WorldWideScience

Sample records for generalized uncertainty principle

  1. Quantum Action Principle with Generalized Uncertainty Principle

    OpenAIRE

    Gu, Jie

    2013-01-01

    One of the common features in all promising candidates of quantum gravity is the existence of a minimal length scale, which naturally emerges with a generalized uncertainty principle, or equivalently a modified commutation relation. Schwinger's quantum action principle was modified to incorporate this modification, and was applied to the calculation of the kernel of a free particle, partly recovering the result previously studied using path integral.

  2. Quantum wells and the generalized uncertainty principle

    International Nuclear Information System (INIS)

    Blado, Gardo; Owens, Constance; Meyers, Vincent

    2014-01-01

    The finite and infinite square wells are potentials typically discussed in undergraduate quantum mechanics courses. In this paper, we discuss these potentials in the light of the recent studies of the modification of the Heisenberg uncertainty principle into a generalized uncertainty principle (GUP) as a consequence of attempts to formulate a quantum theory of gravity. The fundamental concepts of the minimal length scale and the GUP are discussed and the modified energy eigenvalues and transmission coefficient are derived. (paper)

  3. A revision of the generalized uncertainty principle

    International Nuclear Information System (INIS)

    Bambi, Cosimo

    2008-01-01

    The generalized uncertainty principle arises from the Heisenberg uncertainty principle when gravity is taken into account, so the leading order correction to the standard formula is expected to be proportional to the gravitational constant G N = L 2 Pl . On the other hand, the emerging picture suggests a set of departures from the standard theory which demand a revision of all the arguments used to deduce heuristically the new rule. In particular, one can now argue that the leading order correction to the Heisenberg uncertainty principle is proportional to the first power of the Planck length L Pl . If so, the departures from ordinary quantum mechanics would be much less suppressed than what is commonly thought

  4. A review of the generalized uncertainty principle

    International Nuclear Information System (INIS)

    Tawfik, Abdel Nasser; Diab, Abdel Magied

    2015-01-01

    Based on string theory, black hole physics, doubly special relativity and some ‘thought’ experiments, minimal distance and/or maximum momentum are proposed. As alternatives to the generalized uncertainty principle (GUP), the modified dispersion relation, the space noncommutativity, the Lorentz invariance violation, and the quantum-gravity-induced birefringence effects are summarized. The origin of minimal measurable quantities and the different GUP approaches are reviewed and the corresponding observations are analysed. Bounds on the GUP parameter are discussed and implemented in the understanding of recent PLANCK observations of cosmic inflation. The higher-order GUP approaches predict minimal length uncertainty with and without maximum momenta. Possible arguments against the GUP are discussed; for instance, the concern about its compatibility with the equivalence principles, the universality of gravitational redshift and the free fall and law of reciprocal action are addressed. (review)

  5. Generalized uncertainty principle and quantum gravity phenomenology

    Science.gov (United States)

    Bosso, Pasquale

    The fundamental physical description of Nature is based on two mutually incompatible theories: Quantum Mechanics and General Relativity. Their unification in a theory of Quantum Gravity (QG) remains one of the main challenges of theoretical physics. Quantum Gravity Phenomenology (QGP) studies QG effects in low-energy systems. The basis of one such phenomenological model is the Generalized Uncertainty Principle (GUP), which is a modified Heisenberg uncertainty relation and predicts a deformed canonical commutator. In this thesis, we compute Planck-scale corrections to angular momentum eigenvalues, the hydrogen atom spectrum, the Stern-Gerlach experiment, and the Clebsch-Gordan coefficients. We then rigorously analyze the GUP-perturbed harmonic oscillator and study new coherent and squeezed states. Furthermore, we introduce a scheme for increasing the sensitivity of optomechanical experiments for testing QG effects. Finally, we suggest future projects that may potentially test QG effects in the laboratory.

  6. Towards Thermodynamics with Generalized Uncertainty Principle

    International Nuclear Information System (INIS)

    Moussa, Mohamed; Farag Ali, Ahmed

    2014-01-01

    Various frameworks of quantum gravity predict a modification in the Heisenberg uncertainty principle to a so-called generalized uncertainty principle (GUP). Introducing quantum gravity effect makes a considerable change in the density of states inside the volume of the phase space which changes the statistical and thermodynamical properties of any physical system. In this paper we investigate the modification in thermodynamic properties of ideal gases and photon gas. The partition function is calculated and using it we calculated a considerable growth in the thermodynamical functions for these considered systems. The growth may happen due to an additional repulsive force between constitutes of gases which may be due to the existence of GUP, hence predicting a considerable increase in the entropy of the system. Besides, by applying GUP on an ideal gas in a trapped potential, it is found that GUP assumes a minimum measurable value of thermal wavelength of particles which agrees with discrete nature of the space that has been derived in previous studies from the GUP

  7. Lorentz violation and generalized uncertainty principle

    Science.gov (United States)

    Lambiase, Gaetano; Scardigli, Fabio

    2018-04-01

    Investigations on possible violation of Lorentz invariance have been widely pursued in the last decades, both from theoretical and experimental sides. A comprehensive framework to formulate the problem is the standard model extension (SME) proposed by A. Kostelecky, where violation of Lorentz invariance is encoded into specific coefficients. Here we present a procedure to link the deformation parameter β of the generalized uncertainty principle to the SME coefficients of the gravity sector. The idea is to compute the Hawking temperature of a black hole in two different ways. The first way involves the deformation parameter β , and therefore we get a deformed Hawking temperature containing the parameter β . The second way involves a deformed Schwarzschild metric containing the Lorentz violating terms s¯μ ν of the gravity sector of the SME. The comparison between the two different techniques yields a relation between β and s¯μ ν. In this way bounds on β transferred from s¯μ ν are improved by many orders of magnitude when compared with those derived in other gravitational frameworks. Also the opposite possibility of bounds transferred from β to s¯μ ν is briefly discussed.

  8. Some Implications of Two Forms of the Generalized Uncertainty Principle

    Directory of Open Access Journals (Sweden)

    Mohammed M. Khalil

    2014-01-01

    Full Text Available Various theories of quantum gravity predict the existence of a minimum length scale, which leads to the modification of the standard uncertainty principle to the Generalized Uncertainty Principle (GUP. In this paper, we study two forms of the GUP and calculate their implications on the energy of the harmonic oscillator and the hydrogen atom more accurately than previous studies. In addition, we show how the GUP modifies the Lorentz force law and the time-energy uncertainty principle.

  9. Generalized uncertainty principles, effective Newton constant and regular black holes

    OpenAIRE

    Li, Xiang; Ling, Yi; Shen, You-Gen; Liu, Cheng-Zhou; He, Hong-Sheng; Xu, Lan-Fang

    2016-01-01

    In this paper, we explore the quantum spacetimes that are potentially connected with the generalized uncertainty principles. By analyzing the gravity-induced quantum interference pattern and the Gedanken for weighting photon, we find that the generalized uncertainty principles inspire the effective Newton constant as same as our previous proposal. A characteristic momentum associated with the tidal effect is suggested, which incorporates the quantum effect with the geometric nature of gravity...

  10. The role of general relativity in the uncertainty principle

    International Nuclear Information System (INIS)

    Padmanabhan, T.

    1986-01-01

    The role played by general relativity in quantum mechanics (especially as regards the uncertainty principle) is investigated. It is confirmed that the validity of time-energy uncertainty does depend on gravitational time dilation. It is also shown that there exists an intrinsic lower bound to the accuracy with which acceleration due to gravity can be measured. The motion of equivalence principle in quantum mechanics is clarified. (author)

  11. Gauge theories under incorporation of a generalized uncertainty principle

    International Nuclear Information System (INIS)

    Kober, Martin

    2010-01-01

    There is considered an extension of gauge theories according to the assumption of a generalized uncertainty principle which implies a minimal length scale. A modification of the usual uncertainty principle implies an extended shape of matter field equations like the Dirac equation. If there is postulated invariance of such a generalized field equation under local gauge transformations, the usual covariant derivative containing the gauge potential has to be replaced by a generalized covariant derivative. This leads to a generalized interaction between the matter field and the gauge field as well as to an additional self-interaction of the gauge field. Since the existence of a minimal length scale seems to be a necessary assumption of any consistent quantum theory of gravity, the gauge principle is a constitutive ingredient of the standard model, and even gravity can be described as gauge theory of local translations or Lorentz transformations, the presented extension of gauge theories appears as a very important consideration.

  12. “Stringy” coherent states inspired by generalized uncertainty principle

    Science.gov (United States)

    Ghosh, Subir; Roy, Pinaki

    2012-05-01

    Coherent States with Fractional Revival property, that explicitly satisfy the Generalized Uncertainty Principle (GUP), have been constructed in the context of Generalized Harmonic Oscillator. The existence of such states is essential in motivating the GUP based phenomenological results present in the literature which otherwise would be of purely academic interest. The effective phase space is Non-Canonical (or Non-Commutative in popular terminology). Our results have a smooth commutative limit, equivalent to Heisenberg Uncertainty Principle. The Fractional Revival time analysis yields an independent bound on the GUP parameter. Using this and similar bounds obtained here, we derive the largest possible value of the (GUP induced) minimum length scale. Mandel parameter analysis shows that the statistics is Sub-Poissonian. Correspondence Principle is deformed in an interesting way. Our computational scheme is very simple as it requires only first order corrected energy values and undeformed basis states.

  13. “Stringy” coherent states inspired by generalized uncertainty principle

    International Nuclear Information System (INIS)

    Ghosh, Subir; Roy, Pinaki

    2012-01-01

    Coherent States with Fractional Revival property, that explicitly satisfy the Generalized Uncertainty Principle (GUP), have been constructed in the context of Generalized Harmonic Oscillator. The existence of such states is essential in motivating the GUP based phenomenological results present in the literature which otherwise would be of purely academic interest. The effective phase space is Non-Canonical (or Non-Commutative in popular terminology). Our results have a smooth commutative limit, equivalent to Heisenberg Uncertainty Principle. The Fractional Revival time analysis yields an independent bound on the GUP parameter. Using this and similar bounds obtained here, we derive the largest possible value of the (GUP induced) minimum length scale. Mandel parameter analysis shows that the statistics is Sub-Poissonian. Correspondence Principle is deformed in an interesting way. Our computational scheme is very simple as it requires only first order corrected energy values and undeformed basis states.

  14. Generalized uncertainty principle, quantum gravity and Horava-Lifshitz gravity

    International Nuclear Information System (INIS)

    Myung, Yun Soo

    2009-01-01

    We investigate a close connection between generalized uncertainty principle (GUP) and deformed Horava-Lifshitz (HL) gravity. The GUP commutation relations correspond to the UV-quantum theory, while the canonical commutation relations represent the IR-quantum theory. Inspired by this UV/IR quantum mechanics, we obtain the GUP-corrected graviton propagator by introducing UV-momentum p i =p 0i (1+βp 0 2 ) and compare this with tensor propagators in the HL gravity. Two are the same up to p 0 4 -order.

  15. Horizon Wavefunction of Generalized Uncertainty Principle Black Holes

    Directory of Open Access Journals (Sweden)

    Luciano Manfredi

    2016-01-01

    Full Text Available We study the Horizon Wavefunction (HWF description of a Generalized Uncertainty Principle inspired metric that admits sub-Planckian black holes, where the black hole mass m is replaced by M=m1+β/2MPl2/m2. Considering the case of a wave-packet shaped by a Gaussian distribution, we compute the HWF and the probability PBH that the source is a (quantum black hole, that is, that it lies within its horizon radius. The case β0, where a minimum in PBH is encountered, thus meaning that every particle has some probability of decaying to a black hole. Furthermore, for sufficiently large β we find that every particle is a quantum black hole, in agreement with the intuitive effect of increasing β, which creates larger M and RH terms. This is likely due to a “dimensional reduction” feature of the model, where the black hole characteristics for sub-Planckian black holes mimic those in (1+1 dimensions and the horizon size grows as RH~M-1.

  16. Supersymmetry Breaking as a new source for the Generalized Uncertainty Principle

    OpenAIRE

    Faizal, Mir

    2016-01-01

    In this letter, we will demonstrate that the breaking of supersymmetry by a non-anticommutative deformation can be used to generate the generalized uncertainty principle. We will analyze the physical reasons for this observation, in the framework of string theory. We also discuss the relation between the generalized uncertainty principle and the Lee–Wick field theories.

  17. Supersymmetry breaking as a new source for the generalized uncertainty principle

    Energy Technology Data Exchange (ETDEWEB)

    Faizal, Mir, E-mail: mirfaizalmir@gmail.com

    2016-06-10

    In this letter, we will demonstrate that the breaking of supersymmetry by a non-anticommutative deformation can be used to generate the generalized uncertainty principle. We will analyze the physical reasons for this observation, in the framework of string theory. We also discuss the relation between the generalized uncertainty principle and the Lee–Wick field theories.

  18. The most general form of deformation of the Heisenberg algebra from the generalized uncertainty principle

    Energy Technology Data Exchange (ETDEWEB)

    Masood, Syed [Department of Physics, International Islamic University, H-10 Sector, Islamabad (Pakistan); Faizal, Mir, E-mail: mirfaizalmir@gmail.com [Irving K. Barber School of Arts and Sciences, University of British Columbia – Okanagan, Kelowna, BC V1V 1V7 (Canada); Department of Physics and Astronomy, University of Lethbridge, Lethbridge, AB T1K 3M4 (Canada); Zaz, Zaid [Department of Electronics and Communication Engineering, University of Kashmir, Srinagar, Kashmir, 190006 (India); Ali, Ahmed Farag [Department of Physics, Faculty of Science, Benha University, Benha, 13518 (Egypt); Raza, Jamil [Department of Physics, International Islamic University, H-10 Sector, Islamabad (Pakistan); Shah, Mushtaq B. [Department of Physics, National Institute of Technology, Srinagar, Kashmir, 190006 (India)

    2016-12-10

    In this paper, we will propose the most general form of the deformation of Heisenberg algebra motivated by the generalized uncertainty principle. This deformation of the Heisenberg algebra will deform all quantum mechanical systems. The form of the generalized uncertainty principle used to motivate these results will be motivated by the space fractional quantum mechanics, and non-locality in quantum mechanical systems. We also analyse a specific limit of this generalized deformation for one dimensional system, and in that limit, a nonlocal deformation of the momentum operator generates a local deformation of all one dimensional quantum mechanical systems. We analyse the low energy effects of this deformation on a harmonic oscillator, Landau levels, Lamb shift, and potential barrier. We also demonstrate that this deformation leads to a discretization of space.

  19. The most general form of deformation of the Heisenberg algebra from the generalized uncertainty principle

    International Nuclear Information System (INIS)

    Masood, Syed; Faizal, Mir; Zaz, Zaid; Ali, Ahmed Farag; Raza, Jamil; Shah, Mushtaq B.

    2016-01-01

    In this paper, we will propose the most general form of the deformation of Heisenberg algebra motivated by the generalized uncertainty principle. This deformation of the Heisenberg algebra will deform all quantum mechanical systems. The form of the generalized uncertainty principle used to motivate these results will be motivated by the space fractional quantum mechanics, and non-locality in quantum mechanical systems. We also analyse a specific limit of this generalized deformation for one dimensional system, and in that limit, a nonlocal deformation of the momentum operator generates a local deformation of all one dimensional quantum mechanical systems. We analyse the low energy effects of this deformation on a harmonic oscillator, Landau levels, Lamb shift, and potential barrier. We also demonstrate that this deformation leads to a discretization of space.

  20. Generalized uncertainty principle as a consequence of the effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Faizal, Mir, E-mail: mirfaizalmir@gmail.com [Irving K. Barber School of Arts and Sciences, University of British Columbia – Okanagan, Kelowna, British Columbia V1V 1V7 (Canada); Department of Physics and Astronomy, University of Lethbridge, Lethbridge, Alberta T1K 3M4 (Canada); Ali, Ahmed Farag, E-mail: ahmed.ali@fsc.bu.edu.eg [Department of Physics, Faculty of Science, Benha University, Benha, 13518 (Egypt); Netherlands Institute for Advanced Study, Korte Spinhuissteeg 3, 1012 CG Amsterdam (Netherlands); Nassar, Ali, E-mail: anassar@zewailcity.edu.eg [Department of Physics, Zewail City of Science and Technology, 12588, Giza (Egypt)

    2017-02-10

    We will demonstrate that the generalized uncertainty principle exists because of the derivative expansion in the effective field theories. This is because in the framework of the effective field theories, the minimum measurable length scale has to be integrated away to obtain the low energy effective action. We will analyze the deformation of a massive free scalar field theory by the generalized uncertainty principle, and demonstrate that the minimum measurable length scale corresponds to a second more massive scale in the theory, which has been integrated away. We will also analyze CFT operators dual to this deformed scalar field theory, and observe that scaling of the new CFT operators indicates that they are dual to this more massive scale in the theory. We will use holographic renormalization to explicitly calculate the renormalized boundary action with counter terms for this scalar field theory deformed by generalized uncertainty principle, and show that the generalized uncertainty principle contributes to the matter conformal anomaly.

  1. Generalized uncertainty principle as a consequence of the effective field theory

    Directory of Open Access Journals (Sweden)

    Mir Faizal

    2017-02-01

    Full Text Available We will demonstrate that the generalized uncertainty principle exists because of the derivative expansion in the effective field theories. This is because in the framework of the effective field theories, the minimum measurable length scale has to be integrated away to obtain the low energy effective action. We will analyze the deformation of a massive free scalar field theory by the generalized uncertainty principle, and demonstrate that the minimum measurable length scale corresponds to a second more massive scale in the theory, which has been integrated away. We will also analyze CFT operators dual to this deformed scalar field theory, and observe that scaling of the new CFT operators indicates that they are dual to this more massive scale in the theory. We will use holographic renormalization to explicitly calculate the renormalized boundary action with counter terms for this scalar field theory deformed by generalized uncertainty principle, and show that the generalized uncertainty principle contributes to the matter conformal anomaly.

  2. Generalized uncertainty principle and entropy of three-dimensional rotating acoustic black hole

    International Nuclear Information System (INIS)

    Zhao, HuiHua; Li, GuangLiang; Zhang, LiChun

    2012-01-01

    Using the new equation of state density from the generalized uncertainty principle, we investigate statistics entropy of a 3-dimensional rotating acoustic black hole. When λ introduced in the generalized uncertainty principle takes a specific value, we obtain an area entropy and a correction term associated with the acoustic black hole. In this method, there does not exist any divergence and one needs not the small mass approximation in the original brick-wall model. -- Highlights: ► Statistics entropy of a 3-dimensional rotating acoustic black hole is studied. ► We obtain an area entropy and a correction term associated with it. ► We make λ introduced in the generalized uncertainty principle take a specific value. ► There does not exist any divergence in this method.

  3. Generalized uncertainty principle and the maximum mass of ideal white dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Rashidi, Reza, E-mail: reza.rashidi@srttu.edu

    2016-11-15

    The effects of a generalized uncertainty principle on the structure of an ideal white dwarf star is investigated. The equation describing the equilibrium configuration of the star is a generalized form of the Lane–Emden equation. It is proved that the star always has a finite size. It is then argued that the maximum mass of such an ideal white dwarf tends to infinity, as opposed to the conventional case where it has a finite value.

  4. The Quark-Gluon Plasma Equation of State and the Generalized Uncertainty Principle

    Directory of Open Access Journals (Sweden)

    L. I. Abou-Salem

    2015-01-01

    Full Text Available The quark-gluon plasma (QGP equation of state within a minimal length scenario or Generalized Uncertainty Principle (GUP is studied. The Generalized Uncertainty Principle is implemented on deriving the thermodynamics of ideal QGP at a vanishing chemical potential. We find a significant effect for the GUP term. The main features of QCD lattice results were quantitatively achieved in case of nf=0, nf=2, and nf=2+1 flavors for the energy density, the pressure, and the interaction measure. The exciting point is the large value of bag pressure especially in case of nf=2+1 flavor which reflects the strong correlation between quarks in this bag which is already expected. One can notice that the asymptotic behavior which is characterized by Stephan-Boltzmann limit would be satisfied.

  5. Generalized Uncertainty Principle and Black Hole Entropy of Higher-Dimensional de Sitter Spacetime

    International Nuclear Information System (INIS)

    Zhao Haixia; Hu Shuangqi; Zhao Ren; Li Huaifan

    2007-01-01

    Recently, there has been much attention devoted to resolving the quantum corrections to the Bekenstein-Hawking black hole entropy. In particular, many researchers have expressed a vested interest in the coefficient of the logarithmic term of the black hole entropy correction term. In this paper, we calculate the correction value of the black hole entropy by utilizing the generalized uncertainty principle and obtain the correction term caused by the generalized uncertainty principle. Because in our calculation we think that the Bekenstein-Hawking area theorem is still valid after considering the generalized uncertainty principle, we derive that the coefficient of the logarithmic term of the black hole entropy correction term is positive. This result is different from the known result at present. Our method is valid not only for four-dimensional spacetimes but also for higher-dimensional spacetimes. In the whole process, the physics idea is clear and calculation is simple. It offers a new way for studying the entropy correction of the complicated spacetime.

  6. Impacts of generalized uncertainty principle on black hole thermodynamics and Salecker-Wigner inequalities

    International Nuclear Information System (INIS)

    Tawfik, A.

    2013-01-01

    We investigate the impacts of Generalized Uncertainty Principle (GUP) proposed by some approaches to quantum gravity such as String Theory and Doubly Special Relativity on black hole thermodynamics and Salecker-Wigner inequalities. Utilizing Heisenberg uncertainty principle, the Hawking temperature, Bekenstein entropy, specific heat, emission rate and decay time are calculated. As the evaporation entirely eats up the black hole mass, the specific heat vanishes and the temperature approaches infinity with an infinite radiation rate. It is found that the GUP approach prevents the black hole from the entire evaporation. It implies the existence of remnants at which the specific heat vanishes. The same role is played by the Heisenberg uncertainty principle in constructing the hydrogen atom. We discuss how the linear GUP approach solves the entire-evaporation-problem. Furthermore, the black hole lifetime can be estimated using another approach; the Salecker-Wigner inequalities. Assuming that the quantum position uncertainty is limited to the minimum wavelength of measuring signal, Wigner second inequality can be obtained. If the spread of quantum clock is limited to some minimum value, then the modified black hole lifetime can be deduced. Based on linear GUP approach, the resulting lifetime difference depends on black hole relative mass and the difference between black hole mass with and without GUP is not negligible

  7. Covariant energy–momentum and an uncertainty principle for general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Cooperstock, F.I., E-mail: cooperst@uvic.ca [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, B.C. V8W 3P6 (Canada); Dupre, M.J., E-mail: mdupre@tulane.edu [Department of Mathematics, Tulane University, New Orleans, LA 70118 (United States)

    2013-12-15

    We introduce a naturally-defined totally invariant spacetime energy expression for general relativity incorporating the contribution from gravity. The extension links seamlessly to the action integral for the gravitational field. The demand that the general expression for arbitrary systems reduces to the Tolman integral in the case of stationary bounded distributions, leads to the matter-localized Ricci integral for energy–momentum in support of the energy localization hypothesis. The role of the observer is addressed and as an extension of the special relativistic case, the field of observers comoving with the matter is seen to compute the intrinsic global energy of a system. The new localized energy supports the Bonnor claim that the Szekeres collapsing dust solutions are energy-conserving. It is suggested that in the extreme of strong gravity, the Heisenberg Uncertainty Principle be generalized in terms of spacetime energy–momentum. -- Highlights: •We present a totally invariant spacetime energy expression for general relativity incorporating the contribution from gravity. •Demand for the general expression to reduce to the Tolman integral for stationary systems supports the Ricci integral as energy–momentum. •Localized energy via the Ricci integral is consistent with the energy localization hypothesis. •New localized energy supports the Bonnor claim that the Szekeres collapsing dust solutions are energy-conserving. •Suggest the Heisenberg Uncertainty Principle be generalized in terms of spacetime energy–momentum in strong gravity extreme.

  8. Determining the minimal length scale of the generalized uncertainty principle from the entropy-area relationship

    International Nuclear Information System (INIS)

    Kim, Wontae; Oh, John J.

    2008-01-01

    We derive the formula of the black hole entropy with a minimal length of the Planck size by counting quantum modes of scalar fields in the vicinity of the black hole horizon, taking into account the generalized uncertainty principle (GUP). This formula is applied to some intriguing examples of black holes - the Schwarzschild black hole, the Reissner-Nordstrom black hole, and the magnetically charged dilatonic black hole. As a result, it is shown that the GUP parameter can be determined by imposing the black hole entropy-area relationship, which has a Planck length scale and a universal form within the near-horizon expansion

  9. Effect of Generalized Uncertainty Principle on Main-Sequence Stars and White Dwarfs

    Directory of Open Access Journals (Sweden)

    Mohamed Moussa

    2015-01-01

    Full Text Available This paper addresses the effect of generalized uncertainty principle, emerged from different approaches of quantum gravity within Planck scale, on thermodynamic properties of photon, nonrelativistic ideal gases, and degenerate fermions. A modification in pressure, particle number, and energy density are calculated. Astrophysical objects such as main-sequence stars and white dwarfs are examined and discussed as an application. A modification in Lane-Emden equation due to a change in a polytropic relation caused by the presence of quantum gravity is investigated. The applicable range of quantum gravity parameters is estimated. The bounds in the perturbed parameters are relatively large but they may be considered reasonable values in the astrophysical regime.

  10. Quantum corrections to the thermodynamics of Schwarzschild-Tangherlini black hole and the generalized uncertainty principle

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Z.W.; Zu, X.T. [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Li, H.L. [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Shenyang Normal University, College of Physics Science and Technology, Shenyang (China); Yang, S.Z. [China West Normal University, Physics and Space Science College, Nanchong (China)

    2016-04-15

    We investigate the thermodynamics of Schwarzschild-Tangherlini black hole in the context of the generalized uncertainty principle (GUP). The corrections to the Hawking temperature, entropy and the heat capacity are obtained via the modified Hamilton-Jacobi equation. These modifications show that the GUP changes the evolution of the Schwarzschild-Tangherlini black hole. Specially, the GUP effect becomes susceptible when the radius or mass of the black hole approaches the order of Planck scale, it stops radiating and leads to a black hole remnant. Meanwhile, the Planck scale remnant can be confirmed through the analysis of the heat capacity. Those phenomena imply that the GUP may give a way to solve the information paradox. Besides, we also investigate the possibilities to observe the black hole at the Large Hadron Collider (LHC), and the results demonstrate that the black hole cannot be produced in the recent LHC. (orig.)

  11. Thermodynamics of a class of regular black holes with a generalized uncertainty principle

    Science.gov (United States)

    Maluf, R. V.; Neves, Juliano C. S.

    2018-05-01

    In this article, we present a study on thermodynamics of a class of regular black holes. Such a class includes Bardeen and Hayward regular black holes. We obtained thermodynamic quantities like the Hawking temperature, entropy, and heat capacity for the entire class. As part of an effort to indicate some physical observable to distinguish regular black holes from singular black holes, we suggest that regular black holes are colder than singular black holes. Besides, contrary to the Schwarzschild black hole, that class of regular black holes may be thermodynamically stable. From a generalized uncertainty principle, we also obtained the quantum-corrected thermodynamics for the studied class. Such quantum corrections provide a logarithmic term for the quantum-corrected entropy.

  12. Massive vector particles tunneling from black holes influenced by the generalized uncertainty principle

    Directory of Open Access Journals (Sweden)

    Xiang-Qian Li

    2016-12-01

    Full Text Available This study considers the generalized uncertainty principle, which incorporates the central idea of large extra dimensions, to investigate the processes involved when massive spin-1 particles tunnel from Reissner–Nordstrom and Kerr black holes under the effects of quantum gravity. For the black hole, the quantum gravity correction decelerates the increase in temperature. Up to O(1Mf2, the corrected temperatures are affected by the mass and angular momentum of the emitted vector bosons. In addition, the temperature of the Kerr black hole becomes uneven due to rotation. When the mass of the black hole approaches the order of the higher dimensional Planck mass Mf, it stops radiating and yields a black hole remnant.

  13. f(R in Holographic and Agegraphic Dark Energy Models and the Generalized Uncertainty Principle

    Directory of Open Access Journals (Sweden)

    Barun Majumder

    2013-01-01

    Full Text Available We studied a unified approach with the holographic, new agegraphic, and f(R dark energy model to construct the form of f(R which in general is responsible for the curvature driven explanation of the very early inflation along with presently observed late time acceleration. We considered the generalized uncertainty principle in our approach which incorporated the corrections in the entropy-area relation and thereby modified the energy densities for the cosmological dark energy models considered. We found that holographic and new agegraphic f(R gravity models can behave like phantom or quintessence models in the spatially flat FRW universe. We also found a distinct term in the form of f(R which goes as R 3 / 2 due to the consideration of the GUP modified energy densities. Although the presence of this term in the action can be important in explaining the early inflationary scenario, Capozziello et al. recently showed that f(R ~ R 3 / 2 leads to an accelerated expansion, that is, a negative value for the deceleration parameter q which fits well with SNeIa and WMAP data.

  14. Conditional uncertainty principle

    Science.gov (United States)

    Gour, Gilad; Grudka, Andrzej; Horodecki, Michał; Kłobus, Waldemar; Łodyga, Justyna; Narasimhachar, Varun

    2018-04-01

    We develop a general operational framework that formalizes the concept of conditional uncertainty in a measure-independent fashion. Our formalism is built upon a mathematical relation which we call conditional majorization. We define conditional majorization and, for the case of classical memory, we provide its thorough characterization in terms of monotones, i.e., functions that preserve the partial order under conditional majorization. We demonstrate the application of this framework by deriving two types of memory-assisted uncertainty relations, (1) a monotone-based conditional uncertainty relation and (2) a universal measure-independent conditional uncertainty relation, both of which set a lower bound on the minimal uncertainty that Bob has about Alice's pair of incompatible measurements, conditioned on arbitrary measurement that Bob makes on his own system. We next compare the obtained relations with their existing entropic counterparts and find that they are at least independent.

  15. The uncertainty principle

    International Nuclear Information System (INIS)

    Martens, Hans.

    1991-01-01

    The subject of this thesis is the uncertainty principle (UP). The UP is one of the most characteristic points of differences between quantum and classical mechanics. The starting point of this thesis is the work of Niels Bohr. Besides the discussion the work is also analyzed. For the discussion of the different aspects of the UP the formalism of Davies and Ludwig is used instead of the more commonly used formalism of Neumann and Dirac. (author). 214 refs.; 23 figs

  16. Economic uncertainty principle?

    OpenAIRE

    Alexander Harin

    2006-01-01

    The economic principle of (hidden) uncertainty is presented. New probability formulas are offered. Examples of solutions of three types of fundamental problems are reviewed.; Principe d'incertitude économique? Le principe économique d'incertitude (cachée) est présenté. De nouvelles formules de chances sont offertes. Les exemples de solutions des trois types de problèmes fondamentaux sont reconsidérés.

  17. Principles of Uncertainty

    CERN Document Server

    Kadane, Joseph B

    2011-01-01

    An intuitive and mathematical introduction to subjective probability and Bayesian statistics. An accessible, comprehensive guide to the theory of Bayesian statistics, Principles of Uncertainty presents the subjective Bayesian approach, which has played a pivotal role in game theory, economics, and the recent boom in Markov Chain Monte Carlo methods. Both rigorous and friendly, the book contains: Introductory chapters examining each new concept or assumption Just-in-time mathematics -- the presentation of ideas just before they are applied Summary and exercises at the end of each chapter Discus

  18. Gamma-Ray Telescope and Uncertainty Principle

    Science.gov (United States)

    Shivalingaswamy, T.; Kagali, B. A.

    2012-01-01

    Heisenberg's Uncertainty Principle is one of the important basic principles of quantum mechanics. In most of the books on quantum mechanics, this uncertainty principle is generally illustrated with the help of a gamma ray microscope, wherein neither the image formation criterion nor the lens properties are taken into account. Thus a better…

  19. Expanding Uncertainty Principle to Certainty-Uncertainty Principles with Neutrosophy and Quad-stage Method

    Directory of Open Access Journals (Sweden)

    Fu Yuhua

    2015-03-01

    Full Text Available The most famous contribution of Heisenberg is uncertainty principle. But the original uncertainty principle is improper. Considering all the possible situations (including the case that people can create laws and applying Neutrosophy and Quad-stage Method, this paper presents "certainty-uncertainty principles" with general form and variable dimension fractal form. According to the classification of Neutrosophy, "certainty-uncertainty principles" can be divided into three principles in different conditions: "certainty principle", namely a particle’s position and momentum can be known simultaneously; "uncertainty principle", namely a particle’s position and momentum cannot be known simultaneously; and neutral (fuzzy "indeterminacy principle", namely whether or not a particle’s position and momentum can be known simultaneously is undetermined. The special cases of "certain ty-uncertainty principles" include the original uncertainty principle and Ozawa inequality. In addition, in accordance with the original uncertainty principle, discussing high-speed particle’s speed and track with Newton mechanics is unreasonable; but according to "certaintyuncertainty principles", Newton mechanics can be used to discuss the problem of gravitational defection of a photon orbit around the Sun (it gives the same result of deflection angle as given by general relativity. Finally, for the reason that in physics the principles, laws and the like that are regardless of the principle (law of conservation of energy may be invalid; therefore "certaintyuncertainty principles" should be restricted (or constrained by principle (law of conservation of energy, and thus it can satisfy the principle (law of conservation of energy.

  20. A Variation on Uncertainty Principle and Logarithmic Uncertainty Principle for Continuous Quaternion Wavelet Transforms

    Directory of Open Access Journals (Sweden)

    Mawardi Bahri

    2017-01-01

    Full Text Available The continuous quaternion wavelet transform (CQWT is a generalization of the classical continuous wavelet transform within the context of quaternion algebra. First of all, we show that the directional quaternion Fourier transform (QFT uncertainty principle can be obtained using the component-wise QFT uncertainty principle. Based on this method, the directional QFT uncertainty principle using representation of polar coordinate form is easily derived. We derive a variation on uncertainty principle related to the QFT. We state that the CQWT of a quaternion function can be written in terms of the QFT and obtain a variation on uncertainty principle related to the CQWT. Finally, we apply the extended uncertainty principles and properties of the CQWT to establish logarithmic uncertainty principles related to generalized transform.

  1. Uncertainty, joint uncertainty, and the quantum uncertainty principle

    International Nuclear Information System (INIS)

    Narasimhachar, Varun; Poostindouz, Alireza; Gour, Gilad

    2016-01-01

    Historically, the element of uncertainty in quantum mechanics has been expressed through mathematical identities called uncertainty relations, a great many of which continue to be discovered. These relations use diverse measures to quantify uncertainty (and joint uncertainty). In this paper we use operational information-theoretic principles to identify the common essence of all such measures, thereby defining measure-independent notions of uncertainty and joint uncertainty. We find that most existing entropic uncertainty relations use measures of joint uncertainty that yield themselves to a small class of operational interpretations. Our notion relaxes this restriction, revealing previously unexplored joint uncertainty measures. To illustrate the utility of our formalism, we derive an uncertainty relation based on one such new measure. We also use our formalism to gain insight into the conditions under which measure-independent uncertainty relations can be found. (paper)

  2. Maximally Localized States and Quantum Corrections of Black Hole Thermodynamics in the Framework of a New Generalized Uncertainty Principle

    International Nuclear Information System (INIS)

    Zhang, Shao-Jun; Miao, Yan-Gang; Zhao, Ying-Jie

    2015-01-01

    As a generalized uncertainty principle (GUP) leads to the effects of the minimal length of the order of the Planck scale and UV/IR mixing, some significant physical concepts and quantities are modified or corrected correspondingly. On the one hand, we derive the maximally localized states—the physical states displaying the minimal length uncertainty associated with a new GUP proposed in our previous work. On the other hand, in the framework of this new GUP we calculate quantum corrections to the thermodynamic quantities of the Schwardzschild black hole, such as the Hawking temperature, the entropy, and the heat capacity, and give a remnant mass of the black hole at the end of the evaporation process. Moreover, we compare our results with that obtained in the frameworks of several other GUPs. In particular, we observe a significant difference between the situations with and without the consideration of the UV/IR mixing effect in the quantum corrections to the evaporation rate and the decay time. That is, the decay time can greatly be prolonged in the former case, which implies that the quantum correction from the UV/IR mixing effect may give rise to a radical rather than a tiny influence to the Hawking radiation.

  3. On the uncertainty principle. V

    International Nuclear Information System (INIS)

    Halpern, O.

    1976-01-01

    The treatment of ideal experiments connected with the uncertainty principle is continued. The author analyzes successively measurements of momentum and position, and discusses the common reason why the results in all cases differ from the conventional ones. A similar difference exists for the measurement of field strengths. The interpretation given by Weizsaecker, who tried to interpret Bohr's complementarity principle by introducing a multi-valued logic is analyzed. The treatment of the uncertainty principle ΔE Δt is deferred to a later paper as is the interpretation of the method of variation of constants. Every ideal experiment discussed shows various lower limits for the value of the uncertainty product which limits depend on the experimental arrangement and are always (considerably) larger than h. (Auth.)

  4. Dilaton cosmology and the modified uncertainty principle

    International Nuclear Information System (INIS)

    Majumder, Barun

    2011-01-01

    Very recently Ali et al. (2009) proposed a new generalized uncertainty principle (with a linear term in Plank length which is consistent with doubly special relativity and string theory. The classical and quantum effects of this generalized uncertainty principle (termed as modified uncertainty principle or MUP) are investigated on the phase space of a dilatonic cosmological model with an exponential dilaton potential in a flat Friedmann-Robertson-Walker background. Interestingly, as a consequence of MUP, we found that it is possible to get a late time acceleration for this model. For the quantum mechanical description in both commutative and MUP framework, we found the analytical solutions of the Wheeler-DeWitt equation for the early universe and compare our results. We have used an approximation method in the case of MUP.

  5. Heisenberg's principle of uncertainty and the uncertainty relations

    International Nuclear Information System (INIS)

    Redei, Miklos

    1987-01-01

    The usual verbal form of the Heisenberg uncertainty principle and the usual mathematical formulation (the so-called uncertainty theorem) are not equivalent. The meaning of the concept 'uncertainty' is not unambiguous and different interpretations are used in the literature. Recently a renewed interest has appeared to reinterpret and reformulate the precise meaning of Heisenberg's principle and to find adequate mathematical form. The suggested new theorems are surveyed and critically analyzed. (D.Gy.) 20 refs

  6. Uncertainty Principles on Two Step Nilpotent Lie Groups

    Indian Academy of Sciences (India)

    Abstract. We extend an uncertainty principle due to Cowling and Price to two step nilpotent Lie groups, which generalizes a classical theorem of Hardy. We also prove an analogue of Heisenberg inequality on two step nilpotent Lie groups.

  7. Human perception and the uncertainty principle

    International Nuclear Information System (INIS)

    Harney, R.C.

    1976-01-01

    The concept of the uncertainty principle that position and momentum cannot be simultaneously specified to arbitrary accuracy is somewhat difficult to reconcile with experience. This note describes order-of-magnitude calculations which quantify the inadequacy of human perception with regards to direct observation of the breakdown of the trajectory concept implied by the uncertainty principle. Even with the best optical microscope, human vision is inadequate by three orders of magnitude. 1 figure

  8. Itch Management: General Principles.

    Science.gov (United States)

    Misery, Laurent

    2016-01-01

    Like pain, itch is a challenging condition that needs to be managed. Within this setting, the first principle of itch management is to get an appropriate diagnosis to perform an etiology-oriented therapy. In several cases it is not possible to treat the cause, the etiology is undetermined, there are several causes, or the etiological treatment is not effective enough to alleviate itch completely. This is also why there is need for symptomatic treatment. In all patients, psychological support and associated pragmatic measures might be helpful. General principles and guidelines are required, yet patient-centered individual care remains fundamental. © 2016 S. Karger AG, Basel.

  9. Limited entropic uncertainty as new principle of quantum physics

    International Nuclear Information System (INIS)

    Ion, D.B.; Ion, M.L.

    2001-01-01

    The Uncertainty Principle (UP) of quantum mechanics discovered by Heisenberg, which constitute the corner-stone of quantum physics, asserts that: there is an irreducible lower bound on the uncertainty in the result of a simultaneous measurement of non-commuting observables. In order to avoid this state-dependence many authors proposed to use the information entropy as a measure of the uncertainty instead of above standard quantitative formulation of the Heisenberg uncertainty principle. In this paper the Principle of Limited Entropic Uncertainty (LEU-Principle), as a new principle in quantum physics, is proved. Then, consistent experimental tests of the LEU-principle, obtained by using the available 49 sets of the pion-nucleus phase shifts, are presented for both, extensive (q=1) and nonextensive (q=0.5 and q=2.0) cases. Some results obtained by the application of LEU-Principle to the diffraction phenomena are also discussed. The main results and conclusions of our paper can be summarized as follows: (i) We introduced a new principle in quantum physics namely the Principle of Limited Entropic Uncertainty (LEU-Principle). This new principle includes in a more general and exact form not only the old Heisenberg uncertainty principle but also introduce an upper limit on the magnitude of the uncertainty in the quantum physics. The LEU-Principle asserts that: 'there is an irreducible lower bound as well as an upper bound on the uncertainty in the result of a simultaneous measurement of non-commuting observables for any extensive and nonextensive (q ≥ 0) quantum systems'; (ii) Two important concrete realizations of the LEU-Principle are explicitly obtained in this paper, namely: (a) the LEU-inequalities for the quantum scattering of spinless particles and (b) the LEU-inequalities for the diffraction on single slit of width 2a. In particular from our general results, in the limit y → +1 we recover in an exact form all the results previously reported. In our paper an

  10. General principles of radiotherapy

    International Nuclear Information System (INIS)

    Easson, E.C.

    1985-01-01

    The daily practice of any established branch of medicine should be based on some acceptable principles. This chapter is concerned with the general principles on which the radiotherapy of the Manchester school is based. Though many radiotherapists in other centres would doubtless accept these principles, there are sufficiently wide differences in practice throughout the world to suggest that some therapists adhere to a fundamentally different philosophy. The authors believe it is important, especially for those beginning their formal training in radiotherapy, to subscribe to an internally consistent school of thought, employing methods of treatment for each type of lesion in each anatomical site that are based on accepted principles and subjected to continuous rigorous scrutiny to test their effectiveness. Not only must each therapeutic technique be evaluated, but the underlying principles too must be questioned if and when this seems indicated. It is a feature of this hospital that similar lesions are all treated by the same technique, so long as statistical evidence justifies such a policy. All members of the staff adhere to the accepted policy until or unless reliable reasons are adduced to change this policy

  11. The action uncertainty principle for continuous measurements

    Science.gov (United States)

    Mensky, Michael B.

    1996-02-01

    The action uncertainty principle (AUP) for the specification of the most probable readouts of continuous quantum measurements is proved, formulated in different forms and analyzed (for nonlinear as well as linear systems). Continuous monitoring of an observable A(p,q,t) with resolution Δa( t) is considered. The influence of the measurement process on the evolution of the measured system (quantum measurement noise) is presented by an additional term δ F(t)A(p,q,t) in the Hamiltonian where the function δ F (generalized fictitious force) is restricted by the AUP ∫|δ F(t)| Δa( t) d t ≲ and arbitrary otherwise. Quantum-nondemolition (QND) measurements are analyzed with the help of the AUP. A simple uncertainty relation for continuous quantum measurements is derived. It states that the area of a certain band in the phase space should be of the order of. The width of the band depends on the measurement resolution while its length is determined by the deviation of the system, due to the measurement, from classical behavior.

  12. The action uncertainty principle for continuous measurements

    International Nuclear Information System (INIS)

    Mensky, M.B.

    1996-01-01

    The action uncertainty principle (AUP) for the specification of the most probable readouts of continuous quantum measurements is proved, formulated in different forms and analyzed (for nonlinear as well as linear systems). Continuous monitoring of an observable A(p,q,t) with resolution Δa(t) is considered. The influence of the measurement process on the evolution of the measured system (quantum measurement noise) is presented by an additional term δF(t) A(p,q,t) in the Hamiltonian where the function δF (generalized fictitious force) is restricted by the AUP ∫ vertical stroke δF(t) vertical stroke Δa(t)d t< or∼ℎ and arbitrary otherwise. Quantum-nondemolition (QND) measurements are analyzed with the help of the AUP. A simple uncertainty relation for continuous quantum measurements is derived. It states that the area of a certain band in the phase space should be of the order of ℎ. The width of the band depends on the measurement resolution while its length is determined by the deviation of the system, due to the measurement, from classical behavior. (orig.)

  13. The action uncertainty principle and quantum gravity

    Science.gov (United States)

    Mensky, Michael B.

    1992-02-01

    Results of the path-integral approach to the quantum theory of continuous measurements have been formulated in a preceding paper in the form of an inequality of the type of the uncertainty principle. The new inequality was called the action uncertainty principle, AUP. It was shown that the AUP allows one to find in a simple what outputs of the continuous measurements will occur with high probability. Here a more simple form of the AUP will be formulated, δ S≳ħ. When applied to quantum gravity, it leads in a very simple way to the Rosenfeld inequality for measurability of the average curvature.

  14. The principle of general tovariance

    NARCIS (Netherlands)

    Heunen, C.; Landsman, N.P.; Spitters, B.A.W.; Loja Fernandes, R.; Picken, R.

    2008-01-01

    We tentatively propose two guiding principles for the construction of theories of physics, which should be satisfied by a possible future theory of quantum gravity. These principles are inspired by those that led Einstein to his theory of general relativity, viz. his principle of general covariance

  15. Energy and Uncertainty in General Relativity

    Science.gov (United States)

    Cooperstock, F. I.; Dupre, M. J.

    2018-03-01

    The issue of energy and its potential localizability in general relativity has challenged physicists for more than a century. Many non-invariant measures were proposed over the years but an invariant measure was never found. We discovered the invariant localized energy measure by expanding the domain of investigation from space to spacetime. We note from relativity that the finiteness of the velocity of propagation of interactions necessarily induces indefiniteness in measurements. This is because the elements of actual physical systems being measured as well as their detectors are characterized by entire four-velocity fields, which necessarily leads to information from a measured system being processed by the detector in a spread of time. General relativity adds additional indefiniteness because of the variation in proper time between elements. The uncertainty is encapsulated in a generalized uncertainty principle, in parallel with that of Heisenberg, which incorporates the localized contribution of gravity to energy. This naturally leads to a generalized uncertainty principle for momentum as well. These generalized forms and the gravitational contribution to localized energy would be expected to be of particular importance in the regimes of ultra-strong gravitational fields. We contrast our invariant spacetime energy measure with the standard 3-space energy measure which is familiar from special relativity, appreciating why general relativity demands a measure in spacetime as opposed to 3-space. We illustrate the misconceptions by certain authors of our approach.

  16. General Principles Governing Liability

    International Nuclear Information System (INIS)

    Reyners, P.

    1998-01-01

    This paper contains a brief review of the basic principles which govern the special regime of liability and compensation for nuclear damage originating on nuclear installations, in particular the strict and exclusive liability of the nuclear operator, the provision of a financial security to cover this liability and the limits applicable both in amount and in time. The paper also reviews the most important international agreements currently in force which constitute the foundation of this special regime. (author)

  17. Thermodynamic properties of ideal Fermi gases in a harmonic potential in an n-dimensional space under the generalized uncertainty principle

    Science.gov (United States)

    Li, Heling; Ren, Jinxiu; Wang, Wenwei; Yang, Bin; Shen, Hongjun

    2018-02-01

    Using the semi-classical (Thomas-Fermi) approximation, the thermodynamic properties of ideal Fermi gases in a harmonic potential in an n-dimensional space are studied under the generalized uncertainty principle (GUP). The mean particle number, internal energy, heat capacity and other thermodynamic variables of the Fermi system are calculated analytically. Then, analytical expressions of the mean particle number, internal energy, heat capacity, chemical potential, Fermi energy, ground state energy and amendments of the GUP are obtained at low temperatures. The influence of both the GUP and the harmonic potential on the thermodynamic properties of a copper-electron gas and other systems with higher electron densities are studied numerically at low temperatures. We find: (1) When the GUP is considered, the influence of the harmonic potential is very much larger, and the amendments produced by the GUP increase by eight to nine orders of magnitude compared to when no external potential is applied to the electron gas. (2) The larger the particle density, or the smaller the particle masses, the bigger the influence of the GUP. (3) The effect of the GUP increases with the increase in the spatial dimensions. (4) The amendments of the chemical potential, Fermi energy and ground state energy increase with an increase in temperature, while the heat capacity decreases. T F0 is the Fermi temperature of the ideal Fermi system in a harmonic potential. When the temperature is lower than a certain value (0.22 times T F0 for the copper-electron gas, and this value decreases with increasing electron density), the amendment to the internal energy is positive, however, the amendment decreases with increasing temperature. When the temperature increases to the value, the amendment is zero, and when the temperature is higher than the value, the amendment to the internal energy is negative and the absolute value of the amendment increases with increasing temperature. (5) When electron

  18. The Bertlmann-Martin Inequalities and the Uncertainty Principle

    International Nuclear Information System (INIS)

    Ighezou, F.Z.; Kerris, A.T.; Lombard, R.J.

    2008-01-01

    A lower bound to (r) 1s is established from the Thomas-Reiche-Kuhn sum rule applied to the reduced equation for the s-states. It is linked to the average value of (r 2 ) 1s We discuss, on few examples, how the use of approximate value for (r 2 ) 1s , derived from the generalized Bertlmann and Martin inequalities, preserves the lower bound character of (r) 1s . Finally, by using the uncertainty principle and the uncertainty in the radial position, we derive a low bound to the ground state kinetic energy

  19. The Principle of General Tovariance

    Science.gov (United States)

    Heunen, C.; Landsman, N. P.; Spitters, B.

    2008-06-01

    We tentatively propose two guiding principles for the construction of theories of physics, which should be satisfied by a possible future theory of quantum gravity. These principles are inspired by those that led Einstein to his theory of general relativity, viz. his principle of general covariance and his equivalence principle, as well as by the two mysterious dogmas of Bohr's interpretation of quantum mechanics, i.e. his doctrine of classical concepts and his principle of complementarity. An appropriate mathematical language for combining these ideas is topos theory, a framework earlier proposed for physics by Isham and collaborators. Our principle of general tovariance states that any mathematical structure appearing in the laws of physics must be definable in an arbitrary topos (with natural numbers object) and must be preserved under so-called geometric morphisms. This principle identifies geometric logic as the mathematical language of physics and restricts the constructions and theorems to those valid in intuitionism: neither Aristotle's principle of the excluded third nor Zermelo's Axiom of Choice may be invoked. Subsequently, our equivalence principle states that any algebra of observables (initially defined in the topos Sets) is empirically equivalent to a commutative one in some other topos.

  20. General principles of quantum mechanics

    International Nuclear Information System (INIS)

    Pauli, W.

    1980-01-01

    This book is a textbook for a course in quantum mechanics. Starting from the complementarity and the uncertainty principle Schroedingers equation is introduced together with the operator calculus. Then stationary states are treated as eigenvalue problems. Furthermore matrix mechanics are briefly discussed. Thereafter the theory of measurements is considered. Then as approximation methods perturbation theory and the WKB approximation are introduced. Then identical particles, spin, and the exclusion principle are discussed. There after the semiclassical theory of radiation and the relativistic one-particle problem are discussed. Finally an introduction is given into quantum electrodynamics. (HSI)

  1. Universal uncertainty principle in the measurement operator formalism

    International Nuclear Information System (INIS)

    Ozawa, Masanao

    2005-01-01

    Heisenberg's uncertainty principle has been understood to set a limitation on measurements; however, the long-standing mathematical formulation established by Heisenberg, Kennard, and Robertson does not allow such an interpretation. Recently, a new relation was found to give a universally valid relation between noise and disturbance in general quantum measurements, and it has become clear that the new relation plays a role of the first principle to derive various quantum limits on measurement and information processing in a unified treatment. This paper examines the above development on the noise-disturbance uncertainty principle in the model-independent approach based on the measurement operator formalism, which is widely accepted to describe a class of generalized measurements in the field of quantum information. We obtain explicit formulae for the noise and disturbance of measurements given by measurement operators, and show that projective measurements do not satisfy the Heisenberg-type noise-disturbance relation that is typical in the gamma-ray microscope thought experiments. We also show that the disturbance on a Pauli operator of a projective measurement of another Pauli operator constantly equals √2, and examine how this measurement violates the Heisenberg-type relation but satisfies the new noise-disturbance relation

  2. Science 101: What, Exactly, Is the Heisenberg Uncertainty Principle?

    Science.gov (United States)

    Robertson, Bill

    2016-01-01

    Bill Robertson is the author of the NSTA Press book series, "Stop Faking It! Finally Understanding Science So You Can Teach It." In this month's issue, Robertson describes and explains the Heisenberg Uncertainty Principle. The Heisenberg Uncertainty Principle was discussed on "The Big Bang Theory," the lead character in…

  3. On a generalized bootstrap principle

    International Nuclear Information System (INIS)

    Corrigan, E.; Sasaki, R.; Dorey, P.E.

    1993-01-01

    The S-matrices for non-simply-laced affine Toda field theories are considered in the context of a generalized bootstrap principle. The S-matrices, and in particular their poles, depend on a parameter whose range lies between the Coxeter numbers of dual pairs of the corresponding non-simply-laced algebras. It is proposed that only odd order poles in the physical strip with positive coefficients throughout this range should participate in the bootstrap. All other singularities have an explanation in principle in terms of a generalized Coleman-Thun mechanism. Besides the S-matrices introduced by Delius, Grisaru and Zanon, the missing case (F 4 (1) , e 6 (2) ), is also considered and provides many interesting examples of pole generation. (author)

  4. Generalization of the Taylor Principle

    International Nuclear Information System (INIS)

    Jensen, T.H.

    1986-01-01

    The usual Taylor Principle can in general only be applied when the system is closed. This paper describes a suggestion of a generalization to cover the case that the plasma is surrounded by a conducting shell with narrow gaps where the external circuits connected to the gaps consist of just inductors. The suggested constraint of the generalized Taylor Principle is that no helicity is absorbed by the plasma. The usual assumption that the stable Taylor Equilibrium is that for which the magnetic energy in the plasma region as well as in the external inductors is minimized subject to the above constraint, again leads to a unique configuration. It is found that this configuration is dependent upon the inductances of the external inductors. For the sake of conceptual simplicity, consider a closed shell of conducting material. The interior of the shell may be divided into various compartments only corrected through narrow gaps in the conducting walls between these compartments. They assume plasma present in only one of the compartments; the neighboring compartments represent the external inductors connected across the gaps of the plasma compartment

  5. Fundamental uncertainty limit of optical flow velocimetry according to Heisenberg's uncertainty principle.

    Science.gov (United States)

    Fischer, Andreas

    2016-11-01

    Optical flow velocity measurements are important for understanding the complex behavior of flows. Although a huge variety of methods exist, they are either based on a Doppler or a time-of-flight measurement principle. Doppler velocimetry evaluates the velocity-dependent frequency shift of light scattered at a moving particle, whereas time-of-flight velocimetry evaluates the traveled distance of a scattering particle per time interval. Regarding the aim of achieving a minimal measurement uncertainty, it is unclear if one principle allows to achieve lower uncertainties or if both principles can achieve equal uncertainties. For this reason, the natural, fundamental uncertainty limit according to Heisenberg's uncertainty principle is derived for Doppler and time-of-flight measurement principles, respectively. The obtained limits of the velocity uncertainty are qualitatively identical showing, e.g., a direct proportionality for the absolute value of the velocity to the power of 32 and an indirect proportionality to the square root of the scattered light power. Hence, both measurement principles have identical potentials regarding the fundamental uncertainty limit due to the quantum mechanical behavior of photons. This fundamental limit can be attained (at least asymptotically) in reality either with Doppler or time-of-flight methods, because the respective Cramér-Rao bounds for dominating photon shot noise, which is modeled as white Poissonian noise, are identical with the conclusions from Heisenberg's uncertainty principle.

  6. Uncertainty principle for angular position and angular momentum

    International Nuclear Information System (INIS)

    Franke-Arnold, Sonja; Barnett, Stephen M; Yao, Eric; Leach, Jonathan; Courtial, Johannes; Padgett, Miles

    2004-01-01

    The uncertainty principle places fundamental limits on the accuracy with which we are able to measure the values of different physical quantities (Heisenberg 1949 The Physical Principles of the Quantum Theory (New York: Dover); Robertson 1929 Phys. Rev. 34 127). This has profound effects not only on the microscopic but also on the macroscopic level of physical systems. The most familiar form of the uncertainty principle relates the uncertainties in position and linear momentum. Other manifestations include those relating uncertainty in energy to uncertainty in time duration, phase of an electromagnetic field to photon number and angular position to angular momentum (Vaccaro and Pegg 1990 J. Mod. Opt. 37 17; Barnett and Pegg 1990 Phys. Rev. A 41 3427). In this paper, we report the first observation of the last of these uncertainty relations and derive the associated states that satisfy the equality in the uncertainty relation. We confirm the form of these states by detailed measurement of the angular momentum of a light beam after passage through an appropriate angular aperture. The angular uncertainty principle applies to all physical systems and is particularly important for systems with cylindrical symmetry

  7. 29 CFR 2.11 - General principles.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true General principles. 2.11 Section 2.11 Labor Office of the Secretary of Labor GENERAL REGULATIONS Audiovisual Coverage of Administrative Hearings § 2.11 General principles. The following general principles will be observed in granting or denying requests for permission...

  8. A generalized Principle of Relativity

    International Nuclear Information System (INIS)

    Felice, Fernando de; Preti, Giovanni

    2009-01-01

    The Theory of Relativity stands as a firm groundstone on which modern physics is founded. In this paper we bring to light an hitherto undisclosed richness of this theory, namely its admitting a consistent reformulation which is able to provide a unified scenario for all kinds of particles, be they lightlike or not. This result hinges on a generalized Principle of Relativity which is intrinsic to Einstein's theory - a fact which went completely unnoticed before. The road leading to this generalization starts, in the very spirit of Relativity, from enhancing full equivalence between the four spacetime directions by requiring full equivalence between the motions along these four spacetime directions as well. So far, no measurable spatial velocity in the direction of the time axis has ever been defined, on the same footing of the usual velocities - the 'space-velocities' - in the local three-space of a given observer. In this paper, we show how Relativity allows such a 'time-velocity' to be defined in a very natural way, for any particle and in any reference frame. As a consequence of this natural definition, it also follows that the time- and space-velocity vectors sum up to define a spacelike 'world-velocity' vector, the modulus of which - the world-velocity - turns out to be equal to the Maxwell's constant c, irrespective of the observer who measures it. This measurable world-velocity (not to be confused with the space-velocities we are used to deal with) therefore represents the speed at which all kinds of particles move in spacetime, according to any observer. As remarked above, the unifying scenario thus emerging is intrinsic to Einstein's Theory; it extends the role traditionally assigned to Maxwell's constant c, and can therefore justly be referred to as 'a generalized Principle of Relativity'.

  9. Investigation of Free Particle Propagator with Generalized Uncertainty Problem

    International Nuclear Information System (INIS)

    Hassanabadi, H.; Ghobakhloo, F.

    2016-01-01

    We consider the Schrödinger equation with a generalized uncertainty principle for a free particle. We then transform the problem into a second-order ordinary differential equation and thereby obtain the corresponding propagator. The result of ordinary quantum mechanics is recovered for vanishing minimal length parameter.

  10. General principles of antimicrobial therapy.

    Science.gov (United States)

    Leekha, Surbhi; Terrell, Christine L; Edson, Randall S

    2011-02-01

    Antimicrobial agents are some of the most widely, and often injudiciously, used therapeutic drugs worldwide. Important considerations when prescribing antimicrobial therapy include obtaining an accurate diagnosis of infection; understanding the difference between empiric and definitive therapy; identifying opportunities to switch to narrow-spectrum, cost-effective oral agents for the shortest duration necessary; understanding drug characteristics that are peculiar to antimicrobial agents (such as pharmacodynamics and efficacy at the site of infection); accounting for host characteristics that influence antimicrobial activity; and in turn, recognizing the adverse effects of antimicrobial agents on the host. It is also important to understand the importance of antimicrobial stewardship, to know when to consult infectious disease specialists for guidance, and to be able to identify situations when antimicrobial therapy is not needed. By following these general principles, all practicing physicians should be able to use antimicrobial agents in a responsible manner that benefits both the individual patient and the community.

  11. 16 CFR 260.6 - General principles.

    Science.gov (United States)

    2010-01-01

    ... ENVIRONMENTAL MARKETING CLAIMS § 260.6 General principles. The following general principles apply to all environmental marketing claims, including, but not limited to, those described in § 260.7. In addition, § 260.7... 16 Commercial Practices 1 2010-01-01 2010-01-01 false General principles. 260.6 Section 260.6...

  12. [Dealing with diagnostic uncertainty in general practice].

    Science.gov (United States)

    Wübken, Magdalena; Oswald, Jana; Schneider, Antonius

    2013-01-01

    In general, the prevalence of diseases is low in primary care. Therefore, the positive predictive value of diagnostic tests is lower than in hospitals where patients are highly selected. In addition, the patients present with milder forms of disease; and many diseases might hide behind the initial symptom(s). These facts lead to diagnostic uncertainty which is somewhat inherent to general practice. This narrative review discusses different sources of and reasons for uncertainty and strategies to deal with it in the context of the current literature. Fear of uncertainty correlates with higher diagnostic activities. The attitude towards uncertainty correlates with the choice of medical speciality by vocational trainees or medical students. An intolerance of uncertainty, which still increases as medicine is making steady progress, might partly explain the growing shortage of general practitioners. The bio-psycho-social context appears to be important to diagnostic decision-making. The effect of intuition and heuristics are investigated by cognitive psychologists. It is still unclear whether these aspects are prone to bias or useful, which might depend on the context of medical decisions. Good communication is of great importance to share uncertainty with the patients in a transparent way and to alleviate shared decision-making. Dealing with uncertainty should be seen as an important core component of general practice and needs to be investigated in more detail to improve the respective medical decisions. Copyright © 2013. Published by Elsevier GmbH.

  13. The Uncertainty Principle in the Presence of Quantum Memory

    Science.gov (United States)

    Renes, Joseph M.; Berta, Mario; Christandl, Matthias; Colbeck, Roger; Renner, Renato

    2010-03-01

    One consequence of Heisenberg's uncertainty principle is that no observer can predict the outcomes of two incompatible measurements performed on a system to arbitrary precision. However, this implication is invalid if the the observer possesses a quantum memory, a distinct possibility in light of recent technological advances. Entanglement between the system and the memory is responsible for the breakdown of the uncertainty principle, as illustrated by the EPR paradox. In this work we present an improved uncertainty principle which takes this entanglement into account. By quantifying uncertainty using entropy, we show that the sum of the entropies associated with incompatible measurements must exceed a quantity which depends on the degree of incompatibility and the amount of entanglement between system and memory. Apart from its foundational significance, the uncertainty principle motivated the first proposals for quantum cryptography, though the possibility of an eavesdropper having a quantum memory rules out using the original version to argue that these proposals are secure. The uncertainty relation introduced here alleviates this problem and paves the way for its widespread use in quantum cryptography.

  14. 5 CFR 551.202 - General principles.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false General principles. 551.202 Section 551... ADMINISTRATION UNDER THE FAIR LABOR STANDARDS ACT Exemptions and Exclusions § 551.202 General principles. In all exemption determinations, the agency must observe the following principles: (a) Each employee is presumed to...

  15. 20 CFR 401.140 - General principles.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false General principles. 401.140 Section 401.140... INFORMATION Disclosure of Official Records and Information § 401.140 General principles. When no law... follow FOIA principles to resolve that question. We do this to insure uniform treatment in all situations...

  16. 24 CFR 3282.402 - General principles.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false General principles. 3282.402... and Remedial Actions § 3282.402 General principles. (a) Nothing in this subpart or in these... manufactured home manufacturers to provide remedial actions under this subpart is limited by the principle that...

  17. 29 CFR 1604.1 - General principles.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false General principles. 1604.1 Section 1604.1 Labor Regulations... OF SEX § 1604.1 General principles. (a) References to “employer” or “employers” in this part 1604 state principles that are applicable not only to employers but also to labor organizations and to...

  18. Generalized Landau-Pollak uncertainty relation

    International Nuclear Information System (INIS)

    Miyadera, Takayuki; Imai, Hideki

    2007-01-01

    The Landau-Pollak uncertainty relation treats a pair of rank one projection valued measures and imposes a restriction on their probability distributions. It gives a nontrivial bound for summation of their maximum values. We give a generalization of this bound (weak version of the Landau-Pollak uncertainty relation). Our generalization covers a pair of positive operator valued measures. A nontrivial but slightly weak inequality that can treat an arbitrary number of positive operator valued measures is also presented. A possible application to the problem of separability criterion is also suggested

  19. Lacunary Fourier Series and a Qualitative Uncertainty Principle for ...

    Indian Academy of Sciences (India)

    We define lacunary Fourier series on a compact connected semisimple Lie group . If f ∈ L 1 ( G ) has lacunary Fourier series and vanishes on a non empty open subset of , then we prove that vanishes identically. This result can be viewed as a qualitative uncertainty principle.

  20. Uncertainty principle in loop quantum cosmology by Moyal formalism

    Science.gov (United States)

    Perlov, Leonid

    2018-03-01

    In this paper, we derive the uncertainty principle for the loop quantum cosmology homogeneous and isotropic Friedmann-Lemaiter-Robertson-Walker model with the holonomy-flux algebra. The uncertainty principle is between the variables c, with the meaning of connection and μ having the meaning of the physical cell volume to the power 2/3, i.e., v2 /3 or a plaquette area. Since both μ and c are not operators, but rather the random variables, the Robertson uncertainty principle derivation that works for hermitian operators cannot be used. Instead we use the Wigner-Moyal-Groenewold phase space formalism. The Wigner-Moyal-Groenewold formalism was originally applied to the Heisenberg algebra of the quantum mechanics. One can derive it from both the canonical and path integral quantum mechanics as well as the uncertainty principle. In this paper, we apply it to the holonomy-flux algebra in the case of the homogeneous and isotropic space. Another result is the expression for the Wigner function on the space of the cylindrical wave functions defined on Rb in c variables rather than in dual space μ variables.

  1. 21 CFR 102.5 - General principles.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false General principles. 102.5 Section 102.5 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION COMMON OR USUAL NAME FOR NONSTANDARDIZED FOODS General Provisions § 102.5 General principles. (a...

  2. 12 CFR 330.3 - General principles.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 4 2010-01-01 2010-01-01 false General principles. 330.3 Section 330.3 Banks and Banking FEDERAL DEPOSIT INSURANCE CORPORATION REGULATIONS AND STATEMENTS OF GENERAL POLICY DEPOSIT INSURANCE COVERAGE § 330.3 General principles. (a) Ownership rights and capacities. The insurance coverage...

  3. 21 CFR 104.5 - General principles.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false General principles. 104.5 Section 104.5 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION NUTRITIONAL QUALITY GUIDELINES FOR FOODS General Provisions § 104.5 General principles. (a) A...

  4. The General Principle and Conflicting Conditional Chances

    NARCIS (Netherlands)

    Dziurosz-Serafinowicz, Patryk

    2014-01-01

    This paper shows how one can apply a particular chance-credence principle, called the General Principle, to the case of competing conditional chances of a given proposition. This principle is, then, tested against a case of two different viability fitnesses understood as conditional survival

  5. Theoretical formulation of finite-dimensional discrete phase spaces: I. Algebraic structures and uncertainty principles

    International Nuclear Information System (INIS)

    Marchiolli, M.A.; Ruzzi, M.

    2012-01-01

    We propose a self-consistent theoretical framework for a wide class of physical systems characterized by a finite space of states which allows us, within several mathematical virtues, to construct a discrete version of the Weyl–Wigner–Moyal (WWM) formalism for finite-dimensional discrete phase spaces with toroidal topology. As a first and important application from this ab initio approach, we initially investigate the Robertson–Schrödinger (RS) uncertainty principle related to the discrete coordinate and momentum operators, as well as its implications for physical systems with periodic boundary conditions. The second interesting application is associated with a particular uncertainty principle inherent to the unitary operators, which is based on the Wiener–Khinchin theorem for signal processing. Furthermore, we also establish a modified discrete version for the well-known Heisenberg–Kennard–Robertson (HKR) uncertainty principle, which exhibits additional terms (or corrections) that resemble the generalized uncertainty principle (GUP) into the context of quantum gravity. The results obtained from this new algebraic approach touch on some fundamental questions inherent to quantum mechanics and certainly represent an object of future investigations in physics. - Highlights: ► We construct a discrete version of the Weyl–Wigner–Moyal formalism. ► Coherent states for finite-dimensional discrete phase spaces are established. ► Discrete coordinate and momentum operators are properly defined. ► Uncertainty principles depend on the topology of finite physical systems. ► Corrections for the discrete Heisenberg uncertainty relation are also obtained.

  6. 39 CFR 602.1 - General principles.

    Science.gov (United States)

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false General principles. 602.1 Section 602.1 Postal... RIGHTS OTHER THAN PATENTS INTELLECTUAL PROPERTY RIGHTS OTHER THAN PATENTS § 602.1 General principles. It... other than patents (hereinafter, intellectual properties) having significant economic or other business...

  7. 31 CFR 29.321 - General principle.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false General principle. 29.321 Section 29.321 Money and Finance: Treasury Office of the Secretary of the Treasury FEDERAL BENEFIT PAYMENTS UNDER....321 General principle. Any service performed after June 30, 1997, may never be credited toward Federal...

  8. 31 CFR 29.341 - General principle.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false General principle. 29.341 Section 29.341 Money and Finance: Treasury Office of the Secretary of the Treasury FEDERAL BENEFIT PAYMENTS UNDER... Benefit Payments § 29.341 General principle. Except for disability retirements after June 30, 1997, and...

  9. 31 CFR 29.331 - General principle.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false General principle. 29.331 Section 29.331 Money and Finance: Treasury Office of the Secretary of the Treasury FEDERAL BENEFIT PAYMENTS UNDER... Satisfied by June 30, 1997 § 29.331 General principle. To determine whether service is creditable for the...

  10. 39 CFR 268.1 - General principles.

    Science.gov (United States)

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false General principles. 268.1 Section 268.1 Postal Service UNITED STATES POSTAL SERVICE ORGANIZATION AND ADMINISTRATION PRIVACY OF INFORMATION-EMPLOYEE RULES OF CONDUCT § 268.1 General principles. In order to conduct its business, the Postal Service has the...

  11. 23 CFR 660.509 - General principles.

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false General principles. 660.509 Section 660.509 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS SPECIAL PROGRAMS (DIRECT FEDERAL) Defense Access Roads § 660.509 General principles. (a) State and local highway...

  12. Unconditional security of quantum key distribution and the uncertainty principle

    International Nuclear Information System (INIS)

    Koashi, Masato

    2006-01-01

    An approach to the unconditional security of quantum key distribution protocols is presented, which is based on the uncertainty principle. The approach applies to every case that has been treated via the argument by Shor and Preskill, but it is not necessary to find quantum error correcting codes. It can also treat the cases with uncharacterized apparatuses. The proof can be applied to cases where the secret key rate is larger than the distillable entanglement

  13. Uncertainty principles for inverse source problems for electromagnetic and elastic waves

    Science.gov (United States)

    Griesmaier, Roland; Sylvester, John

    2018-06-01

    In isotropic homogeneous media, far fields of time-harmonic electromagnetic waves radiated by compactly supported volume currents, and elastic waves radiated by compactly supported body force densities can be modelled in very similar fashions. Both are projected restricted Fourier transforms of vector-valued source terms. In this work we generalize two types of uncertainty principles recently developed for far fields of scalar-valued time-harmonic waves in Griesmaier and Sylvester (2017 SIAM J. Appl. Math. 77 154–80) to this vector-valued setting. These uncertainty principles yield stability criteria and algorithms for splitting far fields radiated by collections of well-separated sources into the far fields radiated by individual source components, and for the restoration of missing data segments. We discuss proper regularization strategies for these inverse problems, provide stability estimates based on the new uncertainty principles, and comment on reconstruction schemes. A numerical example illustrates our theoretical findings.

  14. 18 CFR 358.2 - General principles.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false General principles. 358... principles. (a) As more fully described and implemented in subsequent sections of this part, a transmission... independently from its marketing function employees, except as permitted in this part or otherwise permitted by...

  15. 21 CFR 502.5 - General principles.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false General principles. 502.5 Section 502.5 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... principles. (a) The common or usual name of a food, which may be a coined term, shall accurately identify or...

  16. Action principle for the generalized harmonic formulation of general relativity

    International Nuclear Information System (INIS)

    Brown, J. David

    2011-01-01

    An action principle for the generalized harmonic formulation of general relativity is presented. The action is a functional of the spacetime metric and the gauge source vector. An action principle for the Z4 formulation of general relativity has been proposed recently by Bona, Bona-Casas, and Palenzuela. The relationship between the generalized harmonic action and the Bona, Bona-Casas, and Palenzuela action is discussed in detail.

  17. The 'Herbivory Uncertainty Principle': application in a cerrado site

    Directory of Open Access Journals (Sweden)

    CA Gadotti

    Full Text Available Researchers may alter the ecology of their studied organisms, even carrying out apparently beneficial activities, as in herbivory studies, when they may alter herbivory damage. We tested whether visit frequency altered herbivory damage, as predicted by the 'Herbivory Uncertainty Principle'. In a cerrado site, we established 80 quadrats, in which we sampled all woody individuals. We used four visit frequencies (high, medium, low, and control, quantifying, at the end of three months, herbivory damage for each species in each treatment. We did not corroborate the 'Herbivory Uncertainty Principle', since visiting frequency did not alter herbivory damage, at least when the whole plant community was taken into account. However, when we analysed each species separately, four out of 11 species presented significant differences in herbivory damage, suggesting that the researcher is not independent of its measurements. The principle could be tested in other ecological studies in which it may occur, such as those on animal behaviour, human ecology, population dynamics, and conservation.

  18. Continuous quantum measurements and the action uncertainty principle

    Science.gov (United States)

    Mensky, Michael B.

    1992-09-01

    The path-integral approach to quantum theory of continuous measurements has been developed in preceding works of the author. According to this approach the measurement amplitude determining probabilities of different outputs of the measurement can be evaluated in the form of a restricted path integral (a path integral “in finite limits”). With the help of the measurement amplitude, maximum deviation of measurement outputs from the classical one can be easily determined. The aim of the present paper is to express this variance in a simpler and transparent form of a specific uncertainty principle (called the action uncertainty principle, AUP). The most simple (but weak) form of AUP is δ S≳ℏ, where S is the action functional. It can be applied for simple derivation of the Bohr-Rosenfeld inequality for measurability of gravitational field. A stronger (and having wider application) form of AUP (for ideal measurements performed in the quantum regime) is |∫{/' t″ }(δ S[ q]/δ q( t))Δ q( t) dt|≃ℏ, where the paths [ q] and [Δ q] stand correspondingly for the measurement output and for the measurement error. It can also be presented in symbolic form as Δ(Equation) Δ(Path) ≃ ℏ. This means that deviation of the observed (measured) motion from that obeying the classical equation of motion is reciprocally proportional to the uncertainty in a path (the latter uncertainty resulting from the measurement error). The consequence of AUP is that improving the measurement precision beyond the threshold of the quantum regime leads to decreasing information resulting from the measurement.

  19. The Precautionary Principle and statistical approaches to uncertainty

    DEFF Research Database (Denmark)

    Keiding, Niels; Budtz-Jørgensen, Esben

    2004-01-01

    is unhelpful, because lack of significance can be due either to uninformative data or to genuine lack of effect (the Type II error problem). Its inversion, bioequivalence testing, might sometimes be a model for the Precautionary Principle in its ability to "prove the null hypothesis". Current procedures...... for setting safe exposure levels are essentially derived from these classical statistical ideas, and we outline how uncertainties in the exposure and response measurements affect the no observed adverse effect level, the Benchmark approach and the "Hockey Stick" model. A particular problem concerns model...

  20. On the principled assignment of probabilities for uncertainty analysis

    International Nuclear Information System (INIS)

    Unwin, S.D.; Cook, I.

    1986-01-01

    The authors sympathize with those who raise the questions of inscrutability and over-precision in connection with probabilistic techniques as currently implemented in nuclear PRA. This inscrutability also renders the probabilistic approach, as practiced, open to abuse. They believe that the appropriate remedy is not the discarding of the probabilistic representation of uncertainty in favour of a more simply structured, but logically inconsistent approach such as that of bounding analysis. This would be like forbidding the use of arithmetic in order to prevent the issuing of fraudulent company prospectuses. The remedy, in this analogy, is the enforcement of accounting standards for the valuation of inventory, rates of depreciation etc. They require an analogue of such standards in the PRA domain. What is needed is not the interdiction of probabilistic judgment, but the interdiction of private, inscrutable judgment. Some principles may be conventional in character, as are certain accounting principles. They expound a set of controlling principles which they suggest should govern the formulation of probabilities in nuclear risk analysis. A fuller derivation and consideration of these principles can be found

  1. Generalized field quantization and the Pauli principle

    International Nuclear Information System (INIS)

    Govorkov, A.B.

    1990-01-01

    The work is an attempt to prove that the generalized Pauli principle (i.e. Fermi statistics) for the half-integer spin fields and the Bose statistics for the integer spin fields with allowance for the existence of internal gauge symmetries are consequences of more general assumptions of the local quantum field theory. 32 refs.; 1 tab

  2. Linear Programming Problems for Generalized Uncertainty

    Science.gov (United States)

    Thipwiwatpotjana, Phantipa

    2010-01-01

    Uncertainty occurs when there is more than one realization that can represent an information. This dissertation concerns merely discrete realizations of an uncertainty. Different interpretations of an uncertainty and their relationships are addressed when the uncertainty is not a probability of each realization. A well known model that can handle…

  3. Reducing Uncertainty: Implementation of Heisenberg Principle to Measure Company Performance

    Directory of Open Access Journals (Sweden)

    Anna Svirina

    2015-08-01

    Full Text Available The paper addresses the problem of uncertainty reduction in estimation of future company performance, which is a result of wide range of enterprise's intangible assets probable efficiency. To reduce this problem, the paper suggests to use quantum economy principles, i.e. implementation of Heisenberg principle to measure efficiency and potential of intangible assets of the company. It is proposed that for intangibles it is not possible to estimate both potential and efficiency at a certain time point. To provide a proof for these thesis, the data on resources potential and efficiency from mid-Russian companies was evaluated within deterministic approach, which did not allow to evaluate probability of achieving certain resource efficiency, and quantum approach, which allowed to estimate the central point around which the probable efficiency of resources in concentrated. Visualization of these approaches was performed by means of LabView software. It was proven that for tangible assets performance estimation a deterministic approach should be used; while for intangible assets the quantum approach allows better quality of future performance prediction. On the basis of these findings we proposed the holistic approach towards estimation of company resource efficiency in order to reduce uncertainty in modeling company performance.

  4. What is the uncertainty principle of non-relativistic quantum mechanics?

    Science.gov (United States)

    Riggs, Peter J.

    2018-05-01

    After more than ninety years of discussions over the uncertainty principle, there is still no universal agreement on what the principle states. The Robertson uncertainty relation (incorporating standard deviations) is given as the mathematical expression of the principle in most quantum mechanics textbooks. However, the uncertainty principle is not merely a statement of what any of the several uncertainty relations affirm. It is suggested that a better approach would be to present the uncertainty principle as a statement about the probability distributions of incompatible variables and the resulting restrictions on quantum states.

  5. [Dealing with uncertainty--the hypermodernity of general practice].

    Science.gov (United States)

    Barth, Niklas; Nassehi, Armin; Schneider, Antonius

    2014-01-01

    The general practitioner is fundamentally dealing with uncertainty. On the one hand, we want to demonstrate that uncertainty cannot simply be stipulated as a matter of fact. Instead, we will show that this uncertainty is a performative effect of the primary care setting. On the other hand, we want to point out that the general practitioner's ability to bear uncertainty is a genuinely hypermodern way of productively dealing with uncertainty. Copyright © 2013. Published by Elsevier GmbH.

  6. General Quantum Interference Principle and Duality Computer

    International Nuclear Information System (INIS)

    Long Guilu

    2006-01-01

    In this article, we propose a general principle of quantum interference for quantum system, and based on this we propose a new type of computing machine, the duality computer, that may outperform in principle both classical computer and the quantum computer. According to the general principle of quantum interference, the very essence of quantum interference is the interference of the sub-waves of the quantum system itself. A quantum system considered here can be any quantum system: a single microscopic particle, a composite quantum system such as an atom or a molecule, or a loose collection of a few quantum objects such as two independent photons. In the duality computer, the wave of the duality computer is split into several sub-waves and they pass through different routes, where different computing gate operations are performed. These sub-waves are then re-combined to interfere to give the computational results. The quantum computer, however, has only used the particle nature of quantum object. In a duality computer, it may be possible to find a marked item from an unsorted database using only a single query, and all NP-complete problems may have polynomial algorithms. Two proof-of-the-principle designs of the duality computer are presented: the giant molecule scheme and the nonlinear quantum optics scheme. We also propose thought experiment to check the related fundamental issues, the measurement efficiency of a partial wave function.

  7. Solid electrolytes general principles, characterization, materials, applications

    CERN Document Server

    Hagenmuller, Paul

    1978-01-01

    Solid Electrolytes: General Principles, Characterization, Materials, Applications presents specific theories and experimental methods in the field of superionic conductors. It discusses that high ionic conductivity in solids requires specific structural and energetic conditions. It addresses the problems involved in the study and use of solid electrolytes. Some of the topics covered in the book are the introduction to the theory of solid electrolytes; macroscopic evidence for liquid nature; structural models; kinetic models; crystal structures and fast ionic conduction; interstitial motion in

  8. A connection between the Uncertainty Principles on the real line and on the circle

    OpenAIRE

    Andersen, Nils Byrial

    2013-01-01

    The purpose of this short note is to exhibit a new connection between the Heisenberg Uncertainty Principle on the line and the Breitenberger Uncertainty Principle on the circle, by considering the commutator of the multiplication and difference operators on Bernstein functions

  9. 2 CFR Appendix A to Part 230 - General Principles

    Science.gov (United States)

    2010-01-01

    ... 2 Grants and Agreements 1 2010-01-01 2010-01-01 false General Principles A Appendix A to Part 230 Grants and Agreements OFFICE OF MANAGEMENT AND BUDGET CIRCULARS AND GUIDANCE Reserved COST PRINCIPLES FOR... Principles General Principles Table of Contents A. Basic Considerations 1. Composition of total costs 2...

  10. The Precautionary Principle and statistical approaches to uncertainty

    DEFF Research Database (Denmark)

    Keiding, Niels; Budtz-Jørgensen, Esben

    2003-01-01

    Bayesian model averaging; Benchmark approach to safety standards in toxicology; dose-response relationship; environmental standards; exposure measurement uncertainty; Popper falsification......Bayesian model averaging; Benchmark approach to safety standards in toxicology; dose-response relationship; environmental standards; exposure measurement uncertainty; Popper falsification...

  11. The Precautionary Principle and Statistical Approaches to Uncertainty

    DEFF Research Database (Denmark)

    Keiding, Niels; Budtz-Jørgensen, Esben

    2005-01-01

    Bayesian model averaging; Benchmark approach to safety standars in toxicology; dose-response relationships; environmental standards; exposure measurement uncertainty; Popper falsification......Bayesian model averaging; Benchmark approach to safety standars in toxicology; dose-response relationships; environmental standards; exposure measurement uncertainty; Popper falsification...

  12. Before and beyond the precautionary principle: Epistemology of uncertainty in science and law

    International Nuclear Information System (INIS)

    Tallacchini, Mariachiara

    2005-01-01

    The precautionary principle has become, in European regulation of science and technology, a general principle for the protection of the health of human beings, animals, plants, and the environment. It requires that '[w]here there are threats of serious or irreversible damage, lack of full scientific certainty shall not be used as a reason for postponing cost-effective measures to prevent environmental degradation'. By focusing on situations of scientific uncertainty where data are lacking, insufficient, or inconclusive, the principle introduced a shift from a neutral legal attitude towards science to a bias in favor of safety, and a shift from the paradigm of science certain and objective to the awareness that the legal regulation of science involves decisions about values and interests. Implementation of the precautionary principle is highly variable. A crucial question still needs to be answered regarding the assumption that scientific certainty is a 'normal' characteristic of scientific knowledge. The relationship between technoscience and society has moved into a situation where uncertain knowledge is the rule. From this perspective, a more general framework for a democratic governance of science is needed. In democratic society, science may still have a special authoritative voice, but it cannot be the ultimate word on decisions that only the broader society may make. Therefore, the precautionary model of scientific regulation needs to be informed by an 'extended participatory model' of the relationship between science and society

  13. Generalized uncertainty relations and characteristic invariants for the multimode states

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Chiu, C.B.; Bhamathi, G.

    1995-01-01

    The close relationship between the zero-point energy, the uncertainty relation, coherent states, squeezed states, and correlated states for one mode is investigated. This group theoretic perspective of the problem enables the parametrization and identification of their multimode generalization. A simple and efficient method of determining the canonical structure of the generalized correlated states is presented. Implication of canonical commutation relations for correlations are not exhausted by the Heisenberg uncertainty relation, not even by the Schroedinger-Robertson uncertainty inequality, but there are relations in the multimode case that are the generalization of the Schroedinger-Robertson relation

  14. 10 CFR 1023.3 - Principles of general applicability.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Principles of general applicability. 1023.3 Section 1023.3 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) CONTRACT APPEALS Overview: Organization, Functions and Authorities § 1023.3 Principles of general applicability. (a) Adjudicatory functions. The following principles...

  15. 34 CFR 76.530 - General cost principles.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false General cost principles. 76.530 Section 76.530... Be Met by the State and Its Subgrantees? Allowable Costs § 76.530 General cost principles. Both 34 CFR 74.27 and 34 CFR 80.22 reference the general cost principles that apply to grants, subgrants and...

  16. 34 CFR 75.530 - General cost principles.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false General cost principles. 75.530 Section 75.530 Education Office of the Secretary, Department of Education DIRECT GRANT PROGRAMS What Conditions Must Be Met by a Grantee? Allowable Costs § 75.530 General cost principles. The general principles to be used in...

  17. Minimal length uncertainty and generalized non-commutative geometry

    International Nuclear Information System (INIS)

    Farmany, A.; Abbasi, S.; Darvishi, M.T.; Khani, F.; Naghipour, A.

    2009-01-01

    A generalized formulation of non-commutative geometry for the Bargmann-Fock space of quantum field theory is presented. The analysis is related to the symmetry of the simplistic space and a minimal length uncertainty.

  18. Generalized production planning problem under interval uncertainty

    Directory of Open Access Journals (Sweden)

    Samir A. Abass

    2010-06-01

    Full Text Available Data in many real life engineering and economical problems suffer from inexactness. Herein we assume that we are given some intervals in which the data can simultaneously and independently perturb. We consider the generalized production planning problem with interval data. The interval data are in both of the objective function and constraints. The existing results concerning the qualitative and quantitative analysis of basic notions in parametric production planning problem. These notions are the set of feasible parameters, the solvability set and the stability set of the first kind.

  19. Principle of least action; some possible generalizations

    International Nuclear Information System (INIS)

    Broucke, R.

    1982-01-01

    In this article we draw the attention to an important variational principle in dynamics: the Maupertuis-Jacobi Least Action Principle (MJLAP). This principle compares varied paths with the same energy h. We give two new proofs of the MJLAP (Sections 3 and 8) as well as a new unified variational principle which contains both Hamilton's Principle (HP) and the MJLAP as particular cases (Sections 4 and 9). The article also shows several new methods for the construction of a Lagrangian for a conservative dynamical system. As an example, we illustrate the theory with the classical Harmonic Oscillator Problem (Section 10). Our method is based on the theory of changes of independent variables in a dynamical system. It indirectly shows how a change of independent variable affects the self-adjointness of a dynamical system (Sections 5, 6, 7). Our new Lagrangians contain an arbitrary constant α, whose meaning needs to be studied, eventually in relation to the concepts of quantification or gauge transformations. The two important values of the constant α are 1 (Hamilton's principle) and 1/2 (Maupertuis-Jacobi Least Action Principle)

  20. The principle of general covariance and the principle of equivalence: two distinct concepts

    International Nuclear Information System (INIS)

    Fagundes, H.V.

    It is shown how to construct a theory with general covariance but without the equivalence principle. Such a theory is in disagreement with experiment, but it serves to illustrate the independence of the former principle from the latter one [pt

  1. 14 CFR Sec. 2-1 - Generally accepted accounting principles.

    Science.gov (United States)

    2010-01-01

    ...). Persons subject to this part are authorized to implement, as prescribed by the Financial Accounting... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Generally accepted accounting principles... AIR CARRIERS General Accounting Provisions Sec. 2-1 Generally accepted accounting principles. (a) The...

  2. Experimental Realization of Popper's Experiment: Violation of Uncertainty Principle?

    Science.gov (United States)

    Kim, Yoon-Ho; Yu, Rong; Shih, Yanhua

    An entangled pair of photon 1 and 2 are emitted in opposite directions along the positive and negative x-axis. A narrow slit is placed in the path of photon 1 which provides precise knowledge about its position along the y-axis and because of the quantum entanglement this in turn provides precise knowledge of the position y of its twin, photon 2. Does photon 2 experience a greater uncertainty in its momentum, i.e., a greater Δpy, due to the precise knowledge of its position y? This is the historical thought experiment of Sir Karl Popper which was aimed to undermine the Copenhagen interpretation in favor of a realistic viewpoint of quantum mechanics. Thispaper reports an experimental realization of the Popper's experiment. One may not agree with Popper's position on quantum mechanics; however, it calls for a correct understanding and interpretation of the experimental results.

  3. An Inconvenient Deliberation. The Precautionary Principle's Contribution to the Uncertainties Surrounding Climate Change Liability

    International Nuclear Information System (INIS)

    Haritz, M.M.

    2011-01-01

    There is increasing evidence to suggest that adaptation to the inevitable is as relevant to climate change policymaking as mitigation efforts. Both mitigation and adaptation, as well as the unavoidable damage occurring both now and that is predicted to occur, all involve costs at the expense of diverse climate change victims. The allocation of responsibilities - implicit in terms of the burden-sharing mechanisms that currently exist in public and private governance - demands recourse under liability law, especially as it has become clear that most companies will only start reducing emissions if verifiable costs of the economic consequences of climate change, including the likelihood of liability, outweigh the costs of taking precautionary measures. This vitally important book asks: Can the precautionary principle make uncertainty judiciable in the context of liability for the consequences of climate change, and, if so, to what extent? Drawing on the full range of pertinent existing literature and case law, the author examines the precautionary principle both in terms of its content and application and in the context of liability law. She analyses the indirect means offered by existing legislation being used by environmental groups and affected individuals before the courts to challenge both companies and regulators as responsible agents of climate change damage. In the process of responding to its fundamental question, the analysis explores such further questions as the following: (a) What is the role of the precautionary principle in resolving uncertainty in scientific risk assessment when faced with inconclusive evidence, and how does it affect decision-making, particularly in the regulatory choices concerning climate change? To this end, what is the concrete content of the precautionary principle?; (b) How does liability law generally handle scientific uncertainty? What different types of liability exist, and how are they equipped to handle a climate change

  4. General principles of neutron activation analysis

    International Nuclear Information System (INIS)

    Dostal, J.; Elson, C.

    1980-01-01

    Aspects of the principles of atomic and nuclear structure and the processes of radioactivity, nuclear transformation, and the interaction of radiations with matter which are of direct relevance to neutron activation analysis and its application to geologic materials are discussed. (L.L.)

  5. Fundamental quadratic variational principle underlying general relativity

    International Nuclear Information System (INIS)

    Atkins, W.K.

    1983-01-01

    The fundamental result of Lanczos is used in a new type of quadratic variational principle whose field equations are the Einstein field equations together with the Yang-Mills type equations for the Riemann curvature. Additionally, a spin-2 theory of gravity for the special case of the Einstein vacuum is discussed

  6. 29 CFR 780.138 - Application of the general principles.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Application of the general principles. 780.138 Section 780.138 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR... principles. Some examples will serve to illustrate the above principles. Employees of a fruit grower who dry...

  7. 9 CFR 317.313 - Nutrient content claims; general principles.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Nutrient content claims; general principles. 317.313 Section 317.313 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... Labeling § 317.313 Nutrient content claims; general principles. (a) This section applies to meat or meat...

  8. 9 CFR 381.413 - Nutrient content claims; general principles.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Nutrient content claims; general principles. 381.413 Section 381.413 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... § 381.413 Nutrient content claims; general principles. (a) This section applies to poultry products that...

  9. 43 CFR 24.3 - General jurisdictional principles.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false General jurisdictional principles. 24.3 Section 24.3 Public Lands: Interior Office of the Secretary of the Interior DEPARTMENT OF THE INTERIOR FISH AND WILDLIFE POLICY: STATE-FEDERAL RELATIONSHIPS § 24.3 General jurisdictional principles. (a) In...

  10. Homeopathy in veterinary medicine: general principles

    Directory of Open Access Journals (Sweden)

    Romeo T. Cristina

    2007-07-01

    Full Text Available Homeopathy therapeutic means are more significantly considered as an animals treatment alternative. This because homeopathy has in its view not only the fact that is harmless for animals, but also the important aspect of lack presence of residues in animal origin products. The paper makes a short presentation of the advantages and disadvantages of this therapeutic alternative and also propose a short description of the three Hahnemian principles: of similitude, of dilutions and of individualization, with them specific aspects (decimal and centesimal dilutions, influence of constitution andtemperament, the organic and functional signs analysis.

  11. A generalized variational principle of gravitation

    International Nuclear Information System (INIS)

    El-Tahir, A.

    1987-09-01

    Generalized fourth order differential equations of gravitation are derived. Though similar to those earlier obtained by Lanczos, the present derivation is based on more general assumptions. The geometry-gravity dualism is discussed and the nonlinearity of gravitation is shown to be constrained by the curvature of space. (author). 5 refs

  12. Generalization of uncertainty relation for quantum and stochastic systems

    Science.gov (United States)

    Koide, T.; Kodama, T.

    2018-06-01

    The generalized uncertainty relation applicable to quantum and stochastic systems is derived within the stochastic variational method. This relation not only reproduces the well-known inequality in quantum mechanics but also is applicable to the Gross-Pitaevskii equation and the Navier-Stokes-Fourier equation, showing that the finite minimum uncertainty between the position and the momentum is not an inherent property of quantum mechanics but a common feature of stochastic systems. We further discuss the possible implication of the present study in discussing the application of the hydrodynamic picture to microscopic systems, like relativistic heavy-ion collisions.

  13. Generalization of the ERIT Principle and Method

    International Nuclear Information System (INIS)

    Ruggiero, A.

    2008-01-01

    The paper describes the generalization of the method to produce secondary particles with a low-energy and low-intensity primary beam circulating in a Storage Ring with the Emittance-Recovery by Internal-Target (ERIT)

  14. Verification of the uncertainty principle by using diffraction of light waves

    International Nuclear Information System (INIS)

    Nikolic, D; Nesic, Lj

    2011-01-01

    We described a simple idea for experimental verification of the uncertainty principle for light waves. We used a single-slit diffraction of a laser beam for measuring the angular width of zero-order diffraction maximum and obtained the corresponding wave number uncertainty. We will assume that the uncertainty in position is the slit width. For the acquisition of the experimental data and their further analysis, we used a computer. Because of its simplicity this experiment is very suitable for demonstration, as well as for a quantitative exercise at universities and final year of high school studies.

  15. Correlated quadratures of resonance fluorescence and the generalized uncertainty relation

    Science.gov (United States)

    Arnoldus, Henk F.; George, Thomas F.; Gross, Rolf W. F.

    1994-01-01

    Resonance fluorescence from a two-state atom has been predicted to exhibit quadrature squeezing below the Heisenberg uncertainty limit, provided that the optical parameters (Rabi frequency, detuning, laser linewidth, etc.) are chosen carefully. When the correlation between two quadratures of the radiation field does not vanish, however, the Heisenberg limit for quantum fluctuations might be an unrealistic lower bound. A generalized uncertainty relation, due to Schroedinger, takes into account the possible correlation between the quadrature components of the radiation, and it suggests a modified definition of squeezing. We show that the coherence between the two levels of a laser-driven atom is responsible for the correlation between the quadrature components of the emitted fluorescence, and that the Schrodinger uncertainty limit increases monotonically with the coherence. On the other hand, the fluctuations in the quadrature field diminish with an increasing coherence, and can disappear completely when the coherence reaches 1/2, provided that certain phase relations hold.

  16. Uncertainty in a monthly water balance model using the generalized likelihood uncertainty estimation methodology

    Science.gov (United States)

    Rivera, Diego; Rivas, Yessica; Godoy, Alex

    2015-02-01

    Hydrological models are simplified representations of natural processes and subject to errors. Uncertainty bounds are a commonly used way to assess the impact of an input or model architecture uncertainty in model outputs. Different sets of parameters could have equally robust goodness-of-fit indicators, which is known as Equifinality. We assessed the outputs from a lumped conceptual hydrological model to an agricultural watershed in central Chile under strong interannual variability (coefficient of variability of 25%) by using the Equifinality concept and uncertainty bounds. The simulation period ran from January 1999 to December 2006. Equifinality and uncertainty bounds from GLUE methodology (Generalized Likelihood Uncertainty Estimation) were used to identify parameter sets as potential representations of the system. The aim of this paper is to exploit the use of uncertainty bounds to differentiate behavioural parameter sets in a simple hydrological model. Then, we analyze the presence of equifinality in order to improve the identification of relevant hydrological processes. The water balance model for Chillan River exhibits, at a first stage, equifinality. However, it was possible to narrow the range for the parameters and eventually identify a set of parameters representing the behaviour of the watershed (a behavioural model) in agreement with observational and soft data (calculation of areal precipitation over the watershed using an isohyetal map). The mean width of the uncertainty bound around the predicted runoff for the simulation period decreased from 50 to 20 m3s-1 after fixing the parameter controlling the areal precipitation over the watershed. This decrement is equivalent to decreasing the ratio between simulated and observed discharge from 5.2 to 2.5. Despite the criticisms against the GLUE methodology, such as the lack of statistical formality, it is identified as a useful tool assisting the modeller with the identification of critical parameters.

  17. Risk analysis under uncertainty, the precautionary principle, and the new EU chemicals strategy.

    Science.gov (United States)

    Rogers, Michael D

    2003-06-01

    Three categories of uncertainty in relation to risk assessment are defined; uncertainty in effect, uncertainty in cause, and uncertainty in the relationship between a hypothesised cause and effect. The Precautionary Principle (PP) relates to the third type of uncertainty. Three broad descriptions of the PP are set out, uncertainty justifies action, uncertainty requires action, and uncertainty requires a reversal of the burden of proof for risk assessments. The application of the PP is controversial but what matters in practise is the precautionary action (PA) that follows. The criteria by which the PAs should be judged are detailed. This framework for risk assessment and management under uncertainty is then applied to the envisaged European system for the regulation of chemicals. A new EU regulatory system has been proposed which shifts the burden of proof concerning risk assessments from the regulator to the producer, and embodies the PP in all three of its main regulatory stages. The proposals are critically discussed in relation to three chemicals, namely, atrazine (an endocrine disrupter), cadmium (toxic and possibly carcinogenic), and hydrogen fluoride (a toxic, high-production-volume chemical). Reversing the burden of proof will speed up the regulatory process but the examples demonstrate that applying the PP appropriately, and balancing the countervailing risks and the socio-economic benefits, will continue to be a difficult task for the regulator. The paper concludes with a discussion of the role of precaution in the management of change and of the importance of trust in the effective regulation of uncertain risks.

  18. General principles of the quality management

    International Nuclear Information System (INIS)

    Koutaniemi, P.

    2005-01-01

    The objective of the presentation is to outline some general infrastructure of nuclear industry with regard to the quality management; to emphasise significance of safety management as an integral part of the quality management; and to highlight different steps of the management process in a near-time working, at an annual level and as a strategic process

  19. Principles and applications of measurement and uncertainty analysis in research and calibration

    Energy Technology Data Exchange (ETDEWEB)

    Wells, C.V.

    1992-11-01

    Interest in Measurement Uncertainty Analysis has grown in the past several years as it has spread to new fields of application, and research and development of uncertainty methodologies have continued. This paper discusses the subject from the perspectives of both research and calibration environments. It presents a history of the development and an overview of the principles of uncertainty analysis embodied in the United States National Standard, ANSI/ASME PTC 19.1-1985, Measurement Uncertainty. Examples are presented in which uncertainty analysis was utilized or is needed to gain further knowledge of a particular measurement process and to characterize final results. Measurement uncertainty analysis provides a quantitative estimate of the interval about a measured value or an experiment result within which the true value of that quantity is expected to lie. Years ago, Harry Ku of the United States National Bureau of Standards stated that ``The informational content of the statement of uncertainty determines, to a large extent, the worth of the calibrated value.`` Today, that statement is just as true about calibration or research results as it was in 1968. Why is that true? What kind of information should we include in a statement of uncertainty accompanying a calibrated value? How and where do we get the information to include in an uncertainty statement? How should we interpret and use measurement uncertainty information? This discussion will provide answers to these and other questions about uncertainty in research and in calibration. The methodology to be described has been developed by national and international groups over the past nearly thirty years, and individuals were publishing information even earlier. Yet the work is largely unknown in many science and engineering arenas. I will illustrate various aspects of uncertainty analysis with some examples drawn from the radiometry measurement and calibration discipline from research activities.

  20. Principles and applications of measurement and uncertainty analysis in research and calibration

    Energy Technology Data Exchange (ETDEWEB)

    Wells, C.V.

    1992-11-01

    Interest in Measurement Uncertainty Analysis has grown in the past several years as it has spread to new fields of application, and research and development of uncertainty methodologies have continued. This paper discusses the subject from the perspectives of both research and calibration environments. It presents a history of the development and an overview of the principles of uncertainty analysis embodied in the United States National Standard, ANSI/ASME PTC 19.1-1985, Measurement Uncertainty. Examples are presented in which uncertainty analysis was utilized or is needed to gain further knowledge of a particular measurement process and to characterize final results. Measurement uncertainty analysis provides a quantitative estimate of the interval about a measured value or an experiment result within which the true value of that quantity is expected to lie. Years ago, Harry Ku of the United States National Bureau of Standards stated that The informational content of the statement of uncertainty determines, to a large extent, the worth of the calibrated value.'' Today, that statement is just as true about calibration or research results as it was in 1968. Why is that true What kind of information should we include in a statement of uncertainty accompanying a calibrated value How and where do we get the information to include in an uncertainty statement How should we interpret and use measurement uncertainty information This discussion will provide answers to these and other questions about uncertainty in research and in calibration. The methodology to be described has been developed by national and international groups over the past nearly thirty years, and individuals were publishing information even earlier. Yet the work is largely unknown in many science and engineering arenas. I will illustrate various aspects of uncertainty analysis with some examples drawn from the radiometry measurement and calibration discipline from research activities.

  1. Generalized reciprocity principle for discrete symplectic systems

    Directory of Open Access Journals (Sweden)

    Julia Elyseeva

    2015-12-01

    Full Text Available This paper studies transformations for conjoined bases of symplectic difference systems $Y_{i+1}=\\mathcal S_{i}Y_{i}$ with the symplectic coefficient matrices $\\mathcal S_i.$ For an arbitrary symplectic transformation matrix $P_{i}$ we formulate most general sufficient conditions for $\\mathcal S_{i},\\, P_{i}$ which guarantee that $P_{i}$ preserves oscillatory properties of conjoined bases $Y_{i}.$ We present examples which show that our new results extend the applicability of the discrete transformation theory.

  2. [Competency: general principles and applicability in dementia].

    Science.gov (United States)

    Alvaro, L C

    2012-06-01

    Competency means the capacity to make responsible and balanced decisions. This may be performed in clinical settings (decision-making abilities on treatment or risky diagnostic procedures) and also in daily-life activities (financial matters, nursing home admittance, contracts, etc.). Competency is linked to the ethical principle of autonomy and to a horizontal doctor-patient interaction, far from ancient paternalistic relationships. It is contemplated in the Spanish law as the patient's right to be informed and to make free choices, particularly in cases of dementia. The competency that we assess is the so-called natural or working capacity. It is specific for an action or task. The level of required capacity depends on the decision: higher for critical ones, lower for low-risk decisions. The assessment process requires noting the patient's capacity to understand, analyse, self-refer and apply the information. There are some guides available that may be useful in competency assessments, but nevertheless the final statement must be defined by the physician in charge of the patient and clinical judgement. Capacity is directly related to the level of cognitive deterioration. Nevertheless, specific cognitive tests like MMSE (mini-mental) have a low predictive value. The loss of competency is more associated with the so-called legal standards of incapacity (LS). These encompass a five steps range (LS1-LS5), which may detect the incapacity from the mild levels of dementia. The cortical functions that are the best predictors of incapacity are language and executive dysfunctions. These explain the incapacity in cases of Alzheimer's and Parkinson's disease, and have been studied more. Incapacity is common and it influences the clinical decision-making process. We must be particularly cautious with clinical trials of dementia. It also involves other areas of daily life, particularly financially related ones, where limitations are present from the mild cognitive impairment

  3. Regulating food law : risk analysis and the precautionary principle as general principles of EU food law

    NARCIS (Netherlands)

    Szajkowska, A.

    2012-01-01

    In food law scientific evidence occupies a central position. This study offers a legal insight into risk analysis and the precautionary principle, positioned in the EU as general principles applicable to all food safety measures, both national and EU. It develops a new method of looking at these

  4. Using Uncertainty Principle to Find the Ground-State Energy of the Helium and a Helium-like Hookean Atom

    Science.gov (United States)

    Harbola, Varun

    2011-01-01

    In this paper, we accurately estimate the ground-state energy and the atomic radius of the helium atom and a helium-like Hookean atom by employing the uncertainty principle in conjunction with the variational approach. We show that with the use of the uncertainty principle, electrons are found to be spread over a radial region, giving an electron…

  5. Blockchain to Rule the Waves - Nascent Design Principles for Reducing Risk and Uncertainty in Decentralized Environments

    DEFF Research Database (Denmark)

    Nærland, Kristoffer; Müller-Bloch, Christoph; Beck, Roman

    2017-01-01

    Many decentralized, inter-organizational environments such as supply chains are characterized by high transactional uncertainty and risk. At the same time, blockchain technology promises to mitigate these issues by introducing certainty into economic transactions. This paper discusses the findings...... of a Design Science Research project involving the construction and evaluation of an information technology artifact in collaboration with Maersk, a leading international shipping company, where central documents in shipping, such as the Bill of Lading, are turned into a smart contract on blockchain. Based...... on our insights from the project, we provide first evidence for preliminary design principles for applications that aim to mitigate the transactional risk and uncertainty in decentralized environments using blockchain. Both the artifact and the first evidence for emerging design principles are novel...

  6. A Simplified Proof of Uncertainty Principle for Quaternion Linear Canonical Transform

    Directory of Open Access Journals (Sweden)

    Mawardi Bahri

    2016-01-01

    Full Text Available We provide a short and simple proof of an uncertainty principle associated with the quaternion linear canonical transform (QLCT by considering the fundamental relationship between the QLCT and the quaternion Fourier transform (QFT. We show how this relation allows us to derive the inverse transform and Parseval and Plancherel formulas associated with the QLCT. Some other properties of the QLCT are also studied.

  7. A generalization of Fermat's principle for classical and quantum systems

    Science.gov (United States)

    Elsayed, Tarek A.

    2014-09-01

    The analogy between dynamics and optics had a great influence on the development of the foundations of classical and quantum mechanics. We take this analogy one step further and investigate the validity of Fermat's principle in many-dimensional spaces describing dynamical systems (i.e., the quantum Hilbert space and the classical phase and configuration space). We propose that if the notion of a metric distance is well defined in that space and the velocity of the representative point of the system is an invariant of motion, then a generalized version of Fermat's principle will hold. We substantiate this conjecture for time-independent quantum systems and for a classical system consisting of coupled harmonic oscillators. An exception to this principle is the configuration space of a charged particle in a constant magnetic field; in this case the principle is valid in a frame rotating by half the Larmor frequency, not the stationary lab frame.

  8. On the connection between complementarity and uncertainty principles in the Mach–Zehnder interferometric setting

    International Nuclear Information System (INIS)

    Bosyk, G M; Portesi, M; Holik, F; Plastino, A

    2013-01-01

    We revisit the connection between the complementarity and uncertainty principles of quantum mechanics within the framework of Mach–Zehnder interferometry. We focus our attention on the trade-off relation between complementary path information and fringe visibility. This relation is equivalent to the uncertainty relation of Schrödinger and Robertson for a suitably chosen pair of observables. We show that it is equivalent as well to the uncertainty inequality provided by Landau and Pollak. We also study the relationship of this trade-off relation with a family of entropic uncertainty relations based on Rényi entropies. There is no equivalence in this case, but the different values of the entropic parameter do define regimes that provides us with a tool to discriminate between non-trivial states of minimum uncertainty. The existence of such regimes agrees with previous results of Luis (2011 Phys. Rev. A 84 034101), although their meaning was not sufficiently clear. We discuss the origin of these regimes with the intention of gaining a deeper understanding of entropic measures. (paper)

  9. General principles underlying the decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1988-03-01

    Previous statements on the use of the term 'decommissioning' by the International Atomic Energy Agency, the Atomic Energy Control Board, and the Advisory Committee on Nuclear Safety are reviewed, culminating in a particular definition for its use in this paper. Three decommissioning phases are identified and discussed, leading to eight general principles governing decommissioning including one related to financing

  10. Vacuum thermalization of high intensity laser beams and the uncertainty principle

    International Nuclear Information System (INIS)

    Gupta, R.P.; Bhakar, B.S.; Panarella, E.

    1983-01-01

    This chapter phenomenologically calculates the cross section for photon-photon scattering in high intensity laser beams. The consequence of the Heisenberg uncertainty principle must be taken account in any photon-photon scattering calculation when many photons are present within the uncertainty volume. An exact determination of the number of scattering centers present in the scattering region is precluded when high intensity laser beams are involved in the scattering. Predictions are presented which suggest an upper limit to which the coherent photon densities can be increased either during amplification or focusing before scattering becomes predominant. The results of multiphoton ionization of gases, and laser induced CTR plasmas of the future, may be significantly affected due to the enhancement of the photon scattering investigated

  11. Completeness, special functions and uncertainty principles over q-linear grids

    International Nuclear Information System (INIS)

    Abreu, LuIs Daniel

    2006-01-01

    We derive completeness criteria for sequences of functions of the form f(xλ n ), where λ n is the nth zero of a suitably chosen entire function. Using these criteria, we construct complete nonorthogonal systems of Fourier-Bessel functions and their q-analogues, as well as other complete sets of q-special functions. We discuss connections with uncertainty principles over q-linear grids and the completeness of certain sets of q-Bessel functions is used to prove that, if a function f and its q-Hankel transform both vanish at the points {q -n } ∞ n=1 , 0 n } ∞ n=-∞

  12. Some General Principles in Cryogenic Design, Implementation, and Testing

    Science.gov (United States)

    Dipirro, Michael James

    2015-01-01

    Brief Course Description: In 2 hours only the most basic principles of cryogenics can be presented. I will concentrate on the differences between a room temperature thermal analysis and cryogenic thermal analysis, namely temperature dependent properties. I will talk about practical materials for thermal contact and isolation. I will finish by describing the verification process and instrumentation used that is unique to cryogenic (in general less than 100K) systems.

  13. A Stochastic Maximum Principle for General Mean-Field Systems

    International Nuclear Information System (INIS)

    Buckdahn, Rainer; Li, Juan; Ma, Jin

    2016-01-01

    In this paper we study the optimal control problem for a class of general mean-field stochastic differential equations, in which the coefficients depend, nonlinearly, on both the state process as well as of its law. In particular, we assume that the control set is a general open set that is not necessary convex, and the coefficients are only continuous on the control variable without any further regularity or convexity. We validate the approach of Peng (SIAM J Control Optim 2(4):966–979, 1990) by considering the second order variational equations and the corresponding second order adjoint process in this setting, and we extend the Stochastic Maximum Principle of Buckdahn et al. (Appl Math Optim 64(2):197–216, 2011) to this general case.

  14. A Stochastic Maximum Principle for General Mean-Field Systems

    Energy Technology Data Exchange (ETDEWEB)

    Buckdahn, Rainer, E-mail: Rainer.Buckdahn@univ-brest.fr [Université de Bretagne-Occidentale, Département de Mathématiques (France); Li, Juan, E-mail: juanli@sdu.edu.cn [Shandong University, Weihai, School of Mathematics and Statistics (China); Ma, Jin, E-mail: jinma@usc.edu [University of Southern California, Department of Mathematics (United States)

    2016-12-15

    In this paper we study the optimal control problem for a class of general mean-field stochastic differential equations, in which the coefficients depend, nonlinearly, on both the state process as well as of its law. In particular, we assume that the control set is a general open set that is not necessary convex, and the coefficients are only continuous on the control variable without any further regularity or convexity. We validate the approach of Peng (SIAM J Control Optim 2(4):966–979, 1990) by considering the second order variational equations and the corresponding second order adjoint process in this setting, and we extend the Stochastic Maximum Principle of Buckdahn et al. (Appl Math Optim 64(2):197–216, 2011) to this general case.

  15. GENERAL RISKS AND UNCERTAINTIES OF REPORTING AND MANAGEMENT REPORTING RISKS

    Directory of Open Access Journals (Sweden)

    CAMELIA I. LUNGU

    2011-04-01

    Full Text Available Purpose: Highlighting risks and uncertainties reporting based on a literature review research. Objectives: The delimitation of risk management models and uncertainties in fundamental research. Research method: Fundamental research study directed to identify the relevant risks’ models presented in entities’ financial statements. Uncertainty is one of the fundamental coordinates of our world. As showed J.K. Galbraith (1978, the world now lives under the age of uncertainty. Moreover, we can say that contemporary society development could be achieved by taking decisions under uncertainty, though, risks. Growing concern for the study of uncertainty, its effects and precautions led to the rather recent emergence of a new science, science of hazards (les cindyniques - l.fr. (Kenvern, 1991. Current analysis of risk are dominated by Beck’s (1992 notion that a risk society now exists whereby we have become more concerned about our impact upon nature than the impact of nature upon us. Clearly, risk permeates most aspects of corporate but also of regular life decision-making and few can predict with any precision the future. The risk is almost always a major variable in real-world corporate decision-making, and managers that ignore it are in a real peril. In these circumstances, a possible answer is assuming financial discipline with an appropriate system of incentives.

  16. General Principles of Transnationalised Criminal Justice?
    Exploratory Reflections

    Directory of Open Access Journals (Sweden)

    Marianne L. Wade

    2013-09-01

    Full Text Available This article sets out to explore the premise of general principles in what is labelled transnationalised criminal justice (encompassing the substantive and procedural law as well as the institutions of transnational criminal law and European criminal law. Whilst there can be no denying that these are diverse and divergent areas of law in many ways, their fundamental common denominator of seeking to convict individuals whilst subjecting these to arrest, detention and deprivation of other rights across borders, is taken as a baseline around which certain general principles may gravitate. The current state of executive over-reach within transnationalised criminal justice structures is studied, particularly in relation to the European criminal justice context. This over-reach is explored utilising the theoretical framework of social contract theory. It is suggested that the transfer of investigative and prosecutorial powers to transnationalised contexts undertaken by the relevant executives without seeking to temper this assignment with mechanisms to secure the rights of individuals which counter-balance these, as required by the constitutional traditions of their country, can be regarded as in breach of the social contract. Using this thought experiment, this article provides a framework with which to identify the deficits of transnationalised criminal law.  The way in which such deficits undermine the legitimacy of the institutions created by states to operate the mechanisms of transnationalised criminal justice as well as the fundamental values of their own constitutions is, however, demonstrated as concrete. The latter are identified as mechanisms for deducing the general principles of transnationalised criminal justice (albeit via difficult international negotiation. If the supranationalisation of criminal justice powers is not to be regarded as a tool undermining constitutional values and effectively allowing executives acting in an

  17. A general maximum entropy framework for thermodynamic variational principles

    International Nuclear Information System (INIS)

    Dewar, Roderick C.

    2014-01-01

    Minimum free energy principles are familiar in equilibrium thermodynamics, as expressions of the second law. They also appear in statistical mechanics as variational approximation schemes, such as the mean-field and steepest-descent approximations. These well-known minimum free energy principles are here unified and extended to any system analyzable by MaxEnt, including non-equilibrium systems. The MaxEnt Lagrangian associated with a generic MaxEnt distribution p defines a generalized potential Ψ for an arbitrary probability distribution p-hat, such that Ψ is a minimum at (p-hat) = p. Minimization of Ψ with respect to p-hat thus constitutes a generic variational principle, and is equivalent to minimizing the Kullback-Leibler divergence between p-hat and p. Illustrative examples of min–Ψ are given for equilibrium and non-equilibrium systems. An interpretation of changes in Ψ is given in terms of the second law, although min–Ψ itself is an intrinsic variational property of MaxEnt that is distinct from the second law

  18. A general maximum entropy framework for thermodynamic variational principles

    Energy Technology Data Exchange (ETDEWEB)

    Dewar, Roderick C., E-mail: roderick.dewar@anu.edu.au [Research School of Biology, The Australian National University, Canberra ACT 0200 (Australia)

    2014-12-05

    Minimum free energy principles are familiar in equilibrium thermodynamics, as expressions of the second law. They also appear in statistical mechanics as variational approximation schemes, such as the mean-field and steepest-descent approximations. These well-known minimum free energy principles are here unified and extended to any system analyzable by MaxEnt, including non-equilibrium systems. The MaxEnt Lagrangian associated with a generic MaxEnt distribution p defines a generalized potential Ψ for an arbitrary probability distribution p-hat, such that Ψ is a minimum at (p-hat) = p. Minimization of Ψ with respect to p-hat thus constitutes a generic variational principle, and is equivalent to minimizing the Kullback-Leibler divergence between p-hat and p. Illustrative examples of min–Ψ are given for equilibrium and non-equilibrium systems. An interpretation of changes in Ψ is given in terms of the second law, although min–Ψ itself is an intrinsic variational property of MaxEnt that is distinct from the second law.

  19. Application of the general principles of radiation protection

    International Nuclear Information System (INIS)

    Coulon, R.

    1988-01-01

    The characteristic feature of radiation protection is that of a unitary approach vis-a-vis a coherent set of concepts and general principles and the ensuing systems of standards. This situation creates favourable conditions for guaranteeing quality control. However, the benefit of radiation protection would be limited if the doctrine, principles and standards were merely a theoretical administrative and technocratic system: it is essential that these doctrines, principles and standards should lead to concrete action at all stages of development, from design right up to daily operational procedures. This requires on the part of all those involved, and at all levels, a spirit of discipline and openness where there must be both common sense and respect for the rules. It also requires the constraint of the regulation which is comprehensive, precise, clear and which cannot be evaded. In short, it must be enforceable. Even if the situation in the nuclear industry vis-a-vis radiological safety cannot be called ideal, it is totally satisfactory, both for members of the public and for workers. This is the main topic developed in the report

  20. Cellular gauge symmetry and the Li organization principle: General considerations.

    Science.gov (United States)

    Tozzi, Arturo; Peters, James F; Navarro, Jorge; Kun, Wu; Lin, Bi; Marijuán, Pedro C

    2017-12-01

    Based on novel topological considerations, we postulate a gauge symmetry for living cells and proceed to interpret it from a consistent Eastern perspective: the li organization principle. In our framework, the reference system is the living cell, equipped with general symmetries and energetic constraints standing for the intertwined biochemical, metabolic and signaling pathways that allow the global homeostasis of the system. Environmental stimuli stand for forces able to locally break the symmetry of metabolic/signaling pathways, while the species-specific DNA is the gauge field that restores the global homeostasis after external perturbations. We apply the Borsuk-Ulam Theorem (BUT) to operationalize a methodology in terms of topology/gauge fields and subsequently inquire about the evolution from inorganic to organic structures and to the prokaryotic and eukaryotic modes of organization. We converge on the strategic role that second messengers have played regarding the emergence of a unitary gauge field with profound evolutionary implications. A new avenue for a deeper investigation of biological complexity looms. Philosophically, we might be reminded of the duality between two essential concepts proposed by the great Chinese synthesizer Zhu Xi (in the XIII Century). On the one side the li organization principle, equivalent to the dynamic interplay between symmetry and information; and on the other side the qi principle, equivalent to the energy participating in the process-both always interlinked with each other. In contemporary terms, it would mean the required interconnection between information and energy, and the necessity to revise essential principles of information philosophy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Quantum speed limits: from Heisenberg’s uncertainty principle to optimal quantum control

    Science.gov (United States)

    Deffner, Sebastian; Campbell, Steve

    2017-11-01

    One of the most widely known building blocks of modern physics is Heisenberg’s indeterminacy principle. Among the different statements of this fundamental property of the full quantum mechanical nature of physical reality, the uncertainty relation for energy and time has a special place. Its interpretation and its consequences have inspired continued research efforts for almost a century. In its modern formulation, the uncertainty relation is understood as setting a fundamental bound on how fast any quantum system can evolve. In this topical review we describe important milestones, such as the Mandelstam-Tamm and the Margolus-Levitin bounds on the quantum speed limit, and summarise recent applications in a variety of current research fields—including quantum information theory, quantum computing, and quantum thermodynamics amongst several others. To bring order and to provide an access point into the many different notions and concepts, we have grouped the various approaches into the minimal time approach and the geometric approach, where the former relies on quantum control theory, and the latter arises from measuring the distinguishability of quantum states. Due to the volume of the literature, this topical review can only present a snapshot of the current state-of-the-art and can never be fully comprehensive. Therefore, we highlight but a few works hoping that our selection can serve as a representative starting point for the interested reader.

  2. Quantum speed limits: from Heisenberg’s uncertainty principle to optimal quantum control

    International Nuclear Information System (INIS)

    Deffner, Sebastian; Campbell, Steve

    2017-01-01

    One of the most widely known building blocks of modern physics is Heisenberg’s indeterminacy principle. Among the different statements of this fundamental property of the full quantum mechanical nature of physical reality, the uncertainty relation for energy and time has a special place. Its interpretation and its consequences have inspired continued research efforts for almost a century. In its modern formulation, the uncertainty relation is understood as setting a fundamental bound on how fast any quantum system can evolve. In this topical review we describe important milestones, such as the Mandelstam–Tamm and the Margolus–Levitin bounds on the quantum speed limit , and summarise recent applications in a variety of current research fields—including quantum information theory, quantum computing, and quantum thermodynamics amongst several others. To bring order and to provide an access point into the many different notions and concepts, we have grouped the various approaches into the minimal time approach and the geometric approach , where the former relies on quantum control theory, and the latter arises from measuring the distinguishability of quantum states. Due to the volume of the literature, this topical review can only present a snapshot of the current state-of-the-art and can never be fully comprehensive. Therefore, we highlight but a few works hoping that our selection can serve as a representative starting point for the interested reader. (topical review)

  3. Responses to clinical uncertainty in Australian general practice trainees: a cross-sectional analysis.

    Science.gov (United States)

    Cooke, Georga; Tapley, Amanda; Holliday, Elizabeth; Morgan, Simon; Henderson, Kim; Ball, Jean; van Driel, Mieke; Spike, Neil; Kerr, Rohan; Magin, Parker

    2017-12-01

    Tolerance for ambiguity is essential for optimal learning and professional competence. General practice trainees must be, or must learn to be, adept at managing clinical uncertainty. However, few studies have examined associations of intolerance of uncertainty in this group. The aim of this study was to establish levels of tolerance of uncertainty in Australian general practice trainees and associations of uncertainty with demographic, educational and training practice factors. A cross-sectional analysis was performed on the Registrar Clinical Encounters in Training (ReCEnT) project, an ongoing multi-site cohort study. Scores on three of the four independent subscales of the Physicians' Reaction to Uncertainty (PRU) instrument were analysed as outcome variables in linear regression models with trainee and practice factors as independent variables. A total of 594 trainees contributed data on a total of 1209 occasions. Trainees in earlier training terms had higher scores for 'Anxiety due to uncertainty', 'Concern about bad outcomes' and 'Reluctance to disclose diagnosis/treatment uncertainty to patients'. Beyond this, findings suggest two distinct sets of associations regarding reaction to uncertainty. Firstly, affective aspects of uncertainty (the 'Anxiety' and 'Concern' subscales) were associated with female gender, less experience in hospital prior to commencing general practice training, and graduation overseas. Secondly, a maladaptive response to uncertainty (the 'Reluctance to disclose' subscale) was associated with urban practice, health qualifications prior to studying medicine, practice in an area of higher socio-economic status, and being Australian-trained. This study has established levels of three measures of trainees' responses to uncertainty and associations with these responses. The current findings suggest differing 'phenotypes' of trainees with high 'affective' responses to uncertainty and those reluctant to disclose uncertainty to patients. More

  4. Uncertainty in a monthly water balance model using the generalized ...

    Indian Academy of Sciences (India)

    Laboratory of Comparative Policy in Water Resources Management, University of .... 2014). All parameters have physical meaning, but not all of them have a well- ... See text and table 1 for details. ..... Part I: A discussion of principles;. J. Hydrol ...

  5. Explaining Compound Generalization in Associative and Causal Learning Through Rational Principles of Dimensional Generalization

    Science.gov (United States)

    Soto, Fabian A.; Gershman, Samuel J.; Niv, Yael

    2014-01-01

    How do we apply learning from one situation to a similar, but not identical, situation? The principles governing the extent to which animals and humans generalize what they have learned about certain stimuli to novel compounds containing those stimuli vary depending on a number of factors. Perhaps the best studied among these factors is the type of stimuli used to generate compounds. One prominent hypothesis is that different generalization principles apply depending on whether the stimuli in a compound are similar or dissimilar to each other. However, the results of many experiments cannot be explained by this hypothesis. Here we propose a rational Bayesian theory of compound generalization that uses the notion of consequential regions, first developed in the context of rational theories of multidimensional generalization, to explain the effects of stimulus factors on compound generalization. The model explains a large number of results from the compound generalization literature, including the influence of stimulus modality and spatial contiguity on the summation effect, the lack of influence of stimulus factors on summation with a recovered inhibitor, the effect of spatial position of stimuli on the blocking effect, the asymmetrical generalization decrement in overshadowing and external inhibition, and the conditions leading to a reliable external inhibition effect. By integrating rational theories of compound and dimensional generalization, our model provides the first comprehensive computational account of the effects of stimulus factors on compound generalization, including spatial and temporal contiguity between components, which have posed longstanding problems for rational theories of associative and causal learning. PMID:25090430

  6. Some applications of the most general form of the higher-order GUP with minimal length uncertainty and maximal momentum

    Science.gov (United States)

    Shababi, Homa; Chung, Won Sang

    2018-04-01

    In this paper, using the new type of D-dimensional nonperturbative Generalized Uncertainty Principle (GUP) which has predicted both a minimal length uncertainty and a maximal observable momentum,1 first, we obtain the maximally localized states and express their connections to [P. Pedram, Phys. Lett. B 714, 317 (2012)]. Then, in the context of our proposed GUP and using the generalized Schrödinger equation, we solve some important problems including particle in a box and one-dimensional hydrogen atom. Next, implying modified Bohr-Sommerfeld quantization, we obtain energy spectra of quantum harmonic oscillator and quantum bouncer. Finally, as an example, we investigate some statistical properties of a free particle, including partition function and internal energy, in the presence of the mentioned GUP.

  7. Routine internal- and external-quality control data in clinical laboratories for estimating measurement and diagnostic uncertainty using GUM principles.

    Science.gov (United States)

    Magnusson, Bertil; Ossowicki, Haakan; Rienitz, Olaf; Theodorsson, Elvar

    2012-05-01

    Healthcare laboratories are increasingly joining into larger laboratory organizations encompassing several physical laboratories. This caters for important new opportunities for re-defining the concept of a 'laboratory' to encompass all laboratories and measurement methods measuring the same measurand for a population of patients. In order to make measurement results, comparable bias should be minimized or eliminated and measurement uncertainty properly evaluated for all methods used for a particular patient population. The measurement as well as diagnostic uncertainty can be evaluated from internal and external quality control results using GUM principles. In this paper the uncertainty evaluations are described in detail using only two main components, within-laboratory reproducibility and uncertainty of the bias component according to a Nordtest guideline. The evaluation is exemplified for the determination of creatinine in serum for a conglomerate of laboratories both expressed in absolute units (μmol/L) and relative (%). An expanded measurement uncertainty of 12 μmol/L associated with concentrations of creatinine below 120 μmol/L and of 10% associated with concentrations above 120 μmol/L was estimated. The diagnostic uncertainty encompasses both measurement uncertainty and biological variation, and can be estimated for a single value and for a difference. This diagnostic uncertainty for the difference for two samples from the same patient was determined to be 14 μmol/L associated with concentrations of creatinine below 100 μmol/L and 14 % associated with concentrations above 100 μmol/L.

  8. Imperfect pitch: Gabor's uncertainty principle and the pitch of extremely brief sounds.

    Science.gov (United States)

    Hsieh, I-Hui; Saberi, Kourosh

    2016-02-01

    How brief must a sound be before its pitch is no longer perceived? The uncertainty tradeoff between temporal and spectral resolution (Gabor's principle) limits the minimum duration required for accurate pitch identification or discrimination. Prior studies have reported that pitch can be extracted from sinusoidal pulses as brief as half a cycle. This finding has been used in a number of classic papers to develop models of pitch encoding. We have found that phase randomization, which eliminates timbre confounds, degrades this ability to chance, raising serious concerns over the foundation on which classic pitch models have been built. The current study investigated whether subthreshold pitch cues may still exist in partial-cycle pulses revealed through statistical integration in a time series containing multiple pulses. To this end, we measured frequency-discrimination thresholds in a two-interval forced-choice task for trains of partial-cycle random-phase tone pulses. We found that residual pitch cues exist in these pulses but discriminating them requires an order of magnitude (ten times) larger frequency difference than that reported previously, necessitating a re-evaluation of pitch models built on earlier findings. We also found that as pulse duration is decreased to less than two cycles its pitch becomes biased toward higher frequencies, consistent with predictions of an auto-correlation model of pitch extraction.

  9. Precautionary Principles: General Definitions and Specific Applications to Genetically Modified Organisms

    Science.gov (United States)

    Lofstedt, Ragnar E.; Fischhoff, Baruch; Fischhoff, Ilya R.

    2002-01-01

    Precautionary principles have been proposed as a fundamental element of sound risk management. Their advocates see them as guiding action in the face of uncertainty, encouraging the adoption of measures that reduce serious risks to health, safety, and the environment. Their opponents may reject the very idea of precautionary principles, find…

  10. Squeezed states of the generalized minimum uncertainty state for the Caldirola-Kanai Hamiltonian

    International Nuclear Information System (INIS)

    Kim, Sang Pyo

    2003-01-01

    We show that the ground state of the well-known pseudo-stationary states for the Caldirola-Kanai Hamiltonian is a generalized minimum uncertainty state, which has the minimum allowed uncertainty ΔqΔp = ℎσ 0 /2, where σ 0 (≥1) is a constant depending on the damping factor and natural frequency. The most general symmetric Gaussian states are obtained as the one-parameter squeezed states of the pseudo-stationary ground state. It is further shown that the coherent states of the pseudo-stationary ground state constitute another class of the generalized minimum uncertainty states

  11. Gyroscope precession in special and general relativity from basic principles

    Science.gov (United States)

    Jonsson, Rickard M.

    2007-05-01

    In special relativity a gyroscope that is suspended in a torque-free manner will precess as it is moved along a curved path relative to an inertial frame S. We explain this effect, which is known as Thomas precession, by considering a real grid that moves along with the gyroscope, and that by definition is not rotating as observed from its own momentary inertial rest frame. From the basic properties of the Lorentz transformation we deduce how the form and rotation of the grid (and hence the gyroscope) will evolve relative to S. As an intermediate step we consider how the grid would appear if it were not length contracted along the direction of motion. We show that the uncontracted grid obeys a simple law of rotation. This law simplifies the analysis of spin precession compared to more traditional approaches based on Fermi transport. We also consider gyroscope precession relative to an accelerated reference frame and show that there are extra precession effects that can be explained in a way analogous to the Thomas precession. Although fully relativistically correct, the entire analysis is carried out using three-vectors. By using the equivalence principle the formalism can also be applied to static spacetimes in general relativity. As an example, we calculate the precession of a gyroscope orbiting a static black hole.

  12. General design safety principles for nuclear power plants

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Guide provides the safety principles and the approach that have been used to implement the Code in the Safety Guides. These safety principles and the approach are tied closely to the safety analyses needed to assist the design process, and are used to verify the adequacy of nuclear power plant designs. This Guide also provides a framework for the use of other design Safety Guides. However, although it explains the principles on which the other Safety Guides are based, the requirements for specific applications of these principles are mostly found in the other Guides

  13. Modeling of space environment impact on nanostructured materials. General principles

    Science.gov (United States)

    Voronina, Ekaterina; Novikov, Lev

    2016-07-01

    In accordance with the resolution of ISO TC20/SC14 WG4/WG6 joint meeting, Technical Specification (TS) 'Modeling of space environment impact on nanostructured materials. General principles' which describes computer simulation methods of space environment impact on nanostructured materials is being prepared. Nanomaterials surpass traditional materials for space applications in many aspects due to their unique properties associated with nanoscale size of their constituents. This superiority in mechanical, thermal, electrical and optical properties will evidently inspire a wide range of applications in the next generation spacecraft intended for the long-term (~15-20 years) operation in near-Earth orbits and the automatic and manned interplanetary missions. Currently, ISO activity on developing standards concerning different issues of nanomaterials manufacturing and applications is high enough. Most such standards are related to production and characterization of nanostructures, however there is no ISO documents concerning nanomaterials behavior in different environmental conditions, including the space environment. The given TS deals with the peculiarities of the space environment impact on nanostructured materials (i.e. materials with structured objects which size in at least one dimension lies within 1-100 nm). The basic purpose of the document is the general description of the methodology of applying computer simulation methods which relate to different space and time scale to modeling processes occurring in nanostructured materials under the space environment impact. This document will emphasize the necessity of applying multiscale simulation approach and present the recommendations for the choice of the most appropriate methods (or a group of methods) for computer modeling of various processes that can occur in nanostructured materials under the influence of different space environment components. In addition, TS includes the description of possible

  14. Practical application of the ALARA principle in management of the nuclear legacy: optimization under uncertainty

    International Nuclear Information System (INIS)

    Smith, Graham; Sneve, Malgorzata K.

    2008-01-01

    Full text: Radiological protection has a long and distinguished history in taking a balanced approach to optimization. Both utilitarian and individual interests and perspectives are addressed through a process of constrained optimisation, with optimisation intended to lead to the most benefit to the most people, and constraints being operative to limit the degree of inequity among the individuals exposed. At least, expressed simplistically, that is what the recommendations on protection are intended to achieve. This paper examines the difficulties in achieving that objective, based on consideration of the active role of optimisation in regulatory supervision of the historic nuclear legacy. This example is chosen because the application of the ALARA principle has important implications for some very major projects whose objective is remediation of existing legacy facilities. But it is also relevant because timely, effective and cost efficient completion of those projects has implications for confidence in the future development of nuclear power and other uses of radioactive materials. It is also an interesting example because legacy management includes mitigation of some major short and long term hazards, but those mitigating measures themselves involve operations with their own risk, cost and benefit profiles. Like any other complex activity, a legacy management project has to be broken down into logistically feasible parts. However, from a regulatory perspective, simultaneous application of ALARA to worker protection, major accident risk mitigation and long-term environmental and human health protection presents its own challenges. Major uncertainties which exacerbate the problem arise from ill-characterised source terms, estimation of the likelihood of unlikely failures in operational processes, and prospective assessment of radiological impacts over many hundreds of years and longer. The projects themselves are set to run over decades, during which time the

  15. Project management under uncertainty beyond beta: The generalized bicubic distribution

    Directory of Open Access Journals (Sweden)

    José García Pérez

    2016-01-01

    Full Text Available The beta distribution has traditionally been employed in the PERT methodology and generally used for modeling bounded continuous random variables based on expert’s judgment. The impossibility of estimating four parameters from the three values provided by the expert when the beta distribution is assumed to be the underlying distribution has been widely debated. This paper presents the generalized bicubic distribution as a good alternative to the beta distribution since, when the variance depends on the mode, the generalized bicubic distribution approximates the kurtosis of the Gaussian distribution better than the beta distribution. In addition, this distribution presents good properties in the PERT methodology in relation to moderation and conservatism criteria. Two empirical applications are presented to demonstrate the adequateness of this new distribution.

  16. Uncertainty Analysis of Few Group Cross Sections Based on Generalized Perturbation Theory

    International Nuclear Information System (INIS)

    Han, Tae Young; Lee, Hyun Chul; Noh, Jae Man

    2014-01-01

    In this paper, the methodology of the sensitivity and uncertainty analysis code based on GPT was described and the preliminary verification calculations on the PMR200 pin cell problem were carried out. As a result, they are in a good agreement when compared with the results by TSUNAMI. From this study, it is expected that MUSAD code based on GPT can produce the uncertainty of the homogenized few group microscopic cross sections for a core simulator. For sensitivity and uncertainty analyses for general core responses, a two-step method is available and it utilizes the generalized perturbation theory (GPT) for homogenized few group cross sections in the first step and stochastic sampling method for general core responses in the second step. The uncertainty analysis procedure based on GPT in the first step needs the generalized adjoint solution from a cell or lattice code. For this, the generalized adjoint solver has been integrated into DeCART in our previous work. In this paper, MUSAD (Modues of Uncertainty and Sensitivity Analysis for DeCART) code based on the classical perturbation theory was expanded to the function of the sensitivity and uncertainty analysis for few group cross sections based on GPT. First, the uncertainty analysis method based on GPT was described and, in the next section, the preliminary results of the verification calculation on a VHTR pin cell problem were compared with the results by TSUNAMI of SCALE 6.1

  17. Context, Experience, Expectation, and Action—Towards an Empirically Grounded, General Model for Analyzing Biographical Uncertainty

    Directory of Open Access Journals (Sweden)

    Herwig Reiter

    2010-01-01

    Full Text Available The article proposes a general, empirically grounded model for analyzing biographical uncertainty. The model is based on findings from a qualitative-explorative study of transforming meanings of unemployment among young people in post-Soviet Lithuania. In a first step, the particular features of the uncertainty puzzle in post-communist youth transitions are briefly discussed. A historical event like the collapse of state socialism in Europe, similar to the recent financial and economic crisis, is a generator of uncertainty par excellence: it undermines the foundations of societies and the taken-for-grantedness of related expectations. Against this background, the case of a young woman and how she responds to the novel threat of unemployment in the transition to the world of work is introduced. Her uncertainty management in the specific time perspective of certainty production is then conceptually rephrased by distinguishing three types or levels of biographical uncertainty: knowledge, outcome, and recognition uncertainty. Biographical uncertainty, it is argued, is empirically observable through the analysis of acting and projecting at the biographical level. The final part synthesizes the empirical findings and the conceptual discussion into a stratification model of biographical uncertainty as a general tool for the biographical analysis of uncertainty phenomena. URN: urn:nbn:de:0114-fqs100120

  18. Uncertainties

    Indian Academy of Sciences (India)

    To reflect this uncertainty in the climate scenarios, the use of AOGCMs that explicitly simulate the carbon cycle and chemistry of all the substances are needed. The Hadley Centre has developed a version of the climate model that allows the effect of climate change on the carbon cycle and its feedback into climate, to be ...

  19. Uncertainty

    International Nuclear Information System (INIS)

    Silva, T.A. da

    1988-01-01

    The comparison between the uncertainty method recommended by International Atomic Energy Agency (IAEA) and the and the International Weight and Measure Commitee (CIPM) are showed, for the calibration of clinical dosimeters in the secondary standard Dosimetry Laboratory (SSDL). (C.G.C.) [pt

  20. 76 FR 69333 - Derivatives Clearing Organization General Provisions and Core Principles

    Science.gov (United States)

    2011-11-08

    ... Management)); 75 FR 78185 (Dec. 15, 2010) (Core Principles J, K, L, and M (Information Management)); 75 FR... Parts 1, 21, 39 et al. Derivatives Clearing Organization General Provisions and Core Principles; Final... Derivatives Clearing Organization General Provisions and Core Principles AGENCY: Commodity Futures Trading...

  1. The 13th Malaysian general election: Uncertainties and expectations

    OpenAIRE

    M. Moniruzzaman

    2013-01-01

    Malaysia held its 13th general election on May 5, 2013 which was a contest between two coalitions, the ruling Barisan Nasional (BN) and the opposition Pakatan Rakyat (PR). The latter’s expectations for an outright win did not materialise. The election results have shown a rather status quo with minor losses and gains for the two coalitions. This study analysed the 13th election and found a number of noticeable trends. The Chinese voters have voted overwhelmingly for the opposition. The politi...

  2. Radiation protection - Performance criteria for radiobioassay. Part 1: General principles

    International Nuclear Information System (INIS)

    2001-01-01

    International Standard ISO 12790-1 was prepared by Technical Committee ISO/TC 85, Nuclear energy, Subcommittee SC 2, Radiation protection. ISO 12790 consists of the following parts, under the general title Radiation protection - Performance criteria for radiobioassay: Part 1: General principles; and Part 2: Rationale and specific applications This part of ISO 12790 provides criteria for quality assurance and control, evaluation of performance and the accreditation of radiobioassay service laboratories. Criteria and guidance for direct radiobioassay ( in vivo) and indirect radiobioassay ( in vitro) are given in separate clauses of this part of ISO 12790. This part of ISO 12790 addresses: a) the accuracy of direct ( in vivo) measurements of activity and quantities of selected important radionuclides in test phantoms and indirect ( in vitro) measurements of activity and quantities of selected important radionuclides in test samples; b) methods for determining the minimum detectable amount; c) minimum testing levels and testing ranges; d) requirements for reporting radiobioassay results by service laboratories; e) quality assurance in service laboratories; f) quality control in service laboratories; g) protocol for reporting test evaluations by service laboratories to the testing laboratory; h) default procedures when the service laboratory customer does not specify the performance criteria. The scope of this part of ISO 12790 does not include: a) detailed radiochemical methods for separating radionuclides from biological samples; b) detailed procedures for in vivo and in vitro radioactivity measurements; c) metabolic data and mathematical models for converting radiobioassay results into absorbed dose and dose equivalent; d) procedures for the preparation and distribution of test samples and phantoms by the testing laboratories. Analytical methods for radiobioassay are not currently standardized, but are available in the literature. Guidance for converting

  3. The 13th Malaysian general election: Uncertainties and expectations

    Directory of Open Access Journals (Sweden)

    M. Moniruzzaman

    2013-06-01

    Full Text Available Malaysia held its 13th general election on May 5, 2013 which was a contest between two coalitions, the ruling Barisan Nasional (BN and the opposition Pakatan Rakyat (PR. The latter’s expectations for an outright win did not materialise. The election results have shown a rather status quo with minor losses and gains for the two coalitions. This study analysed the 13th election and found a number of noticeable trends. The Chinese voters have voted overwhelmingly for the opposition. The political culture of Malaysia is also shifting toward more participatory type with increased social and economic mobility. The days of one-party dominance in Malaysia are apparently over. The electoral politics in Malaysia might become more polarised along ethnic lines which may require reshuffling of its coalition framework and design.

  4. A survey of resilience, burnout, and tolerance of uncertainty in Australian general practice registrars

    Directory of Open Access Journals (Sweden)

    Cooke Georga PE

    2013-01-01

    Full Text Available Abstract Background Burnout and intolerance of uncertainty have been linked to low job satisfaction and lower quality patient care. While resilience is related to these concepts, no study has examined these three concepts in a cohort of doctors. The objective of this study was to measure resilience, burnout, compassion satisfaction, personal meaning in patient care and intolerance of uncertainty in Australian general practice (GP registrars. Methods We conducted a paper-based cross-sectional survey of GP registrars in Australia from June to July 2010, recruited from a newsletter item or registrar education events. Survey measures included the Resilience Scale-14, a single-item scale for burnout, Professional Quality of Life (ProQOL scale, Personal Meaning in Patient Care scale, Intolerance of Uncertainty-12 scale, and Physician Response to Uncertainty scale. Results 128 GP registrars responded (response rate 90%. Fourteen percent of registrars were found to be at risk of burnout using the single-item scale for burnout, but none met the criteria for burnout using the ProQOL scale. Secondary traumatic stress, general intolerance of uncertainty, anxiety due to clinical uncertainty and reluctance to disclose uncertainty to patients were associated with being at higher risk of burnout, but sex, age, practice location, training duration, years since graduation, and reluctance to disclose uncertainty to physicians were not. Only ten percent of registrars had high resilience scores. Resilience was positively associated with compassion satisfaction and personal meaning in patient care. Resilience was negatively associated with burnout, secondary traumatic stress, inhibitory anxiety, general intolerance to uncertainty, concern about bad outcomes and reluctance to disclose uncertainty to patients. Conclusions GP registrars in this survey showed a lower level of burnout than in other recent surveys of the broader junior doctor population in both Australia

  5. Quantification of uncertainty in first-principles predicted mechanical properties of solids: Application to solid ion conductors

    Science.gov (United States)

    Ahmad, Zeeshan; Viswanathan, Venkatasubramanian

    2016-08-01

    Computationally-guided material discovery is being increasingly employed using a descriptor-based screening through the calculation of a few properties of interest. A precise understanding of the uncertainty associated with first-principles density functional theory calculated property values is important for the success of descriptor-based screening. The Bayesian error estimation approach has been built in to several recently developed exchange-correlation functionals, which allows an estimate of the uncertainty associated with properties related to the ground state energy, for example, adsorption energies. Here, we propose a robust and computationally efficient method for quantifying uncertainty in mechanical properties, which depend on the derivatives of the energy. The procedure involves calculating energies around the equilibrium cell volume with different strains and fitting the obtained energies to the corresponding energy-strain relationship. At each strain, we use instead of a single energy, an ensemble of energies, giving us an ensemble of fits and thereby, an ensemble of mechanical properties associated with each fit, whose spread can be used to quantify its uncertainty. The generation of ensemble of energies is only a post-processing step involving a perturbation of parameters of the exchange-correlation functional and solving for the energy non-self-consistently. The proposed method is computationally efficient and provides a more robust uncertainty estimate compared to the approach of self-consistent calculations employing several different exchange-correlation functionals. We demonstrate the method by calculating the uncertainty bounds for several materials belonging to different classes and having different structures using the developed method. We show that the calculated uncertainty bounds the property values obtained using three different GGA functionals: PBE, PBEsol, and RPBE. Finally, we apply the approach to calculate the uncertainty

  6. Generalized Bootstrap Method for Assessment of Uncertainty in Semivariogram Inference

    Science.gov (United States)

    Olea, R.A.; Pardo-Iguzquiza, E.

    2011-01-01

    The semivariogram and its related function, the covariance, play a central role in classical geostatistics for modeling the average continuity of spatially correlated attributes. Whereas all methods are formulated in terms of the true semivariogram, in practice what can be used are estimated semivariograms and models based on samples. A generalized form of the bootstrap method to properly model spatially correlated data is used to advance knowledge about the reliability of empirical semivariograms and semivariogram models based on a single sample. Among several methods available to generate spatially correlated resamples, we selected a method based on the LU decomposition and used several examples to illustrate the approach. The first one is a synthetic, isotropic, exhaustive sample following a normal distribution, the second example is also a synthetic but following a non-Gaussian random field, and a third empirical sample consists of actual raingauge measurements. Results show wider confidence intervals than those found previously by others with inadequate application of the bootstrap. Also, even for the Gaussian example, distributions for estimated semivariogram values and model parameters are positively skewed. In this sense, bootstrap percentile confidence intervals, which are not centered around the empirical semivariogram and do not require distributional assumptions for its construction, provide an achieved coverage similar to the nominal coverage. The latter cannot be achieved by symmetrical confidence intervals based on the standard error, regardless if the standard error is estimated from a parametric equation or from bootstrap. ?? 2010 International Association for Mathematical Geosciences.

  7. General principles of radiation protection in hospital media

    International Nuclear Information System (INIS)

    Chanteur, J.

    1993-01-01

    Principles of radiation protection given by ICRP in term of justification, optimization, limitation are applicable in hospital media. The medical act has to be justified and, in France, it is not possible to use ionizing radiations without a prescription from a doctor. The acceleration of technologies development make non radiological techniques more employed than radiologic ones, in an aim of efficiency more than an aim radiation protection. The second principle of optimization means to give medical care with the minimum of ionizing radiations for the patients as well the operators. For the principle of limitation which applied only for operators, we have the new recommends of ICRP, but it would be reasonable to give the most part of decision to the works doctor to decide if somebody has the aptitude to work at an exposed place. The last points concern the quality of equipment, the safety of installations, the organization of works which are under laws and regulations. 3 tabs

  8. Using General Semantics Principles in the Basic News Reporting Classroom.

    Science.gov (United States)

    Russell, Charles G.; Many, Paul

    1993-01-01

    Shows how certain principles of the study of semantics might be employed in the journalism curriculum as a means of enhancing student reporters' understanding that their perceptions are limited and subject to distortion. Provides a model for explaining these limitations. (HB)

  9. 12 CFR 621.3 - Application of generally accepted accounting principles.

    Science.gov (United States)

    2010-01-01

    ... principles. 621.3 Section 621.3 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM ACCOUNTING... principles. Each institution shall: (a) Prepare and maintain, on an accrual basis, accurate and complete... reports to the Farm Credit Administration, in accordance with generally accepted accounting principles...

  10. A Generalized Kruskal-Wallis Test Incorporating Group Uncertainty with Application to Genetic Association Studies

    OpenAIRE

    Acar, Elif F.; Sun, Lei

    2012-01-01

    Motivated by genetic association studies of SNPs with genotype uncertainty, we propose a generalization of the Kruskal-Wallis test that incorporates group uncertainty when comparing k samples. The extended test statistic is based on probability-weighted rank-sums and follows an asymptotic chi-square distribution with k-1 degrees of freedom under the null hypothesis. Simulation studies confirm the validity and robustness of the proposed test in finite samples. Application to a genome-wide asso...

  11. When the uncertainty principle goes up to 11 or how to explain quantum physics with heavy metal

    CERN Document Server

    Moriarty, Philip

    2018-01-01

    There are deep and fascinating links between heavy metal and quantum physics. No, there are. Really. While teaching at the University of Nottingham, physicist Philip Moriarty noticed something odd--a surprising number of his students were heavily into metal music. Colleagues, too: a Venn diagram of physicists and metal fans would show a shocking amount of overlap. What's more, it turns out that heavy metal music is uniquely well-suited to explaining quantum principles. In When the Uncertainty Principle Goes Up to Eleven, Moriarty explains the mysteries of the universe's inner workings via drum beats and feedback: You'll discover how the Heisenberg uncertainty principle comes into play with every chugging guitar riff, what wave interference has to do with Iron Maiden, and why metalheads in mosh pits behave just like molecules in a gas. If you're a metal fan trying to grasp the complexities of quantum physics, a quantum physicist baffled by heavy metal, or just someone who'd like to know how the fundamental sci...

  12. Entropic formulation of the uncertainty principle for the number and annihilation operators

    International Nuclear Information System (INIS)

    Rastegin, Alexey E

    2011-01-01

    An entropic approach to formulating uncertainty relations for the number-annihilation pair is considered. We construct some normal operator that traces the annihilation operator as well as commuting quadratures with a complete system of common eigenfunctions. Expanding the measured wave function with respect to them, one obtains a relevant probability distribution. Another distribution is naturally generated by measuring the number operator. Due to the Riesz-Thorin theorem, there exists a nontrivial inequality between corresponding functionals of the above distributions. We find the bound in this inequality and further derive uncertainty relations in terms of both the Rényi and Tsallis entropies. Entropic uncertainty relations for a continuous distribution as well as relations for a discretized one are presented. (comment)

  13. 21 CFR 312.22 - General principles of the IND submission.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false General principles of the IND submission. 312.22... (IND) § 312.22 General principles of the IND submission. (a) FDA's primary objectives in reviewing an... likelihood that the investigations will yield data capable of meeting statutory standards for marketing...

  14. 20 CFR 604.3 - Able and available requirement-general principles.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Able and available requirement-general principles. 604.3 Section 604.3 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF...—general principles. (a) A State may pay UC only to an individual who is able to work and available for...

  15. 49 CFR Appendix E to Part 238 - General Principles of Reliability-Based Maintenance Programs

    Science.gov (United States)

    2010-10-01

    ... STANDARDS Pt. 238, App. E Appendix E to Part 238—General Principles of Reliability-Based Maintenance... 49 Transportation 4 2010-10-01 2010-10-01 false General Principles of Reliability-Based... the design level of safety and reliability of the equipment; (2) To restore safety and reliability to...

  16. Applying the conservativeness principle to REDD to deal with the uncertainties of the estimates

    International Nuclear Information System (INIS)

    Grassi, Giacomo; Monni, Suvi; Achard, Frederic; Mollicone, Danilo; Federici, Sandro

    2008-01-01

    A common paradigm when the reduction of emissions from deforestations is estimated for the purpose of promoting it as a mitigation option in the context of the United Nations Framework Convention on Climate Change (UNFCCC) is that high uncertainties in input data-i.e., area change and C stock change/area-may seriously undermine the credibility of the estimates and therefore of reduced deforestation as a mitigation option. In this paper, we show how a series of concepts and methodological tools-already existing in UNFCCC decisions and IPCC guidance documents-may greatly help to deal with the uncertainties of the estimates of reduced emissions from deforestation

  17. Applying the conservativeness principle to REDD to deal with the uncertainties of the estimates

    Energy Technology Data Exchange (ETDEWEB)

    Grassi, Giacomo; Monni, Suvi; Achard, Frederic [Institute for Environment and Sustainability, Joint Research Centre of the European Commission, I-21020 Ispra (Italy); Mollicone, Danilo [Department of Geography, University of Alcala de Henares, Madrid (Spain); Federici, Sandro

    2008-07-15

    A common paradigm when the reduction of emissions from deforestations is estimated for the purpose of promoting it as a mitigation option in the context of the United Nations Framework Convention on Climate Change (UNFCCC) is that high uncertainties in input data-i.e., area change and C stock change/area-may seriously undermine the credibility of the estimates and therefore of reduced deforestation as a mitigation option. In this paper, we show how a series of concepts and methodological tools-already existing in UNFCCC decisions and IPCC guidance documents-may greatly help to deal with the uncertainties of the estimates of reduced emissions from deforestation.

  18. Uncertainty and complementarity in axiomatic quantum mechanics

    International Nuclear Information System (INIS)

    Lahti, P.J.

    1980-01-01

    An investigation of the uncertainty principle and the complementarity principle is carried through. The physical content of these principles and their representation in the conventional Hilbert space formulation of quantum mechanics forms a natural starting point. Thereafter is presented more general axiomatic framework for quantum mechanics, namely, a probability function formulation of the theory. Two extra axioms are stated, reflecting the ideas of the uncertainty principle and the complementarity principle, respectively. The quantal features of these axioms are explicated. (author)

  19. Trans-Planckian Effects in Inflationary Cosmology and the Modified Uncertainty Principle

    DEFF Research Database (Denmark)

    F. Hassan, S.; Sloth, Martin Snoager

    2002-01-01

    There are good indications that fundamental physics gives rise to a modified space-momentum uncertainty relation that implies the existence of a minimum length scale. We implement this idea in the scalar field theory that describes density perturbations in flat Robertson-Walker space-time. This l...

  20. A generalized Kruskal-Wallis test incorporating group uncertainty with application to genetic association studies.

    Science.gov (United States)

    Acar, Elif F; Sun, Lei

    2013-06-01

    Motivated by genetic association studies of SNPs with genotype uncertainty, we propose a generalization of the Kruskal-Wallis test that incorporates group uncertainty when comparing k samples. The extended test statistic is based on probability-weighted rank-sums and follows an asymptotic chi-square distribution with k - 1 degrees of freedom under the null hypothesis. Simulation studies confirm the validity and robustness of the proposed test in finite samples. Application to a genome-wide association study of type 1 diabetic complications further demonstrates the utilities of this generalized Kruskal-Wallis test for studies with group uncertainty. The method has been implemented as an open-resource R program, GKW. © 2013, The International Biometric Society.

  1. Generalized Likelihood Uncertainty Estimation (GLUE) Using Multi-Optimization Algorithm as Sampling Method

    Science.gov (United States)

    Wang, Z.

    2015-12-01

    For decades, distributed and lumped hydrological models have furthered our understanding of hydrological system. The development of hydrological simulation in large scale and high precision elaborated the spatial descriptions and hydrological behaviors. Meanwhile, the new trend is also followed by the increment of model complexity and number of parameters, which brings new challenges of uncertainty quantification. Generalized Likelihood Uncertainty Estimation (GLUE) has been widely used in uncertainty analysis for hydrological models referring to Monte Carlo method coupled with Bayesian estimation. However, the stochastic sampling method of prior parameters adopted by GLUE appears inefficient, especially in high dimensional parameter space. The heuristic optimization algorithms utilizing iterative evolution show better convergence speed and optimality-searching performance. In light of the features of heuristic optimization algorithms, this study adopted genetic algorithm, differential evolution, shuffled complex evolving algorithm to search the parameter space and obtain the parameter sets of large likelihoods. Based on the multi-algorithm sampling, hydrological model uncertainty analysis is conducted by the typical GLUE framework. To demonstrate the superiority of the new method, two hydrological models of different complexity are examined. The results shows the adaptive method tends to be efficient in sampling and effective in uncertainty analysis, providing an alternative path for uncertainty quantilization.

  2. Reader reaction on the generalized Kruskal-Wallis test for genetic association studies incorporating group uncertainty.

    Science.gov (United States)

    Wu, Baolin; Guan, Weihua

    2015-06-01

    Acar and Sun (2013, Biometrics 69, 427-435) presented a generalized Kruskal-Wallis (GKW) test for genetic association studies that incorporated the genotype uncertainty and showed its robust and competitive performance compared to existing methods. We present another interesting way to derive the GKW test via a rank linear model. © 2014, The International Biometric Society.

  3. Reader Reaction On the generalized Kruskal-Wallis test for genetic association studies incorporating group uncertainty

    OpenAIRE

    Wu, Baolin; Guan, Weihua

    2014-01-01

    Acar and Sun (2013, Biometrics, 69, 427-435) presented a generalized Kruskal-Wallis (GKW) test for genetic association studies that incorporated the genotype uncertainty and showed its robust and competitive performance compared to existing methods. We present another interesting way to derive the GKW test via a rank linear model.

  4. Living with uncertainty: from the precautionary principle to the methodology of ongoing normative assessment

    International Nuclear Information System (INIS)

    Dupuy, J.P.; Grinbaum, A.

    2005-01-01

    The analysis of our epistemic situation regarding singular events, such as abrupt climate change, shows essential limitations in the traditional modes of dealing with uncertainty. Typical cognitive barriers lead to the paralysis of action. What is needed is taking seriously the reality of the future. We argue for the application of the methodology of ongoing normative assessment. We show that it is, paradoxically, a matter of forming a project on the basis of a fixed future which one does not want, and this in a coordinated way at the level of social institutions. Ongoing assessment may be viewed as a prescription to live with uncertainty, in a particular sense of the term, in order for a future catastrophe not to occur. The assessment is necessarily normative in that it must include the anticipation of a retrospective ethical judgment on present choices (notion of moral luck). (authors)

  5. Blockchain to Rule the Waves - Nascent Design Principles for Reducing Risk and Uncertainty in Decentralized Environments

    OpenAIRE

    Nærland, Kristoffer; Müller-Bloch, Christoph; Beck, Roman; Palmund, Søren

    2017-01-01

    Many decentralized, inter-organizational environments such as supply chains are characterized by high transactional uncertainty and risk. At the same time, blockchain technology promises to mitigate these issues by introducing certainty into economic transactions. This paper discusses the findings of a Design Science Research project involving the construction and evaluation of an information technology artifact in collaboration with Maersk, a leading international shipping company, where cen...

  6. Uncertainty estimation of the self-thinning process by Maximum-Entropy Principle

    Science.gov (United States)

    Shoufan Fang; George Z. Gertner

    2000-01-01

    When available information is scarce, the Maximum-Entropy Principle can estimate the distributions of parameters. In our case study, we estimated the distributions of the parameters of the forest self-thinning process based on literature information, and we derived the conditional distribution functions and estimated the 95 percent confidence interval (CI) of the self-...

  7. General principles of advertising practices and consumer protection

    OpenAIRE

    Slánská, Martina

    2008-01-01

    Diploma thesis provides an overview of legal and ethical regulation of advertising, defines the basic concepts in advertising, summarizes the functions and objectives of advertising and characterized various forms of advertising by the communication media. Through the questionnaire survey detects and analyzes the general attitudes towards advertising as specific views on ethically problematic advertisements.

  8. General Principles Involved in the Use of Irradiated Larval Vaccines

    International Nuclear Information System (INIS)

    Miller, T.A.

    1967-01-01

    The effect of ionizing radiations on helminth parasites has been under investigation now for about half a century, but only in the last 15 years has extensive and intensive work been conducted. The results have shown that in numerous host-parasite systems, ionizing radiation has attenuated or partially inactivated the parasite and that infection of host animals with irradiated larvae has stimulated immunity without accompanying disease. The immunity of vaccinated animals has subsequently been challenged by infection with normal larvae and, while unvaccinated control animals have suffered severely from the resultant disease and have often died, vaccinated animals survived the challenge of immunity usually without significant signs of disease. Comparison of the worm burdens from challenge infections in vaccinated and in control animals have further confirmed the protective effect of prior vaccination with irradiated larvae. In addition to economically important helminth diseases, various host-parasite relationships in laboratory animals have been investigated and the immunogenic efficacy of X-irradiated vaccines has been further demonstrated. There are at present two irradiated vaccines in commercial use in veterinary practice and their value has been unequivocally proven. It is probable that within the next few years at least one additional irradiated vaccine will be in use in veterinary practice. Some of die concepts and principles involved in the preparation, use and possible method of action of irradiated vaccines, with particular reference to a vaccine for hookworm disease of dogs, are described. (author)

  9. Affinity monolith chromatography: A review of general principles and applications.

    Science.gov (United States)

    Li, Zhao; Rodriguez, Elliott; Azaria, Shiden; Pekarek, Allegra; Hage, David S

    2017-11-01

    Affinity monolith chromatography, or AMC, is a liquid chromatographic method in which the support is a monolith and the stationary phase is a biological-binding agent or related mimic. AMC has become popular for the isolation of biochemicals, for the measurement of various analytes, and for studying biological interactions. This review will examine the principles and applications of AMC. The materials that have been used to prepare AMC columns will be discussed, which have included various organic polymers, silica, agarose, and cryogels. Immobilization schemes that have been used in AMC will also be considered. Various binding agents and applications that have been reported for AMC will then be described. These applications will include the use of AMC for bioaffinity chromatography, immunoaffinity chromatography, dye-ligand affinity chromatography, and immobilized metal-ion affinity chromatography. The use of AMC with chiral stationary phases and as a tool to characterize biological interactions will also be examined. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. General Principles Involved in the Use of Irradiated Larval Vaccines

    Energy Technology Data Exchange (ETDEWEB)

    Miller, T. A. [Wellcome Laboratories for Experimental Parasitology, University of Glasgow Veterinary Hospital Glasgow, Scotland (United Kingdom)

    1967-09-15

    The effect of ionizing radiations on helminth parasites has been under investigation now for about half a century, but only in the last 15 years has extensive and intensive work been conducted. The results have shown that in numerous host-parasite systems, ionizing radiation has attenuated or partially inactivated the parasite and that infection of host animals with irradiated larvae has stimulated immunity without accompanying disease. The immunity of vaccinated animals has subsequently been challenged by infection with normal larvae and, while unvaccinated control animals have suffered severely from the resultant disease and have often died, vaccinated animals survived the challenge of immunity usually without significant signs of disease. Comparison of the worm burdens from challenge infections in vaccinated and in control animals have further confirmed the protective effect of prior vaccination with irradiated larvae. In addition to economically important helminth diseases, various host-parasite relationships in laboratory animals have been investigated and the immunogenic efficacy of X-irradiated vaccines has been further demonstrated. There are at present two irradiated vaccines in commercial use in veterinary practice and their value has been unequivocally proven. It is probable that within the next few years at least one additional irradiated vaccine will be in use in veterinary practice. Some of die concepts and principles involved in the preparation, use and possible method of action of irradiated vaccines, with particular reference to a vaccine for hookworm disease of dogs, are described. (author)

  11. Wavelets-Computational Aspects of Sterian Realistic Approach to Uncertainty Principle in High Energy Physics: A Transient Approach

    Directory of Open Access Journals (Sweden)

    Cristian Toma

    2013-01-01

    Full Text Available This study presents wavelets-computational aspects of Sterian-realistic approach to uncertainty principle in high energy physics. According to this approach, one cannot make a device for the simultaneous measuring of the canonical conjugate variables in reciprocal Fourier spaces. However, such aspects regarding the use of conjugate Fourier spaces can be also noticed in quantum field theory, where the position representation of a quantum wave is replaced by momentum representation before computing the interaction in a certain point of space, at a certain moment of time. For this reason, certain properties regarding the switch from one representation to another in these conjugate Fourier spaces should be established. It is shown that the best results can be obtained using wavelets aspects and support macroscopic functions for computing (i wave-train nonlinear relativistic transformation, (ii reflection/refraction with a constant shift, (iii diffraction considered as interaction with a null phase shift without annihilation of associated wave, (iv deflection by external electromagnetic fields without phase loss, and (v annihilation of associated wave-train through fast and spatially extended phenomena according to uncertainty principle.

  12. Generalized Tellegen Principle and Physical Correctness of System Representations

    Directory of Open Access Journals (Sweden)

    Vaclav Cerny

    2006-06-01

    Full Text Available The paper deals with a new problem of physical correctness detection in the area of strictly causal system representations. The proposed approach to the problem solution is based on generalization of Tellegen's theorem well known from electrical engineering. Consequently, mathematically as well as physically correct results are obtained. Some known and often used system representation structures are discussed from the developed point of view as an addition.

  13. The general principles of the Chinese contract law from the perspective of an (English) Common lawyer

    OpenAIRE

    Twigg-Flesner, Christian

    2017-01-01

    This chapter will contrast the statement of general principles found in Arts.1-7 of the Chinese Contract Law (“CCL”) with the approach to general principles of contract law in the (English) common law. The particular purpose of this paper will be on how these two contract law regimes regard contractual freedom and the extent to which there are limitations to this. It will begin with a short summary account of the CCL’s general principles. The bulk of this paper will then set out the English c...

  14. Communicating and dealing with uncertainty in general practice: the association with neuroticism.

    Directory of Open Access Journals (Sweden)

    Antonius Schneider

    Full Text Available Diagnostic reasoning in primary care setting where presented problems and patients are mostly unselected appears as a complex process. The aim was to develop a questionnaire to describe how general practitioners (GPs deal with uncertainty to gain more insight into the decisional process. The association of personality traits with medical decision making was investigated additionally.Raw items were identified by literature research and focus group. Items were improved by interviewing ten GPs with thinking-aloud-method. A personal case vignette related to a complex and uncertainty situation was introduced. The final questionnaire was administered to 228 GPs in Germany. Factorial validity was calculated with explorative and confirmatory factor analysis. The results of the Communicating and Dealing with Uncertainty (CoDU-questionnaire were compared with the scales of the 'Physician Reaction to Uncertainty' (PRU questionnaire and with the personality traits which were determined with the Big Five Inventory (BFI-K.The items could be assigned to four scales with varying internal consistency, namely 'communicating uncertainty' (Cronbach alpha 0.79, 'diagnostic action' (0.60, 'intuition' (0.39 and 'extended social anamnesis' (0.69. Neuroticism was positively associated with all PRU scales 'anxiety due to uncertainty' (Pearson correlation 0.487, 'concerns about bad outcomes' (0.488, 'reluctance to disclose uncertainty to patients' (0.287, 'reluctance to disclose mistakes to physicians' (0.212 and negatively associated with the CoDU scale 'communicating uncertainty' (-0.242 (p<0.01 for all. 'Extraversion' (0.146; p<0.05, 'agreeableness' (0.145, p<0.05, 'conscientiousness' (0.168, p<0.05 and 'openness to experience' (0.186, p<0.01 were significantly positively associated with 'communicating uncertainty'. 'Extraversion' (0.162, 'consciousness' (0.158 and 'openness to experience' (0.155 were associated with 'extended social anamnesis' (p<0.05.The

  15. General principles of neurotransmitter detection. Problems and application to catecholamines

    International Nuclear Information System (INIS)

    Taxi, Jacques

    1976-01-01

    The use of radioautography for neurotransmitter studies requires two preliminary conditions (in addition to the availability of tritiated molecules): there must be a selective uptake of the neurotransmitter itself, or of a related substance (precursor or false transmitter); the labelled substance must be preserved in situ by fixation and must not be removed by further treatments. Since the putative neurotransmitters are generally small, hydrosoluble molecules, they can be maintained in situ only if they are bound to structure made insoluble by the fixative. The technical indications are summarized so that the successive stages of experimentation can be considered in an attempt to answer the major questions posed by the experimenter

  16. Principles of General Systems Theory: Some Implications for Higher Education Administration

    Science.gov (United States)

    Gilliland, Martha W.; Gilliland, J. Richard

    1978-01-01

    Three principles of general systems theory are presented and systems theory is distinguished from systems analysis. The principles state that all systems tend to become more disorderly, that they must be diverse in order to be stable, and that only those maximizing their resource utilization for doing useful work will survive. (Author/LBH)

  17. A generalized Poisson solver for first-principles device simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bani-Hashemian, Mohammad Hossein; VandeVondele, Joost, E-mail: joost.vandevondele@mat.ethz.ch [Nanoscale Simulations, ETH Zürich, 8093 Zürich (Switzerland); Brück, Sascha; Luisier, Mathieu [Integrated Systems Laboratory, ETH Zürich, 8092 Zürich (Switzerland)

    2016-01-28

    Electronic structure calculations of atomistic systems based on density functional theory involve solving the Poisson equation. In this paper, we present a plane-wave based algorithm for solving the generalized Poisson equation subject to periodic or homogeneous Neumann conditions on the boundaries of the simulation cell and Dirichlet type conditions imposed at arbitrary subdomains. In this way, source, drain, and gate voltages can be imposed across atomistic models of electronic devices. Dirichlet conditions are enforced as constraints in a variational framework giving rise to a saddle point problem. The resulting system of equations is then solved using a stationary iterative method in which the generalized Poisson operator is preconditioned with the standard Laplace operator. The solver can make use of any sufficiently smooth function modelling the dielectric constant, including density dependent dielectric continuum models. For all the boundary conditions, consistent derivatives are available and molecular dynamics simulations can be performed. The convergence behaviour of the scheme is investigated and its capabilities are demonstrated.

  18. Uncertainties of the 50-year wind from short time series using generalized extreme value distribution and generalized Pareto distribution

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Mann, Jakob; Rathmann, Ole

    2015-01-01

    This study examines the various sources to the uncertainties in the application of two widely used extreme value distribution functions, the generalized extreme value distribution (GEVD) and the generalized Pareto distribution (GPD). The study is done through the analysis of measurements from...... as a guideline for applying GEVD and GPD to wind time series of limited length. The data analysis shows that, with reasonable choice of relevant parameters, GEVD and GPD give consistent estimates of the return winds. For GEVD, the base period should be chosen in accordance with the occurrence of the extreme wind...

  19. Earth Science Principles Pertinent to the General Education Programs in Junior High Schools

    Science.gov (United States)

    Henson, Kenneth Tyrone

    1970-01-01

    Presents the procedures, and findings of a study designed to identify principles in astronomy, geology, meterology, oceanography and physical geography pertinent to general education programs in junior high schools. (LC)

  20. Endocrine Disruptor Screening Program (EDSP) Universe of Chemicals and General Validation Principles

    Science.gov (United States)

    This document was developed by the EPA to provide guidance to staff and managers regarding the EDSP universe of chemicals and general validation principles for consideration of computational toxicology tools for chemical prioritization.

  1. Embracing uncertainty, managing complexity: applying complexity thinking principles to transformation efforts in healthcare systems.

    Science.gov (United States)

    Khan, Sobia; Vandermorris, Ashley; Shepherd, John; Begun, James W; Lanham, Holly Jordan; Uhl-Bien, Mary; Berta, Whitney

    2018-03-21

    Complexity thinking is increasingly being embraced in healthcare, which is often described as a complex adaptive system (CAS). Applying CAS to healthcare as an explanatory model for understanding the nature of the system, and to stimulate changes and transformations within the system, is valuable. A seminar series on systems and complexity thinking hosted at the University of Toronto in 2016 offered a number of insights on applications of CAS perspectives to healthcare that we explore here. We synthesized topics from this series into a set of six insights on how complexity thinking fosters a deeper understanding of accepted ideas in healthcare, applications of CAS to actors within the system, and paradoxes in applications of complexity thinking that may require further debate: 1) a complexity lens helps us better understand the nebulous term "context"; 2) concepts of CAS may be applied differently when actors are cognizant of the system in which they operate; 3) actor responses to uncertainty within a CAS is a mechanism for emergent and intentional adaptation; 4) acknowledging complexity supports patient-centred intersectional approaches to patient care; 5) complexity perspectives can support ways that leaders manage change (and transformation) in healthcare; and 6) complexity demands different ways of implementing ideas and assessing the system. To enhance our exploration of key insights, we augmented the knowledge gleaned from the series with key articles on complexity in the literature. Ultimately, complexity thinking acknowledges the "messiness" that we seek to control in healthcare and encourages us to embrace it. This means seeing challenges as opportunities for adaptation, stimulating innovative solutions to ensure positive adaptation, leveraging the social system to enable ideas to emerge and spread across the system, and even more important, acknowledging that these adaptive actions are part of system behaviour just as much as periods of stability are. By

  2. The Generalized Principle of the Golden Section and its applications in mathematics, science, and engineering

    Energy Technology Data Exchange (ETDEWEB)

    Stakhov, A.P. [International Club of the Golden Section, 6 McCreary Trail, Bolton, ON, L7E 2C8 (Canada)] e-mail: goldenmuseum@rogers.com

    2005-10-01

    The 'Dichotomy Principle' and the classical 'Golden Section Principle' are two of the most important principles of Nature, Science and also Art. The Generalized Principle of the Golden Section that follows from studying the diagonal sums of the Pascal triangle is a sweeping generalization of these important principles. This underlies the foundation of 'Harmony Mathematics', a new proposed mathematical direction. Harmony Mathematics includes a number of new mathematical theories: an algorithmic measurement theory, a new number theory, a new theory of hyperbolic functions based on Fibonacci and Lucas numbers, and a theory of the Fibonacci and 'Golden' matrices. These mathematical theories are the source of many new ideas in mathematics, philosophy, botanic and biology, electrical and computer science and engineering, communication systems, mathematical education as well as theoretical physics and physics of high energy particles.

  3. The Generalized Principle of the Golden Section and its applications in mathematics, science, and engineering

    International Nuclear Information System (INIS)

    Stakhov, A.P.

    2005-01-01

    The 'Dichotomy Principle' and the classical 'Golden Section Principle' are two of the most important principles of Nature, Science and also Art. The Generalized Principle of the Golden Section that follows from studying the diagonal sums of the Pascal triangle is a sweeping generalization of these important principles. This underlies the foundation of 'Harmony Mathematics', a new proposed mathematical direction. Harmony Mathematics includes a number of new mathematical theories: an algorithmic measurement theory, a new number theory, a new theory of hyperbolic functions based on Fibonacci and Lucas numbers, and a theory of the Fibonacci and 'Golden' matrices. These mathematical theories are the source of many new ideas in mathematics, philosophy, botanic and biology, electrical and computer science and engineering, communication systems, mathematical education as well as theoretical physics and physics of high energy particles

  4. Principles of general relativity theory in terms of the present day physics

    International Nuclear Information System (INIS)

    Pervushin, V.N.

    1986-01-01

    A hystory of gradual unification of general relativity theory and quantum field theory on the basis of unified geometrical principles is detected. The gauge invariance principles became universal for construction of all physical theories. Quantum mechanics, electrodynamics and Einstein gravitation theory were used to form geometrical principles. Identity of inertial and gravitational masses is an experimental basis of the general relativity theory (GRT). It is shown that correct understanding of GRT bases is a developing process related to the development of the present physics and stimulating this development

  5. Uncertainty Quantification of Composite Laminate Damage with the Generalized Information Theory

    Energy Technology Data Exchange (ETDEWEB)

    J. Lucero; F. Hemez; T. Ross; K.Kline; J.Hundhausen; T. Tippetts

    2006-05-01

    This work presents a survey of five theories to assess the uncertainty of projectile impact induced damage on multi-layered carbon-epoxy composite plates. Because the types of uncertainty dealt with in this application are multiple (variability, ambiguity, and conflict) and because the data sets collected are sparse, characterizing the amount of delamination damage with probability theory alone is possible but incomplete. This motivates the exploration of methods contained within a broad Generalized Information Theory (GIT) that rely on less restrictive assumptions than probability theory. Probability, fuzzy sets, possibility, and imprecise probability (probability boxes (p-boxes) and Dempster-Shafer) are used to assess the uncertainty in composite plate damage. Furthermore, this work highlights the usefulness of each theory. The purpose of the study is not to compare directly the different GIT methods but to show that they can be deployed on a practical application and to compare the assumptions upon which these theories are based. The data sets consist of experimental measurements and finite element predictions of the amount of delamination and fiber splitting damage as multilayered composite plates are impacted by a projectile at various velocities. The physical experiments consist of using a gas gun to impact suspended plates with a projectile accelerated to prescribed velocities, then, taking ultrasound images of the resulting delamination. The nonlinear, multiple length-scale numerical simulations couple local crack propagation implemented through cohesive zone modeling to global stress-displacement finite element analysis. The assessment of damage uncertainty is performed in three steps by, first, considering the test data only; then, considering the simulation data only; finally, performing an assessment of total uncertainty where test and simulation data sets are combined. This study leads to practical recommendations for reducing the uncertainty and

  6. Generally Recognized as Safe: Uncertainty Surrounding E-Cigarette Flavoring Safety

    OpenAIRE

    Sears, Clara G.; Hart, Joy L.; Walker, Kandi L.; Robertson, Rose Marie

    2017-01-01

    Despite scientific uncertainty regarding the relative safety of inhaling e-cigarette aerosol and flavorings, some consumers regard the U.S. Food and Drug Administration’s “generally recognized as safe” (GRAS) designation as evidence of flavoring safety. In this study, we assessed how college students’ perceptions of e-cigarette flavoring safety are related to understanding of the GRAS designation. During spring 2017, an online questionnaire was administered to college students. Chi-square p-v...

  7. Plutonium Finishing Plant (PFP) Generalized Geometry Holdup Calculations and Total Measurement Uncertainty

    International Nuclear Information System (INIS)

    Keele, B.D.

    2005-01-01

    A collimated portable gamma-ray detector will be used to quantify the plutonium content of items that can be approximated as a point, line, or area geometry with respect to the detector. These items can include ducts, piping, glove boxes, isolated equipment inside of gloveboxes, and HEPA filters. The Generalized Geometry Holdup (GGH) model is used for the reduction of counting data. This document specifies the calculations to reduce counting data into contained plutonium and the associated total measurement uncertainty.

  8. Logarithmic corrections to the uncertainty principle and infinitude of the number of bound states of n-particle systems

    International Nuclear Information System (INIS)

    Perez, J.F.; Coutinho, F.A.B.; Malta, C.P.

    1985-01-01

    It is shown that critical long distance behaviour for a two-body potential, defining the finiteness or infinitude of the number of negative eigenvalues of Schrodinger operators in ν-dimensions, are given by v sub(k) (r) = - [ν-2/2r] 2 - 1/(2rlnr) 2 + ... - 1/(2rlnr.lnlnr...ln sub(k)r) 2 where k=0,1... for ν not=2 and k=1,2... if ν=2. This result is a consequence of logarithmic corrections to an inequality known as Uncertainty Principle. If the continuum threshold in the N-body problem is defined by a two-cluster break up our results generate corrections to the existing sufficient conditions for the existence of infinitely many bound states. (Author) [pt

  9. General principles

    International Nuclear Information System (INIS)

    Hutchison, J.M.S.; Foster, M.A.

    1987-01-01

    NMR characteristics are not unique - T/sub 1/ values of tumour tissues overlap with those from multiple sclerosis plaques or from areas of inflammation. Despite this, NMR imaging is an extremely powerful tool to the diagnostician and for other medical use such as following the course of treatment or planning or surgery or radiotherapy. Magnetic resonance imaging (MRI) is often used solely as an anatomical technique similar to X-ray CT. This is certainly an appropriate use for it and it has certain advantages over X-ray CT such as the greater ease with which sagittal and coronal sections can be obtained (or other views by suitable manipulation of the gradients) NMR is also less bothered by bone-related artefacts. There are disadvantages in terms of resolution (although this is improving) and of speed of acquisition of the image. The NMR signal, however, derives from a complex interaction of biophysical properties and, if properly used, can yield a considerable amount of information about its origin. The NMR image is capable of much more manipulation than that obtained by X-ray methods and, particularly with the addition of spectroscopy to the repertoire the authors expect in vivo NMR examinations to yield much metabolic and biophysical information in addition to providing a demonstration of the anatomy of the body

  10. Derivation of a general three-dimensional crack-propagation law: A generalization of the principle of local symmetry

    DEFF Research Database (Denmark)

    Hodgdon, Jennifer A.; Sethna, James P.

    1993-01-01

    We derive a general crack-propagation law for slow brittle cracking, in two and three dimensions, using discrete symmetries, gauge invariance, and gradient expansions. Our derivation provides explicit justification for the ‘‘principle of local symmetry,’’ which has been used extensively to describe...

  11. IEEE guide for general principles of reliability analysis of nuclear power generating station protection systems

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Presented is the Institute of Electrical and Electronics Engineers, Inc. (IEEE) guide for general principles of reliability analysis of nuclear power generating station protection systems. The document has been prepared to provide the basic principles needed to conduct a reliability analysis of protection systems. Included is information on qualitative and quantitative analysis, guides for failure data acquisition and use, and guide for establishment of intervals

  12. Generalized Fermat's principle and action for light rays in a curved spacetime

    Science.gov (United States)

    Frolov, Valeri P.

    2013-09-01

    We start with formulation of the generalized Fermat’s principle for light propagation in a curved spacetime. We apply Pontryagin’s minimum principle of the optimal control theory and obtain an effective Hamiltonian for null geodesics in a curved spacetime. We explicitly demonstrate that dynamical equations for this Hamiltonian correctly reproduce null geodesic equations. Other forms of the action for light rays in a curved spacetime are also discussed.

  13. Uncertainty and Complementarity in Axiomatic Quantum Mechanics

    Science.gov (United States)

    Lahti, Pekka J.

    1980-11-01

    In this work an investigation of the uncertainty principle and the complementarity principle is carried through. A study of the physical content of these principles and their representation in the conventional Hilbert space formulation of quantum mechanics forms a natural starting point for this analysis. Thereafter is presented more general axiomatic framework for quantum mechanics, namely, a probability function formulation of the theory. In this general framework two extra axioms are stated, reflecting the ideas of the uncertainty principle and the complementarity principle, respectively. The quantal features of these axioms are explicated. The sufficiency of the state system guarantees that the observables satisfying the uncertainty principle are unbounded and noncompatible. The complementarity principle implies a non-Boolean proposition structure for the theory. Moreover, nonconstant complementary observables are always noncompatible. The uncertainty principle and the complementarity principle, as formulated in this work, are mutually independent. Some order is thus brought into the confused discussion about the interrelations of these two important principles. A comparison of the present formulations of the uncertainty principle and the complementarity principle with the Jauch formulation of the superposition principle is also given. The mutual independence of the three fundamental principles of the quantum theory is hereby revealed.

  14. Water, Resilience and the Law: From General Concepts and Governance Design Principles to Actionable Mechanisms

    Science.gov (United States)

    Hill Clarvis, M.; Allan, A.; Hannah, D. M.

    2013-12-01

    Climate change has significant ramifications for water law and governance, yet, there is strong evidence that legal regulations have often failed to protect environments or promote sustainable development. Scholars have increasingly suggested that the preservation and restoration paradigms of legislation and regulation are no longer adequate for climate change related challenges in complex and cross-scale social-ecological systems. This is namely due to past assumptions of stationarity, uniformitarianism and the perception of ecosystem change as predictable and reversible. This paper reviews the literature on law and resilience and then presents and discusses a set of practical examples of legal mechanisms from the water resources management sector, identified according to a set of guiding principles from the literature on adaptive capacity, adaptive governance as well as adaptive and integrated water resources management. It then assesses the aptness of these different measures according to scientific evidence of increased uncertainty and changing ecological baselines. A review of the best practice examples demonstrates that there are a number of best practice examples attempting to integrate adaptive elements of flexibility, iterativity, connectivity and subsidiarity into a variety of legislative mechanisms, suggesting that there is not as significant a tension between resilience and the law as many scholars have suggested. However, while many of the mechanisms may indeed be suitable for addressing challenges relating to current levels of change and uncertainty, analysis across a broader range of uncertainty highlights challenges relating to more irreversible changes associated with greater levels of warming. Furthermore the paper identifies a set of pre-requisites that are fundamental to the successful implementation of such mechanisms, namely monitoring and data sharing, financial and technical capacity, particularly in nations that are most at risk with the

  15. A general method dealing with correlations in uncertainty propagation in fault trees

    International Nuclear Information System (INIS)

    Qin Zhang

    1989-01-01

    This paper deals with the correlations among the failure probabilities (frequencies) of not only the identical basic events but also other basic events in a fault tree. It presents a general and simple method to include these correlations in uncertainty propagation. Two examples illustrate this method and show that neglecting these correlations results in large underestimation of the top event failure probability (frequency). One is the failure of the primary pump in a chemical reactor cooling system, the other example is an accident to a road transport truck carrying toxic waste. (author)

  16. The general use of the time-temperature-pressure superposition principle

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz

    This note is a supplement to Dynamic of Polymeric Liquids (DPL) section 3.6(a). DPL do only concern material functions and only the effect of the temperature on these. This is a short introduction to the general use of the time-temperature-pressure superposition principle.......This note is a supplement to Dynamic of Polymeric Liquids (DPL) section 3.6(a). DPL do only concern material functions and only the effect of the temperature on these. This is a short introduction to the general use of the time-temperature-pressure superposition principle....

  17. [The General Principles of Suicide Prevention Policy from the perspective of clinical psychiatry].

    Science.gov (United States)

    Cho, Yoshinori; Inagaki, Masatoshi

    2014-01-01

    In view of the fact that the suicide rate in Japan has remained high since 1998, the Basic Act on Suicide Prevention was implemented in 2006 with the objective of comprehensively promoting suicide prevention measures on a national scale. Based on this Basic Act, in 2007, the Japanese government formulated the General Principles of Suicide Prevention Policy as a guideline for recommended suicide prevention measures. These General Principles were revised in 2012 in accordance with the initial plan of holding a review after five years. The Basic Act places an emphasis on the various social factors that underlie suicides and takes the perspective that suicide prevention measures are also social measures. The slogan of the revised General Principles is "Toward Realization of a Society in which Nobody is Driven to Commit Suicide". The General Principles list various measures that are able to be used universally. These contents would be sufficient if the objective of the General Principles were "realization of a society that is easy to live in"; however, the absence of information on the effectiveness and order of priority for each measure may limit the specific effectiveness of the measures in relation to the actual prevention of suicide. In addition, considering that nearly 90% of suicide victims are in a state at the time of committing suicide in which a psychiatric disorder would be diagnosed, it would appear from a psychiatric standpoint that measures related to mental health, including expansion of psychiatric services, should be the top priority in suicide prevention measures. However, this is not the case in the General Principles, in either its original or revised form. Revisions to the General Principles related to clinical psychiatry provide more detailed descriptions of measures for individuals who unsuccessfully attempt suicide and identify newly targeted mental disorders other than depression; however, the overall proportion of contents relating to

  18. General Principles of the WTO and European Community Laws in Building International Competition Norms

    Directory of Open Access Journals (Sweden)

    Chan Mo Chung

    2002-12-01

    Full Text Available The World Trade Organization (WTO established a Working Group on the interaction between trade and competition policy in 1996. By the Doha Ministerial Declaration, it recognized the case for international competition policy framework and agreed that the relevant negotiations take place after the Fifth Session of the Ministerial Conference. The Working Group is meant to focus on the clarification of: core principles, including transparency, non-discrimination and procedural fairness among others in the period until the Fifth Session. This article attempts to clarify the implications of the core (WTO principles to the would-be international competition laws and practices. It further tries to get lessons from competition law and practices of the European Community. Protection of fundamental rights, proportionality, non-discrimination, transparency, supremacy, subsidiarity and direct effect are the general principles of the European Community law to be discussed in relation to the competition law and policy. It concludes that the general principles of the WTO and EC laws provide guiding principles for the future international competition norms, and makes some preliminary assessment of the present Korean competition law and policy in the light of those principles.

  19. A General Stochastic Maximum Principle for SDEs of Mean-field Type

    International Nuclear Information System (INIS)

    Buckdahn, Rainer; Djehiche, Boualem; Li Juan

    2011-01-01

    We study the optimal control for stochastic differential equations (SDEs) of mean-field type, in which the coefficients depend on the state of the solution process as well as of its expected value. Moreover, the cost functional is also of mean-field type. This makes the control problem time inconsistent in the sense that the Bellman optimality principle does not hold. For a general action space a Peng’s-type stochastic maximum principle (Peng, S.: SIAM J. Control Optim. 2(4), 966–979, 1990) is derived, specifying the necessary conditions for optimality. This maximum principle differs from the classical one in the sense that here the first order adjoint equation turns out to be a linear mean-field backward SDE, while the second order adjoint equation remains the same as in Peng’s stochastic maximum principle.

  20. General Practitioners' Experiences of, and Responses to, Uncertainty in Prostate Cancer Screening: Insights from a Qualitative Study.

    Directory of Open Access Journals (Sweden)

    Kristen Pickles

    Full Text Available Prostate-specific antigen (PSA testing for prostate cancer is controversial. There are unresolved tensions and disagreements amongst experts, and clinical guidelines conflict. This both reflects and generates significant uncertainty about the appropriateness of screening. Little is known about general practitioners' (GPs' perspectives and experiences in relation to PSA testing of asymptomatic men. In this paper we asked the following questions: (1 What are the primary sources of uncertainty as described by GPs in the context of PSA testing? (2 How do GPs experience and respond to different sources of uncertainty?This was a qualitative study that explored general practitioners' current approaches to, and reasoning about, PSA testing of asymptomatic men. We draw on accounts generated from interviews with 69 general practitioners located in Australia (n = 40 and the United Kingdom (n = 29. The interviews were conducted in 2013-2014. Data were analysed using grounded theory methods. Uncertainty in PSA testing was identified as a core issue.Australian GPs reported experiencing substantially more uncertainty than UK GPs. This seemed partly explainable by notable differences in conditions of practice between the two countries. Using Han et al's taxonomy of uncertainty as an initial framework, we first outline the different sources of uncertainty GPs (mostly Australian described encountering in relation to prostate cancer screening and what the uncertainty was about. We then suggest an extension to Han et al's taxonomy based on our analysis of data relating to the varied ways that GPs manage uncertainties in the context of PSA testing. We outline three broad strategies: (1 taking charge of uncertainty; (2 engaging others in managing uncertainty; and (3 transferring the responsibility for reducing or managing some uncertainties to other parties.Our analysis suggests some GPs experienced uncertainties associated with ambiguous guidance and the

  1. An economic uncertainty principle

    Czech Academy of Sciences Publication Activity Database

    Vošvrda, Miloslav

    2000-01-01

    Roč. 8, č. 2 (2000), s. 79-87 ISSN 0572-3043 R&D Projects: GA ČR GA402/97/0007; GA ČR GA402/97/0770 Institutional research plan: AV0Z1075907 Subject RIV: BB - Applied Statistics, Operational Research

  2. Schrodinger's Uncertainty Principle?

    Indian Academy of Sciences (India)

    Research Institute,· mainly on applications of optical and statistical ... serves to be better known in the classroom. Let us recall the basic algebraic steps in the text book proof. We consider the wave function (which has a free real parameter a) (x + iap)1jJ == x1jJ(x) + ia( -in81jJ/8x) == 4>( x), The hat sign over x and p reminds ...

  3. General principles of passive radar signature reducing – stealth technology and its applications

    Directory of Open Access Journals (Sweden)

    Alexandru Marius PANAIT

    2010-03-01

    Full Text Available The paper presents passive radar signature reducing principles and technologies and discusses the ways to implement stealthy characteristics in general vehicle design. Stealth is a major requirement to all current-generation military vehicle designs and also a strong selling point for various aircraft and UAVs.

  4. 76 FR 4360 - Guidance for Industry on Process Validation: General Principles and Practices; Availability

    Science.gov (United States)

    2011-01-25

    ... and Development (HFM-40), Center for Biologics Evaluation and Research (CBER), Food and Drug...] Guidance for Industry on Process Validation: General Principles and Practices; Availability AGENCY: Food... of Drug Information, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New...

  5. 26 CFR 1.338-1 - General principles; status of old target and new target.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 4 2010-04-01 2010-04-01 false General principles; status of old target and new target. 1.338-1 Section 1.338-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... of old target and new target. (a) In general—(1) Deemed transaction. Elections are available under...

  6. 21 CFR 170.20 - General principles for evaluating the safety of food additives.

    Science.gov (United States)

    2010-04-01

    ... food additives. 170.20 Section 170.20 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES Food Additive Safety § 170.20 General principles for evaluating the safety of food additives. (a) In reaching a...

  7. 21 CFR 570.20 - General principles for evaluating the safety of food additives.

    Science.gov (United States)

    2010-04-01

    ... food additives. 570.20 Section 570.20 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES Food Additive Safety § 570.20 General principles for evaluating the safety of food additives. (a) In reaching a...

  8. The general principles of civil law: their nature, roles and legitimacy

    NARCIS (Netherlands)

    Hesselink, M.W.; Leczykiewicz, D.; Weatherill, S.

    2013-01-01

    The references made by the Court of Justice in a number of recent cases to ‘the general principles of civil law’ may have been accidental, but they may also represent a deliberate first step towards a new European legal category and a new approach towards European private law. Because of their

  9. A generalization of Fermat's principle for classical and quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Elsayed, Tarek A., E-mail: T.Elsayed@thphys.uni-heidelberg.de

    2014-09-12

    Highlights: • Introduces a generalized Fermat principle for many-dimensional dynamical systems. • Deals with the time taken by the system between given initial and final states. • Proposes that if the speed of the system point is constant, the time is an extremum. • Justified for the phase space of harmonic oscillators and the projective Hilbert space. • A counterexample for the motion of a charge in a magnetic field is discussed. - Abstract: The analogy between dynamics and optics had a great influence on the development of the foundations of classical and quantum mechanics. We take this analogy one step further and investigate the validity of Fermat's principle in many-dimensional spaces describing dynamical systems (i.e., the quantum Hilbert space and the classical phase and configuration space). We propose that if the notion of a metric distance is well defined in that space and the velocity of the representative point of the system is an invariant of motion, then a generalized version of Fermat's principle will hold. We substantiate this conjecture for time-independent quantum systems and for a classical system consisting of coupled harmonic oscillators. An exception to this principle is the configuration space of a charged particle in a constant magnetic field; in this case the principle is valid in a frame rotating by half the Larmor frequency, not the stationary lab frame.

  10. A generalization of Fermat's principle for classical and quantum systems

    International Nuclear Information System (INIS)

    Elsayed, Tarek A.

    2014-01-01

    Highlights: • Introduces a generalized Fermat principle for many-dimensional dynamical systems. • Deals with the time taken by the system between given initial and final states. • Proposes that if the speed of the system point is constant, the time is an extremum. • Justified for the phase space of harmonic oscillators and the projective Hilbert space. • A counterexample for the motion of a charge in a magnetic field is discussed. - Abstract: The analogy between dynamics and optics had a great influence on the development of the foundations of classical and quantum mechanics. We take this analogy one step further and investigate the validity of Fermat's principle in many-dimensional spaces describing dynamical systems (i.e., the quantum Hilbert space and the classical phase and configuration space). We propose that if the notion of a metric distance is well defined in that space and the velocity of the representative point of the system is an invariant of motion, then a generalized version of Fermat's principle will hold. We substantiate this conjecture for time-independent quantum systems and for a classical system consisting of coupled harmonic oscillators. An exception to this principle is the configuration space of a charged particle in a constant magnetic field; in this case the principle is valid in a frame rotating by half the Larmor frequency, not the stationary lab frame

  11. Generally Recognized as Safe: Uncertainty Surrounding E-Cigarette Flavoring Safety

    Directory of Open Access Journals (Sweden)

    Clara G. Sears

    2017-10-01

    Full Text Available Despite scientific uncertainty regarding the relative safety of inhaling e-cigarette aerosol and flavorings, some consumers regard the U.S. Food and Drug Administration’s “generally recognized as safe” (GRAS designation as evidence of flavoring safety. In this study, we assessed how college students’ perceptions of e-cigarette flavoring safety are related to understanding of the GRAS designation. During spring 2017, an online questionnaire was administered to college students. Chi-square p-values and multivariable logistic regression were employed to compare perceptions among participants considering e-cigarette flavorings as safe and those considering e-cigarette flavorings to be unsafe. The total sample size was 567 participants. Only 22% knew that GRAS designation meant that a product is safe to ingest, not inhale, inject, or use topically. Of participants who considered flavorings to be GRAS, the majority recognized that the designation meant a product is safe to ingest but also considered it safe to inhale. Although scientific uncertainty on the overall safety of flavorings in e-cigarettes remains, health messaging can educate the public about the GRAS designation and its irrelevance to e-cigarette safety.

  12. International legal protection of environment in the system of fundamental generally recognized principles of international law

    International Nuclear Information System (INIS)

    Meherremov, A.A.

    2007-01-01

    The issue of international legal protection of environment in the system of fundamental, generally recognized principles of international law is analyzed in the article taking into consideration the different opinions in legal scientific researches and international practice. It is concluded that the protection of environment for the present and next generations - is a basic principle of international legal protection of environment. The meaning of this principleis that the countries will take all necessary measures for preservation and promotion of the quality of environment for the present and next generations, as well as rational management of natural resources. Adoption and national legal implementation of specific norms, in conformity with that basic principle, is a main factor in resolution of environmental problemsand ensuring environmental security

  13. Maximum Principle for General Controlled Systems Driven by Fractional Brownian Motions

    International Nuclear Information System (INIS)

    Han Yuecai; Hu Yaozhong; Song Jian

    2013-01-01

    We obtain a maximum principle for stochastic control problem of general controlled stochastic differential systems driven by fractional Brownian motions (of Hurst parameter H>1/2). This maximum principle specifies a system of equations that the optimal control must satisfy (necessary condition for the optimal control). This system of equations consists of a backward stochastic differential equation driven by both fractional Brownian motions and the corresponding underlying standard Brownian motions. In addition to this backward equation, the maximum principle also involves the Malliavin derivatives. Our approach is to use conditioning and Malliavin calculus. To arrive at our maximum principle we need to develop some new results of stochastic analysis of the controlled systems driven by fractional Brownian motions via fractional calculus. Our approach of conditioning and Malliavin calculus is also applied to classical system driven by standard Brownian motions while the controller has only partial information. As a straightforward consequence, the classical maximum principle is also deduced in this more natural and simpler way.

  14. On the role of the equivalence principle in the general relativity theory

    International Nuclear Information System (INIS)

    Gertsenshtein, M.E.; Stanyukovich, K.P.; Pogosyan, V.A.

    1977-01-01

    The conditions under which the solutions of the general relativity theory equations satisfy the correspondence principle are considered. It is shown that in general relativity theory, as in a plane space any systems of coordinates satisfying the topological requirements of continuity and uniqueness are admissible. The coordinate transformations must be mutually unique, and the following requirements must be met: the transformations of the coordinates xsup(i)=xsup(i)(anti xsup(k)) must preserve the class of the function, while the transformation jacobian must be finite and nonzero. The admissible metrics in the Tolmen problem for a vacuum are considered. A prohibition of the vacuum solution of the Tolmen problem is obtained from the correspondence principle. The correspondence principle is applied to the solution of the Friedmann problem by constructing a spherical symmetric self-similar solution, in which replacement of compression by expansion occurs at a finite density. The examples adduced convince that the application of the correspondence principle makes it possible to discard physically inadmissible solutions and obtained new physical results

  15. Individual uncertainty and the uncertainty of science: The impact of perceived conflict and general self-efficacy on the perception of tentativeness and credibility of scientific information

    Directory of Open Access Journals (Sweden)

    Danny eFlemming

    2015-12-01

    Full Text Available We examined in two empirical studies how situational and personal aspects of uncertainty influence laypeople’s understanding of the uncertainty of scientific information, with focus on the detection of tentativeness and perception of scientific credibility. In the first study (N = 48, we investigated the impact of a perceived conflict due to contradicting information as a situational, text-inherent aspect of uncertainty. The aim of the second study (N = 61 was to explore the role of general self-efficacy as an intra-personal uncertainty factor. In Study 1, participants read one of two versions of an introductory text in a between-group design. This text provided them with an overview about the neurosurgical procedure of deep brain stimulation (DBS. The text expressed a positive attitude toward DBS in one experimental condition or focused on the negative aspects of this method in the other condition. Then participants in both conditions read the same text that dealt with a study about DBS as experimental treatment in a small sample of patients with major depression. Perceived conflict between the two texts was found to increase the perception of tentativeness and to decrease the perception of scientific credibility, implicating that text-inherent aspects have significant effects on critical appraisal. The results of Study 2 demonstrated that participants with higher general self-efficacy detected the tentativeness to a lesser degree and assumed a higher level of scientific credibility, indicating a more naïve understanding of scientific information. This appears to be contradictory to large parts of previous findings that showed positive effects of high self-efficacy on learning. Both studies showed that perceived tentativeness and perceived scientific credibility of medical information contradicted each other. We conclude that there is a need for supporting laypeople in understanding the uncertainty of scientific information and that

  16. NSF Workshop Report: Discovering General Principles of Nervous System Organization by Comparing Brain Maps across Species

    OpenAIRE

    Striedter, Georg F.; Belgard, T. Grant; Chen, Chun-Chun; Davis, Fred P.; Finlay, Barbara L.; Güntürkün, Onur; Hale, Melina E.; Harris, Julie A.; Hecht, Erin E.; Hof, Patrick R.; Hofmann, Hans A.; Holland, Linda Z.; Iwaniuk, Andrew N.; Jarvis, Erich D.; Karten, Harvey J.

    2014-01-01

    Efforts to understand nervous system structure and function have received new impetus from the federal Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative. Comparative analyses can contribute to this effort by leading to the discovery of general principles of neural circuit design, information processing, and gene-structure-function relationships that are not apparent from studies on single species. We here propose to extend the comparative approach to nervous sys...

  17. Pleasure and Pain: Teaching Neuroscientific Principles of Hedonism in a Large General Education Undergraduate Course

    OpenAIRE

    Bodnar, Richard J.; Stellar, James R.; Kraft, Tamar T.; Loiacono, Ilyssa; Bajnath, Adesh; Rotella, Francis M.; Barrientos, Alicia; Aghanori, Golshan; Olsson, Kerstin; Coke, Tricia; Huang, Donald; Luger, Zeke; Mousavi, Seyed Ali Reza; Dindyal, Trisha; Naqvi, Naveen

    2013-01-01

    In a large (250 registrants) general education lecture course, neuroscience principles were taught by two professors as co-instructors, starting with simple brain anatomy, chemistry, and function, proceeding to basic brain circuits of pleasure and pain, and progressing with fellow expert professors covering relevant philosophical, artistic, marketing, and anthropological issues. With this as a base, the course wove between fields of high relevance to psychology and neuroscience, such as food ...

  18. Generalized multivalued equilibrium-like problems: auxiliary principle technique and predictor-corrector methods

    Directory of Open Access Journals (Sweden)

    Vahid Dadashi

    2016-02-01

    Full Text Available Abstract This paper is dedicated to the introduction a new class of equilibrium problems named generalized multivalued equilibrium-like problems which includes the classes of hemiequilibrium problems, equilibrium-like problems, equilibrium problems, hemivariational inequalities, and variational inequalities as special cases. By utilizing the auxiliary principle technique, some new predictor-corrector iterative algorithms for solving them are suggested and analyzed. The convergence analysis of the proposed iterative methods requires either partially relaxed monotonicity or jointly pseudomonotonicity of the bifunctions involved in generalized multivalued equilibrium-like problem. Results obtained in this paper include several new and known results as special cases.

  19. The energy-time uncertainty principle and the EPR paradox: Experiments involving correlated two-photon emission in parametric down-conversion

    Science.gov (United States)

    Chiao, Raymond Y.; Kwiat, Paul G.; Steinberg, Aephraim M.

    1992-01-01

    The energy-time uncertainty principle is on a different footing than the momentum position uncertainty principle: in contrast to position, time is a c-number parameter, and not an operator. As Aharonov and Bohm have pointed out, this leads to different interpretations of the two uncertainty principles. In particular, one must distinguish between an inner and an outer time in the definition of the spread in time, delta t. It is the inner time which enters the energy-time uncertainty principle. We have checked this by means of a correlated two-photon light source in which the individual energies of the two photons are broad in spectra, but in which their sum is sharp. In other words, the pair of photons is in an entangled state of energy. By passing one member of the photon pair through a filter with width delta E, it is observed that the other member's wave packet collapses upon coincidence detection to a duration delta t, such that delta E(delta t) is approximately equal to planks constant/2 pi, where this duration delta t is an inner time, in the sense of Aharonov and Bohm. We have measured delta t by means of a Michelson interferometer by monitoring the visibility of the fringes seen in coincidence detection. This is a nonlocal effect, in the sense that the two photons are far away from each other when the collapse occurs. We have excluded classical-wave explanations of this effect by means of triple coincidence measurements in conjunction with a beam splitter which follows the Michelson interferometer. Since Bell's inequalities are known to be violated, we believe that it is also incorrect to interpret this experimental outcome as if energy were a local hidden variable, i.e., as if each photon, viewed as a particle, possessed some definite but unknown energy before its detection.

  20. On the Momentum Transported by the Radiation Field of a Long Transient Dipole and Time Energy Uncertainty Principle

    Directory of Open Access Journals (Sweden)

    Vernon Cooray

    2016-11-01

    Full Text Available The paper describes the net momentum transported by the transient electromagnetic radiation field of a long transient dipole in free space. In the dipole a current is initiated at one end and propagates towards the other end where it is absorbed. The results show that the net momentum transported by the radiation is directed along the axis of the dipole where the currents are propagating. In general, the net momentum P transported by the electromagnetic radiation of the dipole is less than the quantity U / c , where U is the total energy radiated by the dipole and c is the speed of light in free space. In the case of a Hertzian dipole, the net momentum transported by the radiation field is zero because of the spatial symmetry of the radiation field. As the effective wavelength of the current decreases with respect to the length of the dipole (or the duration of the current decreases with respect to the travel time of the current along the dipole, the net momentum transported by the radiation field becomes closer and closer to U / c , and for effective wavelengths which are much shorter than the length of the dipole, P ≈ U / c . The results show that when the condition P ≈ U / c is satisfied, the radiated fields satisfy the condition Δ t Δ U ≥ h / 4 π where Δ t is the duration of the radiation, Δ U is the uncertainty in the dissipated energy and h is the Plank constant.

  1. The special theory of Brownian relativity: equivalence principle for dynamic and static random paths and uncertainty relation for diffusion.

    Science.gov (United States)

    Mezzasalma, Stefano A

    2007-03-15

    The theoretical basis of a recent theory of Brownian relativity for polymer solutions is deepened and reexamined. After the problem of relative diffusion in polymer solutions is addressed, its two postulates are formulated in all generality. The former builds a statistical equivalence between (uncorrelated) timelike and shapelike reference frames, that is, among dynamical trajectories of liquid molecules and static configurations of polymer chains. The latter defines the "diffusive horizon" as the invariant quantity to work with in the special version of the theory. Particularly, the concept of universality in polymer physics corresponds in Brownian relativity to that of covariance in the Einstein formulation. Here, a "universal" law consists of a privileged observation, performed from the laboratory rest frame and agreeing with any diffusive reference system. From the joint lack of covariance and simultaneity implied by the Brownian Lorentz-Poincaré transforms, a relative uncertainty arises, in a certain analogy with quantum mechanics. It is driven by the difference between local diffusion coefficients in the liquid solution. The same transformation class can be used to infer Fick's second law of diffusion, playing here the role of a gauge invariance preserving covariance of the spacetime increments. An overall, noteworthy conclusion emerging from this view concerns the statistics of (i) static macromolecular configurations and (ii) the motion of liquid molecules, which would be much more related than expected.

  2. The Europeanization of Public Administration through the General Principles of Good Administration

    Directory of Open Access Journals (Sweden)

    Vasilica NEGRUŢ

    2011-08-01

    Full Text Available The general objective of the paper is based on an extremely present theme of real interest. Using the content analysis, through a descriptive documentary research, the present study aims at identifying the dimensions of the general principles of good administration, in the context of changes at European an implicitly at national level. To this purpose, an analisys of the specific objectives will be made: the concept of good administration, the national dimensions of the right to be heard, the right to access personal files as well as the motivation of administrative acts and the general principles regulated by the European Code of Good Administration will be underlined, in the context of institutional change determined by the Lisbon Treaty. Good administration defines the way in which institutions function, this being possible by ensuring the right to access information, a more efficient protection of fundamental rights as well as the right to defense, publication of acts and their motivation. Good administration is strongly connected to good government, the relation being in our opinion, from part to whole. The final purpose of good government and implicitly of good administration aims at accomplishing the general interest. The two concepts need a higher degree of transparency and responsibility in the public process. If governing represents the modality of exerting power, good government entails the imperative of the consensus of those governed regarding the objectives and methods of government, the responsibility of those governing, the efficiency of governing and the citizens’ right to be informed regarding the use and the distribution of the financial resources in the governing process. This new concept takes into account the implication of the citizens in the decision - making process, allowing a more efficient use of material, human, and financial resources. We assert thus that by applying the general principles of good administration

  3. Perspective: Maximum caliber is a general variational principle for dynamical systems.

    Science.gov (United States)

    Dixit, Purushottam D; Wagoner, Jason; Weistuch, Corey; Pressé, Steve; Ghosh, Kingshuk; Dill, Ken A

    2018-01-07

    We review here Maximum Caliber (Max Cal), a general variational principle for inferring distributions of paths in dynamical processes and networks. Max Cal is to dynamical trajectories what the principle of maximum entropy is to equilibrium states or stationary populations. In Max Cal, you maximize a path entropy over all possible pathways, subject to dynamical constraints, in order to predict relative path weights. Many well-known relationships of non-equilibrium statistical physics-such as the Green-Kubo fluctuation-dissipation relations, Onsager's reciprocal relations, and Prigogine's minimum entropy production-are limited to near-equilibrium processes. Max Cal is more general. While it can readily derive these results under those limits, Max Cal is also applicable far from equilibrium. We give examples of Max Cal as a method of inference about trajectory distributions from limited data, finding reaction coordinates in bio-molecular simulations, and modeling the complex dynamics of non-thermal systems such as gene regulatory networks or the collective firing of neurons. We also survey its basis in principle and some limitations.

  4. Perspective: Maximum caliber is a general variational principle for dynamical systems

    Science.gov (United States)

    Dixit, Purushottam D.; Wagoner, Jason; Weistuch, Corey; Pressé, Steve; Ghosh, Kingshuk; Dill, Ken A.

    2018-01-01

    We review here Maximum Caliber (Max Cal), a general variational principle for inferring distributions of paths in dynamical processes and networks. Max Cal is to dynamical trajectories what the principle of maximum entropy is to equilibrium states or stationary populations. In Max Cal, you maximize a path entropy over all possible pathways, subject to dynamical constraints, in order to predict relative path weights. Many well-known relationships of non-equilibrium statistical physics—such as the Green-Kubo fluctuation-dissipation relations, Onsager's reciprocal relations, and Prigogine's minimum entropy production—are limited to near-equilibrium processes. Max Cal is more general. While it can readily derive these results under those limits, Max Cal is also applicable far from equilibrium. We give examples of Max Cal as a method of inference about trajectory distributions from limited data, finding reaction coordinates in bio-molecular simulations, and modeling the complex dynamics of non-thermal systems such as gene regulatory networks or the collective firing of neurons. We also survey its basis in principle and some limitations.

  5. General Principles and Convention on Contracts for the International Sale of Goods (CISG – Uniformity under an Interpretation Umbrella?

    Directory of Open Access Journals (Sweden)

    Laura Lassila

    2017-01-01

    Full Text Available Globalization and digitalization of international sales creates needs to harmonize rules of international commercial contracts. The question is whether the harmonization should be done by binding rules or using soft law tools or through digitalization. In this article I argue on favor of harmonization through international contracts law rules’ international interpretation.The international interpretation principles used in this article are found from on Art. 7(1 of the Convention on Contracts for the International Sale of Goods (CISG which sets three interpretation rules: international character; promoting uniformity; and observance of good faith in international trade. These principles are not only principles of the CISG, but also principles commonly recognized in international commercial practice and also in domestic contract rules. I argue that by adopting an international interpretation umbrella – the meta-principle of international interpretation, cross-border contracts could be interpreted under the same principle no matter applicable substantial law. The meta-principle functions as an interpretation umbrella covering general principles and Articles of the CISG, general principles of international commercial contracts, Lex Mercatoria, and cross-border contract provision under national law.The outcomes points out that arbitral tribunals have interpreted general principles of the CISG and Lex Mercatoria in various ways. General principles and their application in case law is analyzed in connection with the Civil Code of the Russian Federation. Tribunals found that general principles of the CISG are applicable even if the CISG is not. It follows Art.’s 7(2 logic to promote international standard to cross-border contracts where the closes connection is international commercial practice rather than any national jurisdiction.

  6. On quasistability radius of a vector trajectorial problem with a principle of optimality generalizing Pareto and lexicographic principles

    Directory of Open Access Journals (Sweden)

    Sergey E. Bukhtoyarov

    2005-05-01

    Full Text Available A multicriterion linear combinatorial problem with a parametric principle of optimality is considered. This principle is defined by a partitioning of partial criteria onto Pareto preference relation groups within each group and the lexicographic preference relation between them. Quasistability of the problem is investigated. This type of stability is a discrete analog of Hausdorff lower semi-continuity of the multiple-valued mapping that defines the choice function. A formula of quasistability radius is derived for the case of the metric l∞. Some known results are stated as corollaries. Mathematics Subject Classification 2000: 90C05, 90C10, 90C29, 90C31.

  7. General principles for treatment planning for squamous cell carcinoma of the head and neck

    International Nuclear Information System (INIS)

    Million, R.R.; Bova, F.J.

    1987-01-01

    Although squamous cell carcinoma of the head and neck represents only 5% of all malignancies, the head and neck area is one of the few anatomical areas remaining where radiotherapy is often used as the only modality for cure and often with substantial doses. There are at least 35 separate anatomical sites for origin of squamous cell carcinoma in the upper respiratory tract, and each site has its own distinctive pattern of spread, incidence of regional and distant metastases, and varying stages of presentation. It would be impossible in this short chapter to cover every contingency for treatment planning, and only general principles are outlined

  8. Note on the understanding of the generalized correspondence principle (in Polish & English

    Directory of Open Access Journals (Sweden)

    Michał KOKOWSKI

    2015-12-01

    Full Text Available The author, referring to the text of Jan Woleński published on the pages of Prace Komisji Historii Nauki PAU in 2014, discusses the understanding of the generalized correspondence principle in the context of the following concepts: cumulativism (C.G. Hempel, P. Oppenhaim, E. Nagel, extreme anticumulativism (P. Feyerabend, T.S. Kuhn, dialectical cumulativism (W. Krajewski and the hypothetico­‑deductive method of correspondence ­oriented thinking as well as Copernicus’s methodology (M. Kokowski.

  9. [General principles of database storage operations with emphasis on OLAP reports].

    Science.gov (United States)

    Borkowski, Włodzimierz; Mielniczuk, Hanna

    2004-01-01

    In article general principles and features of data warehouse were presented in particular of OLAP reports. The data warehouse was built using Oracle tools. The repository was filled with death records from Central Office of Statistics. Various features adequate for epidemiological analyses have been discussed and illustrated like pivoting and rotating dimension, drilling on hierarchical data, reduction of dimensions. The possibility of specific for epidemiology indicators creation was shown. The need of implementation of data warehouses and OLAP reports in Polish healthcare was discussed. In comparison with traditional manner of analysis and presentation epidemiological facts OLAP reports give new perspectives.

  10. Fundamental principles of quantum theory

    International Nuclear Information System (INIS)

    Bugajski, S.

    1980-01-01

    After introducing general versions of three fundamental quantum postulates - the superposition principle, the uncertainty principle and the complementarity principle - the question of whether the three principles are sufficiently strong to restrict the general Mackey description of quantum systems to the standard Hilbert-space quantum theory is discussed. An example which shows that the answer must be negative is constructed. An abstract version of the projection postulate is introduced and it is demonstrated that it could serve as the missing physical link between the general Mackey description and the standard quantum theory. (author)

  11. Combined Uncertainty and A-Posteriori Error Bound Estimates for General CFD Calculations: Theory and Software Implementation

    Science.gov (United States)

    Barth, Timothy J.

    2014-01-01

    This workshop presentation discusses the design and implementation of numerical methods for the quantification of statistical uncertainty, including a-posteriori error bounds, for output quantities computed using CFD methods. Hydrodynamic realizations often contain numerical error arising from finite-dimensional approximation (e.g. numerical methods using grids, basis functions, particles) and statistical uncertainty arising from incomplete information and/or statistical characterization of model parameters and random fields. The first task at hand is to derive formal error bounds for statistics given realizations containing finite-dimensional numerical error [1]. The error in computed output statistics contains contributions from both realization error and the error resulting from the calculation of statistics integrals using a numerical method. A second task is to devise computable a-posteriori error bounds by numerically approximating all terms arising in the error bound estimates. For the same reason that CFD calculations including error bounds but omitting uncertainty modeling are only of limited value, CFD calculations including uncertainty modeling but omitting error bounds are only of limited value. To gain maximum value from CFD calculations, a general software package for uncertainty quantification with quantified error bounds has been developed at NASA. The package provides implementations for a suite of numerical methods used in uncertainty quantification: Dense tensorization basis methods [3] and a subscale recovery variant [1] for non-smooth data, Sparse tensorization methods[2] utilizing node-nested hierarchies, Sampling methods[4] for high-dimensional random variable spaces.

  12. Supramolecular chemistry-general principles and selected examples from anion recognition and metallosupramolecular chemistry.

    Science.gov (United States)

    Albrecht, Markus

    2007-12-01

    This review gives an introduction into supramolecular chemistry describing in the first part general principles, focusing on terms like noncovalent interaction, molecular recognition, self-assembly, and supramolecular function. In the second part those will be illustrated by simple examples from our laboratories. Supramolecular chemistry is the science that bridges the gap between the world of molecules and nanotechnology. In supramolecular chemistry noncovalent interactions occur between molecular building blocks, which by molecular recognition and self-assembly form (functional) supramolecular entities. It is also termed the "chemistry of the noncovalent bond." Molecular recognition is based on geometrical complementarity based on the "key-and-lock" principle with nonshape-dependent effects, e.g., solvatization, being also highly influential. Self-assembly leads to the formation of well-defined aggregates. Hereby the overall structure of the target ensemble is controlled by the symmetry features of the certain building blocks. Finally, the aggregates can possess special properties or supramolecular functions, which are only found in the ensemble but not in the participating molecules. This review gives an introduction on supramolecular chemistry and illustrates the fundamental principles by recent examples from our group.

  13. Higher-Order Squeezing of Quantum Field and the Generalized Uncertainty Relations in Non-Degenerate Four-Wave Mixing

    Science.gov (United States)

    Li, Xi-Zeng; Su, Bao-Xia

    1996-01-01

    It is found that the field of the combined mode of the probe wave and the phase-conjugate wave in the process of non-degenerate four-wave mixing exhibits higher-order squeezing to all even orders. And the generalized uncertainty relations in this process are also presented.

  14. Generalized Uncertainty Quantification for Linear Inverse Problems in X-ray Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, Michael James [Clarkson Univ., Potsdam, NY (United States)

    2014-04-25

    In industrial and engineering applications, X-ray radiography has attained wide use as a data collection protocol for the assessment of material properties in cases where direct observation is not possible. The direct measurement of nuclear materials, particularly when they are under explosive or implosive loading, is not feasible, and radiography can serve as a useful tool for obtaining indirect measurements. In such experiments, high energy X-rays are pulsed through a scene containing material of interest, and a detector records a radiograph by measuring the radiation that is not attenuated in the scene. One approach to the analysis of these radiographs is to model the imaging system as an operator that acts upon the object being imaged to produce a radiograph. In this model, the goal is to solve an inverse problem to reconstruct the values of interest in the object, which are typically material properties such as density or areal density. The primary objective in this work is to provide quantitative solutions with uncertainty estimates for three separate applications in X-ray radiography: deconvolution, Abel inversion, and radiation spot shape reconstruction. For each problem, we introduce a new hierarchical Bayesian model for determining a posterior distribution on the unknowns and develop efficient Markov chain Monte Carlo (MCMC) methods for sampling from the posterior. A Poisson likelihood, based on a noise model for photon counts at the detector, is combined with a prior tailored to each application: an edge-localizing prior for deconvolution; a smoothing prior with non-negativity constraints for spot reconstruction; and a full covariance sampling prior based on a Wishart hyperprior for Abel inversion. After developing our methods in a general setting, we demonstrate each model on both synthetically generated datasets, including those from a well known radiation transport code, and real high energy radiographs taken at two U. S. Department of Energy

  15. The general principles and consequences of environmental radiation exposure in relation to Canada's nuclear fuel waste management concept

    International Nuclear Information System (INIS)

    Myers, D.K.

    1989-09-01

    This document reviews the general principles and biological consequences of environmental radiation exposure. Particular attention was paid to the ICRP principle that if individual humans are adequately protected, then populations of other living organisms are likely to be sufficiently protected. The data reviewed in this document suggest that this principle is usually valid, although some theoretical concerns were noted with respect to effects of bioaccumulation of certain radionuclides in aquatic organisms

  16. Regulatory decision making in the presence of uncertainty in the context of the disposal of long lived radioactive wastes. Third report of the Working group on principles and criteria for radioactive waste disposal

    International Nuclear Information System (INIS)

    1997-10-01

    Plans for disposing of radioactive wastes have raised a number of unique and mostly philosophical problems, mainly due to the very long time-scales which have to be considered. While there is general agreement on disposal concepts and on many aspects of a safety philosophy, consensus on a number of issues remains to be achieved. The IAEA established a subgroup under the International Radioactive Waste Management Advisory Committee (INWAC). The subgroup started its work in 1991 as the ''INWAC Subgroup on Principles and Criteria for Radioactive Waste Disposal''. With the reorganization in 1995 of IAEA senior advisory committees in the nuclear safety area, the title of the group was changed to ''Working Group on Principles and Criteria for Radioactive Waste Disposal''. The working group is intended to provide an open forum for: (1) the discussion and resolution of contentious issues, especially those with an international component, in the area of principles and criteria for safe disposal of waste; (2) the review and analysis of new ideas and concepts in the subject area; (3) establishing areas of consensus; (4) the consideration of issues related to safety principles and criteria in the IAEA's Radioactive Waste Safety Standards (RADWASS) programme; (5) the exchange of information on national safety criteria and policies for radioactive waste disposal. This is the third report of the working group and it deals with the subject of regulatory decision making under conditions of uncertainty which is a matter of concern with respect to disposal of radioactive wastes underground. 14 refs

  17. Quantifying remarks to the question of uncertainties of the 'general dose assessment fundamentals'

    International Nuclear Information System (INIS)

    Brenk, H.D.; Vogt, K.J.

    1982-12-01

    Dose prediction models are always subject to uncertainties due to a number of factors including deficiencies in the model structure and uncertainties of the model input parameter values. In lieu of validation experiments the evaluation of these uncertainties is restricted to scientific judgement. Several attempts have been made in the literature to evaluate the uncertainties of the current dose assessment models resulting from uncertainties of the model input parameter values using stochastic approaches. Less attention, however, has been paid to potential sources of systematic over- and underestimations of the predicted doses due to deficiencies in the model structure. The present study addresses this aspect with regard to dose assessment models currently used for regulatory purposes. The influence of a number of basic simplifications and conservative assumptions has been investigated. Our systematic approach is exemplified by a comparison of doses evaluated on the basis of the regulatory guide model and a more realistic model respectively. This is done for 3 critical exposure pathways. As a result of this comparison it can be concluded that the currently used regularoty-type models include significant safety factors resulting in a systematic overprediction of dose to man up to two orders of magnitude. For this reason there are some indications that these models usually more than compensate the bulk of the stochastic uncertainties caused by the variability of the input parameter values. (orig.) [de

  18. Tidal fields in general relativity: D'Alembert's principle and the test rigid rod

    International Nuclear Information System (INIS)

    Faulkner, J.; Flannery, B.P.

    1978-01-01

    To the general relativist, tidal forces are a manifestation of the Riemann tensor; the relativist therefore uses the Riemann tensor to calculate the effects of such forces. In contrast, we show that the intorduction of gravitational ''probes'' (or ''test rigid rods'') and the adoption of a view-point closely allied to d'Alembert's principle, give an enormous simplification in cases of interest. No component of the Riemann tensor need to be calculated as such. In the corotating orbital case (or Roche problem) the calculation of the relevant distortional field becomes trivial. As a by-product of this investigation, there emerges an illuminating strong field generalization of de Sitter's weak field precession for slowly spinning gyroscopes

  19. General proof of the entropy principle for self-gravitating fluid in f(R) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Xiongjun [Department of Physics and Key Laboratory of Low Dimensional Quantum Structures andQuantum Control of Ministry of Education, Hunan Normal University,Changsha, Hunan 410081 (China); Guo, Minyong [Department of Physics, Beijing Normal University,Beijing 100875 (China); Jing, Jiliang [Department of Physics and Key Laboratory of Low Dimensional Quantum Structures andQuantum Control of Ministry of Education, Hunan Normal University,Changsha, Hunan 410081 (China)

    2016-08-29

    The discussions on the connection between gravity and thermodynamics attract much attention recently. We consider a static self-gravitating perfect fluid system in f(R) gravity, which is an important theory could explain the accelerated expansion of the universe. We first show that the Tolman-Oppenheimer-Volkoff equation of f(R) theories can be obtained by thermodynamical method in spherical symmetric spacetime. Then we prove that the maximum entropy principle is also valid for f(R) gravity in general static spacetimes beyond spherical symmetry. The result shows that if the constraint equation is satisfied and the temperature of fluid obeys Tolmans law, the extrema of total entropy implies other components of gravitational equations. Conversely, if f(R) gravitational equation hold, the total entropy of the fluid should be extremum. Our work suggests a general and solid connection between f(R) gravity and thermodynamics.

  20. 2013 MARS – Refresher presentation | General principles of the Merit, Appraisal and Recognition Scheme

    CERN Multimedia

    2013-01-01

    Staff members are invited to attend one of the three following information sessions that shall outline the general principles of the 2013 annual Merit, Appraisal and Recognition Scheme (MARS).   Monday 14 January at 10:00-11:30 – Filtration Plant (222-R-001) Thursday 17 January at 10:00-11:30 – Kjell Johnsen Auditorium (30-7-018) Monday 21 January at 10:00-11:30 - BE Amphitheatre Prévessin (864-1-D02)   General information on the MARS exercise may also be found in the CERN admin e-guide: https://admin-eguide.web.cern.ch/admin-eguide/mars/mars.asp. Human Resources Department Tel. 72728

  1. 2011 Mars - Refresher presentation - General principles of the Merit, Appraisal and Recognition Scheme

    CERN Multimedia

    HR Department

    2010-01-01

    Staff members are invited to attend one of the following three information sessions that shall outline the general principles of the 2011 annual Merit, Appraisal and Recognition Scheme (MARS). Monday 10 January at 16:00-17:00 BE Auditorium Prévessin (864-1-D-02) – French;   Tuesday 11 January at 15:00-16:00 – Council Chamber (503-1-001) – English;   Thursday 13 January at 15:00-16:00 - Kjell Johnsen Auditorium (30-7-018) – French. General information on the MARS exercise may also be found on the Human Resources website: https://hr-eguide.web.cern.ch/hr-eguide/mars/mars.asp Tel. 70674 / 72728

  2. General principles of nuclear safety management related to research reactor decommissioning

    International Nuclear Information System (INIS)

    Banciu, Ortenzia; Vladescu, Gabriela

    2003-01-01

    The paper contents the general principles applicable to the decommissioning of research reactors to ensure a proper nuclear safety management, during both decommissioning activities and post decommissioning period. The main objective of decommissioning is to ensure the protection of workers, population and environment against all radiological and non-radiological hazards that could result after a reactor shutdown and dismantling. In the same time, it is necessary, by some proper provisions, to limit the effect of decommissioning for the future generation, according to the new Romanian, IAEA and EU Norms and Regulations. Assurance of nuclear safety during decommissioning process involves, in the first step, to establish of some safety principles and requirements to be taken into account during whole process. In the same time, it is necessary to perform a series of analyses to ensure that the whole process is conducted in a planned and safe manner. The general principles proposed for a proper management of safety during research reactor decommissioning are as follows: - Set-up of all operations included in a Decommissioning Plan; - Set-up and qualitative evaluation of safety problems, which could appear during normal decommissioning process, both radiological and nonradiological risks for workers and public; - Set-up of accident list related to decommissioning process the events that could appear both due to some abnormal working conditions and to some on-site and off-site events like fires, explosions, flooding, earthquake, etc.); - Development and qualitative/ quantitative evaluation of scenarios for each incidents; - Development (and evaluation) of safety indicator system. The safety indicators are the most important tools used to assess the level of nuclear safety during decommissioning process, to discover the weak points and to establish safety measures. The paper contains also, a safety case evaluation (description of facility according to the decommissioning

  3. General Principles for the welfare of animals in production systems: the underlying science and its application.

    Science.gov (United States)

    Fraser, David; Duncan, Ian J H; Edwards, Sandra A; Grandin, Temple; Gregory, Neville G; Guyonnet, Vincent; Hemsworth, Paul H; Huertas, Stella M; Huzzey, Juliana M; Mellor, David J; Mench, Joy A; Spinka, Marek; Whay, H Rebecca

    2013-10-01

    In 2012, the World Organisation for Animal Health adopted 10 'General Principles for the Welfare of Animals in Livestock Production Systems' to guide the development of animal welfare standards. The General Principles draw on half a century of scientific research relevant to animal welfare: (1) how genetic selection affects animal health, behaviour and temperament; (2) how the environment influences injuries and the transmission of diseases and parasites; (3) how the environment affects resting, movement and the performance of natural behaviour; (4) the management of groups to minimize conflict and allow positive social contact; (5) the effects of air quality, temperature and humidity on animal health and comfort; (6) ensuring access to feed and water suited to the animals' needs and adaptations; (7) prevention and control of diseases and parasites, with humane euthanasia if treatment is not feasible or recovery is unlikely; (8) prevention and management of pain; (9) creation of positive human-animal relationships; and (10) ensuring adequate skill and knowledge among animal handlers. Research directed at animal welfare, drawing on animal behaviour, stress physiology, veterinary epidemiology and other fields, complements more established fields of animal and veterinary science and helps to create a more comprehensive scientific basis for animal care and management. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. 49 CFR 1200.2 - Adoption of generally accepted accounting principles issued by the Financial Accounting Standards...

    Science.gov (United States)

    2010-10-01

    ... principles issued by the Financial Accounting Standards Board (FASB). 1200.2 Section 1200.2 Transportation... COMMERCE ACT § 1200.2 Adoption of generally accepted accounting principles issued by the Financial... Financial Accounting Standards by the FASB, and provided that the Office of Economics, Environmental...

  5. THE GENERAL METHODOLOGICAL PRINCIPLES OF COMBINED OPTIONAL ONLINE ENGLISH LANGUAGE TRAINING OF PRIMARY SCHOOL STUDENTS

    Directory of Open Access Journals (Sweden)

    E. I. Zadorozhnaya

    2016-01-01

    Full Text Available The aim of the publication is to demonstrate the implementation of general methodological principles of optional elementary school online foreign languages learning on an example of a virtual course for students of the second and third grades.Methods. The methods involve pedagogical modeling and projecting; the experience of foreign and Russian methodists, teachers and researchers is analysed, generalized and adjusted to the modern realias.Results and scientific novelty. On the basis of the requirements of the state educational standard and interest of pupils in computer games, the author’s technique of the combined facultative educational activities integrated to training in English at elementary school is developed. Online training in the form of games (additional to the major classroom activities gives a possibility of the choice of tasks interesting to children, studying the material at optimum comfortable and individual speed; it is possible to perform the tasks at home excluding the stressful situations that are specific to school examination, and allows pupils to master most effectively personal, metasubject and object competences. In general context of quality improvement of the general education, the modernization of educational process assumes not only justification of its new maintenance, but also restructuring of scientific and methodical support which has to meet essential needs of teachers and pupils, to facilitate access to necessary specific information. The lack of methodical base of creation of electronic distance resources for foreign-language education of younger school students has motivated the author to create own methodical concept of online training taking into account age of pupils. The complex of the general methodical principles is thoroughly considered; based on the general methodical principles, the proposed modular technique of the organization of an online class is created and implemented. Interactive blocks are

  6. General principles for the formation of dust self-organizing structures. Dust collective attraction and plasma crystal formation

    International Nuclear Information System (INIS)

    Tsytovich, V.N.

    2005-01-01

    It is demonstrated that a homogeneous dusty plasma is universally unstable to form structures. The effect of collective grain attraction is a basic phenomenon for the proposed new paradigm (general principles) for the plasma crystal formation

  7. The Revised Guiding Principles and General Operating Rules to Govern the Provision of Technical Assistance by the Agency. Latest Status

    International Nuclear Information System (INIS)

    1979-03-01

    The Revised Guiding Principles and General Operating Rules to Govern the Provision of Technical Assistance by the Agency were approved by the Board of Governors on 21 February 1979. The test is reproduced herein for the information of all Members. The provisions established by the Board of Governors on 24 September 1977 for the application of safeguards in relation to the granting of technical assistance are also reproduced in the Annex to the Revised Guiding Principles and General Operating Rules.

  8. ANALYSIS OF THE CONCEPT OF THE PRINCIPLES GENERALLY ACCEPTED ACCOUNTING OF UNITED STATES OF AMERICA (FASB RULES)

    OpenAIRE

    Vílchez Olivares, Percy Antonio

    2014-01-01

    The Framework for the preparation and presentation of financial statements is a statement that directs and informs the accounting principles generally accepted in the United States (U.S. GAAP), which in turn is valid in our country, on the application to determine the accounting principles generally accepted in Peru, in its supplementary nature as established by Resolution No. 013-98 Accounting Standards Council, an organ of the Public Accounts of the Nation. The Framework is the backbone of ...

  9. Proposed Framework wWhich Use the Object Oriented Principles in Relational Systems. General Aspects and Principles (Part I

    Directory of Open Access Journals (Sweden)

    Catalin STRIMBEI

    2006-01-01

    Full Text Available There are some significant theoretical and technological approaches on the issue of object-relational "impedance mismatch" between applications' abstract model and database structures. Two characteristics of those approaches we think that are questionable: first of all it is so called “flat” nature of relational systems and model, and then there is the drawback of the storage of (object oriented semantics on the application level, thus severe limiting the data (object sharing and, at the same time, virtually broking the data independence principle of database systems architecture. In this paper we will try to outline an approach to address to some in a concrete manner.

  10. The Principle Of Justice In Magna Carta Libertatum And Its Influence On The Law In General

    Directory of Open Access Journals (Sweden)

    Zendeli Emine

    2015-12-01

    Full Text Available This article aims to expound the principle of justice, as a fundamental value and as an immanent category of law, as well as one of the fundamental human rights, prescribed and guaranteed by a myriad of international instruments and documents. After a brief historical account, by focusing on Article 40 of the Magna Carta Libertatum, which states that: “To No One Will we Sell, To No One Will we refuse or delay, right or justice”, this article claims to show the importance of incorporation of this principle in the provisions of the Magna Carta and its impact on the development of theory and legislation in the past and present. Moreover, the article intends to explore the extent of influence that the priciple of justice has on the functioning of the law in general. Since justice implicates the permanent and constant will to render each person his due, and this achieved through equality, it results that justice means being equal. In this context, the article will explore the concept of equality as a precondition of justice, as well as the conditions and modalities for its implementation.

  11. Risk in technical and scientific studies: general introduction to uncertainty management and the concept of risk

    International Nuclear Information System (INIS)

    Apostolakis, G.E.

    2004-01-01

    George Apostolakis (MIT) presented an introduction to the concept of risk and uncertainty management and their use in technical and scientific studies. He noted that Quantitative Risk Assessment (QRA) provides support to the overall treatment of a system as an integrated socio-technical system. Specifically, QRA aims to answer the questions: - What can go wrong (e.g., accident sequences or scenarios)? - How likely are these sequences or scenarios? - What are the consequences of these sequences or scenarios? The Quantitative Risk Assessment deals with two major types of uncertainty. An assessment requires a 'model of the world', and this preferably would be a deterministic model based on underlying processes. In practice, there are uncertainties in this model of the world relating to variability or randomness that cannot be accounted for directly in a deterministic model and that may require a probabilistic or aleatory model. Both deterministic and aleatory models of the world have assumptions and parameters, and there are 'state-of-knowledge' or epistemic uncertainties associated with these. Sensitivity studies or eliciting expert opinion can be used to address the uncertainties in assumptions, and the level of confidence in parameter values can be characterised using probability distributions (pdfs). Overall, the distinction between aleatory and epistemic uncertainties is not always clear, and both can be treated mathematically in the same way. Lessons on safety assessments that can be learnt from experience at nuclear power plants are that beliefs about what is important can be wrong if a risk assessment is not performed. Also, precautionary approaches are not always conservative if failure modes are not identified. Nevertheless, it is important to recognize that uncertainties will remain despite a quantitative risk assessment: e.g., is the scenario list complete, are the models accepted as reasonable, and are parameter probability distributions representative of

  12. The payment for performance model and its influence on British general practitioners' principles and practice.

    Science.gov (United States)

    Norman, Armando Henrique; Russell, Andrew J; Macnaughton, Jane

    2014-01-01

    This article explores some effects of the British payment for performance model on general practitioners' principles and practice, which may contribute to issues related to financial incentive modalities and quality of primary healthcare services in low and middle-income countries. Aiming to investigate what general practitioners have to say about the effect of the British payment for performance on their professional ethos we carried out semi-structured interviews with 13 general practitioner educators and leaders working in academic medicine across the UK. The results show a shift towards a more biomedical practice model and fragmented care with nurse practitioners and other health care staff focused more on specific disease conditions. There has also been an increased medicalisation of the patient experience both through labelling and the tendency to prescribe medications rather than non-pharmacological interventions. Thus, the British payment for performance has gradually strengthened a scientific-bureaucratic model of medical practice which has had profound effects on the way family medicine is practiced in the UK.

  13. Complementarity As Generative Principle: A Thought Pattern for Aesthetic Appreciations and Cognitive Appraisals in General

    Science.gov (United States)

    Bao, Yan; von Stosch, Alexandra; Park, Mona; Pöppel, Ernst

    2017-01-01

    In experimental aesthetics the relationship between the arts and cognitive neuroscience has gained particular interest in recent years. But has cognitive neuroscience indeed something to offer when studying the arts? Here we present a theoretical frame within which the concept of complementarity as a generative or creative principle is proposed; neurocognitive processes are characterized by the duality of complementary activities like bottom-up and top-down control, or logistical functions like temporal control and content functions like perceptions in the neural machinery. On that basis a thought pattern is suggested for aesthetic appreciations and cognitive appraisals in general. This thought pattern is deeply rooted in the history of philosophy and art theory since antiquity; and complementarity also characterizes neural operations as basis for cognitive processes. We then discuss some challenges one is confronted with in experimental aesthetics; in our opinion, one serious problem is the lack of a taxonomy of functions in psychology and neuroscience which is generally accepted. This deficit makes it next to impossible to develop acceptable models which are similar to what has to be modeled. Another problem is the severe language bias in this field of research as knowledge gained in many languages over the ages remains inaccessible to most scientists. Thus, an inspection of research results or theoretical concepts is necessarily too narrow. In spite of these limitations we provide a selective summary of some results and viewpoints with a focus on visual art and its appreciation. It is described how questions of art and aesthetic appreciations using behavioral methods and in particular brain-imaging techniques are analyzed and evaluated focusing on such issues like the representation of artwork or affective experiences. Finally, we emphasize complementarity as a generative principle on a practical level when artists and scientists work directly together which can

  14. [General principles of effective communication between physician and patient with selected mental disorders].

    Science.gov (United States)

    Błaszczyk, Justyna; Bobińska, Kinga; Filip, Maria; Gałecki, Piotr

    2015-04-01

    Faced with the growing frequency of mental disorders occurrence and considering the necessity of improving the patient care, it is particularly important that physicians of different specialties knew the general principles of effective communication with patients who are mentally ill. Equally important is to spread the knowledge of the symptomatology of various mental illnesses. Studies published by the Institute of Psychiatry and Neurology involving persons between 18 and 64 years old, show that 8 millions Poles suffers or suffered from mental disorders. This represents almost 25% of Polish society. The above data confirm, that basic knowledge of criteria for diagnosing mental disorders and their treatment by primary care physicians, determines the success of the entire health care system. It must be taken into consideration that frequently patients seeing general practitioner (GP) are suffering from more than one mental illness or it is accompanied by somatic disease. Adequate communication determines effective treatment. Simple yet exact message, ability to adapt it to patient and problems reported by him, is a valuable means in daily medical practice. It reduces the risk of iatrogenic disorder, encourages the efficiency of the entire therapeutic process. Good cooperation with the patient is also determined by patience, empathy, understanding, and competence. The aim of this study is to present the principles of effective communication between doctor and patient suffering from selected mental disorders. The article defines the concept of communication. It shows symptomatology of primary psychiatric disorders. Moreover, the most common difficulties in relationship between the doctor and the patient had been pointed. © 2015 MEDPRESS.

  15. Complementarity As Generative Principle: A Thought Pattern for Aesthetic Appreciations and Cognitive Appraisals in General

    Directory of Open Access Journals (Sweden)

    Yan Bao

    2017-05-01

    Full Text Available In experimental aesthetics the relationship between the arts and cognitive neuroscience has gained particular interest in recent years. But has cognitive neuroscience indeed something to offer when studying the arts? Here we present a theoretical frame within which the concept of complementarity as a generative or creative principle is proposed; neurocognitive processes are characterized by the duality of complementary activities like bottom-up and top-down control, or logistical functions like temporal control and content functions like perceptions in the neural machinery. On that basis a thought pattern is suggested for aesthetic appreciations and cognitive appraisals in general. This thought pattern is deeply rooted in the history of philosophy and art theory since antiquity; and complementarity also characterizes neural operations as basis for cognitive processes. We then discuss some challenges one is confronted with in experimental aesthetics; in our opinion, one serious problem is the lack of a taxonomy of functions in psychology and neuroscience which is generally accepted. This deficit makes it next to impossible to develop acceptable models which are similar to what has to be modeled. Another problem is the severe language bias in this field of research as knowledge gained in many languages over the ages remains inaccessible to most scientists. Thus, an inspection of research results or theoretical concepts is necessarily too narrow. In spite of these limitations we provide a selective summary of some results and viewpoints with a focus on visual art and its appreciation. It is described how questions of art and aesthetic appreciations using behavioral methods and in particular brain-imaging techniques are analyzed and evaluated focusing on such issues like the representation of artwork or affective experiences. Finally, we emphasize complementarity as a generative principle on a practical level when artists and scientists work

  16. The generally covariant locality principle - a new paradigm for local quantum field theory

    International Nuclear Information System (INIS)

    Brunetti, R.; Fredenhagen, K.; Verch, R.

    2002-05-01

    A new approach to the model-independent description of quantum field theories will be introduced in the present work. The main feature of this new approach is to incorporate in a local sense the principle of general covariance of general relativity, thus giving rise to the concept of a locally covariant quantum field theory. Such locally covariant quantum field theories will be described mathematically in terms of covariant functors between the categories, on one side, of globally hyperbolic spacetimes with isometric embeddings as morphisms and, on the other side, of *-algebras with unital injective *-endomorphisms as morphisms. Moreover, locally covariant quantum fields can be described in this framework as natural transformations between certain functors. The usual Haag-Kastler framework of nets of operator-algebras over a fixed spacetime background-manifold, together with covariant automorphic actions of the isometry-group of the background spacetime, can be re-gained from this new approach as a special case. Examples of this new approach are also outlined. In case that a locally covariant quantum field theory obeys the time-slice axiom, one can naturally associate to it certain automorphic actions, called ''relative Cauchy-evolutions'', which describe the dynamical reaction of the quantum field theory to a local change of spacetime background metrics. The functional derivative of a relative Cauchy-evolution with respect to the spacetime metric is found to be a divergence-free quantity which has, as will be demonstrated in an example, the significance of an energy-momentum tensor for the locally covariant quantum field theory. Furthermore, we discuss the functorial properties of state spaces of locally covariant quantum field theories that entail the validity of the principle of local definiteness. (orig.)

  17. Imprecision and uncertainty in information representation and processing new tools based on intuitionistic fuzzy sets and generalized nets

    CERN Document Server

    Sotirov, Sotir

    2016-01-01

    The book offers a comprehensive and timely overview of advanced mathematical tools for both uncertainty analysis and modeling of parallel processes, with a special emphasis on intuitionistic fuzzy sets and generalized nets. The different chapters, written by active researchers in their respective areas, are structured to provide a coherent picture of this interdisciplinary yet still evolving field of science. They describe key tools and give practical insights into and research perspectives on the use of Atanassov's intuitionistic fuzzy sets and logic, and generalized nets for describing and dealing with uncertainty in different areas of science, technology and business, in a single, to date unique book. Here, readers find theoretical chapters, dealing with intuitionistic fuzzy operators, membership functions and algorithms, among other topics, as well as application-oriented chapters, reporting on the implementation of methods and relevant case studies in management science, the IT industry, medicine and/or ...

  18. Intolerance of uncertainty, worry, and rumination in major depressive disorder and generalized anxiety disorder.

    Science.gov (United States)

    Yook, Keunyoung; Kim, Keun-Hyang; Suh, Shin Young; Lee, Kang Soo

    2010-08-01

    Intolerance of uncertainty (IU) can be defined as a cognitive bias that affects how a person perceives, interprets, and responds to uncertain situations. Although IU has been reported mainly in literature relating to worry and anxiety symptoms, it may be also important to investigate the relationship between IU, rumination, and depression in a clinical sample. Furthermore, individuals who are intolerant of uncertainty easily experience stress and could cope with stressful situations using repetitive thought such as worry and rumination. Thus, we investigated whether different forms of repetitive thought differentially mediate the relationship between IU and psychological symptoms. Participants included 27 patients with MDD, 28 patients with GAD, and 16 patients with comorbid GAD/MDD. Even though worry, rumination, IU, anxiety, and depressive symptoms correlated substantially with each other, worry partially mediated the relationship between IU and anxiety whereas rumination completely mediated the relationship between IU and depressive symptoms. (c) 2010 Elsevier Ltd. All rights reserved.

  19. Humor Styles and the Intolerance of Uncertainty Model of Generalized Anxiety

    Directory of Open Access Journals (Sweden)

    Nicholas A. Kuiper

    2014-08-01

    Full Text Available Past research suggests that sense of humor may play a role in anxiety. The present study builds upon this work by exploring how individual differences in various humor styles, such as affiliative, self-enhancing, and self-defeating humor, may fit within a contemporary research model of anxiety. In this model, intolerance of uncertainty is a fundamental personality characteristic that heightens excessive worry, thus increasing anxiety. We further propose that greater intolerance of uncertainty may also suppress the use of adaptive humor (affiliate and self-enhancing, and foster the increased use of maladaptive self-defeating humor. Initial correlational analyses provide empirical support for these proposals. In addition, we found that excessive worry and affiliative humor both served as significant mediators. In particular, heightened intolerance of uncertainty lead to both excessive worry and a reduction in affiliative humor use, which, in turn, increased anxiety. We also explored potential humor mediating effects for each of the individual worry content domains in this model. These analyses confirmed the importance of affiliative humor as a mediator for worry pertaining to a wide range of content domains (e.g., relationships, lack of confidence, the future and work. These findings were then discussed in terms of a combined model that considers how humor styles may impact the social sharing of positive and negative emotions.

  20. A generalized Levene's scale test for variance heterogeneity in the presence of sample correlation and group uncertainty.

    Science.gov (United States)

    Soave, David; Sun, Lei

    2017-09-01

    We generalize Levene's test for variance (scale) heterogeneity between k groups for more complex data, when there are sample correlation and group membership uncertainty. Following a two-stage regression framework, we show that least absolute deviation regression must be used in the stage 1 analysis to ensure a correct asymptotic χk-12/(k-1) distribution of the generalized scale (gS) test statistic. We then show that the proposed gS test is independent of the generalized location test, under the joint null hypothesis of no mean and no variance heterogeneity. Consequently, we generalize the recently proposed joint location-scale (gJLS) test, valuable in settings where there is an interaction effect but one interacting variable is not available. We evaluate the proposed method via an extensive simulation study and two genetic association application studies. © 2017 The Authors Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society.

  1. [From the Principle of Beneficence to the Principle of Autonomy. Assessment of Patients' Mental Competency in the General Hospital].

    Science.gov (United States)

    Diana, Restrepo B; Carlos, Cardeño C; Marle, Duque G; Santiago, Jaramillo

    2012-06-01

    Refusing a medical procedure is a valid way of exercising every patient's right to autonomy. From the legal point of view, autonomy is based on the right to privacy. In recent decades the legal right to self-determination has gradually expanded and today patients in full possession of their mental faculties, have the moral and legal right to make their own decisions and these decisions take precedence over physician and family. Often liaison psychiatrists are called in to assess the mental competence of patients in the general hospital. To determine the psychiatrist's role in evaluating these patients. The assessment of a patient's ability to decide and self-determine is a common clinical problem in general hospitals. Evaluation of these patients requires a proper understanding of the philosophical, ethical, and legal issues that guide the appropriate treatment of these complex clinical problems. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  2. General principles governing sampling and measurement techniques for monitoring radioactive effluents from nuclear facilities

    International Nuclear Information System (INIS)

    Fitoussi, L.

    1978-01-01

    An explanation is given of the need to monitor the release of radioactive gases and liquid effluents from nuclear facilities, with particular emphasis on the ICRP recommendations and on the interest in this problem shown by the larger international organizations. This is followed by a description of the classes of radionuclides that are normally monitored in this way. The characteristics of monitoring 'in line' and 'by sample taking' are described; the disadvantages of in line monitoring and the problem of sample representativity are discussed. There follows an account of the general principles for measuring gaseous and liquid effluents that are applied in the techniques normally employed at nuclear facilities. Standards relating to the specifications for monitoring instruments are at present being devised by the International Electrotechnical Commission, and there are still major differences in national practices, at least as far as measurement thresholds are concerned. In conclusion, it is shown that harmonization of practices and standardization of equipment would probably help to make international relations in the field more productive. (author)

  3. Justification of x-ray examinations: General principles and an Irish perspective

    International Nuclear Information System (INIS)

    Matthews, Kate; Brennan, Patrick C.

    2008-01-01

    The principles of justification and optimisation, and the establishment and use of Diagnostic Reference Levels are core tenets of the European Medical Exposures Directive [Council Directive 97/43], and ensuing legislation across Europe. In Ireland, the European Medical Exposures Directive [Council Directive 97/43] was enacted into national law in Statutory Instrument 478 of 2002. This series of three review articles discusses the status of justification and optimisation of X-ray examinations nationally, and progress with the establishment of Irish Diagnostic Reference Levels. The current article will outline the ICRP recommendations which preceded the European Medical Exposures Directive, describe how the Directive was transposed into Irish Statute, and review the literature associated with some of the justification concepts arising from the Statute in order to elucidate the prevailing practice regarding justification in Ireland. Three levels of justification are identified: general, generic and individual. The relationship between referral guidelines and generic justification is explored, and practical issues in the implementation of individual justification are considered with reference to the role of the radiographer. Two further articles in the series will adopt a similar approach in discussing optimisation, and the establishment and use of Diagnostic Reference Levels

  4. Introduction to basic immunological methods : Generalities, Principles, Protocols and Variants of basic protocols

    International Nuclear Information System (INIS)

    Mejri, Naceur

    2013-01-01

    This manuscript is dedicated to student of biological sciences. It provides the information necessary to perform practical works, the most commonly used in immunology. During my doctoral and post-doctoral periods, panoply of methods was employed in diverse subjects in my research. Technical means used in my investigations were diverse enough that i could extract a set of techniques that cover most the basic immunological methods. Each chapter of this manuscript contains a fairly complete description of immunological methods. In each topic the basic protocol and its variants were preceded by background information provided in paragraphs concerning the principle and generalities. The emphasis is placed on describing situations in which each method and its variants were used. These basic immunological methods are useful for students and even researchers studying the immune system of human, nice and other species. Different subjects showed not only detailed protocols but also photos or/and shemas used as support to illustrate some knowledge or practical knowledge. I hope that students will find this manual interesting, easy to use contains necessary information to acquire skills in immunological practice. (Author)

  5. Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov chain Monte Carlo sampling

    DEFF Research Database (Denmark)

    Blasone, Roberta-Serena; Vrugt, Jasper A.; Madsen, Henrik

    2008-01-01

    propose an alternative strategy to determine the value of the cutoff threshold based on the appropriate coverage of the resulting uncertainty bounds. We demonstrate the superiority of this revised GLUE method with three different conceptual watershed models of increasing complexity, using both synthetic......In the last few decades hydrologists have made tremendous progress in using dynamic simulation models for the analysis and understanding of hydrologic systems. However, predictions with these models are often deterministic and as such they focus on the most probable forecast, without an explicit...... of applications. However, the MC based sampling strategy of the prior parameter space typically utilized in GLUE is not particularly efficient in finding behavioral simulations. This becomes especially problematic for high-dimensional parameter estimation problems, and in the case of complex simulation models...

  6. Generalized Information Theory Meets Human Cognition: Introducing a Unified Framework to Model Uncertainty and Information Search.

    Science.gov (United States)

    Crupi, Vincenzo; Nelson, Jonathan D; Meder, Björn; Cevolani, Gustavo; Tentori, Katya

    2018-06-17

    Searching for information is critical in many situations. In medicine, for instance, careful choice of a diagnostic test can help narrow down the range of plausible diseases that the patient might have. In a probabilistic framework, test selection is often modeled by assuming that people's goal is to reduce uncertainty about possible states of the world. In cognitive science, psychology, and medical decision making, Shannon entropy is the most prominent and most widely used model to formalize probabilistic uncertainty and the reduction thereof. However, a variety of alternative entropy metrics (Hartley, Quadratic, Tsallis, Rényi, and more) are popular in the social and the natural sciences, computer science, and philosophy of science. Particular entropy measures have been predominant in particular research areas, and it is often an open issue whether these divergences emerge from different theoretical and practical goals or are merely due to historical accident. Cutting across disciplinary boundaries, we show that several entropy and entropy reduction measures arise as special cases in a unified formalism, the Sharma-Mittal framework. Using mathematical results, computer simulations, and analyses of published behavioral data, we discuss four key questions: How do various entropy models relate to each other? What insights can be obtained by considering diverse entropy models within a unified framework? What is the psychological plausibility of different entropy models? What new questions and insights for research on human information acquisition follow? Our work provides several new pathways for theoretical and empirical research, reconciling apparently conflicting approaches and empirical findings within a comprehensive and unified information-theoretic formalism. Copyright © 2018 Cognitive Science Society, Inc.

  7. [Expectation for JSPN's contribution following revision of General Principles for Suicide Prevention Policy].

    Science.gov (United States)

    Takeshima, Tadashi

    2014-01-01

    Japan's national suicide prevention efforts following the 1998 surge in the number of suicide deaths can be divided into three stages: the first stage administrated mainly by the health ministry (1998-2005), the second and transitional stage when it was upgraded to a full governmental issue (2005-2006), and the third and present stage following the promulgation of the Basic Act for Suicide Prevention in 2006. In June 2007, the General Principles for Suicide Prevention Policy (GPSP), a guideline on how the national government should act to promote suicide prevention, was announced, urging local governments to tackle the problem of suicide. The GPSP was set to be revised after around five years from its publication, and, thus, a revised GPSP was published in August of 2012. Based on the five years of challenges, the revised GPSP states that suicide prevention strategies should move on to more practical and community-oriented ones. The National Center of Neurology and Psychiatry (NCNP), through its Center for Suicide Prevention, played a coordinating role in putting forward a proposal for the revision, working with 29 academic societies including the Japanese Society of Psychiatry and Neurology (JSPN). In February 2013, by further developing the relationships with academic societies, etc., which were forged in the above-mentioned process, NCNP set up the Preparatory Committee for the Evidence-based Suicide Prevention Consortium in order to contribute to suicide prevention strategies from an academic perspective. Meanwhile, in the World Health Organization's 66th World Health Assembly held in May 2013, the Comprehensive Mental Health Action Plan 2013-2020 was approved. Its core principle is "no health without mental health", and it has the following four objectives: (1) to strengthen effective leadership and governance for mental health; (2) to provide comprehensive, integrated, and responsive mental health and social care services in community-based settings; (3) to

  8. Modelling uncertainty with generalized credal sets: application to conjunction and decision

    Science.gov (United States)

    Bronevich, Andrey G.; Rozenberg, Igor N.

    2018-01-01

    To model conflict, non-specificity and contradiction in information, upper and lower generalized credal sets are introduced. Any upper generalized credal set is a convex subset of plausibility measures interpreted as lower probabilities whose bodies of evidence consist of singletons and a certain event. Analogously, contradiction is modelled in the theory of evidence by a belief function that is greater than zero at empty set. Based on generalized credal sets, we extend the conjunctive rule for contradictory sources of information, introduce constructions like natural extension in the theory of imprecise probabilities and show that the model of generalized credal sets coincides with the model of imprecise probabilities if the profile of a generalized credal set consists of probability measures. We give ways how the introduced model can be applied to decision problems.

  9. Interpretive style and intolerance of uncertainty in individuals with anxiety disorders: a focus on generalized anxiety disorder.

    Science.gov (United States)

    Anderson, Kristin G; Dugas, Michel J; Koerner, Naomi; Radomsky, Adam S; Savard, Pierre; Turcotte, Julie

    2012-12-01

    Interpretations of negative, positive, and ambiguous situations were examined in individuals with generalized anxiety disorder (GAD), other anxiety disorders (ANX), and no psychiatric condition (CTRL). Additionally, relationships between specific beliefs about uncertainty (Uncertainty Has Negative Behavioral and Self-Referent Implications [IUS-NI], and Uncertainty Is Unfair and Spoils Everything [IUS-US]) and interpretations were explored. The first hypothesis (that the clinical groups would report more concern for negative, positive, and ambiguous situations than would the CTRL group) was supported. The second hypothesis (that the GAD group would report more concern for ambiguous situations than would the ANX group) was not supported; both groups reported similar levels of concern for ambiguous situations. Exploratory analyses revealed no differences between the GAD and ANX groups in their interpretations of positive and negative situations. Finally, the IUS-US predicted interpretations of negative and ambiguous situations in the full sample, whereas the IUS-NI did not. Clinical implications are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Pleasure and pain: teaching neuroscientific principles of hedonism in a large general education undergraduate course.

    Science.gov (United States)

    Bodnar, Richard J; Stellar, James R; Kraft, Tamar T; Loiacono, Ilyssa; Bajnath, Adesh; Rotella, Francis M; Barrientos, Alicia; Aghanori, Golshan; Olsson, Kerstin; Coke, Tricia; Huang, Donald; Luger, Zeke; Mousavi, Seyed Ali Reza; Dindyal, Trisha; Naqvi, Naveen; Kim, Jung-Yo

    2013-01-01

    In a large (250 registrants) general education lecture course, neuroscience principles were taught by two professors as co-instructors, starting with simple brain anatomy, chemistry, and function, proceeding to basic brain circuits of pleasure and pain, and progressing with fellow expert professors covering relevant philosophical, artistic, marketing, and anthropological issues. With this as a base, the course wove between fields of high relevance to psychology and neuroscience, such as food addiction and preferences, drug seeking and craving, analgesic pain-inhibitory systems activated by opiates and stress, neuroeconomics, unconscious decision-making, empathy, and modern neuroscientific techniques (functional magnetic resonance imaging and event-related potentials) presented by the co-instructors and other Psychology professors. With no formal assigned textbook, all lectures were PowerPoint-based, containing links to supplemental public-domain material. PowerPoints were available on Blackboard several days before the lecture. All lectures were also video-recorded and posted that evening. The course had a Facebook page for after-class conversation and one of the co-instructors communicated directly with students on Twitter in real time during lecture to provide momentary clarification and comment. In addition to graduate student Teaching Assistants (TAs), to allow for small group discussion, ten undergraduate students who performed well in a previous class were selected to serve as discussion leaders. The Discussion Leaders met four times at strategic points over the semester with groups of 20-25 current students, and received one credit of Independent Study, thus creating a course within a course. The course grade was based on weighted scores from two multiple-choice exams and a five-page writing assignment in which each student reviewed three unique, but brief original peer-review research articles (one page each) combined with expository writing on the first

  11. Synchronous machines. General principles and structures; Machines synchrones. Principes generaux et structures

    Energy Technology Data Exchange (ETDEWEB)

    Ben Ahmed, H.; Feld, G.; Multon, B. [Ecole Normale Superieure de Cachan, Lab. SATIE, Systemes et Applications des Technologies de l' Information et de l' Energie, UMR CNRS 8029, 94 (France); Bernard, N. [Institut Universitaire de Saint-Nazaire, Institut de Recherche en Electrotechnique et Electronique de Nantes Atlantique (IREENA), 44 - Nantes (France)

    2005-10-01

    Power generation is mainly performed by synchronous rotating machines which consume about a third of the world primary energy. Electric motors used in industrial applications convert about two thirds of this electricity. Therefore, synchronous machines are present everywhere at different scales, from micro-actuators of few micro-watts to thermo-mechanical production units of more than 1 GW, and represent a large variety of structures which have in common the synchronism between the frequency of the power supply currents and the relative movement of the fixed part with respect to the mobile part. Since several decades, these machines are more and more used as variable speed motors with permanent magnets. The advances in power electronics have contributed to the widening of their use in various applications with a huge range of powers. This article presents the general principle of operation of electromechanical converters of synchronous type: 1 - electromechanical conversion in electromagnetic systems: basic laws and elementary structures (elementary structure, energy conversion cycle, case of a system working in linear magnetic regime), rotating fields structure (magneto-motive force and Ferraris theorem, superficial air gap permeance, air gap magnetic induction, case of a permanent magnet inductor, magnetic energy and electromagnetic torque, conditions for reaching a non-null average torque, application to common cases); 2 - constitution, operation modes and efficiency: constitution and main types of synchronous machines, efficiency - analysis by similarity laws (other expression of the electromagnetic torque, thermal limitation in permanent regime, scale effects, effect of pole pairs number, examples of efficiencies and domains of use), operation modes. (J.S.)

  12. Generalized position-momentum uncertainty products: Inclusion of moments with negative order and application to atoms

    International Nuclear Information System (INIS)

    Angulo, J. C.

    2011-01-01

    Rigorous and universal relationships among radial expectation values of any D-dimensional quantum-mechanical system are obtained, using Renyi-like position-momentum inequalities in an information-theoretical framework. Although the results are expressed in terms of four moments (two in position space and two in the momentum one), especially interesting are the cases that provide expressions of uncertainty in terms of products a > 1/a b > 1/b , widely considered in the literature, including the famous Heisenberg relationship 2 > 2 >≥D 2 /4. Improved bounds for these products have recently been provided, but are always restricted to positive orders a,b>0. The interesting part of this work are the inequalities for negative orders. A study of these relationships is carried out for atomic systems in their ground state. Some results are given in terms of relevant physical quantities, including the kinetic and electron-nucleus attraction energies, the diamagnetic susceptibility, and the height of the peak of the Compton profile, among others.

  13. NSF Workshop Report: Discovering General Principles of Nervous System Organization by Comparing Brain Maps across Species

    Science.gov (United States)

    Striedter, Georg F.; Belgard, T. Grant; Chen, Chun-Chun; Davis, Fred P.; Finlay, Barbara L.; Güntürkün, Onur; Hale, Melina E.; Harris, Julie A.; Hecht, Erin E.; Hof, Patrick R.; Hofmann, Hans A.; Holland, Linda Z.; Iwaniuk, Andrew N.; Jarvis, Erich D.; Karten, Harvey J.; Katz, Paul S.; Kristan, William B.; Macagno, Eduardo R.; Mitra, Partha P.; Moroz, Leonid L.; Preuss, Todd M.; Ragsdale, Clifton W.; Sherwood, Chet C.; Stevens, Charles F.; Stüttgen, Maik C.; Tsumoto, Tadaharu; Wilczynski, Walter

    2014-01-01

    Efforts to understand nervous system structure and function have received new impetus from the federal Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative. Comparative analyses can contribute to this effort by leading to the discovery of general principles of neural circuit design, information processing, and gene-structure-function relationships that are not apparent from studies on single species. We here propose to extend the comparative approach to nervous system ‘maps’ comprising molecular, anatomical, and physiological data. This research will identify which neural features are likely to generalize across species, and which are unlikely to be broadly conserved. It will also suggest causal relationships between genes, development, adult anatomy, physiology, and, ultimately, behavior. These causal hypotheses can then be tested experimentally. Finally, insights from comparative research can inspire and guide technological development. To promote this research agenda, we recommend that teams of investigators coalesce around specific research questions and select a set of ‘reference species’ to anchor their comparative analyses. These reference species should be chosen not just for practical advantages, but also with regard for their phylogenetic position, behavioral repertoire, well-annotated genome, or other strategic reasons. We envision that the nervous systems of these reference species will be mapped in more detail than those of other species. The collected data may range from the molecular to the behavioral, depending on the research question. To integrate across levels of analysis and across species, standards for data collection, annotation, archiving, and distribution must be developed and respected. To that end, it will help to form networks or consortia of researchers and centers for science, technology, and education that focus on organized data collection, distribution, and training. These activities could be

  14. Mutagenicity screening: General principles and minimal criteria. Report of a committee of the European Environmental Mutagen Society

    NARCIS (Netherlands)

    Kilbey, B.J.; Igali, S.; Lohman, P.H.M.

    1978-01-01

    A statement of general principles and minimal criteria for the screening of chemicals for potential mutagenicity in man that may be used as guidelines for regulatory agencies and industrial organisations. To make clear the potentialities and current limitations of short-term mutagenicity testing for

  15. Conception and syllabus on radiochemistry and radioecology principles for general student groups of a university chemical department

    International Nuclear Information System (INIS)

    Bogdanov, R.V.

    1994-01-01

    The problem of basic principles of selecting materials for general courses on diverse subjects in chemical science is discussed. Relying on certain general rules and proceeding from specificity of radiochemistry, the author suggests a variant of syllabus including radiochemical and radioecological blocks intented for 48 academic hours. In methodical respect emphasis is made on theoretical material presentation in close combination with various nuclear methods used in chemical studies. 6 refs., 1 fig

  16. The Principles of Self Creation Cosmology and its Comparison with General Relativity

    OpenAIRE

    Barber, G. A.

    2002-01-01

    There are, at present, several gravitational and cosmological anomalies; the dark energy problem, the lambda problem, accelerating cosmological expansion, the anomalous Pioneer spacecraft acceleration, a spin-up of the Earth and an apparent variation of G observed from analysis of the evolution of planetary longitudes. These conundrums may be resolved in the theory of Self Creation Cosmology, in which the Principle of Mutual Interaction subsumes both Mach's Principle and the Local Conservatio...

  17. Uncertainty principle, steady state and spatiotemporal evolution in the systemic analysis of the socioenvironmental relations in tourism.

    Directory of Open Access Journals (Sweden)

    Heros Augusto Santos Lobo

    2012-04-01

    Full Text Available The general theory of systems is based in the integrated analysis of the spatiotemporal relations among the components, the system matrix and also the arising processes. In tourist systems, the current studies are focused on the description of its components and in some of its interaction relationships. The present contribution focuses on the processes between the components and the matrix of the tourist systems, considering the inherent complexity of open systems, its homeostasis and entropy in function of the carrying capacity of processing the received inputs, and also some questions linked to the steady state, the self-maintenance and the collapse of tourist system generated by structural-deterministic or stochastic causes. In the final considerations, the low similarity of the processes developed in different tourist systems and also in different spatiotemporal conditions in the same system are raised, highlighting the practical impossibility of universal models generation to the tourist systems.

  18. Generalization of Abel's mechanical problem: The extended isochronicity condition and the superposition principle

    Energy Technology Data Exchange (ETDEWEB)

    Kinugawa, Tohru, E-mail: kinugawa@phoenix.kobe-u.ac.jp [Institute for Promotion of Higher Education, Kobe University, Kobe 657-8501 (Japan)

    2014-02-15

    This paper presents a simple but nontrivial generalization of Abel's mechanical problem, based on the extended isochronicity condition and the superposition principle. There are two primary aims. The first one is to reveal the linear relation between the transit-time T and the travel-length X hidden behind the isochronicity problem that is usually discussed in terms of the nonlinear equation of motion (d{sup 2}X)/(dt{sup 2}) +(dU)/(dX) =0 with U(X) being an unknown potential. Second, the isochronicity condition is extended for the possible Abel-transform approach to designing the isochronous trajectories of charged particles in spectrometers and/or accelerators for time-resolving experiments. Our approach is based on the integral formula for the oscillatory motion by Landau and Lifshitz [Mechanics (Pergamon, Oxford, 1976), pp. 27–29]. The same formula is used to treat the non-periodic motion that is driven by U(X). Specifically, this unknown potential is determined by the (linear) Abel transform X(U) ∝ A[T(E)], where X(U) is the inverse function of U(X), A=(1/√(π))∫{sub 0}{sup E}dU/√(E−U) is the so-called Abel operator, and T(E) is the prescribed transit-time for a particle with energy E to spend in the region of interest. Based on this Abel-transform approach, we have introduced the extended isochronicity condition: typically, τ = T{sub A}(E) + T{sub N}(E) where τ is a constant period, T{sub A}(E) is the transit-time in the Abel type [A-type] region spanning X > 0 and T{sub N}(E) is that in the Non-Abel type [N-type] region covering X < 0. As for the A-type region in X > 0, the unknown inverse function X{sub A}(U) is determined from T{sub A}(E) via the Abel-transform relation X{sub A}(U) ∝ A[T{sub A}(E)]. In contrast, the N-type region in X < 0 does not ensure this linear relation: the region is covered with a predetermined potential U{sub N}(X) of some arbitrary choice, not necessarily obeying the Abel-transform relation. In

  19. [The acute (surgical) abdomen - epidemiology, diagnosis and general principles of management].

    Science.gov (United States)

    Grundmann, R T; Petersen, M; Lippert, H; Meyer, F

    2010-06-01

    This review comments on epidemiology, diagnosis and general principles of surgical management in patients with acute abdomen. DEFINITION AND EPIDEMIOLOGY: The most common cause of acute abdominal pain is non-specific abdominal pain (24 - 44.3 % of the study populations), followed by acute appendicitis (15.9 - 28.1 %), acute biliary disease (2.9 - 9.7 %) and bowel obstruction or diverticulitits in elderly patients. Acute appendicitis represents the cause of surgical intervention in two-thirds of the children with acute abdomen. A standardised physical examination combined with ultrasonography (US) represents the initial investigation in patients with acute abdominal pain. Due to the risk associated with radiation and due to the costs, a selective use of CT imaging is recommended. The work-flow given in this paper restricts the use of CT imaging to less than 50 % of patients with acute abdominal pain. Diagnostic laparoscopy should be considered in patients without a specific diagnosis after appropriate imaging and as an alternative to active clinical observation which is the current practice in patients with non-specific abdominal pain. Acute small bowel obstruction has previously been considered as a relative contraindication for laparoscopic management, but it has been shown in the meantime that laparoscopic treatment is an elegant tool for the management of simple band small bowel obstruction. Bedside diagnostic laparoscopy is recommended in intensive care unit (ICU) patients with acute abdomen or sepsis of unknown origin, in suspicion of acute cholecystitis, diffuse gut hypoperfusion and mesenteric ischaemia or in refractory lactic acidosis, especially after cardiac surgery. Early administration of analgesia to patients with acute abdominal pain in the emergency department will reduce the patient's discomfort without impairing clinically important diagnostic accuracy and is recommended on the basis of some prospective randomised trials. However, the impact on

  20. Temperature effects on the generalized planar fault energies and twinnabilities of Al, Ni and Cu: First principles calculations

    KAUST Repository

    Liu, Lili

    2014-06-01

    Based on the quasiharmonic approach from first-principles phonon calculations, the volume versus temperature relations for Al, Ni and Cu are obtained. Using the equilibrium volumes at temperature T, the temperature dependences of generalized planar fault energies have also been calculated by first-principles calculations. It is found that the generalized planar fault energies reduce slightly with increasing temperature. Based on the calculated generalized planar fault energies, the twinnabilities of Al, Ni and Cu are discussed with the three typical criteria for crack tip twinning, grain boundary twinning and inherent twinning at different temperatures. The twinnabilities of Al, Ni and Cu also decrease slightly with increasing temperature. Ni and Cu have the inherent twinnabilities. But, Al does not exhibit inherent twinnability. These results are in agreement with the previous theoretical studies at 0 K and experimental observations at ambient temperature. © 2014 Elsevier B.V. All rights reserved.

  1. Temperature effects on the generalized planar fault energies and twinnabilities of Al, Ni and Cu: First principles calculations

    KAUST Repository

    Liu, Lili; Wang, Rui; Wu, Xiaozhi; Gan, Liyong; Wei, Qunyi

    2014-01-01

    Based on the quasiharmonic approach from first-principles phonon calculations, the volume versus temperature relations for Al, Ni and Cu are obtained. Using the equilibrium volumes at temperature T, the temperature dependences of generalized planar fault energies have also been calculated by first-principles calculations. It is found that the generalized planar fault energies reduce slightly with increasing temperature. Based on the calculated generalized planar fault energies, the twinnabilities of Al, Ni and Cu are discussed with the three typical criteria for crack tip twinning, grain boundary twinning and inherent twinning at different temperatures. The twinnabilities of Al, Ni and Cu also decrease slightly with increasing temperature. Ni and Cu have the inherent twinnabilities. But, Al does not exhibit inherent twinnability. These results are in agreement with the previous theoretical studies at 0 K and experimental observations at ambient temperature. © 2014 Elsevier B.V. All rights reserved.

  2. Group cognitive behavioral therapy targeting intolerance of uncertainty: a randomized trial for older Chinese adults with generalized anxiety disorder.

    Science.gov (United States)

    Hui, Chen; Zhihui, Yang

    2017-12-01

    China has entered the aging society, but the social support systems for the elderly are underdeveloped, which may make the elderly feel anxiety about their health and life quality. Given the prevalence of generalized anxiety disorder (GAD) in the elderly, it is very important to pay more attention to the treatment for old adults. Although cognitive behavioral therapy targeting intolerance of uncertainty (CBT-IU) has been applied to different groups of patients with GAD, few studies have been performed to date. In addition, the effects of CBT-IU are not well understood, especially when applied to older adults with GAD. Sixty-three Chinese older adults with a principal diagnosis of GAD were enrolled. Of these, 32 were randomized to receive group CBT-IU (intervention group) and 31 were untreated (control group). GAD and related symptoms were assessed using the Penn State Worry Questionnaire, Intolerance of Uncertainty Scale-Chinese Version, Beck Anxiety Inventory, Beck Depression Inventory, Why Worry-II scale, Cognitive Avoidance Questionnaire, Generalized Anxiety Disorder Questionnaire-IV, and Generalized Anxiety Disorder Severity Scale across the intervention. The changes between pre and after the intervention were collected, as well as the six-month follow-up. F test and repeated-measures ANOVA were conducted to analyze the data. Compared to control group, the measures' scores of experimental group decreased significantly after the intervention and six-month follow-up. Besides the main effects for time and group were significant, the interaction effect for group × time was also significant. These results indicated the improvement of the CBT-IU group and the persistence of effect after six months. Group CBT-IU is effective in Chinese older adults with GAD. The effects of CBT-IU on GAD symptoms persist for at least six months after treatment.

  3. Implementation of Supply Chain Management (SCM in pharmaceutical company, general principles and case study

    Directory of Open Access Journals (Sweden)

    Zoran Nakov

    2014-12-01

    Full Text Available Supply Chain Management (SCM in pharmaceutical industry is defined as a “responsible SCM” and its implementation is according to the principles of: business ethics, rights of labor and principles of healthy and safe working environment. Pharmaceutical companies with implemented “responsible SCM” have to use management systems to facilitate continuous improvement in accordance with their working principles. The main purpose of this management system is to ensure the consistency, reliability and continuous improvement of all workflows within an organization.The analyzed case describes the project of European generic pharmaceutical company, which intends to implement best practice SCM operations for five European manufacturing sites and European logistics organizations (active ingredients supply, distribution centers, affiliate customers and third party manufacturers. The main objectives of the project were the creation of the future improved To-Be situation through implementation of new SCM models to the existing To-Day situation.

  4. Oncology. Pt. 1. General part, epidemiology - pathogenesis - basic principles of therapy. 2. upd. ed.

    International Nuclear Information System (INIS)

    Hiddemann, Wolfgang; Bartram Claus R.

    2010-01-01

    The book Oncology is aimed to communicate the compiled knowledge on tumor development and cancer: fundamental knowledge base, practice related know-how for diagnostics and therapy. Part 1 includes the following chapters: epidemiology and pathogenesis, basic principles of diagnostics, basic principles of therapy, complication of malign growth, tumors in the gastrointestinal tract, female genital carcinomas, kidney and urinary tract carcinomas, respiratory tract and lung carcinomas, carcinomas in the head - neck area, bone and soft tissue carcinomas, pediatric tumors, hematological neoplasm, other carcinomas. The book can be used as reference for clinical work. [de

  5. Fermat principles in general relativity and the existence of light rays on Lorentzian manifolds

    International Nuclear Information System (INIS)

    Fortunato, D.; Masiello, A.

    1995-01-01

    In this paper we review some results on the existence and multiplicity of null geodesics (light rays) joining a point with a timelike curve on a Lorentzian manifold. Moreover a Morse Theory for such geodesics is presented. A variational principle, which is a variant of the classical Fermat principle in optics, allows to characterize the null geodesics joining a point with a timelike curve as the critical points of a functional on an infinite dimensional manifold. Global variational methods are used to get the existence results and Morse Theory. Such results cover a class of Lorentzian manifolds including Schwarzschild, Reissner-Nordstroem and Kerr space-time. (author)

  6. The Development of General Principles for EU Competition Law Enforcement - The protection of legal professional privilege

    NARCIS (Netherlands)

    Frese, M.J.

    2011-01-01

    This paper discusses the scope of the EU principle of legal professional privilege ('LPP') and the mechanisms for bottom-up integration. LPP refers to the confidential nature of certain written communications between lawyer and client. Bottom-up integration is the process whereby domestic legal

  7. On the general principles and problems of realization of gasers (gamma-lasers)

    International Nuclear Information System (INIS)

    Gol'danskij, V.I.; Kagan, Yu.

    1975-01-01

    An attempt is presented to formulate main principles behind induced generation of gamma quanta and to prove that the requirements thereof are consistent with actual physical parameters. The problems are discussed of constructing the so-called gasers, i.e. lasers operated by gamma transitions, and of their possible applications. (L.O.)

  8. Uncertainty Principles and Fourier Analysis

    Indian Academy of Sciences (India)

    analysis on the part of the reader. Those who are not fa- miliar with Fourier analysis are encouraged to look up Box. 1 along with [3]. (A) Heisenberg's inequality: Let us measure concentration in terms of standard deviation i.e. for a square integrable func-. 00 tion defined on 1R and normalized so that J If(x)12d,x = 1,. -00. 00.

  9. Generally accepted accounting principles according to the IFRS and the czech legislation

    OpenAIRE

    Markéta Bartoňová; Olga Malíková

    2011-01-01

    Accounting as a system provides quantitative information for users about economic processes which proceed in an accounting unit. The main objective of accounting is to observe and describe financial position, efficiency and cash flow of a given entity. This information should be compiled and presented so that users would be able to make qualified decisions. That is why it is necessary that accounting has to be based on the same methods and principles that should ensure that the outputs from a...

  10. On the coherence between high-energy total cross-section data when compared with general principles

    International Nuclear Information System (INIS)

    Gauron, P.; Nicolescu, B.; Paris-6 Univ., 75

    1993-12-01

    An essential model is performed - an independent study of the internal coherence between high-energy total cross-section data by using classes of functions satisfying general principles. The study is practically independent of the ρ-parameter values. This general analysis, made without any fit, reveals certain inconsistencies in the existing set of high-energy data. Some of these inconsistencies are eliminated by giving up arbitrary assumptions sometimes made in 'fitology'. It is shown that the ln 2 s increase of total cross-sections at high energies is clearly favoured when compared with other possible behaviours. (authors). 16 refs., 3 figs

  11. Proposal to change General Consideration 5 and Principle 2 of the International Code of Nomenclature of Prokaryotes.

    Science.gov (United States)

    Oren, Aharon; Garrity, George M

    2014-01-01

    A proposal is submitted to the ICSP to change the wording of General Consideration 5 of the International Code of Nomenclature of Prokaryotes (ICNP), deleting the words Schizophycetes, Cyanophyceae and Cyanobacteria from the groups of organisms whose nomenclature is covered by the Code. It is further proposed to change the terms Zoological Code and International Code of Botanical Nomenclature in General Consideration 5 and in Principle 2 to International Code of Zoological Nomenclature and International Code of Nomenclature for algae, fungi and plants, respectively.

  12. REVISING THE INTOLERANCE OF UNCERTAINTY MODEL OF GENERALIZED ANXIETY DISORDER: EVIDENCE FROM UK AND ITALIAN UNDERGRADUATE SAMPLES

    Directory of Open Access Journals (Sweden)

    Gioia Bottesi

    2016-11-01

    Full Text Available The Intolerance of Uncertainty Model (IUM of Generalized Anxiety Disorder (GAD attributes a key role to Intolerance of Uncertainty (IU, and additional roles to Positive Beliefs about Worry (PBW, Negative Problem Orientation (NPO, and Cognitive Avoidance (CA, in the development and maintenance of worry, the core feature of GAD. Despite the role of the IUM components in worry and GAD has been considerably demonstrated, to date no studies have explicitly assessed whether and how PBW, NPO, and CA might turn IU into worry and somatic anxiety. The current studies sought to re-examine the IUM by assessing the relationships between the model’s components on two different non-clinical samples made up of UK and Italian undergraduate students. One-hundred and seventy UK undergraduates and 488 Italian undergraduates completed measures assessing IU, worry, somatic anxiety, depression, and refined measures of NPO, CA, and PBW. In each sample, two mediation models were conducted in order to test whether PBW, NPO, and CA differentially mediate the path from IU to worry and the path from IU to somatic anxiety. Secondly, it was tested whether IU also moderates the mediations. Main findings showed that, in the UK sample, only NPO mediated the path from IU to worry; as far as concern the path to anxiety, none of the putative mediators were significant. Differently, in the Italian sample PBW and NPO were mediators in the path from IU to worry, whereas only CA played a mediational role in the path from IU to somatic anxiety. Lastly, IU was observed to moderate only the association between NPO and worry, and only in the Italian sample. Some important cross-cultural, conceptual, and methodological issues raised from main results are discussed.

  13. A Generalized Perturbation Theory Solver In Rattlesnake Based On PETSc With Application To TREAT Steady State Uncertainty Quantification

    Energy Technology Data Exchange (ETDEWEB)

    Schunert, Sebastian; Wang, Congjian; Wang, Yaqi; Kong, Fande; Ortensi, Javier; Baker, Benjamin; Gleicher, Frederick; DeHart, Mark; Martineau, Richard

    2017-04-01

    Rattlesnake and MAMMOTH are the designated TREAT analysis tools currently being developed at the Idaho National Laboratory. Concurrent with development of the multi-physics, multi-scale capabilities, sensitivity analysis and uncertainty quantification (SA/UQ) capabilities are required for predicitive modeling of the TREAT reactor. For steady-state SA/UQ, that is essential for setting initial conditions for the transients, generalized perturbation theory (GPT) will be used. This work describes the implementation of a PETSc based solver for the generalized adjoint equations that constitute a inhomogeneous, rank deficient problem. The standard approach is to use an outer iteration strategy with repeated removal of the fundamental mode contamination. The described GPT algorithm directly solves the GPT equations without the need of an outer iteration procedure by using Krylov subspaces that are orthogonal to the operator’s nullspace. Three test problems are solved and provide sufficient verification for the Rattlesnake’s GPT capability. We conclude with a preliminary example evaluating the impact of the Boron distribution in the TREAT reactor using perturbation theory.

  14. A generalized fuzzy credibility-constrained linear fractional programming approach for optimal irrigation water allocation under uncertainty

    Science.gov (United States)

    Zhang, Chenglong; Guo, Ping

    2017-10-01

    The vague and fuzzy parametric information is a challenging issue in irrigation water management problems. In response to this problem, a generalized fuzzy credibility-constrained linear fractional programming (GFCCFP) model is developed for optimal irrigation water allocation under uncertainty. The model can be derived from integrating generalized fuzzy credibility-constrained programming (GFCCP) into a linear fractional programming (LFP) optimization framework. Therefore, it can solve ratio optimization problems associated with fuzzy parameters, and examine the variation of results under different credibility levels and weight coefficients of possibility and necessary. It has advantages in: (1) balancing the economic and resources objectives directly; (2) analyzing system efficiency; (3) generating more flexible decision solutions by giving different credibility levels and weight coefficients of possibility and (4) supporting in-depth analysis of the interrelationships among system efficiency, credibility level and weight coefficient. The model is applied to a case study of irrigation water allocation in the middle reaches of Heihe River Basin, northwest China. Therefore, optimal irrigation water allocation solutions from the GFCCFP model can be obtained. Moreover, factorial analysis on the two parameters (i.e. λ and γ) indicates that the weight coefficient is a main factor compared with credibility level for system efficiency. These results can be effective for support reasonable irrigation water resources management and agricultural production.

  15. When psychologists work with religious clients: applications of the general principles of ethical conduct.

    Science.gov (United States)

    Yarhouse, M A; VanOrman, B T

    1999-12-01

    Psychologists become more effective and relevant when they appreciate that many clients hold religious values and commitments. Greater awareness of religion and religious values in the lives of clients may aid clinicians' efforts to provide more accurate assessments and effective treatment plans. The authors use the American Psychological Association's (1992) "Ethical Principles of Psychologists and Code of Conduct" as a framework to examine many of the ethical issues relevant when psychologists work with religious clients. This article also provides suggestions for ways in which clinicians may obtain the skills needed to offer competent assessments and interventions with religiously committed clients.

  16. On the general principles of health monitoring of population living in NPP environment

    International Nuclear Information System (INIS)

    Dimitrov, P.

    1991-01-01

    The basic principles of health monitoring and its significance as a source of information for the organization and regulation of health control are pointed out. Attention is drawn to the surveillance and quantitative evaluation of the factors affecting individuals, as well as their consequencies. The necessity of determining the real health status of the population, as well as of forecasting its future changes and of evaluating the prognosticated changes is stressed. The nosologic units and classes of diseases, relevant to radiation action, should be put into constant observation. Special attention is paid to the study of demographic indices, congenital malformations, neoplasms of thyroid, lungs, leucoses, osteosarcomas, reproduction ability based on data for sterile marriages, spontaneous abortions, death-borns and perinatal lethality. 9 refs., 1 tab

  17. Role of information theoretic uncertainty relations in quantum theory

    Energy Technology Data Exchange (ETDEWEB)

    Jizba, Petr, E-mail: p.jizba@fjfi.cvut.cz [FNSPE, Czech Technical University in Prague, Břehová 7, 115 19 Praha 1 (Czech Republic); ITP, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin (Germany); Dunningham, Jacob A., E-mail: J.Dunningham@sussex.ac.uk [Department of Physics and Astronomy, University of Sussex, Falmer, Brighton, BN1 9QH (United Kingdom); Joo, Jaewoo, E-mail: j.joo@surrey.ac.uk [Advanced Technology Institute and Department of Physics, University of Surrey, Guildford, GU2 7XH (United Kingdom)

    2015-04-15

    Uncertainty relations based on information theory for both discrete and continuous distribution functions are briefly reviewed. We extend these results to account for (differential) Rényi entropy and its related entropy power. This allows us to find a new class of information-theoretic uncertainty relations (ITURs). The potency of such uncertainty relations in quantum mechanics is illustrated with a simple two-energy-level model where they outperform both the usual Robertson–Schrödinger uncertainty relation and Shannon entropy based uncertainty relation. In the continuous case the ensuing entropy power uncertainty relations are discussed in the context of heavy tailed wave functions and Schrödinger cat states. Again, improvement over both the Robertson–Schrödinger uncertainty principle and Shannon ITUR is demonstrated in these cases. Further salient issues such as the proof of a generalized entropy power inequality and a geometric picture of information-theoretic uncertainty relations are also discussed.

  18. Role of information theoretic uncertainty relations in quantum theory

    International Nuclear Information System (INIS)

    Jizba, Petr; Dunningham, Jacob A.; Joo, Jaewoo

    2015-01-01

    Uncertainty relations based on information theory for both discrete and continuous distribution functions are briefly reviewed. We extend these results to account for (differential) Rényi entropy and its related entropy power. This allows us to find a new class of information-theoretic uncertainty relations (ITURs). The potency of such uncertainty relations in quantum mechanics is illustrated with a simple two-energy-level model where they outperform both the usual Robertson–Schrödinger uncertainty relation and Shannon entropy based uncertainty relation. In the continuous case the ensuing entropy power uncertainty relations are discussed in the context of heavy tailed wave functions and Schrödinger cat states. Again, improvement over both the Robertson–Schrödinger uncertainty principle and Shannon ITUR is demonstrated in these cases. Further salient issues such as the proof of a generalized entropy power inequality and a geometric picture of information-theoretic uncertainty relations are also discussed

  19. Using LIDAR and Quickbird Data to Model Plant Production and Quantify Uncertainties Associated with Wetland Detection and Land Cover Generalizations

    Science.gov (United States)

    Cook, Bruce D.; Bolstad, Paul V.; Naesset, Erik; Anderson, Ryan S.; Garrigues, Sebastian; Morisette, Jeffrey T.; Nickeson, Jaime; Davis, Kenneth J.

    2009-01-01

    Spatiotemporal data from satellite remote sensing and surface meteorology networks have made it possible to continuously monitor global plant production, and to identify global trends associated with land cover/use and climate change. Gross primary production (GPP) and net primary production (NPP) are routinely derived from the MOderate Resolution Imaging Spectroradiometer (MODIS) onboard satellites Terra and Aqua, and estimates generally agree with independent measurements at validation sites across the globe. However, the accuracy of GPP and NPP estimates in some regions may be limited by the quality of model input variables and heterogeneity at fine spatial scales. We developed new methods for deriving model inputs (i.e., land cover, leaf area, and photosynthetically active radiation absorbed by plant canopies) from airborne laser altimetry (LiDAR) and Quickbird multispectral data at resolutions ranging from about 30 m to 1 km. In addition, LiDAR-derived biomass was used as a means for computing carbon-use efficiency. Spatial variables were used with temporal data from ground-based monitoring stations to compute a six-year GPP and NPP time series for a 3600 ha study site in the Great Lakes region of North America. Model results compared favorably with independent observations from a 400 m flux tower and a process-based ecosystem model (BIOME-BGC), but only after removing vapor pressure deficit as a constraint on photosynthesis from the MODIS global algorithm. Fine resolution inputs captured more of the spatial variability, but estimates were similar to coarse-resolution data when integrated across the entire vegetation structure, composition, and conversion efficiencies were similar to upland plant communities. Plant productivity estimates were noticeably improved using LiDAR-derived variables, while uncertainties associated with land cover generalizations and wetlands in this largely forested landscape were considered less important.

  20. General principles of the nuclear criticality safety for handling, processing and transportation fissile materials in the USSR

    International Nuclear Information System (INIS)

    Vnukov, V.S.; Rjazanov, B.G.; Sviridov, V.I.; Frolov, V.V.; Zubkov, Y.N.

    1991-01-01

    The paper describes the general principles of nuclear criticality safety for handling, processing, transportation and fissile materials storing. Measures to limit the consequences of critical accidents are discussed for the fuel processing plants and fissile materials storage. The system of scientific and technical measures on nuclear criticality safety as well as the system of control and state supervision based on the rules, limits and requirements are described. The criticality safety aspects for various stages of handling nuclear materials are considered. The paper gives descriptions of the methods and approaches for critical risk assessments for the processing facilities, plants and storages. (Author)

  1. SU-F-BRCD-08: Uncertainty Quantification by Generalized Polynomial Chaos for MR-Guided Laser Induced Thermal Therapy.

    Science.gov (United States)

    Fahrenholtz, S; Fuentes, D; Stafford, R; Hazle, J

    2012-06-01

    Magnetic resonance-guided laser induced thermal therapy (MRgLITT) is a minimally invasive thermal treatment for metastatic brain lesions, offering an alternative to conventional surgery. The purpose of this investigation is to incorporate uncertainty quantification (UQ) into the biothermal parameters used in the Pennes bioheat transfer equation (BHT), in order to account for imprecise values available in the literature. The BHT is a partial differential equation commonly used in thermal therapy models. MRgLITT was performed on an in vivo canine brain in a previous investigation. The canine MRgLITT was modeled using the BHT. The BHT has four parameters'" microperfusion, conductivity, optical absorption, and optical scattering'"which lack precise measurements in living brain and tumor. The uncertainties in the parameters were expressed as probability distribution functions derived from literature values. A univariate generalized polynomial chaos (gPC) expansion was applied to the stochastic BHT. The gPC approach to UQ provides a novel methodology to calculate spatio-temporal voxel-wise means and variances of the predicted temperature distributions. The performance of the gPC predictions were evaluated retrospectively by comparison with MR thermal imaging (MRTI) acquired during the MRgLITT procedure in the canine model. The comparison was evaluated with root mean square difference (RMSD), isotherm contours, spatial profiles, and z-tests. The peak RMSD was ∼1.5 standard deviations for microperfusion, conductivity, and optical absorption, while optical scattering was ∼2.2 standard deviations. Isotherm contours and spatial profiles of the simulation's predicted mean plus or minus two standard deviations demonstrate the MRTI temperature was enclosed by the model's isotherm confidence interval predictions. An a = 0.01 z-test demonstrates agreement. The application of gPC for UQ is a potentially powerful means for providing predictive simulations despite poorly known

  2. 2 CFR Appendix A to Part 225 - General Principles for Determining Allowable Costs

    Science.gov (United States)

    2010-01-01

    ... based on the fundamental premises that: (1) Governmental units are responsible for the efficient and... reduce the burden associated with maintaining systems for charging administrative costs to Federal... reasonable and necessary for operating these programs, and funds are not used for general expenses required...

  3. Generalization of the Peierls-Bogolyubov inequality by means of a quantum-mechanical variational principle

    International Nuclear Information System (INIS)

    Soldatov, A.V.

    2000-01-01

    The Peierls-Bogolyubov inequality was generalized and a set of inequalities was derived instead, so that every subsequent inequality in this set approximates the quality in question with better precision than the preceding one. These inequalities lead to a sequence of improving upper bounds to the free energy of a quantum system if this system allows representation in terms of coherent states [ru

  4. Principles of proportional recovery after stroke generalize to neglect and aphasia.

    Science.gov (United States)

    Marchi, N A; Ptak, R; Di Pietro, M; Schnider, A; Guggisberg, A G

    2017-08-01

    Motor recovery after stroke can be characterized into two different patterns. A majority of patients recover about 70% of initial impairment, whereas some patients with severe initial deficits show little or no improvement. Here, we investigated whether recovery from visuospatial neglect and aphasia is also separated into two different groups and whether similar proportions of recovery can be expected for the two cognitive functions. We assessed 35 patients with neglect and 14 patients with aphasia at 3 weeks and 3 months after stroke using standardized tests. Recovery patterns were classified with hierarchical clustering and the proportion of recovery was estimated from initial impairment using a linear regression analysis. Patients were reliably clustered into two different groups. For patients in the first cluster (n = 40), recovery followed a linear model where improvement was proportional to initial impairment and achieved 71% of maximal possible recovery for both cognitive deficits. Patients in the second cluster (n = 9) exhibited poor recovery (aphasia after stroke shows the same dichotomy and proportionality as observed in motor recovery. This is suggestive of common underlying principles of plasticity, which apply to motor and cognitive functions. © 2017 EAN.

  5. Extending the generality of leaf economic design principles in the cycads, an ancient lineage.

    Science.gov (United States)

    Zhang, Yong-Jiang; Cao, Kun-Fang; Sack, Lawren; Li, Nan; Wei, Xue-Mei; Goldstein, Guillermo

    2015-04-01

    Cycads are the most ancient lineage of living seed plants, but the design of their leaves has received little study. We tested whether cycad leaves are governed by the same fundamental design principles previously established for ferns, conifers and angiosperms, and characterized the uniqueness of this relict lineage in foliar trait relationships. Leaf structure, photosynthesis, hydraulics and nutrient composition were studied in 33 cycad species from nine genera and three families growing in two botanical gardens. Cycads varied greatly in leaf structure and physiology. Similarly to other lineages, light-saturated photosynthetic rate per mass (Am ) was related negatively to leaf mass per area and positively to foliar concentrations of chlorophyll, nitrogen (N), phosphorus and iron, but unlike angiosperms, leaf photosynthetic rate was not associated with leaf hydraulic conductance. Cycads had lower photosynthetic N use efficiency and higher photosynthetic performance relative to hydraulic capacity compared with other lineages. These findings extend the relationships shown for foliar traits in angiosperms to the cycads. This functional convergence supports the modern synthetic understanding of leaf design, with common constraints operating across lineages, even as they highlight exceptional aspects of the biology of this key relict lineage. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  6. General principles of control method of passenger car bodies bending vibration parameters

    Science.gov (United States)

    Skachkov, A. N.; Samoshkin, S. L.; Korshunov, S. D.; Kobishchanov, V. V.; Antipin, D. Ya

    2018-03-01

    Weight reduction of passenger cars is a promising direction of reducing the cost of their production and increasing transportation profitability. One way to reduce the weight of passenger cars is the lightweight metal body design by means of using of high-strength aluminum alloys, low-alloy and stainless steels. However, it has been found that the limit of the lightweight metal body design is not determined by the total mode of deformation, but its flexural rigidity, as the latter influences natural frequencies of body bending vibrations. With the introduction of mandatory certification for compliance with the Customs Union technical regulations, the following index was confirmed: “first natural frequency of body bending vibrations in the vertical plane”. This is due to the fact that vibration, noise and car motion depend on this index. To define the required indexes, the principles of the control method of bending vibration parameters of passenger car bodies are proposed in this paper. This method covers all stages of car design – development of design documentation, manufacturing and testing experimental and pilot models, launching the production. The authors also developed evaluation criteria and the procedure of using the results for introduction of control method of bending vibration parameters of passenger car bodies.

  7. Gravitational quadrupolar coupling to equivalence principle test masses: the general case

    CERN Document Server

    Lockerbie, N A

    2002-01-01

    This paper discusses the significance of the quadrupolar gravitational force in the context of test masses destined for use in equivalence principle (EP) experiments, such as STEP and MICROSCOPE. The relationship between quadrupolar gravity and rotational inertia for an arbitrary body is analysed, and the special, gravitational, role of a body's principal axes of inertia is revealed. From these considerations the gravitational quadrupolar force acting on a cylindrically symmetrical body, due to a point-like attracting source mass, is derived in terms of the body's mass quadrupole tensor. The result is shown to be in agreement with that obtained from MacCullagh's formula (as the starting point). The theory is then extended to cover the case of a completely arbitrary solid body, and a compact formulation for the quadrupolar force on such a body is derived. A numerical example of a dumb-bell's attraction to a local point-like gravitational source is analysed using this theory. Close agreement is found between th...

  8. Gravitational quadrupolar coupling to equivalence principle test masses: the general case

    International Nuclear Information System (INIS)

    Lockerbie, N A

    2002-01-01

    This paper discusses the significance of the quadrupolar gravitational force in the context of test masses destined for use in equivalence principle (EP) experiments, such as STEP and MICROSCOPE. The relationship between quadrupolar gravity and rotational inertia for an arbitrary body is analysed, and the special, gravitational, role of a body's principal axes of inertia is revealed. From these considerations the gravitational quadrupolar force acting on a cylindrically symmetrical body, due to a point-like attracting source mass, is derived in terms of the body's mass quadrupole tensor. The result is shown to be in agreement with that obtained from MacCullagh's formula (as the starting point). The theory is then extended to cover the case of a completely arbitrary solid body, and a compact formulation for the quadrupolar force on such a body is derived. A numerical example of a dumb-bell's attraction to a local point-like gravitational source is analysed using this theory. Close agreement is found between the resulting quadrupolar force on the body and the difference between the net and the monopolar forces acting on it, underscoring the utility of the approach. A dynamical technique for experimentally obtaining the mass quadrupole tensors of EP test masses is discussed, and a means of validating the results is noted

  9. Generalization of the variational principle and the Hohenberg and Kohn theorems for excited states of Fermion systems

    Energy Technology Data Exchange (ETDEWEB)

    Gonis, A., E-mail: gonis@comcast.net

    2017-01-05

    Through the entanglement of a collection of K non-interacting replicas of a system of N interacting Fermions, and making use of the properties of reduced density matrices the variational principle and the theorems of Hohenberg and Kohn are generalized to excited states. The generalization of the variational principle makes use of the natural orbitals of an N-particle density matrix describing the state of lowest energy of the entangled state. The extension of the theorems of Hohenberg and Kohn is based on the ground-state formulation of density functional theory but with a new interpretation of the concept of a ground state: It is the state of lowest energy of a system of KN Fermions that is described in terms of the excited states of the N-particle interacting system. This straightforward implementation of the line of reasoning of ground-state density functional theory to a new domain leads to a unique and logically valid extension of the theory to excited states that allows the systematic treatment of all states in the spectrum of the Hamiltonian of an interacting system. - Highlights: • Use of entanglement in connection with the properties of density matrices. • An anti-symmetric entangled state of order KN expressed in terms of excited states of an interacting N-particle system.

  10. Does model fit decrease the uncertainty of the data in comparison with a general non-model least squares fit?

    International Nuclear Information System (INIS)

    Pronyaev, V.G.

    2003-01-01

    The information entropy is taken as a measure of knowledge about the object and the reduced univariante variance as a common measure of uncertainty. Covariances in the model versus non-model least square fits are discussed

  11. [General principles of treatment of mine-explosive wounds of ENT-organs].

    Science.gov (United States)

    Beliakin, S A; Egorov, V I; Luk'ianenko, A V

    2011-11-01

    The relevance of diagnosis and treatment of mine-explosive wounds ENT high. Treatment of explosives, Russian Academy of Sciences-the challenge and consists of a series of sequential steps that need to be applied, taking into account all the particularities of each injury. Concepts of specialized surgical care of the wounded are formulated. The main are: 1) one-stage surgical treatment of comprehensive primary wounds with detent of bone fragments, reconstruction of defects of soft tissue with positive wound and related fascial spatium drainage; 2) general intensive care during the postoperative period, including water-electrolytic balance correction, sympathetic block, controlled hemodilution and adequate analgesia; 3) intensive therapy of postoperative wounds, aimed at creating favorable conditions for its healing and includes targeted selective influence on hemophoresis in the wound and the local proteoclastic processes.

  12. General existence principles for Stieltjes differential equations with applications to mathematical biology

    Science.gov (United States)

    López Pouso, Rodrigo; Márquez Albés, Ignacio

    2018-04-01

    Stieltjes differential equations, which contain equations with impulses and equations on time scales as particular cases, simply consist on replacing usual derivatives by derivatives with respect to a nondecreasing function. In this paper we prove new existence results for functional and discontinuous Stieltjes differential equations and we show that such general results have real world applications. Specifically, we show that Stieltjes differential equations are specially suitable to study populations which exhibit dormant states and/or very short (impulsive) periods of reproduction. In particular, we construct two mathematical models for the evolution of a silkworm population. Our first model can be explicitly solved, as it consists on a linear Stieltjes equation. Our second model, more realistic, is nonlinear, discontinuous and functional, and we deduce the existence of solutions by means of a result proven in this paper.

  13. INTRA-ABDOMINAL INFECTION AND ACUTE ABDOMEN-EPIDEMIOLOGY, DIAGNOSIS AND GENERAL PRINCIPLES OF SURGICAL MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Jovanović Dušan

    2015-03-01

    Full Text Available Intra-abdominal infections are multifactorial and present an complex inflammatory response of the peritoneum to microorganisms followed by exudation in the abdominal cavity and systemic response Despite advances in management and critical care of patients with acute generalized peritonitis due to hollow viscus perforation, prognosis is still very poor, with high mortality rate. Early detection and adequate treatment is essential to minimize complications in the patient with acute abdomen. Prognostic evaluation of complicated IAI by modern scoring systems is important to assess the severity and the prognosis of the disease. Control of the septic source can be achieved either by nonoperative or operative means. Nonoperative interventional procedures include percutaneous drainages of abscesses. The management of primary peritonitis is non-surgical and antibiotic- treatment. The management of secondary peritonitis include surgery to control the source of infection, removal of toxins, bacteria, and necrotic tissue, antibiotic therapy, supportive therapy and nutrition. "Source control" is sine qua non of success and adequate surgical procedure involves closure or resection of any openings into the gastrointestinal tract, resection of inflamed tissue and drainage of all abdominal and pelivic collections.

  14. The Revised Guiding Principles and General Operating Rules to Govern the Provision of Technical Assistance by the Agency. Latest Status (Chinese Edition)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-03-15

    The Revised Guiding Principles and General Operating Rules to Govern the Provision of Technical Assistance by the Agency were approved by the Board of Governors on 21 February 1979. The test is reproduced herein for the information of all Members. The provisions established by the Board of Governors on 24 September 1977 for the application of safeguards in relation to the granting of technical assistance are also reproduced in the Annex to the Revised Guiding Principles and General Operating Rules.

  15. The Revised Guiding Principles and General Operating Rules to Govern the Provision of Technical Assistance by the Agency. Latest Status (Spanish Edition)

    International Nuclear Information System (INIS)

    1979-03-01

    The Revised Guiding Principles and General Operating Rules to Govern the Provision of Technical Assistance by the Agency were approved by the Board of Governors on 21 February 1979. The test is reproduced herein for the information of all Members. The provisions established by the Board of Governors on 24 September 1977 for the application of safeguards in relation to the granting of technical assistance are also reproduced in the Annex to the Revised Guiding Principles and General Operating Rules. [es

  16. The Revised Guiding Principles and General Operating Rules to Govern the Provision of Technical Assistance by the Agency. Latest Status (Chinese Edition)

    International Nuclear Information System (INIS)

    1979-03-01

    The Revised Guiding Principles and General Operating Rules to Govern the Provision of Technical Assistance by the Agency were approved by the Board of Governors on 21 February 1979. The test is reproduced herein for the information of all Members. The provisions established by the Board of Governors on 24 September 1977 for the application of safeguards in relation to the granting of technical assistance are also reproduced in the Annex to the Revised Guiding Principles and General Operating Rules.

  17. The Revised Guiding Principles and General Operating Rules to Govern the Provision of Technical Assistance by the Agency. Latest Status (Arabic Edition)

    International Nuclear Information System (INIS)

    1979-03-01

    The Revised Guiding Principles and General Operating Rules to Govern the Provision of Technical Assistance by the Agency were approved by the Board of Governors on 21 February 1979. The test is reproduced herein for the information of all Members. The provisions established by the Board of Governors on 24 September 1977 for the application of safeguards in relation to the granting of technical assistance are also reproduced in the Annex to the Revised Guiding Principles and General Operating Rules.

  18. The Revised Guiding Principles and General Operating Rules to Govern the Provision of Technical Assistance by the Agency. Latest Status (French Edition)

    International Nuclear Information System (INIS)

    1979-03-01

    The Revised Guiding Principles and General Operating Rules to Govern the Provision of Technical Assistance by the Agency were approved by the Board of Governors on 21 February 1979. The test is reproduced herein for the information of all Members. The provisions established by the Board of Governors on 24 September 1977 for the application of safeguards in relation to the granting of technical assistance are also reproduced in the Annex to the Revised Guiding Principles and General Operating Rules. [fr

  19. The Revised Guiding Principles and General Operating Rules to Govern the Provision of Technical Assistance by the Agency. Latest Status (Russian Edition)

    International Nuclear Information System (INIS)

    1979-03-01

    The Revised Guiding Principles and General Operating Rules to Govern the Provision of Technical Assistance by the Agency were approved by the Board of Governors on 21 February 1979. The test is reproduced herein for the information of all Members. The provisions established by the Board of Governors on 24 September 1977 for the application of safeguards in relation to the granting of technical assistance are also reproduced in the Annex to the Revised Guiding Principles and General Operating Rules. [ru

  20. Viewing brain processes as Critical State Transitions across levels of organization: Neural events in Cognition and Consciousness, and general principles.

    Science.gov (United States)

    Werner, Gerhard

    2009-04-01

    In this theoretical and speculative essay, I propose that insights into certain aspects of neural system functions can be gained from viewing brain function in terms of the branch of Statistical Mechanics currently referred to as "Modern Critical Theory" [Stanley, H.E., 1987. Introduction to Phase Transitions and Critical Phenomena. Oxford University Press; Marro, J., Dickman, R., 1999. Nonequilibrium Phase Transitions in Lattice Models. Cambridge University Press, Cambridge, UK]. The application of this framework is here explored in two stages: in the first place, its principles are applied to state transitions in global brain dynamics, with benchmarks of Cognitive Neuroscience providing the relevant empirical reference points. The second stage generalizes to suggest in more detail how the same principles could also apply to the relation between other levels of the structural-functional hierarchy of the nervous system and between neural assemblies. In this view, state transitions resulting from the processing at one level are the input to the next, in the image of a 'bucket brigade', with the content of each bucket being passed on along the chain, after having undergone a state transition. The unique features of a process of this kind will be discussed and illustrated.

  1. Improving ability measurement in surveys by following the principles of IRT: The Wordsum vocabulary test in the General Social Survey.

    Science.gov (United States)

    Cor, M Ken; Haertel, Edward; Krosnick, Jon A; Malhotra, Neil

    2012-09-01

    Survey researchers often administer batteries of questions to measure respondents' abilities, but these batteries are not always designed in keeping with the principles of optimal test construction. This paper illustrates one instance in which following these principles can improve a measurement tool used widely in the social and behavioral sciences: the GSS's vocabulary test called "Wordsum". This ten-item test is composed of very difficult items and very easy items, and item response theory (IRT) suggests that the omission of moderately difficult items is likely to have handicapped Wordsum's effectiveness. Analyses of data from national samples of thousands of American adults show that after adding four moderately difficult items to create a 14-item battery, "Wordsumplus" (1) outperformed the original battery in terms of quality indicators suggested by classical test theory; (2) reduced the standard error of IRT ability estimates in the middle of the latent ability dimension; and (3) exhibited higher concurrent validity. These findings show how to improve Wordsum and suggest that analysts should use a score based on all 14 items instead of using the summary score provided by the GSS, which is based on only the original 10 items. These results also show more generally how surveys measuring abilities (and other constructs) can benefit from careful application of insights from the contemporary educational testing literature. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. The certainty principle (review)

    OpenAIRE

    Arbatsky, D. A.

    2006-01-01

    The certainty principle (2005) allowed to conceptualize from the more fundamental grounds both the Heisenberg uncertainty principle (1927) and the Mandelshtam-Tamm relation (1945). In this review I give detailed explanation and discussion of the certainty principle, oriented to all physicists, both theorists and experimenters.

  3. First principle study on generalized-stacking-fault energy surfaces of B2-AlRE intermetallic compounds

    Science.gov (United States)

    Li, Shaorong; Wang, Shaofeng; Wang, Rui

    2011-12-01

    First-principles calculations are used to predict the generalized-stacking-fault energy (GSFE) surfaces of AlRE intermetallics. The calculations employ the projector augmented-wave (PAW) method within the generalized gradient approximation (GGA) using the density functional theory (DFT). GSFE curves along {1 1 0} direction, {1 1 0} direction and {1 1 0} direction have been calculated. The fitted GSFE surfaces have been obtained from the Fourier series based on the translational symmetry. In order to illuminate the reasonable of our computational accuracy, we have compared our theoretical results of B2 intermetallics YCu with the previous calculated results. The unstable-stacking-fault energy (γus) on the {1 1 0} plane has the laws of AlPr, and directions. For the antiphase boundary (APB) energy, that of AlSc is the lowest in the calculated AlRE intermetallics. So the superdislocation with the Burgers vector along direction of AlSc will easily split into two superpartials.

  4. On the Action of the Radiation Field Generated by a Traveling-Wave Element and Its Connection to the Time Energy Uncertainty Principle, Elementary Charge and the Fine Structure Constant

    Directory of Open Access Journals (Sweden)

    Vernon Cooray

    2017-02-01

    Full Text Available Recently, we published two papers in this journal. One of the papers dealt with the action of the radiation fields generated by a traveling-wave element and the other dealt with the momentum transferred by the same radiation fields and their connection to the time energy uncertainty principle. The traveling-wave element is defined as a conductor through which a current pulse propagates with the speed of light in free space from one end of the conductor to the other without attenuation. The goal of this letter is to combine the information provided in these two papers together and make conclusive statements concerning the connection between the energy dissipated by the radiation fields, the time energy uncertainty principle and the elementary charge. As we will show here, the results presented in these two papers, when combined together, show that the time energy uncertainty principle can be applied to the classical radiation emitted by a traveling-wave element and it results in the prediction that the smallest charge associated with the current that can be detected using radiated energy as a vehicle is on the order of the elementary charge. Based on the results, an expression for the fine structure constant is obtained. This is the first time that an order of magnitude estimation of the elementary charge based on electromagnetic radiation fields is obtained. Even though the results obtained in this paper have to be considered as order of magnitude estimations, a strict interpretation of the derived equations shows that the fine structure constant or the elementary charge may change as the size or the age of the universe increases.

  5. Uncertainty in prediction and in inference

    International Nuclear Information System (INIS)

    Hilgevoord, J.; Uffink, J.

    1991-01-01

    The concepts of uncertainty in prediction and inference are introduced and illustrated using the diffraction of light as an example. The close relationship between the concepts of uncertainty in inference and resolving power is noted. A general quantitative measure of uncertainty in inference can be obtained by means of the so-called statistical distance between probability distributions. When applied to quantum mechanics, this distance leads to a measure of the distinguishability of quantum states, which essentially is the absolute value of the matrix element between the states. The importance of this result to the quantum mechanical uncertainty principle is noted. The second part of the paper provides a derivation of the statistical distance on the basis of the so-called method of support

  6. Quantum Uncertainty and Fundamental Interactions

    Directory of Open Access Journals (Sweden)

    Tosto S.

    2013-04-01

    Full Text Available The paper proposes a simplified theoretical approach to infer some essential concepts on the fundamental interactions between charged particles and their relative strengths at comparable energies by exploiting the quantum uncertainty only. The worth of the present approach relies on the way of obtaining the results, rather than on the results themselves: concepts today acknowledged as fingerprints of the electroweak and strong interactions appear indeed rooted in the same theoretical frame including also the basic principles of special and general relativity along with the gravity force.

  7. First-principles model potentials for lattice-dynamical studies: general methodology and example of application to ferroic perovskite oxides.

    Science.gov (United States)

    Wojdeł, Jacek C; Hermet, Patrick; Ljungberg, Mathias P; Ghosez, Philippe; Íñiguez, Jorge

    2013-07-31

    We present a scheme to construct model potentials, with parameters computed from first principles, for large-scale lattice-dynamical simulations of materials. We mimic the traditional solid-state approach to the investigation of vibrational spectra, i.e., we start from a suitably chosen reference configuration of the compound and describe its energy as a function of arbitrary atomic distortions by means of a Taylor series. Such a form of the potential-energy surface is general, trivial to formulate for any material, and physically transparent. Further, such models involve clear-cut approximations, their precision can be improved in a systematic fashion, and their simplicity allows for convenient and practical strategies to compute/fit the potential parameters. We illustrate our scheme with two challenging cases in which the model potential is strongly anharmonic, namely, the ferroic perovskite oxides PbTiO3 and SrTiO3. Studying these compounds allows us to better describe the connection between the so-called effective-Hamiltonian method and ours (which may be seen as an extension of the former), and to show the physical insight and predictive power provided by our approach-e.g., we present new results regarding the factors controlling phase-transition temperatures, novel phase transitions under elastic constraints, an improved treatment of thermal expansion, etc.

  8. Chemical potential for the interacting classical gas and the ideal quantum gas obeying a generalized exclusion principle

    International Nuclear Information System (INIS)

    Sevilla, F J; Olivares-Quiroz, L

    2012-01-01

    In this work, we address the concept of the chemical potential μ in classical and quantum gases towards the calculation of the equation of state μ = μ(n, T) where n is the particle density and T the absolute temperature using the methods of equilibrium statistical mechanics. Two cases seldom discussed in elementary textbooks are presented with detailed calculations. The first one refers to the explicit calculation of μ for the interacting classical gas exemplified by van der Waals gas. For this purpose, we used the method described by van Kampen (1961 Physica 27 783). The second one refers to the calculation of μ for ideal quantum gases that obey a generalized Pauli's exclusion principle that leads to statistics that go beyond the Bose-Einstein and Fermi-Dirac cases. The audience targeted in this work corresponds mainly to advanced undergraduates and graduate students in the physical-chemical sciences but it is not restricted to them. In regard of this, we have put a special emphasis on showing some additional details of calculations that usually do not appear explicitly in textbooks. (paper)

  9. Distributed Time-Varying Formation Robust Tracking for General Linear Multiagent Systems With Parameter Uncertainties and External Disturbances.

    Science.gov (United States)

    Hua, Yongzhao; Dong, Xiwang; Li, Qingdong; Ren, Zhang

    2017-05-18

    This paper investigates the time-varying formation robust tracking problems for high-order linear multiagent systems with a leader of unknown control input in the presence of heterogeneous parameter uncertainties and external disturbances. The followers need to accomplish an expected time-varying formation in the state space and track the state trajectory produced by the leader simultaneously. First, a time-varying formation robust tracking protocol with a totally distributed form is proposed utilizing the neighborhood state information. With the adaptive updating mechanism, neither any global knowledge about the communication topology nor the upper bounds of the parameter uncertainties, external disturbances and leader's unknown input are required in the proposed protocol. Then, in order to determine the control parameters, an algorithm with four steps is presented, where feasible conditions for the followers to accomplish the expected time-varying formation tracking are provided. Furthermore, based on the Lyapunov-like analysis theory, it is proved that the formation tracking error can converge to zero asymptotically. Finally, the effectiveness of the theoretical results is verified by simulation examples.

  10. Equivalence principles and electromagnetism

    Science.gov (United States)

    Ni, W.-T.

    1977-01-01

    The implications of the weak equivalence principles are investigated in detail for electromagnetic systems in a general framework. In particular, it is shown that the universality of free-fall trajectories (Galileo weak equivalence principle) does not imply the validity of the Einstein equivalence principle. However, the Galileo principle plus the universality of free-fall rotation states does imply the Einstein principle.

  11. General rule antielisive chartered the National Tax Code confrontation between the principle of ability to pay and the rule of closed typicality and the alleged tax by analogy

    Directory of Open Access Journals (Sweden)

    Willian Robert Nahra Filho

    2012-04-01

    Full Text Available Check the possibility of the general standard employment antielisiva the parental right, ouseja, taxation by analogy legal fact extratípico effects econômicosequivalentes the typical legal fact, based on the abuse of rights doctrine and noprincípio of ability. Analysis in the face of the principles of legalidadeestrita and closed typicality, the principle of security developments jurídica.Conclui the impossibility of taxation by analogy for the offense to dasegurança legal principle that stands for certainty and predictability in entreEstado relations and taxpayers. The breach of the principle of strict legality because deexigência specific and qualified law to detributos institution. The offense aoprincípio closed typicality that prevents the tax nãodescrito legal fact with all its details by law. These principles not passíveissequer limitation, since they are immutable clauses. Inability to restriçãoda full effectiveness of the rule of the principle of typicality contributiva.Impossibilidade ability to taxation by the integrative method of analogy, therefore existecerta charge, even if relative, creativity inherent in the method and dependent inexistirlacunas fill in relevant matters to detributos institution , existing in reality free of the right spaces.

  12. Uncertainty vs. Information (Invited)

    Science.gov (United States)

    Nearing, Grey

    2017-04-01

    Information theory is the branch of logic that describes how rational epistemic states evolve in the presence of empirical data (Knuth, 2005), and any logic of science is incomplete without such a theory. Developing a formal philosophy of science that recognizes this fact results in essentially trivial solutions to several longstanding problems are generally considered intractable, including: • Alleviating the need for any likelihood function or error model. • Derivation of purely logical falsification criteria for hypothesis testing. • Specification of a general quantitative method for process-level model diagnostics. More generally, I make the following arguments: 1. Model evaluation should not proceed by quantifying and/or reducing error or uncertainty, and instead should be approached as a problem of ensuring that our models contain as much information as our experimental data. I propose that the latter is the only question a scientist actually has the ability to ask. 2. Instead of building geophysical models as solutions to differential equations that represent conservation laws, we should build models as maximum entropy distributions constrained by conservation symmetries. This will allow us to derive predictive probabilities directly from first principles. Knuth, K. H. (2005) 'Lattice duality: The origin of probability and entropy', Neurocomputing, 67, pp. 245-274.

  13. Measurement uncertainty and probability

    CERN Document Server

    Willink, Robin

    2013-01-01

    A measurement result is incomplete without a statement of its 'uncertainty' or 'margin of error'. But what does this statement actually tell us? By examining the practical meaning of probability, this book discusses what is meant by a '95 percent interval of measurement uncertainty', and how such an interval can be calculated. The book argues that the concept of an unknown 'target value' is essential if probability is to be used as a tool for evaluating measurement uncertainty. It uses statistical concepts, such as a conditional confidence interval, to present 'extended' classical methods for evaluating measurement uncertainty. The use of the Monte Carlo principle for the simulation of experiments is described. Useful for researchers and graduate students, the book also discusses other philosophies relating to the evaluation of measurement uncertainty. It employs clear notation and language to avoid the confusion that exists in this controversial field of science.

  14. Transnational Cooperation in Criminal Matters and the Guarantee of a Fair Trial: Approaches to a General Principle

    Directory of Open Access Journals (Sweden)

    Sabine Gless

    2013-09-01

    Full Text Available The right to a fair trial has grown in importance over the past few decades as criminal procedures and human rights law have aligned themselves more and more closely. A core aspect of our current European understanding of a ‘fair criminal trial’ is the so-called ‘equality of arms’, which requires that each party be given a reasonable opportunity to present his case under conditions that do not place him at a substantial disadvantage vis-à-vis his opponent. In cases which affect more than one jurisdiction – either because an alleged crime causes damage in different countries, evidence is located abroad or for some other reason – the accused and his defence lawyer may be left without any such a guarantee in the legal ‘black hole’ between the protections that are normally offered by each of the jurisdictions involved, albeit separately.The situation is not one of a dramatic alteration of legal frameworks; instead, it is the small encroachments caused by transnational cooperation that matter and which can be summed up on the basis that domestic and foreign prosecution authorities have, effectively, closed the circuit between them. These authorities are now embedded in formal networks which would have, for instance, the possibility to forum shop (i.e. to choose the ‘best place’ to prosecute. The emerging EU legal framework that has been built on mutual recognition and installing new central agencies has added to the problems faced by the defence. Moreover, the existing legal regimes designed to protect do not grant ‘equality of arms’ in the space between jurisdictions: national law usually provides few answers and international law, including the likes of the ECHR or the EU Charter on Fundamental Rights, do not offer many solutions, either.This article therefore argues that an aspiring ‘right to a fair trial’ or, rather, an entitlement to equality of arms as a general principle of transnational criminal justice that would

  15. Retina as Reciprocal Spatial Fourier Transform Space Implies ``Wave-transformation'' Functions, String Theory, the Inappropriate Uncertainty Principle, and Predicts ``Quarked'' Protons.

    Science.gov (United States)

    Mc Leod, Roger David; Mc Leod, David M.

    2007-10-01

    Vision, via transform space: ``Nature behaves in a reciprocal way;' also, Rect x pressure-input sense-reports as Sinc p, indicating brain interprets reciprocal ``p'' space as object space. Use Mott's and Sneddon's Wave Mechanics and Its Applications. Wave transformation functions are strings of positron, electron, proton, and neutron; uncertainty is a semantic artifact. Neutrino-string de Broglie-Schr"odinger wave-function models for electron, positron, suggest three-quark models for protons, neutrons. Variably vibrating neutrino-quills of this model, with appropriate mass-energy, can be a vertical proton string, quills leftward; thread string circumferentially, forming three interlinked circles with ``overpasses''. Diameters are 2:1:2, center circle has quills radially outward; call it a down quark, charge --1/3, charge 2/3 for outward quills, the up quarks of outer circles. String overlap summations are nodes; nodes also far left and right. Strong nuclear forces may be --px. ``Dislodging" positron with neutrino switches quark-circle configuration to 1:2:1, `downers' outside. Unstable neutron charge is 0. Atoms build. With scale factors, retinal/vision's, and quantum mechanics,' spatial Fourier transforms/inverses are equivalent.

  16. Change and uncertainty in quantum systems

    International Nuclear Information System (INIS)

    Franson, J.D.

    1996-01-01

    A simple inequality shows that any change in the expectation value of an observable quantity must be associated with some degree of uncertainty. This inequality is often more restrictive than the Heisenberg uncertainty principle. copyright 1996 The American Physical Society

  17. An uncertainty principle for star formation - II. A new method for characterising the cloud-scale physics of star formation and feedback across cosmic history

    Science.gov (United States)

    Kruijssen, J. M. Diederik; Schruba, Andreas; Hygate, Alexander P. S.; Hu, Chia-Yu; Haydon, Daniel T.; Longmore, Steven N.

    2018-05-01

    The cloud-scale physics of star formation and feedback represent the main uncertainty in galaxy formation studies. Progress is hampered by the limited empirical constraints outside the restricted environment of the Local Group. In particular, the poorly-quantified time evolution of the molecular cloud lifecycle, star formation, and feedback obstructs robust predictions on the scales smaller than the disc scale height that are resolved in modern galaxy formation simulations. We present a new statistical method to derive the evolutionary timeline of molecular clouds and star-forming regions. By quantifying the excess or deficit of the gas-to-stellar flux ratio around peaks of gas or star formation tracer emission, we directly measure the relative rarity of these peaks, which allows us to derive their lifetimes. We present a step-by-step, quantitative description of the method and demonstrate its practical application. The method's accuracy is tested in nearly 300 experiments using simulated galaxy maps, showing that it is capable of constraining the molecular cloud lifetime and feedback time-scale to <0.1 dex precision. Access to the evolutionary timeline provides a variety of additional physical quantities, such as the cloud-scale star formation efficiency, the feedback outflow velocity, the mass loading factor, and the feedback energy or momentum coupling efficiencies to the ambient medium. We show that the results are robust for a wide variety of gas and star formation tracers, spatial resolutions, galaxy inclinations, and galaxy sizes. Finally, we demonstrate that our method can be applied out to high redshift (z≲ 4) with a feasible time investment on current large-scale observatories. This is a major shift from previous studies that constrained the physics of star formation and feedback in the immediate vicinity of the Sun.

  18. Bayesian conjugate analysis using a generalized inverted Wishart distribution accounts for differential uncertainty among the genetic parameters--an application to the maternal animal model.

    Science.gov (United States)

    Munilla, S; Cantet, R J C

    2012-06-01

    Consider the estimation of genetic (co)variance components from a maternal animal model (MAM) using a conjugated Bayesian approach. Usually, more uncertainty is expected a priori on the value of the maternal additive variance than on the value of the direct additive variance. However, it is not possible to model such differential uncertainty when assuming an inverted Wishart (IW) distribution for the genetic covariance matrix. Instead, consider the use of a generalized inverted Wishart (GIW) distribution. The GIW is essentially an extension of the IW distribution with a larger set of distinct parameters. In this study, the GIW distribution in its full generality is introduced and theoretical results regarding its use as the prior distribution for the genetic covariance matrix of the MAM are derived. In particular, we prove that the conditional conjugacy property holds so that parameter estimation can be accomplished via the Gibbs sampler. A sampling algorithm is also sketched. Furthermore, we describe how to specify the hyperparameters to account for differential prior opinion on the (co)variance components. A recursive strategy to elicit these parameters is then presented and tested using field records and simulated data. The procedure returned accurate estimates and reduced standard errors when compared with non-informative prior settings while improving the convergence rates. In general, faster convergence was always observed when a stronger weight was placed on the prior distributions. However, analyses based on the IW distribution have also produced biased estimates when the prior means were set to over-dispersed values. © 2011 Blackwell Verlag GmbH.

  19. Generalization of first-principles thermodynamic model: Application to hexagonal close-packed ε-Fe3N

    DEFF Research Database (Denmark)

    Bakkedal, Morten B.; Shang, Shu- Li; Liu, Zi-Kui

    2016-01-01

    A complete first-principles thermodynamic model was developed and applied to hexagonal close-packed structure ε-Fe3N. The electronic structure was calculated using density functional theory and the quasiharmonic phonon approximation to determine macroscopic thermodynamic properties at finite...

  20. Methodologies of Uncertainty Propagation Calculation

    International Nuclear Information System (INIS)

    Chojnacki, Eric

    2002-01-01

    After recalling the theoretical principle and the practical difficulties of the methodologies of uncertainty propagation calculation, the author discussed how to propagate input uncertainties. He said there were two kinds of input uncertainty: - variability: uncertainty due to heterogeneity, - lack of knowledge: uncertainty due to ignorance. It was therefore necessary to use two different propagation methods. He demonstrated this in a simple example which he generalised, treating the variability uncertainty by the probability theory and the lack of knowledge uncertainty by the fuzzy theory. He cautioned, however, against the systematic use of probability theory which may lead to unjustifiable and illegitimate precise answers. Mr Chojnacki's conclusions were that the importance of distinguishing variability and lack of knowledge increased as the problem was getting more and more complex in terms of number of parameters or time steps, and that it was necessary to develop uncertainty propagation methodologies combining probability theory and fuzzy theory

  1. ''Nature is unknowable''. The idea of uncertainty

    International Nuclear Information System (INIS)

    Crozon, M.

    2000-01-01

    This paper deals with one of the great idea of the twentieth century, the uncertainty principle of Heisenberg. With a philosophical approach the author explains this principle and presents its cultural impacts on mind. (A.L.B.)

  2. Uncertainty information in climate data records from Earth observation

    Science.gov (United States)

    Merchant, C. J.

    2017-12-01

    How to derive and present uncertainty in climate data records (CDRs) has been debated within the European Space Agency Climate Change Initiative, in search of common principles applicable across a range of essential climate variables. Various points of consensus have been reached, including the importance of improving provision of uncertainty information and the benefit of adopting international norms of metrology for language around the distinct concepts of uncertainty and error. Providing an estimate of standard uncertainty per datum (or the means to readily calculate it) emerged as baseline good practice, and should be highly relevant to users of CDRs when the uncertainty in data is variable (the usual case). Given this baseline, the role of quality flags is clarified as being complementary to and not repetitive of uncertainty information. Data with high uncertainty are not poor quality if a valid estimate of the uncertainty is available. For CDRs and their applications, the error correlation properties across spatio-temporal scales present important challenges that are not fully solved. Error effects that are negligible in the uncertainty of a single pixel may dominate uncertainty in the large-scale and long-term. A further principle is that uncertainty estimates should themselves be validated. The concepts of estimating and propagating uncertainty are generally acknowledged in geophysical sciences, but less widely practised in Earth observation and development of CDRs. Uncertainty in a CDR depends in part (and usually significantly) on the error covariance of the radiances and auxiliary data used in the retrieval. Typically, error covariance information is not available in the fundamental CDR (FCDR) (i.e., with the level-1 radiances), since provision of adequate level-1 uncertainty information is not yet standard practice. Those deriving CDRs thus cannot propagate the radiance uncertainty to their geophysical products. The FIDUCEO project (www.fiduceo.eu) is

  3. The equivalence principle in a quantum world

    DEFF Research Database (Denmark)

    Bjerrum-Bohr, N. Emil J.; Donoghue, John F.; El-Menoufi, Basem Kamal

    2015-01-01

    the energy is small, we now have the tools to address this conflict explicitly. Despite the violation of some classical concepts, the EP continues to provide the core of the quantum gravity framework through the symmetry - general coordinate invariance - that is used to organize the effective field theory......We show how modern methods can be applied to quantum gravity at low energy. We test how quantum corrections challenge the classical framework behind the equivalence principle (EP), for instance through introduction of nonlocality from quantum physics, embodied in the uncertainty principle. When...

  4. Decommissioning funding: ethics, implementation, uncertainties

    International Nuclear Information System (INIS)

    2006-01-01

    This status report on Decommissioning Funding: Ethics, Implementation, Uncertainties also draws on the experience of the NEA Working Party on Decommissioning and Dismantling (WPDD). The report offers, in a concise form, an overview of relevant considerations on decommissioning funding mechanisms with regard to ethics, implementation and uncertainties. Underlying ethical principles found in international agreements are identified, and factors influencing the accumulation and management of funds for decommissioning nuclear facilities are discussed together with the main sources of uncertainties of funding systems. (authors)

  5. The Uncertainty of Measurement Results

    Energy Technology Data Exchange (ETDEWEB)

    Ambrus, A. [Hungarian Food Safety Office, Budapest (Hungary)

    2009-07-15

    Factors affecting the uncertainty of measurement are explained, basic statistical formulae given, and the theoretical concept explained in the context of pesticide formulation analysis. Practical guidance is provided on how to determine individual uncertainty components within an analytical procedure. An extended and comprehensive table containing the relevant mathematical/statistical expressions elucidates the relevant underlying principles. Appendix I provides a practical elaborated example on measurement uncertainty estimation, above all utilizing experimental repeatability and reproducibility laboratory data. (author)

  6. Entropy-power uncertainty relations: towards a tight inequality for all Gaussian pure states

    International Nuclear Information System (INIS)

    Hertz, Anaelle; Jabbour, Michael G; Cerf, Nicolas J

    2017-01-01

    We show that a proper expression of the uncertainty relation for a pair of canonically-conjugate continuous variables relies on entropy power, a standard notion in Shannon information theory for real-valued signals. The resulting entropy-power uncertainty relation is equivalent to the entropic formulation of the uncertainty relation due to Bialynicki-Birula and Mycielski, but can be further extended to rotated variables. Hence, based on a reasonable assumption, we give a partial proof of a tighter form of the entropy-power uncertainty relation taking correlations into account and provide extensive numerical evidence of its validity. Interestingly, it implies the generalized (rotation-invariant) Schrödinger–Robertson uncertainty relation exactly as the original entropy-power uncertainty relation implies Heisenberg relation. It is saturated for all Gaussian pure states, in contrast with hitherto known entropic formulations of the uncertainty principle. (paper)

  7. Understanding uncertainty

    CERN Document Server

    Lindley, Dennis V

    2013-01-01

    Praise for the First Edition ""...a reference for everyone who is interested in knowing and handling uncertainty.""-Journal of Applied Statistics The critically acclaimed First Edition of Understanding Uncertainty provided a study of uncertainty addressed to scholars in all fields, showing that uncertainty could be measured by probability, and that probability obeyed three basic rules that enabled uncertainty to be handled sensibly in everyday life. These ideas were extended to embrace the scientific method and to show how decisions, containing an uncertain element, could be rationally made.

  8. Application of HACCP principles to control visitor health threats on dairy farms open to the general public.

    Science.gov (United States)

    Barten, M; Noordhuizen, J P M; Lipman, L J A

    2008-10-01

    An increasing number of Dutch dairy farmers have diversified their activities, often opening their farm up to visitors (tourist accommodation, farm shop, contact with livestock, etc). It is essential to prevent these visitors from having accidents or becoming ill, which could result in financial claims and might harm the reputation of the agricultural sector. This article describes how the hazard analysis critical control points concept and principles (HACCP) can be applied to these activities and integrated with on-farm operational herd health and production management programmes.

  9. Uncertainty information in climate data records from Earth observation

    Science.gov (United States)

    Merchant, Christopher J.; Paul, Frank; Popp, Thomas; Ablain, Michael; Bontemps, Sophie; Defourny, Pierre; Hollmann, Rainer; Lavergne, Thomas; Laeng, Alexandra; de Leeuw, Gerrit; Mittaz, Jonathan; Poulsen, Caroline; Povey, Adam C.; Reuter, Max; Sathyendranath, Shubha; Sandven, Stein; Sofieva, Viktoria F.; Wagner, Wolfgang

    2017-07-01

    error distribution, and the propagation of the uncertainty to the geophysical variable in the CDR accounting for its error correlation properties. Uncertainty estimates can and should be validated as part of CDR validation when possible. These principles are quite general, but the approach to providing uncertainty information appropriate to different ECVs is varied, as confirmed by a brief review across different ECVs in the CCI. User requirements for uncertainty information can conflict with each other, and a variety of solutions and compromises are possible. The concept of an ensemble CDR as a simple means of communicating rigorous uncertainty information to users is discussed. Our review concludes by providing eight concrete recommendations for good practice in providing and communicating uncertainty in EO-based climate data records.

  10. Generalized information theory: aims, results, and open problems

    International Nuclear Information System (INIS)

    Klir, George J.

    2004-01-01

    The principal purpose of this paper is to present a comprehensive overview of generalized information theory (GIT): a research program whose objective is to develop a broad treatment of uncertainty-based information, not restricted to classical notions of uncertainty. After a brief overview of classical information theories, a broad framework for formalizing uncertainty and the associated uncertainty-based information of a great spectrum of conceivable types is sketched. The various theories of imprecise probabilities that have already been developed within this framework are then surveyed, focusing primarily on some important unifying principles applying to all these theories. This is followed by introducing two higher levels of the theories of imprecise probabilities: (i) the level of measuring the amount of relevant uncertainty (predictive, retrodictive, prescriptive, diagnostic, etc.) in any situation formalizable in each given theory, and (ii) the level of some methodological principles of uncertainty, which are contingent upon the capability to measure uncertainty and the associated uncertainty-based information. Various issues regarding both the measurement of uncertainty and the uncertainty principles are discussed. Again, the focus is on unifying principles applicable to all the theories. Finally, the current status of GIT is assessed and future research in the area is discussed

  11. The relation between the general maxim of causality and the principle of uniformity in hume's theory of knowledge

    Directory of Open Access Journals (Sweden)

    José Oscar de Almeida Marques

    2012-06-01

    Full Text Available ABSTRACT When Hume, in the Treatise on Human Nature, began his examination of the relation of cause and effect, in particular, of the idea of necessary connection which is its essential constituent, he identified two preliminary questions that should guide his research: (1 For what reason we pronounce it necessary that every thing whose existence has a beginning should also have a cause and (2 Why we conclude that such particular causes must necessarily have such particular effects? (1.3.2, 14-15 Hume observes that our belief in these principles can result neither from an intuitive grasp of their truth nor from a reasoning that could establish them by demonstrative means. In particular, with respect to the first, Hume examines and rejects some arguments with which Locke, Hobbes and Clarke tried to demonstrate it, and suggests, by exclusion, that the belief that we place on it can only come from experience. Somewhat surprisingly, however, Hume does not proceed to show how that derivation of experience could be made, but proposes instead to move directly to an examination of the second principle, saying that, "perhaps, be found in the end, that the same answer will serve for both questions" (1.3.3, 9. Hume's answer to the second question is well known, but the first question is never answered in the rest of the Treatise, and it is even doubtful that it could be, which would explain why Hume has simply chosen to remove any mention of it when he recompiled his theses on causation in the Enquiry concerning Human Understanding. Given this situation, an interesting question that naturally arises is to investigate the relations of logical or conceptual implication between these two principles. Hume seems to have thought that an answer to (2 would also be sufficient to provide an answer to (1. Henry Allison, in his turn, argued (in Custom and Reason in Hume, p. 94-97 that the two questions are logically independent. My proposal here is to try to show

  12. Decision-making under great uncertainty

    International Nuclear Information System (INIS)

    Hansson, S.O.

    1992-01-01

    Five types of decision-uncertainty are distinguished: uncertainty of consequences, of values, of demarcation, of reliance, and of co-ordination. Strategies are proposed for each type of uncertainty. The general conclusion is that it is meaningful for decision theory to treat cases with greater uncertainty than the textbook case of 'decision-making under uncertainty'. (au)

  13. PHILOSOPHICAL VALIDITY, THEORETICAL, NORMATIVE AND EMPIRICAL PARADIGM OF GENERAL PRINCIPLES OF GOOD GOVERNANCE (AUPB AS A REVIEW OF PRESIDENTIAL IMPEACHMENT

    Directory of Open Access Journals (Sweden)

    Nadir Nadir

    2017-03-01

    Full Text Available Philosophical validity showed of the Principles of Good Governance (AUPB as A review to Presidential impeachment, is a principle of AUPB that contains ethical normative values used as the foundation of good governance, clean and respectable, moreover to complement the shortcomings and ambiguities in law. Technically, the application of AUPB by the judges of the Constitutional Court (MK-RI can be approached through induction and deduction legal reasoning. The method of implementing AUPB by the judges of the Constitutional Court (MK-RI is accomplished by deductive at first, meaning that the special rules is focused more to the certain field of law, then these are deducted based on its basic rules and deducted again into the rules of substantive, and deducted again into the rules of cases. After that, it starts to applicate the rules of case based on the concrete case by the judge, because of the nature of the judges of the Constitutional Court (MK-RI is kholifah fil'ardi as the representative of God on earth to uphold the law and justice. While theoretically AUPB is valid, the judge ius curia Novit as a verdict maker to perform legal discovery (rechtsvinding. Empirically AUPB is valid, it can be seen from the cases of impeachment against the President of the United States William Jefferson Clinton, on suspicion of "abominably act" (misdemeanors. Additionally, AUPB empirically has been tested through jurisprudence since Amtenarenwet 1929 officially applied on March 1, 1933. Centrale Raad van Beroep, in his verdict on June 22, 1933, and the jurisprudence verdict of Hoge Raad on November 13, 1936, and the jurisprudence verdict of Hoge Raad 1919. While the normative validity is based on the leading legal doctrine, that AUPB is positioned as the unwritten laws that must be obeyed by the government, and AUPB considered as a part of positive law. Moreover, in Indonesia AUPB incarnates in various legislations even though his name is remained as principal.

  14. Measurement Uncertainty

    Science.gov (United States)

    Koch, Michael

    Measurement uncertainty is one of the key issues in quality assurance. It became increasingly important for analytical chemistry laboratories with the accreditation to ISO/IEC 17025. The uncertainty of a measurement is the most important criterion for the decision whether a measurement result is fit for purpose. It also delivers help for the decision whether a specification limit is exceeded or not. Estimation of measurement uncertainty often is not trivial. Several strategies have been developed for this purpose that will shortly be described in this chapter. In addition the different possibilities to take into account the uncertainty in compliance assessment are explained.

  15. Image restoration, uncertainty, and information.

    Science.gov (United States)

    Yu, F T

    1969-01-01

    Some of the physical interpretations about image restoration are discussed. From the theory of information the unrealizability of an inverse filter can be explained by degradation of information, which is due to distortion on the recorded image. The image restoration is a time and space problem, which can be recognized from the theory of relativity (the problem of image restoration is related to Heisenberg's uncertainty principle in quantum mechanics). A detailed discussion of the relationship between information and energy is given. Two general results may be stated: (1) the restoration of the image from the distorted signal is possible only if it satisfies the detectability condition. However, the restored image, at the best, can only approach to the maximum allowable time criterion. (2) The restoration of an image by superimposing the distorted signal (due to smearing) is a physically unrealizable method. However, this restoration procedure may be achieved by the expenditure of an infinite amount of energy.

  16. A realization of the uncertainty principle

    Directory of Open Access Journals (Sweden)

    V. M. Dilnyi

    2015-07-01

    Full Text Available We obtain the statement about the imitation behavior of the sum of functions on the real half-line by each of the summands under some conditions for these functions and their Laplace transforms.

  17. Information and communication on risks related to medications and proper use of medications for healthcare professionals and the general public: precautionary principle, risk management, communication during and in the absence of crisis situations.

    Science.gov (United States)

    Molimard, Mathieu; Bernaud, Corine; Lechat, Philippe; Bejan-Angoulvant, Theodora; Benattia, Cherif; Benkritly, Amel; Braunstein, David; Cabut, Sandrine; David, Nadine; Fourrier-Réglat, Annie; Gallet, Benoit; Gersberg, Marta; Goni, Sylvia; Jolliet, Pascale; Lamarque-Garnier, Véronique; Le Jeunne, Claire; Leurs, Irina; Liard, François; Malbezin, Muriel; Micallef, Joelle; Nguon, Marina

    2014-01-01

    Recent drug crises have highlighted the complexity, benefits and risks of medication communication. The difficulty of this communication is due to the diversity of the sources of information and the target audience, the credibility of spokespersons, the difficulty to communicate on scientific uncertainties and the precautionary principle, which is influenced by variable perceptions and tolerances of the risk. Globally, there is a lack of training in risk management with a tendency of modern society to refuse even the slightest risk. Communication on medications is subject to regulatory or legal requirements, often uses tools and messages that are not adapted to the target audience and is often based on a poor knowledge of communication techniques. In order to improve this situation, the available information must be coordinated by reinforcing the unique medication information website and by coordinating communication between authorities by means of a single spokesperson. A particular effort must be made in the field of training in the proper use and risk of medications for both the general population and patients but also for healthcare professionals, by setting up a unified academic on-line teaching platform for continuing medical education on medications and their proper use. © 2014 Société Française de Pharmacologie et de Thérapeutique.

  18. Principles of formation of the content of an educational electronic resource on the basis of general and didactic patterns of learning

    Directory of Open Access Journals (Sweden)

    Ольга Юрьевна Заславская

    2018-12-01

    Full Text Available The article considers the influence of the development of technical means of teaching on the effectiveness of educational and methodical resources. Modern opportunities of information and communication technologies allow creating electronic educational resources that represent educational information that automates the learning process, provide information assistance, if necessary, collect and process statistical information on the degree of development of the content of the school material by schoolchildren, set an individual trajectory of learning, and so on. The main principle of data organization is the division of the training course into separate sections on the thematic elements and components of the learning process. General regularities include laws that encompass the entire didactic system, and in specific (particular cases, those whose actions extend to a separate component (aspect of the system. From the standpoint of the existence of three types of electronic training modules in the aggregate content of the electronic learning resource - information, control and module of practical classes - the principles of the formation of the electronic learning resource, in our opinion, should regulate all these components. Each of the certain principles is considered in the groups: scientific orientation, methodological orientation, systemic nature, accounting of interdisciplinary connections, fundamentalization, systematic and dosage sequence, rational use of study time, accessibility, minimization, operationalization of goals, unified identification diagnosis.

  19. An Approach Using a 1D Hydraulic Model, Landsat Imaging and Generalized Likelihood Uncertainty Estimation for an Approximation of Flood Discharge

    Directory of Open Access Journals (Sweden)

    Seung Oh Lee

    2013-10-01

    Full Text Available Collection and investigation of flood information are essential to understand the nature of floods, but this has proved difficult in data-poor environments, or in developing or under-developed countries due to economic and technological limitations. The development of remote sensing data, GIS, and modeling techniques have, therefore, proved to be useful tools in the analysis of the nature of floods. Accordingly, this study attempts to estimate a flood discharge using the generalized likelihood uncertainty estimation (GLUE methodology and a 1D hydraulic model, with remote sensing data and topographic data, under the assumed condition that there is no gauge station in the Missouri river, Nebraska, and Wabash River, Indiana, in the United States. The results show that the use of Landsat leads to a better discharge approximation on a large-scale reach than on a small-scale. Discharge approximation using the GLUE depended on the selection of likelihood measures. Consideration of physical conditions in study reaches could, therefore, contribute to an appropriate selection of informal likely measurements. The river discharge assessed by using Landsat image and the GLUE Methodology could be useful in supplementing flood information for flood risk management at a planning level in ungauged basins. However, it should be noted that this approach to the real-time application might be difficult due to the GLUE procedure.

  20. A meta-analysis of the relation of intolerance of uncertainty to symptoms of generalized anxiety disorder, major depressive disorder, and obsessive-compulsive disorder.

    Science.gov (United States)

    Gentes, Emily L; Ruscio, Ayelet Meron

    2011-08-01

    Intolerance of uncertainty (IU) has been suggested to reflect a specific risk factor for generalized anxiety disorder (GAD), but there have been no systematic attempts to evaluate the specificity of IU to GAD. This meta-analysis examined the cross-sectional association of IU with symptoms of GAD, major depressive disorder (MDD), and obsessive-compulsive disorder (OCD). Random effects analyses were conducted for two common definitions of IU, one that has predominated in studies of GAD (56 effect sizes) and another that has been favored in studies of OCD (29 effect sizes). Using the definition of IU developed for GAD, IU shared a mean correlation of .57 with GAD, .53 with MDD, and .50 with OCD. Using the alternate definition developed for OCD, IU shared a mean correlation of .46 with MDD and .42 with OCD, with no studies available for GAD. Post-hoc significance tests revealed that IU was more strongly related to GAD than to OCD when the GAD-specific definition of IU was used. No other differences were found in the magnitude of associations between IU and the three syndromes. We discuss implications of these findings for models of shared and specific features of emotional disorders and for future research efforts. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. NATURAL-SCIENCE EDUCATION: SCIENTIFIC AND RELIGIOUS KNOWLEDGE CORRELATION IN THE VIEW OF A SYMMETRY PRINCIPLE. Ch. 2. Examples of religious content selection in general natural science courses based on the principle of symmetry

    Directory of Open Access Journals (Sweden)

    Vitalii L. Gapontsev

    2015-01-01

    Full Text Available This work is aimed at demonstrating the possibility of the inclusion of religious elements contained in Holy Scripture and Holy Tradition in the general natural scientific courses based on the principle of symmetry.The method used in the work is confined to a comparison of perceptions formed in modern science and is closely related to the forms of symmetry and invariance principles (symmetry principles and, in particular, space-time concepts with those of the Book of Genesis. Such a comparison reveals the following unexpected feature: most profound presentation of modern natural sciences is closer to the provisions of Holy Scripture and Holy Tradition than a look at the same things existed in the earlier stages of the development of science. This allows the authors to formulate the hypothesis that in the process of development of scientific knowledge, it gradually becomes closer to the religious worldview. This process is slow, so its results have become visible only within 3500 years after the establishment of the truth of the Old Testament and 2000 years after the New Testament.Results and scientific novelty. The «firmament of heaven» and «water under the firmament» concepts are explained in the terms of the model of the Kleinert – Planck World crystal and understanding of the properties of matter and fields which are related with the conservation law of the wave-function parity. The relational nature of phenomena such as «life» and «death» in the course of universe evolution as a general trend is considered as the process of lowering the degree of symmetry of matter after the Big Bang wherein the Universe was created. The concepts used by E. Wigner for the description of the structure of the scientific knowledge are analysed. Its structure is determined by shapes and specific principles of the symmetry of exact sciences. The analysis of the concept «natural phenomenon» has shown that they are different in the degree of space

  2. Uncertainty in hydrological signatures

    Science.gov (United States)

    McMillan, Hilary; Westerberg, Ida

    2015-04-01

    Information that summarises the hydrological behaviour or flow regime of a catchment is essential for comparing responses of different catchments to understand catchment organisation and similarity, and for many other modelling and water-management applications. Such information types derived as an index value from observed data are known as hydrological signatures, and can include descriptors of high flows (e.g. mean annual flood), low flows (e.g. mean annual low flow, recession shape), the flow variability, flow duration curve, and runoff ratio. Because the hydrological signatures are calculated from observed data such as rainfall and flow records, they are affected by uncertainty in those data. Subjective choices in the method used to calculate the signatures create a further source of uncertainty. Uncertainties in the signatures may affect our ability to compare different locations, to detect changes, or to compare future water resource management scenarios. The aim of this study was to contribute to the hydrological community's awareness and knowledge of data uncertainty in hydrological signatures, including typical sources, magnitude and methods for its assessment. We proposed a generally applicable method to calculate these uncertainties based on Monte Carlo sampling and demonstrated it for a variety of commonly used signatures. The study was made for two data rich catchments, the 50 km2 Mahurangi catchment in New Zealand and the 135 km2 Brue catchment in the UK. For rainfall data the uncertainty sources included point measurement uncertainty, the number of gauges used in calculation of the catchment spatial average, and uncertainties relating to lack of quality control. For flow data the uncertainty sources included uncertainties in stage/discharge measurement and in the approximation of the true stage-discharge relation by a rating curve. The resulting uncertainties were compared across the different signatures and catchments, to quantify uncertainty

  3. Evaluation of aerodynamic characteristics of a coupled fluid-structure system using generalized Bernoulli's principle: An application to vocal folds vibration.

    Science.gov (United States)

    Zhang, Lucy T; Yang, Jubiao

    2016-12-01

    In this work we explore the aerodynamics flow characteristics of a coupled fluid-structure interaction system using a generalized Bernoulli equation derived directly from the Cauchy momentum equations. Unlike the conventional Bernoulli equation where incompressible, inviscid, and steady flow conditions are assumed, this generalized Bernoulli equation includes the contributions from compressibility, viscous, and unsteadiness, which could be essential in defining aerodynamic characteristics. The application of the derived Bernoulli's principle is on a fully-coupled fluid-structure interaction simulation of the vocal folds vibration. The coupled system is simulated using the immersed finite element method where compressible Navier-Stokes equations are used to describe the air and an elastic pliable structure to describe the vocal fold. The vibration of the vocal fold works to open and close the glottal flow. The aerodynamics flow characteristics are evaluated using the derived Bernoulli's principles for a vibration cycle in a carefully partitioned control volume based on the moving structure. The results agree very well to experimental observations, which validate the strategy and its use in other types of flow characteristics that involve coupled fluid-structure interactions.

  4. Evaluation of aerodynamic characteristics of a coupled fluid-structure system using generalized Bernoulli’s principle: An application to vocal folds vibration

    Science.gov (United States)

    Zhang, Lucy T.; Yang, Jubiao

    2017-01-01

    In this work we explore the aerodynamics flow characteristics of a coupled fluid-structure interaction system using a generalized Bernoulli equation derived directly from the Cauchy momentum equations. Unlike the conventional Bernoulli equation where incompressible, inviscid, and steady flow conditions are assumed, this generalized Bernoulli equation includes the contributions from compressibility, viscous, and unsteadiness, which could be essential in defining aerodynamic characteristics. The application of the derived Bernoulli’s principle is on a fully-coupled fluid-structure interaction simulation of the vocal folds vibration. The coupled system is simulated using the immersed finite element method where compressible Navier-Stokes equations are used to describe the air and an elastic pliable structure to describe the vocal fold. The vibration of the vocal fold works to open and close the glottal flow. The aerodynamics flow characteristics are evaluated using the derived Bernoulli’s principles for a vibration cycle in a carefully partitioned control volume based on the moving structure. The results agree very well to experimental observations, which validate the strategy and its use in other types of flow characteristics that involve coupled fluid-structure interactions. PMID:29527541

  5. Magnetic diagnostics: General principles and the problem of reconstruction of plasma current and pressure profiles in toroidal systems

    International Nuclear Information System (INIS)

    Pustovitov, V.D.

    2001-01-01

    Restrictions on magnetic diagnostics are discussed. Being related to the integral nature of the measurable quantities, these follow from the fundamental laws of electromagnetism. A series of examples demonstrating the strength of these restrictions is analysed. The general rule is emphasized that information obtained from external magnetic measurements is insufficient for reliable evaluation of plasma current and pressure profiles in tokamaks and in stellarators. The underlying reason is that outside the plasma the self-field of the equilibrium plasma currents is determined by the boundary conditions on the plasma surface alone. (author)

  6. Magnetic diagnostics: general principles and the problem of reconstruction of plasma current and pressure profiles in toroidal systems

    Energy Technology Data Exchange (ETDEWEB)

    Pustovitov, V.D.

    2000-04-01

    The restrictions of the magnetic diagnostics are discussed. Being related to the integral nature of the measurable quantities, they follow from the fundamental laws of electromagnetism. A series of particular examples demonstrating the strength of these restrictions is given and analyzed. A general rule is emphasized that the information obtained from external magnetic measurements is obviously insufficient for the reliable evaluation of plasma current and pressure profiles in tokamaks or in stellarators. The underlying reason is that outside the plasma the own field of the equilibrium plasma currents is determined by the boundary conditions on the plasma surface only. (author)

  7. Is the Precautionary Principle Really Incoherent?

    Science.gov (United States)

    Boyer-Kassem, Thomas

    2017-11-01

    The Precautionary Principle has been an increasingly important principle in international treaties since the 1980s. Through varying formulations, it states that when an activity can lead to a catastrophe for human health or the environment, measures should be taken to prevent it even if the cause-and-effect relationship is not fully established scientifically. The Precautionary Principle has been critically discussed from many sides. This article concentrates on a theoretical argument by Peterson (2006) according to which the Precautionary Principle is incoherent with other desiderata of rational decision making, and thus cannot be used as a decision rule that selects an action among several ones. I claim here that Peterson's argument fails to establish the incoherence of the Precautionary Principle, by attacking three of its premises. I argue (i) that Peterson's treatment of uncertainties lacks generality, (ii) that his Archimedian condition is problematic for incommensurability reasons, and (iii) that his explication of the Precautionary Principle is not adequate. This leads me to conjecture that the Precautionary Principle can be envisaged as a coherent decision rule, again. © 2017 Society for Risk Analysis.

  8. Cosmological principles. II. Physical principles

    International Nuclear Information System (INIS)

    Harrison, E.R.

    1974-01-01

    The discussion of cosmological principle covers the uniformity principle of the laws of physics, the gravitation and cognizability principles, and the Dirac creation, chaos, and bootstrap principles. (U.S.)

  9. CSAU (Code Scaling, Applicability and Uncertainty)

    International Nuclear Information System (INIS)

    Wilson, G.E.; Boyack, B.E.

    1989-01-01

    Best Estimate computer codes have been accepted by the U.S. Nuclear Regulatory Commission as an optional tool for performing safety analysis related to the licensing and regulation of current nuclear reactors producing commercial electrical power, providing their uncertainty is quantified. In support of this policy change, the NRC and its contractors and consultants have developed and demonstrated an uncertainty quantification methodology called CSAU. The primary use of the CSAU methodology is to quantify safety margins for existing designs; however, the methodology can also serve an equally important role in advanced reactor research for plants not yet built. This paper describes the CSAU methodology, at the generic process level, and provides the general principles whereby it may be applied to evaluations of advanced reactor designs

  10. Uncertainty theory

    CERN Document Server

    Liu, Baoding

    2015-01-01

    When no samples are available to estimate a probability distribution, we have to invite some domain experts to evaluate the belief degree that each event will happen. Perhaps some people think that the belief degree should be modeled by subjective probability or fuzzy set theory. However, it is usually inappropriate because both of them may lead to counterintuitive results in this case. In order to rationally deal with belief degrees, uncertainty theory was founded in 2007 and subsequently studied by many researchers. Nowadays, uncertainty theory has become a branch of axiomatic mathematics for modeling belief degrees. This is an introductory textbook on uncertainty theory, uncertain programming, uncertain statistics, uncertain risk analysis, uncertain reliability analysis, uncertain set, uncertain logic, uncertain inference, uncertain process, uncertain calculus, and uncertain differential equation. This textbook also shows applications of uncertainty theory to scheduling, logistics, networks, data mining, c...

  11. Averting a Disaster with Groundwater Depletion in India: The General Case of Water Management Principles and Development (Invited)

    Science.gov (United States)

    Lall, U.

    2013-12-01

    Many countries, including the USA, China, and India are experiencing chronic groundwater depletion. In part this unsustainable water use results from climatic factors that reduce surface water availability and also the recharge to the aquifer system. However, a more critical factor is uncontrolled use for agriculture and energy and mineral processing. Interestingly in places such as India endowments have been politically created that lead to ever increasing use, through the provision of free energy for pumping. Reversing the situation is considered politically challenging, and the concept of metering and payment for what is essentially economic use of water is also considered difficult to apply. In this talk I use the Indian situation as a general example and discuss the role central planning strategies for demand and resource management can play recognizing the private action by millions of users as an inevitable tool that needs to be leveraged without necessarily the high transaction costs that come with monitoring and fee collection for monitored use. Specifically, targeting and stimulating potential cropping strategies and on farm water and energy management emerge as a choice in a difficult management environment. In a broader development context, I argue that the role of private sector aggregators in developing farm to market procurement strategies can play a role in both improving rural economies and providing a trajectory for more efficient water use through technology and crop choice.

  12. Zymography Principles.

    Science.gov (United States)

    Wilkesman, Jeff; Kurz, Liliana

    2017-01-01

    Zymography, the detection, identification, and even quantification of enzyme activity fractionated by gel electrophoresis, has received increasing attention in the last years, as revealed by the number of articles published. A number of enzymes are routinely detected by zymography, especially with clinical interest. This introductory chapter reviews the major principles behind zymography. New advances of this method are basically focused towards two-dimensional zymography and transfer zymography as will be explained in the rest of the chapters. Some general considerations when performing the experiments are outlined as well as the major troubleshooting and safety issues necessary for correct development of the electrophoresis.

  13. Quantum theory and Einstein's general relativity

    International Nuclear Information System (INIS)

    Borzeszkowski, H. von; Treder, H.

    1982-01-01

    We dicusss the meaning and prove the accordance of general relativity, wave mechanics, and the quantization of Einstein's gravitation equations themselves. Firstly, we have the problem of the influence of gravitational fields on the de Broglie waves, which influence is in accordance with Einstein's weak principle of equivalence and the limitation of measurements given by Heisenberg's uncertainty relations. Secondly, the quantization of the gravitational fields is a ''quantization of geometry.'' However, classical and quantum gravitation have the same physical meaning according to limitations of measurements given by Einstein's strong principle of equivalence and the Heisenberg uncertainties for the mechanics of test bodies

  14. Uncertainty Einstein, Heisenberg, Bohr, and the struggle for the soul of science

    CERN Document Server

    Lindley, David

    2007-01-01

    The uncertainty in this delightful book refers to Heisenberg's Uncertainty Principle, an idea first postulated in 1927 by physicist Werner Heisenberg in his attempt to make sense out of the developing field of quantum mechanics. As Lindley so well explains it, the concept of uncertainty shook the philosophical underpinnings of science. It was Heisenberg's work that, to a great extent, kept Einstein from accepting quantum mechanics as a full explanation for physical reality. Similarly, it was the Uncertainty Principle that demonstrated the limits of scientific investigation: if Heisenberg is correct there are some aspects of the physical universe that are to remain beyond the reach of scientists. As he has done expertly in books like Boltzmann's Atom, Lindley brings to life a critical period in the history of science, explaining complex issues to the general reader, presenting the major players in an engaging fashion, delving into the process of scientific discovery and discussing the interaction between scien...

  15. On entropic uncertainty relations in the presence of a minimal length

    Science.gov (United States)

    Rastegin, Alexey E.

    2017-07-01

    Entropic uncertainty relations for the position and momentum within the generalized uncertainty principle are examined. Studies of this principle are motivated by the existence of a minimal observable length. Then the position and momentum operators satisfy the modified commutation relation, for which more than one algebraic representation is known. One of them is described by auxiliary momentum so that the momentum and coordinate wave functions are connected by the Fourier transform. However, the probability density functions of the physically true and auxiliary momenta are different. As the corresponding entropies differ, known entropic uncertainty relations are changed. Using differential Shannon entropies, we give a state-dependent formulation with correction term. State-independent uncertainty relations are obtained in terms of the Rényi entropies and the Tsallis entropies with binning. Such relations allow one to take into account a finiteness of measurement resolution.

  16. Robust adaptive synchronization of general dynamical networks ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 86; Issue 6. Robust ... A robust adaptive synchronization scheme for these general complex networks with multiple delays and uncertainties is established and raised by employing the robust adaptive control principle and the Lyapunov stability theory. We choose ...

  17. Three-year-olds obey the sample size principle of induction: the influence of evidence presentation and sample size disparity on young children's generalizations.

    Science.gov (United States)

    Lawson, Chris A

    2014-07-01

    Three experiments with 81 3-year-olds (M=3.62years) examined the conditions that enable young children to use the sample size principle (SSP) of induction-the inductive rule that facilitates generalizations from large rather than small samples of evidence. In Experiment 1, children exhibited the SSP when exemplars were presented sequentially but not when exemplars were presented simultaneously. Results from Experiment 3 suggest that the advantage of sequential presentation is not due to the additional time to process the available input from the two samples but instead may be linked to better memory for specific individuals in the large sample. In addition, findings from Experiments 1 and 2 suggest that adherence to the SSP is mediated by the disparity between presented samples. Overall, these results reveal that the SSP appears early in development and is guided by basic cognitive processes triggered during the acquisition of input. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. H2-control and the separation principle for discrete-time jump systems with the Markov chain in a general state space

    Science.gov (United States)

    Figueiredo, Danilo Zucolli; Costa, Oswaldo Luiz do Valle

    2017-10-01

    This paper deals with the H2 optimal control problem of discrete-time Markov jump linear systems (MJLS) considering the case in which the Markov chain takes values in a general Borel space ?. It is assumed that the controller has access only to an output variable and to the jump parameter. The goal, in this case, is to design a dynamic Markov jump controller such that the H2-norm of the closed-loop system is minimised. It is shown that the H2-norm can be written as the sum of two H2-norms, such that one of them does not depend on the control, and the other one is obtained from the optimal filter for an infinite-horizon filtering problem. This result can be seen as a separation principle for MJLS with Markov chain in a Borel space ? considering the infinite time horizon case.

  19. Enhancing the Therapy Experience Using Principles of Video Game Design.

    Science.gov (United States)

    Folkins, John Wm; Brackenbury, Tim; Krause, Miriam; Haviland, Allison

    2016-02-01

    This article considers the potential benefits that applying design principles from contemporary video games may have on enhancing therapy experiences. Six principles of video game design are presented, and their relevance for enriching clinical experiences is discussed. The motivational and learning benefits of each design principle have been discussed in the education literature as having positive impacts on student motivation and learning and are related here to aspects of clinical practice. The essential experience principle suggests connecting all aspects of the experience around a central emotion or cognitive connection. The discovery principle promotes indirect learning in focused environments. The risk-taking principle addresses the uncertainties clients face when attempting newly learned skills in novel situations. The generalization principle encourages multiple opportunities for skill transfer. The reward system principle directly relates to the scaffolding of frequent and varied feedback in treatment. Last, the identity principle can assist clients in using their newly learned communication skills to redefine self-perceptions. These principles highlight areas for research and interventions that may be used to reinforce or advance current practice.

  20. Teaching Uncertainties

    Science.gov (United States)

    Duerdoth, Ian

    2009-01-01

    The subject of uncertainties (sometimes called errors) is traditionally taught (to first-year science undergraduates) towards the end of a course on statistics that defines probability as the limit of many trials, and discusses probability distribution functions and the Gaussian distribution. We show how to introduce students to the concepts of…

  1. Calibration uncertainty

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Anglov, Thomas

    2002-01-01

    Methods recommended by the International Standardization Organisation and Eurachem are not satisfactory for the correct estimation of calibration uncertainty. A novel approach is introduced and tested on actual calibration data for the determination of Pb by ICP-AES. The improved calibration...

  2. Harvest Regulations and Implementation Uncertainty in Small Game Harvest Management

    Directory of Open Access Journals (Sweden)

    Pål F. Moa

    2017-09-01

    Full Text Available A main challenge in harvest management is to set policies that maximize the probability that management goals are met. While the management cycle includes multiple sources of uncertainty, only some of these has received considerable attention. Currently, there is a large gap in our knowledge about implemention of harvest regulations, and to which extent indirect control methods such as harvest regulations are actually able to regulate harvest in accordance with intended management objectives. In this perspective article, we first summarize and discuss hunting regulations currently used in management of grouse species (Tetraonidae in Europe and North America. Management models suggested for grouse are most often based on proportional harvest or threshold harvest principles. These models are all built on theoretical principles for sustainable harvesting, and provide in the end an estimate on a total allowable catch. However, implementation uncertainty is rarely examined in empirical or theoretical harvest studies, and few general findings have been reported. Nevertheless, circumstantial evidence suggest that many of the most popular regulations are acting depensatory so that harvest bag sizes is more limited in years (or areas where game density is high, contrary to general recommendations. A better understanding of the implementation uncertainty related to harvest regulations is crucial in order to establish sustainable management systems. We suggest that scenario tools like Management System Evaluation (MSE should be more frequently used to examine robustness of currently applied harvest regulations to such implementation uncertainty until more empirical evidence is available.

  3. Embracing uncertainty in applied ecology.

    Science.gov (United States)

    Milner-Gulland, E J; Shea, K

    2017-12-01

    Applied ecologists often face uncertainty that hinders effective decision-making.Common traps that may catch the unwary are: ignoring uncertainty, acknowledging uncertainty but ploughing on, focussing on trivial uncertainties, believing your models, and unclear objectives.We integrate research insights and examples from a wide range of applied ecological fields to illustrate advances that are generally underused, but could facilitate ecologists' ability to plan and execute research to support management.Recommended approaches to avoid uncertainty traps are: embracing models, using decision theory, using models more effectively, thinking experimentally, and being realistic about uncertainty. Synthesis and applications . Applied ecologists can become more effective at informing management by using approaches that explicitly take account of uncertainty.

  4. General Principles for Brain Design

    Science.gov (United States)

    Josephson, Brian D.

    2006-06-01

    The task of understanding how the brain works has met with only limited success since important design concepts are not as yet incorporated in the analysis. Relevant concepts can be uncovered by studying the powerful methodologies that have evolved in the context of computer programming, raising the question of how the concepts involved there can be realised in neural hardware. Insights can be gained in regard to such issues through the study of the role played by models and representation. These insights lead on to an appreciation of the mechanisms underlying subtle capacities such as those concerned with the use of language. A precise, essentially mathematical account of such capacities is in prospect for the future.

  5. General principles of vibrational spectroscopies

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Schoonheydt, R.A.

    2000-01-01

    Atoms in molecules and solids do not remain in fixed relative positions, but vibrate about some mean position. This vibrational motion is quantized and at room temperature, most of the molecules in a given sample are in their lowest vibrational state. Absorption of electromagnetic radiation with

  6. General Principles for Credit Reporting

    OpenAIRE

    World Bank

    2011-01-01

    Financial infrastructure broadly defined comprises the underlying foundation for a country's financial system. It includes all institutions, information, technologies, rules and standards that enable financial intermediation. Poor financial infrastructure in many developing countries poses a considerable constraint upon financial institutions to expand their offering of financial services ...

  7. Bernoulli's Principle

    Science.gov (United States)

    Hewitt, Paul G.

    2004-01-01

    Some teachers have difficulty understanding Bernoulli's principle particularly when the principle is applied to the aerodynamic lift. Some teachers favor using Newton's laws instead of Bernoulli's principle to explain the physics behind lift. Some also consider Bernoulli's principle too difficult to explain to students and avoid teaching it…

  8. Some remarks on modeling uncertainties

    International Nuclear Information System (INIS)

    Ronen, Y.

    1983-01-01

    Several topics related to the question of modeling uncertainties are considered. The first topic is related to the use of the generalized bias operator method for modeling uncertainties. The method is expanded to a more general form of operators. The generalized bias operator is also used in the inverse problem and applied to determine the anisotropic scattering law. The last topic discussed is related to the question of the limit to accuracy and how to establish its value. (orig.) [de

  9. Demand Uncertainty

    DEFF Research Database (Denmark)

    Nguyen, Daniel Xuyen

    This paper presents a model of trade that explains why firms wait to export and why many exporters fail. Firms face uncertain demands that are only realized after the firm enters the destination. The model retools the timing of uncertainty resolution found in productivity heterogeneity models....... This retooling addresses several shortcomings. First, the imperfect correlation of demands reconciles the sales variation observed in and across destinations. Second, since demands for the firm's output are correlated across destinations, a firm can use previously realized demands to forecast unknown demands...... in untested destinations. The option to forecast demands causes firms to delay exporting in order to gather more information about foreign demand. Third, since uncertainty is resolved after entry, many firms enter a destination and then exit after learning that they cannot profit. This prediction reconciles...

  10. Optimal entropic uncertainty relation for successive measurements ...

    Indian Academy of Sciences (India)

    measurements in quantum information theory. M D SRINIVAS ... derived by Robertson in 1929 [2] from the first principles of quantum theory, does not ... systems and may hence be referred to as 'uncertainty relations for distinct measurements'.

  11. Fusion research principles

    CERN Document Server

    Dolan, Thomas James

    2013-01-01

    Fusion Research, Volume I: Principles provides a general description of the methods and problems of fusion research. The book contains three main parts: Principles, Experiments, and Technology. The Principles part describes the conditions necessary for a fusion reaction, as well as the fundamentals of plasma confinement, heating, and diagnostics. The Experiments part details about forty plasma confinement schemes and experiments. The last part explores various engineering problems associated with reactor design, vacuum and magnet systems, materials, plasma purity, fueling, blankets, neutronics

  12. Managing Measurement Uncertainty in Building Acoustics

    Directory of Open Access Journals (Sweden)

    Chiara Scrosati

    2015-12-01

    Full Text Available In general, uncertainties should preferably be determined following the principles laid down in ISO/IEC Guide 98-3, the Guide to the expression of uncertainty in measurement (GUM:1995. According to current knowledge, it seems impossible to formulate these models for the different quantities in building acoustics. Therefore, the concepts of repeatability and reproducibility are necessary to determine the uncertainty of building acoustics measurements. This study shows the uncertainty of field measurements of a lightweight wall, a heavyweight floor, a façade with a single glazing window and a façade with double glazing window that were analyzed by a Round Robin Test (RRT, conducted in a full-scale experimental building at ITC-CNR (Construction Technologies Institute of the National Research Council of Italy. The single number quantities and their uncertainties were evaluated in both narrow and enlarged range and it was shown that including or excluding the low frequencies leads to very significant differences, except in the case of the sound insulation of façades with single glazing window. The results obtained in these RRTs were compared with other results from literature, which confirm the increase of the uncertainty of single number quantities due to the low frequencies extension. Having stated the measurement uncertainty for a single measurement, in building acoustics, it is also very important to deal with sampling for the purposes of classification of buildings or building units. Therefore, this study also shows an application of the sampling included in the Italian Standard on the acoustic classification of building units on a serial type building consisting of 47 building units. It was found that the greatest variability is observed in the façade and it depends on both the great variability of window’s typologies and on workmanship. Finally, it is suggested how to manage the uncertainty in building acoustics, both for one single

  13. Uncertainty enabled Sensor Observation Services

    Science.gov (United States)

    Cornford, Dan; Williams, Matthew; Bastin, Lucy

    2010-05-01

    Almost all observations of reality are contaminated with errors, which introduce uncertainties into the actual observation result. Such uncertainty is often held to be a data quality issue, and quantification of this uncertainty is essential for the principled exploitation of the observations. Many existing systems treat data quality in a relatively ad-hoc manner, however if the observation uncertainty is a reliable estimate of the error on the observation with respect to reality then knowledge of this uncertainty enables optimal exploitation of the observations in further processes, or decision making. We would argue that the most natural formalism for expressing uncertainty is Bayesian probability theory. In this work we show how the Open Geospatial Consortium Sensor Observation Service can be implemented to enable the support of explicit uncertainty about observations. We show how the UncertML candidate standard is used to provide a rich and flexible representation of uncertainty in this context. We illustrate this on a data set of user contributed weather data where the INTAMAP interpolation Web Processing Service is used to help estimate the uncertainty on the observations of unknown quality, using observations with known uncertainty properties. We then go on to discuss the implications of uncertainty for a range of existing Open Geospatial Consortium standards including SWE common and Observations and Measurements. We discuss the difficult decisions in the design of the UncertML schema and its relation and usage within existing standards and show various options. We conclude with some indications of the likely future directions for UncertML in the context of Open Geospatial Consortium services.

  14. The principle of equivalence

    International Nuclear Information System (INIS)

    Unnikrishnan, C.S.

    1994-01-01

    Principle of equivalence was the fundamental guiding principle in the formulation of the general theory of relativity. What are its key elements? What are the empirical observations which establish it? What is its relevance to some new experiments? These questions are discussed in this article. (author). 11 refs., 5 figs

  15. Generalized-stacking-fault energy and twin-boundary energy of hexagonal close-packed Au: A first-principles calculation.

    Science.gov (United States)

    Wang, Cheng; Wang, Huiyuan; Huang, Tianlong; Xue, Xuena; Qiu, Feng; Jiang, Qichuan

    2015-05-22

    Although solid Au is usually most stable as a face-centered cubic (fcc) structure, pure hexagonal close-packed (hcp) Au has been successfully fabricated recently. However, the phase stability and mechanical property of this new material are unclear, which may restrict its further applications. Here we present the evidence that hcp → fcc phase transformation can proceed easily in Au by first-principles calculations. The extremely low generalized-stacking-fault (GSF) energy in the basal slip system implies a great tendency to form basal stacking faults, which opens the door to phase transformation from hcp to fcc. Moreover, the Au lattice extends slightly within the superficial layers due to the self-assembly of alkanethiolate species on hcp Au (0001) surface, which may also contribute to the hcp → fcc phase transformation. Compared with hcp Mg, the GSF energies for non-basal slip systems and the twin-boundary (TB) energies for and twins are larger in hcp Au, which indicates the more difficulty in generating non-basal stacking faults and twins. The findings provide new insights for understanding the nature of the hcp → fcc phase transformation and guide the experiments of fabricating and developing materials with new structures.

  16. DIDACTIC PRINCIPLES AND PSYCHOLOGICAL CHARACTERISTICS IN DEFINITION OF QUALITY OF SOFTWARE TOOLS FOR EDUCATIONAL PURPOSE IN THE GENERAL EDUCATIONAL ENVIRONMENT OF UKRAINE

    Directory of Open Access Journals (Sweden)

    Maryna V. Pirko

    2011-02-01

    Full Text Available The fundamental feature of economy of postindustrial society is the knowledge that represents the basic source of competitive advantage. In the article the circle of didactic, psychological indicators in researches of problems of achievement of a high degree of quality of education and educational services is considered and described. The attention is paid to pedagogical requirements of the given period which are a standard substantiation in orientations for quality estimation of software tools for educational purpose of the general educational environment in Ukraine. The scheme of internal model of maintenance of quality of software tools for educational purpose is considered, the aspects integrated by internal model of quality of software for educational purpose are listed. The article describes the directions of researches in the conditions of formation of the global international educational environment and uniform information space of  education system taking into account the growth of availability of educational services. It is specified the main principles in the organization of pedagogical software tools.

  17. Earth's Earliest Ecosystems in the C: The Use of Microbial Mats to Demonstrate General Principles of Scientific Inquiry and Microbial Ecology

    Science.gov (United States)

    Bebout, Brad M.; Bucaria, Robin

    2006-01-01

    Microbial mats are living examples of the most ancient biological communities on Earth. As Earth's earliest ecosystems, they are centrally important to understanding the history of life on our planet and are useful models for the search for life elsewhere. As relatively compact (but complete) ecosystems, microbial mats are also extremely useful for educational activities. Mats may be used to demonstrate a wide variety of concepts in general and microbial ecology, including the biogeochemical cycling of elements, photosynthesis and respiration, and the origin of the Earth's present oxygen containing atmosphere. Microbial mats can be found in a number of common environments accessible to teachers, and laboratory microbial mats can be constructed using materials purchased from biological supply houses. With funding from NASA's Exobiology program, we have developed curriculum and web-based activities centered on the use of microbial mats as tools for demonstrating general principles in ecology, and the scientific process. Our web site (http://microbes.arc.nasa.gov) includes reference materials, lesson plans, and a "Web Lab", featuring living mats maintained in a mini-aquarium. The site also provides information as to how research on microbial mats supports NASA's goals, and various NASA missions. A photo gallery contains images of mats, microscopic views of the organisms that form them, and our own research activities. An animated educational video on the web site uses computer graphic and video microscopy to take students on a journey into a microbial mat. These activities are targeted to a middle school audience and are aligned with the National Science Standards.

  18. Photometric Uncertainties

    Science.gov (United States)

    Zou, Xiao-Duan; Li, Jian-Yang; Clark, Beth Ellen; Golish, Dathon

    2018-01-01

    The OSIRIS-REx spacecraft, launched in September, 2016, will study the asteroid Bennu and return a sample from its surface to Earth in 2023. Bennu is a near-Earth carbonaceous asteroid which will provide insight into the formation and evolution of the solar system. OSIRIS-REx will first approach Bennu in August 2018 and will study the asteroid for approximately two years before sampling. OSIRIS-REx will develop its photometric model (including Lommel-Seelinger, ROLO, McEwen, Minnaert and Akimov) of Bennu with OCAM and OVIRS during the Detailed Survey mission phase. The model developed during this phase will be used to photometrically correct the OCAM and OVIRS data.Here we present the analysis of the error for the photometric corrections. Based on our testing data sets, we find:1. The model uncertainties is only correct when we use the covariance matrix to calculate, because the parameters are highly correlated.2. No evidence of domination of any parameter in each model.3. And both model error and the data error contribute to the final correction error comparably.4. We tested the uncertainty module on fake and real data sets, and find that model performance depends on the data coverage and data quality. These tests gave us a better understanding of how different model behave in different case.5. L-S model is more reliable than others. Maybe because the simulated data are based on L-S model. However, the test on real data (SPDIF) does show slight advantage of L-S, too. ROLO is not reliable to use when calculating bond albedo. The uncertainty of McEwen model is big in most cases. Akimov performs unphysical on SOPIE 1 data.6. Better use L-S as our default choice, this conclusion is based mainly on our test on SOPIE data and IPDIF.

  19. Additivity of entropic uncertainty relations

    Directory of Open Access Journals (Sweden)

    René Schwonnek

    2018-03-01

    Full Text Available We consider the uncertainty between two pairs of local projective measurements performed on a multipartite system. We show that the optimal bound in any linear uncertainty relation, formulated in terms of the Shannon entropy, is additive. This directly implies, against naive intuition, that the minimal entropic uncertainty can always be realized by fully separable states. Hence, in contradiction to proposals by other authors, no entanglement witness can be constructed solely by comparing the attainable uncertainties of entangled and separable states. However, our result gives rise to a huge simplification for computing global uncertainty bounds as they now can be deduced from local ones. Furthermore, we provide the natural generalization of the Maassen and Uffink inequality for linear uncertainty relations with arbitrary positive coefficients.

  20. Efficiency principles of consulting entrepreneurship

    OpenAIRE

    Moroz Yustina S.; Drozdov Igor N.

    2015-01-01

    The article reviews the primary goals and problems of consulting entrepreneurship. The principles defining efficiency of entrepreneurship in the field of consulting are generalized. The special attention is given to the importance of ethical principles of conducting consulting entrepreneurship activity.

  1. Uncertainty analysis

    International Nuclear Information System (INIS)

    Thomas, R.E.

    1982-03-01

    An evaluation is made of the suitability of analytical and statistical sampling methods for making uncertainty analyses. The adjoint method is found to be well-suited for obtaining sensitivity coefficients for computer programs involving large numbers of equations and input parameters. For this purpose the Latin Hypercube Sampling method is found to be inferior to conventional experimental designs. The Latin hypercube method can be used to estimate output probability density functions, but requires supplementary rank transformations followed by stepwise regression to obtain uncertainty information on individual input parameters. A simple Cork and Bottle problem is used to illustrate the efficiency of the adjoint method relative to certain statistical sampling methods. For linear models of the form Ax=b it is shown that a complete adjoint sensitivity analysis can be made without formulating and solving the adjoint problem. This can be done either by using a special type of statistical sampling or by reformulating the primal problem and using suitable linear programming software

  2. Quantifying uncertainty in nuclear analytical measurements

    International Nuclear Information System (INIS)

    2004-07-01

    The lack of international consensus on the expression of uncertainty in measurements was recognised by the late 1970s and led, after the issuance of a series of rather generic recommendations, to the publication of a general publication, known as GUM, the Guide to the Expression of Uncertainty in Measurement. This publication, issued in 1993, was based on co-operation over several years by the Bureau International des Poids et Mesures, the International Electrotechnical Commission, the International Federation of Clinical Chemistry, the International Organization for Standardization (ISO), the International Union of Pure and Applied Chemistry, the International Union of Pure and Applied Physics and the Organisation internationale de metrologie legale. The purpose was to promote full information on how uncertainty statements are arrived at and to provide a basis for harmonized reporting and the international comparison of measurement results. The need to provide more specific guidance to different measurement disciplines was soon recognized and the field of analytical chemistry was addressed by EURACHEM in 1995 in the first edition of a guidance report on Quantifying Uncertainty in Analytical Measurements, produced by a group of experts from the field. That publication translated the general concepts of the GUM into specific applications for analytical laboratories and illustrated the principles with a series of selected examples as a didactic tool. Based on feedback from the actual practice, the EURACHEM publication was extensively reviewed in 1997-1999 under the auspices of the Co-operation on International Traceability in Analytical Chemistry (CITAC), and a second edition was published in 2000. Still, except for a single example on the measurement of radioactivity in GUM, the field of nuclear and radiochemical measurements was not covered. The explicit requirement of ISO standard 17025:1999, General Requirements for the Competence of Testing and Calibration

  3. Wave Energy Converter Annual Energy Production Uncertainty Using Simulations

    Directory of Open Access Journals (Sweden)

    Clayton E. Hiles

    2016-09-01

    Full Text Available Critical to evaluating the economic viability of a wave energy project is: (1 a robust estimate of the electricity production throughout the project lifetime and (2 an understanding of the uncertainty associated with said estimate. Standardization efforts have established mean annual energy production (MAEP as the metric for quantification of wave energy converter (WEC electricity production and the performance matrix approach as the appropriate method for calculation. General acceptance of a method for calculating the MAEP uncertainty has not yet been achieved. Several authors have proposed methods based on the standard engineering approach to error propagation, however, a lack of available WEC deployment data has restricted testing of these methods. In this work the magnitude and sensitivity of MAEP uncertainty is investigated. The analysis is driven by data from simulated deployments of 2 WECs of different operating principle at 4 different locations. A Monte Carlo simulation approach is proposed for calculating the variability of MAEP estimates and is used to explore the sensitivity of the calculation. The uncertainty of MAEP ranged from 2%–20% of the mean value. Of the contributing uncertainties studied, the variability in the wave climate was found responsible for most of the uncertainty in MAEP. Uncertainty in MAEP differs considerably between WEC types and between deployment locations and is sensitive to the length of the input data-sets. This implies that if a certain maximum level of uncertainty in MAEP is targeted, the minimum required lengths of the input data-sets will be different for every WEC-location combination.

  4. Decoherence effect on quantum-memory-assisted entropic uncertainty relations

    Science.gov (United States)

    Ming, Fei; Wang, Dong; Huang, Ai-Jun; Sun, Wen-Yang; Ye, Liu

    2018-01-01

    Uncertainty principle significantly provides a bound to predict precision of measurement with regard to any two incompatible observables, and thereby plays a nontrivial role in quantum precision measurement. In this work, we observe the dynamical features of the quantum-memory-assisted entropic uncertainty relations (EUR) for a pair of incompatible measurements in an open system characterized by local generalized amplitude damping (GAD) noises. Herein, we derive the dynamical evolution of the entropic uncertainty with respect to the measurement affecting by the canonical GAD noises when particle A is initially entangled with quantum memory B. Specifically, we examine the dynamics of EUR in the frame of three realistic scenarios: one case is that particle A is affected by environmental noise (GAD) while particle B as quantum memory is free from any noises, another case is that particle B is affected by the external noise while particle A is not, and the last case is that both of the particles suffer from the noises. By analytical methods, it turns out that the uncertainty is not full dependent of quantum correlation evolution of the composite system consisting of A and B, but the minimal conditional entropy of the measured subsystem. Furthermore, we present a possible physical interpretation for the behavior of the uncertainty evolution by means of the mixedness of the observed system; we argue that the uncertainty might be dramatically correlated with the systematic mixedness. Furthermore, we put forward a simple and effective strategy to reduce the measuring uncertainty of interest upon quantum partially collapsed measurement. Therefore, our explorations might offer an insight into the dynamics of the entropic uncertainty relation in a realistic system, and be of importance to quantum precision measurement during quantum information processing.

  5. Principles of dynamics

    CERN Document Server

    Hill, Rodney

    2013-01-01

    Principles of Dynamics presents classical dynamics primarily as an exemplar of scientific theory and method. This book is divided into three major parts concerned with gravitational theory of planetary systems; general principles of the foundations of mechanics; and general motion of a rigid body. Some of the specific topics covered are Keplerian Laws of Planetary Motion; gravitational potential and potential energy; and fields of axisymmetric bodies. The principles of work and energy, fictitious body-forces, and inertial mass are also looked into. Other specific topics examined are kinematics

  6. Bayesian uncertainty analyses of probabilistic risk models

    International Nuclear Information System (INIS)

    Pulkkinen, U.

    1989-01-01

    Applications of Bayesian principles to the uncertainty analyses are discussed in the paper. A short review of the most important uncertainties and their causes is provided. An application of the principle of maximum entropy to the determination of Bayesian prior distributions is described. An approach based on so called probabilistic structures is presented in order to develop a method of quantitative evaluation of modelling uncertainties. The method is applied to a small example case. Ideas for application areas for the proposed method are discussed

  7. Perceptual uncertainty supports design reasoning

    Science.gov (United States)

    Tseng, Winger S. W.

    2018-06-01

    The unstructured, ambiguous figures used as design cues in the experiment were classified as being at high, moderate, and low ambiguity. Participants were required to use the ideas suggested by the visual cues to design a novel table. Results showed that different levels of ambiguity within the cues significantly influenced the quantity of idea development of expert designers, but not novice designers, whose idea generation remained relatively low across all levels of ambiguity. For experts, as the level of ambiguity in the cue increased so did the number of design ideas that were generated. Most design interpretations created by both experts and novices were affected by geometric contours within the figures. In addition, when viewing cues of high ambiguity, experts produced more interpretative transformations than when viewing cues of moderate or low ambiguity. Furthermore, experts produced significantly more new functions or meanings than novices. We claim that increased ambiguity within presented visual cues engenders uncertainty in designers that facilitates flexible transformations and interpretations that prevent premature commitment to uncreative solutions. Such results could be applied in design learning and education, focused on differences between experts and novices, to generalize the principles and strategies of interpretations by experts during concept sketching to train novices when face design problems, and the development of CACD tools to support designers.

  8. Radiation protection - Performance criteria for laboratories performing cytogenetic triage for assessment of mass casualties in radiological or nuclear emergencies - General principles and application to dicentric assay

    International Nuclear Information System (INIS)

    2008-01-01

    threshold for deterministic effects, by using the ISO 19238 criteria. These latter data also assist in counselling for the risk of late stochastic disease. Part of the information in this International Standard is contained in other international guidelines and scientific publications, primarily in ISO 19238 and the International Atomic Energy Agency?s Technical Report No.405, on Biological Dosimetry [4]. However, this International Standard details and standardizes the quality assurance and quality control of performance criteria for cytogenetic assessment of individual exposures in radiological or nuclear mass casualties. This International Standard is generally compliant with ISO/IEC 17025, with particular consideration given to the specific needs of rapid, emergency biological dosimetry. The expression of uncertainties in dose estimations given in this International Standard complies with the ISO Guide 98 and ISO 5725

  9. Uncertainty in prediction and in inference

    NARCIS (Netherlands)

    Hilgevoord, J.; Uffink, J.

    1991-01-01

    The concepts of uncertainty in prediction and inference are introduced and illustrated using the diffraction of light as an example. The close re-lationship between the concepts of uncertainty in inference and resolving power is noted. A general quantitative measure of uncertainty in

  10. Uncertainty in the classroom—teaching quantum physics

    International Nuclear Information System (INIS)

    Johansson, K E; Milstead, D

    2008-01-01

    The teaching of the Heisenberg uncertainty principle provides one of those rare moments when science appears to contradict everyday life experiences, sparking the curiosity of the interested student. Written at a level appropriate for an able high school student, this article provides ideas for introducing the uncertainty principle and showing how it can be used to elucidate many topics in modern physics

  11. Measurement uncertainties in science and technology

    CERN Document Server

    Grabe, Michael

    2014-01-01

    This book recasts the classical Gaussian error calculus from scratch, the inducements concerning both random and unknown systematic errors. The idea of this book is to create a formalism being fit to localize the true values of physical quantities considered – true with respect to the set of predefined physical units. Remarkably enough, the prevailingly practiced forms of error calculus do not feature this property which however proves in every respect, to be physically indispensable. The amended formalism, termed Generalized Gaussian Error Calculus by the author, treats unknown systematic errors as biases and brings random errors to bear via enhanced confidence intervals as laid down by students. The significantly extended second edition thoroughly restructures and systematizes the text as a whole and illustrates the formalism by numerous numerical examples. They demonstrate the basic principles of how to understand uncertainties to localize the true values of measured values - a perspective decisive in vi...

  12. The principle of optimisation: reasons for success and legal criticism

    International Nuclear Information System (INIS)

    Fernandez Regalado, Luis

    2008-01-01

    The International Commission on Radiological Protection (ICRP) has adopted new recommendations in 2007. In broad outlines they fundamentally continue the recommendations already approved in 1990 and later on. The principle of optimisation of protection, together with the principles of justification and dose limits, remains playing a key role of the ICRP recommendations, and it has so been for the last few years. This principle, somehow reinforced in the 2007 ICRP recommendations, has been incorporated into norms and legislation which have peacefully been in force in many countries all over the world. There are three main reasons to explain the success in the application of the principle of optimisation in radiological protection: First, the subjectivity of the sentence that embraces the principle of optimisation, 'As low as reasonably achievable' (ALARA), that allows different valid interpretations under different circumstances. Second, the pragmatism and adaptability of ALARA to all exposure situations. And third, the scientific humbleness which is behind the principle of optimisation, which makes a clear contrast with the old fashioned scientific positivism that enshrined scientist opinions. Nevertheless, from a legal point of view, there is some criticism cast over the principle of optimisation in radiological protection, where it has been transformed in compulsory norm. This criticism is based on two arguments: The lack of democratic participation in the process of elaboration of the norm, and the legal uncertainty associated to its application. Both arguments are somehow known by the ICRP which, on the one hand, has broadened the participation of experts, associations and the professional radiological protection community, increasing the transparency on how decisions on recommendations have been taken, and on the other hand, the ICRP has warned about the need for authorities to specify general criteria to develop the principle of optimisation in national

  13. Uncertainty Analyses and Strategy

    International Nuclear Information System (INIS)

    Kevin Coppersmith

    2001-01-01

    The DOE identified a variety of uncertainties, arising from different sources, during its assessment of the performance of a potential geologic repository at the Yucca Mountain site. In general, the number and detail of process models developed for the Yucca Mountain site, and the complex coupling among those models, make the direct incorporation of all uncertainties difficult. The DOE has addressed these issues in a number of ways using an approach to uncertainties that is focused on producing a defensible evaluation of the performance of a potential repository. The treatment of uncertainties oriented toward defensible assessments has led to analyses and models with so-called ''conservative'' assumptions and parameter bounds, where conservative implies lower performance than might be demonstrated with a more realistic representation. The varying maturity of the analyses and models, and uneven level of data availability, result in total system level analyses with a mix of realistic and conservative estimates (for both probabilistic representations and single values). That is, some inputs have realistically represented uncertainties, and others are conservatively estimated or bounded. However, this approach is consistent with the ''reasonable assurance'' approach to compliance demonstration, which was called for in the U.S. Nuclear Regulatory Commission's (NRC) proposed 10 CFR Part 63 regulation (64 FR 8640 [DIRS 101680]). A risk analysis that includes conservatism in the inputs will result in conservative risk estimates. Therefore, the approach taken for the Total System Performance Assessment for the Site Recommendation (TSPA-SR) provides a reasonable representation of processes and conservatism for purposes of site recommendation. However, mixing unknown degrees of conservatism in models and parameter representations reduces the transparency of the analysis and makes the development of coherent and consistent probability statements about projected repository

  14. Mach's holographic principle

    International Nuclear Information System (INIS)

    Khoury, Justin; Parikh, Maulik

    2009-01-01

    Mach's principle is the proposition that inertial frames are determined by matter. We put forth and implement a precise correspondence between matter and geometry that realizes Mach's principle. Einstein's equations are not modified and no selection principle is applied to their solutions; Mach's principle is realized wholly within Einstein's general theory of relativity. The key insight is the observation that, in addition to bulk matter, one can also add boundary matter. Given a space-time, and thus the inertial frames, we can read off both boundary and bulk stress tensors, thereby relating matter and geometry. We consider some global conditions that are necessary for the space-time to be reconstructible, in principle, from bulk and boundary matter. Our framework is similar to that of the black hole membrane paradigm and, in asymptotically anti-de Sitter space-times, is consistent with holographic duality.

  15. Uncertainty in perception and the Hierarchical Gaussian Filter

    Directory of Open Access Journals (Sweden)

    Christoph Daniel Mathys

    2014-11-01

    Full Text Available In its full sense, perception rests on an agent’s model of how its sensory input comes about and the inferences it draws based on this model. These inferences are necessarily uncertain. Here, we illustrate how the hierarchical Gaussian filter (HGF offers a principled and generic way to deal with the several forms that uncertainty in perception takes. The HGF is a recent derivation of one-step update equations from Bayesian principles that rests on a hierarchical generative model of the environment and its (instability. It is computationally highly efficient, allows for online estimates of hidden states, and has found numerous applications to experimental data from human subjects. In this paper, we generalize previous descriptions of the HGF and its account of perceptual uncertainty. First, we explicitly formulate the extension of the HGF’s hierarchy to any number of levels; second, we discuss how various forms of uncertainty are accommodated by the minimization of variational free energy as encoded in the update equations; third, we combine the HGF with decision models and demonstrate the inversion of this combination; finally, we report a simulation study that compared four optimization methods for inverting the HGF/decision model combination at different noise levels. These four methods (Nelder-Mead simplex algorithm, Gaussian process-based global optimization, variational Bayes and Markov chain Monte Carlo sampling all performed well even under considerable noise, with variational Bayes offering the best combination of efficiency and informativeness of inference. Our results demonstrate that the HGF provides a principled, flexible, and efficient - but at the same time intuitive - framework for the resolution of perceptual uncertainty in behaving agents.

  16. Generalized Superconductivity. Generalized Levitation

    International Nuclear Information System (INIS)

    Ciobanu, B.; Agop, M.

    2004-01-01

    In the recent papers, the gravitational superconductivity is described. We introduce the concept of generalized superconductivity observing that any nongeodesic motion and, in particular, the motion in an electromagnetic field, can be transformed in a geodesic motion by a suitable choice of the connection. In the present paper, the gravitoelectromagnetic London equations have been obtained from the generalized Helmholtz vortex theorem using the generalized local equivalence principle. In this context, the gravitoelectromagnetic Meissner effect and, implicitly, the gravitoelectromagnetic levitation are given. (authors)

  17. GENERAL PRINCIPLES OF EU (CRIMINAL LAW: LEGALITY, EQUALITY, NON-DISCRIMINATION, SPECIALTY AND NE BIS IN IDEM IN THE FIELD OF THE EUROPEAN ARREST WARRANT

    Directory of Open Access Journals (Sweden)

    NOREL NEAGU

    2012-05-01

    Full Text Available This article deals with the case law of the Court of Justice of the European Union in the field of the European arrest warrant, critically analysing the principles invoked in several decisions validating the European legislation in the field: legality, equality and non-discrimination, specialty, ne bis in idem. The author concludes that an area of freedom, security and justice could be built on these principles, but further harmonisation of legislation needs to be realised to avoid a ”journey to the unknown” for European citizens in respect to legislation of other member states of the EU.

  18. On the invariance principle

    Energy Technology Data Exchange (ETDEWEB)

    Moller-Nielsen, Thomas [University of Oxford (United Kingdom)

    2014-07-01

    Physicists and philosophers have long claimed that the symmetries of our physical theories - roughly speaking, those transformations which map solutions of the theory into solutions - can provide us with genuine insight into what the world is really like. According to this 'Invariance Principle', only those quantities which are invariant under a theory's symmetries should be taken to be physically real, while those quantities which vary under its symmetries should not. Physicists and philosophers, however, are generally divided (or, indeed, silent) when it comes to explaining how such a principle is to be justified. In this paper, I spell out some of the problems inherent in other theorists' attempts to justify this principle, and sketch my own proposed general schema for explaining how - and when - the Invariance Principle can indeed be used as a legitimate tool of metaphysical inference.

  19. Decommissioning Funding: Ethics, Implementation, Uncertainties

    International Nuclear Information System (INIS)

    2007-01-01

    This status report on decommissioning funding: ethics, implementation, uncertainties is based on a review of recent literature and materials presented at NEA meetings in 2003 and 2004, and particularly at a topical session organised in November 2004 on funding issues associated with the decommissioning of nuclear power facilities. The report also draws on the experience of the NEA Working Party on Decommissioning and Dismantling (WPDD). This report offers, in a concise form, an overview of relevant considerations on decommissioning funding mechanisms with regard to ethics, implementation and uncertainties. Underlying ethical principles found in international agreements are identified, and factors influencing the accumulation and management of funds for decommissioning nuclear facilities are discussed together with the main sources of uncertainties of funding systems

  20. How to live with uncertainties?

    International Nuclear Information System (INIS)

    Michel, R.

    2012-01-01

    In a short introduction, the problem of uncertainty as a general consequence of incomplete information as well as the approach to quantify uncertainty in metrology are addressed. A little history of the more than 30 years of the working group AK SIGMA is followed by an appraisal of its up-to-now achievements. Then, the potential future of the AK SIGMA is discussed based on its actual tasks and on open scientific questions and future topics. (orig.)

  1. Investment, regulation, and uncertainty

    Science.gov (United States)

    Smyth, Stuart J; McDonald, Jillian; Falck-Zepeda, Jose

    2014-01-01

    As with any technological innovation, time refines the technology, improving upon the original version of the innovative product. The initial GM crops had single traits for either herbicide tolerance or insect resistance. Current varieties have both of these traits stacked together and in many cases other abiotic and biotic traits have also been stacked. This innovation requires investment. While this is relatively straight forward, certain conditions need to exist such that investments can be facilitated. The principle requirement for investment is that regulatory frameworks render consistent and timely decisions. If the certainty of regulatory outcomes weakens, the potential for changes in investment patterns increases.   This article provides a summary background to the leading plant breeding technologies that are either currently being used to develop new crop varieties or are in the pipeline to be applied to plant breeding within the next few years. Challenges for existing regulatory systems are highlighted. Utilizing an option value approach from investment literature, an assessment of uncertainty regarding the regulatory approval for these varying techniques is undertaken. This research highlights which technology development options have the greatest degree of uncertainty and hence, which ones might be expected to see an investment decline. PMID:24499745

  2. The Principle of Pooled Calibrations and Outlier Retainment Elucidates Optimum Performance of Ion Chromatography

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Mikolajczak, Maria; Wojtachnio-Zawada, Katarzyna Olga

    A new principle of statistical data treatment is presented. Since the majority of scientists and costumers are interested in determination of the true amount of analyte in real samples, the focus of attention should be directed towards the concept of accuracy rather than precision. By exploiting...... that the principle of pooled calibrations provides a more realistic picture of the analytical performance with the drawback however, that generally higher levels of uncertainties should be accepted, as compared to contemporary literature values. The implications to the science of analytical chemistry in general...

  3. The genetic difference principle.

    Science.gov (United States)

    Farrelly, Colin

    2004-01-01

    In the newly emerging debates about genetics and justice three distinct principles have begun to emerge concerning what the distributive aim of genetic interventions should be. These principles are: genetic equality, a genetic decent minimum, and the genetic difference principle. In this paper, I examine the rationale of each of these principles and argue that genetic equality and a genetic decent minimum are ill-equipped to tackle what I call the currency problem and the problem of weight. The genetic difference principle is the most promising of the three principles and I develop this principle so that it takes seriously the concerns of just health care and distributive justice in general. Given the strains on public funds for other important social programmes, the costs of pursuing genetic interventions and the nature of genetic interventions, I conclude that a more lax interpretation of the genetic difference principle is appropriate. This interpretation stipulates that genetic inequalities should be arranged so that they are to the greatest reasonable benefit of the least advantaged. Such a proposal is consistent with prioritarianism and provides some practical guidance for non-ideal societies--that is, societies that do not have the endless amount of resources needed to satisfy every requirement of justice.

  4. Uncertainty and measurement

    International Nuclear Information System (INIS)

    Landsberg, P.T.

    1990-01-01

    This paper explores how the quantum mechanics uncertainty relation can be considered to result from measurements. A distinction is drawn between the uncertainties obtained by scrutinising experiments and the standard deviation type of uncertainty definition used in quantum formalism. (UK)

  5. Optimal design under uncertainty of a passive defense structure against snow avalanches: from a general Bayesian framework to a simple analytical model

    Directory of Open Access Journals (Sweden)

    N. Eckert

    2008-10-01

    Full Text Available For snow avalanches, passive defense structures are generally designed by considering high return period events. In this paper, taking inspiration from other natural hazards, an alternative method based on the maximization of the economic benefit of the defense structure is proposed. A general Bayesian framework is described first. Special attention is given to the problem of taking the poor local information into account in the decision-making process. Therefore, simplifying assumptions are made. The avalanche hazard is represented by a Peak Over Threshold (POT model. The influence of the dam is quantified in terms of runout distance reduction with a simple relation derived from small-scale experiments using granular media. The costs corresponding to dam construction and the damage to the element at risk are roughly evaluated for each dam height-hazard value pair, with damage evaluation corresponding to the maximal expected loss. Both the classical and the Bayesian risk functions can then be computed analytically. The results are illustrated with a case study from the French avalanche database. A sensitivity analysis is performed and modelling assumptions are discussed in addition to possible further developments.

  6. Commonplaces and social uncertainty

    DEFF Research Database (Denmark)

    Lassen, Inger

    2008-01-01

    This article explores the concept of uncertainty in four focus group discussions about genetically modified food. In the discussions, members of the general public interact with food biotechnology scientists while negotiating their attitudes towards genetic engineering. Their discussions offer...... an example of risk discourse in which the use of commonplaces seems to be a central feature (Myers 2004: 81). My analyses support earlier findings that commonplaces serve important interactional purposes (Barton 1999) and that they are used for mitigating disagreement, for closing topics and for facilitating...

  7. Uncertainty in spatial planning proceedings

    Directory of Open Access Journals (Sweden)

    Aleš Mlakar

    2009-01-01

    Full Text Available Uncertainty is distinctive of spatial planning as it arises from the necessity to co-ordinate the various interests within the area, from the urgency of adopting spatial planning decisions, the complexity of the environment, physical space and society, addressing the uncertainty of the future and from the uncertainty of actually making the right decision. Response to uncertainty is a series of measures that mitigate the effects of uncertainty itself. These measures are based on two fundamental principles – standardization and optimization. The measures are related to knowledge enhancement and spatial planning comprehension, in the legal regulation of changes, in the existence of spatial planning as a means of different interests co-ordination, in the active planning and the constructive resolution of current spatial problems, in the integration of spatial planning and the environmental protection process, in the implementation of the analysis as the foundation of spatial planners activities, in the methods of thinking outside the parameters, in forming clear spatial concepts and in creating a transparent management spatial system and also in the enforcement the participatory processes.

  8. Evaluating the uncertainty of input quantities in measurement models

    Science.gov (United States)

    Possolo, Antonio; Elster, Clemens

    2014-06-01

    The Guide to the Expression of Uncertainty in Measurement (GUM) gives guidance about how values and uncertainties should be assigned to the input quantities that appear in measurement models. This contribution offers a concrete proposal for how that guidance may be updated in light of the advances in the evaluation and expression of measurement uncertainty that were made in the course of the twenty years that have elapsed since the publication of the GUM, and also considering situations that the GUM does not yet contemplate. Our motivation is the ongoing conversation about a new edition of the GUM. While generally we favour a Bayesian approach to uncertainty evaluation, we also recognize the value that other approaches may bring to the problems considered here, and focus on methods for uncertainty evaluation and propagation that are widely applicable, including to cases that the GUM has not yet addressed. In addition to Bayesian methods, we discuss maximum-likelihood estimation, robust statistical methods, and measurement models where values of nominal properties play the same role that input quantities play in traditional models. We illustrate these general-purpose techniques in concrete examples, employing data sets that are realistic but that also are of conveniently small sizes. The supplementary material available online lists the R computer code that we have used to produce these examples (stacks.iop.org/Met/51/3/339/mmedia). Although we strive to stay close to clause 4 of the GUM, which addresses the evaluation of uncertainty for input quantities, we depart from it as we review the classes of measurement models that we believe are generally useful in contemporary measurement science. We also considerably expand and update the treatment that the GUM gives to Type B evaluations of uncertainty: reviewing the state-of-the-art, disciplined approach to the elicitation of expert knowledge, and its encapsulation in probability distributions that are usable in

  9. Uncertainty analysis and validation of environmental models. The empirically based uncertainty analysis

    International Nuclear Information System (INIS)

    Monte, Luigi; Hakanson, Lars; Bergstroem, Ulla; Brittain, John; Heling, Rudie

    1996-01-01

    The principles of Empirically Based Uncertainty Analysis (EBUA) are described. EBUA is based on the evaluation of 'performance indices' that express the level of agreement between the model and sets of empirical independent data collected in different experimental circumstances. Some of these indices may be used to evaluate the confidence limits of the model output. The method is based on the statistical analysis of the distribution of the index values and on the quantitative relationship of these values with the ratio 'experimental data/model output'. Some performance indices are described in the present paper. Among these, the so-called 'functional distance' (d) between the logarithm of model output and the logarithm of the experimental data, defined as d 2 =Σ n 1 ( ln M i - ln O i ) 2 /n where M i is the i-th experimental value, O i the corresponding model evaluation and n the number of the couplets 'experimental value, predicted value', is an important tool for the EBUA method. From the statistical distribution of this performance index, it is possible to infer the characteristics of the distribution of the ratio 'experimental data/model output' and, consequently to evaluate the confidence limits for the model predictions. This method was applied to calculate the uncertainty level of a model developed to predict the migration of radiocaesium in lacustrine systems. Unfortunately, performance indices are affected by the uncertainty of the experimental data used in validation. Indeed, measurement results of environmental levels of contamination are generally associated with large uncertainty due to the measurement and sampling techniques and to the large variability in space and time of the measured quantities. It is demonstrated that this non-desired effect, in some circumstances, may be corrected by means of simple formulae

  10. The Uncertainties of Risk Management

    DEFF Research Database (Denmark)

    Vinnari, Eija; Skærbæk, Peter

    2014-01-01

    for expanding risk management. More generally, such uncertainties relate to the professional identities and responsibilities of operational managers as defined by the framing devices. Originality/value – The paper offers three contributions to the extant literature: first, it shows how risk management itself......Purpose – The purpose of this paper is to analyse the implementation of risk management as a tool for internal audit activities, focusing on unexpected effects or uncertainties generated during its application. Design/methodology/approach – Public and confidential documents as well as semi......-structured interviews are analysed through the lens of actor-network theory to identify the effects of risk management devices in a Finnish municipality. Findings – The authors found that risk management, rather than reducing uncertainty, itself created unexpected uncertainties that would otherwise not have emerged...

  11. Mach's principle and rotating universes

    International Nuclear Information System (INIS)

    King, D.H.

    1990-01-01

    It is shown that the Bianchi 9 model universe satisfies the Mach principle. These closed rotating universes were previously thought to be counter-examples to the principle. The Mach principle is satisfied because the angular momentum of the rotating matter is compensated by the effective angular momentum of gravitational waves. A new formulation of the Mach principle is given that is based on the field theory interpretation of general relativity. Every closed universe with 3-sphere topology is shown to satisfy this formulation of the Mach principle. It is shown that the total angular momentum of the matter and gravitational waves in a closed 3-sphere topology universe is zero

  12. The uncertainties in estimating measurement uncertainties

    International Nuclear Information System (INIS)

    Clark, J.P.; Shull, A.H.

    1994-01-01

    All measurements include some error. Whether measurements are used for accountability, environmental programs or process support, they are of little value unless accompanied by an estimate of the measurements uncertainty. This fact is often overlooked by the individuals who need measurements to make decisions. This paper will discuss the concepts of measurement, measurements errors (accuracy or bias and precision or random error), physical and error models, measurement control programs, examples of measurement uncertainty, and uncertainty as related to measurement quality. Measurements are comparisons of unknowns to knowns, estimates of some true value plus uncertainty; and are no better than the standards to which they are compared. Direct comparisons of unknowns that match the composition of known standards will normally have small uncertainties. In the real world, measurements usually involve indirect comparisons of significantly different materials (e.g., measuring a physical property of a chemical element in a sample having a matrix that is significantly different from calibration standards matrix). Consequently, there are many sources of error involved in measurement processes that can affect the quality of a measurement and its associated uncertainty. How the uncertainty estimates are determined and what they mean is as important as the measurement. The process of calculating the uncertainty of a measurement itself has uncertainties that must be handled correctly. Examples of chemistry laboratory measurement will be reviewed in this report and recommendations made for improving measurement uncertainties

  13. Variational principles

    CERN Document Server

    Moiseiwitsch, B L

    2004-01-01

    This graduate-level text's primary objective is to demonstrate the expression of the equations of the various branches of mathematical physics in the succinct and elegant form of variational principles (and thereby illuminate their interrelationship). Its related intentions are to show how variational principles may be employed to determine the discrete eigenvalues for stationary state problems and to illustrate how to find the values of quantities (such as the phase shifts) that arise in the theory of scattering. Chapter-by-chapter treatment consists of analytical dynamics; optics, wave mecha

  14. Orientation and uncertainties

    International Nuclear Information System (INIS)

    Peters, H.P.; Hennen, L.

    1990-01-01

    The authors report on the results of three representative surveys that made a closer inquiry into perceptions and valuations of information and information sources concering Chernobyl. If turns out that the information sources are generally considered little trustworthy. This was generally attributable to the interpretation of the events being tied to attitudes in the atmonic energy issue. The greatest credit was given to television broadcasting. The authors summarize their discourse as follows: There is good reason to interpret the widespread uncertainty after Chernobyl as proof of the fact that large parts of the population are prepared and willing to assume a critical stance towards information and prefer to draw their information from various sources representing different positions. (orig.) [de

  15. Oncology. Pt. 1. General part, epidemiology - pathogenesis - basic principles of therapy. 2. upd. ed.; Die Onkologie. T. 1. Allgemeiner Teil, Epidemiologie - Pathogenese - Grundprinzipien der Therapie

    Energy Technology Data Exchange (ETDEWEB)

    Hiddemann, Wolfgang [Muenchen Univ. Klinikum Grosshadern (Germany). Medizinische Klinik und Poliklinik III; Bartram Claus R. (eds.) [Heidelberg Univ. (Germany). Inst. fuer Humangenetik

    2010-07-01

    The book Oncology is aimed to communicate the compiled knowledge on tumor development and cancer: fundamental knowledge base, practice related know-how for diagnostics and therapy. Part 1 includes the following chapters: epidemiology and pathogenesis, basic principles of diagnostics, basic principles of therapy, complication of malign growth, tumors in the gastrointestinal tract, female genital carcinomas, kidney and urinary tract carcinomas, respiratory tract and lung carcinomas, carcinomas in the head - neck area, bone and soft tissue carcinomas, pediatric tumors, hematological neoplasm, other carcinomas. The book can be used as reference for clinical work. [German] Die gesamte Onkologie - verlaessliches Wissen fuer Ihre Kompetenz. ''Die Onkologie'' stellt sich der Herausforderung, das staendig wachsende Wissen ueber Tumorerkrankungen in seiner Gesamtheit zu vermitteln. Sowohl inhaltlich als auch didaktisch auf hoechsten Niveau: Fundiertes Grundlagenwissen zum umfassenden Nachschlagen Praxisrelevantes Know-how fuer Diagnostik und Therapie Systematischer Aufbau fuer das Verstaendnis der komplexen Zusammenhaenge Die Onkologie - eine Enzyklopaedie der modernen klinischen Tumorlehre. Angesehene Experten aus Klinik, Forschung und Praxis liefern Ihnen in Teil1 klinisches Grundlagenwissen zu den Grundprinzipien der Therapie, Epidemiologie, Aetiologie und Pathogenese, sowie zu Komplikationen des malignen Wachstums. Zum Nachschlagen und Anwenden: finden Sie alle Optionen - auch fuer Ihren schwierigsten Fall. Der uebersichtliche Aufbau und die exzellenten Abbildungen erleichtern Ihnen das schnelle Auffinden und Verstaendnis der gesuchten Informationen. Fuer den Alltag onkologisch taetiger Aerzte ist Die Onkologie ein unentbehrlicher Meilenstein. (orig.)

  16. Quantification of uncertainties of modeling and simulation

    International Nuclear Information System (INIS)

    Ma Zhibo; Yin Jianwei

    2012-01-01

    The principles of Modeling and Simulation (M and S) is interpreted by a functional relation, from which the total uncertainties of M and S are identified and sorted to three parts considered to vary along with the conceptual models' parameters. According to the idea of verification and validation, the space of the parameters is parted to verified and applied domains, uncertainties in the verified domain are quantified by comparison between numerical and standard results, and those in the applied domain are quantified by a newly developed extrapolating method. Examples are presented to demonstrate and qualify the ideas aimed to build a framework to quantify the uncertainties of M and S. (authors)

  17. Safety Principles

    Directory of Open Access Journals (Sweden)

    V. A. Grinenko

    2011-06-01

    Full Text Available The offered material in the article is picked up so that the reader could have a complete representation about concept “safety”, intrinsic characteristics and formalization possibilities. Principles and possible strategy of safety are considered. A material of the article is destined for the experts who are taking up the problems of safety.

  18. Maquet principle

    Energy Technology Data Exchange (ETDEWEB)

    Levine, R.B.; Stassi, J.; Karasick, D.

    1985-04-01

    Anterior displacement of the tibial tubercle is a well-accepted orthopedic procedure in the treatment of certain patellofemoral disorders. The radiologic appearance of surgical procedures utilizing the Maquet principle has not been described in the radiologic literature. Familiarity with the physiologic and biochemical basis for the procedure and its postoperative appearance is necessary for appropriate roentgenographic evaluation and the radiographic recognition of complications.

  19. Cosmological principle

    International Nuclear Information System (INIS)

    Wesson, P.S.

    1979-01-01

    The Cosmological Principle states: the universe looks the same to all observers regardless of where they are located. To most astronomers today the Cosmological Principle means the universe looks the same to all observers because density of the galaxies is the same in all places. A new Cosmological Principle is proposed. It is called the Dimensional Cosmological Principle. It uses the properties of matter in the universe: density (rho), pressure (p), and mass (m) within some region of space of length (l). The laws of physics require incorporation of constants for gravity (G) and the speed of light (C). After combining the six parameters into dimensionless numbers, the best choices are: 8πGl 2 rho/c 2 , 8πGl 2 rho/c 4 , and 2 Gm/c 2 l (the Schwarzchild factor). The Dimensional Cosmological Principal came about because old ideas conflicted with the rapidly-growing body of observational evidence indicating that galaxies in the universe have a clumpy rather than uniform distribution

  20. Large-uncertainty intelligent states for angular momentum and angle

    International Nuclear Information System (INIS)

    Goette, Joerg B; Zambrini, Roberta; Franke-Arnold, Sonja; Barnett, Stephen M

    2005-01-01

    The equality in the uncertainty principle for linear momentum and position is obtained for states which also minimize the uncertainty product. However, in the uncertainty relation for angular momentum and angular position both sides of the inequality are state dependent and therefore the intelligent states, which satisfy the equality, do not necessarily give a minimum for the uncertainty product. In this paper, we highlight the difference between intelligent states and minimum uncertainty states by investigating a class of intelligent states which obey the equality in the angular uncertainty relation while having an arbitrarily large uncertainty product. To develop an understanding for the uncertainties of angle and angular momentum for the large-uncertainty intelligent states we compare exact solutions with analytical approximations in two limiting cases

  1. Uncertainty for Part Density Determination: An Update

    Energy Technology Data Exchange (ETDEWEB)

    Valdez, Mario Orlando [Los Alamos National Laboratory

    2016-12-14

    Accurate and precise density measurements by hydrostatic weighing requires the use of an analytical balance, configured with a suspension system, to both measure the weight of a part in water and in air. Additionally, the densities of these liquid media (water and air) must be precisely known for the part density determination. To validate the accuracy and precision of these measurements, uncertainty statements are required. The work in this report is a revision of an original report written more than a decade ago, specifically applying principles and guidelines suggested by the Guide to the Expression of Uncertainty in Measurement (GUM) for determining the part density uncertainty through sensitivity analysis. In this work, updated derivations are provided; an original example is revised with the updated derivations and appendix, provided solely to uncertainty evaluations using Monte Carlo techniques, specifically using the NIST Uncertainty Machine, as a viable alternative method.

  2. Fermat's Principle Revisited.

    Science.gov (United States)

    Kamat, R. V.

    1991-01-01

    A principle is presented to show that, if the time of passage of light is expressible as a function of discrete variables, one may dispense with the more general method of the calculus of variations. The calculus of variations and the alternative are described. The phenomenon of mirage is discussed. (Author/KR)

  3. Uncertainty Relations and Possible Experience

    Directory of Open Access Journals (Sweden)

    Gregg Jaeger

    2016-06-01

    Full Text Available The uncertainty principle can be understood as a condition of joint indeterminacy of classes of properties in quantum theory. The mathematical expressions most closely associated with this principle have been the uncertainty relations, various inequalities exemplified by the well known expression regarding position and momentum introduced by Heisenberg. Here, recent work involving a new sort of “logical” indeterminacy principle and associated relations introduced by Pitowsky, expressable directly in terms of probabilities of outcomes of measurements of sharp quantum observables, is reviewed and its quantum nature is discussed. These novel relations are derivable from Boolean “conditions of possible experience” of the quantum realm and have been considered both as fundamentally logical and as fundamentally geometrical. This work focuses on the relationship of indeterminacy to the propositions regarding the values of discrete, sharp observables of quantum systems. Here, reasons for favoring each of these two positions are considered. Finally, with an eye toward future research related to indeterminacy relations, further novel approaches grounded in category theory and intended to capture and reconceptualize the complementarity characteristics of quantum propositions are discussed in relation to the former.

  4. Uncertainty in social dilemmas

    OpenAIRE

    Kwaadsteniet, Erik Willem de

    2007-01-01

    This dissertation focuses on social dilemmas, and more specifically, on environmental uncertainty in these dilemmas. Real-life social dilemma situations are often characterized by uncertainty. For example, fishermen mostly do not know the exact size of the fish population (i.e., resource size uncertainty). Several researchers have therefore asked themselves the question as to how such uncertainty influences people’s choice behavior. These researchers have repeatedly concluded that uncertainty...

  5. 48 CFR 49.113 - Cost principles.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Cost principles. 49.113 Section 49.113 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT TERMINATION OF CONTRACTS General Principles 49.113 Cost principles. The cost principles and procedures in the...

  6. 32 CFR 776.19 - Principles.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Principles. 776.19 Section 776.19 National... Professional Conduct § 776.19 Principles. The Rules of this subpart are based on the following principles... exists, this subpart should be interpreted consistent with these general principles. (a) Covered...

  7. Earth's Earliest Ecosystems in the Classroom: The Use of Microbial Mats to Teach General Principles in Microbial Ecology, and Scientific Inquiry

    Science.gov (United States)

    Beboutl, Brad M.; Bucaria, Robin

    2004-01-01

    Microbial mats are living examples of the most ancient biological communities on earth, and may also be useful models for the search for life elsewhere. They are centrally important to Astrobiology. In this lecture, we will present an introduction to microbial mats, as well as an introduction to our web-based educational module on the subject of microbial ecology, featuring living mats maintained in a mini "Web Lab" complete with remotely-operable instrumentation. We have partnered with a number of outreach specialists in order to produce an informative and educational web-based presentation, aspects of which will be exported to museum exhibits reaching a wide audience. On our web site, we will conduct regularly scheduled experimental manipulations, linking the experiments to our research activities, and demonstrating fundamental principles of scientific research.

  8. Uncertainty in the Real World

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 2. Uncertainty in the Real World - Fuzzy Sets. Satish Kumar. General Article Volume 4 Issue 2 February 1999 pp 37-47. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/004/02/0037-0047 ...

  9. Sensitivity and uncertainty analysis for functionals of the time-dependent nuclide density field

    International Nuclear Information System (INIS)

    Williams, M.L.; Weisbin, C.R.

    1978-04-01

    An approach to extend the present ORNL sensitivity program to include functionals of the time-dependent nuclide density field is developed. An adjoint equation for the nuclide field was derived previously by using generalized perturbation theory; the present derivation makes use of a variational principle and results in the same equation. The physical significance of this equation is discussed and compared to that of the time-dependent neutron adjoint equation. Computational requirements for determining sensitivity profiles and uncertainties for functionals of the time-dependent nuclide density vector are developed within the framework of the existing FORSS system; in this way the current capability is significantly extended. The development, testing, and use of an adjoint version of the ORIGEN isotope generation and depletion code are documented. Finally, a sample calculation is given which estimates the uncertainty in the plutonium inventory at shutdown of a PWR due to assumed uncertainties in uranium and plutonium cross sections. 8 figures, 4 tables

  10. The principle of pooled calibrations and outlier retainment elucidates optimum performance of ion chromatography

    DEFF Research Database (Denmark)

    Andersen, Jens; Mikolajczak, Maria; Wojtachnio-Zawada, Katarzyna Olga

    2012-01-01

    A principle with quality assurance of ion chromatography (IC) is presented. Since the majority of scientists and costumers are interested in the determination of the true amount of analyte in real samples, the focus of attention should be directed towards the concept of accuracy rather than...... investigations of method validations where it was found that the principle of pooled calibrations provides a more realistic picture of the analytical performance with the drawback, however, that generally higher levels of uncertainties should be accepted, as compared to contemporary literature values...

  11. Modelling of Transport Projects Uncertainties

    DEFF Research Database (Denmark)

    Salling, Kim Bang; Leleur, Steen

    2009-01-01

    This paper proposes a new way of handling the uncertainties present in transport decision making based on infrastructure appraisals. The paper suggests to combine the principle of Optimism Bias, which depicts the historical tendency of overestimating transport related benefits and underestimating...... to supplement Optimism Bias and the associated Reference Class Forecasting (RCF) technique with a new technique that makes use of a scenario-grid. We tentatively introduce and refer to this as Reference Scenario Forecasting (RSF). The final RSF output from the CBA-DK model consists of a set of scenario......-based graphs which function as risk-related decision support for the appraised transport infrastructure project....

  12. The general conservation principle. Absolute validity of conservation laws and their role as source of entanglement, topology changes, and generation of masses

    International Nuclear Information System (INIS)

    Basini, Giuseppe; Capozziello, Salvatore; Longo, Giuseppe

    2003-01-01

    We propose a new approach in which several paradoxes and shortcomings of modern physics can be solved because conservation laws are always conserved. Directly due to the fact that conservation laws can never be violated, the symmetry of the theory leads to the very general consequence that backward and forward time evolution are both allowed. The generalization of the approach to five dimensions, each one with real physical meaning, leads to the derivation of particle masses as a result of a process of embedding

  13. Principles of Fourier analysis

    CERN Document Server

    Howell, Kenneth B

    2001-01-01

    Fourier analysis is one of the most useful and widely employed sets of tools for the engineer, the scientist, and the applied mathematician. As such, students and practitioners in these disciplines need a practical and mathematically solid introduction to its principles. They need straightforward verifications of its results and formulas, and they need clear indications of the limitations of those results and formulas.Principles of Fourier Analysis furnishes all this and more. It provides a comprehensive overview of the mathematical theory of Fourier analysis, including the development of Fourier series, "classical" Fourier transforms, generalized Fourier transforms and analysis, and the discrete theory. Much of the author''s development is strikingly different from typical presentations. His approach to defining the classical Fourier transform results in a much cleaner, more coherent theory that leads naturally to a starting point for the generalized theory. He also introduces a new generalized theory based ...

  14. PRINCIPLES OF CONTENT FORMATION EDUCATIONAL ELECTRONIC RESOURCE

    Directory of Open Access Journals (Sweden)

    О Ю Заславская

    2017-12-01

    Full Text Available The article considers modern possibilities of information and communication technologies for the design of electronic educational resources. The conceptual basis of the open educational multimedia system is based on the modular architecture of the electronic educational resource. The content of the electronic training module can be implemented in several versions of the modules: obtaining information, practical exercises, control. The regularities in the teaching process in modern pedagogical theory are considered: general and specific, and the principles for the formation of the content of instruction at different levels are defined, based on the formulated regularities. On the basis of the analysis, the principles of the formation of the electronic educational resource are determined, taking into account the general and didactic patterns of teaching.As principles of the formation of educational material for obtaining information for the electronic educational resource, the article considers: the principle of methodological orientation, the principle of general scientific orientation, the principle of systemic nature, the principle of fundamentalization, the principle of accounting intersubject communications, the principle of minimization. The principles of the formation of the electronic training module of practical studies in the article include: the principle of systematic and dose based consistency, the principle of rational use of study time, the principle of accessibility. The principles of the formation of the module for monitoring the electronic educational resource can be: the principle of the operationalization of goals, the principle of unified identification diagnosis.

  15. About solution of multipoint boundary problem of static analysis of deep beam with the use of combined application of finite element method and discrete-continual finite element method. part 1: formulation of the problem and general principles of approximation

    Directory of Open Access Journals (Sweden)

    Lyakhovich Leonid

    2017-01-01

    Full Text Available This paper is devoted to formulation and general principles of approximation of multipoint boundary problem of static analysis of deep beam with the use of combined application of finite element method (FEM discrete-continual finite element method (DCFEM. The field of application of DCFEM comprises structures with regular physical and geometrical parameters in some dimension (“basic” dimension. DCFEM presupposes finite element approximation for non-basic dimension while in the basic dimension problem remains continual. DCFEM is based on analytical solutions of resulting multipoint boundary problems for systems of ordinary differential equations with piecewise-constant coefficients.

  16. A Note on the Semi-Inverse Method and a Variational Principle for the Generalized KdV-mKdV Equation

    Directory of Open Access Journals (Sweden)

    Li Yao

    2013-01-01

    Full Text Available Ji-Huan He systematically studied the inverse problem of calculus of variations. This note reveals that the semi-inverse method also works for a generalized KdV-mKdV equation with nonlinear terms of any orders.

  17. Yielding Unexpected Results: Precipitation of Ba[subscript3](PO[subscript4])[subscript2] and Implications for Teaching Solubility Principles in the General Chemistry Curriculum

    Science.gov (United States)

    Hazen, Jeffery L.; Cleary, David A.

    2014-01-01

    Precipitation of barium phosphate from aqueous solutions of a barium salt and a phosphate salt forms the basis for a number of conclusions drawn in general chemistry. For example, the formation of a solid white precipitate is offered as evidence that barium phosphate is insoluble. Furthermore, analysis of the supernatant is used to illustrate the…

  18. Quantification of the equivalence principle

    International Nuclear Information System (INIS)

    Epstein, K.J.

    1978-01-01

    Quantitative relationships illustrate Einstein's equivalence principle, relating it to Newton's ''fictitious'' forces arising from the use of noninertial frames, and to the form of the relativistic time dilatation in local Lorentz frames. The equivalence principle can be interpreted as the equivalence of general covariance to local Lorentz covariance, in a manner which is characteristic of Riemannian and pseudo-Riemannian geometries

  19. Principles and Criteria for Design

    DEFF Research Database (Denmark)

    Beghin, D.; Cervetto, D.; Hansen, Peter Friis

    1997-01-01

    The mandate of ISSC Committee IV.1 on principles and Criteria for Design is to report on the following:The ongoing concern for quantification of general economic and safety criteria for marine structures and for the development of appropriate principles for rational life cycle design using...

  20. Position-momentum uncertainty relations in the presence of quantum memory

    Energy Technology Data Exchange (ETDEWEB)

    Furrer, Fabian, E-mail: furrer@eve.phys.s.u-tokyo.ac.jp [Department of Physics, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Berta, Mario [Institute for Quantum Information and Matter, Caltech, Pasadena, California 91125 (United States); Institute for Theoretical Physics, ETH Zurich, Wolfgang-Pauli-Str. 27, 8093 Zürich (Switzerland); Tomamichel, Marco [School of Physics, The University of Sydney, Sydney 2006 (Australia); Centre for Quantum Technologies, National University of Singapore, Singapore 117543 (Singapore); Scholz, Volkher B. [Institute for Theoretical Physics, ETH Zurich, Wolfgang-Pauli-Str. 27, 8093 Zürich (Switzerland); Christandl, Matthias [Institute for Theoretical Physics, ETH Zurich, Wolfgang-Pauli-Str. 27, 8093 Zürich (Switzerland); Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen (Denmark)

    2014-12-15

    A prominent formulation of the uncertainty principle identifies the fundamental quantum feature that no particle may be prepared with certain outcomes for both position and momentum measurements. Often the statistical uncertainties are thereby measured in terms of entropies providing a clear operational interpretation in information theory and cryptography. Recently, entropic uncertainty relations have been used to show that the uncertainty can be reduced in the presence of entanglement and to prove security of quantum cryptographic tasks. However, much of this recent progress has been focused on observables with only a finite number of outcomes not including Heisenberg’s original setting of position and momentum observables. Here, we show entropic uncertainty relations for general observables with discrete but infinite or continuous spectrum that take into account the power of an entangled observer. As an illustration, we evaluate the uncertainty relations for position and momentum measurements, which is operationally significant in that it implies security of a quantum key distribution scheme based on homodyne detection of squeezed Gaussian states.