On a generalized fifth order KdV equations
International Nuclear Information System (INIS)
Kaya, Dogan; El-Sayed, Salah M.
2003-01-01
In this Letter, we dealt with finding the solutions of a generalized fifth order KdV equation (for short, gfKdV) by using the Adomian decomposition method (for short, ADM). We prove the convergence of ADM applied to the gfKdV equation. Then we obtain the exact solitary-wave solutions and numerical solutions of the gfKdV equation for the initial conditions. The numerical solutions are compared with the known analytical solutions. Their remarkable accuracy are finally demonstrated for the gfKdV equation
New exact solutions to the generalized KdV equation with ...
Indian Academy of Sciences (India)
is reduced to an ordinary differential equation with constant coefficients ... Application to generalized KdV equation with generalized evolution ..... [12] P F Byrd and M D Friedman, Handbook of elliptic integrals for engineers and physicists.
Interactions of Soliton Waves for a Generalized Discrete KdV Equation
International Nuclear Information System (INIS)
Zhou Tong; Zhu Zuo-Nong
2017-01-01
It is well known that soliton interactions in discrete integrable systems often possess new properties which are different from the continuous integrable systems, e.g., we found that there are such discrete solitons in a semidiscrete integrable system (the time variable is continuous and the space one is discrete) that the shorter solitary waves travel faster than the taller ones. Very recently, this kind of soliton was also observed in a full discrete generalized KdV system (the both of time and space variables are discrete) introduced by Kanki et al. In this paper, for the generalized discrete KdV (gdKdV) equation, we describe its richer structures of one-soliton solutions. The interactions of two-soliton waves to the gdKdV equation are studied. Some new features of the soliton interactions are proposed by rigorous theoretical analysis. (paper)
Conserved quantities for generalized KdV equations
International Nuclear Information System (INIS)
Calogero, F.; Rome Univ.; Degasperis, A.; Rome Univ.
1980-01-01
It is noted that the nonlinear evolution equation usub(t) = α(t)usub(xxx) - 6ν(t) usub(x)u, u is identical to u(x,t), possesses three (and, in some cases, four) conserved quantities, that are explicitly displayed. These results are of course relevant only to the cases in which this evolution equation is not known to possess an infinite number of conserved quantities. Purpose and scope of this paper is to report three or four simple conservation laws possessed by the evolution equation usub(t) = α(t)usub(xxx) - 6ν(t)usub(x)u, u is identical to u(x,t). (author)
International Nuclear Information System (INIS)
Zhang Weiguo; Dong Chunyan; Fan Engui
2006-01-01
In this paper, we discuss conditional stability of solitary-wave solutions in the sense of Liapunov for the generalized compound KdV equation and the generalized compound KdV-Burgers equations. Linear stability of the exact solitary-wave solutions is proved for the above two types of equations when the small disturbance of travelling wave form satisfies some special conditions.
Abundant general solitary wave solutions to the family of KdV type equations
Directory of Open Access Journals (Sweden)
Md. Azmol Huda
2017-03-01
Full Text Available This work explores the construction of more general exact traveling wave solutions of some nonlinear evolution equations (NLEEs through the application of the (G′/G, 1/G-expansion method. This method is allied to the widely used (G′/G-method initiated by Wang et al. and can be considered as an extension of the (G′/G-expansion method. For effectiveness, the method is applied to the family of KdV type equations. Abundant general form solitary wave solutions as well as periodic solutions are successfully obtained through this method. Moreover, in the obtained wider set of solutions, if we set special values of the parameters, some previously known solutions are revived. The approach of this method is simple and elegantly standard. Having been computerized it is also powerful, reliable and effective.
International Nuclear Information System (INIS)
Zhang Yi; Wei Wei-Wei; Cheng Teng-Fei; Song Yang
2011-01-01
In this paper, we apply the binary Bell polynomial approach to high-dimensional variable-coefficient nonlinear evolution equations. Taking the generalized (2+1)-dimensional KdV equation with variable coefficients as an illustrative example, the bilinear formulism, the bilinear Bäcklund transformation and the Lax pair are obtained in a quick and natural manner. Moreover, the infinite conservation laws are also derived. (general)
New supersymmetrizations of the generalized KDV hierarchies
International Nuclear Information System (INIS)
Figueroa-O'Farrill, J.M.; Stanciu, S.
1993-03-01
Recently we investigated a new supersymmetrization procedure for the KdV hierarchy inspired in some recent work on supersymmetric matrix models. We extend this procedure here for the generalized KdV hierarchies. The resulting supersymmetric hierarchies are generically nonlocal, expect for the case of Boussinesque which we treat in detail. The resulting supersymmetric hierarchy is integrable and bihamiltonian and contains the Boussinesque hierarchy as a subhierarchy. In a particular realization, we extend it by defining supersymmetric odd flows. We end with some comments on a slight modification of this supersymmetrization which yields local equations for any generalized KdV hierarchy. (orig.)
International Nuclear Information System (INIS)
Chen, Yong; Shanghai Jiao-Tong Univ., Shangai; Chinese Academy of sciences, Beijing
2005-01-01
A general method to uniformly construct exact solutions in terms of special function of nonlinear partial differential equations is presented by means of a more general ansatz and symbolic computation. Making use of the general method, we can successfully obtain the solutions found by the method proposed by Fan (J. Phys. A., 36 (2003) 7009) and find other new and more general solutions, which include polynomial solutions, exponential solutions, rational solutions, triangular periodic wave solution, soliton solutions, soliton-like solutions and Jacobi, Weierstrass doubly periodic wave solutions. A general variable-coefficient two-dimensional KdV equation is chosen to illustrate the method. As a result, some new exact soliton-like solutions are obtained. planets. The numerical results are given in tables. The results are discussed in the conclusion
The integrability of an extended fifth-order KdV equation with Riccati ...
Indian Academy of Sciences (India)
method was extended to investigate variable coefficient NLEEs, which included gener- alized KdV equation, generalized modified KdV equation and generalized Boussinesq equation [11,12]. It is well known that KdV equation models a variety of nonlinear phenomena, including ion-acoustic waves in plasmas and shallow ...
International Nuclear Information System (INIS)
Sabry, R.; Zahran, M.A.; Fan Engui
2004-01-01
A generalized expansion method is proposed to uniformly construct a series of exact solutions for general variable coefficients non-linear evolution equations. The new approach admits the following types of solutions (a) polynomial solutions, (b) exponential solutions, (c) rational solutions, (d) triangular periodic wave solutions, (e) hyperbolic and solitary wave solutions and (f) Jacobi and Weierstrass doubly periodic wave solutions. The efficiency of the method has been demonstrated by applying it to a generalized variable coefficients KdV equation. Then, new and rich variety of exact explicit solutions have been found
Adiabatic invariants of the extended KdV equation
Energy Technology Data Exchange (ETDEWEB)
Karczewska, Anna [Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, Szafrana 4a, 65-246 Zielona Góra (Poland); Rozmej, Piotr, E-mail: p.rozmej@if.uz.zgora.pl [Institute of Physics, Faculty of Physics and Astronomy, University of Zielona Góra, Szafrana 4a, 65-246 Zielona Góra (Poland); Infeld, Eryk [National Centre for Nuclear Research, Hoża 69, 00-681 Warszawa (Poland); Rowlands, George [Department of Physics, University of Warwick, Coventry, CV4 7A (United Kingdom)
2017-01-30
When the Euler equations for shallow water are taken to the next order, beyond KdV, momentum and energy are no longer exact invariants. (The only one is mass.) However, adiabatic invariants (AI) can be found. When the KdV expansion parameters are zero, exact invariants are recovered. Existence of adiabatic invariants results from general theory of near-identity transformations (NIT) which allow us to transform higher order nonintegrable equations to asymptotically equivalent (when small parameters tend to zero) integrable form. Here we present a direct method of calculations of adiabatic invariants. It does not need a transformation to a moving reference frame nor performing a near-identity transformation. Numerical tests show that deviations of AI from constant values are indeed small. - Highlights: • We suggest a new and simple method for calculating adiabatic invariants of second order wave equations. • It is easy to use and we hope that it will be useful if published. • Interesting numerics included.
The fractional coupled KdV equations: Exact solutions and white noise functional approach
International Nuclear Information System (INIS)
Ghany, Hossam A.; El Bab, A. S. Okb; Zabel, A. M.; Hyder, Abd-Allah
2013-01-01
Variable coefficients and Wick-type stochastic fractional coupled KdV equations are investigated. By using the modified fractional sub-equation method, Hermite transform, and white noise theory the exact travelling wave solutions and white noise functional solutions are obtained, including the generalized exponential, hyperbolic, and trigonometric types. (general)
New analytic solutions of stochastic coupled KdV equations
International Nuclear Information System (INIS)
Dai Chaoqing; Chen Junlang
2009-01-01
In this paper, firstly, we use the exp-function method to seek new exact solutions of the Riccati equation. Then, with the help of Hermit transformation, we employ the Riccati equation and its new exact solutions to find new analytic solutions of the stochastic coupled KdV equation in the white noise environment. As some special examples, some analytic solutions can degenerate into these solutions reported in open literatures.
New Numerical Treatment for Solving the KDV Equation
Directory of Open Access Journals (Sweden)
khalid ali
2017-01-01
Full Text Available In the present article, a numerical method is proposed for the numerical solution of the KdV equation by using collocation method with the modified exponential cubic B-spline. In this paper we convert the KdV equation to system of two equations. The method is shown to be unconditionally stable using von-Neumann technique. To test accuracy the error norms2L, ?L are computed. Three invariants of motion are predestined to determine the preservation properties of the problem, and the numerical scheme leads to careful and active results. Furthermore, interaction of two and three solitary waves is shown. These results show that the technique introduced here is easy to apply.
A motion of spacelike curves in the Minkowski 3-space and the KdV equation
International Nuclear Information System (INIS)
Ding Qing; Wang Wei; Wang Youde
2010-01-01
This Letter shows that soliton solutions to KdV equation describe a motion of spacelike curves in R 2,1 with initial data being suitably restricted. This gives a different geometric interpretation of KdV from that given recently by Musso and Nicolodi, and gives a unified geometric explanation for KdV and MKdV.
A multidimensionally consistent version of Hirota’s discrete KdV equation
International Nuclear Information System (INIS)
Atkinson, James
2012-01-01
A multidimensionally consistent generalization of Hirota’s discrete KdV equation is proposed, it is a quad equation defined by a polynomial that is quadratic in each variable. Soliton solutions and interpretation of the model as superposition principle are given. It is discussed how an important property of the defining polynomial, a factorization of discriminants, appears also in the few other known discrete integrable multi-quadratic models. (fast track communication)
Poisson's theorem and integrals of KdV equation
International Nuclear Information System (INIS)
Tasso, H.
1978-01-01
Using Poisson's theorem it is proved that if F = integral sub(-infinity)sup(+infinity) T(u,usub(x),...usub(n,t))dx is an invariant functional of KdV equation, then integral sub(-infinity)sup(+infinity) delta F/delta u dx integral sub(-infinity)sup(+infinity) delta T/delta u dx is also an invariant functional. In the case of a polynomial T, one finds in a simple way the known recursion ΔTr/Δu = Tsub(r-1). This note gives an example of the usefulness of Poisson's theorem. (author)
On "new travelling wave solutions" of the KdV and the KdV-Burgers equations
Kudryashov, Nikolai A.
The Korteweg-de Vries and the Korteweg-de Vries-Burgers equations are considered. Using the travelling wave the general solutions of these equations are presented. "New travelling wave solutions" of the KdV and the KdV-Burgers equations by Wazzan [Wazzan L Commun Nonlinear Sci Numer Simulat
The Lax operator approach for the Virasoro and the W-constraints in the generalized KdV hierarchy
International Nuclear Information System (INIS)
Panda, S.; Roy, S.
1992-08-01
We show directly in the Lax operator approach how the Virasoro and W-constraints on the τ-function arise in the p-reduced KP hierarchy or Generalized KdV hierarchy. In particular, we consider the KdV and the Boussinesq hierarchy to show that the Virasoro and the W-constraints follow from the string equation by expanding the ''additional symmetry'' operator in terms of the Lax operator. We also mention how this method could be generalized for higher KdV hierarchies. (author). 34 refs
Modulating functions method for parameters estimation in the fifth order KdV equation
Asiri, Sharefa M.; Liu, Da-Yan; Laleg-Kirati, Taous-Meriem
2017-01-01
In this work, the modulating functions method is proposed for estimating coefficients in higher-order nonlinear partial differential equation which is the fifth order Kortewegde Vries (KdV) equation. The proposed method transforms the problem into a
Solving the discrete KdV equation with homotopy analysis method
International Nuclear Information System (INIS)
Zou, L.; Zong, Z.; Wang, Z.; He, L.
2007-01-01
In this Letter, we apply the homotopy analysis method to differential-difference equations. We take the discrete KdV equation as an example, and successfully obtain double periodic wave solutions and solitary wave solutions. It illustrates the validity and the great potential of the homotopy analysis method in solving discrete KdV equation. Comparisons are made between the results of the proposed method and exact solutions. The results reveal that the proposed method is very effective and convenient
International Nuclear Information System (INIS)
Yang Zonghang
2007-01-01
We find new exact travelling wave solutions for two potential KdV equations which are presented by Foursov [Foursov MV. J Math Phys 2000;41:6173-85]. Compared with the extended tanh-function method, the algorithm used in our paper can obtain some new kinds of exact travelling wave solutions. With the aid of symbolic computation, some novel exact travelling wave solutions of the potential KdV equations are constructed
On the exact solutions of high order wave equations of KdV type (I)
Bulut, Hasan; Pandir, Yusuf; Baskonus, Haci Mehmet
2014-12-01
In this paper, by means of a proper transformation and symbolic computation, we study high order wave equations of KdV type (I). We obtained classification of exact solutions that contain soliton, rational, trigonometric and elliptic function solutions by using the extended trial equation method. As a result, the motivation of this paper is to utilize the extended trial equation method to explore new solutions of high order wave equation of KdV type (I). This method is confirmed by applying it to this kind of selected nonlinear equations.
International Nuclear Information System (INIS)
Shi, Ying; Zhang, Da-jun; Nimmo, Jonathan J C
2014-01-01
The Hirota–Miwa equation can be written in ‘nonlinear’ form in two ways: the discrete KP equation and, by using a compatible continuous variable, the discrete potential KP equation. For both systems, we consider the Darboux and binary Darboux transformations, expressed in terms of the continuous variable, and obtain exact solutions in Wronskian and Grammian form. We discuss reductions of both systems to the discrete KdV and discrete potential KdV equation, respectively, and exploit this connection to find the Darboux and binary Darboux transformations and exact solutions of these equations. (paper)
A method for solving the KDV equation and some numerical experiments
International Nuclear Information System (INIS)
Chang Jinjiang.
1993-01-01
In this paper, by means of difference method for discretization of space partial derivatives of KDV equation, an initial value problem in ordinary differential equations of large dimensions is produced. By using this ordinary differential equations the existence and the uniqueness of the solution of the KDV equation and the conservation of scheme are proved. This ordinary differential equation can be solved by using implicit Runge-Kutta methods, so a new method for finding the numerical solution of the KDV equation is presented. Numerical experiments not only describe in detail the procedure of two solitons collision, soliton reflex and soliton produce, but also show that this method is very effective. (author). 7 refs, 3 figs
Explicit solutions to the semi-discrete modified KdV equation and motion of discrete plane curves
International Nuclear Information System (INIS)
Inoguchi, Jun-ichi; Kajiwara, Kenji; Matsuura, Nozomu; Ohta, Yasuhiro
2012-01-01
We construct explicit solutions to continuous motion of discrete plane curves described by a semi-discrete potential modified KdV equation. Explicit formulas in terms of the τ function are presented. Bäcklund transformations of the discrete curves are also discussed. We finally consider the continuous limit of discrete motion of discrete plane curves described by the discrete potential modified KdV equation to motion of smooth plane curves characterized by the potential modified KdV equation. (paper)
Constructing soliton solutions and super-bilinear form of lattice supersymmetric KdV equation
International Nuclear Information System (INIS)
Carstea, A S
2015-01-01
The Hirota bilinear form and multisoliton solution for semidiscrete and fully discrete (difference–difference) versions of the supersymmetric Korteweg–de Vries (KdV) equation found by Xue et al (2013 J. Phys. A: Math. Theor 46 502001) are presented. The solitonic interaction term displays a fermionic dressing factor as in the continuous supersymmetric case. Using bilinear equations it is also shown that a new integrable semidiscrete (and fully discrete) version of supersymmetric KdV can be constructed with a simpler bilinear form but a more complicated interaction dressing. Its continuum limit is also computed. (paper)
Rogue periodic waves of the modified KdV equation
Chen, Jinbing; Pelinovsky, Dmitry E.
2018-05-01
Rogue periodic waves stand for rogue waves on a periodic background. Two families of travelling periodic waves of the modified Korteweg–de Vries (mKdV) equation in the focusing case are expressed by the Jacobian elliptic functions dn and cn. By using one-fold and two-fold Darboux transformations of the travelling periodic waves, we construct new explicit solutions for the mKdV equation. Since the dn-periodic wave is modulationally stable with respect to long-wave perturbations, the new solution constructed from the dn-periodic wave is a nonlinear superposition of an algebraically decaying soliton and the dn-periodic wave. On the other hand, since the cn-periodic wave is modulationally unstable with respect to long-wave perturbations, the new solution constructed from the cn-periodic wave is a rogue wave on the cn-periodic background, which generalizes the classical rogue wave (the so-called Peregrine’s breather) of the nonlinear Schrödinger equation. We compute the magnification factor for the rogue cn-periodic wave of the mKdV equation and show that it remains constant for all amplitudes. As a by-product of our work, we find explicit expressions for the periodic eigenfunctions of the spectral problem associated with the dn and cn periodic waves of the mKdV equation.
Exact traveling wave solutions of the bbm and kdv equations using (G'/G)-expansion method
International Nuclear Information System (INIS)
Saddique, I.; Nazar, K.
2009-01-01
In this paper, we construct the traveling wave solutions involving parameters of the Benjamin Bona-Mahony (BBM) and KdV equations in terms of the hyperbolic, trigonometric and rational functions by using the (G'/G)-expansion method, where G = G(zeta) satisfies a second order linear ordinary differential equation. When the parameters are taken special values, the Solitary was are derived from the traveling waves. (author)
Adler endash Kostant endash Symes construction, bi-Hamiltonian manifolds, and KdV equations
International Nuclear Information System (INIS)
Guha, P.
1997-01-01
This paper focuses a relation between Adler endash Kostant endash Symes (AKS) theory applied to Fordy endash Kulish scheme and bi-Hamiltonian manifolds. The spirit of this paper is closely related to Casati endash Magri endash Pedroni work on Hamiltonian formulation of the KP equation. Here the KdV equation is deduced via the superposition of the Fordy endash Kulish scheme and AKS construction on the underlying current algebra C ∞ (S 1 ,g circle-times C[[λ
A numerical dressing method for the nonlinear superposition of solutions of the KdV equation
International Nuclear Information System (INIS)
Trogdon, Thomas; Deconinck, Bernard
2014-01-01
In this paper we present the unification of two existing numerical methods for the construction of solutions of the Korteweg–de Vries (KdV) equation. The first method is used to solve the Cauchy initial-value problem on the line for rapidly decaying initial data. The second method is used to compute finite-genus solutions of the KdV equation. The combination of these numerical methods allows for the computation of exact solutions that are asymptotically (quasi-)periodic finite-gap solutions and are a nonlinear superposition of dispersive, soliton and (quasi-)periodic solutions in the finite (x, t)-plane. Such solutions are referred to as superposition solutions. We compute these solutions accurately for all values of x and t. (paper)
Perturbative expansion and the initial value problem of the K.d.V. equations
International Nuclear Information System (INIS)
Turchetti, G.
1980-01-01
For the potential K.d.V. equation is considered a perturbation expansion in which the initial condition is imposed on the zeroth order term. The N soliton solutions turn out to be rational functions in the expansion parameter so that the perturbation series can be exactly summed by the [N-1/N] Pade approximants; moreover the [n-1/n] and [n/n] Pade approximants for n [pt
Soliton and periodic solutions for higher order wave equations of KdV type (I)
International Nuclear Information System (INIS)
Khuri, S.A.
2005-01-01
The aim of the paper is twofold. First, a new ansaetze is introduced for the construction of exact solutions for higher order wave equations of KdV type (I). We show the existence of a class of discontinuous soliton solutions with infinite spikes. Second, the projective Riccati technique is implemented as an alternate approach for obtaining new exact solutions, solitary solutions, and periodic wave solutions
Analytical Solutions of the KDV-KZK Equation
Gan, W. S.
The KdV-KZK equation for fluids developed by me was presented at the ICSV 11 in St. Petersburg in July 2004. In this paper, I made an attempt on the analytical solutions of this equation using the perturbation method. Some physical interpretation of the solutions is given. A brief introduction to KdV-KZK equation for solids is given
International Nuclear Information System (INIS)
Awada, M.A.
1990-01-01
We further study the universal equations of the supersymmetric modified KdV (MKdV) hierarchy in its generalized form. We show that these equations describe the dynamical quantum equations of the odd series of N = 1 minimal (p,q) superconformal field theory coupled to N = 1 supergravity in particular those unitary series with p = 2k + 3, and q = 2k = 1. The string susceptibility of these models is γ sstr. (0) = -2/2k + 1. We demonstrate explicitly the cases k = 2; and k = 3. 10 refs
Modulating functions method for parameters estimation in the fifth order KdV equation
Asiri, Sharefa M.
2017-07-25
In this work, the modulating functions method is proposed for estimating coefficients in higher-order nonlinear partial differential equation which is the fifth order Kortewegde Vries (KdV) equation. The proposed method transforms the problem into a system of linear algebraic equations of the unknowns. The statistical properties of the modulating functions solution are described in this paper. In addition, guidelines for choosing the number of modulating functions, which is an important design parameter, are provided. The effectiveness and robustness of the proposed method are shown through numerical simulations in both noise-free and noisy cases.
New binary travelling-wave periodic solutions for the modified KdV equation
International Nuclear Information System (INIS)
Yan Zhenya
2008-01-01
In this Letter, the modified Korteweg-de Vries (mKdV) equations with the focusing (+) and defocusing (-) branches are investigated, respectively. Many new types of binary travelling-wave periodic solutions are obtained for the mKdV equation in terms of Jacobi elliptic functions such as sn(ξ,m)cn(ξ,m)dn(ξ,m) and their extensions. Moreover, we analyze asymptotic properties of some solutions. In addition, with the aid of the Miura transformation, we also give the corresponding binary travelling-wave periodic solutions of KdV equation
An outline of cellular automaton universe via cosmological KdV equation
Christianto, V.; Smarandache, F.; Umniyati, Y.
2018-03-01
It has been known for long time that the cosmic sound wave was there since the early epoch of the Universe. Signatures of its existence are abound. However, such a sound wave model of cosmology is rarely developed fully into a complete framework. This paper can be considered as our second attempt towards such a complete description of the Universe based on soliton wave solution of cosmological KdV equation. Then we advance further this KdV equation by virtue of Cellular Automaton method to solve the PDEs. We submit wholeheartedly Robert Kuruczs hypothesis that Big Bang should be replaced with a finite cellular automaton universe with no expansion [4][5]. Nonetheless, we are fully aware that our model is far from being complete, but it appears the proposed cellular automaton model of the Universe is very close in spirit to what Konrad Zuse envisaged long time ago. It is our hope that the new proposed method can be verified with observation data. But we admit that our model is still in its infancy, more researches are needed to fill all the missing details.
Stability properties of solitary waves for fractional KdV and BBM equations
Angulo Pava, Jaime
2018-03-01
This paper sheds new light on the stability properties of solitary wave solutions associated with Korteweg-de Vries-type models when the dispersion is very low. Using a compact, analytic approach and asymptotic perturbation theory, we establish sufficient conditions for the existence of exponentially growing solutions to the linearized problem and so a criterium of spectral instability of solitary waves is obtained for both models. Moreover, the nonlinear stability and spectral instability of the ground state solutions for both models is obtained for some specific regimen of parameters. Via a Lyapunov strategy and a variational analysis, we obtain the stability of the blow-up of solitary waves for the critical fractional KdV equation. The arguments presented in this investigation show promise for use in the study of the instability of traveling wave solutions of other nonlinear evolution equations.
Kersten, P.H.M.
1988-01-01
By the introduction of nonlocal basonic and fermionic variables we construct a recursion symmetry of the super KdV equation, leading to a hierarchy of bosonic symmetries and one of fermionic symmetries. The hierarchies of bosonic and fermionic conservation laws arise in a natural way in the
On Solutions of the Integrable Boundary Value Problem for KdV Equation on the Semi-Axis
International Nuclear Information System (INIS)
Ignatyev, M. Yu.
2013-01-01
This paper is concerned with the Korteweg–de Vries (KdV) equation on the semi-axis. The boundary value problem with inhomogeneous integrable boundary conditions is studied. We establish some characteristic properties of solutions of the problem. Also we construct a wide class of solutions of the problem using the inverse spectral method.
The (G′/G-Expansion Method and Its Application for Higher-Order Equations of KdV (III
Directory of Open Access Journals (Sweden)
Huizhang Yang
2014-01-01
Full Text Available New exact traveling wave solutions of a higher-order KdV equation type are studied by the (G′/G-expansion method, where G=G(ξ satisfies a second-order linear differential equation. The traveling wave solutions are expressed by the hyperbolic functions, the trigonometric functions, and the rational functions. The property of this method is that it is quite simple and understandable.
Infinitely many conservation laws for the discrete KdV equation
International Nuclear Information System (INIS)
Rasin, Alexander G; Schiff, Jeremy
2009-01-01
Rasin and Hydon (2007 J. Phys. A: Math. Theor. 40 12763-73) suggested a way to construct an infinite number of conservation laws for the discrete KdV equation (dKdV), by repeated application of a certain symmetry to a known conservation law. It was not decided, however, whether the resulting conservation laws were distinct and nontrivial. In this paper we obtain the following results: (1) we give an alternative method to construct an infinite number of conservation laws using a discrete version of the Gardner transformation. (2) We give a direct proof that the conservation laws obtained by the method of Rasin and Hydon are indeed distinct and nontrivial. (3) We consider a continuum limit in which the dKdV equation becomes a first-order eikonal equation. In this limit the two sets of conservation laws become the same, and are evidently distinct and nontrivial. This proves the nontriviality of the conservation laws constructed by the Gardner method, and gives an alternative proof of the nontriviality of the conservation laws constructed by the method of Rasin and Hydon
A modified KdV equation with self-consistent sources in non-uniform media and soliton dynamics
International Nuclear Information System (INIS)
Zhang Dajun; Bi Jinbo; Hao Honghai
2006-01-01
Two non-isospectral modified KdV equations with self-consistent sources are derived, which correspond to the time-dependent spectral parameter λ satisfying λ t = λ and λ t = λ 3 , respectively. Gauge transformation between the first non-isospectral equation (corresponding to λ t = λ) and its isospectral counterpart is given, from which exact solutions and conservation laws for the non-isospectral one are easily listed. Besides, solutions to the two non-isospectral modified KdV equations with self-consistent sources are derived by means of the Hirota method and the Wronskian technique, respectively. Non-isospectral dynamics and source effects, including one-soliton characteristics in non-uniform media, two-solitons scattering and special behaviours related to sources (for example, the 'ghost' solitons in the degenerate two-soliton case), are investigated analytically
Generalized Miura transformations, two-bosons KP hierarchies and their reduction to KdV hierarchies
International Nuclear Information System (INIS)
Aratyn, H.; Ferreira, L.A.; Gomes, J.F.; Medeiros, R.T.; Zimerman, A.H.
1993-02-01
Bracket preserving gauge equivalence is established between several two-boson generated KP type of hierarchies. These KP hierarchies reduce under symplectic reduction (via Dirac constraints) to KdV and Schwarzian KdV hierarchies. Under this reduction the gauge equivalence is taking form of the conventional Miura maps between the above KdV type of hierarchies. (author). 16 refs
Generalized Miura transformations, two-bosons KP hierarchies and their reduction to KdV hierarchies
Energy Technology Data Exchange (ETDEWEB)
Aratyn, H. [Illinois Univ., Chicago, IL (United States). Dept. of Physics; Ferreira, L.A.; Gomes, J.F.; Medeiros, R.T.; Zimerman, A.H.
1993-02-01
Bracket preserving gauge equivalence is established between several two-boson generated KP type of hierarchies. These KP hierarchies reduce under symplectic reduction (via Dirac constraints) to KdV and Schwarzian KdV hierarchies. Under this reduction the gauge equivalence is taking form of the conventional Miura maps between the above KdV type of hierarchies. (author). 16 refs.
International Nuclear Information System (INIS)
Konopelchenko, B; Alonso, L MartInez; Medina, E
2010-01-01
It is shown that the hodograph solutions of the dispersionless coupled KdV (dcKdV) hierarchies describe critical and degenerate critical points of a scalar function which obeys the Euler-Poisson-Darboux equation. Singular sectors of each dcKdV hierarchy are found to be described by solutions of higher genus dcKdV hierarchies. Concrete solutions exhibiting shock-type singularities are presented.
International Nuclear Information System (INIS)
Wingate, C.A.
1978-01-01
Two major problems are studied in this thesis. The first is a numerical search for a stable oscillating mode in the Phi4 equation similar to the one that is known for the sine-Gordon equation. Starting with a widely separated soliton and anti-soliton traveling toward each other, it is observed, after a long period of time (t = 2800), that the solitons form a quasistable oscillating state. An interesting, previously unknown structure in the interaction depending on the initial velocity and initial separation is found and studied in detail. The second topic covered here is a study of the phi4, KdV and sine-Gordon equations when the coefficients vary slowly with time. A general first order solution is found for the wave equation with a non-linear potential and is applied to the phi4 and sine-Gordon potentials. In doing this it is found that the conservation of momentum is equivalent order by order to the secular conditions. Deficiencies in existing calculations for the KdV equation are pointed out through the use of adiabatic invariants and numerical calculations
Wronskians, generalized Wronskians and solutions to the Korteweg-de Vries equation
International Nuclear Information System (INIS)
Ma Wenxiu
2004-01-01
A bridge going from Wronskian solutions to generalized Wronskian solutions of the Korteweg-de Vries (KdV) equation is built. It is then shown that generalized Wronskian solutions can be viewed as Wronskian solutions. The idea is used to generate positons, negatons and their interaction solutions to the KdV equation. Moreover, general positons and negatons are constructed through the Wronskian formulation. A few new exact solutions to the KdV equation are explicitly presented as examples of Wronskian solutions
International Nuclear Information System (INIS)
Liu Ping; Jia Man; Lou Senyue
2007-01-01
A modified Korteweg-de Vries (mKdV) lattice is also found to be a discrete Korteweg-de Vries (KdV) equation in this paper. The Lax pair for the discrete equation is found with the help of the Lax pair for a similar discrete equation. A Lax-integrable coupled extension of the lattice is posed, which is a common discrete version of both the coupled KdV and coupled mKdV systems. Some rational expansions of the Jacobian elliptic, trigonometric and hyperbolic functions are used to construct cnoidal waves, negaton and positon solutions of the discrete coupled system
Well-posedness and ill-posedness of the fifth-order modified KdV equation
Directory of Open Access Journals (Sweden)
Soonsik Kwon
2008-01-01
Full Text Available We consider the initial value problem of the fifth-order modified KdV equation on the Sobolev spaces. $$displaylines{ partial_t u - partial_x^5u + c_1partial_x^3(u^3 + c_2upartial_x upartial_x^2 u + c_3uupartial_x^3 u =0cr u(x,0= u_0(x }$$ where $u:mathbb{R}imesmathbb{R} o mathbb{R} $ and $c_j$'s are real. We show the local well-posedness in $H^s(mathbb{R}$ for $sgeq 3/4$ via the contraction principle on $X^{s,b}$ space. Also, we show that the solution map from data to the solutions fails to be uniformly continuous below $H^{3/4}(mathbb{R}$. The counter example is obtained by approximating the fifth order mKdV equation by the cubic NLS equation.
A nonstandard numerical method for the modified KdV equation
Indian Academy of Sciences (India)
Ayhan Aydin
2017-10-25
Oct 25, 2017 ... Nonstandard finite difference; modified Korteweg–de Vries equation; local truncation error. PACS Nos 02.70.Bf; 02.30.Jr; 02.60.Lj. 1. Introduction. Many physical phenomena in various fields of science such as fluid mechanics and quantum field theory can be described by the modified Koreteweg–de Vries ...
DEFF Research Database (Denmark)
Miansari, Mo; Miansari, Me; Barari, Amin
2009-01-01
In this article, He’s variational iteration method (VIM), is implemented to solve the linear Helmholtz partial differential equation and some nonlinear fifth-order Korteweg-de Vries (FKdV) partial differential equations with specified initial conditions. The initial approximations can be freely c...
International Nuclear Information System (INIS)
Kersten, P; Krasil'shchik, I; Verbovetsky, A
2004-01-01
Using methods of Kersten et al (2004 J. Geom. Phys. 50 273-302) and Krasil'shchik and Kersten (2000 Symmetries and Recursion Operators for Classical and Supersymmetric Differential Equations (Dordrecht: Kluwer)), we accomplish an extensive study of the N = 1 supersymmetric Korteweg-de Vries (KdV) equation. The results include a description of local and nonlocal Hamiltonian and symplectic structures, five hierarchies of symmetries, the corresponding hierarchies of conservation laws, recursion operators for symmetries and generating functions of conservation laws. We stress that the main point of the paper is not just the results on super-KdV equation itself, but merely exposition of the efficiency of the geometrical approach and of the computational algorithms based on it
Dorren, H.J.S.
1998-01-01
It is shown that the Korteweg–de Vries (KdV) equation can be transformed into an ordinary linear partial differential equation in the wave number domain. Explicit solutions of the KdV equation can be obtained by subsequently solving this linear differential equation and by applying a cascade of
Generalized differential transform method to differential-difference equation
International Nuclear Information System (INIS)
Zou Li; Wang Zhen; Zong Zhi
2009-01-01
In this Letter, we generalize the differential transform method to solve differential-difference equation for the first time. Two simple but typical examples are applied to illustrate the validity and the great potential of the generalized differential transform method in solving differential-difference equation. A Pade technique is also introduced and combined with GDTM in aim of extending the convergence area of presented series solutions. Comparisons are made between the results of the proposed method and exact solutions. Then we apply the differential transform method to the discrete KdV equation and the discrete mKdV equation, and successfully obtain solitary wave solutions. The results reveal that the proposed method is very effective and simple. We should point out that generalized differential transform method is also easy to be applied to other nonlinear differential-difference equation.
Directory of Open Access Journals (Sweden)
Yusuf Pandir
2013-01-01
Full Text Available We firstly give some new functions called generalized hyperbolic functions. By the using of the generalized hyperbolic functions, new kinds of transformations are defined to discover the exact approximate solutions of nonlinear partial differential equations. Based on the generalized hyperbolic function transformation of the generalized KdV equation and the coupled equal width wave equations (CEWE, we find new exact solutions of two equations and analyze the properties of them by taking different parameter values of the generalized hyperbolic functions. We think that these solutions are very important to explain some physical phenomena.
Generalized estimating equations
Hardin, James W
2002-01-01
Although powerful and flexible, the method of generalized linear models (GLM) is limited in its ability to accurately deal with longitudinal and clustered data. Developed specifically to accommodate these data types, the method of Generalized Estimating Equations (GEE) extends the GLM algorithm to accommodate the correlated data encountered in health research, social science, biology, and other related fields.Generalized Estimating Equations provides the first complete treatment of GEE methodology in all of its variations. After introducing the subject and reviewing GLM, the authors examine th
Directory of Open Access Journals (Sweden)
Hasibun Naher
2014-10-01
Full Text Available In this article, new extension of the generalized and improved (G′/G-expansion method is proposed for constructing more general and a rich class of new exact traveling wave solutions of nonlinear evolution equations. To demonstrate the novelty and motivation of the proposed method, we implement it to the Korteweg-de Vries (KdV equation. The new method is oriented toward the ease of utilize and capability of computer algebraic system and provides a more systematic, convenient handling of the solution process of nonlinear equations. Further, obtained solutions disclose a wider range of applicability for handling a large variety of nonlinear partial differential equations.
Generalized reduced magnetohydrodynamic equations
International Nuclear Information System (INIS)
Kruger, S.E.
1999-01-01
A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-Alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson. The equations have been programmed into a spectral initial value code and run with shear flow that is consistent with the equilibrium input into the code. Linear results of tearing modes with shear flow are presented which differentiate the effects of shear flow gradients in the layer with the effects of the shear flow decoupling multiple harmonics
Constraints and Soliton Solutions for KdV Hierarchy and AKNS Hierarchy
International Nuclear Information System (INIS)
Li Nianhua; Li Yuqi
2011-01-01
It is well-known that the finite-gap solutions of the KdV equation can be generated by its recursion operator. We generalize the result to a special form of Lax pair, from which a method to constrain the integrable system to a lower-dimensional or fewer variable integrable system is proposed. A direct result is that the n-soliton solutions of the KdV hierarchy can be completely depicted by a series of ordinary differential equations (ODEs), which may be gotten by a simple but unfamiliar Lax pair. Furthermore the AKNS hierarchy is constrained to a series of univariate integrable hierarchies. The key is a special form of Lax pair for the AKNS hierarchy. It is proved that under the constraints all equations of the AKNS hierarchy are linearizable. (general)
Generalized reduced MHD equations
International Nuclear Information System (INIS)
Kruger, S.E.; Hegna, C.C.; Callen, J.D.
1998-07-01
A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general toroidal configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson
On generalized fractional vibration equation
International Nuclear Information System (INIS)
Dai, Hongzhe; Zheng, Zhibao; Wang, Wei
2017-01-01
Highlights: • The paper presents a generalized fractional vibration equation for arbitrary viscoelastically damped system. • Some classical vibration equations can be derived from the developed equation. • The analytic solution of developed equation is derived under some special cases. • The generalized equation is particularly useful for developing new fractional equivalent linearization method. - Abstract: In this paper, a generalized fractional vibration equation with multi-terms of fractional dissipation is developed to describe the dynamical response of an arbitrary viscoelastically damped system. It is shown that many classical equations of motion, e.g., the Bagley–Torvik equation, can be derived from the developed equation. The Laplace transform is utilized to solve the generalized equation and the analytic solution under some special cases is derived. Example demonstrates the generalized transfer function of an arbitrary viscoelastic system.
Nonholonomic deformation of generalized KdV-type equations
International Nuclear Information System (INIS)
Guha, Partha
2009-01-01
Karasu-Kalkani et al (2008 J. Math. Phys. 49 073516) recently derived a new sixth-order wave equation KdV6, which was shown by Kupershmidt (2008 Phys. Lett. 372A 2634) to have an infinite commuting hierarchy with a common infinite set of conserved densities. Incidentally, this equation was written for the first time by Calogero and is included in the book by Calogero and Degasperis (1982 Lecture Notes in Computer Science vol 144 (Amsterdam: North-Holland) p 516). In this paper, we give a geometric insight into the KdV6 equation. Using Kirillov's theory of coadjoint representation of the Virasoro algebra, we show how to obtain a large class of KdV6-type equations equivalent to the original equation. Using a semidirect product extension of the Virasoro algebra, we propose the nonholonomic deformation of the Ito equation. We also show that the Adler-Kostant-Symes scheme provides a geometrical method for constructing nonholonomic deformed integrable systems. Applying the Adler-Kostant-Symes scheme to loop algebra, we construct a new nonholonomic deformation of the coupled KdV equation.
The generalized Fermat equation
Beukers, F.
2006-01-01
This article will be devoted to generalisations of Fermat’s equation xn + yn = zn. Very soon after the Wiles and Taylor proof of Fermat’s Last Theorem, it was wondered what would happen if the exponents in the three term equation would be chosen differently. Or if coefficients other than 1 would
Computing generalized Langevin equations and generalized Fokker-Planck equations.
Darve, Eric; Solomon, Jose; Kia, Amirali
2009-07-07
The Mori-Zwanzig formalism is an effective tool to derive differential equations describing the evolution of a small number of resolved variables. In this paper we present its application to the derivation of generalized Langevin equations and generalized non-Markovian Fokker-Planck equations. We show how long time scales rates and metastable basins can be extracted from these equations. Numerical algorithms are proposed to discretize these equations. An important aspect is the numerical solution of the orthogonal dynamics equation which is a partial differential equation in a high dimensional space. We propose efficient numerical methods to solve this orthogonal dynamics equation. In addition, we present a projection formalism of the Mori-Zwanzig type that is applicable to discrete maps. Numerical applications are presented from the field of Hamiltonian systems.
The generalized Airy diffusion equation
Directory of Open Access Journals (Sweden)
Frank M. Cholewinski
2003-08-01
Full Text Available Solutions of a generalized Airy diffusion equation and an associated nonlinear partial differential equation are obtained. Trigonometric type functions are derived for a third order generalized radial Euler type operator. An associated complex variable theory and generalized Cauchy-Euler equations are obtained. Further, it is shown that the Airy expansions can be mapped onto the Bessel Calculus of Bochner, Cholewinski and Haimo.
Generalized quantal equation of motion
International Nuclear Information System (INIS)
Morsy, M.W.; Embaby, M.
1986-07-01
In the present paper, an attempt is made for establishing a generalized equation of motion for quantal objects, in which intrinsic self adjointness is naturally built in, independently of any prescribed representation. This is accomplished by adopting Hamilton's principle of least action, after incorporating, properly, the quantal features and employing the generalized calculus of variations, without being restricted to fixed end points representation. It turns out that our proposed equation of motion is an intrinsically self-adjoint Euler-Lagrange's differential equation that ensures extremization of the quantal action as required by Hamilton's principle. Time dependence is introduced and the corresponding equation of motion is derived, in which intrinsic self adjointness is also achieved. Reducibility of the proposed equation of motion to the conventional Schroedinger equation is examined. The corresponding continuity equation is established, and both of the probability density and the probability current density are identified. (author)
Generalized Fermat equations: A miscellany
Bennett, M.A.; Chen, I.; Dahmen, S.R.; Yazdani, S.
2015-01-01
This paper is devoted to the generalized Fermat equation xp + yq = zr, where p, q and r are integers, and x, y and z are nonzero coprime integers. We begin by surveying the exponent triples (p, q, r), including a number of infinite families, for which the equation has been solved to date, detailing
Travelling wave solutions in a class of generalized Korteweg-de Vries equation
International Nuclear Information System (INIS)
Shen Jianwei; Xu Wei
2007-01-01
In this paper, we consider a new generalization of KdV equation u t = u x u l-2 + α[2u xxx u p + 4pu p-1 u x u xx + p(p - 1)u p-2 (u x ) 3 ] and investigate its bifurcation of travelling wave solutions. From the above analysis, we know that there exists compacton and cusp waves in the system. We explain the reason that these non-smooth travelling wave solution arise by using the bifurcation theory
Completely integrable operator evolutionary equations
International Nuclear Information System (INIS)
Chudnovsky, D.V.
1979-01-01
The authors present natural generalizations of classical completely integrable equations where the functions are replaced by arbitrary operators. Among these equations are the non-linear Schroedinger, the Korteweg-de Vries, and the modified KdV equations. The Lax representation and the Baecklund transformations are presented. (Auth.)
KdV hierarchy via Abelian coverings and operator identities
Eichinger, Benjamin; VandenBoom, Tom; Yuditskii, Peter
2018-01-01
We establish precise spectral criteria for potential functions $V$ of reflectionless Schr\\"odinger operators $L_V = -\\partial_x^2 + V$ to admit solutions to the Korteweg de-Vries (KdV) hierarchy with $V$ as an initial value. More generally, our methods extend the classical study of algebro-geometric solutions for the KdV hierarchy to noncompact Riemann surfaces by defining generalized Abelian integrals and analogues of the Baker-Akhiezer function on infinitely connected domains with a uniform...
Generalized equations of gravitational field
International Nuclear Information System (INIS)
Stanyukovich, K.P.; Borisova, L.B.
1985-01-01
Equations for gravitational fields are obtained on the basis of a generalized Lagrangian Z=f(R) (R is the scalar curvature). Such an approach permits to take into account the evolution of a gravitation ''constant''. An expression for the force Fsub(i) versus the field variability is obtained. Conservation laws are formulated differing from the standard ones by the fact that in the right part of new equations the value Fsub(i) is present that goes to zero at an ultimate passage to the standard Einstein theory. An equation of state is derived for cosmological metrics for a particular case, f=bRsup(1+α) (b=const, α=const)
The generalized good cut equation
International Nuclear Information System (INIS)
Adamo, T M; Newman, E T
2010-01-01
The properties of null geodesic congruences (NGCs) in Lorentzian manifolds are a topic of considerable importance. More specifically NGCs with the special property of being shear-free or asymptotically shear-free (as either infinity or a horizon is approached) have received a great deal of recent attention for a variety of reasons. Such congruences are most easily studied via solutions to what has been referred to as the 'good cut equation' or the 'generalization good cut equation'. It is the purpose of this paper to study these equations and show their relationship to each other. In particular we show how they all have a four-complex-dimensional manifold (known as H-space, or in a special case as complex Minkowski space) as a solution space.
Combinatorics of Generalized Bethe Equations
Kozlowski, Karol K.; Sklyanin, Evgeny K.
2013-10-01
A generalization of the Bethe ansatz equations is studied, where a scalar two-particle S-matrix has several zeroes and poles in the complex plane, as opposed to the ordinary single pole/zero case. For the repulsive case (no complex roots), the main result is the enumeration of all distinct solutions to the Bethe equations in terms of the Fuss-Catalan numbers. Two new combinatorial interpretations of the Fuss-Catalan and related numbers are obtained. On the one hand, they count regular orbits of the permutation group in certain factor modules over {{Z}^M}, and on the other hand, they count integer points in certain M-dimensional polytopes.
Generalized Ordinary Differential Equation Models.
Miao, Hongyu; Wu, Hulin; Xue, Hongqi
2014-10-01
Existing estimation methods for ordinary differential equation (ODE) models are not applicable to discrete data. The generalized ODE (GODE) model is therefore proposed and investigated for the first time. We develop the likelihood-based parameter estimation and inference methods for GODE models. We propose robust computing algorithms and rigorously investigate the asymptotic properties of the proposed estimator by considering both measurement errors and numerical errors in solving ODEs. The simulation study and application of our methods to an influenza viral dynamics study suggest that the proposed methods have a superior performance in terms of accuracy over the existing ODE model estimation approach and the extended smoothing-based (ESB) method.
Karczewska, Anna; Rozmej, Piotr; Infeld, Eryk
2015-11-01
It is well known that the Korteweg-de Vries (KdV) equation has an infinite set of conserved quantities. The first three are often considered to represent mass, momentum, and energy. Here we try to answer the question of how this comes about and also how these KdV quantities relate to those of the Euler shallow-water equations. Here Luke's Lagrangian is helpful. We also consider higher-order extensions of KdV. Though in general not integrable, in some sense they are almost so within the accuracy of the expansion.
Exact solutions to the time-fractional differential equations via local fractional derivatives
Guner, Ozkan; Bekir, Ahmet
2018-01-01
This article utilizes the local fractional derivative and the exp-function method to construct the exact solutions of nonlinear time-fractional differential equations (FDEs). For illustrating the validity of the method, it is applied to the time-fractional Camassa-Holm equation and the time-fractional-generalized fifth-order KdV equation. Moreover, the exact solutions are obtained for the equations which are formed by different parameter values related to the time-fractional-generalized fifth-order KdV equation. This method is an reliable and efficient mathematical tool for solving FDEs and it can be applied to other non-linear FDEs.
Generalized Lorentz-Force equations
International Nuclear Information System (INIS)
Yamaleev, R.M.
2001-01-01
Guided by Nambu (n+1)-dimensional phase space formalism we build a new system of dynamic equations. These equations describe a dynamic state of the corporeal system composed of n subsystems. The dynamic equations are formulated in terms of dynamic variables of the subsystems as well as in terms of dynamic variables of the corporeal system. These two sets of variables are related respectively as roots and coefficients of the n-degree polynomial equation. In the special n=2 case, this formalism reproduces relativistic dynamics for the charged spinning particles
Generalization of Einstein's gravitational field equations
Moulin, Frédéric
2017-12-01
The Riemann tensor is the cornerstone of general relativity, but as is well known it does not appear explicitly in Einstein's equation of gravitation. This suggests that the latter may not be the most general equation. We propose here for the first time, following a rigorous mathematical treatment based on the variational principle, that there exists a generalized 4-index gravitational field equation containing the Riemann curvature tensor linearly, and thus the Weyl tensor as well. We show that this equation, written in n dimensions, contains the energy-momentum tensor for matter and that of the gravitational field itself. This new 4-index equation remains completely within the framework of general relativity and emerges as a natural generalization of the familiar 2-index Einstein equation. Due to the presence of the Weyl tensor, we show that this equation contains much more information, which fully justifies the use of a fourth-order theory.
A generalized advection dispersion equation
Indian Academy of Sciences (India)
This paper examines a possible effect of uncertainties, variability or heterogeneity of any dynamic system when being included in its evolution rule; the notion is illustrated with the advection dispersion equation, which describes the groundwater pollution model. An uncertain derivative is defined; some properties of.
Bihamiltonian Cohomology of KdV Brackets
Carlet, G.; Posthuma, H.; Shadrin, S.
2016-01-01
Using spectral sequences techniques we compute the bihamiltonian cohomology groups of the pencil of Poisson brackets of dispersionless KdV hierarchy. In particular, this proves a conjecture of Liu and Zhang about the vanishing of such cohomology groups.
New solutions of Heun's general equation
International Nuclear Information System (INIS)
Ishkhanyan, Artur; Suominen, Kalle-Antti
2003-01-01
We show that in four particular cases the derivative of the solution of Heun's general equation can be expressed in terms of a solution to another Heun's equation. Starting from this property, we use the Gauss hypergeometric functions to construct series solutions to Heun's equation for the mentioned cases. Each of the hypergeometric functions involved has correct singular behaviour at only one of the singular points of the equation; the sum, however, has correct behaviour. (letter to the editor)
N = 4 super KdV hierarchy in N = 4 and N = 2 superspaces
International Nuclear Information System (INIS)
Delduc, F.
1995-10-01
The results of further analysis of the integrability properties of the N = 4 supersymmetric KdV equation deduced earlier as a Hamiltonian flow on N 4 SU(2) superconformal algebra in the harmonic N = 4 superspace are presented. To make this equation and the relevant Hamiltonian structures more tractable, it is reformulated in the ordinary N = 4 and further in N = 2 superspaces. These results provide a strong evidence that the unique N = 4 SU(2) super KdV hierarchy exists. (author)
INVARIANTS OF GENERALIZED RAPOPORT-LEAS EQUATIONS
Directory of Open Access Journals (Sweden)
Elena N. Kushner
2018-01-01
Full Text Available For the generalized Rapoport-Leas equations, algebra of differential invariants is constructed with respect to point transformations, that is, transformations of independent and dependent variables. The finding of a general transformation of this type reduces to solving an extremely complicated functional equation. Therefore, following the approach of Sophus Lie, we restrict ourselves to the search for infinitesimal transformations which are generated by translations along the trajectories of vector fields. The problem of finding these vector fields reduces to the redefined system decision of linear differential equations with respect to their coefficients. The Rapoport-Leas equations arise in the study of nonlinear filtration processes in porous media, as well as in other areas of natural science: for example, these equations describe various physical phenomena: two-phase filtration in a porous medium, filtration of a polytropic gas, and propagation of heat at nuclear explosion. They are vital topic for research: in recent works of Bibikov, Lychagin, and others, the analysis of the symmetries of the generalized Rapoport-Leas equations has been carried out; finite-dimensional dynamics and conditions of attractors existence have been found. Since the generalized RapoportLeas equations are nonlinear partial differential equations of the second order with two independent variables; the methods of the geometric theory of differential equations are used to study them in this paper. According to this theory differential equations generate subvarieties in the space of jets. This makes it possible to use the apparatus of modern differential geometry to study differential equations. We introduce the concept of admissible transformations, that is, replacements of variables that do not derive equations outside the class of the Rapoport-Leas equations. Such transformations form a Lie group. For this Lie group there are differential invariants that separate
Soliton-like solutions to the GKdV equation by extended mapping method
International Nuclear Information System (INIS)
Wu Ranchao; Sun Jianhua
2007-01-01
In this note, many new exact solutions of the generalized KdV equation, such as rational solutions, periodic solutions like Jacobian elliptic and triangular functions, soliton-like solutions, are constructed by symbolic computation and the extended mapping method, with the auxiliary ordinary equation replaced by a more general one
Reduction of infinite dimensional equations
Directory of Open Access Journals (Sweden)
Zhongding Li
2006-02-01
Full Text Available In this paper, we use the general Legendre transformation to show the infinite dimensional integrable equations can be reduced to a finite dimensional integrable Hamiltonian system on an invariant set under the flow of the integrable equations. Then we obtain the periodic or quasi-periodic solution of the equation. This generalizes the results of Lax and Novikov regarding the periodic or quasi-periodic solution of the KdV equation to the general case of isospectral Hamiltonian integrable equation. And finally, we discuss the AKNS hierarchy as a special example.
Generalization of the Knizhnik-Zamolodchikov-equations
International Nuclear Information System (INIS)
Alekseev, A.Yu.; Recknagel, A.; Schomerus, V.
1996-09-01
In this letter we introduce a generalization of the Knizhnik-Zamolodchikov equations from affine Lie algebras to a wide class of conformal field theories (not necessarily rational). The new equations describe correlation functions of primary fields and of a finite number of their descendents. Our proposal is based on Nahm's concept of small spaces which provide adequate substitutes for the lowest energy subspaces in modules of affine Lie algebras. We explain how to construct the first order differential equations and investigate properties of the associated connections, thereby preparing the grounds for an analysis of quantum symmetries. The general considerations are illustrated in examples of Virasoro minimal models. (orig.)
The 'generalized Balescu-Lenard' transport equations
International Nuclear Information System (INIS)
Mynick, H.E.
1990-01-01
The transport equations arising from the 'generalized Balescu-Lenard' collision operator are obtained and some of their properties examined. The equations contain neoclassical and turbulent transport as two special cases having the same structure. The resultant theory offers a possible explanation for a number of results not well understood, including the anomalous pinch, observed ratios of Q/ΓT on TFTR, and numerical reproduction of ASDEX profiles by a model for turbulent transport invoked without derivation, but by analogy with neoclassical theory. The general equations are specialized to consideration of a number of particular transport mechanisms of interest. (author). Letter-to-the-editor. 10 refs
International Nuclear Information System (INIS)
Montano, D.; Rivlis, G.
1991-01-01
In this paper we explicitly compute the correlation functions of the (1, q) series of the KdV hierarchy, i.e. models with q-1 primary fields. We also find from algebraic considerations a ghost number conservation law for the (1, q) models. All the results in this paper follow from the algebraic properties of the KdV hierarchy without using any extraneous information from a field theory interpretation. We find the interesting result that some correlation functions vanish even when they conserve ghost number. This is an indication for further selection rules. (orig.)
General particle transport equation. Final report
International Nuclear Information System (INIS)
Lafi, A.Y.; Reyes, J.N. Jr.
1994-12-01
The general objectives of this research are as follows: (1) To develop fundamental models for fluid particle coalescence and breakage rates for incorporation into statistically based (Population Balance Approach or Monte Carlo Approach) two-phase thermal hydraulics codes. (2) To develop fundamental models for flow structure transitions based on stability theory and fluid particle interaction rates. This report details the derivation of the mass, momentum and energy conservation equations for a distribution of spherical, chemically non-reacting fluid particles of variable size and velocity. To study the effects of fluid particle interactions on interfacial transfer and flow structure requires detailed particulate flow conservation equations. The equations are derived using a particle continuity equation analogous to Boltzmann's transport equation. When coupled with the appropriate closure equations, the conservation equations can be used to model nonequilibrium, two-phase, dispersed, fluid flow behavior. Unlike the Eulerian volume and time averaged conservation equations, the statistically averaged conservation equations contain additional terms that take into account the change due to fluid particle interfacial acceleration and fluid particle dynamics. Two types of particle dynamics are considered; coalescence and breakage. Therefore, the rate of change due to particle dynamics will consider the gain and loss involved in these processes and implement phenomenological models for fluid particle breakage and coalescence
General Reducibility and Solvability of Polynomial Equations ...
African Journals Online (AJOL)
General Reducibility and Solvability of Polynomial Equations. ... Unlike quadratic, cubic, and quartic polynomials, the general quintic and higher degree polynomials cannot be solved algebraically in terms of finite number of additions, ... Galois Theory, Solving Polynomial Systems, Polynomial factorization, Polynomial Ring ...
Some Remarks on Stability of Generalized Equations
Czech Academy of Sciences Publication Activity Database
Outrata, Jiří; Henrion, R.; Kruger, A.Y.
2013-01-01
Roč. 159, č. 3 (2013), s. 681-697 ISSN 0022-3239 R&D Projects: GA AV ČR IAA100750802; GA ČR(CZ) GAP201/12/0671 Institutional support: RVO:67985556 Keywords : Parameterized generalized equation * Regular and limiting coderivative * Constant rank CQ * Mathematical program with equilibrium constraints Subject RIV: BA - General Mathematics Impact factor: 1.406, year: 2013 http://library.utia.cas.cz/separaty/2013/MTR/outrata-some remarks on stability of generalized equations.pdf
Two dimensional generalizations of the Newcomb equation
International Nuclear Information System (INIS)
Dewar, R.L.; Pletzer, A.
1989-11-01
The Bineau reduction to scalar form of the equation governing ideal, zero frequency linearized displacements from a hydromagnetic equilibrium possessing a continuous symmetry is performed in 'universal coordinates', applicable to both the toroidal and helical cases. The resulting generalized Newcomb equation (GNE) has in general a more complicated form than the corresponding one dimensional equation obtained by Newcomb in the case of circular cylindrical symmetry, but in this cylindrical case , the equation can be transformed to that of Newcomb. In the two dimensional case there is a transformation which leaves the form of the GNE invariant and simplifies the Frobenius expansion about a rational surface, especially in the limit of zero pressure gradient. The Frobenius expansions about a mode rational surface is developed and the connection with Hamiltonian transformation theory is shown. 17 refs
Generalized solutions of nonlinear partial differential equations
Rosinger, EE
1987-01-01
During the last few years, several fairly systematic nonlinear theories of generalized solutions of rather arbitrary nonlinear partial differential equations have emerged. The aim of this volume is to offer the reader a sufficiently detailed introduction to two of these recent nonlinear theories which have so far contributed most to the study of generalized solutions of nonlinear partial differential equations, bringing the reader to the level of ongoing research.The essence of the two nonlinear theories presented in this volume is the observation that much of the mathematics concernin
The Multi-Wave Method for Exact Solutions of Nonlinear Partial Differential Equations
Directory of Open Access Journals (Sweden)
Yusuf Pandir
2018-02-01
Full Text Available In this research, we use the multi-wave method to obtain new exact solutions for generalized forms of 5th order KdV equation and fth order KdV (fKdV equation with power law nonlinearity. Computations are performed with the help of the mathematics software Mathematica. Then, periodic wave solutions, bright soliton solutions and rational function solutions with free parameters are obtained by this approach. It is shown that this method is very useful and effective.
General solution of string inspired nonlinear equations
International Nuclear Information System (INIS)
Bandos, I.A.; Ivanov, E.; Kapustnikov, A.A.; Ulanov, S.A.
1998-07-01
We present the general solution of the system of coupled nonlinear equations describing dynamics of D-dimensional bosonic string in the geometric (or embedding) approach. The solution is parametrized in terms of two sets of the left- and right-moving Lorentz harmonic variables providing a special coset space realization of the product of two (D-2) dimensional spheres S D-2 = SO(1,D-1)/SO(1,1)xSO(D-2) contained in K D-2 . (author)
Stability of Modified K-dV soliton in plasma with negative ion
International Nuclear Information System (INIS)
Matsukawa, Michiaki; Watanabe, Shinsuke
1988-01-01
The K-P and Modified K-P equations for ion acoustic wave are derived from the fluid equations for plasma with negative ion. At the critical density of the negative ion where the nonlinearity of the K-P equation vanishes, the ion acoustic soliton is described by the Modified K-P equation. The stability of Modified K-dV soliton against bending are investigated by using the Modified K-P equation. It is found that the soliton is stable, independent of the sign of amplitude. (author)
Partial Differential Equations in General Relativity
International Nuclear Information System (INIS)
Choquet-Bruhat, Yvonne
2008-01-01
General relativity is a physical theory basic in the modeling of the universe at the large and small scales. Its mathematical formulation, the Einstein partial differential equations, are geometrically simple, but intricate for the analyst, involving both hyperbolic and elliptic PDE, with local and global problems. Many problems remain open though remarkable progress has been made recently towards their solutions. Alan Rendall's book states, in a down-to-earth form, fundamental results used to solve different types of equations. In each case he gives applications to special models as well as to general properties of Einsteinian spacetimes. A chapter on ODE contains, in particular, a detailed discussion of Bianchi spacetimes. A chapter entitled 'Elliptic systems' treats the Einstein constraints. A chapter entitled 'Hyperbolic systems' is followed by a chapter on the Cauchy problem and a chapter 'Global results' which contains recently proved theorems. A chapter is dedicated to the Einstein-Vlasov system, of which the author is a specialist. On the whole, the book surveys, in a concise though precise way, many essential results of recent interest in mathematical general relativity, and it is very clearly written. Each chapter is followed by an up to date bibliography. In conclusion, this book will be a valuable asset to relativists who wish to learn clearly-stated mathematical results and to mathematicians who want to penetrate into the subtleties of general relativity, as a mathematical and physical theory. (book review)
Partial Differential Equations in General Relativity
Energy Technology Data Exchange (ETDEWEB)
Choquet-Bruhat, Yvonne
2008-09-07
General relativity is a physical theory basic in the modeling of the universe at the large and small scales. Its mathematical formulation, the Einstein partial differential equations, are geometrically simple, but intricate for the analyst, involving both hyperbolic and elliptic PDE, with local and global problems. Many problems remain open though remarkable progress has been made recently towards their solutions. Alan Rendall's book states, in a down-to-earth form, fundamental results used to solve different types of equations. In each case he gives applications to special models as well as to general properties of Einsteinian spacetimes. A chapter on ODE contains, in particular, a detailed discussion of Bianchi spacetimes. A chapter entitled 'Elliptic systems' treats the Einstein constraints. A chapter entitled 'Hyperbolic systems' is followed by a chapter on the Cauchy problem and a chapter 'Global results' which contains recently proved theorems. A chapter is dedicated to the Einstein-Vlasov system, of which the author is a specialist. On the whole, the book surveys, in a concise though precise way, many essential results of recent interest in mathematical general relativity, and it is very clearly written. Each chapter is followed by an up to date bibliography. In conclusion, this book will be a valuable asset to relativists who wish to learn clearly-stated mathematical results and to mathematicians who want to penetrate into the subtleties of general relativity, as a mathematical and physical theory. (book review)
Integrable discretization s of derivative nonlinear Schroedinger equations
International Nuclear Information System (INIS)
Tsuchida, Takayuki
2002-01-01
We propose integrable discretizations of derivative nonlinear Schroedinger (DNLS) equations such as the Kaup-Newell equation, the Chen-Lee-Liu equation and the Gerdjikov-Ivanov equation by constructing Lax pairs. The discrete DNLS systems admit the reduction of complex conjugation between two dependent variables and possess bi-Hamiltonian structure. Through transformations of variables and reductions, we obtain novel integrable discretizations of the nonlinear Schroedinger (NLS), modified KdV (mKdV), mixed NLS, matrix NLS, matrix KdV, matrix mKdV, coupled NLS, coupled Hirota, coupled Sasa-Satsuma and Burgers equations. We also discuss integrable discretizations of the sine-Gordon equation, the massive Thirring model and their generalizations. (author)
An Algebraic Construction of the First Integrals of the Stationary KdV Hierarchy
Matsushima, Masatomo; Ohmiya, Mayumi
2009-09-01
The stationary KdV hierarchy is constructed using a kind of recursion operator called Λ-operator. The notion of the maximal solution of the n-th stationary KdV equation is introduced. Using this maximal solution, a specific differential polynomial with the auxiliary spectral parameter called the spectral M-function is constructed as the quadratic form of the fundamental system of the eigenvalue problem for the 2-nd order linear ordinary differential equation which is related to the linearizing operator of the hierarchy. By calculating a perfect square condition of the quadratic form by an elementary algebraic method, the complete set of first integrals of this hierarchy is constructed.
International Nuclear Information System (INIS)
Zhao, Zhonglong; Zhang, Yufeng; Han, Zhong; Rui, Wenjuan
2014-01-01
In this paper, the simplest equation method is used to construct exact traveling solutions of the (3+1)-dimensional KP equation and generalized Fisher equation. We summarize the main steps of the simplest equation method. The Bernoulli and Riccati equation are used as simplest equations. This method is straightforward and concise, and it can be applied to other nonlinear partial differential equations
Multi-component WKI equations and their conservation laws
Energy Technology Data Exchange (ETDEWEB)
Qu Changzheng [Department of Mathematics, Northwest University, Xi' an 710069 (China) and Center for Nonlinear Studies, Northwest University, Xi' an 710069 (China)]. E-mail: qu_changzheng@hotmail.com; Yao Ruoxia [Department of Computer Sciences, East China Normal University, Shanghai 200062 (China); Department of Computer Sciences, Weinan Teacher' s College, Weinan 715500 (China); Liu Ruochen [Department of Mathematics, Northwest University, Xi' an 710069 (China)
2004-10-25
In this Letter, a two-component WKI equation is obtained by using the fact that when curvature and torsion of a space curve satisfy the vector modified KdV equation, a graph of the curve satisfies the two-component WKI equation, which is a natural generalization to the WKI equation. It is shown that the two-component WKI equation can be solved in terms of the extended WKI scheme, and it admits an infinite number of conservation laws. In the same vein, a n-component generalization to the WKI equation is proposed.
Exact solutions of generalized Zakharov and Ginzburg-Landau equations
International Nuclear Information System (INIS)
Zhang Jinliang; Wang Mingliang; Gao Kequan
2007-01-01
By using the homogeneous balance principle, the exact solutions of the generalized Zakharov equations and generalized Ginzburg-Landau equation are obtained with the aid of a set of subsidiary higher-order ordinary differential equations (sub-equations for short)
Dichotomies for generalized ordinary differential equations and applications
Bonotto, E. M.; Federson, M.; Santos, F. L.
2018-03-01
In this work we establish the theory of dichotomies for generalized ordinary differential equations, introducing the concepts of dichotomies for these equations, investigating their properties and proposing new results. We establish conditions for the existence of exponential dichotomies and bounded solutions. Using the correspondences between generalized ordinary differential equations and other equations, we translate our results to measure differential equations and impulsive differential equations. The fact that we work in the framework of generalized ordinary differential equations allows us to manage functions with many discontinuities and of unbounded variation.
Exact solution for the generalized Telegraph Fisher's equation
International Nuclear Information System (INIS)
Abdusalam, H.A.; Fahmy, E.S.
2009-01-01
In this paper, we applied the factorization scheme for the generalized Telegraph Fisher's equation and an exact particular solution has been found. The exact particular solution for the generalized Fisher's equation was obtained as a particular case of the generalized Telegraph Fisher's equation and the two-parameter solution can be obtained when n=2.
Deriving average soliton equations with a perturbative method
International Nuclear Information System (INIS)
Ballantyne, G.J.; Gough, P.T.; Taylor, D.P.
1995-01-01
The method of multiple scales is applied to periodically amplified, lossy media described by either the nonlinear Schroedinger (NLS) equation or the Korteweg--de Vries (KdV) equation. An existing result for the NLS equation, derived in the context of nonlinear optical communications, is confirmed. The method is then applied to the KdV equation and the result is confirmed numerically
Generalized Callan-Symanzik equations and the Renormalization Group
International Nuclear Information System (INIS)
MacDowell, S.W.
1975-01-01
A set of generalized Callan-Symanzik equations derived by Symanzik, relating Green's functions with arbitrary number of mass insertions, is shown be equivalent to the new Renormalization Group equation proposed by S. Weinberg
Unsteady Stokes equations: Some complete general solutions
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
homogeneous unsteady Stokes equations are examined. A necessary and sufficient condition for a divergence-free vector to represent the velocity field of a possible unsteady Stokes flow in the absence of body forces is derived. Keywords. Complete ...
Generalization of Einstein's gravitational field equations
International Nuclear Information System (INIS)
Moulin, Frederic
2017-01-01
The Riemann tensor is the cornerstone of general relativity, but as is well known it does not appear explicitly in Einstein's equation of gravitation. This suggests that the latter may not be the most general equation. We propose here for the first time, following a rigorous mathematical treatment based on the variational principle, that there exists a generalized 4-index gravitational field equation containing the Riemann curvature tensor linearly, and thus the Weyl tensor as well. We show that this equation, written in n dimensions, contains the energy-momentum tensor for matter and that of the gravitational field itself. This new 4-index equation remains completely within the framework of general relativity and emerges as a natural generalization of the familiar 2-index Einstein equation. Due to the presence of the Weyl tensor, we show that this equation contains much more information, which fully justifies the use of a fourth-order theory. (orig.)
Generalization of Einstein's gravitational field equations
Energy Technology Data Exchange (ETDEWEB)
Moulin, Frederic [Ecole Normale Superieure Paris-Saclay, Departement de Physique, Cachan (France)
2017-12-15
The Riemann tensor is the cornerstone of general relativity, but as is well known it does not appear explicitly in Einstein's equation of gravitation. This suggests that the latter may not be the most general equation. We propose here for the first time, following a rigorous mathematical treatment based on the variational principle, that there exists a generalized 4-index gravitational field equation containing the Riemann curvature tensor linearly, and thus the Weyl tensor as well. We show that this equation, written in n dimensions, contains the energy-momentum tensor for matter and that of the gravitational field itself. This new 4-index equation remains completely within the framework of general relativity and emerges as a natural generalization of the familiar 2-index Einstein equation. Due to the presence of the Weyl tensor, we show that this equation contains much more information, which fully justifies the use of a fourth-order theory. (orig.)
A novel numerical flux for the 3D Euler equations with general equation of state
Toro, Eleuterio F.; Castro, Cristó bal E.; Bok Jik, Lee
2015-01-01
Euler equations for ideal gases and its extension presented in this paper is threefold: (i) we solve the three-dimensional Euler equations on general meshes; (ii) we use a general equation of state; and (iii) we achieve high order of accuracy in both
Energy preserving integration of bi-Hamiltonian partial differential equations
Karasozen, B.; Simsek, G.
2013-01-01
The energy preserving average vector field (AVF) integrator is applied to evolutionary partial differential equations (PDEs) in bi-Hamiltonian form with nonconstant Poisson structures. Numerical results for the Korteweg de Vries (KdV) equation and for the Ito type coupled KdV equation confirm the
Variational characterization of generalized Jacobi equations
International Nuclear Information System (INIS)
Casciaro, B.
1995-09-01
A Lagrangian depending on derivatives of the fields up to a generic order is considered, together with a series development around a given section. The problem of extremality and stability of action for this system is then addressed. Higher-order variations in the Lagrangian, the Euler-Lagrange equation, the expansion of the action, the D-invariant decomposition of the Lagrangian, the Jacobi equation, and a unified description of the Euler-Lag range and Jacobi equations are discussed. As a conclusion of the work it is stated that the theory of second variations is worthy to be revisited and a comment on a recent paper by Taub is made. 10 refs
The transport equation in general geometry
International Nuclear Information System (INIS)
Pomraning, G.C.
1990-01-01
As stated in the introduction to the paper, the motivation for this work was to obtain an explicit form for the streaming operator in the transport equation, which could be used to compute curvature effects in an asymptotic analysis leading to diffusion theory. This sign error was discovered while performing this analysis
A New Factorisation of a General Second Order Differential Equation
Clegg, Janet
2006-01-01
A factorisation of a general second order ordinary differential equation is introduced from which the full solution to the equation can be obtained by performing two integrations. The method is compared with traditional methods for solving these type of equations. It is shown how the Green's function can be derived directly from the factorisation…
Generalized Fokker-Planck equations for coloured, multiplicative Gaussian noise
International Nuclear Information System (INIS)
Cetto, A.M.; Pena, L. de la; Velasco, R.M.
1984-01-01
With the help of Novikov's theorem, it is possible to derive a master equation for a coloured, multiplicative, Gaussian random process; the coefficients of this master equation satisfy a complicated auxiliary integro-differential equation. For small values of the Kubo number, the master equation reduces to an approximate generalized Fokker-Planck equation. The diffusion coefficient is explicitly written in terms of correlation functions. Finally, a straightforward and elementary second order perturbative treatment is proposed to derive the same approximate Fokker-Planck equation. (author)
An implicit spectral formula for generalized linear Schroedinger equations
International Nuclear Information System (INIS)
Schulze-Halberg, A.; Garcia-Ravelo, J.; Pena Gil, Jose Juan
2009-01-01
We generalize the semiclassical Bohr–Sommerfeld quantization rule to an exact, implicit spectral formula for linear, generalized Schroedinger equations admitting a discrete spectrum. Special cases include the position-dependent mass Schroedinger equation or the Schroedinger equation for weighted energy. Requiring knowledge of the potential and the solution associated with the lowest spectral value, our formula predicts the complete spectrum in its exact form. (author)
Traveling wave behavior for a generalized fisher equation
International Nuclear Information System (INIS)
Feng Zhaosheng
2008-01-01
There is the widespread existence of wave phenomena in physics, chemistry and biology. This clearly necessitates a study of traveling waves in depth and of the modeling and analysis involved. In the present paper, we study a nonlinear reaction-diffusion equation, which can be regarded as a generalized Fisher equation. Applying the Cole-Hopf transformation and the first integral method, we obtain a class of traveling solitary wave solutions for this generalized Fisher equation
Generalized Smoluchowski equation with correlation between clusters
International Nuclear Information System (INIS)
Sittler, Lionel
2008-01-01
In this paper we compute new reaction rates of the Smoluchowski equation which takes into account correlations. The new rate K = K MF + K C is the sum of two terms. The first term is the known Smoluchowski rate with the mean-field approximation. The second takes into account a correlation between clusters. For this purpose we introduce the average path of a cluster. We relate the length of this path to the reaction rate of the Smoluchowski equation. We solve the implicit dependence between the average path and the density of clusters. We show that this correlation length is the same for all clusters. Our result depends strongly on the spatial dimension d. The mean-field term K MF i,j = (D i + D j )(r j + r i ) d-2 , which vanishes for d = 1 and is valid up to logarithmic correction for d = 2, is the usual rate found with the Smoluchowski model without correlation (where r i is the radius and D i is the diffusion constant of the cluster). We compute a new rate: the correlation rate K i,j C = (D i +D j )(r j +r i ) d-1 M((d-1)/d f ) is valid for d ≥ 1(where M(α) = Σ +∞ i=1 i α N i is the moment of the density of clusters and d f is the fractal dimension of the cluster). The result is valid for a large class of diffusion processes and mass-radius relations. This approach confirms some analytical solutions in d = 1 found with other methods. We also show Monte Carlo simulations which illustrate some exact new solvable models
Tisdell, C. C.
2017-01-01
Solution methods to exact differential equations via integrating factors have a rich history dating back to Euler (1740) and the ideas enjoy applications to thermodynamics and electromagnetism. Recently, Azevedo and Valentino presented an analysis of the generalized Bernoulli equation, constructing a general solution by linearizing the problem…
Automatic computation and solution of generalized harmonic balance equations
Peyton Jones, J. C.; Yaser, K. S. A.; Stevenson, J.
2018-02-01
Generalized methods are presented for generating and solving the harmonic balance equations for a broad class of nonlinear differential or difference equations and for a general set of harmonics chosen by the user. In particular, a new algorithm for automatically generating the Jacobian of the balance equations enables efficient solution of these equations using continuation methods. Efficient numeric validation techniques are also presented, and the combined algorithm is applied to the analysis of dc, fundamental, second and third harmonic response of a nonlinear automotive damper.
Lie symmetries of a generalized Kuznetsov-Zabolotskaya-Khoklov equation
Gungor, F.; Ozemir, C.
2014-01-01
We consider a class of generalized Kuznetsov--Zabolotskaya--Khokhlov (gKZK) equations and determine its equivalence group, which is then used to give a complete symmetry classification of this class. The infinite-dimensional symmetry is used to reduce such equations to (1+1)-dimensional PDEs. Special attention is paid to group-theoretical properties of a class of generalized dispersionless KP (gdKP) or Zabolotskaya--Khokhlov equations as a subclass of gKZK equations. The conditions are determ...
A generalized simplest equation method and its application to the Boussinesq-Burgers equation.
Sudao, Bilige; Wang, Xiaomin
2015-01-01
In this paper, a generalized simplest equation method is proposed to seek exact solutions of nonlinear evolution equations (NLEEs). In the method, we chose a solution expression with a variable coefficient and a variable coefficient ordinary differential auxiliary equation. This method can yield a Bäcklund transformation between NLEEs and a related constraint equation. By dealing with the constraint equation, we can derive infinite number of exact solutions for NLEEs. These solutions include the traveling wave solutions, non-traveling wave solutions, multi-soliton solutions, rational solutions, and other types of solutions. As applications, we obtained wide classes of exact solutions for the Boussinesq-Burgers equation by using the generalized simplest equation method.
[Generalization of the Lotka-Volterra equation].
Nazarenko, V G
1976-01-01
A complete qualitative study of Lotka--Volterra model with cooperative interactions in the system predator-prey is carried out. The model is as follows: (see abstract). The character of all possible stationary states is investigated in the first quadrant of the phase plane of the model variables depending on the system parameters. It is shown that for the generalized model considered unstable and stable limit cycles only of the infinite amplitude are possible in the first quadrant.
General heavenly equation governs anti-self-dual gravity
Energy Technology Data Exchange (ETDEWEB)
Malykh, A A [Department of Numerical Modelling, Russian State Hydrometeorlogical University, Malookhtinsky pr 98, 195196 St Petersburg (Russian Federation); Sheftel, M B, E-mail: andrei-malykh@mail.ru, E-mail: mikhail.sheftel@boun.edu.tr [Department of Physics, Bogazici University, 34342 Bebek, Istanbul (Turkey)
2011-04-15
We show that the general heavenly equation, suggested recently by Doubrov and Ferapontov (2010 arXiv:0910.3407v2 [math.DG]), governs anti-self-dual (ASD) gravity. We derive ASD Ricci-flat vacuum metric governed by the general heavenly equation, null tetrad and basis of 1-forms for this metric. We present algebraic exact solutions of the general heavenly equation as a set of zeros of homogeneous polynomials in independent and dependent variables. A real solution is obtained for the case of a neutral signature.
General method for reducing the two-body Dirac equation
International Nuclear Information System (INIS)
Galeao, A.P.; Ferreira, P.L.
1992-01-01
A semi relativistic two-body Dirac equation with an enlarged set of phenomenological potentials, including Breit-type terms, is investigated for the general case of unequal masses. Solutions corresponding to definite total angular momentum and parity are shown to fall into two classes, each one being obtained by solving a system of four coupled first-order radial differential equations. The reduction of each of these systems to a pair of coupled Schroedinger-type equations is also discussed. (author)
A general comparison theorem for backward stochastic differential equations
Cohen, Samuel N.; Elliott, Robert J.; Pearce, Charles E. M.
2010-01-01
A useful result when dealing with backward stochastic differential equations is the comparison theorem of Peng (1992). When the equations are not based on Brownian motion, the comparison theorem no longer holds in general. In this paper we present a condition for a comparison theorem to hold for backward stochastic differential equations based on arbitrary martingales. This theorem applies to both vector and scalar situations. Applications to the theory of nonlinear expectat...
On the General Equation of the Second Degree
Indian Academy of Sciences (India)
IAS Admin
On the General Equation of the Second Degree. Keywords. Conics, eigenvalues, eigenvec- tors, pairs of lines. S Kesavan. S Kesavan works at the. Institute for Mathematical. Sciences, Chennai. His area of interest is partial differential equations with specialization in elliptic problems connected to homogenization, control.
General solution of Bateman equations for nuclear transmutations
International Nuclear Information System (INIS)
Cetnar, Jerzy
2006-01-01
The paper concerns the linear chain method of solving Bateman equations for nuclear transmutation in derivation of the general solution for linear chain with repeated transitions and thus elimination of existing numerical problems. In addition, applications of derived equations for transmutation trajectory analysis method is presented
Generalized Freud's equation and level densities with polynomial
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 81; Issue 2. Generalized Freud's equation and level densities with polynomial potential. Akshat Boobna Saugata Ghosh. Research Articles Volume 81 ... Keywords. Orthogonal polynomial; Freud's equation; Dyson–Mehta method; methods of resolvents; level density.
CHARTS STRUTT-INCE FOR GENERALIZED MATHIEU EQUATION
Directory of Open Access Journals (Sweden)
R.I. Parovik
2012-06-01
Full Text Available We have investigated the solution of the generalized Mathieu equation. With the aid of diagrams Stratton-Ince built the instability region, the condition can occur when the parametric resonance.
Generalized heat-transport equations: parabolic and hyperbolic models
Rogolino, Patrizia; Kovács, Robert; Ván, Peter; Cimmelli, Vito Antonio
2018-03-01
We derive two different generalized heat-transport equations: the most general one, of the first order in time and second order in space, encompasses some well-known heat equations and describes the hyperbolic regime in the absence of nonlocal effects. Another, less general, of the second order in time and fourth order in space, is able to describe hyperbolic heat conduction also in the presence of nonlocal effects. We investigate the thermodynamic compatibility of both models by applying some generalizations of the classical Liu and Coleman-Noll procedures. In both cases, constitutive equations for the entropy and for the entropy flux are obtained. For the second model, we consider a heat-transport equation which includes nonlocal terms and study the resulting set of balance laws, proving that the corresponding thermal perturbations propagate with finite speed.
Generalized latent variable modeling multilevel, longitudinal, and structural equation models
Skrondal, Anders; Rabe-Hesketh, Sophia
2004-01-01
This book unifies and extends latent variable models, including multilevel or generalized linear mixed models, longitudinal or panel models, item response or factor models, latent class or finite mixture models, and structural equation models.
Linear superposition solutions to nonlinear wave equations
International Nuclear Information System (INIS)
Liu Yu
2012-01-01
The solutions to a linear wave equation can satisfy the principle of superposition, i.e., the linear superposition of two or more known solutions is still a solution of the linear wave equation. We show in this article that many nonlinear wave equations possess exact traveling wave solutions involving hyperbolic, triangle, and exponential functions, and the suitable linear combinations of these known solutions can also constitute linear superposition solutions to some nonlinear wave equations with special structural characteristics. The linear superposition solutions to the generalized KdV equation K(2,2,1), the Oliver water wave equation, and the k(n, n) equation are given. The structure characteristic of the nonlinear wave equations having linear superposition solutions is analyzed, and the reason why the solutions with the forms of hyperbolic, triangle, and exponential functions can form the linear superposition solutions is also discussed
Multiphase averaging of periodic soliton equations
International Nuclear Information System (INIS)
Forest, M.G.
1979-01-01
The multiphase averaging of periodic soliton equations is considered. Particular attention is given to the periodic sine-Gordon and Korteweg-deVries (KdV) equations. The periodic sine-Gordon equation and its associated inverse spectral theory are analyzed, including a discussion of the spectral representations of exact, N-phase sine-Gordon solutions. The emphasis is on physical characteristics of the periodic waves, with a motivation from the well-known whole-line solitons. A canonical Hamiltonian approach for the modulational theory of N-phase waves is prescribed. A concrete illustration of this averaging method is provided with the periodic sine-Gordon equation; explicit averaging results are given only for the N = 1 case, laying a foundation for a more thorough treatment of the general N-phase problem. For the KdV equation, very general results are given for multiphase averaging of the N-phase waves. The single-phase results of Whitham are extended to general N phases, and more importantly, an invariant representation in terms of Abelian differentials on a Riemann surface is provided. Several consequences of this invariant representation are deduced, including strong evidence for the Hamiltonian structure of N-phase modulational equations
New solutions of Heun's general equation
Energy Technology Data Exchange (ETDEWEB)
Ishkhanyan, Artur [Engineering Center of Armenian National Academy of Sciences, Ashtarak (Armenia); Suominen, Kalle-Antti [Helsinki Institute of Physics, PL 64, Helsinki (Finland)
2003-02-07
We show that in four particular cases the derivative of the solution of Heun's general equation can be expressed in terms of a solution to another Heun's equation. Starting from this property, we use the Gauss hypergeometric functions to construct series solutions to Heun's equation for the mentioned cases. Each of the hypergeometric functions involved has correct singular behaviour at only one of the singular points of the equation; the sum, however, has correct behaviour. (letter to the editor)
Generalized bootstrap equations and possible implications for the NLO Odderon
Energy Technology Data Exchange (ETDEWEB)
Bartels, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Vacca, G.P. [INFN, Sezione di Bologna (Italy)
2013-07-15
We formulate and discuss generalized bootstrap equations in nonabelian gauge theories. They are shown to hold in the leading logarithmic approximation. Since their validity is related to the self-consistency of the Steinmann relations for inelastic production amplitudes they can be expected to be valid also in NLO. Specializing to the N=4 SYM, we show that the validity in NLO of these generalized bootstrap equations allows to find the NLO Odderon solution with intercept exactly at one.
International Nuclear Information System (INIS)
Yomba, Emmanuel
2008-01-01
With the aid of symbolic computation, a generalized auxiliary equation method is proposed to construct more general exact solutions to two types of NLPDEs. First, we present new family of solutions to a nonlinear Klein-Gordon equation, by using this auxiliary equation method including a new first-order nonlinear ODE with six-degree nonlinear term proposed by Sirendaoreji. Then, we apply an indirect F-function method very close to the F-expansion method to solve the generalized Camassa-Holm equation with fully nonlinear dispersion and fully nonlinear convection C(l,n,p). Taking advantage of the new first-order nonlinear ODE with six degree nonlinear term, this indirect F-function method is used to map the solutions of C(l,n,p) equations to those of that nonlinear ODE. As a result, we can successfully obtain in a unified way, many exact solutions
Generalized fractional Schroedinger equation with space-time fractional derivatives
International Nuclear Information System (INIS)
Wang Shaowei; Xu Mingyu
2007-01-01
In this paper the generalized fractional Schroedinger equation with space and time fractional derivatives is constructed. The equation is solved for free particle and for a square potential well by the method of integral transforms, Fourier transform and Laplace transform, and the solution can be expressed in terms of Mittag-Leffler function. The Green function for free particle is also presented in this paper. Finally, we discuss the relationship between the cases of the generalized fractional Schroedinger equation and the ones in standard quantum
Symmetries of the Euler compressible flow equations for general equation of state
Energy Technology Data Exchange (ETDEWEB)
Boyd, Zachary M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ramsey, Scott D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baty, Roy S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-10-15
The Euler compressible flow equations exhibit different Lie symmetries depending on the equation of state (EOS) of the medium in which the flow occurs. This means that, in general, different types of similarity solution will be available in different flow media. We present a comprehensive classification of all EOS’s to which the Euler equations apply, based on the Lie symmetries admitted by the corresponding flow equations, restricting to the case of 1-D planar, cylindrical, or spherical geometry. The results are conveniently summarized in tables. This analysis also clarifies past work by Axford and Ovsiannikov on symmetry classification.
International Nuclear Information System (INIS)
Tang, Bo; He, Yinnian; Wei, Leilei; Zhang, Xindong
2012-01-01
In this Letter, a generalized fractional sub-equation method is proposed for solving fractional differential equations with variable coefficients. Being concise and straightforward, this method is applied to the space–time fractional Gardner equation with variable coefficients. As a result, many exact solutions are obtained including hyperbolic function solutions, trigonometric function solutions and rational solutions. It is shown that the considered method provides a very effective, convenient and powerful mathematical tool for solving many other fractional differential equations in mathematical physics. -- Highlights: ► Study of fractional differential equations with variable coefficients plays a role in applied physical sciences. ► It is shown that the proposed algorithm is effective for solving fractional differential equations with variable coefficients. ► The obtained solutions may give insight into many considerable physical processes.
Dissipative behavior of some fully non-linear KdV-type equations
Brenier, Yann; Levy, Doron
2000-03-01
The KdV equation can be considered as a special case of the general equation u t+f(u) x-δg(u xx) x=0, δ>0, where f is non-linear and g is linear, namely f( u)= u2/2 and g( v)= v. As the parameter δ tends to 0, the dispersive behavior of the KdV equation has been throughly investigated (see, e.g., [P.G. Drazin, Solitons, London Math. Soc. Lect. Note Ser. 85, Cambridge University Press, Cambridge, 1983; P.D. Lax, C.D. Levermore, The small dispersion limit of the Korteweg-de Vries equation, III, Commun. Pure Appl. Math. 36 (1983) 809-829; G.B. Whitham, Linear and Nonlinear Waves, Wiley/Interscience, New York, 1974] and the references therein). We show through numerical evidence that a completely different, dissipative behavior occurs when g is non-linear, namely when g is an even concave function such as g( v)=-∣ v∣ or g( v)=- v2. In particular, our numerical results hint that as δ→0 the solutions strongly converge to the unique entropy solution of the formal limit equation, in total contrast with the solutions of the KdV equation.
N = 4 Toda chain (KdV) hierarchy in N = 4 superspace
International Nuclear Information System (INIS)
Sorin, A.S.
2002-01-01
The Lax pair and Hamiltonian formulations are presented for the N = 4 supersymmetric Toda chain (KdV) hierarchy in N = 4 superspace. The general formulas for an infinite tower of its bosonic flows in terms of the Lax operator in N = 4 superspace are derived, and five real forms of the hierarchy are presented. New N = 4 superfield bases in which the flows are local are discussed. A relation between the two descriptions of the hierarchy in N = 4 superspace used in the literature is established
On Generalized Fractional Kinetic Equations Involving Generalized Bessel Function of the First Kind
Directory of Open Access Journals (Sweden)
Dinesh Kumar
2015-01-01
Full Text Available We develop a new and further generalized form of the fractional kinetic equation involving generalized Bessel function of the first kind. The manifold generality of the generalized Bessel function of the first kind is discussed in terms of the solution of the fractional kinetic equation in the paper. The results obtained here are quite general in nature and capable of yielding a very large number of known and (presumably new results.
Generalized force in classical field theory. [Euler-Lagrange equations
Energy Technology Data Exchange (ETDEWEB)
Krause, J [Universidad Central de Venezuela, Caracas
1976-02-01
The source strengths of the Euler-Lagrange equations, for a system of interacting fields, are heuristically interpreted as generalized forces. The canonical form of the energy-momentum tensor thus consistently appears, without recourse to space-time symmetry arguments. A concept of 'conservative' generalized force in classical field theory is also briefly discussed.
Sketching the General Quadratic Equation Using Dynamic Geometry Software
Stols, G. H.
2005-01-01
This paper explores a geometrical way to sketch graphs of the general quadratic in two variables with Geometer's Sketchpad. To do this, a geometric procedure as described by De Temple is used, bearing in mind that this general quadratic equation (1) represents all the possible conics (conics sections), and the fact that five points (no three of…
A novel numerical flux for the 3D Euler equations with general equation of state
Toro, Eleuterio F.
2015-09-30
Here we extend the flux vector splitting approach recently proposed in (E F Toro and M E Vázquez-Cendón. Flux splitting schemes for the Euler equations. Computers and Fluids. Vol. 70, Pages 1-12, 2012). The scheme was originally presented for the 1D Euler equations for ideal gases and its extension presented in this paper is threefold: (i) we solve the three-dimensional Euler equations on general meshes; (ii) we use a general equation of state; and (iii) we achieve high order of accuracy in both space and time through application of the semi-discrete ADER methodology on general meshes. The resulting methods are systematically assessed for accuracy, robustness and efficiency on a carefully selected suite of test problems. Formal high accuracy is assessed through convergence rates studies for schemes of up to 4th order of accuracy in both space and time on unstructured meshes.
Anisotropic charged physical models with generalized polytropic equation of state
Energy Technology Data Exchange (ETDEWEB)
Nasim, A.; Azam, M. [University of Education, Division of Science and Technology, Lahore (Pakistan)
2018-01-15
In this paper, we found the exact solutions of Einstein-Maxwell equations with generalized polytropic equation of state (GPEoS). For this, we consider spherically symmetric object with charged anisotropic matter distribution. We rewrite the field equations into simple form through transformation introduced by Durgapal (Phys Rev D 27:328, 1983) and solve these equations analytically. For the physically acceptability of these solutions, we plot physical quantities like energy density, anisotropy, speed of sound, tangential and radial pressure. We found that all solutions fulfill the required physical conditions. It is concluded that all our results are reduced to the case of anisotropic charged matter distribution with linear, quadratic as well as polytropic equation of state. (orig.)
A differential equation for the Generalized Born radii.
Fogolari, Federico; Corazza, Alessandra; Esposito, Gennaro
2013-06-28
The Generalized Born (GB) model offers a convenient way of representing electrostatics in complex macromolecules like proteins or nucleic acids. The computation of atomic GB radii is currently performed by different non-local approaches involving volume or surface integrals. Here we obtain a non-linear second-order partial differential equation for the Generalized Born radius, which may be solved using local iterative algorithms. The equation is derived under the assumption that the usual GB approximation to the reaction field obeys Laplace's equation. The equation admits as particular solutions the correct GB radii for the sphere and the plane. The tests performed on a set of 55 different proteins show an overall agreement with other reference GB models and "perfect" Poisson-Boltzmann based values.
BRST, generalized Maurer-Cartan equations and CFT
Energy Technology Data Exchange (ETDEWEB)
Zeitlin, Anton M. [Department of Mathematics, Yale University, 442 Dunham Lab, 10 Hillhouse Ave., New Haven, CT 06511 (United States); St. Petersburg Department of Steklov Mathematical Institute, Fontanka, 27, St. Petersburg 191023 (Russian Federation)]. E-mail: zam@math.ipme.ru
2006-12-25
The paper is devoted to the study of BRST charge in perturbed two-dimensional conformal field theory. The main goal is to write the operator equation expressing the conservation law of BRST charge in perturbed theory in terms of purely algebraic operations on the corresponding operator algebra, which are defined via the OPE. The corresponding equations are constructed and their symmetries are studied up to the second order in formal coupling constant. It appears that the obtained equations can be interpreted as generalized Maurer-Cartan ones. We study two concrete examples in detail: the bosonic nonlinear sigma model and perturbed first order theory. In particular, we show that the Einstein equations, which are the conformal invariance conditions for both these perturbed theories, expanded up to the second order, can be rewritten in such generalized Maurer-Cartan form.
Analytical Solution of General Bagley-Torvik Equation
William Labecca; Osvaldo Guimarães; José Roberto C. Piqueira
2015-01-01
Bagley-Torvik equation appears in viscoelasticity problems where fractional derivatives seem to play an important role concerning empirical data. There are several works treating this equation by using numerical methods and analytic formulations. However, the analytical solutions presented in the literature consider particular cases of boundary and initial conditions, with inhomogeneous term often expressed in polynomial form. Here, by using Laplace transform methodology, the general inhomoge...
Towards the general solution of the Yang-Mills equations
International Nuclear Information System (INIS)
Helfer, A.D.
1985-01-01
The author presents a new non-perturbative technique for finding arbitrary self-dual solutions to the Yang-Mills equations, and of describing massless fields minimally coupled to them. The approach uses techniques of complex analysis in several variables, and is complementary to Ward's: it is expected that a combination of the two techniques will yield general, non-self-dual solutions to the Yang-Mills equations. This has been verified to first order in perturbation theory
General Dirichlet Series, Arithmetic Convolution Equations and Laplace Transforms
Czech Academy of Sciences Publication Activity Database
Glöckner, H.; Lucht, L.G.; Porubský, Štefan
2009-01-01
Roč. 193, č. 2 (2009), s. 109-129 ISSN 0039-3223 R&D Projects: GA ČR GA201/07/0191 Institutional research plan: CEZ:AV0Z10300504 Keywords : arithmetic function * Dirichlet convolution * polynomial equation * analytic equation * topological algebra * holomorphic functional calculus * implicit function theorem * Laplace transform * semigroup * complex measure Subject RIV: BA - General Mathematics Impact factor: 0.645, year: 2009 http://arxiv.org/abs/0712.3172
Novel loop-like solitons for the generalized Vakhnenko equation
International Nuclear Information System (INIS)
Zhang Min; Ma Yu-Lan; Li Bang-Qing
2013-01-01
A non-traveling wave solution of a generalized Vakhnenko equation arising from the high-frequent wave motion in a relaxing medium is derived via the extended Riccati mapping method. The solution includes an arbitrary function of an independent variable. Based on the solution, two hyperbolic functions are chosen to construct new solitons. Novel single-loop-like and double-loop-like solitons are found for the equation
New solutions of the generalized ellipsoidal wave equation
Directory of Open Access Journals (Sweden)
Harold Exton
1999-10-01
Full Text Available Certain aspects and a contribution to the theory of new forms of solutions of an algebraic form of the generalized ellipsoidal wave equation are deduced by considering the Laplace transform of a soluble system of linear differential equations. An ensuing system of non-linear algebraic equations is shown to be consistent and is numerically implemented by means of the computer algebra package MAPLE V. The main results are presented as series of hypergeometric type of there and four variables which readily lend themselves to numerical handling although this does not indicate all of the detailedanalytic properties of the solutions under consideration.
The propagation of travelling waves for stochastic generalized KPP equations
International Nuclear Information System (INIS)
Elworthy, K.D.; Zhao, H.Z.
1993-09-01
We study the existence and propagation of approximate travelling waves of generalized KPP equations with seasonal multiplicative white noise perturbations of Ito type. Three regimes of perturbation are considered: weak, milk, and strong. We show that weak perturbations have little effect on the wave like solutions of the unperturbed equations while strong perturbations essentially destroy the wave and force the solutions to die down. For mild perturbations we show that there is a residual wave form but propagating at a different speed to that of the unperturbed equation. In the appendix J.G. Gaines illustrates these different regimes by computer simulations. (author). 27 refs, 13 figs
BOOK REVIEW: Partial Differential Equations in General Relativity
Halburd, Rodney G.
2008-11-01
Although many books on general relativity contain an overview of the relevant background material from differential geometry, very little attention is usually paid to background material from the theory of differential equations. This is understandable in a first course on relativity but it often limits the kinds of problems that can be studied rigorously. Einstein's field equations lie at the heart of general relativity. They are a system of partial differential equations (PDEs) relating the curvature of spacetime to properties of matter. A central part of most problems in general relativity is to extract information about solutions of these equations. Most standard texts achieve this by studying exact solutions or numerical and analytical approximations. In the book under review, Alan Rendall emphasises the role of rigorous qualitative methods in general relativity. There has long been a need for such a book, giving a broad overview of the relevant background from the theory of partial differential equations, and not just from differential geometry. It should be noted that the book also covers the basic theory of ordinary differential equations. Although there are many good books on the rigorous theory of PDEs, methods related to the Einstein equations deserve special attention, not only because of the complexity and importance of these equations, but because these equations do not fit into any of the standard classes of equations (elliptic, parabolic, hyperbolic) that one typically encounters in a course on PDEs. Even specifying exactly what ones means by a Cauchy problem in general relativity requires considerable care. The main problem here is that the manifold on which the solution is defined is determined by the solution itself. This means that one does not simply define data on a submanifold. Rendall's book gives a good overview of applications and results from the qualitative theory of PDEs to general relativity. It would be impossible to give detailed
Tsai, Tien-Lung; Shau, Wen-Yi; Hu, Fu-Chang
2006-01-01
This article generalizes linear path analysis (PA) and simultaneous equations models (SiEM) to deal with mixed responses of different types in a recursive or triangular system. An efficient instrumental variable (IV) method for estimating the structural coefficients of a 2-equation partially recursive generalized path analysis (GPA) model and…
Analytical Solution of General Bagley-Torvik Equation
Directory of Open Access Journals (Sweden)
William Labecca
2015-01-01
Full Text Available Bagley-Torvik equation appears in viscoelasticity problems where fractional derivatives seem to play an important role concerning empirical data. There are several works treating this equation by using numerical methods and analytic formulations. However, the analytical solutions presented in the literature consider particular cases of boundary and initial conditions, with inhomogeneous term often expressed in polynomial form. Here, by using Laplace transform methodology, the general inhomogeneous case is solved without restrictions in boundary and initial conditions. The generalized Mittag-Leffler functions with three parameters are used and the solutions presented are expressed in terms of Wiman’s functions and their derivatives.
On the non-stationary generalized Langevin equation
Meyer, Hugues; Voigtmann, Thomas; Schilling, Tanja
2017-12-01
In molecular dynamics simulations and single molecule experiments, observables are usually measured along dynamic trajectories and then averaged over an ensemble ("bundle") of trajectories. Under stationary conditions, the time-evolution of such averages is described by the generalized Langevin equation. By contrast, if the dynamics is not stationary, it is not a priori clear which form the equation of motion for an averaged observable has. We employ the formalism of time-dependent projection operator techniques to derive the equation of motion for a non-equilibrium trajectory-averaged observable as well as for its non-stationary auto-correlation function. The equation is similar in structure to the generalized Langevin equation but exhibits a time-dependent memory kernel as well as a fluctuating force that implicitly depends on the initial conditions of the process. We also derive a relation between this memory kernel and the autocorrelation function of the fluctuating force that has a structure similar to a fluctuation-dissipation relation. In addition, we show how the choice of the projection operator allows us to relate the Taylor expansion of the memory kernel to data that are accessible in MD simulations and experiments, thus allowing us to construct the equation of motion. As a numerical example, the procedure is applied to Brownian motion initialized in non-equilibrium conditions and is shown to be consistent with direct measurements from simulations.
Generalized curvature and the equations of D=11 supergravity
Energy Technology Data Exchange (ETDEWEB)
Bandos, Igor A. [Departamento de Fisica Teorica, Universidad de Valencia and IFIC (CSIC-UVEG), 46100-Burjassot (Valencia) (Spain); Institute for Theoretical Physics, NSC ' Kharkov Institute of Physics and Technology' , UA-61108 Kharkov (Ukraine); Azcarraga, Jose A. de [Departamento de Fisica Teorica, Universidad de Valencia and IFIC (CSIC-UVEG), 46100-Burjassot (Valencia) (Spain)]. E-mail: j.a.de.azcarraga@ific.uv.es; Picon, Moises [Departamento de Fisica Teorica, Universidad de Valencia and IFIC (CSIC-UVEG), 46100-Burjassot (Valencia) (Spain); Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-2535 (United States); Varela, Oscar [Departamento de Fisica Teorica, Universidad de Valencia and IFIC (CSIC-UVEG), 46100-Burjassot (Valencia) (Spain); Michigan Center for Theoretical Physics, Randall Laboratory, Department of Physics, University of Michigan, Ann Arbor, MI 48109-1120 (United States)
2005-05-26
It is known that, for zero fermionic sector, {psi}{sub {mu}}{sup {alpha}}(x)=0, the bosonic equations of Cremmer-Julia-Scherk eleven-dimensional supergravity can be collected in a compact expression, Rab{alpha}{gamma}{gamma}b{gamma}{beta}=0, which is a condition on the curvature R{alpha}{beta} of the generalized connection w. In this Letter we show that the equation Rbc{alpha}{gamma}{gamma}abc{gamma}{beta}=4i((D-bar {psi}){sub bc}{gamma}{sup [abc{sub {beta}({psi}{sub d}{gamma}{sup d}]){sub {alpha}}), where D-bar is the covariant derivative for the generalized connection w, collects all the bosonic equations of D=11 supergravity when the gravitino is nonvanishing, {psi}{sub {mu}}{sup {alpha}}(x)<>0.
International Nuclear Information System (INIS)
Chen Huaitang; Zhang Hongqing
2004-01-01
A generalized tanh function method is used for constructing exact travelling wave solutions of nonlinear partial differential equations in a unified way. The main idea of this method is to take full advantage of the Riccati equation which has more new solutions. More new multiple soliton solutions are obtained for the general Burgers-Fisher equation and the Kuramoto-Sivashinsky equation
General relativistic Boltzmann equation, II: Manifestly covariant treatment
Debbasch, F.; van Leeuwen, W.A.
2009-01-01
In a preceding article we presented a general relativistic treatment of the derivation of the Boltzmann equation. The four-momenta occurring in this formalism were all on-shell four-momenta, verifying the mass-shell restriction p(2) = m(2)c(2). Due to this restriction, the resulting Boltzmann
Survey on Dirac equation in general relativity theory
International Nuclear Information System (INIS)
Paillere, P.
1984-10-01
Starting from an infinitesimal transformation expressed with a Killing vector and using systematically the formalism of the local tetrades, we show that, in the area of the general relativity, the Dirac equation may be formulated only versus the four local vectors which determine the gravitational potentials, their gradients and the 4-vector potential of the electromagnetic field [fr
Exact and numerical solutions of generalized Drinfeld-Sokolov equations
Energy Technology Data Exchange (ETDEWEB)
Ugurlu, Yavuz [Firat University, Department of Mathematics, 23119 Elazig (Turkey); Kaya, Dogan [Firat University, Department of Mathematics, 23119 Elazig (Turkey)], E-mail: dkaya36@yahoo.com
2008-04-14
In this Letter, we consider a system of generalized Drinfeld-Sokolov (gDS) equations which models one-dimensional nonlinear wave processes in two-component media. We find some exact solutions of gDS by using tanh function method and we also obtain a numerical solution by using the Adomian's Decomposition Method (ADM)
Exact and numerical solutions of generalized Drinfeld-Sokolov equations
International Nuclear Information System (INIS)
Ugurlu, Yavuz; Kaya, Dogan
2008-01-01
In this Letter, we consider a system of generalized Drinfeld-Sokolov (gDS) equations which models one-dimensional nonlinear wave processes in two-component media. We find some exact solutions of gDS by using tanh function method and we also obtain a numerical solution by using the Adomian's Decomposition Method (ADM)
Exact solutions for modified Korteweg-de Vries equation
International Nuclear Information System (INIS)
Sarma, Jnanjyoti
2009-01-01
Using the simple wave or traveling wave solution technique, many different types of solutions are derived for modified Korteweg-de Vries (KdV) equation. The solutions are obtained from the set of nonlinear algebraic equations, which can be derived from the modified Korteweg-de Vries (KdV) equation by using the hyperbolic transformation method. The method can be applicable for similar nonlinear wave equations.
Generalized nonlinear Proca equation and its free-particle solutions
Energy Technology Data Exchange (ETDEWEB)
Nobre, F.D. [Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, RJ (Brazil); Plastino, A.R. [Universidad Nacional Buenos Aires-Noreoeste, CeBio y Secretaria de Investigacion, Junin (Argentina)
2016-06-15
We introduce a nonlinear extension of Proca's field theory for massive vector (spin 1) bosons. The associated relativistic nonlinear wave equation is related to recently advanced nonlinear extensions of the Schroedinger, Dirac, and Klein-Gordon equations inspired on the non-extensive generalized thermostatistics. This is a theoretical framework that has been applied in recent years to several problems in nuclear and particle physics, gravitational physics, and quantum field theory. The nonlinear Proca equation investigated here has a power-law nonlinearity characterized by a real parameter q (formally corresponding to the Tsallis entropic parameter) in such a way that the standard linear Proca wave equation is recovered in the limit q → 1. We derive the nonlinear Proca equation from a Lagrangian, which, besides the usual vectorial field Ψ{sup μ}(vector x,t), involves an additional field Φ{sup μ}(vector x,t). We obtain exact time-dependent soliton-like solutions for these fields having the form of a q-plane wave, and we show that both field equations lead to the relativistic energy-momentum relation E{sup 2} = p{sup 2}c{sup 2} + m{sup 2}c{sup 4} for all values of q. This suggests that the present nonlinear theory constitutes a new field theoretical representation of particle dynamics. In the limit of massless particles the present q-generalized Proca theory reduces to Maxwell electromagnetism, and the q-plane waves yield localized, transverse solutions of Maxwell equations. Physical consequences and possible applications are discussed. (orig.)
Developing a generalized allometric equation for aboveground biomass estimation
Xu, Q.; Balamuta, J. J.; Greenberg, J. A.; Li, B.; Man, A.; Xu, Z.
2015-12-01
A key potential uncertainty in estimating carbon stocks across multiple scales stems from the use of empirically calibrated allometric equations, which estimate aboveground biomass (AGB) from plant characteristics such as diameter at breast height (DBH) and/or height (H). The equations themselves contain significant and, at times, poorly characterized errors. Species-specific equations may be missing. Plant responses to their local biophysical environment may lead to spatially varying allometric relationships. The structural predictor may be difficult or impossible to measure accurately, particularly when derived from remote sensing data. All of these issues may lead to significant and spatially varying uncertainties in the estimation of AGB that are unexplored in the literature. We sought to quantify the errors in predicting AGB at the tree and plot level for vegetation plots in California. To accomplish this, we derived a generalized allometric equation (GAE) which we used to model the AGB on a full set of tree information such as DBH, H, taxonomy, and biophysical environment. The GAE was derived using published allometric equations in the GlobAllomeTree database. The equations were sparse in details about the error since authors provide the coefficient of determination (R2) and the sample size. A more realistic simulation of tree AGB should also contain the noise that was not captured by the allometric equation. We derived an empirically corrected variance estimate for the amount of noise to represent the errors in the real biomass. Also, we accounted for the hierarchical relationship between different species by treating each taxonomic level as a covariate nested within a higher taxonomic level (e.g. species contribution of each different covariate in estimating the AGB of trees. Lastly, we applied the GAE to an existing vegetation plot database - Forest Inventory and Analysis database - to derive per-tree and per-plot AGB estimations, their errors, and how
Dhage Iteration Method for Generalized Quadratic Functional Integral Equations
Directory of Open Access Journals (Sweden)
Bapurao C. Dhage
2015-01-01
Full Text Available In this paper we prove the existence as well as approximations of the solutions for a certain nonlinear generalized quadratic functional integral equation. An algorithm for the solutions is developed and it is shown that the sequence of successive approximations starting at a lower or upper solution converges monotonically to the solutions of related quadratic functional integral equation under some suitable mixed hybrid conditions. We rely our main result on Dhage iteration method embodied in a recent hybrid fixed point theorem of Dhage (2014 in partially ordered normed linear spaces. An example is also provided to illustrate the abstract theory developed in the paper.
Operator of Time and Generalized Schrödinger Equation
Directory of Open Access Journals (Sweden)
Slobodan Prvanović
2018-01-01
Full Text Available The equation describing the change of the state of the quantum system with respect to energy is introduced within the framework of the self-adjoint operator of time in nonrelativistic quantum mechanics. In this proposal, the operator of time appears to be the generator of the change of the energy, while the operator of energy that is conjugate to the operator of time generates the time evolution. Two examples, one with discrete time and the other with continuous one, are given and the generalization of Schrödinger equation is proposed.
Analytical Solution of a Generalized Hirota-Satsuma Equation
Kassem, M.; Mabrouk, S.; Abd-el-Malek, M.
A modified version of generalized Hirota-Satsuma is here solved using a two parameter group transformation method. This problem in three dimensions was reduced by Estevez [1] to a two dimensional one through a Lie transformation method and left unsolved. In the present paper, through application of symmetry transformation the Lax pair has been reduced to a system of ordinary equations. Three transformations cases are investigated. The obtained analytical solutions are plotted and show a profile proper to deflagration processes, well described by Degasperis-Procesi equation.
A numerical scheme for the generalized Burgers–Huxley equation
Directory of Open Access Journals (Sweden)
Brajesh K. Singh
2016-10-01
Full Text Available In this article, a numerical solution of generalized Burgers–Huxley (gBH equation is approximated by using a new scheme: modified cubic B-spline differential quadrature method (MCB-DQM. The scheme is based on differential quadrature method in which the weighting coefficients are obtained by using modified cubic B-splines as a set of basis functions. This scheme reduces the equation into a system of first-order ordinary differential equation (ODE which is solved by adopting SSP-RK43 scheme. Further, it is shown that the proposed scheme is stable. The efficiency of the proposed method is illustrated by four numerical experiments, which confirm that obtained results are in good agreement with earlier studies. This scheme is an easy, economical and efficient technique for finding numerical solutions for various kinds of (nonlinear physical models as compared to the earlier schemes.
Dynamic behavior of a nonlinear rational difference equation and generalization
Directory of Open Access Journals (Sweden)
Shi Qihong
2011-01-01
Full Text Available Abstract This paper is concerned about the dynamic behavior for the following high order nonlinear difference equation x n = (x n-k + x n-m + x n-l /(x n-k x n-m + x n-m x n-l +1 with the initial data { x - l , x - l + 1 , … , x - 1 } ∈ ℝ + l and 1 ≤ k ≤ m ≤ l. The convergence of solution to this equation is investigated by introducing a new sequence, which extends and includes corresponding results obtained in the references (Li in J Math Anal Appl 312:103-111, 2005; Berenhaut et al. Appl. Math. Lett. 20:54-58, 2007; Papaschinopoulos and Schinas J Math Anal Appl 294:614-620, 2004 to a large extent. In addition, some propositions for generalized equations are reported.
Nonequilibrium Statistical Operator Method and Generalized Kinetic Equations
Kuzemsky, A. L.
2018-01-01
We consider some principal problems of nonequilibrium statistical thermodynamics in the framework of the Zubarev nonequilibrium statistical operator approach. We present a brief comparative analysis of some approaches to describing irreversible processes based on the concept of nonequilibrium Gibbs ensembles and their applicability to describing nonequilibrium processes. We discuss the derivation of generalized kinetic equations for a system in a heat bath. We obtain and analyze a damped Schrödinger-type equation for a dynamical system in a heat bath. We study the dynamical behavior of a particle in a medium taking the dissipation effects into account. We consider the scattering problem for neutrons in a nonequilibrium medium and derive a generalized Van Hove formula. We show that the nonequilibrium statistical operator method is an effective, convenient tool for describing irreversible processes in condensed matter.
Resummed memory kernels in generalized system-bath master equations
International Nuclear Information System (INIS)
Mavros, Michael G.; Van Voorhis, Troy
2014-01-01
Generalized master equations provide a concise formalism for studying reduced population dynamics. Usually, these master equations require a perturbative expansion of the memory kernels governing the dynamics; in order to prevent divergences, these expansions must be resummed. Resummation techniques of perturbation series are ubiquitous in physics, but they have not been readily studied for the time-dependent memory kernels used in generalized master equations. In this paper, we present a comparison of different resummation techniques for such memory kernels up to fourth order. We study specifically the spin-boson Hamiltonian as a model system bath Hamiltonian, treating the diabatic coupling between the two states as a perturbation. A novel derivation of the fourth-order memory kernel for the spin-boson problem is presented; then, the second- and fourth-order kernels are evaluated numerically for a variety of spin-boson parameter regimes. We find that resumming the kernels through fourth order using a Padé approximant results in divergent populations in the strong electronic coupling regime due to a singularity introduced by the nature of the resummation, and thus recommend a non-divergent exponential resummation (the “Landau-Zener resummation” of previous work). The inclusion of fourth-order effects in a Landau-Zener-resummed kernel is shown to improve both the dephasing rate and the obedience of detailed balance over simpler prescriptions like the non-interacting blip approximation, showing a relatively quick convergence on the exact answer. The results suggest that including higher-order contributions to the memory kernel of a generalized master equation and performing an appropriate resummation can provide a numerically-exact solution to system-bath dynamics for a general spectral density, opening the way to a new class of methods for treating system-bath dynamics
A general method for enclosing solutions of interval linear equations
Czech Academy of Sciences Publication Activity Database
Rohn, Jiří
2012-01-01
Roč. 6, č. 4 (2012), s. 709-717 ISSN 1862-4472 R&D Projects: GA ČR GA201/09/1957; GA ČR GC201/08/J020 Institutional research plan: CEZ:AV0Z10300504 Keywords : interval linear equations * solution set * enclosure * absolute value inequality Subject RIV: BA - General Mathematics Impact factor: 1.654, year: 2012
Generalized isothermal models with strange equation of state
Indian Academy of Sciences (India)
intention to study the Einstein–Maxwell system with a linear equation of state with ... It is our intention to model the interior of a dense realistic star with a general ... The definition m(r) = 1. 2. ∫ r. 0 ω2ρ(ω)dω. (14) represents the mass contained within a radius r which is a useful physical quantity. The mass function (14) has ...
Generalized Einstein’s Equations from Wald Entropy
Directory of Open Access Journals (Sweden)
Maulik Parikh
2016-03-01
Full Text Available We derive the gravitational equations of motion of general theories of gravity from thermodynamics applied to a local Rindler horizon through any point in spacetime. Specifically, for a given theory of gravity, we substitute the corresponding Wald entropy into the Clausius relation. Our approach works for all diffeomorphism-invariant theories of gravity in which the Lagrangian is a polynomial in the Riemann tensor.
The cluster bootstrap consistency in generalized estimating equations
Cheng, Guang
2013-03-01
The cluster bootstrap resamples clusters or subjects instead of individual observations in order to preserve the dependence within each cluster or subject. In this paper, we provide a theoretical justification of using the cluster bootstrap for the inferences of the generalized estimating equations (GEE) for clustered/longitudinal data. Under the general exchangeable bootstrap weights, we show that the cluster bootstrap yields a consistent approximation of the distribution of the regression estimate, and a consistent approximation of the confidence sets. We also show that a computationally more efficient one-step version of the cluster bootstrap provides asymptotically equivalent inference. © 2012.
Generalized Killing-Yano equations in D=5 gauged supergravity
International Nuclear Information System (INIS)
Kubiznak, David; Kunduri, Hari K.; Yasui, Yukinori
2009-01-01
We propose a generalization of the (conformal) Killing-Yano equations relevant to D=5 minimal gauged supergravity. The generalization stems from the fact that the dual of the Maxwell flux, the 3-form *F, couples naturally to particles in the background as a 'torsion'. Killing-Yano tensors in the presence of torsion preserve most of the properties of the standard Killing-Yano tensors - exploited recently for the higher-dimensional rotating black holes of vacuum gravity with cosmological constant. In particular, the generalized closed conformal Killing-Yano 2-form gives rise to the tower of generalized closed conformal Killing-Yano tensors of increasing rank which in turn generate the tower of Killing tensors. An example of a generalized Killing-Yano tensor is found for the Chong-Cvetic-Lue-Pope black hole spacetime [Z.W. Chong, M. Cvetic, H. Lu, C.N. Pope, (hep-th/0506029)]. Such a tensor stands behind the separability of the Hamilton-Jacobi, Klein-Gordon, and Dirac equations in this background.
GENERAL EQUATIONS OF CARBONIZATION OF EUCALYPTUS SPP KINETIC MECHANISMS
Directory of Open Access Journals (Sweden)
Túlio Jardim Raad
2006-06-01
Full Text Available In the present work, a set of general equations related to kinetic mechanism of wood compound carbonization: hemicelluloses, cellulose and lignin was obtained by Avrami-Eroffev and Arrhenius equations and Thermogravimetry of Eucalyptus cloeziana, Eucalyptus camaldulensis, Corymbia citriodora, Eucalyptus urophylla and Eucalyptus grandis samples, TG-Isothermal and TG-Dynamic. The different thermal stabilities and decomposition temperature bands of those species compounds were applied as strategy to obtain the kinetic parameters: activation energy, exponential factor and reaction order. The kinetic model developed was validated by thermogravimetric curves from carbonization of others biomass such as coconut. The kinetic parameters found were - Hemicelluloses: E=98,6 kJmol, A=3,5x106s-1 n=1,0; - Cellulose: E=182,2 kJmol, A=1,2x1013s-1 n=1,5; - Lignin: E=46,6 kJmol, A=2,01s-1 n=0,41. The set of equations can be implemented in a mathematical model of wood carbonization simulation (with heat and mass transfer equations with the aim of optimizing the control and charcoal process used to produce pig iron.
Solitonlike solutions of the generalized discrete nonlinear Schrödinger equation
DEFF Research Database (Denmark)
Rasmussen, Kim; Henning, D.; Gabriel, H.
1996-01-01
We investigate the solution properties oi. a generalized discrete nonlinear Schrodinger equation describing a nonlinear lattice chain. The generalized equation interpolates between the integrable discrete Ablowitz-Ladik equation and the nonintegrable discrete Schrodinger equation. Special interes...... nonlinear Schrodinger equation. In this way eve are able to construct coherent solitonlike structures of profile determined by the map parameters.......We investigate the solution properties oi. a generalized discrete nonlinear Schrodinger equation describing a nonlinear lattice chain. The generalized equation interpolates between the integrable discrete Ablowitz-Ladik equation and the nonintegrable discrete Schrodinger equation. Special interest...
The Generalized Conversion Factor in Einstein's Mass-Energy Equation
Directory of Open Access Journals (Sweden)
Ajay Sharma
2008-07-01
Full Text Available Einstein's September 1905 paper is origin of light energy-mass inter conversion equation ($L = Delta mc^{2}$ and Einstein speculated $E = Delta mc^{2}$ from it by simply replacing $L$ by $E$. From its critical analysis it follows that $L = Delta mc^{2}$ is only true under special or ideal conditions. Under general cases the result is $L propto Delta mc^{2}$ ($E propto Delta mc^{2}$. Consequently an alternate equation $Delta E = A ub c^{2}Delta M$ has been suggested, which implies that energy emitted on annihilation of mass can be equal, less and more than predicted by $Delta E = Delta mc^{2}$. The total kinetic energy of fission fragments of U-235 or Pu-239 is found experimentally 20-60 MeV less than Q-value predicted by $Delta mc^{2}$. The mass of particle Ds (2317 discovered at SLAC, is more than current estimates. In many reactions including chemical reactions $E = Delta mc^{2}$ is not confirmed yet, but regarded as true. It implies the conversion factor than $c^{2}$ is possible. These phenomena can be explained with help of generalized mass-energy equation $Delta E = A ub c^{2}Delta M$.
Constructing general partial differential equations using polynomial and neural networks.
Zjavka, Ladislav; Pedrycz, Witold
2016-01-01
Sum fraction terms can approximate multi-variable functions on the basis of discrete observations, replacing a partial differential equation definition with polynomial elementary data relation descriptions. Artificial neural networks commonly transform the weighted sum of inputs to describe overall similarity relationships of trained and new testing input patterns. Differential polynomial neural networks form a new class of neural networks, which construct and solve an unknown general partial differential equation of a function of interest with selected substitution relative terms using non-linear multi-variable composite polynomials. The layers of the network generate simple and composite relative substitution terms whose convergent series combinations can describe partial dependent derivative changes of the input variables. This regression is based on trained generalized partial derivative data relations, decomposed into a multi-layer polynomial network structure. The sigmoidal function, commonly used as a nonlinear activation of artificial neurons, may transform some polynomial items together with the parameters with the aim to improve the polynomial derivative term series ability to approximate complicated periodic functions, as simple low order polynomials are not able to fully make up for the complete cycles. The similarity analysis facilitates substitutions for differential equations or can form dimensional units from data samples to describe real-world problems. Copyright © 2015 Elsevier Ltd. All rights reserved.
The general class of the vacuum spherically symmetric equations of the general relativity theory
International Nuclear Information System (INIS)
Karbanovski, V. V.; Sorokin, O. M.; Nesterova, M. I.; Bolotnyaya, V. A.; Markov, V. N.; Kairov, T. V.; Lyash, A. A.; Tarasyuk, O. R.
2012-01-01
The system of the spherical-symmetric vacuum equations of the General Relativity Theory is considered. The general solution to a problem representing two classes of line elements with arbitrary functions g 00 and g 22 is obtained. The properties of the found solutions are analyzed.
Numerical simulations of generalized Langevin equations with deeply asymptotic parameters
International Nuclear Information System (INIS)
Bao Jingdong; Li Rongwu; Wu Wei
2004-01-01
A unified algorithm for solving Langevin equations with deeply asymptotic parameters is proposed and tested. The method consists of identifying solvable linear friction and implementing the force evaluations by use of the Runge-Kutta method. We apply the present scheme to the periodic motion of an overdamped particle subjected to a multiplicative white noise. The accurate calculations for the temporal velocity of the particle and its correlation function can be realized by introducing an inertial term. It is shown that the fluctuation around the steady quantity increases with decreasing time step in the overdamped white-noise algorithm, however, a massive white-noise technique greatly reduces this spurious drift, and the result can converge to the correct value if the added inertia approaches zero. The other application is the simulation of generalized Langevin equation with an exponential memory friction, this allows us to treat a weak non-Markovian process
Improved dynamic equations for the generally configured Stewart platform manipulator
International Nuclear Information System (INIS)
Pedrammehr, Siamak; Mahboubkhah, Mehran; Khani, Navid
2012-01-01
In this paper, a Newton-Euler approach is utilized to generate the improved dynamic equations of the generally configured Stewart platform. Using the kinematic model of the universal joint, the rotational degree of freedom of the pods around the axial direction is taken into account in the formulation. The justifiable direction of the reaction moment on each pod is specified and considered in deriving the dynamic equations. Considering the theorem of parallel axes, the inertia tensors for different elements of the manipulator are obtained in this study. From a theoretical point, the improved formulation is more accurate in comparison with previous ones, and the necessity of the improvement is clear evident from significant differences in the simulation results for the improved model and the model without improvement. In addition to more feasibility of the structure and higher accuracy, the model is highly compatible with computer arithmetic and suitable for online applications for loop control problems in hardware
From convolutionless generalized master to Pauli master equations
International Nuclear Information System (INIS)
Capek, V.
1995-01-01
The paper is a continuation of previous work within which it has been proved that time integrals of memory function (i.e. Markovian transfer rates from Pauli Master Equations, PME) in Time-Convolution Generalized Master Equations (TC-GME) for probabilities of finding a state of an asymmetric system interacting with a bath with a continuous spectrum are exactly zero, provided that no approximation is involved, irrespective of the usual finite-perturbation-order correspondence with the Golden Rule transition rates. In this paper, attention is paid to an alternative way of deriving the rigorous PME from the TCL-GME. Arguments are given in favor of the proposition that the long-time limit of coefficients in TCL-GME for the above probabilities, under the same assumption and presuming that this limit exists, is equal to zero. 11 refs
Generalized multiscale finite element methods. nonlinear elliptic equations
Efendiev, Yalchin R.; Galvis, Juan; Li, Guanglian; Presho, Michael
2013-01-01
In this paper we use the Generalized Multiscale Finite Element Method (GMsFEM) framework, introduced in [26], in order to solve nonlinear elliptic equations with high-contrast coefficients. The proposed solution method involves linearizing the equation so that coarse-grid quantities of previous solution iterates can be regarded as auxiliary parameters within the problem formulation. With this convention, we systematically construct respective coarse solution spaces that lend themselves to either continuous Galerkin (CG) or discontinuous Galerkin (DG) global formulations. Here, we use Symmetric Interior Penalty Discontinuous Galerkin approach. Both methods yield a predictable error decline that depends on the respective coarse space dimension, and we illustrate the effectiveness of the CG and DG formulations by offering a variety of numerical examples. © 2014 Global-Science Press.
The generalized effective potential and its equations of motion
International Nuclear Information System (INIS)
Ananikyan, N.S.; Savvidy, G.K.
1980-01-01
By means ot the Legendre transformations a functional GITA(PHI, G, S) is constructed which depends on PHI -a possible expectation value of the quantum field, G -a possible expectation value of the 2-point connected Green function and S= - a possible expectation value of the classical action. The motion equations for the functional GITA are derived on the example of the gPHI 3 theory and an iteration technique is suggested to solve them. A basic equation for GITA which is solved by means of iteration techniques is an ordinary and not a variation one, as it is the case at usual Legendre transformations. The developed formalism can be easily generalized as to other theories
Chen, Haiwen
2012-01-01
In this article, linear item response theory (IRT) observed-score equating is compared under a generalized kernel equating framework with Levine observed-score equating for nonequivalent groups with anchor test design. Interestingly, these two equating methods are closely related despite being based on different methodologies. Specifically, when…
Generalized Friedmann-Robertson-Walker metric and redundancy in the generalized Einstein equations
International Nuclear Information System (INIS)
Kao, W.F.; Pen, U.
1991-01-01
A nontrivial redundancy relation, due to the differential structure of the gravitational Bianchi identity as well as the symmetry of the Friedmann-Robertson-Walker metric, in the gravitational field equation is clarified. A generalized Friedmann-Robertson-Walker metric is introduced in order to properly define a one-dimensional reduced problem which offers an alternative approach to obtain the gravitational field equations on Friedmann-Robertson-Walker spaces
Solution of generalized control system equations at steady state
International Nuclear Information System (INIS)
Vilim, R.B.
1987-01-01
Although a number of reactor systems codes feature generalized control system models, none of the models offer a steady-state solution finder. Indeed, if a transient is to begin from steady-state conditions, the user must provide estimates for the control system initial conditions and run a null transient until the plant converges to steady state. Several such transients may have to be run before values for control system demand signals are found that produce the desired plant steady state. The intent of this paper is (a) to present the control system equations assumed in the SASSYS reactor systems code and to identify the appropriate set of initial conditions, (b) to describe the generalized block diagram approach used to represent these equations, and (c) to describe a solution method and algorithm for computing these initial conditions from the block diagram. The algorithm has been installed in the SASSYS code for use with the code's generalized control system model. The solution finder greatly enhances the effectiveness of the code and the efficiency of the user in running it
Cracking of charged polytropes with generalized polytropic equation of state
Energy Technology Data Exchange (ETDEWEB)
Azam, M. [University of Education, Division of Science and Technology, Lahore (Pakistan); Mardan, S.A. [University of the Management and Technology, Department of Mathematics, Lahore (Pakistan)
2017-02-15
We discuss the occurrence of cracking in charged anisotropic polytropes with generalized polytropic equation of state through two different assumptions; (i) by carrying out local density perturbations under a conformally flat condition (ii) by perturbing anisotropy, polytropic index and charge parameters. For this purpose, we consider two different definitions of polytropes that exist in literature. We conclude that under local density perturbations scheme cracking does not appear in both types of polytropes and stable configuration is observed, while with the second type of perturbation cracking appears in both types of polytropes under certain conditions. (orig.)
Hypersonic Shock Wave Computations Using the Generalized Boltzmann Equation
Agarwal, Ramesh; Chen, Rui; Cheremisin, Felix G.
2006-11-01
Hypersonic shock structure in diatomic gases is computed by solving the Generalized Boltzmann Equation (GBE), where the internal and translational degrees of freedom are considered in the framework of quantum and classical mechanics respectively [1]. The computational framework available for the standard Boltzmann equation [2] is extended by including both the rotational and vibrational degrees of freedom in the GBE. There are two main difficulties encountered in computation of high Mach number flows of diatomic gases with internal degrees of freedom: (1) a large velocity domain is needed for accurate numerical description of the distribution function resulting in enormous computational effort in calculation of the collision integral, and (2) about 50 energy levels are needed for accurate representation of the rotational spectrum of the gas. Our methodology addresses these problems, and as a result the efficiency of calculations has increased by several orders of magnitude. The code has been validated by computing the shock structure in Nitrogen for Mach numbers up to 25 including the translational and rotational degrees of freedom. [1] Beylich, A., ``An Interlaced System for Nitrogen Gas,'' Proc. of CECAM Workshop, ENS de Lyon, France, 2000. [2] Cheremisin, F., ``Solution of the Boltzmann Kinetic Equation for High Speed Flows of a Rarefied Gas,'' Proc. of the 24th Int. Symp. on Rarefied Gas Dynamics, Bari, Italy, 2004.
Generalized master equations for non-Poisson dynamics on networks.
Hoffmann, Till; Porter, Mason A; Lambiotte, Renaud
2012-10-01
The traditional way of studying temporal networks is to aggregate the dynamics of the edges to create a static weighted network. This implicitly assumes that the edges are governed by Poisson processes, which is not typically the case in empirical temporal networks. Accordingly, we examine the effects of non-Poisson inter-event statistics on the dynamics of edges, and we apply the concept of a generalized master equation to the study of continuous-time random walks on networks. We show that this equation reduces to the standard rate equations when the underlying process is Poissonian and that its stationary solution is determined by an effective transition matrix whose leading eigenvector is easy to calculate. We conduct numerical simulations and also derive analytical results for the stationary solution under the assumption that all edges have the same waiting-time distribution. We discuss the implications of our work for dynamical processes on temporal networks and for the construction of network diagnostics that take into account their nontrivial stochastic nature.
A New Solution for Einstein Field Equation in General Relativity
Mousavi, Sadegh
2006-05-01
There are different solutions for Einstein field equation in general relativity that they have been proposed by different people the most important solutions are Schwarzchild, Reissner Nordstrom, Kerr and Kerr Newmam. However, each one of these solutions limited to special case. I've found a new solution for Einstein field equation which is more complete than all previous ones and this solution contains the previous solutions as its special forms. In this talk I will present my new metric for Einstein field equation and the Christofel symbols and Richi and Rieman tensor components for the new metric that I have calculated them by GR TENSOR software. As a result I will determine the actual movement of black holes which is different From Kerr black hole's movement. Finally this new solution predicts, existence of a new and constant field in the nature (that nobody can found it up to now), so in this talk I will introduce this new field and even I will calculate the amount of this field. SADEGH MOUSAVI, Amirkabir University of Technology.
Semiconservative quasispecies equations for polysomic genomes: The general case
Itan, Eran; Tannenbaum, Emmanuel
2010-06-01
This paper develops a formulation of the quasispecies equations appropriate for polysomic, semiconservatively replicating genomes. This paper is an extension of previous work on the subject, which considered the case of haploid genomes. Here, we develop a more general formulation of the quasispecies equations that is applicable to diploid and even polyploid genomes. Interestingly, with an appropriate classification of population fractions, we obtain a system of equations that is formally identical to the haploid case. As with the work for haploid genomes, we consider both random and immortal DNA strand chromosome segregation mechanisms. However, in contrast to the haploid case, we have found that an analytical solution for the mean fitness is considerably more difficult to obtain for the polyploid case. Accordingly, whereas for the haploid case we obtained expressions for the mean fitness for the case of an analog of the single-fitness-peak landscape for arbitrary lesion repair probabilities (thereby allowing for noncomplementary genomes), here we solve for the mean fitness for the restricted case of perfect lesion repair.
Brownian motion of spins; generalized spin Langevin equation
International Nuclear Information System (INIS)
Jayannavar, A.M.
1990-03-01
We derive the Langevin equations for a spin interacting with a heat bath, starting from a fully dynamical treatment. The obtained equations are non-Markovian with multiplicative fluctuations and concomitant dissipative terms obeying the fluctuation-dissipation theorem. In the Markovian limit our equations reduce to the phenomenological equations proposed by Kubo and Hashitsume. The perturbative treatment on our equations lead to Landau-Lifshitz equations and to other known results in the literature. (author). 16 refs
International Nuclear Information System (INIS)
Guo, Shimin; Mei, Liquan; Li, Ying; Sun, Youfa
2012-01-01
By introducing a new general ansätz, the improved fractional sub-equation method is proposed to construct analytical solutions of nonlinear evolution equations involving Jumarie's modified Riemann–Liouville derivative. By means of this method, the space–time fractional Whitham–Broer–Kaup and generalized Hirota–Satsuma coupled KdV equations are successfully solved. The obtained results show that the proposed method is quite effective, promising and convenient for solving nonlinear fractional differential equations. -- Highlights: ► We propose a novel method for nonlinear fractional differential equations. ► Two important fractional differential equations in fluid mechanics are solved successfully. ► Some new exact solutions of the fractional differential equations are obtained. ► These solutions will advance the understanding of nonlinear physical phenomena.
Herschlag, Gregory J; Mitran, Sorin; Lin, Guang
2015-06-21
We develop a hierarchy of approximations to the master equation for systems that exhibit translational invariance and finite-range spatial correlation. Each approximation within the hierarchy is a set of ordinary differential equations that considers spatial correlations of varying lattice distance; the assumption is that the full system will have finite spatial correlations and thus the behavior of the models within the hierarchy will approach that of the full system. We provide evidence of this convergence in the context of one- and two-dimensional numerical examples. Lower levels within the hierarchy that consider shorter spatial correlations are shown to be up to three orders of magnitude faster than traditional kinetic Monte Carlo methods (KMC) for one-dimensional systems, while predicting similar system dynamics and steady states as KMC methods. We then test the hierarchy on a two-dimensional model for the oxidation of CO on RuO2(110), showing that low-order truncations of the hierarchy efficiently capture the essential system dynamics. By considering sequences of models in the hierarchy that account for longer spatial correlations, successive model predictions may be used to establish empirical approximation of error estimates. The hierarchy may be thought of as a class of generalized phenomenological kinetic models since each element of the hierarchy approximates the master equation and the lowest level in the hierarchy is identical to a simple existing phenomenological kinetic models.
Simple Numerical Schemes for the Korteweg-deVries Equation
International Nuclear Information System (INIS)
McKinstrie, C. J.; Kozlov, M.V.
2000-01-01
Two numerical schemes, which simulate the propagation of dispersive non-linear waves, are described. The first is a split-step Fourier scheme for the Korteweg-de Vries (KdV) equation. The second is a finite-difference scheme for the modified KdV equation. The stability and accuracy of both schemes are discussed. These simple schemes can be used to study a wide variety of physical processes that involve dispersive nonlinear waves
Simple Numerical Schemes for the Korteweg-deVries Equation
Energy Technology Data Exchange (ETDEWEB)
C. J. McKinstrie; M. V. Kozlov
2000-12-01
Two numerical schemes, which simulate the propagation of dispersive non-linear waves, are described. The first is a split-step Fourier scheme for the Korteweg-de Vries (KdV) equation. The second is a finite-difference scheme for the modified KdV equation. The stability and accuracy of both schemes are discussed. These simple schemes can be used to study a wide variety of physical processes that involve dispersive nonlinear waves.
Generalized multiscale finite element method for elasticity equations
Chung, Eric T.
2014-10-05
In this paper, we discuss the application of generalized multiscale finite element method (GMsFEM) to elasticity equation in heterogeneous media. We consider steady state elasticity equations though some of our applications are motivated by elastic wave propagation in subsurface where the subsurface properties can be highly heterogeneous and have high contrast. We present the construction of main ingredients for GMsFEM such as the snapshot space and offline spaces. The latter is constructed using local spectral decomposition in the snapshot space. The spectral decomposition is based on the analysis which is provided in the paper. We consider both continuous Galerkin and discontinuous Galerkin coupling of basis functions. Both approaches have their cons and pros. Continuous Galerkin methods allow avoiding penalty parameters though they involve partition of unity functions which can alter the properties of multiscale basis functions. On the other hand, discontinuous Galerkin techniques allow gluing multiscale basis functions without any modifications. Because basis functions are constructed independently from each other, this approach provides an advantage. We discuss the use of oversampling techniques that use snapshots in larger regions to construct the offline space. We provide numerical results to show that one can accurately approximate the solution using reduced number of degrees of freedom.
Explicit Solutions for Generalized (2+1)-Dimensional Nonlinear Zakharov-Kuznetsov Equation
International Nuclear Information System (INIS)
Sun Yuhuai; Ma Zhimin; Li Yan
2010-01-01
The exact solutions of the generalized (2+1)-dimensional nonlinear Zakharov-Kuznetsov (Z-K) equation are explored by the method of the improved generalized auxiliary differential equation. Many explicit analytic solutions of the Z-K equation are obtained. The methods used to solve the Z-K equation can be employed in further work to establish new solutions for other nonlinear partial differential equations. (general)
Particular solutions of generalized Euler-Poisson-Darboux equation
Directory of Open Access Journals (Sweden)
Rakhila B. Seilkhanova
2015-01-01
Full Text Available In this article we consider the generalized Euler-Poisson-Darboux equation $$ {u}_{tt}+\\frac{2\\gamma }{t}{{u}_{t}}={u}_{xx}+{u}_{yy} +\\frac{2\\alpha }{x}{{u}_{x}}+\\frac{2\\beta }{y}{{u}_y},\\quad x>0,\\;y>0,\\;t>0. $$ We construct particular solutions in an explicit form expressed by the Lauricella hypergeometric function of three variables. Properties of each constructed solutions have been investigated in sections of surfaces of the characteristic cone. Precisely, we prove that found solutions have singularity $1/r$ at $r\\to 0$, where ${{r}^2}={{( x-{{x}_0}}^2}+{{( y-{{y}_0}}^2}-{{( t-{{t}_0}}^2}$.
On the General Analytical Solution of the Kinematic Cosserat Equations
Michels, Dominik L.
2016-09-01
Based on a Lie symmetry analysis, we construct a closed form solution to the kinematic part of the (partial differential) Cosserat equations describing the mechanical behavior of elastic rods. The solution depends on two arbitrary analytical vector functions and is analytical everywhere except a certain domain of the independent variables in which one of the arbitrary vector functions satisfies a simple explicitly given algebraic relation. As our main theoretical result, in addition to the construction of the solution, we proof its generality. Based on this observation, a hybrid semi-analytical solver for highly viscous two-way coupled fluid-rod problems is developed which allows for the interactive high-fidelity simulations of flagellated microswimmers as a result of a substantial reduction of the numerical stiffness.
A generalized trial solution method for solving the aerosol equation
International Nuclear Information System (INIS)
Simons, S.; Simpson, D.R.
1988-01-01
It is shown how the introduction of orthogonal functions together with a time-dependent scaling factor may be used to develop a generalized trial solution method for tackling the aerosol equation. The approach is worked out in detail for the case where the initial particle size spectrum follows a γ-distribution, and it is shown to be a viable technique as long as the initial volume fraction of particulate material is not too large. The method is applied to several situations of interest, and is shown to give more accurate results (with marginally shorter computing times) than are given by the three-parameter log-normal or γ distribution trial functions. (author)
Explicit estimating equations for semiparametric generalized linear latent variable models
Ma, Yanyuan
2010-07-05
We study generalized linear latent variable models without requiring a distributional assumption of the latent variables. Using a geometric approach, we derive consistent semiparametric estimators. We demonstrate that these models have a property which is similar to that of a sufficient complete statistic, which enables us to simplify the estimating procedure and explicitly to formulate the semiparametric estimating equations. We further show that the explicit estimators have the usual root n consistency and asymptotic normality. We explain the computational implementation of our method and illustrate the numerical performance of the estimators in finite sample situations via extensive simulation studies. The advantage of our estimators over the existing likelihood approach is also shown via numerical comparison. We employ the method to analyse a real data example from economics. © 2010 Royal Statistical Society.
Working covariance model selection for generalized estimating equations.
Carey, Vincent J; Wang, You-Gan
2011-11-20
We investigate methods for data-based selection of working covariance models in the analysis of correlated data with generalized estimating equations. We study two selection criteria: Gaussian pseudolikelihood and a geodesic distance based on discrepancy between model-sensitive and model-robust regression parameter covariance estimators. The Gaussian pseudolikelihood is found in simulation to be reasonably sensitive for several response distributions and noncanonical mean-variance relations for longitudinal data. Application is also made to a clinical dataset. Assessment of adequacy of both correlation and variance models for longitudinal data should be routine in applications, and we describe open-source software supporting this practice. Copyright © 2011 John Wiley & Sons, Ltd.
On the General Analytical Solution of the Kinematic Cosserat Equations
Michels, Dominik L.; Lyakhov, Dmitry; Gerdt, Vladimir P.; Hossain, Zahid; Riedel-Kruse, Ingmar H.; Weber, Andreas G.
2016-01-01
Based on a Lie symmetry analysis, we construct a closed form solution to the kinematic part of the (partial differential) Cosserat equations describing the mechanical behavior of elastic rods. The solution depends on two arbitrary analytical vector functions and is analytical everywhere except a certain domain of the independent variables in which one of the arbitrary vector functions satisfies a simple explicitly given algebraic relation. As our main theoretical result, in addition to the construction of the solution, we proof its generality. Based on this observation, a hybrid semi-analytical solver for highly viscous two-way coupled fluid-rod problems is developed which allows for the interactive high-fidelity simulations of flagellated microswimmers as a result of a substantial reduction of the numerical stiffness.
David. C. Chojnacky
2012-01-01
An update of the Jenkins et al. (2003) biomass estimation equations for North American tree species resulted in 35 generalized equations developed from published equations. These 35 equations, which predict aboveground biomass of individual species grouped according to a taxa classification (based on genus or family and sometimes specific gravity), generally predicted...
Exact solutions of nonlinear generalizations of the Klein Gordon and Schrodinger equations
International Nuclear Information System (INIS)
Burt, P.B.
1978-01-01
Exact solutions of sine Gordon and multiple sine Gordon equations are constructed in terms of solutions of a linear base equation, the Klein Gordon equation and also in terms of nonlinear base equations where the nonlinearity is polynomial in the dependent variable. Further, exact solutions of nonlinear generalizations of the Schrodinger equation and of additional nonlinear generalizations of the Klein Gordon equation are constructed in terms of solutions of linear base equations. Finally, solutions with spherical symmetry, of nonlinear Klein Gordon equations are given. 14 references
Liouville's equation and radiative acceleration in general relativity
International Nuclear Information System (INIS)
Keane, A.J.
1999-01-01
This thesis examines thoroughly the general motion of a material charged particle in the intense radiation field of a static spherically symmetric compact object with spherical emitting surface outside the Schwarzschild radius. Such a test particle will be pulled in by the gravitational attraction of the compact object and pushed out by the radiation pressure force, therefore the types of trajectory admitted will depend the gravitational field, the radiation field and the particle cross-section. The presence of a strong gravitational field demands a fully general relativistic treatment of the problem. This type of calculation is interesting not only as a formal problem in general relativity but also since it has important astrophysical implications, for example, application to astrophysical discs and jets. In chapter 1 we review the classical radiation force problem and outline the transition to a fully general relativistic scenario. We discuss the method for obtaining the radiation pressure force and calculating the particle trajectories. We review previous work in this area and outline the aims of the thesis. Then we consider some astrophysical applications and discuss how realistic our calculations are. In chapter 2 we give an introduction and overview of differential geometry as this is necessary for an accurate description of tensors on a curved manifold. Then we review the general theory of relativity and in particular obtain the Schwarzschild metric describing a static spherically symmetric vacuum spacetime. Chapter 3 deals with test particle motion through a curved spacetime. Liouville's equation describes the statistical distribution in phase space of a collection of test particles and is based upon a Hamiltonian formulation of the dynamical system - this material also relies heavily upon the concepts of differential geometry introduced in chapter 2. In particular we are interested in photon transport and find the general solutions for some symmetric
Generalization of the nuclear equation of state to nonequilibrium states
International Nuclear Information System (INIS)
Neise, L.W.
1990-10-01
In this thesis it was shown, how the thermodynamic terms can be generalized, so that they are also still applicable in nonequilibrium states. Thereby the method with a generalized grand canonical potential presented here is also applicable to two mutually steadily streaming through parts of nuclear matter. The momentum anisotropy is described by a parameter which enters the equation of state quite similarly as for instance the temperature. While now in a purely position-dependent microscopical interaction a momentum anisotropy only means an additional additive kinetic energy, momentum-dependent forces, as they play a role in nucleus-nucleus collisions, lead to complicated connections, which were analyzed in this thesis. An important advance of the procedure presented here is the relativistic formulation, which allows to study also large momentum anisotropies respectively large relative flow velocities. It could be shown that the formation of delta matter is forced by a momentum anisotropy. Especially interesting is the influence of a momentum anisotropy on the phase transition between hadronic matter and a quark-gluon plasma. (orig./HSI) [de
General-relativistic celestial mechanics. II. Translational equations of motion
International Nuclear Information System (INIS)
Damour, T.; Soffel, M.; Xu, C.
1992-01-01
The translational laws of motion for gravitationally interacting systems of N arbitrarily composed and shaped, weakly self-gravitating, rotating, deformable bodies are obtained at the first post-Newtonian approximation of general relativity. The derivation uses our recently introduced multi-reference-system method and obtains the translational laws of motion by writing that, in the local center-of-mass frame of each body, relativistic inertial effects combine with post-Newtonian self- and externally generated gravitational forces to produce a global equilibrium (relativistic generalization of d'Alembert's principle). Within the first post-Newtonian approximation [i.e., neglecting terms of order (v/c) 4 in the equations of motion], our work is the first to obtain complete and explicit results, in the form of infinite series, for the laws of motion of arbitrarily composed and shaped bodies. We first obtain the laws of motion of each body as an infinite series exhibiting the coupling of all the (Blanchet-Damour) post-Newtonian multipole moments of this body to the post-Newtonian tidal moments (recently defined by us) felt by this body. We then give the explicit expression of these tidal moments in terms of post-Newtonian multipole moments of the other bodies
A General Linear Method for Equating with Small Samples
Albano, Anthony D.
2015-01-01
Research on equating with small samples has shown that methods with stronger assumptions and fewer statistical estimates can lead to decreased error in the estimated equating function. This article introduces a new approach to linear observed-score equating, one which provides flexible control over how form difficulty is assumed versus estimated…
General solutions of second-order linear difference equations of Euler type
Directory of Open Access Journals (Sweden)
Akane Hongyo
2017-01-01
Full Text Available The purpose of this paper is to give general solutions of linear difference equations which are related to the Euler-Cauchy differential equation \\(y^{\\prime\\prime}+(\\lambda/t^2y=0\\ or more general linear differential equations. We also show that the asymptotic behavior of solutions of the linear difference equations are similar to solutions of the linear differential equations.
Equations of motion derived from a generalization of Einstein's equation for the gravitational field
International Nuclear Information System (INIS)
Mociutchi, C.
1980-01-01
The extended Einstein's equation, combined with a vectorial theory of maxwellian type of the gravitational field, leads to: a) the equation of motion; b) the equation of the trajectory for the static case of spherical symmetry, the test particle having a rest mass other than zero, and c) the propagation of light on null geodesics. All the basic tests of the theory given by Einstein's extended equation. Thus, the new theory of gravitation suggested by us is competitive. (author)
Nonlinear integrodifferential equations as discrete systems
Tamizhmani, K. M.; Satsuma, J.; Grammaticos, B.; Ramani, A.
1999-06-01
We analyse a class of integrodifferential equations of the `intermediate long wave' (ILW) type. We show that these equations can be formally interpreted as discrete, differential-difference systems. This allows us to link equations of this type with previous results of ours involving differential-delay equations and, on the basis of this, propose new integrable equations of ILW type. Finally, we extend this approach to pure difference equations and propose ILW forms for the discrete lattice KdV equation.
Generalized structural equations improve sexual-selection analyses.
Directory of Open Access Journals (Sweden)
Sonia Lombardi
Full Text Available Sexual selection is an intense evolutionary force, which operates through competition for the access to breeding resources. There are many cases where male copulatory success is highly asymmetric, and few males are able to sire most females. Two main hypotheses were proposed to explain this asymmetry: "female choice" and "male dominance". The literature reports contrasting results. This variability may reflect actual differences among studied populations, but it may also be generated by methodological differences and statistical shortcomings in data analysis. A review of the statistical methods used so far in lek studies, shows a prevalence of Linear Models (LM and Generalized Linear Models (GLM which may be affected by problems in inferring cause-effect relationships; multi-collinearity among explanatory variables and erroneous handling of non-normal and non-continuous distributions of the response variable. In lek breeding, selective pressure is maximal, because large numbers of males and females congregate in small arenas. We used a dataset on lekking fallow deer (Dama dama, to contrast the methods and procedures employed so far, and we propose a novel approach based on Generalized Structural Equations Models (GSEMs. GSEMs combine the power and flexibility of both SEM and GLM in a unified modeling framework. We showed that LMs fail to identify several important predictors of male copulatory success and yields very imprecise parameter estimates. Minor variations in data transformation yield wide changes in results and the method appears unreliable. GLMs improved the analysis, but GSEMs provided better results, because the use of latent variables decreases the impact of measurement errors. Using GSEMs, we were able to test contrasting hypotheses and calculate both direct and indirect effects, and we reached a high precision of the estimates, which implies a high predictive ability. In synthesis, we recommend the use of GSEMs in studies on
Generalization of the Dirac’s Equation and Sea
DEFF Research Database (Denmark)
Javadi, Hossein; Forouzbakhsh, Farshid; Daei Kasmaei, Hamed
2016-01-01
Newton's second law is motion equation in classic mechanics that does not say anything about the nature of force. The equivalent formulations and their extensions such as Lagrangian and Hamiltonian do not explain about mechanism of converting Potential energy to Kinetic energy and Vice versa....... In quantum mechanics, Schrodinger equation is similar to Newton's second law in classic mechanics. Quantum mechanics is also extension of Newtonian mechanics to atomic and subatomic scales and relativistic mechanics is extension of Newtonian mechanics to high velocities near to velocity of light too....... Schrodinger equation is not a relativistic equation, because it is not invariant under Lorentz transformations. Dirac expanded The Schrodinger equation by presenting Dirac Sea and founded relativistic quantum mechanics. In this paper by reconsidering the Dirac Sea and his equation, the structure of photon...
Food Web Assembly Rules for Generalized Lotka-Volterra Equations.
Directory of Open Access Journals (Sweden)
Jan O Haerter
2016-02-01
Full Text Available In food webs, many interacting species coexist despite the restrictions imposed by the competitive exclusion principle and apparent competition. For the generalized Lotka-Volterra equations, sustainable coexistence necessitates nonzero determinant of the interaction matrix. Here we show that this requirement is equivalent to demanding that each species be part of a non-overlapping pairing, which substantially constrains the food web structure. We demonstrate that a stable food web can always be obtained if a non-overlapping pairing exists. If it does not, the matrix rank can be used to quantify the lack of niches, corresponding to unpaired species. For the species richness at each trophic level, we derive the food web assembly rules, which specify sustainable combinations. In neighboring levels, these rules allow the higher level to avert competitive exclusion at the lower, thereby incorporating apparent competition. In agreement with data, the assembly rules predict high species numbers at intermediate levels and thinning at the top and bottom. Using comprehensive food web data, we demonstrate how omnivores or parasites with hosts at multiple trophic levels can loosen the constraints and help obtain coexistence in food webs. Hence, omnivory may be the glue that keeps communities intact even under extinction or ecological release of species.
Food Web Assembly Rules for Generalized Lotka-Volterra Equations.
Haerter, Jan O; Mitarai, Namiko; Sneppen, Kim
2016-02-01
In food webs, many interacting species coexist despite the restrictions imposed by the competitive exclusion principle and apparent competition. For the generalized Lotka-Volterra equations, sustainable coexistence necessitates nonzero determinant of the interaction matrix. Here we show that this requirement is equivalent to demanding that each species be part of a non-overlapping pairing, which substantially constrains the food web structure. We demonstrate that a stable food web can always be obtained if a non-overlapping pairing exists. If it does not, the matrix rank can be used to quantify the lack of niches, corresponding to unpaired species. For the species richness at each trophic level, we derive the food web assembly rules, which specify sustainable combinations. In neighboring levels, these rules allow the higher level to avert competitive exclusion at the lower, thereby incorporating apparent competition. In agreement with data, the assembly rules predict high species numbers at intermediate levels and thinning at the top and bottom. Using comprehensive food web data, we demonstrate how omnivores or parasites with hosts at multiple trophic levels can loosen the constraints and help obtain coexistence in food webs. Hence, omnivory may be the glue that keeps communities intact even under extinction or ecological release of species.
Bogomolny equations in certain generalized baby BPS Skyrme models
Stępień, Ł. T.
2018-01-01
By using the concept of strong necessary conditions (CSNCs), we derive Bogomolny equations and Bogomol’nyi-Prasad-Sommerfield (BPS) bounds for two certain modifications of the baby BPS Skyrme model: the nonminimal coupling to the gauge field and the k-deformed ungauged model. In particular, we study how the Bogomolny equations and the equation for the potential reflect these two modifications. In both examples, the CSNC method appears to be a very useful tool. We also find certain localized solutions of these Bogomolny equations.
International Nuclear Information System (INIS)
Zhang Liang; Zhang Lifeng; Li Chongyin
2008-01-01
By using the modified mapping method, we find some new exact solutions of the generalized Boussinesq equation and the Boussinesq-Burgers equation. The solutions obtained in this paper include Jacobian elliptic function solutions, combined Jacobian elliptic function solutions, soliton solutions, triangular function solutions
Mathieu's Equation and its Generalizations: Overview of Stability Charts and their Features
DEFF Research Database (Denmark)
Kovacic, Ivana; Rand, Richard H.; Sah, Si Mohamed
2018-01-01
This work is concerned with Mathieu's equation - a classical differential equation, which has the form of a linear second-order ordinary differential equation with Cosine-type periodic forcing of the stiffness coefficient, and its different generalizations/extensions. These extensions include...... and features, and how it differs from that of the classical Mathieu's equation....
Classification of exact solutions to the generalized Kadomtsev-Petviashvili equation
International Nuclear Information System (INIS)
Pandir, Yusuf; Gurefe, Yusuf; Misirli, Emine
2013-01-01
In this paper, we study the Kadomtsev-Petviashvili equation with generalized evolution and derive some new results using the approach called the trial equation method. The obtained results can be expressed by the soliton solutions, rational function solutions, elliptic function solutions and Jacobi elliptic function solutions. In the discussion, we give a new version of the trial equation method for nonlinear differential equations.
Evaluation of time correlation functions from a generalized Enskog equation
Energy Technology Data Exchange (ETDEWEB)
Yip, S.; Alley, W.E.; Alder, B.J.
1982-01-01
Numerical results for the density and current correlation functions in dense hard-shape fluids are obtained from a kinetic equation which is the extension of the linearized Enskog equation to finite wavelengths in order to demonstrate the convergence of the method of solution. Comparison is made to a previously proposed approximate solution.
Evaluation of time correlation functions from a generalized Enskog equation
International Nuclear Information System (INIS)
Yip, S.; Alley, W.E.; Alder, B.J.
1982-01-01
Numerical results for the density and current correlation functions in dense hard-shape fluids are obtained from a kinetic equation which is the extension of the linearized Enskog equation to finite wavelengths in order to demonstrate the convergence of the method of solution. Comparison is made to a previously proposed approximate solution
Exact Solution of a Generalized Nonlinear Schrodinger Equation Dimer
DEFF Research Database (Denmark)
Christiansen, Peter Leth; Maniadis, P.; Tsironis, G.P.
1998-01-01
We present exact solutions for a nonlinear dimer system defined throught a discrete nonlinear Schrodinger equation that contains also an integrable Ablowitz-Ladik term. The solutions are obtained throught a transformation that maps the dimer into a double Sine-Gordon like ordinary nonlinear...... differential equation....
Generalized ordinary differential equations not absolutely continuous solutions
Kurzweil, Jaroslav
2012-01-01
This book provides a systematic treatment of the Volterra integral equation by means of a modern integration theory which extends considerably the field of differential equations. It contains many new concepts and results in the framework of a unifying theory. In particular, this new approach is suitable in situations where fast oscillations occur.
International Nuclear Information System (INIS)
Delhaye, J.M.
1968-12-01
This report deals with the general equations of mass conservation, of momentum conservation, and energy conservation in the case of a two-phase flow. These equations are presented in several forms starting from integral equations which are assumed initially a priori. 1. Equations with local instantaneous variables, and interfacial conditions; 2. Equations with mean instantaneous variables in a cross-section, and practical applications: these equations include an important experimental value which is the ratio of the cross-section of passage of one phase to the total cross-section of a flow-tube. 3. Equations with a local statistical mean, and equations averaged over a period of time: A more advanced attempt to relate theory and experiment consists in taking the statistical averages of local equations. Equations are then obtained involving variables which are averaged over a period of time with the help of an ergodic assumption. 4. Combination of statistical averages and averages over a cross-section: in this study are considered the local variables averaged statistically, then averaged over the cross-section, and also the variables averaged over the section and then averaged statistically. 5. General equations concerning emulsions: In this case a phase exists in a locally very finely divided form. This peculiarity makes it possible to define a volume concentration, and to draw up equations which have numerous applications. - Certain points arising in the first part of this report concerning general mass conservation equations for two-phase flow have been completed and clarified. The terms corresponding to the interfacial tension have been introduced into the general equations. The interfacial conditions have thus been generalized. A supplementary step has still to be carried out: it has, in effect, been impossible to take the interfacial tension into account in the case of emulsions. It was then appeared interesting to compare this large group of fundamental
Directory of Open Access Journals (Sweden)
Wansheng Wang
2010-01-01
Full Text Available This paper is devoted to generalize Halanay's inequality which plays an important rule in study of stability of differential equations. By applying the generalized Halanay inequality, the stability results of nonlinear neutral functional differential equations (NFDEs and nonlinear neutral delay integrodifferential equations (NDIDEs are obtained.
International Nuclear Information System (INIS)
Angilella, G.G.N.; Pucci, R.; March, N.H.
2004-01-01
We give here the derivation of a Gross-Pitaevskii-type equation for inhomogeneous condensed bosons. Instead of the original Gross-Pitaevskii differential equation, we obtain an integral equation that implies less restrictive assumptions than are made in the very recent study of Pieri and Strinati [Phys. Rev. Lett. 91, 030401 (2003)]. In particular, the Thomas-Fermi approximation and the restriction to small spatial variations of the order parameter invoked in their study are avoided
Considerations concering the generalization of the Dirac equations to unstable fermions
International Nuclear Information System (INIS)
Kniehl, Bernd A.; Sirlin, Alberto
2014-08-01
We discuss the generalization of the Dirac equations and spinors in momentum space to free unstable spin-1/2 fermions taking into account the fundamental requirement of Lorentz covariance. We derive the generalized adjoint Dirac equations and spinors, and explain the very simple relation that exists, in our formulation, between the unstable and stable cases. As an application of the generalized spinors, we evaluate the probability density. We also discuss the behavior of the generalized Dirac equations under time reversal.
Energy Technology Data Exchange (ETDEWEB)
Delhaye, J M [Commissariat a l' Energie Atomique, 38 - Grenoble (France). Centre d' Etudes Nucleaires
1968-12-01
This report deals with the general equations of mass conservation, of momentum conservation, and energy conservation in the case of a two-phase flow. These equations are presented in several forms starting from integral equations which are assumed initially a priori. 1. Equations with local instantaneous variables, and interfacial conditions; 2. Equations with mean instantaneous variables in a cross-section, and practical applications: these equations include an important experimental value which is the ratio of the cross-section of passage of one phase to the total cross-section of a flow-tube. 3. Equations with a local statistical mean, and equations averaged over a period of time: A more advanced attempt to relate theory and experiment consists in taking the statistical averages of local equations. Equations are then obtained involving variables which are averaged over a period of time with the help of an ergodic assumption. 4. Combination of statistical averages and averages over a cross-section: in this study are considered the local variables averaged statistically, then averaged over the cross-section, and also the variables averaged over the section and then averaged statistically. 5. General equations concerning emulsions: In this case a phase exists in a locally very finely divided form. This peculiarity makes it possible to define a volume concentration, and to draw up equations which have numerous applications. - Certain points arising in the first part of this report concerning general mass conservation equations for two-phase flow have been completed and clarified. The terms corresponding to the interfacial tension have been introduced into the general equations. The interfacial conditions have thus been generalized. A supplementary step has still to be carried out: it has, in effect, been impossible to take the interfacial tension into account in the case of emulsions. It was then appeared interesting to compare this large group of fundamental
Energy Technology Data Exchange (ETDEWEB)
Delhaye, J.M. [Commissariat a l' Energie Atomique, 38 - Grenoble (France). Centre d' Etudes Nucleaires
1968-12-01
This report deals with the general equations of mass conservation, of momentum conservation, and energy conservation in the case of a two-phase flow. These equations are presented in several forms starting from integral equations which are assumed initially a priori. 1. Equations with local instantaneous variables, and interfacial conditions; 2. Equations with mean instantaneous variables in a cross-section, and practical applications: these equations include an important experimental value which is the ratio of the cross-section of passage of one phase to the total cross-section of a flow-tube. 3. Equations with a local statistical mean, and equations averaged over a period of time: A more advanced attempt to relate theory and experiment consists in taking the statistical averages of local equations. Equations are then obtained involving variables which are averaged over a period of time with the help of an ergodic assumption. 4. Combination of statistical averages and averages over a cross-section: in this study are considered the local variables averaged statistically, then averaged over the cross-section, and also the variables averaged over the section and then averaged statistically. 5. General equations concerning emulsions: In this case a phase exists in a locally very finely divided form. This peculiarity makes it possible to define a volume concentration, and to draw up equations which have numerous applications. - Certain points arising in the first part of this report concerning general mass conservation equations for two-phase flow have been completed and clarified. The terms corresponding to the interfacial tension have been introduced into the general equations. The interfacial conditions have thus been generalized. A supplementary step has still to be carried out: it has, in effect, been impossible to take the interfacial tension into account in the case of emulsions. It was then appeared interesting to compare this large group of fundamental
Martini, Ruud; Kersten, P.H.M.
1983-01-01
Using 1-1 mappings, the complete symmetry groups of contact transformations of general linear second-order ordinary differential equations are determined from two independent solutions of those equations, and applied to the harmonic oscillator with and without damping.
The generalized tanh method to obtain exact solutions of nonlinear partial differential equation
Gómez, César
2007-01-01
In this paper, we present the generalized tanh method to obtain exact solutions of nonlinear partial differential equations, and we obtain solitons and exact solutions of some important equations of the mathematical physics.
Explicit estimating equations for semiparametric generalized linear latent variable models
Ma, Yanyuan; Genton, Marc G.
2010-01-01
which is similar to that of a sufficient complete statistic, which enables us to simplify the estimating procedure and explicitly to formulate the semiparametric estimating equations. We further show that the explicit estimators have the usual root n
Classes of general axisymmetric solutions of Einstein-Maxwell equations
International Nuclear Information System (INIS)
Krori, K.D.; Choudhury, T.
1981-01-01
An exact solution of the Einstein equations for a stationary axially symmetric distribution of mass composed of all types of multipoles is obtained. Following Ernst (1968), from this vacuum solution the corresponding solution of the coupled Einstein-Maxwell equations is derived. A solution of Einstein-Maxwell fields for a static axially symmetric system composed of all types of multipoles is also obtained. (author)
International Nuclear Information System (INIS)
Zhitnikov, V.V.; Ponomarev, V.N.
1986-01-01
An attempt is made to compare the solution of field equations, corresponding to quadratic equations for the fields (g μν , Γ μν α ) in gauge gravitation theory (GGT) with general relativity theory solutions. Without restrictions for a concrete type of metrics only solutions of equations, for which torsion turns to zero, are considered. Equivalence of vacuum equations of gauge quadratic theory of gravity and general relativity theory is proved using the Newman-Penrose formalism
Comment on connections between nonlinear evolution equations
International Nuclear Information System (INIS)
Fuchssteiner, B.; Hefter, E.F.
1981-01-01
An open problem raised in a recent paper by Chodos is treated. We explain the reason for the interrelation between the conservation laws of the Korteweg-de Vries (KdV) and sine-Gordon equations. We point out that it is due to a corresponding connection between the infinite-dimensional Abelian symmetry groups of these equations. While it has been known for a long time that a Baecklund transformation (in this case the Miura transformation) connects corresponding members of the KdV and the sine-Gordon families, it is quite obvious that no Baecklund transformation can exist between different members of these families. And since the KdV and sine-Gordon equations do not correspond to each other, one cannot expect a Baecklund transformation between them; nevertheless we can give explicit relations between their two-soliton solutions. No inverse scattering techniques are used in this paper
Analytic method for solitary solutions of some partial differential equations
Energy Technology Data Exchange (ETDEWEB)
Ugurlu, Yavuz [Firat University, Department of Mathematics, 23119 Elazig (Turkey); Kaya, Dogan [Firat University, Department of Mathematics, 23119 Elazig (Turkey)], E-mail: dkaya@firat.edu.tr
2007-10-22
In this Letter by considering an improved tanh function method, we found some exact solutions of the clannish random walker's parabolic equation, the modified Korteweg-de Vries (KdV) equation, and the Sharma-Tasso-Olver (STO) equation with its fission and fusion, the Jaulent-Miodek equation.
Analytic method for solitary solutions of some partial differential equations
International Nuclear Information System (INIS)
Ugurlu, Yavuz; Kaya, Dogan
2007-01-01
In this Letter by considering an improved tanh function method, we found some exact solutions of the clannish random walker's parabolic equation, the modified Korteweg-de Vries (KdV) equation, and the Sharma-Tasso-Olver (STO) equation with its fission and fusion, the Jaulent-Miodek equation
Dark energy cosmology with generalized linear equation of state
International Nuclear Information System (INIS)
Babichev, E; Dokuchaev, V; Eroshenko, Yu
2005-01-01
Dark energy with the usually used equation of state p = wρ, where w const 0 ), where the constants α and ρ 0 are free parameters. This non-homogeneous linear equation of state provides the description of both hydrodynamically stable (α > 0) and unstable (α < 0) fluids. In particular, the considered cosmological model describes the hydrodynamically stable dark (and phantom) energy. The possible types of cosmological scenarios in this model are determined and classified in terms of attractors and unstable points by using phase trajectories analysis. For the dark energy case, some distinctive types of cosmological scenarios are possible: (i) the universe with the de Sitter attractor at late times, (ii) the bouncing universe, (iii) the universe with the big rip and with the anti-big rip. In the framework of a linear equation of state the universe filled with a phantom energy, w < -1, may have either the de Sitter attractor or the big rip
Travelling Solitary Wave Solutions for Generalized Time-delayed Burgers-Fisher Equation
International Nuclear Information System (INIS)
Deng Xijun; Han Libo; Li Xi
2009-01-01
In this paper, travelling wave solutions for the generalized time-delayed Burgers-Fisher equation are studied. By using the first-integral method, which is based on the ring theory of commutative algebra, we obtain a class of travelling solitary wave solutions for the generalized time-delayed Burgers-Fisher equation. A minor error in the previous article is clarified. (general)
Generalized Freud's equation and level densities with polynomial potential
Boobna, Akshat; Ghosh, Saugata
2013-08-01
We study orthogonal polynomials with weight $\\exp[-NV(x)]$, where $V(x)=\\sum_{k=1}^{d}a_{2k}x^{2k}/2k$ is a polynomial of order 2d. We derive the generalised Freud's equations for $d=3$, 4 and 5 and using this obtain $R_{\\mu}=h_{\\mu}/h_{\\mu -1}$, where $h_{\\mu}$ is the normalization constant for the corresponding orthogonal polynomials. Moments of the density functions, expressed in terms of $R_{\\mu}$, are obtained using Freud's equation and using this, explicit results of level densities as $N\\rightarrow\\infty$ are derived.
Invariants for the generalized Lotka-Volterra equations
Cairó, Laurent; Feix, Marc R.; Goedert, Joao
A generalisation of Lotka-Volterra System is given when self limiting terms are introduced in the model. We use a modification of the Carleman embedding method to find invariants for this system of equations. The position and stability of the equilibrium point and the regression of system under invariant conditions are studied.
Exact solutions of the one-dimensional generalized modified complex Ginzburg-Landau equation
International Nuclear Information System (INIS)
Yomba, Emmanuel; Kofane, Timoleon Crepin
2003-01-01
The one-dimensional (1D) generalized modified complex Ginzburg-Landau (MCGL) equation for the traveling wave systems is analytically studied. Exact solutions of this equation are obtained using a method which combines the Painleve test for integrability in the formalism of Weiss-Tabor-Carnevale and Hirota technique of bilinearization. We show that pulses, fronts, periodic unbounded waves, sources, sinks and solution as collision between two fronts are the important coherent structures that organize much of the dynamical properties of these traveling wave systems. The degeneracies of the 1D generalized MCGL equation are examined as well as several of their solutions. These degeneracies include two important equations: the 1D generalized modified Schroedinger equation and the 1D generalized real modified Ginzburg-Landau equation. We obtain that the one parameter family of traveling localized source solutions called 'Nozaki-Bekki holes' become a subfamily of the dark soliton solutions in the 1D generalized modified Schroedinger limit
Generalized internal long wave equations: construction, hamiltonian structure and conservation laws
International Nuclear Information System (INIS)
Lebedev, D.R.
1982-01-01
Some aspects of the theory of the internal long-wave equations (ILW) are considered. A general class of the ILW type equations is constructed by means of the Zakharov-Shabat ''dressing'' method. Hamiltonian structure and infinite numbers of conservation laws are introduced. The considered equations are shown to be Hamiltonian in the so-called second Hamiltonian structu
A new multi-symplectic scheme for the generalized Kadomtsev-Petviashvili equation
Li, Haochen; Sun, Jianqiang
2012-09-01
We propose a new scheme for the generalized Kadomtsev-Petviashvili (KP) equation. The multi-symplectic conservation property of the new scheme is proved. Back error analysis shows that the new multi-symplectic scheme has second order accuracy in space and time. Numerical application on studying the KPI equation and the KPII equation are presented in detail.
Peakons, solitary patterns and periodic solutions for generalized Camassa-Holm equations
International Nuclear Information System (INIS)
Zheng Yin; Lai Shaoyong
2008-01-01
This Letter deals with a generalized Camassa-Holm equation and a nonlinear dispersive equation by making use of a mathematical technique based on using integral factors for solving differential equations. The peakons, solitary patterns and periodic solutions are expressed analytically under various circumstances. The conditions that cause the qualitative change in the physical structures of the solutions are highlighted
Conservation form of the equations of fluid dynamics in general nonsteady coordinates
Zhang, H.; Camarero, R.; Kahawita, R.
1985-11-01
Many of the differential equations arising in fluid dynamics may be stated in conservation-law form. A number of investigations have been conducted with the aim to derive the conservation-law form of the Navier-Stokes equations in general nonsteady coordinate systems. The present note has the objective to illustrate a mathematical methodology with which such forms of the equations may be derived in an easier and more general fashion. For numerical applications, the scalar form of the equations is eventually provided. Attention is given to the conservation form of equations in curvilinear coordinates and numerical considerations.
Conservation form of the equations of fluid dynamics in general nonsteady coordinates
International Nuclear Information System (INIS)
Zhang, H.; Camarero, R.; Kahawita, R.
1985-01-01
Many of the differential equations arising in fluid dynamics may be stated in conservation-law form. A number of investigations have been conducted with the aim to derive the conservation-law form of the Navier-Stokes equations in general nonsteady coordinate systems. The present note has the objective to illustrate a mathematical methodology with which such forms of the equations may be derived in an easier and more general fashion. For numerical applications, the scalar form of the equations is eventually provided. Attention is given to the conservation form of equations in curvilinear coordinates and numerical considerations. 6 references
An Integrable Discrete Generalized Nonlinear Schrödinger Equation and Its Reductions
International Nuclear Information System (INIS)
Li Hong-Min; Li Yu-Qi; Chen Yong
2014-01-01
An integrable discrete system obtained by the algebraization of the difference operator is studied. The system is named discrete generalized nonlinear Schrödinger (GNLS) equation, which can be reduced to classical discrete nonlinear Schrödinger (NLS) equation. Furthermore, all of the linear reductions for the discrete GNLS equation are given through the theory of circulant matrices and the discrete NLS equation is obtained by one of the reductions. At the same time, the recursion operator and symmetries of continuous GNLS equation are successfully recovered by its corresponding discrete ones. (general)
Directory of Open Access Journals (Sweden)
M. Arshad
Full Text Available In this manuscript, we constructed different form of new exact solutions of generalized coupled Zakharov–Kuznetsov and dispersive long wave equations by utilizing the modified extended direct algebraic method. New exact traveling wave solutions for both equations are obtained in the form of soliton, periodic, bright, and dark solitary wave solutions. There are many applications of the present traveling wave solutions in physics and furthermore, a wide class of coupled nonlinear evolution equations can be solved by this method. Keywords: Traveling wave solutions, Elliptic solutions, Generalized coupled Zakharov–Kuznetsov equation, Dispersive long wave equation, Modified extended direct algebraic method
Stabilization and asymptotic behavior of a generalized telegraph equation
Nicaise, Serge
2015-12-01
We analyze the stability of different models of the telegraph equation set in a real interval. They correspond to the coupling between a first-order hyperbolic system and a first-order differential equation of parabolic type. We show that some models have an exponential decay rate, while other ones are only polynomially stable. When the parameters are constant, we show that the obtained polynomial decay is optimal and in the case of an exponential decay that the decay rate is equal to the spectral abscissa. These optimality results are based on a careful spectral analysis of the operator. In particular, we characterize its full spectrum that is made of a discrete set of eigenvalues and an essential spectrum reduced to one point.
Solution of a general pexiderized permanental functional equation
Indian Academy of Sciences (India)
49
and the result follows by equating these last two relations. We return now to the proof of the lemma. Note from C9) that T is completely deter- mined if we know the values of T on the unit circle. Consider any two points on the unit circle (α, β) = (cos γ, sin γ), (x, y) = (cos θ, sin θ) with angles γ, θ oriented counterclock- wise.
General Navier–Stokes-like momentum and mass-energy equations
Energy Technology Data Exchange (ETDEWEB)
Monreal, Jorge, E-mail: jmonreal@mail.usf.edu
2015-03-15
A new system of general Navier–Stokes-like equations is proposed to model electromagnetic flow utilizing analogues of hydrodynamic conservation equations. Such equations are intended to provide a different perspective and, potentially, a better understanding of electromagnetic mass, energy and momentum behaviour. Under such a new framework additional insights into electromagnetism could be gained. To that end, we propose a system of momentum and mass-energy conservation equations coupled through both momentum density and velocity vectors.
International Nuclear Information System (INIS)
Tarasov, V.E.
1994-07-01
Sedov variational principle, which is the generalization of the least actional principle for the dissipative processes is used to generalize the canonical quantization and von Neumann equation for dissipative systems (particles and strings). (author). 66 refs, 1 fig
International Nuclear Information System (INIS)
Tian Lixin; Yin Jiuli
2004-01-01
In this paper, we introduce the fully nonlinear generalized Camassa-Holm equation C(m,n,p) and by using four direct ansatzs, we obtain abundant solutions: compactons (solutions with the absence of infinite wings), solitary patterns solutions having infinite slopes or cups, solitary waves and singular periodic wave solutions and obtain kink compacton solutions and nonsymmetry compacton solutions. We also study other forms of fully nonlinear generalized Camassa-Holm equation, and their compacton solutions are governed by linear equations
Multi-symplectic Preissmann methods for generalized Zakharov-Kuznetsov equation
International Nuclear Information System (INIS)
Wang Junjie; Yang Kuande; Wang Liantang
2012-01-01
Generalized Zakharov-Kuznetsov equation, a typical nonlinear wave equation, was studied based on the multi-symplectic theory in Hamilton space. The multi-symplectic formulations of generalized Zakharov-Kuznetsov equation with several conservation laws are presented. The multi-symplectic Preissmann method is used to discretize the formulations. The numerical experiment is given, and the results verify the efficiency of the multi-symplectic scheme. (authors)
Estimates for a general fractional relaxation equation and application to an inverse source problem
Bazhlekova, Emilia
2018-01-01
A general fractional relaxation equation is considered with a convolutional derivative in time introduced by A. Kochubei (Integr. Equ. Oper. Theory 71 (2011), 583-600). This equation generalizes the single-term, multi-term and distributed-order fractional relaxation equations. The fundamental and the impulse-response solutions are studied in detail. Properties such as analyticity and subordination identities are established and employed in the proof of an upper and a lower bound. The obtained...
Persistence of travelling waves in a generalized Fisher equation
International Nuclear Information System (INIS)
Kyrychko, Yuliya N.; Blyuss, Konstantin B.
2009-01-01
Travelling waves of the Fisher equation with arbitrary power of nonlinearity are studied in the presence of long-range diffusion. Using analogy between travelling waves and heteroclinic solutions of corresponding ODEs, we employ the geometric singular perturbation theory to prove the persistence of these waves when the influence of long-range effects is small. When the long-range diffusion coefficient becomes larger, the behaviour of travelling waves can only be studied numerically. In this case we find that starting with some values, solutions of the model lose monotonicity and become oscillatory
Hamiltonian models for the Madelung fluid and generalized Langevin equations
International Nuclear Information System (INIS)
Nonnenmacher, T.F.
1985-01-01
We present a Hamiltonian formulation of some type of an 'electromagnetic' Madelung fluid leading to a fluid mechanics interpretation of the Aharonov-Bohm effect and to a subsidary condition to be required in order to make the correspondence between Schroedinger's quantum mechanics and Madelung's fluid mechanics unique. Then we discuss some problems related with the Brownian oscillator. Our aim is to start out with a Hamiltonian for the composite system with surrounding heat bath) and to finally arrive at a stochastic differential equation with completely determined statistical properties. (orig./HSI)
Solving the generalized Langevin equation with the algebraically correlated noise
International Nuclear Information System (INIS)
Srokowski, T.; Ploszajczak, M.
1997-01-01
The Langevin equation with the memory kernel is solved. The stochastic force possesses algebraic correlations, proportional to 1/t. The velocity autocorrelation function and related quantities characterizing transport properties are calculated at the assumption that the system is in the thermal equilibrium. Stochastic trajectories are simulated numerically, using the kangaroo process as a noise generator. Results of this simulation resemble Levy walks with divergent moments of the velocity distribution. The motion of a Brownian particle is considered both without any external potential and in the harmonic oscillator field, in particular the escape from a potential well. The results are compared with memory-free calculations for the Brownian particle. (author)
Travelling wave solutions of the generalized Benjamin-Bona-Mahony equation
International Nuclear Information System (INIS)
Estevez, P.G.; Kuru, S.; Negro, J.; Nieto, L.M.
2009-01-01
A class of particular travelling wave solutions of the generalized Benjamin-Bona-Mahony equation is studied systematically using the factorization technique. Then, the general travelling wave solutions of Benjamin-Bona-Mahony equation, and of its modified version, are also recovered.
Directory of Open Access Journals (Sweden)
Kuo-Shou Chiu
2011-11-01
Full Text Available We examine scalar differential equations with a general piecewise constant argument, in short DEPCAG, that is, the argument is a general step function. Criteria of existence of the oscillatory and nonoscillatory solutions of such equations are proposed. Necessary and sufficient conditions for stability of the zero solution are obtained. Appropriate examples are given to show our results.
Implementation of Generalized Adjoint Equation Solver for DeCART
International Nuclear Information System (INIS)
Han, Tae Young; Cho, Jin Young; Lee, Hyun Chul; Noh, Jae Man
2013-01-01
In this paper, the generalized adjoint solver based on the generalized perturbation theory is implemented on DeCART and the verification calculations were carried out. As the results, the adjoint flux for the general response coincides with the reference solution and it is expected that the solver could produce the parameters for the sensitivity and uncertainty analysis. Recently, MUSAD (Modules of Uncertainty and Sensitivity Analysis for DeCART) was developed for the uncertainty analysis of PMR200 core and the fundamental adjoint solver was implemented into DeCART. However, the application of the code was limited to the uncertainty to the multiplication factor, k eff , because it was based on the classical perturbation theory. For the uncertainty analysis to the general response as like the power density, it is necessary to develop the analysis module based on the generalized perturbation theory and it needs the generalized adjoint solutions from DeCART. In this paper, the generalized adjoint solver is implemented on DeCART and the calculation results are compared with the results by TSUNAMI of SCALE 6.1
Computational Aeroacoustics Using the Generalized Lattice Boltzmann Equation, Phase I
National Aeronautics and Space Administration — The overall objective of the proposed project is to develop a generalized lattice Boltzmann (GLB) approach as a potential computational aeroacoustics (CAA) tool for...
A general polynomial solution to convection–dispersion equation ...
Indian Academy of Sciences (India)
Jiao Wang
concentration profiles and optimal solute transport parameters. Furthermore, the general .... requirement; in other words, if Is(t) is cumulated solute added in the column ..... National Natural Science Foundation of China. (Nos. 41530854 and ...
Solving Fully Fuzzy Linear System of Equations in General Form
Directory of Open Access Journals (Sweden)
A. Yousefzadeh
2012-06-01
Full Text Available In this work, we propose an approach for computing the positive solution of a fully fuzzy linear system where the coefficient matrix is a fuzzy $nimes n$ matrix. To do this, we use arithmetic operations on fuzzy numbers that introduced by Kaffman in and convert the fully fuzzy linear system into two $nimes n$ and $2nimes 2n$ crisp linear systems. If the solutions of these linear systems don't satisfy in positive fuzzy solution condition, we introduce the constrained least squares problem to obtain optimal fuzzy vector solution by applying the ranking function in given fully fuzzy linear system. Using our proposed method, the fully fuzzy linear system of equations always has a solution. Finally, we illustrate the efficiency of proposed method by solving some numerical examples.
Generalized coarse-grained Becker-Doering equations
International Nuclear Information System (INIS)
Bolton, Colin D; Wattis, Jonathan A D
2003-01-01
We present and apply a generalized coarse-graining method of reducing the Becker-Doering model; originally formulated to describe the stepwise aggregation and fragmentation of clusters during nucleation. Previous formulations of the coarse-graining procedure have allowed a temporal rescaling of the coarse-grained reaction rates; this is generalized to allow the rescaling to depend on cluster size. The form of this factor is derived for general reaction rates and general mesh function so that the steady-state solution is preserved; in the case of an even mesh function the kinetics can also be accurately reproduced. With a size-dependent mesh function the equilibrium solution and the form of convergence to this state are matched for a specific example. Finally we consider reaction rates relevant to the classical nucleation theory of spherical cluster growth, and numerically compare solutions of the full system to the generalized coarse-grained system in both constant monomer and constant mass formulations, demonstrating the accuracy of the method
Integrable coupling system of fractional soliton equation hierarchy
Energy Technology Data Exchange (ETDEWEB)
Yu Fajun, E-mail: yfajun@163.co [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)
2009-10-05
In this Letter, we consider the derivatives and integrals of fractional order and present a class of the integrable coupling system of the fractional order soliton equations. The fractional order coupled Boussinesq and KdV equations are the special cases of this class. Furthermore, the fractional AKNS soliton equation hierarchy is obtained.
Soliton solutions of some nonlinear evolution equations with time ...
Indian Academy of Sciences (India)
Abstract. In this paper, we obtain exact soliton solutions of the modified KdV equation, inho- mogeneous nonlinear Schrödinger equation and G(m, n) equation with variable coefficients using solitary wave ansatz. The constraint conditions among the time-dependent coefficients turn out as necessary conditions for the ...
The generalized approximation method and nonlinear heat transfer equations
Directory of Open Access Journals (Sweden)
Rahmat Khan
2009-01-01
Full Text Available Generalized approximation technique for a solution of one-dimensional steady state heat transfer problem in a slab made of a material with temperature dependent thermal conductivity, is developed. The results obtained by the generalized approximation method (GAM are compared with those studied via homotopy perturbation method (HPM. For this problem, the results obtained by the GAM are more accurate as compared to the HPM. Moreover, our (GAM generate a sequence of solutions of linear problems that converges monotonically and rapidly to a solution of the original nonlinear problem. Each approximate solution is obtained as the solution of a linear problem. We present numerical simulations to illustrate and confirm the theoretical results.
Linear relativistic gyrokinetic equation in general magnetically confined plasmas
International Nuclear Information System (INIS)
Tsai, S.T.; Van Dam, J.W.; Chen, L.
1983-08-01
The gyrokinetic formalism for linear electromagnetic waves of arbitrary frequency in general magnetic-field configurations is extended to include full relativistic effects. The derivation employs the small adiabaticity parameter rho/L 0 where rho is the Larmor radius and L 0 the equilibrium scale length. The effects of the plasma and magnetic field inhomogeneities and finite Larmor-radii effects are also contained
Soliton surfaces associated with generalized symmetries of integrable equations
International Nuclear Information System (INIS)
Grundland, A M; Post, S
2011-01-01
In this paper, based on the Fokas et al approach (Fokas and Gel'fand 1996 Commun. Math. Phys. 177 203-20; Fokas et al 2000 Sel. Math. 6 347-75), we provide a symmetry characterization of continuous deformations of soliton surfaces immersed in a Lie algebra using the formalism of generalized vector fields, their prolongation structure and links with the Frechet derivatives. We express the necessary and sufficient condition for the existence of such surfaces in terms of the invariance criterion for generalized symmetries and identify additional sufficient conditions which admit an explicit integration of the immersion functions of 2D surfaces in Lie algebras. We discuss in detail the su(N)-valued immersion functions generated by conformal symmetries of the CP N-1 sigma model defined on either the Minkowski or Euclidean space. We further show that the sufficient conditions for explicit integration of such immersion functions impose additional restrictions on the admissible conformal symmetries of the model defined on Minkowski space. On the other hand, the sufficient conditions are identically satisfied for arbitrary conformal symmetries of finite action solutions of the CP N-1 sigma model defined on Euclidean space.
Conservation Laws and Traveling Wave Solutions of a Generalized Nonlinear ZK-BBM Equation
Directory of Open Access Journals (Sweden)
Khadijo Rashid Adem
2014-01-01
Full Text Available We study a generalized two-dimensional nonlinear Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZK-BBM equation, which is in fact Benjamin-Bona-Mahony equation formulated in the ZK sense. Conservation laws for this equation are constructed by using the new conservation theorem due to Ibragimov and the multiplier method. Furthermore, traveling wave solutions are obtained by employing the (G'/G-expansion method.
Solution of the General Helmholtz Equation Starting from Laplace’s Equation
2002-11-01
infinity for the two dimensional case. For the 3D the general form case, this term does not exist, as the potential at infinity is zero. Hence the Green’s...companies. She has assisted the Comisi6n the Living System Laboratory, Interministerial de Ciencia y Tecnologia (National LG Electronics, From 1998 to 2000
Generalized Landau-Lifshitz-Gilbert equation for uniformly magnetized bodies
Energy Technology Data Exchange (ETDEWEB)
Serpico, C. [Dipartimento di Ingegneria Elettrica, Universita di Napoli ' FedericoII' , Via Claudio 21, I-80125 Naples (Italy)], E-mail: serpico@unina.it; Mayergoyz, I.D. [ECE Department and UMIACS, University of Maryland, College Park, MD 20742 (United States); Bertotti, G. [Istituto Nazionale di Ricerca Metrologica (INRiM), I-10135 Turin (Italy); D' Aquino, M. [Dipartimento per le Tecnologie, University of Napoli ' Parthenope' , I-80133 Naples (Italy); Bonin, R. [Istituto Nazionale di Ricerca Metrologica (INRiM), I-10135 Turin (Italy)
2008-02-01
We consider generalized Landau-Lifshitz-Gilbert (LLG) deterministic dynamics in uniformly magnetized bodies. The dynamics take place on the unit sphere {sigma}, and are characterized by a vector field v tangential to {sigma}. By using Helmholtz decomposition on {sigma}, it is proven that v is uniquely defined by two potentials {chi} and {psi}. Potential {chi} can be identified with the free energy of the system, while {psi} describes non-conservative interactions of the system with the environment. The presence of {psi} modifies the usual energy balance of LLG dynamics. Instead of purely relaxation dynamics we may have steady injection of energy through non-conservative interactions. The implications of the new form of the energy balance are discussed in detail.
Generally covariant Hamilton-Jacobi equation and rotated liquid sphere metrics
International Nuclear Information System (INIS)
Abdil'din, M.M.; Abdulgafarov, M.K.; Abishev, M.E.
2005-01-01
In the work Lense-Thirring problem on corrected Fock's first approximation metrics by Hamilton-Jacobi method considered. Generally covariant Hamilton-Jacobi equation had been sold by separation of variable method. Path equation of probe particle motion in rotated liquid sphere field is obtained. (author)
International Nuclear Information System (INIS)
Fan Hongyi; Wang Yong
2006-01-01
With the help of Bose operator identities and entangled state representation and based on our previous work [Phys. Lett. A 325 (2004) 188] we derive some new generalized Bessel equations which also have Bessel function as their solution. It means that for these intricate higher-order differential equations, we can get Bessel function solutions without using the expatiatory power-series expansion method.
Directory of Open Access Journals (Sweden)
Maxim Olegovich Korpusov
2012-07-01
Full Text Available In this article the initial-boundary-value problem for generalized dissipative high-order equation of Klein-Gordon type is considered. We continue our study of nonlinear hyperbolic equations and systems with arbitrary positive energy. The modified concavity method by Levine is used for proving blow-up of solutions.
Exact solutions of the generalized Lane–Emden equations of the ...
Indian Academy of Sciences (India)
the mutual attraction of its molecules and subject to the classical laws of thermodynamics. This equation was proposed ... was investigated for first integrals by Leach [31]. Moreover, transformation properties of a more general Emden–Fowler equation were considered in Mellin et al [5]. A review paper by Wong [32] contains ...
Generalized Sturmian Solutions for Many-Particle Schrödinger Equations
DEFF Research Database (Denmark)
Avery, John; Avery, James Emil
2004-01-01
The generalized Sturmian method for obtaining solutions to the many-particle Schrodinger equation is reviewed. The method makes use of basis functions that are solutions of an approximate Schrodinger equation with a weighted zeroth-order potential. The weighting factors are especially chosen so...
Generalized activity equations for spiking neural network dynamics
Directory of Open Access Journals (Sweden)
Michael A Buice
2013-11-01
Full Text Available Much progress has been made in uncovering the computational capabilities of spiking neural networks. However, spiking neurons will always be more expensive to simulate compared to rate neurons because of the inherent disparity in time scales - the spike duration time is much shorter than the inter-spike time, which is much shorter than any learning time scale. In numerical analysis, this is a classic stiff problem. Spiking neurons are also much more difficult to study analytically. One possible approach to making spiking networks more tractable is to augment mean field activity models with some information about spiking correlations. For example, such a generalized activity model could carry information about spiking rates and correlations between spikes self-consistently. Here, we will show how this can be accomplished by constructing a complete formal probabilistic description of the network and then expanding around a small parameter such as the inverse of the number of neurons in the network. The mean field theory of the system gives a rate-like description. The first order terms in the perturbation expansion keep track of covariances.
Further Generalization of Golden Mean in Relation to Euler Divine Equation
Rakocevic, Miloje M.
2006-01-01
In the paper a new generalization of the Golden mean, as a further generalization in relation to Stakhov (1989) and to Spinadel (1999), is presented. Also it is first observed that the Euler divine equation represents a possible generalization of Golden mean. In this second version the Section 6 is added.
Travelling wavefronts of a generalized Fisher equation with spatio-temporal delay
International Nuclear Information System (INIS)
Jin Chunhua; Yin Jingxue; Wang Yifu
2009-01-01
We discuss a generalized Fisher equation with a convolution term which introduces a time-delay in the nonlinearity. Special attention is paid to the existence and the asymptotic behavior of travelling wavefronts connecting two uniform steady states.
Exact solution of the N-dimensional generalized Dirac-Coulomb equation
International Nuclear Information System (INIS)
Tutik, R.S.
1992-01-01
An exact solution to the bound state problem for the N-dimensional generalized Dirac-Coulomb equation, whose potential contains both the Lorentz-vector and Lorentz-scalar terms of the Coulomb form, is obtained. 24 refs. (author)
General solution of the Bagley-Torvik equation with fractional-order derivative
Wang, Z. H.; Wang, X.
2010-05-01
This paper investigates the general solution of the Bagley-Torvik equation with 1/2-order derivative or 3/2-order derivative. This fractional-order differential equation is changed into a sequential fractional-order differential equation (SFDE) with constant coefficients. Then the general solution of the SFDE is expressed as the linear combination of fundamental solutions that are in terms of α-exponential functions, a kind of functions that play the same role of the classical exponential function. Because the number of fundamental solutions of the SFDE is greater than 2, the general solution of the SFDE depends on more than two free (independent) constants. This paper shows that the general solution of the Bagley-Torvik equation involves actually two free constants only, and it can be determined fully by the initial displacement and initial velocity.
Global existence of a generalized solution for the radiative transfer equations
International Nuclear Information System (INIS)
Golse, F.; Perthame, B.
1984-01-01
We prove global existence of a generalized solution of the radiative transfer equations, extending Mercier's result to the case of a layer with an initially cold area. Our Theorem relies on the results of Crandall and Ligett [fr
A general nonlinear evolution equation for irreversible conservative approach to stable equilibrium
International Nuclear Information System (INIS)
Beretta, G.P.
1986-01-01
This paper addresses a mathematical problem relevant to the question of nonequilibrium and irreversibility, namely, that of ''designing'' a general evolution equation capable of describing irreversible but conservative relaxtion towards equilibrium. The objective is to present an interesting mathematical solution to this design problem, namely, a new nonlinear evolution equation that satisfies a set of very stringent relevant requirements. Three different frameworks are defined from which the new equation could be adopted, with entirely different interpretations. Some useful well-known mathematics involving Gram determinants are presented and a nonlinear evolution equation is given which meets the stringent design specifications
International Nuclear Information System (INIS)
Abdou, M.A.
2008-01-01
The generalized F-expansion method with a computerized symbolic computation is used for constructing a new exact travelling wave solutions for the generalized nonlinear Schrodinger equation with a source. As a result, many exact travelling wave solutions are obtained which include new periodic wave solution, trigonometric function solutions and rational solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in physics
A Study for Obtaining New and More General Solutions of Special-Type Nonlinear Equation
International Nuclear Information System (INIS)
Zhao Hong
2007-01-01
The generalized algebraic method with symbolic computation is extended to some special-type nonlinear equations for constructing a series of new and more general travelling wave solutions in terms of special functions. Such equations cannot be directly dealt with by the method and require some kinds of pre-processing techniques. It is shown that soliton solutions and triangular periodic solutions can be established as the limits of the Jacobi doubly periodic wave solutions.
International Nuclear Information System (INIS)
Mokhtari, R.; Toodar, A. Samadi; Chegini, N. G.
2011-01-01
We the extend application of the generalized differential quadrature method (GDQM) to solve some coupled nonlinear Schrödinger equations. The cosine-based GDQM is employed and the obtained system of ordinary differential equations is solved via the fourth order Runge—Kutta method. The numerical solutions coincide with the exact solutions in desired machine precision and invariant quantities are conserved sensibly. Some comparisons with the methods applied in the literature are carried out. (general)
Application of the Generalized Differential Quadrature Method in Solving Burgers' Equations
International Nuclear Information System (INIS)
Mokhtari, R.; Toodar, A. Samadi; Chegini, N.G.
2011-01-01
The aim of this paper is to obtain numerical solutions of the one-dimensional, two-dimensional and coupled Burgers' equations through the generalized differential quadrature method (GDQM). The polynomial-based differential quadrature (PDQ) method is employed and the obtained system of ordinary differential equations is solved via the total variation diminishing Runge-Kutta (TVD-RK) method. The numerical solutions are satisfactorily coincident with the exact solutions. The method can compete against the methods applied in the literature. (general)
International Nuclear Information System (INIS)
Frank, T.D.
2002-01-01
We study many particle systems in the context of mean field forces, concentration-dependent diffusion coefficients, generalized equilibrium distributions, and quantum statistics. Using kinetic transport theory and linear nonequilibrium thermodynamics we derive for these systems a generalized multivariate Fokker-Planck equation. It is shown that this Fokker-Planck equation describes relaxation processes, has stationary maximum entropy distributions, can have multiple stationary solutions and stationary solutions that differ from Boltzmann distributions
International Nuclear Information System (INIS)
Tian Bo; Wei Guangmei; Zhang Chunyi; Shan Wenrui; Gao Yitian
2006-01-01
The variable-coefficient Korteweg-de Vries (KdV)-typed models, although often hard to be studied, are of current interest in describing various real situations. Under investigation hereby is a large class of the generalized variable-coefficient KdV models with external-force and perturbed/dissipative terms. Recent examples of this class include those in blood vessels and circulatory system, arterial dynamics, trapped Bose-Einstein condensates related to matter waves and nonlinear atom optics, Bose gas of impenetrable bosons with longitudinal confinement, rods of compressible hyperelastic material and semiconductor heterostructures with positonic phenomena. In this Letter, based on symbolic computation, four transformations are proposed from this class either to the cylindrical or standard KdV equation when the respective constraint holds. The constraints have nothing to do with the external-force term. Under those transformations, such analytic solutions as those with the Airy, Hermit and Jacobian elliptic functions can be obtained, including the solitonic profiles. The roles for the perturbed and external-force terms to play are observed and discussed. Investigations on this class can be performed through the properties of solutions of cylindrical and standard KdV equations
López Pouso, Rodrigo; Márquez Albés, Ignacio
2018-04-01
Stieltjes differential equations, which contain equations with impulses and equations on time scales as particular cases, simply consist on replacing usual derivatives by derivatives with respect to a nondecreasing function. In this paper we prove new existence results for functional and discontinuous Stieltjes differential equations and we show that such general results have real world applications. Specifically, we show that Stieltjes differential equations are specially suitable to study populations which exhibit dormant states and/or very short (impulsive) periods of reproduction. In particular, we construct two mathematical models for the evolution of a silkworm population. Our first model can be explicitly solved, as it consists on a linear Stieltjes equation. Our second model, more realistic, is nonlinear, discontinuous and functional, and we deduce the existence of solutions by means of a result proven in this paper.
Exact solitary and periodic wave solutions for a generalized nonlinear Schroedinger equation
International Nuclear Information System (INIS)
Sun Chengfeng; Gao Hongjun
2009-01-01
The generalized nonlinear Schroedinger equation (GNLS) iu t + u xx + β | u | 2 u + γ | u | 4 u + iα (| u | 2 u) x + iτ(| u | 2 ) x u = 0 is studied. Using the bifurcation of travelling waves of this equation, some exact solitary wave solutions were obtained in [Wang W, Sun J,Chen G, Bifurcation, Exact solutions and nonsmooth behavior of solitary waves in the generalized nonlinear Schroedinger equation. Int J Bifucat Chaos 2005:3295-305.]. In this paper, more explicit exact solitary wave solutions and some new smooth periodic wave solutions are obtained.
Exact solutions of (3 + 1-dimensional generalized KP equation arising in physics
Directory of Open Access Journals (Sweden)
Syed Tauseef Mohyud-Din
Full Text Available In this work, we have obtained some exact solutions to (3 + 1-dimensional generalized KP Equation. The improved tanϕ(ξ2-expansion method has been introduced to construct the exact solutions of nonlinear evolution equations. The obtained solutions include hyperbolic function solutions, trigonometric function solutions, exponential solutions, and rational solutions. Our study has added some new varieties of solutions to already available solutions. It is also worth mentioning that the computational work has been reduced significantly. Keywords: Improved tanϕ(ξ2-expansion method, Hyperbolic function solution, Trigonometric function solution, Rational solution, (3 + 1-dimensional generalized KP equation
Solution of the generalized Emden-Fowler equations by the hybrid functions method
International Nuclear Information System (INIS)
Tabrizidooz, H R; Marzban, H R; Razzaghi, M
2009-01-01
In this paper, we present a numerical algorithm for solving the generalized Emden-Fowler equations, which have many applications in mathematical physics and astrophysics. The method is based on hybrid functions approximations. The properties of hybrid functions, which consist of block-pulse functions and Lagrange interpolating polynomials, are presented. These properties are then utilized to reduce the computation of the generalized Emden-Fowler equations to a system of nonlinear equations. The method is easy to implement and yields very accurate results.
International Nuclear Information System (INIS)
LaChapelle, J.
2004-01-01
A path integral is presented that solves a general class of linear second order partial differential equations with Dirichlet/Neumann boundary conditions. Elementary kernels are constructed for both Dirichlet and Neumann boundary conditions. The general solution can be specialized to solve elliptic, parabolic, and hyperbolic partial differential equations with boundary conditions. This extends the well-known path integral solution of the Schroedinger/diffusion equation in unbounded space. The construction is based on a framework for functional integration introduced by Cartier/DeWitt-Morette
A Note about the General Meromorphic Solutions of the Fisher Equation
Directory of Open Access Journals (Sweden)
Jian-ming Qi
2014-01-01
Full Text Available We employ the complex method to obtain the general meromorphic solutions of the Fisher equation, which improves the corresponding results obtained by Ablowitz and Zeppetella and other authors (Ablowitz and Zeppetella, 1979; Feng and Li, 2006; Guo and Chen, 1991, and wg,i(z are new general meromorphic solutions of the Fisher equation for c=±5i/6. Our results show that the complex method provides a powerful mathematical tool for solving great many nonlinear partial differential equations in mathematical physics.
The General Traveling Wave Solutions of the Fisher Equation with Degree Three
Directory of Open Access Journals (Sweden)
Wenjun Yuan
2013-01-01
degree three and the general meromorphic solutions of the integrable Fisher equations with degree three, which improves the corresponding results obtained by Feng and Li (2006, Guo and Chen (1991, and Ağırseven and Öziş (2010. Moreover, all wg,1(z are new general meromorphic solutions of the Fisher equations with degree three for c=±3/2. Our results show that the complex method provides a powerful mathematical tool for solving a large number of nonlinear partial differential equations in mathematical physics.
International Nuclear Information System (INIS)
Zhang Huiqun
2009-01-01
By using a new coupled Riccati equations, a direct algebraic method, which was applied to obtain exact travelling wave solutions of some complex nonlinear equations, is improved. And the exact travelling wave solutions of the complex KdV equation, Boussinesq equation and Klein-Gordon equation are investigated using the improved method. The method presented in this paper can also be applied to construct exact travelling wave solutions for other nonlinear complex equations.
Peculiar symmetry structure of some known discrete nonautonomous equations
International Nuclear Information System (INIS)
Garifullin, R N; Habibullin, I T; Yamilov, R I
2015-01-01
We study the generalized symmetry structure of three known discrete nonautonomous equations. One of them is the semidiscrete dressing chain of Shabat. Two others are completely discrete equations defined on the square lattice. The first one is a discrete analogue of the dressing chain introduced by Levi and Yamilov. The second one is a nonautonomous generalization of the potential discrete KdV equation or, in other words, the H1 equation of the well-known Adler−Bobenko−Suris list. We demonstrate that these equations have generalized symmetries in both directions if and only if their coefficients, depending on the discrete variables, are periodic. The order of the simplest generalized symmetry in at least one direction depends on the period and may be arbitrarily high. We substantiate this picture by some theorems in the case of small periods. In case of an arbitrarily large period, we show that it is possible to construct two hierarchies of generalized symmetries and conservation laws. The same picture should take place in case of any nonautonomous equation of the Adler−Bobenko−Suris list. (paper)
Exact solitary wave solutions for some nonlinear evolution equations via Exp-function method
International Nuclear Information System (INIS)
Ebaid, A.
2007-01-01
Based on the Exp-function method, exact solutions for some nonlinear evolution equations are obtained. The KdV equation, Burgers' equation and the combined KdV-mKdV equation are chosen to illustrate the effectiveness of the method
On global structure of general solution of the Chew-Sow equations
International Nuclear Information System (INIS)
Gerdt, V.P.
1981-01-01
The Chew-Low equations for static p-wave πN-scattering are considered. The equations are formulated in the form of a system of three nonlinear difference equations of the first order which have the general solution depending on three arbitrary periodic functions. An approach to the global construction of the general solution is suggested which is based on the series expansion in powers of one of the arbitrary functions C(ω) determining the structure of the invariant curve for the Chew-Low equations. It is shown that the initial nonlinear problem is reduced to the linear one in every order in C(ω). By means of solving the linear problem the general solution is found in the first-order approximation in C(ω) [ru
International Nuclear Information System (INIS)
Penuela, G; Ordonez R, A; Bejarano, A
1998-01-01
A generalized material balance equation was presented at the Escuela de Petroleos de la Universidad Industrial de Santander for coal seam gas reservoirs based on Walsh's method, who worked in an analogous approach for oil and gas conventional reservoirs (Walsh, 1995). Our equation was based on twelve similar assumptions itemized by Walsh for his generalized expression for conventional reservoirs it was started from the same volume balance consideration and was finally reorganized like Walsh (1994) did. Because it is not expressed in terms of traditional (P/Z) plots, as proposed by King (1990), it allows to perform a lot of quantitative and qualitative analyses. It was also demonstrated that the existent equations are only particular cases of the generalized expression evaluated under certain restrictions. This equation is applicable to coal seam gas reservoirs in saturated, equilibrium and under saturated conditions, and to any type of coal beds without restriction on especial values of the constant diffusion
General form of the Euler-Poisson-Darboux equation and application of the transmutation method
Directory of Open Access Journals (Sweden)
Elina L. Shishkina
2017-07-01
Full Text Available In this article, we find solution representations in the compact integral form to the Cauchy problem for a general form of the Euler-Poisson-Darboux equation with Bessel operators via generalized translation and spherical mean operators for all values of the parameter k, including also not studying before exceptional odd negative values. We use a Hankel transform method to prove results in a unified way. Under additional conditions we prove that a distributional solution is a classical one too. A transmutation property for connected generalized spherical mean is proved and importance of applying transmutation methods for differential equations with Bessel operators is emphasized. The paper also contains a short historical introduction on differential equations with Bessel operators and a rather detailed reference list of monographs and papers on mathematical theory and applications of this class of differential equations.
International Nuclear Information System (INIS)
Aratyn, H.; Ferreira, L.A.; Gomes, J.F.; Zimerman, A.H.
1994-01-01
The gauge equivalence between basic KP hierarchies is discussed. The first two Hamiltonian structures for KP hierarchies leading to the linear and non-linear W ∞ algebras are derived. The realization of the corresponding generators in terms of two boson currents is presented and it is shown to be related to many integrable models which are bi-Hamiltonian. We can also realize those generators by adding extra currents, coupled in a particular way allowing for instance a description of multi-layered Benney equations or multi- component non-linear Schroedinger equation. In this case we can have a second Hamiltonian bracket structure which violates Jacobi identity. We consider the reduction to one-boson systems leading to KdV and mKdV hierarchies. A Miura transformation relating these two hierarchies is obtained by restricting gauge transformation between corresponding two-boson hierarchies. Connection to Drinfeld-Sokolov approach is also discussed in the SL (2, IR) gauge theory. (author)
On the Generalized Maxwell Equations and Their Prediction of Electroscalar Wave
Directory of Open Access Journals (Sweden)
Arbab A. I.
2009-04-01
Full Text Available We have formulated the basic laws of electromagnetic theory in quaternion form. The formalism shows that Maxwell equations and Lorentz force are derivable from just one quaternion equation that only requires the Lorentz gauge. We proposed a quaternion form of the continuity equation from which we have derived the ordinary continuity equation. We introduce new transformations that produces a scalar wave and generalize the continuity equation to a set of three equations. These equations imply that both current and density are waves. Moreover, we have shown that the current can not cir- culate around a point emanating from it. Maxwell equations are invariant under these transformations. An electroscalar wave propagating with speed of light is derived upon requiring the invariance of the energy conservation equation under the new transforma- tions. The electroscalar wave function is found to be proportional to the electric field component along the charged particle motion. This scalar wave exists with or without considering the Lorentz gauge. We have shown that the electromagnetic fields travel with speed of light in the presence or absence of free charges.
Bedeaux, Dick; Kjelstrup, Signe; Öttinger, Hans Christian
2014-09-28
We show how the Butler-Volmer and Nernst equations, as well as Peltier effects, are contained in the general equation for nonequilibrium reversible and irreversible coupling, GENERIC, with a unique definition of the overpotential. Linear flux-force relations are used to describe the transport in the homogeneous parts of the electrochemical system. For the electrode interface, we choose nonlinear flux-force relationships. We give the general thermodynamic basis for an example cell with oxygen electrodes and electrolyte from the solid oxide fuel cell. In the example cell, there are two activated chemical steps coupled also to thermal driving forces at the surface. The equilibrium exchange current density obtains contributions from both rate-limiting steps. The measured overpotential is identified at constant temperature and stationary states, in terms of the difference in electrochemical potential of products and reactants. Away from these conditions, new terms appear. The accompanying energy flux out of the surface, as well as the heat generation at the surface are formulated, adding to the general thermodynamic basis.
Bedeaux, Dick; Kjelstrup, Signe; Öttinger, Hans Christian
2014-09-01
We show how the Butler-Volmer and Nernst equations, as well as Peltier effects, are contained in the general equation for nonequilibrium reversible and irreversible coupling, GENERIC, with a unique definition of the overpotential. Linear flux-force relations are used to describe the transport in the homogeneous parts of the electrochemical system. For the electrode interface, we choose nonlinear flux-force relationships. We give the general thermodynamic basis for an example cell with oxygen electrodes and electrolyte from the solid oxide fuel cell. In the example cell, there are two activated chemical steps coupled also to thermal driving forces at the surface. The equilibrium exchange current density obtains contributions from both rate-limiting steps. The measured overpotential is identified at constant temperature and stationary states, in terms of the difference in electrochemical potential of products and reactants. Away from these conditions, new terms appear. The accompanying energy flux out of the surface, as well as the heat generation at the surface are formulated, adding to the general thermodynamic basis.
Generalized equations for estimating DXA percent fat of diverse young women and men: The Tiger Study
Popular generalized equations for estimating percent body fat (BF%) developed with cross-sectional data are biased when applied to racially/ethnically diverse populations. We developed accurate anthropometric models to estimate dual-energy x-ray absorptiometry BF% (DXA-BF%) that can be generalized t...
The Generalized Wronskian Solution to a Negative KdV-mKdV Equation
International Nuclear Information System (INIS)
Liu Yu-Qing; Chen Deng-Yuan; Hu Chao
2012-01-01
A negative KdV-mKdV hierarchy is presented through the KdV-mKdV operator. The generalized Wronskian solution to the negative KdV-mKdV equation is obtained. Some soliton-like solutions and a complexiton solution are presented explicitly as examples. (general)
Explicit Solutions and Bifurcations for a Class of Generalized Boussinesq Wave Equation
International Nuclear Information System (INIS)
Ma Zhi-Min; Sun Yu-Huai; Liu Fu-Sheng
2013-01-01
In this paper, the generalized Boussinesq wave equation u tt — u xx + a(u m ) xx + bu xxxx = 0 is investigated by using the bifurcation theory and the method of phase portraits analysis. Under the different parameter conditions, the exact explicit parametric representations for solitary wave solutions and periodic wave solutions are obtained. (general)
Generalized linear differential equations in a Banach space : continuous dependence on a parameter
Czech Academy of Sciences Publication Activity Database
Monteiro, G.A.; Tvrdý, Milan
2013-01-01
Roč. 33, č. 1 (2013), s. 283-303 ISSN 1078-0947 Institutional research plan: CEZ:AV0Z10190503 Keywords : generalized differential equations * continuous dependence * Kurzweil-Stieltjes integral Subject RIV: BA - General Mathematics Impact factor: 0.923, year: 2013 http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=7615
Problems which are well posed in a generalized sense with applications to the Einstein equations
International Nuclear Information System (INIS)
Kreiss, H-O; Winicour, J
2006-01-01
In the harmonic description of general relativity, the principal part of the Einstein equations reduces to a constrained system of ten curved space wave equations for the components of the spacetime metric. We use the pseudo- differential theory of systems which are strongly well posed in the generalized sense to establish the well posedness of constraint-preserving boundary conditions for this system when treated in a second-order differential form. The boundary conditions are of a generalized Sommerfeld type that is benevolent for numerical calculation
Stability of generalized Runge-Kutta methods for stiff kinetics coupled differential equations
International Nuclear Information System (INIS)
Aboanber, A E
2006-01-01
A stability and efficiency improved class of generalized Runge-Kutta methods of order 4 are developed for the numerical solution of stiff system kinetics equations for linear and/or nonlinear coupled differential equations. The determination of the coefficients required by the method is precisely obtained from the so-called equations of condition which in turn are derived by an approach based on Butcher series. Since the equations of condition are fewer in number, free parameters can be chosen for optimizing any desired feature of the process. A further related coefficient set with different values of these parameters and the region of absolute stability of the method have been introduced. In addition, the A(α) stability properties of the method are investigated. Implementing the method in a personal computer estimated the accuracy and speed of calculations and verified the good performances of the proposed new schemes for several sample problems of the stiff system point kinetics equations with reactivity feedback
Zalaletdinov, R. M.
1998-04-01
The averaging problem in general relativity is briefly discussed. A new setting of the problem as that of macroscopic description of gravitation is proposed. A covariant space-time averaging procedure is described. The structure of the geometry of macroscopic space-time, which follows from averaging Cartan's structure equations, is described and the correlation tensors present in the theory are discussed. The macroscopic field equations (averaged Einstein's equations) derived in the framework of the approach are presented and their structure is analysed. The correspondence principle for macroscopic gravity is formulated and a definition of the stress-energy tensor for the macroscopic gravitational field is proposed. It is shown that the physical meaning of using Einstein's equations with a hydrodynamic stress-energy tensor in looking for cosmological models means neglecting all gravitational field correlations. The system of macroscopic gravity equations to be solved when the correlations are taken into consideration is given and described.
Fractal diffusion equations: Microscopic models with anomalous diffusion and its generalizations
International Nuclear Information System (INIS)
Arkhincheev, V.E.
2001-04-01
To describe the ''anomalous'' diffusion the generalized diffusion equations of fractal order are deduced from microscopic models with anomalous diffusion as Comb model and Levy flights. It is shown that two types of equations are possible: with fractional temporal and fractional spatial derivatives. The solutions of these equations are obtained and the physical sense of these fractional equations is discussed. The relation between diffusion and conductivity is studied and the well-known Einstein relation is generalized for the anomalous diffusion case. It is shown that for Levy flight diffusion the Ohm's law is not applied and the current depends on electric field in a nonlinear way due to the anomalous character of Levy flights. The results of numerical simulations, which confirmed this conclusion, are also presented. (author)
On the integrability of the generalized Fisher-type nonlinear diffusion equations
International Nuclear Information System (INIS)
Wang Dengshan; Zhang Zhifei
2009-01-01
In this paper, the geometric integrability and Lax integrability of the generalized Fisher-type nonlinear diffusion equations with modified diffusion in (1+1) and (2+1) dimensions are studied by the pseudo-spherical surface geometry method and prolongation technique. It is shown that the (1+1)-dimensional Fisher-type nonlinear diffusion equation is geometrically integrable in the sense of describing a pseudo-spherical surface of constant curvature -1 only for m = 2, and the generalized Fisher-type nonlinear diffusion equations in (1+1) and (2+1) dimensions are Lax integrable only for m = 2. This paper extends the results in Bindu et al 2001 (J. Phys. A: Math. Gen. 34 L689) and further provides the integrability information of (1+1)- and (2+1)-dimensional Fisher-type nonlinear diffusion equations for m = 2
Generalized continuity equations from two-field Schrödinger Lagrangians
Spourdalakis, A. G. B.; Pappas, G.; Morfonios, C. Â. V.; Kalozoumis, P. A.; Diakonos, F. K.; Schmelcher, P.
2016-11-01
A variational scheme for the derivation of generalized, symmetry-induced continuity equations for Hermitian and non-Hermitian quantum mechanical systems is developed. We introduce a Lagrangian which involves two complex wave fields and whose global invariance under dilation and phase variations leads to a mixed continuity equation for the two fields. In combination with discrete spatial symmetries of the underlying Hamiltonian, the mixed continuity equation is shown to produce bilocal conservation laws for a single field. This leads to generalized conserved charges for vanishing boundary currents and to divergenceless bilocal currents for stationary states. The formalism reproduces the bilocal continuity equation obtained in the special case of P T -symmetric quantum mechanics and paraxial optics.
Analytical approximate solutions for a general class of nonlinear delay differential equations.
Căruntu, Bogdan; Bota, Constantin
2014-01-01
We use the polynomial least squares method (PLSM), which allows us to compute analytical approximate polynomial solutions for a very general class of strongly nonlinear delay differential equations. The method is tested by computing approximate solutions for several applications including the pantograph equations and a nonlinear time-delay model from biology. The accuracy of the method is illustrated by a comparison with approximate solutions previously computed using other methods.
Exact periodic solutions of the sixth-order generalized Boussinesq equation
International Nuclear Information System (INIS)
Kamenov, O Y
2009-01-01
This paper examines a class of nonlinear sixth-order generalized Boussinesq-like equations (SGBE): u tt = u xx + 3(u 2 ) xx + u xxxx + αu xxxxxx , α in R, depending on the positive parameter α. Hirota's bilinear transformation method is applied to the above class of non-integrable equations and exact periodic solutions have been obtained. The results confirmed the well-known nonlinear superposition principle.
A general analytical approach to the one-group, one-dimensional transport equation
International Nuclear Information System (INIS)
Barichello, L.B.; Vilhena, M.T.
1993-01-01
The main feature of the presented approach to solve the neutron transport equation consists in the application of the Laplace transform to the discrete ordinates equations, which yields a linear system of order N to be solved (LTS N method). In this paper this system is solved analytically and the inversion is performed using the Heaviside expansion technique. The general formulation achieved by this procedure is then applied to homogeneous and heterogeneous one-group slab-geometry problems. (orig.) [de
International Nuclear Information System (INIS)
Senthilvelan, M; Torrisi, M; Valenti, A
2006-01-01
By using Lie's invariance infinitesimal criterion, we obtain the continuous equivalence transformations of a class of nonlinear Schroedinger equations with variable coefficients. We construct the differential invariants of order 1 starting from a special equivalence subalgebra E χ o . We apply these latter ones to find the most general subclass of variable coefficient nonlinear Schr?dinger equations which can be mapped, by means of an equivalence transformation of E χ o , to the well-known cubic Schroedinger equation. We also provide the explicit form of the transformation
Directory of Open Access Journals (Sweden)
S. C. Oukouomi Noutchie
2014-01-01
Full Text Available We make use of Laplace transform techniques and the method of characteristics to solve fragmentation equations explicitly. Our result is a breakthrough in the analysis of pure fragmentation equations as this is the first instance where an exact solution is provided for the fragmentation evolution equation with general fragmentation rates. This paper is the key for resolving most of the open problems in fragmentation theory including “shattering” and the sudden appearance of infinitely many particles in some systems with initial finite particles number.
Yu, Jie; Liu, Yikan; Yamamoto, Masahiro
2018-04-01
In this article, we investigate the determination of the spatial component in the time-dependent second order coefficient of a hyperbolic equation from both theoretical and numerical aspects. By the Carleman estimates for general hyperbolic operators and an auxiliary Carleman estimate, we establish local Hölder stability with either partial boundary or interior measurements under certain geometrical conditions. For numerical reconstruction, we minimize a Tikhonov functional which penalizes the gradient of the unknown function. Based on the resulting variational equation, we design an iteration method which is updated by solving a Poisson equation at each step. One-dimensional prototype examples illustrate the numerical performance of the proposed iteration.
New multidimensional partially integrable generalization of S-integrable N-wave equation
International Nuclear Information System (INIS)
Zenchuk, A. I.
2007-01-01
This paper develops a modification of the dressing method based on the inhomogeneous linear integral equation with integral operator having nonempty kernel. The method allows one to construct the systems of multidimensional partial differential equations having differential polynomial structure in any dimension n. The associated solution space is not full, although it is parametrized by certain number of arbitrary functions of (n-1) variables. We consider four-dimensional generalization of the classical (2+1)-dimensional S-integrable N-wave equation as an example
A Generalized Analytic Operator-Valued Function Space Integral and a Related Integral Equation
International Nuclear Information System (INIS)
Chang, K.S.; Kim, B.S.; Park, C.H.; Ryu, K.S.
2003-01-01
We introduce a generalized Wiener measure associated with a Gaussian Markov process and define a generalized analytic operator-valued function space integral as a bounded linear operator from L p into L p-ci r cumflexprime (1< p ≤ 2) by the analytic continuation of the generalized Wiener integral. We prove the existence of the integral for certain functionals which involve some Borel measures. Also we show that the generalized analytic operator-valued function space integral satisfies an integral equation related to the generalized Schroedinger equation. The resulting theorems extend the theory of operator-valued function space integrals substantially and previous theorems about these integrals are generalized by our results
International Nuclear Information System (INIS)
Fischer, E.
1977-01-01
Various families of exact solutions to the Einstein and Einstein--Maxwell field equations of general relativity are treated for situations of sufficient symmetry that only two independent variables arise. The mathematical problem then reduces to consideration of sets of two coupled nonlinear differential equations. The physical situations in which such equations arise include: the external gravitational field of an axisymmetric, uncharged steadily rotating body, cylindrical gravitational waves with two degrees of freedom, colliding plane gravitational waves, the external gravitational and electromagnetic fields of a static, charged axisymmetric body, and colliding plane electromagnetic and gravitational waves. Through the introduction of suitable potentials and coordinate transformations, a formalism is presented which treats all these problems simultaneously. These transformations and potentials may be used to generate new solutions to the Einstein--Maxwell equations from solutions to the vacuum Einstein equations, and vice-versa. The calculus of differential forms is used as a tool for generation of similarity solutions and generalized similarity solutions. It is further used to find the invariance group of the equations; this in turn leads to various finite transformations that give new, physically distinct solutions from old. Some of the above results are then generalized to the case of three independent variables
Sensitivity theory for general non-linear algebraic equations with constraints
International Nuclear Information System (INIS)
Oblow, E.M.
1977-04-01
Sensitivity theory has been developed to a high state of sophistication for applications involving solutions of the linear Boltzmann equation or approximations to it. The success of this theory in the field of radiation transport has prompted study of possible extensions of the method to more general systems of non-linear equations. Initial work in the U.S. and in Europe on the reactor fuel cycle shows that the sensitivity methodology works equally well for those non-linear problems studied to date. The general non-linear theory for algebraic equations is summarized and applied to a class of problems whose solutions are characterized by constrained extrema. Such equations form the basis of much work on energy systems modelling and the econometrics of power production and distribution. It is valuable to have a sensitivity theory available for these problem areas since it is difficult to repeatedly solve complex non-linear equations to find out the effects of alternative input assumptions or the uncertainties associated with predictions of system behavior. The sensitivity theory for a linear system of algebraic equations with constraints which can be solved using linear programming techniques is discussed. The role of the constraints in simplifying the problem so that sensitivity methodology can be applied is highlighted. The general non-linear method is summarized and applied to a non-linear programming problem in particular. Conclusions are drawn in about the applicability of the method for practical problems
International Nuclear Information System (INIS)
Chen, G.S.
1997-01-01
We apply and compare the preconditioned generalized conjugate gradient methods to solve the linear system equation that arises in the two-dimensional neutron and photon transport equation in this paper. Several subroutines are developed on the basis of preconditioned generalized conjugate gradient methods for time-independent, two-dimensional neutron and photon transport equation in the transport theory. These generalized conjugate gradient methods are used. TFQMR (transpose free quasi-minimal residual algorithm), CGS (conjuage gradient square algorithm), Bi-CGSTAB (bi-conjugate gradient stabilized algorithm) and QMRCGSTAB (quasi-minimal residual variant of bi-conjugate gradient stabilized algorithm). These sub-routines are connected to computer program DORT. Several problems are tested on a personal computer with Intel Pentium CPU. (author)
Soliton evolution and radiation loss for the Korteweg--de Vries equation
International Nuclear Information System (INIS)
Kath, W.L.; Smyth, N.F.
1995-01-01
The time-dependent behavior of solutions of the Korteweg--de Vries (KdV) equation for nonsoliton initial conditions is considered. While the exact solution of the KdV equation can in principle be obtained using the inverse scattering transform, in practice it can be extremely difficult to obtain information about a solution's transient evolution by this method. As an alternative, we present here an approximate method for investigating this transient evolution which is based upon the conservation laws associated with the KdV equation. Initial conditions which form one or two solitons are considered, and the resulting approximate evolution is found to be in good agreement with the numerical solution of the KdV equation. Justification for the approximations employed is also given by way of the linearized inverse scattering solution of the KdV equation. In addition, the final soliton state determined from the approximate equations agrees very well with the final state determined from the exact inverse scattering transform solution
Computer local construction of a general solution for the Chew-Low equations
International Nuclear Information System (INIS)
Gerdt, V.P.
1980-01-01
General solution of the dynamic form of the Chew-Low equations in the vicinity of the restpoint is considered. A method for calculating coefficients of series being members of such solution is suggested. The results of calculations, coefficients of power series and expansions carried out by means of the SCHOONSCHIP and SYMBAL systems are given. It is noted that the suggested procedure of the Chew-Low equation solutions basing on using an electronic computer as an instrument for analytical calculations permits to obtain detail information on the local structure of general solution
Exact soliton solutions of the generalized Gross-Pitaevskii equation based on expansion method
Directory of Open Access Journals (Sweden)
Ying Wang
2014-06-01
Full Text Available We give a more generalized treatment of the 1D generalized Gross-Pitaevskii equation (GGPE with variable term coefficients. External harmonic trapping potential is fully considered and the nonlinear interaction term is of arbitrary polytropic index of superfluid wave function. We also eliminate the interdependence between variable coefficients of the equation terms avoiding the restrictions that occur in some other works. The exact soliton solutions of the GGPE are obtained through the delicate combined utilization of modified lens-type transformation and F-expansion method with dominant features like soliton type properties highlighted.
General relativistic continuum mechanics and the post-Newtonian equations of motion
International Nuclear Information System (INIS)
Morrill, T.H.
1991-01-01
Aspects are examined of general relativistic continuum mechanics. Perfectly elastic materials are dealt with but not exclusively. The derivation of their equations of motion is emphasized, in the post-Newtonian approximation. A reformulation is presented based on the tetrad formalism, of Carter and Quintana's theory of general relativistic elastic continua. A field Lagrangian is derived describing perfect material media; show that the usual covariant conservations law for perfectly elastic media is fully equivalent to the Euler-Lagrange equations describing these same media; and further show that the equations of motion for such materials follow directly from Einstein's field equations. In addition, a version of this principle shows that the local mass density in curved space-time partially depends on the amount and distribution of mass energy in the entire universe and is related to the mass density that would occur if space-time were flat. The total Lagrangian was also expanded in an EIH (Einstein, Infeld, Hoffmann) series to obtain a total post-Newtonian Lagrangian. The results agree with those found by solving Einstein's equations for the metric coefficients and by deriving the post-Newtonian equations of motion from the covariant conservation law
Nonlinear q-Generalizations of Quantum Equations: Homogeneous and Nonhomogeneous Cases—An Overview
Directory of Open Access Journals (Sweden)
Fernando D. Nobre
2017-01-01
Full Text Available Recent developments on the generalizations of two important equations of quantum physics, namely the Schroedinger and Klein–Gordon equations, are reviewed. These generalizations present nonlinear terms, characterized by exponents depending on an index q, in such a way that the standard linear equations are recovered in the limit q → 1 . Interestingly, these equations present a common, soliton-like, traveling solution, which is written in terms of the q-exponential function that naturally emerges within nonextensive statistical mechanics. In both cases, the corresponding well-known Einstein energy-momentum relations, as well as the Planck and the de Broglie ones, are preserved for arbitrary values of q. In order to deal appropriately with the continuity equation, a classical field theory has been developed, where besides the usual Ψ ( x → , t , a new field Φ ( x → , t must be introduced; this latter field becomes Ψ * ( x → , t only when q → 1 . A class of linear nonhomogeneous Schroedinger equations, characterized by position-dependent masses, for which the extra field Φ ( x → , t becomes necessary, is also investigated. In this case, an appropriate transformation connecting Ψ ( x → , t and Φ ( x → , t is proposed, opening the possibility for finding a connection between these fields in the nonlinear cases. The solutions presented herein are potential candidates for applications to nonlinear excitations in plasma physics, nonlinear optics, in structures, such as those of graphene, as well as in shallow and deep water waves.
A generalized Clebsch transformation leading to a first integral of Navier–Stokes equations
Energy Technology Data Exchange (ETDEWEB)
Scholle, M., E-mail: markus.scholle@hs-heilbronn.de; Marner, F., E-mail: florian.marner@hs-heilbronn.de
2016-09-23
In fluid dynamics, the Clebsch transformation allows for the construction of a first integral of the equations of motion leading to a self-adjoint form of the equations. A remarkable feature is the description of the vorticity by means of only two potential fields fulfilling simple transport equations. Despite useful applications in fluid dynamics and other physical disciplines as well, the classical Clebsch transformation has ever been restricted to inviscid flow. In the present paper a novel, generalized Clebsch transformation is developed which also covers the case of incompressible viscous flow. The resulting field equations are discussed briefly and solved for a flow example. Perspectives for a further extension of the method as well as perspectives towards the development of new solution strategies are presented. - Highlights: • A generalized Clebsch transformation is established applying to viscous flow. • The resulting 5 equations are a first integral of Navier–Stokes-equations. • An axisymmetric stagnation flow against a solid wall is considered as flow example. • Perspectives of the method for other problems, e.g. in solid mechanics are discussed.
A generalized Clebsch transformation leading to a first integral of Navier–Stokes equations
International Nuclear Information System (INIS)
Scholle, M.; Marner, F.
2016-01-01
In fluid dynamics, the Clebsch transformation allows for the construction of a first integral of the equations of motion leading to a self-adjoint form of the equations. A remarkable feature is the description of the vorticity by means of only two potential fields fulfilling simple transport equations. Despite useful applications in fluid dynamics and other physical disciplines as well, the classical Clebsch transformation has ever been restricted to inviscid flow. In the present paper a novel, generalized Clebsch transformation is developed which also covers the case of incompressible viscous flow. The resulting field equations are discussed briefly and solved for a flow example. Perspectives for a further extension of the method as well as perspectives towards the development of new solution strategies are presented. - Highlights: • A generalized Clebsch transformation is established applying to viscous flow. • The resulting 5 equations are a first integral of Navier–Stokes-equations. • An axisymmetric stagnation flow against a solid wall is considered as flow example. • Perspectives of the method for other problems, e.g. in solid mechanics are discussed.
Latella, Ivan; Pérez-Madrid, Agustín
2013-10-01
The local thermodynamics of a system with long-range interactions in d dimensions is studied using the mean-field approximation. Long-range interactions are introduced through pair interaction potentials that decay as a power law in the interparticle distance. We compute the local entropy, Helmholtz free energy, and grand potential per particle in the microcanonical, canonical, and grand canonical ensembles, respectively. From the local entropy per particle we obtain the local equation of state of the system by using the condition of local thermodynamic equilibrium. This local equation of state has the form of the ideal gas equation of state, but with the density depending on the potential characterizing long-range interactions. By volume integration of the relation between the different thermodynamic potentials at the local level, we find the corresponding equation satisfied by the potentials at the global level. It is shown that the potential energy enters as a thermodynamic variable that modifies the global thermodynamic potentials. As a result, we find a generalized Gibbs-Duhem equation that relates the potential energy to the temperature, pressure, and chemical potential. For the marginal case where the power of the decaying interaction potential is equal to the dimension of the space, the usual Gibbs-Duhem equation is recovered. As examples of the application of this equation, we consider spatially uniform interaction potentials and the self-gravitating gas. We also point out a close relationship with the thermodynamics of small systems.
Analytic study of solutions for a (3 + 1) -dimensional generalized KP equation
Gao, Hui; Cheng, Wenguang; Xu, Tianzhou; Wang, Gangwei
2018-03-01
The (3 + 1) -dimensional generalized KP (gKP) equation is an important nonlinear partial differential equation in theoretical and mathematical physics which can be used to describe nonlinear wave motion. Through the Hirota bilinear method, one-solition, two-solition and N-solition solutions are derived via symbolic computation. Two classes of lump solutions, rationally localized in all directions in space, to the dimensionally reduced cases in (2 + 1)-dimensions, are constructed by using a direct method based on the Hirota bilinear form of the equation. It implies that we can derive the lump solutions of the reduced gKP equation from positive quadratic function solutions to the aforementioned bilinear equation. Meanwhile, we get interaction solutions between a lump and a kink of the gKP equation. The lump appears from a kink and is swallowed by it with the change of time. This work offers a possibility which can enrich the variety of the dynamical features of solutions for higher-dimensional nonlinear evolution equations.
An Exact, Compressible One-Dimensional Riemann Solver for General, Convex Equations of State
Energy Technology Data Exchange (ETDEWEB)
Kamm, James Russell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-03-05
This note describes an algorithm with which to compute numerical solutions to the one- dimensional, Cartesian Riemann problem for compressible flow with general, convex equations of state. While high-level descriptions of this approach are to be found in the literature, this note contains most of the necessary details required to write software for this problem. This explanation corresponds to the approach used in the source code that evaluates solutions for the 1D, Cartesian Riemann problem with a JWL equation of state in the ExactPack package [16, 29]. Numerical examples are given with the proposed computational approach for a polytropic equation of state and for the JWL equation of state.
Identifying generalized Fitzhugh-Nagumo equation from a numerical solution of Hodgkin-Huxley model
Directory of Open Access Journals (Sweden)
Nikola V. Georgiev
2003-01-01
Full Text Available An analytic time series in the form of numerical solution (in an appropriate finite time interval of the Hodgkin-Huxley current clamped (HHCC system of four differential equations, well known in the neurophysiology as an exact empirical model of excitation of a giant axon of Loligo, is presented. Then we search for a second-order differential equation of generalized Fitzhugh-Nagumo (GFN type, having as a solution the given single component (action potential of the numerical solution. The given time series is used as a basis for reconstructing orders, powers, and coefficients of the polynomial right-hand sides of GFN equation approximately governing the process of action potential. For this purpose, a new geometrical method for determining phase space dimension of the unknown dynamical system (GFN equation and a specific modification of least squares method for identifying unknown coefficients are developed and applied.
Asymptotics for Large Time of Global Solutions to the Generalized Kadomtsev-Petviashvili Equation
Hayashi, Nakao; Naumkin, Pavel I.; Saut, Jean-Claude
We study the large time asymptotic behavior of solutions to the generalized Kadomtsev-Petviashvili (KP) equations where σ= 1 or σ=- 1. When ρ= 2 and σ=- 1, (KP) is known as the KPI equation, while ρ= 2, σ=+ 1 corresponds to the KPII equation. The KP equation models the propagation along the x-axis of nonlinear dispersive long waves on the surface of a fluid, when the variation along the y-axis proceeds slowly [10]. The case ρ= 3, σ=- 1 has been found in the modeling of sound waves in antiferromagnetics [15]. We prove that if ρ>= 3 is an integer and the initial data are sufficiently small, then the solution u of (KP) satisfies the following estimates: for all t∈R, where κ= 1 if ρ= 3 and κ= 0 if ρ>= 4. We also find the large time asymptotics for the solution.
A generalized master equation approach to modelling anomalous transport in animal movement
International Nuclear Information System (INIS)
Giuggioli, Luca; Sevilla, Francisco J; Kenkre, V M
2009-01-01
We present some models of random walks with internal degrees of freedom that have the potential to find application in the context of animal movement and stochastic search. The formalism we use is based on the generalized master equation which is particularly convenient here because of its inherent coarse-graining procedure whereby a random walker position is averaged over the internal degrees of freedom. We show some instances in which non-local jump probabilities emerge from the coupling of the motion to the internal degrees of freedom, and how the tuning of one parameter can give rise to sub-, super- and normal diffusion at long times. Remarks on the relation between the generalized master equation, continuous time random walks and fractional diffusion equations are also presented.
Symmetry Analysis of Gauge-Invariant Field Equations via a Generalized Harrison-Estabrook Formalism.
Papachristou, Costas J.
The Harrison-Estabrook formalism for the study of invariance groups of partial differential equations is generalized and extended to equations that define, through their solutions, sections on vector bundles of various kinds. Applications include the Dirac, Yang-Mills, and self-dual Yang-Mills (SDYM) equations. The latter case exhibits interesting connections between the internal symmetries of SDYM and the existence of integrability characteristics such as a linear ("inverse scattering") system and Backlund transformations (BT's). By "verticalizing" the generators of coordinate point transformations of SDYM, nine nonlocal, generalized (as opposed to local, point) symmetries are constructed. The observation is made that the prolongations of these symmetries are parametric BT's for SDYM. It is thus concluded that the entire point group of SDYM contributes, upon verticalization, BT's to the system.
Dunajski–Tod equation and reductions of the generalized dispersionless 2DTL hierarchy
Energy Technology Data Exchange (ETDEWEB)
Bogdanov, L.V., E-mail: leonid@landau.ac.ru [L.D. Landau ITP RAS, Moscow (Russian Federation)
2012-10-01
We transfer the scheme for constructing differential reductions recently developed for the Manakov–Santini hierarchy to the case of the two-component generalization of dispersionless 2DTL hierarchy. We demonstrate that the equation arising as a result of the simplest reduction is equivalent (up to a Legendre type transformation) to the Dunajski–Tod equation, locally describing general ASD vacuum metric with conformal symmetry. We consider higher reductions and corresponding reduced hierarchies also. -- Highlights: ► We introduce a differential reduction for the two-component d2DTL equation. ► We demonstrate that it is connected with ASD vacuum metric with conformal symmetry. ► We construct higher reductions and the reduced hierarchies.
Fronts between hexagons and squares in a generalized Swift-Hohenberg equation
DEFF Research Database (Denmark)
Kubstrup, Christian; Herrero, H.; Pérez-García, C.
1996-01-01
Pinning effects in domain walls separating different orientations in patterns in nonequilibrium systems, are studied. Usually; theoretical studies consider perfect structures, but in experiments, point defects, grain boundaries, etc., always appear. The aim of this paper is to perform an analysis...... of the stability of fronts between hexagons and squares in a generalized Swift-Hohenberg model equation. We focus the analysis on pinned fronts between domains with different symmetries by using amplitude equations and by considering the small-scale structure in the pattern. The conditions for pinning effects...... and stable fronts are determined. This study is completed with direct simulations of the generalized Swift-Hohenberg equation. The results agree qualitatively with recent observations in convection and in ferrofluid instabilities....
Generalized structured component analysis a component-based approach to structural equation modeling
Hwang, Heungsun
2014-01-01
Winner of the 2015 Sugiyama Meiko Award (Publication Award) of the Behaviormetric Society of Japan Developed by the authors, generalized structured component analysis is an alternative to two longstanding approaches to structural equation modeling: covariance structure analysis and partial least squares path modeling. Generalized structured component analysis allows researchers to evaluate the adequacy of a model as a whole, compare a model to alternative specifications, and conduct complex analyses in a straightforward manner. Generalized Structured Component Analysis: A Component-Based Approach to Structural Equation Modeling provides a detailed account of this novel statistical methodology and its various extensions. The authors present the theoretical underpinnings of generalized structured component analysis and demonstrate how it can be applied to various empirical examples. The book enables quantitative methodologists, applied researchers, and practitioners to grasp the basic concepts behind this new a...
Elizondo-Aguilera, L. F.; Zubieta Rico, P. F.; Ruiz-Estrada, H.; Alarcón-Waess, O.
2014-11-01
A self-consistent generalized Langevin-equation theory is proposed to describe the self- and collective dynamics of a liquid of linear Brownian particles. The equations of motion for the spherical harmonics projections of the collective and self-intermediate-scattering functions, Fl m ,l m(k ,t ) and Flm ,l m S(k ,t ) , are derived as a contraction of the description involving the stochastic equations of the corresponding tensorial one-particle density nl m(k ,t ) and the translational (α =T ) and rotational (α =R ) current densities jlm α(k ,t ) . Similar to the spherical case, these dynamic equations require as an external input the equilibrium structural properties of the system contained in the projections of the static structure factor, denoted by Sl m ,l m(k ) . Complementing these exact equations with simple (Vineyard-like) approximate relations for the collective and the self-memory functions we propose a closed self-consistent set of equations for the dynamic properties involved. In the long-time asymptotic limit, these equations become the so-called bifurcation equations, whose solutions (the nonergodicity parameters) can be written, extending the spherical case, in terms of one translational and one orientational scalar dynamic order parameter, γT and γR, which characterize the possible dynamical arrest transitions of the system. As a concrete illustrative application of this theory we determine the dynamic arrest diagram of the dipolar hard-sphere fluid. In qualitative agreement with mode coupling theory, the present self-consistent equations also predict three different regions in the state space spanned by the macroscopic control parameters η (volume fraction) and T* (scaled temperature): a region of fully ergodic states, a region of mixed states, in which the translational degrees of freedom become arrested while the orientational degrees of freedom remain ergodic, and a region of fully nonergodic states.
Elizondo-Aguilera, L F; Zubieta Rico, P F; Ruiz-Estrada, H; Alarcón-Waess, O
2014-11-01
A self-consistent generalized Langevin-equation theory is proposed to describe the self- and collective dynamics of a liquid of linear Brownian particles. The equations of motion for the spherical harmonics projections of the collective and self-intermediate-scattering functions, F_{lm,lm}(k,t) and F_{lm,lm}^{S}(k,t), are derived as a contraction of the description involving the stochastic equations of the corresponding tensorial one-particle density n_{lm}(k,t) and the translational (α=T) and rotational (α=R) current densities j_{lm}^{α}(k,t). Similar to the spherical case, these dynamic equations require as an external input the equilibrium structural properties of the system contained in the projections of the static structure factor, denoted by S_{lm,lm}(k). Complementing these exact equations with simple (Vineyard-like) approximate relations for the collective and the self-memory functions we propose a closed self-consistent set of equations for the dynamic properties involved. In the long-time asymptotic limit, these equations become the so-called bifurcation equations, whose solutions (the nonergodicity parameters) can be written, extending the spherical case, in terms of one translational and one orientational scalar dynamic order parameter, γ_{T} and γ_{R}, which characterize the possible dynamical arrest transitions of the system. As a concrete illustrative application of this theory we determine the dynamic arrest diagram of the dipolar hard-sphere fluid. In qualitative agreement with mode coupling theory, the present self-consistent equations also predict three different regions in the state space spanned by the macroscopic control parameters η (volume fraction) and T* (scaled temperature): a region of fully ergodic states, a region of mixed states, in which the translational degrees of freedom become arrested while the orientational degrees of freedom remain ergodic, and a region of fully nonergodic states.
Directory of Open Access Journals (Sweden)
Mohamed Abdalla Darwish
2014-01-01
Full Text Available We study a generalized fractional quadratic functional-integral equation of Erdélyi-Kober type in the Banach space BC(ℝ+. We show that this equation has at least one asymptotically stable solution.
A garden of orchids: a generalized Harper equation at quadratic irrational frequencies
International Nuclear Information System (INIS)
Mestel, B D; Osbaldestin, A H
2004-01-01
We consider a generalized Harper equation at quadratic irrational flux, showing, in the strong coupling limit, the fluctuations of the exponentially decaying eigenfunctions are governed by the dynamics of a renormalization operator on a renormalization strange set. This work generalizes previous analyses which have considered only the golden mean case. Projections of the renormalization strange sets are illustrated analogous to the 'orchid' present in the golden mean case
Solutions to the maximal spacelike hypersurface equation in generalized Robertson-Walker spacetimes
Directory of Open Access Journals (Sweden)
Henrique F. de Lima
2018-03-01
Full Text Available We apply some generalized maximum principles for establishing uniqueness and nonexistence results concerning maximal spacelike hypersurfaces immersed in a generalized Robertson-Walker (GRW spacetime, which is supposed to obey the so-called timelike convergence condition (TCC. As application, we study the uniqueness and nonexistence of entire solutions of a suitable maximal spacelike hypersurface equation in GRW spacetimes obeying the TCC.
A garden of orchids: a generalized Harper equation at quadratic irrational frequencies
Energy Technology Data Exchange (ETDEWEB)
Mestel, B D [Department of Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA (United Kingdom); Osbaldestin, A H [Department of Mathematics, University of Portsmouth, Portsmouth PO1 3HE (United Kingdom)
2004-10-01
We consider a generalized Harper equation at quadratic irrational flux, showing, in the strong coupling limit, the fluctuations of the exponentially decaying eigenfunctions are governed by the dynamics of a renormalization operator on a renormalization strange set. This work generalizes previous analyses which have considered only the golden mean case. Projections of the renormalization strange sets are illustrated analogous to the 'orchid' present in the golden mean case.
Tables of generalized Airy functions for the asymptotic solution of the differential equation
Nosova, L N
1965-01-01
Tables of Generalized Airy Functions for the Asymptotic Solution of the Differential Equations contains tables of the special functions, namely, the generalized Airy functions, and their first derivatives, for real and pure imaginary values. The tables are useful for calculations on toroidal shells, laminae, rode, and for the solution of certain other problems of mathematical physics. The values of the functions were computed on the ""Strela"" highspeed electronic computer.This book will be of great value to mathematicians, researchers, and students.
Comparison of stator-mounted permanent-magnet machines based on a general power equation
DEFF Research Database (Denmark)
Chen, Zhe; Hua, Wei; Cheng, Ming
2009-01-01
The stator-mounted permanent-magnet (SMPM) machines have some advantages compared with its counterparts, such as simple rotor, short winding terminals, and good thermal dissipation conditions for magnets. In this paper, a general power equation for three types of SMPM machine is introduced first...
Generalization of the Biot--Savart law to Maxwell's equations using special relativity
International Nuclear Information System (INIS)
Neuenschwander, D.E.; Turner, B.N.
1992-01-01
Maxwell's equations are obtained by generalizing the laws of magnetostatics, which follow from the Biot--Savart law and superposition, to be consistent with special relativity. The Lorentz force on a charged particle and its rate of energy change also follow by making Newton's second law for a particle in a magnetostatic field consistent with special relativity
A generalized variational algebra and conserved densities for linear evolution equations
International Nuclear Information System (INIS)
Abellanas, L.; Galindo, A.
1978-01-01
The symbolic algebra of Gel'fand and Dikii is generalized to the case of n variables. Using this algebraic approach a rigorous characterization of the polynomial kernel of the variational derivative is given. This is applied to classify all the conservation laws for linear polynomial evolution equations of arbitrary order. (Auth.)
General solution of Poisson equation in three dimensions for disk-like galaxies
International Nuclear Information System (INIS)
Tong, Y.; Zheng, X.; Peng, O.
1982-01-01
The general solution of the Poisson equation is solved by means of integral transformations for Vertical BarkVertical Barr>>1 provided that the perturbed density of disk-like galaxies distributes along the radial direction according to the Hankel function. This solution can more accurately represent the outer spiral arms of disk-like galaxies
Czech Academy of Sciences Publication Activity Database
Dilna, N.; Rontó, András
2008-01-01
Roč. 133, č. 4 (2008), s. 435-445 ISSN 0862-7959 R&D Projects: GA ČR(CZ) GA201/06/0254 Institutional research plan: CEZ:AV0Z10190503 Keywords : functional differential equation * Cauchy problem * initial value problem * differential inequality Subject RIV: BA - General Mathematics
A Systematic Experimental Test of the Ideal Gas Equation for the General Chemistry Laboratory
Blanco, Luis H.; Romero, Carmen M.
1995-10-01
A set of experiments that examines each one of the terms of the ideal gas equation is described. Boyle's Law, Charles-Gay Lussac's Law, Amonton's Law, the number of moles or Molecular Weight, and the Gas Constant are studied. The experiments use very simple, easy to obtain equipment and common gases, mainly air. The results gathered by General Chemistry College students are satisfactory.
Closure of the gauge algebra, generalized Lie equations and Feynman rules
International Nuclear Information System (INIS)
Batalin, I.A.
1984-01-01
A method is given by which an open gauge algebra can always be closed and even made abelian. As a preliminary the generalized Lie equations for the open group are obtained. The Feynman rules for gauge theories with open algebras are derived by reducing the gauge theory to a non-gauge one. (orig.)
Wave-Breaking Phenomena and Existence of Peakons for a Generalized Compressible Elastic-Rod Equation
Directory of Open Access Journals (Sweden)
Xiaolian Ai
2014-01-01
Full Text Available Consideration in this paper is the Cauchy problem of a generalized hyperelastic-rod wave equation. We first derive a wave-breaking mechanism for strong solutions, which occurs in finite time for certain initial profiles. In addition, we determine the existence of some new peaked solitary wave solutions.
Directory of Open Access Journals (Sweden)
Maxim Ioan
2009-05-01
Full Text Available In our paper we build a reccurence from generalized Garman equation and discretization of 3-dimensional domain. From reccurence we build an algorithm for computing values of an option based on time, momentan volatility of support and value of support on a
A multivariate family-based association test using generalized estimating equations : FBAT-GEE
Lange, C; Silverman, SK; Xu, [No Value; Weiss, ST; Laird, NM
In this paper we propose a multivariate extension of family-based association tests based on generalized estimating equations. The test can be applied to multiple phenotypes and to phenotypic data obtained in longitudinal studies without making any distributional assumptions for the phenotypic
Interrelation of alternative sets of Lax-pairs for a generalized nonlinear Schroedinger equation
International Nuclear Information System (INIS)
Iino, Kazuhiro; Ichikawa, Yoshihiko; Wadati, Miki.
1982-05-01
Examination of the inverse scattering transformation schemes for a generalized nonlinear Schroedinger equation reveals the fact that the algorithm of Chen-Lee-Liu gives rise to the Lax-pairs for the squared eigenfunctions of the Wadati-Konno-Ichikawa scheme, which has been formulated as superposition of the Ablowitz-Kaup-Newell-Segur scheme and the Kaup-Newell scheme. (author)
International Nuclear Information System (INIS)
Manoff, S.
1979-07-01
By utilization of the method of Lagrangians with covariant derivatives (MLCD) the different energy-momentum tensors (canonical, generalized canonical, symmetrical) and the relations between them are considered. On this basis, Einstein's theory of gravitation is studied as a field theory with a Lagrangian density of the type Lsub(g)=√-g.Lsub(g)(gsub(ij),Rsub(A)), (Rsub(A)=Rsub(ijkl)). It is shown that the energy-momentum tensors of the gravitational field can be defined for this theory. The symmetrical energy-momentum tensor of the gravitational field sub(gs)Tsub(k)sup(i), which in the general case is not a local conserved quantity (sub(gs)Tsub(k)sup(i)sub(;i) unequal 0) (in contrast to the material fields satisfying condition sub(Ms)Tsub(k)sup(i)sub(;i) = 0), is equal to zero for the gravitational field in vacuum (cosmological constant Λ = 0). Equations of the gravitational field of a new type are suggested, leading to equations of motion (sub(Ms)Tsub(k)sup(i) + sub(gs)Tsub(k)sup(i))sub(;i) = 0. The equations corresponding to the Lagrangian density Lsub(g)=(√-g/kappasub(o)) (R - lambda approximately), lambda approximately = const., are considered. The equations of Einstein Rsub(ij) = 0 are obtained in the case of gravitational field in vacuum. Some particular cases are examined as an illustration to material fields and the corresponding gravitational equations. (author)
Kwon, Young-Sam; Li, Fucai
2018-03-01
In this paper we study the incompressible limit of the degenerate quantum compressible Navier-Stokes equations in a periodic domain T3 and the whole space R3 with general initial data. In the periodic case, by applying the refined relative entropy method and carrying out the detailed analysis on the oscillations of velocity, we prove rigorously that the gradient part of the weak solutions (velocity) of the degenerate quantum compressible Navier-Stokes equations converge to the strong solution of the incompressible Navier-Stokes equations. Our results improve considerably the ones obtained by Yang, Ju and Yang [25] where only the well-prepared initial data case is considered. While for the whole space case, thanks to the Strichartz's estimates of linear wave equations, we can obtain the convergence of the weak solutions of the degenerate quantum compressible Navier-Stokes equations to the strong solution of the incompressible Navier-Stokes/Euler equations with a linear damping term. Moreover, the convergence rates are also given.
International Nuclear Information System (INIS)
Rosenfeld, M.; Kwak, D.; Vinokur, M.
1988-01-01
A solution method based on a fractional step approach is developed for obtaining time-dependent solutions of the three-dimensional, incompressible Navier-Stokes equations in generalized coordinate systems. The governing equations are discretized conservatively by finite volumes using a staggered mesh system. The primitive variable formulation uses the volume fluxes across the faces of each computational cell as dependent variables. This procedure, combined with accurate and consistent approximations of geometric parameters, is done to satisfy the discretized mass conservation equation to machine accuracy as well as to gain favorable convergence properties of the Poisson solver. The discretized equations are second-order-accurate in time and space and no smoothing terms are added. An approximate-factorization scheme is implemented in solving the momentum equations. A novel ZEBRA scheme with four-color ordering is devised for the efficient solution of the Poisson equation. Several two and three-dimensional solutions are compared with other numerical and experimental results to validate the present method. 23 references
Maddix, Danielle C.; Sampaio, Luiz; Gerritsen, Margot
2018-05-01
The degenerate parabolic Generalized Porous Medium Equation (GPME) poses numerical challenges due to self-sharpening and its sharp corner solutions. For these problems, we show results for two subclasses of the GPME with differentiable k (p) with respect to p, namely the Porous Medium Equation (PME) and the superslow diffusion equation. Spurious temporal oscillations, and nonphysical locking and lagging have been reported in the literature. These issues have been attributed to harmonic averaging of the coefficient k (p) for small p, and arithmetic averaging has been suggested as an alternative. We show that harmonic averaging is not solely responsible and that an improved discretization can mitigate these issues. Here, we investigate the causes of these numerical artifacts using modified equation analysis. The modified equation framework can be used for any type of discretization. We show results for the second order finite volume method. The observed problems with harmonic averaging can be traced to two leading error terms in its modified equation. This is also illustrated numerically through a Modified Harmonic Method (MHM) that can locally modify the critical terms to remove the aforementioned numerical artifacts.
International Nuclear Information System (INIS)
Ren Yujie; Liu Shutian; Zhang Hongqing
2007-01-01
In the present paper, some types of general solutions of a first-order nonlinear ordinary differential equation with six degree are given and a new generalized algebra method is presented to find more exact solutions of nonlinear differential equations. As an application of the method and the solutions of this equation, we choose the (2 + 1) dimensional Boiti Leon Pempinelli equation to illustrate the validity and advantages of the method. As a consequence, more new types and general solutions are found which include rational solutions and irrational solutions and so on. The new method can also be applied to other nonlinear differential equations in mathematical physics
Exact solution of the generalized Peierls equation for arbitrary n-fold screw dislocation
Wang, Shaofeng; Hu, Xiangsheng
2018-05-01
The exact solution of the generalized Peierls equation is presented and proved for arbitrary n-fold screw dislocation. The displacement field, stress field and the energy of the n-fold dislocation are also evaluated explicitly. It is found that the solution defined on each individual fold is given by the tail cut from the original Peierls solution. In viewpoint of energetics, a screw dislocation has a tendency to spread the distribution on all possible slip planes which are contained in the dislocation line zone. Based on the exact solution, the approximated solution of the improved Peierls equation is proposed for the modified γ-surface.
Stability and bifurcation analysis of a generalized scalar delay differential equation.
Bhalekar, Sachin
2016-08-01
This paper deals with the stability and bifurcation analysis of a general form of equation D(α)x(t)=g(x(t),x(t-τ)) involving the derivative of order α ∈ (0, 1] and a constant delay τ ≥ 0. The stability of equilibrium points is presented in terms of the stability regions and critical surfaces. We provide a necessary condition to exist chaos in the system also. A wide range of delay differential equations involving a constant delay can be analyzed using the results proposed in this paper. The illustrative examples are provided to explain the theory.
Group Classification of a General Bond-Option Pricing Equation of Mathematical Finance
Motsepa, Tanki; Khalique, Chaudry Masood; Molati, Motlatsi
2014-01-01
We carry out group classification of a general bond-option pricing equation. We show that the equation admits a three-dimensional equivalence Lie algebra. We also show that some of the values of the constants which result from group classification give us well-known models in mathematics of finance such as Black-Scholes, Vasicek, and Cox-Ingersoll-Ross. For all such values of these arbitrary constants we obtain Lie point symmetries. Symmetry reductions are then obtained and group invariant so...
The General Analytic Solution of a Functional Equation of Addition Type
Braden, H. W.; Buchstaber, V. M.
1995-01-01
The general analytic solution to the functional equation $$ \\phi_1(x+y)= { { \\biggl|\\matrix{\\phi_2(x)&\\phi_2(y)\\cr\\phi_3(x)&\\phi_3(y)\\cr}\\biggr|} \\over { \\biggl|\\matrix{\\phi_4(x)&\\phi_4(y)\\cr\\phi_5(x)&\\phi_5(y)\\cr}\\biggr|} } $$ is characterised. Up to the action of the symmetry group, this is described in terms of Weierstrass elliptic functions. We illustrate our theory by applying it to the classical addition theorems of the Jacobi elliptic functions and the functional equations $$ \\phi_1(x+...
Improved decay rates for solutions for a multidimensional generalized Benjamin-Bona-Mahony equation
Said-Houari, Belkacem
2014-01-01
In this paper, we study the decay rates of solutions for the generalized Benjamin-Bona-Mahony equation in multi-dimensional space. For initial data in some L1-weighted spaces, we prove faster decay rates of the solutions. More precisely, using the Fourier transform and the energy method, we show the global existence and the convergence rates of the solutions under the smallness assumption on the initial data and we give better decay rates of the solutions. This result improves early works in J. Differential Equations 158(2) (1999), 314-340 and Nonlinear Anal. 75(7) (2012), 3385-3392. © 2014-IOS Press.
Jasim Mohammed, M; Ibrahim, Rabha W; Ahmad, M Z
2017-03-01
In this paper, we consider a low initial population model. Our aim is to study the periodicity computation of this model by using neutral differential equations, which are recognized in various studies including biology. We generalize the neutral Rayleigh equation for the third-order by exploiting the model of fractional calculus, in particular the Riemann-Liouville differential operator. We establish the existence and uniqueness of a periodic computational outcome. The technique depends on the continuation theorem of the coincidence degree theory. Besides, an example is presented to demonstrate the finding.
Stability with respect to initial time difference for generalized delay differential equations
Directory of Open Access Journals (Sweden)
Ravi Agarwal
2015-02-01
Full Text Available Stability with initial data difference for nonlinear delay differential equations is introduced. This type of stability generalizes the known concept of stability in the literature. It gives us the opportunity to compare the behavior of two nonzero solutions when both initial values and initial intervals are different. Several sufficient conditions for stability and for asymptotic stability with initial time difference are obtained. Lyapunov functions as well as comparison results for scalar ordinary differential equations are employed. Several examples are given to illustrate the theory.
Stochastic wave-function unravelling of the generalized Lindblad equation using correlated states
International Nuclear Information System (INIS)
Moodley, Mervlyn; Nsio Nzundu, T; Paul, S
2012-01-01
We perform a stochastic wave-function unravelling of the generalized Lindblad master equation using correlated states, a combination of the system state vectors and the environment population. The time-convolutionless projection operator method using correlated projection superoperators is applied to a two-state system, a qubit, that is coupled to an environment consisting of two energy bands which are both populated. These results are compared to the data obtained from Monte Carlo wave-function simulations based on the unravelling of the master equation. We also show a typical quantum trajectory and the average time evolution of the state vector on the Bloch sphere. (paper)
Exact periodic solutions of the sixth-order generalized Boussinesq equation
Energy Technology Data Exchange (ETDEWEB)
Kamenov, O Y [Department of Applied Mathematics and Informatics, Technical University of Sofia, PO Box 384, 1000 Sofia (Bulgaria)], E-mail: okam@abv.bg
2009-09-18
This paper examines a class of nonlinear sixth-order generalized Boussinesq-like equations (SGBE): u{sub tt} = u{sub xx} + 3(u{sup 2}){sub xx} + u{sub xxxx} + {alpha}u{sub xxxxxx}, {alpha} in R, depending on the positive parameter {alpha}. Hirota's bilinear transformation method is applied to the above class of non-integrable equations and exact periodic solutions have been obtained. The results confirmed the well-known nonlinear superposition principle.
DEFF Research Database (Denmark)
Jørgensen, Bo Hoffmann
2003-01-01
The goal of this brief report is to express the model equations for an incompressible flow which is horizontally homogeneous. It is intended as a computationally inexpensive starting point of a more complete solution for neutral atmospheric flow overcomplex terrain. This idea was set forth...... by Ayotte and Taylor (1995) and in the work of Beljaars et al. (1987). Unlike the previous models, the present work uses general orthogonal coordinates. Strong conservation form of the model equations is employedto allow a robust and consistent numerical procedure. An invariant tensor form of the model...
Group Classification of a General Bond-Option Pricing Equation of Mathematical Finance
Directory of Open Access Journals (Sweden)
Tanki Motsepa
2014-01-01
Full Text Available We carry out group classification of a general bond-option pricing equation. We show that the equation admits a three-dimensional equivalence Lie algebra. We also show that some of the values of the constants which result from group classification give us well-known models in mathematics of finance such as Black-Scholes, Vasicek, and Cox-Ingersoll-Ross. For all such values of these arbitrary constants we obtain Lie point symmetries. Symmetry reductions are then obtained and group invariant solutions are constructed for some cases.
Spatial charge motion on an uniform density matrix-general equations in opened and closed circuits
International Nuclear Information System (INIS)
Aguiar Monsanto, S. de.
1983-01-01
The motion of a space charge cloud embedded in a matrix of constant immobile charge density is studied in open as well as in closed circuit. In the first case, open circuit, the solution is almost trivial as compared as the other one in which, after some work, the problem is reduced to an ordinary differential equation. The method of solution is parallel to that employed in the study of monopolar free space charge motion. The voltage and the current produced by a system with no net charge but with unbalanced local charge density were calculated using the general equations derived in the first part of the work. (Author) [pt
Some Matrix Iterations for Computing Generalized Inverses and Balancing Chemical Equations
Directory of Open Access Journals (Sweden)
Farahnaz Soleimani
2015-11-01
Full Text Available An application of iterative methods for computing the Moore–Penrose inverse in balancing chemical equations is considered. With the aim to illustrate proposed algorithms, an improved high order hyper-power matrix iterative method for computing generalized inverses is introduced and applied. The improvements of the hyper-power iterative scheme are based on its proper factorization, as well as on the possibility to accelerate the iterations in the initial phase of the convergence. Although the effectiveness of our approach is confirmed on the basis of the theoretical point of view, some numerical comparisons in balancing chemical equations, as well as on randomly-generated matrices are furnished.
Lin, Guoxing
2018-05-01
Anomalous diffusion exists widely in polymer and biological systems. Pulsed-field gradient (PFG) anomalous diffusion is complicated, especially in the anisotropic case where limited research has been reported. A general PFG signal attenuation expression, including the finite gradient pulse (FGPW) effect for free general anisotropic fractional diffusion { 0 integral modified-Bloch equation, were extended to obtain general PFG signal attenuation expressions for anisotropic anomalous diffusion. Various cases of PFG anisotropic anomalous diffusion were investigated, including coupled and uncoupled anisotropic anomalous diffusion. The continuous-time random walk (CTRW) simulation was also carried out to support the theoretical results. The theory and the CTRW simulation agree with each other. The obtained signal attenuation expressions and the three-dimensional fractional modified-Bloch equations are important for analyzing PFG anisotropic anomalous diffusion in NMR and MRI.
Efficiency of High-Order Accurate Difference Schemes for the Korteweg-de Vries Equation
Directory of Open Access Journals (Sweden)
Kanyuta Poochinapan
2014-01-01
Full Text Available Two numerical models to obtain the solution of the KdV equation are proposed. Numerical tools, compact fourth-order and standard fourth-order finite difference techniques, are applied to the KdV equation. The fundamental conservative properties of the equation are preserved by the finite difference methods. Linear stability analysis of two methods is presented by the Von Neumann analysis. The new methods give second- and fourth-order accuracy in time and space, respectively. The numerical experiments show that the proposed methods improve the accuracy of the solution significantly.
Soliton equations and Hamiltonian systems
Dickey, L A
2002-01-01
The theory of soliton equations and integrable systems has developed rapidly during the last 30 years with numerous applications in mechanics and physics. For a long time, books in this field have not been written but the flood of papers was overwhelming: many hundreds, maybe thousands of them. All this output followed one single work by Gardner, Green, Kruskal, and Mizura on the Korteweg-de Vries equation (KdV), which had seemed to be merely an unassuming equation of mathematical physics describing waves in shallow water. Besides its obvious practical use, this theory is attractive also becau
A new auxiliary equation and exact travelling wave solutions of nonlinear equations
International Nuclear Information System (INIS)
Sirendaoreji
2006-01-01
A new auxiliary ordinary differential equation and its solutions are used for constructing exact travelling wave solutions of nonlinear partial differential equations in a unified way. The main idea of this method is to take full advantage of the auxiliary equation which has more new exact solutions. More new exact travelling wave solutions are obtained for the quadratic nonlinear Klein-Gordon equation, the combined KdV and mKdV equation, the sine-Gordon equation and the Whitham-Broer-Kaup equations
Xia, Ya-Rong; Zhang, Shun-Li; Xin, Xiang-Peng
2018-03-01
In this paper, we propose the concept of the perturbed invariant subspaces (PISs), and study the approximate generalized functional variable separation solution for the nonlinear diffusion-convection equation with weak source by the approximate generalized conditional symmetries (AGCSs) related to the PISs. Complete classification of the perturbed equations which admit the approximate generalized functional separable solutions (AGFSSs) is obtained. As a consequence, some AGFSSs to the resulting equations are explicitly constructed by way of examples.
International Nuclear Information System (INIS)
Zhang Mei-Ling; Wang Xiao-Xiao; Xie Yin-Li; Jia Li-Qun; Sun Xian-Ting
2011-01-01
Lie symmetry and the generalized Hojman conserved quantity of Nielsen equations for a variable mass holonomic system of relative motion are studied. The determining equation of Lie symmetry of Nielsen equations for a variable mass holonomic system of relative motion under the infinitesimal transformations of groups is given. The expression of generalized Hojman conserved quantity deduced directly from Lie symmetry for a variable mass holonomic system of relative motion is obtained. An example is given to illustrate the application of the results. (general)
Critique of the Brownian approximation to the generalized Langevin equation in lattice dynamics
International Nuclear Information System (INIS)
Diestler, D.J.; Riley, M.E.
1985-01-01
We consider the classical motion of a harmonic lattice in which only those atoms in a certain subset of the lattice (primary zone) may interact with an external force. The formally exact generalized Langevin equation (GLE) for the primary zone is an appropriate description of the dynamics. We examine a previously proposed Brownian, or frictional damping, approximation that reduces the GLE to a set of coupled ordinary Langevin equations for the primary atoms. It is shown that the solution of these equations can contain undamped motion if there is more than one atom in the primary zone. Such motion is explicitly demonstrated for a model that has been used to describe energy transfer in atom--surface collisions. The inability of the standard Brownian approximation to yield an acceptable, physically meaningful result for primary zones comprising more than one atom suggests that the Brownian approximation may introduce other spurious dynamical effects. Further work on damping of correlated motion in lattices is needed
International Nuclear Information System (INIS)
Christensen, E.H.; O'Loughlin, J.M.
1984-09-01
Several finite difference, finite element detailed analyses of propagation velocities in up to three dimensions in pool-boiling windings have been conducted for different electromagnetic and cryogenic environments. Likewise, a few full scale simulated winding and magnet tests have measured propagation velocities. These velocity data have been correlated in terms of winding thermophysical parameters. This analysis expresses longitudinal and transverse propagation velocities in the form of power function regression equations for a wide variety of windings and electromagnetic and thermohydraulic environments. The generalized velocity equations are considered applicable to well-ventilated, monolithic conductor windings. These design equations are used piecewise in a gross finite difference mode as functions of field to predict the rate of normal zone growth during quench conditions. A further check of the validity of these predictions is available through total predicted quench durations correlated with actual quench durations of large magnets
The ICVSIE: A General Purpose Integral Equation Method for Bio-Electromagnetic Analysis.
Gomez, Luis J; Yucel, Abdulkadir C; Michielssen, Eric
2018-03-01
An internally combined volume surface integral equation (ICVSIE) for analyzing electromagnetic (EM) interactions with biological tissue and wide ranging diagnostic, therapeutic, and research applications, is proposed. The ICVSIE is a system of integral equations in terms of volume and surface equivalent currents in biological tissue subject to fields produced by externally or internally positioned devices. The system is created by using equivalence principles and solved numerically; the resulting current values are used to evaluate scattered and total electric fields, specific absorption rates, and related quantities. The validity, applicability, and efficiency of the ICVSIE are demonstrated by EM analysis of transcranial magnetic stimulation, magnetic resonance imaging, and neuromuscular electrical stimulation. Unlike previous integral equations, the ICVSIE is stable regardless of the electric permittivities of the tissue or frequency of operation, providing an application-agnostic computational framework for EM-biomedical analysis. Use of the general purpose and robust ICVSIE permits streamlining the development, deployment, and safety analysis of EM-biomedical technologies.
Modeling ultrashort electromagnetic pulses with a generalized Kadomtsev-Petviashvili equation
Hofstrand, A.; Moloney, J. V.
2018-03-01
In this paper we derive a properly scaled model for the nonlinear propagation of intense, ultrashort, mid-infrared electromagnetic pulses (10-100 femtoseconds) through an arbitrary dispersive medium. The derivation results in a generalized Kadomtsev-Petviashvili (gKP) equation. In contrast to envelope-based models such as the Nonlinear Schrödinger (NLS) equation, the gKP equation describes the dynamics of the field's actual carrier wave. It is important to resolve these dynamics when modeling ultrashort pulses. We proceed by giving an original proof of sufficient conditions on the initial pulse for a singularity to form in the field after a finite propagation distance. The model is then numerically simulated in 2D using a spectral-solver with initial data and physical parameters highlighting our theoretical results.
Zhao, L. W.; Du, J. G.; Yin, J. L.
2018-05-01
This paper proposes a novel secured communication scheme in a chaotic system by applying generalized function projective synchronization of the nonlinear Schrödinger equation. This phenomenal approach guarantees a secured and convenient communication. Our study applied the Melnikov theorem with an active control strategy to suppress chaos in the system. The transmitted information signal is modulated into the parameter of the nonlinear Schrödinger equation in the transmitter and it is assumed that the parameter of the receiver system is unknown. Based on the Lyapunov stability theory and the adaptive control technique, the controllers are designed to make two identical nonlinear Schrödinger equation with the unknown parameter asymptotically synchronized. The numerical simulation results of our study confirmed the validity, effectiveness and the feasibility of the proposed novel synchronization method and error estimate for a secure communication. The Chaos masking signals of the information communication scheme, further guaranteed a safer and secured information communicated via this approach.
International Nuclear Information System (INIS)
Kenyon, A. J.; Wojdak, M.; Ahmad, I.; Loh, W. H.; Oton, C. J.
2008-01-01
We discuss the use of rate equations to analyze the sensitization of erbium luminescence by silicon nanoclusters. In applying the general form of second-order coupled rate-equations to the Si nanocluster-erbium system, we find that the photoluminescence dynamics cannot be described using a simple rate equation model. Both rise and fall times exhibit a stretched exponential behavior, which we propose arises from a combination of a strongly distance-dependent nanocluster-erbium interaction, along with the finite size distribution and indirect band gap of the silicon nanoclusters. Furthermore, the low fraction of erbium ions that can be excited nonresonantly is a result of the small number of ions coupled to nanoclusters
Directory of Open Access Journals (Sweden)
Zulfiqar Ali
2013-01-01
Full Text Available We find exact solutions of the Generalized Modified Boussinesq (GMB equation, the Kuromoto-Sivashinsky (KS equation the and, Camassa-Holm (CH equation by utilizing the double reduction theory related to conserved vectors. The fourth order GMB equation involves the arbitrary function and mixed derivative terms in highest derivative. The partial Noether’s approach yields seven conserved vectors for GMB equation and one conserved for vector KS equation. Due to presence of mixed derivative term the conserved vectors for GMB equation derived by the Noether like theorem do not satisfy the divergence relationship. The extra terms that constitute the trivial part of conserved vectors are adjusted and the resulting conserved vectors satisfy the divergence property. The double reduction theory yields two independent solutions and one reduction for GMB equation and one solution for KS equation. For CH equation two independent solutions are obtained elsewhere by double reduction theory with the help of conserved Vectors.
International Nuclear Information System (INIS)
Zhang Yufeng; Tam, Honwah; Feng Binlu
2011-01-01
Highlights: → A generalized Zakharov-Shabat equation is obtained. → The generalized AKNS vector fields are established. → The finite-band solution of the g-ZS equation is obtained. → By using a Lie algebra presented in the paper, a new soliton hierarchy with an arbitrary parameter is worked out. - Abstract: In this paper, a generalized Zakharov-Shabat equation (g-ZS equation), which is an isospectral problem, is introduced by using a loop algebra G ∼ . From the stationary zero curvature equation we define the Lenard gradients {g j } and the corresponding generalized AKNS (g-AKNS) vector fields {X j } and X k flows. Employing the nonlinearization method, we obtain the generalized Zhakharov-Shabat Bargmann (g-ZS-B) system and prove that it is Liouville integrable by introducing elliptic coordinates and evolution equations. The explicit relations of the X k flows and the polynomial integrals {H k } are established. Finally, we obtain the finite-band solutions of the g-ZS equation via the Abel-Jacobian coordinates. In addition, a soliton hierarchy and its Hamiltonian structure with an arbitrary parameter k are derived.
The Hubble law and the spiral structures of galaxies from equations of motion in general relativity
International Nuclear Information System (INIS)
Sachs, M.
1975-01-01
Fully exploiting the Lie group that characterizes the underlying symmetry of general relativity theory, Einstein's tensor formalism factorizes, yielding a generalized (16-component) quaternion field formalism. The associated generalized geodesic equation, taken as the equation of motion of a star, predicts the Hubble law from one approximation for the generally covariant equations of motion, and the spiral structure of galaxies from another approximation. These results depend on the imposition of appropriate boundary conditions. The Hubble law follows when the boundary conditions derive from the oscillating model cosmology, and not from the other cosmological models. The spiral structures of the galaxies follow from the same boundary conditions, but with a different time scale than for the whole universe. The solutions that imply the spiral motion are Fresnel integrals. These predict the star's motion to be along the 'Cornu Spiral'. The part of this spiral in the first quadrant is the imploding phase of the galaxy, corresponding to a motion with continually decreasing radii, approaching the galactic center as time increases. The part of the Cornu Spiral' in the third quadrant is the exploding phase, corresponding to continually increasing radii, as the star moves out from the hub. The spatial origin in the coordinate system of this curve is the inflection point, where the explosion changes to implosion. The two- (or many-) armed spiral galaxies are explained here in terms of two (or many) distinct explosions occurring at displaced times, in the domain of the rotating, planar galaxy. (author)
Numerical solutions of the aerosol general dynamic equation for nuclear reactor safety studies
International Nuclear Information System (INIS)
Park, J.W.
1988-01-01
Methods and approximations inherent in modeling of aerosol dynamics and evolution for nuclear reactor source term estimation have been investigated. Several aerosol evolution problems are considered to assess numerical methods of solving the aerosol dynamic equation. A new condensational growth model is constructed by generalizing Mason's formula to arbitrary particle sizes, and arbitrary accommodation of the condensing vapor and background gas at particle surface. Analytical solution is developed for the aerosol growth equation employing the new condensation model. The space-dependent aerosol dynamic equation is solved to assess implications of spatial homogenization of aerosol distributions. The results of our findings are as follows. The sectional method solving the aerosol dynamic equation is quite efficient in modeling of coagulation problems, but should be improved for simulation of strong condensation problems. The J-space transform method is accurate in modeling of condensation problems, but is very slow. For the situation considered, the new condensation model predicts slower aerosol growth than the corresponding isothermal model as well as Mason's model, the effect of partial accommodation is considerable on the particle evolution, and the effect of the energy accommodation coefficient is more pronounced than that of the mass accommodation coefficient. For the initial conditions considered, the space-dependent aerosol dynamics leads to results that are substantially different from those based on the spatially homogeneous aerosol dynamic equation
International Nuclear Information System (INIS)
Osborn, H.
1991-01-01
A local renormalisation group equation which realises infinitesimal Weyl rescalings of the metric and which is an extension of the usual Callan-Symanzik equation is described. In order to ensure that any local composite operators, with dimensions so that on addition to the basic lagrangian they preserve renormalisability, are well defined for arbitrarily many insertions into correlation functions the couplings are assumed to depend on χ. Local operators are then defined by functional differentiation with respect to the couplings just as the energy-momentum tensor is given by functional differentiation with respect to the metric. The local renormalisation group equation contains terms depending on derivatives of the couplings as well as the curvature tensor formed from the metric, constrained by power counting. Various consistency relations arising from the commutativity of Weyl transformations are derived, extending previous one-loop results for the trace anomaly to all orders. In two dimensions the relations give an alternative derivation of the c-theorem and similar extensions are obtained in four dimensions. The equations are applied in detail to general renormalisable σ-models in two dimensions. The Curci-Paffuti relation is derived without any commitment to a particular regularisation scheme and further equations used to construct an action for the vanishing of the β-functions are also obtained. The discussion is also extended to σ-models with a boundary, as appropriate for open strings, and relations for the additional β-functions present in such models are obtained. (orig.)
Equations of motion in general relativity of a small charged black hole
International Nuclear Information System (INIS)
Futamase, T.; Hogan, P. A.; Itoh, Y.
2008-01-01
We present the details of a model in general relativity of a small charged black hole moving in an external gravitational and electromagnetic field. The importance of our model lies in the fact that we can derive the equations of motion of the black hole from the Einstein-Maxwell vacuum field equations without encountering infinities. The key assumptions which we base our results upon are that (a) the black hole is isolated and (b) near the black hole the wave fronts of the radiation generated by its motion are smoothly deformed spheres. The equations of motion which emerge fit the pattern of the original DeWitt and Brehme equations of motion (after they 'renormalize'). Our calculations are carried out in a coordinate system in which the null hypersurface histories of the wave fronts can be specified in a simple way, with the result that we obtain a new explicit form, particular to our model, for the well-known ''tail term'' in the equations of motion.
On integrability of a noncommutative q-difference two-dimensional Toda lattice equation
Energy Technology Data Exchange (ETDEWEB)
Li, C.X., E-mail: trisha_li2001@163.com [School of Mathematical Sciences, Capital Normal University, Beijing 100048 (China); Department of Mathematics, College of Charleston, Charleston, SC 29401 (United States); Nimmo, J.J.C., E-mail: jonathan.nimmo@glasgow.ac.uk [School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QW (United Kingdom); Shen, Shoufeng, E-mail: mathssf@zjut.edu.cn [Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023 (China)
2015-12-18
In our previous work (C.X. Li and J.J.C. Nimmo, 2009 [18]), we presented a generalized type of Darboux transformations in terms of a twisted derivation in a unified form. The twisted derivation includes ordinary derivatives, forward difference operators, super derivatives and q-difference operators as its special cases. This result not only enables one to recover the known Darboux transformations and quasideterminant solutions to the noncommutative KP equation, the non-Abelian two-dimensional Toda lattice equation, the non-Abelian Hirota–Miwa equation and the super KdV equation, but also inspires us to investigate quasideterminant solutions to q-difference soliton equations. In this paper, we first construct the bilinear Bäcklund transformations for the known bilinear q-difference two-dimensional Toda lattice equation (q-2DTL) and then derive a Lax pair whose compatibility gives a formally different nonlinear q-2DTL equation and finally obtain its quasideterminant solutions by iterating its Darboux transformations. - Highlights: • Examples are given to illustrate the extensive applications of twisted derivations. • Bilinear Bäcklund transformation is constructed for the known q-2DTL equation. • Lax pair is obtained for an equivalent q-2DTL equation. • Quasideterminant solutions are found for the nc q-2DTL equation.
An Algebraic Method for Constructing Exact Solutions to Difference-Differential Equations
International Nuclear Information System (INIS)
Wang Zhen; Zhang Hongqing
2006-01-01
In this paper, we present a method to solve difference differential equation(s). As an example, we apply this method to discrete KdV equation and Ablowitz-Ladik lattice equation. As a result, many exact solutions are obtained with the help of Maple including soliton solutions presented by hyperbolic functions sinh and cosh, periodic solutions presented by sin and cos and rational solutions. This method can also be used to other nonlinear difference-differential equation(s).
Dimensional reduction of a general advection–diffusion equation in 2D channels
Kalinay, Pavol; Slanina, František
2018-06-01
Diffusion of point-like particles in a two-dimensional channel of varying width is studied. The particles are driven by an arbitrary space dependent force. We construct a general recurrence procedure mapping the corresponding two-dimensional advection-diffusion equation onto the longitudinal coordinate x. Unlike the previous specific cases, the presented procedure enables us to find the one-dimensional description of the confined diffusion even for non-conservative (vortex) forces, e.g. caused by flowing solvent dragging the particles. We show that the result is again the generalized Fick–Jacobs equation. Despite of non existing scalar potential in the case of vortex forces, the effective one-dimensional scalar potential, as well as the corresponding quasi-equilibrium and the effective diffusion coefficient can be always found.
Directory of Open Access Journals (Sweden)
Sukjung Hwang
2015-11-01
Full Text Available Here we generalize quasilinear parabolic p-Laplacian type equations to obtain the prototype equation $$ u_t - \\hbox{div} \\Big(\\frac{g(|Du|}{|Du|} Du\\Big = 0, $$ where g is a nonnegative, increasing, and continuous function trapped in between two power functions $|Du|^{g_0 -1}$ and $|Du|^{g_1 -1}$ with $1
Inelastic collision of two solitons for generalized BBM equation with cubic nonlinearity
Directory of Open Access Journals (Sweden)
Jingdong Wei
2015-06-01
Full Text Available We study the inelastic collision of two solitary waves of different velocities for the generalized Benjamin-Bona-Mahony (BBM equation with cubic nonlinearity. It shows that one solitary wave is smaller than the other one in the H^1(R energy space. We explore the sharp estimates of the nonzero residue due to the collision, and prove the inelastic collision of two solitary waves and nonexistence of a pure 2-soliton solution.
Effective Hamiltonians, two level systems, and generalized Maxwell-Bloch equations
International Nuclear Information System (INIS)
Sczaniecki, L.
1981-02-01
A new method is proposed involving a canonical transformation leading to the non-secular part of time-independent perturbation calculus. The method is used to derive expressions for effective Shen-Walls Hamiltonians which, taken in the two-level approximation and on the inclusion of non-Hamiltonian terms into the dynamics of the system, lead to generalized Maxwell-Bloch equations. The rotating wave approximation is written anew within the framework of our formalism. (author)
Wang, Yu-Zhu; Wei, Changhua
2018-04-01
In this paper, we investigate the initial value problem for the generalized double dispersion equation in R^n. Weighted decay estimate and asymptotic profile of global solutions are established for n≥3 . The global existence result was already proved by Kawashima and the first author in Kawashima and Wang (Anal Appl 13:233-254, 2015). Here, we show that the nonlinear term plays an important role in this asymptotic profile.
Directory of Open Access Journals (Sweden)
Kuo-Shou Chiu
2010-08-01
Full Text Available In this paper we investigate the existence of the periodic solutions of a quasilinear differential equation with piecewise constant argument of generalized type. By using some fixed point theorems and some new analysis technique, sufficient conditions are obtained for the existence and uniqueness of periodic solutions of these systems. A new Gronwall type lemma is proved. Some examples concerning biological models as Lasota-Wazewska, Nicholson's blowflies and logistic models are treated.
A General Construction of Linear Differential Equations with Solutions of Prescribed Properties
Czech Academy of Sciences Publication Activity Database
Neuman, František
2004-01-01
Roč. 17, č. 1 (2004), s. 71-76 ISSN 0893-9659 R&D Projects: GA AV ČR IAA1019902; GA ČR GA201/99/0295 Institutional research plan: CEZ:AV0Z1019905 Keywords : construction of linear differential equations * prescribed qualitative properties of solutions Subject RIV: BA - General Mathematics Impact factor: 0.414, year: 2004
International Nuclear Information System (INIS)
Serva, M.
1986-01-01
In this paper we give probabilistic solutions to the equations describing non-relativistic quantum electrodynamical systems. These solutions involve, besides the usual diffusion processes, also birth and death processes corresponding to the 'photons number' variables. We state some inequalities and in particular we establish bounds to the ground state energy of systems composed by a non relativistic particle interacting with a field. The result is general and it is applied as an example to the polaron problem. (orig.)
Directory of Open Access Journals (Sweden)
Ayşe Betül Koç
2014-01-01
Full Text Available A pseudospectral method based on the Fibonacci operational matrix is proposed to solve generalized pantograph equations with linear functional arguments. By using this method, approximate solutions of the problems are easily obtained in form of the truncated Fibonacci series. Some illustrative examples are given to verify the efficiency and effectiveness of the proposed method. Then, the numerical results are compared with other methods.
Some Matrix Iterations for Computing Generalized Inverses and Balancing Chemical Equations
Soleimani, Farahnaz; Stanimirovi´c, Predrag; Soleymani, Fazlollah
2015-01-01
An application of iterative methods for computing the Moore–Penrose inverse in balancing chemical equations is considered. With the aim to illustrate proposed algorithms, an improved high order hyper-power matrix iterative method for computing generalized inverses is introduced and applied. The improvements of the hyper-power iterative scheme are based on its proper factorization, as well as on the possibility to accelerate the iterations in the initial phase of the convergence. Although the ...
A Generalized FDM for solving the Poisson's Equation on 3D Irregular Domains
Directory of Open Access Journals (Sweden)
J. Izadian
2014-01-01
Full Text Available In this paper a new method for solving the Poisson's equation with Dirichlet conditions on irregular domains is presented. For this purpose a generalized finite differences method is applied for numerical differentiation on irregular meshes. Three examples on cylindrical and spherical domains are considered. The numerical results are compared with analytical solution. These results show the performance and efficiency of the proposed method.
Determination of calibration equations by means of the generalized least squares method
International Nuclear Information System (INIS)
Zijp, W.L.
1984-12-01
For the determination of two-dimensional calibration curves (e.g. in tank calibration procedures) or of three dimensional calibration equations (e.g. for the calibration of NDA equipment for enrichment measurements) one performs measurements under well chosen conditions, where all observables of interest (inclusive the values of the standard material) are subject to measurement uncertainties. Moreover correlations in several measurements may occur. This document describes the mathematical-statistical approach to determine the values of the model parameters and their covariance matrix, which fit best to the mathematical model for the calibration equation. The formulae are based on the method of generalized least squares where the term generalized implies that non-linear equations in the unknown parameters and also covariance matrices of the measurement data of the calibration can be taken into account. In the general case an iteration procedure is required. No iteration is required when the model is linear in the parameters and the covariance matrices for the measurements of co-ordinates of the calibration points are proportional to each other
A general solution of the BV-master equation and BRST field theories
International Nuclear Information System (INIS)
Dayi, O.F.
1993-05-01
For a class of first order gauge theories it was shown that the proper solution of the BV-master equation can be obtained straightforwardly. Here we present the general condition which the gauge generators should satisfy to conclude that this construction is relevant. The general procedure is illustrated by its application to the Chern-Simons theory in any odd-dimension. Moreover, it is shown that this formalism is also applicable to BRST field theories, when one replaces the role of the exterior derivative with the BRST charge of first quantization. (author). 17 refs
International Nuclear Information System (INIS)
Sandev, Trifce; Metzler, Ralf; Tomovski, Živorad
2014-01-01
We study generalized fractional Langevin equations in the presence of a harmonic potential. General expressions for the mean velocity and particle displacement, the mean squared displacement, position and velocity correlation functions, as well as normalized displacement correlation function are derived. We report exact results for the cases of internal and external friction, that is, when the driving noise is either internal and thus the fluctuation-dissipation relation is fulfilled or when the noise is external. The asymptotic behavior of the generalized stochastic oscillator is investigated, and the case of high viscous damping (overdamped limit) is considered. Additional behaviors of the normalized displacement correlation functions different from those for the regular damped harmonic oscillator are observed. In addition, the cases of a constant external force and the force free case are obtained. The validity of the generalized Einstein relation for this process is discussed. The considered fractional generalized Langevin equation may be used to model anomalous diffusive processes including single file-type diffusion
International Nuclear Information System (INIS)
Cao Rui; Zhang Jian
2013-01-01
In this paper, the trial function method is extended to study the generalized nonlinear Schrödinger equation with time-dependent coefficients. On the basis of a generalized traveling wave transformation and a trial function, we investigate the exact envelope traveling wave solutions of the generalized nonlinear Schrödinger equation with time-dependent coefficients. Taking advantage of solutions to trial function, we successfully obtain exact solutions for the generalized nonlinear Schrödinger equation with time-dependent coefficients under constraint conditions. (general)
Generalized Bondi-Sachs equations for characteristic formalism of numerical relativity
Cao, Zhoujian; He, Xiaokai
2013-11-01
The Cauchy formalism of numerical relativity has been successfully applied to simulate various dynamical spacetimes without any symmetry assumption. But discovering how to set a mathematically consistent and physically realistic boundary condition is still an open problem for Cauchy formalism. In addition, the numerical truncation error and finite region ambiguity affect the accuracy of gravitational wave form calculation. As to the finite region ambiguity issue, the characteristic extraction method helps much. But it does not solve all of the above issues. Besides the above problems for Cauchy formalism, the computational efficiency is another problem. Although characteristic formalism of numerical relativity suffers the difficulty from caustics in the inner near zone, it has advantages in relation to all of the issues listed above. Cauchy-characteristic matching (CCM) is a possible way to take advantage of characteristic formalism regarding these issues and treat the inner caustics at the same time. CCM has difficulty treating the gauge difference between the Cauchy part and the characteristic part. We propose generalized Bondi-Sachs equations for characteristic formalism for the Cauchy-characteristic matching end. Our proposal gives out a possible same numerical evolution scheme for both the Cauchy part and the characteristic part. And our generalized Bondi-Sachs equations have one adjustable gauge freedom which can be used to relate the gauge used in the Cauchy part. Then these equations can make the Cauchy part and the characteristic part share a consistent gauge condition. So our proposal gives a possible new starting point for Cauchy-characteristic matching.
Large spin limits of AdS/CFT and generalized Landau-Lifshitz equations
International Nuclear Information System (INIS)
Stefanski, B. Jr.; Tseytlin, A.A.
2004-01-01
We consider AdS 5 x S 5 string states with several large angular momenta along AdS 5 and S 5 directions which are dual to single-trace Super-Yang-Mills (SYM) operators built out of chiral combinations of scalars and covariant derivatives. In particular, we focus on the SU(3) sector (with three spins in S 5 ) and the SL(2) sector (with one spin in AdS 5 and one in S 5 ), generalizing recent work hep-th/0311203 and hep-th/0403120 on the SU(2) sector with two spins in S 5 . We show that, in the large spin limit and at the leading order in the effective coupling expansion, the string sigma model equations of motion reduce to matrix Landau-Lifshitz equations. We then demonstrate that the coherent-state expectation value of the one-loop SYM dilatation operator restricted to the corresponding sector of single trace operators is also effectively described by the same equations. This implies a universal leading order equivalence between string energies and SYM anomalous dimensions, as well as a matching of integrable structures. We also discuss the more general 5-spin sector and comment on SO(6) states dual to non-chiral scalar operators. (author)
Energy Technology Data Exchange (ETDEWEB)
Harko, Tiberiu [University College London, Department of Mathematics, London (United Kingdom); Leung, Chun Sing [Polytechnic University, Department of Applied Mathematics, Hong Kong (China); Mocanu, Gabriela [Babes-Bolyai University, Faculty of Physics, Cluj-Napoca (Romania)
2014-05-15
We consider a description of the stochastic oscillations of the general relativistic accretion disks around compact astrophysical objects interacting with their external medium based on a generalized Langevin equation with colored noise and on the fluctuation-dissipation theorems. The former accounts for the general memory and retarded effects of the frictional force. The presence of the memory effects influences the response of the disk to external random interactions, and it modifies the dynamical behavior of the disk, as well as the energy dissipation processes. The generalized Langevin equation of the motion of the disk in the vertical direction is studied numerically, and the vertical displacements, velocities, and luminosities of the stochastically perturbed disks are explicitly obtained for both the Schwarzschild and the Kerr cases. The power spectral distribution of the disk luminosity is also obtained. As a possible astrophysical application of the formalism we investigate the possibility that the intra-day variability of the active galactic nuclei may be due to the stochastic disk instabilities. The perturbations due to colored/nontrivially correlated noise induce a complicated disk dynamics, which could explain some astrophysical observational features related to disk variability. (orig.)
About the Properties of a Modified Generalized Beverton-Holt Equation in Ecology Models
Directory of Open Access Journals (Sweden)
M. De La Sen
2008-01-01
Full Text Available This paper is devoted to the study of a generalized modified version of the well-known Beverton-Holt equation in ecology. The proposed model describes the population evolution of some species in a certain habitat driven by six parametrical sequences, namely, the intrinsic growth rate (associated with the reproduction capability, the degree of sympathy of the species with the habitat (described by a so-called environment carrying capacity, a penalty term to deal with overpopulation levels, the harvesting (fishing or hunting regulatory quota, or related to use of pesticides when fighting damaging plagues, and the independent consumption which basically quantifies predation. The independent consumption is considered as a part of a more general additive disturbance which also potentially includes another extra additive disturbance term which might be attributed to net migration from or to the habitat or modeling measuring errors. Both potential contributions are included for generalization purposes in the proposed modified generalized Beverton-Holt equation. The properties of stability and boundedness of the solution sequences, equilibrium points of the stationary model, and the existence of oscillatory solution sequences are investigated. A numerical example for a population of aphids is investigated with the theoretical tools developed in the paper.
International Nuclear Information System (INIS)
Harko, Tiberiu; Leung, Chun Sing; Mocanu, Gabriela
2014-01-01
We consider a description of the stochastic oscillations of the general relativistic accretion disks around compact astrophysical objects interacting with their external medium based on a generalized Langevin equation with colored noise and on the fluctuation-dissipation theorems. The former accounts for the general memory and retarded effects of the frictional force. The presence of the memory effects influences the response of the disk to external random interactions, and it modifies the dynamical behavior of the disk, as well as the energy dissipation processes. The generalized Langevin equation of the motion of the disk in the vertical direction is studied numerically, and the vertical displacements, velocities, and luminosities of the stochastically perturbed disks are explicitly obtained for both the Schwarzschild and the Kerr cases. The power spectral distribution of the disk luminosity is also obtained. As a possible astrophysical application of the formalism we investigate the possibility that the intra-day variability of the active galactic nuclei may be due to the stochastic disk instabilities. The perturbations due to colored/nontrivially correlated noise induce a complicated disk dynamics, which could explain some astrophysical observational features related to disk variability. (orig.)
Harko, Tiberiu; Leung, Chun Sing; Mocanu, Gabriela
2014-05-01
We consider a description of the stochastic oscillations of the general relativistic accretion disks around compact astrophysical objects interacting with their external medium based on a generalized Langevin equation with colored noise and on the fluctuation-dissipation theorems. The former accounts for the general memory and retarded effects of the frictional force. The presence of the memory effects influences the response of the disk to external random interactions, and it modifies the dynamical behavior of the disk, as well as the energy dissipation processes. The generalized Langevin equation of the motion of the disk in the vertical direction is studied numerically, and the vertical displacements, velocities, and luminosities of the stochastically perturbed disks are explicitly obtained for both the Schwarzschild and the Kerr cases. The power spectral distribution of the disk luminosity is also obtained. As a possible astrophysical application of the formalism we investigate the possibility that the intra-day variability of the active galactic nuclei may be due to the stochastic disk instabilities. The perturbations due to colored/nontrivially correlated noise induce a complicated disk dynamics, which could explain some astrophysical observational features related to disk variability.
International Nuclear Information System (INIS)
Chen, G.S.; Yang, D.Y.
1998-01-01
We apply and compare the preconditioned generalized conjugate gradient methods to solve the linear system equation that arises in the two-dimensional neutron and photon transport equation in this paper. Several subroutines are developed on the basis of preconditioned generalized conjugate gradient methods for time-independent, two-dimensional neutron and photon transport equation in the transport theory. These generalized conjugate gradient methods are used: TFQMR (transpose free quasi-minimal residual algorithm) CGS (conjugate gradient square algorithm), Bi-CGSTAB (bi-conjugate gradient stabilized algorithm) and QMRCGSTAB (quasi-minimal residual variant of bi-conjugate gradient stabilized algorithm). These subroutines are connected to computer program DORT. Several problems are tested on a personal computer with Intel Pentium CPU. The reasons to choose the generalized conjugate gradient methods are that the methods have better residual (equivalent to error) control procedures in the computation and have better convergent rate. The pointwise incomplete LU factorization ILU, modified pointwise incomplete LU factorization MILU, block incomplete factorization BILU and modified blockwise incomplete LU factorization MBILU are the preconditioning techniques used in the several testing problems. In Bi-CGSTAB, CGS, TFQMR and QMRCGSTAB method, we find that either CGS or Bi-CGSTAB method combined with preconditioner MBILU is the most efficient algorithm in these methods in the several testing problems. The numerical solution of flux by preconditioned CGS and Bi-CGSTAB methods has the same result as those from Cray computer, obtained by either the point successive relaxation method or the line successive relaxation method combined with Gaussian elimination
Wu, Jiayang; Cao, Pan; Hu, Xiaofeng; Jiang, Xinhong; Pan, Ting; Yang, Yuxing; Qiu, Ciyuan; Tremblay, Christine; Su, Yikai
2014-10-20
We propose and experimentally demonstrate an all-optical temporal differential-equation solver that can be used to solve ordinary differential equations (ODEs) characterizing general linear time-invariant (LTI) systems. The photonic device implemented by an add-drop microring resonator (MRR) with two tunable interferometric couplers is monolithically integrated on a silicon-on-insulator (SOI) wafer with a compact footprint of ~60 μm × 120 μm. By thermally tuning the phase shifts along the bus arms of the two interferometric couplers, the proposed device is capable of solving first-order ODEs with two variable coefficients. The operation principle is theoretically analyzed, and system testing of solving ODE with tunable coefficients is carried out for 10-Gb/s optical Gaussian-like pulses. The experimental results verify the effectiveness of the fabricated device as a tunable photonic ODE solver.
An element-free Galerkin (EFG) method for generalized Fisher equations (GFE)
International Nuclear Information System (INIS)
Shi Ting-Yu; Ge Hong-Xia; Cheng Rong-Jun
2013-01-01
A generalized Fisher equation (GFE) relates the time derivative of the average of the intrinsic rate of growth to its variance. The exact mathematical result of the GFE has been widely used in population dynamics and genetics, where it originated. Many researchers have studied the numerical solutions of the GFE, up to now. In this paper, we introduce an element-free Galerkin (EFG) method based on the moving least-square approximation to approximate positive solutions of the GFE from population dynamics. Compared with other numerical methods, the EFG method for the GFE needs only scattered nodes instead of meshing the domain of the problem. The Galerkin weak form is used to obtain the discrete equations, and the essential boundary conditions are enforced by the penalty method. In comparison with the traditional method, numerical solutions show that the new method has higher accuracy and better convergence. Several numerical examples are presented to demonstrate the effectiveness of the method
International Nuclear Information System (INIS)
Dobrev, V.K.; Doebner, H.D.; Mrugalla, C.
1995-12-01
We give a q-deformation S-perpendicular q of the centrally extended Schroedinger algebra. We construct the lowest weight representations of S-perpendicular q , starting from the Verma modules over S-perpendicular q , finding their singular vectors and factoring the Verma submodules built on the singular vectors. We also give a vector-field realization of S-perpendicular q which provides polynomial realization of the lowest weight representations and an infinite hierarchy of q-difference equations which may be called generalized q-deformed heat equations. We also apply our methods to the on-shell q-Schroedinger algebra proposed by Floreanini and Vinet. (author). 12 refs
International Nuclear Information System (INIS)
Lima, W. de; Poli CR, D. de
1999-01-01
The extrapolated range R ex of electrons is useful for various purposes in research and in the application of electrons, for example, in polymer modification, electron energy determination and estimation of effects associated with deep penetration of electrons. A number of works have used empirical equations to express the extrapolated range for some elements. In this work a generalized empirical equation, very simple and accurate, in the energy region 0.3 keV - 50 MeV is proposed. The extrapolated range for elements, in organic or inorganic molecules and compound materials, can be well expressed as a function of the atomic number Z or two empirical parameters Zm for molecules and Zc for compound materials instead of Z. (author)
Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria
International Nuclear Information System (INIS)
Frieman, E.A.; Chen, L.
1981-10-01
A nonlinear gyrokinetic formalism for low-frequency (less than the cyclotron frequency) microscopic electromagnetic perturbations in general magnetic field configurations is developed. The nonlinear equations thus derived are valid in the strong-turbulence regime and contain effects due to finite Larmor radius, plasma inhomogeneities, and magentic field geometries. The specific case of axisymmetric tokamaks is then considered, and a model nonlinear equation is derived for electrostatic drift waves. Also, applying the formalism to the shear Alfven wave heating sceme, it is found that nonlinear ion Landau damping of kinetic shear-Alfven waves is modified, both qualitatively and quantitatively, by the diamagnetic drift effects. In particular, wave energy is found to cascade in wavenumber instead of frequency
Generalized Knizhnik-Zamolodchikov equation for Ding-Iohara-Miki algebra
Awata, Hidetoshi; Kanno, Hiroaki; Mironov, Andrei; Morozov, Alexei; Morozov, Andrey; Ohkubo, Yusuke; Zenkevich, Yegor
2017-07-01
We derive the generalization of the Knizhnik-Zamolodchikov equation (KZE) associated with the Ding-Iohara-Miki algebra Uq ,t(gl^ ^ 1) . We demonstrate that certain refined topological string amplitudes satisfy these equations and find that the braiding transformations are performed by the R matrix of Uq ,t(gl^ ^ 1) . The resulting system is the uplifting of the u^1 Wess-Zumino-Witten model. The solutions to the (q ,t ) KZE are identified with the (spectral dual of) building blocks of the Nekrasov partition function for five-dimensional linear quiver gauge theories. We also construct an elliptic version of the KZE and discuss its modular and monodromy properties, the latter being related to a dual version of the KZE.
International Nuclear Information System (INIS)
Athanasakis, I E; Papadopoulou, E P; Saridakis, Y G
2014-01-01
Fisher's equation has been widely used to model the biological invasion of single-species communities in homogeneous one dimensional habitats. In this study we develop high order numerical methods to accurately capture the spatiotemporal dynamics of the generalized Fisher equation, a nonlinear reaction-diffusion equation characterized by density dependent non-linear diffusion. Working towards this direction we consider strong stability preserving Runge-Kutta (RK) temporal discretization schemes coupled with the Hermite cubic Collocation (HC) spatial discretization method. We investigate their convergence and stability properties to reveal efficient HC-RK pairs for the numerical treatment of the generalized Fisher equation. The Hadamard product is used to characterize the collocation discretized non linear equation terms as a first step for the treatment of generalized systems of relevant equations. Numerical experimentation is included to demonstrate the performance of the methods
Development of Generalized Correlation Equation for the Local Wall Shear Stress
International Nuclear Information System (INIS)
Jeon, Yu Mi; Park, Ju Hwan
2010-06-01
The pressure drop characteristics for a fuel channel are essential for the design and reliable operation of a nuclear reactor. Over several decades, analytical methods have been developed to predict the friction factor in the fuel bundle flows. In order to enhance the accuracy of prediction for the pressure drop in a rod bundle, the influences of a channel wall and the local shear stress distribution should be considered. Therefore, the correlation equation for a local wall shear stress distribution should be developed in order to secure an analytical solution for the friction factor of a rod bundle. For a side subchannel, which has the influence of the channel wall, the local wall shear stress distribution is dependent on the ratio of wall to diameter (W/D) as well as the ratio of pitch to diameter (P/D). In the case that W/D has the same value with P/D, the local shear stress distribution can be simply correlated with the function of angular position for each value of P/D. While in the case where W/D has a different value than P/D, the correlation equation should be developed for each case of P/D and W/D. Therefore, in the present study, the generalized correlation equation of the local wall shear stress distribution was developed for a side subchannel in the case where W/D has a different value than P/D. Consequently, the generalized correlation equation of a local wall shear stress distribution can be represented by the equivalent pitch to diameter ratio, P'/D for the case that P/D and W/D had a different value
Hamiltonian structures and integrability for a discrete coupled KdV-type equation hierarchy
International Nuclear Information System (INIS)
Zhao Haiqiong; Zhu Zuonong; Zhang Jingli
2011-01-01
Coupled Korteweg-de Vries (KdV) systems have many important physical applications. By considering a 4 × 4 spectral problem, we derive a discrete coupled KdV-type equation hierarchy. Our hierarchy includes the coupled Volterra system proposed by Lou et al. (e-print arXiv: 0711.0420) as the first member which is a discrete version of the coupled KdV equation. We also investigate the integrability in the Liouville sense and the multi-Hamiltonian structures for the obtained hierarchy. (authors)
PyR@TE. Renormalization group equations for general gauge theories
Lyonnet, F.; Schienbein, I.; Staub, F.; Wingerter, A.
2014-03-01
Although the two-loop renormalization group equations for a general gauge field theory have been known for quite some time, deriving them for specific models has often been difficult in practice. This is mainly due to the fact that, albeit straightforward, the involved calculations are quite long, tedious and prone to error. The present work is an attempt to facilitate the practical use of the renormalization group equations in model building. To that end, we have developed two completely independent sets of programs written in Python and Mathematica, respectively. The Mathematica scripts will be part of an upcoming release of SARAH 4. The present article describes the collection of Python routines that we dubbed PyR@TE which is an acronym for “Python Renormalization group equations At Two-loop for Everyone”. In PyR@TE, once the user specifies the gauge group and the particle content of the model, the routines automatically generate the full two-loop renormalization group equations for all (dimensionless and dimensionful) parameters. The results can optionally be exported to LaTeX and Mathematica, or stored in a Python data structure for further processing by other programs. For ease of use, we have implemented an interactive mode for PyR@TE in form of an IPython Notebook. As a first application, we have generated with PyR@TE the renormalization group equations for several non-supersymmetric extensions of the Standard Model and found some discrepancies with the existing literature. Catalogue identifier: AERV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERV_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 924959 No. of bytes in distributed program, including test data, etc.: 495197 Distribution format: tar.gz Programming language: Python. Computer
Kepner, Gordon R
2010-04-13
The numerous natural phenomena that exhibit saturation behavior, e.g., ligand binding and enzyme kinetics, have been approached, to date, via empirical and particular analyses. This paper presents a mechanism-free, and assumption-free, second-order differential equation, designed only to describe a typical relationship between the variables governing these phenomena. It develops a mathematical model for this relation, based solely on the analysis of the typical experimental data plot and its saturation characteristics. Its utility complements the traditional empirical approaches. For the general saturation curve, described in terms of its independent (x) and dependent (y) variables, a second-order differential equation is obtained that applies to any saturation phenomena. It shows that the driving factor for the basic saturation behavior is the probability of the interactive site being free, which is described quantitatively. Solving the equation relates the variables in terms of the two empirical constants common to all these phenomena, the initial slope of the data plot and the limiting value at saturation. A first-order differential equation for the slope emerged that led to the concept of the effective binding rate at the active site and its dependence on the calculable probability the interactive site is free. These results are illustrated using specific cases, including ligand binding and enzyme kinetics. This leads to a revised understanding of how to interpret the empirical constants, in terms of the variables pertinent to the phenomenon under study. The second-order differential equation revealed the basic underlying relations that describe these saturation phenomena, and the basic mathematical properties of the standard experimental data plot. It was shown how to integrate this differential equation, and define the common basic properties of these phenomena. The results regarding the importance of the slope and the new perspectives on the empirical
International Nuclear Information System (INIS)
Batcho, P.F.; Karniadakis, G.E.
1994-01-01
The present study focuses on the solution of the incompressible Navier-Stokes equations in general, non-separable domains, and employs a Galerkin projection of divergence-free vector functions as a trail basis. This basis is obtained from the solution of a generalized constrained Stokes eigen-problem in the domain of interest. Faster convergence can be achieved by constructing a singular Stokes eigen-problem in which the Stokes operator is modified to include a variable coefficient which vanishes at the domain boundaries. The convergence properties of such functions are advantageous in a least squares sense and are shown to produce significantly better approximations to the solution of the Navier-Stokes equations in post-critical states where unsteadiness characterizes the flowfield. Solutions for the eigen-systems are efficiently accomplished using a combined Lanczos-Uzawa algorithm and spectral element discretizations. Results are presented for different simulations using these global spectral trial basis on non-separable and multiply-connected domains. It is confirmed that faster convergence is obtained using the singular eigen-expansions in approximating stationary Navier-Stokes solutions in general domains. It is also shown that 100-mode expansions of time-dependent solutions based on the singular Stokes eigenfunctions are sufficient to accurately predict the dynamics of flows in such domains, including Hopf bifurcations, intermittency, and details of flow structures
International Nuclear Information System (INIS)
Yan, Z.; Zhang, H.
2001-01-01
In this paper, an isospectral problem and one associated with a new hierarchy of nonlinear evolution equations are presented. As a reduction, a representative system of new generalized derivative nonlinear Schroedinger equations in the hierarchy is given. It is shown that the hierarchy possesses bi-Hamiltonian structures by using the trace identity method and is Liouville integrable. The spectral problem is non linearized as a finite-dimensional completely integrable Hamiltonian system under a constraint between the potentials and spectral functions. Finally, the involutive solutions of the hierarchy of equations are obtained. In particular, the involutive solutions of the system of new generalized derivative nonlinear Schroedinger equations are developed
International Nuclear Information System (INIS)
March, N.H.
2003-09-01
The Feynman propagator, and its parallel in statistical mechanics, namely the canonical density matrix, are first used to treat both homogeneous and confined electron assemblies in the presence of a static electric field of arbitrary strength. The models are relevant to plasmas having variable electron density and degeneracy. The second topic concerns atomic ions in intense magnetic fields. Semiclassical theory is here applied, non-relativistic and relativistic approximations being invoked. Both treatments are shown to be embraced by a generalization of Emden's equation. (author)
Chirped self-similar solutions of a generalized nonlinear Schroedinger equation
Energy Technology Data Exchange (ETDEWEB)
Fei Jin-Xi [Lishui Univ., Zhejiang (China). College of Mathematics and Physics; Zheng Chun-Long [Shaoguan Univ., Guangdong (China). School of Physics and Electromechanical Engineering; Shanghai Univ. (China). Shanghai Inst. of Applied Mathematics and Mechanics
2011-01-15
An improved homogeneous balance principle and an F-expansion technique are used to construct exact chirped self-similar solutions to the generalized nonlinear Schroedinger equation with distributed dispersion, nonlinearity, and gain coefficients. Such solutions exist under certain conditions and impose constraints on the functions describing dispersion, nonlinearity, and distributed gain function. The results show that the chirp function is related only to the dispersion coefficient, however, it affects all of the system parameters, which influence the form of the wave amplitude. As few characteristic examples and some simple chirped self-similar waves are presented. (orig.)
About the Properties of a Modified Generalized Beverton-Holt Equation in Ecology Models
De La Sen, M.
2008-01-01
Es reproducción del documento publicado en http://dx.doi.org/10.1155/2008/592950 This paper is devoted to the study of a generalized modified version of the well-known Beverton-Holt equation in ecology. The proposed model describes the population evolution of some species in a certain habitat driven by six parametrical sequences, namely, the intrinsic growth rate (associated with the reproduction capability), the degree of sympathy of the species with the habitat (described by a so-called ...
Lie group classification and exact solutions of the generalized Kompaneets equations
Directory of Open Access Journals (Sweden)
Oleksii Patsiuk
2015-04-01
Full Text Available We study generalized Kompaneets equations (GKEs with one functional parameter, and using the Lie-Ovsiannikov algorithm, we carried out the group classification. It is shown that the kernel algebra of the full groups of the GKEs is the one-dimensional Lie algebra. Using the direct method, we find the equivalence group. We obtain six non-equivalent (up to transformations from the equivalence group GKEs that allow wider invariance algebras than the kernel one. We find a number of exact solutions of the non-linear GKE which has the maximal symmetry properties.
Sweilam, N. H.; Abou Hasan, M. M.
2017-05-01
In this paper, the weighted-average non-standard finite-difference (WANSFD) method is used to study numerically the general time-fractional nonlinear, one-dimensional problem of thermoelasticity. This model contains the standard system arising in thermoelasticity as a special case. The stability of the proposed method is analyzed by a procedure akin to the standard John von Neumann technique. Moreover, the accuracy of the proposed scheme is proved. Numerical results are presented graphically, which reveal that the WANSFD method is easy to implement, effective and convenient for solving the proposed system. The proposed method could also be easily extended to solve other systems of fractional partial differential equations.
Semiclassical series solution of the generalized phase shift atom--diatom scattering equations
International Nuclear Information System (INIS)
Squire, K.R.; Curtiss, C.F.
1980-01-01
A semiclassical series solution of the previously developed operator form of the generalized phase shift equations describing atom--diatom scattering is presented. This development is based on earlier work which led to a double series in powers of Planck's constant and a scaling parameter of the anisotropic portion of the intermolecular potential. The present solution is similar in that it is a double power series in Planck's constant and in the difference between the spherical radial momentum and a first order approximation. The present series solution avoids difficulties of the previous series associated with the classical turning point
A theory of solving TAP equations for Ising models with general invariant random matrices
DEFF Research Database (Denmark)
Opper, Manfred; Çakmak, Burak; Winther, Ole
2016-01-01
We consider the problem of solving TAP mean field equations by iteration for Ising models with coupling matrices that are drawn at random from general invariant ensembles. We develop an analysis of iterative algorithms using a dynamical functional approach that in the thermodynamic limit yields...... the iteration dependent on a Gaussian distributed field only. The TAP magnetizations are stable fixed points if a de Almeida–Thouless stability criterion is fulfilled. We illustrate our method explicitly for coupling matrices drawn from the random orthogonal ensemble....
An energy-stable generalized- α method for the Swift–Hohenberg equation
Sarmiento, Adel; Espath, L.F.R.; Vignal, P.; Dalcin, Lisandro; Parsani, Matteo; Calo, V.M.
2017-01-01
We propose a second-order accurate energy-stable time-integration method that controls the evolution of numerical instabilities introducing numerical dissipation in the highest-resolved frequencies. Our algorithm further extends the generalized-α method and provides control over dissipation via the spectral radius. We derive the first and second laws of thermodynamics for the Swift–Hohenberg equation and provide a detailed proof of the unconditional energy stability of our algorithm. Finally, we present numerical results to verify the energy stability and its second-order accuracy in time.
Algebraic equations for the exceptional eigenspectrum of the generalized Rabi model
International Nuclear Information System (INIS)
Li, Zi-Min; Batchelor, Murray T
2015-01-01
We obtain the exceptional part of the eigenspectrum of the generalized Rabi model, also known as the driven Rabi model, in terms of the roots of a set of algebraic equations. This approach provides a product form for the wavefunction components and allows an explicit connection with recent results obtained for the wavefunction in terms of truncated confluent Heun functions. Other approaches are also compared. For particular parameter values the exceptional part of the eigenspectrum consists of doubly degenerate crossing points. We give a proof for the number of roots of the constraint polynomials and discuss the number of crossing points. (paper)
An energy-stable generalized- α method for the Swift–Hohenberg equation
Sarmiento, Adel
2017-11-16
We propose a second-order accurate energy-stable time-integration method that controls the evolution of numerical instabilities introducing numerical dissipation in the highest-resolved frequencies. Our algorithm further extends the generalized-α method and provides control over dissipation via the spectral radius. We derive the first and second laws of thermodynamics for the Swift–Hohenberg equation and provide a detailed proof of the unconditional energy stability of our algorithm. Finally, we present numerical results to verify the energy stability and its second-order accuracy in time.
Global solutions in lower order Sobolev spaces for the generalized Boussinesq equation
Directory of Open Access Journals (Sweden)
Luiz G. Farah
2012-03-01
Full Text Available We show that the Cauchy problem for the defocusing generalized Boussinesq equation $$ u_{tt}-u_{xx}+u_{xxxx}-(|u|^{2k}u_{xx}=0, quad kgeq 1, $$ on the real line is globally well-posed in $H^s(mathbb{R}$ with s>1-(1/(3k. To do this, we use the I-method, introduced by Colliander, Keel, Staffilani, Takaoka and Tao [8,9], to define a modification of the energy functional that is almost conserved in time. Our result extends a previous result obtained by Farah and Linares [16] for the case k=1.
Trigonometric Solutions of WDVV Equations and Generalized Calogero-Moser-Sutherland Systems
Directory of Open Access Journals (Sweden)
Misha V. Feigin
2009-09-01
Full Text Available We consider trigonometric solutions of WDVV equations and derive geometric conditions when a collection of vectors with multiplicities determines such a solution. We incorporate these conditions into the notion of trigonometric Veselov system (v-system and we determine all trigonometric v-systems with up to five vectors. We show that generalized Calogero-Moser-Sutherland operator admits a factorized eigenfunction if and only if it corresponds to the trigonometric v-system; this inverts a one-way implication observed by Veselov for the rational solutions.
Golden mean renormalization for a generalized Harper equation: The Ketoja-Satija orchid
International Nuclear Information System (INIS)
Mestel, B.D.; Osbaldestin, A.H.
2004-01-01
We provide a rigorous analysis of the fluctuations of localized eigenstates in a generalized Harper equation with golden mean flux and with next-nearest-neighbor interactions. For next-nearest-neighbor interaction above a critical threshold, these self-similar fluctuations are characterized by orbits of a renormalization operator on a universal strange attractor, whose projection was dubbed the ''orchid'' by Ketoja and Satija [Phys. Rev. Lett. 75, 2762 (1995)]. We show that the attractor is given essentially by an embedding of a subshift of finite type, and give a description of its periodic orbits
Development of generalized correlation equation for the local wall shear stress
International Nuclear Information System (INIS)
Jeon, Yu Mi; Bae, Jun Ho; Park, Joo Hwan
2010-01-01
The pressure drop characteristics for a fuel channel are essential for the design and reliable operation of a nuclear reactor. Over several decades, analytical methods have been developed to predict the friction factor in the fuel bundle flows. In order to enhance the accuracy of prediction for the pressure drop in a rod bundle, the influences of a channel wall and the local shear stress distribution should be considered. Hence, the correlation equation for a local shear stress distribution should be developed in order to secure an analytical solution for the friction factor of a rod bundle. For a side subchannel, which has the influence of the channel wall, the local shear stress distribution is dependent on the ratio of wall to diameter (W/D) as well as the ratio of pitch to diameter (P/D). In the case that W/D has the same value with P/D, the local shear stress distribution can be simply correlated with the function of angular position for each value of P/D. While, in the case that W/D has the different value with P/D, the correlation equation should be developed for each case of P/D and W/D. Hence, in the present study, the generalized correlation equation of a local shear stress distribution is developed for a side subchannel in the case that W/D has the different value with P/D
Virtual Photon Effects on Chaos in Generalized Lorenz-Haken Equation
International Nuclear Information System (INIS)
Ju Rui; Huang Hongbin; Yang Peng; Xie Xia; Zhao Huan
2005-01-01
The dynamics of an ensemble of two-level atoms injected into a single-mode cavity is studied in the exact atom-field interaction situation, in which the counter-rotating terms describing the so-called virtual photon processes neglected in the rotating-wave approximation, are considered. The cavity mode is driven by the injected classical field, and the atom is prepared in a coherent superposition of the two levels. We first derive the generalized Lorenz-Haken equation by using the technique of quantum Langevin equation, and then numerically study the dynamics of this equation. We find that the virtual photon processes have strong effects on the dynamics, which can cause the trajectory in phase space of strange attractor spiral around four focus points, and the trajectory is modulated by virtual photon processes. The chaos region in parameter space is now enlarged. It should be stressed that the strange attractor can exist in optical bistability, and whether the atomic coherences and classical field can inhibit chaos depends on the laser frequency.
The adjoint method for general EEG and MEG sensor-based lead field equations
International Nuclear Information System (INIS)
Vallaghe, Sylvain; Papadopoulo, Theodore; Clerc, Maureen
2009-01-01
Most of the methods for the inverse source problem in electroencephalography (EEG) and magnetoencephalography (MEG) use a lead field as an input. The lead field is the function which relates any source in the brain to its measurements at the sensors. For complex geometries, there is no analytical formula of the lead field. The common approach is to numerically compute the value of the lead field for a finite number of point sources (dipoles). There are several drawbacks: the model of the source space is fixed (a set of dipoles), and the computation can be expensive for as much as 10 000 dipoles. The common idea to bypass these problems is to compute the lead field from a sensor point of view. In this paper, we use the adjoint method to derive general EEG and MEG sensor-based lead field equations. Within a simple framework, we provide a complete review of the explicit lead field equations, and we are able to extend these equations to non-pointlike sensors.
Directory of Open Access Journals (Sweden)
Ning Li
2013-01-01
Full Text Available The matrix equation ∑l=1uAlXBl+∑s=1vCsXTDs=F, which includes some frequently investigated matrix equations as its special cases, plays important roles in the system theory. In this paper, we propose an iterative algorithm for solving the quaternion matrix equation ∑l=1uAlXBl+∑s=1vCsXTDs=F over generalized (P,Q-reflexive matrices. The proposed iterative algorithm automatically determines the solvability of the quaternion matrix equation over generalized (P,Q-reflexive matrices. When the matrix equation is consistent over generalized (P,Q-reflexive matrices, the sequence {X(k} generated by the introduced algorithm converges to a generalized (P,Q-reflexive solution of the quaternion matrix equation. And the sequence {X(k} converges to the least Frobenius norm generalized (P,Q-reflexive solution of the quaternion matrix equation when an appropriate initial iterative matrix is chosen. Furthermore, the optimal approximate generalized (P,Q-reflexive solution for a given generalized (P,Q-reflexive matrix X0 can be derived. The numerical results indicate that the iterative algorithm is quite efficient.
Are the general equations to predict BMR applicable to patients with anorexia nervosa?
Marra, M; Polito, A; De Filippo, E; Cuzzolaro, M; Ciarapica, D; Contaldo, F; Scalfi, L
2002-03-01
To determine whether the general equations to predict basal metabolic rate (BMR) can be reliably applied to female anorectics. Two hundred and thirty-seven female patients with anorexia nervosa (AN) were divided into an adolescent group [n=43, 13-17 yrs, 39.3+/-5.0 kg, body mass index (BMI) (weight/height) 15.5+/-1.8 kg/m2] and a young-adult group (n=194, 18-40 yrs, 40.5+/-6.1 kg, BMI 15.6+/-1.9 kg/m2). BMR values determined by indirect calorimetry were compared with those predicted according to either the WHO/FAO/UNU or the Harris-Benedict general equations, or using the Schebendach correction formula (proposed for adjusting the Harris-Benedict estimates in anorectics). Measured BMR was 3,658+/-665 kJ/day in the adolescent and 3,907+/-760 kJ/day in the young-adult patients. In the adolescent group, the differences between predicted and measured values were (mean+/-SD) 1,466 529 kJ/day (+44+/-21%) for WHO/FAO/UNU, 1,587+/-552 kJ/day (+47+/-23%) for the Harris-Benedict and -20+/-510 kJ/day for the Schebendach (+1+/-13%), while in the young-adult group the corresponding values were 696+/-570 kJ/day (+24+/-24%), 1,252+/-644 kJ/day (+37+/-27%) and -430+/-640 kJ/day (-9+/-16%). The bias was negatively associated with weight and BMI in both groups when using the WHO/FAO/UNU and Harris-Benedict equations, and with age in the young-adult group for the Harris-Benedict and Schebendach equations. The WHO/FAO/UNU and Harris-Benedict equations greatly overestimate BMR in AN. Accurate estimation is to some extent dependent on individual characteristics such as age, weight or BMI. The Schebendach correction formula accurately predicts BMR in female adolescents, but not in young adult women with AN.
Directory of Open Access Journals (Sweden)
A. A. Hemeda
2013-01-01
Full Text Available An extension of the so-called new iterative method (NIM has been used to handle linear and nonlinear fractional partial differential equations. The main property of the method lies in its flexibility and ability to solve nonlinear equations accurately and conveniently. Therefore, a general framework of the NIM is presented for analytical treatment of fractional partial differential equations in fluid mechanics. The fractional derivatives are described in the Caputo sense. Numerical illustrations that include the fractional wave equation, fractional Burgers equation, fractional KdV equation, fractional Klein-Gordon equation, and fractional Boussinesq-like equation are investigated to show the pertinent features of the technique. Comparison of the results obtained by the NIM with those obtained by both Adomian decomposition method (ADM and the variational iteration method (VIM reveals that the NIM is very effective and convenient. The basic idea described in this paper is expected to be further employed to solve other similar linear and nonlinear problems in fractional calculus.
Towards a General Equation for the Survival of Microbes Transferred between Solar System Bodies
Fries, M.; Steele, A.
2014-01-01
It should be possible to construct a general equation describing the survival of microbes transferred between Solar System bodies. Such an equation will be useful for constraining the likelihood of transfer of viable organisms between bodies throughout the lifetime of the Solar System, and for refining Planetary Protection constraints placed on future missions. We will discuss the construction of such an equation, present a plan for definition of pertinent factors, and will describe what research will be necessary to quantify those factors. Description: We will examine the case of microbes transferred between Solar System bodies as residents in meteorite material ejected from one body (the "intial body") and deposited on another (the "target body"). Any microbes transferred in this fashion will experience four distinct phases between their initial state on the initial body, up to the point where they colonize the target body. Each of these phases features phenomena capable of reducing or exterminating the initial microbial population. They are: 1) Ejection: Material is ejected from the initial body, imparting shock followed by rapid desiccation and cooling. 2) Transport: Material travels through interplanetary space to the target body, exposing a hypothetical microbial population to extended desiccation, irradiation, and temperature extremes. 3) Infall: Material is deposited on the target body, diminishing the microbial population through shock, mass loss, and heating. 4) Adaptation: Any microbes which survive the previous three phases must then adapt to new chemophysical conditions of the target body. Differences in habitability between the initial and target bodies dominate this phase. A suitable general-form equation can be assembled from the above factors by defining the initial number of microbes in an ejected mass and applying multiplicitive factors based on the physical phenomena inherent to each phase. It should be possible to present the resulting equation
Daivis, Peter J; Todd, B D
2006-05-21
We present a simple and direct derivation of the SLLOD equations of motion for molecular simulations of general homogeneous flows. We show that these equations of motion (1) generate the correct particle trajectories, (2) conserve the total thermal momentum without requiring the center of mass to be located at the origin, and (3) exactly generate the required energy dissipation. These equations of motion are compared with the g-SLLOD and p-SLLOD equations of motion, which are found to be deficient. Claims that the SLLOD equations of motion are incorrect for elongational flows are critically examined and found to be invalid. It is confirmed that the SLLOD equations are, in general, non-Hamiltonian. We derive a Hamiltonian from which they can be obtained in the special case of a symmetric velocity gradient tensor. In this case, it is possible to perform a canonical transformation that results in the well-known DOLLS tensor Hamiltonian.
Yu, Shengqi
2018-05-01
This work studies a generalized μ-type integrable equation with both quadratic and cubic nonlinearities; the μ-Camassa-Holm and modified μ-Camassa-Holm equations are members of this family of equations. It has been shown that the Cauchy problem for this generalized μ-Camassa-Holm integrable equation is locally well-posed for initial data u0 ∈ Hs, s > 5/2. In this work, we further investigate the continuity properties to this equation. It is proved in this work that the data-to-solution map of the proposed equation is not uniformly continuous. It is also found that the solution map is Hölder continuous in the Hr-topology when 0 ≤ r < s with Hölder exponent α depending on both s and r.
Enciso, Alberto; Poyato, David; Soler, Juan
2018-05-01
Strong Beltrami fields, that is, vector fields in three dimensions whose curl is the product of the field itself by a constant factor, have long played a key role in fluid mechanics and magnetohydrodynamics. In particular, they are the kind of stationary solutions of the Euler equations where one has been able to show the existence of vortex structures (vortex tubes and vortex lines) of arbitrarily complicated topology. On the contrary, there are very few results about the existence of generalized Beltrami fields, that is, divergence-free fields whose curl is the field times a non-constant function. In fact, generalized Beltrami fields (which are also stationary solutions to the Euler equations) have been recently shown to be rare, in the sense that for "most" proportionality factors there are no nontrivial Beltrami fields of high enough regularity (e.g., of class {C^{6,α}}), not even locally. Our objective in this work is to show that, nevertheless, there are "many" Beltrami fields with non-constant factor, even realizing arbitrarily complicated vortex structures. This fact is relevant in the study of turbulent configurations. The core results are an "almost global" stability theorem for strong Beltrami fields, which ensures that a global strong Beltrami field with suitable decay at infinity can be perturbed to get "many" Beltrami fields with non-constant factor of arbitrarily high regularity and defined in the exterior of an arbitrarily small ball, and a "local" stability theorem for generalized Beltrami fields, which is an analogous perturbative result which is valid for any kind of Beltrami field (not just with a constant factor) but only applies to small enough domains. The proof relies on an iterative scheme of Grad-Rubin type. For this purpose, we study the Neumann problem for the inhomogeneous Beltrami equation in exterior domains via a boundary integral equation method and we obtain Hölder estimates, a sharp decay at infinity and some compactness
The Quark-Gluon Plasma Equation of State and the Generalized Uncertainty Principle
Directory of Open Access Journals (Sweden)
L. I. Abou-Salem
2015-01-01
Full Text Available The quark-gluon plasma (QGP equation of state within a minimal length scenario or Generalized Uncertainty Principle (GUP is studied. The Generalized Uncertainty Principle is implemented on deriving the thermodynamics of ideal QGP at a vanishing chemical potential. We find a significant effect for the GUP term. The main features of QCD lattice results were quantitatively achieved in case of nf=0, nf=2, and nf=2+1 flavors for the energy density, the pressure, and the interaction measure. The exciting point is the large value of bag pressure especially in case of nf=2+1 flavor which reflects the strong correlation between quarks in this bag which is already expected. One can notice that the asymptotic behavior which is characterized by Stephan-Boltzmann limit would be satisfied.
Application of generalized estimating equations to a study in vitro of radiation sensitivity
International Nuclear Information System (INIS)
Cologne, J.B.; Carter, R.L.; Fujita, Shoichiro; Ban, Sadayuki.
1993-08-01
We describes an application of the generalized estimating equation (GEE) method (Liang K-Y, Zeger SL: Longitudinal data analysis using generalized linear models. Biometrika 73:13-22, 1986) for regression analyses of correlated Poisson data. As an alternative to the use of an arbitrarily chosen working correlation matrix, we demonstrate the use of GEE with a reasonable model for the true covariance structure among repeated observations within individuals. We show that, under such a split-plot design with large clusters, the asymptotic relative efficiency of GEE with simple (independence or exchangeable) working correlation matrices is rather low. We also illustrate the use of GEE with an empirically estimated model for overdispersion in a large study of radiation sensitivity where cluster size is small and a simple working correlation structure is sufficient. We conclude by summarizing issues and needs for further work concerning efficiency of the GEE parameter estimates in practice. (author)
Directory of Open Access Journals (Sweden)
Ali H. Bhrawy
2014-01-01
Full Text Available The modified generalized Laguerre-Gauss collocation (MGLC method is applied to obtain an approximate solution of fractional neutral functional-differential equations with proportional delays on the half-line. The proposed technique is based on modified generalized Laguerre polynomials and Gauss quadrature integration of such polynomials. The main advantage of the present method is to reduce the solution of fractional neutral functional-differential equations into a system of algebraic equations. Reasonable numerical results are achieved by choosing few modified generalized Laguerre-Gauss collocation points. Numerical results demonstrate the accuracy, efficiency, and versatility of the proposed method on the half-line.
Directory of Open Access Journals (Sweden)
Nicola Koper
2012-03-01
Full Text Available Resource selection functions (RSF are often developed using satellite (ARGOS or Global Positioning System (GPS telemetry datasets, which provide a large amount of highly correlated data. We discuss and compare the use of generalized linear mixed-effects models (GLMM and generalized estimating equations (GEE for using this type of data to develop RSFs. GLMMs directly model differences among caribou, while GEEs depend on an adjustment of the standard error to compensate for correlation of data points within individuals. Empirical standard errors, rather than model-based standard errors, must be used with either GLMMs or GEEs when developing RSFs. There are several important differences between these approaches; in particular, GLMMs are best for producing parameter estimates that predict how management might influence individuals, while GEEs are best for predicting how management might influence populations. As the interpretation, value, and statistical significance of both types of parameter estimates differ, it is important that users select the appropriate analytical method. We also outline the use of k-fold cross validation to assess fit of these models. Both GLMMs and GEEs hold promise for developing RSFs as long as they are used appropriately.
Kifonidis, K.; Müller, E.
2012-08-01
Aims: We describe and study a family of new multigrid iterative solvers for the multidimensional, implicitly discretized equations of hydrodynamics. Schemes of this class are free of the Courant-Friedrichs-Lewy condition. They are intended for simulations in which widely differing wave propagation timescales are present. A preferred solver in this class is identified. Applications to some simple stiff test problems that are governed by the compressible Euler equations, are presented to evaluate the convergence behavior, and the stability properties of this solver. Algorithmic areas are determined where further work is required to make the method sufficiently efficient and robust for future application to difficult astrophysical flow problems. Methods: The basic equations are formulated and discretized on non-orthogonal, structured curvilinear meshes. Roe's approximate Riemann solver and a second-order accurate reconstruction scheme are used for spatial discretization. Implicit Runge-Kutta (ESDIRK) schemes are employed for temporal discretization. The resulting discrete equations are solved with a full-coarsening, non-linear multigrid method. Smoothing is performed with multistage-implicit smoothers. These are applied here to the time-dependent equations by means of dual time stepping. Results: For steady-state problems, our results show that the efficiency of the present approach is comparable to the best implicit solvers for conservative discretizations of the compressible Euler equations that can be found in the literature. The use of red-black as opposed to symmetric Gauss-Seidel iteration in the multistage-smoother is found to have only a minor impact on multigrid convergence. This should enable scalable parallelization without having to seriously compromise the method's algorithmic efficiency. For time-dependent test problems, our results reveal that the multigrid convergence rate degrades with increasing Courant numbers (i.e. time step sizes). Beyond a
Nonlinear conformally invariant generalization of the Poisson equation to D>2 dimensions
International Nuclear Information System (INIS)
Milgrom, M.
1997-01-01
I propound a nonlinear generalization of the scalar-field Poisson equation [(var-phi , i var-phi ,i ) D/2-1 var-phi ; k ] ;k ∝ρ, in curved D-dimensional space. It is derivable from the Lagrangian density L D =L f D -Aρ var-phi, with L f D ∝-(var-phi , i var-phi ,i ) D/2 , and ρ the distribution of sources. Specializing to Euclidean spaces, where the field equation is ∇·(|∇ var-phi | D-2 ∇ var-phi)∝ρ, I find that L f D is the only conformally invariant (CI) Lagrangian in D dimensions, containing only first derivatives of var-phi, beside the free Lagrangian (∇ var-phi) 2 , which underlies the Laplace equation. When var-phi is coupled to the sources in the above manner, L D is left as the only CI Lagrangian. The symmetry is one's only recourse in solving this nonlinear theory for some nontrivial configurations. Systems comprising N point charges are special and afford further application of the symmetry. In spite of the CI, the energy function for such a system is not invariant under conformal transformations of the charges' positions. The anomalous transformation properties of the energy stem from effects of the self-energies of the charges. It follows from these that the forces F i on the charges q i at positions r i must satisfy certain constraints beside the vanishing of the net force and net moment: e.g., summation i r i ·F i must equal some given function of the charges. The constraints total (D+1)(D+2)/2, which tallies with the dimension of the conformal group in D dimensions. Among other things I use all these to derive exact expressions for the following quantities: (1) The general two-point-charge force. (Abstract Truncated)
International Nuclear Information System (INIS)
Nepomechie, Rafael I
2013-01-01
An inhomogeneous T-Q equation has recently been proposed by Cao, Yang, Shi and Wang for the open spin-1/2 XXX chain with general (nondiagonal) boundary terms. We argue that a simplified version of this equation describes all the eigenvalues of the transfer matrix of this model. We also propose a generating function for the inhomogeneous T-Q equations of arbitrary spin. (fast track communication)
International Nuclear Information System (INIS)
Biswas, Anjan
2009-01-01
In this Letter, the 1-soliton solution of the Zakharov-Kuznetsov equation with power law nonlinearity and nonlinear dispersion along with time-dependent coefficients is obtained. There are two models for this kind of an equation that are studied. The constraint relation between these time-dependent coefficients is established for the solitons to exist. Subsequently, this equation is again analysed with generalized evolution. The solitary wave ansatz is used to carry out this investigation.
Li, DaLei; Lou, Yu-Qing; Esimbek, Jarken
2018-01-01
We study self-similar hydrodynamics of spherical symmetry using a general polytropic (GP) equation of state and derive the GP dynamic Lane-Emden equation (LEE) with a radial inertial force. In reference to Lou & Cao, we solve the GP dynamic LEE for both polytropic index γ = 1 + 1/n and the isothermal case n → +∞; our formalism is more general than the conventional polytropic model with n = 3 or γ = 4/3 of Goldreich & Weber. For proper boundary conditions, we obtain an exact constant solution for arbitrary n and analytic variable solutions for n = 0 and n = 1, respectively. Series expansion solutions are derived near the origin with the explicit recursion formulae for the series coefficients for both the GP and isothermal cases. By extensive numerical explorations, we find that there is no zero density at a finite radius for n ≥ 5. For 0 ≤ n 0 for monotonically decreasing density from the origin and vanishing at a finite radius for c being less than a critical value Ccr. As astrophysical applications, we invoke our solutions of the GP dynamic LEE with central finite boundary conditions to fit the molecular cloud core Barnard 68 in contrast to the static isothermal Bonnor-Ebert sphere by Alves et al. Our GP dynamic model fits appear to be sensibly consistent with several more observations and diagnostics for density, temperature and gas pressure profiles.
Cusping, transport and variance of solutions to generalized Fokker-Planck equations
Carnaffan, Sean; Kawai, Reiichiro
2017-06-01
We study properties of solutions to generalized Fokker-Planck equations through the lens of the probability density functions of anomalous diffusion processes. In particular, we examine solutions in terms of their cusping, travelling wave behaviours, and variance, within the framework of stochastic representations of generalized Fokker-Planck equations. We give our analysis in the cases of anomalous diffusion driven by the inverses of the stable, tempered stable and gamma subordinators, demonstrating the impact of changing the distribution of waiting times in the underlying anomalous diffusion model. We also analyse the cases where the underlying anomalous diffusion contains a Lévy jump component in the parent process, and when a diffusion process is time changed by an uninverted Lévy subordinator. On the whole, we present a combination of four criteria which serve as a theoretical basis for model selection, statistical inference and predictions for physical experiments on anomalously diffusing systems. We discuss possible applications in physical experiments, including, with reference to specific examples, the potential for model misclassification and how combinations of our four criteria may be used to overcome this issue.
López-Sánchez, Erick J.; Romero, Juan M.; Yépez-Martínez, Huitzilin
2017-09-01
Different experimental studies have reported anomalous diffusion in brain tissues and notably this anomalous diffusion is expressed through fractional derivatives. Axons are important to understand neurodegenerative diseases such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. Indeed, abnormal accumulation of proteins and organelles in axons is a hallmark of these diseases. The diffusion in the axons can become anomalous as a result of this abnormality. In this case the voltage propagation in axons is affected. Another hallmark of different neurodegenerative diseases is given by discrete swellings along the axon. In order to model the voltage propagation in axons with anomalous diffusion and swellings, in this paper we propose a fractional cable equation for a general geometry. This generalized equation depends on fractional parameters and geometric quantities such as the curvature and torsion of the cable. For a cable with a constant radius we show that the voltage decreases when the fractional effect increases. In cables with swellings we find that when the fractional effect or the swelling radius increases, the voltage decreases. Similar behavior is obtained when the number of swellings and the fractional effect increase. Moreover, we find that when the radius swelling (or the number of swellings) and the fractional effect increase at the same time, the voltage dramatically decreases.
Stella, L.; Lorenz, C. D.; Kantorovich, L.
2014-04-01
The generalized Langevin equation (GLE) has been recently suggested to simulate the time evolution of classical solid and molecular systems when considering general nonequilibrium processes. In this approach, a part of the whole system (an open system), which interacts and exchanges energy with its dissipative environment, is studied. Because the GLE is derived by projecting out exactly the harmonic environment, the coupling to it is realistic, while the equations of motion are non-Markovian. Although the GLE formalism has already found promising applications, e.g., in nanotribology and as a powerful thermostat for equilibration in classical molecular dynamics simulations, efficient algorithms to solve the GLE for realistic memory kernels are highly nontrivial, especially if the memory kernels decay nonexponentially. This is due to the fact that one has to generate a colored noise and take account of the memory effects in a consistent manner. In this paper, we present a simple, yet efficient, algorithm for solving the GLE for practical memory kernels and we demonstrate its capability for the exactly solvable case of a harmonic oscillator coupled to a Debye bath.
Exact solutions of the Navier-Stokes equations generalized for flow in porous media
Daly, Edoardo; Basser, Hossein; Rudman, Murray
2018-05-01
Flow of Newtonian fluids in porous media is often modelled using a generalized version of the full non-linear Navier-Stokes equations that include additional terms describing the resistance to flow due to the porous matrix. Because this formulation is becoming increasingly popular in numerical models, exact solutions are required as a benchmark of numerical codes. The contribution of this study is to provide a number of non-trivial exact solutions of the generalized form of the Navier-Stokes equations for parallel flow in porous media. Steady-state solutions are derived in the case of flows in a medium with constant permeability along the main direction of flow and a constant cross-stream velocity in the case of both linear and non-linear drag. Solutions are also presented for cases in which the permeability changes in the direction normal to the main flow. An unsteady solution for a flow with velocity driven by a time-periodic pressure gradient is also derived. These solutions form a basis for validating computational models across a wide range of Reynolds and Darcy numbers.
International Nuclear Information System (INIS)
Guo Boling
1994-01-01
We prove the existence of the global attractors for the generalized Landau-Lifshitz equation on compact manifold M, and give the upper and lower estimates of their Hausdorff and fractal dimensions. (author). 18 refs
International Nuclear Information System (INIS)
Weiland, J.; Ichikawa, Y.H.; Wilhelmsson, H.
1977-12-01
The Bogoliubov-Mitropolsky perturbation method has been applied to the study of a perturbation on soliton solutions to the nonlinear Schroedinger equation. The results are compared to those of Karpman and Maslov using the inverse scattering method and to those by Ott and Sudan on the KdV equation. (auth.)
Fermion unification model based on the intrinsic SU(8 symmetry of a generalized Dirac equation
Directory of Open Access Journals (Sweden)
Eckart eMarsch
2015-10-01
Full Text Available A natural generalization of the original Dirac spinor into a multi-component spinor is achieved, which corresponds to the single lepton and the three quarks of the first family of the standard model of elementary particle physics. Different fermions result from similarity transformations of the Dirac equation, but apparently there can be no more fermions according to the maximal multiplicity revealed in this study. Rotations in the fermion state space are achieved by the unitary generators of the U(1 and the SU(3 groups, corresponding to quantum electrodynamics (QED based on electric charge and chromodynamics (QCD based on colour charge. In addition to hypercharge the dual degree of freedom of hyperspin emerges, which occurs due to the duplicity implied by the two related (Weyl and Dirac representations of the Dirac equation. This yields the SU(2 symmetry of the weak interaction, which can be married to U(1 to generate the unified electroweak interaction as in the standard model. Therefore, the symmetry group encompassing all the three groups mentioned above is SU(8, which can accommodate and unify the observed eight basic stable fermions.
International Nuclear Information System (INIS)
Lim, S C; Teo, L P
2009-01-01
Single-file diffusion behaves as normal diffusion at small time and as subdiffusion at large time. These properties can be described in terms of fractional Brownian motion with variable Hurst exponent or multifractional Brownian motion. We introduce a new stochastic process called Riemann–Liouville step fractional Brownian motion which can be regarded as a special case of multifractional Brownian motion with a step function type of Hurst exponent tailored for single-file diffusion. Such a step fractional Brownian motion can be obtained as a solution of the fractional Langevin equation with zero damping. Various kinds of fractional Langevin equations and their generalizations are then considered in order to decide whether their solutions provide the correct description of the long and short time behaviors of single-file diffusion. The cases where the dissipative memory kernel is a Dirac delta function, a power-law function and a combination of these functions are studied in detail. In addition to the case where the short time behavior of single-file diffusion behaves as normal diffusion, we also consider the possibility of a process that begins as ballistic motion
An extended step characteristic method for solving the transport equation in general geometries
International Nuclear Information System (INIS)
DeHart, M.D.; Pevey, R.E.; Parish, T.A.
1994-01-01
A method for applying the discrete ordinates method to solve the Boltzmann transport equation on arbitrary two-dimensional meshes has been developed. The finite difference approach normally used to approximate spatial derivatives in extrapolating angular fluxes across a cell is replaced by direct solution of the characteristic form of the transport equation for each discrete direction. Thus, computational cells are not restricted to the geometrical shape of a mesh element characteristic of a given coordinate system. However, in terms of the treatment of energy and angular dependencies, this method resembles traditional discrete ordinates techniques. By using the method developed here, a general two-dimensional space can be approximated by an irregular mesh comprised of arbitrary polygons. Results for a number of test problems have been compared with solutions obtained from traditional methods, with good agreement. Comparisons include benchmarks against analytical results for problems with simple geometry, as well as numerical results obtained from traditional discrete ordinates methods by applying the ANISN and TWOTRAN-II computer programs
Generalized conjugate-gradient methods for the Navier-Stokes equations
Ajmani, Kumud; Ng, Wing-Fai; Liou, Meng-Sing
1991-01-01
A generalized conjugate-gradient method is used to solve the two-dimensional, compressible Navier-Stokes equations of fluid flow. The equations are discretized with an implicit, upwind finite-volume formulation. Preconditioning techniques are incorporated into the new solver to accelerate convergence of the overall iterative method. The superiority of the new solver is demonstrated by comparisons with a conventional line Gauss-Siedel Relaxation solver. Computational test results for transonic flow (trailing edge flow in a transonic turbine cascade) and hypersonic flow (M = 6.0 shock-on-shock phenoena on a cylindrical leading edge) are presented. When applied to the transonic cascade case, the new solver is 4.4 times faster in terms of number of iterations and 3.1 times faster in terms of CPU time than the Relaxation solver. For the hypersonic shock case, the new solver is 3.0 times faster in terms of number of iterations and 2.2 times faster in terms of CPU time than the Relaxation solver.
Remarks on the additional symmetries and W-constraints in the generalized KdV hierarchy
International Nuclear Information System (INIS)
Panda, S.; Roy, S.
1992-07-01
Additional symmetries of the p-reduced KP hierarchy are generated by the Lax operator L and another operator M, satisfying res(M n L m+n/p ) = 0 for 1 ≤n≤p - 1 and m ≥ -1 with the condition that γL/γt kp = 0,k = 1,2,.... We show explicitly that the generators of these additional symmetries satisfy a closed and consistent W-algebra only when we impose the extra condition that γM/γt tk = 0. (author). 32 refs
General solution of the Dirac equation for quasi-two-dimensional electrons
Energy Technology Data Exchange (ETDEWEB)
Eremko, Alexander, E-mail: eremko@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Str., 14-b, Kyiv, 03680 (Ukraine); Brizhik, Larissa, E-mail: brizhik@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Str., 14-b, Kyiv, 03680 (Ukraine); Loktev, Vadim, E-mail: vloktev@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Str., 14-b, Kyiv, 03680 (Ukraine); National Technical University of Ukraine “KPI”, Peremohy av., 37, Kyiv, 03056 (Ukraine)
2016-06-15
The general solution of the Dirac equation for quasi-two-dimensional electrons confined in an asymmetric quantum well, is found. The energy spectrum of such a system is exactly calculated using special unitary operator and is shown to depend on the electron spin polarization. This solution contains free parameters, whose variation continuously transforms one known particular solution into another. As an example, two different cases are considered in detail: electron in a deep and in a strongly asymmetric shallow quantum well. The effective mass renormalized by relativistic corrections and Bychkov–Rashba coefficients are analytically obtained for both cases. It is demonstrated that the general solution transforms to the particular solutions, found previously (Eremko et al., 2015) with the use of spin invariants. The general solution allows to establish conditions at which a specific (accompanied or non-accompanied by Rashba splitting) spin state can be realized. These results can prompt the ways to control the spin degree of freedom via the synthesis of spintronic heterostructures with the required properties.
Accelerating the convergence of path integral dynamics with a generalized Langevin equation
Ceriotti, Michele; Manolopoulos, David E.; Parrinello, Michele
2011-02-01
The quantum nature of nuclei plays an important role in the accurate modelling of light atoms such as hydrogen, but it is often neglected in simulations due to the high computational overhead involved. It has recently been shown that zero-point energy effects can be included comparatively cheaply in simulations of harmonic and quasiharmonic systems by augmenting classical molecular dynamics with a generalized Langevin equation (GLE). Here we describe how a similar approach can be used to accelerate the convergence of path integral (PI) molecular dynamics to the exact quantum mechanical result in more strongly anharmonic systems exhibiting both zero point energy and tunnelling effects. The resulting PI-GLE method is illustrated with applications to a double-well tunnelling problem and to liquid water.
Accelerating the convergence of path integral dynamics with a generalized Langevin equation.
Ceriotti, Michele; Manolopoulos, David E; Parrinello, Michele
2011-02-28
The quantum nature of nuclei plays an important role in the accurate modelling of light atoms such as hydrogen, but it is often neglected in simulations due to the high computational overhead involved. It has recently been shown that zero-point energy effects can be included comparatively cheaply in simulations of harmonic and quasiharmonic systems by augmenting classical molecular dynamics with a generalized Langevin equation (GLE). Here we describe how a similar approach can be used to accelerate the convergence of path integral (PI) molecular dynamics to the exact quantum mechanical result in more strongly anharmonic systems exhibiting both zero point energy and tunnelling effects. The resulting PI-GLE method is illustrated with applications to a double-well tunnelling problem and to liquid water.
International Nuclear Information System (INIS)
Pelinovsky, Dmitry E.; Yang Jianke
2005-01-01
We study the generalized third-order nonlinear Schroedinger (NLS) equation which admits a one-parameter family of single-hump embedded solitons. Analyzing the spectrum of the linearization operator near the embedded soliton, we show that there exists a resonance pole in the left half-plane of the spectral parameter, which explains linear stability, rather than nonlinear semistability, of embedded solitons. Using exponentially weighted spaces, we approximate the resonance pole both analytically and numerically. We confirm in a near-integrable asymptotic limit that the resonance pole gives precisely the linear decay rate of parameters of the embedded soliton. Using conserved quantities, we qualitatively characterize the stable dynamics of embedded solitons
Directory of Open Access Journals (Sweden)
Akanda Md. Abdus Salam
2017-03-01
Full Text Available Individual heterogeneity in capture probabilities and time dependence are fundamentally important for estimating the closed animal population parameters in capture-recapture studies. A generalized estimating equations (GEE approach accounts for linear correlation among capture-recapture occasions, and individual heterogeneity in capture probabilities in a closed population capture-recapture individual heterogeneity and time variation model. The estimated capture probabilities are used to estimate animal population parameters. Two real data sets are used for illustrative purposes. A simulation study is carried out to assess the performance of the GEE estimator. A Quasi-Likelihood Information Criterion (QIC is applied for the selection of the best fitting model. This approach performs well when the estimated population parameters depend on the individual heterogeneity and the nature of linear correlation among capture-recapture occasions.
Directory of Open Access Journals (Sweden)
Zhenguo Luo
2014-01-01
Full Text Available By using a fixed point theorem of strict-set-contraction, which is different from Gaines and Mawhin's continuation theorem and abstract continuation theory for k-set contraction, we established some new criteria for the existence of positive periodic solution of the following generalized neutral delay functional differential equation with impulse: x'(t=x(t[a(t-f(t,x(t,x(t-τ1(t,x(t,…,x(t-τn(t,x(t,x'(t-γ1(t,x(t,…,x'(t-γm(t,x(t], t≠tk, k∈Z+; x(tk+=x(tk-+θk(x(tk, k∈Z+. As applications of our results, we also give some applications to several Lotka-Volterra models and new results are obtained.