WorldWideScience

Sample records for generalized random energy

  1. Derrida's Generalized Random Energy models; 4, Continuous state branching and coalescents

    CERN Document Server

    Bovier, A

    2003-01-01

    In this paper we conclude our analysis of Derrida's Generalized Random Energy Models (GREM) by identifying the thermodynamic limit with a one-parameter family of probability measures related to a continuous state branching process introduced by Neveu. Using a construction introduced by Bertoin and Le Gall in terms of a coherent family of subordinators related to Neveu's branching process, we show how the Gibbs geometry of the limiting Gibbs measure is given in terms of the genealogy of this process via a deterministic time-change. This construction is fully universal in that all different models (characterized by the covariance of the underlying Gaussian process) differ only through that time change, which in turn is expressed in terms of Parisi's overlap distribution. The proof uses strongly the Ghirlanda-Guerra identities that impose the structure of Neveu's process as the only possible asymptotic random mechanism.

  2. Non-compact random generalized games and random quasi-variational inequalities

    OpenAIRE

    Yuan, Xian-Zhi

    1994-01-01

    In this paper, existence theorems of random maximal elements, random equilibria for the random one-person game and random generalized game with a countable number of players are given as applications of random fixed point theorems. By employing existence theorems of random generalized games, we deduce the existence of solutions for non-compact random quasi-variational inequalities. These in turn are used to establish several existence theorems of noncompact generalized random ...

  3. Simultaneous escaping of explicit and hidden free energy barriers: application of the orthogonal space random walk strategy in generalized ensemble based conformational sampling.

    Science.gov (United States)

    Zheng, Lianqing; Chen, Mengen; Yang, Wei

    2009-06-21

    To overcome the pseudoergodicity problem, conformational sampling can be accelerated via generalized ensemble methods, e.g., through the realization of random walks along prechosen collective variables, such as spatial order parameters, energy scaling parameters, or even system temperatures or pressures, etc. As usually observed, in generalized ensemble simulations, hidden barriers are likely to exist in the space perpendicular to the collective variable direction and these residual free energy barriers could greatly abolish the sampling efficiency. This sampling issue is particularly severe when the collective variable is defined in a low-dimension subset of the target system; then the "Hamiltonian lagging" problem, which reveals the fact that necessary structural relaxation falls behind the move of the collective variable, may be likely to occur. To overcome this problem in equilibrium conformational sampling, we adopted the orthogonal space random walk (OSRW) strategy, which was originally developed in the context of free energy simulation [L. Zheng, M. Chen, and W. Yang, Proc. Natl. Acad. Sci. U.S.A. 105, 20227 (2008)]. Thereby, generalized ensemble simulations can simultaneously escape both the explicit barriers along the collective variable direction and the hidden barriers that are strongly coupled with the collective variable move. As demonstrated in our model studies, the present OSRW based generalized ensemble treatments show improved sampling capability over the corresponding classical generalized ensemble treatments.

  4. Experimental Analysis of a Piezoelectric Energy Harvesting System for Harmonic, Random, and Sine on Random Vibration

    Energy Technology Data Exchange (ETDEWEB)

    Cryns, Jackson W.; Hatchell, Brian K.; Santiago-Rojas, Emiliano; Silvers, Kurt L.

    2013-07-01

    Formal journal article Experimental analysis of a piezoelectric energy harvesting system for harmonic, random, and sine on random vibration Abstract: Harvesting power with a piezoelectric vibration powered generator using a full-wave rectifier conditioning circuit is experimentally compared for varying sinusoidal, random and sine on random (SOR) input vibration scenarios. Additionally, the implications of source vibration characteristics on harvester design are discussed. Studies in vibration harvesting have yielded numerous alternatives for harvesting electrical energy from vibrations but piezoceramics arose as the most compact, energy dense means of energy transduction. The rise in popularity of harvesting energy from ambient vibrations has made piezoelectric generators commercially available. Much of the available literature focuses on maximizing harvested power through nonlinear processing circuits that require accurate knowledge of generator internal mechanical and electrical characteristics and idealization of the input vibration source, which cannot be assumed in general application. In this manuscript, variations in source vibration and load resistance are explored for a commercially available piezoelectric generator. We characterize the source vibration by its acceleration response for repeatability and transcription to general application. The results agree with numerical and theoretical predictions for in previous literature that load optimal resistance varies with transducer natural frequency and source type, and the findings demonstrate that significant gains are seen with lower tuned transducer natural frequencies for similar source amplitudes. Going beyond idealized steady state sinusoidal and simplified random vibration input, SOR testing allows for more accurate representation of real world ambient vibration. It is shown that characteristic interactions from more complex vibrational sources significantly alter power generation and power processing

  5. Quantum random bit generation using energy fluctuations in stimulated Raman scattering.

    Science.gov (United States)

    Bustard, Philip J; England, Duncan G; Nunn, Josh; Moffatt, Doug; Spanner, Michael; Lausten, Rune; Sussman, Benjamin J

    2013-12-02

    Random number sequences are a critical resource in modern information processing systems, with applications in cryptography, numerical simulation, and data sampling. We introduce a quantum random number generator based on the measurement of pulse energy quantum fluctuations in Stokes light generated by spontaneously-initiated stimulated Raman scattering. Bright Stokes pulse energy fluctuations up to five times the mean energy are measured with fast photodiodes and converted to unbiased random binary strings. Since the pulse energy is a continuous variable, multiple bits can be extracted from a single measurement. Our approach can be generalized to a wide range of Raman active materials; here we demonstrate a prototype using the optical phonon line in bulk diamond.

  6. Experimental Analysis of a Piezoelectric Energy Harvesting System for Harmonic, Random, and Sine on Random Vibration

    Directory of Open Access Journals (Sweden)

    Jackson W. Cryns

    2013-01-01

    Full Text Available Harvesting power with a piezoelectric vibration powered generator using a full-wave rectifier conditioning circuit is experimentally compared for varying sinusoidal, random, and sine on random (SOR input vibration scenarios; the implications of source vibration characteristics on harvester design are discussed. The rise in popularity of harvesting energy from ambient vibrations has made compact, energy dense piezoelectric generators commercially available. Much of the available literature focuses on maximizing harvested power through nonlinear processing circuits that require accurate knowledge of generator internal mechanical and electrical characteristics and idealization of the input vibration source, which cannot be assumed in general application. Variations in source vibration and load resistance are explored for a commercially available piezoelectric generator. The results agree with numerical and theoretical predictions in the previous literature for optimal power harvesting in sinusoidal and flat broadband vibration scenarios. Going beyond idealized steady-state sinusoidal and flat random vibration input, experimental SOR testing allows for more accurate representation of real world ambient vibration. It is shown that characteristic interactions from more complex vibration sources significantly alter power generation and processing requirements by varying harvested power, shifting optimal conditioning impedance, inducing voltage fluctuations, and ultimately rendering idealized sinusoidal and random analyses incorrect.

  7. Fault-tolerant topology in the wireless sensor networks for energy depletion and random failure

    International Nuclear Information System (INIS)

    Liu Bin; Dong Ming-Ru; Yin Rong-Rong; Yin Wen-Xiao

    2014-01-01

    Nodes in the wireless sensor networks (WSNs) are prone to failure due to energy depletion and poor environment, which could have a negative impact on the normal operation of the network. In order to solve this problem, in this paper, we build a fault-tolerant topology which can effectively tolerate energy depletion and random failure. Firstly, a comprehensive failure model about energy depletion and random failure is established. Then an improved evolution model is presented to generate a fault-tolerant topology, and the degree distribution of the topology can be adjusted. Finally, the relation between the degree distribution and the topological fault tolerance is analyzed, and the optimal value of evolution model parameter is obtained. Then the target fault-tolerant topology which can effectively tolerate energy depletion and random failure is obtained. The performances of the new fault tolerant topology are verified by simulation experiments. The results show that the new fault tolerant topology effectively prolongs the network lifetime and has strong fault tolerance. (general)

  8. A generalized model via random walks for information filtering

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhuo-Ming, E-mail: zhuomingren@gmail.com [Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700, Fribourg (Switzerland); Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, ChongQing, 400714 (China); Kong, Yixiu [Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700, Fribourg (Switzerland); Shang, Ming-Sheng, E-mail: msshang@cigit.ac.cn [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, ChongQing, 400714 (China); Zhang, Yi-Cheng [Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700, Fribourg (Switzerland)

    2016-08-06

    There could exist a simple general mechanism lurking beneath collaborative filtering and interdisciplinary physics approaches which have been successfully applied to online E-commerce platforms. Motivated by this idea, we propose a generalized model employing the dynamics of the random walk in the bipartite networks. Taking into account the degree information, the proposed generalized model could deduce the collaborative filtering, interdisciplinary physics approaches and even the enormous expansion of them. Furthermore, we analyze the generalized model with single and hybrid of degree information on the process of random walk in bipartite networks, and propose a possible strategy by using the hybrid degree information for different popular objects to toward promising precision of the recommendation. - Highlights: • We propose a generalized recommendation model employing the random walk dynamics. • The proposed model with single and hybrid of degree information is analyzed. • A strategy with the hybrid degree information improves precision of recommendation.

  9. A generalized model via random walks for information filtering

    International Nuclear Information System (INIS)

    Ren, Zhuo-Ming; Kong, Yixiu; Shang, Ming-Sheng; Zhang, Yi-Cheng

    2016-01-01

    There could exist a simple general mechanism lurking beneath collaborative filtering and interdisciplinary physics approaches which have been successfully applied to online E-commerce platforms. Motivated by this idea, we propose a generalized model employing the dynamics of the random walk in the bipartite networks. Taking into account the degree information, the proposed generalized model could deduce the collaborative filtering, interdisciplinary physics approaches and even the enormous expansion of them. Furthermore, we analyze the generalized model with single and hybrid of degree information on the process of random walk in bipartite networks, and propose a possible strategy by using the hybrid degree information for different popular objects to toward promising precision of the recommendation. - Highlights: • We propose a generalized recommendation model employing the random walk dynamics. • The proposed model with single and hybrid of degree information is analyzed. • A strategy with the hybrid degree information improves precision of recommendation.

  10. Random walks on generalized Koch networks

    International Nuclear Information System (INIS)

    Sun, Weigang

    2013-01-01

    For deterministically growing networks, it is a theoretical challenge to determine the topological properties and dynamical processes. In this paper, we study random walks on generalized Koch networks with features that include an initial state that is a globally connected network to r nodes. In each step, every existing node produces m complete graphs. We then obtain the analytical expressions for first passage time (FPT), average return time (ART), i.e. the average of FPTs for random walks from node i to return to the starting point i for the first time, and average sending time (AST), defined as the average of FPTs from a hub node to all other nodes, excluding the hub itself with regard to network parameters m and r. For this family of Koch networks, the ART of the new emerging nodes is identical and increases with the parameters m or r. In addition, the AST of our networks grows with network size N as N ln N and also increases with parameter m. The results obtained in this paper are the generalizations of random walks for the original Koch network. (paper)

  11. Generalized stacking fault energies of alloys.

    Science.gov (United States)

    Li, Wei; Lu, Song; Hu, Qing-Miao; Kwon, Se Kyun; Johansson, Börje; Vitos, Levente

    2014-07-02

    The generalized stacking fault energy (γ surface) provides fundamental physics for understanding the plastic deformation mechanisms. Using the ab initio exact muffin-tin orbitals method in combination with the coherent potential approximation, we calculate the γ surface for the disordered Cu-Al, Cu-Zn, Cu-Ga, Cu-Ni, Pd-Ag and Pd-Au alloys. Studying the effect of segregation of the solute to the stacking fault planes shows that only the local chemical composition affects the γ surface. The calculated alloying trends are discussed using the electronic band structure of the base and distorted alloys.Based on our γ surface results, we demonstrate that the previous revealed 'universal scaling law' between the intrinsic energy barriers (IEBs) is well obeyed in random solid solutions. This greatly simplifies the calculations of the twinning measure parameters or the critical twinning stress. Adopting two twinnability measure parameters derived from the IEBs, we find that in binary Cu alloys, Al, Zn and Ga increase the twinnability, while Ni decreases it. Aluminum and gallium yield similar effects on the twinnability.

  12. A generalized model via random walks for information filtering

    Science.gov (United States)

    Ren, Zhuo-Ming; Kong, Yixiu; Shang, Ming-Sheng; Zhang, Yi-Cheng

    2016-08-01

    There could exist a simple general mechanism lurking beneath collaborative filtering and interdisciplinary physics approaches which have been successfully applied to online E-commerce platforms. Motivated by this idea, we propose a generalized model employing the dynamics of the random walk in the bipartite networks. Taking into account the degree information, the proposed generalized model could deduce the collaborative filtering, interdisciplinary physics approaches and even the enormous expansion of them. Furthermore, we analyze the generalized model with single and hybrid of degree information on the process of random walk in bipartite networks, and propose a possible strategy by using the hybrid degree information for different popular objects to toward promising precision of the recommendation.

  13. A Generalized Random Regret Minimization Model

    NARCIS (Netherlands)

    Chorus, C.G.

    2013-01-01

    This paper presents, discusses and tests a generalized Random Regret Minimization (G-RRM) model. The G-RRM model is created by replacing a fixed constant in the attribute-specific regret functions of the RRM model, by a regret-weight variable. Depending on the value of the regret-weights, the G-RRM

  14. Image encryption using random sequence generated from generalized information domain

    International Nuclear Information System (INIS)

    Zhang Xia-Yan; Wu Jie-Hua; Zhang Guo-Ji; Li Xuan; Ren Ya-Zhou

    2016-01-01

    A novel image encryption method based on the random sequence generated from the generalized information domain and permutation–diffusion architecture is proposed. The random sequence is generated by reconstruction from the generalized information file and discrete trajectory extraction from the data stream. The trajectory address sequence is used to generate a P-box to shuffle the plain image while random sequences are treated as keystreams. A new factor called drift factor is employed to accelerate and enhance the performance of the random sequence generator. An initial value is introduced to make the encryption method an approximately one-time pad. Experimental results show that the random sequences pass the NIST statistical test with a high ratio and extensive analysis demonstrates that the new encryption scheme has superior security. (paper)

  15. Active motions of Brownian particles in a generalized energy-depot model

    International Nuclear Information System (INIS)

    Zhang Yong; Koo Kim, Chul; Lee, Kong-Ju-Bock

    2008-01-01

    We present a generalized energy-depot model in which the rate of conversion of the internal energy into motion can be dependent on the position and velocity of a particle. When the conversion rate is a general function of the velocity, the active particle exhibits diverse patterns of motion, including a braking mechanism and a stepping motion. The phase trajectories of the motion are investigated in a systematic way. With a particular form of the conversion rate dependent on the position and velocity, the particle shows a spontaneous oscillation characterizing a negative stiffness. These types of active behaviors are compared with similar phenomena observed in biology, such as the stepping motion of molecular motors and amplification in the hearing mechanism. Hence, our model can provide a generic understanding of the active motion related to the energy conversion and also a new control mechanism for nano-robots. We also investigate the effect of noise, especially on the stepping motion, and observe random walk-like behavior as expected.

  16. Assessment of correlation energies based on the random-phase approximation

    International Nuclear Information System (INIS)

    Paier, Joachim; Ren, Xinguo; Rinke, Patrick; Scheffler, Matthias; Scuseria, Gustavo E; Grüneis, Andreas; Kresse, Georg

    2012-01-01

    The random-phase approximation to the ground state correlation energy (RPA) in combination with exact exchange (EX) has brought the Kohn-Sham (KS) density functional theory one step closer towards a universal, ‘general purpose first-principles method’. In an effort to systematically assess the influence of several correlation energy contributions beyond RPA, this paper presents dissociation energies of small molecules and solids, activation energies for hydrogen transfer and non-hydrogen transfer reactions, as well as reaction energies for a number of common test sets. We benchmark EX + RPA and several flavors of energy functionals going beyond it: second-order screened exchange (SOSEX), single-excitation (SE) corrections, renormalized single-excitation (rSE) corrections and their combinations. Both the SE correction and the SOSEX contribution to the correlation energy significantly improve on the notorious tendency of EX + RPA to underbind. Surprisingly, activation energies obtained using EX + RPA based on a KS reference alone are remarkably accurate. RPA + SOSEX + rSE provides an equal level of accuracy for reaction as well as activation energies and overall gives the most balanced performance, because of which it can be applied to a wide range of systems and chemical reactions. (paper)

  17. Generalized Whittle-Matern random field as a model of correlated fluctuations

    International Nuclear Information System (INIS)

    Lim, S C; Teo, L P

    2009-01-01

    This paper considers a generalization of the Gaussian random field with covariance function of the Whittle-Matern family. Such a random field can be obtained as the solution to the fractional stochastic differential equation with two fractional orders. Asymptotic properties of the covariance functions belonging to this generalized Whittle-Matern family are studied, which are used to deduce the sample path properties of the random field. The Whittle-Matern field has been widely used in modeling geostatistical data such as sea beam data, wind speed, field temperature and soil data. In this paper we show that the generalized Whittle-Matern field provides a more flexible model for wind speed data

  18. The heterogeneous gas with singular interaction: generalized circular law and heterogeneous renormalized energy

    International Nuclear Information System (INIS)

    Molino, Luis Carlos García del; Pakdaman, Khashayar; Touboul, Jonathan

    2015-01-01

    We introduce and analyze d-dimensional Coulomb gases with random charge distribution and general external confining potential. We show that these gases satisfy a large-deviation principle. The analysis of the minima of the rate function (which is the leading term of the energy) reveals that, at equilibrium, the particle distribution is a generalized circular law (i.e. with spherical support but not necessarily uniform distribution). In the classical electrostatic external potential, there are infinitely many minimizers of the rate function. The most likely macroscopic configuration is a disordered distribution in which particles are uniformly distributed (for d = 2, the circular law), and charges are independent of the positions of the particles. General charge-dependent confining potentials unfold this degenerate situation: in contrast, the particle density is not uniform, and particles spontaneously organize according to their charge. In this picture the classical electrostatic potential appears as a transition at which order is lost. Sub-leading terms of the energy are derived: we show that these are related to an operator, generalizing the Coulomb renormalized energy, which incorporates the heterogeneous nature of the charges. This heterogeneous renormalized energy informs us about the microscopic arrangements of the particles, which are non-standard, strongly dependent on the charges, and include progressive and irregular lattices. (paper)

  19. Energy and Uncertainty in General Relativity

    Science.gov (United States)

    Cooperstock, F. I.; Dupre, M. J.

    2018-03-01

    The issue of energy and its potential localizability in general relativity has challenged physicists for more than a century. Many non-invariant measures were proposed over the years but an invariant measure was never found. We discovered the invariant localized energy measure by expanding the domain of investigation from space to spacetime. We note from relativity that the finiteness of the velocity of propagation of interactions necessarily induces indefiniteness in measurements. This is because the elements of actual physical systems being measured as well as their detectors are characterized by entire four-velocity fields, which necessarily leads to information from a measured system being processed by the detector in a spread of time. General relativity adds additional indefiniteness because of the variation in proper time between elements. The uncertainty is encapsulated in a generalized uncertainty principle, in parallel with that of Heisenberg, which incorporates the localized contribution of gravity to energy. This naturally leads to a generalized uncertainty principle for momentum as well. These generalized forms and the gravitational contribution to localized energy would be expected to be of particular importance in the regimes of ultra-strong gravitational fields. We contrast our invariant spacetime energy measure with the standard 3-space energy measure which is familiar from special relativity, appreciating why general relativity demands a measure in spacetime as opposed to 3-space. We illustrate the misconceptions by certain authors of our approach.

  20. Piezoelectric energy harvesting from broadband random vibrations

    International Nuclear Information System (INIS)

    Adhikari, S; Friswell, M I; Inman, D J

    2009-01-01

    Energy harvesting for the purpose of powering low power electronic sensor systems has received explosive attention in the last few years. Most works using deterministic approaches focusing on using the piezoelectric effect to harvest ambient vibration energy have concentrated on cantilever beams at resonance using harmonic excitation. Here, using a stochastic approach, we focus on using a stack configuration and harvesting broadband vibration energy, a more practically available ambient source. It is assumed that the ambient base excitation is stationary Gaussian white noise, which has a constant power-spectral density across the frequency range considered. The mean power acquired from a piezoelectric vibration-based energy harvester subjected to random base excitation is derived using the theory of random vibrations. Two cases, namely the harvesting circuit with and without an inductor, have been considered. Exact closed-form expressions involving non-dimensional parameters of the electromechanical system have been given and illustrated using numerical examples

  1. Piezoelectric energy harvesting from broadband random vibrations

    Science.gov (United States)

    Adhikari, S.; Friswell, M. I.; Inman, D. J.

    2009-11-01

    Energy harvesting for the purpose of powering low power electronic sensor systems has received explosive attention in the last few years. Most works using deterministic approaches focusing on using the piezoelectric effect to harvest ambient vibration energy have concentrated on cantilever beams at resonance using harmonic excitation. Here, using a stochastic approach, we focus on using a stack configuration and harvesting broadband vibration energy, a more practically available ambient source. It is assumed that the ambient base excitation is stationary Gaussian white noise, which has a constant power-spectral density across the frequency range considered. The mean power acquired from a piezoelectric vibration-based energy harvester subjected to random base excitation is derived using the theory of random vibrations. Two cases, namely the harvesting circuit with and without an inductor, have been considered. Exact closed-form expressions involving non-dimensional parameters of the electromechanical system have been given and illustrated using numerical examples.

  2. Generalized Optical Theorem Detection in Random and Complex Media

    Science.gov (United States)

    Tu, Jing

    The problem of detecting changes of a medium or environment based on active, transmit-plus-receive wave sensor data is at the heart of many important applications including radar, surveillance, remote sensing, nondestructive testing, and cancer detection. This is a challenging problem because both the change or target and the surrounding background medium are in general unknown and can be quite complex. This Ph.D. dissertation presents a new wave physics-based approach for the detection of targets or changes in rather arbitrary backgrounds. The proposed methodology is rooted on a fundamental result of wave theory called the optical theorem, which gives real physical energy meaning to the statistics used for detection. This dissertation is composed of two main parts. The first part significantly expands the theory and understanding of the optical theorem for arbitrary probing fields and arbitrary media including nonreciprocal media, active media, as well as time-varying and nonlinear scatterers. The proposed formalism addresses both scalar and full vector electromagnetic fields. The second contribution of this dissertation is the application of the optical theorem to change detection with particular emphasis on random, complex, and active media, including single frequency probing fields and broadband probing fields. The first part of this work focuses on the generalization of the existing theoretical repertoire and interpretation of the scalar and electromagnetic optical theorem. Several fundamental generalizations of the optical theorem are developed. A new theory is developed for the optical theorem for scalar fields in nonhomogeneous media which can be bounded or unbounded. The bounded media context is essential for applications such as intrusion detection and surveillance in enclosed environments such as indoor facilities, caves, tunnels, as well as for nondestructive testing and communication systems based on wave-guiding structures. The developed scalar

  3. Nuclear Energy General Objectives

    International Nuclear Information System (INIS)

    2011-01-01

    considered and the specific goals to be achieved at different stages of implementation, all of which are consistent with the Basic Principles. The four Objectives publications include Nuclear General Objectives, Nuclear Power Objectives, Nuclear Fuel Cycle Objectives, and Radioactive Waste Management and Decommissioning Objectives. All four Objectives publications follow the same structure. For each topic in the area, the objectives are described in accordance with the sequence in the Basic Principles publication. Within each of these four Objectives publications, the individual topics that make up each area are addressed. The topics included in Nuclear General Objectives are Energy Systems Analysis and Development of Strategies for Nuclear Energy, Economics, Infrastructure, Management Systems, Human Resources and Knowledge Management. The diversity of the topics contained in Nuclear General Objectives necessitated incorporating some repetition in order to simplify access to the relevant information for the various interested audiences.

  4. A Bidirectional Generalized Synchronization Theorem-Based Chaotic Pseudo-random Number Generator

    Directory of Open Access Journals (Sweden)

    Han Shuangshuang

    2013-07-01

    Full Text Available Based on a bidirectional generalized synchronization theorem for discrete chaos system, this paper introduces a new 5-dimensional bidirectional generalized chaos synchronization system (BGCSDS, whose prototype is a novel chaotic system introduced in [12]. Numerical simulation showed that two pair variables of the BGCSDS achieve generalized chaos synchronization via a transform H.A chaos-based pseudo-random number generator (CPNG was designed by the new BGCSDS. Using the FIPS-140-2 tests issued by the National Institute of Standard and Technology (NIST verified the randomness of the 1000 binary number sequences generated via the CPNG and the RC4 algorithm respectively. The results showed that all the tested sequences passed the FIPS-140-2 tests. The confidence interval analysis showed the statistical properties of the randomness of the sequences generated via the CPNG and the RC4 algorithm do not have significant differences.

  5. Free energy distribution function of a random Ising ferromagnet

    International Nuclear Information System (INIS)

    Dotsenko, Victor; Klumov, Boris

    2012-01-01

    We study the free energy distribution function of a weakly disordered Ising ferromagnet in terms of the D-dimensional random temperature Ginzburg–Landau Hamiltonian. It is shown that besides the usual Gaussian 'body' this distribution function exhibits non-Gaussian tails both in the paramagnetic and in the ferromagnetic phases. Explicit asymptotic expressions for these tails are derived. It is demonstrated that the tails are strongly asymmetric: the left tail (for large negative values of the free energy) is much slower than the right one (for large positive values of the free energy). It is argued that at the critical point the free energy of the random Ising ferromagnet in dimensions D < 4 is described by a non-trivial universal distribution function which is non-self-averaging

  6. Randomized Oversampling for Generalized Multiscale Finite Element Methods

    KAUST Repository

    Calo, Victor M.

    2016-03-23

    In this paper, we develop efficient multiscale methods for flows in heterogeneous media. We use the generalized multiscale finite element (GMsFEM) framework. GMsFEM approximates the solution space locally using a few multiscale basis functions. This approximation selects an appropriate snapshot space and a local spectral decomposition, e.g., the use of oversampled regions, in order to achieve an efficient model reduction. However, the successful construction of snapshot spaces may be costly if too many local problems need to be solved in order to obtain these spaces. We use a moderate quantity of local solutions (or snapshot vectors) with random boundary conditions on oversampled regions with zero forcing to deliver an efficient methodology. Motivated by the randomized algorithm presented in [P. G. Martinsson, V. Rokhlin, and M. Tygert, A Randomized Algorithm for the approximation of Matrices, YALEU/DCS/TR-1361, Yale University, 2006], we consider a snapshot space which consists of harmonic extensions of random boundary conditions defined in a domain larger than the target region. Furthermore, we perform an eigenvalue decomposition in this small space. We study the application of randomized sampling for GMsFEM in conjunction with adaptivity, where local multiscale spaces are adaptively enriched. Convergence analysis is provided. We present representative numerical results to validate the method proposed.

  7. Covariant generalized holographic dark energy and accelerating universe

    Energy Technology Data Exchange (ETDEWEB)

    Nojiri, Shin' ichi [Nagoya University, Department of Physics, Nagoya (Japan); Nagoya University, Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya (Japan); Odintsov, S.D. [ICREA, Barcelona (Spain); Institute of Space Sciences (IEEC-CSIC), Barcelona (Spain); National Research Tomsk State University, Tomsk (Russian Federation); Tomsk State Pedagogical University, Tomsk (Russian Federation)

    2017-08-15

    We propose the generalized holographic dark energy model where the infrared cutoff is identified with the combination of the FRW universe parameters: the Hubble rate, particle and future horizons, cosmological constant, the universe lifetime (if finite) and their derivatives. It is demonstrated that with the corresponding choice of the cutoff one can map such holographic dark energy to modified gravity or gravity with a general fluid. Explicitly, F(R) gravity and the general perfect fluid are worked out in detail and the corresponding infrared cutoff is found. Using this correspondence, we get realistic inflation or viable dark energy or a unified inflationary-dark energy universe in terms of covariant holographic dark energy. (orig.)

  8. Covariant generalized holographic dark energy and accelerating universe

    International Nuclear Information System (INIS)

    Nojiri, Shin'ichi; Odintsov, S.D.

    2017-01-01

    We propose the generalized holographic dark energy model where the infrared cutoff is identified with the combination of the FRW universe parameters: the Hubble rate, particle and future horizons, cosmological constant, the universe lifetime (if finite) and their derivatives. It is demonstrated that with the corresponding choice of the cutoff one can map such holographic dark energy to modified gravity or gravity with a general fluid. Explicitly, F(R) gravity and the general perfect fluid are worked out in detail and the corresponding infrared cutoff is found. Using this correspondence, we get realistic inflation or viable dark energy or a unified inflationary-dark energy universe in terms of covariant holographic dark energy. (orig.)

  9. Covariant generalized holographic dark energy and accelerating universe

    Science.gov (United States)

    Nojiri, Shin'ichi; Odintsov, S. D.

    2017-08-01

    We propose the generalized holographic dark energy model where the infrared cutoff is identified with the combination of the FRW universe parameters: the Hubble rate, particle and future horizons, cosmological constant, the universe lifetime (if finite) and their derivatives. It is demonstrated that with the corresponding choice of the cutoff one can map such holographic dark energy to modified gravity or gravity with a general fluid. Explicitly, F( R) gravity and the general perfect fluid are worked out in detail and the corresponding infrared cutoff is found. Using this correspondence, we get realistic inflation or viable dark energy or a unified inflationary-dark energy universe in terms of covariant holographic dark energy.

  10. Generalized linear models with random effects unified analysis via H-likelihood

    CERN Document Server

    Lee, Youngjo; Pawitan, Yudi

    2006-01-01

    Since their introduction in 1972, generalized linear models (GLMs) have proven useful in the generalization of classical normal models. Presenting methods for fitting GLMs with random effects to data, Generalized Linear Models with Random Effects: Unified Analysis via H-likelihood explores a wide range of applications, including combining information over trials (meta-analysis), analysis of frailty models for survival data, genetic epidemiology, and analysis of spatial and temporal models with correlated errors.Written by pioneering authorities in the field, this reference provides an introduction to various theories and examines likelihood inference and GLMs. The authors show how to extend the class of GLMs while retaining as much simplicity as possible. By maximizing and deriving other quantities from h-likelihood, they also demonstrate how to use a single algorithm for all members of the class, resulting in a faster algorithm as compared to existing alternatives. Complementing theory with examples, many of...

  11. A random energy model for size dependence : recurrence vs. transience

    NARCIS (Netherlands)

    Külske, Christof

    1998-01-01

    We investigate the size dependence of disordered spin models having an infinite number of Gibbs measures in the framework of a simplified 'random energy model for size dependence'. We introduce two versions (involving either independent random walks or branching processes), that can be seen as

  12. Modal Parameter Identification from Responses of General Unknown Random Inputs

    DEFF Research Database (Denmark)

    Ibrahim, S. R.; Asmussen, J. C.; Brincker, Rune

    1996-01-01

    Modal parameter identification from ambient responses due to a general unknown random inputs is investigated. Existing identification techniques which are based on assumptions of white noise and or stationary random inputs are utilized even though the inputs conditions are not satisfied....... This is accomplished via adding. In cascade. A force cascade conversion to the structures system under consideration. The input to the force conversion system is white noise and the output of which is the actual force(s) applied to the structure. The white noise input(s) and the structures responses are then used...

  13. Recurrence and Polya Number of General One-Dimensional Random Walks

    International Nuclear Information System (INIS)

    Zhang Xiaokun; Wan Jing; Lu Jingju; Xu Xinping

    2011-01-01

    The recurrence properties of random walks can be characterized by Polya number, i.e., the probability that the walker has returned to the origin at least once. In this paper, we consider recurrence properties for a general 1D random walk on a line, in which at each time step the walker can move to the left or right with probabilities l and r, or remain at the same position with probability o (l + r + o = 1). We calculate Polya number P of this model and find a simple expression for P as, P = 1 - Δ, where Δ is the absolute difference of l and r (Δ = |l - r|). We prove this rigorous expression by the method of creative telescoping, and our result suggests that the walk is recurrent if and only if the left-moving probability l equals to the right-moving probability r. (general)

  14. Constraints on stress-energy perturbations in general relativity

    International Nuclear Information System (INIS)

    Traschen, J.

    1985-01-01

    Conditions are found for the existence of integral constraints on stress-energy perturbations in general relativity. The integral constraints can be thought of as a general-relativistic generalization of the conservation of energy and momentum of matter perturbations in special relativity. The constraints are stated in terms of a vector field V, and the Robertson-Walker spacetimes are shown to have such constraint vectors. Although in general V is not a Killing vector, in a vacuum spacetime the constraint vectors are precisely the Killing vectors

  15. Simple implementation of general dark energy models

    International Nuclear Information System (INIS)

    Bloomfield, Jolyon K.; Pearson, Jonathan A.

    2014-01-01

    We present a formalism for the numerical implementation of general theories of dark energy, combining the computational simplicity of the equation of state for perturbations approach with the generality of the effective field theory approach. An effective fluid description is employed, based on a general action describing single-scalar field models. The formalism is developed from first principles, and constructed keeping the goal of a simple implementation into CAMB in mind. Benefits of this approach include its straightforward implementation, the generality of the underlying theory, the fact that the evolved variables are physical quantities, and that model-independent phenomenological descriptions may be straightforwardly investigated. We hope this formulation will provide a powerful tool for the comparison of theoretical models of dark energy with observational data

  16. Energy conditions and stability in general relativity

    International Nuclear Information System (INIS)

    Hall, G.S.

    1982-01-01

    The dominant energy condition in general relativity theory, which says that every observer measures a nonnegative local energy density and a nonspacelike local energy flow, is examined in connection with the types of energy-momentum tensor it permits. The condition that the energy-momentum tensor be ''stable'' in obeying the dominant energy conditions is then defined in terms of a suitable topology on the set of energy-momentum tensors on space-time and the consequences are evaluated and discussed. (author)

  17. Generalized random walk algorithm for the numerical modeling of complex diffusion processes

    CERN Document Server

    Vamos, C; Vereecken, H

    2003-01-01

    A generalized form of the random walk algorithm to simulate diffusion processes is introduced. Unlike the usual approach, at a given time all the particles from a grid node are simultaneously scattered using the Bernoulli repartition. This procedure saves memory and computing time and no restrictions are imposed for the maximum number of particles to be used in simulations. We prove that for simple diffusion the method generalizes the finite difference scheme and gives the same precision for large enough number of particles. As an example, simulations of diffusion in random velocity field are performed and the main features of the stochastic mathematical model are numerically tested.

  18. Generalized random walk algorithm for the numerical modeling of complex diffusion processes

    International Nuclear Information System (INIS)

    Vamos, Calin; Suciu, Nicolae; Vereecken, Harry

    2003-01-01

    A generalized form of the random walk algorithm to simulate diffusion processes is introduced. Unlike the usual approach, at a given time all the particles from a grid node are simultaneously scattered using the Bernoulli repartition. This procedure saves memory and computing time and no restrictions are imposed for the maximum number of particles to be used in simulations. We prove that for simple diffusion the method generalizes the finite difference scheme and gives the same precision for large enough number of particles. As an example, simulations of diffusion in random velocity field are performed and the main features of the stochastic mathematical model are numerically tested

  19. Energy conservation law for randomly fluctuating electromagnetic fields

    International Nuclear Information System (INIS)

    Gbur, G.; Wolf, E.; James, D.

    1999-01-01

    An energy conservation law is derived for electromagnetic fields generated by any random, statistically stationary, source distribution. It is shown to provide insight into the phenomenon of correlation-induced spectral changes. The results are illustrated by an example. copyright 1999 The American Physical Society

  20. The mesoscopic conductance of disordered rings, its random matrix theory and the generalized variable range hopping picture

    International Nuclear Information System (INIS)

    Stotland, Alexander; Peer, Tal; Cohen, Doron; Budoyo, Rangga; Kottos, Tsampikos

    2008-01-01

    The calculation of the conductance of disordered rings requires a theory that goes beyond the Kubo-Drude formulation. Assuming 'mesoscopic' circumstances the analysis of the electro-driven transitions shows similarities with a percolation problem in energy space. We argue that the texture and the sparsity of the perturbation matrix dictate the value of the conductance, and study its dependence on the disorder strength, ranging from the ballistic to the Anderson localization regime. An improved sparse random matrix model is introduced to capture the essential ingredients of the problem, and leads to a generalized variable range hopping picture. (fast track communication)

  1. Random Dynamics

    Science.gov (United States)

    Bennett, D. L.; Brene, N.; Nielsen, H. B.

    1987-01-01

    The goal of random dynamics is the derivation of the laws of Nature as we know them (standard model) from inessential assumptions. The inessential assumptions made here are expressed as sets of general models at extremely high energies: gauge glass and spacetime foam. Both sets of models lead tentatively to the standard model.

  2. A Generalization of Electromagnetic Fluctuation-Induced Casimir Energy

    Directory of Open Access Journals (Sweden)

    Yi Zheng

    2015-01-01

    Full Text Available Intermolecular forces responsible for adhesion and cohesion can be classified according to their origins; interactions between charges, ions, random dipole—random dipole (Keesom, random dipole—induced dipole (Debye are due to electrostatic effects; covalent bonding, London dispersion forces between fluctuating dipoles, and Lewis acid-base interactions are due to quantum mechanical effects; pressure and osmotic forces are of entropic origin. Of all these interactions, the London dispersion interaction is universal and exists between all types of atoms as well as macroscopic objects. The dispersion force between macroscopic objects is called Casimir/van der Waals force. It results from alteration of the quantum and thermal fluctuations of the electrodynamic field due to the presence of interfaces and plays a significant role in the interaction between macroscopic objects at micrometer and nanometer length scales. This paper discusses how fluctuational electrodynamics can be used to determine the Casimir energy/pressure between planar multilayer objects. Though it is confirmation of the famous work of Dzyaloshinskii, Lifshitz, and Pitaevskii (DLP, we have solved the problem without having to use methods from quantum field theory that DLP resorted to. Because of this new approach, we have been able to clarify the contributions of propagating and evanescent waves to Casimir energy/pressure in dissipative media.

  3. Bose condensation in (random traps

    Directory of Open Access Journals (Sweden)

    V.A. Zagrebnov

    2009-01-01

    Full Text Available We study a non-interacting (perfect Bose-gas in random external potentials (traps. It is shown that a generalized Bose-Einstein condensation in the random eigenstates manifests if and only if the same occurs in the one-particle kinetic-energy eigenstates, which corresponds to the generalized condensation of the free Bose-gas. Moreover, we prove that the amounts of both condensate densities are equal. This statement is relevant for justification of the Bogoliubov approximation} in the theory of disordered boson systems.

  4. Random 2D Composites and the Generalized Method of Schwarz

    Directory of Open Access Journals (Sweden)

    Vladimir Mityushev

    2015-01-01

    Full Text Available Two-phase composites with nonoverlapping inclusions randomly embedded in matrix are investigated. A straightforward approach is applied to estimate the effective properties of random 2D composites. First, deterministic boundary value problems are solved for all locations of inclusions, that is, for all events of the considered probabilistic space C by the generalized method of Schwarz. Second, the effective properties are calculated in analytical form and averaged over C. This method is related to the traditional method based on the average probabilistic values involving the n-point correlation functions. However, we avoid computation of the correlation functions and compute their weighted moments of high orders by an indirect method which does not address the correlation functions. The effective properties are exactly expressed through these moments. It is proved that the generalized method of Schwarz converges for an arbitrary multiply connected doubly periodic domain and for an arbitrary contrast parameter. The proposed method yields an algorithm which can be applied with symbolic computations. The Torquato-Milton parameter ζ1 is exactly written for circular inclusions.

  5. Generalized Energy-Dependent Q Values for Fission

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, R

    2010-03-31

    We extend Madland's parameterization of the energy release in fission to obtain the dependence of the fission Q value for major and minor actinides on the incident neutron energies in the range 0 {le} E{sub n} {le} 20 MeV. Our parameterization is based on the actinide evaluations recommended for the ENDF/B-VII.1 release. This paper describes the calculation of energydependent fission Q values based on the calculation of the prompt energy release in fission by Madland. This calculation was adopted for use in the LLNL ENDL database and then generalized to obtain the prompt fission energy release for all actinides. Here the calculation is further generalized to the total energy release in fission. There are several stages in a fission event, depending on the time scale. Neutrons and gammas may be emitted at any time during the fission event.While our discussion here is focussed on compound nucleus creation by an incident neutron, similar parameterizations could be obtained for incident gammas or spontaneous fission.

  6. Random dynamics

    International Nuclear Information System (INIS)

    Bennett, D.L.

    1987-01-01

    The goal of random dynamics is the derivation of the laws of Nature as we know them (standard model) from inessential assumptions. The inessential assumptions made here are expressed as sets of general models at extremely high energies: Gauge glass and spacetime foam. Both sets of models lead tentatively to the standard model. (orig.)

  7. Random dynamics

    International Nuclear Information System (INIS)

    Bennett, D.L.; Brene, N.; Nielsen, H.B.

    1986-06-01

    The goal of random dynamics is the derivation of the laws of Nature as we know them (standard model) from inessential assumptions. The inessential assumptions made here are expressed as sets of general models at extremely high energies: gauge glass and spacetime foam. Both sets of models lead tentatively to the standard model. (orig.)

  8. Mirtazapine in generalized social anxiety disorder: a randomized, double-blind, placebo-controlled study

    NARCIS (Netherlands)

    Schutters, Sara I. J.; van Megen, Harold J. G. M.; van Veen, Jantien Frederieke; Denys, Damiaan A. J. P.; Westenberg, Herman G. M.

    2010-01-01

    This study is aimed at investigating the efficacy and tolerability of mirtazapine in a generalized social anxiety disorder. Sixty patients with generalized social anxiety disorder were randomly allocated to receive mirtazapine (30-45 mg/day) (n = 30) or placebo (n = 30) for 12 weeks in a

  9. Kerr-Taub-NUT General Frame, Energy, and Momentum in Teleparallel Equivalent of General Relativity

    Directory of Open Access Journals (Sweden)

    Gamal G. L. Nashed

    2012-01-01

    Full Text Available A new exact solution describing a general stationary and axisymmetric object of the gravitational field in the framework of teleparallel equivalent of general relativity (TEGR is derived. The solution is characterized by three parameters “the gravitational mass M, the rotation a, and the NUT L.” The vierbein field is axially symmetric, and the associated metric gives the Kerr-Taub-NUT spacetime. Calculation of the total energy using two different methods, the gravitational energy momentum and the Riemannian connection 1-form Γα̃β, is carried out. It is shown that the two methods give the same results of energy and momentum. The value of energy is shown to depend on the mass M and the NUT parameter L. If L is vanishing, then the total energy reduced to the energy of Kerr black hole.

  10. Inflation in random landscapes with two energy scales

    Science.gov (United States)

    Blanco-Pillado, Jose J.; Vilenkin, Alexander; Yamada, Masaki

    2018-02-01

    We investigate inflation in a multi-dimensional landscape with a hierarchy of energy scales, motivated by the string theory, where the energy scale of Kahler moduli is usually assumed to be much lower than that of complex structure moduli and dilaton field. We argue that in such a landscape, the dynamics of slow-roll inflation is governed by the low-energy potential, while the initial condition for inflation are determined by tunneling through high-energy barriers. We then use the scale factor cutoff measure to calculate the probability distribution for the number of inflationary e-folds and the amplitude of density fluctuations Q, assuming that the low-energy landscape is described by a random Gaussian potential with a correlation length much smaller than M pl. We find that the distribution for Q has a unique shape and a preferred domain, which depends on the parameters of the low-energy landscape. We discuss some observational implications of this distribution and the constraints it imposes on the landscape parameters.

  11. New Results On the Sum of Two Generalized Gaussian Random Variables

    KAUST Repository

    Soury, Hamza

    2015-01-01

    We propose in this paper a new method to compute the characteristic function (CF) of generalized Gaussian (GG) random variable in terms of the Fox H function. The CF of the sum of two independent GG random variables is then deduced. Based on this results, the probability density function (PDF) and the cumulative distribution function (CDF) of the sum distribution are obtained. These functions are expressed in terms of the bivariate Fox H function. Next, the statistics of the distribution of the sum, such as the moments, the cumulant, and the kurtosis, are analyzed and computed. Due to the complexity of bivariate Fox H function, a solution to reduce such complexity is to approximate the sum of two independent GG random variables by one GG random variable with suitable shape factor. The approximation method depends on the utility of the system so three methods of estimate the shape factor are studied and presented.

  12. New Results on the Sum of Two Generalized Gaussian Random Variables

    KAUST Repository

    Soury, Hamza

    2016-01-06

    We propose in this paper a new method to compute the characteristic function (CF) of generalized Gaussian (GG) random variable in terms of the Fox H function. The CF of the sum of two independent GG random variables is then deduced. Based on this results, the probability density function (PDF) and the cumulative distribution function (CDF) of the sum distribution are obtained. These functions are expressed in terms of the bivariate Fox H function. Next, the statistics of the distribution of the sum, such as the moments, the cumulant, and the kurtosis, are analyzed and computed. Due to the complexity of bivariate Fox H function, a solution to reduce such complexity is to approximate the sum of two independent GG random variables by one GG random variable with suitable shape factor. The approximation method depends on the utility of the system so three methods of estimate the shape factor are studied and presented [1].

  13. New Results on the Sum of Two Generalized Gaussian Random Variables

    KAUST Repository

    Soury, Hamza; Alouini, Mohamed-Slim

    2016-01-01

    We propose in this paper a new method to compute the characteristic function (CF) of generalized Gaussian (GG) random variable in terms of the Fox H function. The CF of the sum of two independent GG random variables is then deduced. Based on this results, the probability density function (PDF) and the cumulative distribution function (CDF) of the sum distribution are obtained. These functions are expressed in terms of the bivariate Fox H function. Next, the statistics of the distribution of the sum, such as the moments, the cumulant, and the kurtosis, are analyzed and computed. Due to the complexity of bivariate Fox H function, a solution to reduce such complexity is to approximate the sum of two independent GG random variables by one GG random variable with suitable shape factor. The approximation method depends on the utility of the system so three methods of estimate the shape factor are studied and presented [1].

  14. Temperature-Controlled Delivery of Radiofrequency Energy in Fecal Incontinence: A Randomized Sham-Controlled Clinical Trial.

    Science.gov (United States)

    Visscher, Arjan P; Lam, Tze J; Meurs-Szojda, Maria M; Felt-Bersma, Richelle J F

    2017-08-01

    Controlled delivery of radiofrequency energy has been suggested as treatment for fecal incontinence. The aim of this study was to determine whether the clinical response to the radiofrequency energy procedure is superior to sham in patients with fecal incontinence. This was a randomized sham-controlled clinical trial from 2008 to 2015. This study was conducted in an outpatient clinic. Forty patients with fecal incontinence in whom maximal conservative management had failed were randomly assigned to receiving either radiofrequency energy or sham procedure. Fecal incontinence was measured using the Vaizey incontinence score (range, 0-24). The impact of fecal incontinence on quality of life was measured by using the fecal incontinence quality-of-life score (range, 1-4). Measurements were performed at baseline and at 6 months. Anorectal function was evaluated using anal manometry and anorectal endosonography at baseline and at 3 months. At baseline, Vaizey incontinence score was 16.8 (SD 2.9). At t = 6 months, the radiofrequency energy group improved by 2.5 points on the Vaizey incontinence score compared with the sham group (13.2 (SD 3.1), 15.6 (SD 3.3), p = 0.02). The fecal incontinence quality-of-life score at t = 6 months was not statistically different. Anorectal function did not show any alteration. Patients with severe fecal incontinence were included in the study, thus making it difficult to generalize the results. Both radiofrequency energy and sham procedure improved the fecal incontinence score, the radiofrequency energy procedure more than sham. Although statistically significant, the clinical impact for most of the patients was negligible. Therefore, the radiofrequency energy procedure should not be recommended for patients with fecal incontinence until patient-related factors associated with treatment success are known. See Video Abstract at http://links.lww.com/DCR/A373.

  15. Dielectric Matrix Formulation of Correlation Energies in the Random Phase Approximation: Inclusion of Exchange Effects.

    Science.gov (United States)

    Mussard, Bastien; Rocca, Dario; Jansen, Georg; Ángyán, János G

    2016-05-10

    Starting from the general expression for the ground state correlation energy in the adiabatic-connection fluctuation-dissipation theorem (ACFDT) framework, it is shown that the dielectric matrix formulation, which is usually applied to calculate the direct random phase approximation (dRPA) correlation energy, can be used for alternative RPA expressions including exchange effects. Within this famework, the ACFDT analog of the second order screened exchange (SOSEX) approximation leads to a logarithmic formula for the correlation energy similar to the direct RPA expression. Alternatively, the contribution of the exchange can be included in the kernel used to evaluate the response functions. In this case, the use of an approximate kernel is crucial to simplify the formalism and to obtain a correlation energy in logarithmic form. Technical details of the implementation of these methods are discussed, and it is shown that one can take advantage of density fitting or Cholesky decomposition techniques to improve the computational efficiency; a discussion on the numerical quadrature made on the frequency variable is also provided. A series of test calculations on atomic correlation energies and molecular reaction energies shows that exchange effects are instrumental for improvement over direct RPA results.

  16. Robustness of regularities for energy centroids in the presence of random interactions

    International Nuclear Information System (INIS)

    Zhao, Y.M.; Arima, A.; Yoshida, N.; Ogawa, K.; Yoshinaga, N.; Kota, V. K. B.

    2005-01-01

    In this paper we study energy centroids such as those with fixed spin and isospin and those with fixed irreducible representations for both bosons and fermions, in the presence of random two-body and/or three-body interactions. Our results show that regularities of energy centroids of fixed-spin states reported in earlier works are very robust in these more complicated cases. We suggest that these behaviors might be intrinsic features of quantum many-body systems interacting by random forces

  17. Random matrix analysis of the QCD sign problem for general topology

    International Nuclear Information System (INIS)

    Bloch, Jacques; Wettig, Tilo

    2009-01-01

    Motivated by the important role played by the phase of the fermion determinant in the investigation of the sign problem in lattice QCD at nonzero baryon density, we derive an analytical formula for the average phase factor of the fermion determinant for general topology in the microscopic limit of chiral random matrix theory at nonzero chemical potential, for both the quenched and the unquenched case. The formula is a nontrivial extension of the expression for zero topology derived earlier by Splittorff and Verbaarschot. Our analytical predictions are verified by detailed numerical random matrix simulations of the quenched theory.

  18. Free Energy Self-Averaging in Protein-Sized Random Heteropolymers

    International Nuclear Information System (INIS)

    Chuang, Jeffrey; Grosberg, Alexander Yu.; Kardar, Mehran

    2001-01-01

    Current theories of heteropolymers are inherently macroscopic, but are applied to mesoscopic proteins. To compute the free energy over sequences, one assumes self-averaging -- a property established only in the macroscopic limit. By enumerating the states and energies of compact 18, 27, and 36mers on a lattice with an ensemble of random sequences, we test the self-averaging approximation. We find that fluctuations in the free energy between sequences are weak, and that self-averaging is valid at the scale of real proteins. The results validate sequence design methods which exponentially speed up computational design and simplify experimental realizations

  19. A simulation-based goodness-of-fit test for random effects in generalized linear mixed models

    DEFF Research Database (Denmark)

    Waagepetersen, Rasmus

    2006-01-01

    The goodness-of-fit of the distribution of random effects in a generalized linear mixed model is assessed using a conditional simulation of the random effects conditional on the observations. Provided that the specified joint model for random effects and observations is correct, the marginal...... distribution of the simulated random effects coincides with the assumed random effects distribution. In practice, the specified model depends on some unknown parameter which is replaced by an estimate. We obtain a correction for this by deriving the asymptotic distribution of the empirical distribution...

  20. A simulation-based goodness-of-fit test for random effects in generalized linear mixed models

    DEFF Research Database (Denmark)

    Waagepetersen, Rasmus Plenge

    The goodness-of-fit of the distribution of random effects in a generalized linear mixed model is assessed using a conditional simulation of the random effects conditional on the observations. Provided that the specified joint model for random effects and observations is correct, the marginal...... distribution of the simulated random effects coincides with the assumed random effects distribution. In practice the specified model depends on some unknown parameter which is replaced by an estimate. We obtain a correction for this by deriving the asymptotic distribution of the empirical distribution function...

  1. How random is a random vector?

    International Nuclear Information System (INIS)

    Eliazar, Iddo

    2015-01-01

    Over 80 years ago Samuel Wilks proposed that the “generalized variance” of a random vector is the determinant of its covariance matrix. To date, the notion and use of the generalized variance is confined only to very specific niches in statistics. In this paper we establish that the “Wilks standard deviation” –the square root of the generalized variance–is indeed the standard deviation of a random vector. We further establish that the “uncorrelation index” –a derivative of the Wilks standard deviation–is a measure of the overall correlation between the components of a random vector. Both the Wilks standard deviation and the uncorrelation index are, respectively, special cases of two general notions that we introduce: “randomness measures” and “independence indices” of random vectors. In turn, these general notions give rise to “randomness diagrams”—tangible planar visualizations that answer the question: How random is a random vector? The notion of “independence indices” yields a novel measure of correlation for Lévy laws. In general, the concepts and results presented in this paper are applicable to any field of science and engineering with random-vectors empirical data.

  2. How random is a random vector?

    Science.gov (United States)

    Eliazar, Iddo

    2015-12-01

    Over 80 years ago Samuel Wilks proposed that the "generalized variance" of a random vector is the determinant of its covariance matrix. To date, the notion and use of the generalized variance is confined only to very specific niches in statistics. In this paper we establish that the "Wilks standard deviation" -the square root of the generalized variance-is indeed the standard deviation of a random vector. We further establish that the "uncorrelation index" -a derivative of the Wilks standard deviation-is a measure of the overall correlation between the components of a random vector. Both the Wilks standard deviation and the uncorrelation index are, respectively, special cases of two general notions that we introduce: "randomness measures" and "independence indices" of random vectors. In turn, these general notions give rise to "randomness diagrams"-tangible planar visualizations that answer the question: How random is a random vector? The notion of "independence indices" yields a novel measure of correlation for Lévy laws. In general, the concepts and results presented in this paper are applicable to any field of science and engineering with random-vectors empirical data.

  3. Chinese hotel general managers' perspectives on energy-saving practices

    Science.gov (United States)

    Zhu, Yidan

    As hotels' concern about sustainability and budget-control is growing steadily, energy-saving issues have become one of the important management concerns hospitality industry face. By executing proper energy-saving practices, previous scholars believed that hotel operation costs can decrease dramatically. Moreover, they believed that conducting energy-saving practices may eventually help the hotel to gain other benefits such as an improved reputation and stronger competitive advantage. The energy-saving issue also has become a critical management problem for the hotel industry in China. Previous research has not investigated energy-saving in China's hotel segment. To achieve a better understanding of the importance of energy-saving, this document attempts to present some insights into China's energy-saving practices in the tourist accommodations sector. Results of the study show the Chinese general managers' attitudes toward energy-saving issues and the differences among the diverse hotel managers who responded to the study. Study results indicate that in China, most of the hotels' energy bills decrease due to the implementation of energy-saving equipments. General managers of hotels in operation for a shorter period of time are typically responsible for making decisions about energy-saving issues; older hotels are used to choosing corporate level concerning to this issue. Larger Chinese hotels generally have official energy-saving usage training sessions for employees, but smaller Chinese hotels sometimes overlook the importance of employee training. The study also found that for the Chinese hospitality industry, energy-saving practices related to electricity are the most efficient and common way to save energy, but older hotels also should pay attention to other ways of saving energy such as water conservation or heating/cooling system.

  4. Energy Contents of Frequently Ordered Restaurant Meals and Comparison with Human Energy Requirements and US Department of Agriculture Database Information: A Multisite Randomized Study

    Science.gov (United States)

    Urban, Lorien E.; Weber, Judith L.; Heyman, Melvin B.; Schichtl, Rachel L.; Verstraete, Sofia; Lowery, Nina S.; Das, Sai Krupa; Schleicher, Molly M.; Rogers, Gail; Economos, Christina; Masters, William A.; Roberts, Susan B.

    2017-01-01

    Background Excess energy intake from meals consumed away from home is implicated as a major contributor to obesity, and ~50% of US restaurants are individual or small-chain (non–chain) establishments that do not provide nutrition information. Objective To measure the energy content of frequently ordered meals in non–chain restaurants in three US locations, and compare with the energy content of meals from large-chain restaurants, energy requirements, and food database information. Design A multisite random-sampling protocol was used to measure the energy contents of the most frequently ordered meals from the most popular cuisines in non–chain restaurants, together with equivalent meals from large-chain restaurants. Setting Meals were obtained from restaurants in San Francisco, CA; Boston, MA; and Little Rock, AR, between 2011 and 2014. Main outcome measures Meal energy content determined by bomb calorimetry. Statistical analysis performed Regional and cuisine differences were assessed using a mixed model with restaurant nested within region×cuisine as the random factor. Paired t tests were used to evaluate differences between non–chain and chain meals, human energy requirements, and food database values. Results Meals from non–chain restaurants contained 1,205±465 kcal/meal, amounts that were not significantly different from equivalent meals from large-chain restaurants (+5.1%; P=0.41). There was a significant effect of cuisine on non–chain meal energy, and three of the four most popular cuisines (American, Italian, and Chinese) had the highest mean energy (1,495 kcal/meal). Ninety-two percent of meals exceeded typical energy requirements for a single eating occasion. Conclusions Non–chain restaurants lacking nutrition information serve amounts of energy that are typically far in excess of human energy requirements for single eating occasions, and are equivalent to amounts served by the large-chain restaurants that have previously been criticized

  5. rFerns: An Implementation of the Random Ferns Method for General-Purpose Machine Learning

    Directory of Open Access Journals (Sweden)

    Miron B. Kursa

    2014-11-01

    Full Text Available Random ferns is a very simple yet powerful classification method originally introduced for specific computer vision tasks. In this paper, I show that this algorithm may be considered as a constrained decision tree ensemble and use this interpretation to introduce a series of modifications which enable the use of random ferns in general machine learning problems. Moreover, I extend the method with an internal error approximation and an attribute importance measure based on corresponding features of the random forest algorithm. I also present the R package rFerns containing an efficient implementation of this modified version of random ferns.

  6. Perspective of long term demand and supply of energy and general inspection of energy policy

    International Nuclear Information System (INIS)

    1983-01-01

    Since the oil crisis, Japanese energy policy was promoted to get rid of the excess dependence on petroleum and to attain energy security, but energy situation largely changed during the past ten years, and it has become necessary to make general inspection on the long term demand and supply of energy and the energy policy. After the second oil crisis, the worldwide demand of petroleum decreased drastically due to the rapid price rise, and the base price of crude oil was lowered for the first time. It is necessary to positively endeavor to reduce energy cost with new idea. The points of the general inspection are the correspondence of the energy policy to the large structural change of energy, the most desirable system for attaining the optimum structure of energy demand and supply and the utilization of market mechanism as far as possible. This report is the results of discussion held eight times since April, 1983. The change of energy situation in Japan and abroad and the perspective, the new problems in energy countermeasures and the trend of response, the preferential and effective promotion of general energy countermeasures and so on are reported. This report shows the fundamental direction of energy countermeasures hereafter, and the concrete and special examination must be made on many remaining problems. (Kako, I.)

  7. The notion of general interest in the energy field

    International Nuclear Information System (INIS)

    Bauby, P.

    2008-01-01

    The 1980's have been marked by a reversal of the reference paradigm concerning the manner in which energy issues are tackled: whilst during the whole period following the Second World War, primacy was placed on the pursuit of general interest in energy policies like in the industrial forms of organisation, the issues have tended to be tackled first of all in terms of 'markets', particularly in Europe and in developed countries. This article aims to raise once more and redefine energy issues, not using the opposition and exclusion between markets and general interest as a reference, but their relations and interactions as they are constructed, in particular within the framework of European integration processes. After giving a reminder of the essence of 'general interest', it will examine the energy issues in Europe and the construction of their relationship with the europeanization of public services. It will analyse the perspectives of a Community energy policy around three key questions: what internal market? What common policy? What public service obligations? (authors)

  8. Bounds on the vibrational energy that can be harvested from random base motion

    Science.gov (United States)

    Langley, R. S.

    2015-03-01

    This paper is concerned with the development of upper bounds on the energy harvesting performance of a general multi-degree-of-freedom nonlinear electromechanical system that is subjected to random base motion and secondary applied periodic forces. The secondary forces are applied with the aim of enhancing the energy harvested from the base motion, and they may constitute direct excitation, or they may produce parametric terms in the equations of motion. It is shown that when the base motion has white noise acceleration then the power input by the base is always πS0 M / 2 where S0 is the single sided spectral density of the acceleration, and M is the mass of the system. This implies that although the secondary forces may enhance the energy harvested by causing a larger fraction of the power input from the base to be harvested rather than dissipated, there is an upper limit on the power that can be harvested. Attention is then turned to narrow band excitation, and it is found that in the absence of secondary forces a bound can be derived for a single degree of freedom system with linear damping and arbitrary nonlinear stiffness. The upper bound on the power input by the base is πM max [ S (ω) ] / 2, where S (ω) is the single sided base acceleration spectrum. The validity of this result for more general systems is found to be related to the properties of the first Wiener kernel, and this issue is explored analytically and by numerical simulation.

  9. Generalization of Random Intercept Multilevel Models

    Directory of Open Access Journals (Sweden)

    Rehan Ahmad Khan

    2013-10-01

    Full Text Available The concept of random intercept models in a multilevel model developed by Goldstein (1986 has been extended for k-levels. The random variation in intercepts at individual level is marginally split into components by incorporating higher levels of hierarchy in the single level model. So, one can control the random variation in intercepts by incorporating the higher levels in the model.

  10. Energy Contents of Frequently Ordered Restaurant Meals and Comparison with Human Energy Requirements and U.S. Department of Agriculture Database Information: A Multisite Randomized Study.

    Science.gov (United States)

    Urban, Lorien E; Weber, Judith L; Heyman, Melvin B; Schichtl, Rachel L; Verstraete, Sofia; Lowery, Nina S; Das, Sai Krupa; Schleicher, Molly M; Rogers, Gail; Economos, Christina; Masters, William A; Roberts, Susan B

    2016-04-01

    Excess energy intake from meals consumed away from home is implicated as a major contributor to obesity, and ∼50% of US restaurants are individual or small-chain (non-chain) establishments that do not provide nutrition information. To measure the energy content of frequently ordered meals in non-chain restaurants in three US locations, and compare with the energy content of meals from large-chain restaurants, energy requirements, and food database information. A multisite random-sampling protocol was used to measure the energy contents of the most frequently ordered meals from the most popular cuisines in non-chain restaurants, together with equivalent meals from large-chain restaurants. Meals were obtained from restaurants in San Francisco, CA; Boston, MA; and Little Rock, AR, between 2011 and 2014. Meal energy content determined by bomb calorimetry. Regional and cuisine differences were assessed using a mixed model with restaurant nested within region×cuisine as the random factor. Paired t tests were used to evaluate differences between non-chain and chain meals, human energy requirements, and food database values. Meals from non-chain restaurants contained 1,205±465 kcal/meal, amounts that were not significantly different from equivalent meals from large-chain restaurants (+5.1%; P=0.41). There was a significant effect of cuisine on non-chain meal energy, and three of the four most popular cuisines (American, Italian, and Chinese) had the highest mean energy (1,495 kcal/meal). Ninety-two percent of meals exceeded typical energy requirements for a single eating occasion. Non-chain restaurants lacking nutrition information serve amounts of energy that are typically far in excess of human energy requirements for single eating occasions, and are equivalent to amounts served by the large-chain restaurants that have previously been criticized for providing excess energy. Restaurants in general, rather than specific categories of restaurant, expose patrons to

  11. Chaotic oscillation and random-number generation based on nanoscale optical-energy transfer.

    Science.gov (United States)

    Naruse, Makoto; Kim, Song-Ju; Aono, Masashi; Hori, Hirokazu; Ohtsu, Motoichi

    2014-08-12

    By using nanoscale energy-transfer dynamics and density matrix formalism, we demonstrate theoretically and numerically that chaotic oscillation and random-number generation occur in a nanoscale system. The physical system consists of a pair of quantum dots (QDs), with one QD smaller than the other, between which energy transfers via optical near-field interactions. When the system is pumped by continuous-wave radiation and incorporates a timing delay between two energy transfers within the system, it emits optical pulses. We refer to such QD pairs as nano-optical pulsers (NOPs). Irradiating an NOP with external periodic optical pulses causes the oscillating frequency of the NOP to synchronize with the external stimulus. We find that chaotic oscillation occurs in the NOP population when they are connected by an external time delay. Moreover, by evaluating the time-domain signals by statistical-test suites, we confirm that the signals are sufficiently random to qualify the system as a random-number generator (RNG). This study reveals that even relatively simple nanodevices that interact locally with each other through optical energy transfer at scales far below the wavelength of irradiating light can exhibit complex oscillatory dynamics. These findings are significant for applications such as ultrasmall RNGs.

  12. Dual resonant structure for energy harvesting from random vibration sources at low frequency

    Directory of Open Access Journals (Sweden)

    Shanshan Li

    2016-01-01

    Full Text Available We introduce a design with dual resonant structure which can harvest energy from random vibration sources at low frequency range. The dual resonant structure consists of two spring-mass subsystems with different frequency responses, which exhibit strong coupling and broad bandwidth when the two masses collide with each other. Experiments with piezoelectric elements show that the energy harvesting device with dual resonant structure can generate higher power output than the sum of the two separate devices from random vibration sources.

  13. Parton self-energies for general momentum-space anisotropy

    Science.gov (United States)

    Kasmaei, Babak S.; Strickland, Michael

    2018-03-01

    We introduce an efficient general method for calculating the self-energies, collective modes, and dispersion relations of quarks and gluons in a momentum-anisotropic high-temperature quark-gluon plasma. The method introduced is applicable to the most general classes of deformed anisotropic momentum distributions and the resulting self-energies are expressed in terms of a series of hypergeometric basis functions which are valid in the entire complex phase-velocity plane. Comparing to direct numerical integration of the self-energies, the proposed method is orders of magnitude faster and provides results with similar or better accuracy. To extend previous studies and demonstrate the application of the proposed method, we present numerical results for the parton self-energies and dispersion relations of partonic collective excitations for the case of an ellipsoidal momentum-space anisotropy. Finally, we also present, for the first time, the gluon unstable mode growth rate for the case of an ellipsoidal momentum-space anisotropy.

  14. Low-temperature random matrix theory at the soft edge

    International Nuclear Information System (INIS)

    Edelman, Alan; Persson, Per-Olof; Sutton, Brian D.

    2014-01-01

    “Low temperature” random matrix theory is the study of random eigenvalues as energy is removed. In standard notation, β is identified with inverse temperature, and low temperatures are achieved through the limit β → ∞. In this paper, we derive statistics for low-temperature random matrices at the “soft edge,” which describes the extreme eigenvalues for many random matrix distributions. Specifically, new asymptotics are found for the expected value and standard deviation of the general-β Tracy-Widom distribution. The new techniques utilize beta ensembles, stochastic differential operators, and Riccati diffusions. The asymptotics fit known high-temperature statistics curiously well and contribute to the larger program of generalrandom matrix theory

  15. A generalization of random matrix theory and its application to statistical physics.

    Science.gov (United States)

    Wang, Duan; Zhang, Xin; Horvatic, Davor; Podobnik, Boris; Eugene Stanley, H

    2017-02-01

    To study the statistical structure of crosscorrelations in empirical data, we generalize random matrix theory and propose a new method of cross-correlation analysis, known as autoregressive random matrix theory (ARRMT). ARRMT takes into account the influence of auto-correlations in the study of cross-correlations in multiple time series. We first analytically and numerically determine how auto-correlations affect the eigenvalue distribution of the correlation matrix. Then we introduce ARRMT with a detailed procedure of how to implement the method. Finally, we illustrate the method using two examples taken from inflation rates for air pressure data for 95 US cities.

  16. Effectiveness of oncogenetics training on general practitioners' consultation skills: a randomized controlled trial.

    Science.gov (United States)

    Houwink, Elisa J F; Muijtjens, Arno M M; van Teeffelen, Sarah R; Henneman, Lidewij; Rethans, Jan Joost; van der Jagt, Liesbeth E J; van Luijk, Scheltus J; Dinant, Geert Jan; van der Vleuten, Cees; Cornel, Martina C

    2014-01-01

    General practitioners are increasingly called upon to deliver genetic services and could play a key role in translating potentially life-saving advancements in oncogenetic technologies to patient care. If general practitioners are to make an effective contribution in this area, their genetics competencies need to be upgraded. The aim of this study was to investigate whether oncogenetics training for general practitioners improves their genetic consultation skills. In this pragmatic, blinded, randomized controlled trial, the intervention consisted of a 4-h training (December 2011 and April 2012), covering oncogenetic consultation skills (family history, familial risk assessment, and efficient referral), attitude (medical ethical issues), and clinical knowledge required in primary-care consultations. Outcomes were measured using observation checklists by unannounced standardized patients and self-reported questionnaires. Of 88 randomized general practitioners who initially agreed to participate, 56 completed all measurements. Key consultation skills significantly and substantially improved; regression coefficients after intervention were equivalent to 0.34 and 0.28 at 3-month follow-up, indicating a moderate effect size. Satisfaction and perceived applicability of newly learned skills were highly scored. The general practitioner-specific training proved to be a feasible, satisfactory, and clinically applicable method to improve oncogenetics consultation skills and could be used as an educational framework to inform future training activities with the ultimate aim of improving medical care.

  17. Algebraic structure of general electromagnetic fields and energy flow

    International Nuclear Information System (INIS)

    Hacyan, Shahen

    2011-01-01

    Highlights: → Algebraic structure of general electromagnetic fields in stationary spacetime. → Eigenvalues and eigenvectors of the electomagnetic field tensor. → Energy-momentum in terms of eigenvectors and Killing vector. → Explicit form of reference frame with vanishing Poynting vector. → Application of formalism to Bessel beams. - Abstract: The algebraic structures of a general electromagnetic field and its energy-momentum tensor in a stationary space-time are analyzed. The explicit form of the reference frame in which the energy of the field appears at rest is obtained in terms of the eigenvectors of the electromagnetic tensor and the existing Killing vector. The case of a stationary electromagnetic field is also studied and a comparison is made with the standard short-wave approximation. The results can be applied to the general case of a structured light beams, in flat or curved spaces. Bessel beams are worked out as example.

  18. Attention Training in Individuals with Generalized Social Phobia: A Randomized Controlled Trial

    Science.gov (United States)

    Amir, Nader; Beard, Courtney; Taylor, Charles T.; Klumpp, Heide; Elias, Jason; Burns, Michelle; Chen, Xi

    2009-01-01

    The authors conducted a randomized, double-blind placebo-controlled trial to examine the efficacy of an attention training procedure in reducing symptoms of social anxiety in 44 individuals diagnosed with generalized social phobia (GSP). Attention training comprised a probe detection task in which pictures of faces with either a threatening or…

  19. General solar energy information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-03-01

    This report describes the results of a series of telephone interviews with groups of users of information on general solar energy. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from 13 groups of respondents are analyzed in this report: Loan Officers, Real Estate Appraisers, Tax Assessors, Insurers, Lawyers, Utility Representatives, Public Interest Group Representatives, Information and Agricultural Representatives, Public Interest Group Representatives, Information and Agricultural Specialists at State Cooperative Extension Service Offices, and State Energy Office Representatives. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  20. Random fractal structures in North American energy markets

    Energy Technology Data Exchange (ETDEWEB)

    Serletis, Apostolos [Calgary Univ., Dept. of Economics, Calgary, AB (Canada); Andreadis, Ioannis [European Univ. of the Hague, Center of Management Studies, The Hague (Netherlands)

    2004-05-01

    This paper uses daily observations on West Texas Intermediate (WTI) crude oil prices at Chicago and Henry Hub natural gas prices at LA (over the deregulated period of the 1990s) and various tests from statistics and dynamical systems theory to support a random fractal structure for North American energy markets. In particular, this evidence is supported by the Vassilicos et al. (1993) multifractal structure test and the Ghashghaie et al. [Nature 381 (1996) 767] turbulent behavior test. (Author)

  1. Random matrix theory of the energy-level statistics of disordered systems at the Anderson transition

    International Nuclear Information System (INIS)

    Canali, C.M.

    1995-09-01

    We consider a family of random matrix ensembles (RME) invariant under similarity transformations and described by the probability density P(H) exp[-TrV(H)]. Dyson's mean field theory (MFT) of the corresponding plasma model of eigenvalues is generalized to the case of weak confining potential, V(is an element of) ∼ A/2 ln 2 (is an element of). The eigenvalue statistics derived from MFT are shown to deviate substantially from the classical Wigner-Dyson statistics when A c approx. 0.4 the distribution function of the level spacings (LSDF) coincides in a large energy window with the energy LSDF of the three dimensional Anderson model at the metal-insulator transition. For the same A = A c , the RME eigenvalue-number variance is linear and its slope is equal to 0.32 ± 0.02, which is consistent with the value found for the Anderson model at the critical point. (author). 51 refs, 10 figs

  2. A general method for handling missing binary outcome data in randomized controlled trials

    OpenAIRE

    Jackson, Dan; White, Ian R; Mason, Dan; Sutton, Stephen

    2014-01-01

    Aims The analysis of randomized controlled trials with incomplete binary outcome data is challenging. We develop a general method for exploring the impact of missing data in such trials, with a focus on abstinence outcomes. Design We propose a sensitivity analysis where standard analyses, which could include ‘missing = smoking’ and ‘last observation carried forward’, are embedded in a wider class of models. Setting We apply our general method to data from two smoking cessation trials. Partici...

  3. Random geometric graphs with general connection functions

    Science.gov (United States)

    Dettmann, Carl P.; Georgiou, Orestis

    2016-03-01

    In the original (1961) Gilbert model of random geometric graphs, nodes are placed according to a Poisson point process, and links formed between those within a fixed range. Motivated by wireless ad hoc networks "soft" or "probabilistic" connection models have recently been introduced, involving a "connection function" H (r ) that gives the probability that two nodes at distance r are linked (directly connect). In many applications (not only wireless networks), it is desirable that the graph is connected; that is, every node is linked to every other node in a multihop fashion. Here the connection probability of a dense network in a convex domain in two or three dimensions is expressed in terms of contributions from boundary components for a very general class of connection functions. It turns out that only a few quantities such as moments of the connection function appear. Good agreement is found with special cases from previous studies and with numerical simulations.

  4. The energy efficiency partnership - Kraft General Foods and Boston Edison Company

    International Nuclear Information System (INIS)

    Crowley, J.C.; Donoghue, J.P.

    1993-01-01

    During the past twenty years, inordinate shifts in the supply and demand of energy have forced both electric utility companies and their customers to investigate new and innovative ways to satisfy the ever increasing demand for electricity. The Energy Efficiency Partnership, developed between Kraft General Foods and Boston Edison Company, presents an exemplary study of how two corporate giants creatively solved the problem of uncontrolled energy costs and its positive effect on the overall operations of Kraft General Foods, Framingham. But the Energy Efficiency Partnership did more than reduce energy costs, it provided benefits to all parties on the playing field. To understand its significance, a review of the partnership's history is paramount. The first official announcement of the Energy Efficiency Partnership was made on April 9, 1990. Framingham, MA, The Commonwealth of Massachusetts Kraft General Foods Framingham, and Boston Edison Company have joined forces in a $3.6 million dollar energy partnership that will help keep 250 industrial jobs in Massachusetts and could lead to the future expansion of the international food company's Framingham facility

  5. Yoga for generalized anxiety disorder: design of a randomized controlled clinical trial.

    Science.gov (United States)

    Hofmann, Stefan G; Curtiss, Joshua; Khalsa, Sat Bir S; Hoge, Elizabeth; Rosenfield, David; Bui, Eric; Keshaviah, Aparna; Simon, Naomi

    2015-09-01

    Generalized anxiety disorder (GAD) is a common disorder associated with significant distress and interference. Although cognitive behavioral therapy (CBT) has been shown to be the most effective form of psychotherapy, few patients receive or have access to this intervention. Yoga therapy offers another promising, yet under-researched, intervention that is gaining increasing popularity in the general public, as an anxiety reduction intervention. The purpose of this innovative clinical trial protocol is to investigate the efficacy of a Kundalini Yoga intervention, relative to CBT and a control condition. Kundalini yoga and CBT are compared with each other in a noninferiority test and both treatments are compared to stress education training, an attention control intervention, in superiority tests. The sample will consist of 230 individuals with a primary DSM-5 diagnosis of GAD. This randomized controlled trial will compare yoga (N=95) to both CBT for GAD (N=95) and stress education (N=40), a commonly used control condition. All three treatments will be administered by two instructors in a group format over 12 weekly sessions with four to six patients per group. Groups will be randomized using permuted block randomization, which will be stratified by site. Treatment outcome will be evaluated bi-weekly and at 6month follow-up. Furthermore, potential mediators of treatment outcome will be investigated. Given the individual and economic burden associated with GAD, identifying accessible alternative behavioral treatments will have substantive public health implications. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Annual report 2005 General Direction of the Energy and raw materials; Rapport annuel 2005 Direction Generale de L'Energie et des Matieres Premieres

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This 2005 annual report of the DGEMP (General Direction of the Energy and the raw Materials), takes stock on the energy bill and accounting of the France. The first part presents the electric power, natural gas and raw materials market in France. The second part is devoted to the diversification of the energy resources with a special attention to the renewable energies and the nuclear energy. The third part discusses the energy and raw materials prices and the last part presents the international cooperation in the energy domain. (A.L.B.)

  7. Energy policy of the International Energy Agency (IEA) countries. General review of the year 1990

    International Nuclear Information System (INIS)

    1992-01-01

    This book is a general review on energy policy leaded by Members countries of International Energy Agency (IEA) during the year 1990. This book describes also the trends and the recent events which have affected energy demand, energy conservation, energy efficiency, energy supply and energy source development. This annual review gives the IEA energy forecasting for the next years, till year 2001. A detailed study of energy policy in Federal Republic of Germany, Austria, Denmark, Greece, Ireland and Japan is given. The policy of fifteen another Members countries, which have been analyzed the previous years, is recapitulated and briefly brought up to date

  8. General Merchandise 50% Energy Savings Technical Support Document

    Energy Technology Data Exchange (ETDEWEB)

    Hale, E.; Leach, M.; Hirsch, A.; Torcellini, P.

    2009-09-01

    This report documents technical analysis for medium-box general merchandise stores aimed at providing design guidance that achieves whole-building energy savings of at least 50% over ASHRAE Standard 90.1-2004.

  9. Commercial Building Partnership General Merchandise Energy Savings Overview

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    The Commercial Building Partnership (CBP) paired selected commercial building owners and operators with representatives of DOE, national laboratories and private sector exports to explore energy efficiency measures across general merchandise commercial buildings.

  10. Exchange-correlation energy from pairing matrix fluctuation and the particle-particle random phase approximation.

    Science.gov (United States)

    van Aggelen, Helen; Yang, Yang; Yang, Weitao

    2014-05-14

    Despite their unmatched success for many applications, commonly used local, semi-local, and hybrid density functionals still face challenges when it comes to describing long-range interactions, static correlation, and electron delocalization. Density functionals of both the occupied and virtual orbitals are able to address these problems. The particle-hole (ph-) Random Phase Approximation (RPA), a functional of occupied and virtual orbitals, has recently known a revival within the density functional theory community. Following up on an idea introduced in our recent communication [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013)], we formulate more general adiabatic connections for the correlation energy in terms of pairing matrix fluctuations described by the particle-particle (pp-) propagator. With numerical examples of the pp-RPA, the lowest-order approximation to the pp-propagator, we illustrate the potential of density functional approximations based on pairing matrix fluctuations. The pp-RPA is size-extensive, self-interaction free, fully anti-symmetric, describes the strong static correlation limit in H2, and eliminates delocalization errors in H2(+) and other single-bond systems. It gives surprisingly good non-bonded interaction energies--competitive with the ph-RPA--with the correct R(-6) asymptotic decay as a function of the separation R, which we argue is mainly attributable to its correct second-order energy term. While the pp-RPA tends to underestimate absolute correlation energies, it gives good relative energies: much better atomization energies than the ph-RPA, as it has no tendency to underbind, and reaction energies of similar quality. The adiabatic connection in terms of pairing matrix fluctuation paves the way for promising new density functional approximations.

  11. Exchange-correlation energy from pairing matrix fluctuation and the particle-particle random phase approximation

    International Nuclear Information System (INIS)

    Aggelen, Helen van; Yang, Yang; Yang, Weitao

    2014-01-01

    Despite their unmatched success for many applications, commonly used local, semi-local, and hybrid density functionals still face challenges when it comes to describing long-range interactions, static correlation, and electron delocalization. Density functionals of both the occupied and virtual orbitals are able to address these problems. The particle-hole (ph-) Random Phase Approximation (RPA), a functional of occupied and virtual orbitals, has recently known a revival within the density functional theory community. Following up on an idea introduced in our recent communication [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013)], we formulate more general adiabatic connections for the correlation energy in terms of pairing matrix fluctuations described by the particle-particle (pp-) propagator. With numerical examples of the pp-RPA, the lowest-order approximation to the pp-propagator, we illustrate the potential of density functional approximations based on pairing matrix fluctuations. The pp-RPA is size-extensive, self-interaction free, fully anti-symmetric, describes the strong static correlation limit in H 2 , and eliminates delocalization errors in H 2 + and other single-bond systems. It gives surprisingly good non-bonded interaction energies – competitive with the ph-RPA – with the correct R −6 asymptotic decay as a function of the separation R, which we argue is mainly attributable to its correct second-order energy term. While the pp-RPA tends to underestimate absolute correlation energies, it gives good relative energies: much better atomization energies than the ph-RPA, as it has no tendency to underbind, and reaction energies of similar quality. The adiabatic connection in terms of pairing matrix fluctuation paves the way for promising new density functional approximations

  12. A theory of solving TAP equations for Ising models with general invariant random matrices

    DEFF Research Database (Denmark)

    Opper, Manfred; Çakmak, Burak; Winther, Ole

    2016-01-01

    We consider the problem of solving TAP mean field equations by iteration for Ising models with coupling matrices that are drawn at random from general invariant ensembles. We develop an analysis of iterative algorithms using a dynamical functional approach that in the thermodynamic limit yields...... the iteration dependent on a Gaussian distributed field only. The TAP magnetizations are stable fixed points if a de Almeida–Thouless stability criterion is fulfilled. We illustrate our method explicitly for coupling matrices drawn from the random orthogonal ensemble....

  13. Energy Savings Forecast of Solid-State Lighting in General Illumination Applications

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-08-29

    With declining production costs and increasing technical capabilities, LED adoption has recently gained momentum in general illumination applications. This is a positive development for our energy infrastructure, as LEDs use significantly less electricity per lumen produced than many traditional lighting technologies. The U.S. Department of Energy’s Energy Savings Forecast of Solid-State Lighting in General Illumination Applications examines the expected market penetration and resulting energy savings of light-emitting diode, or LED, lamps and luminaires from today through 2030.

  14. Randomized controlled trial of the effect of medical audit on AIDS prevention in general practice

    DEFF Research Database (Denmark)

    Sandbæk, Annelli

    1999-01-01

    OBJECTIVE: We aimed to evaluate the effect of a medical audit on AIDS prevention in general practice. METHODS: We conducted a prospective randomized controlled study performed as 'lagged intervention'. At the time of comparison, the intervention group had completed 6 months of audit including a p...... of such consultations initiated by the GPs. CONCLUSIONS: Medical audit had no observed effect on AIDS prevention in general practice. Udgivelsesdato: 1999-Oct......OBJECTIVE: We aimed to evaluate the effect of a medical audit on AIDS prevention in general practice. METHODS: We conducted a prospective randomized controlled study performed as 'lagged intervention'. At the time of comparison, the intervention group had completed 6 months of audit including....... One hundred and thirty-three GPs completed the project. The main outcome measures were the number of consultations involving AIDS prevention and the number of talks about AIDS initiated by the GP, and some elements of the content were registered on a chart. RESULTS: No statistically significant...

  15. Proposed general amendments to the atomic energy control regulations

    International Nuclear Information System (INIS)

    1986-01-01

    Canada's Atomic Energy Control Act defines the powers and responsibilities of the Atomic Energy Control Board (AECB). Among these is to make regulations to control the development, application and use of atomic energy. In these proposed general amendments to the Atomic Energy Control Regulations substantial changes are proposed in the designation of the authority of AECB staff, exemptions from licensing, international safeguards, duties of licensees and atomic radiation workers, security of information, and provision for hearings. The scope of the control of atomic energy has been redefined as relating to matters of health, safety, security, international safeguards, and the protection of the environment

  16. Size-dependent piezoelectric energy-harvesting analysis of micro/nano bridges subjected to random ambient excitations

    Science.gov (United States)

    Radgolchin, Moeen; Moeenfard, Hamid

    2018-02-01

    The construction of self-powered micro-electro-mechanical units by converting the mechanical energy of the systems into electrical power has attracted much attention in recent years. While power harvesting from deterministic external excitations is state of the art, it has been much more difficult to derive mathematical models for scavenging electrical energy from ambient random vibrations, due to the stochastic nature of the excitations. The current research concerns analytical modeling of micro-bridge energy harvesters based on random vibration theory. Since classical elasticity fails to accurately predict the mechanical behavior of micro-structures, strain gradient theory is employed as a powerful tool to increase the accuracy of the random vibration modeling of the micro-harvester. Equations of motion of the system in the time domain are derived using the Lagrange approach. These are then utilized to determine the frequency and impulse responses of the structure. Assuming the energy harvester to be subjected to a combination of broadband and limited-band random support motion and transverse loading, closed-form expressions for mean, mean square, correlation and spectral density of the output power are derived. The suggested formulation is further exploited to investigate the effect of the different design parameters, including the geometric properties of the structure as well as the properties of the electrical circuit on the resulting power. Furthermore, the effect of length scale parameters on the harvested energy is investigated in detail. It is observed that the predictions of classical and even simple size-dependent theories (such as couple stress) appreciably differ from the findings of strain gradient theory on the basis of random vibration. This study presents a first-time modeling of micro-scale harvesters under stochastic excitations using a size-dependent approach and can be considered as a reliable foundation for future research in the field of

  17. Generalized entropy formalism and a new holographic dark energy model

    Science.gov (United States)

    Sayahian Jahromi, A.; Moosavi, S. A.; Moradpour, H.; Morais Graça, J. P.; Lobo, I. P.; Salako, I. G.; Jawad, A.

    2018-05-01

    Recently, the Rényi and Tsallis generalized entropies have extensively been used in order to study various cosmological and gravitational setups. Here, using a special type of generalized entropy, a generalization of both the Rényi and Tsallis entropy, together with holographic principle, we build a new model for holographic dark energy. Thereinafter, considering a flat FRW universe, filled by a pressureless component and the new obtained dark energy model, the evolution of cosmos has been investigated showing satisfactory results and behavior. In our model, the Hubble horizon plays the role of IR cutoff, and there is no mutual interaction between the cosmos components. Our results indicate that the generalized entropy formalism may open a new window to become more familiar with the nature of spacetime and its properties.

  18. General Retarded Contact Self-energies in and beyond the Non-equilibrium Green's Functions Method

    Science.gov (United States)

    Kubis, Tillmann; He, Yu; Andrawis, Robert; Klimeck, Gerhard

    2016-03-01

    Retarded contact self-energies in the framework of nonequilibrium Green's functions allow to model the impact of lead structures on the device without explicitly including the leads in the actual device calculation. Most of the contact self-energy algorithms are limited to homogeneous or periodic, semi-infinite lead structures. In this work, the complex absorbing potential method is extended to solve retarded contact self-energies for arbitrary lead structures, including irregular and randomly disordered leads. This method is verified for regular leads against common approaches and on physically equivalent, but numerically different irregular leads. Transmission results on randomly alloyed In0.5Ga0.5As structures show the importance of disorder in the leads. The concept of retarded contact self-energies is expanded to model passivation of atomically resolved surfaces without explicitly increasing the device's Hamiltonian.

  19. No differential attrition was found in randomized controlled trials published in general medical journals: a meta-analysis.

    Science.gov (United States)

    Crutzen, Rik; Viechtbauer, Wolfgang; Kotz, Daniel; Spigt, Mark

    2013-09-01

    Differential attrition is regarded as a major threat to the internal validity of a randomized controlled trial (RCT). This study identifies the degree of differential attrition in RCTs covering a broad spectrum of clinical areas and factors that are related to this. A PubMed search was conducted to obtain a random sample of 100 RCTs published between 2008 and 2010 in journals from the ISI Web of Knowledge(SM) category of medicine, general and internal. Eligibility criteria for selecting studies were primary publications of two-arm parallel randomized clinical trials, containing human participants and one or multiple follow-up measurements whose availability depended on the patients' willingness to participate. A significant amount of differential attrition was observed in 8% of the trials. The average differential attrition rate was 0.99 (95% confidence interval: 0.97-1.01), indicating no general difference in attrition rates between intervention and control groups. Moreover, no indication of heterogeneity was found, suggesting that the occurrence of differential attrition in the published literature is mostly a chance finding, unrelated to any particular design factors. Differential attrition did not generally occur in RCTs covering a broad spectrum of clinical areas within general and internal medicine. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Single-Use Energy Sources and Operating Room Time for Laparoscopic Hysterectomy: A Randomized Controlled Trial.

    Science.gov (United States)

    Holloran-Schwartz, M Brigid; Gavard, Jeffrey A; Martin, Jared C; Blaskiewicz, Robert J; Yeung, Patrick P

    2016-01-01

    To compare the intraoperative direct costs of a single-use energy device with reusable energy devices during laparoscopic hysterectomy. A randomized controlled trial (Canadian Task Force Classification I). An academic hospital. Forty-six women who underwent laparoscopic hysterectomy from March 2013 to September 2013. Each patient served as her own control. One side of the uterine attachments was desiccated and transected with the single-use device (Ligasure 5-mm Blunt Tip LF1537 with the Force Triad generator). The other side was desiccated and transected with reusable bipolar forceps (RoBi 5 mm), and transected with monopolar scissors using the same Covidien Force Triad generator. The instrument approach used was randomized to the attending physician who was always on the patient's left side. Resident physicians always operated on the patient's right side and used the converse instruments of the attending physician. Start time was recorded at the utero-ovarian pedicle and end time was recorded after transection of the uterine artery on the same side. Costs included the single-use device; amortized costs of the generator, reusable instruments, and cords; cleaning and packaging of reusable instruments; and disposal of the single-use device. Operating room time was $94.14/min. We estimated that our single use-device cost $630.14 and had a total time savings of 6.7 min per case, or 3.35 min per side, which could justify the expense of the device. The single-use energy device had significant median time savings (-4.7 min per side, p energy device that both desiccates and cuts significantly reduced operating room time to justify its own cost, and it also reduced total intraoperative direct costs during laparoscopic hysterectomy in our institution. Operating room cost per minute varies between institutions and must be considered before generalizing our results. Copyright © 2016 AAGL. Published by Elsevier Inc. All rights reserved.

  1. Nonstationary random acoustic and electromagnetic fields as wave diffusion processes

    International Nuclear Information System (INIS)

    Arnaut, L R

    2007-01-01

    We investigate the effects of relatively rapid variations of the boundaries of an overmoded cavity on the stochastic properties of its interior acoustic or electromagnetic field. For quasi-static variations, this field can be represented as an ideal incoherent and statistically homogeneous isotropic random scalar or vector field, respectively. A physical model is constructed showing that the field dynamics can be characterized as a generalized diffusion process. The Langevin-It o-hat and Fokker-Planck equations are derived and their associated statistics and distributions for the complex analytic field, its magnitude and energy density are computed. The energy diffusion parameter is found to be proportional to the square of the ratio of the standard deviation of the source field to the characteristic time constant of the dynamic process, but is independent of the initial energy density, to first order. The energy drift vanishes in the asymptotic limit. The time-energy probability distribution is in general not separable, as a result of nonstationarity. A general solution of the Fokker-Planck equation is obtained in integral form, together with explicit closed-form solutions for several asymptotic cases. The findings extend known results on statistics and distributions of quasi-stationary ideal random fields (pure diffusions), which are retrieved as special cases

  2. Effective medium super-cell approximation for interacting disordered systems: an alternative real-space derivation of generalized dynamical cluster approximation

    International Nuclear Information System (INIS)

    Moradian, Rostam

    2006-01-01

    We develop a generalized real-space effective medium super-cell approximation (EMSCA) method to treat the electronic states of interacting disordered systems. This method is general and allows randomness both in the on-site energies and in the hopping integrals. For a non-interacting disordered system, in the special case of randomness in the on-site energies, this method is equivalent to the non-local coherent potential approximation (NLCPA) derived previously. Also, for an interacting system the EMSCA method leads to the real-space derivation of the generalized dynamical cluster approximation (DCA) for a general lattice structure. We found that the original DCA and the NLCPA are two simple cases of this technique, so the EMSCA is equivalent to the generalized DCA where there is included interaction and randomness in the on-site energies and in the hopping integrals. All of the equations of this formalism are derived by using the effective medium theory in real space

  3. Energy taxes and wages in a general equilibrium model of production

    International Nuclear Information System (INIS)

    Thompson, H.

    2000-01-01

    Energy taxes are responsible for a good deal of observed differences in energy prices across states and countries. They alter patterns of production and income distribution. The present paper examines the potential of energy taxes to lower wages in a general equilibrium model of production with capital, labour and energy inputs. (Author)

  4. Random versus Deterministic Descent in RNA Energy Landscape Analysis

    Directory of Open Access Journals (Sweden)

    Luke Day

    2016-01-01

    Full Text Available Identifying sets of metastable conformations is a major research topic in RNA energy landscape analysis, and recently several methods have been proposed for finding local minima in landscapes spawned by RNA secondary structures. An important and time-critical component of such methods is steepest, or gradient, descent in attraction basins of local minima. We analyse the speed-up achievable by randomised descent in attraction basins in the context of large sample sets where the size has an order of magnitude in the region of ~106. While the gain for each individual sample might be marginal, the overall run-time improvement can be significant. Moreover, for the two nongradient methods we analysed for partial energy landscapes induced by ten different RNA sequences, we obtained that the number of observed local minima is on average larger by 7.3% and 3.5%, respectively. The run-time improvement is approximately 16.6% and 6.8% on average over the ten partial energy landscapes. For the large sample size we selected for descent procedures, the coverage of local minima is very high up to energy values of the region where the samples were randomly selected from the partial energy landscapes; that is, the difference to the total set of local minima is mainly due to the upper area of the energy landscapes.

  5. The Generalized Conversion Factor in Einstein's Mass-Energy Equation

    Directory of Open Access Journals (Sweden)

    Ajay Sharma

    2008-07-01

    Full Text Available Einstein's September 1905 paper is origin of light energy-mass inter conversion equation ($L = Delta mc^{2}$ and Einstein speculated $E = Delta mc^{2}$ from it by simply replacing $L$ by $E$. From its critical analysis it follows that $L = Delta mc^{2}$ is only true under special or ideal conditions. Under general cases the result is $L propto Delta mc^{2}$ ($E propto Delta mc^{2}$. Consequently an alternate equation $Delta E = A ub c^{2}Delta M$ has been suggested, which implies that energy emitted on annihilation of mass can be equal, less and more than predicted by $Delta E = Delta mc^{2}$. The total kinetic energy of fission fragments of U-235 or Pu-239 is found experimentally 20-60 MeV less than Q-value predicted by $Delta mc^{2}$. The mass of particle Ds (2317 discovered at SLAC, is more than current estimates. In many reactions including chemical reactions $E = Delta mc^{2}$ is not confirmed yet, but regarded as true. It implies the conversion factor than $c^{2}$ is possible. These phenomena can be explained with help of generalized mass-energy equation $Delta E = A ub c^{2}Delta M$.

  6. Generalized formulation of free energy and application to photosynthesis

    Science.gov (United States)

    Zhang, Hwe Ik; Choi, M. Y.

    2018-03-01

    The origin of free energy on the earth is solar radiation. However, the amount of free energy it contains has seldom been investigated, because the free energy concept was believed to be inappropriate for a system of photons. Instead, the origin of free energy has been sought in the process of photosynthesis, imposing a limit of conversion given by the Carnot efficiency. Here we present a general formulation, capable of not only assessing accurately the available amount of free energy in the photon gas but also explaining the primary photosynthetic process more succinctly. In this formulation, the problem of "photosynthetic conversion of the internal energy of photons into the free energy of chlorophyll" is replaced by simple "free energy transduction" between the photons and chlorophyll. An analytic expression for the photosynthetic efficiency is derived and shown to deviate from the Carnot efficiency. Some predictions verifiable possibly by observation are also suggested.

  7. Applications of a general random-walk theory for confined diffusion.

    Science.gov (United States)

    Calvo-Muñoz, Elisa M; Selvan, Myvizhi Esai; Xiong, Ruichang; Ojha, Madhusudan; Keffer, David J; Nicholson, Donald M; Egami, Takeshi

    2011-01-01

    A general random walk theory for diffusion in the presence of nanoscale confinement is developed and applied. The random-walk theory contains two parameters describing confinement: a cage size and a cage-to-cage hopping probability. The theory captures the correct nonlinear dependence of the mean square displacement (MSD) on observation time for intermediate times. Because of its simplicity, the theory also requires modest computational requirements and is thus able to simulate systems with very low diffusivities for sufficiently long time to reach the infinite-time-limit regime where the Einstein relation can be used to extract the self-diffusivity. The theory is applied to three practical cases in which the degree of order in confinement varies. The three systems include diffusion of (i) polyatomic molecules in metal organic frameworks, (ii) water in proton exchange membranes, and (iii) liquid and glassy iron. For all three cases, the comparison between theory and the results of molecular dynamics (MD) simulations indicates that the theory can describe the observed diffusion behavior with a small fraction of the computational expense. The confined-random-walk theory fit to the MSDs of very short MD simulations is capable of accurately reproducing the MSDs of much longer MD simulations. Furthermore, the values of the parameter for cage size correspond to the physical dimensions of the systems and the cage-to-cage hopping probability corresponds to the activation barrier for diffusion, indicating that the two parameters in the theory are not simply fitted values but correspond to real properties of the physical system.

  8. Effect of a tailored physical activity intervention delivered in general practice settings: results of a randomized controlled trial

    NARCIS (Netherlands)

    Sluijs, van E.M.F.; Poppel - Bruinvels, van M.N.M.; Twisk, J.W.R.; Paw, M.J.M. Chin A; Calfas, K.J.; Mechelen, van W.

    2005-01-01

    OBJECTIVES: We evaluated the effectiveness of a minimal intervention physical activity strategy (physician-based assessment and counseling for exercise [PACE]) applied in general practice settings in the Netherlands. METHODS: Randomization took place at the general practice level. Participants were

  9. Effect of a tailored physical activity intervention delivered in general practice settings: results of a randomized controlled trial

    NARCIS (Netherlands)

    van Sluijs, E.M.F.; van Poppel-Bruinvels, M.N.M.; Twisk, J.W.R.; Chin A Paw, M.J.M.; Calfas, K.J.; van Mechelen, W.

    2005-01-01

    Objectives. We evaluated the effectiveness of a minimal intervention physical activity strategy (physician-based assessment and counseling for exercise [PACE]) applied in general practice settings in the Netherlands. Methods. Randomization took place at the general practice level. Participants were

  10. Linearization effect in multifractal analysis: Insights from the Random Energy Model

    Science.gov (United States)

    Angeletti, Florian; Mézard, Marc; Bertin, Eric; Abry, Patrice

    2011-08-01

    The analysis of the linearization effect in multifractal analysis, and hence of the estimation of moments for multifractal processes, is revisited borrowing concepts from the statistical physics of disordered systems, notably from the analysis of the so-called Random Energy Model. Considering a standard multifractal process (compound Poisson motion), chosen as a simple representative example, we show the following: (i) the existence of a critical order q∗ beyond which moments, though finite, cannot be estimated through empirical averages, irrespective of the sample size of the observation; (ii) multifractal exponents necessarily behave linearly in q, for q>q∗. Tailoring the analysis conducted for the Random Energy Model to that of Compound Poisson motion, we provide explicative and quantitative predictions for the values of q∗ and for the slope controlling the linear behavior of the multifractal exponents. These quantities are shown to be related only to the definition of the multifractal process and not to depend on the sample size of the observation. Monte Carlo simulations, conducted over a large number of large sample size realizations of compound Poisson motion, comfort and extend these analyses.

  11. Interacting holographic dark energy models: a general approach

    Science.gov (United States)

    Som, S.; Sil, A.

    2014-08-01

    Dark energy models inspired by the cosmological holographic principle are studied in homogeneous isotropic spacetime with a general choice for the dark energy density . Special choices of the parameters enable us to obtain three different holographic models, including the holographic Ricci dark energy (RDE) model. Effect of interaction between dark matter and dark energy on the dynamics of those models are investigated for different popular forms of interaction. It is found that crossing of phantom divide can be avoided in RDE models for β>0.5 irrespective of the presence of interaction. A choice of α=1 and β=2/3 leads to a varying Λ-like model introducing an IR cutoff length Λ -1/2. It is concluded that among the popular choices an interaction of the form Q∝ Hρ m suits the best in avoiding the coincidence problem in this model.

  12. Assessment of Random Assignment in Training and Test Sets using Generalized Cluster Analysis Technique

    Directory of Open Access Journals (Sweden)

    Sorana D. BOLBOACĂ

    2011-06-01

    Full Text Available Aim: The properness of random assignment of compounds in training and validation sets was assessed using the generalized cluster technique. Material and Method: A quantitative Structure-Activity Relationship model using Molecular Descriptors Family on Vertices was evaluated in terms of assignment of carboquinone derivatives in training and test sets during the leave-many-out analysis. Assignment of compounds was investigated using five variables: observed anticancer activity and four structure descriptors. Generalized cluster analysis with K-means algorithm was applied in order to investigate if the assignment of compounds was or not proper. The Euclidian distance and maximization of the initial distance using a cross-validation with a v-fold of 10 was applied. Results: All five variables included in analysis proved to have statistically significant contribution in identification of clusters. Three clusters were identified, each of them containing both carboquinone derivatives belonging to training as well as to test sets. The observed activity of carboquinone derivatives proved to be normal distributed on every. The presence of training and test sets in all clusters identified using generalized cluster analysis with K-means algorithm and the distribution of observed activity within clusters sustain a proper assignment of compounds in training and test set. Conclusion: Generalized cluster analysis using the K-means algorithm proved to be a valid method in assessment of random assignment of carboquinone derivatives in training and test sets.

  13. Generalized Entanglement Entropies of Quantum Designs

    Science.gov (United States)

    Liu, Zi-Wen; Lloyd, Seth; Zhu, Elton Yechao; Zhu, Huangjun

    2018-03-01

    The entanglement properties of random quantum states or dynamics are important to the study of a broad spectrum of disciplines of physics, ranging from quantum information to high energy and many-body physics. This Letter investigates the interplay between the degrees of entanglement and randomness in pure states and unitary channels. We reveal strong connections between designs (distributions of states or unitaries that match certain moments of the uniform Haar measure) and generalized entropies (entropic functions that depend on certain powers of the density operator), by showing that Rényi entanglement entropies averaged over designs of the same order are almost maximal. This strengthens the celebrated Page's theorem. Moreover, we find that designs of an order that is logarithmic in the dimension maximize all Rényi entanglement entropies and so are completely random in terms of the entanglement spectrum. Our results relate the behaviors of Rényi entanglement entropies to the complexity of scrambling and quantum chaos in terms of the degree of randomness, and suggest a generalization of the fast scrambling conjecture.

  14. Hamiltonian Dynamics and Positive Energy in General Relativity

    Energy Technology Data Exchange (ETDEWEB)

    Deser, S. [Physics Department, Brandeis University, Waltham, MA (United States)

    1969-07-15

    A review is first given of the Hamiltonian formulation of general relativity; the gravitational field is a self-interacting massless spin-two system within the framework of ordinary Lorentz covariant field theory. The recently solved problem of positive-definiteness of the field energy is then discussed. The latter, a conserved functional of the dynamical variables, is shown to have only one extremum, a local minimum, which is the vacuum state (flat space). This implies positive energy for the field, with the vacuum as ground-state. Similar results hold when minimally coupled matter is present. (author)

  15. Correspondence between the President of the Atomic Energy Organization of Iran and the Director General

    International Nuclear Information System (INIS)

    1984-09-01

    The document includes 5 attachments: the letter of 9 April 1984 from the President of the Atomic Energy Organization of Iran to the Director General, the letter of 11 May 1984 from the Director General to the President of the Atomic Energy Organization of Iran, the text of the telex of 27 May 1984 from the President of the Atomic Energy Organization of Iran to the Director General, the text of the telex of 28 May 1984 from the Director General to the President of the Atomic Energy Organization of Iran and the text of the telex from 30 May 1984 from the President of the Atomic Energy Organization of Iran to the Director General refering to ''Military attack on Iran's Bushehr Nuclear Power Plant''

  16. Maternal Dietary Counseling Reduces Consumption of Energy-Dense Foods among Infants: A Randomized Controlled Trial

    Science.gov (United States)

    Vitolo, Marcia Regina; Bortolini, Gisele Ane; Campagnolo, Paula Dal Bo; Hoffman, Daniel J.

    2012-01-01

    Objective: To evaluate the impact of a dietary counseling in reducing the intake of energy-dense foods by infants. Design: A randomized controlled trial. Setting and Participants: Sao Leopoldo, Brazil. Mothers and infants of a low-income-group population were randomized into intervention (n = 163) and received dietary counseling during 10 home…

  17. General Business Model Patterns for Local Energy Management Concepts

    International Nuclear Information System (INIS)

    Facchinetti, Emanuele; Sulzer, Sabine

    2016-01-01

    The transition toward a more sustainable global energy system, significantly relying on renewable energies and decentralized energy systems, requires a deep reorganization of the energy sector. The way how energy services are generated, delivered, and traded is expected to be very different in the coming years. Business model innovation is recognized as a key driver for the successful implementation of the energy turnaround. This work contributes to this topic by introducing a heuristic methodology easing the identification of general business model patterns best suited for Local Energy Management concepts such as Energy Hubs. A conceptual framework characterizing the Local Energy Management business model solution space is developed. Three reference business model patterns providing orientation across the defined solution space are identified, analyzed, and compared. Through a market review, a number of successfully implemented innovative business models have been analyzed and allocated within the defined solution space. The outcomes of this work offer to potential stakeholders a starting point and guidelines for the business model innovation process, as well as insights for policy makers on challenges and opportunities related to Local Energy Management concepts.

  18. General Business Model Patterns for Local Energy Management Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Facchinetti, Emanuele, E-mail: emanuele.facchinetti@hslu.ch; Sulzer, Sabine [Lucerne Competence Center for Energy Research, Lucerne University of Applied Science and Arts, Horw (Switzerland)

    2016-03-03

    The transition toward a more sustainable global energy system, significantly relying on renewable energies and decentralized energy systems, requires a deep reorganization of the energy sector. The way how energy services are generated, delivered, and traded is expected to be very different in the coming years. Business model innovation is recognized as a key driver for the successful implementation of the energy turnaround. This work contributes to this topic by introducing a heuristic methodology easing the identification of general business model patterns best suited for Local Energy Management concepts such as Energy Hubs. A conceptual framework characterizing the Local Energy Management business model solution space is developed. Three reference business model patterns providing orientation across the defined solution space are identified, analyzed, and compared. Through a market review, a number of successfully implemented innovative business models have been analyzed and allocated within the defined solution space. The outcomes of this work offer to potential stakeholders a starting point and guidelines for the business model innovation process, as well as insights for policy makers on challenges and opportunities related to Local Energy Management concepts.

  19. Teaching Emotional Intelligence to Intensive Care Unit Nurses and their General Health: A Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    F Sharif

    2013-07-01

    Full Text Available Background: Emotion and how people manage it is an important part of personality that would immensely affect their health. Investigations showed that emotional intelligence is significantly related to and can predict psychological health. Objective: To determine the effect of teaching emotional intelligence to intensive care unit nurses on their general health. Methods: This randomized clinical trial (registered as IRCT201208022812N9 was conducted on 52 of 200 in intensive care unit nurses affiliated to Shiraz University of Medical Sciences. They were recruited through purposeful convenience sampling and then randomly categorized into two groups. The intervention group members were trained in emotional intelligence. Bar-on emotional intelligence and Goldberg's general health questionnaires were administered to each participant before, immediately after, and one month after the intervention. Results: While the mean score of general health for the intervention group decreased from 25.4 before the intervention, to 18.1 immediately after the intervention and to 14.6 one month later, for the control group, it increased from 22.0, to 24.2 and to 26.5, respectively (p<0.001. Conclusion: Teaching emotional intelligence improved the general health of intensive care unit nurses.

  20. Annual report 2005 General Direction of the Energy and raw materials

    International Nuclear Information System (INIS)

    2005-01-01

    This 2005 annual report of the DGEMP (General Direction of the Energy and the raw Materials), takes stock on the energy bill and accounting of the France. The first part presents the electric power, natural gas and raw materials market in France. The second part is devoted to the diversification of the energy resources with a special attention to the renewable energies and the nuclear energy. The third part discusses the energy and raw materials prices and the last part presents the international cooperation in the energy domain. (A.L.B.)

  1. Income- and energy-taxation for redistribution in general equilibrium

    International Nuclear Information System (INIS)

    FitzRoy, F.R.

    1993-01-01

    In a 3-factor General Equilibrium (GE)-model with a continuum of ability, the employed choose optimal labour supply, and equilibrium unemployment is determined by benefits funded by wage- and energy-taxes. Aggregate labour and the net wage may increase or decrease with taxation (and unemployment), and conditions for a reduction in redistributive wage-taxes to be Pareto-improving are derived. A small energy tax always raises the net wage, providing the wage tax is reduced to maintain constant employment and a balanced budget. High ability households prefer higher energy taxes when externalities are uniformly distributed and non-distorting. (author)

  2. Continuous energy Monte Carlo calculations for randomly distributed spherical fuels based on statistical geometry model

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Isao [Osaka Univ., Suita (Japan); Mori, Takamasa; Nakagawa, Masayuki; Itakura, Hirofumi

    1996-03-01

    The method to calculate neutronics parameters of a core composed of randomly distributed spherical fuels has been developed based on a statistical geometry model with a continuous energy Monte Carlo method. This method was implemented in a general purpose Monte Carlo code MCNP, and a new code MCNP-CFP had been developed. This paper describes the model and method how to use it and the validation results. In the Monte Carlo calculation, the location of a spherical fuel is sampled probabilistically along the particle flight path from the spatial probability distribution of spherical fuels, called nearest neighbor distribution (NND). This sampling method was validated through the following two comparisons: (1) Calculations of inventory of coated fuel particles (CFPs) in a fuel compact by both track length estimator and direct evaluation method, and (2) Criticality calculations for ordered packed geometries. This method was also confined by applying to an analysis of the critical assembly experiment at VHTRC. The method established in the present study is quite unique so as to a probabilistic model of the geometry with a great number of spherical fuels distributed randomly. Realizing the speed-up by vector or parallel computations in future, it is expected to be widely used in calculation of a nuclear reactor core, especially HTGR cores. (author).

  3. Time-varying output performances of piezoelectric vibration energy harvesting under nonstationary random vibrations

    Science.gov (United States)

    Yoon, Heonjun; Kim, Miso; Park, Choon-Su; Youn, Byeng D.

    2018-01-01

    Piezoelectric vibration energy harvesting (PVEH) has received much attention as a potential solution that could ultimately realize self-powered wireless sensor networks. Since most ambient vibrations in nature are inherently random and nonstationary, the output performances of PVEH devices also randomly change with time. However, little attention has been paid to investigating the randomly time-varying electroelastic behaviors of PVEH systems both analytically and experimentally. The objective of this study is thus to make a step forward towards a deep understanding of the time-varying performances of PVEH devices under nonstationary random vibrations. Two typical cases of nonstationary random vibration signals are considered: (1) randomly-varying amplitude (amplitude modulation; AM) and (2) randomly-varying amplitude with randomly-varying instantaneous frequency (amplitude and frequency modulation; AM-FM). In both cases, this study pursues well-balanced correlations of analytical predictions and experimental observations to deduce the relationships between the time-varying output performances of the PVEH device and two primary input parameters, such as a central frequency and an external electrical resistance. We introduce three correlation metrics to quantitatively compare analytical prediction and experimental observation, including the normalized root mean square error, the correlation coefficient, and the weighted integrated factor. Analytical predictions are in an excellent agreement with experimental observations both mechanically and electrically. This study provides insightful guidelines for designing PVEH devices to reliably generate electric power under nonstationary random vibrations.

  4. Paul Scherrer Institute Scientific Report 1999. Volume V: General Energy

    Energy Technology Data Exchange (ETDEWEB)

    Daum, Christina; Leuenberger, Jakob [eds.

    2000-07-01

    Strengthening of international collaborations represented a strategic goal of the General Energy Research Department for 1999. For the Fifth Framework Program of the European Union, we participated in consortia and in the successful preparation of several proposals. National networks with partners from academia and Industry have been formed in two topical areas of central interest in the context of sustainability, i.e. 'Ecoefficient energy use and material cycles' and 'Sustainable transportation' on the other hand. Research at PSI comprises all aspects of human energy use, with the ultimate goal of promoting development towards a sustainable energy supply system. In the General Energy Research Department, technologies are being advanced for the utilization of renewable energy sources, low-loss energy storage, efficient conversion, and low emission energy use. Experimental and model-based assessment of these emissions forms the basis of a comprehensive assessment of economic, ecological and environmental consequences, for both present and future energy supply systems. The research program of the department is centered around 1) development, use, and characterisation of catalysts for energy technologies in many different fields, like e.g. the partial oxidation of methanol for hydrogen production, the processing of methane by catalytic combustion and reforming; 2) use of concentrated solar radiation to induce chemical conversions, thereby producing energy carriers; 3) development of efficient, less polluting combustion engines and burners by advancing the detailed understanding of reaction mechanisms and combustion pathways; 4) research and development of low temperature polymer electrolyte fuel cells, novel batteries and capacitors, with applications envisaged for electric vehicles, photovoltaics and on-site load leveling; 5) experimental and model based research concerning transportation and chemistry of atmospheric trace gases related to anthropogenic energy

  5. Paul Scherrer Institute Scientific Report 1999. Volume V: General Energy

    International Nuclear Information System (INIS)

    Daum, Christina; Leuenberger, Jakob

    2000-01-01

    Strengthening of international collaborations represented a strategic goal of the General Energy Research Department for 1999. For the Fifth Framework Program of the European Union, we participated in consortia and in the successful preparation of several proposals. National networks with partners from academia and Industry have been formed in two topical areas of central interest in the context of sustainability, i.e. 'Ecoefficient energy use and material cycles' and 'Sustainable transportation' on the other hand. Research at PSI comprises all aspects of human energy use, with the ultimate goal of promoting development towards a sustainable energy supply system. In the General Energy Research Department, technologies are being advanced for the utilization of renewable energy sources, low-loss energy storage, efficient conversion, and low emission energy use. Experimental and model-based assessment of these emissions forms the basis of a comprehensive assessment of economic, ecological and environmental consequences, for both present and future energy supply systems. The research program of the department is centered around 1) development, use, and characterisation of catalysts for energy technologies in many different fields, like e.g. the partial oxidation of methanol for hydrogen production, the processing of methane by catalytic combustion and reforming; 2) use of concentrated solar radiation to induce chemical conversions, thereby producing energy carriers; 3) development of efficient, less polluting combustion engines and burners by advancing the detailed understanding of reaction mechanisms and combustion pathways; 4) research and development of low temperature polymer electrolyte fuel cells, novel batteries and capacitors, with applications envisaged for electric vehicles, photovoltaics and on-site load leveling; 5) experimental and model based research concerning transportation and chemistry of atmospheric trace gases related to anthropogenic energy

  6. Paul Scherrer Institute Scientific Report 1999. Volume V: General Energy

    Energy Technology Data Exchange (ETDEWEB)

    Daum, Christina; Leuenberger, Jakob [eds.

    2000-07-01

    Strengthening of international collaborations represented a strategic goal of the General Energy Research Department for 1999. For the Fifth Framework Program of the European Union, we participated in consortia and in the successful preparation of several proposals. National networks with partners from academia and Industry have been formed in two topical areas of central interest in the context of sustainability, i.e. 'Ecoefficient energy use and material cycles' and 'Sustainable transportation' on the other hand. Research at PSI comprises all aspects of human energy use, with the ultimate goal of promoting development towards a sustainable energy supply system. In the General Energy Research Department, technologies are being advanced for the utilization of renewable energy sources, low-loss energy storage, efficient conversion, and low emission energy use. Experimental and model-based assessment of these emissions forms the basis of a comprehensive assessment of economic, ecological and environmental consequences, for both present and future energy supply systems. The research program of the department is centered around 1) development, use, and characterisation of catalysts for energy technologies in many different fields, like e.g. the partial oxidation of methanol for hydrogen production, the processing of methane by catalytic combustion and reforming; 2) use of concentrated solar radiation to induce chemical conversions, thereby producing energy carriers; 3) development of efficient, less polluting combustion engines and burners by advancing the detailed understanding of reaction mechanisms and combustion pathways; 4) research and development of low temperature polymer electrolyte fuel cells, novel batteries and capacitors, with applications envisaged for electric vehicles, photovoltaics and on-site load leveling; 5) experimental and model based research concerning transportation and chemistry of atmospheric trace gases related to

  7. Random matrix theory of the energy-level statistics of disordered systems at the Anderson transition

    Energy Technology Data Exchange (ETDEWEB)

    Canali, C M

    1995-09-01

    We consider a family of random matrix ensembles (RME) invariant under similarity transformations and described by the probability density P(H) exp[-TrV(H)]. Dyson`s mean field theory (MFT) of the corresponding plasma model of eigenvalues is generalized to the case of weak confining potential, V(is an element of) {approx} A/2 ln{sup 2}(is an element of). The eigenvalue statistics derived from MFT are shown to deviate substantially from the classical Wigner-Dyson statistics when A < 1. By performing systematic Monte Carlo simulations on the plasma model, we compute all the relevant statistical properties of the RME with weak confinement. For A{sub c} approx. 0.4 the distribution function of the level spacings (LSDF) coincides in a large energy window with the energy LSDF of the three dimensional Anderson model at the metal-insulator transition. For the same A = A{sub c}, the RME eigenvalue-number variance is linear and its slope is equal to 0.32 {+-} 0.02, which is consistent with the value found for the Anderson model at the critical point. (author). 51 refs, 10 figs.

  8. Rebound effect of improved energy efficiency for different energy types: A general equilibrium analysis for China

    International Nuclear Information System (INIS)

    Lu, Yingying; Liu, Yu; Zhou, Meifang

    2017-01-01

    This paper explores the rebound effect of different energy types in China based on a static computable general equilibrium model. A one-off 5% energy efficiency improvement is imposed on five different types of energy, respectively, in all the 135 production sectors in China. The rebound effect is measured both on the production level and on the economy-wide level for each type of energy. The results show that improving energy efficiency of using electricity has the largest positive impact on GDP among the five energy types. Inter-fuel substitutability does not affect the macroeconomic results significantly, but long-run impact is usually greater than the short-run impact. For the exports-oriented sectors, those that are capital-intensive get big negative shock in the short run while those that are labour-intensive get hurt in the long run. There is no “backfire” effect; however, improving efficiency of using electricity can cause negative rebound, which implies that improving the energy efficiency of using electricity might be a good policy choice under China's current energy structure. In general, macro-level rebound is larger than production-level rebound. Primary energy goods show larger rebound effect than secondary energy goods. In addition, the paper points out that the policy makers in China should look at the rebound effect in the long term rather than in the short term. The energy efficiency policy would be a good and effective policy choice for energy conservation in China when it still has small inter-fuel substitution. - Highlights: • Primary energy goods show larger rebound effect than secondary energy goods. • Improving efficiency of using electricity can cause negative rebound. • The energy efficiency policy would be an effective policy choice for China. • Policy-makers should consider the rebound effect in the longer term.

  9. Paul Scherrer Institute Scientific Report 1998. Volume V: General Energy

    Energy Technology Data Exchange (ETDEWEB)

    Daum, C; Leuenberger, J [eds.

    1999-08-01

    In view of its mission to contribute towards the development of a globally more sustainable energy supply system, the General Energy Department is focusing on four topical areas: advancing technologies for the use of renewable energies; investigating options for chemical and electrochemical energy storage on various time scales; developing highly efficient converters for the low emission use of fossil and renewable fuels, including both combustion devices and fuel cells; analyzing the consequences of energy use, and advancing scenarios for the development of the energy supply system. Progress in 1998 in these topical areas is described in this report. A list of scientific publications in 1998 is also provided. (author) figs., tabs., refs.

  10. Interscalene plexus block versus general anaesthesia for shoulder surgery: a randomized controlled study.

    Science.gov (United States)

    Lehmann, Lars J; Loosen, Gregor; Weiss, Christel; Schmittner, Marc D

    2015-02-01

    This randomized clinical trial evaluates interscalene brachial plexus block (ISB), general anaesthesia (GA) and the combination of both anaesthetic methods (GA + ISB) in patients undergoing shoulder arthroscopy. From July 2011 until May 2012, 120 patients (male/female), aged 20-80 years, were allocated randomly to receive ISB (10 ml mepivacaine 1 % and 20 ml ropivacaine 0.375%), GA (propofol, sunfentanil, desflurane) or ISB + GA. The primary outcome variable was opioid consumption at the day of surgery. Anaesthesia times were analysed as secondary endpoints. After surgery, 27 of 40 patients with a single ISB bypassed the recovery room (p surgery [GA: n = 25 vs. GA + ISB: n = 10 vs. ISB: n = 10, p = 0.0037]. ISB is superior to GA and GA + ISB in patients undergoing shoulder arthroscopy in terms of faster recovery and analgesics consumption.

  11. A polymer, random walk model for the size-distribution of large DNA fragments after high linear energy transfer radiation

    Science.gov (United States)

    Ponomarev, A. L.; Brenner, D.; Hlatky, L. R.; Sachs, R. K.

    2000-01-01

    DNA double-strand breaks (DSBs) produced by densely ionizing radiation are not located randomly in the genome: recent data indicate DSB clustering along chromosomes. Stochastic DSB clustering at large scales, from > 100 Mbp down to simulations and analytic equations. A random-walk, coarse-grained polymer model for chromatin is combined with a simple track structure model in Monte Carlo software called DNAbreak and is applied to data on alpha-particle irradiation of V-79 cells. The chromatin model neglects molecular details but systematically incorporates an increase in average spatial separation between two DNA loci as the number of base-pairs between the loci increases. Fragment-size distributions obtained using DNAbreak match data on large fragments about as well as distributions previously obtained with a less mechanistic approach. Dose-response relations, linear at small doses of high linear energy transfer (LET) radiation, are obtained. They are found to be non-linear when the dose becomes so large that there is a significant probability of overlapping or close juxtaposition, along one chromosome, for different DSB clusters from different tracks. The non-linearity is more evident for large fragments than for small. The DNAbreak results furnish an example of the RLC (randomly located clusters) analytic formalism, which generalizes the broken-stick fragment-size distribution of the random-breakage model that is often applied to low-LET data.

  12. Freezing and extreme-value statistics in a random energy model with logarithmically correlated potential

    International Nuclear Information System (INIS)

    Fyodorov, Yan V; Bouchaud, Jean-Philippe

    2008-01-01

    We investigate some implications of the freezing scenario proposed by Carpentier and Le Doussal (CLD) for a random energy model (REM) with logarithmically correlated random potential. We introduce a particular (circular) variant of the model, and show that the integer moments of the partition function in the high-temperature phase are given by the well-known Dyson Coulomb gas integrals. The CLD freezing scenario allows one to use those moments for extracting the distribution of the free energy in both high- and low-temperature phases. In particular, it yields the full distribution of the minimal value in the potential sequence. This provides an explicit new class of extreme-value statistics for strongly correlated variables, manifestly different from the standard Gumbel class. (fast track communication)

  13. Freezing and extreme-value statistics in a random energy model with logarithmically correlated potential

    Energy Technology Data Exchange (ETDEWEB)

    Fyodorov, Yan V [School of Mathematical Sciences, University of Nottingham, Nottingham NG72RD (United Kingdom); Bouchaud, Jean-Philippe [Science and Finance, Capital Fund Management 6-8 Bd Haussmann, 75009 Paris (France)

    2008-09-19

    We investigate some implications of the freezing scenario proposed by Carpentier and Le Doussal (CLD) for a random energy model (REM) with logarithmically correlated random potential. We introduce a particular (circular) variant of the model, and show that the integer moments of the partition function in the high-temperature phase are given by the well-known Dyson Coulomb gas integrals. The CLD freezing scenario allows one to use those moments for extracting the distribution of the free energy in both high- and low-temperature phases. In particular, it yields the full distribution of the minimal value in the potential sequence. This provides an explicit new class of extreme-value statistics for strongly correlated variables, manifestly different from the standard Gumbel class. (fast track communication)

  14. General Navier–Stokes-like momentum and mass-energy equations

    Energy Technology Data Exchange (ETDEWEB)

    Monreal, Jorge, E-mail: jmonreal@mail.usf.edu

    2015-03-15

    A new system of general Navier–Stokes-like equations is proposed to model electromagnetic flow utilizing analogues of hydrodynamic conservation equations. Such equations are intended to provide a different perspective and, potentially, a better understanding of electromagnetic mass, energy and momentum behaviour. Under such a new framework additional insights into electromagnetism could be gained. To that end, we propose a system of momentum and mass-energy conservation equations coupled through both momentum density and velocity vectors.

  15. Growth rate for the expected value of a generalized random Fibonacci sequence

    International Nuclear Information System (INIS)

    Janvresse, Elise; De la Rue, Thierry; Rittaud, BenoIt

    2009-01-01

    We study the behaviour of generalized random Fibonacci sequences defined by the relation g n = |λg n-1 ± g n-2 |, where the ± sign is given by tossing an unbalanced coin, giving probability p to the + sign. We prove that the expected value of g n grows exponentially fast for any 0 (2 - λ)/4 when λ is of the form 2cos(π/k) for some fixed integer k ≥ 3. In both cases, we give an algebraic expression for the growth rate

  16. Energy Savings Forecast of Solid-State Lighting in General Illumination Applications

    Energy Technology Data Exchange (ETDEWEB)

    Penning, Julie [Navigant Consulting Inc., Washington, DC (United States); Stober, Kelsey [Navigant Consulting Inc., Washington, DC (United States); Taylor, Victor [Navigant Consulting Inc., Washington, DC (United States); Yamada, Mary [Navigant Consulting Inc., Washington, DC (United States)

    2016-09-01

    The DOE report, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications, is a biannual report which models the adoption of LEDs in the U.S. general-lighting market, along with associated energy savings, based on the full potential DOE has determined to be technically feasible over time. This version of the report uses an updated 2016 U.S. lighting-market model that is more finely calibrated and granular than previous models, and extends the forecast period to 2035 from the 2030 limit that was used in previous editions.

  17. Seismic random noise attenuation using shearlet and total generalized variation

    International Nuclear Information System (INIS)

    Kong, Dehui; Peng, Zhenming

    2015-01-01

    Seismic denoising from a corrupted observation is an important part of seismic data processing which improves the signal-to-noise ratio (SNR) and resolution. In this paper, we present an effective denoising method to attenuate seismic random noise. The method takes advantage of shearlet and total generalized variation (TGV) regularization. Different regularity levels of TGV improve the quality of the final result by suppressing Gibbs artifacts caused by the shearlet. The problem is formulated as mixed constraints in a convex optimization. A Bregman algorithm is proposed to solve the proposed model. Extensive experiments based on one synthetic datum and two post-stack field data are done to compare performance. The results demonstrate that the proposed method provides superior effectiveness and preserve the structure better. (paper)

  18. Seismic random noise attenuation using shearlet and total generalized variation

    Science.gov (United States)

    Kong, Dehui; Peng, Zhenming

    2015-12-01

    Seismic denoising from a corrupted observation is an important part of seismic data processing which improves the signal-to-noise ratio (SNR) and resolution. In this paper, we present an effective denoising method to attenuate seismic random noise. The method takes advantage of shearlet and total generalized variation (TGV) regularization. Different regularity levels of TGV improve the quality of the final result by suppressing Gibbs artifacts caused by the shearlet. The problem is formulated as mixed constraints in a convex optimization. A Bregman algorithm is proposed to solve the proposed model. Extensive experiments based on one synthetic datum and two post-stack field data are done to compare performance. The results demonstrate that the proposed method provides superior effectiveness and preserve the structure better.

  19. Energy spectra of odd nuclei in the generalized model

    Directory of Open Access Journals (Sweden)

    I. O. Korzh

    2015-04-01

    Full Text Available Based on the generalized nuclear model, energy spectra of the odd nuclei of such elements as 25Mg, 41K, and 65Cu are determined, and the structure of wave functions of these nuclei in the excited and normal states is studied. High quality in determining the energy spectra is possible due to the accurate calculations of all elements of the energy matrix. It is demonstrated that the structure of the wave functions so determined provides the possibility to more accurately select the nuclear model and the method for calculating the nucleon cross-sections of the inelastic scattering of nucleons by odd nuclei.

  20. Proceedings of the 1. General Congress of Nuclear Energy. v. 2

    International Nuclear Information System (INIS)

    1986-01-01

    The proceedings of I General Congress of Nuclear Energy are presented. All fields related to nuclear energy are enclosed. In the second part the following fields are shown: reactor instrumentation and control, nuclear medicine, radioisotopes uses, fuel cycle and radiation protection. (M.C.K.) [pt

  1. General Retarded Contact Self-energies in and beyond the Non-equilibrium Green's Functions Method

    International Nuclear Information System (INIS)

    Kubis, Tillmann; He, Yu; Andrawis, Robert; Klimeck, Gerhard

    2016-01-01

    Retarded contact self-energies in the framework of nonequilibrium Green's functions allow to model the impact of lead structures on the device without explicitly including the leads in the actual device calculation. Most of the contact self-energy algorithms are limited to homogeneous or periodic, semi-infinite lead structures. In this work, the complex absorbing potential method is extended to solve retarded contact self-energies for arbitrary lead structures, including irregular and randomly disordered leads. This method is verified for regular leads against common approaches and on physically equivalent, but numerically different irregular leads. Transmission results on randomly alloyed In 0.5 Ga 0.5 As structures show the importance of disorder in the leads. The concept of retarded contact self-energies is expanded to model passivation of atomically resolved surfaces without explicitly increasing the device's Hamiltonian. (paper)

  2. Reliability Study of Energy Harvesting from Sea Waves by Piezoelectric Patches Consideraing Random JONSWAP Wave Theory

    Directory of Open Access Journals (Sweden)

    M. Ettefagh

    2018-03-01

    Full Text Available One of the new methods for powering low-power electronic devices employed in the sea, is using of mechanical energies of sea waves. In this method, piezoelectric material is employed to convert the mechanical energy of sea waves into electrical energy. The advantage of this method is based on not implementing the battery charging system. Although, many studies have been done about energy harvesting from sea waves, energy harvesting with considering random JONWSAP wave theory is not fully studied up to now. The random JONSWAP wave model is a more realistic approximation of sea waves in comparison of Airy wave model. Therefore, in this paper a vertical beam with the piezoelectric patches, which is fixed to the seabed, is considered as energy harvester system. The energy harvesting system is simulated by MATLAB software, and then the vibration response of the beam and consequently the generated power is obtained considering the JONWSAP wave theory. In addition, the reliability of the system and the effect of piezoelectric patches uncertainties on the generated power are studied by statistical method. Furthermore, the failure possibility of harvester based on violation criteria is investigated.  

  3. Performance Evaluation of User Selection Protocols in Random Networks with Energy Harvesting and Hardware Impairments

    Directory of Open Access Journals (Sweden)

    Tan Nhat Nguyen

    2016-01-01

    Full Text Available In this paper, we evaluate performances of various user selection protocols under impact of hardware impairments. In the considered protocols, a Base Station (BS selects one of available Users (US to serve, while the remaining USs harvest the energy from the Radio Frequency (RF transmitted by the BS. We assume that all of the US randomly appear around the BS. In the Random Selection Protocol (RAN, the BS randomly selects a US to transmit the data. In the second proposed protocol, named Minimum Distance Protocol (MIND, the US that is nearest to the BS will be chosen. In the Optimal Selection Protocol (OPT, the US providing the highest channel gain between itself and the BS will be served. For performance evaluation, we derive exact and asymptotic closed-form expressions of average Outage Probability (OP over Rayleigh fading channels. We also consider average harvested energy per a US. Finally, Monte-Carlo simulations are then performed to verify the theoretical results.

  4. The randomly renewed general item and the randomly inspected item with exponential life distribution

    International Nuclear Information System (INIS)

    Schneeweiss, W.G.

    1979-01-01

    For a randomly renewed item the probability distributions of the time to failure and of the duration of down time and the expectations of these random variables are determined. Moreover, it is shown that the same theory applies to randomly checked items with exponential probability distribution of life such as electronic items. The case of periodic renewals is treated as an example. (orig.) [de

  5. Annual report 2001. General direction of energy and raw materials; Rapport annuel 2001. Direction generale de l'energie et des matieres premieres

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This report summarizes the 2001 activity of the French general direction of energy and raw materials (DGEMP) of the ministry of finances and industry: 1 - security of energy supplies: a recurrent problem; 2001, a transition year for nuclear energy worldwide; petroleum refining in font of the 2005 dead-line; the OPEC and the upset of the oil market; the pluri-annual planning of power production investments; renewable energies: a reconfirmed priority; 2 - the opening of markets: the opening of French electricity and gas markets; the international development of Electricite de France (EdF) and of Gaz de France (GdF); electricity and gas industries: first branch agreements; 3 - the present-day topics: 2001, the year of objective contracts; AREVA, the future to be prepared; the new IRSN; the agreements on climate and the energy policy; the mastery of domestic energy consumptions; the safety of hydroelectric dams; Technip-Coflexip: the birth of a para-petroleum industry giant; the cleansing of the mining activity in French Guyana; the future of workmen of Lorraine basin coal mines; 4 - 2001 at a glance: highlights; main legislative and regulatory texts; 5 - DGEMP: November 2001 reorganization and new organization chart; energy and raw materials publications; www.industrie.gouv.fr/energie. (J.S.)

  6. Generalized trends in the formation energies of perovskite oxides.

    Science.gov (United States)

    Zeng, ZhenHua; Calle-Vallejo, Federico; Mogensen, Mogens B; Rossmeisl, Jan

    2013-05-28

    Generalized trends in the formation energies of several families of perovskite oxides (ABO3) and plausible explanations to their existence are provided in this study through a combination of DFT calculations, solid-state physics analyses and simple physical/chemical descriptors. The studied elements at the A site of perovskites comprise rare-earth, alkaline-earth and alkaline metals, whereas 3d and 5d metals were studied at the B site. We also include ReO3-type compounds, which have the same crystal structure of cubic ABO3 perovskites except without A-site elements. From the observations we extract the following four conclusions for the perovskites studied in the present paper: for a given cation at the B site, (I) perovskites with cations of identical oxidation state at the A site possess close formation energies; and (II) perovskites with cations of different oxidation states at the A site usually have quite different but ordered formation energies. On the other hand, for a given A-site cation, (III) the formation energies of perovskites vary linearly with respect to the atomic number of the elements at the B site within the same period of the periodic table, and the slopes depend systematically on the oxidation state of the A-site cation; and (IV) the trends in formation energies of perovskites with elements from different periods at the B site depend on the oxidation state of A-site cations. Since the energetics of perovskites is shown to be the superposition of the individual contributions of their constituent oxides, the trends can be rationalized in terms of A-O and B-O interactions in the ionic crystal. These findings reveal the existence of general systematic trends in the formation energies of perovskites and provide further insight into the role of ion-ion interactions in the properties of ternary compounds.

  7. Some general scaling rules in high energy heavy ion reactions

    International Nuclear Information System (INIS)

    Andersson, B.; Idh, J.; Otterlund, I.; Stenlund, E.

    1988-09-01

    We show, using the Fritiof model scenario that the wide variation in the number of participating nucleons tend to drown other dynamical variations in the measurables of high energy ion collisions. We propose a set if general scaling laws for inclusive distributions in which it is the mean multiplicity and the mean transverse energy from each source which are the measurables in the interactions. (authors)

  8. A more general interacting model of holographic dark energy

    International Nuclear Information System (INIS)

    Yu Fei; Zhang Jingfei; Lu Jianbo; Wang Wei; Gui Yuanxing

    2010-01-01

    So far, there have been no theories or observational data that deny the presence of interaction between dark energy and dark matter. We extend naturally the holographic dark energy (HDE) model, proposed by Granda and Oliveros, in which the dark energy density includes not only the square of the Hubble scale, but also the time derivative of the Hubble scale to the case with interaction and the analytic forms for the cosmic parameters are obtained under the specific boundary conditions. The various behaviors concerning the cosmic expansion depend on the introduced numerical parameters which are also constrained. The more general interacting model inherits the features of the previous ones of HDE, keeping the consistency of the theory.

  9. Randomized controlled trial of the effect of medical audit on AIDS prevention in general practice

    DEFF Research Database (Denmark)

    Sandbæk, Annelli

    1999-01-01

    OBJECTIVE: We aimed to evaluate the effect of a medical audit on AIDS prevention in general practice. METHODS: We conducted a prospective randomized controlled study performed as 'lagged intervention'. At the time of comparison, the intervention group had completed 6 months of audit including...... of such consultations initiated by the GPs. CONCLUSIONS: Medical audit had no observed effect on AIDS prevention in general practice. Udgivelsesdato: 1999-Oct...... a primary activity registration, feedback of own data and a meeting with colleagues and experts, and had received brief summaries of the meetings and reminders about the project (a full 'audit circle'). The participants were from general practices in Copenhagen and the Counties of Funen and Vejle, Denmark...

  10. Beyond the Random Phase Approximation for the Electron Correlation Energy: The Importance of Single Excitations

    OpenAIRE

    Ren, Xinguo; Rinke, Patrick; Tkatchenko, Alexandre; Scheffler, Matthias

    2010-01-01

    The random-phase approximation (RPA) for the electron correlation energy, combined with the exact-exchange (EX) energy, represents the state-of-the-art exchange-correlation functional within density-functional theory. However, the standard RPA practice-evaluating both the EX and the RPA correlation energies using Kohn-Sham (KS) orbitals from local or semilocal exchange-correlation functionals-leads to a systematic underbinding of molecules and solids. Here we demonstrate that this behavior ca...

  11. Design of Energy Aware Adder Circuits Considering Random Intra-Die Process Variations

    Directory of Open Access Journals (Sweden)

    Marco Lanuzza

    2011-04-01

    Full Text Available Energy consumption is one of the main barriers to current high-performance designs. Moreover, the increased variability experienced in advanced process technologies implies further timing yield concerns and therefore intensifies this obstacle. Thus, proper techniques to achieve robust designs are a critical requirement for integrated circuit success. In this paper, the influence of intra-die random process variations is analyzed considering the particular case of the design of energy aware adder circuits. Five well known adder circuits were designed exploiting an industrial 45 nm static complementary metal-oxide semiconductor (CMOS standard cell library. The designed adders were comparatively evaluated under different energy constraints. As a main result, the performed analysis demonstrates that, for a given energy budget, simpler circuits (which are conventionally identified as low-energy slow architectures operating at higher power supply voltages can achieve a timing yield significantly better than more complex faster adders when used in low-power design with supply voltages lower than nominal.

  12. Exenatide has a Pronounced Effect on Energy Intake but not Energy Expenditure in Non-Diabetic Subjects with Obesity: A Randomized, Double-blind, Placebo-Controlled Trial.

    Science.gov (United States)

    Basolo, Alessio; Burkholder, Joshua; Osgood, Kristy; Graham, Alexis; Bundrick, Sarah; Frankl, Joseph; Piaggi, Paolo; Thearle, Marie S; Krakoff, Jonathan

    2018-03-26

    Exenatide is a glucagon-like peptide 1 (GLP-1) mimetic which induces weight loss predominantly, it is presumed, via decreased food intake. However, circulating GLP-1 is also a determinant of energy expenditure. We sought to quantify the effect of exenatide on energy expenditure (EE) and energy intake. In this single-center, randomized double-blind placebo controlled trial, we randomized 80 healthy, non-diabetic volunteers with obesity (46 women, age: 34.4±8.7 y, body fat by DXA: 44.2±7.8%) to subcutaneous exenatide 10 μg twice daily or placebo. Subjects were admitted to our clinical research unit for measurement of 24h-EE in a whole-room indirect calorimeter and ad libitum food intake using an automated vending machine paradigm before and after randomization. Furthermore, energy expenditure and ad libitum food intake measures were repeated at 24-week after readmission for 7-day inpatient stay. Body weight was obtained weekly for up to 5 weeks and was recorded at each monthly follow up visit up to 24 weeks. Prior to randomization, participants over ate during the 3-day vending machine period in the whole study group (114.6±35.2 %), expressed as percentage of weight maintaining energy needs (WMEN) with those who were eventually randomized to exenatide overeating more (121.6±37.7 %) compared to placebo group (107.6±31.5 %). In the exenatide group, ad libitum absolute energy intake decreased by 1016.1±724.5 kcal/day (95% CI: -1250.9 to -781.2) versus a 245.1±710.5 kcal/day (95% CI: -475.4 to -14.7) decrease in placebo (Δ= -624.8 Kcal/day, p energy intake between exenatide group and placebo group and the treatment group decreased 24-h EE more compared to placebo (β = -160.6 Kcal/day, 95% CI: -307.6 to 13.6, p = 0.03) compared to their pre-randomization measurement. However, this reduction was not present after adjustment for changes in FM and FFM (β = -87 kcal/day, p = 0.14). No difference was observed in body weight (Δ = -1.72 kg, 95% CI: -5.77 to 2.30, p

  13. Nonlinear generalization of special relativity at very high energies

    International Nuclear Information System (INIS)

    Winterberg, F.

    1984-01-01

    It is shown, that the introduction of a fundamental length constant into the operator representation of the quantum mechanical commutation relations, as suggested by Bagge, leads to a nonlinear generalization of the Lorentz transformations. The theory requires the introduction of a substratum (ether) and which can be identified as the zero point vacuum energy. At very high energies a non-Lorentz invariant behaviour for the cross sections between elementary particles is predicted. Using the Einstein clock synchronisation definition, the velocity of light is also constant and equal to c in the new theory, but the zero point vacuum energy becomes finite, as are all other quantities which are divergent in Lorentz invariant quantum field theories. In the limiting case where the length constant is set equal to zero, the zero point vacuum energy diverges and special relativity is recovered. (orig.) [de

  14. Higher dimensional generalizations of the SYK model

    Energy Technology Data Exchange (ETDEWEB)

    Berkooz, Micha [Department of Particle Physics and Astrophysics, Weizmann Institute of Science,Rehovot 7610001 (Israel); Narayan, Prithvi [International Centre for Theoretical Sciences, Hesaraghatta,Bengaluru North, 560 089 (India); Rozali, Moshe [Department of Physics and Astronomy, University of British Columbia,Vancouver, BC V6T 1Z1 (Canada); Simón, Joan [School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh,King’s Buildings, Edinburgh EH9 3FD (United Kingdom)

    2017-01-31

    We discuss a 1+1 dimensional generalization of the Sachdev-Ye-Kitaev model. The model contains N Majorana fermions at each lattice site with a nearest-neighbour hopping term. The SYK random interaction is restricted to low momentum fermions of definite chirality within each lattice site. This gives rise to an ordinary 1+1 field theory above some energy scale and a low energy SYK-like behavior. We exhibit a class of low-pass filters which give rise to a rich variety of hyperscaling behaviour in the IR. We also discuss another set of generalizations which describes probing an SYK system with an external fermion, together with the new scaling behavior they exhibit in the IR.

  15. Dissipative generalized Chaplygin gas as phantom dark energy

    International Nuclear Information System (INIS)

    Cruz, Norman; Lepe, Samuel; Pena, Francisco

    2007-01-01

    The generalized Chaplygin gas, characterized by the equation of state p=-A/ρ α , has been considered as a model for dark energy due to its dark-energy-like evolution at late times. When dissipative processes are taken into account, within the framework of the standard Eckart theory of relativistic irreversible thermodynamics, cosmological analytical solutions are found. Using the truncated causal version of the Israel-Stewart formalism, a suitable model was constructed which crosses the w=-1 barrier. The future-singularities encountered in both approaches are of a new type, and not included in the classification presented by Nojiri and Odintsov [S. Nojiri, S.D. Odintsov, Phys. Rev. D 72 (2005) 023003

  16. Dissipative generalized Chaplygin gas as phantom dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Norman [Departamento de Fisica, Facultad de Ciencia, Universidad de Santiago, Casilla 307, Santiago (Chile)]. E-mail: ncruz@lauca.usach.cl; Lepe, Samuel [Instituto de Fisica, Facultad de Ciencias Basicas y Matematicas, Pontificia Universidad Catolica de Valparaiso, Avenida Brasil 2950, Valparaiso (Chile)]. E-mail: slepe@ucv.cl; Pena, Francisco [Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Universidad de la Frontera, Avda. Francisco Salazar 01145, Casilla 54-D, Temuco (Chile)]. E-mail: fcampos@ufro.cl

    2007-03-15

    The generalized Chaplygin gas, characterized by the equation of state p=-A/{rho}{sup {alpha}}, has been considered as a model for dark energy due to its dark-energy-like evolution at late times. When dissipative processes are taken into account, within the framework of the standard Eckart theory of relativistic irreversible thermodynamics, cosmological analytical solutions are found. Using the truncated causal version of the Israel-Stewart formalism, a suitable model was constructed which crosses the w=-1 barrier. The future-singularities encountered in both approaches are of a new type, and not included in the classification presented by Nojiri and Odintsov [S. Nojiri, S.D. Odintsov, Phys. Rev. D 72 (2005) 023003].

  17. A general symplectic method for the response analysis of infinitely periodic structures subjected to random excitations

    Directory of Open Access Journals (Sweden)

    You-Wei Zhang

    Full Text Available A general symplectic method for the random response analysis of infinitely periodic structures subjected to stationary/non-stationary random excitations is developed using symplectic mathematics in conjunction with variable separation and the pseudo-excitation method (PEM. Starting from the equation of motion for a single loaded substructure, symplectic analysis is firstly used to eliminate the dependent degrees of the freedom through condensation. A Fourier expansion of the condensed equation of motion is then applied to separate the variables of time and wave number, thus enabling the necessary recurrence scheme to be developed. The random response is finally determined by implementing PEM. The proposed method is justified by comparison with results available in the literature and is then applied to a more complicated time-dependent coupled system.

  18. Random matrices and random difference equations

    International Nuclear Information System (INIS)

    Uppuluri, V.R.R.

    1975-01-01

    Mathematical models leading to products of random matrices and random difference equations are discussed. A one-compartment model with random behavior is introduced, and it is shown how the average concentration in the discrete time model converges to the exponential function. This is of relevance to understanding how radioactivity gets trapped in bone structure in blood--bone systems. The ideas are then generalized to two-compartment models and mammillary systems, where products of random matrices appear in a natural way. The appearance of products of random matrices in applications in demography and control theory is considered. Then random sequences motivated from the following problems are studied: constant pulsing and random decay models, random pulsing and constant decay models, and random pulsing and random decay models

  19. Parametric Statistics of Individual Energy Levels in Random Hamiltonians

    OpenAIRE

    Smolyarenko, I. E.; Simons, B. D.

    2002-01-01

    We establish a general framework to explore parametric statistics of individual energy levels in disordered and chaotic quantum systems of unitary symmetry. The method is applied to the calculation of the universal intra-level parametric velocity correlation function and the distribution of level shifts under the influence of an arbitrary external perturbation.

  20. Brief cognitive behavioral therapy compared to general practitioners care for depression in primary care: a randomized trial

    Science.gov (United States)

    2010-01-01

    Background Depressive disorders are highly prevalent in primary care (PC) and are associated with considerable functional impairment and increased health care use. Research has shown that many patients prefer psychological treatments to pharmacotherapy, however, it remains unclear which treatment is most optimal for depressive patients in primary care. Methods/Design A randomized, multi-centre trial involving two intervention groups: one receiving brief cognitive behavioral therapy and the other receiving general practitioner care. General practitioners from 109 General Practices in Nijmegen and Amsterdam (The Netherlands) will be asked to include patients aged between 18-70 years presenting with depressive symptomatology, who do not receive an active treatment for their depressive complaints. Patients will be telephonically assessed with the Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-I) to ascertain study eligibility. Eligible patients will be randomized to one of two treatment conditions: either 8 sessions of cognitive behavioral therapy by a first line psychologist or general practitioner's care according to The Dutch College of General Practitioners Practice Guideline (NHG- standaard). Baseline and follow-up assessments are scheduled at 0, 6, 12 and 52 weeks following the start of the intervention. Primary outcome will be measured with the Hamilton Depression Rating Scale-17 (HDRS-17) and the Patient Health Questionnaire-9 (PHQ-9). Outcomes will be analyzed on an intention to treat basis. Trial Registration ISRCTN65811640 PMID:20939917

  1. Effects of Low Anisotropy on Generalized Ghost Dark Energy in Galileon Gravity

    Science.gov (United States)

    Hossienkhani, H.; Fayaz, V.; Jafari, A.; Yousefi, H.

    2018-04-01

    The definition of the Galileon gravity form is extended to the Brans-Dicke theory. Given, the framework of the Galileon theory, the generalized ghost dark energy model in an anisotropic universe is investigated. We study the cosmological implications of this model. In particular, we obtain the equation of state and the deceleration parameters and a differential equation governing the evolution of this dark energy in Bianchi type I model. We also probe observational constraints by using the latest observational data on the generalized ghost dark energy models as the unification of dark matter and dark energy. In order to do so, we focus on observational determinations of the Hubble expansion rate (namely, the expansion history) H(z). As a result, we show the influence of the anisotropy (although low) on the evolution of the universe in the statefinder diagrams for Galileon gravity.

  2. Randomization tests

    CERN Document Server

    Edgington, Eugene

    2007-01-01

    Statistical Tests That Do Not Require Random Sampling Randomization Tests Numerical Examples Randomization Tests and Nonrandom Samples The Prevalence of Nonrandom Samples in Experiments The Irrelevance of Random Samples for the Typical Experiment Generalizing from Nonrandom Samples Intelligibility Respect for the Validity of Randomization Tests Versatility Practicality Precursors of Randomization Tests Other Applications of Permutation Tests Questions and Exercises Notes References Randomized Experiments Unique Benefits of Experiments Experimentation without Mani

  3. Modified truncated randomized singular value decomposition (MTRSVD) algorithms for large scale discrete ill-posed problems with general-form regularization

    Science.gov (United States)

    Jia, Zhongxiao; Yang, Yanfei

    2018-05-01

    In this paper, we propose new randomization based algorithms for large scale linear discrete ill-posed problems with general-form regularization: subject to , where L is a regularization matrix. Our algorithms are inspired by the modified truncated singular value decomposition (MTSVD) method, which suits only for small to medium scale problems, and randomized SVD (RSVD) algorithms that generate good low rank approximations to A. We use rank-k truncated randomized SVD (TRSVD) approximations to A by truncating the rank- RSVD approximations to A, where q is an oversampling parameter. The resulting algorithms are called modified TRSVD (MTRSVD) methods. At every step, we use the LSQR algorithm to solve the resulting inner least squares problem, which is proved to become better conditioned as k increases so that LSQR converges faster. We present sharp bounds for the approximation accuracy of the RSVDs and TRSVDs for severely, moderately and mildly ill-posed problems, and substantially improve a known basic bound for TRSVD approximations. We prove how to choose the stopping tolerance for LSQR in order to guarantee that the computed and exact best regularized solutions have the same accuracy. Numerical experiments illustrate that the best regularized solutions by MTRSVD are as accurate as the ones by the truncated generalized singular value decomposition (TGSVD) algorithm, and at least as accurate as those by some existing truncated randomized generalized singular value decomposition (TRGSVD) algorithms. This work was supported in part by the National Science Foundation of China (Nos. 11771249 and 11371219).

  4. Annual report 2001. General direction of energy and raw materials; Rapport annuel 2001. Direction generale de l'energie et des matieres premieres

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This report summarizes the 2001 activity of the French general direction of energy and raw materials (DGEMP) of the ministry of finances and industry: 1 - security of energy supplies: a recurrent problem; 2001, a transition year for nuclear energy worldwide; petroleum refining in font of the 2005 dead-line; the OPEC and the upset of the oil market; the pluri-annual planning of power production investments; renewable energies: a reconfirmed priority; 2 - the opening of markets: the opening of French electricity and gas markets; the international development of Electricite de France (EdF) and of Gaz de France (GdF); electricity and gas industries: first branch agreements; 3 - the present-day topics: 2001, the year of objective contracts; AREVA, the future to be prepared; the new IRSN; the agreements on climate and the energy policy; the mastery of domestic energy consumptions; the safety of hydroelectric dams; Technip-Coflexip: the birth of a para-petroleum industry giant; the cleansing of the mining activity in French Guyana; the future of workmen of Lorraine basin coal mines; 4 - 2001 at a glance: highlights; main legislative and regulatory texts; 5 - DGEMP: November 2001 reorganization and new organization chart; energy and raw materials publications; www.industrie.gouv.fr/energie. (J.S.)

  5. Randomness at the root of things 1: Random walks

    Science.gov (United States)

    Ogborn, Jon; Collins, Simon; Brown, Mick

    2003-09-01

    This is the first of a pair of articles about randomness in physics. In this article, we use some variations on the idea of a `random walk' to consider first the path of a particle in Brownian motion, and then the random variation to be expected in radioactive decay. The arguments are set in the context of the general importance of randomness both in physics and in everyday life. We think that the ideas could usefully form part of students' A-level work on random decay and quantum phenomena, as well as being good for their general education. In the second article we offer a novel and simple approach to Poisson sequences.

  6. Prospective randomized assessment of single versus double-gloving for general surgical procedures.

    Science.gov (United States)

    Na'aya, H U; Madziga, A G; Eni, U E

    2009-01-01

    There is increased tendency towards double-gloving by general surgeons in our practice, due probably to awareness of the risk of contamination with blood or other body fluids during surgery. The aim of the study was to compare the relative frequency of glove puncture in single-glove versus double glove sets in general surgical procedures, and to determine if duration of surgery affects perforation rate. Surgeons at random do single or double gloves at their discretion, for general surgical procedures. All the gloves used by the surgeons were assessed immediately after surgery for perforation. A total of 1120 gloves were tested, of which 880 were double-glove sets and 240 single-glove sets. There was no significant difference in the overall perforation rate between single and double glove sets (18.3% versus 20%). However, only 2.3% had perforations in both the outer and inner gloves in the double glove group. Therefore, there was significantly greater risk for blood-skin exposure in the single glove sets (p < 0.01). The perforation rate was also significantly greater during procedures lasting an hour or more compared to those lasting less than an hour (p < 0.01). Double-gloving reduces the risk of blood-skin contamination in all general surgical procedures, and especially so in procedures lasting an hour or more.

  7. A randomized, controlled clinical trial: the effect of mindfulness-based cognitive therapy on generalized anxiety disorder among Chinese community patients: protocol for a randomized trial

    Directory of Open Access Journals (Sweden)

    Wong Samuel YS

    2011-11-01

    Full Text Available Abstract Background Research suggests that an eight-week Mindfulness-Based Cognitive Therapy (MBCT program may be effective in the treatment of generalized anxiety disorders. Our objective is to compare the clinical effectiveness of the MBCT program with a psycho-education programme and usual care in reducing anxiety symptoms in people suffering from generalized anxiety disorder. Methods A three armed randomized, controlled clinical trial including 9-month post-treatment follow-up is proposed. Participants screened positive using the Structure Clinical Interview for DSM-IV (SCID for general anxiety disorder will be recruited from community-based clinics. 228 participants will be randomly allocated to the MBCT program plus usual care, psycho-education program plus usual care or the usual care group. Validated Chinese version of instruments measuring anxiety and worry symptoms, depression, quality of life and health service utilization will be used. Our primary end point is the change of anxiety and worry score (Beck Anxiety Inventory and Penn State Worry Scale from baseline to the end of intervention. For primary analyses, treatment outcomes will be assessed by ANCOVA, with change in anxiety score as the baseline variable, while the baseline anxiety score and other baseline characteristics that significantly differ between groups will serve as covariates. Conclusions This is a first randomized controlled trial that compare the effectiveness of MBCT with an active control, findings will advance current knowledge in the management of GAD and the way that group intervention can be delivered and inform future research. Unique Trail Number (assigned by Centre for Clinical Trails, Clinical Trials registry, The Chinese University of Hong Kong: CUHK_CCT00267

  8. Reporting quality of randomized controlled trial abstracts: survey of leading general dental journals.

    Science.gov (United States)

    Hua, Fang; Deng, Lijia; Kau, Chung How; Jiang, Han; He, Hong; Walsh, Tanya

    2015-09-01

    The authors conducted a study to assess the reporting quality of randomized controlled trial (RCT) abstracts published in leading general dental journals, investigate any improvement after the release of the Consolidated Standards of Reporting Trials (CONSORT) for Abstracts guidelines, and identify factors associated with better reporting quality. The authors searched PubMed for RCTs published in 10 leading general dental journals during the periods from 2005 to 2007 (pre-CONSORT period) and 2010 to 2012 (post-CONSORT period). The authors evaluated and scored the reporting quality of included abstracts by using the original 16-item CONSORT for Abstracts checklist. The authors used risk ratios and the t test to compare the adequate reporting rate of each item and the overall quality in the 2 periods. The authors used univariate and multivariate regressions to identify predictors of better reporting quality. The authors included and evaluated 276 RCT abstracts. Investigators reported significantly more checklist items during the post-CONSORT period (mean [standard deviation {SD}], 4.53 [1.69]) than during the pre-CONSORT period (mean [SD], 3.87 [1.10]; mean difference, -0.66 [95% confidence interval, -0.99 to -0.33]; P 80%). In contrast, the authors saw sufficient reporting of randomization, recruitment, outcome in the results section, and funding in none of the pre-CONSORT abstracts and less than 2% of the post-CONSORT abstracts. On the basis of the multivariate analysis, a higher impact factor (P general dental journals has improved significantly, but there is still room for improvement. Joint efforts by authors, reviewers, journal editors, and other stakeholders to improve the reporting of dental RCT abstracts are needed. Copyright © 2015 American Dental Association. Published by Elsevier Inc. All rights reserved.

  9. Number-conserving random phase approximation with analytically integrated matrix elements

    International Nuclear Information System (INIS)

    Kyotoku, M.; Schmid, K.W.; Gruemmer, F.; Faessler, A.

    1990-01-01

    In the present paper a number conserving random phase approximation is derived as a special case of the recently developed random phase approximation in general symmetry projected quasiparticle mean fields. All the occurring integrals induced by the number projection are performed analytically after writing the various overlap and energy matrices in the random phase approximation equation as polynomials in the gauge angle. In the limit of a large number of particles the well-known pairing vibration matrix elements are recovered. We also present a new analytically number projected variational equation for the number conserving pairing problem

  10. Holographic Dark Energy with Generalized Chaplygin Gas in Higher Dimensions

    Science.gov (United States)

    Ghose, S.; Saha, A.; Paul, B. C.

    2014-11-01

    We investigate holographic dark energy (HDE) correspondence of interacting Generalized Chaplygin Gas (GCG) in the framework of compact Kaluza-Klein (KK) cosmology. The evolution of the modified HDE with corresponding equation of state is obtained here. Considering the present value of the density parameter a stable configuration is found which accommodates Dark Energy (DE). We note a connection between DE and Phantom fields. It reveals that the DE might have evolved from a Phantom state in the past.

  11. Palatini wormholes and energy conditions from the prism of general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Bejarano, Cecilia [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Centro Mixto Universidad de Valencia-CSIC. Universidad de Valencia, Departamento de Fisica Teorica y IFIC, Valencia (Spain); Lobo, Francisco S.N.; Rubiera-Garcia, Diego [Faculdade de Ciencias da Universidade de Lisboa, Instituto de Astrofisica e Ciencias do Espaco, Lisbon (Portugal); Olmo, Gonzalo J. [Centro Mixto Universidad de Valencia-CSIC. Universidad de Valencia, Departamento de Fisica Teorica y IFIC, Valencia (Spain); Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, Paraiba (Brazil)

    2017-11-15

    Wormholes are hypothetical shortcuts in spacetime that in general relativity unavoidably violate all of the pointwise energy conditions. In this paper, we consider several wormhole spacetimes that, as opposed to the standard designer procedure frequently employed in the literature, arise directly from gravitational actions including additional terms resulting from contractions of the Ricci tensor with the metric, and which are formulated assuming independence between metric and connection (Palatini approach). We reinterpret such wormhole solutions under the prism of General Relativity and study the matter sources that thread them. We discuss the size of violation of the energy conditions in different cases and how this is related to the same spacetimes when viewed from the modified gravity side. (orig.)

  12. Palatini wormholes and energy conditions from the prism of general relativity.

    Science.gov (United States)

    Bejarano, Cecilia; Lobo, Francisco S N; Olmo, Gonzalo J; Rubiera-Garcia, Diego

    2017-01-01

    Wormholes are hypothetical shortcuts in spacetime that in general relativity unavoidably violate all of the pointwise energy conditions. In this paper, we consider several wormhole spacetimes that, as opposed to the standard designer procedure frequently employed in the literature, arise directly from gravitational actions including additional terms resulting from contractions of the Ricci tensor with the metric, and which are formulated assuming independence between metric and connection (Palatini approach). We reinterpret such wormhole solutions under the prism of General Relativity and study the matter sources that thread them. We discuss the size of violation of the energy conditions in different cases and how this is related to the same spacetimes when viewed from the modified gravity side.

  13. Proceedings of the 1. General Congress of Nuclear Energy. v. 1

    International Nuclear Information System (INIS)

    1986-01-01

    The proceedings of 1 General Congress of Nuclear Energy are presented. All fields related to nuclear energy are enclosed. In the first part the following fields are shown: safety analysis, science and technology of materials, nuclear materials, nuclear laws, education and trainning, reactor physics, nuclear physics, quality assurance, mathematical models, reactor operation, safeguards, advanced technologies, thermohydraulic and reactor licensing. (M.C.K.) [pt

  14. Dynamic Average Consensus and Consensusability of General Linear Multiagent Systems with Random Packet Dropout

    Directory of Open Access Journals (Sweden)

    Wen-Min Zhou

    2013-01-01

    Full Text Available This paper is concerned with the consensus problem of general linear discrete-time multiagent systems (MASs with random packet dropout that happens during information exchange between agents. The packet dropout phenomenon is characterized as being a Bernoulli random process. A distributed consensus protocol with weighted graph is proposed to address the packet dropout phenomenon. Through introducing a new disagreement vector, a new framework is established to solve the consensus problem. Based on the control theory, the perturbation argument, and the matrix theory, the necessary and sufficient condition for MASs to reach mean-square consensus is derived in terms of stability of an array of low-dimensional matrices. Moreover, mean-square consensusable conditions with regard to network topology and agent dynamic structure are also provided. Finally, the effectiveness of the theoretical results is demonstrated through an illustrative example.

  15. Analysis of Generalized Ghost Dark Energy in LQC and Galileon Gravity

    International Nuclear Information System (INIS)

    Biswas, Mahasweta; Debnath, Ujjal

    2016-01-01

    A so-called ghost dark energy was recently proposed to explain the present acceleration of the universe. The energy density of ghost dark energy, which originates from Veneziano ghost of Quantum Chromodynamics (QCD), in a time dependent background, can be written in the form, ρ_D = (αH + βH"2) where H is the Hubble parameter. We investigate the generalized ghost dark energy (GGDE) model in the setup of loop quantum Cosmology (LQC) and Galileon Cosmology. We study the cosmological implications of the models. We also obtain the equation of state and the deceleration parameters and differential equations governing the evolution of this dark energy model for LQC and Galileon Cosmology. (paper)

  16. No evidence that mRNAs have lower folding free energies than random sequences with the same dinucleotide distribution

    DEFF Research Database (Denmark)

    Workman, Christopher; Krogh, Anders Stærmose

    1999-01-01

    This work investigates whether mRNA has a lower estimated folding free energy than random sequences. The free energy estimates are calculated by the mfold program for prediction of RNA secondary structures. For a set of 46 mRNAs it is shown that the predicted free energy is not significantly diff...

  17. Collective excitations in the Penson-Kolb model: A generalized random-phase-approximation study

    International Nuclear Information System (INIS)

    Roy, G.K.; Bhattacharyya, B.

    1997-01-01

    The evolution of the superconducting ground state of the half-filled Penson-Kolb model is examined as a function of the coupling constant using a mean-field approach and the generalized random phase approximation (RPA) in two and three dimensions. On-site singlet pairs hop to compete against single-particle motion in this model, giving the coupling constant a strong momentum dependence. There is a pronounced bandwidth enhancement effect that converges smoothly to a finite value in the strong-coupling (Bose) regime. The low-lying collective excitations evaluated in generalized RPA show a linear dispersion and a gradual crossover from the weak-coupling (BCS) limit to the Bose regime; the mode velocity increases monotonically in sharp contrast to the attractive Hubbard model. Analytical results are derived in the asymptotic limits. copyright 1997 The American Physical Society

  18. A General Mathematical Framework for Calculating Systems-Scale Efficiency of Energy Extraction and Conversion: Energy Return on Investment (EROI) and Other Energy Return Ratios

    OpenAIRE

    Adam R. Brandt; Michael Dale

    2011-01-01

    The efficiencies of energy extraction and conversion systems are typically expressed using energy return ratios (ERRs) such as the net energy ratio (NER) or energy return on investment (EROI). A lack of a general mathematical framework prevents inter-comparison of NER/EROI estimates between authors: methods used are not standardized, nor is there a framework for succinctly reporting results in a consistent fashion. In this paper we derive normalized mathematical forms of four ERRs for energy ...

  19. An energy-stable generalized- α method for the Swift–Hohenberg equation

    KAUST Repository

    Sarmiento, Adel

    2017-11-16

    We propose a second-order accurate energy-stable time-integration method that controls the evolution of numerical instabilities introducing numerical dissipation in the highest-resolved frequencies. Our algorithm further extends the generalized-α method and provides control over dissipation via the spectral radius. We derive the first and second laws of thermodynamics for the Swift–Hohenberg equation and provide a detailed proof of the unconditional energy stability of our algorithm. Finally, we present numerical results to verify the energy stability and its second-order accuracy in time.

  20. An energy-stable generalized- α method for the Swift–Hohenberg equation

    KAUST Repository

    Sarmiento, Adel; Espath, L.F.R.; Vignal, P.; Dalcin, Lisandro; Parsani, Matteo; Calo, V.M.

    2017-01-01

    We propose a second-order accurate energy-stable time-integration method that controls the evolution of numerical instabilities introducing numerical dissipation in the highest-resolved frequencies. Our algorithm further extends the generalized-α method and provides control over dissipation via the spectral radius. We derive the first and second laws of thermodynamics for the Swift–Hohenberg equation and provide a detailed proof of the unconditional energy stability of our algorithm. Finally, we present numerical results to verify the energy stability and its second-order accuracy in time.

  1. Generalized Encoding CRDSA: Maximizing Throughput in Enhanced Random Access Schemes for Satellite

    Directory of Open Access Journals (Sweden)

    Manlio Bacco

    2014-12-01

    Full Text Available This work starts from the analysis of the literature about the Random Access protocols with contention resolution, such as Contention Resolution Diversity Slotted Aloha (CRDSA, and introduces a possible enhancement, named Generalized Encoding Contention Resolution Diversity Slotted Aloha (GE-CRDSA. The GE-CRDSA aims at improving the aggregated throughput when the system load is less than 50%, playing on the opportunity of transmitting an optimal combination of information and parity packets frame by frame. This paper shows the improvement in terms of throughput, by performing traffic estimation and adaptive choice of information and parity rates, when a satellite network undergoes a variable traffic load profile.

  2. Protein folding simulations by generalized-ensemble algorithms.

    Science.gov (United States)

    Yoda, Takao; Sugita, Yuji; Okamoto, Yuko

    2014-01-01

    In the protein folding problem, conventional simulations in physical statistical mechanical ensembles, such as the canonical ensemble with fixed temperature, face a great difficulty. This is because there exist a huge number of local-minimum-energy states in the system and the conventional simulations tend to get trapped in these states, giving wrong results. Generalized-ensemble algorithms are based on artificial unphysical ensembles and overcome the above difficulty by performing random walks in potential energy, volume, and other physical quantities or their corresponding conjugate parameters such as temperature, pressure, etc. The advantage of generalized-ensemble simulations lies in the fact that they not only avoid getting trapped in states of energy local minima but also allows the calculations of physical quantities as functions of temperature or other parameters from a single simulation run. In this article we review the generalized-ensemble algorithms. Four examples, multicanonical algorithm, replica-exchange method, replica-exchange multicanonical algorithm, and multicanonical replica-exchange method, are described in detail. Examples of their applications to the protein folding problem are presented.

  3. Growth and renewable energy in Europe: A random effect model with evidence for neutrality hypothesis

    International Nuclear Information System (INIS)

    Menegaki, Angeliki N.

    2011-01-01

    This is an empirical study on the causal relationship between economic growth and renewable energy for 27 European countries in a multivariate panel framework over the period 1997-2007 using a random effect model and including final energy consumption, greenhouse gas emissions and employment as additional independent variables in the model. Empirical results do not confirm causality between renewable energy consumption and GDP, although panel causality tests unfold short-run relationships between renewable energy and greenhouse gas emissions and employment. The estimated cointegration factor refrains from unity, indicating only a weak, if any, relationship between economic growth and renewable energy consumption in Europe, suggesting evidence of the neutrality hypothesis, which can partly be explained by the uneven and insufficient exploitation of renewable energy sources across Europe.

  4. Solar thermal energy utilization. German studies on technology and application. Vol. 1. General investigations on energy availability

    Energy Technology Data Exchange (ETDEWEB)

    Becker, M. (Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V. (DFVLR), Koeln (Germany, F.R.). Hauptabteilung Energietechnik) (ed.)

    1987-01-01

    The first volume of a three-volume series titled 'Solar thermal energy utilization' comprises three papers dealing with general investigations into energy availability. Their titles are: Yearly yield of solar CRS-process heat and temperature of reaction; - literature survey in the field of primary and secondary concentrating solar energy systems concerning the choice and manufacturing process of suitable materials; - considerations and proposals for future research and development of high temperature solar processes. Each of the three chapters was abstracted for entry into the database. (HWJ).

  5. Topics in random walks in random environment

    International Nuclear Information System (INIS)

    Sznitman, A.-S.

    2004-01-01

    Over the last twenty-five years random motions in random media have been intensively investigated and some new general methods and paradigms have by now emerged. Random walks in random environment constitute one of the canonical models of the field. However in dimension bigger than one they are still poorly understood and many of the basic issues remain to this day unresolved. The present series of lectures attempt to give an account of the progresses which have been made over the last few years, especially in the study of multi-dimensional random walks in random environment with ballistic behavior. (author)

  6. Accurate Quasiparticle Spectra from the T-Matrix Self-Energy and the Particle-Particle Random Phase Approximation.

    Science.gov (United States)

    Zhang, Du; Su, Neil Qiang; Yang, Weitao

    2017-07-20

    The GW self-energy, especially G 0 W 0 based on the particle-hole random phase approximation (phRPA), is widely used to study quasiparticle (QP) energies. Motivated by the desirable features of the particle-particle (pp) RPA compared to the conventional phRPA, we explore the pp counterpart of GW, that is, the T-matrix self-energy, formulated with the eigenvectors and eigenvalues of the ppRPA matrix. We demonstrate the accuracy of the T-matrix method for molecular QP energies, highlighting the importance of the pp channel for calculating QP spectra.

  7. The Canopy Graph and Level Statistics for Random Operators on Trees

    International Nuclear Information System (INIS)

    Aizenman, Michael; Warzel, Simone

    2006-01-01

    For operators with homogeneous disorder, it is generally expected that there is a relation between the spectral characteristics of a random operator in the infinite setup and the distribution of the energy gaps in its finite volume versions, in corresponding energy ranges. Whereas pure point spectrum of the infinite operator goes along with Poisson level statistics, it is expected that purely absolutely continuous spectrum would be associated with gap distributions resembling the corresponding random matrix ensemble. We prove that on regular rooted trees, which exhibit both spectral types, the eigenstate point process has always Poissonian limit. However, we also find that this does not contradict the picture described above if that is carefully interpreted, as the relevant limit of finite trees is not the infinite homogenous tree graph but rather a single-ended 'canopy graph.' For this tree graph, the random Schroedinger operator is proven here to have only pure-point spectrum at any strength of the disorder. For more general single-ended trees it is shown that the spectrum is always singular - pure point possibly with singular continuous component which is proven to occur in some cases

  8. Generalized planar fault energies and twinning in Cu-Al alloys

    Science.gov (United States)

    Kibey, S.; Liu, J. B.; Johnson, D. D.; Sehitoglu, H.

    2006-11-01

    We report ab initio density functional theory calculations of generalized planar fault energies of fcc Cu -xAl (x =0, 5.0, and 8.3at.%) alloys. We investigate the effects of substitutional solute Al on the unstable intrinsic γus and twin γut stacking fault energies (SFEs). Our results reveal an increased tendency of Cu-Al to deform preferentially by twinning with increasing Al content, consistent with experiment. We attribute this mechanical behavior to appreciable lowering of the twinning barrier γut, along with the stable intrinsic and twin SFEs.

  9. Cross section recondensation method via generalized energy condensation theory

    International Nuclear Information System (INIS)

    Douglass, Steven; Rahnema, Farzad

    2011-01-01

    Highlights: → A new method is presented which corrects for core environment error from specular boundaries at the lattice cell level. → Solution obtained with generalized energy condensation provides improved approximation to the core level fine-group flux. → Iterative recondensation of the cross sections and unfolding of the flux provides on-the-fly updating of the core cross sections. → Precomputation of energy integrals and fine-group cross sections allows for easy implementation and efficient solution. → Method has been implemented in 1D and shown to correct the environment error, particularly in strongly heterogeneous cores. - Abstract: The standard multigroup method used in whole-core reactor analysis relies on energy condensed (coarse-group) cross sections generated from single lattice cell calculations, typically with specular reflective boundary conditions. Because these boundary conditions are an approximation and not representative of the core environment for that lattice, an error is introduced in the core solution (both eigenvalue and flux). As current and next generation reactors trend toward increasing assembly and core heterogeneity, this error becomes more significant. The method presented here corrects for this error by generating updated coarse-group cross sections on-the-fly within whole-core reactor calculations without resorting to additional cell calculations. In this paper, the fine-group core flux is unfolded by making use of the recently published Generalized Condensation Theory and the cross sections are recondensed at the whole-core level. By iteratively performing this recondensation, an improved core solution is found in which the core-environment has been fully taken into account. This recondensation method is both easy to implement and computationally very efficient because it requires precomputation and storage of only the energy integrals and fine-group cross sections. In this work, the theoretical basis and development

  10. Paul Scherrer Institut Scientific Report 2004. Volume V: General Energy

    Energy Technology Data Exchange (ETDEWEB)

    Wokaun, Alexander; Daum, Christina (eds.)

    2005-03-01

    Research at PSI comprises all aspects of human energy use, with the ultimate goal of promoting development towards a sustainable energy supply system. In the General Energy Research Department, technologies are being advanced for the utilization of renewable energy sources, low-loss energy storage, efficient conversion, and low emission energy use. Experimental and model-based assessment of these emissions forms the basis of a comprehensive assessment of economic, ecological and environmental consequences, for both present and future energy supply systems. The research program of the department is centered around 1) development, use, and characterisation of catalysts for energy technologies in many different fields, like e.g. the partial oxidation of methanol for hydrogen production, the processing of methane by catalytic combustion and reforming; 2) use of concentrated solar radiation to induce chemical conversions, thereby producing energy carriers; 3) development of efficient, less polluting combustion engines and burners by advancing the detailed understanding of reaction mechanisms and combustion pathways; 4) research and development of low temperature polymer electrolyte fuel cells, novel batteries and capacitors, with applications envisaged for electric vehicles, photovoltaics and on-site load leveling; 5) experimental and model based research concerning transportation and chemistry of atmospheric trace gases related to anthropogenic energy transformations. Progress in 2000 in these topical areas is described in this report. A list of scientific publications in 2002 is also provided.

  11. Paul Scherrer Institut Scientific Report 2001. Volume V: General Energy

    Energy Technology Data Exchange (ETDEWEB)

    Wokaun, Alexander; Daum, Christina [eds.

    2002-03-01

    Research at PSI comprises all aspects of human energy use, with the ultimate goal of promoting development towards a sustainable energy supply system. In the General Energy Research Department, technologies are being advanced for the utilization of renewable energy sources, low-loss energy storage, efficient conversion, and low emission energy use. Experimental and model-based assessment of these emissions forms the basis of a comprehensive assessment of economic, ecological and environmental consequences, for both present and future energy supply systems. The research program of the department is centered around 1) development, use, and characterisation of catalysts for energy technologies in many different fields, like e.g. the partial oxidation of methanol for hydrogen production, the processing of methane by catalytic combustion and reforming; 2) use of concentrated solar radiation to induce chemical conversions, thereby producing energy carriers; 3) development of efficient, less polluting combustion engines and burners by advancing the detailed understanding of reaction mechanisms and combustion pathways; 4) research and development of low temperature polymer electrolyte fuel cells, novel batteries and capacitors, with applications envisaged for electric vehicles, photovoltaics and on-site load leveling; 5) experimental and model based research concerning transportation and chemistry of atmospheric trace gases related to anthropogenic energy transformations. Progress in 2000 in these topical areas is described in this report. A list of scientific publications in 2001 is also provided.

  12. Paul Scherrer Institute Scientific Report 2000. Volume V: General Energy

    Energy Technology Data Exchange (ETDEWEB)

    Daum, Christina; Leuenberger, Jakob [eds.

    2001-07-01

    Research at PSI comprises all aspects of human energy use, with the ultimate goal of promoting development towards a sustainable energy supply system. In the General Energy Research Department, technologies are being advanced for the utilization of renewable energy sources, low-loss energy storage, efficient conversion, and low emission energy use. Experimental and model-based assessment of these emissions forms the basis of a comprehensive assessment of economic, ecological and environmental consequences, for both present and future energy supply systems. The research program of the department is centered around 1) development, use, and characterisation of catalysts for energy technologies in many different fields, like e.g. the partial oxidation of methanol for hydrogen production, the processing of methane by catalytic combustion and reforming; 2) use of concentrated solar radiation to induce chemical conversions, thereby producing energy carriers; 3) development of efficient, less polluting combustion engines and burners by advancing the detailed understanding of reaction mechanisms and combustion pathways; 4) research and development of low temperature polymer electrolyte fuel cells, novel batteries and capacitors, with applications envisaged for electric vehicles, photovoltaics and on-site load leveling; 5) experimental and model based research concerning transportation and chemistry of atmospheric trace gases related to anthropogenic energy transformations. Progress in 2000 in these topical areas is described in this report. A list of scientific publications in 2000 is also provided.

  13. Paul Scherrer Institute Scientific Report 2000. Volume V: General Energy

    Energy Technology Data Exchange (ETDEWEB)

    Daum, Christina; Leuenberger, Jakob [eds.

    2001-03-01

    Research at PSI comprises all aspects of human energy use, with the ultimate goal of promoting development towards a sustainable energy supply system. In the General Energy Research Department, technologies are being advanced for the utilization of renewable energy sources, low-loss energy storage, efficient conversion, and low emission energy use. Experimental and model-based assessment of these emissions forms the basis of a comprehensive assessment of economic, ecological and environmental consequences, for both present and future energy supply systems. The research program of the department is centered around (1) development, use, and characterisation of catalysts for energy technologies in many different fields, like e.g. the partial oxidation of methanol for hydrogen production, the processing of methane by catalytic combustion and reforming; (2) use of concentrated solar radiation to induce chemical conversions, thereby producing energy carriers; (3) development of efficient, less polluting combustion engines and burners by advancing the detailed understanding of reaction mechanisms and combustion pathways; (4) research and development of low temperature polymer electrolyte fuel cells, novel batteries and capacitors, with applications envisaged for electric vehicles, photovoltaics and on-site load leveling; (5) experimental and model based research concerning transportation and chemistry of atmospheric trace gases related to anthropogenic energy transformations. Progress in 2000 in these topical areas is described in this report. A list of scientific publications in 2000 is also provided.

  14. Paul Scherrer Institut Scientific Report 2002. Volume V: General Energy

    Energy Technology Data Exchange (ETDEWEB)

    Wokaun, Alexander; Daum, Christina [eds.

    2003-03-01

    Research at PSI comprises all aspects of human energy use, with the ultimate goal of promoting development towards a sustainable energy supply system. In the General Energy Research Department, technologies are being advanced for the utilization of renewable energy sources, low-loss energy storage, efficient conversion, and low emission energy use. Experimental and model-based assessment of these emissions forms the basis of a comprehensive assessment of economic, ecological and environmental consequences, for both present and future energy supply systems. The research program of the department is centered around 1) development, use, and characterisation of catalysts for energy technologies in many different fields, like e.g. the partial oxidation of methanol for hydrogen production, the processing of methane by catalytic combustion and reforming; 2) use of concentrated solar radiation to induce chemical conversions, thereby producing energy carriers; 3) development of efficient, less polluting combustion engines and burners by advancing the detailed understanding of reaction mechanisms and combustion pathways; 4) research and development of low temperature polymer electrolyte fuel cells, novel batteries and capacitors, with applications envisaged for electric vehicles, photovoltaics and on-site load leveling; 5) experimental and model based research concerning transportation and chemistry of atmospheric trace gases related to anthropogenic energy transformations. Progress in 2000 in these topical areas is described in this report. A list of scientific publications in 2002 is also provided.

  15. Paul Scherrer Institute Scientific Report 2000. Volume V: General Energy

    International Nuclear Information System (INIS)

    Daum, Christina; Leuenberger, Jakob

    2001-01-01

    Research at PSI comprises all aspects of human energy use, with the ultimate goal of promoting development towards a sustainable energy supply system. In the General Energy Research Department, technologies are being advanced for the utilization of renewable energy sources, low-loss energy storage, efficient conversion, and low emission energy use. Experimental and model-based assessment of these emissions forms the basis of a comprehensive assessment of economic, ecological and environmental consequences, for both present and future energy supply systems. The research program of the department is centered around 1) development, use, and characterisation of catalysts for energy technologies in many different fields, like e.g. the partial oxidation of methanol for hydrogen production, the processing of methane by catalytic combustion and reforming; 2) use of concentrated solar radiation to induce chemical conversions, thereby producing energy carriers; 3) development of efficient, less polluting combustion engines and burners by advancing the detailed understanding of reaction mechanisms and combustion pathways; 4) research and development of low temperature polymer electrolyte fuel cells, novel batteries and capacitors, with applications envisaged for electric vehicles, photovoltaics and on-site load leveling; 5) experimental and model based research concerning transportation and chemistry of atmospheric trace gases related to anthropogenic energy transformations. Progress in 2000 in these topical areas is described in this report. A list of scientific publications in 2000 is also provided

  16. Paul Scherrer Institut Scientific Report 2003. Volume V: General Energy

    International Nuclear Information System (INIS)

    Wokaun, A.; Daum, C.

    2004-03-01

    Research at PSI comprises all aspects of human energy use, with the ultimate goal of promoting development towards a sustainable energy supply system. In the General Energy Research Department, technologies are being advanced for the utilization of renewable energy sources, low-loss energy storage, efficient conversion, and low emission energy use. Experimental and model-based assessment of these emissions forms the basis of a comprehensive assessment of economic, ecological and environmental consequences, for both present and future energy supply systems. The research program of the department is centered around 1) development, use, and characterisation of catalysts for energy technologies in many different fields, like e.g. the partial oxidation of methanol for hydrogen production, the processing of methane by catalytic combustion and reforming; 2) use of concentrated solar radiation to induce chemical conversions, thereby producing energy carriers; 3) development of efficient, less polluting combustion engines and burners by advancing the detailed understanding of reaction mechanisms and combustion pathways; 4) research and development of low temperature polymer electrolyte fuel cells, novel batteries and capacitors, with applications envisaged for electric vehicles, photovoltaics and on-site load leveling; 5) experimental and model based research concerning transportation and chemistry of atmospheric trace gases related to anthropogenic energy transformations. Progress in 2000 in these topical areas is described in this report. A list of scientific publications in 2002 is also provided

  17. Paul Scherrer Institut Scientific Report 2004. Volume V: General Energy

    International Nuclear Information System (INIS)

    Wokaun, A.; Daum, C.

    2005-01-01

    Research at PSI comprises all aspects of human energy use, with the ultimate goal of promoting development towards a sustainable energy supply system. In the General Energy Research Department, technologies are being advanced for the utilization of renewable energy sources, low-loss energy storage, efficient conversion, and low emission energy use. Experimental and model-based assessment of these emissions forms the basis of a comprehensive assessment of economic, ecological and environmental consequences, for both present and future energy supply systems. The research program of the department is centered around 1) development, use, and characterisation of catalysts for energy technologies in many different fields, like e.g. the partial oxidation of methanol for hydrogen production, the processing of methane by catalytic combustion and reforming; 2) use of concentrated solar radiation to induce chemical conversions, thereby producing energy carriers; 3) development of efficient, less polluting combustion engines and burners by advancing the detailed understanding of reaction mechanisms and combustion pathways; 4) research and development of low temperature polymer electrolyte fuel cells, novel batteries and capacitors, with applications envisaged for electric vehicles, photovoltaics and on-site load leveling; 5) experimental and model based research concerning transportation and chemistry of atmospheric trace gases related to anthropogenic energy transformations. Progress in 2000 in these topical areas is described in this report. A list of scientific publications in 2002 is also provided

  18. Paul Scherrer Institut Scientific Report 2002. Volume V: General Energy

    International Nuclear Information System (INIS)

    Wokaun, A.; Daum, C.

    2003-03-01

    Research at PSI comprises all aspects of human energy use, with the ultimate goal of promoting development towards a sustainable energy supply system. In the General Energy Research Department, technologies are being advanced for the utilization of renewable energy sources, low-loss energy storage, efficient conversion, and low emission energy use. Experimental and model-based assessment of these emissions forms the basis of a comprehensive assessment of economic, ecological and environmental consequences, for both present and future energy supply systems. The research program of the department is centered around 1) development, use, and characterisation of catalysts for energy technologies in many different fields, like e.g. the partial oxidation of methanol for hydrogen production, the processing of methane by catalytic combustion and reforming; 2) use of concentrated solar radiation to induce chemical conversions, thereby producing energy carriers; 3) development of efficient, less polluting combustion engines and burners by advancing the detailed understanding of reaction mechanisms and combustion pathways; 4) research and development of low temperature polymer electrolyte fuel cells, novel batteries and capacitors, with applications envisaged for electric vehicles, photovoltaics and on-site load leveling; 5) experimental and model based research concerning transportation and chemistry of atmospheric trace gases related to anthropogenic energy transformations. Progress in 2000 in these topical areas is described in this report. A list of scientific publications in 2002 is also provided

  19. Paul Scherrer Institut Scientific Report 2003. Volume V: General Energy

    Energy Technology Data Exchange (ETDEWEB)

    Wokaun, Alexander; Daum, Christina (eds.)

    2004-03-01

    Research at PSI comprises all aspects of human energy use, with the ultimate goal of promoting development towards a sustainable energy supply system. In the General Energy Research Department, technologies are being advanced for the utilization of renewable energy sources, low-loss energy storage, efficient conversion, and low emission energy use. Experimental and model-based assessment of these emissions forms the basis of a comprehensive assessment of economic, ecological and environmental consequences, for both present and future energy supply systems. The research program of the department is centered around 1) development, use, and characterisation of catalysts for energy technologies in many different fields, like e.g. the partial oxidation of methanol for hydrogen production, the processing of methane by catalytic combustion and reforming; 2) use of concentrated solar radiation to induce chemical conversions, thereby producing energy carriers; 3) development of efficient, less polluting combustion engines and burners by advancing the detailed understanding of reaction mechanisms and combustion pathways; 4) research and development of low temperature polymer electrolyte fuel cells, novel batteries and capacitors, with applications envisaged for electric vehicles, photovoltaics and on-site load leveling; 5) experimental and model based research concerning transportation and chemistry of atmospheric trace gases related to anthropogenic energy transformations. Progress in 2000 in these topical areas is described in this report. A list of scientific publications in 2002 is also provided.

  20. Activated aging dynamics and effective trap model description in the random energy model

    Science.gov (United States)

    Baity-Jesi, M.; Biroli, G.; Cammarota, C.

    2018-01-01

    We study the out-of-equilibrium aging dynamics of the random energy model (REM) ruled by a single spin-flip Metropolis dynamics. We focus on the dynamical evolution taking place on time-scales diverging with the system size. Our aim is to show to what extent the activated dynamics displayed by the REM can be described in terms of an effective trap model. We identify two time regimes: the first one corresponds to the process of escaping from a basin in the energy landscape and to the subsequent exploration of high energy configurations, whereas the second one corresponds to the evolution from a deep basin to the other. By combining numerical simulations with analytical arguments we show why the trap model description does not hold in the former but becomes exact in the second.

  1. Annual report 2001. General direction of energy and raw materials

    International Nuclear Information System (INIS)

    2001-01-01

    This report summarizes the 2001 activity of the French general direction of energy and raw materials (DGEMP) of the ministry of finances and industry: 1 - security of energy supplies: a recurrent problem; 2001, a transition year for nuclear energy worldwide; petroleum refining in font of the 2005 dead-line; the OPEC and the upset of the oil market; the pluri-annual planning of power production investments; renewable energies: a reconfirmed priority; 2 - the opening of markets: the opening of French electricity and gas markets; the international development of Electricite de France (EdF) and of Gaz de France (GdF); electricity and gas industries: first branch agreements; 3 - the present-day topics: 2001, the year of objective contracts; AREVA, the future to be prepared; the new IRSN; the agreements on climate and the energy policy; the mastery of domestic energy consumptions; the safety of hydroelectric dams; Technip-Coflexip: the birth of a para-petroleum industry giant; the cleansing of the mining activity in French Guyana; the future of workmen of Lorraine basin coal mines; 4 - 2001 at a glance: highlights; main legislative and regulatory texts; 5 - DGEMP: November 2001 reorganization and new organization chart; energy and raw materials publications; www.industrie.gouv.fr/energie. (J.S.)

  2. The Risk of Bias in Randomized Trials in General Dentistry Journals.

    Science.gov (United States)

    Hinton, Stephanie; Beyari, Mohammed M; Madden, Kim; Lamfon, Hanadi A

    2015-01-01

    The use of a randomized controlled trial (RCT) research design is considered the gold standard for conducting evidence-based clinical research. In this present study, we aimed to assess the quality of RCTs in dentistry and create a general foundation for evidence-based dentistry on which to perform subsequent RCTs. We conducted a systematic assessment of bias of RCTs in seven general dentistry journals published between January 2011 and March 2012. We extracted study characteristics in duplicate and assessed each trial's quality using the Cochrane Risk of Bias tool. We compared risk of bias across studies graphically. Among 1,755 studies across seven journals, we identified 67 RCTs. Many included studies were conducted in Europe (39%), with an average sample size of 358 participants. These studies included 52% female participants and the maximum follow-up period was 13 years. Overall, we found a high percentage of unclear risk of bias among included RCTs, indicating poor quality of reporting within the included studies. An overall high proportion of trials with an "unclear risk of bias" suggests the need for better quality of reporting in dentistry. As such, key concepts in dental research and future trials should focus on high-quality reporting.

  3. Intensive versus conventional blood pressure monitoring in a general practice population. The Blood Pressure Reduction in Danish General Practice trial: a randomized controlled parallel group trial

    DEFF Research Database (Denmark)

    Klarskov, Pia; Bang, Lia E; Schultz-Larsen, Peter

    2018-01-01

    To compare the effect of a conventional to an intensive blood pressure monitoring regimen on blood pressure in hypertensive patients in the general practice setting. Randomized controlled parallel group trial with 12-month follow-up. One hundred and ten general practices in all regions of Denmark....... One thousand forty-eight patients with essential hypertension. Conventional blood pressure monitoring ('usual group') continued usual ad hoc blood pressure monitoring by office blood pressure measurements, while intensive blood pressure monitoring ('intensive group') supplemented this with frequent...... a reduction of blood pressure. Clinical Trials NCT00244660....

  4. On the report of the Nuclear Energy Section Meeting, General Survey Committee

    International Nuclear Information System (INIS)

    Okamura, Shigehiro

    1979-01-01

    The demand and supply of petroleum have relaxed temporarily, but in the long run, the difficulty of energy problem does not change. More powerful promotion of general energy policy with conformity and effectiveness is a worldwide problem. In order to cope with such situation, General Energy Survey Committee has examined the concrete measures, and drawn up the interim report in August, 1977. The present report does not change from the interim report in its basic framework, but the background on which this framework is based is clarified, and the contents of the concrete measures are examined in more detail. The Nuclear Energy Sectional Meeting has obtained the conclusions about the basic matters in the development and utilization of nuclear energy and the concrete measures required to be taken urgently. The domestic and foreign situations about the development and utilization of nuclear energy are explained, and the location of nuclear power stations is the most serious bottleneck, therefore the measures to obtain national consensus are the most important problem in every country. The nuclear power generation in Japan is expected to reach 33 million kW by 1985 and 60 million kW by 1990. As the concrete measures, improvement of safety and reliability, establishment of nuclear fuel cycle, development and adoption of new type nuclear reactors, strengthening of the base of nuclear energy industries, promotion of research and development, and contribution to international activities are briefly discussed. (Kako, I.)

  5. Low-energy neutron-induced single-event upsets in static random access memory

    International Nuclear Information System (INIS)

    Guo Xiaoqiang; Guo Hongxia; Wang Guizhen; Ling Dongsheng; Chen Wei; Bai Xiaoyan; Yang Shanchao; Liu Yan

    2009-01-01

    The visual analysis method of data process was provided for neutron-induced single-event upset(SEU) in static random access memory(SRAM). The SEU effects of six CMOS SRAMs with different feature size(from 0.13 μm to 1.50 μm) were studied. The SEU experiments were performed using the neutron radiation environment at Xi'an pulsed reactor. And the dependence of low-energy neutron-induced SEU cross section on SRAM's feature size was given. The results indicate that the decreased critical charge is the dominant factor for the increase of single event effect sensitivity of SRAM devices with decreased feature size. Small-sized SRAM devices are more sensitive than large-sized ones to single event effect induced by low-energy neutrons. (authors)

  6. Proceedings of the 4. General Congress on Nuclear Energy. v. 1

    International Nuclear Information System (INIS)

    1992-01-01

    The first volume of the 4. General Congress on Nuclear Energy presents works about transient and accident analysis; thermohydraulics; radioisotopes uses; fuel cycle; shield; material technology; nuclear installation construction and reactor and nuclear physics. (C.G.C.)

  7. Beyond the random-phase approximation for the electron correlation energy: the importance of single excitations.

    Science.gov (United States)

    Ren, Xinguo; Tkatchenko, Alexandre; Rinke, Patrick; Scheffler, Matthias

    2011-04-15

    The random-phase approximation (RPA) for the electron correlation energy, combined with the exact-exchange (EX) energy, represents the state-of-the-art exchange-correlation functional within density-functional theory. However, the standard RPA practice--evaluating both the EX and the RPA correlation energies using Kohn-Sham (KS) orbitals from local or semilocal exchange-correlation functionals--leads to a systematic underbinding of molecules and solids. Here we demonstrate that this behavior can be corrected by adding a "single excitation" contribution, so far not included in the standard RPA scheme. A similar improvement can also be achieved by replacing the non-self-consistent EX total energy by the corresponding self-consistent Hartree-Fock total energy, while retaining the RPA correlation energy evaluated using KS orbitals. Both schemes achieve chemical accuracy for a standard benchmark set of noncovalent intermolecular interactions.

  8. International Atomic Energy Agency thirty-third general conference

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    A brief account is given of the 33rd session of IAEA General Conference held in Vienna from 25 to 29 September 1989. The Minister for Primary Industry and Energy, Mr John Kerin, led the Australian delegation. His statement to the General Conference highlighted Australia's role as a major uranium exporter, its committment to the Non-Proliferation of Nuclear Weapon Treaty and support for the role which the Agency plays in it. The major Australian policy initiatives in environmental areas were also outlined. Australia continues to make a substantial extra-budgetary contribution to the Regional Cooperation Agreement for Asia and Pacific (RCA), and it has recently expanded its committment by agreeing to support a series of new RCA projects. In this context, the role played by the Australian Nuclear Science and Technology Organization for the provision of technical assistance and cooperation in many areas of the Agency's activities is discussed. ills

  9. Entropy of holographic dark energy and the generalized second law

    International Nuclear Information System (INIS)

    Praseetha, P; Mathew, Titus K

    2014-01-01

    In this paper we have considered holographic dark energy and studied its cosmology and thermodynamics. We have analyzed the generalized second law (GSL) of thermodynamics in a flat universe consisting of interacting dark energy and dark matter. We performed the analysis under both thermal equilibrium and nonequilibrium conditions. If the apparent horizon is taken as the boundary of the universe, we have shown that the rate of change of the total entropy of the universe is proportional to (1+q) 2 , which in fact shows that the GSL is valid at the apparent horizon, irrespective of the sign of the deceleration parameter, q. Hence, for any form of dark energy, the apparent horizon can be considered as a perfect thermodynamic boundary of the universe. We confirmed this conclusion by using the holographic dark energy model. When the event horizon is taken as the boundary, we found that the GSL is only partially satisfied. The analysis under nonequilibrium conditions revealed that the GSL is satisfied if the temperature of the dark energy is greater than the temperature of the dark matter. (paper)

  10. Randomized random walk on a random walk

    International Nuclear Information System (INIS)

    Lee, P.A.

    1983-06-01

    This paper discusses generalizations of the model introduced by Kehr and Kunter of the random walk of a particle on a one-dimensional chain which in turn has been constructed by a random walk procedure. The superimposed random walk is randomised in time according to the occurrences of a stochastic point process. The probability of finding the particle in a particular position at a certain instant is obtained explicitly in the transform domain. It is found that the asymptotic behaviour for large time of the mean-square displacement of the particle depends critically on the assumed structure of the basic random walk, giving a diffusion-like term for an asymmetric walk or a square root law if the walk is symmetric. Many results are obtained in closed form for the Poisson process case, and these agree with those given previously by Kehr and Kunter. (author)

  11. Peer-Led Self-Management of General Medical Conditions for Patients With Serious Mental Illnesses: A Randomized Trial.

    Science.gov (United States)

    Druss, Benjamin G; Singh, Manasvini; von Esenwein, Silke A; Glick, Gretl E; Tapscott, Stephanie; Tucker, Sherry Jenkins; Lally, Cathy A; Sterling, Evelina W

    2018-02-01

    Individuals with serious mental illnesses have high rates of general medical comorbidity and challenges in managing these conditions. A growing workforce of certified peer specialists is available to help these individuals more effectively manage their health and health care. However, few studies have examined the effectiveness of peer-led programs for self-management of general medical conditions for this population. This randomized study enrolled 400 participants with a serious mental illness and one or more chronic general medical conditions across three community mental health clinics. Participants were randomly assigned to the Health and Recovery Peer (HARP) program, a self-management program for general medical conditions led by certified peer specialists (N=198), or to usual care (N=202). Assessments were conducted at baseline and three and six months. At six months, participants in the intervention group demonstrated a significant differential improvement in the primary study outcome, health-related quality of life. Specifically, compared with the usual care group, intervention participants had greater improvement in the Short-Form Health Survey physical component summary (an increase of 2.7 versus 1.4 points, p=.046) and mental component summary (4.6 versus 2.5 points, p=.039). Significantly greater six-month improvements in mental health recovery were seen for the intervention group (p=.02), but no other between-group differences in secondary outcome measures were significant. The HARP program was associated with improved physical health- and mental health-related quality of life among individuals with serious mental illness and comorbid general medical conditions, suggesting the potential benefits of more widespread dissemination of peer-led disease self-management in this population.

  12. Applicability of the condensed-random-walk Monte Carlo method at low energies in high-Z materials

    International Nuclear Information System (INIS)

    Berger, Martin J.

    1998-01-01

    The predictions of several Monte Carlo codes were compared with each other and with experimental results pertaining to the penetration of through gold foils of electrons incident with energies from 128 to 8 keV. The main purpose was to demonstrate that reflection and transmission coefficients, for number and energy, can be estimated reliably with a simple Monte Carlo code based on the condensed-random-walk and continuous-slowing-down approximations

  13. Hyperuniformity and its generalizations

    Science.gov (United States)

    Torquato, Salvatore

    2016-08-01

    Disordered many-particle hyperuniform systems are exotic amorphous states of matter that lie between crystal and liquid: They are like perfect crystals in the way they suppress large-scale density fluctuations and yet are like liquids or glasses in that they are statistically isotropic with no Bragg peaks. These exotic states of matter play a vital role in a number of problems across the physical, mathematical as well as biological sciences and, because they are endowed with novel physical properties, have technological importance. Given the fundamental as well as practical importance of disordered hyperuniform systems elucidated thus far, it is natural to explore the generalizations of the hyperuniformity notion and its consequences. In this paper, we substantially broaden the hyperuniformity concept along four different directions. This includes generalizations to treat fluctuations in the interfacial area (one of the Minkowski functionals) in heterogeneous media and surface-area driven evolving microstructures, random scalar fields, divergence-free random vector fields, and statistically anisotropic many-particle systems and two-phase media. In all cases, the relevant mathematical underpinnings are formulated and illustrative calculations are provided. Interfacial-area fluctuations play a major role in characterizing the microstructure of two-phase systems (e.g., fluid-saturated porous media), physical properties that intimately depend on the geometry of the interface, and evolving two-phase microstructures that depend on interfacial energies (e.g., spinodal decomposition). In the instances of random vector fields and statistically anisotropic structures, we show that the standard definition of hyperuniformity must be generalized such that it accounts for the dependence of the relevant spectral functions on the direction in which the origin in Fourier space is approached (nonanalyticities at the origin). Using this analysis, we place some well-known energy

  14. Generalized index for spatial data sets as a measure of complete spatial randomness

    Science.gov (United States)

    Hackett-Jones, Emily J.; Davies, Kale J.; Binder, Benjamin J.; Landman, Kerry A.

    2012-06-01

    Spatial data sets, generated from a wide range of physical systems can be analyzed by counting the number of objects in a set of bins. Previous work has been limited to equal-sized bins, which are inappropriate for some domains (e.g., circular). We consider a nonequal size bin configuration whereby overlapping or nonoverlapping bins cover the domain. A generalized index, defined in terms of a variance between bin counts, is developed to indicate whether or not a spatial data set, generated from exclusion or nonexclusion processes, is at the complete spatial randomness (CSR) state. Limiting values of the index are determined. Using examples, we investigate trends in the generalized index as a function of density and compare the results with those using equal size bins. The smallest bin size must be much larger than the mean size of the objects. We can determine whether a spatial data set is at the CSR state or not by comparing the values of a generalized index for different bin configurations—the values will be approximately the same if the data is at the CSR state, while the values will differ if the data set is not at the CSR state. In general, the generalized index is lower than the limiting value of the index, since objects do not have access to the entire region due to blocking by other objects. These methods are applied to two applications: (i) spatial data sets generated from a cellular automata model of cell aggregation in the enteric nervous system and (ii) a known plant data distribution.

  15. A generalized scaling law for the ignition energy of inertial confinement fusion capsules

    International Nuclear Information System (INIS)

    Herrmann, M.C.

    2001-01-01

    The minimum energy needed to ignite an inertial confinement fusion capsule is of considerable interest in the optimization of an inertial fusion driver. Recent computational work investigating this minimum energy has found that it depends on the capsule implosion history, in particular, on the capsule drive pressure. This dependence is examined using a series of LASNEX simulations to find ignited capsules which have different values of the implosion velocity, fuel adiabat and drive pressure. It is found that the main effect of varying the drive pressure is to alter the stagnation of the capsule, changing its stagnation adiabat, which, in turn, affects the energy required for ignition. To account for this effect a generalized scaling law has been devised for the ignition energy, E ign ∝α if 1.88±0.05 υ -5.89±0.12 P -0.77±0.03 . This generalized scaling law agrees with the results of previous work in the appropriate limits. (author)

  16. Total variation regularization of the 3-D gravity inverse problem using a randomized generalized singular value decomposition

    Science.gov (United States)

    Vatankhah, Saeed; Renaut, Rosemary A.; Ardestani, Vahid E.

    2018-04-01

    We present a fast algorithm for the total variation regularization of the 3-D gravity inverse problem. Through imposition of the total variation regularization, subsurface structures presenting with sharp discontinuities are preserved better than when using a conventional minimum-structure inversion. The associated problem formulation for the regularization is nonlinear but can be solved using an iteratively reweighted least-squares algorithm. For small-scale problems the regularized least-squares problem at each iteration can be solved using the generalized singular value decomposition. This is not feasible for large-scale, or even moderate-scale, problems. Instead we introduce the use of a randomized generalized singular value decomposition in order to reduce the dimensions of the problem and provide an effective and efficient solution technique. For further efficiency an alternating direction algorithm is used to implement the total variation weighting operator within the iteratively reweighted least-squares algorithm. Presented results for synthetic examples demonstrate that the novel randomized decomposition provides good accuracy for reduced computational and memory demands as compared to use of classical approaches.

  17. Statistics of stationary points of random finite polynomial potentials

    International Nuclear Information System (INIS)

    Mehta, Dhagash; Niemerg, Matthew; Sun, Chuang

    2015-01-01

    The stationary points (SPs) of the potential energy landscapes (PELs) of multivariate random potentials (RPs) have found many applications in many areas of Physics, Chemistry and Mathematical Biology. However, there are few reliable methods available which can find all the SPs accurately. Hence, one has to rely on indirect methods such as Random Matrix theory. With a combination of the numerical polynomial homotopy continuation method and a certification method, we obtain all the certified SPs of the most general polynomial RP for each sample chosen from the Gaussian distribution with mean 0 and variance 1. While obtaining many novel results for the finite size case of the RP, we also discuss the implications of our results on mathematics of random systems and string theory landscapes. (paper)

  18. A random matrix approach to the crossover of energy-level statistics from Wigner to Poisson

    International Nuclear Information System (INIS)

    Datta, Nilanjana; Kunz, Herve

    2004-01-01

    We analyze a class of parametrized random matrix models, introduced by Rosenzweig and Porter, which is expected to describe the energy level statistics of quantum systems whose classical dynamics varies from regular to chaotic as a function of a parameter. We compute the generating function for the correlations of energy levels, in the limit of infinite matrix size. The crossover between Poisson and Wigner statistics is measured by a renormalized coupling constant. The model is exactly solved in the sense that, in the limit of infinite matrix size, the energy-level correlation functions and their generating function are given in terms of a finite set of integrals

  19. Production of complex particles in low energy spallation and in fragmentation reactions by in-medium random clusterization

    International Nuclear Information System (INIS)

    Lacroix, D.; Durand, D.

    2005-09-01

    Rules for in-medium complex particle production in nuclear reactions are proposed. These rules have been implemented in two models to simulate nucleon-nucleus and nucleus-nucleus reactions around the Fermi energy. Our work emphasizes the effect of randomness in cluster formation, the importance of the nucleonic Fermi motion as well as the role of conservation laws. The concepts of total available phase-space and explored phase-space under constraint imposed by the reaction are clarified. The compatibility of experimental observations with a random clusterization is illustrated in a schematic scenario of a proton-nucleus collision. The role of randomness under constraint is also illustrated in the nucleus-nucleus case. (authors)

  20. Generalized Energy Flow Analysis Considering Electricity Gas and Heat Subsystems in Local-Area Energy Systems Integration

    Directory of Open Access Journals (Sweden)

    Jiaqi Shi

    2017-04-01

    Full Text Available To alleviate environmental pollution and improve the efficient use of energy, energy systems integration (ESI—covering electric power systems, heat systems and natural gas systems—has become an important trend in energy utilization. The traditional power flow calculation method, with the object as the power system, will prove difficult in meeting the requirements of the coupled energy flow analysis. This paper proposes a generalized energy flow (GEF analysis method which is suitable for an ESI containing electricity, heat and gas subsystems. First, the models of electricity, heat, and natural gas networks in the ESI are established. In view of the complexity of the conventional method to solve the gas network including the compressor, an improved practical equivalent method was adopted based on different control modes. On this basis, a hybrid method combining homotopy and the Newton-Raphson algorithm was executed to compute the nonlinear equations of GEF, and the Jacobi matrix reflecting the coupling relationship of multi-energy was derived considering the grid connected mode and island modes of the power system in the ESI. Finally, the validity of the proposed method in multi-energy flow calculation and the analysis of interacting characteristics was verified using practical cases.

  1. On the coherence between high-energy total cross-section data when compared with general principles

    International Nuclear Information System (INIS)

    Gauron, P.; Nicolescu, B.; Paris-6 Univ., 75

    1993-12-01

    An essential model is performed - an independent study of the internal coherence between high-energy total cross-section data by using classes of functions satisfying general principles. The study is practically independent of the ρ-parameter values. This general analysis, made without any fit, reveals certain inconsistencies in the existing set of high-energy data. Some of these inconsistencies are eliminated by giving up arbitrary assumptions sometimes made in 'fitology'. It is shown that the ln 2 s increase of total cross-sections at high energies is clearly favoured when compared with other possible behaviours. (authors). 16 refs., 3 figs

  2. Maintaining Department of Energy facilities general design criteria

    International Nuclear Information System (INIS)

    Metzler, J.F.

    1985-01-01

    A General Design Criteria (GDC) Planning Board has been established in the Department of Energy to streamline the improvement and maintenance of the GDC Manual. This Planning Board, composed of a membership from field organizations and Headquarters programmatic offices, started work on 15 enhancements to the GDC Manual. One of those enhancements details natural phenomena hazards criteria. In the past year the Planning Board submitted a major recommendation which has been implemented into what is known as the GDC Improvements project. The result of this project pledges to dramatically increase the GDC Manual's utilization and effectiveness

  3. The causal role of breakfast in energy balance and health: a randomized controlled trial in obese adults.

    Science.gov (United States)

    Chowdhury, Enhad A; Richardson, Judith D; Holman, Geoffrey D; Tsintzas, Kostas; Thompson, Dylan; Betts, James A

    2016-03-01

    The causal nature of associations between breakfast and health remain unclear in obese individuals. We sought to conduct a randomized controlled trial to examine causal links between breakfast habits and components of energy balance in free-living obese humans. The Bath Breakfast Project is a randomized controlled trial with repeated measures at baseline and follow-up among a cohort in South West England aged 21-60 y with dual-energy X-ray absorptiometry-derived fat mass indexes of ≥13 kg/m(2) for women (n = 15) and ≥9 kg/m(2) for men (n = 8). Components of energy balance (resting metabolic rate, physical activity thermogenesis, diet-induced thermogenesis, and energy intake) were measured under free-living conditions with random allocation to daily breakfast (≥700 kcal before 1100) or extended fasting (0 kcal until 1200) for 6 wk, with baseline and follow-up measures of health markers (e.g., hematology/adipose biopsies). Breakfast resulted in greater physical activity thermogenesis during the morning than when fasting during that period (difference: 188 kcal/d; 95% CI: 40, 335) but without any consistent effect on 24-h physical activity thermogenesis (difference: 272 kcal/d; 95% CI: -254, 798). Energy intake was not significantly greater with breakfast than fasting (difference: 338 kcal/d; 95% CI: -313, 988). Body mass increased across both groups over time but with no treatment effects on body composition or any change in resting metabolic rate (stable within 8 kcal/d). Metabolic/cardiovascular health also did not respond to treatments, except for a reduced insulinemic response to an oral-glucose-tolerance test over time with daily breakfast relative to an increase with daily fasting (P = 0.05). In obese adults, daily breakfast leads to greater physical activity during the morning, whereas morning fasting results in partial dietary compensation (i.e., greater energy intake) later in the day. There were no differences between groups in weight change and most

  4. Extending the random-phase approximation for electronic correlation energies: the renormalized adiabatic local density approximation

    DEFF Research Database (Denmark)

    Olsen, Thomas; Thygesen, Kristian S.

    2012-01-01

    The adiabatic connection fluctuation-dissipation theorem with the random phase approximation (RPA) has recently been applied with success to obtain correlation energies of a variety of chemical and solid state systems. The main merit of this approach is the improved description of dispersive forces...... while chemical bond strengths and absolute correlation energies are systematically underestimated. In this work we extend the RPA by including a parameter-free renormalized version of the adiabatic local-density (ALDA) exchange-correlation kernel. The renormalization consists of a (local) truncation...... of the ALDA kernel for wave vectors q > 2kF, which is found to yield excellent results for the homogeneous electron gas. In addition, the kernel significantly improves both the absolute correlation energies and atomization energies of small molecules over RPA and ALDA. The renormalization can...

  5. Web-based consultation between general practitioners and nephrologists: a cluster randomized controlled trial.

    Science.gov (United States)

    van Gelder, Vincent A; Scherpbier-de Haan, Nynke D; van Berkel, Saskia; Akkermans, Reinier P; de Grauw, Inge S; Adang, Eddy M; Assendelft, Pim J; de Grauw, Wim J C; Biermans, Marion C J; Wetzels, Jack F M

    2017-08-01

    Consultation of a nephrologist is important in aligning care for patients with chronic kidney disease (CKD) at the primary-secondary care interface. However, current consultation methods come with practical difficulties that can lead to postponed consultation or patient referral instead. This study aimed to investigate whether a web-based consultation platform, telenephrology, led to a lower referral rate of indicated patients. Furthermore, we assessed consultation rate, quality of care, costs and general practitioner (GPs') experiences with telenephrology. Cluster randomized controlled trial with 47 general practices in the Netherlands was randomized to access to telenephrology or to enhanced usual care. A total of 3004 CKD patients aged 18 years or older who were under primary care were included (intervention group n = 1277, control group n = 1727) and 2693 completed the trial. All practices participated in a CKD management course and were given an overview of their CKD patients. The referral rates amounted to 2.3% (n = 29) in the intervention group and 3.0% (n = 52) in the control group, which was a non-significant difference, OR 0.61; 95% CI 0.31 to 1.23. The intervention group's consultation rate was 6.3% (n = 81) against 5.0% (n = 87) (OR 2.00; 95% CI 0.75-5.33). We found no difference in quality of care or costs. The majority of GPs had a positive opinion about telenephrology. The data in our study do not allow for conclusions on the effect of telenephrology on the rate of patient referrals and provider-to-provider consultations, compared to conventional methods. It was positively evaluated by GPs and was non-inferior in terms of quality of care and costs. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Exponential vanishing of the ground-state gap of the quantum random energy model via adiabatic quantum computing

    Science.gov (United States)

    Adame, J.; Warzel, S.

    2015-11-01

    In this note, we use ideas of Farhi et al. [Int. J. Quantum. Inf. 6, 503 (2008) and Quantum Inf. Comput. 11, 840 (2011)] who link a lower bound on the run time of their quantum adiabatic search algorithm to an upper bound on the energy gap above the ground-state of the generators of this algorithm. We apply these ideas to the quantum random energy model (QREM). Our main result is a simple proof of the conjectured exponential vanishing of the energy gap of the QREM.

  7. Exponential vanishing of the ground-state gap of the quantum random energy model via adiabatic quantum computing

    International Nuclear Information System (INIS)

    Adame, J.; Warzel, S.

    2015-01-01

    In this note, we use ideas of Farhi et al. [Int. J. Quantum. Inf. 6, 503 (2008) and Quantum Inf. Comput. 11, 840 (2011)] who link a lower bound on the run time of their quantum adiabatic search algorithm to an upper bound on the energy gap above the ground-state of the generators of this algorithm. We apply these ideas to the quantum random energy model (QREM). Our main result is a simple proof of the conjectured exponential vanishing of the energy gap of the QREM

  8. Boundary conditions, energies and gravitational heat in general relativity (a classical analysis)

    International Nuclear Information System (INIS)

    Francaviglia, M; Raiteri, M

    2004-01-01

    The variation of the energy for a gravitational system is directly defined from the Hamiltonian field equations of general relativity. When the variation of the energy is written in a covariant form, it splits into two (covariant) contributions: one of them is the Komar energy, while the other is the so-called covariant ADM correction term. When specific boundary conditions are analysed one sees that the Komar energy is related to the gravitational heat while the ADM correction term plays the role of the Helmholtz free energy. These properties allow one to establish, inside a classical geometric framework, a formal analogy between gravitation and the laws governing the evolution of a thermodynamical system. The analogy applies to stationary spacetimes admitting multiple causal horizons as well as to AdS Taub-bolt solutions

  9. Relay model for recruiting alcohol dependent patients in general hospitals--a single-blind pragmatic randomized trial

    DEFF Research Database (Denmark)

    Schwarz, Anne-Sophie; Bilberg, Randi; Bjerregaard, Lene Berit Skov

    2016-01-01

    - The Relay Model. METHOD/DESIGN: The study is a single-blind pragmatic randomized controlled trial including patients admitted to the hospital. The study group (n = 500) will receive an intervention, and the control group (n = 500) will be referred to treatment by usual procedures. All patients complete......://register.clinicaltrials.gov/by identifier: RESCueH_Relay NCT02188043 Project Relay Model for Recruiting Alcohol Dependent Patients in General Hospitals (TRN Registration: 07/09/2014)....

  10. Generalized z-scaling in proton-proton collisions at high energies

    International Nuclear Information System (INIS)

    Zborovsky, I.; Tokarev, M.

    2006-01-01

    New generalization of z-scaling in inclusive particle production is proposed. The scaling variable z is a fractal measure which depends on kinematical characteristics of the underlying subprocess expressed in terms of the momentum fractions x 1 and x 2 of the incoming protons. In the generalized approach, the x 1 and x 2 are functions of the momentum fractions y a and y b of the scattered and recoil constituents carried out by the inclusive particle and recoil object, respectively. The scaling function ψ(z) for charged and identified hadrons produced in proton-proton collisions is constructed. The fractal dimensions and heat capacity of the produced medium entering definition of the z are established to obtain energy, angular and multiplicity independence of the ψ(z). The scheme allows unique description of data on inclusive cross sections of charged particles, pions, kaons, antiprotons, and lambdas at high energies. The obtained results are of interest to use z-scaling as a tool for searching for new physics phenomena of particle production in high transverse momentum and high multiplicity region at the proton-proton colliders RHIC and LHC

  11. Student Conceptions about Energy Transformations: Progression from General Chemistry to Biochemistry

    Science.gov (United States)

    Wolfson, Adele J.; Rowland, Susan L.; Lawrie, Gwendolyn A.; Wright, Anthony H.

    2014-01-01

    Students commencing studies in biochemistry must transfer and build on concepts they learned in chemistry and biology classes. It is well established, however, that students have difficulties in transferring critical concepts from general chemistry courses; one key concept is "energy." Most previous work on students' conception of energy…

  12. Multidimensional generalized-ensemble algorithms for complex systems.

    Science.gov (United States)

    Mitsutake, Ayori; Okamoto, Yuko

    2009-06-07

    We give general formulations of the multidimensional multicanonical algorithm, simulated tempering, and replica-exchange method. We generalize the original potential energy function E(0) by adding any physical quantity V of interest as a new energy term. These multidimensional generalized-ensemble algorithms then perform a random walk not only in E(0) space but also in V space. Among the three algorithms, the replica-exchange method is the easiest to perform because the weight factor is just a product of regular Boltzmann-like factors, while the weight factors for the multicanonical algorithm and simulated tempering are not a priori known. We give a simple procedure for obtaining the weight factors for these two latter algorithms, which uses a short replica-exchange simulation and the multiple-histogram reweighting techniques. As an example of applications of these algorithms, we have performed a two-dimensional replica-exchange simulation and a two-dimensional simulated-tempering simulation using an alpha-helical peptide system. From these simulations, we study the helix-coil transitions of the peptide in gas phase and in aqueous solution.

  13. Random Process Theory Approach to Geometric Heterogeneous Surfaces: Effective Fluid-Solid Interaction

    Science.gov (United States)

    Khlyupin, Aleksey; Aslyamov, Timur

    2017-06-01

    Realistic fluid-solid interaction potentials are essential in description of confined fluids especially in the case of geometric heterogeneous surfaces. Correlated random field is considered as a model of random surface with high geometric roughness. We provide the general theory of effective coarse-grained fluid-solid potential by proper averaging of the free energy of fluid molecules which interact with the solid media. This procedure is largely based on the theory of random processes. We apply first passage time probability problem and assume the local Markov properties of random surfaces. General expression of effective fluid-solid potential is obtained. In the case of small surface irregularities analytical approximation for effective potential is proposed. Both amorphous materials with large surface roughness and crystalline solids with several types of fcc lattices are considered. It is shown that the wider the lattice spacing in terms of molecular diameter of the fluid, the more obtained potentials differ from classical ones. A comparison with published Monte-Carlo simulations was discussed. The work provides a promising approach to explore how the random geometric heterogeneity affects on thermodynamic properties of the fluids.

  14. High energy X-ray phase and dark-field imaging using a random absorption mask.

    Science.gov (United States)

    Wang, Hongchang; Kashyap, Yogesh; Cai, Biao; Sawhney, Kawal

    2016-07-28

    High energy X-ray imaging has unique advantage over conventional X-ray imaging, since it enables higher penetration into materials with significantly reduced radiation damage. However, the absorption contrast in high energy region is considerably low due to the reduced X-ray absorption cross section for most materials. Even though the X-ray phase and dark-field imaging techniques can provide substantially increased contrast and complementary information, fabricating dedicated optics for high energies still remain a challenge. To address this issue, we present an alternative X-ray imaging approach to produce transmission, phase and scattering signals at high X-ray energies by using a random absorption mask. Importantly, in addition to the synchrotron radiation source, this approach has been demonstrated for practical imaging application with a laboratory-based microfocus X-ray source. This new imaging method could be potentially useful for studying thick samples or heavy materials for advanced research in materials science.

  15. Changes in Energy Intake and Diet Quality during an 18-Month Weight-Management Randomized Controlled Trial in Adults with Intellectual and Developmental Disabilities.

    Science.gov (United States)

    Ptomey, Lauren T; Steger, Felicia L; Lee, Jaehoon; Sullivan, Debra K; Goetz, Jeannine R; Honas, Jeffery J; Washburn, Richard A; Gibson, Cheryl A; Donnelly, Joseph E

    2018-06-01

    Previous research indicates that individuals with intellectual and developmental disabilities (IDDs) are at risk for poor diet quality. The purpose of this secondary analysis was to determine whether two different weight-loss diets affect energy intake, macronutrient intake, and diet quality as measured by the Healthy Eating Index-2010 (HEI-2010) during a 6-month weight-loss period and 12-month weight-management period, and to examine differences in energy intake, macronutrient intake, and HEI-2010 between groups. Overweight/obese adults with IDDs took part in an 18-month randomized controlled trial and were assigned to either an enhanced Stop Light Diet utilizing portion-controlled meals or a conventional diet consisting of reducing energy intake and following the 2010 Dietary Guidelines for Americans. Proxy-assisted 3-day food records were collected at baseline, 6 months, and 18 months, and were analyzed using Nutrition Data System for Research software. HEI-2010 was calculated using the data from Nutrition Data System for Research. The study took place from June 2011 through May 2014 in the greater Kansas City metropolitan area. This was a secondary analysis of a weight-management intervention for adults with IDDs randomized to an enhanced Stop Light Diet or conventional diet, to examine differences in energy intake, macronutrient intake, and HEI-2010 across time and between groups. Independent- and paired-samples t tests and general mixed modeling for repeated measures were performed to examine group differences and changes at baseline, 6 months, and 18 months between the enhanced Stop Light Diet and conventional diet groups. One hundred and forty six participants (57% female, mean±standard deviation age=36.2±12.0 years) were randomized to either the enhanced Stop Light Diet or conventional diet group (77 enhanced Stop Light Diet, 69 conventional diet) and provided data for analysis at baseline, 124 completed the 6-month weight-loss period, and 101 completed

  16. Compensatory mechanisms activated with intermittent energy restriction: A randomized control trial.

    Science.gov (United States)

    Coutinho, Sílvia Ribeiro; Halset, Eline Holli; Gåsbakk, Sigrid; Rehfeld, Jens F; Kulseng, Bård; Truby, Helen; Martins, Cátia

    2018-06-01

    Strong compensatory responses, with reduced resting metabolic rate (RMR), increased exercise efficiency (ExEff) and appetite, are activated when weight loss (WL) is achieved with continuous energy restriction (CER), which try to restore energy balance. Intermittent energy restriction (IER), where short spells of energy restriction are interspaced by periods of habitual energy intake, may offer some protection in minimizing those responses. We aimed to compare the effect of IER versus CER on body composition and the compensatory responses induced by WL. 35 adults (age: 39 ± 9 y) with obesity (BMI: 36 ± 4 kg/m 2 ) were randomized to lose a similar weight with an IER (N = 18) or a CER (N = 17) diet over a 12 week period. Macronutrient composition and overall energy restriction (33% reduction) were similar between groups. Body weight/composition, RMR, fasting respiratory quotient (RQ), ExEff (10, 25, and 50 W), subjective appetite ratings (hunger, fullness, desire to eat, and prospective food consumption (PFC)), and appetite-regulating hormones (active ghrelin (AG), cholecystokinin (CCK), total peptide YY (PYY), active glucagon-like peptide-1 (GLP-1), and insulin) were measured before and after WL. Changes in body weight (≈12.5% WL) and composition were similar in both groups. Fasting RQ and ExEff at 10 W increased in both groups. Losing weight, either by IER or CER dieting, did not induce significant changes in subjective appetite ratings. RMR decreased and ExEff at 25 and 50 W increased (P intermittent, does not appear to modulate the compensatory mechanisms activated by weight loss. NCT02169778 (the study was registered in clinicaltrial.gov). Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  17. Ordered random variables theory and applications

    CERN Document Server

    Shahbaz, Muhammad Qaiser; Hanif Shahbaz, Saman; Al-Zahrani, Bander M

    2016-01-01

    Ordered Random Variables have attracted several authors. The basic building block of Ordered Random Variables is Order Statistics which has several applications in extreme value theory and ordered estimation. The general model for ordered random variables, known as Generalized Order Statistics has been introduced relatively recently by Kamps (1995).

  18. Oil Subsidies and Renewable Energy in Saudi Arabia: A General Equilibrium Approach

    OpenAIRE

    Blazquez, J; Hunt, Lester; Manzano, B

    2017-01-01

    In 2016, the Kingdom of Saudi Arabia (KSA) announced its Vision 2030 strategic plan incorporating major changes to the economic structure of the country, including an intention to deploy 9.5 GW of renewable energy in an effort to reduce the penetration of oil in the electricity generation system. This paper assesses the macroeconomic impact of such changes in the KSA, coupled with reductions in implicit energy subsidies. Based on a dynamic general equilibrium model, our analysis suggests that...

  19. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics

    Science.gov (United States)

    Niu, Simiao; Wang, Xiaofeng; Yi, Fang; Zhou, Yu Sheng; Wang, Zhong Lin

    2015-12-01

    Human biomechanical energy is characterized by fluctuating amplitudes and variable low frequency, and an effective utilization of such energy cannot be achieved by classical energy-harvesting technologies. Here we report a high-efficient self-charging power system for sustainable operation of mobile electronics exploiting exclusively human biomechanical energy, which consists of a high-output triboelectric nanogenerator, a power management circuit to convert the random a.c. energy to d.c. electricity at 60% efficiency, and an energy storage device. With palm tapping as the only energy source, this power unit provides a continuous d.c. electricity of 1.044 mW (7.34 W m-3) in a regulated and managed manner. This self-charging unit can be universally applied as a standard `infinite-lifetime' power source for continuously driving numerous conventional electronics, such as thermometers, electrocardiograph system, pedometers, wearable watches, scientific calculators and wireless radio-frequency communication system, which indicates the immediate and broad applications in personal sensor systems and internet of things.

  20. Manual therapy, physical therapy, or continued care by a general practitioner for patients with neck pain: a randomized, controlled trial.

    NARCIS (Netherlands)

    Hoving, J.L.; Koes, B.W.; Vet, H.C.W. de; Windt, D.A.W.M. van der; Assendelft, W.J.J.; Mameren, H. van; Devillé, W.L.J.M.; Pool, J.J.M.; Scholten, R.J.P.M.; Bouter, L.M.

    2002-01-01

    BACKGROUND: Neck pain is a common problem, but the effectiveness of frequently applied conservative therapies has never been directly compared. OBJECTIVE: To determine the effectiveness of manual therapy, physical therapy, and continued care by a general practitioner. DESIGN: Randomized, controlled

  1. Manual therapy, physical therapy, or continued care by a general practitioner for patients with neck pain. A randomized, controlled trial

    NARCIS (Netherlands)

    Hoving, Jan Lucas; Koes, Bart W.; de Vet, Henrica C. W.; van der Windt, Danielle A. W. M.; Assendelft, Willem J. J.; van Mameren, Henk; Devillé, Walter L. J. M.; Pool, Jan J. M.; Scholten, Rob J. P. M.; Bouter, Lex M.

    2002-01-01

    BACKGROUND: Neck pain is a common problem, but the effectiveness of frequently applied conservative therapies has never been directly compared. OBJECTIVE: To determine the effectiveness of manual therapy, physical therapy, and continued care by a general practitioner. DESIGN: Randomized, controlled

  2. A general-purpose process modelling framework for marine energy systems

    International Nuclear Information System (INIS)

    Dimopoulos, George G.; Georgopoulou, Chariklia A.; Stefanatos, Iason C.; Zymaris, Alexandros S.; Kakalis, Nikolaos M.P.

    2014-01-01

    Highlights: • Process modelling techniques applied in marine engineering. • Systems engineering approaches to manage the complexity of modern ship machinery. • General purpose modelling framework called COSSMOS. • Mathematical modelling of conservation equations and related chemical – transport phenomena. • Generic library of ship machinery component models. - Abstract: High fuel prices, environmental regulations and current shipping market conditions impose ships to operate in a more efficient and greener way. These drivers lead to the introduction of new technologies, fuels, and operations, increasing the complexity of modern ship energy systems. As a means to manage this complexity, in this paper we present the introduction of systems engineering methodologies in marine engineering via the development of a general-purpose process modelling framework for ships named as DNV COSSMOS. Shifting the focus from components – the standard approach in shipping- to systems, widens the space for optimal design and operation solutions. The associated computer implementation of COSSMOS is a platform that models, simulates and optimises integrated marine energy systems with respect to energy efficiency, emissions, safety/reliability and costs, under both steady-state and dynamic conditions. DNV COSSMOS can be used in assessment and optimisation of design and operation problems in existing vessels, new builds as well as new technologies. The main features and our modelling approach are presented and key capabilities are illustrated via two studies on the thermo-economic design and operation optimisation of a combined cycle system for large bulk carriers, and the transient operation simulation of an electric marine propulsion system

  3. Relationship of human values and energy beliefs to nuclear power attitude

    International Nuclear Information System (INIS)

    Rankin, W.L.; Nealey, S.M.

    1978-11-01

    This executive summary highlights the major findings of a nuclear power mail-out survey administered to a random sample of Washington residents, a random sample of nuclear neighbors from the region around the Hanford Reservation, and a random sample of Washington environmentalists. The purpose of the research was twofold. First, it investigated the relationship of human values to one's attitude about the continued development of nuclear power. Second, it investigated the relationship of general energy beliefs and beliefs about specific nuclear power issues to one's attitude about the continued development of nuclear power. The findings are presented in summary form by posing and answering questions of policy relevance to the Department of Energy

  4. The influence of the directional energy distribution on the nonlinear dispersion relation in a random gravity wave field

    Science.gov (United States)

    Huang, N. E.; Tung, C.-C.

    1977-01-01

    The influence of the directional distribution of wave energy on the dispersion relation is calculated numerically using various directional wave spectrum models. The results indicate that the dispersion relation varies both as a function of the directional energy distribution and the direction of propagation of the wave component under consideration. Furthermore, both the mean deviation and the random scatter from the linear approximation increase as the energy spreading decreases. Limited observational data are compared with the theoretical results. The agreement is favorable.

  5. A Neural Network Controller for Variable-Speed Variable-Pitch Wind Energy Conversion Systems Using Generalized Minimum Entropy Criterion

    Directory of Open Access Journals (Sweden)

    Mifeng Ren

    2014-01-01

    Full Text Available This paper considers the neural network controller design problem for variable pitch wind energy conversion systems (WECS with non-Gaussian wind speed disturbances in the stochastic distribution control framework. The approach here is used to directly model the unknown control law based on a fixed neural network (the number of layers and nodes in a neural network is fixed without the need to construct a separate model for the WECS. In order to characterize the randomness of the WECS, a generalized minimum entropy criterion is established to train connection weights of the neural network. For the train purpose, both kernel density estimation method and sliding window technique are adopted to estimate the PDF of tracking error and entropies. Due to the unknown process dynamics, the gradient of the objective function in a gradient-descent-type algorithm is estimated using an incremental perturbation method. The proposed approach is illustrated on a simulated WECS with non-Gaussian wind speed.

  6. Avoidance of singularity and global non-conservation of energy in general relativity

    International Nuclear Information System (INIS)

    Verma, M.M.

    2009-06-01

    We show that the singularity in the General Theory of Relativity (GTR) is the expression of a non-Machian feature. It can be avoided with a scale-invariant dynamical theory, a property lacking in GTR. It is further argued that the global non-conservation of energy in GTR also results from the lack of scale-invariance, and the field formulation presented by several authors can only partly resolve the problem. Assuming the global energy conservation, we propose a negative energy density component with a positive equation of state that can drive the late-time acceleration in the universe, while the positive component confines to smaller scales. (author)

  7. A General Mathematical Framework for Calculating Systems-Scale Efficiency of Energy Extraction and Conversion: Energy Return on Investment (EROI and Other Energy Return Ratios

    Directory of Open Access Journals (Sweden)

    Adam R. Brandt

    2011-08-01

    Full Text Available The efficiencies of energy extraction and conversion systems are typically expressed using energy return ratios (ERRs such as the net energy ratio (NER or energy return on investment (EROI. A lack of a general mathematical framework prevents inter-comparison of NER/EROI estimates between authors: methods used are not standardized, nor is there a framework for succinctly reporting results in a consistent fashion. In this paper we derive normalized mathematical forms of four ERRs for energy extraction and conversion pathways. A bottom-up (process model formulation is developed for an n-stage energy harvesting and conversion pathway with various system boundaries. Formations with the broadest system boundaries use insights from life cycle analysis to suggest a hybrid process model/economic input output based framework. These models include indirect energy consumption due to external energy inputs and embodied energy in materials. Illustrative example results are given for simple energy extraction and conversion pathways. Lastly, we discuss the limitations of this approach and the intersection of this methodology with “top-down” economic approaches.

  8. Generalized trends in the formation energies of perovskite oxides

    DEFF Research Database (Denmark)

    Zeng, Zhenhua; Calle-Vallejo, Federico; Mogensen, Mogens Bjerg

    2013-01-01

    Generalized trends in the formation energies of several families of perovskite oxides (ABO3) and plausible explanations to their existence are provided in this study through a combination of DFT calculations, solid-state physics analyses and simple physical/chemical descriptors. The studied...... elements at the A site of perovskites comprise rare-earth, alkaline-earth and alkaline metals, whereas 3d and 5d metals were studied at the B site. We also include ReO3-type compounds, which have the same crystal structure of cubic ABO3 perovskites except without A-site elements. From the observations we...... extract the following four conclusions for the perovskites studied in the present paper: for a given cation at the B site, (I) perovskites with cations of identical oxidation state at the A site possess close formation energies; and (II) perovskites with cations of different oxidation states at the A site...

  9. Generalized linear longitudinal mixed models with linear covariance structure and multiplicative random effects

    DEFF Research Database (Denmark)

    Holst, René; Jørgensen, Bent

    2015-01-01

    The paper proposes a versatile class of multiplicative generalized linear longitudinal mixed models (GLLMM) with additive dispersion components, based on explicit modelling of the covariance structure. The class incorporates a longitudinal structure into the random effects models and retains...... a marginal as well as a conditional interpretation. The estimation procedure is based on a computationally efficient quasi-score method for the regression parameters combined with a REML-like bias-corrected Pearson estimating function for the dispersion and correlation parameters. This avoids...... the multidimensional integral of the conventional GLMM likelihood and allows an extension of the robust empirical sandwich estimator for use with both association and regression parameters. The method is applied to a set of otholit data, used for age determination of fish....

  10. Randomized Oversampling for Generalized Multiscale Finite Element Methods

    KAUST Repository

    Calo, Victor M.; Efendiev, Yalchin R.; Galvis, Juan; Li, Guanglian

    2016-01-01

    boundary conditions defined in a domain larger than the target region. Furthermore, we perform an eigenvalue decomposition in this small space. We study the application of randomized sampling for GMsFEM in conjunction with adaptivity, where local multiscale

  11. Incoherent neutron scattering functions for random jump diffusion in bounded and infinite media

    International Nuclear Information System (INIS)

    Hall, P.L.; Ross, D.K.

    1981-01-01

    The incoherent neutron scattering function for unbounded jump diffusion is calculated from random walk theory assuming a gaussian distribution of jump lengths. The method is then applied to calculate the scattering function for spatially bounded random jumps in one dimension. The dependence on momentum transfer of the quasi-elastic energy broadenings predicted by this model and a previous model for bounded one-dimensional continuous diffusion are calculated and compared with the predictions of models for diffusion in unbounded media. The one-dimensional solutions can readily be generalized to three dimensions to provide a description of quasi-elastic scattering of neutrons by molecules undergoing localized random motions. (author)

  12. Effectiveness of an Energy Management Training Course on Employee Well-Being: A Randomized Controlled Trial.

    Science.gov (United States)

    Das, Sai Krupa; Mason, Shawn T; Vail, Taylor A; Rogers, Gail V; Livingston, Kara A; Whelan, Jillian G; Chin, Meghan K; Blanchard, Caroline M; Turgiss, Jennifer L; Roberts, Susan B

    2018-01-01

    Programs focused on employee well-being have gained momentum in recent years, but few have been rigorously evaluated. This study evaluates the effectiveness of an intervention designed to enhance vitality and purpose in life by assessing changes in employee quality of life (QoL) and health-related behaviors. A worksite-based randomized controlled trial. Twelve eligible worksites (8 randomized to the intervention group [IG] and 4 to the wait-listed control group [CG]). Employees (n = 240) at the randomized worksites. A 2.5-day group-based behavioral intervention. Rand Medical Outcomes Survey (MOS) 36-item Short-Form (SF-36) vitality and QoL measures, Ryff Purpose in Life Scale, Center for Epidemiologic Studies questionnaire for depression, MOS sleep, body weight, physical activity, diet quality, and blood measures for glucose and lipids (which were used to calculate a cardiometabolic risk score) obtained at baseline and 6 months. General linear mixed models were used to compare least squares means or prevalence differences in outcomes between IG and CG participants. As compared to CG, IG had a significantly higher mean 6-month change on the SF-36 vitality scale ( P = .003) and scored in the highest categories for 5 of the remaining 7 SF-36 domains: general health ( P = .014), mental health ( P = .027), absence of role limitations due to physical problems ( P = .026), and social functioning ( P = .007). The IG also had greater improvements in purpose in life ( P employee QoL and well-being over 6 months.

  13. Effect of disorder correlation in random mers

    International Nuclear Information System (INIS)

    Brezini, A.; Sebbani, M.; Depollier, C.; Belbachir, M.

    1995-12-01

    A widely held view in solid-state physics is that disorder precludes the presence of long-range transport in one-dimension. Recently a series of models has been proposed that do not conform to this view such as the well known Random Dimer Model (RDM). In the following paper, we must present a generalization of the RDM. In particular, the nature of the eigenstates of a non-interacting electron is investigated by means of a popular one-dimensional Kronig-Penney Hamiltonian in which n-mers have been placed at random on a regular lattice. Mainly in each allowed energy band of the spectrum, it is found that n-mers exhibits n - 1 resonances associated to extended states. Moreover these resonances appear to be narrower if the potential is attractive against repulsive, i.e. constituted of wells instead barriers, which discriminates the ability in localizing the eigenstates. Attention has been paid to the energy transition as one approaches the two resonances of the random trimer within the first allowed band. The transition exhibits a smooth behaviour for the lower energy when compared to the higher one with respect to the first resonance and shows quite a similar behaviour for both sides close to the second resonance. The discrepancy is attributed to the typical nature of the eigenstates for each resonance. Correspondingly, the wave functions associated to the first resonance are not like Bloch-waves while for the second one they look like the crystal wave functions displaying only minor distortions. (author). 44 refs, 6 figs

  14. Generalized eigenvalue based spectrum sensing

    KAUST Repository

    Shakir, Muhammad

    2012-01-01

    Spectrum sensing is one of the fundamental components in cognitive radio networks. In this chapter, a generalized spectrum sensing framework which is referred to as Generalized Mean Detector (GMD) has been introduced. In this context, we generalize the detectors based on the eigenvalues of the received signal covariance matrix and transform the eigenvalue based spectrum sensing detectors namely: (i) the Eigenvalue Ratio Detector (ERD) and two newly proposed detectors which are referred to as (ii) the GEometric Mean Detector (GEMD) and (iii) the ARithmetic Mean Detector (ARMD) into an unified framework of generalize spectrum sensing. The foundation of the proposed framework is based on the calculation of exact analytical moments of the random variables of the decision threshold of the respective detectors. The decision threshold has been calculated in a closed form which is based on the approximation of Cumulative Distribution Functions (CDFs) of the respective test statistics. In this context, we exchange the analytical moments of the two random variables of the respective test statistics with the moments of the Gaussian (or Gamma) distribution function. The performance of the eigenvalue based detectors is compared with the several traditional detectors including the energy detector (ED) to validate the importance of the eigenvalue based detectors and the performance of the GEMD and the ARMD particularly in realistic wireless cognitive radio network. Analytical and simulation results show that the newly proposed detectors yields considerable performance advantage in realistic spectrum sensing scenarios. Moreover, the presented results based on proposed approximation approaches are in perfect agreement with the empirical results. © 2012 Springer Science+Business Media Dordrecht.

  15. Energy master equation

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    1995-01-01

    energies chosen randomly according to a Gaussian. The random-walk model is here derived from Newton's laws by making a number of simplifying assumptions. In the second part of the paper an approximate low-temperature description of energy fluctuations in the random-walk model—the energy master equation...... (EME)—is arrived at. The EME is one dimensional and involves only energy; it is derived by arguing that percolation dominates the relaxational properties of the random-walk model at low temperatures. The approximate EME description of the random-walk model is expected to be valid at low temperatures...... of the random-walk model. The EME allows a calculation of the energy probability distribution at realistic laboratory time scales for an arbitrarily varying temperature as function of time. The EME is probably the only realistic equation available today with this property that is also explicitly consistent...

  16. Canonical Naimark extension for generalized measurements involving sets of Pauli quantum observables chosen at random

    Science.gov (United States)

    Sparaciari, Carlo; Paris, Matteo G. A.

    2013-01-01

    We address measurement schemes where certain observables Xk are chosen at random within a set of nondegenerate isospectral observables and then measured on repeated preparations of a physical system. Each observable has a probability zk to be measured, with ∑kzk=1, and the statistics of this generalized measurement is described by a positive operator-valued measure. This kind of scheme is referred to as quantum roulettes, since each observable Xk is chosen at random, e.g., according to the fluctuating value of an external parameter. Here we focus on quantum roulettes for qubits involving the measurements of Pauli matrices, and we explicitly evaluate their canonical Naimark extensions, i.e., their implementation as indirect measurements involving an interaction scheme with a probe system. We thus provide a concrete model to realize the roulette without destroying the signal state, which can be measured again after the measurement or can be transmitted. Finally, we apply our results to the description of Stern-Gerlach-like experiments on a two-level system.

  17. Deformed potential energy of $^{263}Db$ in a generalized liquid drop model

    CERN Document Server

    Chen Bao Qiu; Zhao Yao Lin; 10.1088/0256-307X/20/11/009

    2003-01-01

    The macroscopic deformed potential energy for super-heavy nuclei /sup 263/Db, which governs the entrance and alpha decay channels, is determined within a generalized liquid drop model (GLDM). A quasi- molecular shape is assumed in the GLDM, which includes volume-, surface-, and Coulomb-energies, proximity effects, mass asymmetry, and an accurate nuclear radius. The microscopic single particle energies derived from a shell model in an axially deformed Woods- Saxon potential with a quasi-molecular shape. The shell correction is calculated by the Strutinsky method. The total deformed potential energy of a nucleus can be calculated by the macro-microscopic method as the summation of the liquid-drop energy and the Strutinsky shell correction. The theory is applied to predict the deformed potential energy of the experiment /sup 22/Ne+/sup 241/Am to /sup 263/Db* to /sup 259/Db+4 n, which was performed on the Heavy Ion Accelerator in Lanzhou. It is found that the neck in the quasi-molecular shape is responsible for t...

  18. Marginal abatement cost curves in general equilibrium: The influence of world energy prices

    International Nuclear Information System (INIS)

    Klepper, Gernot; Peterson, Sonja

    2006-01-01

    Marginal abatement cost curves (MACCs) are a favorite instrument to analyze international emissions trading. This paper focuses on the question of how to define MACCs in a general equilibrium context where the global abatement level influences energy prices and in turn national MACCs. We discuss the mechanisms theoretically and then use the CGE model DART for quantitative simulations. The result is, that changes in energy prices resulting from different global abatement levels do indeed affect national MACCs. Also, we compare different possibilities of defining MACCs-of which some are robust against changes in energy prices while others vary considerably. (author)

  19. Nutritional counselling in primary health care: a randomized comparison of an intervention by general practitioner or dietician

    DEFF Research Database (Denmark)

    Willaing, Ingrid; Ladelund, Steen; Jørgensen, Torben

    2004-01-01

    AIMS: To compare health effects and risk reduction in two different strategies of nutritional counselling in primary health care for patients at high risk of ischaemic heart disease. METHODS: In a cluster-randomized trial 60 general practitioners (GPs) in the Copenhagen County were randomized...... to give nutritional counselling or to refer patients to a dietician. Patients were included after opportunistically screening (n=503 patients), and received nutritional counselling by GP or dietician over 12 months. Health effects were measured by changes in weight, waist circumference and blood lipids....... Risk of cardiovascular disease was calculated by The Copenhagen Risk Score. Data on use of medicine and primary health care was obtained from central registers. RESULTS: Altogether 339 (67%) patients completed the intervention. Weight loss was larger in the dietician group (mean 4.5 kg vs. 2.4 kg...

  20. First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media

    Science.gov (United States)

    Mishchenko, Michael I.; Dlugach, Janna M.; Yurkin, Maxim A.; Bi, Lei; Cairns, Brian; Liu, Li; Panetta, R. Lee; Travis, Larry D.; Yang, Ping; Zakharova, Nadezhda T.

    2018-01-01

    A discrete random medium is an object in the form of a finite volume of a vacuum or a homogeneous material medium filled with quasi-randomly and quasi-uniformly distributed discrete macroscopic impurities called small particles. Such objects are ubiquitous in natural and artificial environments. They are often characterized by analyzing theoretically the results of laboratory, in situ, or remote-sensing measurements of the scattering of light and other electromagnetic radiation. Electromagnetic scattering and absorption by particles can also affect the energy budget of a discrete random medium and hence various ambient physical and chemical processes. In either case electromagnetic scattering must be modeled in terms of appropriate optical observables, i.e., quadratic or bilinear forms in the field that quantify the reading of a relevant optical instrument or the electromagnetic energy budget. It is generally believed that time-harmonic Maxwell’s equations can accurately describe elastic electromagnetic scattering by macroscopic particulate media that change in time much more slowly than the incident electromagnetic field. However, direct solutions of these equations for discrete random media had been impracticable until quite recently. This has led to a widespread use of various phenomenological approaches in situations when their very applicability can be questioned. Recently, however, a new branch of physical optics has emerged wherein electromagnetic scattering by discrete and discretely heterogeneous random media is modeled directly by using analytical or numerically exact computer solutions of the Maxwell equations. Therefore, the main objective of this Report is to formulate the general theoretical framework of electromagnetic scattering by discrete random media rooted in the Maxwell–Lorentz electromagnetics and discuss its immediate analytical and numerical consequences. Starting from the microscopic Maxwell–Lorentz equations, we trace the development

  1. First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media

    International Nuclear Information System (INIS)

    Mishchenko, Michael I.; Dlugach, Janna M.; Yurkin, Maxim A.; Bi, Lei; Cairns, Brian; Liu, Li; Panetta, R. Lee; Travis, Larry D.; Yang, Ping; Zakharova, Nadezhda T.

    2016-01-01

    A discrete random medium is an object in the form of a finite volume of a vacuum or a homogeneous material medium filled with quasi-randomly and quasi-uniformly distributed discrete macroscopic impurities called small particles. Such objects are ubiquitous in natural and artificial environments. They are often characterized by analyzing theoretically the results of laboratory, in situ, or remote-sensing measurements of the scattering of light and other electromagnetic radiation. Electromagnetic scattering and absorption by particles can also affect the energy budget of a discrete random medium and hence various ambient physical and chemical processes. In either case electromagnetic scattering must be modeled in terms of appropriate optical observables, i.e., quadratic or bilinear forms in the field that quantify the reading of a relevant optical instrument or the electromagnetic energy budget. It is generally believed that time-harmonic Maxwell’s equations can accurately describe elastic electromagnetic scattering by macroscopic particulate media that change in time much more slowly than the incident electromagnetic field. However, direct solutions of these equations for discrete random media had been impracticable until quite recently. This has led to a widespread use of various phenomenological approaches in situations when their very applicability can be questioned. Recently, however, a new branch of physical optics has emerged wherein electromagnetic scattering by discrete and discretely heterogeneous random media is modeled directly by using analytical or numerically exact computer solutions of the Maxwell equations. Therefore, the main objective of this Report is to formulate the general theoretical framework of electromagnetic scattering by discrete random media rooted in the Maxwell–Lorentz electromagnetics and discuss its immediate analytical and numerical consequences. Starting from the microscopic Maxwell–Lorentz equations, we trace the development

  2. First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media

    Energy Technology Data Exchange (ETDEWEB)

    Mishchenko, Michael I., E-mail: michael.i.mishchenko@nasa.gov [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Dlugach, Janna M. [Main Astronomical Observatory of the National Academy of Sciences of Ukraine, 27 Zabolotny Str., 03680, Kyiv (Ukraine); Yurkin, Maxim A. [Voevodsky Institute of Chemical Kinetics and Combustion, SB RAS, Institutskaya str. 3, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova 2, 630090 Novosibirsk (Russian Federation); Bi, Lei [Department of Atmospheric Sciences, Texas A& M University, College Station, TX 77843 (United States); Cairns, Brian [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Liu, Li [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Columbia University, 2880 Broadway, New York, NY 10025 (United States); Panetta, R. Lee [Department of Atmospheric Sciences, Texas A& M University, College Station, TX 77843 (United States); Travis, Larry D. [NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 (United States); Yang, Ping [Department of Atmospheric Sciences, Texas A& M University, College Station, TX 77843 (United States); Zakharova, Nadezhda T. [Trinnovim LLC, 2880 Broadway, New York, NY 10025 (United States)

    2016-05-16

    A discrete random medium is an object in the form of a finite volume of a vacuum or a homogeneous material medium filled with quasi-randomly and quasi-uniformly distributed discrete macroscopic impurities called small particles. Such objects are ubiquitous in natural and artificial environments. They are often characterized by analyzing theoretically the results of laboratory, in situ, or remote-sensing measurements of the scattering of light and other electromagnetic radiation. Electromagnetic scattering and absorption by particles can also affect the energy budget of a discrete random medium and hence various ambient physical and chemical processes. In either case electromagnetic scattering must be modeled in terms of appropriate optical observables, i.e., quadratic or bilinear forms in the field that quantify the reading of a relevant optical instrument or the electromagnetic energy budget. It is generally believed that time-harmonic Maxwell’s equations can accurately describe elastic electromagnetic scattering by macroscopic particulate media that change in time much more slowly than the incident electromagnetic field. However, direct solutions of these equations for discrete random media had been impracticable until quite recently. This has led to a widespread use of various phenomenological approaches in situations when their very applicability can be questioned. Recently, however, a new branch of physical optics has emerged wherein electromagnetic scattering by discrete and discretely heterogeneous random media is modeled directly by using analytical or numerically exact computer solutions of the Maxwell equations. Therefore, the main objective of this Report is to formulate the general theoretical framework of electromagnetic scattering by discrete random media rooted in the Maxwell–Lorentz electromagnetics and discuss its immediate analytical and numerical consequences. Starting from the microscopic Maxwell–Lorentz equations, we trace the development

  3. First-Principles Modeling Of Electromagnetic Scattering By Discrete and Discretely Heterogeneous Random Media

    Science.gov (United States)

    Mishchenko, Michael I.; Dlugach, Janna M.; Yurkin, Maxim A.; Bi, Lei; Cairns, Brian; Liu, Li; Panetta, R. Lee; Travis, Larry D.; Yang, Ping; Zakharova, Nadezhda T.

    2016-01-01

    A discrete random medium is an object in the form of a finite volume of a vacuum or a homogeneous material medium filled with quasi-randomly and quasi-uniformly distributed discrete macroscopic impurities called small particles. Such objects are ubiquitous in natural and artificial environments. They are often characterized by analyzing theoretically the results of laboratory, in situ, or remote-sensing measurements of the scattering of light and other electromagnetic radiation. Electromagnetic scattering and absorption by particles can also affect the energy budget of a discrete random medium and hence various ambient physical and chemical processes. In either case electromagnetic scattering must be modeled in terms of appropriate optical observables, i.e., quadratic or bilinear forms in the field that quantify the reading of a relevant optical instrument or the electromagnetic energy budget. It is generally believed that time-harmonic Maxwell's equations can accurately describe elastic electromagnetic scattering by macroscopic particulate media that change in time much more slowly than the incident electromagnetic field. However, direct solutions of these equations for discrete random media had been impracticable until quite recently. This has led to a widespread use of various phenomenological approaches in situations when their very applicability can be questioned. Recently, however, a new branch of physical optics has emerged wherein electromagnetic scattering by discrete and discretely heterogeneous random media is modeled directly by using analytical or numerically exact computer solutions of the Maxwell equations. Therefore, the main objective of this Report is to formulate the general theoretical framework of electromagnetic scattering by discrete random media rooted in the Maxwell- Lorentz electromagnetics and discuss its immediate analytical and numerical consequences. Starting from the microscopic Maxwell-Lorentz equations, we trace the development of

  4. Regional hyperthermia combined with radiotherapy for locally advanced non-small cell lung cancers. A multi-institutional prospective randomized trial of the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    Mitsumori, Michihide; Hiraoka, Masahiro; Zeng Zhifan; Oliynychenko, P.; Park, Jeong-Ho; Choi, Ihl-Bohng; Tatsuzaki, Hideo; Tanaka, Yoshiaki

    2007-01-01

    An International Atomic Energy Agency (IAEA)-sponsored, multi-institutional prospective randomized trial was conducted to clarify whether the combination of hyperthermia and radiotherapy improves the local response rate of locally advanced non-small cell lung cancer (NSCLC) compared with that obtained by radiotherapy alone. Between October 1998 and April 2002, 80 patients with locally advanced NSCLC were randomized to receive either standard radiation therapy alone (RT) or radiation therapy combined with hyperthermia (RT+HT). The primary endpoint was the local response rate. The secondary endpoints were local progression-free survival and overall survival. The median follow-up period was 204 days for all patients and 450 days for surviving patients. There were no significant differences between the two arms with regard to local response rate (P=0.49) or overall survival rate (P=0.868). However, local progression-free survival was significantly better in the RT+HT arm (P=0.036). Toxicity was generally mild and no grade 3 late toxicity was observed in either arm. Although improvement of local progression-free survival was observed in the RT+HT arm, this prospective randomized study failed to show any substantial benefit from the addition of hyperthermia to radiotherapy in the treatment of locally advanced NSCLC. (author)

  5. Training specialists to write appropriate reply letters to general practitioners about patients with medically unexplained physical symptoms; A cluster-randomized trial.

    NARCIS (Netherlands)

    A. Weiland (Anne); A.H. Blankenstein (Annette); M.H.A. Willems; J.L.C.M. van Saase (Jan); P.L.A. van Daele (Paul); H.T. van der Molen (Henk); G.B. Langbroek (Ginger B.); A. Bootsma (Aart); E.M. Vriens (Els M.); A. Oberndorff-Klein Woolthuis (Ardi); R. Vernhout (Rene); L.R. Arends (Lidia)

    2015-01-01

    textabstractObjective: To evaluate effects of a communication training for specialists on the quality of their reply letters to general practitioners (GPs) about patients with medically unexplained physical symptoms (MUPS). Methods: Before randomization, specialists included ≤3 MUPS patients in a

  6. Energy, economy and equity interactions in a CGE [Computable General Equilibrium] model for Pakistan

    International Nuclear Information System (INIS)

    Naqvi, Farzana

    1997-01-01

    In the last three decades, Computable General Equilibrium modelling has emerged as an established field of applied economics. This book presents a CGE model developed for Pakistan with the hope that it will lay down a foundation for application of general equilibrium modelling for policy formation in Pakistan. As the country is being driven swiftly to become an open market economy, it becomes vital to found out the policy measures that can foster the objectives of economic planning, such as social equity, with the minimum loss of the efficiency gains from the open market resource allocations. It is not possible to build a model for practical use that can do justice to all sectors of the economy in modelling of their peculiar features. The CGE model developed in this book focuses on the energy sector. Energy is considered as one of the basic needs and an essential input to economic growth. Hence, energy policy has multiple criteria to meet. In this book, a case study has been carried out to analyse energy pricing policy in Pakistan using this CGE model of energy, economy and equity interactions. Hence, the book also demonstrates how researchers can model the fine details of one sector given the core structure of a CGE model. (UK)

  7. General theory of excitation energy transfer in donor-mediator-acceptor systems.

    Science.gov (United States)

    Kimura, Akihiro

    2009-04-21

    General theory of the excitation energy transfer (EET) in the case of donor-mediator-acceptor system was constructed by using generalized master equation (GME). In this theory, we consider the direct and indirect transitions in the EET consistently. Hence, our theory includes the quantum mechanical interference between the direct and indirect transitions automatically. Memory functions in the GME were expressed by the overlap integrals among the time-dependent emission spectrum of the donor, the absorption spectrum of the mediator, the time-dependent emission spectrum of the mediator, and the absorption spectrum of the acceptor. In the Markov limit of the memory functions, we obtained the rate of EET which consists of three terms due to the direct transition, the indirect transition, and the interference between them. We found that the interference works effectively in the limit of slow thermalization at the intermediate state. The formula of EET rate in this limit was expressed by the convolution of the EET interaction and optical spectra. The interference effect strongly depends on the width of the absorption spectrum of mediator molecule and the energy gap between the donor and the mediator molecules.

  8. A study of the linear free energy model for DNA structures using the generalized Hamiltonian formalism

    Energy Technology Data Exchange (ETDEWEB)

    Yavari, M., E-mail: yavari@iaukashan.ac.ir [Islamic Azad University, Kashan Branch (Iran, Islamic Republic of)

    2016-06-15

    We generalize the results of Nesterenko [13, 14] and Gogilidze and Surovtsev [15] for DNA structures. Using the generalized Hamiltonian formalism, we investigate solutions of the equilibrium shape equations for the linear free energy model.

  9. Electrostatic energy harvesting device with dual resonant structure for wideband random vibration sources at low frequency.

    Science.gov (United States)

    Zhang, Yulong; Wang, Tianyang; Zhang, Ai; Peng, Zhuoteng; Luo, Dan; Chen, Rui; Wang, Fei

    2016-12-01

    In this paper, we present design and test of a broadband electrostatic energy harvester with a dual resonant structure, which consists of two cantilever-mass subsystems each with a mass attached at the free edge of a cantilever. Comparing to traditional devices with single resonant frequency, the proposed device with dual resonant structure can resonate at two frequencies. Furthermore, when one of the cantilever-masses is oscillating at resonance, the vibration amplitude is large enough to make it collide with the other mass, which provides strong mechanical coupling between the two subsystems. Therefore, this device can harvest a decent power output from vibration sources at a broad frequency range. During the measurement, continuous power output up to 6.2-9.8 μW can be achieved under external vibration amplitude of 9.3 m/s 2 at a frequency range from 36.3 Hz to 48.3 Hz, which means the bandwidth of the device is about 30% of the central frequency. The broad bandwidth of the device provides a promising application for energy harvesting from the scenarios with random vibration sources. The experimental results indicate that with the dual resonant structure, the vibration-to-electricity energy conversion efficiency can be improved by 97% when an external random vibration with a low frequency filter is applied.

  10. Generalized Gaussian Error Calculus

    CERN Document Server

    Grabe, Michael

    2010-01-01

    For the first time in 200 years Generalized Gaussian Error Calculus addresses a rigorous, complete and self-consistent revision of the Gaussian error calculus. Since experimentalists realized that measurements in general are burdened by unknown systematic errors, the classical, widespread used evaluation procedures scrutinizing the consequences of random errors alone turned out to be obsolete. As a matter of course, the error calculus to-be, treating random and unknown systematic errors side by side, should ensure the consistency and traceability of physical units, physical constants and physical quantities at large. The generalized Gaussian error calculus considers unknown systematic errors to spawn biased estimators. Beyond, random errors are asked to conform to the idea of what the author calls well-defined measuring conditions. The approach features the properties of a building kit: any overall uncertainty turns out to be the sum of a contribution due to random errors, to be taken from a confidence inter...

  11. Energy eigenvalues and squeezing properties of general systems of coupled quantum anharmonic oscillators

    International Nuclear Information System (INIS)

    Chung, N. N.; Chew, L. Y.

    2007-01-01

    We have generalized the two-step approach to the solution of systems of N coupled quantum anharmonic oscillators. By using the squeezed vacuum state of each individual oscillator, we construct the tensor product state, and obtain the optimal squeezed vacuum product state through energy minimization. We then employ this optimal state and its associated bosonic operators to define a basis set to construct the Heisenberg matrix. The diagonalization of the matrix enables us to obtain the energy eigenvalues of the coupled oscillators. In particular, we have applied our formalism to determine the eigenenergies of systems of two coupled quantum anharmonic oscillators perturbed by a general polynomial potential, as well as three and four coupled systems. Furthermore, by performing a first-order perturbation analysis about the optimal squeezed vacuum product state, we have also examined into the squeezing properties of two coupled oscillator systems

  12. f(R in Holographic and Agegraphic Dark Energy Models and the Generalized Uncertainty Principle

    Directory of Open Access Journals (Sweden)

    Barun Majumder

    2013-01-01

    Full Text Available We studied a unified approach with the holographic, new agegraphic, and f(R dark energy model to construct the form of f(R which in general is responsible for the curvature driven explanation of the very early inflation along with presently observed late time acceleration. We considered the generalized uncertainty principle in our approach which incorporated the corrections in the entropy-area relation and thereby modified the energy densities for the cosmological dark energy models considered. We found that holographic and new agegraphic f(R gravity models can behave like phantom or quintessence models in the spatially flat FRW universe. We also found a distinct term in the form of f(R which goes as R 3 / 2 due to the consideration of the GUP modified energy densities. Although the presence of this term in the action can be important in explaining the early inflationary scenario, Capozziello et al. recently showed that f(R ~ R 3 / 2 leads to an accelerated expansion, that is, a negative value for the deceleration parameter q which fits well with SNeIa and WMAP data.

  13. Generalized Least Energy of Separation for Desalination and Other Chemical Separation Processes

    Directory of Open Access Journals (Sweden)

    Karan H. Mistry

    2013-05-01

    Full Text Available Increasing global demand for fresh water is driving the development and implementation of a wide variety of seawater desalination technologies driven by different combinations of heat, work, and chemical energy. This paper develops a consistent basis for comparing the energy consumption of such technologies using Second Law efficiency. The Second Law efficiency for a chemical separation process is defined in terms of the useful exergy output, which is the minimum least work of separation required to extract a unit of product from a feed stream of a given composition. For a desalination process, this is the minimum least work of separation for producing one kilogram of product water from feed of a given salinity. While definitions in terms of work and heat input have been proposed before, this work generalizes the Second Law efficiency to allow for systems that operate on a combination of energy inputs, including fuel. The generalized equation is then evaluated through a parametric study considering work input, heat inputs at various temperatures, and various chemical fuel inputs. Further, since most modern, large-scale desalination plants operate in cogeneration schemes, a methodology for correctly evaluating Second Law efficiency for the desalination plant based on primary energy inputs is demonstrated. It is shown that, from a strictly energetic point of view and based on currently available technology, cogeneration using electricity to power a reverse osmosis system is energetically superior to thermal systems such as multiple effect distillation and multistage flash distillation, despite the very low grade heat input normally applied in those systems.

  14. How the removal of energy subsidy affects general price in China: A study based on input–output model

    International Nuclear Information System (INIS)

    Jiang, Zhujun; Tan, Jijun

    2013-01-01

    In China, most energy prices are controlled by the government and are under-priced, which means energy subsidies existing. Reforming energy subsidies have important implications for sustainable development through their effects on energy price, energy use and CO 2 emission. This paper applies a price-gap approach to estimate China's fossil-fuel related subsidies with the consideration of the external cost. Results indicate that the magnitude of subsidies amounted to CNY 1214.24 billion in 2008, equivalent to 4.04% of GDP of that year. Subsidies for oil products are the largest, followed by subsidies for the coal and electricity. Furthermore, an input–output model is used to analyze the impacts of energy subsidies reform on different industries and general price indexes. The findings show that removal of energy subsidies will have significant impact on energy-intensive industry, and consequently push up the general price level, yet with a small variation. Removing oil products subsidies will have the largest impact, followed by electricity, coal and natural gas. However, no matter which energy price increases, PPI is always the most affected, then GDP deflator, with CPI being the least. Corresponding compensation measures should be accordingly designed to offset the negative impact caused by energy subsidies reform. - Highlights: • China's fossil-fuel subsidies were CNY 1214.24 billion in 2008 including external cost. • Removing energy subsidies will have the largest impact on energy-intensity industry. • Removal of oil products subsidies will have the largest impact. • The effect of removing energy subsidies on general price is: PPI>GDP deflator>CPI

  15. Randomized Lagrangian Relaxation and their contribution to the development of automated electricity markets for distributed energy resources

    International Nuclear Information System (INIS)

    Ruthe, Sebastian

    2015-01-01

    The ongoing shift towards decentralized power systems and the related rapidly growing number of decentralized energy resources (DER) like wind- and PV-units, CHP-units, storage devices and shiftable loads requires new information systems and control algorithms in order to pland and optimize the commitment of DER in line with the conventional generation system. In this context the paradigm of market based control derived from the Lagrangian relaxation of the unit commitment problem represents a promising solution approach to build highly scalable distributed systems able to perform this task within the required time limits. Market based control approaches typically achieve high quality solutions and protect the private data of the controlled units. However in case of DER with discontinuous utility functions market based control approaches suffer under the problem of ''joint commitment'', which may lead to a divergence of the iterative solution algorithm resulting in highly cost inefficient solutions. This thesis introduces a new concept of randomizing the Lagrangian multipliers to spread the individual commitment thresholds of DER thereby mitigating th negative effects of ''joint commitments''. Based on the randomized solution approach different boundaries for the solution quality regarding the overall energy production costs and the equilibrium constraints are established. Furthermore it is shown how the developed approach can be utilized to build new scalable information systems for future energy markets and their interfaces to the existing energy markets.

  16. Energy expenditure in people with transtibial amputation walking with crossover and energy storing prosthetic feet: A randomized within-subject study.

    Science.gov (United States)

    McDonald, Cody L; Kramer, Patricia A; Morgan, Sara J; Halsne, Elizabeth G; Cheever, Sarah M; Hafner, Brian J

    2018-05-01

    Energy storing feet are unable to reduce the energy required for normal locomotion among people with transtibial amputation. Crossover feet, which incorporate aspects of energy storing and running specific feet, are designed to maximize energy return while providing stability for everyday activities. Do crossover prosthetic feet reduce the energy expenditure of walking across a range of speeds, when compared with energy storing feet among people with transtibial amputation due to non-dysvascular causes? A randomized within-subject study was conducted with a volunteer sample of twenty-seven adults with unilateral transtibial amputation due to non-dysvascular causes. Participants were fit with two prostheses. One had an energy storing foot (Össur Variflex) and the other a crossover foot (Össur Cheetah Xplore). Other components, including sockets, suspension, and interface were standardized. Energy expenditure was measured with a portable respirometer (Cosmed K4b2) while participants walked on a treadmill at self-selected slow, comfortable, and fast speeds with each prosthesis. Gross oxygen consumption rates (VO 2  ml/min) were compared between foot conditions. Energy storing feet were used as the baseline condition because they are used by most people with a lower limb prosthesis. Analyses were performed to identify people who may benefit from transition to crossover feet. On average, participants had lower oxygen consumption in the crossover foot condition compared to the energy storing foot condition at each self-selected walking speed, but this difference was not statistically significant. Participants with farther six-minute walk test distances, higher daily step counts, and higher Medicare Functional Classification Levels at baseline were more likely to use less energy in the crossover foot. Crossover feet may be most beneficial for people with higher activity levels and physical fitness. Further research is needed to examine the effect of crossover feet on

  17. Log-correlated random-energy models with extensive free-energy fluctuations: Pathologies caused by rare events as signatures of phase transitions

    Science.gov (United States)

    Cao, Xiangyu; Fyodorov, Yan V.; Le Doussal, Pierre

    2018-02-01

    We address systematically an apparent nonphysical behavior of the free-energy moment generating function for several instances of the logarithmically correlated models: the fractional Brownian motion with Hurst index H =0 (fBm0) (and its bridge version), a one-dimensional model appearing in decaying Burgers turbulence with log-correlated initial conditions and, finally, the two-dimensional log-correlated random-energy model (logREM) introduced in Cao et al. [Phys. Rev. Lett. 118, 090601 (2017), 10.1103/PhysRevLett.118.090601] based on the two-dimensional Gaussian free field with background charges and directly related to the Liouville field theory. All these models share anomalously large fluctuations of the associated free energy, with a variance proportional to the log of the system size. We argue that a seemingly nonphysical vanishing of the moment generating function for some values of parameters is related to the termination point transition (i.e., prefreezing). We study the associated universal log corrections in the frozen phase, both for logREMs and for the standard REM, filling a gap in the literature. For the above mentioned integrable instances of logREMs, we predict the nontrivial free-energy cumulants describing non-Gaussian fluctuations on the top of the Gaussian with extensive variance. Some of the predictions are tested numerically.

  18. Generalized Riemann zeta-function regularization and Casimir energy for a piecewise uniform string

    International Nuclear Information System (INIS)

    Li Xinzhou; Shi Xin; Zhang Jianzu.

    1990-12-01

    The generalized zeta-function techniques will be utilized to investigate the Casimir energy for the transverse oscillations of a piecewise uniform closed string. We find that zeta-function regularization method can lead straightforwardly to a correct result. (author). 6 refs

  19. 47 CFR 1.1602 - Designation for random selection.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Designation for random selection. 1.1602 Section 1.1602 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Random Selection Procedures for Mass Media Services General Procedures § 1.1602 Designation for random selection...

  20. Energy information systems: a general overview

    International Nuclear Information System (INIS)

    Sen, B.K.

    1991-01-01

    The unprecedented energy crises that engulfed the world in early 1970s brought about a spurt in energy research all over the world, which in turn caused the rapid growth of literature in the field. In order to achieve effective bibliographical control, proper dissemination of information, and rapid access to the desired document, energy information systems of diverse scope came into being. The paper describes the special features of several information systems like (i) International Nuclear Information Systems, which covers world literature on nuclear science and technology (ii) Energy Information Services which takes cares of energy information transfer among the Commonwealth countries of the Asia and Pacific region; (ii) Information Network on New Energy Sources and Technologies for Asia And Pacific. This system is being developed to ensure smooth energy information transfer amongst non-commonwealth countries of Asia and the Pacific. (author)

  1. Highly efficient hybrid energy generator: coupled organic photovoltaic device and randomly oriented electrospun poly(vinylidene fluoride) nanofiber.

    Science.gov (United States)

    Park, Boongik; Lee, Kihwan; Park, Jongjin; Kim, Jongmin; Kim, Ohyun

    2013-03-01

    A hybrid architecture consisting of an inverted organic photovoltaic device and a randomly-oriented electrospun PVDF piezoelectric device was fabricated as a highly-efficient energy generator. It uses the inverted photovoltaic device with coupled electrospun PVDF nanofibers as tandem structure to convert solar and mechanical vibrations energy to electricity simultaneously or individually. The power conversion efficiency of the photovoltaic device was also significantly improved up to 4.72% by optimized processes such as intrinsic ZnO, MoO3 and active layer. A simple electrospinning method with the two electrode technique was adopted to achieve a high voltage of - 300 mV in PVDF piezoelectric fibers. Highly-efficient HEG using voltage adder circuit provides the conceptual possibility of realizing multi-functional energy generator whenever and wherever various energy sources are available.

  2. A Correction of Random Incidence Absorption Coefficients for the Angular Distribution of Acoustic Energy under Measurement Conditions

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2009-01-01

    Most acoustic measurements are based on an assumption of ideal conditions. One such ideal condition is a diffuse and reverberant field. In practice, a perfectly diffuse sound field cannot be achieved in a reverberation chamber. Uneven incident energy density under measurement conditions can cause...... discrepancies between the measured value and the theoretical random incidence absorption coefficient. Therefore the angular distribution of the incident acoustic energy onto an absorber sample should be taken into account. The angular distribution of the incident energy density was simulated using the beam...... tracing method for various room shapes and source positions. The averaged angular distribution is found to be similar to a Gaussian distribution. As a result, an angle-weighted absorption coefficient was proposed by considering the angular energy distribution to improve the agreement between...

  3. Bi-resonant structure with piezoelectric PVDF films for energy harvesting from random vibration sources at low frequency

    DEFF Research Database (Denmark)

    Liang, Shanshan; Crovetto, Andrea; Peng, Zhuoteng

    2016-01-01

    and experiments with piezoelectric elements show that the energy harvesting device with the bi-resonant structure can generate higher power output than that of the sum of the two separate devices from random vibration sources at low frequency, and hence significantly improves the vibration-to- electricity......This paper reports on a bi-resonant structure of piezoelectric PVDF films energy harvester (PPEH), which consists of two cantilevers with resonant frequencies of 15 Hz and 22 Hz. With increased acceleration, the vibration amplitudes of the two cantilever-mass structures are increased and collision...

  4. 47 CFR 1.1603 - Conduct of random selection.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Conduct of random selection. 1.1603 Section 1.1603 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Random Selection Procedures for Mass Media Services General Procedures § 1.1603 Conduct of random selection. The...

  5. A Randomized Controlled Trial of Cognitive-Behavioral Therapy for Generalized Anxiety Disorder with Integrated Techniques from Emotion-Focused and Interpersonal Therapies

    Science.gov (United States)

    Newman, Michelle G.; Castonguay, Louis G.; Borkovec, Thomas D.; Fisher, Aaron J.; Boswell, James F.; Szkodny, Lauren E.; Nordberg, Samuel S.

    2011-01-01

    Objective: Recent models suggest that generalized anxiety disorder (GAD) symptoms may be maintained by emotional processing avoidance and interpersonal problems. Method: This is the first randomized controlled trial to test directly whether cognitive-behavioral therapy (CBT) could be augmented with the addition of a module targeting interpersonal…

  6. Decaying states as complex energy eigenvectors in generalized quantum mechanics

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Chiu, C.B.; Gorini, V.

    1977-04-01

    The problem of particle decay is reexamined within the Hamiltonian formalism. By deforming contours of integration, the survival amplitude is expressed as a sum of purely exponential contributions arising from the simple poles of the resolvent on the second sheet plus a background integral along a complex contour GAMMA running below the location of the poles. One observes that the time dependence of the survival amplitude in the small time region is strongly correlated to the asymptotic behaviour of the energy spectrum of the system; one computes the small time behavior of the survival amplitude for a wide variety of asymptotic behaviors. In the special case of the Lee model, using a formal procedure of analytic continuation, it is shown that a complete set of complex energy eigenvectors of the Hamiltonian can be associated with the poles of the resolvent of the background contour GAMMA. These poles and points along GAMMA correspond to the discrete and the continuum states respectively. In this context, each unstable particle is associated with a well defined object, which is a discrete generalized eigenstate of the Hamiltonian having a complex eigenvalue, with its real and negative imaginary parts being the mass and half width of the particle respectively. Finally, one briefly discusses the analytic continuation of the scattering amplitude within this generalized scheme, and notes the appearance of ''redundant poles'' which do not correspond to discrete solutions of the modified eigenvalue problem

  7. General Algorithm (High level)

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. General Algorithm (High level). Iteratively. Use Tightness Property to remove points of P1,..,Pi. Use random sampling to get a Random Sample (of enough points) from the next largest cluster, Pi+1. Use the Random Sampling Procedure to approximate ci+1 using the ...

  8. The energy and the linear momentum of space-times in general relativity

    International Nuclear Information System (INIS)

    Schoen, R.; Yau, S.T.

    1981-01-01

    We extend our previous proof of the positive mass conjecture to allow a more general asymptotic condition proposed by York. Hence we are able to prove that for an isolated physical system, the energy momentum four vector is a future timelike vector unless the system is trivial. Furthermore, we allow singularities of the type of black holes. (orig.)

  9. A generalized window energy rating system for typical office buildings

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Cheng; Chen, Tingyao; Yang, Hongxing; Chung, Tse-ming [Research Center for Building Environmental Engineering, Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong (China)

    2010-07-15

    Detailed computer simulation programs require lengthy inputs, and cannot directly provide an insight to relationship between the window energy performance and the key window design parameters. Hence, several window energy rating systems (WERS) for residential houses and small buildings have been developed in different countries. Many studies showed that utilization of daylight through elaborate design and operation of windows leads to significant energy savings in both cooling and lighting in office buildings. However, the current WERSs do not consider daylighting effect, while most of daylighting analyses do not take into account the influence of convective and infiltration heat gains. Therefore, a generalized WERS for typical office buildings has been presented, which takes all primary influence factors into account. The model includes embodied and operation energy uses and savings by a window to fully reflect interactions among the influence parameters. Reference locations selected for artificial lighting and glare control in the current common simulation practice may cause uncompromised conflicts, which could result in over- or under-estimated energy performance. Widely used computer programs, DOE2 and ADELINE, for hourly daylighting and cooling simulations have their own weaknesses, which may result in unrealistic or inaccurate results. An approach is also presented for taking the advantages of the both programs and avoiding their weaknesses. The model and approach have been applied to a typical office building of Hong Kong as an example to demonstrate how a WERS in a particular location can be established and how well the model can work. The energy effect of window properties, window-to-wall ratio (WWR), building orientation and lighting control strategies have been analyzed, and can be indicated by the localized WERS. An application example also demonstrates that the algebraic WERS derived from simulation results can be easily used for the optimal design of

  10. Analysis of random point images with the use of symbolic computation codes and generalized Catalan numbers

    Science.gov (United States)

    Reznik, A. L.; Tuzikov, A. V.; Solov'ev, A. A.; Torgov, A. V.

    2016-11-01

    Original codes and combinatorial-geometrical computational schemes are presented, which are developed and applied for finding exact analytical formulas that describe the probability of errorless readout of random point images recorded by a scanning aperture with a limited number of threshold levels. Combinatorial problems encountered in the course of the study and associated with the new generalization of Catalan numbers are formulated and solved. An attempt is made to find the explicit analytical form of these numbers, which is, on the one hand, a necessary stage of solving the basic research problem and, on the other hand, an independent self-consistent problem.

  11. How to be smart and energy efficient: A general discussion on thermochromic windows

    Science.gov (United States)

    Long, Linshuang; Ye, Hong

    2014-01-01

    A window is a unique element in a building because of its simultaneous properties of being “opaque” to inclement weather yet transparent to the observer. However, these unique features make the window an element that can reduce the energy efficiency of buildings. A thermochromic window is a type of smart window whose solar radiation properties vary with temperature. It is thought that the solar radiation gain of a room can be intelligently regulated through the use of thermochromic windows, resulting in lower energy consumption than with standard windows. Materials scientists have made many efforts to improve the performance of thermochromic materials. Despite these efforts, fundamental problems continue to confront us. How should a “smart” window behave? Is a “smart” window really the best candidate for energy-efficient applications? What is the relationship between smartness and energy performance? To answer these questions, a general discussion of smartness and energy performance is provided. PMID:25233891

  12. Comparison of maternal and fetal outcomes among patients undergoing cesarean section under general and spinal anesthesia: a randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Anıl İçel Saygı

    Full Text Available CONTEXT AND OBJECTIVE: As the rates of cesarean births have increased, the type of cesarean anesthesia has gained importance. Here, we aimed to compare the effects of general and spinal anesthesia on maternal and fetal outcomes in term singleton cases undergoing elective cesarean section.DESIGN AND SETTING: Prospective randomized controlled clinical trial in a tertiary-level public hospital.METHODS: Our study was conducted on 100 patients who underwent cesarean section due to elective indications. The patients were randomly divided into general anesthesia (n = 50 and spinal anesthesia (n = 50 groups. The maternal pre and postoperative hematological results, intra and postoperative hemodynamic parameters and perinatal results were compared between the groups.RESULTS: Mean bowel sounds (P = 0.036 and gas discharge time (P = 0.049 were significantly greater and 24th hour hemoglobin difference values (P = 0.001 were higher in the general anesthesia group. The mean hematocrit and hemoglobin values at the 24th hour (P = 0.004 and P < 0.001, respectively, urine volume at the first postoperative hour (P < 0.001 and median Apgar score at the first minute (P < 0.0005 were significantly higher, and the time that elapsed until the first requirement for analgesia was significantly longer (P = 0.042, in the spinal anesthesia group.CONCLUSION: In elective cases, spinal anesthesia is superior to general anesthesia in terms of postoperative comfort. In pregnancies with a risk of fetal distress, it would be appropriate to prefer spinal anesthesia by taking the first minute Apgar score into account.

  13. The effectiveness of manual therapy, physiotherapy, and treatment by the general practitioner for nonspecific back and neck complaints : A randomized clinical trial

    NARCIS (Netherlands)

    Koes, B. W.; Bouter, L. M.; Van Mameren, H.; Essers, A. H.; Verstegen, G. M.; Hofhuizen, D. M.; Houben, J. P.; Knipschild, P. G.

    1992-01-01

    In a randomized trial, the effectiveness of manual therapy, physiotherapy, continued treatment by the general practitioner, and placebo therapy (detuned ultrasound and detuned short-wave diathermy) were compared for patients (n = 256) with nonspecific back and neck complaints lasting for at least 6

  14. Analysis of Single-Server Queue with Phase-Type Service and Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Sergey A. Dudin

    2016-01-01

    Full Text Available We propose a queueing model suitable, for example, for modelling operation of nodes of sensor networks. The sensor node senses a random field and generates packets to be transmitted to the central node. The sensor node has a battery of a finite capacity and harvests energy during its operation from outside (using solar cells, wind turbines, piezoelectric cells, etc.. We assume that, generally speaking, service (transmission of a packet consists of a random number of phases and implementation of each phase requires a unit of energy. If the battery becomes empty, transmission is failed. To reduce the probability of forced transmission termination, we suggest that the packet can be accepted for transmission only when the number of energy units is greater than or equal to some threshold. Under quite general assumptions about the pattern of the arrival processes of packets and energy, we compute the stationary distributions of the system states and the waiting time of a packet in the system and numerically analyze performance measures of the system as functions of the threshold. Validity of Little’s formula and its counterpart is verified.

  15. Generalized hidden symmetry for low-energy hadron phsics

    International Nuclear Information System (INIS)

    Kaiser, N.; Meissner, U.G.

    1990-01-01

    We present a detailed study of an effective chiral meson lagrangian involving pseudoscalar, vector and axial-vector mesons. We employ the recently proposed technique to introduce vector and axial-vector mesons as composite gauge bosons of an extended hidden gauge symmetry of the non-linear σ-model. In particular, we write down the most general anomalous action (Wess-Zumino term) in accordance with low-energy theorems and chiral symmetry. The global flavor anomalies of QCD are given by the standard (5-dimensional) Wess-Zumino-Witten action of the pseudoscalar mesons, whereas all the processes violating natural parity for the vectors and axials are chirally (gauge) symmetric and therefore do not contribute to the Wess-Zumino anomaly equation. We find fourteen independent terms with a priori unknown (real) coefficients. We are able to fix some of these coefficients from anomalous hadronic and radiative vector/axial-vector meson decays. A comparison to the gauged Wess-Zumino action in the so-called massive Yang-Mills approach shows that both anomalous actions are indeed equivalent for a special choice of the unknown coefficients. We finally propose a realistic two-flavor chiral effective lagrangian incorporating pions, the vector mesons ρ and ω as well as the axial A 1 meson which should be used in skyrmion physics at energy scales up to about 1 GeV. (orig.)

  16. Time-frequency analysis of time-varying modulated signals based on improved energy separation by iterative generalized demodulation

    Science.gov (United States)

    Feng, Zhipeng; Chu, Fulei; Zuo, Ming J.

    2011-03-01

    Energy separation algorithm is good at tracking instantaneous changes in frequency and amplitude of modulated signals, but it is subject to the constraints of mono-component and narrow band. In most cases, time-varying modulated vibration signals of machinery consist of multiple components, and have so complicated instantaneous frequency trajectories on time-frequency plane that they overlap in frequency domain. For such signals, conventional filters fail to obtain mono-components of narrow band, and their rectangular decomposition of time-frequency plane may split instantaneous frequency trajectories thus resulting in information loss. Regarding the advantage of generalized demodulation method in decomposing multi-component signals into mono-components, an iterative generalized demodulation method is used as a preprocessing tool to separate signals into mono-components, so as to satisfy the requirements by energy separation algorithm. By this improvement, energy separation algorithm can be generalized to a broad range of signals, as long as the instantaneous frequency trajectories of signal components do not intersect on time-frequency plane. Due to the good adaptability of energy separation algorithm to instantaneous changes in signals and the mono-component decomposition nature of generalized demodulation, the derived time-frequency energy distribution has fine resolution and is free from cross term interferences. The good performance of the proposed time-frequency analysis is illustrated by analyses of a simulated signal and the on-site recorded nonstationary vibration signal of a hydroturbine rotor during a shut-down transient process, showing that it has potential to analyze time-varying modulated signals of multi-components.

  17. General theory for environmental effects on (vertical) electronic excitation energies.

    Science.gov (United States)

    Schwabe, Tobias

    2016-10-21

    Almost 70 years ago, the first theoretical model for environmental effects on electronic excitation energies has been derived. Since then, several different interpretations and refined models have been proposed for the perichromic shift of a chromophore due to its surrounding medium. Some of these models are contradictory. Here, the contributing terms are derived within the framework of long-range perturbation theory with the least approximations so far. The derivation is based on a state-specific interpretation of the interaction energies and all terms can be identified with individual properties of either the chromophore or the surroundings, respectively. Further, the much debated contribution due to transition moments coupled to the environment can be verified in the form of a non-resonant excitonic coupling to the dynamic polarizabilities in the environment. These general insights should clarify discussions and interpretations of environmental effects on electronic excitations and should foster the development of new models for the computation of these effects.

  18. Active video games and energy balance in male adolescents: a randomized crossover trial.

    Science.gov (United States)

    Gribbon, Aidan; McNeil, Jessica; Jay, Ollie; Tremblay, Mark S; Chaput, Jean-Philippe

    2015-06-01

    Active video games (AVGs) have been shown to acutely increase energy expenditure when compared with seated video games; however, the influence of AVGs on compensatory adjustments in energy intake and expenditure is largely unknown. The aim was to examine the acute effects of AVGs on energy intake and expenditure. With the use of a randomized crossover design, 26 male adolescents (mean ± SD age: 14.5 ± 1.4 y) completed three 1-h experimental conditions: resting control, seated video game play (Xbox 360; Microsoft), and AVG play (Kinect Adventures on Xbox 360) followed by an ad libitum lunch. A validated food menu was used to assess food intake immediately after the conditions and for the remainder of the day, and a dietary record was used for the subsequent 3-d period. Energy expenditure was measured by using portable indirect calorimetry throughout each experimental condition, and an accelerometer was used to assess the subsequent 3-d period. Appetite sensations were assessed by using visual analog scales at different time points during the testing day. The primary outcomes were acute (immediately after the conditions and 24-h) and short-term (3-d) energy intake and expenditure. Energy expenditure was significantly higher (~145%; P 0.49) and 3 d after the experimental conditions (~3%; P > 0.82). No significant differences were observed in absolute energy intake immediately after the conditions (~2%; P > 0.94) or in absolute energy intake 24 h (~5%; P > 0.63) and 3 d (~9%; P > 0.53) after the experimental conditions. Finally, appetite sensations were similar between conditions at all time points (P > 0.05). The increase in energy expenditure promoted by a single session of Kinect AVG play is not associated with increased food intake but is compensated for after the intervention, resulting in no measurable change in energy balance after 24 h. These results suggest that the potential of Kinect to reduce the energy gap underlying weight gain is offset within 24 h in

  19. Randomized controlled trial on promoting influenza vaccination in general practice waiting rooms.

    Directory of Open Access Journals (Sweden)

    Christophe Berkhout

    Full Text Available Most of general practitioners (GPs use advertising in their waiting rooms for patient's education purposes. Patients vaccinated against seasonal influenza have been gradually lessening. The objective of this trial was to assess the effect of an advertising campaign for influenza vaccination using posters and pamphlets in GPs' waiting rooms.Registry based 2/1 cluster randomized controlled trial, a cluster gathering the enlisted patients of 75 GPs aged over 16 years. The trial, run during the 2014-2015 influenza vaccination campaign, compared patient's awareness from being in 50 GPs' standard waiting rooms (control group versus that of waiting in 25 rooms from GPs who had received and exposed pamphlets and one poster on influenza vaccine (intervention group, in addition to standard mandatory information. The main outcome was the number of vaccination units delivered in pharmacies. Data were extracted from the SIAM-ERASME claim database of the Health Insurance Fund of Lille-Douai (France. The association between the intervention (yes/no and the main outcome was assessed through a generalized estimating equation. Seventy-five GPs enrolled 10,597 patients over 65 years or suffering from long lasting diseases (intervention/control as of 3781/6816 patients from October 15, 2014 to February 28, 2015. No difference was found regarding the number of influenza vaccination units delivered (Relative Risk (RR = 1.01; 95% Confidence interval: 0.97 to 1.05; p = 0.561.Effects of the monothematic campaign promoting vaccination against influenza using a poster and pamphlets exposed in GPs' waiting rooms could not be demonstrated.

  20. Development of a global computable general equilibrium model coupled with detailed energy end-use technology

    International Nuclear Information System (INIS)

    Fujimori, Shinichiro; Masui, Toshihiko; Matsuoka, Yuzuru

    2014-01-01

    Highlights: • Detailed energy end-use technology information is considered within a CGE model. • Aggregated macro results of the detailed model are similar to traditional model. • The detailed model shows unique characteristics in the household sector. - Abstract: A global computable general equilibrium (CGE) model integrating detailed energy end-use technologies is developed in this paper. The paper (1) presents how energy end-use technologies are treated within the model and (2) analyzes the characteristics of the model’s behavior. Energy service demand and end-use technologies are explicitly considered, and the share of technologies is determined by a discrete probabilistic function, namely a Logit function, to meet the energy service demand. Coupling with detailed technology information enables the CGE model to have more realistic representation in the energy consumption. The proposed model in this paper is compared with the aggregated traditional model under the same assumptions in scenarios with and without mitigation roughly consistent with the two degree climate mitigation target. Although the results of aggregated energy supply and greenhouse gas emissions are similar, there are three main differences between the aggregated and the detailed technologies models. First, GDP losses in mitigation scenarios are lower in the detailed technology model (2.8% in 2050) as compared with the aggregated model (3.2%). Second, price elasticity and autonomous energy efficiency improvement are heterogeneous across regions and sectors in the detailed technology model, whereas the traditional aggregated model generally utilizes a single value for each of these variables. Third, the magnitude of emissions reduction and factors (energy intensity and carbon factor reduction) related to climate mitigation also varies among sectors in the detailed technology model. The household sector in the detailed technology model has a relatively higher reduction for both energy

  1. Impact of the European Randomized Study of Screening for Prostate Cancer (ERSPC) on prostate-specific antigen (PSA) testing by Dutch general practitioners

    NARCIS (Netherlands)

    Van der Meer, Saskia; Kollen, Boudewijn J.; Hirdes, Willem H.; Steffens, Martijn G.; Hoekstra-Weebers, Josette E. H. M.; Nijman, Rien M.; Blanker, Marco H.

    Objective To determine the impact of the European Randomized Study of Screening for Prostate Cancer (ERSPC) publication in 2009 on prostate-specific antigen (PSA) level testing by Dutch general practitioners (GPs) in men aged 40 years. Materials and Methods Retrospective study with a Dutch insurance

  2. Rationale and study design of PROVHILO - a worldwide multicenter randomized controlled trial on protective ventilation during general anesthesia for open abdominal surgery.

    Science.gov (United States)

    Hemmes, Sabrine N T; Severgnini, Paolo; Jaber, Samir; Canet, Jaume; Wrigge, Hermann; Hiesmayr, Michael; Tschernko, Edda M; Hollmann, Markus W; Binnekade, Jan M; Hedenstierna, Göran; Putensen, Christian; de Abreu, Marcelo Gama; Pelosi, Paolo; Schultz, Marcus J

    2011-05-06

    Post-operative pulmonary complications add to the morbidity and mortality of surgical patients, in particular after general anesthesia >2 hours for abdominal surgery. Whether a protective mechanical ventilation strategy with higher levels of positive end-expiratory pressure (PEEP) and repeated recruitment maneuvers; the "open lung strategy", protects against post-operative pulmonary complications is uncertain. The present study aims at comparing a protective mechanical ventilation strategy with a conventional mechanical ventilation strategy during general anesthesia for abdominal non-laparoscopic surgery. The PROtective Ventilation using HIgh versus LOw positive end-expiratory pressure ("PROVHILO") trial is a worldwide investigator-initiated multicenter randomized controlled two-arm study. Nine hundred patients scheduled for non-laparoscopic abdominal surgery at high or intermediate risk for post-operative pulmonary complications are randomized to mechanical ventilation with the level of PEEP at 12 cmH(2)O with recruitment maneuvers (the lung-protective strategy) or mechanical ventilation with the level of PEEP at maximum 2 cmH(2)O without recruitment maneuvers (the conventional strategy). The primary endpoint is any post-operative pulmonary complication. The PROVHILO trial is the first randomized controlled trial powered to investigate whether an open lung mechanical ventilation strategy in short-term mechanical ventilation prevents against postoperative pulmonary complications. ISRCTN: ISRCTN70332574.

  3. Random Matrix Theory of the Energy-Level Statistics of Disordered Systems at the Anderson Transition

    OpenAIRE

    Canali, C. M.

    1995-01-01

    We consider a family of random matrix ensembles (RME) invariant under similarity transformations and described by the probability density $P({\\bf H})= \\exp[-{\\rm Tr}V({\\bf H})]$. Dyson's mean field theory (MFT) of the corresponding plasma model of eigenvalues is generalized to the case of weak confining potential, $V(\\epsilon)\\sim {A\\over 2}\\ln ^2(\\epsilon)$. The eigenvalue statistics derived from MFT are shown to deviate substantially from the classical Wigner-Dyson statistics when $A

  4. A randomized trial of dialectical behavior therapy versus general psychiatric management for borderline personality disorder.

    Science.gov (United States)

    McMain, Shelley F; Links, Paul S; Gnam, William H; Guimond, Tim; Cardish, Robert J; Korman, Lorne; Streiner, David L

    2009-12-01

    The authors sought to evaluate the clinical efficacy of dialectical behavior therapy compared with general psychiatric management, including a combination of psychodynamically informed therapy and symptom-targeted medication management derived from specific recommendations in APA guidelines for borderline personality disorder. This was a single-blind trial in which 180 patients diagnosed with borderline personality disorder who had at least two suicidal or nonsuicidal self-injurious episodes in the past 5 years were randomly assigned to receive 1 year of dialectical behavior therapy or general psychiatric management. The primary outcome measures, assessed at baseline and every 4 months over the treatment period, were frequency and severity of suicidal and nonsuicidal self-harm episodes. Both groups showed improvement on the majority of clinical outcome measures after 1 year of treatment, including significant reductions in the frequency and severity of suicidal and nonsuicidal self-injurious episodes and significant improvements in most secondary clinical outcomes. Both groups had a reduction in general health care utilization, including emergency visits and psychiatric hospital days, as well as significant improvements in borderline personality disorder symptoms, symptom distress, depression, anger, and interpersonal functioning. No significant differences across any outcomes were found between groups. These results suggest that individuals with borderline personality disorder benefited equally from dialectical behavior therapy and a well-specified treatment delivered by psychiatrists with expertise in the treatment of borderline personality disorder.

  5. The patient general satisfaction of mandibular single-implant overdentures and conventional complete dentures: Study protocol for a randomized crossover trial.

    Science.gov (United States)

    Kanazawa, Manabu; Tanoue, Mariko; Miyayasu, Anna; Takeshita, Shin; Sato, Daisuke; Asami, Mari; Lam, Thuy Vo; Thu, Khaing Myat; Oda, Ken; Komagamine, Yuriko; Minakuchi, Shunsuke; Feine, Jocelyne

    2018-05-01

    Mandibular overdentures retained by a single implant placed in the midline of edentulous mandible have been reported to be more comfortable and function better than complete dentures. Although single-implant overdentures are still more costly than conventional complete dentures, there are a few studies which investigated whether mandibular single-implant overdentures are superior to complete dentures when patient general satisfaction is compared. The aim of this study is to assess patient general satisfaction with mandibular single-implant overdentures and complete dentures. This study is a randomized crossover trial to compare mandibular single-implant overdentures and complete dentures in edentulous individuals. Participant recruitment is ongoing at the time of this submission. Twenty-two participants will be recruited. New mandibular complete dentures will be fabricated. A single implant will be placed in the midline of the edentulous mandible. The mucosal surface of the complete denture around the implant will be relieved for 3 months. The participants will then be randomly allocated into 2 groups according to the order of the interventions; group 1 will receive single-implant overdentures first and will wear them for 2 months, followed by complete dentures for 2 months. Group 2 will receive the same treatments in a reverse order. After experiencing the 2 interventions, the participants will choose one of the mandibular prostheses, and yearly follow-up visits are planned for 5 years. The primary outcome of this trial is patient ratings of general satisfaction on 100 mm visual analog scales. Assessments of the prostheses and oral health-related quality of life will also be recorded as patient-reported outcomes. The secondary outcomes are cost and time for treatment. Masticatory efficiency and cognitive capacity will also be recorded. Furthermore, qualitative research will be performed to investigate the factors associated with success of these mandibular

  6. Generalized Lorenz models and their routes to chaos. II. Energy-conserving horizontal mode truncations

    International Nuclear Information System (INIS)

    Roy, D.; Musielak, Z.E.

    2007-01-01

    All attempts to generalize the three-dimensional Lorenz model by selecting higher-order Fourier modes can be divided into three categories, namely: vertical, horizontal and vertical-horizontal mode truncations. The previous study showed that the first method allowed only construction of a nine-dimensional system when the selected modes were energy-conserving. The results presented in this paper demonstrate that a five-dimensional model is the lowest-order generalized Lorenz model that can be constructed by the second method and that its route to chaos is the same as that observed in the original Lorenz model. It is shown that the onset of chaos in both systems is determined by a number of modes that describe the vertical temperature difference in a convection roll. In addition, a simple rule that allows selecting modes that conserve energy for each method is derived

  7. Positive energy theorem in generalized Kaluza-Klein theories of higher dimensions

    International Nuclear Information System (INIS)

    Moreschi, O.M.

    1983-01-01

    The technique of using spinors in the proof of positive energy theorems in 4 dimensions is extended to the case of Kaluza-Klein theories in spaces of 4 + n dimensions. First a useful presentation of generalized Kaluza-Klein theories is introduced, in which just from the observation of conformal symmetries it is possible to detect a nice splitting of the Ricci tensor into a 4-dimensional Ricci part and a Yang-Mills part, among others. Consideration of linear dependence among the symmetries is not excluded in this treatment. Relevant to the introduction of spinors, a discussion of Clifford Algebras is presented. In particular a real representation of these algebras is introduced for spaces of higher dimensions and its structure is analyzed. The Lie derivative of spinors is presented probably more clearly than in former treatments. After the introduction of these preliminary themes, a brief review of the relevant aspects of positive energy theorems in 4 dimensions is presented, followed by the extension of these ideas to the case of 5 dimensions. Here an earlier result involving gravitational mass and electromagnetic charges is improved. Finally the results are generalized to spaces of 4 + n dimensions, and a more complicated condition to be satisfied by the usual matter tensor is discovered. This procedure leads to a natural definition of invariant Yang-Mills charges, which is compared with former studies

  8. Reconstructing random media

    International Nuclear Information System (INIS)

    Yeong, C.L.; Torquato, S.

    1998-01-01

    We formulate a procedure to reconstruct the structure of general random heterogeneous media from limited morphological information by extending the methodology of Rintoul and Torquato [J. Colloid Interface Sci. 186, 467 (1997)] developed for dispersions. The procedure has the advantages that it is simple to implement and generally applicable to multidimensional, multiphase, and anisotropic structures. Furthermore, an extremely useful feature is that it can incorporate any type and number of correlation functions in order to provide as much morphological information as is necessary for accurate reconstruction. We consider a variety of one- and two-dimensional reconstructions, including periodic and random arrays of rods, various distribution of disks, Debye random media, and a Fontainebleau sandstone sample. We also use our algorithm to construct heterogeneous media from specified hypothetical correlation functions, including an exponentially damped, oscillating function as well as physically unrealizable ones. copyright 1998 The American Physical Society

  9. Hubbard-U corrected Hamiltonians for non-self-consistent random-phase approximation total-energy calculations

    DEFF Research Database (Denmark)

    Patrick, Christopher; Thygesen, Kristian Sommer

    2016-01-01

    In non-self-consistent calculations of the total energy within the random-phase approximation (RPA) for electronic correlation, it is necessary to choose a single-particle Hamiltonian whose solutions are used to construct the electronic density and noninteracting response function. Here we...... investigate the effect of including a Hubbard-U term in this single-particle Hamiltonian, to better describe the on-site correlation of 3d electrons in the transitionmetal compounds ZnS, TiO2, and NiO.We find that the RPA lattice constants are essentially independent of U, despite large changes...... in the underlying electronic structure. We further demonstrate that the non-selfconsistent RPA total energies of these materials have minima at nonzero U. Our RPA calculations find the rutile phase of TiO2 to be more stable than anatase independent of U, a result which is consistent with experiments...

  10. No-reference stereoscopic image quality measurement based on generalized local ternary patterns of binocular energy response

    International Nuclear Information System (INIS)

    Zhou, Wujie; Yu, Lu

    2015-01-01

    Perceptual no-reference (NR) quality measurement of stereoscopic images has become a challenging issue in three-dimensional (3D) imaging fields. In this article, we propose an efficient binocular quality-aware features extraction scheme, namely generalized local ternary patterns (GLTP) of binocular energy response, for general-purpose NR stereoscopic image quality measurement (SIQM). More specifically, we first construct the binocular energy response of a distorted stereoscopic image with different stimuli of amplitude and phase shifts. Then, the binocular quality-aware features are generated from the GLTP of the binocular energy response. Finally, these features are mapped to the subjective quality score of the distorted stereoscopic image by using support vector regression. Experiments on two publicly available 3D databases confirm the effectiveness of the proposed metric compared with the state-of-the-art full reference and NR metrics. (paper)

  11. The Generalized Multipole Technique for the Simulation of Low-Loss Electron Energy Loss Spectroscopy

    DEFF Research Database (Denmark)

    Kiewidt, Lars; Karamehmedovic, Mirza

    2018-01-01

    In this study, we demonstrate the use of a Generalized Multipole Technique (GMT) to simulate low-loss Electron Energy Loss Spectroscopy (EELS) spectra of isolated spheriodal nanoparticles. The GMT provides certain properties, such as semi-analytical description of the electromagnetic fields...

  12. General Relativity and Energy

    Science.gov (United States)

    Jackson, A. T.

    1973-01-01

    Reviews theoretical and experimental fundamentals of Einstein's theory of general relativity. Indicates that recent development of the theory of the continually expanding universe may lead to revision of the space-time continuum of the finite and unbounded universe. (CC)

  13. Simulation of quantum systems with random walks: A new algorithm for charged systems

    International Nuclear Information System (INIS)

    Ceperley, D.

    1983-01-01

    Random walks with branching have been used to calculate exact properties of the ground state of quantum many-body systems. In this paper, a more general Green's function identity is derived which relates the potential energy, a trial wavefunction, and a trial density matrix to the rules of a branched random walk. It is shown that an efficient algorithm requires a good trial wavefunction, a good trial density matrix, and a good sampling of this density matrix. An accurate density matrix is constructed for Coulomb systems using the path integral formula. The random walks from this new algorithm diffuse through phase space an order of magnitude faster than the previous Green's Function Monte Carlo method. In contrast to the simple diffusion Monte Carlo algorithm, it is exact method. Representative results are presented for several molecules

  14. Effectiveness of energy conservation management on fatigue and participation in multiple sclerosis: A randomized controlled trial.

    Science.gov (United States)

    Blikman, Lyan Jm; van Meeteren, Jetty; Twisk, Jos Wr; de Laat, Fred Aj; de Groot, Vincent; Beckerman, Heleen; Stam, Henk J; Bussmann, Johannes Bj

    2017-10-01

    Fatigue is a frequently reported and disabling symptom in multiple sclerosis (MS). To investigate the effectiveness of an individual energy conservation management (ECM) intervention on fatigue and participation in persons with primary MS-related fatigue. A total of 86 severely fatigued and ambulatory adults with a definite diagnosis of MS were randomized in a single-blind, two-parallel-arm randomized clinical trial to the ECM group or the information-only control group in outpatient rehabilitation departments. Blinded assessments were carried out at baseline and at 8, 16, 26 and 52 weeks after randomization. Primary outcomes were fatigue (fatigue subscale of Checklist Individual Strength - CIS20r) and participation (Impact on Participation and Autonomy scale - IPA). Modified intention-to-treat analysis was based on 76 randomized patients (ECM, n = 36; MS nurse, n=40). No significant ECM effects were found for fatigue (overall difference CIS20r between the groups = -0.81; 95% confidence interval (CI), -3.71 to 2.11) or for four out of five IPA domains. An overall unfavourable effect was found in the ECM group for the IPA domain social relations (difference between the groups = 0.19; 95% CI, 0.03 to 0.35). The individual ECM format used in this study did not reduce MS-related fatigue and restrictions in participation more than an information-only control condition.

  15. Public preferences for investments in renewable energy production and energy efficiency

    International Nuclear Information System (INIS)

    Noblet, Caroline L.; Teisl, Mario F.; Evans, Keith; Anderson, Mark W.; McCoy, Shannon; Cervone, Edmund

    2015-01-01

    In this paper we investigate the choices citizens make when asked to express willingness to support a proposed energy policy and are then compelled to allocate the program funds to either renewable energy or energy efficiency. In a survey study based on a random sample of residents of the state of Maine, USA, we find that citizens have preferences for specific types of renewable energy but these preferences do not yield significantly different allocation of investment funds between renewable energy and energy efficiency. We find that preferences are generally consistent regardless of presentation of options (i.e. limited ordering effects). Our results also indicate that personal characteristics that are understudied in the energy literature, including promotion/prevention focus and social/fiscal leanings, influence both willingness to support energy policies and also their allocation of fund choices, but in different ways. This suggests the importance of including multiple options in energy policy proposals, and that targeted messages regarding the components of such policies is key for optimal communication. - Highlights: • Support for energy policies depends on the type of renewable energy included. • Citizens chose to allocate more funds to energy efficiency than renewable energies. • Promotion or prevention focus impacts support for policy and allocation decisions. • Social and fiscal leanings impact support and allocation, in different ways.

  16. Virial expansion for almost diagonal random matrices

    Science.gov (United States)

    Yevtushenko, Oleg; Kravtsov, Vladimir E.

    2003-08-01

    Energy level statistics of Hermitian random matrices hat H with Gaussian independent random entries Higeqj is studied for a generic ensemble of almost diagonal random matrices with langle|Hii|2rangle ~ 1 and langle|Hi\

  17. Diathermy vs. scalpel skin incisions in general surgery: double-blind, randomized, clinical trial.

    Science.gov (United States)

    Shamim, Muhammad

    2009-08-01

    This prospective, double-blind, randomized, controlled trial was designed to compare the outcome of diathermy incisions versus scalpel incisions in general surgery. A total of 369 patients who underwent diathermy incision (group A: 185 patients) or scalpel incision (group B: 184 patients) were analyzed. Variables analyzed were: surgical wound classification, length and depth of incision, incision time, duration of operation, incisional blood loss, postoperative pain, duration of hospital stay, duration of healing, and postoperative complications. The inclusion criteria were all patients who underwent elective or emergency general surgery. The exclusion criteria were only cases with incomplete patients' data and patients who were lost to follow-up. This study was conducted at Fatima Hospital-Baqai Medical University and Shamsi Hospital (Karachi), from January 2006 to December 2007. Incision time was significantly longer for patients in group B (p = 0.001). Incisional blood loss also was more for patients in group B (p = 0.000). Pain perception was found to be markedly reduced during the first 48 h in group A (p = 0.000). Total period of hospital stay (p = 0.129) and time for complete wound healing (p = 0.683) were almost the same for both groups. Postoperative complication rate by wound classification did not differ markedly between the two groups (p = 0.002 vs. p = 0.000). Diathermy incision has significant advantages compared with the scalpel because of reduced incision time, less blood loss, & reduced early postoperative pain.

  18. Improving general flexibility with a mind-body approach: a randomized, controlled trial using neuro emotional Technique®.

    Science.gov (United States)

    Jensen, Anne M; Ramasamy, Adaikalavan; Hall, Michael W

    2012-08-01

    General flexibility is a key component of health, well-being, and general physical conditioning. Reduced flexibility has both physical and mental/emotional etiologies and can lead to musculoskeletal injuries and athletic underperformance. Few studies have tested the effectiveness of a mind-body therapy on general flexibility. The aim of this study was to investigate if Neuro Emotional Technique® (NET), a mind-body technique shown to be effective in reducing stress, can also improve general flexibility. The sit-and-reach test (SR) score was used as a measure of general flexibility. Forty-five healthy participants were recruited from the general population and assessed for their initial SR score before being randomly allocated to receive (a) two 20-minute sessions of NET (experimental group); (b) two 20-minute sessions of stretching instruction (active control group); or (c) no intervention or instruction (passive control group). After intervention, the participants were reassessed in a similar manner by the same blind assessor. The participants also answered questions about demographics, usual water and caffeine consumption, and activity level, and they completed an anxiety/mood psychometric preintervention and postintervention. The mean (SD) change in the SR score was +3.1 cm (2.5) in the NET group, +1.2 cm (2.3) in the active control group and +1.0 cm (2.6) in the passive control group. Although all the 3 groups showed some improvement, the improvement in the NET group was statistically significant when compared with that of either the passive controls (p = 0.015) or the active controls (p = 0.021). This study suggests that NET could provide an effective treatment in improving general flexibility. A larger study is required to confirm these findings and also to assess longer term effectiveness of this therapy on general flexibility.

  19. The general form of the relaxation of a purely interfacial energy for structured deformations

    Czech Academy of Sciences Publication Activity Database

    Šilhavý, Miroslav

    2017-01-01

    Roč. 5, č. 2 (2017), s. 191-215 ISSN 2326-7186 Institutional support: RVO:67985840 Keywords : structured deformations * relaxation * subadditive envelope * interfacial energy Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics http://msp.org/memocs/2017/5-2/p04.xhtml

  20. Prediction of interior noise due to random acoustic or turbulent boundary layer excitation using statistical energy analysis

    Science.gov (United States)

    Grosveld, Ferdinand W.

    1990-01-01

    The feasibility of predicting interior noise due to random acoustic or turbulent boundary layer excitation was investigated in experiments in which a statistical energy analysis model (VAPEPS) was used to analyze measurements of the acceleration response and sound transmission of flat aluminum, lucite, and graphite/epoxy plates exposed to random acoustic or turbulent boundary layer excitation. The noise reduction of the plate, when backed by a shallow cavity and excited by a turbulent boundary layer, was predicted using a simplified theory based on the assumption of adiabatic compression of the fluid in the cavity. The predicted plate acceleration response was used as input in the noise reduction prediction. Reasonable agreement was found between the predictions and the measured noise reduction in the frequency range 315-1000 Hz.

  1. A multicenter prospective randomized study comparing the efficacy of escalating higher biphasic versus low biphasic energy defibrillations in patients presenting with cardiac arrest in the in-hospital environment

    Directory of Open Access Journals (Sweden)

    Anantharaman V

    2017-01-01

    Full Text Available Venkataraman Anantharaman,1 Seow Yian Tay,2 Peter George Manning,3 Swee Han Lim,1 Terrance Siang Jin Chua,4 Mohan Tiru,5 Rabind Antony Charles,1 Vidya Sudarshan1 1Department of Emergency Medicine, Singapore General Hospital, 2Department of Emergency Medicine, Tan Tock Seng Hospital, 3Emergency Medicine Department, National University Hospital, 4Department of Cardiology, National Heart Centre, 5Accident and Emergency Department, Changi General Hospital, Singapore Background: Biphasic defibrillation has been practiced worldwide for >15 years. Yet, consensus does not exist on the best energy levels for optimal outcomes when used in patients with ventricular fibrillation (VF/pulseless ventricular tachycardia (VT.Methods: This prospective, randomized, controlled trial of 235 adult cardiac arrest patients with VF/VT was conducted in the emergency and cardiology departments. One group received low-energy (LE shocks at 150–150–150 J and the other escalating higher-energy (HE shocks at 200–300–360 J. If return of spontaneous circulation (ROSC was not achieved by the third shock, LE patients crossed over to the HE arm and HE patients continued at 360 J. Primary end point was ROSC. Secondary end points were 24-hour, 7-day, and 30-day survival.Results: Both groups were comparable for age, sex, cardiac risk factors, and duration of collapse and VF/VT. Of the 118 patients randomized to the LE group, 48 crossed over to the HE protocol, 24 for persistent VF, and 24 for recurrent VF. First-shock termination rates for HE and LE patients were 66.67% and 64.41%, respectively (P=0.78, confidence interval: 0.65–1.89. First-shock ROSC rates were 25.64% and 29.66%, respectively (P=0.56, confidence interval: 0.46–1.45. The 24-hour, 7-day, and 30-day survival rates were 85.71%, 74.29%, and 62.86% for first-shock ROSC LE patients and 70.00%, 50.00%, and 46.67% for first-shock ROSC HE patients, respectively. Conversion rates for further shocks at 200 J and

  2. Quality of life assessment in patients treated with lower energy thermotherapy (Prostasoft 2.0): results of a randomized transurethral microwave thermotherapy versus sham study

    NARCIS (Netherlands)

    Francisca, E. A.; D'Ancona, F. C.; Hendriks, J. C.; Kiemeney, L. A.; Debruyne, F. M.; de la Rosette, J. J.

    1997-01-01

    We evaluated the impact of lower energy transurethral microwave thermotherapy on quality of life and quality of sexual function in patients with benign prostatic hyperplasia (BPH). A total of 50 patients with BPH were randomized to receive either lower energy transurethral microwave thermotherapy

  3. Monte Carlo simulation of channeled and random profiles of heavy ions implanted in silicon at high energy (1.2 MeV)

    International Nuclear Information System (INIS)

    Mazzone, A.M.

    1987-01-01

    In order to study channeling effects and implants of heavy ions with energy of few MeV in silicon, ion distributions are calculated with a Monte Carlo method for axial [(001) axis], planar, and nominally random directions for As + and P + ions implanted into silicon with energies in the range 100 keV to 2 MeV. The calculation indicates an appreciable channeling at the higher energy only for the (001) axis and the (110) planes. For heavy ions with energy in the MeV range the subsidence of channeling into major channels and the disappearance of minor channels are shown

  4. Temperature effects on the generalized planar fault energies and twinnabilities of Al, Ni and Cu: First principles calculations

    KAUST Repository

    Liu, Lili

    2014-06-01

    Based on the quasiharmonic approach from first-principles phonon calculations, the volume versus temperature relations for Al, Ni and Cu are obtained. Using the equilibrium volumes at temperature T, the temperature dependences of generalized planar fault energies have also been calculated by first-principles calculations. It is found that the generalized planar fault energies reduce slightly with increasing temperature. Based on the calculated generalized planar fault energies, the twinnabilities of Al, Ni and Cu are discussed with the three typical criteria for crack tip twinning, grain boundary twinning and inherent twinning at different temperatures. The twinnabilities of Al, Ni and Cu also decrease slightly with increasing temperature. Ni and Cu have the inherent twinnabilities. But, Al does not exhibit inherent twinnability. These results are in agreement with the previous theoretical studies at 0 K and experimental observations at ambient temperature. © 2014 Elsevier B.V. All rights reserved.

  5. Temperature effects on the generalized planar fault energies and twinnabilities of Al, Ni and Cu: First principles calculations

    KAUST Repository

    Liu, Lili; Wang, Rui; Wu, Xiaozhi; Gan, Liyong; Wei, Qunyi

    2014-01-01

    Based on the quasiharmonic approach from first-principles phonon calculations, the volume versus temperature relations for Al, Ni and Cu are obtained. Using the equilibrium volumes at temperature T, the temperature dependences of generalized planar fault energies have also been calculated by first-principles calculations. It is found that the generalized planar fault energies reduce slightly with increasing temperature. Based on the calculated generalized planar fault energies, the twinnabilities of Al, Ni and Cu are discussed with the three typical criteria for crack tip twinning, grain boundary twinning and inherent twinning at different temperatures. The twinnabilities of Al, Ni and Cu also decrease slightly with increasing temperature. Ni and Cu have the inherent twinnabilities. But, Al does not exhibit inherent twinnability. These results are in agreement with the previous theoretical studies at 0 K and experimental observations at ambient temperature. © 2014 Elsevier B.V. All rights reserved.

  6. A prospective randomized study comparing percutaneous nephrolithotomy under combined spinal-epidural anesthesia with percutaneous nephrolithotomy under general anesthesia.

    Science.gov (United States)

    Singh, Vishwajeet; Sinha, Rahul Janak; Sankhwar, S N; Malik, Anita

    2011-01-01

    A prospective randomized study was executed to compare the surgical parameters and stone clearance in patients who underwent percutaneous nephrolithotomy (PNL) under combined spinal-epidural anesthesia (CSEA) versus those who underwent PNL under general anesthesia (GA). Between January 2008 to December 2009, 64 patients with renal calculi were randomized into 2 groups and evaluated for the purpose of this study. Group 1 consisted of patients who underwent PNL under CSEA and Group 2 consisted of patients who underwent PNL under GA. The operative time, stone clearance rate, visual pain analog score, mean analgesic dose and mean hospital stay were compared amongst other parameters. The difference between visual pain analog score after the operation and the dose of analgesic requirement was significant on statistical analysis between both groups. PNL under CSEA is as effective and safe as PNL under GA. Patients who undergo PNL under CESA require lesser analgesic dose and have a shorter hospital stay. Copyright © 2011 S. Karger AG, Basel.

  7. On the Wigner law in dilute random matrices

    Science.gov (United States)

    Khorunzhy, A.; Rodgers, G. J.

    1998-12-01

    We consider ensembles of N × N symmetric matrices whose entries are weakly dependent random variables. We show that random dilution can change the limiting eigenvalue distribution of such matrices. We prove that under general and natural conditions the normalised eigenvalue counting function coincides with the semicircle (Wigner) distribution in the limit N → ∞. This can be explained by the observation that dilution (or more generally, random modulation) eliminates the weak dependence (or correlations) between random matrix entries. It also supports our earlier conjecture that the Wigner distribution is stable to random dilution and modulation.

  8. ARCADO - Adding random case analysis to direct observation in workplace-based formative assessment of general practice registrars.

    Science.gov (United States)

    Ingham, Gerard; Fry, Jennifer; Morgan, Simon; Ward, Bernadette

    2015-12-10

    Workplace-based formative assessments using consultation observation are currently conducted during the Australian general practice training program. Assessment reliability is improved by using multiple assessment methods. The aim of this study was to explore experiences of general practice medical educator assessors and registrars (trainees) when adding random case analysis to direct observation (ARCADO) during formative workplace-based assessments. A sample of general practice medical educators and matched registrars were recruited. Following the ARCADO workplace assessment, semi-structured qualitative interviews were conducted. The data was analysed thematically. Ten registrars and eight medical educators participated. Four major themes emerged - formative versus summative assessment; strengths (acceptability, flexibility, time efficiency, complementarity and authenticity); weaknesses (reduced observation and integrity risks); and contextual factors (variation in assessment content, assessment timing, registrar-medical educator relationship, medical educator's approach and registrar ability). ARCADO is a well-accepted workplace-based formative assessment perceived by registrars and assessors to be valid and flexible. The use of ARCADO enabled complementary insights that would not have been achieved with direct observation alone. Whilst there are some contextual factors to be considered in its implementation, ARCADO appears to have utility as formative assessment and, subject to further evaluation, high-stakes assessment.

  9. Edge corrections to electromagnetic Casimir energies from general-purpose Mathieu-function routines

    Science.gov (United States)

    Blose, Elizabeth Noelle; Ghimire, Biswash; Graham, Noah; Stratton-Smith, Jeremy

    2015-01-01

    Scattering theory methods make it possible to calculate the Casimir energy of a perfectly conducting elliptic cylinder opposite a perfectly conducting plane in terms of Mathieu functions. In the limit of zero radius, the elliptic cylinder becomes a finite-width strip, which allows for the study of edge effects. However, existing packages for computing Mathieu functions are insufficient for this calculation because none can compute Mathieu functions of both the first and second kind for complex arguments. To address this shortcoming, we have written a general-purpose Mathieu-function package, based on algorithms developed by Alhargan. We use these routines to find edge corrections to the proximity force approximation for the Casimir energy of a perfectly conducting strip opposite a perfectly conducting plane.

  10. Method and apparatus for in-situ characterization of energy storage and energy conversion devices

    Science.gov (United States)

    Christophersen, Jon P [Idaho Falls, ID; Motloch, Chester G [Idaho Falls, ID; Morrison, John L [Butte, MT; Albrecht, Weston [Layton, UT

    2010-03-09

    Disclosed are methods and apparatuses for determining an impedance of an energy-output device using a random noise stimulus applied to the energy-output device. A random noise signal is generated and converted to a random noise stimulus as a current source correlated to the random noise signal. A bias-reduced response of the energy-output device to the random noise stimulus is generated by comparing a voltage at the energy-output device terminal to an average voltage signal. The random noise stimulus and bias-reduced response may be periodically sampled to generate a time-varying current stimulus and a time-varying voltage response, which may be correlated to generate an autocorrelated stimulus, an autocorrelated response, and a cross-correlated response. Finally, the autocorrelated stimulus, the autocorrelated response, and the cross-correlated response may be combined to determine at least one of impedance amplitude, impedance phase, and complex impedance.

  11. Rationale and study design of PROVHILO - a worldwide multicenter randomized controlled trial on protective ventilation during general anesthesia for open abdominal surgery

    Directory of Open Access Journals (Sweden)

    Hedenstierna Göran

    2011-05-01

    Full Text Available Abstract Background Post-operative pulmonary complications add to the morbidity and mortality of surgical patients, in particular after general anesthesia >2 hours for abdominal surgery. Whether a protective mechanical ventilation strategy with higher levels of positive end-expiratory pressure (PEEP and repeated recruitment maneuvers; the "open lung strategy", protects against post-operative pulmonary complications is uncertain. The present study aims at comparing a protective mechanical ventilation strategy with a conventional mechanical ventilation strategy during general anesthesia for abdominal non-laparoscopic surgery. Methods The PROtective Ventilation using HIgh versus LOw positive end-expiratory pressure ("PROVHILO" trial is a worldwide investigator-initiated multicenter randomized controlled two-arm study. Nine hundred patients scheduled for non-laparoscopic abdominal surgery at high or intermediate risk for post-operative pulmonary complications are randomized to mechanical ventilation with the level of PEEP at 12 cmH2O with recruitment maneuvers (the lung-protective strategy or mechanical ventilation with the level of PEEP at maximum 2 cmH2O without recruitment maneuvers (the conventional strategy. The primary endpoint is any post-operative pulmonary complication. Discussion The PROVHILO trial is the first randomized controlled trial powered to investigate whether an open lung mechanical ventilation strategy in short-term mechanical ventilation prevents against postoperative pulmonary complications. Trial registration ISRCTN: ISRCTN70332574

  12. US Department of Energy Office of Inspector General report on audit of program administration by the Office of Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-02

    The objective of the audit was to determine whether Energy Research had established performance expectations, including performance criteria and metrics, and used these expectations to monitor progress for basic and applied research performed at the Department`s national laboratories. Congressional and Departmental initiatives envision improved contract and program performance by requiring program managers to set measurable performance expectations. Even though research outcomes are inherently unpredictable, performance expectations can and should be established for scopes of work, milestones, resource limits and deliverables. However, Energy Research generally did not clearly specify--at either an aggregated program or individual task level--such expectations for research at the Department`s national laboratories. While information was available in the contractor`s research proposals, Energy Research essentially relied on the contractors to initiate and execute the research without agreement on expectations. This practice provided the Department with little basis to measure and evaluate contractor performance. Energy Research agreed in part with the finding and will take action on the recommendations in the report.

  13. Tsallis Extended Thermodynamics Applied to 2-d Turbulence: Lévy Statistics and q-Fractional Generalized Kraichnanian Energy and Enstrophy Spectra

    Directory of Open Access Journals (Sweden)

    Peter W. Egolf

    2018-02-01

    Full Text Available The extended thermodynamics of Tsallis is reviewed in detail and applied to turbulence. It is based on a generalization of the exponential and logarithmic functions with a parameter q. By applying this nonequilibrium thermodynamics, the Boltzmann-Gibbs thermodynamic approach of Kraichnan to 2-d turbulence is generalized. This physical modeling implies fractional calculus methods, obeying anomalous diffusion, described by Lévy statistics with q < 5/3 (sub diffusion, q = 5/3 (normal or Brownian diffusion and q > 5/3 (super diffusion. The generalized energy spectrum of Kraichnan, occurring at small wave numbers k, now reveals the more general and precise result k−q. This corresponds well for q = 5/3 with the Kolmogorov-Oboukov energy spectrum and for q > 5/3 to turbulence with intermittency. The enstrophy spectrum, occurring at large wave numbers k, leads to a k−3q power law, suggesting that large wave-number eddies are in thermodynamic equilibrium, which is characterized by q = 1, finally resulting in Kraichnan’s correct k−3 enstrophy spectrum. The theory reveals in a natural manner a generalized temperature of turbulence, which in the non-equilibrium energy transfer domain decreases with wave number and shows an energy equipartition law with a constant generalized temperature in the equilibrium enstrophy transfer domain. The article contains numerous new results; some are stated in form of eight new (proven propositions.

  14. Generalized-stacking-fault energy and twin-boundary energy of hexagonal close-packed Au: A first-principles calculation.

    Science.gov (United States)

    Wang, Cheng; Wang, Huiyuan; Huang, Tianlong; Xue, Xuena; Qiu, Feng; Jiang, Qichuan

    2015-05-22

    Although solid Au is usually most stable as a face-centered cubic (fcc) structure, pure hexagonal close-packed (hcp) Au has been successfully fabricated recently. However, the phase stability and mechanical property of this new material are unclear, which may restrict its further applications. Here we present the evidence that hcp → fcc phase transformation can proceed easily in Au by first-principles calculations. The extremely low generalized-stacking-fault (GSF) energy in the basal slip system implies a great tendency to form basal stacking faults, which opens the door to phase transformation from hcp to fcc. Moreover, the Au lattice extends slightly within the superficial layers due to the self-assembly of alkanethiolate species on hcp Au (0001) surface, which may also contribute to the hcp → fcc phase transformation. Compared with hcp Mg, the GSF energies for non-basal slip systems and the twin-boundary (TB) energies for and twins are larger in hcp Au, which indicates the more difficulty in generating non-basal stacking faults and twins. The findings provide new insights for understanding the nature of the hcp → fcc phase transformation and guide the experiments of fabricating and developing materials with new structures.

  15. Dynamical replica analysis of processes on finitely connected random graphs: II. Dynamics in the Griffiths phase of the diluted Ising ferromagnet

    International Nuclear Information System (INIS)

    Mozeika, A; Coolen, A C C

    2009-01-01

    We study the Glauber dynamics of Ising spin models with random bonds, on finitely connected random graphs. We generalize a recent dynamical replica theory with which to predict the evolution of the joint spin-field distribution, to include random graphs with arbitrary degree distributions. The theory is applied to Ising ferromagnets on randomly diluted Bethe lattices, where we study the evolution of the magnetization and the internal energy. It predicts a prominent slowing down of the flow in the Griffiths phase, it suggests a further dynamical transition at lower temperatures within the Griffiths phase, and it is verified quantitatively by the results of Monte Carlo simulations

  16. Internet treatment for generalized anxiety disorder: a randomized controlled trial comparing clinician vs. technician assistance.

    Science.gov (United States)

    Robinson, Emma; Titov, Nickolai; Andrews, Gavin; McIntyre, Karen; Schwencke, Genevieve; Solley, Karen

    2010-06-03

    Internet-based cognitive behavioural therapy (iCBT) for generalized anxiety disorder (GAD) has been shown to be effective when guided by a clinician. The present study sought to replicate this finding, and determine whether support from a technician is as effective as guidance from a clinician. Randomized controlled non-inferiority trial comparing three groups: Clinician-assisted vs. technician-assisted vs. delayed treatment. Community-based volunteers applied to the VirtualClinic (www.virtualclinic.org.au) research program and 150 participants with GAD were randomized. Participants in the clinician- and technician-assisted groups received access to an iCBT program for GAD comprising six online lessons, weekly homework assignments, and weekly supportive contact over a treatment period of 10 weeks. Participants in the clinician-assisted group also received access to a moderated online discussion forum. The main outcome measures were the Penn State Worry Questionnaire (PSWQ) and the Generalized Anxiety Disorder-7 Item (GAD-7). Completion rates were high, and both treatment groups reduced scores on the PSWQ (ptechnician-assisted groups, respectively, and on the GAD-7 were 1.55 and 1.73, respectively. At 3 month follow-up participants in both treatment groups had sustained the gains made at post-treatment. Participants in the clinician-assisted group had made further gains on the PSWQ. Approximately 81 minutes of clinician time and 75 minutes of technician time were required per participant during the 10 week treatment program. Both clinician- and technician-assisted treatment resulted in large effect sizes and clinically significant improvements comparable to those associated with face-to-face treatment, while a delayed treatment/control group did not improve. These results provide support for large scale trials to determine the clinical effectiveness and acceptability of technician-assisted iCBT programs for GAD. This form of treatment has potential to increase the

  17. Thermostatistic properties of a q-deformed ideal Fermi gas with a general energy spectrum

    International Nuclear Information System (INIS)

    Cai, Shukuan; Su, Guozhen; Chen, Jincan

    2007-01-01

    The thermostatistic problems of a q-deformed ideal Fermi gas in any dimensional space and with a general energy spectrum are studied, based on the q-deformed Fermi-Dirac distribution. The effects of the deformation parameter q on the properties of the system are revealed. It is shown that q-deformation results in some novel characteristics different from those of an ordinary system. Besides, it is found that the effects of the q-deformation on the properties of the Fermi systems are very different for different dimensional spaces and different energy spectrums

  18. Generalized Pareto for Pattern-Oriented Random Walk Modelling of Organisms' Movements.

    Directory of Open Access Journals (Sweden)

    Sophie Bertrand

    Full Text Available How organisms move and disperse is crucial to understand how population dynamics relates to the spatial heterogeneity of the environment. Random walk (RW models are typical tools to describe movement patterns. Whether Lévy or alternative RW better describes forager movements is keenly debated. We get around this issue using the Generalized Pareto Distribution (GPD. GPD includes as specific cases Normal, exponential and power law distributions, which underlie Brownian, Poisson-like and Lévy walks respectively. Whereas previous studies typically confronted a limited set of candidate models, GPD lets the most likely RW model emerge from the data. We illustrate the wide applicability of the method using GPS-tracked seabird foraging movements and fishing vessel movements tracked by Vessel Monitoring System (VMS, both collected in the Peruvian pelagic ecosystem. The two parameters from the fitted GPD, a scale and a shape parameter, provide a synoptic characterization of the observed movement in terms of characteristic scale and diffusive property. They reveal and quantify the variability, among species and individuals, of the spatial strategies selected by predators foraging on a common prey field. The GPD parameters constitute relevant metrics for (1 providing a synthetic and pattern-oriented description of movement, (2 using top predators as ecosystem indicators and (3 studying the variability of spatial behaviour among species or among individuals with different personalities.

  19. Generalized Pareto for Pattern-Oriented Random Walk Modelling of Organisms' Movements.

    Science.gov (United States)

    Bertrand, Sophie; Joo, Rocío; Fablet, Ronan

    2015-01-01

    How organisms move and disperse is crucial to understand how population dynamics relates to the spatial heterogeneity of the environment. Random walk (RW) models are typical tools to describe movement patterns. Whether Lévy or alternative RW better describes forager movements is keenly debated. We get around this issue using the Generalized Pareto Distribution (GPD). GPD includes as specific cases Normal, exponential and power law distributions, which underlie Brownian, Poisson-like and Lévy walks respectively. Whereas previous studies typically confronted a limited set of candidate models, GPD lets the most likely RW model emerge from the data. We illustrate the wide applicability of the method using GPS-tracked seabird foraging movements and fishing vessel movements tracked by Vessel Monitoring System (VMS), both collected in the Peruvian pelagic ecosystem. The two parameters from the fitted GPD, a scale and a shape parameter, provide a synoptic characterization of the observed movement in terms of characteristic scale and diffusive property. They reveal and quantify the variability, among species and individuals, of the spatial strategies selected by predators foraging on a common prey field. The GPD parameters constitute relevant metrics for (1) providing a synthetic and pattern-oriented description of movement, (2) using top predators as ecosystem indicators and (3) studying the variability of spatial behaviour among species or among individuals with different personalities.

  20. Some common random fixed point theorems for contractive type conditions in cone random metric spaces

    Directory of Open Access Journals (Sweden)

    Saluja Gurucharan S.

    2016-08-01

    Full Text Available In this paper, we establish some common random fixed point theorems for contractive type conditions in the setting of cone random metric spaces. Our results unify, extend and generalize many known results from the current existing literature.

  1. Random distance distribution for spherical objects: general theory and applications to physics

    International Nuclear Information System (INIS)

    Tu Shuju; Fischbach, Ephraim

    2002-01-01

    A formalism is presented for analytically obtaining the probability density function, P n (s), for the random distance s between two random points in an n-dimensional spherical object of radius R. Our formalism allows P n (s) to be calculated for a spherical n-ball having an arbitrary volume density, and reproduces the well-known results for the case of uniform density. The results find applications in geometric probability, computational science, molecular biological systems, statistical physics, astrophysics, condensed matter physics, nuclear physics and elementary particle physics. As one application of these results, we propose a new statistical method derived from our formalism to study random number generators used in Monte Carlo simulations. (author)

  2. First principle study on generalized-stacking-fault energy surfaces of B2-AlRE intermetallic compounds

    Science.gov (United States)

    Li, Shaorong; Wang, Shaofeng; Wang, Rui

    2011-12-01

    First-principles calculations are used to predict the generalized-stacking-fault energy (GSFE) surfaces of AlRE intermetallics. The calculations employ the projector augmented-wave (PAW) method within the generalized gradient approximation (GGA) using the density functional theory (DFT). GSFE curves along {1 1 0} direction, {1 1 0} direction and {1 1 0} direction have been calculated. The fitted GSFE surfaces have been obtained from the Fourier series based on the translational symmetry. In order to illuminate the reasonable of our computational accuracy, we have compared our theoretical results of B2 intermetallics YCu with the previous calculated results. The unstable-stacking-fault energy (γus) on the {1 1 0} plane has the laws of AlPr, and directions. For the antiphase boundary (APB) energy, that of AlSc is the lowest in the calculated AlRE intermetallics. So the superdislocation with the Burgers vector along direction of AlSc will easily split into two superpartials.

  3. Lifestyle intervention in general practice for physical activity, smoking, alcohol consumption and diet in elderly: a randomized controlled trial.

    Science.gov (United States)

    Vrdoljak, Davorka; Marković, Biserka Bergman; Puljak, Livia; Lalić, Dragica Ivezić; Kranjčević, Ksenija; Vučak, Jasna

    2014-01-01

    The purpose of the study was to compare the effectiveness of programmed and intensified intervention on lifestyle changes, including physical activity, cigarette smoking, alcohol consumption and diet, in patients aged ≥ 65 with the usual care of general practitioners (GP). In this multicenter randomized controlled trial, 738 patients aged ≥ 65 were randomly assigned to receive intensified intervention (N = 371) or usual care (N = 367) of a GP for lifestyle changes, with 18-month follow-up. The main outcome measures were physical activity, smoking, alcohol consumption and diet. The study was conducted in 59 general practices in Croatia between May 2008 and May 2010. The patients' mean age was 72.3 ± 5.2 years. Significant diet correction was achieved after 18-month follow-up in the intervention group, comparing to controls. More patients followed strictly Mediterranean diet and consumed healthy foods more frequently. There was no significant difference between the groups in physical activity, tobacco smoking and alcohol consumption or diet after the intervention. In conclusion, an 18-month intensified GP's intervention had limited effect on lifestyle habits. GP intervention managed to change dietary habits in elderly population, which is encouraging since elderly population is very resistant regarding lifestyle habit changes. Clinical trial registration number. ISRCTN31857696. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. An evaluation of the cognitive and mood effects of an energy shot over a 6h period in volunteers: a randomized, double-blind, placebo controlled, cross-over study.

    Science.gov (United States)

    Wesnes, Keith A; Barrett, Marilyn L; Udani, Jay K

    2013-08-01

    Energy drinks are widely available mostly containing glucose, and several have been demonstrated to improve alertness and cognitive function; these effects generally being identified 30-60min after administration. The present study assessed whether an energy shot without carbohydrates would affect major aspects of cognitive function and also mood in volunteers over a 6h time period. This randomized, double-blind, placebo-controlled,crossover study compared the acute effects of the energy shot with a matching placebo in 94 healthy volunteers. Cognitive function was assessed with a widely used set of automated tests of attention and memory. Mood was assessed with the Bond-Lader, Beck Anxiety Index, Beck Depression Index, Chalder Fatigue Scales (CFS), and the POMS. The volunteers were requested to limit their sleep to between 3 and 6h the night before each testing day. Compared to the placebo, the energy shot significantly improved 6 validated composite cognitive function measures from the CDR System as well as self-rated alertness; the benefits on 4 of the cognitive measures still remaining at 6h. The overall effect sizes of the performance improvements were in the small to medium range and thus notable in this field. In conclusion, an energy shot can significantly improve important aspects of cognitive function for up to 6h compared to placebo in partially sleep-deprived healthy volunteers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Parental Divorce and Generalized Trust

    OpenAIRE

    Viitanen, Tarja

    2011-01-01

    This paper examines the effect of parental divorce during childhood on generalized trust later on in life using Australian HILDA panel data. The dependent variable is composed of answers to the statement: “Generally speaking, most people can be trusted”. The main explanatory variables include the occurrence of parental divorce for the whole sample and the age at which parents divorced for the sub-sample. The analysis is conducted using random effects ordered probit, correlated random effects ...

  6. Deception, efficiency, and random groups - Psychology and the gradual origination of the random group design

    NARCIS (Netherlands)

    Dehue, T

    1997-01-01

    In the life sciences, psychology, and large parts of the other social sciences, the ideal experiment is a comparative experiment with randomly composed experimental and control groups. Historians and practitioners of these sciences generally attribute the invention of this "random group design" to

  7. Environment taxation and greenhouse gases (general tax on energy polluting activities and emissions trading)

    International Nuclear Information System (INIS)

    Parayre, P.; Bruhnes, P.; Huglo, Ch.

    2000-12-01

    This document brings together 11 expert testimonies about the French general tax on polluting activities (GTPA). Content: 1 - the GTPA today and in 2001: the first year GTPA, the GTPA 2001 in the water sector, the everyday formal procedures linked with GTPA, the contentious aspects of GTPA; 2 - the eco-tax or energy-GTPA: European framework of energy products taxing, enforcement and implementation of the energy-GTPA in France; 3 - the negotiable emission permits: negotiable permits for companies with a strong energy intensity, functioning of emission permits in a global strategy, the position of the European Commission about negotiable permits and the perspectives in this domain at the community level; 4 - towards a reduction of greenhouse gases: the Goeteborg protocol, the consequences of La Haye's COP6, the position of a type-sector, an efficient system for the abatement of greenhouse gases by the producing sector. (J.S.)

  8. Non-existence of global solutions to generalized dissipative Klein-Gordon equations with positive energy

    Directory of Open Access Journals (Sweden)

    Maxim Olegovich Korpusov

    2012-07-01

    Full Text Available In this article the initial-boundary-value problem for generalized dissipative high-order equation of Klein-Gordon type is considered. We continue our study of nonlinear hyperbolic equations and systems with arbitrary positive energy. The modified concavity method by Levine is used for proving blow-up of solutions.

  9. A general purpose program system for high energy physics experiment data acquisition and analysis

    International Nuclear Information System (INIS)

    Li Shuren; Xing Yuguo; Jin Bingnian

    1985-01-01

    This paper introduced the functions, structure and system generation of a general purpose program system (Fermilab MULTI) for high energy physics experiment data acquisition and analysis. Works concerning the reconstruction of MULTI system level 0.5 which can be run on the computer PDP-11/23 are also introduced briefly

  10. Sexual function following high energy microwave thermotherapy: results of a randomized controlled study comparing transurethral microwave thermotherapy to transurethral prostatic resection

    NARCIS (Netherlands)

    Francisca, E. A.; D'Ancona, F. C.; Meuleman, E. J.; Debruyne, F. M.; de la Rosette, J. J.

    1999-01-01

    We evaluate changes in sexual function in patients treated with high energy transurethral microwave thermotherapy compared to transurethral resection of the prostate. A total of 147 patients randomized to undergo transurethral microwave thermotherapy or transurethral resection of the prostate were

  11. Telex message to the Director General from the President of the Atomic Energy Organization of Iran

    International Nuclear Information System (INIS)

    1988-08-01

    The document reproduces the text of a telex message dated 19 July 1988 from the Deputy Prime Minister of the Islamic Republic of Iran and President of the Atomic Energy Organization of Iran to the Director General of the IAEA and the Director General's reply dated 29 July 1988, in connection with an Iraqi military attack of the Busher Nuclear Power Plant on 18 July 1988

  12. Transformation of general binary MRF minimization to the first-order case.

    Science.gov (United States)

    Ishikawa, Hiroshi

    2011-06-01

    We introduce a transformation of general higher-order Markov random field with binary labels into a first-order one that has the same minima as the original. Moreover, we formalize a framework for approximately minimizing higher-order multi-label MRF energies that combines the new reduction with the fusion-move and QPBO algorithms. While many computer vision problems today are formulated as energy minimization problems, they have mostly been limited to using first-order energies, which consist of unary and pairwise clique potentials, with a few exceptions that consider triples. This is because of the lack of efficient algorithms to optimize energies with higher-order interactions. Our algorithm challenges this restriction that limits the representational power of the models so that higher-order energies can be used to capture the rich statistics of natural scenes. We also show that some minimization methods can be considered special cases of the present framework, as well as comparing the new method experimentally with other such techniques.

  13. Testing concordance of instrumental variable effects in generalized linear models with application to Mendelian randomization

    Science.gov (United States)

    Dai, James Y.; Chan, Kwun Chuen Gary; Hsu, Li

    2014-01-01

    Instrumental variable regression is one way to overcome unmeasured confounding and estimate causal effect in observational studies. Built on structural mean models, there has been considerale work recently developed for consistent estimation of causal relative risk and causal odds ratio. Such models can sometimes suffer from identification issues for weak instruments. This hampered the applicability of Mendelian randomization analysis in genetic epidemiology. When there are multiple genetic variants available as instrumental variables, and causal effect is defined in a generalized linear model in the presence of unmeasured confounders, we propose to test concordance between instrumental variable effects on the intermediate exposure and instrumental variable effects on the disease outcome, as a means to test the causal effect. We show that a class of generalized least squares estimators provide valid and consistent tests of causality. For causal effect of a continuous exposure on a dichotomous outcome in logistic models, the proposed estimators are shown to be asymptotically conservative. When the disease outcome is rare, such estimators are consistent due to the log-linear approximation of the logistic function. Optimality of such estimators relative to the well-known two-stage least squares estimator and the double-logistic structural mean model is further discussed. PMID:24863158

  14. Quantum random access memory

    OpenAIRE

    Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo

    2007-01-01

    A random access memory (RAM) uses n bits to randomly address N=2^n distinct memory cells. A quantum random access memory (qRAM) uses n qubits to address any quantum superposition of N memory cells. We present an architecture that exponentially reduces the requirements for a memory call: O(log N) switches need be thrown instead of the N used in conventional (classical or quantum) RAM designs. This yields a more robust qRAM algorithm, as it in general requires entanglement among exponentially l...

  15. Paul Scherrer Institut annual report 1996. Annex V: PSI general energy technology newsletter 1996

    Energy Technology Data Exchange (ETDEWEB)

    Daum, C; Leuenberger, J [eds.

    1997-06-01

    Surveying the results of General Energy Research in 1996, three major trends can be identified. First, in areas where research results have reached an advanced stage, decisive steps have been taken to promote a transfer towards industrial realization; examples include biomass gasification, advanced battery concepts, and combustion research. Second, in projects with longer term orientation, several options are being evaluated by exploratory studies, e.g. in solar chemistry and reaction analysis. Third, in line with the strategic planning of our institute, the development and characterization of materials for energy research has received increased attention. (author) figs., tabs., refs.

  16. Statement of the Director General to the forty-third regular session of the General Conference of the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    ElBaradei, M.

    1999-01-01

    In his Statement on the forty-third regular session of the General Conference of the IAEA, the Director General of the Agency presented the past, present and future programme of the Agency in terms of the three 'pillars' that constitute its mandate: Nuclear technology (with emphasis on nuclear power and nuclear applications); Nuclear, radiation and waste safety (with emphasis on international conventions prescribing the basic legal norms for the safe use of nuclear energy, internationally accepted safety standards, and measures to assist Member States in the implementation of these conventions and standards, including technological solutions for improving safety); Nuclear verification and the security of material (with emphasis on IAEA safeguards, and physical protection of nuclear material), including possible new verification activities and specific verification issues (Iraq, DPRK, Middle East region). The Director General also touched in his Statement on two supporting elements that undergird these 'pillars': effective interaction with partners and the public, and achieving excellence in management

  17. Impact of the EISA 2007 Energy Efficiency Standard on General Service Lamps

    Energy Technology Data Exchange (ETDEWEB)

    Kantner, Colleen L.S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Alstone, Andrea L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ganeshalingam, Mohan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gerke, Brian F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hosbach, Robert [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-06-20

    The Energy Policy and Conservation Act of 1975, as amended by the Energy Independence and Security Act of 2007 (EISA 2007), requires that, effective beginning January 1, 2020, the Secretary of Energy shall prohibit the sale of any general service lamp (GSL) that does not meet a minimum efficacy standard of 45 lumens per watt. This is referred to as the EISA 2007 backstop. The U.S. Department of Energy recently revised the definition of the term GSL to include certain lamps that were either previously excluded or not explicitly mentioned in the EISA 2007 definition. For this subset of GSLs, we assess the impacts of the EISA 2007 backstop on national energy consumption, carbon dioxide emissions, and consumer expenditures. To estimate these impacts, we projected the energy use, purchase price, and operating cost of representative lamps purchased during a 30-year analysis period, 2020-2049, for cases in which the EISA 2007 backstop does and does not take effect; the impacts of the backstop are then given by the difference between the two cases. In developing the projection model, we also performed the most comprehensive assessment to date of usage patterns and lifetime distributions for the analyzed lamp types in the United States. There is substantial uncertainty in the estimated impacts, which arises from uncertainty in the speed and extent of the market conversion to solid state lighting technology that would occur in the absence of the EISA 2007 backstop. In our central estimate we find that the EISA 2007 backstop results in significant energy savings of 27 quads and consumer net present value of $120 billion (at a seven percent discount rate) for lamps shipped between 2020 and 2049, and carbon dioxide emissions reduction of 540 million metric tons by 2030 for those GSLs not explicitly included in the EISA 2007 definition of a GSL.

  18. Impacts of the EISA 2007 Energy Efficiency Standard on General Service Lamps

    Energy Technology Data Exchange (ETDEWEB)

    Kantner, Colleen L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Alstone, Andrea L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ganeshalingam, Mohan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gerke, Brian F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hosbach, Robert [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-01-20

    The Energy Policy and Conservation Act of 1975, as amended by the Energy Independence and Security Act of 2007 (EISA 2007), requires that, effective beginning January 1, 2020, the Secretary of Energy shall prohibit the sale of any general service lamp (GSL) that does not meet a minimum efficacy standard of 45 lumens per watt. This is referred to as the EISA 2007 backstop. The U.S. Department of Energy recently revised the definition of the term GSL to include certain lamps that were either previously excluded or not explicitly mentioned in the EISA 2007 definition. For this subset of GSLs, we assess the impacts of the EISA 2007 backstop on national energy consumption, carbon dioxide emissions, and consumer expenditures. To estimate these impacts, we projected the energy use, purchase price, and operating cost of representative lamps purchased during a 30-year analysis period, 2020-2049, for cases in which the EISA 2007 backstop does and does not take effect; the impacts of the backstop are then given by the difference between the two cases. In developing the projection model, we also performed the most comprehensive assessment to date of usage patterns and lifetime distributions for the analyzed lamp types in the United States. There is substantial uncertainty in the estimated impacts, which arises from uncertainty in the speed and extent of the market conversion to solid state lighting technology that would occur in the absence of the EISA 2007 backstop. In our central estimate we find that the EISA 2007 backstop results in significant energy savings of 27 quads and consumer net present value of $120 billion (at a seven percent discount rate) for lamps shipped between 2020 and 2049, and carbon dioxide emissions reduction of 540 million metric tons by 2030 for those GSLs not explicitly included in the EISA 2007 definition of a GSL.

  19. A Fuzzy-Logic Power Management Strategy Based on Markov Random Prediction for Hybrid Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Yanzi Wang

    2016-01-01

    Full Text Available Over the last few years; issues regarding the use of hybrid energy storage systems (HESSs in hybrid electric vehicles have been highlighted by the industry and in academic fields. This paper proposes a fuzzy-logic power management strategy based on Markov random prediction for an active parallel battery-UC HESS. The proposed power management strategy; the inputs for which are the vehicle speed; the current electric power demand and the predicted electric power demand; is used to distribute the electrical power between the battery bank and the UC bank. In this way; the battery bank power is limited to a certain range; and the peak and average charge/discharge power of the battery bank and overall loss incurred by the whole HESS are also reduced. Simulations and scaled-down experimental platforms are constructed to verify the proposed power management strategy. The simulations and experimental results demonstrate the advantages; feasibility and effectiveness of the fuzzy-logic power management strategy based on Markov random prediction.

  20. Generalized mean detector for collaborative spectrum sensing

    KAUST Repository

    Shakir, Muhammad Zeeshan

    2013-04-01

    In this paper, a unified generalized eigenvalue based spectrum sensing framework referred to as Generalized mean detector (GMD) has been introduced. The generalization of the detectors namely (i) the eigenvalue ratio detector (ERD) involving the ratio of the largest and the smallest eigenvalues; (ii) the Geometric mean detector (GEMD) involving the ratio of the largest eigenvalue and the geometric mean of the eigenvalues and (iii) the Arithmetic mean detector (ARMD) involving the ratio of the largest and the arithmetic mean of the eigenvalues is explored. The foundation of the proposed unified framework is based on the calculation of exact analytical moments of the random variables of test statistics of the respective detectors. In this context, we approximate the probability density function (PDF) of the test statistics of the respective detectors by Gaussian/Gamma PDF using the moment matching method. Finally, we derive closed-form expressions to calculate the decision threshold of the eigenvalue based detectors by exchanging the derived exact moments of the random variables of test statistics with the moments of the Gaussian/Gamma distribution function. The performance of the eigenvalue based detectors is compared with the traditional detectors such as energy detector (ED) and cyclostationary detector (CSD) and validate the importance of the eigenvalue based detectors particularly over realistic wireless cognitive environments. Analytical and simulation results show that the GEMD and the ARMD yields considerable performance advantage in realistic spectrum sensing scenarios. Moreover, our results based on proposed simple and tractable approximation approaches are in perfect agreement with the empirical results. © 1972-2012 IEEE.

  1. Apnea after awake-regional and general anesthesia in infants: The General Anesthesia compared to Spinal anesthesia (GAS) study: comparing apnea and neurodevelopmental outcomes, a randomized controlled trial

    Science.gov (United States)

    Davidson, Andrew J.; Morton, Neil S.; Arnup, Sarah J.; de Graaff, Jurgen C.; Disma, Nicola; Withington, Davinia E.; Frawley, Geoff; Hunt, Rodney W.; Hardy, Pollyanna; Khotcholava, Magda; von Ungern Sternberg, Britta S.; Wilton, Niall; Tuo, Pietro; Salvo, Ida; Ormond, Gillian; Stargatt, Robyn; Locatelli, Bruno Guido; McCann, Mary Ellen

    2015-01-01

    Background Post-operative apnea is a complication in young infants. Awake-regional anesthesia (RA) may reduce the risk; however the evidence is weak. The General Anesthesia compared to Spinal anesthesia (GAS) study is a randomized, controlled, trial designed to assess the influence of general anesthesia (GA) on neurodevelopment. A secondary aim is to compare rates of apnea after anesthesia. Methods Infants ≤ 60 weeks postmenstrual age scheduled for inguinal herniorraphy were randomized to RA or GA. Exclusion criteria included risk factors for adverse neurodevelopmental outcome and infants born < 26 weeks’ gestation. The primary outcome of this analysis was any observed apnea up to 12 hours post-operatively. Apnea assessment was unblinded. Results 363 patients were assigned to RA and 359 to GA. Overall the incidence of apnea (0 to 12 hours) was similar between arms (3% in RA and 4% in GA arms, Odds Ratio (OR) 0.63, 95% Confidence Intervals (CI): 0.31 to 1.30, P=0.2133), however the incidence of early apnea (0 to 30 minutes) was lower in the RA arm (1% versus 3%, OR 0.20, 95%CI: 0.05 to 0.91, P=0.0367). The incidence of late apnea (30 minutes to 12 hours) was 2% in both RA and GA arms (OR 1.17, 95%CI: 0.41 to 3.33, P=0.7688). The strongest predictor of apnea was prematurity (OR 21.87, 95% CI 4.38 to 109.24) and 96% of infants with apnea were premature. Conclusions RA in infants undergoing inguinal herniorraphy reduces apnea in the early post-operative period. Cardio-respiratory monitoring should be used for all ex-premature infants. PMID:26001033

  2. Quantifiers for randomness of chaotic pseudo-random number generators.

    Science.gov (United States)

    De Micco, L; Larrondo, H A; Plastino, A; Rosso, O A

    2009-08-28

    We deal with randomness quantifiers and concentrate on their ability to discern the hallmark of chaos in time series used in connection with pseudo-random number generators (PRNGs). Workers in the field are motivated to use chaotic maps for generating PRNGs because of the simplicity of their implementation. Although there exist very efficient general-purpose benchmarks for testing PRNGs, we feel that the analysis provided here sheds additional didactic light on the importance of the main statistical characteristics of a chaotic map, namely (i) its invariant measure and (ii) the mixing constant. This is of help in answering two questions that arise in applications: (i) which is the best PRNG among the available ones? and (ii) if a given PRNG turns out not to be good enough and a randomization procedure must still be applied to it, which is the best applicable randomization procedure? Our answer provides a comparative analysis of several quantifiers advanced in the extant literature.

  3. Generalizing Evidence From Randomized Clinical Trials to Target Populations

    Science.gov (United States)

    Cole, Stephen R.; Stuart, Elizabeth A.

    2010-01-01

    Properly planned and conducted randomized clinical trials remain susceptible to a lack of external validity. The authors illustrate a model-based method to standardize observed trial results to a specified target population using a seminal human immunodeficiency virus (HIV) treatment trial, and they provide Monte Carlo simulation evidence supporting the method. The example trial enrolled 1,156 HIV-infected adult men and women in the United States in 1996, randomly assigned 577 to a highly active antiretroviral therapy and 579 to a largely ineffective combination therapy, and followed participants for 52 weeks. The target population was US people infected with HIV in 2006, as estimated by the Centers for Disease Control and Prevention. Results from the trial apply, albeit muted by 12%, to the target population, under the assumption that the authors have measured and correctly modeled the determinants of selection that reflect heterogeneity in the treatment effect. In simulations with a heterogeneous treatment effect, a conventional intent-to-treat estimate was biased with poor confidence limit coverage, but the proposed estimate was largely unbiased with appropriate confidence limit coverage. The proposed method standardizes observed trial results to a specified target population and thereby provides information regarding the generalizability of trial results. PMID:20547574

  4. Low energy neutron scattering for energy dependent cross sections. General considerations

    Energy Technology Data Exchange (ETDEWEB)

    Rothenstein, W; Dagan, R [Technion-Israel Inst. of Tech., Haifa (Israel). Dept. of Mechanical Engineering

    1996-12-01

    We consider in this paper some aspects related to neutron scattering at low energies by nuclei which are subject to thermal agitation. The scattering is determined by a temperature dependent joint scattering kernel, or the corresponding joint probability density, which is a function of two variables, the neutron energy after scattering, and the cosine of the angle of scattering, for a specified energy and direction of motion of the neutron, before the interaction takes place. This joint probability density is easy to calculate, when the nucleus which causes the scattering of the neutron is at rest. It can be expressed by a delta function, since there is a one to one correspondence between the neutron energy change, and the cosine of the scattering angle. If the thermal motion of the target nucleus is taken into account, the calculation is rather more complicated. The delta function relation between the cosine of the angle of scattering and the neutron energy change is now averaged over the spectrum of velocities of the target nucleus, and becomes a joint kernel depending on both these variables. This function has a simple form, if the target nucleus behaves as an ideal gas, which has a scattering cross section independent of energy. An energy dependent scattering cross section complicates the treatment further. An analytic expression is no longer obtained for the ideal gas temperature dependent joint scattering kernel as a function of the neutron energy after the interaction and the cosine of the scattering angle. Instead the kernel is expressed by an inverse Fourier Transform of a complex integrand, which is averaged over the velocity spectrum of the target nucleus. (Abstract Truncated)

  5. Quality pseudo-random number generator

    International Nuclear Information System (INIS)

    Tarasiuk, J.

    1996-01-01

    The pseudo-random number generator (RNG) was written to match needs of nuclear and high-energy physics computation which in some cases require very long and independent random number sequences. In this random number generator the repetition period is about 10 36 what should be sufficient for all computers in the world. In this article the test results of RNG correlation, speed and identity of computations for PC, Sun4 and VAX computer tests are presented

  6. A random-key encoded harmony search approach for energy-efficient production scheduling with shared resources

    Science.gov (United States)

    Garcia-Santiago, C. A.; Del Ser, J.; Upton, C.; Quilligan, F.; Gil-Lopez, S.; Salcedo-Sanz, S.

    2015-11-01

    When seeking near-optimal solutions for complex scheduling problems, meta-heuristics demonstrate good performance with affordable computational effort. This has resulted in a gravitation towards these approaches when researching industrial use-cases such as energy-efficient production planning. However, much of the previous research makes assumptions about softer constraints that affect planning strategies and about how human planners interact with the algorithm in a live production environment. This article describes a job-shop problem that focuses on minimizing energy consumption across a production facility of shared resources. The application scenario is based on real facilities made available by the Irish Center for Manufacturing Research. The formulated problem is tackled via harmony search heuristics with random keys encoding. Simulation results are compared to a genetic algorithm, a simulated annealing approach and a first-come-first-served scheduling. The superior performance obtained by the proposed scheduler paves the way towards its practical implementation over industrial production chains.

  7. Decompounding random sums: A nonparametric approach

    DEFF Research Database (Denmark)

    Hansen, Martin Bøgsted; Pitts, Susan M.

    Observations from sums of random variables with a random number of summands, known as random, compound or stopped sums arise within many areas of engineering and science. Quite often it is desirable to infer properties of the distribution of the terms in the random sum. In the present paper we...... review a number of applications and consider the nonlinear inverse problem of inferring the cumulative distribution function of the components in the random sum. We review the existing literature on non-parametric approaches to the problem. The models amenable to the analysis are generalized considerably...

  8. Effect of Peer-Led Team Learning (PLTL) on Student Achievement, Attitude, and Self-Concept in College General Chemistry in Randomized and Quasi Experimental Designs

    Science.gov (United States)

    Chan, Julia Y. K.; Bauer, Christopher F.

    2015-01-01

    This study investigated exam achievement and affective characteristics of students in general chemistry in a fully-randomized experimental design, contrasting Peer-Led Team Learning (PLTL) participation with a control group balanced for time-on-task and study activity. This study population included two independent first-semester courses with…

  9. High intake of dairy during energy restriction does not affect energy balance or the intestinal microflora compared to low dairy intake in overweight individuals in a randomized controlled trial

    DEFF Research Database (Denmark)

    Bendtsen, Line Quist; Blædel, Trine; Holm, Jacob Bak

    2018-01-01

    During weight loss, dairy calcium is proposed to accelerate weight and fat mass loss through increased fecal fat excretion. The primary objective was to investigate if a high-dairy energy-restricted diet is superior to low-dairy in terms of changes in body weight, body composition and fecal fat...... excretion over 24 weeks. Secondary objectives included fecal energy and calcium excretion, resting energy expenditure, blood pressure, lipid metabolism and gut microbiota. In a randomized, parallel-arm intervention study 11 men and 69 women (BMI 30.60.3 kg/m2, age 441 years) were allocated to a 500 kcal...... not increase fecal fat or accelerate weight and fat mass loss beyond energy restriction over 24 weeks in overweight and obese adults with a habitual calcium intake of ~1000 mg/d. However, this study indicate that Papillibacter is involved in body compositional changes....

  10. Annealed central limit theorems for the ising model on random graphs

    NARCIS (Netherlands)

    Giardinà, C.; Giberti, C.; van der Hofstad, R.W.; Prioriello, M.L.

    2016-01-01

    The aim of this paper is to prove central limit theorems with respect to the annealed measure for the magnetization rescaled by √N of Ising models on random graphs. More precisely, we consider the general rank-1 inhomogeneous random graph (or generalized random graph), the 2-regular configuration

  11. Multivariate generalized linear mixed models using R

    CERN Document Server

    Berridge, Damon Mark

    2011-01-01

    Multivariate Generalized Linear Mixed Models Using R presents robust and methodologically sound models for analyzing large and complex data sets, enabling readers to answer increasingly complex research questions. The book applies the principles of modeling to longitudinal data from panel and related studies via the Sabre software package in R. A Unified Framework for a Broad Class of Models The authors first discuss members of the family of generalized linear models, gradually adding complexity to the modeling framework by incorporating random effects. After reviewing the generalized linear model notation, they illustrate a range of random effects models, including three-level, multivariate, endpoint, event history, and state dependence models. They estimate the multivariate generalized linear mixed models (MGLMMs) using either standard or adaptive Gaussian quadrature. The authors also compare two-level fixed and random effects linear models. The appendices contain additional information on quadrature, model...

  12. Comparison of escalating, constant, and reduction energy output in ESWL for renal stones: multi-arm prospective randomized study.

    Science.gov (United States)

    Rabah, Danny M; Mabrouki, Mohamed S; Farhat, Karim H; Seida, Mohamed A; Arafa, Mostafa A; Talic, Riyadh F

    2017-06-01

    This study was designed to find out the optimized energy delivery strategy in Shock Wave Lithotripsy (SWL) that yield to the best stone-free rate (SFR). In this clinical trial, 150 consecutive patients were randomized into three groups: (a) Dose escalation, 1500 SW at 18 kV, followed by 1500 SW at 20 kV then 1500 SW at 22 kV. (b) Constant dose, 4500 SW at 20 kV. All patients undergo plain X-ray film of the urinary tract at day 1, 14, and 90 to assess stone-free rate (SFR) which was defined as no stones or painless fragments less than 4 mm. (c) Dose reduction, 1500 SW at 22 kV, followed by 1500 SW at 20 kV and then 1500 SW at 18 kV. The three treatment groups were comparable in terms of age, sex, stone size and distribution of the kidneys, and the need for Double J stent use. On day 90, the SFR achieved was 82, 90, and 84 % in the escalating, constant, and reduction energy groups, respectively. However, this rate was not statistically significant (x 2  = 1.38, p level = 0.28). At a slow rate of 60 shocks, there was no difference in stone-free rate between different voltages at 1, 14, and 90 days. Our randomized clinical trial showed no statistically significant difference in SFR between the three groups while using the slow SWL rate. Our trial is the first randomized trial comparing the three strategies. As such, a dose adjustment strategy while delivering SWL in slow rate was not recommended.

  13. Modeling of energy consumption and related GHG (greenhouse gas) intensity and emissions in Europe using general regression neural networks

    International Nuclear Information System (INIS)

    Antanasijević, Davor; Pocajt, Viktor; Ristić, Mirjana; Perić-Grujić, Aleksandra

    2015-01-01

    This paper presents a new approach for the estimation of energy-related GHG (greenhouse gas) emissions at the national level that combines the simplicity of the concept of GHG intensity and the generalization capabilities of ANNs (artificial neural networks). The main objectives of this work includes the determination of the accuracy of a GRNN (general regression neural network) model applied for the prediction of EC (energy consumption) and GHG intensity of energy consumption, utilizing general country statistics as inputs, as well as analysis of the accuracy of energy-related GHG emissions obtained by multiplying the two aforementioned outputs. The models were developed using historical data from the period 2004–2012, for a set of 26 European countries (EU Members). The obtained results demonstrate that the GRNN GHG intensity model provides a more accurate prediction, with the MAPE (mean absolute percentage error) of 4.5%, than tested MLR (multiple linear regression) and second-order and third-order non-linear MPR (multiple polynomial regression) models. Also, the GRNN EC model has high accuracy (MAPE = 3.6%), and therefore both GRNN models and the proposed approach can be considered as suitable for the calculation of GHG emissions. The energy-related predicted GHG emissions were very similar to the actual GHG emissions of EU Members (MAPE = 6.4%). - Highlights: • ANN modeling of GHG intensity of energy consumption is presented. • ANN modeling of energy consumption at the national level is presented. • GHG intensity concept was used for the estimation of energy-related GHG emissions. • The ANN models provide better results in comparison with conventional models. • Forecast of GHG emissions for 26 countries was made successfully with MAPE of 6.4%

  14. Private randomness expansion with untrusted devices

    International Nuclear Information System (INIS)

    Colbeck, Roger; Kent, Adrian

    2011-01-01

    Randomness is an important resource for many applications, from gambling to secure communication. However, guaranteeing that the output from a candidate random source could not have been predicted by an outside party is a challenging task, and many supposedly random sources used today provide no such guarantee. Quantum solutions to this problem exist, for example a device which internally sends a photon through a beamsplitter and observes on which side it emerges, but, presently, such solutions require the user to trust the internal workings of the device. Here, we seek to go beyond this limitation by asking whether randomness can be generated using untrusted devices-even ones created by an adversarial agent-while providing a guarantee that no outside party (including the agent) can predict it. Since this is easily seen to be impossible unless the user has an initially private random string, the task we investigate here is private randomness expansion. We introduce a protocol for private randomness expansion with untrusted devices which is designed to take as input an initially private random string and produce as output a longer private random string. We point out that private randomness expansion protocols are generally vulnerable to attacks that can render the initial string partially insecure, even though that string is used only inside a secure laboratory; our protocol is designed to remove this previously unconsidered vulnerability by privacy amplification. We also discuss extensions of our protocol designed to generate an arbitrarily long random string from a finite initially private random string. The security of these protocols against the most general attacks is left as an open question.

  15. Private randomness expansion with untrusted devices

    Science.gov (United States)

    Colbeck, Roger; Kent, Adrian

    2011-03-01

    Randomness is an important resource for many applications, from gambling to secure communication. However, guaranteeing that the output from a candidate random source could not have been predicted by an outside party is a challenging task, and many supposedly random sources used today provide no such guarantee. Quantum solutions to this problem exist, for example a device which internally sends a photon through a beamsplitter and observes on which side it emerges, but, presently, such solutions require the user to trust the internal workings of the device. Here, we seek to go beyond this limitation by asking whether randomness can be generated using untrusted devices—even ones created by an adversarial agent—while providing a guarantee that no outside party (including the agent) can predict it. Since this is easily seen to be impossible unless the user has an initially private random string, the task we investigate here is private randomness expansion. We introduce a protocol for private randomness expansion with untrusted devices which is designed to take as input an initially private random string and produce as output a longer private random string. We point out that private randomness expansion protocols are generally vulnerable to attacks that can render the initial string partially insecure, even though that string is used only inside a secure laboratory; our protocol is designed to remove this previously unconsidered vulnerability by privacy amplification. We also discuss extensions of our protocol designed to generate an arbitrarily long random string from a finite initially private random string. The security of these protocols against the most general attacks is left as an open question.

  16. Private randomness expansion with untrusted devices

    Energy Technology Data Exchange (ETDEWEB)

    Colbeck, Roger; Kent, Adrian, E-mail: rcolbeck@perimeterinstitute.ca, E-mail: a.p.a.kent@damtp.cam.ac.uk [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5 (Canada)

    2011-03-04

    Randomness is an important resource for many applications, from gambling to secure communication. However, guaranteeing that the output from a candidate random source could not have been predicted by an outside party is a challenging task, and many supposedly random sources used today provide no such guarantee. Quantum solutions to this problem exist, for example a device which internally sends a photon through a beamsplitter and observes on which side it emerges, but, presently, such solutions require the user to trust the internal workings of the device. Here, we seek to go beyond this limitation by asking whether randomness can be generated using untrusted devices-even ones created by an adversarial agent-while providing a guarantee that no outside party (including the agent) can predict it. Since this is easily seen to be impossible unless the user has an initially private random string, the task we investigate here is private randomness expansion. We introduce a protocol for private randomness expansion with untrusted devices which is designed to take as input an initially private random string and produce as output a longer private random string. We point out that private randomness expansion protocols are generally vulnerable to attacks that can render the initial string partially insecure, even though that string is used only inside a secure laboratory; our protocol is designed to remove this previously unconsidered vulnerability by privacy amplification. We also discuss extensions of our protocol designed to generate an arbitrarily long random string from a finite initially private random string. The security of these protocols against the most general attacks is left as an open question.

  17. The use of a running wheel to measure activity in rodents: relationship to energy balance, general activity, and reward.

    Science.gov (United States)

    Novak, Colleen M; Burghardt, Paul R; Levine, James A

    2012-03-01

    Running wheels are commonly employed to measure rodent physical activity in a variety of contexts, including studies of energy balance and obesity. There is no consensus on the nature of wheel-running activity or its underlying causes, however. Here, we will begin by systematically reviewing how running wheel availability affects physical activity and other aspects of energy balance in laboratory rodents. While wheel running and physical activity in the absence of a wheel commonly correlate in a general sense, in many specific aspects the two do not correspond. In fact, the presence of running wheels alters several aspects of energy balance, including body weight and composition, food intake, and energy expenditure of activity. We contend that wheel-running activity should be considered a behavior in and of itself, reflecting several underlying behavioral processes in addition to a rodent's general, spontaneous activity. These behavioral processes include defensive behavior, predatory aggression, and depression- and anxiety-like behaviors. As it relates to energy balance, wheel running engages several brain systems-including those related to the stress response, mood, and reward, and those responsive to growth factors-that influence energy balance indirectly. We contend that wheel-running behavior represents factors in addition to rodents' tendency to be physically active, engaging additional neural and physiological mechanisms which can then independently alter energy balance and behavior. Given the impact of wheel-running behavior on numerous overlapping systems that influence behavior and physiology, this review outlines the need for careful design and interpretation of studies that utilize running wheels as a means for exercise or as a measurement of general physical activity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. The use of a running wheel to measure activity in rodents: Relationship to energy balance, general activity, and reward

    Science.gov (United States)

    Levine, James A.

    2015-01-01

    Running wheels are commonly employed to measure rodent physical activity in a variety of contexts, including studies of energy balance and obesity. There is no consensus on the nature of wheel-running activity or its underlying causes, however. Here, we will begin by systematically reviewing how running wheel availability affects physical activity and other aspects of energy balance in laboratory rodents. While wheel running and physical activity in the absence of a wheel commonly correlate in a general sense, in many specific aspects the two do not correspond. In fact, the presence of running wheels alters several aspects of energy balance, including body weight and composition, food intake, and energy expenditure of activity. We contend that wheel-running activity should be considered a behavior in and of itself, reflecting several underlying behavioral processes in addition to a rodent's general, spontaneous activity. These behavioral processes include defensive behavior, predatory aggression, and depression- and anxiety-like behaviors. As it relates to energy balance, wheel running engages several brain systems—including those related to the stress response, mood, and reward, and those responsive to growth factors—that influence energy balance indirectly. We contend that wheel-running behavior represents factors in addition to rodents' tendency to be physically active, engaging additional neural and physiological mechanisms which can then independently alter energy balance and behavior. Given the impact of wheel-running behavior on numerous overlapping systems that influence behavior and physiology, this review outlines the need for careful design and interpretation of studies that utilize running wheels as a means for exercise or as a measurement of general physical activity. PMID:22230703

  19. The Riemann problem for the relativistic full Euler system with generalized Chaplygin proper energy density-pressure relation

    Science.gov (United States)

    Shao, Zhiqiang

    2018-04-01

    The relativistic full Euler system with generalized Chaplygin proper energy density-pressure relation is studied. The Riemann problem is solved constructively. The delta shock wave arises in the Riemann solutions, provided that the initial data satisfy some certain conditions, although the system is strictly hyperbolic and the first and third characteristic fields are genuinely nonlinear, while the second one is linearly degenerate. There are five kinds of Riemann solutions, in which four only consist of a shock wave and a centered rarefaction wave or two shock waves or two centered rarefaction waves, and a contact discontinuity between the constant states (precisely speaking, the solutions consist in general of three waves), and the other involves delta shocks on which both the rest mass density and the proper energy density simultaneously contain the Dirac delta function. It is quite different from the previous ones on which only one state variable contains the Dirac delta function. The formation mechanism, generalized Rankine-Hugoniot relation and entropy condition are clarified for this type of delta shock wave. Under the generalized Rankine-Hugoniot relation and entropy condition, we establish the existence and uniqueness of solutions involving delta shocks for the Riemann problem.

  20. Proceedings of the 3. General Congress on Nuclear Energy. v. 9

    International Nuclear Information System (INIS)

    1990-01-01

    The Proceedings of the 3. General Congress on Nuclear Energy (CGEN), present about 200 contributed papers. The topics covered by the meeting are: reactor physics and operation; risk analysis, safety analysis, nuclear power plants construction; thermohydraulics; nuclear power plants control and instrumentation; equipment and system design, radioactive management; fuel cycle; design and fabrication of fuel elements, science and technology materials; instrumentation for radiation detection and dosimetry; shielding, radiation protection, licensing, safeguards, social and environmental impacts; radioisotopes production and application; radiochemistry, radioecology; nuclear medicine and radiobiology. In this volume the contributed papers emphasize the topics shielding, radiation protection, licensing, safeguards and social and environmental impacts. (M.I.A.)

  1. Exploring Reaction Mechanism on Generalized Force Modified Potential Energy Surfaces (G-FMPES) for Diels-Alder Reaction

    Science.gov (United States)

    Jha, Sanjiv; Brown, Katie; Subramanian, Gopinath

    We apply a recent formulation for searching minimum energy reaction path (MERP) and saddle point to atomic systems subjected to an external force. We demonstrate the effect of a loading modality resembling hydrostatic pressure on the trans to cis conformational change of 1,3-butadiene, and the simplest Diels-Alder reaction between ethylene and 1,3-butadiene. The calculated MERP and saddle points on the generalized force modified potential energy surface (G-FMPES) are compared with the corresponding quantities on an unmodified potential energy surface. Our study is performed using electronic structure calculations at the HF/6-31G** level as implemented in the AIMS-MOLPRO code. Our calculations suggest that the added compressive pressure lowers the energy of cis butadiene. The activation energy barrier for the concerted Diels-Alder reaction is found to decrease progressively with increasing compressive pressure.

  2. On large-time energy concentration in solutions to the Navier-Stokes equations in general domains

    Czech Academy of Sciences Publication Activity Database

    Skalák, Zdeněk

    2011-01-01

    Roč. 91, č. 9 (2011), s. 724-732 ISSN 0044-2267 R&D Projects: GA AV ČR IAA100190905 Institutional research plan: CEZ:AV0Z20600510 Keywords : Navier-Stokes equations * large-time behavior * energy concentration Subject RIV: BA - General Mathematics Impact factor: 0.863, year: 2011

  3. Generalized-ensemble molecular dynamics and Monte Carlo algorithms beyond the limit of the multicanonical algorithm

    International Nuclear Information System (INIS)

    Okumura, Hisashi

    2010-01-01

    I review two new generalized-ensemble algorithms for molecular dynamics and Monte Carlo simulations of biomolecules, that is, the multibaric–multithermal algorithm and the partial multicanonical algorithm. In the multibaric–multithermal algorithm, two-dimensional random walks not only in the potential-energy space but also in the volume space are realized. One can discuss the temperature dependence and pressure dependence of biomolecules with this algorithm. The partial multicanonical simulation samples a wide range of only an important part of potential energy, so that one can concentrate the effort to determine a multicanonical weight factor only on the important energy terms. This algorithm has higher sampling efficiency than the multicanonical and canonical algorithms. (review)

  4. PREFACE: The random search problem: trends and perspectives The random search problem: trends and perspectives

    Science.gov (United States)

    da Luz, Marcos G. E.; Grosberg, Alexander; Raposo, Ernesto P.; Viswanathan, Gandhi M.

    2009-10-01

    very important to solve computationally complex problems (e.g., protein folding), which involve optimizations in very high dimensional energy landscapes. On the other hand, random searches can also be studied from the perspective of diffusion and transport properties which is an important topic in condensed matter and statistical physics. For instance, the features of light scattered in a media, where the scatterers have a power-law distribution of sizes in many aspects, may resemble the patterns generated by a searcher performing Lévy walks. There are many questions related to random searches: how the searcher moves or should move, what are the patterns generated during the locomotion, how do the encounter rates depend on parameters of the search, etc. But perhaps, the most well known issue is how to optimize the search for specific target scenarios. The optimization can be in either continuous or discrete environments, when the information available is limited. The answer to this question determines specific strategies of movement that would maximize some properly defined search efficiency measure. The relevance of the question stems from the fact that the strategy-dynamics represents one of the most important factors that modulate the rate of encounters (e.g., the encounter rate between predator and prey). In the general context, strategy choices can be essential in determining the outcome and thus the success of a given search. For instance, realistic searches—and locomotion in general—require the expenditure of energy. Thus, inefficient search could deplete energy reserves (e.g., fat) and lead to rates of encounters below a minimum acceptable threshold (resulting in extinction of a species, for example). The framework of the random search `game' distinguishes between the two interacting players in a context of pursuit and chance. They are either a `searcher' (e.g., predator, protein, radar, `crawler') or a `target' (e.g., prey, DNA sequence, a missing

  5. Permutation Entropy for Random Binary Sequences

    Directory of Open Access Journals (Sweden)

    Lingfeng Liu

    2015-12-01

    Full Text Available In this paper, we generalize the permutation entropy (PE measure to binary sequences, which is based on Shannon’s entropy, and theoretically analyze this measure for random binary sequences. We deduce the theoretical value of PE for random binary sequences, which can be used to measure the randomness of binary sequences. We also reveal the relationship between this PE measure with other randomness measures, such as Shannon’s entropy and Lempel–Ziv complexity. The results show that PE is consistent with these two measures. Furthermore, we use PE as one of the randomness measures to evaluate the randomness of chaotic binary sequences.

  6. Trace anomaly of the stress-energy tensor for massless vector particles propagating in a general background metric

    International Nuclear Information System (INIS)

    Adler, S.L.; Lieberman, J.

    1978-01-01

    We reanalyze the problem of regularization of the stress-energy tensor for massless vector particles propating in a general background metric, using covariant point separation techniques applied to the Hadamard elementary solution. We correct an error, point out by Wald, in the earlier formulation of Adler, Lieberman, and Ng, and find a stress-energy tensor trace anomaly agreeing with that found by other regularization methods

  7. Reporting funding source or conflict of interest in abstracts of randomized controlled trials, no evidence of a large impact on general practitioners' confidence in conclusions, a three-arm randomized controlled trial.

    Science.gov (United States)

    Buffel du Vaure, Céline; Boutron, Isabelle; Perrodeau, Elodie; Ravaud, Philippe

    2014-04-28

    Systematic reporting of funding sources is recommended in the CONSORT Statement for abstracts. However, no specific recommendation is related to the reporting of conflicts of interest (CoI). The objective was to compare physicians' confidence in the conclusions of abstracts of randomized controlled trials of pharmaceutical treatment indexed in PubMed. We planned a three-arm parallel-group randomized trial. French general practitioners (GPs) were invited to participate and were blinded to the study's aim. We used a representative sample of 75 abstracts of pharmaceutical industry-funded randomized controlled trials published in 2010 and indexed in PubMed. Each abstract was standardized and reported in three formats: 1) no mention of the funding source or CoI; 2) reporting the funding source only; and 3) reporting the funding source and CoI. GPs were randomized according to a computerized randomization on a secure Internet system at a 1:1:1 ratio to assess one abstract among the three formats. The primary outcome was GPs' confidence in the abstract conclusions (0, not at all, to 10, completely confident). The study was planned to detect a large difference with an effect size of 0.5. Between October 2012 and June 2013, among 605 GPs contacted, 354 were randomized, 118 for each type of abstract. The mean difference (95% confidence interval) in GPs' confidence in abstract findings was 0.2 (-0.6; 1.0) (P = 0.84) for abstracts reporting the funding source only versus no funding source or CoI; -0.4 (-1.3; 0.4) (P = 0.39) for abstracts reporting the funding source and CoI versus no funding source and CoI; and -0.6 (-1.5; 0.2) (P = 0.15) for abstracts reporting the funding source and CoI versus the funding source only. We found no evidence of a large impact of trial report abstracts mentioning funding sources or CoI on GPs' confidence in the conclusions of the abstracts. ClinicalTrials.gov identifier: NCT01679873.

  8. Eating dark and milk chocolate: a randomized crossover study of effects on appetite and energy intake.

    Science.gov (United States)

    Sørensen, L B; Astrup, A

    2011-12-05

    To compare the effect of dark and milk chocolate on appetite sensations and energy intake at an ad libitum test meal in healthy, normal-weight men. A total of 16 young, healthy, normal-weight men participated in a randomized, crossover study. Test meals were 100 g of either milk (2285 kJ) or dark chocolate (2502 kJ). Visual-analogue scales were used to record appetite sensations before and after the test meal was consumed and subsequently every 30 min for 5 h. An ad libitum meal was served 2 h after the test meal had been consumed. The participants felt more satiated, less hungry, and had lower ratings of prospective food consumption after consumption of the dark chocolate than after the milk chocolate. Ratings of the desire to eat something sweet, fatty or savoury were all lower after consumption of the dark chocolate. Energy intake at the ad libitum meal was 17% lower after consumption of the dark chocolate than after the milk chocolate (P=0.002). If the energy provided by the chocolate is included in the calculation, the energy intake after consumption of the dark chocolate was still 8% lower than after the milk chocolate (P=0.01). The dark chocolate load resulted in an overall energy difference of -584 kJ (95% confidence interval (-1027;-141)) during the test period. In the present study, dark chocolate promotes satiety, lowers the desire to eat something sweet, and suppresses energy intake compared with milk chocolate.

  9. CSR Interaction for a 2D Energy-Chirped Bunch on a General Orbit

    International Nuclear Information System (INIS)

    Li, Rui

    2009-01-01

    When an electron bunch with initial linear energy chirp traverses a bunch compression chicane, the bunch interacts with itself via coherent synchrotron radiation (CSR) and space charge force. The effective longitudinal CSR force for such kind of 2D bunch on a circular orbit has been analyzed earlier (1). In this paper, we present the analytical results of the effective longitudinal CSR force for a 2D energy-chirped bunch going through a general orbit, which includes the entrance and exit of a circular orbit. In particular, we will show the behavior of the force in the last bend of a chicane when the bunch is under extreme compression. This is the condition when bifurcation of bunch phase space occurs in many CSR measurements. (1) R. Li, Phys. Rev. ST Accel. Beams 11, 024401 (2008)

  10. Generalized random sequential adsorption of polydisperse mixtures on a one-dimensional lattice

    International Nuclear Information System (INIS)

    Lončarević, I; Budinski-Petković, Lj; Vrhovac, S B; Belić, A

    2010-01-01

    Generalized random sequential adsorption (RSA) of polydisperse mixtures of k-mers on a one-dimensional lattice is studied numerically by means of Monte Carlo simulations. The kinetics of the deposition process of mixtures is studied for the irreversible case, for adsorption–desorption processes and for the case where adsorption, desorption and diffusion are present simultaneously. We concentrate here on the influence of the number of mixture components and the length of the k-mers making up the mixture on the temporal behavior of the coverage fraction θ(t). The approach of the coverage θ(t) to the jamming limit θ jam in the case of irreversible RSA is found to be exponential, θ jam -θ(t)∝ exp(-t/σ), not only for a whole mixture, but also for the individual components. For the reversible deposition of polydisperse mixtures, we find that after the initial 'jamming', a stretched exponential growth of the coverage θ(t) towards the equilibrium state value θ eq occurs, i.e., θ eq -θ(t)∝ exp[-(t/τ) β ]. The characteristic timescale τ is found to decrease with the desorption probability P des . When adsorption, desorption and diffusion occur simultaneously, the coverage of a mixture always reaches an equilibrium value θ eq , but there is a significant difference in temporal evolution between the coverage with diffusion and that without

  11. Effect of whole-body vibration exercise on mobility, balance ability and general health status in frail elderly patients: a pilot randomized controlled trial.

    Science.gov (United States)

    Zhang, Li; Weng, Changshui; Liu, Miao; Wang, Qiuhua; Liu, Liming; He, Yao

    2014-01-01

    To study the effects of whole-body vibration exercises on the mobility function, balance and general health status, and its feasibility as an intervention in frail elderly patients. Pilot randomized controlled trial. Forty-four frail older persons (85.27 ± 3.63 years) meeting the Fried Frailty Criteria. All eligible subjects were randomly assigned to the experimental group, who received a whole-body vibration exercise alone (vibration amplitude: 1-3 mm; frequency: 6-26 Hz; 4-5 bouts × 60 seconds; 3-5 times weekly), or a control group, who received usual care and exercises for eight weeks. The Timed Up and Go Test, 30-second chair stand test, lower extremities muscle strength, balance function, balance confidence and General Health Status were assessed at the beginning of the study, after four weeks and eight weeks of the intervention. Whole-body vibration exercise reduced the time of the Timed Up and Go Test (40.47 ± 15.94 s to 21.34 ± 4.42 s), improved the bilateral knees extensor strength (6.96 ± 1.70 kg to 11.26 ± 2.08 kg), the posture stability (surface area ellipse: 404.58 ± 177.05 to 255.95 ± 107.28) and General Health Status (Short-form Health Survey score: 24.51 ± 10.69 and 49.63 ± 9.85 to 45.03 ± 11.15 and 65.23 ± 9.39, respectively). The repeated-measures ANOVA showed that there were significant differences in the Timed Up and Go Test, 30-second chair stand test, bilateral knees extensor strength, activities-specific balance confidence score and general health status between the two groups (P balance and the general health status in the frail elderly.

  12. Object grammars and random generation

    Directory of Open Access Journals (Sweden)

    I. Dutour

    1998-12-01

    Full Text Available This paper presents a new systematic approach for the uniform random generation of combinatorial objects. The method is based on the notion of object grammars which give recursive descriptions of objects and generalize context-freegrammars. The application of particular valuations to these grammars leads to enumeration and random generation of objects according to non algebraic parameters.

  13. Random power series in the unit ball of Cn

    International Nuclear Information System (INIS)

    Shi Jihuai.

    1989-07-01

    The random power series in the unit disc has been studied by many authors. In this paper, we studied the random power series in the unit ball of C n and generalized some results in the unit disc to the unit ball, in particular, the result obtained recently by Duren has been generalized to the unit ball. The main tool used here is the generalized Salem-Zygmund's theorem. (author). 12 refs

  14. Levy flights and random searches

    Energy Technology Data Exchange (ETDEWEB)

    Raposo, E P [Laboratorio de Fisica Teorica e Computacional, Departamento de Fisica, Universidade Federal de Pernambuco, Recife-PE, 50670-901 (Brazil); Buldyrev, S V [Department of Physics, Yeshiva University, New York, 10033 (United States); Da Luz, M G E [Departamento de Fisica, Universidade Federal do Parana, Curitiba-PR, 81531-990 (Brazil); Viswanathan, G M [Instituto de Fisica, Universidade Federal de Alagoas, Maceio-AL, 57072-970 (Brazil); Stanley, H E [Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215 (United States)

    2009-10-30

    In this work we discuss some recent contributions to the random search problem. Our analysis includes superdiffusive Levy processes and correlated random walks in several regimes of target site density, mobility and revisitability. We present results in the context of mean-field-like and closed-form average calculations, as well as numerical simulations. We then consider random searches performed in regular lattices and lattices with defects, and we discuss a necessary criterion for distinguishing true superdiffusion from correlated random walk processes. We invoke energy considerations in relation to critical survival states on the edge of extinction, and we analyze the emergence of Levy behavior in deterministic search walks. Finally, we comment on the random search problem in the context of biological foraging.

  15. Large-Scale Cubic-Scaling Random Phase Approximation Correlation Energy Calculations Using a Gaussian Basis.

    Science.gov (United States)

    Wilhelm, Jan; Seewald, Patrick; Del Ben, Mauro; Hutter, Jürg

    2016-12-13

    We present an algorithm for computing the correlation energy in the random phase approximation (RPA) in a Gaussian basis requiring [Formula: see text] operations and [Formula: see text] memory. The method is based on the resolution of the identity (RI) with the overlap metric, a reformulation of RI-RPA in the Gaussian basis, imaginary time, and imaginary frequency integration techniques, and the use of sparse linear algebra. Additional memory reduction without extra computations can be achieved by an iterative scheme that overcomes the memory bottleneck of canonical RPA implementations. We report a massively parallel implementation that is the key for the application to large systems. Finally, cubic-scaling RPA is applied to a thousand water molecules using a correlation-consistent triple-ζ quality basis.

  16. General indicators

    International Nuclear Information System (INIS)

    2003-01-01

    This document summarizes the main 2002 energy indicators for France. A first table lists the evolution of general indicators between 1973 and 2002: energy bill, price of imported crude oil, energy independence, primary and final energy consumption. The main 2002 results are detailed separately for natural gas, petroleum and coal (consumption, imports, exports, production, stocks, prices). (J.S.)

  17. Severe negative energy balance during 21 d at high altitude decreases fat-free mass regardless of dietary protein intake: a randomized controlled trial.

    Science.gov (United States)

    Berryman, Claire E; Young, Andrew J; Karl, J Philip; Kenefick, Robert W; Margolis, Lee M; Cole, Renee E; Carbone, John W; Lieberman, Harris R; Kim, Il-Young; Ferrando, Arny A; Pasiakos, Stefan M

    2018-02-01

    In this 2-phase randomized controlled study, we examined whether consuming a higher-protein (HP) diet would attenuate fat-free mass (FFM) loss during energy deficit (ED) at high altitude (HA) in 17 healthy males (mean ± sd: 23 ± 6 yr; 82 ± 14 kg). During phase 1 at sea level (SL, 55 m), participants consumed a eucaloric diet providing standard protein (SP; 1.0 g protein/kg,) for 21 d. During phase 2, participants resided at HA (4300 m) for 22 d and were randomly assigned to either an SP or HP (2.0 g protein/kg) diet designed to elicit a 40% ED. Body composition, substrate oxidation, and postabsorptive whole-body protein kinetics were measured. Participants were weight stable during SL and lost 7.9 ± 1.9 kg ( P Berryman, C. E., Young, A. J., Karl, J. P., Kenefick, R. W., Margolis, L. M., Cole, R. E., Carbone, J. W., Lieberman, H. R., Kim, I.-Y., Ferrando, A. A., Pasiakos, S. M. Severe negative energy balance during 21 d at high altitude decreases fat-free mass regardless of dietary protein intake: a randomized controlled trial.

  18. 76 FR 11437 - Application To Export Electric Energy; Societe Generale Energy Corp.

    Science.gov (United States)

    2011-03-02

    ... reliability of the U.S. electric power supply system. Copies of this application will be made available, upon... surplus energy purchased from electric utilities, Federal power marketing agencies and other entities... DEPARTMENT OF ENERGY [OE Docket No. EA-376] Application To Export Electric Energy; Societe...

  19. Random magnetism

    International Nuclear Information System (INIS)

    Tsallis, C.

    1980-03-01

    The 'ingredients' which control a phase transition in well defined system as well as in random ones (e.g. random magnetic systems) are listed and discussed within a somehow unifying perspective. Among these 'ingredients' we find the couplings and elements responsible for the cooperative phenomenon, the topological connectivity as well as possible topological incompatibilities, the influence of new degrees of freedom, the order parameter dimensionality, the ground state degeneracy and finally the 'quanticity' of the system. The general trends, though illustrated in magnetic systems, essentially hold for all phase transitions, and give a basis for connection of this area with Field theory, Theory of dynamical systems, etc. (Author) [pt

  20. Random magnetism

    International Nuclear Information System (INIS)

    Tsallis, C.

    1981-01-01

    The 'ingredients' which control a phase transition in well defined systems as well as in random ones (e.q. random magnetic systems) are listed and discussed within a somehow unifying perspective. Among these 'ingredients' the couplings and elements responsible for the cooperative phenomenon, the topological connectivity as well as possible topological incompatibilities, the influence of new degrees of freedom, the order parameter dimensionality, the ground state degeneracy and finally the 'quanticity' of the system are found. The general trends, though illustrated in magnetic systems, essentially hold for all phase transitions, and give a basis for connection of this area with Field theory, Theory of dynamical systems, etc. (Author) [pt

  1. Approximate scaling properties of RNA free energy landscapes

    Science.gov (United States)

    Baskaran, S.; Stadler, P. F.; Schuster, P.

    1996-01-01

    RNA free energy landscapes are analysed by means of "time-series" that are obtained from random walks restricted to excursion sets. The power spectra, the scaling of the jump size distribution, and the scaling of the curve length measured with different yard stick lengths are used to describe the structure of these "time series". Although they are stationary by construction, we find that their local behavior is consistent with both AR(1) and self-affine processes. Random walks confined to excursion sets (i.e., with the restriction that the fitness value exceeds a certain threshold at each step) exhibit essentially the same statistics as free random walks. We find that an AR(1) time series is in general approximately self-affine on timescales up to approximately the correlation length. We present an empirical relation between the correlation parameter rho of the AR(1) model and the exponents characterizing self-affinity.

  2. Analysis of unbounded operators and random motion

    International Nuclear Information System (INIS)

    Jorgensen, Palle E. T.

    2009-01-01

    We study infinite weighted graphs with view to 'limits at infinity' or boundaries at infinity. Examples of such weighted graphs arise in infinite (in practice, that means 'very' large) networks of resistors or in statistical mechanics models for classical or quantum systems. However, more generally, our analysis includes reproducing kernel Hilbert spaces and associated operators on them. If X is some infinite set of vertices or nodes, in applications the essential ingredient going into the definition is a reproducing kernel Hilbert space; it measures the differences of functions on X evaluated on pairs of points in X. Moreover, the Hilbert norm-squared in H(X) will represent a suitable measure of energy. Associated unbounded operators will define a notion or dissipation, it can be a graph Laplacian or a more abstract unbounded Hermitian operator defined from the reproducing kernel Hilbert space under study. We prove that there are two closed subspaces in reproducing kernel Hilbert space H(X) that measure quantitative notions of limits at infinity in X: one generalizes finite-energy harmonic functions in H(X) and the other a deficiency index of a natural operator in H(X) associated directly with the diffusion. We establish these results in the abstract, and we offer examples and applications. Our results are related to, but different from, potential theoretic notions of 'boundaries' in more standard random walk models. Comparisons are made.

  3. Cardiovascular Effects of Energy Drinks in Familial Long QT Syndrome: A Randomized Cross-Over Study.

    Science.gov (United States)

    Gray, Belinda; Ingles, Jodie; Medi, Caroline; Driscoll, Timothy; Semsarian, Christopher

    2017-03-15

    Caffeinated energy drinks may trigger serious cardiac effects. The aim of this study was to determine the cardiovascular effects of caffeinated energy drink consumption in patients with familial long QT syndrome (LQTS). From 2014-2016, 24 LQTS patients aged 16-50 years were recruited to a randomized, double-blind, cross-over study of energy drink (ED) versus control (CD) with participants acting as their own controls (one week washout). The primary study outcome was an increase in corrected QT interval (QTc) by >20ms. Secondary outcomes were changes in systolic and diastolic blood pressure. In 24 patients with LQTS (no dropout), mean age was 29±9 years, 13/24 (54%) were female, and 8/24 (33%) were probands. Intention to treat analysis revealed no significant change in QTc with ED compared with CD (12±28ms vs 16±27ms, 3% vs 4%, p=0.71). The systolic and diastolic blood pressure significantly increased with ED compared to CD (peak change 7±16mmHg vs 1±16mmHg, 6% vs 0.8%, p=0.046 and 8±10 vs 2±9mmHg, 11% vs 3% p=0.01 respectively). These changes correlated with significant increases in serum caffeine (14.6±11.3 vs 0.5±0.1μmol/L, penergy drink consumption. Caffeinated energy drinks have significant haemodynamic effects in patients with LQTS, especifically an acute increase in blood pressure. Since dangerous QTc prolongation was seen in some LQTS patients, we recommend caution in young patients with LQTS consuming energy drinks. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Orthogonal polynomials and random matrices

    CERN Document Server

    Deift, Percy

    2000-01-01

    This volume expands on a set of lectures held at the Courant Institute on Riemann-Hilbert problems, orthogonal polynomials, and random matrix theory. The goal of the course was to prove universality for a variety of statistical quantities arising in the theory of random matrix models. The central question was the following: Why do very general ensembles of random n {\\times} n matrices exhibit universal behavior as n {\\rightarrow} {\\infty}? The main ingredient in the proof is the steepest descent method for oscillatory Riemann-Hilbert problems.

  5. Generalized Gibbs distribution and energy localization in the semiclassical FPU problem

    Science.gov (United States)

    Hipolito, Rafael; Danshita, Ippei; Oganesyan, Vadim; Polkovnikov, Anatoli

    2011-03-01

    We investigate dynamics of the weakly interacting quantum mechanical Fermi-Pasta-Ulam (qFPU) model in the semiclassical limit below the stochasticity threshold. Within this limit we find that initial quantum fluctuations lead to the damping of FPU oscillations and relaxation of the system to a slowly evolving steady state with energy localized within few momentum modes. We find that in large systems this state can be described by the generalized Gibbs ensemble (GGE), with the Lagrange multipliers being very weak functions of time. This ensembles gives accurate description of the instantaneous correlation functions, both quadratic and quartic. Based on these results we conjecture that GGE generically appears as a prethermalized state in weakly non-integrable systems.

  6. Ingerop - Energy activities and industry - General brochure 2014

    International Nuclear Information System (INIS)

    2014-01-01

    Ingerop is a leading player in France and a major player internationally in engineering and consulting in sustainable mobility, energy transition and living environment and in major issues of today and tomorrow. The industrial engineering provided by Ingerop in France and for export, provides a response to customer expectations, integrating more and more the theme of sustainable development. Faced with a growing demand for electricity both in the world and in Europe Ingerop made the energy sector its priority development. The controlled use of energy (energy efficiency, renewable energy) is an ongoing challenge for Ingerop. The group continues its development in nuclear energy by extending its remit from the upstream phases for new construction projects abroad until the decommissioning phases in France and abroad. Ingerop continues its development in nuclear energy by extending its remit from the upstream phases for new construction projects abroad to decommissioning in France and abroad. Ingerop strengthens its expertise in new energy with new projects in biomass boilers and heat networks. The group has profound geothermal skills in heating networks or fatal energy recovery, permitting them to intervene with local authorities such as farmers, from feasibility studies to commissioning and assisting project management with technical studies. The expertise acquired by the group Ingerop in the 1990's, through the construction of fifty data centers on behalf of SFR, enables a significant experience going back twenty years. Furthermore, development continued on the design of more energy-efficient projects and ensuring increasingly high reliability. This brochure presents Ingerop's skills and main references in its four domains of intervention: energy industry (operation in nuclear environment, conventional power plants, new energy technologies, data centers), other industries, infrastructures, and building industry

  7. Random queues and risk averse users

    DEFF Research Database (Denmark)

    de Palma, André; Fosgerau, Mogens

    2013-01-01

    We analyze Nash equilibrium in time of use of a congested facility. Users are risk averse with general concave utility. Queues are subject to varying degrees of random sorting, ranging from strict queue priority to a completely random queue. We define the key “no residual queue” property, which...

  8. Conditional Monte Carlo randomization tests for regression models.

    Science.gov (United States)

    Parhat, Parwen; Rosenberger, William F; Diao, Guoqing

    2014-08-15

    We discuss the computation of randomization tests for clinical trials of two treatments when the primary outcome is based on a regression model. We begin by revisiting the seminal paper of Gail, Tan, and Piantadosi (1988), and then describe a method based on Monte Carlo generation of randomization sequences. The tests based on this Monte Carlo procedure are design based, in that they incorporate the particular randomization procedure used. We discuss permuted block designs, complete randomization, and biased coin designs. We also use a new technique by Plamadeala and Rosenberger (2012) for simple computation of conditional randomization tests. Like Gail, Tan, and Piantadosi, we focus on residuals from generalized linear models and martingale residuals from survival models. Such techniques do not apply to longitudinal data analysis, and we introduce a method for computation of randomization tests based on the predicted rate of change from a generalized linear mixed model when outcomes are longitudinal. We show, by simulation, that these randomization tests preserve the size and power well under model misspecification. Copyright © 2014 John Wiley & Sons, Ltd.

  9. β-Glucan and Dark Chocolate: A Randomized Crossover Study on Short-Term Satiety and Energy Intake

    Directory of Open Access Journals (Sweden)

    Asli Akyol

    2014-09-01

    Full Text Available Aim: The aims of this study were to adapt a traditional recipe into a healthier form by adding 3 g of oat β-glucan, substituting milk chocolate to dark chocolate with 70% cocoa, and to examine the effect of these alterations on short-term satiety and energy intake. Materials and Methods: Study subjects (n = 25 were tested in a randomized, crossover design with four products closely matched for energy content. Four different versions of a traditional recipe including milk chocolate-control (CON, oat β-glucan (B-GLU, dark chocolate (DARK or oat β-glucan and dark chocolate (B-GLU + DARK were given to subjects on different test days. After subjects were asked to report visual analog scale (VAS scores on sensory outcomes and related satiety for four hours ad libitum, lunch was served and energy intake of individuals was measured. Results: VAS scores indicated that none of the test foods exerted an improved effect on satiety feelings. However, energy intake of individuals during ad libitum lunch was significantly lower in dark chocolate groups (CON: 849.46 ± 47.45 kcal versus DARK: 677.69 ± 48.45 kcal and B-GLU + DARK: 691.08 ± 47.45 kcal, p = 0.014. Conclusion: The study demonstrated that substituting dark chocolate for milk chocolate is more effective in inducing satiety during subsequent food intake in healthy subjects.

  10. β-Glucan and dark chocolate: a randomized crossover study on short-term satiety and energy intake.

    Science.gov (United States)

    Akyol, Asli; Dasgin, Halil; Ayaz, Aylin; Buyuktuncer, Zehra; Besler, H Tanju

    2014-09-23

    The aims of this study were to adapt a traditional recipe into a healthier form by adding 3 g of oat β-glucan, substituting milk chocolate to dark chocolate with 70% cocoa, and to examine the effect of these alterations on short-term satiety and energy intake. Study subjects (n = 25) were tested in a randomized, crossover design with four products closely matched for energy content. Four different versions of a traditional recipe including milk chocolate-control (CON), oat β-glucan (B-GLU), dark chocolate (DARK) or oat β-glucan and dark chocolate (B-GLU + DARK) were given to subjects on different test days. After subjects were asked to report visual analog scale (VAS) scores on sensory outcomes and related satiety for four hours ad libitum, lunch was served and energy intake of individuals was measured. VAS scores indicated that none of the test foods exerted an improved effect on satiety feelings. However, energy intake of individuals during ad libitum lunch was significantly lower in dark chocolate groups (CON: 849.46 ± 47.45 kcal versus DARK: 677.69 ± 48.45 kcal and B-GLU + DARK: 691.08 ± 47.45 kcal, p = 0.014). The study demonstrated that substituting dark chocolate for milk chocolate is more effective in inducing satiety during subsequent food intake in healthy subjects.

  11. Bell inequalities for random fields

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Peter [Physics Department, Yale University, CT 06520 (United States)

    2006-06-09

    The assumptions required for the derivation of Bell inequalities are not satisfied for random field models in which there are any thermal or quantum fluctuations, in contrast to the general satisfaction of the assumptions for classical two point particle models. Classical random field models that explicitly include the effects of quantum fluctuations on measurement are possible for experiments that violate Bell inequalities.

  12. Bell inequalities for random fields

    OpenAIRE

    Morgan, Peter

    2004-01-01

    The assumptions required for the derivation of Bell inequalities are not usually satisfied for random fields in which there are any thermal or quantum fluctuations, in contrast to the general satisfaction of the assumptions for classical two point particle models. Classical random field models that explicitly include the effects of quantum fluctuations on measurement are possible for experiments that violate Bell inequalities.

  13. Using Graphs of Gibbs Energy versus Temperature in General Chemistry Discussions of Phase Changes and Colligative Properties

    Science.gov (United States)

    Hanson, Robert M.; Riley, Patrick; Schwinefus, Jeff; Fischer, Paul J.

    2008-01-01

    The use of qualitative graphs of Gibbs energy versus temperature is described in the context of chemical demonstrations involving phase changes and colligative properties at the general chemistry level. (Contains 5 figures and 1 note.)

  14. 10 CFR 1023.9 - General guidelines.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false General guidelines. 1023.9 Section 1023.9 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) CONTRACT APPEALS Overview: Organization, Functions and Authorities § 1023.9 General guidelines. (a) The principles of this Overview shall apply to all Board functions...

  15. Nuclear energy: work to be done. A report of the General Council to the 1986 TUC Congress

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The paper on nuclear energy is a Report of the General Council to the United Kingdom 1986 TUC Congress. The contents contains four sections on:- 1) control of risks to health, safety and the environment: the TUC role, 2) radioactive waste, 3) Chernobyl reactor accident, and 4) TUC energy policy. The annex contains a report of a fact finding visit to Sellafield reprocessing plant by members of the TUC Radioactive Waste Group.

  16. Specific collaborative group intervention for patients with medically unexplained symptoms in general practice: a cluster randomized controlled trial.

    Science.gov (United States)

    Schaefert, R; Kaufmann, C; Wild, B; Schellberg, D; Boelter, R; Faber, R; Szecsenyi, J; Sauer, N; Guthrie, E; Herzog, W

    2013-01-01

    Patients with medically unexplained symptoms (MUS) are frequent in primary care and substantially impaired in their quality of life (QoL). Specific training of general practitioners (GPs) alone did not demonstrate sustained improvement at later follow-up in current reviews. We evaluated a collaborative group intervention. We conducted a cluster randomized controlled trial. Thirty-five GPs recruited 304 MUS patients (intervention group: 170; control group: 134). All GPs were trained in diagnosis and management of MUS (control condition). Eighteen randomly selected intervention GPs participated in training for a specific collaborative group intervention. They conducted 10 weekly group sessions and 2 booster meetings in their practices, together with a psychosomatic specialist. Six and 12 months after baseline, QoL was assessed with the Short-Form 36. The primary outcome was the physical composite score (PCS), and the secondary outcome was the mental composite score (MCS). At 12 months, intention-to-treat analyses showed a significant between-group effect for the MCS (p = 0.023) but not for the PCS (p = 0.674). This effect was preceded by a significant reduction of somatic symptom severity (15-item somatic symptom severity scale of the Patient Health Questionnaire, PHQ-15) at 6 months (p = 0.008) that lacked significance at 12 months (p = 0.078). As additional between-group effects at 12 months, per-protocol analyses showed less health anxiety (Whiteley-7; p = 0.038) and less psychosocial distress (PHQ; p = 0.024); GP visits were significantly (p = 0.042) reduced in the intervention group. Compared to pure GP training, collaborative group intervention achieved a progressive, clinically meaningful improvement in mental but not physical QoL. It could bridge gaps between general practice and mental health care. Copyright © 2012 S. Karger AG, Basel.

  17. The General Evolving Model for Energy Supply-Demand Network with Local-World

    Science.gov (United States)

    Sun, Mei; Han, Dun; Li, Dandan; Fang, Cuicui

    2013-10-01

    In this paper, two general bipartite network evolving models for energy supply-demand network with local-world are proposed. The node weight distribution, the "shifting coefficient" and the scaling exponent of two different kinds of nodes are presented by the mean-field theory. The numerical results of the node weight distribution and the edge weight distribution are also investigated. The production's shifted power law (SPL) distribution of coal enterprises and the installed capacity's distribution of power plants in the US are obtained from the empirical analysis. Numerical simulations and empirical results are given to verify the theoretical results.

  18. Eating dark and milk chocolate: a randomized crossover study of effects on appetite and energy intake

    Science.gov (United States)

    Sørensen, L B; Astrup, A

    2011-01-01

    Objective: To compare the effect of dark and milk chocolate on appetite sensations and energy intake at an ad libitum test meal in healthy, normal-weight men. Subjects/methods: A total of 16 young, healthy, normal-weight men participated in a randomized, crossover study. Test meals were 100 g of either milk (2285 kJ) or dark chocolate (2502 kJ). Visual-analogue scales were used to record appetite sensations before and after the test meal was consumed and subsequently every 30 min for 5 h. An ad libitum meal was served 2 h after the test meal had been consumed. Results: The participants felt more satiated, less hungry, and had lower ratings of prospective food consumption after consumption of the dark chocolate than after the milk chocolate. Ratings of the desire to eat something sweet, fatty or savoury were all lower after consumption of the dark chocolate. Energy intake at the ad libitum meal was 17% lower after consumption of the dark chocolate than after the milk chocolate (P=0.002). If the energy provided by the chocolate is included in the calculation, the energy intake after consumption of the dark chocolate was still 8% lower than after the milk chocolate (P=0.01). The dark chocolate load resulted in an overall energy difference of −584 kJ (95% confidence interval (−1027;−141)) during the test period. Conclusion: In the present study, dark chocolate promotes satiety, lowers the desire to eat something sweet, and suppresses energy intake compared with milk chocolate. PMID:23455041

  19. Random processes in nuclear reactors

    CERN Document Server

    Williams, M M R

    1974-01-01

    Random Processes in Nuclear Reactors describes the problems that a nuclear engineer may meet which involve random fluctuations and sets out in detail how they may be interpreted in terms of various models of the reactor system. Chapters set out to discuss topics on the origins of random processes and sources; the general technique to zero-power problems and bring out the basic effect of fission, and fluctuations in the lifetime of neutrons, on the measured response; the interpretation of power reactor noise; and associated problems connected with mechanical, hydraulic and thermal noise sources

  20. Report of international symposium on the 22nd Japan annual nuclear energy meeting, PNC general meeting and business report about nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-04-15

    This conference report consists of three parts, which report the 22nd annual nuclear energy meeting in Japan, including the list of Korean delegates, program and the contents of five session, the conference report for PNC general meeting and the report on international symposium for fruition of nuclear power business. It introduces the main conception and the contents of the symposium.

  1. A General Self-Organized Tree-Based Energy-Balance Routing Protocol for Wireless Sensor Network

    Science.gov (United States)

    Han, Zhao; Wu, Jie; Zhang, Jie; Liu, Liefeng; Tian, Kaiyun

    2014-04-01

    Wireless sensor network (WSN) is a system composed of a large number of low-cost micro-sensors. This network is used to collect and send various kinds of messages to a base station (BS). WSN consists of low-cost nodes with limited battery power, and the battery replacement is not easy for WSN with thousands of physically embedded nodes, which means energy efficient routing protocol should be employed to offer a long-life work time. To achieve the aim, we need not only to minimize total energy consumption but also to balance WSN load. Researchers have proposed many protocols such as LEACH, HEED, PEGASIS, TBC and PEDAP. In this paper, we propose a General Self-Organized Tree-Based Energy-Balance routing protocol (GSTEB) which builds a routing tree using a process where, for each round, BS assigns a root node and broadcasts this selection to all sensor nodes. Subsequently, each node selects its parent by considering only itself and its neighbors' information, thus making GSTEB a dynamic protocol. Simulation results show that GSTEB has a better performance than other protocols in balancing energy consumption, thus prolonging the lifetime of WSN.

  2. Multireference Density Functional Theory with Generalized Auxiliary Systems for Ground and Excited States.

    Science.gov (United States)

    Chen, Zehua; Zhang, Du; Jin, Ye; Yang, Yang; Su, Neil Qiang; Yang, Weitao

    2017-09-21

    To describe static correlation, we develop a new approach to density functional theory (DFT), which uses a generalized auxiliary system that is of a different symmetry, such as particle number or spin, from that of the physical system. The total energy of the physical system consists of two parts: the energy of the auxiliary system, which is determined with a chosen density functional approximation (DFA), and the excitation energy from an approximate linear response theory that restores the symmetry to that of the physical system, thus rigorously leading to a multideterminant description of the physical system. The electron density of the physical system is different from that of the auxiliary system and is uniquely determined from the functional derivative of the total energy with respect to the external potential. Our energy functional is thus an implicit functional of the physical system density, but an explicit functional of the auxiliary system density. We show that the total energy minimum and stationary states, describing the ground and excited states of the physical system, can be obtained by a self-consistent optimization with respect to the explicit variable, the generalized Kohn-Sham noninteracting density matrix. We have developed the generalized optimized effective potential method for the self-consistent optimization. Among options of the auxiliary system and the associated linear response theory, reformulated versions of the particle-particle random phase approximation (pp-RPA) and the spin-flip time-dependent density functional theory (SF-TDDFT) are selected for illustration of principle. Numerical results show that our multireference DFT successfully describes static correlation in bond dissociation and double bond rotation.

  3. Brane world black holes in teleparallel theory equivalent to general relativity and their Killing vectors, energy, momentum and angular momentum

    International Nuclear Information System (INIS)

    Nashed, Gamal G. L.

    2010-01-01

    The energy–momentum tensor, which is coordinate-independent, is used to calculate energy, momentum and angular momentum of two different tetrad fields. Although, the two tetrad fields reproduce the same space-time their energies are different. Therefore, a regularized expression of the gravitational energy–momentum tensor of the teleparallel equivalent of general relativity (TEGR), is used to make the energies of the two tetrad fields equal. The definition of the gravitational energy–momentum is used to investigate the energy within the external event horizon. The components of angular momentum associated with these space–times are calculated. In spite of using a static space–time, we get a non-zero component of angular momentum! Therefore, we derive the Killing vectors associated with these space–times using the definition of the Lie derivative of a second rank tensor in the framework of the TEGR to make the picture more clear. (general)

  4. Query construction, entropy, and generalization in neural-network models

    Science.gov (United States)

    Sollich, Peter

    1994-05-01

    We study query construction algorithms, which aim at improving the generalization ability of systems that learn from examples by choosing optimal, nonredundant training sets. We set up a general probabilistic framework for deriving such algorithms from the requirement of optimizing a suitable objective function; specifically, we consider the objective functions entropy (or information gain) and generalization error. For two learning scenarios, the high-low game and the linear perceptron, we evaluate the generalization performance obtained by applying the corresponding query construction algorithms and compare it to training on random examples. We find qualitative differences between the two scenarios due to the different structure of the underlying rules (nonlinear and ``noninvertible'' versus linear); in particular, for the linear perceptron, random examples lead to the same generalization ability as a sequence of queries in the limit of an infinite number of examples. We also investigate learning algorithms which are ill matched to the learning environment and find that, in this case, minimum entropy queries can in fact yield a lower generalization ability than random examples. Finally, we study the efficiency of single queries and its dependence on the learning history, i.e., on whether the previous training examples were generated randomly or by querying, and the difference between globally and locally optimal query construction.

  5. Randomization of grab-sampling strategies for estimating the annual exposure of U miners to Rn daughters.

    Science.gov (United States)

    Borak, T B

    1986-04-01

    Periodic grab sampling in combination with time-of-occupancy surveys has been the accepted procedure for estimating the annual exposure of underground U miners to Rn daughters. Temporal variations in the concentration of potential alpha energy in the mine generate uncertainties in this process. A system to randomize the selection of locations for measurement is described which can reduce uncertainties and eliminate systematic biases in the data. In general, a sample frequency of 50 measurements per year is sufficient to satisfy the criteria that the annual exposure be determined in working level months to within +/- 50% of the true value with a 95% level of confidence. Suggestions for implementing this randomization scheme are presented.

  6. Phenobarbital Versus Valproate for Generalized Convulsive Status Epilepticus in Adults: A Prospective Randomized Controlled Trial in China.

    Science.gov (United States)

    Su, Yingying; Liu, Gang; Tian, Fei; Ren, Guoping; Jiang, Mengdi; Chun, Brian; Zhang, Yunzhou; Zhang, Yan; Ye, Hong; Gao, Daiquan; Chen, Weibi

    2016-12-01

    Although generalized convulsive status epilepticus (GCSE) is a life-threatening emergency, evidence-based data to guide initial drug treatment choices are lacking in the Chinese population. We conducted this prospective, randomized, controlled trial to evaluate the relative efficacy and safety of intravenous phenobarbital and valproate in patients with GCSE. After the failure of first-line diazepam treatment, Chinese adult patients with GCSE were randomized to receive either intravenous phenobarbital (standard doses, low rate) or valproate (standard). Successful treatment was considered when clinical and electroencephalographic seizure activity ceased. Adverse events following treatment, as well as the neurological outcomes at discharge and 3 months later, were also evaluated. Overall, 73 cases were enrolled in the study. Intravenous phenobarbital was successful in 81.1% of patients, and intravenous valproate was successful in 44.4% of patients (p phenobarbital (6.7%) was significantly lower than that in patients receiving valproate (31.3%), and the total number of adverse events did not differ significantly between the two groups (p > 0.05). In the phenobarbital group, two patients (5.4%) required ventilation and two patients (5.4%) developed serious hypotension. The neurological outcomes of the phenobarbital group were generally better than those of the valproate group; however, no significant differences were observed between phenobarbital and valproate with respect to mortality (8.1 vs. 16.6%) at discharge, or mortality (16.2 vs. 30.5%) and post-symptomatic epilepsy (26.3 vs. 42.8%) at 3-month follow-up. Intravenous phenobarbital appears to be more effective than intravenous valproate for Chinese adult patients with GCSE. The occurrence of serious respiratory depression and hypotension caused by phenobarbital was reduced by decreasing the intravenous infusion rate; however, even at a lower infusion rate than typically used in other institutions, intravenous

  7. Collective processes in a tokamak with high-energy particles: general problems of the linear theory of Alfven instabilities of a tokamak with high-energy ions

    International Nuclear Information System (INIS)

    Mikhailovskii, A.B.

    1986-01-01

    Some general problems of the theory of Alfven instabilities of a tokamak with high-energy ions are considered. It is assumed that such ions are due to either ionization of fast neutral atoms, injected into the tokamak, or production of them under thermo-nuclear conditions. Small-oscillation equations are derived for the Alfven-type waves, which allow for both destabilizing effects, associated with the high-energy particles, and stabilizing ones, such as effects of shear and bulk-plasm dissipation. A high-energy ion contribution is calculated into the growth rate of the Alfven waves. The author considers the role of trapped-electron collisional dissipation

  8. A generalization of Friedman's rank statistic

    NARCIS (Netherlands)

    Kroon, de J.; Laan, van der P.

    1983-01-01

    In this paper a very natural generalization of the two·way analysis of variance rank statistic of FRIEDMAN is given. The general distribution-free test procedure based on this statistic for the effect of J treatments in a random block design can be applied in general two-way layouts without

  9. A novel ternary content addressable memory design based on resistive random access memory with high intensity and low search energy

    Science.gov (United States)

    Han, Runze; Shen, Wensheng; Huang, Peng; Zhou, Zheng; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng

    2018-04-01

    A novel ternary content addressable memory (TCAM) design based on resistive random access memory (RRAM) is presented. Each TCAM cell consists of two parallel RRAM to both store and search for ternary data. The cell size of the proposed design is 8F2, enable a ∼60× cell area reduction compared with the conventional static random access memory (SRAM) based implementation. Simulation results also show that the search delay and energy consumption of the proposed design at the 64-bit word search are 2 ps and 0.18 fJ/bit/search respectively at 22 nm technology node, where significant improvements are achieved compared to previous works. The desired characteristics of RRAM for implementation of the high performance TCAM search chip are also discussed.

  10. The Effect of EMDR and CBT on Low Self-esteem in a General Psychiatric Population: A Randomized Controlled Trial.

    Science.gov (United States)

    Griffioen, Brecht T; van der Vegt, Anna A; de Groot, Izaäk W; de Jongh, Ad

    2017-01-01

    Although low self-esteem has been found to be an important factor in the development and maintenance of psychopathology, surprisingly little is known about its treatment. This study investigated the effectiveness of Eye Movement Desensitization and Reprocessing (EMDR) therapy and Cognitive Behavioural Therapy (CBT), regarding their capacities in enhancing self-esteem in a general psychiatric secondary health care population. A randomized controlled trial with two parallel groups was used. Participants were randomly allocated to either 10 weekly sessions of EMDR ( n = 15) or CBT ( n = 15). They were assessed pre-treatment, after each session, post treatment and at 3 months follow-up on self-esteem (Rosenberg Self-esteem Scale and Credibility of Core Beliefs), psychological symptoms (Brief Symptom Inventory), social anxiety, and social interaction (Inventory of Interpersonal Situations) (IIS). The data were analyzed using repeated measures ANOVA for the complete cases ( n = 19) and intention-to-treat ( n = 30) to examine differences over time and between conditions. Both groups, EMDR as well as CBT, showed significant improvements on self-esteem, increasing two standard deviations on the main parameter (RSES). Furthermore, the results showed significant reductions in general psychiatric symptoms. The effects were maintained at 3 months follow-up. No between-group differences could be detected. Although the small sample requires to exercise caution in the interpretation of the findings, the results suggest that, when offering an adequate number of sessions, both EMDR and CBT have the potential to be effective treatments for patients with low self-esteem and a wide range of comorbid psychiatric conditions. This study was registered at www.trialregister.nl with identifier NTR4611.

  11. The Effect of EMDR and CBT on Low Self-esteem in a General Psychiatric Population: A Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Brecht T. Griffioen

    2017-11-01

    Full Text Available Although low self-esteem has been found to be an important factor in the development and maintenance of psychopathology, surprisingly little is known about its treatment. This study investigated the effectiveness of Eye Movement Desensitization and Reprocessing (EMDR therapy and Cognitive Behavioural Therapy (CBT, regarding their capacities in enhancing self-esteem in a general psychiatric secondary health care population. A randomized controlled trial with two parallel groups was used. Participants were randomly allocated to either 10 weekly sessions of EMDR (n = 15 or CBT (n = 15. They were assessed pre-treatment, after each session, post treatment and at 3 months follow-up on self-esteem (Rosenberg Self-esteem Scale and Credibility of Core Beliefs, psychological symptoms (Brief Symptom Inventory, social anxiety, and social interaction (Inventory of Interpersonal Situations (IIS. The data were analyzed using repeated measures ANOVA for the complete cases (n = 19 and intention-to-treat (n = 30 to examine differences over time and between conditions. Both groups, EMDR as well as CBT, showed significant improvements on self-esteem, increasing two standard deviations on the main parameter (RSES. Furthermore, the results showed significant reductions in general psychiatric symptoms. The effects were maintained at 3 months follow-up. No between-group differences could be detected. Although the small sample requires to exercise caution in the interpretation of the findings, the results suggest that, when offering an adequate number of sessions, both EMDR and CBT have the potential to be effective treatments for patients with low self-esteem and a wide range of comorbid psychiatric conditions. This study was registered at www.trialregister.nl with identifier NTR4611.

  12. Random walks on reductive groups

    CERN Document Server

    Benoist, Yves

    2016-01-01

    The classical theory of Random Walks describes the asymptotic behavior of sums of independent identically distributed random real variables. This book explains the generalization of this theory to products of independent identically distributed random matrices with real coefficients. Under the assumption that the action of the matrices is semisimple – or, equivalently, that the Zariski closure of the group generated by these matrices is reductive - and under suitable moment assumptions, it is shown that the norm of the products of such random matrices satisfies a number of classical probabilistic laws. This book includes necessary background on the theory of reductive algebraic groups, probability theory and operator theory, thereby providing a modern introduction to the topic.

  13. Policy options for sustainable energy use in a general model of the UK economy

    International Nuclear Information System (INIS)

    Barker, T.; Ekins, P.; Johnstone, N.

    1996-01-01

    A quantitative general economic model has been developed for options available in greenhouse gas abatement policy concerning energy use. It has been applied in three exercises to explore the effects of energy taxes on the United Kingdom economy. One of these examined the effect of the proposed European Commission carbon/energy tax; the second attempts to set out a policy framework which would enable the UK to reach the IPCC target of 60% reduction in CO 2 emissions by 2040 and explores the economic implications; the third compares the proposal of the UK government to levy VAT on domestic fuel with the EC carbon/energy tax. Additionally, estimates have been made of the secondary benefits of reducing CO 2 emissions. The results present a striking contrast to much of the literature. They include the conclusions that: the EC carbon/energy tax would have negligible macroeconomic effects on the UK economy providing revenues were recycled in such a way as to neutralise inflation; reduction of UK CO 2 emissions by 60% would not necessarily cause great economic disruption; the secondary benefits of reducing CO 2 emissions are of sufficient size to alter radically the benefit cost profile of carbon abatement; equity and efficiency should be regarded as complementary, not competing, objectives in the abatement of CO 2 emissions from the domestic sector. (UK)

  14. Recycling of carbon/energy taxes and the labor market. A general equilibrium analysis for the European Community

    International Nuclear Information System (INIS)

    Welsch, H.

    1996-01-01

    A quantitative assessment of a cost shift from labor to energy by means of a carbon/energy tax is provided. In the analysis a general equilibrium model for the European Community is utilized, focusing on the modelling of labor supply. The importance of the feedback from an induced increase in labor demand to wage formation is highlighted. (It is shown that the goals of C) 2 reduction and improved employment are complementary, provided that the reduction in labor costs, financed by the carbon/energy tax, is not offset by increased wage claims. Under this condition reduced CO 2 is consistent with an increase in GDP. 1 fig., 3 tabs., 17 refs

  15. Collective nuclear excitations with Skyrme-second random-phase approximation

    International Nuclear Information System (INIS)

    Gambacurta, D.; Catara, F.; Grasso, M.

    2010-01-01

    Second random-phase approximation (RPA) calculations with a Skyrme force are performed to describe both high- and low-lying excited states in 16 O. The coupling between one particle-one hole and two particle-two hole as well as that between two particle-two hole configurations among themselves are fully taken into account, and the residual interaction is never neglected; we do not resort therefore to a generally used approximate scheme where only the first kind of coupling is considered. The issue of the rearrangement terms in the matrix elements beyond the standard RPA will be considered in detail in a forthcoming paper. Two approximations are employed here for these rearrangement terms: they are either neglected or evaluated with the RPA procedure. As a general feature of second RPA results, a several-MeV shift of the strength distribution to lower energies is systematically found with respect to RPA distributions. A much more important fragmentation of the strength is also naturally provided by the second RPA owing to the huge number of two particle-two hole configurations. A better description of the excitation energies of the low-lying 0 + and 2 + states is obtained with the second RPA than with the RPA.

  16. Navigability of Random Geometric Graphs in the Universe and Other Spacetimes.

    Science.gov (United States)

    Cunningham, William; Zuev, Konstantin; Krioukov, Dmitri

    2017-08-18

    Random geometric graphs in hyperbolic spaces explain many common structural and dynamical properties of real networks, yet they fail to predict the correct values of the exponents of power-law degree distributions observed in real networks. In that respect, random geometric graphs in asymptotically de Sitter spacetimes, such as the Lorentzian spacetime of our accelerating universe, are more attractive as their predictions are more consistent with observations in real networks. Yet another important property of hyperbolic graphs is their navigability, and it remains unclear if de Sitter graphs are as navigable as hyperbolic ones. Here we study the navigability of random geometric graphs in three Lorentzian manifolds corresponding to universes filled only with dark energy (de Sitter spacetime), only with matter, and with a mixture of dark energy and matter. We find these graphs are navigable only in the manifolds with dark energy. This result implies that, in terms of navigability, random geometric graphs in asymptotically de Sitter spacetimes are as good as random hyperbolic graphs. It also establishes a connection between the presence of dark energy and navigability of the discretized causal structure of spacetime, which provides a basis for a different approach to the dark energy problem in cosmology.

  17. Molecular Excitation Energies from Time-Dependent Density Functional Theory Employing Random-Phase Approximation Hessians with Exact Exchange.

    Science.gov (United States)

    Heßelmann, Andreas

    2015-04-14

    Molecular excitation energies have been calculated with time-dependent density-functional theory (TDDFT) using random-phase approximation Hessians augmented with exact exchange contributions in various orders. It has been observed that this approach yields fairly accurate local valence excitations if combined with accurate asymptotically corrected exchange-correlation potentials used in the ground-state Kohn-Sham calculations. The inclusion of long-range particle-particle with hole-hole interactions in the kernel leads to errors of 0.14 eV only for the lowest excitations of a selection of three alkene, three carbonyl, and five azabenzene molecules, thus surpassing the accuracy of a number of common TDDFT and even some wave function correlation methods. In the case of long-range charge-transfer excitations, the method typically underestimates accurate reference excitation energies by 8% on average, which is better than with standard hybrid-GGA functionals but worse compared to range-separated functional approximations.

  18. General overview of the Mexican energy sector

    International Nuclear Information System (INIS)

    Perez-Jacome, D.

    1999-01-01

    An overview of Mexico's energy sector was presented, with particular focus on the natural gas and electricity sectors. Mexico ranks fifth in oil production, eighth in proven oil reserves, and fourteenth in natural gas reserves. In 1998, the energy sector generated 3.3 per cent of Mexico's gross domestic product (GDP), and oil accounted for 7.5 per cent of total exports. National production of natural gas has been forecasted to grow at a rate of 5.2 per cent annually over the next 10 years. This will be largely due to the increased demand for natural gas to produce electricity. The Mexican government has also taken initiatives to restructure the Mexican energy sector with particular focus on increasing the competitiveness of the electric power industry. Electricity demand is also expected to grow at a rate of 6 per cent annually over the next six years. The objectives of energy reform are to promote more investment from all sectors in order to strengthen the development of the electric power industry and to provide a reliable, high quality service at competitive prices. 9 figs

  19. Subjective randomness as statistical inference.

    Science.gov (United States)

    Griffiths, Thomas L; Daniels, Dylan; Austerweil, Joseph L; Tenenbaum, Joshua B

    2018-06-01

    Some events seem more random than others. For example, when tossing a coin, a sequence of eight heads in a row does not seem very random. Where do these intuitions about randomness come from? We argue that subjective randomness can be understood as the result of a statistical inference assessing the evidence that an event provides for having been produced by a random generating process. We show how this account provides a link to previous work relating randomness to algorithmic complexity, in which random events are those that cannot be described by short computer programs. Algorithmic complexity is both incomputable and too general to capture the regularities that people can recognize, but viewing randomness as statistical inference provides two paths to addressing these problems: considering regularities generated by simpler computing machines, and restricting the set of probability distributions that characterize regularity. Building on previous work exploring these different routes to a more restricted notion of randomness, we define strong quantitative models of human randomness judgments that apply not just to binary sequences - which have been the focus of much of the previous work on subjective randomness - but also to binary matrices and spatial clustering. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Statistical parameters of random heterogeneity estimated by analysing coda waves based on finite difference method

    Science.gov (United States)

    Emoto, K.; Saito, T.; Shiomi, K.

    2017-12-01

    Short-period (2 s) seismograms. We found that the energy of the coda of long-period seismograms shows a spatially flat distribution. This phenomenon is well known in short-period seismograms and results from the scattering by small-scale heterogeneities. We estimate the statistical parameters that characterize the small-scale random heterogeneity by modelling the spatiotemporal energy distribution of long-period seismograms. We analyse three moderate-size earthquakes that occurred in southwest Japan. We calculate the spatial distribution of the energy density recorded by a dense seismograph network in Japan at the period bands of 8-16 s, 4-8 s and 2-4 s and model them by using 3-D finite difference (FD) simulations. Compared to conventional methods based on statistical theories, we can calculate more realistic synthetics by using the FD simulation. It is not necessary to assume a uniform background velocity, body or surface waves and scattering properties considered in general scattering theories. By taking the ratio of the energy of the coda area to that of the entire area, we can separately estimate the scattering and the intrinsic absorption effects. Our result reveals the spectrum of the random inhomogeneity in a wide wavenumber range including the intensity around the corner wavenumber as P(m) = 8πε2a3/(1 + a2m2)2, where ε = 0.05 and a = 3.1 km, even though past studies analysing higher-frequency records could not detect the corner. Finally, we estimate the intrinsic attenuation by modelling the decay rate of the energy. The method proposed in this study is suitable for quantifying the statistical properties of long-wavelength subsurface random inhomogeneity, which leads the way to characterizing a wider wavenumber range of spectra, including the corner wavenumber.

  1. Random quantum operations

    International Nuclear Information System (INIS)

    Bruzda, Wojciech; Cappellini, Valerio; Sommers, Hans-Juergen; Zyczkowski, Karol

    2009-01-01

    We define a natural ensemble of trace preserving, completely positive quantum maps and present algorithms to generate them at random. Spectral properties of the superoperator Φ associated with a given quantum map are investigated and a quantum analogue of the Frobenius-Perron theorem is proved. We derive a general formula for the density of eigenvalues of Φ and show the connection with the Ginibre ensemble of real non-symmetric random matrices. Numerical investigations of the spectral gap imply that a generic state of the system iterated several times by a fixed generic map converges exponentially to an invariant state

  2. Quantum vacuum energy in general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Henke, Christian [University of Technology at Clausthal, Department of Mathematics, Clausthal-Zellerfeld (Germany)

    2018-02-15

    The paper deals with the scale discrepancy between the observed vacuum energy in cosmology and the theoretical quantum vacuum energy (cosmological constant problem). Here, we demonstrate that Einstein's equation and an analogy to particle physics leads to the first physical justification of the so-called fine-tuning problem. This fine-tuning could be automatically satisfied with the variable cosmological term Λ(a) = Λ{sub 0} + Λ{sub 1}a{sup -(4-ε)}, 0 < ε << 1, where a is the scale factor. As a side effect of our solution of the cosmological constant problem, the dynamical part of the cosmological term generates an attractive force and solves the missing mass problem of dark matter. (orig.)

  3. Restricted second random phase approximations and Tamm-Dancoff approximations for electronic excitation energy calculations

    International Nuclear Information System (INIS)

    Peng, Degao; Yang, Yang; Zhang, Peng; Yang, Weitao

    2014-01-01

    In this article, we develop systematically second random phase approximations (RPA) and Tamm-Dancoff approximations (TDA) of particle-hole and particle-particle channels for calculating molecular excitation energies. The second particle-hole RPA/TDA can capture double excitations missed by the particle-hole RPA/TDA and time-dependent density-functional theory (TDDFT), while the second particle-particle RPA/TDA recovers non-highest-occupied-molecular-orbital excitations missed by the particle-particle RPA/TDA. With proper orbital restrictions, these restricted second RPAs and TDAs have a formal scaling of only O(N 4 ). The restricted versions of second RPAs and TDAs are tested with various small molecules to show some positive results. Data suggest that the restricted second particle-hole TDA (r2ph-TDA) has the best overall performance with a correlation coefficient similar to TDDFT, but with a larger negative bias. The negative bias of the r2ph-TDA may be induced by the unaccounted ground state correlation energy to be investigated further. Overall, the r2ph-TDA is recommended to study systems with both single and some low-lying double excitations with a moderate accuracy. Some expressions on excited state property evaluations, such as 〈S ^2 〉 are also developed and tested

  4. Restricted second random phase approximations and Tamm-Dancoff approximations for electronic excitation energy calculations

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Degao; Yang, Yang; Zhang, Peng [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Yang, Weitao, E-mail: weitao.yang@duke.edu [Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina 27708 (United States)

    2014-12-07

    In this article, we develop systematically second random phase approximations (RPA) and Tamm-Dancoff approximations (TDA) of particle-hole and particle-particle channels for calculating molecular excitation energies. The second particle-hole RPA/TDA can capture double excitations missed by the particle-hole RPA/TDA and time-dependent density-functional theory (TDDFT), while the second particle-particle RPA/TDA recovers non-highest-occupied-molecular-orbital excitations missed by the particle-particle RPA/TDA. With proper orbital restrictions, these restricted second RPAs and TDAs have a formal scaling of only O(N{sup 4}). The restricted versions of second RPAs and TDAs are tested with various small molecules to show some positive results. Data suggest that the restricted second particle-hole TDA (r2ph-TDA) has the best overall performance with a correlation coefficient similar to TDDFT, but with a larger negative bias. The negative bias of the r2ph-TDA may be induced by the unaccounted ground state correlation energy to be investigated further. Overall, the r2ph-TDA is recommended to study systems with both single and some low-lying double excitations with a moderate accuracy. Some expressions on excited state property evaluations, such as 〈S{sup ^2}〉 are also developed and tested.

  5. A cluster expansion approach to exponential random graph models

    International Nuclear Information System (INIS)

    Yin, Mei

    2012-01-01

    The exponential family of random graphs are among the most widely studied network models. We show that any exponential random graph model may alternatively be viewed as a lattice gas model with a finite Banach space norm. The system may then be treated using cluster expansion methods from statistical mechanics. In particular, we derive a convergent power series expansion for the limiting free energy in the case of small parameters. Since the free energy is the generating function for the expectations of other random variables, this characterizes the structure and behavior of the limiting network in this parameter region

  6. Locally Perturbed Random Walks with Unbounded Jumps

    OpenAIRE

    Paulin, Daniel; Szász, Domokos

    2010-01-01

    In \\cite{SzT}, D. Sz\\'asz and A. Telcs have shown that for the diffusively scaled, simple symmetric random walk, weak convergence to the Brownian motion holds even in the case of local impurities if $d \\ge 2$. The extension of their result to finite range random walks is straightforward. Here, however, we are interested in the situation when the random walk has unbounded range. Concretely we generalize the statement of \\cite{SzT} to unbounded random walks whose jump distribution belongs to th...

  7. An efficient and accurate method to obtain the energy-dependent Green function for general potentials

    International Nuclear Information System (INIS)

    Kramer, T; Heller, E J; Parrott, R E

    2008-01-01

    Time-dependent quantum mechanics provides an intuitive picture of particle propagation in external fields. Semiclassical methods link the classical trajectories of particles with their quantum mechanical propagation. Many analytical results and a variety of numerical methods have been developed to solve the time-dependent Schroedinger equation. The time-dependent methods work for nearly arbitrarily shaped potentials, including sources and sinks via complex-valued potentials. Many quantities are measured at fixed energy, which is seemingly not well suited for a time-dependent formulation. Very few methods exist to obtain the energy-dependent Green function for complicated potentials without resorting to ensemble averages or using certain lead-in arrangements. Here, we demonstrate in detail a time-dependent approach, which can accurately and effectively construct the energy-dependent Green function for very general potentials. The applications of the method are numerous, including chemical, mesoscopic, and atomic physics

  8. Computer generation of random deviates

    International Nuclear Information System (INIS)

    Cormack, John

    1991-01-01

    The need for random deviates arises in many scientific applications. In medical physics, Monte Carlo simulations have been used in radiology, radiation therapy and nuclear medicine. Specific instances include the modelling of x-ray scattering processes and the addition of random noise to images or curves in order to assess the effects of various processing procedures. Reliable sources of random deviates with statistical properties indistinguishable from true random deviates are a fundamental necessity for such tasks. This paper provides a review of computer algorithms which can be used to generate uniform random deviates and other distributions of interest to medical physicists, along with a few caveats relating to various problems and pitfalls which can occur. Source code listings for the generators discussed (in FORTRAN, Turbo-PASCAL and Data General ASSEMBLER) are available on request from the authors. 27 refs., 3 tabs., 5 figs

  9. Generalizing a unified model of dark matter, dark energy, and inflation with a noncanonical kinetic term

    International Nuclear Information System (INIS)

    De-Santiago, Josue; Cervantes-Cota, Jorge L.

    2011-01-01

    We study a unification model for dark energy, dark matter, and inflation with a single scalar field with noncanonical kinetic term. In this model, the kinetic term of the Lagrangian accounts for the dark matter and dark energy, and at early epochs, a quadratic potential accounts for slow roll inflation. The present work is an extension to the work by Bose and Majumdar [Phys. Rev. D 79, 103517 (2009).] with a more general kinetic term that was proposed by Chimento in Phys. Rev. D 69, 123517 (2004). We demonstrate that the model is viable at the background and linear perturbation levels.

  10. A modified generalized Chaplygin gas as the unified dark matter-dark energy revisited

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Xue-Mei, E-mail: xmd@pmo.ac.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing (China)

    2011-12-15

    A modified generalized Chaplygin gas (MGCG) is considered as the unified dark matter-dark energy revisited. The character of MGCG is endued with the dual role, which behaves as matter at early times and as a quiescence dark energy at late times. The equation of state for MGCG is p = -{alpha}{rho}/(1 + {alpha}) - {upsilon}(z){rho}{sup -{alpha}/(1 + {alpha})}, where {upsilon}(z) = -[{rho}0{sub c}(1 + z){sup 3}] {sup (1+{alpha})} (1 - {Omega}{sub 0B}){sup {alpha} {l_brace}{alpha}{Omega}0{sub DM} + {Omega}{sub 0DE} [{omega}{sub DE} + {alpha}(1 +{omega}{sub DE})](1 + z){sup 3}{omega}DE(1+{alpha}){r_brace}}. Some cosmological quantities, such as the densities of different components of the universe {Omega}{sub i} (i, respectively, denotes baryons, dark matter, and dark energy) and the deceleration parameter q, are obtained. The present deceleration parameter q{sub 0}, the transition redshift z{sub T}, and the redshift z{sub eq}, which describes the epoch when the densities in dark matter and dark energy are equal, are also calculated. To distinguish MGCG from others, we then apply the Statefinder diagnostic. Later on, the parameters ({alpha} and {omega}{sub DE}) of MGCG are constrained by combination of the sound speed c{sup 2}{sub s} , the age of the universe t{sub 0}, the growth factor m, and the bias parameter b. It yields {alpha} = -3.07{sup +5.66} {sub -4.98} x 10{sup -2} and {omega}{sub DE} = -1.05 {sup +0.06} {sub -0.11}. Through the analysis of the growth of density perturbations for MGCG, it is found that the energy will transfer from dark matter to dark energy which reach equal at z{sub e}{approx} 0.48 and the density fluctuations start deviating from the linear behavior at z {approx} 0.25 caused by the dominance of dark energy. (author)

  11. Exactly averaged equations for flow and transport in random media

    International Nuclear Information System (INIS)

    Shvidler, Mark; Karasaki, Kenzi

    2001-01-01

    It is well known that exact averaging of the equations of flow and transport in random porous media can be realized only for a small number of special, occasionally exotic, fields. On the other hand, the properties of approximate averaging methods are not yet fully understood. For example, the convergence behavior and the accuracy of truncated perturbation series. Furthermore, the calculation of the high-order perturbations is very complicated. These problems for a long time have stimulated attempts to find the answer for the question: Are there in existence some exact general and sufficiently universal forms of averaged equations? If the answer is positive, there arises the problem of the construction of these equations and analyzing them. There exist many publications related to these problems and oriented on different applications: hydrodynamics, flow and transport in porous media, theory of elasticity, acoustic and electromagnetic waves in random fields, etc. We present a method of finding the general form of exactly averaged equations for flow and transport in random fields by using (1) an assumption of the existence of Green's functions for appropriate stochastic problems, (2) some general properties of the Green's functions, and (3) the some basic information about the random fields of the conductivity, porosity and flow velocity. We present a general form of the exactly averaged non-local equations for the following cases. 1. Steady-state flow with sources in porous media with random conductivity. 2. Transient flow with sources in compressible media with random conductivity and porosity. 3. Non-reactive solute transport in random porous media. We discuss the problem of uniqueness and the properties of the non-local averaged equations, for the cases with some types of symmetry (isotropic, transversal isotropic, orthotropic) and we analyze the hypothesis of the structure non-local equations in general case of stochastically homogeneous fields. (author)

  12. Radical covalent organic frameworks: a general strategy to immobilize open-accessible polyradicals for high-performance capacitive energy storage.

    Science.gov (United States)

    Xu, Fei; Xu, Hong; Chen, Xiong; Wu, Dingcai; Wu, Yang; Liu, Hao; Gu, Cheng; Fu, Ruowen; Jiang, Donglin

    2015-06-01

    Ordered π-columns and open nanochannels found in covalent organic frameworks (COFs) could render them able to store electric energy. However, the synthetic difficulty in achieving redox-active skeletons has thus far restricted their potential for energy storage. A general strategy is presented for converting a conventional COF into an outstanding platform for energy storage through post-synthetic functionalization with organic radicals. The radical frameworks with openly accessible polyradicals immobilized on the pore walls undergo rapid and reversible redox reactions, leading to capacitive energy storage with high capacitance, high-rate kinetics, and robust cycle stability. The results suggest that channel-wall functional engineering with redox-active species will be a facile and versatile strategy to explore COFs for energy storage. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The generalized second law in irreversible thermodynamics for the interacting dark energy in a non-flat FRW universe enclosed by the apparent horizon

    Energy Technology Data Exchange (ETDEWEB)

    Karami, K., E-mail: KKarami@uok.ac.i [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Ghaffari, S. [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of)

    2010-03-01

    We investigate the validity of the generalized second law in irreversible thermodynamics in a non-flat FRW universe containing the interacting dark energy with cold dark matter. The boundary of the universe is assumed to be enclosed by the dynamical apparent horizon. We show that for the present time, the generalized second law in nonequilibrium thermodynamics is satisfied for the special range of the energy transfer constants.

  14. The generalized second law in irreversible thermodynamics for the interacting dark energy in a non-flat FRW universe enclosed by the apparent horizon

    International Nuclear Information System (INIS)

    Karami, K.; Ghaffari, S.

    2010-01-01

    We investigate the validity of the generalized second law in irreversible thermodynamics in a non-flat FRW universe containing the interacting dark energy with cold dark matter. The boundary of the universe is assumed to be enclosed by the dynamical apparent horizon. We show that for the present time, the generalized second law in nonequilibrium thermodynamics is satisfied for the special range of the energy transfer constants.

  15. Anomalous transport in fluid field with random waiting time depending on the preceding jump length

    International Nuclear Information System (INIS)

    Zhang Hong; Li Guo-Hua

    2016-01-01

    Anomalous (or non-Fickian) transport behaviors of particles have been widely observed in complex porous media. To capture the energy-dependent characteristics of non-Fickian transport of a particle in flow fields, in the present paper a generalized continuous time random walk model whose waiting time probability distribution depends on the preceding jump length is introduced, and the corresponding master equation in Fourier–Laplace space for the distribution of particles is derived. As examples, two generalized advection-dispersion equations for Gaussian distribution and lévy flight with the probability density function of waiting time being quadratic dependent on the preceding jump length are obtained by applying the derived master equation. (paper)

  16. New sampling method in continuous energy Monte Carlo calculation for pebble bed reactors

    International Nuclear Information System (INIS)

    Murata, Isao; Takahashi, Akito; Mori, Takamasa; Nakagawa, Masayuki.

    1997-01-01

    A pebble bed reactor generally has double heterogeneity consisting of two kinds of spherical fuel element. In the core, there exist many fuel balls piled up randomly in a high packing fraction. And each fuel ball contains a lot of small fuel particles which are also distributed randomly. In this study, to realize precise neutron transport calculation of such reactors with the continuous energy Monte Carlo method, a new sampling method has been developed. The new method has been implemented in the general purpose Monte Carlo code MCNP to develop a modified version MCNP-BALL. This method was validated by calculating inventory of spherical fuel elements arranged successively by sampling during transport calculation and also by performing criticality calculations in ordered packing models. From the results, it was confirmed that the inventory of spherical fuel elements could be reproduced using MCNP-BALL within a sufficient accuracy of 0.2%. And the comparison of criticality calculations in ordered packing models between MCNP-BALL and the reference method shows excellent agreement in neutron spectrum as well as multiplication factor. MCNP-BALL enables us to analyze pebble bed type cores such as PROTEUS precisely with the continuous energy Monte Carlo method. (author)

  17. Generalized treatment of point reactor kinetics driven by random reactivity fluctuations via the Wiener-Hermite functional method

    International Nuclear Information System (INIS)

    Behringer, K.

    1991-02-01

    In a recent paper by Behringer et al. (1990), the Wiener-Hermite Functional (WHF) method has been applied to point reactor kinetics excited by Gaussian random reactivity noise under stationary conditions, in order to calculate the neutron steady-state value and the neutron power spectral density (PSD) in a second-order (WHF-2) approximation. For simplicity, delayed neutrons and any feedback effects have been disregarded. The present study is a straightforward continuation of the previous one, treating the problem more generally by including any number of delayed neutron groups. For the case of white reactivity noise, the accuracy of the approach is determined by comparison with the exact solution available from the Fokker-Planck method. In the numerical comparisons, the first-oder (WHF-1) approximation of the PSD is also considered. (author) 4 figs., 10 refs

  18. Generalizations of orthogonal polynomials

    Science.gov (United States)

    Bultheel, A.; Cuyt, A.; van Assche, W.; van Barel, M.; Verdonk, B.

    2005-07-01

    We give a survey of recent generalizations of orthogonal polynomials. That includes multidimensional (matrix and vector orthogonal polynomials) and multivariate versions, multipole (orthogonal rational functions) variants, and extensions of the orthogonality conditions (multiple orthogonality). Most of these generalizations are inspired by the applications in which they are applied. We also give a glimpse of these applications, which are usually generalizations of applications where classical orthogonal polynomials also play a fundamental role: moment problems, numerical quadrature, rational approximation, linear algebra, recurrence relations, and random matrices.

  19. Surface energy balances of three general circulation models: Current climate and response to increasing atmospheric CO2

    International Nuclear Information System (INIS)

    Gutowski, W.J.; Gutzler, D.S.; Portman, D.; Wang, W.C.

    1988-04-01

    The surface energy balance simulated by state-of-the-art general circulation models at GFDL, GISS and NCAR for climates with current levels of atmospheric CO 2 concentration (control climate) and with twice the current levels. The work is part of an effort sponsored by the US Department of Energy to assess climate simulations produced by these models. The surface energy balance enables us to diagnose differences between models in surface temperature climatology and sensitivity to doubling CO 2 in terms of the processes that control surface temperature. Our analysis compares the simulated balances by averaging the fields of interest over a hierarchy of spatial domains ranging from the entire globe down to regions a few hundred kilometers across

  20. Random matrix theories and chaotic dynamics

    International Nuclear Information System (INIS)

    Bohigas, O.

    1991-01-01

    A review of some of the main ideas, assumptions and results of the Wigner-Dyson type random matrix theories (RMT) which are relevant in the general context of 'Chaos and Quantum Physics' is presented. RMT are providing interesting and unexpected clues to connect classical dynamics with quantum phenomena. It is this aspect which will be emphasised and, concerning the main body of RMT, the author will restrict himself to a minimum. However, emphasis will be put on some generalizations of the 'canonical' random matrix ensembles that increase their flexibility, rendering the incorporation of relevant physical constraints possible. (R.P.) 112 refs., 35 figs., 5 tabs

  1. The Optimal Price Ratio of Typical Energy Sources in Beijing Based on the Computable General Equilibrium Model

    Directory of Open Access Journals (Sweden)

    Yongxiu He

    2014-04-01

    Full Text Available In Beijing, China, the rational consumption of energy is affected by the insufficient linkage mechanism of the energy pricing system, the unreasonable price ratio and other issues. This paper combines the characteristics of Beijing’s energy market, putting forward the society-economy equilibrium indicator R maximization taking into consideration the mitigation cost to determine a reasonable price ratio range. Based on the computable general equilibrium (CGE model, and dividing four kinds of energy sources into three groups, the impact of price fluctuations of electricity and natural gas on the Gross Domestic Product (GDP, Consumer Price Index (CPI, energy consumption and CO2 and SO2 emissions can be simulated for various scenarios. On this basis, the integrated effects of electricity and natural gas price shocks on the Beijing economy and environment can be calculated. The results show that relative to the coal prices, the electricity and natural gas prices in Beijing are currently below reasonable levels; the solution to these unreasonable energy price ratios should begin by improving the energy pricing mechanism, through means such as the establishment of a sound dynamic adjustment mechanism between regulated prices and market prices. This provides a new idea for exploring the rationality of energy price ratios in imperfect competitive energy markets.

  2. SCRAED - Simple and Complex Random Assignment in Experimental Designs

    OpenAIRE

    Alferes, Valentim R.

    2009-01-01

    SCRAED is a package of 37 self-contained SPSS syntax files that performs simple and complex random assignment in experimental designs. For between-subjects designs, SCRAED includes simple random assignment (no restrictions, forced equal sizes, forced unequal sizes, and unequal probabilities), block random assignment (simple and generalized blocks), and stratified random assignment (no restrictions, forced equal sizes, forced unequal sizes, and unequal probabilities). For within-subject...

  3. Statement to the 34th session of the general conference of the International Atomic Energy Agency, 17 September 1990. Statement to the 45th session of the United Nations general assembly, 23 October 1990

    International Nuclear Information System (INIS)

    Blix, H.

    1991-01-01

    The document contains the following two statements of Hans Blix, Director General of the IAEA: Statement to the 34th Session of the General Conference of the International Atomic Energy Agency, 17 September 1990; Statement to the 45th Session of the United Nations General Assembly, 23 October 1990. A separate abstract was prepared for each of these statements

  4. Statement to the 35th session of the General Conference of the International Atomic Energy Agency 16 September 1991; Statement to the 46th session of the United Nations General Assembly 21 October 1991

    International Nuclear Information System (INIS)

    Blix, H.

    1991-01-01

    The document contains the following two statements of Hans Blix, Director General of the IAEA: Statement to the 35th session of the General Conference of the International Atomic Energy Agency, 16 September 1991; Statement to the 46th session of the United Nations General Assembly, 21 October 1991. A separate abstract was prepared for each of these statements

  5. Statement to the 41st session of the General Conference of the International Atomic Energy Agency 29 September 1997; Statement to the 52nd session of the United Nations General Assembly 12 November 1997

    International Nuclear Information System (INIS)

    Blix, H.

    1997-12-01

    The document presents Statement to the 41st Session of the General Conference of the International Atomic Energy Agency and Statement to the 52nd Session of the United Nations General Assembly made at the 40th anniversary of the IAEA

  6. The Random Telegraph Signal Behavior of Intermittently Stuck Bits in SDRAMs

    Science.gov (United States)

    Chugg, Andrew Michael; Burnell, Andrew J.; Duncan, Peter H.; Parker, Sarah; Ward, Jonathan J.

    2009-12-01

    This paper reports behavior analogous to the Random Telegraph Signal (RTS) seen in the leakage currents from radiation induced hot pixels in Charge Coupled Devices (CCDs), but in the context of stuck bits in Synchronous Dynamic Random Access Memories (SDRAMs). Our analysis suggests that pseudo-random sticking and unsticking of the SDRAM bits is due to thermally induced fluctuations in leakage current through displacement damage complexes in depletion regions that were created by high-energy neutron and proton interactions. It is shown that the number of observed stuck bits increases exponentially with temperature, due to the general increase in the leakage currents through the damage centers with temperature. Nevertheless, some stuck bits are seen to pseudo-randomly stick and unstick in the context of a continuously rising trend of temperature, thus demonstrating that their damage centers can exist in multiple widely spaced, discrete levels of leakage current, which is highly consistent with RTS. This implies that these intermittently stuck bits (ISBs) are a displacement damage phenomenon and are unrelated to microdose issues, which is confirmed by the observation that they also occur in unbiased irradiation. Finally, we note that observed variations in the periodicity of the sticking and unsticking behavior on several timescales is most readily explained by multiple leakage current pathways through displacement damage complexes spontaneously and independently opening and closing under the influence of thermal vibrations.

  7. Generalized connectivity of graphs

    CERN Document Server

    Li, Xueliang

    2016-01-01

    Noteworthy results, proof techniques, open problems and conjectures in generalized (edge-) connectivity are discussed in this book. Both theoretical and practical analyses for generalized (edge-) connectivity of graphs are provided. Topics covered in this book include: generalized (edge-) connectivity of graph classes, algorithms, computational complexity, sharp bounds, Nordhaus-Gaddum-type results, maximum generalized local connectivity, extremal problems, random graphs, multigraphs, relations with the Steiner tree packing problem and generalizations of connectivity. This book enables graduate students to understand and master a segment of graph theory and combinatorial optimization. Researchers in graph theory, combinatorics, combinatorial optimization, probability, computer science, discrete algorithms, complexity analysis, network design, and the information transferring models will find this book useful in their studies.

  8. Irregular meal pattern-effects on energy expenditure, metabolism and appetite regulation: a randomized controlled trial in healthy normal-weight women

    OpenAIRE

    Alhussain, Maha H; Macdonald, Ian A.; Taylor, Moira A.

    2016-01-01

    Background: Obesity is increasing in parallel with greater all-day food availability. The latter may promote meal irregularity, dysregulation of the energy balance, and poor metabolic health.\\ud Objective: We investigated the effect of meal irregularity on the thermic effect of food (TEF), lipid concentrations, carbohydrate metabolism, subjective appetite, and gut hormones in healthy women.\\ud Design: Eleven normal-weight women (18–40 y of age) were recruited in a randomized crossover trial w...

  9. Subjective discount rates in the general population and their predictive power for energy saving behavior

    International Nuclear Information System (INIS)

    Bruderer Enzler, Heidi; Diekmann, Andreas; Meyer, Reto

    2014-01-01

    Why do people sometimes refrain from saving energy even if it would pay off in monetary terms? Subjective discount rates present one possible explanation for this lack of foresight, but little is known about their level and reliability in the general population. With regard to behavior, persons with lower discount rates are expected to accept additional costs upfront more readily than those with higher discount rates. Based on a representative nation-wide study, the Swiss Environmental Survey 2007, and a follow-up survey, our analyses reveal that on average subjective discount rates are well above market interest rates and moderately stable over a time interval of four years. Income and education are negatively correlated with discount rates. Contrary to expectations, we did not find convincing support for an impact of discount rates on energy saving behavior. - Highlights: • Results of a large panel study in Switzerland. • Mean subjective discount rates in population are well above market interest rates. • Subjective discount rates are moderately stable over four years. • Theory suggests impact of subjective discount rates on energy saving behavior. • However, subjective discount rates do not contribute to explanation of energy saving behavior

  10. Cluster randomized trial in the general practice research database: 2. Secondary prevention after first stroke (eCRT study: study protocol for a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Dregan Alex

    2012-10-01

    Full Text Available Abstract Background The purpose of this research is to develop and evaluate methods for conducting pragmatic cluster randomized trials in a primary care electronic database. The proposal describes one application, in a less frequent chronic condition of public health importance, secondary prevention of stroke. A related protocol in antibiotic prescribing was reported previously. Methods/Design The study aims to implement a cluster randomized trial (CRT using the electronic patient records of the General Practice Research Database (GPRD as a sampling frame and data source. The specific objective of the trial is to evaluate the effectiveness of a computer-delivered intervention at enhancing the delivery of stroke secondary prevention in primary care. GPRD family practices will be allocated to the intervention or usual care. The intervention promotes the use of electronic prompts to support adherence with the recommendations of the UK Intercollegiate Stroke Working Party and NICE guidelines for the secondary prevention of stroke in primary care. Primary outcome measure will be the difference in systolic blood pressure between intervention and control trial arms at 12-month follow-up. Secondary outcomes will be differences in serum cholesterol, prescribing of antihypertensive drugs, statins, and antiplatelet therapy. The intervention will continue for 12 months. Information on the utilization of the decision-support tools will also be analyzed. Discussion The CRT will investigate the effectiveness of using a computer-delivered intervention to reduce the risk of stroke recurrence following a first stroke event. The study will provide methodological guidance on the implementation of CRTs in electronic databases in primary care. Trial registration Current Controlled Trials ISRCTN35701810

  11. Generalized double-humped logistic map-based medical image encryption

    Directory of Open Access Journals (Sweden)

    Samar M. Ismail

    2018-03-01

    Full Text Available This paper presents the design of the generalized Double Humped (DH logistic map, used for pseudo-random number key generation (PRNG. The generalized parameter added to the map provides more control on the map chaotic range. A new special map with a zooming effect of the bifurcation diagram is obtained by manipulating the generalization parameter value. The dynamic behavior of the generalized map is analyzed, including the study of the fixed points and stability ranges, Lyapunov exponent, and the complete bifurcation diagram. The option of designing any specific map is made possible through changing the general parameter increasing the randomness and controllability of the map. An image encryption algorithm is introduced based on pseudo-random sequence generation using the proposed generalized DH map offering secure communication transfer of medical MRI and X-ray images. Security analyses are carried out to consolidate system efficiency including: key sensitivity and key-space analyses, histogram analysis, correlation coefficients, MAE, NPCR and UACI calculations. System robustness against noise attacks has been proved along with the NIST test ensuring the system efficiency. A comparison between the proposed system with respect to previous works is presented.

  12. Fiscal 1974 research report. General research on hydrogen energy subsystems; 1974 nendo suiso riyo subsystem sogoteki kento hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-03-01

    Based on the contract research 'General research on hydrogen energy subsystems and their peripheral technologies' with Agency of Industrial Science and Technology, each of 7 organizations including Denki Kagaku Kyokai (Electrochemical Association) promoted the research on hydrogen energy subsystem, combustion, fuel cell, car engine, aircraft engine, gas turbine and chemical energy, respectively. This report summarizes the research result on the former of 2 committees on hydrogen energy and peripheral technologies promoted by Denki Kagaku Kyokai. The first part describes the merit, demerit, domestic and overseas R and D states, technical problems, and future research issue for every use form of hydrogen. This part also outlines the short-, medium- and long-term prospects for use of hydrogen and oxygen energy, and describes the whole future research issue. The second part summarizes the content of each committee report. Although on details the original reports of each committee should be lead, this report is useful for obtaining the outline of utilization of hydrogen energy. (NEDO)

  13. Source-Independent Quantum Random Number Generation

    Science.gov (United States)

    Cao, Zhu; Zhou, Hongyi; Yuan, Xiao; Ma, Xiongfeng

    2016-01-01

    Quantum random number generators can provide genuine randomness by appealing to the fundamental principles of quantum mechanics. In general, a physical generator contains two parts—a randomness source and its readout. The source is essential to the quality of the resulting random numbers; hence, it needs to be carefully calibrated and modeled to achieve information-theoretical provable randomness. However, in practice, the source is a complicated physical system, such as a light source or an atomic ensemble, and any deviations in the real-life implementation from the theoretical model may affect the randomness of the output. To close this gap, we propose a source-independent scheme for quantum random number generation in which output randomness can be certified, even when the source is uncharacterized and untrusted. In our randomness analysis, we make no assumptions about the dimension of the source. For instance, multiphoton emissions are allowed in optical implementations. Our analysis takes into account the finite-key effect with the composable security definition. In the limit of large data size, the length of the input random seed is exponentially small compared to that of the output random bit. In addition, by modifying a quantum key distribution system, we experimentally demonstrate our scheme and achieve a randomness generation rate of over 5 ×103 bit /s .

  14. Integration of motion energy from overlapping random background noise increases perceived speed of coherently moving stimuli.

    Science.gov (United States)

    Chuang, Jason; Ausloos, Emily C; Schwebach, Courtney A; Huang, Xin

    2016-12-01

    The perception of visual motion can be profoundly influenced by visual context. To gain insight into how the visual system represents motion speed, we investigated how a background stimulus that did not move in a net direction influenced the perceived speed of a center stimulus. Visual stimuli were two overlapping random-dot patterns. The center stimulus moved coherently in a fixed direction, whereas the background stimulus moved randomly. We found that human subjects perceived the speed of the center stimulus to be significantly faster than its veridical speed when the background contained motion noise. Interestingly, the perceived speed was tuned to the noise level of the background. When the speed of the center stimulus was low, the highest perceived speed was reached when the background had a low level of motion noise. As the center speed increased, the peak perceived speed was reached at a progressively higher background noise level. The effect of speed overestimation required the center stimulus to overlap with the background. Increasing the background size within a certain range enhanced the effect, suggesting spatial integration. The speed overestimation was significantly reduced or abolished when the center stimulus and the background stimulus had different colors, or when they were placed at different depths. When the center- and background-stimuli were perceptually separable, speed overestimation was correlated with perceptual similarity between the center- and background-stimuli. These results suggest that integration of motion energy from random motion noise has a significant impact on speed perception. Our findings put new constraints on models regarding the neural basis of speed perception. Copyright © 2016 the American Physiological Society.

  15. General Motors LLC Final Project Report: Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Bozeman, Jeffrey [General Motors LLC, Detroit, MI (United States); Chen, Kuo-Huey [General Motors LLC, Detroit, MI (United States)

    2014-12-09

    On November 3, 2009, General Motors (GM) accepted U.S. Department of Energy (DOE) Cooperative Agreement award number DE-EE0000014 from the National Energy Technology Laboratory (NETL). GM was selected to execute a three-year cost shared research and development project on Solid State Energy Conversion for Vehicular Heating, Ventilation & Air Conditioning (HVAC) and for Waste Heat Recovery.

  16. General purpose dynamic Monte Carlo with continuous energy for transient analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sjenitzer, B. L.; Hoogenboom, J. E. [Delft Univ. of Technology, Dept. of Radiation, Radionuclide and Reactors, Mekelweg 15, 2629JB Delft (Netherlands)

    2012-07-01

    For safety assessments transient analysis is an important tool. It can predict maximum temperatures during regular reactor operation or during an accident scenario. Despite the fact that this kind of analysis is very important, the state of the art still uses rather crude methods, like diffusion theory and point-kinetics. For reference calculations it is preferable to use the Monte Carlo method. In this paper the dynamic Monte Carlo method is implemented in the general purpose Monte Carlo code Tripoli4. Also, the method is extended for use with continuous energy. The first results of Dynamic Tripoli demonstrate that this kind of calculation is indeed accurate and the results are achieved in a reasonable amount of time. With the method implemented in Tripoli it is now possible to do an exact transient calculation in arbitrary geometry. (authors)

  17. Perturbation Solutions for Random Linear Structural Systems subject to Random Excitation using Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Köyluoglu, H.U.; Nielsen, Søren R.K.; Cakmak, A.S.

    1994-01-01

    perturbation method using stochastic differential equations. The joint statistical moments entering the perturbation solution are determined by considering an augmented dynamic system with state variables made up of the displacement and velocity vector and their first and second derivatives with respect......The paper deals with the first and second order statistical moments of the response of linear systems with random parameters subject to random excitation modelled as white-noise multiplied by an envelope function with random parameters. The method of analysis is basically a second order...... to the random parameters of the problem. Equations for partial derivatives are obtained from the partial differentiation of the equations of motion. The zero time-lag joint statistical moment equations for the augmented state vector are derived from the Itô differential formula. General formulation is given...

  18. Dissipation, generalized free energy, and a self-consistent nonequilibrium thermodynamics of chemically driven open subsystems.

    Science.gov (United States)

    Ge, Hao; Qian, Hong

    2013-06-01

    Nonequilibrium thermodynamics of a system situated in a sustained environment with influx and efflux is usually treated as a subsystem in a larger, closed "universe." A question remains with regard to what the minimally required description for the surrounding of such an open driven system is so that its nonequilibrium thermodynamics can be established solely based on the internal stochastic kinetics. We provide a solution to this problem using insights from studies of molecular motors in a chemical nonequilibrium steady state (NESS) with sustained external drive through a regenerating system or in a quasisteady state (QSS) with an excess amount of adenosine triphosphate (ATP), adenosine diphosphate (ADP), and inorganic phosphate (Pi). We introduce the key notion of minimal work that is needed, W(min), for the external regenerating system to sustain a NESS (e.g., maintaining constant concentrations of ATP, ADP and Pi for a molecular motor). Using a Markov (master-equation) description of a motor protein, we illustrate that the NESS and QSS have identical kinetics as well as the second law in terms of the same positive entropy production rate. The heat dissipation of a NESS without mechanical output is exactly the W(min). This provides a justification for introducing an ideal external regenerating system and yields a free-energy balance equation between the net free-energy input F(in) and total dissipation F(dis) in an NESS: F(in) consists of chemical input minus mechanical output; F(dis) consists of dissipative heat, i.e. the amount of useful energy becoming heat, which also equals the NESS entropy production. Furthermore, we show that for nonstationary systems, the F(dis) and F(in) correspond to the entropy production rate and housekeeping heat in stochastic thermodynamics and identify a relative entropy H as a generalized free energy. We reach a new formulation of Markovian nonequilibrium thermodynamics based on only the internal kinetic equation without further

  19. Perceptions of randomized security schedules.

    Science.gov (United States)

    Scurich, Nicholas; John, Richard S

    2014-04-01

    Security of infrastructure is a major concern. Traditional security schedules are unable to provide omnipresent coverage; consequently, adversaries can exploit predictable vulnerabilities to their advantage. Randomized security schedules, which randomly deploy security measures, overcome these limitations, but public perceptions of such schedules have not been examined. In this experiment, participants were asked to make a choice between attending a venue that employed a traditional (i.e., search everyone) or a random (i.e., a probability of being searched) security schedule. The absolute probability of detecting contraband was manipulated (i.e., 1/10, 1/4, 1/2) but equivalent between the two schedule types. In general, participants were indifferent to either security schedule, regardless of the probability of detection. The randomized schedule was deemed more convenient, but the traditional schedule was considered fairer and safer. There were no differences between traditional and random schedule in terms of perceived effectiveness or deterrence. Policy implications for the implementation and utilization of randomized schedules are discussed. © 2013 Society for Risk Analysis.

  20. Electrocardiographic and blood pressure effects of energy drinks and Panax ginseng in healthy volunteers: A randomized clinical trial.

    Science.gov (United States)

    Shah, Sachin A; Occiano, Andrew; Nguyen, Tinh An; Chan, Amanda; Sky, Joseph C; Bhattacharyya, Mouchumi; O'Dell, Kate M; Shek, Allen; Nguyen, Nancy N

    2016-09-01

    Energy drink usage has been linked to emergency room visits and deaths. The objective of the study is to assess the electrocardiographic and blood pressure effects of energy drinks, Panax ginseng and placebo in healthy individuals. This was a randomized, double blinded, placebo controlled, crossover study. Young healthy volunteers with no comorbid conditions consumed 32oz of an energy drink, control drink with 800mg of Panax ginseng or matching placebo-control drink over 45min. Primary endpoints were QTc interval and systolic blood pressure. Secondary endpoints included QT interval, PR interval, QRS duration, heart rate, and diastolic blood pressure. All endpoints were assessed at baseline, 1, 2, 3.5, and 5.5h. A significant increase in QTc interval 2h post energy drink consumption was evident when compared to placebo (3.37±10.7ms and -3.19±11.8ms respectively; p=0.030). Similarly, systolic blood pressure 2h post energy drink consumption increased when compared to placebo (2.00±6.37mmHg and -2.67±5.83mmHg respectively; p=0.014). The PR interval significantly reduced over a 2h period post energy drink use in a clinically non-meaningful manner. Heart rate at 2h was not significantly higher in the energy drink group when compared to others. The QT interval, QRS interval and diastolic blood pressure were not impacted at any time point. Certain energy drinks consumed at a high volume significantly increase the QTc interval and systolic blood pressure by over 6ms and 4mmHg respectively. Panax ginseng does not have a significant impact on ECG or blood pressure parameters. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Flow in Random Microstructures: a Multilevel Monte Carlo Approach

    KAUST Repository

    Icardi, Matteo

    2016-01-06

    In this work we are interested in the fast estimation of effective parameters of random heterogeneous materials using Multilevel Monte Carlo (MLMC). MLMC is an efficient and flexible solution for the propagation of uncertainties in complex models, where an explicit parametrisation of the input randomness is not available or too expensive. We propose a general-purpose algorithm and computational code for the solution of Partial Differential Equations (PDEs) on random heterogeneous materials. We make use of the key idea of MLMC, based on different discretization levels, extending it in a more general context, making use of a hierarchy of physical resolution scales, solvers, models and other numerical/geometrical discretisation parameters. Modifications of the classical MLMC estimators are proposed to further reduce variance in cases where analytical convergence rates and asymptotic regimes are not available. Spheres, ellipsoids and general convex-shaped grains are placed randomly in the domain with different placing/packing algorithms and the effective properties of the heterogeneous medium are computed. These are, for example, effective diffusivities, conductivities, and reaction rates. The implementation of the Monte-Carlo estimators, the statistical samples and each single solver is done efficiently in parallel. The method is tested and applied for pore-scale simulations of random sphere packings.

  2. The Effects of the SUN Project on Teacher Knowledge and Self-Efficacy Regarding Biological Energy Transfer Are Significant and Long-Lasting: Results of a Randomized Controlled Trial

    Science.gov (United States)

    Batiza, Ann Finney; Gruhl, Mary; Zhang, Bo; Harrington, Tom; Roberts, Marisa; LaFlamme, Donna; Haasch, Mary Anne; Knopp, Jonathan; Vogt, Gina; Goodsell, David; Hagedorn, Eric; Marcey, David; Hoelzer, Mark; Nelson, Dave

    2013-01-01

    Biological energy flow has been notoriously difficult to teach. Our approach to this topic relies on abiotic and biotic examples of the energy released by moving electrons in thermodynamically spontaneous reactions. A series of analogical model-building experiences was supported with common language and representations including manipulatives. These materials were designed to help learners understand why electrons move in a hydrogen explosion and hydrogen fuel cell, so they could ultimately understand the rationale for energy transfer in the mitochondrion and the chloroplast. High school biology teachers attended a 2-wk Students Understanding eNergy (SUN) workshop during a randomized controlled trial. These treatment group teachers then took hydrogen fuel cells, manipulatives, and other materials into their regular biology classrooms. In this paper, we report significant gains in teacher knowledge and self-efficacy regarding biological energy transfer in the treatment group versus randomized controls. Significant effects on treatment group teacher knowledge and self-efficacy were found not only post–SUN workshop but even 1 yr later. Teacher knowledge was measured with both a multiple-choice exam and a drawing with a written explanation. Teacher confidence in their ability to teach biological energy transfer was measured by a modified form of the Science Teaching Efficacy Belief Instrument, In-Service A. Professional development implications regarding this topic are discussed. PMID:23737635

  3. Inflation with generalized initial conditions

    International Nuclear Information System (INIS)

    Albrecht, A.; Brandenberger, R.; Matzner, R.

    1987-01-01

    In many current models of the early Universe a scalar field phi which is only very weakly coupled to other quantum fields is used to generate inflation. In such models there are no forces which could thermalize the scalar field, and previous assumptions about its preinflation ''initial'' conditions must be abandoned. In this paper the onset of inflation is studied classically for more general initial conditions of the scalar field configuration. In particular, initial conditions with a nonvanishing spatial average of phi, with phi chosen at random in each initial horizon volume, and with random initial momenta are considered. We identify and discuss several mechanisms that can drive these more general initial conditions toward an inflationary state. The analysis is done in one spatial dimension

  4. Random graph states, maximal flow and Fuss-Catalan distributions

    International Nuclear Information System (INIS)

    Collins, BenoIt; Nechita, Ion; Zyczkowski, Karol

    2010-01-01

    For any graph consisting of k vertices and m edges we construct an ensemble of random pure quantum states which describe a system composed of 2m subsystems. Each edge of the graph represents a bipartite, maximally entangled state. Each vertex represents a random unitary matrix generated according to the Haar measure, which describes the coupling between subsystems. Dividing all subsystems into two parts, one may study entanglement with respect to this partition. A general technique to derive an expression for the average entanglement entropy of random pure states associated with a given graph is presented. Our technique relies on Weingarten calculus and flow problems. We analyze the statistical properties of spectra of such random density matrices and show for which cases they are described by the free Poissonian (Marchenko-Pastur) distribution. We derive a discrete family of generalized, Fuss-Catalan distributions and explicitly construct graphs which lead to ensembles of random states characterized by these novel distributions of eigenvalues.

  5. Flow in Random Microstructures: a Multilevel Monte Carlo Approach

    KAUST Repository

    Icardi, Matteo; Tempone, Raul

    2016-01-01

    , where an explicit parametrisation of the input randomness is not available or too expensive. We propose a general-purpose algorithm and computational code for the solution of Partial Differential Equations (PDEs) on random heterogeneous materials. We

  6. Mean energy of some interacting bosonic systems derived by virtue of the generalized Hellmann-Feynman theorem

    Science.gov (United States)

    Fan, Hong-yi; Xu, Xue-xiang

    2009-06-01

    By virtue of the generalized Hellmann-Feynman theorem [H. Y. Fan and B. Z. Chen, Phys. Lett. A 203, 95 (1995)], we derive the mean energy of some interacting bosonic systems for some Hamiltonian models without proceeding with diagonalizing the Hamiltonians. Our work extends the field of applications of the Hellmann-Feynman theorem and may enrich the theory of quantum statistics.

  7. 10 CFR 205.350 - General purpose.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false General purpose. 205.350 Section 205.350 Energy DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and Reports....350 General purpose. The purpose of this rule is to establish a procedure for the Office of...

  8. On the generalized eigenvalue method for energies and matrix elements in lattice field theory

    Energy Technology Data Exchange (ETDEWEB)

    Blossier, Benoit [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)]|[Paris-XI Univ., 91 - Orsay (France). Lab. de Physique Theorique; Morte, Michele della [CERN, Geneva (Switzerland). Physics Dept.]|[Mainz Univ. (Germany). Inst. fuer Kernphysik; Hippel, Georg von; Sommer, Rainer [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Mendes, Tereza [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)]|[Sao Paulo Univ. (Brazil). IFSC

    2009-02-15

    We discuss the generalized eigenvalue problem for computing energies and matrix elements in lattice gauge theory, including effective theories such as HQET. It is analyzed how the extracted effective energies and matrix elements converge when the time separations are made large. This suggests a particularly efficient application of the method for which we can prove that corrections vanish asymptotically as exp(-(E{sub N+1}-E{sub n}) t). The gap E{sub N+1}-E{sub n} can be made large by increasing the number N of interpolating fields in the correlation matrix. We also show how excited state matrix elements can be extracted such that contaminations from all other states disappear exponentially in time. As a demonstration we present numerical results for the extraction of ground state and excited B-meson masses and decay constants in static approximation and to order 1/m{sub b} in HQET. (orig.)

  9. On the generalized eigenvalue method for energies and matrix elements in lattice field theory

    International Nuclear Information System (INIS)

    Blossier, Benoit; Mendes, Tereza; Sao Paulo Univ.

    2009-02-01

    We discuss the generalized eigenvalue problem for computing energies and matrix elements in lattice gauge theory, including effective theories such as HQET. It is analyzed how the extracted effective energies and matrix elements converge when the time separations are made large. This suggests a particularly efficient application of the method for which we can prove that corrections vanish asymptotically as exp(-(E N+1 -E n ) t). The gap E N+1 -E n can be made large by increasing the number N of interpolating fields in the correlation matrix. We also show how excited state matrix elements can be extracted such that contaminations from all other states disappear exponentially in time. As a demonstration we present numerical results for the extraction of ground state and excited B-meson masses and decay constants in static approximation and to order 1/m b in HQET. (orig.)

  10. Nonstationary interference and scattering from random media

    International Nuclear Information System (INIS)

    Nazikian, R.

    1991-12-01

    For the small angle scattering of coherent plane waves from inhomogeneous random media, the three dimensional mean square distribution of random fluctuations may be recovered from the interferometric detection of the nonstationary modulational structure of the scattered field. Modulational properties of coherent waves scattered from random media are related to nonlocal correlations in the double sideband structure of the Fourier transform of the scattering potential. Such correlations may be expressed in terms of a suitability generalized spectral coherence function for analytic fields

  11. The relation between energy efficiency and general objectives

    International Nuclear Information System (INIS)

    Holmberg, John; Naessen, Jonas; Sprei, Frances

    2006-09-01

    Three overall objectives for energy efficiency programs are discussed: Reduction of negative externalities, esp. climatic change; Phase-out of nuclear power while limiting electricity imports; and creating welfare gains by correcting market failures of energy efficiency programs (rebound effects)

  12. The Wasteland of Random Supergravities

    OpenAIRE

    Marsh, David; McAllister, Liam; Wrase, Timm

    2011-01-01

    We show that in a general \\cal{N} = 1 supergravity with N \\gg 1 scalar fields, an exponentially small fraction of the de Sitter critical points are metastable vacua. Taking the superpotential and Kahler potential to be random functions, we construct a random matrix model for the Hessian matrix, which is well-approximated by the sum of a Wigner matrix and two Wishart matrices. We compute the eigenvalue spectrum analytically from the free convolution of the constituent spectra and find that in ...

  13. Colloids exposed to random potential energy landscapes: From particle number density to particle-potential and particle-particle interactions

    International Nuclear Information System (INIS)

    Bewerunge, Jörg; Capellmann, Ronja F.; Platten, Florian; Egelhaaf, Stefan U.; Sengupta, Ankush; Sengupta, Surajit

    2016-01-01

    Colloidal particles were exposed to a random potential energy landscape that has been created optically via a speckle pattern. The mean particle density as well as the potential roughness, i.e., the disorder strength, were varied. The local probability density of the particles as well as its main characteristics were determined. For the first time, the disorder-averaged pair density correlation function g (1) (r) and an analogue of the Edwards-Anderson order parameter g (2) (r), which quantifies the correlation of the mean local density among disorder realisations, were measured experimentally and shown to be consistent with replica liquid state theory results.

  14. 10 CFR 1023.3 - Principles of general applicability.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Principles of general applicability. 1023.3 Section 1023.3 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) CONTRACT APPEALS Overview: Organization, Functions and Authorities § 1023.3 Principles of general applicability. (a) Adjudicatory functions. The following principles...

  15. Pocket dictionary of energy. BI-Taschenlexikon Energie

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, W

    1981-01-01

    This dictionary explains all important concepts of the field of energy conversion, energy use, energy sources, energy transfer, and energy distribution. The explanations are given in popular form so as to be generally intelligible.

  16. Source-Independent Quantum Random Number Generation

    Directory of Open Access Journals (Sweden)

    Zhu Cao

    2016-02-01

    Full Text Available Quantum random number generators can provide genuine randomness by appealing to the fundamental principles of quantum mechanics. In general, a physical generator contains two parts—a randomness source and its readout. The source is essential to the quality of the resulting random numbers; hence, it needs to be carefully calibrated and modeled to achieve information-theoretical provable randomness. However, in practice, the source is a complicated physical system, such as a light source or an atomic ensemble, and any deviations in the real-life implementation from the theoretical model may affect the randomness of the output. To close this gap, we propose a source-independent scheme for quantum random number generation in which output randomness can be certified, even when the source is uncharacterized and untrusted. In our randomness analysis, we make no assumptions about the dimension of the source. For instance, multiphoton emissions are allowed in optical implementations. Our analysis takes into account the finite-key effect with the composable security definition. In the limit of large data size, the length of the input random seed is exponentially small compared to that of the output random bit. In addition, by modifying a quantum key distribution system, we experimentally demonstrate our scheme and achieve a randomness generation rate of over 5×10^{3}  bit/s.

  17. 18 CFR 35.36 - Generally.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Generally. 35.36 Section 35.36 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT... Sales of Electric Energy, Capacity and Ancillary Services at Market-Based Rates § 35.36 Generally. (a...

  18. Elements of random walk and diffusion processes

    CERN Document Server

    Ibe, Oliver C

    2013-01-01

    Presents an important and unique introduction to random walk theory Random walk is a stochastic process that has proven to be a useful model in understanding discrete-state discrete-time processes across a wide spectrum of scientific disciplines. Elements of Random Walk and Diffusion Processes provides an interdisciplinary approach by including numerous practical examples and exercises with real-world applications in operations research, economics, engineering, and physics. Featuring an introduction to powerful and general techniques that are used in the application of physical and dynamic

  19. ENERGY AND CONSTRUCTION CONDITIONS OF THE EFFECTIVENESS OF APPAATUS FOR GENERAL CRYOTHERAPEUTIC IMPACT

    Directory of Open Access Journals (Sweden)

    A. U. Baranov

    2016-01-01

    Full Text Available Objectives. To evaluate the correspondence of construction and power consumption of Cryotherapeutic Complexes (CTC with technological conditions of effectiveness of the General Cryotherapeutic Impact (GCI. Methods. The associated analysis method used Cryotherapeutic Complexes (CTC construction and power consumption with technological conditions of effectiveness of the General Cryotherapeutic Impact (GCI. Results. An explanation for the discrepancy of observations of different researchers in differences in design and available power of the CTC is proposed. The technical operating characteristics of single-seat and multi-seat CTC are provided and these significant differences in apparatus of identical technological designation are illustrated. The proposed system of specific CTC characteristics is capable of unifying their basic structural and energy characteristics. Calculation of the specific characteristics of existing systems showed that between objects of the same designation, there are differences in value, which may be the cause of discrepancies in their therapeutic efficacy. All functional CPC have a cryostatting cooling capacity system deficit of between 8 and 75%. In multi-seat CPC cooling capacity deficit exceeds 50%, which excludes the possibility of obtaining a significant therapeutic effect, as is confirmed by the results of independent studies that show that the procedures in multi-seat CTC safeguards skin from frigorism only up to 14°C, while at the same time for effective OKV frigorism of the skin surface is necessary to a temperature of less than about 2°C. Prior to research on the effectiveness of OKV, it is necessary to assess the energy consumption conformity of cryotherapy equipment. Conclusion. For the successful implementation of OKV in medicine and sport, it is necessary to increase energy efficiency and optimise cryotherapeutic temperature control settings. A cryotheraputic complex should safeguard such physical

  20. The impact of increased efficiency in the industrial use of energy: A computable general equilibrium analysis for the United Kingdom

    International Nuclear Information System (INIS)

    Allan, Grant; Hanley, Nick; McGregor, Peter; Swales, Kim; Turner, Karen

    2007-01-01

    The conventional wisdom is that improving energy efficiency will lower energy use. However, there is an extensive debate in the energy economics/policy literature concerning 'rebound' effects. These occur because an improvement in energy efficiency produces a fall in the effective price of energy services. The response of the economic system to this price fall at least partially offsets the expected beneficial impact of the energy efficiency gain. In this paper we use an economy-energy-environment computable general equilibrium (CGE) model for the UK to measure the impact of a 5% across the board improvement in the efficiency of energy use in all production sectors. We identify rebound effects of the order of 30-50%, but no backfire (no increase in energy use). However, these results are sensitive to the assumed structure of the labour market, key production elasticities, the time period under consideration and the mechanism through which increased government revenues are recycled back to the economy