineering, communication systems, mathematical education as well as theoretical physics and physics of high energy particles.

  17. A generalized fuzzy linear programming approach for environmental management problem under uncertainty.

    Science.gov (United States)

    Fan, Yurui; Huang, Guohe; Veawab, Amornvadee

    2012-01-01

    In this study, a generalized fuzzy linear programming (GFLP) method was developed to deal with uncertainties expressed as fuzzy sets that exist in the constraints and objective function. A stepwise interactive algorithm (SIA) was advanced to solve GFLP model and generate solutions expressed as fuzzy sets. To demonstrate its application, the developed GFLP method was applied to a regional sulfur dioxide (SO2) control planning model to identify effective SO2 mitigation polices with a minimized system performance cost under uncertainty. The results were obtained to represent the amount of SO2 allocated to different control measures from different sources. Compared with the conventional interval-parameter linear programming (ILP) approach, the solutions obtained through GFLP were expressed as fuzzy sets, which can provide intervals for the decision variables and objective function, as well as related possibilities. Therefore, the decision makers can make a tradeoff between model stability and the plausibility based on solutions obtained through GFLP and then identify desired policies for SO2-emission control under uncertainty.

  18. The generalized quasi-variational principles of non-conservative systems with two kinds of variables

    Institute of Scientific and Technical Information of China (English)

    LIANG; Lifu; LIU; Diankui; SONG; Haiyan

    2005-01-01

    According to the corresponding relations between general forces and general displacements, the balancing and geometrical equations of elasticity are multiplied by the corresponding virtual quantities, integrated with volume and area, and then added algebraically. Proceeding to the next step, by substituting constitutive relation and considering that body force and surface force are both fellow forces, the generalized quasi-variational principles with the two kinds of variables of the first type are established in non-conservative systems. Through substituting another constitutive relation, using similar methods as above, the generalized quasi-variational principles with the two kinds of variables of the second type are established in non-conservative systems. By using the generalized quasi-complementary energy principles with the two kinds of variables of the first type, a method for solving two kinds of variables (internal force and deformation) is given for non-conservative systems of the typical fellow forces.

  19. On the fractional minimal length Heisenberg-Weyl uncertainty relation from fractional Riccati generalized momentum operator

    Energy Technology Data Exchange (ETDEWEB)

    Rami, El-Nabulsi Ahmad [Department of Nuclear and Energy Engineering, Cheju National University, Ara-dong 1, Jeju 690-756 (Korea, Republic of)], E-mail: nabulsiahmadrami@yahoo.fr

    2009-10-15

    It was showed that the minimal length Heisenberg-Weyl uncertainty relation may be obtained if the ordinary momentum differentiation operator is extended to its fractional counterpart, namely the generalized fractional Riccati momentum operator of order 0 < {beta} {<=} 1. Some interesting consequences are exposed in concordance with the UV/IR correspondence obtained within the framework of non-commutative C-space geometry, string theory, Rovelli loop quantum gravity, Amelino-Camelia doubly special relativity, Nottale scale relativity and El-Naschie Cantorian fractal spacetime. The fractional theory integrates an absolute minimal length and surprisingly a non-commutative position space.

  20. Entropy of Nonstatic Black Hole with the Internal Global Monopole and the Generalized Uncertainty Relation

    Institute of Scientific and Technical Information of China (English)

    HAN Yi-Wen; LIU Shou-Yu

    2005-01-01

    @@ The new equation of state density is obtained by the utilization of the generalized uncertainty relation. With the help of coordinates and the Wentzel-Kramers-Brillouin approximation, direct calculation of the scalar field entropy of the non-state black hole with an internal global monopole is performed. The entropy obtained from the calculation is proportional to the horizon area. The calculation can be free from convergence if without any cutoff, which is different from the brick-wall method. However, the pertinent result is limited.

  1. Computational uncertainty principle in nonlinear ordinary differential equations (I)——Numerical results

    Institute of Scientific and Technical Information of China (English)

    李建平[1; 曾庆存[2; 丑纪范[3

    2000-01-01

    In a majority of cases of long-time numerical integration for initial-value problems, roundoff error has received little attention. Using twenty-nine numerical methods, the influence of round-off error on numerical solutions is generally studied through a large number of numerical experiments. Here we find that there exists a strong dependence on machine precision (which is a new kind of dependence different from the sensitive dependence on initial conditions), maximally effective computation time (MECT) and optimal stepsize (OS) in solving nonlinear ordinary differential equations (ODEs) in finite machine precision. And an optimal searching method for evaluating MECT and OS under finite machine precision is presented. The relationships between MECT, OS, the order of numerical method and machine precision are found. Numerical results show that round-off error plays a significant role in the above phenomena. Moreover, we find two universal relations which are independent of the types of ODEs, initial val

  2. Derivation of a general three-dimensional crack-propagation law: A generalization of the principle of local symmetry

    DEFF Research Database (Denmark)

    Hodgdon, Jennifer A.; Sethna, James P.

    1993-01-01

    We derive a general crack-propagation law for slow brittle cracking, in two and three dimensions, using discrete symmetries, gauge invariance, and gradient expansions. Our derivation provides explicit justification for the ‘‘principle of local symmetry,’’ which has been used extensively to describe...

  3. Water, Resilience and the Law: From General Concepts and Governance Design Principles to Actionable Mechanisms

    Science.gov (United States)

    Hill Clarvis, M.; Allan, A.; Hannah, D. M.

    2013-12-01

    Climate change has significant ramifications for water law and governance, yet, there is strong evidence that legal regulations have often failed to protect environments or promote sustainable development. Scholars have increasingly suggested that the preservation and restoration paradigms of legislation and regulation are no longer adequate for climate change related challenges in complex and cross-scale social-ecological systems. This is namely due to past assumptions of stationarity, uniformitarianism and the perception of ecosystem change as predictable and reversible. This paper reviews the literature on law and resilience and then presents and discusses a set of practical examples of legal mechanisms from the water resources management sector, identified according to a set of guiding principles from the literature on adaptive capacity, adaptive governance as well as adaptive and integrated water resources management. It then assesses the aptness of these different measures according to scientific evidence of increased uncertainty and changing ecological baselines. A review of the best practice examples demonstrates that there are a number of best practice examples attempting to integrate adaptive elements of flexibility, iterativity, connectivity and subsidiarity into a variety of legislative mechanisms, suggesting that there is not as significant a tension between resilience and the law as many scholars have suggested. However, while many of the mechanisms may indeed be suitable for addressing challenges relating to current levels of change and uncertainty, analysis across a broader range of uncertainty highlights challenges relating to more irreversible changes associated with greater levels of warming. Furthermore the paper identifies a set of pre-requisites that are fundamental to the successful implementation of such mechanisms, namely monitoring and data sharing, financial and technical capacity, particularly in nations that are most at risk with the

  4. A Framework of Principles for Quantum General Relativity with Time and Measurement

    CERN Document Server

    Maran, Suresh K

    2013-01-01

    The purpose of this article is to outline a framework of concepts and principles to combine quantum mechanics and general relativity so that time and measurement (reduction) are present as integral parts of the basic foundations. First, the problem of time in quantum gravity and the measurement problem in quantum mechanics are briefly reviewed and the popular proposals to tackle these two problems are briefly discussed. Next, on the already known foundations of quantum mechanics, a framework of principles of dynamics is built: 1) Self-Time Evolution - Newtons first law is reinterpreted to define time, 2) Local Measurement by Local Reduction - Quantum diffusion theory is adapted, and 3) Global Evolution by Global Reduction. Ideas on how to apply the framework to study quantum general relativistic physics are discussed. Further, more general and modified forms of some of these principles are also discussed. The theoretical elements in the framework to be made concrete by further theoretical and experimental inv...

  5. Hierarchical maximum entropy principle for generalized superstatistical systems and Bose-Einstein condensation of light.

    Science.gov (United States)

    Sob'yanin, Denis Nikolaevich

    2012-06-01

    A principle of hierarchical entropy maximization is proposed for generalized superstatistical systems, which are characterized by the existence of three levels of dynamics. If a generalized superstatistical system comprises a set of superstatistical subsystems, each made up of a set of cells, then the Boltzmann-Gibbs-Shannon entropy should be maximized first for each cell, second for each subsystem, and finally for the whole system. Hierarchical entropy maximization naturally reflects the sufficient time-scale separation between different dynamical levels and allows one to find the distribution of both the intensive parameter and the control parameter for the corresponding superstatistics. The hierarchical maximum entropy principle is applied to fluctuations of the photon Bose-Einstein condensate in a dye microcavity. This principle provides an alternative to the master equation approach recently applied to this problem. The possibility of constructing generalized superstatistics based on a statistics different from the Boltzmann-Gibbs statistics is pointed out.

  6. Sources of Law in Transition - Re‐visiting General Principles of International Law

    Directory of Open Access Journals (Sweden)

    Maria Panezi

    2007-12-01

    Full Text Available General Principles of International Law have been a much contested source among International Law scholars. The ambiguity that surrounds their interpretation has resulted to a vivid dialogue around their legal nature, and their use in contemporary judicial practice of domestic and international tribunals. Globalization and the ever‐increasing complexity of International Economics affected the position of General Principles within the international legal system, and resulted to their progressive consolidation in the area of International Economic Law. Further examination of issues arising vis‐à‐vis General Principles could prove to be useful in other areas of law, in the same manner they addressed legal issues in International Economic Law.

  7. Communication: Maximum caliber is a general variational principle for nonequilibrium statistical mechanics.

    Science.gov (United States)

    Hazoglou, Michael J; Walther, Valentin; Dixit, Purushottam D; Dill, Ken A

    2015-08-07

    There has been interest in finding a general variational principle for non-equilibrium statistical mechanics. We give evidence that Maximum Caliber (Max Cal) is such a principle. Max Cal, a variant of maximum entropy, predicts dynamical distribution functions by maximizing a path entropy subject to dynamical constraints, such as average fluxes. We first show that Max Cal leads to standard near-equilibrium results—including the Green-Kubo relations, Onsager's reciprocal relations of coupled flows, and Prigogine's principle of minimum entropy production—in a way that is particularly simple. We develop some generalizations of the Onsager and Prigogine results that apply arbitrarily far from equilibrium. Because Max Cal does not require any notion of "local equilibrium," or any notion of entropy dissipation, or temperature, or even any restriction to material physics, it is more general than many traditional approaches. It also applicable to flows and traffic on networks, for example.

  8. NEW PRINCIPLES OF POWER AND ENERGY RATE OF INCREMENTAL RATE TYPE FOR GENERALIZED CONTINUUM FIELD THEORIES

    Institute of Scientific and Technical Information of China (English)

    戴天民

    2001-01-01

    The aim of this paper is to establish new principles of power and energy rate of incremental type in generalized continuum mechanics. By combining new principles of virtual velocity and virtual angular velocity as well as of virtual stress and virtual couple stress with cross terms of incremental rate type a new principle of power and energy rate of incremental rate type with cross terms for micropolar continuum field theories is presented and from it all corresponding equations of motion and boundary conditions as well as power and energy rate equations of incremental rate type for micropolar and nonlocal micropolar continua with the help of generalized Piola's theorems in all and without any additional requirement are derived. Complete results for micromorphic continua could be similarly derived. The derived results in the present paper are believed to be new. They could be used to establish corresponding finite element methods of incremental rate type for generalized continuum mechanics.

  9. [The General Principles of Suicide Prevention Policy from the perspective of clinical psychiatry].

    Science.gov (United States)

    Cho, Yoshinori; Inagaki, Masatoshi

    2014-01-01

    In view of the fact that the suicide rate in Japan has remained high since 1998, the Basic Act on Suicide Prevention was implemented in 2006 with the objective of comprehensively promoting suicide prevention measures on a national scale. Based on this Basic Act, in 2007, the Japanese government formulated the General Principles of Suicide Prevention Policy as a guideline for recommended suicide prevention measures. These General Principles were revised in 2012 in accordance with the initial plan of holding a review after five years. The Basic Act places an emphasis on the various social factors that underlie suicides and takes the perspective that suicide prevention measures are also social measures. The slogan of the revised General Principles is "Toward Realization of a Society in which Nobody is Driven to Commit Suicide". The General Principles list various measures that are able to be used universally. These contents would be sufficient if the objective of the General Principles were "realization of a society that is easy to live in"; however, the absence of information on the effectiveness and order of priority for each measure may limit the specific effectiveness of the measures in relation to the actual prevention of suicide. In addition, considering that nearly 90% of suicide victims are in a state at the time of committing suicide in which a psychiatric disorder would be diagnosed, it would appear from a psychiatric standpoint that measures related to mental health, including expansion of psychiatric services, should be the top priority in suicide prevention measures. However, this is not the case in the General Principles, in either its original or revised form. Revisions to the General Principles related to clinical psychiatry provide more detailed descriptions of measures for individuals who unsuccessfully attempt suicide and identify newly targeted mental disorders other than depression; however, the overall proportion of contents relating to

  10. The general use of the time-temperature-pressure superposition principle

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz

    This note is a supplement to Dynamic of Polymeric Liquids (DPL) section 3.6(a). DPL do only concern material functions and only the effect of the temperature on these. This is a short introduction to the general use of the time-temperature-pressure superposition principle.......This note is a supplement to Dynamic of Polymeric Liquids (DPL) section 3.6(a). DPL do only concern material functions and only the effect of the temperature on these. This is a short introduction to the general use of the time-temperature-pressure superposition principle....

  11. Individual uncertainty and the uncertainty of science: The impact of perceived conflict and general self-efficacy on the perception of tentativeness and credibility of scientific information

    Directory of Open Access Journals (Sweden)

    Danny eFlemming

    2015-12-01

    Full Text Available We examined in two empirical studies how situational and personal aspects of uncertainty influence laypeople’s understanding of the uncertainty of scientific information, with focus on the detection of tentativeness and perception of scientific credibility. In the first study (N = 48, we investigated the impact of a perceived conflict due to contradicting information as a situational, text-inherent aspect of uncertainty. The aim of the second study (N = 61 was to explore the role of general self-efficacy as an intra-personal uncertainty factor. In Study 1, participants read one of two versions of an introductory text in a between-group design. This text provided them with an overview about the neurosurgical procedure of deep brain stimulation (DBS. The text expressed a positive attitude toward DBS in one experimental condition or focused on the negative aspects of this method in the other condition. Then participants in both conditions read the same text that dealt with a study about DBS as experimental treatment in a small sample of patients with major depression. Perceived conflict between the two texts was found to increase the perception of tentativeness and to decrease the perception of scientific credibility, implicating that text-inherent aspects have significant effects on critical appraisal. The results of Study 2 demonstrated that participants with higher general self-efficacy detected the tentativeness to a lesser degree and assumed a higher level of scientific credibility, indicating a more naïve understanding of scientific information. This appears to be contradictory to large parts of previous findings that showed positive effects of high self-efficacy on learning. Both studies showed that perceived tentativeness and perceived scientific credibility of medical information contradicted each other. We conclude that there is a need for supporting laypeople in understanding the uncertainty of scientific information and that

  12. Individual Uncertainty and the Uncertainty of Science: The Impact of Perceived Conflict and General Self-Efficacy on the Perception of Tentativeness and Credibility of Scientific Information.

    Science.gov (United States)

    Flemming, Danny; Feinkohl, Insa; Cress, Ulrike; Kimmerle, Joachim

    2015-01-01

    We examined in two empirical studies how situational and personal aspects of uncertainty influence laypeople's understanding of the uncertainty of scientific information, with focus on the detection of tentativeness and perception of scientific credibility. In the first study (N = 48), we investigated the impact of a perceived conflict due to contradicting information as a situational, text-inherent aspect of uncertainty. The aim of the second study (N = 61) was to explore the role of general self-efficacy as an intra-personal uncertainty factor. In Study 1, participants read one of two versions of an introductory text in a between-group design. This text provided them with an overview about the neurosurgical procedure of deep brain stimulation (DBS). The text expressed a positive attitude toward DBS in one experimental condition or focused on the negative aspects of this method in the other condition. Then participants in both conditions read the same text that dealt with a study about DBS as experimental treatment in a small sample of patients with major depression. Perceived conflict between the two texts was found to increase the perception of tentativeness and to decrease the perception of scientific credibility, implicating that text-inherent aspects have significant effects on critical appraisal. The results of Study 2 demonstrated that participants with higher general self-efficacy detected the tentativeness to a lesser degree and assumed a higher level of scientific credibility, indicating a more naïve understanding of scientific information. This appears to be contradictory to large parts of previous findings that showed positive effects of high self-efficacy on learning. Both studies showed that perceived tentativeness and perceived scientific credibility of medical information contradicted each other. We conclude that there is a need for supporting laypeople in understanding the uncertainty of scientific information and that scientific writers should

  13. What buoyancy really is. A generalized Archimedes' principle for sedimentation and ultracentrifugation

    Science.gov (United States)

    Piazza, Roberto; Buzzaccaro, Stefano; Secchi, Eleonora; Parola, Alberto

    Particle settling is a pervasive process in nature, and centrifugation is a much versatile separation technique. Yet, the results of settling and ultracentrifugation experiments often appear to contradict the very law on which they are based: Archimedes Principle - arguably, the oldest Physical Law. The purpose of this paper is delving at the very roots of the concept of buoyancy by means of a combined experimental-theoretical study on sedimentation profiles in colloidal mixtures. Our analysis shows that the standard Archimedes' principle is only a limiting approximation, valid for mesoscopic particles settling in a molecular fluid, and we provide a general expression for the actual buoyancy force. This "Generalized Archimedes Principle" accounts for unexpected effects, such as denser particles floating on top of a lighter fluid, which in fact we observe in our experiments.

  14. UPDATING OF MUNICIPAL REFORM IS ON THE BASIS OF GENERALLY ECONOMIC PRINCIPLE

    Directory of Open Access Journals (Sweden)

    S.D. Valentey

    2008-06-01

    Full Text Available In clause the problem of formation of the local factors of strengthening of the national economy of Russia rises, necessity of updating of the municipal reform proves, corresponding measures which should follow from the generally economic principle of an definition of administrative-territorial structure of the local self-management are offered.

  15. 26 CFR 1.338-1 - General principles; status of old target and new target.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 4 2010-04-01 2010-04-01 false General principles; status of old target and new target. 1.338-1 Section 1.338-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... of old target and new target. (a) In general—(1) Deemed transaction. Elections are available under...

  16. 21 CFR 312.22 - General principles of the IND submission.

    Science.gov (United States)

    2010-04-01

    ... likelihood that the investigations will yield data capable of meeting statutory standards for marketing... (IND) § 312.22 General principles of the IND submission. (a) FDA's primary objectives in reviewing an...-investigator who uses, as a research tool, an investigational new drug that is already subject to...

  17. 21 CFR 570.20 - General principles for evaluating the safety of food additives.

    Science.gov (United States)

    2010-04-01

    ... food additives. 570.20 Section 570.20 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES Food Additive Safety § 570.20 General principles for evaluating the safety of food additives. (a) In reaching...

  18. 21 CFR 170.20 - General principles for evaluating the safety of food additives.

    Science.gov (United States)

    2010-04-01

    ... food additives. 170.20 Section 170.20 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES Food Additive Safety § 170.20 General principles for evaluating the safety of food additives. (a) In reaching...

  19. General Principles of Radiation Protection in Fields of Diagnostic Medical Exposure

    OpenAIRE

    Do, Kyung Hyun

    2016-01-01

    After the rapid development of medical equipment including CT or PET-CT, radiation doses from medical exposure are now the largest source of man-made radiation exposure. General principles of radiation protection from the hazard of ionizing radiation are summarized as three key words; justification, optimization, and dose limit. Because medical exposure of radiation has unique considerations, diagnostic reference level is generally used as a reference value, instead of dose limits. In Korea, ...

  20. Modelling uncertainty in incompressible flow simulation using Galerkin based generalized ANOVA

    Science.gov (United States)

    Chakraborty, Souvik; Chowdhury, Rajib

    2016-11-01

    This paper presents a new algorithm, referred to here as Galerkin based generalized analysis of variance decomposition (GG-ANOVA) for modelling input uncertainties and its propagation in incompressible fluid flow. The proposed approach utilizes ANOVA to represent the unknown stochastic response. Further, the unknown component functions of ANOVA are represented using the generalized polynomial chaos expansion (PCE). The resulting functional form obtained by coupling the ANOVA and PCE is substituted into the stochastic Navier-Stokes equation (NSE) and Galerkin projection is employed to decompose it into a set of coupled deterministic 'Navier-Stokes alike' equations. Temporal discretization of the set of coupled deterministic equations is performed by employing Adams-Bashforth scheme for convective term and Crank-Nicolson scheme for diffusion term. Spatial discretization is performed by employing finite difference scheme. Implementation of the proposed approach has been illustrated by two examples. In the first example, a stochastic ordinary differential equation has been considered. This example illustrates the performance of proposed approach with change in nature of random variable. Furthermore, convergence characteristics of GG-ANOVA has also been demonstrated. The second example investigates flow through a micro channel. Two case studies, namely the stochastic Kelvin-Helmholtz instability and stochastic vortex dipole, have been investigated. For all the problems results obtained using GG-ANOVA are in excellent agreement with benchmark solutions.

  1. High-order squeezing of the quantum electromagnetic field and the generalized uncertainty relations in two-mode squeezed states

    Science.gov (United States)

    Li, Xi-Zeng; Su, Bao-Xia

    1994-01-01

    It is found that two-mode output quantum electromagnetic field in two-mode squeezed states exhibits higher-order squeezing to all even orders. And the generalized uncertainty relations are also presented for the first time. The concept of higher-order squeezing of the single-mode quantum electromagnetic field was first introduced and applied to several processes by Hong and Mandel in 1985. Lately Li Xizeng and Shan Ying have calculated the higher-order squeezing in the process of degenerate four-wave mixing and presented the higher-order uncertainty relations of the fields in single-mode squeezed states. In this paper we generalize the above work to the higher-order squeezing in two-mode squeezed states. The generalized uncertainty relations are also presented for the first time.

  2. Multi-attribute mate choice decisions and uncertainty in the decision process: a generalized sequential search strategy.

    Science.gov (United States)

    Wiegmann, Daniel D; Weinersmith, Kelly L; Seubert, Steven M

    2010-04-01

    The behavior of females in search of a mate determines the likelihood that high quality males are encountered and adaptive search strategies rely on the effective use of available information on the quality of prospective mates. The sequential search strategy was formulated, like most models of search behavior, on the assumption that females obtain perfect information on the quality of encountered males. In this paper, we modify the strategy to allow for uncertainty of male quality and we determine how the magnitude of this uncertainty and the ability of females to inspect multiple male attributes to reduce uncertainty influence mate choice decisions. In general, searchers are sensitive to search costs and higher costs lower acceptance criteria under all versions of the model. The choosiness of searchers increases with the variability of the quality of prospective mates under conditions of the original model, but under conditions of uncertainty the choosiness of searchers may increase or decrease with the variability of inspected male attributes. The behavioral response depends on the functional relationship between observed male attributes and the fitness return to searchers and on costs associated with the search process. Higher uncertainty often induces searchers to pay more for information and under conditions of uncertainty the fitness return to searchers is never higher than under conditions of the original model. Further studies of the performance of alternative search strategies under conditions of uncertainty may consequently be necessary to identify search strategies likely to be used under natural conditions.

  3. About the Heisenberg's uncertainty principle and the determination of effective optical indices in integrated photonics at high sub-wavelength regime

    CERN Document Server

    Bêche, Bruno

    2016-01-01

    Within the Heisenberg's uncertainty principle it is explicitly discussed the impact of these inequalities on the theory of integrated photonics at sub-wavelength regime. More especially, the uncertainty of the effective index values in nanophotonics at sub-wavelength regime, which is defined as the eigenvalue of the overall opto-geometric problems in integrated photonics, appears directly stemming from Heisenberg's uncertainty. An apt formula is obtained allowing us to assume that the incertitude and the notion of eigenvalue called effective optical index or propagation constant is inversely proportional to the spatial dimensions of a given nanostructure yielding a transfer of the fuzziness on relevant senses of eigenvalues below a specific limit's volume.

  4. The special theory of Brownian relativity: equivalence principle for dynamic and static random paths and uncertainty relation for diffusion.

    Science.gov (United States)

    Mezzasalma, Stefano A

    2007-03-15

    The theoretical basis of a recent theory of Brownian relativity for polymer solutions is deepened and reexamined. After the problem of relative diffusion in polymer solutions is addressed, its two postulates are formulated in all generality. The former builds a statistical equivalence between (uncorrelated) timelike and shapelike reference frames, that is, among dynamical trajectories of liquid molecules and static configurations of polymer chains. The latter defines the "diffusive horizon" as the invariant quantity to work with in the special version of the theory. Particularly, the concept of universality in polymer physics corresponds in Brownian relativity to that of covariance in the Einstein formulation. Here, a "universal" law consists of a privileged observation, performed from the laboratory rest frame and agreeing with any diffusive reference system. From the joint lack of covariance and simultaneity implied by the Brownian Lorentz-Poincaré transforms, a relative uncertainty arises, in a certain analogy with quantum mechanics. It is driven by the difference between local diffusion coefficients in the liquid solution. The same transformation class can be used to infer Fick's second law of diffusion, playing here the role of a gauge invariance preserving covariance of the spacetime increments. An overall, noteworthy conclusion emerging from this view concerns the statistics of (i) static macromolecular configurations and (ii) the motion of liquid molecules, which would be much more related than expected.

  5. On the Momentum Transported by the Radiation Field of a Long Transient Dipole and Time Energy Uncertainty Principle

    Directory of Open Access Journals (Sweden)

    Vernon Cooray

    2016-11-01

    Full Text Available The paper describes the net momentum transported by the transient electromagnetic radiation field of a long transient dipole in free space. In the dipole a current is initiated at one end and propagates towards the other end where it is absorbed. The results show that the net momentum transported by the radiation is directed along the axis of the dipole where the currents are propagating. In general, the net momentum P transported by the electromagnetic radiation of the dipole is less than the quantity U / c , where U is the total energy radiated by the dipole and c is the speed of light in free space. In the case of a Hertzian dipole, the net momentum transported by the radiation field is zero because of the spatial symmetry of the radiation field. As the effective wavelength of the current decreases with respect to the length of the dipole (or the duration of the current decreases with respect to the travel time of the current along the dipole, the net momentum transported by the radiation field becomes closer and closer to U / c , and for effective wavelengths which are much shorter than the length of the dipole, P ≈ U / c . The results show that when the condition P ≈ U / c is satisfied, the radiated fields satisfy the condition Δ t Δ U ≥ h / 4 π where Δ t is the duration of the radiation, Δ U is the uncertainty in the dissipated energy and h is the Plank constant.

  6. 不确定性原理在光波衍射中的表象%Representation of Uncertainty Principle in Spatial Diffraction

    Institute of Scientific and Technical Information of China (English)

    陈海燕

    2015-01-01

    光波具有波粒二象性,其粒子运动行为遵从量子力学中的不确定性原理,而波动传输过程可用衍射规律来描述。本文以基模高斯光束为例,给出衍射规律与不确定性原理之间的关系。结果表明:光束直径—发散角乘积是量子力学不确定性原理在衍射现象中的具体表象。%Light wave has the nature of wave-particle duality,its motion in the view of particle obeys the uncertain-ty principle in quantum mechanics. In the view of wave,the propagation of light wave obeys diffractive theory. In this paper,taking the Gaussian beam as example,the relationship between the spatial diffraction of a transverse e-lectromagnetic wave(Gaussian beam)and the uncertainty principle is presented. It demonstrates that the product of the beam diameter and divergence of a spatially coherent beam is the representation of the uncertainty principle in spatial diffraction.

  7. What's in a name? Intolerance of uncertainty, other uncertainty-relevant constructs, and their differential relations to worry and generalized anxiety disorder.

    Science.gov (United States)

    Koerner, Naomi; Mejia, Teresa; Kusec, Andrea

    2017-03-01

    A number of studies have examined the association of intolerance of uncertainty (IU) to trait worry and generalized anxiety disorder (GAD). However, few studies have examined the extent of overlap between IU and other psychological constructs that bear conceptual resemblance to IU, despite the fact that IU-type constructs have been discussed and examined extensively within psychology and other disciplines. The present study investigated (1) the associations of IU, trait worry, and GAD status to a negative risk orientation, trait curiosity, indecisiveness, perceived constraints, self-oriented and socially prescribed perfectionism, intolerance of ambiguity, the need for predictability, and the need for order and structure and (2) whether IU is a unique correlate of trait worry and of the presence versus absence of Probable GAD, when overlap with other uncertainty-relevant constructs is accounted for. N = 255 adults completed self-report measures of the aforementioned constructs. Each of the constructs was significantly associated with IU. Only IU, and a subset of the other uncertainty-relevant constructs were correlated with trait worry or distinguished the Probable GAD group from the Non-GAD group. IU was the strongest unique correlate of trait worry and of the presence versus absence of Probable GAD. Indecisiveness, self-oriented perfectionism and the need for predictability were also unique correlates of trait worry or GAD status. Implications of the findings are discussed, in particular as they pertain to the definition, conceptualization, and cognitive-behavioral treatment of IU in GAD.

  8. A general method to select representative models for decision making and optimization under uncertainty

    Science.gov (United States)

    Shirangi, Mehrdad G.; Durlofsky, Louis J.

    2016-11-01

    The optimization of subsurface flow processes under geological uncertainty technically requires flow simulation to be performed over a large set of geological realizations for each function evaluation at every iteration of the optimizer. Because flow simulation over many permeability realizations (only permeability is considered to be uncertain in this study) may entail excessive computation, simulations are often performed for only a subset of 'representative' realizations. It is however challenging to identify a representative subset that provides flow statistics in close agreement with those from the full set, especially when the decision parameters (e.g., time-varying well pressures, well locations) are unknown a priori, as they are in optimization problems. In this work, we introduce a general framework, based on clustering, for selecting a representative subset of realizations for use in simulations involving 'new' sets of decision parameters. Prior to clustering, each realization is represented by a low-dimensional feature vector that contains a combination of permeability-based and flow-based quantities. Calculation of flow-based features requires the specification of a (base) flow problem and simulation over the full set of realizations. Permeability information is captured concisely through use of principal component analysis. By computing the difference between the flow response for the subset and the full set, we quantify the performance of various realization-selection methods. The impact of different weightings for flow and permeability information in the cluster-based selection procedure is assessed for a range of examples involving different types of decision parameters. These decision parameters are generated either randomly, in a manner that is consistent with the solutions proposed in global stochastic optimization procedures such as GA and PSO, or through perturbation around a base case, consistent with the solutions considered in pattern search

  9. The Principles of Self Creation Cosmology and its Comparison with General Relativity

    CERN Document Server

    Barber, G A

    2002-01-01

    There are, at present, several gravitational and cosmological anomalies; the dark energy problem, the lambda problem, accelerating cosmological expansion, the anomalous Pioneer spacecraft acceleration, a spin-up of the Earth and an apparent variation of G observed from analysis of the evolution of planetary longitudes. These conundrums may be resolved in the theory of Self Creation Cosmology, in which the Principle of Mutual Interaction subsumes both Mach's Principle and the Local Conservation of Energy. The theory is conformally equivalent to General Relativity in vacuo with the consequence that predictions of the theory are identical with General Relativity in the standard solar system experiments. Other observable local and cosmological consequences offer an explanation for the anomalies above. The SCC universe expands linearly in its Einstein Frame and it is static in its Jordan Frame; hence, as there are no density, smoothness or horizon problems, there is no requirement for Inflation. The theory determi...

  10. Molecularly imprinted polymers as synthetic mimics of bioreceptors. 1. General principles of molecular imprinting

    Directory of Open Access Journals (Sweden)

    Sergeyeva T. A.

    2009-08-01

    Full Text Available The review is devoted to analysis of the publications in the area of synthesis of artificial mimics of biological receptors using the method of molecular imprinting. General principles of molecular imprinting as well as main types of polymers being used in molecular imprinting are described. The special attention is paid to the polymers-biomimics synthesized using the method of non-covalent molecular imprinting.

  11. Molecularly imprinted polymers as synthetic mimics of bioreceptors. 1. General principles of molecular imprinting

    OpenAIRE

    Sergeyeva T. A.

    2009-01-01

    The review is devoted to analysis of the publications in the area of synthesis of artificial mimics of biological receptors using the method of molecular imprinting. General principles of molecular imprinting as well as main types of polymers being used in molecular imprinting are described. The special attention is paid to the polymers-biomimics synthesized using the method of non-covalent molecular imprinting.

  12. Higher-Order Squeezing of Quantum Field and the Generalized Uncertainty Relations in Non-Degenerate Four-Wave Mixing

    Science.gov (United States)

    Li, Xi-Zeng; Su, Bao-Xia

    1996-01-01

    It is found that the field of the combined mode of the probe wave and the phase-conjugate wave in the process of non-degenerate four-wave mixing exhibits higher-order squeezing to all even orders. And the generalized uncertainty relations in this process are also presented.

  13. Real processing II: Extremal principles of irreversible thermodynamics, relations, generalizations and time dependence

    Science.gov (United States)

    Reiser, Bernhard

    We start presenting the extremal principles we will consider: The Statement of Helmholtz 1868 and Rayleigh (SHR) 1913, generalized by Reiser 1996, the Statement of Kelvin (SK) 1849, the Principle of Minimal Entropy Production (PME) of Prigogine 1947 for linear processes, that of Prigogine and Glansdorff 1954 for non-linear processes and finally, the Principle of Maximal Entropy (MEF) of Jaynes, 1957. First we show the relation between SHR and SK. This is a particular example for the property of Irreversible Thermodynamics (TIP) to treat all kinds of movements of fluids, compounds or any type of energy under the engineering term loss, or accurately spoken, entropy production. This possibility to treat different physical effects in the same manner causes by its simplification, considerable economical advantages of treating processes in the frame of TIP. For example, whereas a balance like the momentum balance (Navier-Stokes equation) has to distinguish between inertial, viscous or pressure effects, the PME treats the movements these effects cause with one term, and no pressure coupling or non-linearity is enclosed. Then we generalize the SK from potential velocity fields to general ones and show that it fits into the MEF. We continue with the generalization of the SHR from 1996 to compressible and non-Newtonian fluids. Further, we notice that these principles hold for time-dependent (non-stationary) processes. Therefore, the general fluid dynamical part of the PME 1947 can be generalized from stationary to time-dependent processes. We show that this is possible not only for velocity fields but also for scalar fields using as an example, the temperature in the case of heat conduction. We see that scalar fields need a transformation well known in mathematics. Comparing the PME 1954 with the completely generalized SHR we see that it holds also for non-linear processes. The same holds for the generalized SK. We close the consideration of extremal principles with the

  14. Generalized Uncertainty Quantification for Linear Inverse Problems in X-ray Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, Michael James [Clarkson Univ., Potsdam, NY (United States)

    2014-04-25

    In industrial and engineering applications, X-ray radiography has attained wide use as a data collection protocol for the assessment of material properties in cases where direct observation is not possible. The direct measurement of nuclear materials, particularly when they are under explosive or implosive loading, is not feasible, and radiography can serve as a useful tool for obtaining indirect measurements. In such experiments, high energy X-rays are pulsed through a scene containing material of interest, and a detector records a radiograph by measuring the radiation that is not attenuated in the scene. One approach to the analysis of these radiographs is to model the imaging system as an operator that acts upon the object being imaged to produce a radiograph. In this model, the goal is to solve an inverse problem to reconstruct the values of interest in the object, which are typically material properties such as density or areal density. The primary objective in this work is to provide quantitative solutions with uncertainty estimates for three separate applications in X-ray radiography: deconvolution, Abel inversion, and radiation spot shape reconstruction. For each problem, we introduce a new hierarchical Bayesian model for determining a posterior distribution on the unknowns and develop efficient Markov chain Monte Carlo (MCMC) methods for sampling from the posterior. A Poisson likelihood, based on a noise model for photon counts at the detector, is combined with a prior tailored to each application: an edge-localizing prior for deconvolution; a smoothing prior with non-negativity constraints for spot reconstruction; and a full covariance sampling prior based on a Wishart hyperprior for Abel inversion. After developing our methods in a general setting, we demonstrate each model on both synthetically generated datasets, including those from a well known radiation transport code, and real high energy radiographs taken at two U. S. Department of Energy

  15. The Construction of General Principles about the Exemplification in the Electronic Learner's Dictionary

    Institute of Scientific and Technical Information of China (English)

    赵丹

    2011-01-01

    Dictionary has many functions,in which the function of definition is of very importance because the main purpose of dictionary is providing the entry's meaning information for the readers so that the readers can understand and use the entry-word and the realization of the purpose completely depends on lexicographical definition.However,the function of definition is limited,which need the exemplification to assist it.Therefore,the exemplification becomes very important,too.Good exemplification can assist definition,provide grammatical information,and supplement the information usage and so on.Many researches studied the exemplification of dictionary,its principles and so on.Dictionary changed much with the development of technology and many kinds of electronic dictionaries appeared.Few studies are involved with the new-type dictionary.Based on the general principles of the exemplification in a learner's printed dictionary,it is necessary to construct the general principles about the exemplification in the electronic learner's dictionary.

  16. General Principles and Convention on Contracts for the International Sale of Goods (CISG – Uniformity under an Interpretation Umbrella?

    Directory of Open Access Journals (Sweden)

    Laura Lassila

    2017-01-01

    Full Text Available Globalization and digitalization of international sales creates needs to harmonize rules of international commercial contracts. The question is whether the harmonization should be done by binding rules or using soft law tools or through digitalization. In this article I argue on favor of harmonization through international contracts law rules’ international interpretation.The international interpretation principles used in this article are found from on Art. 7(1 of the Convention on Contracts for the International Sale of Goods (CISG which sets three interpretation rules: international character; promoting uniformity; and observance of good faith in international trade. These principles are not only principles of the CISG, but also principles commonly recognized in international commercial practice and also in domestic contract rules. I argue that by adopting an international interpretation umbrella – the meta-principle of international interpretation, cross-border contracts could be interpreted under the same principle no matter applicable substantial law. The meta-principle functions as an interpretation umbrella covering general principles and Articles of the CISG, general principles of international commercial contracts, Lex Mercatoria, and cross-border contract provision under national law.The outcomes points out that arbitral tribunals have interpreted general principles of the CISG and Lex Mercatoria in various ways. General principles and their application in case law is analyzed in connection with the Civil Code of the Russian Federation. Tribunals found that general principles of the CISG are applicable even if the CISG is not. It follows Art.’s 7(2 logic to promote international standard to cross-border contracts where the closes connection is international commercial practice rather than any national jurisdiction.

  17. A general equilibrium analysis of rural-urban migration under uncertainty.

    Science.gov (United States)

    Beladi, H; Ingene, C A

    1994-02-01

    "This paper analyzes the implications of an exogenous shift in relative prices for an economy that suffers from urban unemployment, as well as uncertainty in the agricultural sector. Among other things, we show that with agricultural uncertainty, an exogenous shift in relative prices will lower agricultural profit. This result is in sharp contrast with the conventional case of risk-neutrality or certainty where agricultural profit is unaffected by changes in the terms of trade." The consequences for rural-urban migration in developing countries are implied.

  18. [Recommendation for revision of the General Principles of Suicide Prevention Policy].

    Science.gov (United States)

    Takeshima, Tadashi; Inagaki, Masatoshi; Takahashi, Yoshitomo; Kawanishi, Chiaki; Saito, Toshikazu; Saito, Yukio; Motohashi, Yutaka; Yanaga, Yuriko; Matsumoto, Toshihiko; Kawano, Kenji; Katsumata, Yotaro

    2012-01-01

    Since the promulgation of the Basic Act for Suicide Prevention, suicide prevention in Japan has developed rapidly. In order to further reinforce such activities, it is necessary to balance universal, selective, and indicated prevention. For the revision of the General Principles of Suicide Prevention Policy, the Center for Suicide Prevention announced this recommendation with 29 societies. We hope that it will promote suicide prevention in Japan and lead to expansion of the suicide prevention network by academic organizations, NGOs, as well as local and central government.

  19. [Protection of genetic data in Spain. Analysis based on the general principles of personal data protection].

    Science.gov (United States)

    García Amez, Javier

    2006-01-01

    The genetic data is Spain is not regulated specifically, rather, we must look at the regulation on the protection of data of a personal nature. This is turn, establishes a series of general principles to apply to any type of data. Analysing this with other regulations that are dispersed both in the national and international regulations, we can deduce the rights and obligations in this field. This highlights the fact that one can't dispose of the genetic data in the same manner as the personal data.

  20. Note on the understanding of the generalized correspondence principle (in Polish & English

    Directory of Open Access Journals (Sweden)

    Michał KOKOWSKI

    2015-12-01

    Full Text Available The author, referring to the text of Jan Woleński published on the pages of Prace Komisji Historii Nauki PAU in 2014, discusses the understanding of the generalized correspondence principle in the context of the following concepts: cumulativism (C.G. Hempel, P. Oppenhaim, E. Nagel, extreme anticumulativism (P. Feyerabend, T.S. Kuhn, dialectical cumulativism (W. Krajewski and the hypothetico­‑deductive method of correspondence ­oriented thinking as well as Copernicus’s methodology (M. Kokowski.

  1. A general theoretical principle for single-phase convection heat transfer enhancement

    Institute of Scientific and Technical Information of China (English)

    WANG SongPing; CHEN QingLin; ZHANG BingJian; HUA Ben

    2009-01-01

    The main methods of single-phase convection heat transfer enhancement are analyzed in this paper,and the unity of contradiction between heat transfer enhancement and energy consumption(or exergy destruction)is expounded.The thermodynamic relationship between heat(or exergy)transfer efficiency and energy consumption(or exergy destruction)as well as driving forces is established,and a general theoretical principle for single-phase convection heat transfer enhancement is further obtained.The principle shows that temperature gradient field distribution and velocity field distribution constrain each other,and that the optimum heat transfer efficiency can be obtained when they are synergetic.If the level of the synergy of temperature gradient field distribution with velocity field distribution is determined,the relative uniform temperature gradient is required,and vice versa.The principle also shows the relationship of relative temperature gradient with specific heat and coefficient of heat conductivity.The deduced results can be used as a theoretical guidance for single-phase convection heat transfer enhancement and optimum design of heat exchangers.

  2. Supramolecular chemistry-general principles and selected examples from anion recognition and metallosupramolecular chemistry.

    Science.gov (United States)

    Albrecht, Markus

    2007-12-01

    This review gives an introduction into supramolecular chemistry describing in the first part general principles, focusing on terms like noncovalent interaction, molecular recognition, self-assembly, and supramolecular function. In the second part those will be illustrated by simple examples from our laboratories. Supramolecular chemistry is the science that bridges the gap between the world of molecules and nanotechnology. In supramolecular chemistry noncovalent interactions occur between molecular building blocks, which by molecular recognition and self-assembly form (functional) supramolecular entities. It is also termed the "chemistry of the noncovalent bond." Molecular recognition is based on geometrical complementarity based on the "key-and-lock" principle with nonshape-dependent effects, e.g., solvatization, being also highly influential. Self-assembly leads to the formation of well-defined aggregates. Hereby the overall structure of the target ensemble is controlled by the symmetry features of the certain building blocks. Finally, the aggregates can possess special properties or supramolecular functions, which are only found in the ensemble but not in the participating molecules. This review gives an introduction on supramolecular chemistry and illustrates the fundamental principles by recent examples from our group.

  3. A general theoretical principle for single-phase convection heat transfer enhancement

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The main methods of single-phase convection heat transfer enhancement are analyzed in this paper, and the unity of contradiction between heat transfer enhancement and energy consumption(or exergy destruction)is expounded.The thermodynamic relationship between heat(or exergy)transfer efficiency and energy consumption(or exergy destruction)as well as driving forces is established,and a general theoretical principle for single-phase convection heat transfer enhancement is further obtained. The principle shows that temperature gradient field distribution and velocity field distribution constrain each other,and that the optimum heat transfer efficiency can be obtained when they are synergetic.If the level of the synergy of temperature gradient field distribution with velocity field distribution is determined,the relative uniform temperature gradient is required,and vice versa.The principle also shows the relationship of relative temperature gradient with specific heat and coefficient of heat conductivity.The deduced results can be used as a theoretical guidance for single-phase convection heat transfer enhancement and optimum design of heat exchangers.

  4. Adding a strategic edge to human factors/ergonomics: principles for the management of uncertainty as cornerstones for system design.

    Science.gov (United States)

    Grote, Gudela

    2014-01-01

    It is frequently lamented that human factors and ergonomics knowledge does not receive the attention and consideration that it deserves. In this paper I argue that in order to change this situation human factors/ergonomics based system design needs to be positioned as a strategic task within a conceptual framework that incorporates both business and design concerns. The management of uncertainty is presented as a viable candidate for such a framework. A case is described where human factors/ergonomics experts in a railway company have used the management of uncertainty perspective to address strategic concerns at firm level. Furthermore, system design is discussed in view of the relationship between organization and technology more broadly. System designers need to be supported in better understanding this relationship in order to cope with the uncertainties this relationship brings to the design process itself. Finally, the emphasis on uncertainty embedded in the recent surge of introducing risk management across all business sectors is suggested as another opportunity for bringing human factors and ergonomics expertise to the fore.

  5. A general program to compute the multivariable stability margin for systems with parametric uncertainty

    Science.gov (United States)

    Sanchez Pena, Ricardo S.; Sideris, Athanasios

    1988-01-01

    A computer program implementing an algorithm for computing the multivariable stability margin to check the robust stability of feedback systems with real parametric uncertainty is proposed. The authors present in some detail important aspects of the program. An example is presented using lateral directional control system.

  6. Imprecision and uncertainty in information representation and processing new tools based on intuitionistic fuzzy sets and generalized nets

    CERN Document Server

    Sotirov, Sotir

    2016-01-01

    The book offers a comprehensive and timely overview of advanced mathematical tools for both uncertainty analysis and modeling of parallel processes, with a special emphasis on intuitionistic fuzzy sets and generalized nets. The different chapters, written by active researchers in their respective areas, are structured to provide a coherent picture of this interdisciplinary yet still evolving field of science. They describe key tools and give practical insights into and research perspectives on the use of Atanassov's intuitionistic fuzzy sets and logic, and generalized nets for describing and dealing with uncertainty in different areas of science, technology and business, in a single, to date unique book. Here, readers find theoretical chapters, dealing with intuitionistic fuzzy operators, membership functions and algorithms, among other topics, as well as application-oriented chapters, reporting on the implementation of methods and relevant case studies in management science, the IT industry, medicine and/or ...

  7. 2013 MARS – Refresher presentation | General principles of the Merit, Appraisal and Recognition Scheme

    CERN Multimedia

    2013-01-01

    Staff members are invited to attend one of the three following information sessions that shall outline the general principles of the 2013 annual Merit, Appraisal and Recognition Scheme (MARS).   Monday 14 January at 10:00-11:30 – Filtration Plant (222-R-001) Thursday 17 January at 10:00-11:30 – Kjell Johnsen Auditorium (30-7-018) Monday 21 January at 10:00-11:30 - BE Amphitheatre Prévessin (864-1-D02)   General information on the MARS exercise may also be found in the CERN admin e-guide: https://admin-eguide.web.cern.ch/admin-eguide/mars/mars.asp. Human Resources Department Tel. 72728

  8. Leaky Mode Engineering: A General Design Principle for Dielectric Optical Antenna Solar Absorbers

    CERN Document Server

    Yu, Yiling

    2014-01-01

    We present a general principle for the rational design of dielectric optical anatennas with optimal solar absorption: leaky mode engineering. This builds upon our previous study that demonstrates the solar absorption in a given amount of materials dictated by the modal properties of leaky modes. Here we synergistically examine the correlation among the modal properties of leaky modes, the physical features of dielectric structures, and the solar absorption in these structures. Our analysis clearly points out the general guideline for the design of dielectric optical antennas with optimal solar absorption enhenacement: a) using 0D structures; b) the shape does not matter much; c) heterostructuring with non-absorbing materials is a promising strategy; d) the design of a large-scale nanostructure array can literally build upon the design of single nanostructure solar absorbers.

  9. 2011 Mars - Refresher presentation - General principles of the Merit, Appraisal and Recognition Scheme

    CERN Multimedia

    HR Department

    2010-01-01

    Staff members are invited to attend one of the following three information sessions that shall outline the general principles of the 2011 annual Merit, Appraisal and Recognition Scheme (MARS). Monday 10 January at 16:00-17:00 BE Auditorium Prévessin (864-1-D-02) – French;   Tuesday 11 January at 15:00-16:00 – Council Chamber (503-1-001) – English;   Thursday 13 January at 15:00-16:00 - Kjell Johnsen Auditorium (30-7-018) – French. General information on the MARS exercise may also be found on the Human Resources website: https://hr-eguide.web.cern.ch/hr-eguide/mars/mars.asp Tel. 70674 / 72728

  10. General proof of the entropy principle for self-gravitating fluid in f ( R) gravity

    Science.gov (United States)

    Fang, Xiongjun; Guo, Minyong; Jing, Jiliang

    2016-08-01

    The discussions on the connection between gravity and thermodynamics attract much attention recently. We consider a static self-gravitating perfect fluid system in f ( R) gravity, which is an important theory could explain the accelerated expansion of the universe. We first show that the Tolman-Oppenheimer-Volkoff equation of f ( R) theories can be obtained by thermodynamical method in spherical symmetric spacetime. Then we prove that the maximum entropy principle is also valid for f ( R) gravity in general static spacetimes beyond spherical symmetry. The result shows that if the constraint equation is satisfied and the temperature of fluid obeys Tolmans law, the extrema of total entropy implies other components of gravitational equations. Conversely, if f ( R) gravitational equation hold, the total entropy of the fluid should be extremum. Our work suggests a general and solid connection between f ( R) gravity and thermodynamics.

  11. Local conjugacy theorem, rank theorems in advanced calculus and a generalized principle for constructing Banach manifolds

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Applications of locally fine property for operators are further developed. Let E and F be Banach spaces and f: be C1 nonlinear map, where U (x0) is an open set containing point x0∈E. With the locally fine property for Frechet derivatives f′(x) and generalized rank theorem for f′(x), a local conjugacy theorem, i.e. a characteristic condition for f being conjugate to f′(x0) near x0,is proved. This theorem gives a complete answer to the local conjugacy problem. Consequently, several rank theorems in advanced calculus are established, including a theorem for C1 Fredholm map which has been so far unknown. Also with this property the concept of regular value is extended, which gives rise to a generalized principle for constructing Banach submanifolds.

  12. Local conjugacy theorem, rank theorems in advanced calculus and a generalized principle for constructing Banach manifolds

    Institute of Scientific and Technical Information of China (English)

    马吉溥

    2000-01-01

    Applications of locally fine property for operators are further developed. Let E and F be Banach spaces and f: U( x0) E—→F be C1 nonlinear map, where U (x0) is an open set containing point x0∈ E. With the locally fine property for Frechet derivatives f’ (x) and generalized rank theorem for f ’( x), a local conjugacy theorem, i. e. a characteristic condition for f being conjugate to f (x0) near x0,is proved. This theorem gives a complete answer to the local conjugacy problem. Consequently, several rank theorems in advanced calculus are established, including a theorem for C1 Fredholm map which has been so far unknown. Also with this property the concept of regular value is extended, which gives rise to a generalized principle for constructing Banach submanifolds.

  13. 49 CFR 1200.2 - Adoption of generally accepted accounting principles issued by the Financial Accounting Standards...

    Science.gov (United States)

    2010-10-01

    ... principles issued by the Financial Accounting Standards Board (FASB). 1200.2 Section 1200.2 Transportation... COMMERCE ACT § 1200.2 Adoption of generally accepted accounting principles issued by the Financial... Financial Accounting Standards by the FASB, and provided that the Office of Economics,...

  14. A general principle governs vision-dependent dendritic patterning of retinal ganglion cells.

    Science.gov (United States)

    Xu, Hong-Ping; Sun, Jin Hao; Tian, Ning

    2014-10-15

    Dendritic arbors of retinal ganglion cells (RGCs) collect information over a certain area of the visual scene. The coverage territory and the arbor density of dendrites determine what fraction of the visual field is sampled by a single cell and at what resolution. However, it is not clear whether visual stimulation is required for the establishment of branching patterns of RGCs, and whether a general principle directs the dendritic patterning of diverse RGCs. By analyzing the geometric structures of RGC dendrites, we found that dendritic arbors of RGCs underwent a substantial spatial rearrangement after eye-opening. Light deprivation blocked both the dendritic growth and the branch patterning, suggesting that visual stimulation is required for the acquisition of specific branching patterns of RGCs. We further showed that vision-dependent dendritic growth and arbor refinement occurred mainly in the middle portion of the dendritic tree. This nonproportional growth and selective refinement suggest that the late-stage dendritic development of RGCs is not a passive stretching with the growth of eyes, but rather an active process of selective growth/elimination of dendritic arbors of RGCs driven by visual activity. Finally, our data showed that there was a power law relationship between the coverage territory and dendritic arbor density of RGCs on a cell-by-cell basis. RGCs were systematically less dense when they cover larger territories regardless of their cell type, retinal location, or developmental stage. These results suggest that a general structural design principle directs the vision-dependent patterning of RGC dendrites.

  15. THE GENERAL METHODOLOGICAL PRINCIPLES OF COMBINED OPTIONAL ONLINE ENGLISH LANGUAGE TRAINING OF PRIMARY SCHOOL STUDENTS

    Directory of Open Access Journals (Sweden)

    E. I. Zadorozhnaya

    2016-01-01

    Full Text Available The aim of the publication is to demonstrate the implementation of general methodological principles of optional elementary school online foreign languages learning on an example of a virtual course for students of the second and third grades.Methods. The methods involve pedagogical modeling and projecting; the experience of foreign and Russian methodists, teachers and researchers is analysed, generalized and adjusted to the modern realias.Results and scientific novelty. On the basis of the requirements of the state educational standard and interest of pupils in computer games, the author’s technique of the combined facultative educational activities integrated to training in English at elementary school is developed. Online training in the form of games (additional to the major classroom activities gives a possibility of the choice of tasks interesting to children, studying the material at optimum comfortable and individual speed; it is possible to perform the tasks at home excluding the stressful situations that are specific to school examination, and allows pupils to master most effectively personal, metasubject and object competences. In general context of quality improvement of the general education, the modernization of educational process assumes not only justification of its new maintenance, but also restructuring of scientific and methodical support which has to meet essential needs of teachers and pupils, to facilitate access to necessary specific information. The lack of methodical base of creation of electronic distance resources for foreign-language education of younger school students has motivated the author to create own methodical concept of online training taking into account age of pupils. The complex of the general methodical principles is thoroughly considered; based on the general methodical principles, the proposed modular technique of the organization of an online class is created and implemented. Interactive blocks are

  16. Stochastic capture zone analysis of an arsenic-contaminated well using the generalized likelihood uncertainty estimator (GLUE) methodology

    Science.gov (United States)

    Morse, Brad S.; Pohll, Greg; Huntington, Justin; Rodriguez Castillo, Ramiro

    2003-06-01

    In 1992, Mexican researchers discovered concentrations of arsenic in excess of World Heath Organization (WHO) standards in several municipal wells in the Zimapan Valley of Mexico. This study describes a method to delineate a capture zone for one of the most highly contaminated wells to aid in future well siting. A stochastic approach was used to model the capture zone because of the high level of uncertainty in several input parameters. Two stochastic techniques were performed and compared: "standard" Monte Carlo analysis and the generalized likelihood uncertainty estimator (GLUE) methodology. The GLUE procedure differs from standard Monte Carlo analysis in that it incorporates a goodness of fit (termed a likelihood measure) in evaluating the model. This allows for more information (in this case, head data) to be used in the uncertainty analysis, resulting in smaller prediction uncertainty. Two likelihood measures are tested in this study to determine which are in better agreement with the observed heads. While the standard Monte Carlo approach does not aid in parameter estimation, the GLUE methodology indicates best fit models when hydraulic conductivity is approximately 10-6.5 m/s, with vertically isotropic conditions and large quantities of interbasin flow entering the basin. Probabilistic isochrones (capture zone boundaries) are then presented, and as predicted, the GLUE-derived capture zones are significantly smaller in area than those from the standard Monte Carlo approach.

  17. Humor Styles and the Intolerance of Uncertainty Model of Generalized Anxiety

    Directory of Open Access Journals (Sweden)

    Nicholas A. Kuiper

    2014-08-01

    Full Text Available Past research suggests that sense of humor may play a role in anxiety. The present study builds upon this work by exploring how individual differences in various humor styles, such as affiliative, self-enhancing, and self-defeating humor, may fit within a contemporary research model of anxiety. In this model, intolerance of uncertainty is a fundamental personality characteristic that heightens excessive worry, thus increasing anxiety. We further propose that greater intolerance of uncertainty may also suppress the use of adaptive humor (affiliate and self-enhancing, and foster the increased use of maladaptive self-defeating humor. Initial correlational analyses provide empirical support for these proposals. In addition, we found that excessive worry and affiliative humor both served as significant mediators. In particular, heightened intolerance of uncertainty lead to both excessive worry and a reduction in affiliative humor use, which, in turn, increased anxiety. We also explored potential humor mediating effects for each of the individual worry content domains in this model. These analyses confirmed the importance of affiliative humor as a mediator for worry pertaining to a wide range of content domains (e.g., relationships, lack of confidence, the future and work. These findings were then discussed in terms of a combined model that considers how humor styles may impact the social sharing of positive and negative emotions.

  18. Abolishing the maximum tension principle

    CERN Document Server

    Dabrowski, Mariusz P

    2015-01-01

    We find the series of example theories for which the relativistic limit of maximum tension $F_{max} = c^2/4G$ represented by the entropic force can be abolished. Among them the varying constants theories, some generalized entropy models applied both for cosmological and black hole horizons as well as some generalized uncertainty principle models.

  19. Abolishing the maximum tension principle

    Directory of Open Access Journals (Sweden)

    Mariusz P. Da̧browski

    2015-09-01

    Full Text Available We find the series of example theories for which the relativistic limit of maximum tension Fmax=c4/4G represented by the entropic force can be abolished. Among them the varying constants theories, some generalized entropy models applied both for cosmological and black hole horizons as well as some generalized uncertainty principle models.

  20. The Principle Of Justice In Magna Carta Libertatum And Its Influence On The Law In General

    Directory of Open Access Journals (Sweden)

    Zendeli Emine

    2015-12-01

    Full Text Available This article aims to expound the principle of justice, as a fundamental value and as an immanent category of law, as well as one of the fundamental human rights, prescribed and guaranteed by a myriad of international instruments and documents. After a brief historical account, by focusing on Article 40 of the Magna Carta Libertatum, which states that: “To No One Will we Sell, To No One Will we refuse or delay, right or justice”, this article claims to show the importance of incorporation of this principle in the provisions of the Magna Carta and its impact on the development of theory and legislation in the past and present. Moreover, the article intends to explore the extent of influence that the priciple of justice has on the functioning of the law in general. Since justice implicates the permanent and constant will to render each person his due, and this achieved through equality, it results that justice means being equal. In this context, the article will explore the concept of equality as a precondition of justice, as well as the conditions and modalities for its implementation.

  1. General Principles of the Civil Law of the People’s Republic of China

    Institute of Scientific and Technical Information of China (English)

    1994-01-01

    In this issue we will introduce readers to the General Principles of the Civil Lave of the People’s Republic of China, which was adopted at the Fourth Session of the Sixth National People’s Congress, promulgated by order No.37 of the President of the People’s Republic of China on April 12, 1986, and effective as of January 1, 1987.This law was formulated according to the constitution and the actual situation in our country, drawing upon our practical experience in civil actirities,for the purpose of protecting the lawful civil rights and interests of citizens and legal persons and correctly adjusting civil relations,so as to meet the needs of the developing socialist modernizationThe Civil Law of the People’s Republie of China has 156 articles and 9 chapters. The chapters are:1) Basic Principles;2) Citizen (Natural Person); 3) Legal Persons; 4) Civil Law and Agencies; 5)Civil Rights; 6) Civil Liability; 7) Limitations of Action; 8) Application of Law in Civil Relations with Foreigners; and 9) Supplement

  2. Robotic and mathematical modeling reveal general principles of appendage control and coordination in terrestrial locomotion

    Science.gov (United States)

    McInroe, Benjamin; Astley, Henry; Gong, Chaohui; Kawano, Sandy; Schiebel, Perrin; Choset, Howie; Goldman, Daniel I.

    The transition from aquatic to terrestrial life presented new challenges to early walkers, necessitating robust locomotion on complex, flowable substrates (e.g. sand, mud). Locomotion on such substrates is sensitive to limb morphology and kinematics. Although early walker morphologies are known, principles of appendage control remain elusive. To reveal limb control strategies that facilitated the invasion of land, we study both robotic and mathematical models. Robot experiments show that an active tail is critical for robust locomotion on granular media, enabling locomotion even with poor foot placement and limited ability to lift the body. Using a granular resistive force theory model, we construct connection vector fields that reveal how appendage coordination and terrain inclination impact locomotor performance. This model replicates experimental results, showing that moving limbs/tail in phase is most effective (suggesting a locomotor template). Varying limb trajectories and contacts, we find gaits for which tail use can be neutral or harmful, suggesting limb-tail coordination to be a nontrivial aspect of locomotion. Our findings show that robot experiments coupled with geometric mechanics provide a general framework to reveal principles of robust terrestrial locomotion. This work was supported by NSF PoLS.

  3. Proposed Framework wWhich Use the Object Oriented Principles in Relational Systems. General Aspects and Principles (Part I

    Directory of Open Access Journals (Sweden)

    Catalin STRIMBEI

    2006-01-01

    Full Text Available There are some significant theoretical and technological approaches on the issue of object-relational "impedance mismatch" between applications' abstract model and database structures. Two characteristics of those approaches we think that are questionable: first of all it is so called “flat” nature of relational systems and model, and then there is the drawback of the storage of (object oriented semantics on the application level, thus severe limiting the data (object sharing and, at the same time, virtually broking the data independence principle of database systems architecture. In this paper we will try to outline an approach to address to some in a concrete manner.

  4. General proof of the entropy principle for self-gravitating fluid in f(R) Gravity

    CERN Document Server

    Fang, Xiongjun; Jing, Jiliang

    2015-01-01

    For a static self-gravitating perfect fluid system in $f(R)$ gravity, we first show that in a spherical symmetric spacetime, the Tolman-Oppenheimer-Volkoff equation can be obtained by thermodynamical method. We then prove that the maximum entropy principle is also valid for $f(R)$ gravity in general spacetimes. Which means that if the Einstein constraint equation is satisfied and the temperature of fluid obeys Tolmans law, the extrema of total entropy implies other components of gravitational equations. Conversely, if $f(R)$ gravitational equations hold, the total entropy of the fluid should be extremum. Our work reveals the relationship between $f(R)$ gravity and thermodynamics, and implies that there is no need to modify entropy for perfect fluid in $f(R)$ gravity.

  5. Enhancement of the capabilities of liquid chromatography-mass spectrometry with derivatization: general principles and applications.

    Science.gov (United States)

    Xu, Fengguo; Zou, Li; Liu, Ying; Zhang, Zunjian; Ong, Choon Nam

    2011-01-01

    The integration of liquid chromatography-mass spectrometry (LC-MS) with derivatization is a relatively new and unique strategy that could add value and could enhance the capabilities of LC-MS-based technologies. The derivatization process could be carried out in various analytical steps, for example, sampling, storage, sample preparation, HPLC separation, and MS detection. This review presents an overview of derivatization-based LC-MS strategy over the past 10 years and covers both the general principles and applications in the fields of pharmaceutical and biomedical analysis, biomarker and metabolomic research, environmental analysis, and food-safety evaluation. The underlying mechanisms and theories for derivative reagent selection are summarized and highlighted to guide future studies.

  6. The payment for performance model and its influence on British general practitioners' principles and practice

    Directory of Open Access Journals (Sweden)

    Armando Henrique Norman

    2014-01-01

    Full Text Available This article explores some effects of the British payment for performance model on general practitioners’ principles and practice, which may contribute to issues related to financial incentive modalities and quality of primary healthcare services in low and middle-income countries. Aiming to investigate what general practitioners have to say about the effect of the British payment for performance on their professional ethos we carried out semi-structured interviews with 13 general practitioner educators and leaders working in academic medicine across the UK. The results show a shift towards a more biomedical practice model and fragmented care with nurse practitioners and other health care staff focused more on specific disease conditions. There has also been an increased medicalisation of the patient experience both through labelling and the tendency to prescribe medications rather than non-pharmacological interventions. Thus, the British payment for performance has gradually strengthened a scientific-bureaucratic model of medical practice which has had profound effects on the way family medicine is practiced in the UK.

  7. [General principles of effective communication between physician and patient with selected mental disorders].

    Science.gov (United States)

    Błaszczyk, Justyna; Bobińska, Kinga; Filip, Maria; Gałecki, Piotr

    2015-04-01

    Faced with the growing frequency of mental disorders occurrence and considering the necessity of improving the patient care, it is particularly important that physicians of different specialties knew the general principles of effective communication with patients who are mentally ill. Equally important is to spread the knowledge of the symptomatology of various mental illnesses. Studies published by the Institute of Psychiatry and Neurology involving persons between 18 and 64 years old, show that 8 millions Poles suffers or suffered from mental disorders. This represents almost 25% of Polish society. The above data confirm, that basic knowledge of criteria for diagnosing mental disorders and their treatment by primary care physicians, determines the success of the entire health care system. It must be taken into consideration that frequently patients seeing general practitioner (GP) are suffering from more than one mental illness or it is accompanied by somatic disease. Adequate communication determines effective treatment. Simple yet exact message, ability to adapt it to patient and problems reported by him, is a valuable means in daily medical practice. It reduces the risk of iatrogenic disorder, encourages the efficiency of the entire therapeutic process. Good cooperation with the patient is also determined by patience, empathy, understanding, and competence. The aim of this study is to present the principles of effective communication between doctor and patient suffering from selected mental disorders. The article defines the concept of communication. It shows symptomatology of primary psychiatric disorders. Moreover, the most common difficulties in relationship between the doctor and the patient had been pointed. © 2015 MEDPRESS.

  8. Complementarity As Generative Principle: A Thought Pattern for Aesthetic Appreciations and Cognitive Appraisals in General

    Directory of Open Access Journals (Sweden)

    Yan Bao

    2017-05-01

    Full Text Available In experimental aesthetics the relationship between the arts and cognitive neuroscience has gained particular interest in recent years. But has cognitive neuroscience indeed something to offer when studying the arts? Here we present a theoretical frame within which the concept of complementarity as a generative or creative principle is proposed; neurocognitive processes are characterized by the duality of complementary activities like bottom-up and top-down control, or logistical functions like temporal control and content functions like perceptions in the neural machinery. On that basis a thought pattern is suggested for aesthetic appreciations and cognitive appraisals in general. This thought pattern is deeply rooted in the history of philosophy and art theory since antiquity; and complementarity also characterizes neural operations as basis for cognitive processes. We then discuss some challenges one is confronted with in experimental aesthetics; in our opinion, one serious problem is the lack of a taxonomy of functions in psychology and neuroscience which is generally accepted. This deficit makes it next to impossible to develop acceptable models which are similar to what has to be modeled. Another problem is the severe language bias in this field of research as knowledge gained in many languages over the ages remains inaccessible to most scientists. Thus, an inspection of research results or theoretical concepts is necessarily too narrow. In spite of these limitations we provide a selective summary of some results and viewpoints with a focus on visual art and its appreciation. It is described how questions of art and aesthetic appreciations using behavioral methods and in particular brain-imaging techniques are analyzed and evaluated focusing on such issues like the representation of artwork or affective experiences. Finally, we emphasize complementarity as a generative principle on a practical level when artists and scientists work

  9. Entanglement and discord assisted entropic uncertainty relations under decoherence

    Science.gov (United States)

    Yao, ChunMei; Chen, ZhiHua; Ma, ZhiHao; Severini, Simone; Serafini, Alessio

    2014-09-01

    The uncertainty principle is a crucial aspect of quantum mechanics. It has been shown that quantum entanglement as well as more general notions of correlations, such as quantum discord, can relax or tighten the entropic uncertainty relation in the presence of an ancillary system. We explored the behaviour of entropic uncertainty relations for system of two qubits-one of which subjects to several forms of independent quantum noise, in both Markovian and non-Markovian regimes. The uncertainties and their lower bounds, identified by the entropic uncertainty relations, increase under independent local unital Markovian noisy channels, but they may decrease under non-unital channels. The behaviour of the uncertainties (and lower bounds) exhibit periodical oscillations due to correlation dynamics under independent non-Markovian reservoirs. In addition, we compare different entropic uncertainty relations in several special cases and find that discord-tightened entropic uncertainty relations offer in general a better estimate of the uncertainties in play.

  10. General principles and approaches to wound prevention and care at end of life: an overview .

    Science.gov (United States)

    Langemo, Diane

    2012-05-01

    The incidence and prevalence of wounds in persons at the end of life is largely unknown, but wounds are estimated to occur in at least one third of hospice patients. At the end of life, healthcare professionals must help the patient and/ or family decide whether the goals of wound prevention and care should focus on healing or palliation. At all times, it is important to consider that a palliative approach does not negate the potential for wound improvement or even closing before death. A review of the literature suggests that, in general, few differences exist between the general principles of wound prevention and care and an optimal palliative care plan. For example, maintenance of a moist wound environment is recommended to facilitate healing in general protocols of care. In end-of-life patients, dressings should be used for general comfort and prevention of skin exposure to wound exudate and to reduce the number of potentially painful dressing changes. Risk factors for tissue breakdown and pressure ulcer development are also similar. Palliative care patients with limited mobility and physical activity are at highest risk for developing pressure ulcers, but measures to help prevent these wounds may have to be adjusted to meet the overall goals of palliative care for a particular patient. Wounds encountered mainly in cancer patients - eg, fungating and radiation wounds - can pose important challenges for healthcare professionals and are very stressful for the patient. Pressure ulcers, fungating, and radiation wounds at the end of life are to be managed palliatively with the overall goal to minimize pain and odor, enhance comfort, and potentially improve the condition of the ulcer. Although research remains limited, it is clear the clinician and patient must balance best wound prevention and management practices while promoting patient dignity, self-esteem, and quality of life.

  11. Over-constraint and a unified mobility method for general spatial mechanisms part 1: Essential principle

    Science.gov (United States)

    Zeng, Daxing; Lu, Wenjuan; Huang, Zhen

    2015-09-01

    Compared with the parallel mechanisms, the mobility analysis of the general multi-loop spatial mechanisms(GMSMs) is more difficult to obtain correct results. The reason is that its multi-loop is formed through several times of closings and there also exists motion coupling even strong coupling, where the over-constraints are concealed. However, the mobility analysis for this kind of mechanisms has been paid few attentions. A new systemic methodology for analyzing mobility is proposed for GMSMs also based on the screw theory. The key issue for mobility analysis is to recognize the over-constraint. Firstly, three theorems are given and point out: the reason and site of over-constraint occurrence, calculating the number of over-constraints by the screw theory, and how to analyze the over-constraints for a single-loop mechanism as well. Then, three closing forms for GMSMs are proposed including rigid closure, movable closure and dynamic closure, and for the three different forms the different analysis methods are also given. Especially, for the most difficult issue of GMSMs with the multi-loop closure in many times and the inevitable motion coupling, two important methods are proposed: "recognizing over-constraints by analyzing relative movement" and "recognizing over-constraints by virtual loop". The two methods are well used to solve the issue. Above-mentioned principles are not only systematic and effective but also unified. They provide a theoretical basis for the general multi-loop spatial mechanisms.

  12. APPLICATION OF THE PRINCIPLE "FROM GENERAL TO PARTICULAR" IN TRAINING YOUNG ARTISTS FOR PLEIN-AIR PRACTICE

    Directory of Open Access Journals (Sweden)

    Lyudmila Sergeevna FILIPPOVA

    2015-01-01

    Full Text Available The article highlights the principle "from General to Particular" as a basic principle in a variety of artistic activities, in teaching visual art literacy, in particular, and training novice painters for plein-air practice. The article is aimed at providing assistance and practical recommendations in training students for plein-air practice. In the article the author describes the emergence of the principle "from Simple to Complex" ("from General to Particular" since ancient times, its development during the Renaissance and its relevance in the modern system of teaching fine arts. The article reflects the aesthetic component of this principle within the frame of the world order system in general. The author shows concrete examples of application of the principle "from General to Particular " or "from Simple to Complex" in teaching composition finding the composition center and subordination to it of all parts of the composition; academic drawing – analysis of objects and shapes, tonal drawing, as well as academic painting, we mean the general coloring of the painting. 

  13. How General are Risk Preferences? Choices under Uncertainty in Different Domains*

    Science.gov (United States)

    Einav, Liran; Finkelstein, Amy; Pascu, Iuliana; Cullen, Mark R.

    2011-01-01

    We analyze the extent to which individuals’ choices over five employer-provided insurance coverage decisions and one 401(k) investment decision exhibit systematic patterns, as would be implied by a general utility component of risk preferences. We provide evidence consistent with an important domain-general component that operates across all insurance choices. We find a considerably weaker relationship between one's insurance decisions and 401(k) asset allocation, although this relationship appears larger for more “financially sophisticated” individuals. Estimates from a stylized coverage choice model suggest that up to thirty percent of our sample makes choices that may be consistent across all six domains. PMID:24634517

  14. Generalized Likelihood Ratio Statistics and Uncertainty Adjustments in Efficient Adaptive Design of Clinical Trials

    CERN Document Server

    Bartroff, Jay

    2011-01-01

    A new approach to adaptive design of clinical trials is proposed in a general multiparameter exponential family setting, based on generalized likelihood ratio statistics and optimal sequential testing theory. These designs are easy to implement, maintain the prescribed Type I error probability, and are asymptotically efficient. Practical issues involved in clinical trials allowing mid-course adaptation and the large literature on this subject are discussed, and comparisons between the proposed and existing designs are presented in extensive simulation studies of their finite-sample performance, measured in terms of the expected sample size and power functions.

  15. [From the Principle of Beneficence to the Principle of Autonomy. Assessment of Patients' Mental Competency in the General Hospital].

    Science.gov (United States)

    Diana, Restrepo B; Carlos, Cardeño C; Marle, Duque G; Santiago, Jaramillo

    2012-06-01

    Refusing a medical procedure is a valid way of exercising every patient's right to autonomy. From the legal point of view, autonomy is based on the right to privacy. In recent decades the legal right to self-determination has gradually expanded and today patients in full possession of their mental faculties, have the moral and legal right to make their own decisions and these decisions take precedence over physician and family. Often liaison psychiatrists are called in to assess the mental competence of patients in the general hospital. To determine the psychiatrist's role in evaluating these patients. The assessment of a patient's ability to decide and self-determine is a common clinical problem in general hospitals. Evaluation of these patients requires a proper understanding of the philosophical, ethical, and legal issues that guide the appropriate treatment of these complex clinical problems. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  16. Hydrogen influence on generalized stacking fault of zirconium basal plane: First-principles calculation study

    CERN Document Server

    Songjun, Hou; Zhi, Zeng

    2015-01-01

    The infuence of hydrogen on the generalized stacking fault (GSF) energy of the basal plane along the and directions in the hcp Zr were investigated by using the first-principles calculation method. The modification of the GSF energy were studied with respect to the different distances of H atoms away from the slip plane and hydrogen content there. The calculation results have shown that the GSF energy along the direction drastically reduces when H atoms locate nearby the slip plane. But H atoms slightly decrease the GSF barrier for the slipping case. Meanwhile, with the increase of hydrogen density around the slip plane, the GSF energies along both the shift directions further reduced. The physical origin of the reduction of GSF energy due to the existence of hydrogen atoms in Zr was analyzed based on the Bader charge method. It is interpreted by the Coulomb repulsion of the Zr atoms besides of the slip plane due to the charge transfer from Zr to H atoms.

  17. [Expectation for JSPN's contribution following revision of General Principles for Suicide Prevention Policy].

    Science.gov (United States)

    Takeshima, Tadashi

    2014-01-01

    Japan's national suicide prevention efforts following the 1998 surge in the number of suicide deaths can be divided into three stages: the first stage administrated mainly by the health ministry (1998-2005), the second and transitional stage when it was upgraded to a full governmental issue (2005-2006), and the third and present stage following the promulgation of the Basic Act for Suicide Prevention in 2006. In June 2007, the General Principles for Suicide Prevention Policy (GPSP), a guideline on how the national government should act to promote suicide prevention, was announced, urging local governments to tackle the problem of suicide. The GPSP was set to be revised after around five years from its publication, and, thus, a revised GPSP was published in August of 2012. Based on the five years of challenges, the revised GPSP states that suicide prevention strategies should move on to more practical and community-oriented ones. The National Center of Neurology and Psychiatry (NCNP), through its Center for Suicide Prevention, played a coordinating role in putting forward a proposal for the revision, working with 29 academic societies including the Japanese Society of Psychiatry and Neurology (JSPN). In February 2013, by further developing the relationships with academic societies, etc., which were forged in the above-mentioned process, NCNP set up the Preparatory Committee for the Evidence-based Suicide Prevention Consortium in order to contribute to suicide prevention strategies from an academic perspective. Meanwhile, in the World Health Organization's 66th World Health Assembly held in May 2013, the Comprehensive Mental Health Action Plan 2013-2020 was approved. Its core principle is "no health without mental health", and it has the following four objectives: (1) to strengthen effective leadership and governance for mental health; (2) to provide comprehensive, integrated, and responsive mental health and social care services in community-based settings; (3) to

  18. Group cognitive behavioral therapy targeting intolerance of uncertainty: a randomized trial for older Chinese adults with generalized anxiety disorder.

    Science.gov (United States)

    Hui, Chen; Zhihui, Yang

    2016-09-03

    China has entered the aging society, but the social support systems for the elderly are underdeveloped, which may make the elderly feel anxiety about their health and life quality. Given the prevalence of generalized anxiety disorder (GAD) in the elderly, it is very important to pay more attention to the treatment for old adults. Although cognitive behavioral therapy targeting intolerance of uncertainty (CBT-IU) has been applied to different groups of patients with GAD, few studies have been performed to date. In addition, the effects of CBT-IU are not well understood, especially when applied to older adults with GAD. Sixty-three Chinese older adults with a principal diagnosis of GAD were enrolled. Of these, 32 were randomized to receive group CBT-IU (intervention group) and 31 were untreated (control group). GAD and related symptoms were assessed using the Penn State Worry Questionnaire, Intolerance of Uncertainty Scale-Chinese Version, Beck Anxiety Inventory, Beck Depression Inventory, Why Worry-II scale, Cognitive Avoidance Questionnaire, Generalized Anxiety Disorder Questionnaire-IV, and Generalized Anxiety Disorder Severity Scale across the intervention. The changes between pre and after the intervention were collected, as well as the six-month follow-up. F test and repeated-measures ANOVA were conducted to analyze the data. Compared to control group, the measures' scores of experimental group decreased significantly after the intervention and six-month follow-up. Besides the main effects for time and group were significant, the interaction effect for group × time was also significant. These results indicated the improvement of the CBT-IU group and the persistence of effect after six months. Group CBT-IU is effective in Chinese older adults with GAD. The effects of CBT-IU on GAD symptoms persist for at least six months after treatment.

  19. Pleasure and pain: teaching neuroscientific principles of hedonism in a large general education undergraduate course.

    Science.gov (United States)

    Bodnar, Richard J; Stellar, James R; Kraft, Tamar T; Loiacono, Ilyssa; Bajnath, Adesh; Rotella, Francis M; Barrientos, Alicia; Aghanori, Golshan; Olsson, Kerstin; Coke, Tricia; Huang, Donald; Luger, Zeke; Mousavi, Seyed Ali Reza; Dindyal, Trisha; Naqvi, Naveen; Kim, Jung-Yo

    2013-01-01

    In a large (250 registrants) general education lecture course, neuroscience principles were taught by two professors as co-instructors, starting with simple brain anatomy, chemistry, and function, proceeding to basic brain circuits of pleasure and pain, and progressing with fellow expert professors covering relevant philosophical, artistic, marketing, and anthropological issues. With this as a base, the course wove between fields of high relevance to psychology and neuroscience, such as food addiction and preferences, drug seeking and craving, analgesic pain-inhibitory systems activated by opiates and stress, neuroeconomics, unconscious decision-making, empathy, and modern neuroscientific techniques (functional magnetic resonance imaging and event-related potentials) presented by the co-instructors and other Psychology professors. With no formal assigned textbook, all lectures were PowerPoint-based, containing links to supplemental public-domain material. PowerPoints were available on Blackboard several days before the lecture. All lectures were also video-recorded and posted that evening. The course had a Facebook page for after-class conversation and one of the co-instructors communicated directly with students on Twitter in real time during lecture to provide momentary clarification and comment. In addition to graduate student Teaching Assistants (TAs), to allow for small group discussion, ten undergraduate students who performed well in a previous class were selected to serve as discussion leaders. The Discussion Leaders met four times at strategic points over the semester with groups of 20-25 current students, and received one credit of Independent Study, thus creating a course within a course. The course grade was based on weighted scores from two multiple-choice exams and a five-page writing assignment in which each student reviewed three unique, but brief original peer-review research articles (one page each) combined with expository writing on the first

  20. Generalized Variational Principle for Long Water-Wave Equation by He's Semi-Inverse Method

    Directory of Open Access Journals (Sweden)

    Weimin Zhang

    2009-01-01

    Full Text Available Variational principles for nonlinear partial differential equations have come to play an important role in mathematics and physics. However, it is well known that not every nonlinear partial differential equation admits a variational formula. In this paper, He's semi-inverse method is used to construct a family of variational principles for the long water-wave problem.

  1. Supply Chains Competition under Uncertainty Concerning Player’s Strategies and Customer Choice Behavior: A Generalized Nash Game Approach

    Directory of Open Access Journals (Sweden)

    A. Hafezalkotob

    2012-01-01

    Full Text Available Decision makers in a supply chain confront two main sources of uncertainty in market environment including uncertainty about customers purchasing behaviors and rival chains strategies. Focusing on competition between two supply chains, it is considered that each customer as an independent player selects products of these chains based on random utility model. Similar to quantal response equilibrium approach, we take account of customer rationality as an exogenous parameter. Moreover, it is assumed that decision makers in a supply chain can perceive an estimation of rival strategies about price and service level formulated in the model by fuzzy strategies. In the competition model, chain’s decision makers consider a subjective probability for wining each customer which is formulated by coupled constraints. These constraints connect chains strategies regarding to each customer and yield a generalized Nash equilibrium problem. Since price cutting and increasing service level are main responses to rival supply chain, after calculating optimal strategies, we show that more efficient responses depend on customer preferences.

  2. Probabilistic Inference from Arbitrary Uncertainty using Mixtures of Factorized Generalized Gaussians

    CERN Document Server

    Garrido, M C; Ruiz, A; 10.1613/jair.533

    2011-01-01

    This paper presents a general and efficient framework for probabilistic inference and learning from arbitrary uncertain information. It exploits the calculation properties of finite mixture models, conjugate families and factorization. Both the joint probability density of the variables and the likelihood function of the (objective or subjective) observation are approximated by a special mixture model, in such a way that any desired conditional distribution can be directly obtained without numerical integration. We have developed an extended version of the expectation maximization (EM) algorithm to estimate the parameters of mixture models from uncertain training examples (indirect observations). As a consequence, any piece of exact or uncertain information about both input and output values is consistently handled in the inference and learning stages. This ability, extremely useful in certain situations, is not found in most alternative methods. The proposed framework is formally justified from standard prob...

  3. A generalized Lyapunov theory for robust root clustering of linear state space models with real parameter uncertainty

    Science.gov (United States)

    Yedavalli, R. K.

    1992-01-01

    The problem of analyzing and designing controllers for linear systems subject to real parameter uncertainty is considered. An elegant, unified theory for robust eigenvalue placement is presented for a class of D-regions defined by algebraic inequalities by extending the nominal matrix root clustering theory of Gutman and Jury (1981) to linear uncertain time systems. The author presents explicit conditions for matrix root clustering for different D-regions and establishes the relationship between the eigenvalue migration range and the parameter range. The bounds are all obtained by one-shot computation in the matrix domain and do not need any frequency sweeping or parameter gridding. The method uses the generalized Lyapunov theory for getting the bounds.

  4. A generalized Lyapunov theory for robust root clustering of linear state space models with real parameter uncertainty

    Science.gov (United States)

    Yedavalli, R. K.

    1992-01-01

    The problem of analyzing and designing controllers for linear systems subject to real parameter uncertainty is considered. An elegant, unified theory for robust eigenvalue placement is presented for a class of D-regions defined by algebraic inequalities by extending the nominal matrix root clustering theory of Gutman and Jury (1981) to linear uncertain time systems. The author presents explicit conditions for matrix root clustering for different D-regions and establishes the relationship between the eigenvalue migration range and the parameter range. The bounds are all obtained by one-shot computation in the matrix domain and do not need any frequency sweeping or parameter gridding. The method uses the generalized Lyapunov theory for getting the bounds.

  5. Principle of frequency selection of terminology and general economic vocabulary for economic textbook for translation

    OpenAIRE

    Golandam А. K.

    2012-01-01

    Due to the rapid development of technology and increase production increased practical importance economic translation. This article discusses the frequency of words on the principle of selection economic translation.

  6. Principle of frequency selection of terminology and general economic vocabulary for economic textbook for translation

    Directory of Open Access Journals (Sweden)

    Golandam А. K.

    2012-06-01

    Full Text Available Due to the rapid development of technology and increase production increased practical importance economic translation. This article discusses the frequency of words on the principle of selection economic translation.

  7. Uncertainty under quantum measures and quantum memory

    Science.gov (United States)

    Xiao, Yunlong; Jing, Naihuan; Li-Jost, Xianqing

    2017-04-01

    The uncertainty principle restricts potential information one gains about physical properties of the measured particle. However, if the particle is prepared in entanglement with a quantum memory, the corresponding entropic uncertainty relation will vary. Based on the knowledge of correlations between the measured particle and quantum memory, we have investigated the entropic uncertainty relations for two and multiple measurements and generalized the lower bounds on the sum of Shannon entropies without quantum side information to those that allow quantum memory. In particular, we have obtained generalization of Kaniewski-Tomamichel-Wehner's bound for effective measures and majorization bounds for noneffective measures to allow quantum side information. Furthermore, we have derived several strong bounds for the entropic uncertainty relations in the presence of quantum memory for two and multiple measurements. Finally, potential applications of our results to entanglement witnesses are discussed via the entropic uncertainty relation in the absence of quantum memory.

  8. Temperature effects on the generalized planar fault energies and twinnabilities of Al, Ni and Cu: First principles calculations

    KAUST Repository

    Liu, Lili

    2014-06-01

    Based on the quasiharmonic approach from first-principles phonon calculations, the volume versus temperature relations for Al, Ni and Cu are obtained. Using the equilibrium volumes at temperature T, the temperature dependences of generalized planar fault energies have also been calculated by first-principles calculations. It is found that the generalized planar fault energies reduce slightly with increasing temperature. Based on the calculated generalized planar fault energies, the twinnabilities of Al, Ni and Cu are discussed with the three typical criteria for crack tip twinning, grain boundary twinning and inherent twinning at different temperatures. The twinnabilities of Al, Ni and Cu also decrease slightly with increasing temperature. Ni and Cu have the inherent twinnabilities. But, Al does not exhibit inherent twinnability. These results are in agreement with the previous theoretical studies at 0 K and experimental observations at ambient temperature. © 2014 Elsevier B.V. All rights reserved.

  9. Time Crystals from Minimum Time Uncertainty

    CERN Document Server

    Faizal, Mir; Das, Saurya

    2016-01-01

    Motivated by the Generalized Uncertainty Principle, covariance, and a minimum measurable time, we propose a deformation of the Heisenberg algebra, and show that this leads to corrections to all quantum mechanical systems. We also demonstrate that such a deformation implies a discrete spectrum for time. In other words, time behaves like a crystal.

  10. REVISING THE INTOLERANCE OF UNCERTAINTY MODEL OF GENERALIZED ANXIETY DISORDER: EVIDENCE FROM UK AND ITALIAN UNDERGRADUATE SAMPLES

    Directory of Open Access Journals (Sweden)

    Gioia Bottesi

    2016-11-01

    Full Text Available The Intolerance of Uncertainty Model (IUM of Generalized Anxiety Disorder (GAD attributes a key role to Intolerance of Uncertainty (IU, and additional roles to Positive Beliefs about Worry (PBW, Negative Problem Orientation (NPO, and Cognitive Avoidance (CA, in the development and maintenance of worry, the core feature of GAD. Despite the role of the IUM components in worry and GAD has been considerably demonstrated, to date no studies have explicitly assessed whether and how PBW, NPO, and CA might turn IU into worry and somatic anxiety. The current studies sought to re-examine the IUM by assessing the relationships between the model’s components on two different non-clinical samples made up of UK and Italian undergraduate students. One-hundred and seventy UK undergraduates and 488 Italian undergraduates completed measures assessing IU, worry, somatic anxiety, depression, and refined measures of NPO, CA, and PBW. In each sample, two mediation models were conducted in order to test whether PBW, NPO, and CA differentially mediate the path from IU to worry and the path from IU to somatic anxiety. Secondly, it was tested whether IU also moderates the mediations. Main findings showed that, in the UK sample, only NPO mediated the path from IU to worry; as far as concern the path to anxiety, none of the putative mediators were significant. Differently, in the Italian sample PBW and NPO were mediators in the path from IU to worry, whereas only CA played a mediational role in the path from IU to somatic anxiety. Lastly, IU was observed to moderate only the association between NPO and worry, and only in the Italian sample. Some important cross-cultural, conceptual, and methodological issues raised from main results are discussed.

  11. A Generalized Perturbation Theory Solver In Rattlesnake Based On PETSc With Application To TREAT Steady State Uncertainty Quantification

    Energy Technology Data Exchange (ETDEWEB)

    Schunert, Sebastian; Wang, Congjian; Wang, Yaqi; Kong, Fande; Ortensi, Javier; Baker, Benjamin; Gleicher, Frederick; DeHart, Mark; Martineau, Richard

    2017-04-01

    Rattlesnake and MAMMOTH are the designated TREAT analysis tools currently being developed at the Idaho National Laboratory. Concurrent with development of the multi-physics, multi-scale capabilities, sensitivity analysis and uncertainty quantification (SA/UQ) capabilities are required for predicitive modeling of the TREAT reactor. For steady-state SA/UQ, that is essential for setting initial conditions for the transients, generalized perturbation theory (GPT) will be used. This work describes the implementation of a PETSc based solver for the generalized adjoint equations that constitute a inhomogeneous, rank deficient problem. The standard approach is to use an outer iteration strategy with repeated removal of the fundamental mode contamination. The described GPT algorithm directly solves the GPT equations without the need of an outer iteration procedure by using Krylov subspaces that are orthogonal to the operator’s nullspace. Three test problems are solved and provide sufficient verification for the Rattlesnake’s GPT capability. We conclude with a preliminary example evaluating the impact of the Boron distribution in the TREAT reactor using perturbation theory.

  12. A generalized fuzzy credibility-constrained linear fractional programming approach for optimal irrigation water allocation under uncertainty

    Science.gov (United States)

    Zhang, Chenglong; Guo, Ping

    2017-10-01

    The vague and fuzzy parametric information is a challenging issue in irrigation water management problems. In response to this problem, a generalized fuzzy credibility-constrained linear fractional programming (GFCCFP) model is developed for optimal irrigation water allocation under uncertainty. The model can be derived from integrating generalized fuzzy credibility-constrained programming (GFCCP) into a linear fractional programming (LFP) optimization framework. Therefore, it can solve ratio optimization problems associated with fuzzy parameters, and examine the variation of results under different credibility levels and weight coefficients of possibility and necessary. It has advantages in: (1) balancing the economic and resources objectives directly; (2) analyzing system efficiency; (3) generating more flexible decision solutions by giving different credibility levels and weight coefficients of possibility and (4) supporting in-depth analysis of the interrelationships among system efficiency, credibility level and weight coefficient. The model is applied to a case study of irrigation water allocation in the middle reaches of Heihe River Basin, northwest China. Therefore, optimal irrigation water allocation solutions from the GFCCFP model can be obtained. Moreover, factorial analysis on the two parameters (i.e. λ and γ) indicates that the weight coefficient is a main factor compared with credibility level for system efficiency. These results can be effective for support reasonable irrigation water resources management and agricultural production.

  13. Implementation of Supply Chain Management (SCM in pharmaceutical company, general principles and case study

    Directory of Open Access Journals (Sweden)

    Zoran Nakov

    2014-12-01

    Full Text Available Supply Chain Management (SCM in pharmaceutical industry is defined as a “responsible SCM” and its implementation is according to the principles of: business ethics, rights of labor and principles of healthy and safe working environment. Pharmaceutical companies with implemented “responsible SCM” have to use management systems to facilitate continuous improvement in accordance with their working principles. The main purpose of this management system is to ensure the consistency, reliability and continuous improvement of all workflows within an organization.The analyzed case describes the project of European generic pharmaceutical company, which intends to implement best practice SCM operations for five European manufacturing sites and European logistics organizations (active ingredients supply, distribution centers, affiliate customers and third party manufacturers. The main objectives of the project were the creation of the future improved To-Be situation through implementation of new SCM models to the existing To-Day situation.

  14. Role of information theoretic uncertainty relations in quantum theory

    Energy Technology Data Exchange (ETDEWEB)

    Jizba, Petr, E-mail: p.jizba@fjfi.cvut.cz [FNSPE, Czech Technical University in Prague, Břehová 7, 115 19 Praha 1 (Czech Republic); ITP, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin (Germany); Dunningham, Jacob A., E-mail: J.Dunningham@sussex.ac.uk [Department of Physics and Astronomy, University of Sussex, Falmer, Brighton, BN1 9QH (United Kingdom); Joo, Jaewoo, E-mail: j.joo@surrey.ac.uk [Advanced Technology Institute and Department of Physics, University of Surrey, Guildford, GU2 7XH (United Kingdom)

    2015-04-15

    Uncertainty relations based on information theory for both discrete and continuous distribution functions are briefly reviewed. We extend these results to account for (differential) Rényi entropy and its related entropy power. This allows us to find a new class of information-theoretic uncertainty relations (ITURs). The potency of such uncertainty relations in quantum mechanics is illustrated with a simple two-energy-level model where they outperform both the usual Robertson–Schrödinger uncertainty relation and Shannon entropy based uncertainty relation. In the continuous case the ensuing entropy power uncertainty relations are discussed in the context of heavy tailed wave functions and Schrödinger cat states. Again, improvement over both the Robertson–Schrödinger uncertainty principle and Shannon ITUR is demonstrated in these cases. Further salient issues such as the proof of a generalized entropy power inequality and a geometric picture of information-theoretic uncertainty relations are also discussed.

  15. The Development of General Principles for EU Competition Law Enforcement - The protection of legal professional privilege

    NARCIS (Netherlands)

    Frese, M.J.

    2011-01-01

    This paper discusses the scope of the EU principle of legal professional privilege ('LPP') and the mechanisms for bottom-up integration. LPP refers to the confidential nature of certain written communications between lawyer and client. Bottom-up integration is the process whereby domestic legal prin

  16. The development of general principles for EU competition law enforcement - The protection of legal professional privilege

    NARCIS (Netherlands)

    Frese, M.J.

    2011-01-01

    This paper discusses the scope of the EU principle of legal professional privilege ('LPP') and the mechanisms for bottom-up integration. LPP refers to the confidential nature of certain written communications between lawyer and client. Bottom-up integration is the process whereby domestic legal prin

  17. The Development of General Principles for EU Competition Law Enforcement - The protection of legal professional privilege

    NARCIS (Netherlands)

    Frese, M.J.

    2011-01-01

    This paper discusses the scope of the EU principle of legal professional privilege ('LPP') and the mechanisms for bottom-up integration. LPP refers to the confidential nature of certain written communications between lawyer and client. Bottom-up integration is the process whereby domestic legal

  18. Intolerance of uncertainty as a mediator of reductions in worry in a cognitive behavioral treatment program for generalized anxiety disorder.

    Science.gov (United States)

    Bomyea, J; Ramsawh, H; Ball, T M; Taylor, C T; Paulus, M P; Lang, A J; Stein, M B

    2015-06-01

    Growing evidence suggests that intolerance of uncertainty (IU) is a cognitive vulnerability that is a central feature across diverse anxiety disorders, including generalized anxiety disorder (GAD). Although cognitive behavioral therapy (CBT) has been shown to reduce IU, it remains to be established whether or not reductions in IU mediate reductions in worry. This study examined the process of change in IU and worry in a sample of 28 individuals with GAD who completed CBT. Changes in IU and worry, assessed bi-weekly during treatment, were analyzed using multilevel mediation models. Results revealed that change in IU mediated change in worry (ab = -0.20; 95% CI [-.35, -.09]), but change in worry did not mediate change in IU (ab = -0.16; 95% CI [-.06, .12]). Findings indicated that reductions in IU accounted for 59% of the reductions in worry observed over the course of treatment, suggesting that changes in IU are not simply concomitants of changes in worry. Findings support the idea that IU is a critical construct underlying GAD.

  19. The application of diagnostic reference levels: General principles and an Irish perspective

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Kate [School of Medicine and Medical Science, Health Sciences Centre, University College Dublin, Belfield, Dublin 4 (Ireland)], E-mail: kate.matthews@ucd.ie; Brennan, Patrick C. [School of Medicine and Medical Science, Health Sciences Centre, University College Dublin, Belfield, Dublin 4 (Ireland)

    2009-05-15

    The principles of justification and optimisation, and the establishment and use of diagnostic reference levels (DRLs) are core tenets of the European Medical Exposures Directive [Council Directive 97/43], and ensuing legislation across Europe. This is the third in a series of three review articles: the previous two discussed the principles of justification and optimisation, the current review covers the concept of DRLs. In this paper, a brief synopsis of the history of DRLs is presented, and their possible applications are outlined. Approaches and progress with DRLs in a number of European countries, as derived from published literature, are summarised and a comparison of the approaches highlights some practical issues in using DRLs. Irish data are then considered in the context of literature ensuing from SI478 of 2002, and relating to the establishment of national diagnostic reference levels. The reviewed literature supports the opinion that national DRLs are preferable to those drawn from pan-European dose data.

  20. General principles of describing second- and higher-order null points of a potential magnetic field in 3D

    Science.gov (United States)

    Lukashenko, A. T.; Veselovsky, I. S.

    2015-12-01

    General principles of describing secondand higher-order null points of a potential magnetic field are formulated. The potential near a second-order null of the general form can be specified by a linear combination of four basic functions, the list of which is presented. Near secondand higher-order null points, field line equations often cannot be integrated analytically; however, in some cases, it is possible to present a qualitative description of the geometry of null vicinities with consideration of the behavior of field lines near rays outgoing from null, at which the field is radial or equals zero.

  1. Proposal to change General Consideration 5 and Principle 2 of the International Code of Nomenclature of Prokaryotes.

    Science.gov (United States)

    Oren, Aharon; Garrity, George M

    2014-01-01

    A proposal is submitted to the ICSP to change the wording of General Consideration 5 of the International Code of Nomenclature of Prokaryotes (ICNP), deleting the words Schizophycetes, Cyanophyceae and Cyanobacteria from the groups of organisms whose nomenclature is covered by the Code. It is further proposed to change the terms Zoological Code and International Code of Botanical Nomenclature in General Consideration 5 and in Principle 2 to International Code of Zoological Nomenclature and International Code of Nomenclature for algae, fungi and plants, respectively.

  2. A transference principle for general groups and functional calculus on UMD spaces

    NARCIS (Netherlands)

    Haase, M.

    2009-01-01

    Let-iA be the generator of a C-0-group (U(s))(s is an element of R) on a Banach space X and omega > theta(U), the group type of U. We prove a transference principle that allows to estimate parallel to f(A)parallel to in terms of the L-p(R; X)-Fourier multiplier norm of f(. +/- i omega). If X is a

  3. Generally accepted accounting principles according to the IFRS and the czech legislation

    OpenAIRE

    Markéta Bartoňová; Olga Malíková

    2011-01-01

    Accounting as a system provides quantitative information for users about economic processes which proceed in an accounting unit. The main objective of accounting is to observe and describe financial position, efficiency and cash flow of a given entity. This information should be compiled and presented so that users would be able to make qualified decisions. That is why it is necessary that accounting has to be based on the same methods and principles that should ensure that the outputs from a...

  4. What buoyancy really is. A Generalized Archimedes Principle for sedimentation and ultracentrifugation

    OpenAIRE

    Piazza, Roberto; Buzzaccaro, Stefano; Secchi, Eleonora; Parola, Alberto

    2012-01-01

    Particle settling is a pervasive process in nature, and centrifugation is a much versatile separation technique. Yet, the results of settling and ultracentrifugation experiments often appear to contradict the very law on which they are based: Archimedes Principle - arguably, the oldest Physical Law. The purpose of this paper is delving at the very roots of the concept of buoyancy by means of a combined experimental-theoretical study on sedimentation profiles in colloidal mixtures. Our analysi...

  5. Using LIDAR and Quickbird Data to Model Plant Production and Quantify Uncertainties Associated with Wetland Detection and Land Cover Generalizations

    Science.gov (United States)

    Cook, Bruce D.; Bolstad, Paul V.; Naesset, Erik; Anderson, Ryan S.; Garrigues, Sebastian; Morisette, Jeffrey T.; Nickeson, Jaime; Davis, Kenneth J.

    2009-01-01

    Spatiotemporal data from satellite remote sensing and surface meteorology networks have made it possible to continuously monitor global plant production, and to identify global trends associated with land cover/use and climate change. Gross primary production (GPP) and net primary production (NPP) are routinely derived from the MOderate Resolution Imaging Spectroradiometer (MODIS) onboard satellites Terra and Aqua, and estimates generally agree with independent measurements at validation sites across the globe. However, the accuracy of GPP and NPP estimates in some regions may be limited by the quality of model input variables and heterogeneity at fine spatial scales. We developed new methods for deriving model inputs (i.e., land cover, leaf area, and photosynthetically active radiation absorbed by plant canopies) from airborne laser altimetry (LiDAR) and Quickbird multispectral data at resolutions ranging from about 30 m to 1 km. In addition, LiDAR-derived biomass was used as a means for computing carbon-use efficiency. Spatial variables were used with temporal data from ground-based monitoring stations to compute a six-year GPP and NPP time series for a 3600 ha study site in the Great Lakes region of North America. Model results compared favorably with independent observations from a 400 m flux tower and a process-based ecosystem model (BIOME-BGC), but only after removing vapor pressure deficit as a constraint on photosynthesis from the MODIS global algorithm. Fine resolution inputs captured more of the spatial variability, but estimates were similar to coarse-resolution data when integrated across the entire vegetation structure, composition, and conversion efficiencies were similar to upland plant communities. Plant productivity estimates were noticeably improved using LiDAR-derived variables, while uncertainties associated with land cover generalizations and wetlands in this largely forested landscape were considered less important.

  6. Using LIDAR and Quickbird Data to Model Plant Production and Quantify Uncertainties Associated with Wetland Detection and Land Cover Generalizations

    Science.gov (United States)

    Cook, Bruce D.; Bolstad, Paul V.; Naesset, Erik; Anderson, Ryan S.; Garrigues, Sebastian; Morisette, Jeffrey T.; Nickeson, Jaime; Davis, Kenneth J.

    2009-01-01

    Spatiotemporal data from satellite remote sensing and surface meteorology networks have made it possible to continuously monitor global plant production, and to identify global trends associated with land cover/use and climate change. Gross primary production (GPP) and net primary production (NPP) are routinely derived from the MOderate Resolution Imaging Spectroradiometer (MODIS) onboard satellites Terra and Aqua, and estimates generally agree with independent measurements at validation sites across the globe. However, the accuracy of GPP and NPP estimates in some regions may be limited by the quality of model input variables and heterogeneity at fine spatial scales. We developed new methods for deriving model inputs (i.e., land cover, leaf area, and photosynthetically active radiation absorbed by plant canopies) from airborne laser altimetry (LiDAR) and Quickbird multispectral data at resolutions ranging from about 30 m to 1 km. In addition, LiDAR-derived biomass was used as a means for computing carbon-use efficiency. Spatial variables were used with temporal data from ground-based monitoring stations to compute a six-year GPP and NPP time series for a 3600 ha study site in the Great Lakes region of North America. Model results compared favorably with independent observations from a 400 m flux tower and a process-based ecosystem model (BIOME-BGC), but only after removing vapor pressure deficit as a constraint on photosynthesis from the MODIS global algorithm. Fine resolution inputs captured more of the spatial variability, but estimates were similar to coarse-resolution data when integrated across the entire vegetation structure, composition, and conversion efficiencies were similar to upland plant communities. Plant productivity estimates were noticeably improved using LiDAR-derived variables, while uncertainties associated with land cover generalizations and wetlands in this largely forested landscape were considered less important.

  7. When psychologists work with religious clients: applications of the general principles of ethical conduct.

    Science.gov (United States)

    Yarhouse, M A; VanOrman, B T

    1999-12-01

    Psychologists become more effective and relevant when they appreciate that many clients hold religious values and commitments. Greater awareness of religion and religious values in the lives of clients may aid clinicians' efforts to provide more accurate assessments and effective treatment plans. The authors use the American Psychological Association's (1992) "Ethical Principles of Psychologists and Code of Conduct" as a framework to examine many of the ethical issues relevant when psychologists work with religious clients. This article also provides suggestions for ways in which clinicians may obtain the skills needed to offer competent assessments and interventions with religiously committed clients.

  8. Generalized contraction mapping principle in intuitionistic Menger spaces and application to differential equations

    Institute of Scientific and Technical Information of China (English)

    Servet Kutukcu; Adnan Tuna; Atakan T. Yakut

    2007-01-01

    Using the idea of Atanassov, we define the notion of intuitionistic Menger spaces as a netural generalizations of Menger spaces due to Menger. We also obtain a new generalized contraction mapping and utilize this contraction mapping to prove the existance theorems of solutions to differential equations in intuitionistic Menger spaces.

  9. Generalization of Classical Statistical Mechanics to Quantum Mechanics and Stable Property of Condensed Matter

    CERN Document Server

    Huang, Y C; Zhang, N

    2004-01-01

    Classical statistical average values are generally generalized to average values of quantum mechanics, it is discovered that quantum mechanics is direct generalization of classical statistical mechanics, and we generally deduce both a general new continuous eigenvalue equation and a general discrete eigenvalue equation in quantum mechanics, and discover that a eigenvalue of quantum mechanics is just an extreme value of an operator in possibility distribution, the eigenvalue f is just classical observable quantity. A general classical statistical uncertain relation is further given, the general classical statistical uncertain relation is generally generalized to quantum uncertainty principle, the two lost conditions in classical uncertain relation and quantum uncertainty principle, respectively, are found. We generally expound the relations among uncertainty principle, singularity and condensed matter stability, discover that quantum uncertainty principle prevents from the appearance of singularity of the elec...

  10. A generalized variational principle and theoretical model for magnetoelastic interaction of ferromagnetic bodies

    Institute of Scientific and Technical Information of China (English)

    周又和; 郑晓静

    1999-01-01

    The quantitative analysis shows that no theoretical model for 3-d magnetoelastic bodies, in literatures to date, can commonly simulate two kinds of distinct experimental phenomena on magnetoelastic interaction of ferromagnetic structures. This makes it difficult to effectively discribe the magnetoelastic mechanical behavior of structures with complex geometry, such as shells. Therefore, it is a key step for simulating magnetoelastic mechanical characteristics of structures with complex geometry to establish a 3-d model which also can commonly characterize the two distinct experimental phenomena. A theoretical model for three dimension magnetizable elastic bodies, which is commonly suitable for the two kinds of experimental phenomena on magnetoelastic interaction of ferromagnetic plates, is presented by the variational principle for the total energy functional of the coupling system of the 3-d ferromagnetic bodies. It is found that for the case of linear isotropic magnetic materials, the magnetic forces

  11. Computing with Epistemic Uncertainty

    Science.gov (United States)

    2015-01-01

    modified the input uncertainties in any way. And by avoiding the need for simulation, various assumptions and selection of specific sampling...strategies that may affect results are also avoided . According with the Principle of Maximum Uncertainty , epistemic intervals represent the highest input...

  12. Does The Principle Of Equivalence Prevent Trapped Surfaces From Being Formed In The General Relativistic Collapse Process?

    CERN Document Server

    Leiter, D; Robertson, S; Leiter, Darryl; Mitra, Abhas; Robertson, Stanley

    2001-01-01

    It has been recently shown (Mitra, 2000 - astro-ph/9910408) that the timelike spherical collapse of a radiating, physical fluid in General Relativity, as seen by an interior co-moving observer at rest in the physical fluid, does not permit formation of ``trapped surfaces''. This followed from the fact that the formation of a trapped surface in a physical fluid would cause the timelike world lines of the collapsing fluid to become null at the would be trapped surface, thus violating the Principle of Equivalence in General Theory of Relativity. In this paper we generalize and extend this result by studying the problem from the point of view of the exterior Vaidya metric of a collapsing radiating fluid as seen by an exterior stationary observer, and find that the "no trapped surface condition" becomes g00 > 0 consistent with that obtained for the interior co-moving metric. Since we have shown that the Principle of Equivalence prevents trapped surfaces from being formed in collapsing, radiating objects, then true...

  13. Gravitational quadrupolar coupling to equivalence principle test masses: the general case

    CERN Document Server

    Lockerbie, N A

    2002-01-01

    This paper discusses the significance of the quadrupolar gravitational force in the context of test masses destined for use in equivalence principle (EP) experiments, such as STEP and MICROSCOPE. The relationship between quadrupolar gravity and rotational inertia for an arbitrary body is analysed, and the special, gravitational, role of a body's principal axes of inertia is revealed. From these considerations the gravitational quadrupolar force acting on a cylindrically symmetrical body, due to a point-like attracting source mass, is derived in terms of the body's mass quadrupole tensor. The result is shown to be in agreement with that obtained from MacCullagh's formula (as the starting point). The theory is then extended to cover the case of a completely arbitrary solid body, and a compact formulation for the quadrupolar force on such a body is derived. A numerical example of a dumb-bell's attraction to a local point-like gravitational source is analysed using this theory. Close agreement is found between th...

  14. [General principles of handling tissues and organs intended for examination in histopathology - pathologists requirements for surgeons].

    Science.gov (United States)

    Trnková, M

    2014-03-01

    Histopathology has continued to develop into a complex discipline of laboratory medicine in the last 30 years. Implementation of new techniques such as immunohistochemistry, in situ hybridization, molecular pathology and gene profiling yields a large amount of information which is used not only to establish diagnosis, but also for prediction and prognosis. The basic conditions for precision and correctness of this information which directly influence the choice of therapy and the outcome for the patient, and eventually the health and the life of the patient, are obtaining a suitable specimen and the best laboratory processing. The first step in this procedure is collection of samples, fixation and submission to the pathology laboratory - the pre-analytical phase. Knowledge of the principles of this phase and their implementation in daily practice in surgery is of main importance for the quality and quantity of information obtained. We introduce the basic rules for proper handling of different specimens depending on the use of conventional and "new" histopathology methods.

  15. Extending the generality of leaf economic design principles in the cycads, an ancient lineage.

    Science.gov (United States)

    Zhang, Yong-Jiang; Cao, Kun-Fang; Sack, Lawren; Li, Nan; Wei, Xue-Mei; Goldstein, Guillermo

    2015-04-01

    Cycads are the most ancient lineage of living seed plants, but the design of their leaves has received little study. We tested whether cycad leaves are governed by the same fundamental design principles previously established for ferns, conifers and angiosperms, and characterized the uniqueness of this relict lineage in foliar trait relationships. Leaf structure, photosynthesis, hydraulics and nutrient composition were studied in 33 cycad species from nine genera and three families growing in two botanical gardens. Cycads varied greatly in leaf structure and physiology. Similarly to other lineages, light-saturated photosynthetic rate per mass (Am ) was related negatively to leaf mass per area and positively to foliar concentrations of chlorophyll, nitrogen (N), phosphorus and iron, but unlike angiosperms, leaf photosynthetic rate was not associated with leaf hydraulic conductance. Cycads had lower photosynthetic N use efficiency and higher photosynthetic performance relative to hydraulic capacity compared with other lineages. These findings extend the relationships shown for foliar traits in angiosperms to the cycads. This functional convergence supports the modern synthetic understanding of leaf design, with common constraints operating across lineages, even as they highlight exceptional aspects of the biology of this key relict lineage.

  16. Do general relativistic effects limit experiments to test the universality of free fall and the weak equivalence principle?

    Science.gov (United States)

    Nobili, Anna M.

    2016-12-01

    The universality of free fall and the weak equivalence principle, which are at the basis of general relativity, have been confirmed to 1 part in 1 013. Space experiments with macroscopic test masses of different composition orbiting Earth inside a low altitude satellite aim to improve this precision by 2 orders of magnitude (with the Microscope satellite launched on April 25, 2016) and up to 4 orders of magnitude (with the Galileo Galilei satellite). At such a high precision, many tiny effects must be taken into account in order to be ruled out as the source of a spurious violation signal. In this work, we investigate the general relativistic effects, including those which involve the rotation of both Earth and the test masses, and show that they are by far too small to be considered even in the most challenging experiment.

  17. Do general relativistic effects limit experiments to test the universality of free fall and the weak equivalence principle?

    CERN Document Server

    Nobili, Anna M

    2016-01-01

    The Universality of Free Fall and the Weak Equivalence Principle, which are at the basis of General Relativity, have been confirmed to 1 part in 10^13. Space experiments with macroscopic test masses of different composition orbiting the Earth inside a low altitude satellite aim at improving this precision by two orders of magnitude (with the Microscope satellite, launched on 25 April 2016) and up to four orders of magnitude (with the 'Galileo Galilei' - GG satellite). At such a high precision many tiny effects must be taken into account in order to be ruled out as the source of a spurious violation signal. In this work we investigate the general relativistic effects, including those which involve the rotation of both the source body and the test masses, and show that they are by far too small to be considered even in the most challenging experiment.

  18. Intensive care and pregnancy: Epidemiology and general principles of management of obstetrics ICU patients during pregnancy.

    Science.gov (United States)

    Zieleskiewicz, Laurent; Chantry, Anne; Duclos, Gary; Bourgoin, Aurelie; Mignon, Alexandre; Deneux-Tharaux, Catherine; Leone, Marc

    2016-10-01

    In developed countries, the rate of obstetric ICU admissions (admission during pregnancy or the postpartum period) is between 0.5 and 4 per 1000 deliveries and the overall case-fatality rate is about 2%. The most two common causes of obstetric ICU admissions concerned direct obstetric pathologies: obstetric hemorrhage and hypertensive disorders of pregnancy. This review summarized the principles of management of critically ill pregnant patient. Its imply taking care of two patients in the same time. A coordinated multidisciplinary team including intensivists, anesthesiologists, obstetricians, pediatricians and pharmacists is therefore necessary. This team must work effectively together with regular staff aiming to evaluate daily the need to maintain the patient in intensive care unit or to prompt delivery. Keeping mother and baby together and fetal well-being must be balanced with the need of specialized advanced life support for the mother. The maternal physiological changes imply various consequences on management. The uterus aorto-caval compression implies tilting left the parturient. In case of cardiac arrest, uterus displacement and urgent cesarean delivery are needed. The high risk of aspiration and difficult tracheal intubation must be anticipated. Even during acute respiratory distress syndrome, hypoxemia and permissive hypercapnia must be avoided due to their negative impact on the fetus. Careful analysis of the benefit-risk ratio is needed before all drug administration. Streptococcal toxic shock syndrome and perineal fasciitis must be feared and a high level of suspicion of sepsis must be maintained. Finally the potential benefits of an ultrasound-based management are detailed.

  19. Generalization of the variational principle and the Hohenberg and Kohn theorems for excited states of Fermion systems

    Science.gov (United States)

    Gonis, A.

    2017-01-01

    Through the entanglement of a collection of K non-interacting replicas of a system of N interacting Fermions, and making use of the properties of reduced density matrices the variational principle and the theorems of Hohenberg and Kohn are generalized to excited states. The generalization of the variational principle makes use of the natural orbitals of an N-particle density matrix describing the state of lowest energy of the entangled state. The extension of the theorems of Hohenberg and Kohn is based on the ground-state formulation of density functional theory but with a new interpretation of the concept of a ground state: It is the state of lowest energy of a system of KN Fermions that is described in terms of the excited states of the N-particle interacting system. This straightforward implementation of the line of reasoning of ground-state density functional theory to a new domain leads to a unique and logically valid extension of the theory to excited states that allows the systematic treatment of all states in the spectrum of the Hamiltonian of an interacting system.

  20. A general "bang-bang" principle for predicting the maximum of a random walk

    CERN Document Server

    Allaart, Pieter C

    2009-01-01

    Let $(B_t)_{0\\leq t\\leq T}$ be either a Bernoulli random walk or a Brownian motion with drift, and let $M_t:=\\max\\{B_s: 0\\leq s\\leq t\\}$, $0\\leq t\\leq T$. This paper solves the general optimal prediction problem \\sup_{0\\leq\\tau\\leq T}\\sE[f(M_T-B_\\tau)], where the supremum is over all stopping times $\\tau$ adapted to the natural filtration of $(B_t)$, and $f$ is a nonincreasing convex function. The optimal stopping time $\\tau^*$ is shown to be of "bang-bang" type: $\\tau^*\\equiv 0$ if the drift of the underlying process $(B_t)$ is negative, and $\\tau^*\\equiv T$ is the drift is positive. This result generalizes recent findings by S. Yam, S. Yung and W. Zhou [{\\em J. Appl. Probab.} {\\bf 46} (2009), 651--668] and J. Du Toit and G. Peskir [{\\em Ann. Appl. Probab.} {\\bf 19} (2009), 983--1014], and provides additional mathematical justification for the dictum in finance that one should sell bad stocks immediately, but keep good ones as long as possible.

  1. INTRA-ABDOMINAL INFECTION AND ACUTE ABDOMEN-EPIDEMIOLOGY, DIAGNOSIS AND GENERAL PRINCIPLES OF SURGICAL MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Jovanović Dušan

    2015-03-01

    Full Text Available Intra-abdominal infections are multifactorial and present an complex inflammatory response of the peritoneum to microorganisms followed by exudation in the abdominal cavity and systemic response Despite advances in management and critical care of patients with acute generalized peritonitis due to hollow viscus perforation, prognosis is still very poor, with high mortality rate. Early detection and adequate treatment is essential to minimize complications in the patient with acute abdomen. Prognostic evaluation of complicated IAI by modern scoring systems is important to assess the severity and the prognosis of the disease. Control of the septic source can be achieved either by nonoperative or operative means. Nonoperative interventional procedures include percutaneous drainages of abscesses. The management of primary peritonitis is non-surgical and antibiotic- treatment. The management of secondary peritonitis include surgery to control the source of infection, removal of toxins, bacteria, and necrotic tissue, antibiotic therapy, supportive therapy and nutrition. "Source control" is sine qua non of success and adequate surgical procedure involves closure or resection of any openings into the gastrointestinal tract, resection of inflamed tissue and drainage of all abdominal and pelivic collections.

  2. Quantum Uncertainty and Fundamental Interactions

    Directory of Open Access Journals (Sweden)

    Tosto S.

    2013-04-01

    Full Text Available The paper proposes a simplified theoretical approach to infer some essential concepts on the fundamental interactions between charged particles and their relative strengths at comparable energies by exploiting the quantum uncertainty only. The worth of the present approach relies on the way of obtaining the results, rather than on the results themselves: concepts today acknowledged as fingerprints of the electroweak and strong interactions appear indeed rooted in the same theoretical frame including also the basic principles of special and general relativity along with the gravity force.

  3. Viewing brain processes as Critical State Transitions across levels of organization: Neural events in Cognition and Consciousness, and general principles.

    Science.gov (United States)

    Werner, Gerhard

    2009-04-01

    In this theoretical and speculative essay, I propose that insights into certain aspects of neural system functions can be gained from viewing brain function in terms of the branch of Statistical Mechanics currently referred to as "Modern Critical Theory" [Stanley, H.E., 1987. Introduction to Phase Transitions and Critical Phenomena. Oxford University Press; Marro, J., Dickman, R., 1999. Nonequilibrium Phase Transitions in Lattice Models. Cambridge University Press, Cambridge, UK]. The application of this framework is here explored in two stages: in the first place, its principles are applied to state transitions in global brain dynamics, with benchmarks of Cognitive Neuroscience providing the relevant empirical reference points. The second stage generalizes to suggest in more detail how the same principles could also apply to the relation between other levels of the structural-functional hierarchy of the nervous system and between neural assemblies. In this view, state transitions resulting from the processing at one level are the input to the next, in the image of a 'bucket brigade', with the content of each bucket being passed on along the chain, after having undergone a state transition. The unique features of a process of this kind will be discussed and illustrated.

  4. 随机算法的一般性原理%The General Principles of Randomized Algorithms

    Institute of Scientific and Technical Information of China (English)

    贺红; 马绍汉

    2002-01-01

    The last decade has witnessed a tremendous growth in the area of randomized algorithms.During this period,randomized algorithms went form being a tool in computational number theory to finding widespread application in many types of algorithms.Two benefits of randomization have spearheaded this growth:simplicity and speed.For many applications,a randomized algorithm is the simplest algorithm availble,or the fastest,or both.A handful of general principles lie at the heart of almost all randomized algorithms,despite the multitude of areas in which they find application.We bridfly survey these here in order to draw about the method of studying randomized algorithms.

  5. Certainty of uncertainty in evacuation for threat driven response. Principles of adaptive evacuation management for flood risk planning in the Netherlands

    NARCIS (Netherlands)

    Kolen, B.

    2013-01-01

    Evacuation is a measure taken to potentially reduce the loss of life and damage to movable goods. This thesis focuses on the Netherlands as a representative urbanized delta and flood risk management. The central element of this thesis is uncertainty. Evacuation has benefits but can be costly. Theref

  6. Uncertainty relation for mutual information

    Science.gov (United States)

    Schneeloch, James; Broadbent, Curtis J.; Howell, John C.

    2014-12-01

    We postulate the existence of a universal uncertainty relation between the quantum and classical mutual informations between pairs of quantum systems. Specifically, we propose that the sum of the classical mutual information, determined by two mutually unbiased pairs of observables, never exceeds the quantum mutual information. We call this the complementary-quantum correlation (CQC) relation and prove its validity for pure states, for states with one maximally mixed subsystem, and for all states when one measurement is minimally disturbing. We provide results of a Monte Carlo simulation suggesting that the CQC relation is generally valid. Importantly, we also show that the CQC relation represents an improvement to an entropic uncertainty principle in the presence of a quantum memory, and that it can be used to verify an achievable secret key rate in the quantum one-time pad cryptographic protocol.

  7. Time crystals from minimum time uncertainty

    Science.gov (United States)

    Faizal, Mir; Khalil, Mohammed M.; Das, Saurya

    2016-01-01

    Motivated by the Generalized Uncertainty Principle, covariance, and a minimum measurable time, we propose a deformation of the Heisenberg algebra and show that this leads to corrections to all quantum mechanical systems. We also demonstrate that such a deformation implies a discrete spectrum for time. In other words, time behaves like a crystal. As an application of our formalism, we analyze the effect of such a deformation on the rate of spontaneous emission in a hydrogen atom.

  8. Time crystals from minimum time uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Faizal, Mir [University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); Khalil, Mohammed M. [Alexandria University, Department of Electrical Engineering, Alexandria (Egypt); Das, Saurya [University of Lethbridge, Department of Physics and Astronomy, Lethbridge, AB (Canada)

    2016-01-15

    Motivated by the Generalized Uncertainty Principle, covariance, and a minimum measurable time, we propose a deformation of the Heisenberg algebra and show that this leads to corrections to all quantum mechanical systems. We also demonstrate that such a deformation implies a discrete spectrum for time. In other words, time behaves like a crystal. As an application of our formalism, we analyze the effect of such a deformation on the rate of spontaneous emission in a hydrogen atom. (orig.)

  9. Principles of Quantum Mechanics

    Science.gov (United States)

    Landé, Alfred

    2013-10-01

    Preface; Introduction: 1. Observation and interpretation; 2. Difficulties of the classical theories; 3. The purpose of quantum theory; Part I. Elementary Theory of Observation (Principle of Complementarity): 4. Refraction in inhomogeneous media (force fields); 5. Scattering of charged rays; 6. Refraction and reflection at a plane; 7. Absolute values of momentum and wave length; 8. Double ray of matter diffracting light waves; 9. Double ray of matter diffracting photons; 10. Microscopic observation of ρ (x) and σ (p); 11. Complementarity; 12. Mathematical relation between ρ (x) and σ (p) for free particles; 13. General relation between ρ (q) and σ (p); 14. Crystals; 15. Transition density and transition probability; 16. Resultant values of physical functions; matrix elements; 17. Pulsating density; 18. General relation between ρ (t) and σ (є); 19. Transition density; matrix elements; Part II. The Principle of Uncertainty: 20. Optical observation of density in matter packets; 21. Distribution of momenta in matter packets; 22. Mathematical relation between ρ and σ; 23. Causality; 24. Uncertainty; 25. Uncertainty due to optical observation; 26. Dissipation of matter packets; rays in Wilson Chamber; 27. Density maximum in time; 28. Uncertainty of energy and time; 29. Compton effect; 30. Bothe-Geiger and Compton-Simon experiments; 31. Doppler effect; Raman effect; 32. Elementary bundles of rays; 33. Jeans' number of degrees of freedom; 34. Uncertainty of electromagnetic field components; Part III. The Principle of Interference and Schrödinger's equation: 35. Physical functions; 36. Interference of probabilities for p and q; 37. General interference of probabilities; 38. Differential equations for Ψp (q) and Xq (p); 39. Differential equation for фβ (q); 40. The general probability amplitude Φβ' (Q); 41. Point transformations; 42. General theorem of interference; 43. Conjugate variables; 44. Schrödinger's equation for conservative systems; 45. Schr

  10. Distributed Time-Varying Formation Robust Tracking for General Linear Multiagent Systems With Parameter Uncertainties and External Disturbances.

    Science.gov (United States)

    Hua, Yongzhao; Dong, Xiwang; Li, Qingdong; Ren, Zhang

    2017-05-18

    This paper investigates the time-varying formation robust tracking problems for high-order linear multiagent systems with a leader of unknown control input in the presence of heterogeneous parameter uncertainties and external disturbances. The followers need to accomplish an expected time-varying formation in the state space and track the state trajectory produced by the leader simultaneously. First, a time-varying formation robust tracking protocol with a totally distributed form is proposed utilizing the neighborhood state information. With the adaptive updating mechanism, neither any global knowledge about the communication topology nor the upper bounds of the parameter uncertainties, external disturbances and leader's unknown input are required in the proposed protocol. Then, in order to determine the control parameters, an algorithm with four steps is presented, where feasible conditions for the followers to accomplish the expected time-varying formation tracking are provided. Furthermore, based on the Lyapunov-like analysis theory, it is proved that the formation tracking error can converge to zero asymptotically. Finally, the effectiveness of the theoretical results is verified by simulation examples.

  11. First principles analysis of the Abraham-Minkowski controversy for the momentum of light in general linear media

    CERN Document Server

    Ramos, Tomás; Obukhov, Yuri N

    2013-01-01

    We study the problem of the definition of the energy-momentum tensor of light in general moving media with linear constitutive law. Using the basic principles of classical field theory, we show that for the correct understanding of the problem, one needs to carefully distinguish situations when the material medium is modeled either as a background on which light propagates or as a dynamical part of the total system. In the former case, we prove that the (generalized) Belinfante-Rosenfeld (BR) tensor for the electromagnetic field coincides with the Minkowski tensor. We derive a complete set of balance equations for this open system and show that the symmetries of the background medium are directly related to the conservation of the Minkowski quantities. In particular, for isotropic media, the angular momentum of light is conserved despite of the fact that the Minkowski tensor is non-symmetric. For the closed system of light interacting with matter, we model the material medium as a relativistic non-dissipative...

  12. Heterogeneity-mediated cellular adaptation and its trade-off: searching for the general principles of diseases.

    Science.gov (United States)

    Heng, Henry H

    2017-02-01

    Big-data-omics have promised the success of precision medicine. However, most common diseases belong to adaptive systems where the precision is all but difficult to achieve. In this commentary, I propose a heterogeneity-mediated cellular adaptive model to search for the general model of diseases, which also illustrates why in most non-infectious non-Mendelian diseases the involvement of cellular evolution is less predictable when gene profiles are used. This synthesis is based on the following new observations/concepts: 1) the gene only codes "parts inheritance" while the genome codes "system inheritance" or the entire blueprint; 2) the nature of somatic genetic coding is fuzzy rather than precise, and genetic alterations are not just the results of genetic error but are in fact generated from internal adaptive mechanisms in response to environmental dynamics; 3) stress-response is less specific within cellular evolutionary context when compared to known biochemical specificities; and 4) most medical interventions have their unavoidable uncertainties and often can function as negative harmful stresses as trade-offs. The acknowledgment of diseases as adaptive systems calls for the action to integrate genome- (not simply individual gene-) mediated cellular evolution into molecular medicine. © 2016 John Wiley & Sons, Ltd.

  13. Re-examining Reasons Leading to Violations of Savage's Sure-Thing Principle Under Uncertainty%再探究不确定状态下违背“确定事件”原则的原因

    Institute of Scientific and Technical Information of China (English)

    汪祚军; 李纾; 房野

    2011-01-01

    确定事件原则是规范决策理论的基本原则之一。本研究通过选取具有不同文化背景的被试、构建和修改一系列问题情境来考察违背确定事件原则的原因。结果表明,在双重理由的分离情境中,确定事件原则被违背了;而在单一理由的分离情境中,确定事件原则得以遵循。实验结果支持"基于理由的假设"而不支持"思维惰性假设"。文章最后讨论了本研究的理论及现实意义。%Leonard J.Savage's sure-thing principle(1954),a key assumption of the consequentialist conception of decision making under uncertainty,states that if some option x is preferred to y given some other Event A occurs,and if option x is preferred to y given this event A does not occur,then x should be preferred to y even when the outcome of A is unknown.Much theoretical and experimental research has examined whether the sure-thing principle was violated in a variety of situations.But,not as much focus has been placed on examining the reasons why it was violated. Two experiments were conducted to test the so-called "reason-based" account and "reluctance-to-think" account for the violation of the sure-thing principle in the present study.In Experiment 1,60 participants in Singapore were recruited,who were presented a scenario similar to Tversky and Shafir's(1992) vacation situation.The results showed that the mean reported choices for not knowing whether you passed or failed the exam(M=4.13) was well between the mean reported choices of knowing that you passed the exam (M=5.18) and that of knowing that you failed the exam(M=3.13).A test of within-participant contrast(Helmert contrast) showed that there was no significant difference between the effect for not knowing whether you passed or failed the exam and the mean effect of knowing that you passed the exam and knowing that you failed the exam(F(1,59)=.02,n.s.).Thus,no violation of STP was found

  14. Over-constraints and a unified mobility method for general spatial mechanisms Part 2: Application of the principle

    Science.gov (United States)

    Lu, Wenjuan; Zeng, Daxing; Huang, Zhen

    2016-01-01

    The pre-research on mobility analysis presented a unified-mobility formula and a methodology based on reciprocal screw theory by HUANG, which focused on classical and modern parallel mechanisms. However its range of application needs to further extend to general multi-loop spatial mechanism. This kind of mechanism is not only more complex in structure but also with strong motion coupling among loops, making the mobility analysis even more complicated, and the relevant research has long been ignored. It is focused on how to apply the new principle for general spatial mechanism to those various multi-loop spatial mechanisms, and some new meaningful knowledge is further found. Several typical examples of the general multi-loop spatial mechanisms with motion couple even strong motion couple are considered. These spatial mechanisms include different closing way: over-constraint appearing in rigid closure, in movable closure, and in dynamic closure as well; these examples also include two different new methods to solve this kind of issue: the way to recognize over-constraints by analyzing relative movement between two connected links and by constructing a virtual loop to recognize over-constraints. In addition, over-constraint determination tabulation is brought to analyze the motion couple. The researches above are all based upon the screw theory. All these multi-loop spatial mechanisms with different kinds of structures can completely be solved by following the directions and examples, and the new mobility theory based on the screw theory is also proved to be valid. This study not only enriches and develops the theory and makes the theory more universal, but also has a special meaning for innovation in mechanical engineering.

  15. Climate Twins - a tool to explore future climate impacts by assessing real world conditions: Exploration principles, underlying data, similarity conditions and uncertainty ranges

    Science.gov (United States)

    Loibl, Wolfgang; Peters-Anders, Jan; Züger, Johann

    2010-05-01

    To achieve public awareness and thorough understanding about expected climate changes and their future implications, ways have to be found to communicate model outputs to the public in a scientifically sound and easily understandable way. The newly developed Climate Twins tool tries to fulfil these requirements via an intuitively usable web application, which compares spatial patterns of current climate with future climate patterns, derived from regional climate model results. To get a picture of the implications of future climate in an area of interest, users may click on a certain location within an interactive map with underlying future climate information. A second map depicts the matching Climate Twin areas according to current climate conditions. In this way scientific output can be communicated to the public which allows for experiencing climate change through comparison with well-known real world conditions. To identify climatic coincidence seems to be a simple exercise, but the accuracy and applicability of the similarity identification depends very much on the selection of climate indicators, similarity conditions and uncertainty ranges. Too many indicators representing various climate characteristics and too narrow uncertainty ranges will judge little or no area as regions with similar climate, while too little indicators and too wide uncertainty ranges will address too large regions as those with similar climate which may not be correct. Similarity cannot be just explored by comparing mean values or by calculating correlation coefficients. As climate change triggers an alteration of various indicators, like maxima, minima, variation magnitude, frequency of extreme events etc., the identification of appropriate similarity conditions is a crucial question to be solved. For Climate Twins identification, it is necessary to find a right balance of indicators, similarity conditions and uncertainty ranges, unless the results will be too vague conducting a

  16. Uncertainty vs. Information (Invited)

    Science.gov (United States)

    Nearing, Grey

    2017-04-01

    Information theory is the branch of logic that describes how rational epistemic states evolve in the presence of empirical data (Knuth, 2005), and any logic of science is incomplete without such a theory. Developing a formal philosophy of science that recognizes this fact results in essentially trivial solutions to several longstanding problems are generally considered intractable, including: • Alleviating the need for any likelihood function or error model. • Derivation of purely logical falsification criteria for hypothesis testing. • Specification of a general quantitative method for process-level model diagnostics. More generally, I make the following arguments: 1. Model evaluation should not proceed by quantifying and/or reducing error or uncertainty, and instead should be approached as a problem of ensuring that our models contain as much information as our experimental data. I propose that the latter is the only question a scientist actually has the ability to ask. 2. Instead of building geophysical models as solutions to differential equations that represent conservation laws, we should build models as maximum entropy distributions constrained by conservation symmetries. This will allow us to derive predictive probabilities directly from first principles. Knuth, K. H. (2005) 'Lattice duality: The origin of probability and entropy', Neurocomputing, 67, pp. 245-274.

  17. Measurement uncertainty and probability

    CERN Document Server

    Willink, Robin

    2013-01-01

    A measurement result is incomplete without a statement of its 'uncertainty' or 'margin of error'. But what does this statement actually tell us? By examining the practical meaning of probability, this book discusses what is meant by a '95 percent interval of measurement uncertainty', and how such an interval can be calculated. The book argues that the concept of an unknown 'target value' is essential if probability is to be used as a tool for evaluating measurement uncertainty. It uses statistical concepts, such as a conditional confidence interval, to present 'extended' classical methods for evaluating measurement uncertainty. The use of the Monte Carlo principle for the simulation of experiments is described. Useful for researchers and graduate students, the book also discusses other philosophies relating to the evaluation of measurement uncertainty. It employs clear notation and language to avoid the confusion that exists in this controversial field of science.

  18. First-principles model potentials for lattice-dynamical studies: general methodology and example of application to ferroic perovskite oxides.

    Science.gov (United States)

    Wojdeł, Jacek C; Hermet, Patrick; Ljungberg, Mathias P; Ghosez, Philippe; Íñiguez, Jorge

    2013-07-31

    We present a scheme to construct model potentials, with parameters computed from first principles, for large-scale lattice-dynamical simulations of materials. We mimic the traditional solid-state approach to the investigation of vibrational spectra, i.e., we start from a suitably chosen reference configuration of the compound and describe its energy as a function of arbitrary atomic distortions by means of a Taylor series. Such a form of the potential-energy surface is general, trivial to formulate for any material, and physically transparent. Further, such models involve clear-cut approximations, their precision can be improved in a systematic fashion, and their simplicity allows for convenient and practical strategies to compute/fit the potential parameters. We illustrate our scheme with two challenging cases in which the model potential is strongly anharmonic, namely, the ferroic perovskite oxides PbTiO3 and SrTiO3. Studying these compounds allows us to better describe the connection between the so-called effective-Hamiltonian method and ours (which may be seen as an extension of the former), and to show the physical insight and predictive power provided by our approach-e.g., we present new results regarding the factors controlling phase-transition temperatures, novel phase transitions under elastic constraints, an improved treatment of thermal expansion, etc.

  19. First-principles local density approximation (LDA)+ U and generalized gradient approximation (GGA) + U studies of plutonium oxides

    Institute of Scientific and Technical Information of China (English)

    Sun Bo; Zhang Ping

    2008-01-01

    The electronic structures and properties of PuO2 and Pu2O3 have been studied according to the first principles by using the all-electron projector-augmented-wave (PAW) method. The local density approximation (LDA)+U and the generalized gradient approximation (GGA)+U formalisms have been used to account for the strong on-site Coulomb repulsion among the localized Pu 5f electrons. We discuss how the properties of PuO2 and Pu2O3 are affected by choosing the values of U and exchange-correlation potential. Also, the oxidation reaction of Pu2O3, leading to the formation of PuO2, and its dependence on U and exchange-correlation potential have been studied. Our results show that by choosing an appropriate U it is possible to consistently describe structural, electronic, and thermodynamic properties of PuO2 and Pu2O3, which enable the modelling of the redox process involving Pu-based materials.

  20. Endoscopic Scores for Evaluation of Crohn's Disease Activity at Small Bowel Capsule Endoscopy: General Principles and Current Applications.

    Science.gov (United States)

    Rosa, Bruno; Pinho, Rolando; de Ferro, Susana Mão; Almeida, Nuno; Cotter, José; Saraiva, Miguel Mascarenhas

    2016-01-01

    The small bowel is affected in the vast majority of patients with Crohn's Disease (CD). Small bowel capsule endoscopy (SBCE) has a very high sensitivity for the detection of CD-related pathology, including early mucosal lesions and/or those located in the proximal segments of the small bowel, which is a major advantage when compared with other small bowel imaging modalities. The recent guidelines of European Society of Gastrointestinal Endoscopy (ESGE) and European Crohn's and Colitis Organisation (ECCO) advocate the use of validated endoscopic scoring indices for the classification of inflammatory activity in patients with CD undergoing SBCE, such as the Lewis Score or the Capsule Endoscopy Crohn's Disease Activity Index (CECDAI). These scores aim to standardize the description of lesions and capsule endoscopy reports, contributing to increase inter-observer agreement and enabling a stratification of the severity of the disease. On behalf of the Grupo de Estudos Português do Intestino Delgado (GEPID) - Portuguese Small Bowel Study Group, we aimed to summarize the general principles and clinical applications of current endoscopic scoring systems for SBCE in the setting of CD, covering the topic of suspected CD as well as the evaluation of disease extent (with potential prognostic and therapeutic impact), evaluation of mucosal healing in response to treatment and evaluation of post-surgical recurrence in patients with previously established diagnosis of CD.

  1. Equivalence principles and electromagnetism

    Science.gov (United States)

    Ni, W.-T.

    1977-01-01

    The implications of the weak equivalence principles are investigated in detail for electromagnetic systems in a general framework. In particular, it is shown that the universality of free-fall trajectories (Galileo weak equivalence principle) does not imply the validity of the Einstein equivalence principle. However, the Galileo principle plus the universality of free-fall rotation states does imply the Einstein principle.

  2. Uncertainty Analysis of Thermal Comfort Parameters

    Science.gov (United States)

    Ribeiro, A. Silva; Alves e Sousa, J.; Cox, Maurice G.; Forbes, Alistair B.; Matias, L. Cordeiro; Martins, L. Lages

    2015-08-01

    International Standard ISO 7730:2005 defines thermal comfort as that condition of mind that expresses the degree of satisfaction with the thermal environment. Although this definition is inevitably subjective, the Standard gives formulae for two thermal comfort indices, predicted mean vote ( PMV) and predicted percentage dissatisfied ( PPD). The PMV formula is based on principles of heat balance and experimental data collected in a controlled climate chamber under steady-state conditions. The PPD formula depends only on PMV. Although these formulae are widely recognized and adopted, little has been done to establish measurement uncertainties associated with their use, bearing in mind that the formulae depend on measured values and tabulated values given to limited numerical accuracy. Knowledge of these uncertainties are invaluable when values provided by the formulae are used in making decisions in various health and civil engineering situations. This paper examines these formulae, giving a general mechanism for evaluating the uncertainties associated with values of the quantities on which the formulae depend. Further, consideration is given to the propagation of these uncertainties through the formulae to provide uncertainties associated with the values obtained for the indices. Current international guidance on uncertainty evaluation is utilized.

  3. Variance-based uncertainty relations

    CERN Document Server

    Huang, Yichen

    2010-01-01

    It is hard to overestimate the fundamental importance of uncertainty relations in quantum mechanics. In this work, I propose state-independent variance-based uncertainty relations for arbitrary observables in both finite and infinite dimensional spaces. We recover the Heisenberg uncertainty principle as a special case. By studying examples, we find that the lower bounds provided by our new uncertainty relations are optimal or near-optimal. I illustrate the uses of our new uncertainty relations by showing that they eliminate one common obstacle in a sequence of well-known works in entanglement detection, and thus make these works much easier to access in applications.

  4. Generalization of first-principles thermodynamic model: Application to hexagonal close-packed ε-Fe3N

    DEFF Research Database (Denmark)

    Bakkedal, Morten B.; Shang, Shu- Li; Liu, Zi-Kui;

    2016-01-01

    temperatures was generalized in terms of the partition function for any lattice of interest. Specially, thermal expansion of the hexagonal close-packed ε phase with two independent lattice parameters was studied by means of the present model and first-principles phonon calculations. The present predictions...... of thermal expansion of ε-Fe3N are in good agreement with experimental data....

  5. 模型不确定性条件下的一般均衡定价%General equilibrium asset pricing under model uncertainty

    Institute of Scientific and Technical Information of China (English)

    李仲飞; 高金窑

    2011-01-01

    By introducing discounted entropy into the CIR model, this article investigates general equilibrium asset pricing under model uncertainty. A risk-free rate pricing equation, an intertemporal capital asset pricing model, a consumption-based capital asset pricing model, a financial asset pricing formula and a stochastic discounted factor are derived under model uncertainty. It is found that model uncertainty aversion decreases the equilibrium risk-free rate while increases the equity premium, and hence the new asset pricing model can explain the risk-free rate puzzle and equity premium puzzle simultaneously.%在CIR模型基础上,通过引入折现熵,研究了模型不确定性条件下的一般均衡定价问题;并导出了模型不确定性条件下的无风险利率定价方程、跨期资本资产定价模型、基于消费的资本资产定价模型、金融资产定价公式及包含不确定性成分的随机折现因子.研究发现,随着投资者的不确定性规避偏好的提高,均衡时的无风险利率随之降低,风险资产的溢价水平却随之提高,因此文章结论可以同时解释无风险利率之谜与风险溢价之谜.

  6. Uncertainty and Climate Change and its effect on Generalization and Prediction abilities by creating Diverse Classifiers and Feature Section Methods using Information Fusion

    Directory of Open Access Journals (Sweden)

    Y. P. Kosta

    2010-11-01

    Full Text Available The model forecast suggests a deterministic approach. Forecasting was traditionally done by a singlemodel - deterministic prediction, recent years has witnessed drastic changes. Today, with InformationFusion (Ensemble technique it is possible to improve the generalization ability of classifiers with highlevels of reliability. Through Information Fusion it is easily possible to combine diverse & independentoutcomes for decision-making. This approach adopts the idea of combining the results of multiplemethods (two-way interactions between them using appropriate model on the testset. Althoughuncertainties are often very significant, for the purpose of single prediction, especially at the initialstage, one dose not consider uncertainties in the model, the initial conditions, or the very nature of theclimate (environment or atmosphere itself using single model. If we make small changes in the initialparameter setting, it will result in change in predictive accuracy of the model. Similarly, uncertainty inmodel physics can result in large forecast differences and errors. So, instead of running one prediction,run a collection/package/bundle (ensemble of predictions, each one kick starting from a different initialstate or with different conditions and sequentially executing the next. The variations resulting due toexecution of different prediction package/model could be then used (independently combining oraggregating to estimate the uncertainty of the prediction, giving us better accuracy and reliability. Inthis paper the authors propose to use Information fusion technique that will provide insight of probablekey parameters that is necessary to purposefully evaluate the successes of new generation of productsand services, improving forecasting. Ensembles can be creatively applied to provide insight against thenew generation products yielding higher probabilities of success. Ensemble will yield critical features ofthe products and also provide insight to

  7. Measurement uncertainty.

    Science.gov (United States)

    Bartley, David; Lidén, Göran

    2008-08-01

    The reporting of measurement uncertainty has recently undergone a major harmonization whereby characteristics of a measurement method obtained during establishment and application are combined componentwise. For example, the sometimes-pesky systematic error is included. A bias component of uncertainty can be often easily established as the uncertainty in the bias. However, beyond simply arriving at a value for uncertainty, meaning to this uncertainty if needed can sometimes be developed in terms of prediction confidence in uncertainty-based intervals covering what is to be measured. To this end, a link between concepts of accuracy and uncertainty is established through a simple yet accurate approximation to a random variable known as the non-central Student's t-distribution. Without a measureless and perpetual uncertainty, the drama of human life would be destroyed. Winston Churchill.

  8. General rule antielisive chartered the National Tax Code confrontation between the principle of ability to pay and the rule of closed typicality and the alleged tax by analogy

    Directory of Open Access Journals (Sweden)

    Willian Robert Nahra Filho

    2012-04-01

    Full Text Available Check the possibility of the general standard employment antielisiva the parental right, ouseja, taxation by analogy legal fact extratípico effects econômicosequivalentes the typical legal fact, based on the abuse of rights doctrine and noprincípio of ability. Analysis in the face of the principles of legalidadeestrita and closed typicality, the principle of security developments jurídica.Conclui the impossibility of taxation by analogy for the offense to dasegurança legal principle that stands for certainty and predictability in entreEstado relations and taxpayers. The breach of the principle of strict legality because deexigência specific and qualified law to detributos institution. The offense aoprincípio closed typicality that prevents the tax nãodescrito legal fact with all its details by law. These principles not passíveissequer limitation, since they are immutable clauses. Inability to restriçãoda full effectiveness of the rule of the principle of typicality contributiva.Impossibilidade ability to taxation by the integrative method of analogy, therefore existecerta charge, even if relative, creativity inherent in the method and dependent inexistirlacunas fill in relevant matters to detributos institution , existing in reality free of the right spaces.

  9. Understanding uncertainty

    CERN Document Server

    Lindley, Dennis V

    2013-01-01

    Praise for the First Edition ""...a reference for everyone who is interested in knowing and handling uncertainty.""-Journal of Applied Statistics The critically acclaimed First Edition of Understanding Uncertainty provided a study of uncertainty addressed to scholars in all fields, showing that uncertainty could be measured by probability, and that probability obeyed three basic rules that enabled uncertainty to be handled sensibly in everyday life. These ideas were extended to embrace the scientific method and to show how decisions, containing an uncertain element, could be rationally made.

  10. Uncertainty information in climate data records from Earth observation

    Science.gov (United States)

    Merchant, Christopher J.; Paul, Frank; Popp, Thomas; Ablain, Michael; Bontemps, Sophie; Defourny, Pierre; Hollmann, Rainer; Lavergne, Thomas; Laeng, Alexandra; de Leeuw, Gerrit; Mittaz, Jonathan; Poulsen, Caroline; Povey, Adam C.; Reuter, Max; Sathyendranath, Shubha; Sandven, Stein; Sofieva, Viktoria F.; Wagner, Wolfgang

    2017-07-01

    error distribution, and the propagation of the uncertainty to the geophysical variable in the CDR accounting for its error correlation properties. Uncertainty estimates can and should be validated as part of CDR validation when possible. These principles are quite general, but the approach to providing uncertainty information appropriate to different ECVs is varied, as confirmed by a brief review across different ECVs in the CCI. User requirements for uncertainty information can conflict with each other, and a variety of solutions and compromises are possible. The concept of an ensemble CDR as a simple means of communicating rigorous uncertainty information to users is discussed. Our review concludes by providing eight concrete recommendations for good practice in providing and communicating uncertainty in EO-based climate data records.

  11. Transnational Cooperation in Criminal Matters and the Guarantee of a Fair Trial: Approaches to a General Principle

    Directory of Open Access Journals (Sweden)

    Sabine Gless

    2013-09-01

    Full Text Available The right to a fair trial has grown in importance over the past few decades as criminal procedures and human rights law have aligned themselves more and more closely. A core aspect of our current European understanding of a ‘fair criminal trial’ is the so-called ‘equality of arms’, which requires that each party be given a reasonable opportunity to present his case under conditions that do not place him at a substantial disadvantage vis-à-vis his opponent. In cases which affect more than one jurisdiction – either because an alleged crime causes damage in different countries, evidence is located abroad or for some other reason – the accused and his defence lawyer may be left without any such a guarantee in the legal ‘black hole’ between the protections that are normally offered by each of the jurisdictions involved, albeit separately.The situation is not one of a dramatic alteration of legal frameworks; instead, it is the small encroachments caused by transnational cooperation that matter and which can be summed up on the basis that domestic and foreign prosecution authorities have, effectively, closed the circuit between them. These authorities are now embedded in formal networks which would have, for instance, the possibility to forum shop (i.e. to choose the ‘best place’ to prosecute. The emerging EU legal framework that has been built on mutual recognition and installing new central agencies has added to the problems faced by the defence. Moreover, the existing legal regimes designed to protect do not grant ‘equality of arms’ in the space between jurisdictions: national law usually provides few answers and international law, including the likes of the ECHR or the EU Charter on Fundamental Rights, do not offer many solutions, either.This article therefore argues that an aspiring ‘right to a fair trial’ or, rather, an entitlement to equality of arms as a general principle of transnational criminal justice that would

  12. Transnational Cooperation in Criminal Matters and the Guarantee of a Fair Trial: Approaches to a General Principle

    Directory of Open Access Journals (Sweden)

    Sabine Gless

    2013-09-01

    Full Text Available The right to a fair trial has grown in importance over the past few decades as criminal procedures and human rights law have aligned themselves more and more closely. A core aspect of our current European understanding of a ‘fair criminal trial’ is the so-called ‘equality of arms’, which requires that each party be given a reasonable opportunity to present his case under conditions that do not place him at a substantial disadvantage vis-à-vis his opponent. In cases which affect more than one jurisdiction – either because an alleged crime causes damage in different countries, evidence is located abroad or for some other reason – the accused and his defence lawyer may be left without any such a guarantee in the legal ‘black hole’ between the protections that are normally offered by each of the jurisdictions involved, albeit separately.The situation is not one of a dramatic alteration of legal frameworks; instead, it is the small encroachments caused by transnational cooperation that matter and which can be summed up on the basis that domestic and foreign prosecution authorities have, effectively, closed the circuit between them. These authorities are now embedded in formal networks which would have, for instance, the possibility to forum shop (i.e. to choose the ‘best place’ to prosecute. The emerging EU legal framework that has been built on mutual recognition and installing new central agencies has added to the problems faced by the defence. Moreover, the existing legal regimes designed to protect do not grant ‘equality of arms’ in the space between jurisdictions: national law usually provides few answers and international law, including the likes of the ECHR or the EU Charter on Fundamental Rights, do not offer many solutions, either.This article therefore argues that an aspiring ‘right to a fair trial’ or, rather, an entitlement to equality of arms as a general principle of transnational criminal justice that would

  13. El ejercicio de la autoridad sanitaria: los principios, lo reglamentado y la incertidumbre On the exercise of health authority: principles, regulations and uncertainty

    Directory of Open Access Journals (Sweden)

    Joan R. Villalbí

    2007-04-01

    Full Text Available El ejercicio de la autoridad sanitaria es un servicio básico de la salud pública. Parte de la responsabilidad de los gestores de la salud pública es hacer cumplir normas. Éstas se desarrollan cuando se dan circunstancias que llevan a considerar inadmisibles ciertos riesgos. El grueso del ejercicio de la autoridad sanitaria se basa en la aplicación relativamente sistemática de normativas detalladas de referencia, aunque siempre hay cierta incertidumbre, ejemplificada en la frecuente adopción de medidas cautelares por un inspector sanitario aplicando el principio de precaución. Pero la vigilancia epidemiológica plantea de forma intermitente situaciones de afectación de la salud humana sin normas de referencia, en las que la autoridad sanitaria debe actuar según su criterio, contrapesando los riesgos de intervenir con los de no actuar. En este manuscrito presentamos 3 casos de este tipo: la coerción en el tratamiento de enfermos con tuberculosis bacilífera; la regulación de actividades con haba de soja que plantean riesgos de asma; y la limitación del ejercicio profesional de un médico infectado por el virus de la inmunodeficiencia humana.Implementing health authority is a basic public health service. Part of the responsibility of public health managers is to ensure compliance with regulations. These are developed when certain risks are considered inadmissible. Mostly, the exercise of health authority deals with the routine application of detailed norms, although there is always some uncertainty, as shown by the frequent use of cautionary measures by health officers during inspections. However, epidemiologic surveillance periodically involves situations in which human health is damaged and there is no reference regulation; in these situations, health authorities must act according to their own criteria, weighing the risks of intervention against those of nonintervention. In this article, we present 3 such scenarios: using coercion

  14. Generalized information theory: aims, results, and open problems

    Energy Technology Data Exchange (ETDEWEB)

    Klir, George J

    2004-09-01

    The principal purpose of this paper is to present a comprehensive overview of generalized information theory (GIT): a research program whose objective is to develop a broad treatment of uncertainty-based information, not restricted to classical notions of uncertainty. After a brief overview of classical information theories, a broad framework for formalizing uncertainty and the associated uncertainty-based information of a great spectrum of conceivable types is sketched. The various theories of imprecise probabilities that have already been developed within this framework are then surveyed, focusing primarily on some important unifying principles applying to all these theories. This is followed by introducing two higher levels of the theories of imprecise probabilities: (i) the level of measuring the amount of relevant uncertainty (predictive, retrodictive, prescriptive, diagnostic, etc.) in any situation formalizable in each given theory, and (ii) the level of some methodological principles of uncertainty, which are contingent upon the capability to measure uncertainty and the associated uncertainty-based information. Various issues regarding both the measurement of uncertainty and the uncertainty principles are discussed. Again, the focus is on unifying principles applicable to all the theories. Finally, the current status of GIT is assessed and future research in the area is discussed.

  15. The equivalence principle in a quantum world

    DEFF Research Database (Denmark)

    Bjerrum-Bohr, N. Emil J.; Donoghue, John F.; El-Menoufi, Basem Kamal;

    2015-01-01

    the energy is small, we now have the tools to address this conflict explicitly. Despite the violation of some classical concepts, the EP continues to provide the core of the quantum gravity framework through the symmetry - general coordinate invariance - that is used to organize the effective field theory......We show how modern methods can be applied to quantum gravity at low energy. We test how quantum corrections challenge the classical framework behind the equivalence principle (EP), for instance through introduction of nonlocality from quantum physics, embodied in the uncertainty principle. When...

  16. Uncertainty, incompleteness, chance, and design

    CERN Document Server

    Sols, Fernando

    2013-01-01

    The 20th century has revealed two important limitations of scientific knowledge. On the one hand, the combination of Poincar\\'e's nonlinear dynamics and Heisenberg's uncertainty principle leads to a world picture where physical reality is, in many respects, intrinsically undetermined. On the other hand, G\\"odel's incompleteness theorems reveal us the existence of mathematical truths that cannot be demonstrated. More recently, Chaitin has proved that, from the incompleteness theorems, it follows that the random character of a given mathematical sequence cannot be proved in general (it is 'undecidable'). I reflect here on the consequences derived from the indeterminacy of the future and the undecidability of randomness, concluding that the question of the presence or absence of finality in nature is fundamentally outside the scope of the scientific method.

  17. Uncertainty in hydrological signatures

    Science.gov (United States)

    McMillan, Hilary; Westerberg, Ida

    2015-04-01

    Information that summarises the hydrological behaviour or flow regime of a catchment is essential for comparing responses of different catchments to understand catchment organisation and similarity, and for many other modelling and water-management applications. Such information types derived as an index value from observed data are known as hydrological signatures, and can include descriptors of high flows (e.g. mean annual flood), low flows (e.g. mean annual low flow, recession shape), the flow variability, flow duration curve, and runoff ratio. Because the hydrological signatures are calculated from observed data such as rainfall and flow records, they are affected by uncertainty in those data. Subjective choices in the method used to calculate the signatures create a further source of uncertainty. Uncertainties in the signatures may affect our ability to compare different locations, to detect changes, or to compare future water resource management scenarios. The aim of this study was to contribute to the hydrological community's awareness and knowledge of data uncertainty in hydrological signatures, including typical sources, magnitude and methods for its assessment. We proposed a generally applicable method to calculate these uncertainties based on Monte Carlo sampling and demonstrated it for a variety of commonly used signatures. The study was made for two data rich catchments, the 50 km2 Mahurangi catchment in New Zealand and the 135 km2 Brue catchment in the UK. For rainfall data the uncertainty sources included point measurement uncertainty, the number of gauges used in calculation of the catchment spatial average, and uncertainties relating to lack of quality control. For flow data the uncertainty sources included uncertainties in stage/discharge measurement and in the approximation of the true stage-discharge relation by a rating curve. The resulting uncertainties were compared across the different signatures and catchments, to quantify uncertainty

  18. 准静态电磁热弹性体余能原理和广义变分原理%The complementary energy principle and generalized variational principles of quasi-static electro-magneto-thermo-elasticity

    Institute of Scientific and Technical Information of China (English)

    宋海燕; 梁立孚; 周振功

    2011-01-01

    具有多场耦合性质的电磁热弹性体的基本方程很复杂,即使考虑最简单的情况也难求其解析解,所以需采用近似计算方法.变分原理是有限元法等近似计算方法的理论基础.按照广义力和广义位移之间的对应关系,将基本方程乘上相应的虚量,积分代数相加,建立了准静态电磁热弹性体的余能原理和第一类H-R型广义变分原理,为电磁热弹多场问题的近似计算提供理论依据.驻值条件的推导结果表明,驻值条件和先决条件一起构成了适定的微分方程组,加上温度场方程和补充条件则构成了电磁热弹性体全部的微分方程,从而验证了这2个变分原理的正确性.%The basic equations of coupled electro-magneto-thermo-elasticity are very complicated. Therefore, it is hard to obtain analytical solutions, even in the simplest conditions, so approximate computational methods are used. However, variational principles are the foundation of the finite element method and other approximate computational methods. According to the corresponding relations between generalized forces and generalized displacements, basic equations were multiplied by corresponding virtual quantities, then integrated with volume and area and added algebraically. Complementary energy principles and the first H-R generalized variational principles of quasi-static electro-magneto-thermo-elasticity were established, offering theoretical support for approximate calculation of multi-physics field problems of electro-magneto-thermo-elasticity. Results of stationary value conditions show that the suitable differential equations are composed of stationary value conditions and various pre-conditions. All differential equations are composed of these suitable differential equations, including temperature field equations and supplementary conditions. Thus the validity of these two variational principles is verified.

  19. An Approach Using a 1D Hydraulic Model, Landsat Imaging and Generalized Likelihood Uncertainty Estimation for an Approximation of Flood Discharge

    Directory of Open Access Journals (Sweden)

    Seung Oh Lee

    2013-10-01

    Full Text Available Collection and investigation of flood information are essential to understand the nature of floods, but this has proved difficult in data-poor environments, or in developing or under-developed countries due to economic and technological limitations. The development of remote sensing data, GIS, and modeling techniques have, therefore, proved to be useful tools in the analysis of the nature of floods. Accordingly, this study attempts to estimate a flood discharge using the generalized likelihood uncertainty estimation (GLUE methodology and a 1D hydraulic model, with remote sensing data and topographic data, under the assumed condition that there is no gauge station in the Missouri river, Nebraska, and Wabash River, Indiana, in the United States. The results show that the use of Landsat leads to a better discharge approximation on a large-scale reach than on a small-scale. Discharge approximation using the GLUE depended on the selection of likelihood measures. Consideration of physical conditions in study reaches could, therefore, contribute to an appropriate selection of informal likely measurements. The river discharge assessed by using Landsat image and the GLUE Methodology could be useful in supplementing flood information for flood risk management at a planning level in ungauged basins. However, it should be noted that this approach to the real-time application might be difficult due to the GLUE procedure.

  20. Using LiDAR and quickbird data to model plant production and quantify uncertainties associated with wetland detection and land cover generalizations

    Science.gov (United States)

    Cook, B.D.; Bolstad, P.V.; Naesset, E.; Anderson, R. Scott; Garrigues, S.; Morisette, J.T.; Nickeson, J.; Davis, K.J.

    2009-01-01

    Spatiotemporal data from satellite remote sensing and surface meteorology networks have made it possible to continuously monitor global plant production, and to identify global trends associated with land cover/use and climate change. Gross primary production (GPP) and net primary production (NPP) are routinely derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard satellites Terra and Aqua, and estimates generally agree with independent measurements at validation sites across the globe. However, the accuracy of GPP and NPP estimates in some regions may be limited by the quality of model input variables and heterogeneity at fine spatial scales. We developed new methods for deriving model inputs (i.e., land cover, leaf area, and photosynthetically active radiation absorbed by plant canopies) from airborne laser altimetry (LiDAR) and Quickbird multispectral data at resolutions ranging from about 30??m to 1??km. In addition, LiDAR-derived biomass was used as a means for computing carbon-use efficiency. Spatial variables were used with temporal data from ground-based monitoring stations to compute a six-year GPP and NPP time series for a 3600??ha study site in the Great Lakes region of North America. Model results compared favorably with independent observations from a 400??m flux tower and a process-based ecosystem model (BIOME-BGC), but only after removing vapor pressure deficit as a constraint on photosynthesis from the MODIS global algorithm. Fine-resolution inputs captured more of the spatial variability, but estimates were similar to coarse-resolution data when integrated across the entire landscape. Failure to account for wetlands had little impact on landscape-scale estimates, because vegetation structure, composition, and conversion efficiencies were similar to upland plant communities. Plant productivity estimates were noticeably improved using LiDAR-derived variables, while uncertainties associated with land cover generalizations and

  1. Improved entropic uncertainty relations and information exclusion relations

    OpenAIRE

    Coles, Patrick J.; Piani, Marco

    2013-01-01

    The uncertainty principle can be expressed in entropic terms, also taking into account the role of entanglement in reducing uncertainty. The information exclusion principle bounds instead the correlations that can exist between the outcomes of incompatible measurements on one physical system, and a second reference system. We provide a more stringent formulation of both the uncertainty principle and the information exclusion principle, with direct applications for, e.g., the security analysis...

  2. Uncertainty theory

    CERN Document Server

    Liu, Baoding

    2015-01-01

    When no samples are available to estimate a probability distribution, we have to invite some domain experts to evaluate the belief degree that each event will happen. Perhaps some people think that the belief degree should be modeled by subjective probability or fuzzy set theory. However, it is usually inappropriate because both of them may lead to counterintuitive results in this case. In order to rationally deal with belief degrees, uncertainty theory was founded in 2007 and subsequently studied by many researchers. Nowadays, uncertainty theory has become a branch of axiomatic mathematics for modeling belief degrees. This is an introductory textbook on uncertainty theory, uncertain programming, uncertain statistics, uncertain risk analysis, uncertain reliability analysis, uncertain set, uncertain logic, uncertain inference, uncertain process, uncertain calculus, and uncertain differential equation. This textbook also shows applications of uncertainty theory to scheduling, logistics, networks, data mining, c...

  3. Sufficient condition for the openness of a many-electron quantum system from the violation of a generalized Pauli exclusion principle

    Science.gov (United States)

    Chakraborty, Romit; Mazziotti, David A.

    2015-01-01

    Information about the interaction of a many-electron quantum system with its environment, we show, is encoded within the one-electron density matrix (1-RDM). While the 1-RDM from an ensemble many-electron quantum system must obey the Pauli exclusion principle, the 1-RDM must obey additional constraints known as generalized Pauli conditions when it corresponds to a closed system describable by a single wave function. By examining the 1-RDM's violation of these generalized Pauli conditions, we obtain a sufficient condition at the level of a single electron for a many-electron quantum system's openness. In an application to exciton dynamics in photosynthetic light harvesting we show that the interaction of the system with the environment (quantum noise) relaxes significant constraints imposed on the exciton dynamics by the generalized Pauli conditions. This relaxation provides a geometric (kinematic) interpretation for the role of noise in enhancing exciton transport in quantum systems.

  4. Testing Booleanity and the Uncertainty Principle

    CERN Document Server

    Gur, Tom

    2012-01-01

    Let f:{-1,1}^n -> R be a real function on the hypercube, given by its discrete Fourier expansion, or, equivalently, represented as a multilinear polynomial. We say that it is Boolean if its image is in {-1,1}. We show that every function on the hypercube with a sparse Fourier expansion must either be Boolean or far from Boolean. In particular, we show that a multilinear polynomial with at most k terms must either be Boolean, or output values different than -1 or 1 for a fraction of at least 2/(k+2)^2 of its domain. It follows that given black box access to f, together with the guarantee that its representation as a multilinear polynomial has at most k terms, one can test Booleanity using O(k^2) queries. We show an Omega(k) queries lower bound for this problem. We also consider the problem of deciding if a function is Boolean, given its explicit representation as a k term multilinear polynomial. The naive approach of evaluating it at every input has O(kn2^n) time complexity. For large k (i.e, exponential) we p...

  5. Nab: Measurement Principles, Apparatus and Uncertainties

    CERN Document Server

    Pocanic, D; Alonzi, L P; Baessler, S; Balascuta, S; Bowman, J D; Bychkov, M A; Byrne, J; Calarco, J R; Cianciolo, V; Crawford, C; Frlez, E; Gericke, M T; Greene, G L; Grzywacz, R K; Gudkov, V; Hersman, F W; Klein, A; Martín, J; Page, S A; Palladino, A; Penttila, S I; Rykaczewski, K P; Wilburn, W S; Young, A R; Young, G R

    2008-01-01

    The Nab collaboration will perform a precise measurement of 'a', the electron-neutrino correlation parameter, and 'b', the Fierz interference term in neutron beta decay, in the Fundamental Neutron Physics Beamline at the SNS, using a novel electric/magnetic field spectrometer and detector design. The experiment is aiming at the 10^{-3} accuracy level in (Delta a)/a, and will provide an independent measurement of lambda = G_A/G_V, the ratio of axial-vector to vector coupling constants of the nucleon. Nab also plans to perform the first ever measurement of 'b' in neutron decay, which will provide an independent limit on the tensor weak coupling.

  6. The relation between the general maxim of causality and the principle of uniformity in hume's theory of knowledge

    Directory of Open Access Journals (Sweden)

    José Oscar de Almeida Marques

    2012-06-01

    Full Text Available ABSTRACT When Hume, in the Treatise on Human Nature, began his examination of the relation of cause and effect, in particular, of the idea of necessary connection which is its essential constituent, he identified two preliminary questions that should guide his research: (1 For what reason we pronounce it necessary that every thing whose existence has a beginning should also have a cause and (2 Why we conclude that such particular causes must necessarily have such particular effects? (1.3.2, 14-15 Hume observes that our belief in these principles can result neither from an intuitive grasp of their truth nor from a reasoning that could establish them by demonstrative means. In particular, with respect to the first, Hume examines and rejects some arguments with which Locke, Hobbes and Clarke tried to demonstrate it, and suggests, by exclusion, that the belief that we place on it can only come from experience. Somewhat surprisingly, however, Hume does not proceed to show how that derivation of experience could be made, but proposes instead to move directly to an examination of the second principle, saying that, "perhaps, be found in the end, that the same answer will serve for both questions" (1.3.3, 9. Hume's answer to the second question is well known, but the first question is never answered in the rest of the Treatise, and it is even doubtful that it could be, which would explain why Hume has simply chosen to remove any mention of it when he recompiled his theses on causation in the Enquiry concerning Human Understanding. Given this situation, an interesting question that naturally arises is to investigate the relations of logical or conceptual implication between these two principles. Hume seems to have thought that an answer to (2 would also be sufficient to provide an answer to (1. Henry Allison, in his turn, argued (in Custom and Reason in Hume, p. 94-97 that the two questions are logically independent. My proposal here is to try to show

  7. An extremum principle for computation of the zone of tooth contact and generalized transmission error of spiral bevel gears

    Science.gov (United States)

    Mark, W. D.

    1988-01-01

    For a given set of forces transmitted by the gears, each of the three components of the generalized transmission error of spiral bevel gears is shown to be stationary with respect to small independent variations in the positions of the endpoints of the lines of tooth contact about their true values. The tangential generalized transmission error component is shown to take on a minimum value at the true endpoint positions. A computational procedure based on the method of steepest descent is described for computing the true line of contact endpoint positions and the three components of the generalized transmission error. A method for computing the Fourier series coefficients of the tooth meshing harmonics of the three generalized transmission error components also is provided.

  8. Information and communication on risks related to medications and proper use of medications for healthcare professionals and the general public: precautionary principle, risk management, communication during and in the absence of crisis situations.

    Science.gov (United States)

    Molimard, Mathieu; Bernaud, Corine; Lechat, Philippe; Bejan-Angoulvant, Theodora; Benattia, Cherif; Benkritly, Amel; Braunstein, David; Cabut, Sandrine; David, Nadine; Fourrier-Réglat, Annie; Gallet, Benoit; Gersberg, Marta; Goni, Sylvia; Jolliet, Pascale; Lamarque-Garnier, Véronique; Le Jeunne, Claire; Leurs, Irina; Liard, François; Malbezin, Muriel; Micallef, Joelle; Nguon, Marina

    2014-01-01

    Recent drug crises have highlighted the complexity, benefits and risks of medication communication. The difficulty of this communication is due to the diversity of the sources of information and the target audience, the credibility of spokespersons, the difficulty to communicate on scientific uncertainties and the precautionary principle, which is influenced by variable perceptions and tolerances of the risk. Globally, there is a lack of training in risk management with a tendency of modern society to refuse even the slightest risk. Communication on medications is subject to regulatory or legal requirements, often uses tools and messages that are not adapted to the target audience and is often based on a poor knowledge of communication techniques. In order to improve this situation, the available information must be coordinated by reinforcing the unique medication information website and by coordinating communication between authorities by means of a single spokesperson. A particular effort must be made in the field of training in the proper use and risk of medications for both the general population and patients but also for healthcare professionals, by setting up a unified academic on-line teaching platform for continuing medical education on medications and their proper use.

  9. Interpreting uncertainty terms.

    Science.gov (United States)

    Holtgraves, Thomas

    2014-08-01

    Uncertainty terms (e.g., some, possible, good, etc.) are words that do not have a fixed referent and hence are relatively ambiguous. A model is proposed that specifies how, from the hearer's perspective, recognition of facework as a potential motive for the use of an uncertainty term results in a calibration of the intended meaning of that term. Four experiments are reported that examine the impact of face threat, and the variables that affect it (e.g., power), on the manner in which a variety of uncertainty terms (probability terms, quantifiers, frequency terms, etc.) are interpreted. Overall, the results demonstrate that increased face threat in a situation will result in a more negative interpretation of an utterance containing an uncertainty term. That the interpretation of so many different types of uncertainty terms is affected in the same way suggests the operation of a fundamental principle of language use, one with important implications for the communication of risk, subjective experience, and so on.

  10. Uncertainty Einstein, Heisenberg, Bohr, and the struggle for the soul of science

    CERN Document Server

    Lindley, David

    2007-01-01

    The uncertainty in this delightful book refers to Heisenberg's Uncertainty Principle, an idea first postulated in 1927 by physicist Werner Heisenberg in his attempt to make sense out of the developing field of quantum mechanics. As Lindley so well explains it, the concept of uncertainty shook the philosophical underpinnings of science. It was Heisenberg's work that, to a great extent, kept Einstein from accepting quantum mechanics as a full explanation for physical reality. Similarly, it was the Uncertainty Principle that demonstrated the limits of scientific investigation: if Heisenberg is correct there are some aspects of the physical universe that are to remain beyond the reach of scientists. As he has done expertly in books like Boltzmann's Atom, Lindley brings to life a critical period in the history of science, explaining complex issues to the general reader, presenting the major players in an engaging fashion, delving into the process of scientific discovery and discussing the interaction between scien...

  11. General principles and practice for insecticide bioassays%杀虫药剂生物测定原理与实践

    Institute of Scientific and Technical Information of China (English)

    辛娟娟; 高希武

    2013-01-01

    General principles, the selection of pest targets, standardization of assay procedures and biological statistics for the analyses of insecticide bioassays are reviewed. This review will provide a reference for developing standard insecticide bioassays.%本文从生物测定的基本原理、试验靶标的选择、杀虫药剂毒力测定标准化和统计分析等方面对杀虫药剂的毒力测定进行了规范性综述,为进行标准的生物测定提供依据和参考.

  12. Model Uncertainty for Bilinear Hysteric Systems

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    In structural reliability analysis at least three types of uncertainty must be considered, namely physical uncertainty, statistical uncertainty, and model uncertainty (see e.g. Thoft-Christensen & Baker [1]). The physical uncertainty is usually modelled by a number of basic variables by predictive...... density functions, Veneziano [2]. In general, model uncertainty is the uncertainty connected with mathematical modelling of the physical reality. When structural reliability analysis is related to the concept of a failure surface (or limit state surface) in the n-dimension basic variable space then model...... uncertainty is at least due to the neglected variables, the modelling of the failure surface and the computational technique used....

  13. 容斥原理的拓展及其应用(Ⅱ)%A generalization of the principle of inclusion-exclusion and its application(Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    唐善刚

    2011-01-01

    将容斥原理拓展到赋权有限集上具带权表达式的一般化情形,得到了具带权表达式的广义容斥原理,并给出广义容斥原理在组合计数中的具体应用。%The principle of inclusion-exclusion is extended to the general restricted conditions on a weighted finite set,and a weighted generalization of the principle of inclusion-exclusion is given.Some applications of the generalized principle of inclusion-exclusion are given on combinatorial enumeration.

  14. NATURAL-SCIENCE EDUCATION: SCIENTIFIC AND RELIGIOUS KNOWLEDGE CORRELATION IN THE VIEW OF A SYMMETRY PRINCIPLE. Ch. 2. Examples of religious content selection in general natural science courses based on the principle of symmetry

    Directory of Open Access Journals (Sweden)

    Vitalii L. Gapontsev

    2015-01-01

    Full Text Available This work is aimed at demonstrating the possibility of the inclusion of religious elements contained in Holy Scripture and Holy Tradition in the general natural scientific courses based on the principle of symmetry.The method used in the work is confined to a comparison of perceptions formed in modern science and is closely related to the forms of symmetry and invariance principles (symmetry principles and, in particular, space-time concepts with those of the Book of Genesis. Such a comparison reveals the following unexpected feature: most profound presentation of modern natural sciences is closer to the provisions of Holy Scripture and Holy Tradition than a look at the same things existed in the earlier stages of the development of science. This allows the authors to formulate the hypothesis that in the process of development of scientific knowledge, it gradually becomes closer to the religious worldview. This process is slow, so its results have become visible only within 3500 years after the establishment of the truth of the Old Testament and 2000 years after the New Testament.Results and scientific novelty. The «firmament of heaven» and «water under the firmament» concepts are explained in the terms of the model of the Kleinert – Planck World crystal and understanding of the properties of matter and fields which are related with the conservation law of the wave-function parity. The relational nature of phenomena such as «life» and «death» in the course of universe evolution as a general trend is considered as the process of lowering the degree of symmetry of matter after the Big Bang wherein the Universe was created. The concepts used by E. Wigner for the description of the structure of the scientific knowledge are analysed. Its structure is determined by shapes and specific principles of the symmetry of exact sciences. The analysis of the concept «natural phenomenon» has shown that they are different in the degree of space

  15. 民法总则如何反映民事权利?%How General Principles of Civil Law Reflects Civil Right?

    Institute of Scientific and Technical Information of China (English)

    崔建远

    2015-01-01

    Although General Principles of Civil Law is not suitable to adopt a linear listing of regula⁃tions of property ownership right, rights related to the former such as property right, creditor ’s rights, intellectual property, right of inheritance, it can not transfer completely all the civil right regu⁃lation to the compilation of each individual principle but sets up a general regulation of civil right, whose regulation range should be restricted by the system and the content of each chapter, by the content regulated by the civil code and by the idea and guiding thought pursued by the civil code. Civil code should not only require the establishment and implementation of civil right not be against the public order and good custom, follow principle of being honest and trustworthy, but also set up regulations about the composition, types and efficacy of expectation right and debate right. Even if General Principles of Civil Law or civil code can not include all the civil rights, they cannot advo⁃cate blindly“Everything is permitted, which is not forbidden by law”.%民法总则虽然不宜再沿用民法通则一字排开地规定财产所有权、与财产所有权有关的财产权、债权、知识产权、继承权等类型,但并不可将民事权利的规范完全交给民法典的各分则编,而是应当设置民事权利的一般规则,其规范范围受制于民法总则的体系及其章节内容,受制于民法典所规制的内容,受制于民法典奉行的理念、指导思想。民法总则不但应规定民事权利的设立及行使不得违背公序良俗原则,应当遵循诚实信用等原则,而且应就期待权、抗辩权的构成、类型、效力等内容设置必要的规范。即使民法总则乃至民法典无法将所有的民事权利规范收拢在怀,也不可盲目地高倡“法不禁止即自由”。

  16. Demand Uncertainty

    DEFF Research Database (Denmark)

    Nguyen, Daniel Xuyen

    This paper presents a model of trade that explains why firms wait to export and why many exporters fail. Firms face uncertain demands that are only realized after the firm enters the destination. The model retools the timing of uncertainty resolution found in productivity heterogeneity models...... in untested destinations. The option to forecast demands causes firms to delay exporting in order to gather more information about foreign demand. Third, since uncertainty is resolved after entry, many firms enter a destination and then exit after learning that they cannot profit. This prediction reconciles...

  17. Measurement uncertainty relations

    Energy Technology Data Exchange (ETDEWEB)

    Busch, Paul, E-mail: paul.busch@york.ac.uk [Department of Mathematics, University of York, York (United Kingdom); Lahti, Pekka, E-mail: pekka.lahti@utu.fi [Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Werner, Reinhard F., E-mail: reinhard.werner@itp.uni-hannover.de [Institut für Theoretische Physik, Leibniz Universität, Hannover (Germany)

    2014-04-15

    Measurement uncertainty relations are quantitative bounds on the errors in an approximate joint measurement of two observables. They can be seen as a generalization of the error/disturbance tradeoff first discussed heuristically by Heisenberg. Here we prove such relations for the case of two canonically conjugate observables like position and momentum, and establish a close connection with the more familiar preparation uncertainty relations constraining the sharpness of the distributions of the two observables in the same state. Both sets of relations are generalized to means of order α rather than the usual quadratic means, and we show that the optimal constants are the same for preparation and for measurement uncertainty. The constants are determined numerically and compared with some bounds in the literature. In both cases, the near-saturation of the inequalities entails that the state (resp. observable) is uniformly close to a minimizing one.

  18. A Z{sub 3} generalization of Pauli's principle, quark algebra and the Lorentz invariance

    Energy Technology Data Exchange (ETDEWEB)

    Kerner, Richard [Laboratoire de Physique Theorique de la Matiere Condensee, UMR CNRS 7600, Universite Pierre et Marie Curie, Tour 13-23, 5-eme etage, Bo Latin-Small-Letter-Dotless-I -carette 121, 4 Place Jussieu, 75005 Paris (France)

    2012-09-24

    The fundamental difference between bosons and fermions is that they obey two alternative representations of the Z{sub 2} group, resulting in symmetric or anti-symmetric binary commutation relations. Our aim is to explore possibilities offered by ternary Z{sub 3} generalization commutation relations. This leads to cubic and ternary algebras which are a direct generalization of usual commutation relations, with Z{sub 3}-grading replacing the usual Z{sub 2}-grading. Properties and structure of such algebras are discussed, with special interest in a low-dimensional one, with two generators. Invariant cubic forms on such algebras are introduced, and it is shown how the SL(2,C) group arises naturally as the symmetry group preserving these forms. In the case of lowest dimension, with only two generators, it is shown how the cubic combinations of elements of the same Z{sub 3} grade behave like Lorentz spinors, while binary products of elements of this algebra with an element of the conjugate algebra behave like Lorentz vectors. The wave equation generalizing the Dirac operator to the Z{sub 3}-graded case is introduced, whose diagonalization leads to a third-order equation. The solutions of this equation cannot propagate because their exponents always contain non-oscillating real damping factor. We show how certain cubic products can propagate nevertheless. The model suggests the origin of the color SU(3) symmetry obeyed by quark states.

  19. The hypothesis of neuronal interconnectivity as a function of brain size – A general organization principle of the human connectome

    Directory of Open Access Journals (Sweden)

    Jürgen eHänggi

    2014-11-01

    Full Text Available Twenty years ago, Ringo and colleagues proposed that maintaining absolute connectivity in larger compared with smaller brains is computationally inefficient due to increased conduction delays in transcallosal information transfer and expensive with respect to the brain mass needed to establish these additional connections. Therefore, they postulated that larger brains are relatively stronger connected intrahemispherically and smaller brains interhemispherically, resulting in stronger functional lateralization in larger brains. We investigated neuronal interconnections in 138 large and small human brains using diffusion tensor imaging-based fiber tractography. We found a significant interaction between brain size and the type of connectivity. Structural intrahemispheric connectivity is stronger in larger brains, whereas interhemispheric connectivity is only marginally increased in larger compared with smaller brains. Although brain size and gender are confounded, this effect is gender-independent. Additionally, the ratio of interhemispheric to intrahemispheric connectivity correlates inversely with brain size. The hypothesis of neuronal interconnectivity as a function of brain size might account for shorter and more symmetrical interhemispheric transfer times in women and for empirical evidence that visual and auditory processing are stronger lateralized in men. The hypothesis additionally shows that differences in interhemispheric and intrahemispheric connectivity are driven by brain size and not by gender, a finding contradicting a recently published study. Our findings are also compatible with the idea that the more asymmetric a region is, the smaller the density of interhemispheric connections, but the larger the density of intrahemispheric connections. The hypothesis represents an organization principle of the human connectome that might be applied also to non-human animals as suggested by our cross-species comparison.

  20. Magnetic diagnostics: general principles and the problem of reconstruction of plasma current and pressure profiles in toroidal systems

    Energy Technology Data Exchange (ETDEWEB)

    Pustovitov, V.D.

    2000-04-01

    The restrictions of the magnetic diagnostics are discussed. Being related to the integral nature of the measurable quantities, they follow from the fundamental laws of electromagnetism. A series of particular examples demonstrating the strength of these restrictions is given and analyzed. A general rule is emphasized that the information obtained from external magnetic measurements is obviously insufficient for the reliable evaluation of plasma current and pressure profiles in tokamaks or in stellarators. The underlying reason is that outside the plasma the own field of the equilibrium plasma currents is determined by the boundary conditions on the plasma surface only. (author)

  1. Calibration uncertainty

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Anglov, Thomas

    2002-01-01

    Methods recommended by the International Standardization Organisation and Eurachem are not satisfactory for the correct estimation of calibration uncertainty. A novel approach is introduced and tested on actual calibration data for the determination of Pb by ICP-AES. The improved calibration unce...

  2. Vehicle Routing under Uncertainty

    NARCIS (Netherlands)

    Máhr, T.

    2011-01-01

    In this thesis, the main focus is on the study of a real-world transportation problem with uncertainties, and on the comparison of a centralized and a distributed solution approach in the context of this problem. We formalize the real-world problem, and provide a general framework to extend it with

  3. Deformed Heisenberg algebra with minimal length and equivalence principle

    CERN Document Server

    Tkachuk, V M

    2013-01-01

    Studies in string theory and quantum gravity lead to the Generalized Uncertainty Principle (GUP) and suggest the existence of a fundamental minimal length which, as was established, can be obtained within the deformed Heisenberg algebra. The first look on the classical motion of bodies in a space with corresponding deformed Poisson brackets in a uniform gravitational field can give an impression that bodies of different mass fall in different ways and thus the equivalence principle is violated. Analyzing the kinetic energy of a composite body we find that the motion of its center of mass in the deformed space depends on some effective parameter of deformation. It gives a possibility to recover the equivalence principle in the space with deformed Poisson brackets. and thus GUP is reconciled with the equivalence principle. We also show that the independence of kinetic energy on composition leads to the recovering of the equivalence principle in the space with deformed Poisson brackets.

  4. Cefalea cervicogénica: Diagnóstico, diagnóstico diferencial y principios generales del tratamiento Cervicogenic headache: Differential diagnosis and general therapeutic principles

    Directory of Open Access Journals (Sweden)

    I. O'Mullony

    2005-02-01

    Full Text Available La cefalea cervicogénica es un síndrome, una vía final común, o un patrón de reacción frente a estímulos nociceptivos generados por lesiones en una o varias estructuras anatómicas del cuello, inervadas por nervios cervicales. Este concepto admite la posibilidad de etiologías diversas y mecanismos multifactoriales. La cefalea cervicogénica es frecuente, y afecta preferentemente a mujeres en la edad media de la vida. El dolor es estrictamente unilateral, con predominio en la región occipital pero con afectación también de la región frontal. La cefalea es moderada en general, no pulsátil y puede acompañarse de náuseas, vómitos y fotoaudiofobia pero con intensidad mucho menor que en la migraña. El patrón temporal es remitente o crónico. Los signos y síntomas de afectación cervical son constantes: antecedentes de traumatismo cervical directo o indirecto, limitación de la motilidad cervical hacia el lado sintomático, hipersensibilidad y/o precipitación del dolor por presión sobre determinadas zonas occipitales o cervicales, y alivio completo (aunque transitorio, tras la anestesia local del nervio occipital mayor y/o la raíz C2 ipsilateral. Ocasionalmente es preciso anestesiar raíces más bajas o realizar bloqueos anestésicos articulares cervicales. Las formas episódicas pueden tratarse de forma sintomática con ciclos cortos de AINE o infiltración local con anestésico y corticoide de la zona hipersensible. Las formas crónicas requieren tratamiento preventivo con amitriptilina o fármacos antineurálgicos. Diversos procedimientos lesivos, fundamentalmente con radiofrecuencia, pueden ser necesarios para erradicar el dolor. Previamente debe identificarse la diana terapéutica y estimar la respuesta a los bloqueos anestésicos locales.Cervicogenic headache is either a syndrome, a common final route or a reaction pattern against nociceptive stimulus caused by lesions in one or several anatomical neck structures innervated

  5. Averting a Disaster with Groundwater Depletion in India: The General Case of Water Management Principles and Development (Invited)

    Science.gov (United States)

    Lall, U.

    2013-12-01

    Many countries, including the USA, China, and India are experiencing chronic groundwater depletion. In part this unsustainable water use results from climatic factors that reduce surface water availability and also the recharge to the aquifer system. However, a more critical factor is uncontrolled use for agriculture and energy and mineral processing. Interestingly in places such as India endowments have been politically created that lead to ever increasing use, through the provision of free energy for pumping. Reversing the situation is considered politically challenging, and the concept of metering and payment for what is essentially economic use of water is also considered difficult to apply. In this talk I use the Indian situation as a general example and discuss the role central planning strategies for demand and resource management can play recognizing the private action by millions of users as an inevitable tool that needs to be leveraged without necessarily the high transaction costs that come with monitoring and fee collection for monitored use. Specifically, targeting and stimulating potential cropping strategies and on farm water and energy management emerge as a choice in a difficult management environment. In a broader development context, I argue that the role of private sector aggregators in developing farm to market procurement strategies can play a role in both improving rural economies and providing a trajectory for more efficient water use through technology and crop choice.

  6. Spin-Spin Interactions in Gauge Theory of Gravity, Violation of Weak Equivalence Principle and New Classical Test of General Relativity

    Institute of Scientific and Technical Information of China (English)

    WU Li-Li; WU Ning; HU Juan-Mei; WU Feng-Min

    2008-01-01

    For a long time, it has been generally believed that spin-spin interactions can only exist in a theory where Lorentz symmetry is gauged, and a theory with spin-spin interactions is not perturbatively renormalizable. But this is not true. By studying the motion of a spinning particle in gravitational field, it is found that there exist spin-spin interactions in gauge theory of gravity. Its mechanism is that a spinning particle will generate gravitomagnetic field in space-time, and this gravitomagnetic field will interact with the spin of another particle, which will cause spin-spin interactions. So, spin-spin interactions are transmitted by gravitational field. The form of spin-spin interactions in post Newtonian approximations is deduced. This result can also be deduced from the Papapetrou equation. This kind of interaction will not affect the renormalizability of the theory. The spin-spin interactions will violate the weak equivalence principle, and the violation effects are detectable. An experiment is proposed to detect the effects of the violation of the weak equivalence principle.

  7. Hybrid evidential reasoning for decision making under uncertainty based on extension principle%基于扩展原理的混合型证据推理不确定决策方法

    Institute of Scientific and Technical Information of China (English)

    张美璟; 王应明

    2015-01-01

    An approach called hybrid evidential reasoning is proposed based on the extension principle to deal with multiple attribute decision making under uncertainty. Heterogeneous beliefs, such as crisp value, interval value and fuzzy value, on the same problem are all decomposed into interval value to setup a uniform belief structure. Interval evidential reasoning is used to work out the interval utility of the alternative for each membership degrees, and the utility of each alternative can be assembled in the order of membership degrees. The equation of fuzzy centroid is reduced and used to calculate the belief degree of quantitative fuzzy assessment and rank the fuzzy utility of alternatives. Finally, an example is examined to illustrate the effectiveness and feasibility of the proposed method. Comparing with the application of all these approaches to the example, the results show that the proposed approach is adaptable.%提出一种基于扩展原理的混合证据推理不确定决策模型。通过��截集将同一决策问题中各属性使用的精确数、区间数和模糊数等异构评估信度统一分解为区间结构,采用区间证据推理方法求解各隶属度下的效用区间,并按隶属度次序重组方案效用;化简模糊数质心公式,并用于模糊定量评估的信度计算和方案模糊效用的排序;最后,通过具体实例验证了所提出方法的有效性和可行性。将该方法在算例中的适用情况进行比较和分析,结果表明所提出的方法具有良好的适应性。

  8. USE OF SUPERPOSITION PRINCIPLE TO DERIVE A GENERAL MATHEMATICAL MODEL TO SIMULATE ONE-TO-ONE, ONE-TO-MULTI AND MULTI-TO-MULTI SAW FILTER DESIGNS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper explains and summarizes a new attempt to derive a general mathematical model [GMM] to simulate surface acoustic wave (SAW) filters, using the superposition principle and delta function model. GMM can be used to simulate One-to-One, One-to-Multi and Multi-to-Multi SAW filter devices. The simulation program was written using MATLAB (the language of technical computing). Four-design structures (One-to-One, One-to-Two, One-to-Three and Ten-to-Ten) ware selected to test the correctness of GMM. The frequency response of the simulation and test results are similar in center frequency and 3-dB bandwidth, but the insertion loss is different, because of some second order effects (Issa Haitham, 1999).

  9. 《商事通则》中商主体概念的选定%Commercial Subject in Chinese Commercial Law with General Principles

    Institute of Scientific and Technical Information of China (English)

    张骏

    2011-01-01

    Several concepts of commercial subject are analyzed and clarified, such as commercial subject, business man and enterprise. Each concept is described in the dimension of theory and practice. It is concluded that commercial subject should be chosen as the basic concept in the Commercial Law with General Principles.%对于商主体的各种概念,如商人、商(事)主体、企业等进行了分析与澄清,对每个概念都结合理论与实践进行了深入细致的阐述,最后得出结论:应选取商主体作为《商事通则》中的基本概念。

  10. On the quantum mechanical solutions with minimal length uncertainty

    Science.gov (United States)

    Shababi, Homa; Pedram, Pouria; Chung, Won Sang

    2016-06-01

    In this paper, we study two generalized uncertainty principles (GUPs) including [X,P] = iℏ(1 + βP2j) and [X,P] = iℏ(1 + βP2 + kβ2P4) which imply minimal measurable lengths. Using two momentum representations, for the former GUP, we find eigenvalues and eigenfunctions of the free particle and the harmonic oscillator in terms of generalized trigonometric functions. Also, for the latter GUP, we obtain quantum mechanical solutions of a particle in a box and harmonic oscillator. Finally we investigate the statistical properties of the harmonic oscillator including partition function, internal energy, and heat capacity in the context of the first GUP.

  11. Uncertainty relation in Schwarzschild spacetime

    Science.gov (United States)

    Feng, Jun; Zhang, Yao-Zhong; Gould, Mark D.; Fan, Heng

    2015-04-01

    We explore the entropic uncertainty relation in the curved background outside a Schwarzschild black hole, and find that Hawking radiation introduces a nontrivial modification on the uncertainty bound for particular observer, therefore it could be witnessed by proper uncertainty game experimentally. We first investigate an uncertainty game between a free falling observer and his static partner holding a quantum memory initially entangled with the quantum system to be measured. Due to the information loss from Hawking decoherence, we find an inevitable increase of the uncertainty on the outcome of measurements in the view of static observer, which is dependent on the mass of the black hole, the distance of observer from event horizon, and the mode frequency of quantum memory. To illustrate the generality of this paradigm, we relate the entropic uncertainty bound with other uncertainty probe, e.g., time-energy uncertainty. In an alternative game between two static players, we show that quantum information of qubit can be transferred to quantum memory through a bath of fluctuating quantum fields outside the black hole. For a particular choice of initial state, we show that the Hawking decoherence cannot counteract entanglement generation after the dynamical evolution of system, which triggers an effectively reduced uncertainty bound that violates the intrinsic limit -log2 ⁡ c. Numerically estimation for a proper choice of initial state shows that our result is comparable with possible real experiments. Finally, a discussion on the black hole firewall paradox in the context of entropic uncertainty relation is given.

  12. Network planning under uncertainties

    Science.gov (United States)

    Ho, Kwok Shing; Cheung, Kwok Wai

    2008-11-01

    One of the main focuses for network planning is on the optimization of network resources required to build a network under certain traffic demand projection. Traditionally, the inputs to this type of network planning problems are treated as deterministic. In reality, the varying traffic requirements and fluctuations in network resources can cause uncertainties in the decision models. The failure to include the uncertainties in the network design process can severely affect the feasibility and economics of the network. Therefore, it is essential to find a solution that can be insensitive to the uncertain conditions during the network planning process. As early as in the 1960's, a network planning problem with varying traffic requirements over time had been studied. Up to now, this kind of network planning problems is still being active researched, especially for the VPN network design. Another kind of network planning problems under uncertainties that has been studied actively in the past decade addresses the fluctuations in network resources. One such hotly pursued research topic is survivable network planning. It considers the design of a network under uncertainties brought by the fluctuations in topology to meet the requirement that the network remains intact up to a certain number of faults occurring anywhere in the network. Recently, the authors proposed a new planning methodology called Generalized Survivable Network that tackles the network design problem under both varying traffic requirements and fluctuations of topology. Although all the above network planning problems handle various kinds of uncertainties, it is hard to find a generic framework under more general uncertainty conditions that allows a more systematic way to solve the problems. With a unified framework, the seemingly diverse models and algorithms can be intimately related and possibly more insights and improvements can be brought out for solving the problem. This motivates us to seek a

  13. Demand Uncertainty

    DEFF Research Database (Denmark)

    Nguyen, Daniel Xuyen

    This paper presents a model of trade that explains why firms wait to export and why many exporters fail. Firms face uncertain demands that are only realized after the firm enters the destination. The model retools the timing of uncertainty resolution found in productivity heterogeneity models...... the high rate of exit seen in the first years of exporting. Finally, when faced with multiple countries in which to export, some firms will choose to sequentially export in order to slowly learn more about its chances for success in untested markets....

  14. Relationships between General Self-efficacy, Intolerance of Uncertainty and Test Anxiety%高中生一般自我效能感、无法忍受不确定性与考试焦虑的关系

    Institute of Scientific and Technical Information of China (English)

    张荣娟

    2016-01-01

    Objective: The paper is to explore the relationship between general self-efficacy and test anxiety and the mediation of intolerance of uncertainty between them. Methods:400 senior middle school students at campus were measured with General Self-efficacy Scale, brief version of Intolerance of Uncer⁃tainty Scale and Test Anxiety Scale, and then the correlationship was analysized. Results:General self-ef⁃ficacy was negatively correlated with test anxiety, intolerance of uncertainty and its factors, while test anxi⁃ety was positively correlated with intolerance of uncertainty and its factors, and all the correlation coeffi⁃cients were significant. Linear regression analysis revealed that intolerance of uncertainty and its factors could entirely mediate the effect of general self-efficacy on test anxiety, and IUS-12 prospective anxiety factor accounted for much more variance of test anxiety than IUS-12 prohibitory anxiety factor. Conclu⁃sion:General self-efficacy could predict test anxiety directly or indirectly through the mediation of intoler⁃ance of uncertainty.%采用一般自我效能感量表、无法忍受不确定性简易量表及考试焦虑量表测量400名在校高中生,分析其相关性,探讨一般自我效能感、无法忍受不确定性和考试焦虑的关系。结果表明:一般自我效能感和考试焦虑、IU及其因子负相关显著,考试焦虑和无法忍受不确定性及其因子正相关显著;回归分析表明,无法忍受不确定性在一般自我效能感和考试焦虑之间起完全中介作用,在预测考试焦虑时,无法忍受不确定性的认知预期因子比行动抑制因子能解释更多的变异。一般自我效能感对考试焦虑有直接作用,并能通过无法忍受不确定性这一中介来影响考试焦虑。

  15. Error-disturbance uncertainty relations in neutron spin measurements

    Science.gov (United States)

    Sponar, Stephan

    2016-05-01

    Heisenberg’s uncertainty principle in a formulation of uncertainties, intrinsic to any quantum system, is rigorously proven and demonstrated in various quantum systems. Nevertheless, Heisenberg’s original formulation of the uncertainty principle was given in terms of a reciprocal relation between the error of a position measurement and the thereby induced disturbance on a subsequent momentum measurement. However, a naive generalization of a Heisenberg-type error-disturbance relation for arbitrary observables is not valid. An alternative universally valid relation was derived by Ozawa in 2003. Though universally valid, Ozawa’s relation is not optimal. Recently, Branciard has derived a tight error-disturbance uncertainty relation (EDUR), describing the optimal trade-off between error and disturbance under certain conditions. Here, we report a neutron-optical experiment that records the error of a spin-component measurement, as well as the disturbance caused on another spin-component to test EDURs. We demonstrate that Heisenberg’s original EDUR is violated, and Ozawa’s and Branciard’s EDURs are valid in a wide range of experimental parameters, as well as the tightness of Branciard’s relation.

  16. The principle of pooled calibrations and outlier retainment elucidates optimum performance of ion chromatography

    DEFF Research Database (Denmark)

    Andersen, Jens; Mikolajczak, Maria; Wojtachnio-Zawada, Katarzyna Olga;

    2012-01-01

    A principle with quality assurance of ion chromatography (IC) is presented. Since the majority of scientists and costumers are interested in the determination of the true amount of analyte in real samples, the focus of attention should be directed towards the concept of accuracy rather than...... focussing on precision. By exploiting the principle of pooled calibrations and retainment of all outliers it was possible to obtain full correspondence between calibration uncertainty and repetition uncertainty, which for the first time evidences statistical control in experiments with ion chromatography...... investigations of method validations where it was found that the principle of pooled calibrations provides a more realistic picture of the analytical performance with the drawback, however, that generally higher levels of uncertainties should be accepted, as compared to contemporary literature values...

  17. Uncertainty analysis

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, R.E.

    1982-03-01

    An evaluation is made of the suitability of analytical and statistical sampling methods for making uncertainty analyses. The adjoint method is found to be well-suited for obtaining sensitivity coefficients for computer programs involving large numbers of equations and input parameters. For this purpose the Latin Hypercube Sampling method is found to be inferior to conventional experimental designs. The Latin hypercube method can be used to estimate output probability density functions, but requires supplementary rank transformations followed by stepwise regression to obtain uncertainty information on individual input parameters. A simple Cork and Bottle problem is used to illustrate the efficiency of the adjoint method relative to certain statistical sampling methods. For linear models of the form Ax=b it is shown that a complete adjoint sensitivity analysis can be made without formulating and solving the adjoint problem. This can be done either by using a special type of statistical sampling or by reformulating the primal problem and using suitable linear programming software.

  18. Orbital State Uncertainty Realism

    Science.gov (United States)

    Horwood, J.; Poore, A. B.

    2012-09-01

    Fundamental to the success of the space situational awareness (SSA) mission is the rigorous inclusion of uncertainty in the space surveillance network. The *proper characterization of uncertainty* in the orbital state of a space object is a common requirement to many SSA functions including tracking and data association, resolution of uncorrelated tracks (UCTs), conjunction analysis and probability of collision, sensor resource management, and anomaly detection. While tracking environments, such as air and missile defense, make extensive use of Gaussian and local linearity assumptions within algorithms for uncertainty management, space surveillance is inherently different due to long time gaps between updates, high misdetection rates, nonlinear and non-conservative dynamics, and non-Gaussian phenomena. The latter implies that "covariance realism" is not always sufficient. SSA also requires "uncertainty realism"; the proper characterization of both the state and covariance and all non-zero higher-order cumulants. In other words, a proper characterization of a space object's full state *probability density function (PDF)* is required. In order to provide a more statistically rigorous treatment of uncertainty in the space surveillance tracking environment and to better support the aforementioned SSA functions, a new class of multivariate PDFs are formulated which more accurately characterize the uncertainty of a space object's state or orbit. The new distribution contains a parameter set controlling the higher-order cumulants which gives the level sets a distinctive "banana" or "boomerang" shape and degenerates to a Gaussian in a suitable limit. Using the new class of PDFs within the general Bayesian nonlinear filter, the resulting filter prediction step (i.e., uncertainty propagation) is shown to have the *same computational cost as the traditional unscented Kalman filter* with the former able to maintain a proper characterization of the uncertainty for up to *ten

  19. Wave Energy Converter Annual Energy Production Uncertainty Using Simulations

    Directory of Open Access Journals (Sweden)

    Clayton E. Hiles

    2016-09-01

    Full Text Available Critical to evaluating the economic viability of a wave energy project is: (1 a robust estimate of the electricity production throughout the project lifetime and (2 an understanding of the uncertainty associated with said estimate. Standardization efforts have established mean annual energy production (MAEP as the metric for quantification of wave energy converter (WEC electricity production and the performance matrix approach as the appropriate method for calculation. General acceptance of a method for calculating the MAEP uncertainty has not yet been achieved. Several authors have proposed methods based on the standard engineering approach to error propagation, however, a lack of available WEC deployment data has restricted testing of these methods. In this work the magnitude and sensitivity of MAEP uncertainty is investigated. The analysis is driven by data from simulated deployments of 2 WECs of different operating principle at 4 different locations. A Monte Carlo simulation approach is proposed for calculating the variability of MAEP estimates and is used to explore the sensitivity of the calculation. The uncertainty of MAEP ranged from 2%–20% of the mean value. Of the contributing uncertainties studied, the variability in the wave climate was found responsible for most of the uncertainty in MAEP. Uncertainty in MAEP differs considerably between WEC types and between deployment locations and is sensitive to the length of the input data-sets. This implies that if a certain maximum level of uncertainty in MAEP is targeted, the minimum required lengths of the input data-sets will be different for every WEC-location combination.

  20. General principles of vibrational spectroscopies

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Schoonheydt, R.A.

    2000-01-01

    Atoms in molecules and solids do not remain in fixed relative positions, but vibrate about some mean position. This vibrational motion is quantized and at room temperature, most of the molecules in a given sample are in their lowest vibrational state. Absorption of electromagnetic radiation with

  1. Disruption of long-range gene regulation in human genetic disease: a kaleidoscope of general principles, diverse mechanisms and unique phenotypic consequences.

    Science.gov (United States)

    Bhatia, Shipra; Kleinjan, Dirk A

    2014-07-01

    The precise control of gene expression programs is crucial for the establishment of the diverse gene activity patterns required for the correct development, patterning and differentiation of the myriad of cell types within an organism. The crucial importance of non-coding regions of the genome in the control of gene regulation is well established and depends on a diverse group of sequence fragments called cis-regulatory elements that reside in these regions. Advances in novel genome-wide techniques have greatly increased the ability to identify potential regulatory elements. In contrast, their functional characterisation and the determination of their diverse modes of action remain a major bottleneck. Greater knowledge of gene expression control is of major importance for human health as disruption of gene regulation has become recognised as a significant cause of human disease. Appreciation of the role of cis-regulatory polymorphism in natural variation and susceptibility to common disease is also growing. While novel techniques such as GWAS and NGS provide the ability to collect large genomic datasets, the challenge for the twenty-first century will be to extract the relevant sequences and how to investigate the functional consequences of disease-associated changes. Here, we review how studies of transcriptional control at selected paradigm disease gene loci have revealed general principles of cis-regulatory logic and regulatory genome organisation, yet also demonstrate how the variety of mechanisms can combine to result in unique phenotypic outcomes. Integration of these principles with the emerging wealth of genome-wide data will provide enhanced insight into the workings of our regulatory genome.

  2. 高等教育出版社最新引进的General Chemistry:Principles and Modern Applications%An University Chemistry Textbook Introduced Recently by Higher Education Press:General Chemistry:Principles and Modern Applications(by R.H.Petrucci,W.S.Harwood and F.G.Herring)

    Institute of Scientific and Technical Information of China (English)

    卞江

    2004-01-01

    《普通化学原理与应用》(Ralph H Petrucci, William S Harwood and F Geoffrey Herring著,General Chemistry: Principles and Modern Applications ,Sth ed, Prentice Hall,2002,以下简称《普通化学》)是目前国际上比较流行的大学普通化学教材之一,于1972年首次出版,至今已经发行到第8版。仅此一点就可以表明这本教材受

  3. A Generalized Variational Principle for 2-D Piezoelectricity with Surface Electrodes%具有表面电极的二维压电力学的广义变分原理

    Institute of Scientific and Technical Information of China (English)

    何吉欢

    2000-01-01

    It is difficult to establish a classical variational model for piezoelectricity. Following the semi-inverse method of establishing generalized variational principles, an energy-like trial functional with a certain unknown function is constructed. The unknown function is easily identified step by step. A family of variational principles for the static behavior of the elastic and electric variables in the vicinity of a surface electrode attached to a piezoelectric ceramic is established directly from its field equations and boundary conditions.

  4. 48 CFR 49.113 - Cost principles.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Cost principles. 49.113... TERMINATION OF CONTRACTS General Principles 49.113 Cost principles. The cost principles and procedures in the applicable subpart of part 31 shall, subject to the general principles in 49.201, (a) be used in...

  5. Fusion research principles

    CERN Document Server

    Dolan, Thomas James

    2013-01-01

    Fusion Research, Volume I: Principles provides a general description of the methods and problems of fusion research. The book contains three main parts: Principles, Experiments, and Technology. The Principles part describes the conditions necessary for a fusion reaction, as well as the fundamentals of plasma confinement, heating, and diagnostics. The Experiments part details about forty plasma confinement schemes and experiments. The last part explores various engineering problems associated with reactor design, vacuum and magnet systems, materials, plasma purity, fueling, blankets, neutronics

  6. Uncertainty in the Classroom--Teaching Quantum Physics

    Science.gov (United States)

    Johansson, K. E.; Milstead, D.

    2008-01-01

    The teaching of the Heisenberg uncertainty principle provides one of those rare moments when science appears to contradict everyday life experiences, sparking the curiosity of the interested student. Written at a level appropriate for an able high school student, this article provides ideas for introducing the uncertainty principle and showing how…

  7. Feedback Stabilization by Robust Passivity of General Nonlinear Systems with Structural Uncertainty%具有结构不确定性一般非线形系统通过鲁棒无源的反馈镇定

    Institute of Scientific and Technical Information of China (English)

    蔡秀珊; 韩正之; 寇春海

    2005-01-01

    The general nonlinear system with structural uncertainty is dealt with and necessary conditions for it to be robust passivity are derived. From these necessary conditions, sufficient conditions of zero state detectability are deduced. Based on passive systems theory and the technique of feedback equivalence, sufficient conditions for it to be locally (globally) asymptotically stabilized via smooth state feedback are developed. A smooth state feedback control law can be constructed explicitly to locally (globally) stabilize the equilibrium of the closed-loop system. Simulation example shows the effectiveness of the method.

  8. The Symmetry Principle

    Directory of Open Access Journals (Sweden)

    Joe Rosen

    2005-12-01

    Full Text Available Abstract: The symmetry principle is described in this paper. The full details are given in the book: J. Rosen, Symmetry in Science: An Introduction to the General Theory (Springer-Verlag, New York, 1995.

  9. Principles of nanomagnetism

    CERN Document Server

    Guimarães, Alberto P

    2017-01-01

    This is the first monograph on nanomagnetism. It emphasizes general principles and mechanisms relevant to the understanding of the intriguing properties of nanomagnetic objects including thin films, nanoparticles, nanowires, nanodisks and nanorings.

  10. Uncertainty in perception and the Hierarchical Gaussian Filter

    Directory of Open Access Journals (Sweden)

    Christoph Daniel Mathys

    2014-11-01

    Full Text Available In its full sense, perception rests on an agent’s model of how its sensory input comes about and the inferences it draws based on this model. These inferences are necessarily uncertain. Here, we illustrate how the hierarchical Gaussian filter (HGF offers a principled and generic way to deal with the several forms that uncertainty in perception takes. The HGF is a recent derivation of one-step update equations from Bayesian principles that rests on a hierarchical generative model of the environment and its (instability. It is computationally highly efficient, allows for online estimates of hidden states, and has found numerous applications to experimental data from human subjects. In this paper, we generalize previous descriptions of the HGF and its account of perceptual uncertainty. First, we explicitly formulate the extension of the HGF’s hierarchy to any number of levels; second, we discuss how various forms of uncertainty are accommodated by the minimization of variational free energy as encoded in the update equations; third, we combine the HGF with decision models and demonstrate the inversion of this combination; finally, we report a simulation study that compared four optimization methods for inverting the HGF/decision model combination at different noise levels. These four methods (Nelder-Mead simplex algorithm, Gaussian process-based global optimization, variational Bayes and Markov chain Monte Carlo sampling all performed well even under considerable noise, with variational Bayes offering the best combination of efficiency and informativeness of inference. Our results demonstrate that the HGF provides a principled, flexible, and efficient - but at the same time intuitive - framework for the resolution of perceptual uncertainty in behaving agents.

  11. Causality Principle

    OpenAIRE

    Chi, Do Minh

    2001-01-01

    We advance a famous principle - causality principle - but under a new view. This principle is a principium automatically leading to most fundamental laws of the nature. It is the inner origin of variation, rules evolutionary processes of things, and the answer of the quest for ultimate theories of the Universe.

  12. Principles of dynamics

    CERN Document Server

    Hill, Rodney

    2013-01-01

    Principles of Dynamics presents classical dynamics primarily as an exemplar of scientific theory and method. This book is divided into three major parts concerned with gravitational theory of planetary systems; general principles of the foundations of mechanics; and general motion of a rigid body. Some of the specific topics covered are Keplerian Laws of Planetary Motion; gravitational potential and potential energy; and fields of axisymmetric bodies. The principles of work and energy, fictitious body-forces, and inertial mass are also looked into. Other specific topics examined are kinematics

  13. 一种基于H-R变分的杂交广义元方法%A Hybrid Generalized Element Method Based on H-R Variational Principle

    Institute of Scientific and Technical Information of China (English)

    杨森森; 马永其; 冯伟

    2013-01-01

    Combining Hellinger-Reissner variational principle and the way of constructing displacement interpolation function of generalized finite element method to construct stress field and displacement field independently, through the suitable stress field could get a more precise stress value of node conveniently, and in the same time to increase the order of displacement function without increasing the number of element's nodes, in this way a more accurate result was got. This method combines the above two methods of flexibility of constructing the stress field and displacement field, meanwhile, using less memory and equations on the same condition compared with some other methods, and the results also show that of efficiency and higher presicion.%基于Hellinger-Reissner变分原理,通过构造合适的应力场函数使其能更方便和更准确地得到节点上的应力值,同时结合广义有限元构造广义位移插值的方法,在不提高单元节点数目的前提下提高位移场函数的阶次,从而提高其求解精度.这种方法能同时灵活地构造应力场和位移场,在同等精度条件下能占用较少内存和求解更少的方程数目,计算结果也显示了这种方法的有效性和很高的计算精度.

  14. On the two new types of the higher order GUP with minimal length uncertainty and maximal momentum

    Directory of Open Access Journals (Sweden)

    Homa Shababi

    2017-07-01

    Full Text Available In this letter, we present two new types of D-dimensional nonperturbative Generalized Uncertainty Principle (GUP which are predicted both a minimal length uncertainty and a maximal observable momentum. Then, using these GUPs, we study the density of states for D-dimensional spherical coordinate systems in the momentum space. Also, we investigate the cosmological constant in the presence of these GUPs and finally, compare their massless type with the ones were predicted by Kempf and Pedram in Refs. [1] and [18]. Moreover, using a more general form of the higher order GUP, once again we compare the massless cosmological constants.

  15. Uncertainty relation in Schwarzschild spacetime

    Directory of Open Access Journals (Sweden)

    Jun Feng

    2015-04-01

    Full Text Available We explore the entropic uncertainty relation in the curved background outside a Schwarzschild black hole, and find that Hawking radiation introduces a nontrivial modification on the uncertainty bound for particular observer, therefore it could be witnessed by proper uncertainty game experimentally. We first investigate an uncertainty game between a free falling observer and his static partner holding a quantum memory initially entangled with the quantum system to be measured. Due to the information loss from Hawking decoherence, we find an inevitable increase of the uncertainty on the outcome of measurements in the view of static observer, which is dependent on the mass of the black hole, the distance of observer from event horizon, and the mode frequency of quantum memory. To illustrate the generality of this paradigm, we relate the entropic uncertainty bound with other uncertainty probe, e.g., time–energy uncertainty. In an alternative game between two static players, we show that quantum information of qubit can be transferred to quantum memory through a bath of fluctuating quantum fields outside the black hole. For a particular choice of initial state, we show that the Hawking decoherence cannot counteract entanglement generation after the dynamical evolution of system, which triggers an effectively reduced uncertainty bound that violates the intrinsic limit −log2⁡c. Numerically estimation for a proper choice of initial state shows that our result is comparable with possible real experiments. Finally, a discussion on the black hole firewall paradox in the context of entropic uncertainty relation is given.

  16. Accounting for Calibration Uncertainty in Detectors for High-Energy Astrophysics

    Science.gov (United States)

    Xu, Jin

    Systematic instrumental uncertainties in astronomical analyses have been generally ignored in data analysis due to the lack of robust principled methods, though the importance of incorporating instrumental calibration uncertainty is widely recognized by both users and instrument builders. Ignoring calibration uncertainty can cause bias in the estimation of source model parameters and can lead to underestimation of the variance of these estimates. Lee et al. (2011) introduced a so-called pragmatic Bayesian method to address this problem. The method is "pragmatic" in that it introduces an ad hoc technique that simplifies computation by assuming that the current data is not useful in narrowing the uncertainty for the calibration product, i.e., that the prior and posterior distributions for the calibration products are the same. In the thesis, we focus on incorporating calibration uncertainty into a principled Bayesian X-ray spectral analysis, specifically we account for uncertainty in the so-called effective area curve and the photon redistribution matrix. X-ray spectral analysis models the distribution of the energies of X-ray photons emitted from an astronomical source. The effective area curve of an X-ray detector describes its sensitive as a function of the energy of incoming photons, and the photon redistribution matrix describes the probability distribution of the recorded (discrete) energy of a photon as a function of the true (discretized) energy. Starting with the effective area curve, we follow Lee et al. (2011) and use a principle component analysis (PCA) to efficiently represent the uncertainty. Here, however, we leverage this representation to enable a principled, fully Bayesian method to account for calibration uncertainty in high-energy spectral analysis. For the photon redistribution matrix, we first model each conditional distribution as a normal distribution and then apply PCA to the parameters describing the normal models. This results in an

  17. Estimating the uncertainty in underresolved nonlinear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Chorin, Alelxandre; Hald, Ole

    2013-06-12

    The Mori-Zwanzig formalism of statistical mechanics is used to estimate the uncertainty caused by underresolution in the solution of a nonlinear dynamical system. A general approach is outlined and applied to a simple example. The noise term that describes the uncertainty turns out to be neither Markovian nor Gaussian. It is argued that this is the general situation.

  18. Uncertainty quantification for quantum chemical models of complex reaction networks.

    Science.gov (United States)

    Proppe, Jonny; Husch, Tamara; Simm, Gregor N; Reiher, Markus

    2016-12-22

    For the quantitative understanding of complex chemical reaction mechanisms, it is, in general, necessary to accurately determine the corresponding free energy surface and to solve the resulting continuous-time reaction rate equations for a continuous state space. For a general (complex) reaction network, it is computationally hard to fulfill these two requirements. However, it is possible to approximately address these challenges in a physically consistent way. On the one hand, it may be sufficient to consider approximate free energies if a reliable uncertainty measure can be provided. On the other hand, a highly resolved time evolution may not be necessary to still determine quantitative fluxes in a reaction network if one is interested in specific time scales. In this paper, we present discrete-time kinetic simulations in discrete state space taking free energy uncertainties into account. The method builds upon thermo-chemical data obtained from electronic structure calculations in a condensed-phase model. Our kinetic approach supports the analysis of general reaction networks spanning multiple time scales, which is here demonstrated for the example of the formose reaction. An important application of our approach is the detection of regions in a reaction network which require further investigation, given the uncertainties introduced by both approximate electronic structure methods and kinetic models. Such cases can then be studied in greater detail with more sophisticated first-principles calculations and kinetic simulations.

  19. Evaluating the uncertainty of input quantities in measurement models

    Science.gov (United States)

    Possolo, Antonio; Elster, Clemens

    2014-06-01

    The Guide to the Expression of Uncertainty in Measurement (GUM) gives guidance about how values and uncertainties should be assigned to the input quantities that appear in measurement models. This contribution offers a concrete proposal for how that guidance may be updated in light of the advances in the evaluation and expression of measurement uncertainty that were made in the course of the twenty years that have elapsed since the publication of the GUM, and also considering situations that the GUM does not yet contemplate. Our motivation is the ongoing conversation about a new edition of the GUM. While generally we favour a Bayesian approach to uncertainty evaluation, we also recognize the value that other approaches may bring to the problems considered here, and focus on methods for uncertainty evaluation and propagation that are widely applicable, including to cases that the GUM has not yet addressed. In addition to Bayesian methods, we discuss maximum-likelihood estimation, robust statistical methods, and measurement models where values of nominal properties play the same role that input quantities play in traditional models. We illustrate these general-purpose techniques in concrete examples, employing data sets that are realistic but that also are of conveniently small sizes. The supplementary material available online lists the R computer code that we have used to produce these examples (stacks.iop.org/Met/51/3/339/mmedia). Although we strive to stay close to clause 4 of the GUM, which addresses the evaluation of uncertainty for input quantities, we depart from it as we review the classes of measurement models that we believe are generally useful in contemporary measurement science. We also considerably expand and update the treatment that the GUM gives to Type B evaluations of uncertainty: reviewing the state-of-the-art, disciplined approach to the elicitation of expert knowledge, and its encapsulation in probability distributions that are usable in

  20. Non-scalar uncertainty: Uncertainty in dynamic systems

    Science.gov (United States)

    Martinez, Salvador Gutierrez

    1992-01-01

    The following point is stated throughout the paper: dynamic systems are usually subject to uncertainty, be it the unavoidable quantic uncertainty when working with sufficiently small scales or when working in large scales uncertainty can be allowed by the researcher in order to simplify the problem, or it can be introduced by nonlinear interactions. Even though non-quantic uncertainty can generally be dealt with by using the ordinary probability formalisms, it can also be studied with the proposed non-scalar formalism. Thus, non-scalar uncertainty is a more general theoretical framework giving insight into the nature of uncertainty and providing a practical tool in those cases in which scalar uncertainty is not enough, such as when studying highly nonlinear dynamic systems. This paper's specific contribution is the general concept of non-scalar uncertainty and a first proposal for a methodology. Applications should be based upon this methodology. The advantage of this approach is to provide simpler mathematical models for prediction of the system states. Present conventional tools for dealing with uncertainty prove insufficient for an effective description of some dynamic systems. The main limitations are overcome abandoning ordinary scalar algebra in the real interval (0, 1) in favor of a tensor field with a much richer structure and generality. This approach gives insight into the interpretation of Quantum Mechanics and will have its most profound consequences in the fields of elementary particle physics and nonlinear dynamic systems. Concepts like 'interfering alternatives' and 'discrete states' have an elegant explanation in this framework in terms of properties of dynamic systems such as strange attractors and chaos. The tensor formalism proves especially useful to describe the mechanics of representing dynamic systems with models that are closer to reality and have relatively much simpler solutions. It was found to be wise to get an approximate solution to an