Boundary diffraction wave integrals for diffraction modeling of external occulters
Cady, E.
2012-01-01
An occulter is a large diffracting screen which may be flown in conjunction with a telescope to image extrasolar planets. The edge is shaped to minimize the diffracted light in a region beyond the occulter, and a telescope may be placed in this dark shadow to view an extrasolar system with the starlight removed. Errors in position, orientation, and shape of the occulter will diffract additional light into this region, and a challenge of modeling an occulter system is to accurately and quickly...
Generalized diffraction-stack migration and filtering of coherent noise
Zhan, Ge
2014-01-27
We reformulate the equation of reverse-time migration so that it can be interpreted as summing data along a series of hyperbola-like curves, each one representing a different type of event such as a reflection or multiple. This is a generalization of the familiar diffraction-stack migration algorithm where the migration image at a point is computed by the sum of trace amplitudes along an appropriate hyperbola-like curve. Instead of summing along the curve associated with the primary reflection, the sum is over all scattering events and so this method is named generalized diffraction-stack migration. This formulation leads to filters that can be applied to the generalized diffraction-stack migration operator to mitigate coherent migration artefacts due to, e.g., crosstalk and aliasing. Results with both synthetic and field data show that generalized diffraction-stack migration images have fewer artefacts than those computed by the standard reverse-time migration algorithm. The main drawback is that generalized diffraction-stack migration is much more memory intensive and I/O limited than the standard reverse-time migration method. © 2014 European Association of Geoscientists & Engineers.
Diffraction model of a step-out transition
Energy Technology Data Exchange (ETDEWEB)
Chao, A.W.; Zimmermann, F.
1996-06-01
The diffraction model of a cavity, suggested by Lawson, Bane and Sands is generalized to a step out transition. Using this model, the high frequency impedance is calculated explicitly for the case that the transition step is small compared with the beam pipe radius. In the diffraction model for a small step out transition, the total energy is conserved, but, unlike the cavity case, the diffracted waves in the geometric shadow and the pipe region, in general, do not always carry equal energy. In the limit of small step sizes, the impedance derived from the diffraction model agrees with that found by Balakin, Novokhatsky and also Kheifets. This impedance can be used to compute the wake field of a round collimator whose half aperture is much larger than the bunch length, as existing in the SLC final focus.
Diffraction enhanced imaging: a simple model
International Nuclear Information System (INIS)
Zhu Peiping; Yuan Qingxi; Huang Wanxia; Wang Junyue; Shu Hang; Chen Bo; Liu Yijin; Li Enrong; Wu Ziyu
2006-01-01
Based on pinhole imaging and conventional x-ray projection imaging, a more general DEI (diffraction enhanced imaging) equation is derived using simple concepts in this paper. Not only can the new DEI equation explain all the same problems as with the DEI equation proposed by Chapman, but also some problems that cannot be explained with the old DEI equation, such as the noise background caused by small angle scattering diffracted by the analyser
Diffraction enhanced imaging: a simple model
Energy Technology Data Exchange (ETDEWEB)
Zhu Peiping; Yuan Qingxi; Huang Wanxia; Wang Junyue; Shu Hang; Chen Bo; Liu Yijin; Li Enrong; Wu Ziyu [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)
2006-10-07
Based on pinhole imaging and conventional x-ray projection imaging, a more general DEI (diffraction enhanced imaging) equation is derived using simple concepts in this paper. Not only can the new DEI equation explain all the same problems as with the DEI equation proposed by Chapman, but also some problems that cannot be explained with the old DEI equation, such as the noise background caused by small angle scattering diffracted by the analyser.
A Study of Simple Diffraction Models
DEFF Research Database (Denmark)
Agerkvist, Finn
In this paper two simple methods for cabinet edge diffraction are examined. Calculations with both models are compared with more sophisticated theoretical models and with measured data. The parameters involved are studied and their importance for normal loudspeaker box designs is examined....
A Study of Simple Diffraction Models
DEFF Research Database (Denmark)
Agerkvist, Finn
1997-01-01
Three different models for calculating edge diffraction are examined. The methods of Vanderkooy, Terai and Biot & Tolstoy are compared with measurements. Although a good agreement is obtained, the measurements also show that none of the methods work completely satisfactorily. The desired properties...
Higher-order harmonics of general limited diffraction Bessel beams
International Nuclear Information System (INIS)
Ding De-Sheng; Huang Jin-Huang
2016-01-01
In this paper, we extensively study the higher-order harmonic generation of the general limited diffraction m -th-order Bessel beam. The analysis is based on successive approximations of the Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation. Asymptotic expansions are presented for higher-order harmonic Bessel beams in near and far fields. The validity of asymptotic approximation is also analyzed. The higher-order harmonic of the Bessel beam with the lowest zero-order is taken as a special example. (special topic)
Higher-order harmonics of general limited diffraction Bessel beams
Ding, De-Sheng; Huang, Jin-Huang
2016-12-01
In this paper, we extensively study the higher-order harmonic generation of the general limited diffraction m-th-order Bessel beam. The analysis is based on successive approximations of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation. Asymptotic expansions are presented for higher-order harmonic Bessel beams in near and far fields. The validity of asymptotic approximation is also analyzed. The higher-order harmonic of the Bessel beam with the lowest zero-order is taken as a special example. Project supported by the National Natural Science Foundation of China (Grant Nos. 11074038 and 11374051).
Fast and accurate focusing analysis of large photon sieve using pinhole ring diffraction model.
Liu, Tao; Zhang, Xin; Wang, Lingjie; Wu, Yanxiong; Zhang, Jizhen; Qu, Hemeng
2015-06-10
In this paper, we developed a pinhole ring diffraction model for the focusing analysis of a large photon sieve. Instead of analyzing individual pinholes, we discuss the focusing of all of the pinholes in a single ring. An explicit equation for the diffracted field of individual pinhole ring has been proposed. We investigated the validity range of this generalized model and analytically describe the sufficient conditions for the validity of this pinhole ring diffraction model. A practical example and investigation reveals the high accuracy of the pinhole ring diffraction model. This simulation method could be used for fast and accurate focusing analysis of a large photon sieve.
Transition operators in electromagnetic-wave diffraction theory - General theory
Hahne, G. E.
1992-01-01
A formal theory is developed for the scattering of time-harmonic electromagnetic waves from impenetrable immobile obstacles with given linear, homogeneous, and generally nonlocal boundary conditions of Leontovich (impedance) type for the wave of the obstacle's surface. The theory is modeled on the complete Green's function and the transition (T) operator in time-independent formal scattering theory of nonrelativistic quantum mechanics. An expression for the differential scattering cross section for plane electromagnetic waves is derived in terms of certain matrix elements of the T operator for the obstacle.
Generalized parton distributions and rapidity gap survival in exclusive diffractive pp scattering
Energy Technology Data Exchange (ETDEWEB)
Leonid Frankfurt; Charles Hyde-Wright; Mark Strikman; Christian Weiss
2007-03-01
We propose a new approach to the problem of rapidity gap survival (RGS) in the production of high-mass systems (H = dijet, heavy quarkonium, Higgs boson) in double-gap exclusive diffractive pp scattering, pp-->p + (gap) + H + (gap) + p. It is based on the idea that hard and soft interactions proceed over widely different time- and distance scales and are thus approximately independent. The high-mass system is produced in a hard scattering process with exchange of two gluons between the protons. Its amplitude is calculable in terms of the gluon generalized parton distributions (GPDs) in the protons, which can be measured in J= production in exclusive ep scattering. The hard scattering process is modified by soft spectator interactions, which we calculate in a model-independent way in terms of the pp elastic scattering amplitude. Contributions from inelastic intermediate states are suppressed. A simple geometric picture of the interplay of hard and soft interactions in diffraction is obtained. The onset of the black-disk limit in pp scattering at TeV energies strongly suppresses diffraction at small impact parameters and is the main factor in determining the RGS probability. Correlations between hard and soft interactions (e.g. due to scattering from the long-range pion field of the proton, or due to possible short-range transverse correlations between partons) further decrease the RGS probability. We also investigate the dependence of the diffractive cross section on the transverse momenta of the final-state protons (''diffraction pattern''). By measuring this dependence one can perform detailed tests of the interplay of hard and soft interactions, and even extract information about the gluon GPD in the proton. Such studies appear to be feasible with the planned forward detectors at the LHC.
Generalized parton distributions and rapidity gap survival in exclusive diffractive pp scattering
International Nuclear Information System (INIS)
Leonid Frankfurt; Charles Hyde-Wright; Mark Strikman; Christian Weiss
2006-01-01
We propose a new approach to the problem of rapidity gap survival (RGS) in the production of high-mass systems (H = dijet, heavy quarkonium, Higgs boson) in double-gap exclusive diffractive pp scattering, pp-->p + (gap) + H + (gap) + p. It is based on the idea that hard and soft interactions proceed over widely different time- and distance scales and are thus approximately independent. The high-mass system is produced in a hard scattering process with exchange of two gluons between the protons. Its amplitude is calculable in terms of the gluon generalized parton distributions (GPDs) in the protons, which can be measured in J= production in exclusive ep scattering. The hard scattering process is modified by soft spectator interactions, which we calculate in a model-independent way in terms of the pp elastic scattering amplitude. Contributions from inelastic intermediate states are suppressed. A simple geometric picture of the interplay of hard and soft interactions in diffraction is obtained. The onset of the black-disk limit in pp scattering at TeV energies strongly suppresses diffraction at small impact parameters and is the main factor in determining the RGS probability. Correlations between hard and soft interactions (e.g. due to scattering from the long-range pion field of the proton, or due to possible short-range transverse correlations between partons) further decrease the RGS probability. We also investigate the dependence of the diffractive cross section on the transverse momenta of the final-state protons (''diffraction pattern''). By measuring this dependence one can perform detailed tests of the interplay of hard and soft interactions, and even extract information about the gluon GPD in the proton. Such studies appear to be feasible with the planned forward detectors at the LHC
Diffractive generalized phase contrast for adaptive phase imaging and optical security
DEFF Research Database (Denmark)
Palima, Darwin; Glückstad, Jesper
2012-01-01
We analyze the properties of Generalized Phase Contrast (GPC) when the input phase modulation is implemented using diffractive gratings. In GPC applications for patterned illumination, the use of a dynamic diffractive optical element for encoding the GPC input phase allows for onthe- fly optimiza...... security applications and can be used to create phasebased information channels for enhanced information security....
New software to model energy dispersive X-ray diffraction in polycrystalline materials
Energy Technology Data Exchange (ETDEWEB)
Ghammraoui, B., E-mail: bahaa.ghammraoui@cea.fr [CEA-Leti, MINATEC Campus, 17 rue des Martyrs, F 38054 Grenoble, Cedex 9 (France); Tabary, J. [CEA-Leti, MINATEC Campus, 17 rue des Martyrs, F 38054 Grenoble, Cedex 9 (France); Pouget, S. [CEA-INAC Sciences de la matieres, 17 rue des Martyrs, F 38054 Grenoble, Cedex 9 (France); Paulus, C.; Moulin, V.; Verger, L. [CEA-Leti, MINATEC Campus, 17 rue des Martyrs, F 38054 Grenoble, Cedex 9 (France); Duvauchelle, Ph. [CNDRI-Insa Lyon, Universite de Lyon, F-69621, Villeurbanne Cedex (France)
2012-02-01
Detection of illicit materials, such as explosives or drugs, within mixed samples is a major issue, both for general security and as part of forensic analyses. In this paper, we describe a new code simulating energy dispersive X-ray diffraction patterns in polycrystalline materials. This program, SinFullscat, models diffraction of any object in any diffractometer system taking all physical phenomena, including amorphous background, into account. Many system parameters can be tuned: geometry, collimators (slit and cylindrical), sample properties, X-ray source and detector energy resolution. Good agreement between simulations and experimental data was obtained. Simulations using explosive materials indicated that parameters such as the diffraction angle or the energy resolution of the detector have a significant impact on the diffraction signature of the material inspected. This software will be a convenient tool to test many diffractometer configurations, providing information on the one that best restores the spectral diffraction signature of the materials of interest.
A model of diffraction scattering with unitary corrections
International Nuclear Information System (INIS)
Etim, E.; Malecki, A.; Satta, L.
1989-01-01
The inability of the multiple scattering model of Glauber and similar geometrical picture models to fit data at Collider energies, to fit low energy data at large momentum transfers and to explain the absence of multiple diffraction dips in the data is noted. It is argued and shown that a unitary correction to the multiple scattering amplitude gives rise to a better model and allows to fit all available data on nucleon-nucleon and nucleus-nucleus collisions at all energies and all momentum transfers. There are no multiple diffraction dips
Soft and diffractive scattering with the cluster model in Herwig
Energy Technology Data Exchange (ETDEWEB)
Gieseke, Stefan; Loshaj, Frasher; Kirchgaesser, Patrick [Karlsruhe Institute of Technology, Institute for Theoretical Physics, Karlsruhe (Germany)
2017-03-15
We present a new model for soft interactions in the event-generator Herwig. The model consists of two components. One to model diffractive final states on the basis of the cluster hadronization model and a second component that addresses soft multiple interactions as multiple particle production in multiperipheral kinematics. We present much improved results for minimum-bias measurements at various LHC energies. (orig.)
Allen, Johnie J.; Anderson, Craig A.; Bushman, Brad J.
The General Aggression Model (GAM) is a comprehensive, integrative, framework for understanding aggression. It considers the role of social, cognitive, personality, developmental, and biological factors on aggression. Proximate processes of GAM detail how person and situation factors influence
Diffraction scattering and the parton model in QCD
International Nuclear Information System (INIS)
White, A.
1985-01-01
Arguments are presented that the validity of the parton model for hadron scattering in QCD is directly related to the occurrence of the Critical Pomeron description of diffraction scattering. An attractive route suggested for Electroweak and Grand Unification is also briefly described
Double Regge model for non diffractive A1 production
International Nuclear Information System (INIS)
Anjos, J.C.; Endler, A.; Santoro, A.; Simao, F.R.A.
1977-07-01
A Reggeized double-nucleon-exchange model is shown to be able to to reproduce qualitatively the non-diffractive A 1 production recently observed in the reaction K - p → Σ - π + π - π + at 4.15 GeV/c
The generalized circular model
Webers, H.M.
1995-01-01
In this paper we present a generalization of the circular model. In this model there are two concentric circular markets, which enables us to study two types of markets simultaneously. There are switching costs involved for moving from one circle to the other circle, which can also be thought of as
Memory sparing, fast scattering formalism for rigorous diffraction modeling
Iff, W.; Kämpfe, T.; Jourlin, Y.; Tishchenko, A. V.
2017-07-01
The basics and algorithmic steps of a novel scattering formalism suited for memory sparing and fast electromagnetic calculations are presented. The formalism, called ‘S-vector algorithm’ (by analogy with the known scattering-matrix algorithm), allows the calculation of the collective scattering spectra of individual layered micro-structured scattering objects. A rigorous method of linear complexity is applied to model the scattering at individual layers; here the generalized source method (GSM) resorting to Fourier harmonics as basis functions is used as one possible method of linear complexity. The concatenation of the individual scattering events can be achieved sequentially or in parallel, both having pros and cons. The present development will largely concentrate on a consecutive approach based on the multiple reflection series. The latter will be reformulated into an implicit formalism which will be associated with an iterative solver, resulting in improved convergence. The examples will first refer to 1D grating diffraction for the sake of simplicity and intelligibility, with a final 2D application example.
Generalized Nonlinear Yule Models
Lansky, Petr; Polito, Federico; Sacerdote, Laura
2016-01-01
With the aim of considering models with persistent memory we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macrovolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth...
Accurate Antenna Models in Ground Penetrating Radar Diffraction Tomography
DEFF Research Database (Denmark)
Meincke, Peter; Kim, Oleksiy S.
2002-01-01
are modeled by their plane-wave receiving and transmitting spectra. We find these spectra numerically for a resistively loaded dipole using the method of moments. Also, we illustrate, through a numerical example, the importance of taking into account the correct antenna pattern in GPR diffraction tomography.......Linear inversion schemes based on the concept of diffraction tomography have proven successful for ground penetrating radar (GPR) imaging. In many GPR surveys, the antennas of the GPR are located close to the air-soil interface and, therefore, it is important to incorporate the presence...... of this interface in the inversion scheme (see Hansen, T.B. and Meincke Johansen, P., IEEE Trans. Geoscience and Remote Sensing, vol.38, p.496-506, 2000). Hansen and Meincke Johansen modeled the antennas as ideal (Hertzian) electric dipoles. Since practical GPR antennas are not ideal, it is of interest...
DEFF Research Database (Denmark)
Johansen, Peter Meincke
1996-01-01
New uniform closed-form expressions for physical theory of diffraction equivalent edge currents are derived for truncated incremental wedge strips. In contrast to previously reported expressions, the new expressions are well-behaved for all directions of incidence and observation and take a finite...... value for zero strip length. Consequently, the new equivalent edge currents are, to the knowledge of the author, the first that are well-suited for implementation in general computer codes...
Generalized Nonlinear Yule Models
Lansky, Petr; Polito, Federico; Sacerdote, Laura
2016-11-01
With the aim of considering models related to random graphs growth exhibiting persistent memory, we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macroevolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth rates. Among the main results we derive the explicit distribution of the number of in-links of a webpage chosen uniformly at random recognizing the contribution to the asymptotics and the finite time correction. The mean value of the latter distribution is also calculated explicitly in the most general case. Furthermore, in order to show the usefulness of our results, we particularize them in the case of specific birth rates giving rise to a saturating behaviour, a property that is often observed in nature. The further specialization to the non-fractional case allows us to extend the Yule model accounting for a nonlinear growth.
DEFF Research Database (Denmark)
Borregaard, Michael K.; Matthews, Thomas J.; Whittaker, Robert James
2016-01-01
Aim: Island biogeography focuses on understanding the processes that underlie a set of well-described patterns on islands, but it lacks a unified theoretical framework for integrating these processes. The recently proposed general dynamic model (GDM) of oceanic island biogeography offers a step...... towards this goal. Here, we present an analysis of causality within the GDM and investigate its potential for the further development of island biogeographical theory. Further, we extend the GDM to include subduction-based island arcs and continental fragment islands. Location: A conceptual analysis...... of evolutionary processes in simulations derived from the mechanistic assumptions of the GDM corresponded broadly to those initially suggested, with the exception of trends in extinction rates. Expanding the model to incorporate different scenarios of island ontogeny and isolation revealed a sensitivity...
Anomaly General Circulation Models.
Navarra, Antonio
The feasibility of the anomaly model is assessed using barotropic and baroclinic models. In the barotropic case, both a stationary and a time-dependent model has been formulated and constructed, whereas only the stationary, linear case is considered in the baroclinic case. Results from the barotropic model indicate that a relation between the stationary solution and the time-averaged non-linear solution exists. The stationary linear baroclinic solution can therefore be considered with some confidence. The linear baroclinic anomaly model poses a formidable mathematical problem because it is necessary to solve a gigantic linear system to obtain the solution. A new method to find solution of large linear system, based on a projection on the Krylov subspace is shown to be successful when applied to the linearized baroclinic anomaly model. The scheme consists of projecting the original linear system on the Krylov subspace, thereby reducing the dimensionality of the matrix to be inverted to obtain the solution. With an appropriate setting of the damping parameters, the iterative Krylov method reaches a solution even using a Krylov subspace ten times smaller than the original space of the problem. This generality allows the treatment of the important problem of linear waves in the atmosphere. A larger class (nonzonally symmetric) of basic states can now be treated for the baroclinic primitive equations. These problem leads to large unsymmetrical linear systems of order 10000 and more which can now be successfully tackled by the Krylov method. The (R7) linear anomaly model is used to investigate extensively the linear response to equatorial and mid-latitude prescribed heating. The results indicate that the solution is deeply affected by the presence of the stationary waves in the basic state. The instability of the asymmetric flows, first pointed out by Simmons et al. (1983), is active also in the baroclinic case. However, the presence of baroclinic processes modifies the
Allen, Johnie J; Anderson, Craig A; Bushman, Brad J
2018-02-01
The General Aggression Model (GAM) is a comprehensive, integrative, framework for understanding aggression. It considers the role of social, cognitive, personality, developmental, and biological factors on aggression. Proximate processes of GAM detail how person and situation factors influence cognitions, feelings, and arousal, which in turn affect appraisal and decision processes, which in turn influence aggressive or nonaggressive behavioral outcomes. Each cycle of the proximate processes serves as a learning trial that affects the development and accessibility of aggressive knowledge structures. Distal processes of GAM detail how biological and persistent environmental factors can influence personality through changes in knowledge structures. GAM has been applied to understand aggression in many contexts including media violence effects, domestic violence, intergroup violence, temperature effects, pain effects, and the effects of global climate change. Copyright © 2017 Elsevier Ltd. All rights reserved.
The generalized collective model
International Nuclear Information System (INIS)
Troltenier, D.
1992-07-01
In this thesis a new way of proceeding, basing on the method of the finite elements, for the solution of the collective Schroedinger equation in the framework of the Generalized Collective Model was presented. The numerically reachable accuracy was illustrated by the comparison to analytically known solutions by means of numerous examples. Furthermore the potential-energy surfaces of the 182-196 Hg, 242-248 Cm, and 242-246 Pu isotopes were determined by the fitting of the parameters of the Gneuss-Greiner potential to the experimental data. In the Hg isotopes a shape consistency of nearly spherical and oblate deformations is shown, while the Cm and Pu isotopes possess an essentially equal remaining prolate deformation. By means of the pseudo-symplectic model the potential-energy surfaces of 24 Mg, 190 Pt, and 238 U were microscopically calculated. Using a deformation-independent kinetic energy so the collective excitation spectra and the electrical properties (B(E2), B(E4) values, quadrupole moments) of these nuclei were calculated and compared with the experiment. Finally an analytic relation between the (g R -Z/A) value and the quadrupole moment was derived. The study of the experimental data of the 166-170 Er isotopes shows an in the framework of the measurement accuracy a sufficient agreement with this relation. Furthermore it is by this relation possible to determine the effective magnetic dipole moment parameter-freely. (orig./HSI) [de
Modelling of diffusion from equilibrium diffraction fluctuations in ordered phases
International Nuclear Information System (INIS)
Arapaki, E.; Argyrakis, P.; Tringides, M.C.
2008-01-01
Measurements of the collective diffusion coefficient D c at equilibrium are difficult because they are based on monitoring low amplitude concentration fluctuations generated spontaneously, that are difficult to measure experimentally. A new experimental method has been recently used to measure time-dependent correlation functions from the diffraction intensity fluctuations and was applied to measure thermal step fluctuations. The method has not been applied yet to measure superstructure intensity fluctuations in surface overlayers and to extract D c . With Monte Carlo simulations we study equilibrium fluctuations in Ising lattice gas models with nearest neighbor attractive and repulsive interactions. The extracted diffusion coefficients are compared to the ones obtained from equilibrium methods. The new results are in good agreement with the results from the other methods, i.e., D c decreases monotonically with coverage Θ for attractive interactions and increases monotonically with Θ for repulsive interactions. Even the absolute value of D c agrees well with the results obtained with the probe area method. These results confirm that this diffraction based method is a novel, reliable way to measure D c especially within the ordered region of the phase diagram when the superstructure spot has large intensity
International Nuclear Information System (INIS)
Del Duca, V.; Marage, P.
1996-08-01
The general framework of diffractive deep inelastic scattering is introduced and reports given in the session on diffractive interactions at the international workshop on deep-inelastic scattering and related phenomena, Rome, April 1996, are presented. (orig.)
The Massive Yang-Mills Model and Diffractive Scattering
Forshaw, J R; Parrinello, C
1999-01-01
We argue that the massive Yang-Mills model of Kunimasa and Goto, Slavnov, and Cornwall, in which massive gauge vector bosons are introduced in a gauge-invariant way without resorting to the Higgs mechanism, may be useful for studying diffractive scattering of strongly interacting particles. With this motivation, we perform in this model explicit calculations of S-matrix elements between quark states, at tree level, one loop, and two loops, and discuss issues of renormalisability and unitarity. In particular, it is shown that the S-matrix element for quark scattering is renormalisable at one-loop order and is only logarithmically non-renormalisable at two loops. The discrepancies in the ultraviolet regime between the one-loop predictions of this model and those of massless QCD are discussed in detail. In addition, some of the similarities and differences between the massive Yang-Mills model and theories with a Higgs mechanism are analysed at the level of the S-matrix. As an elementary application of the model ...
Comparative study between a QCD inspired model and a multiple diffraction model
International Nuclear Information System (INIS)
Luna, E.G.S.; Martini, A.F.; Menon, M.J.
2003-01-01
A comparative study between a QCD Inspired Model (QCDIM) and a Multiple Diffraction Model (MDM) is presented, with focus on the results for pp differential cross section at √s = 52.8 GeV. It is shown that the MDM predictions are in agreement with experimental data, except for the dip region and that the QCDIM describes only the diffraction peak region. Interpretations in terms of the corresponding eikonals are also discussed. (author)
Bouwkamp, C.J.
1954-01-01
A critical review is presented of recent progress in classical diffraction theory. Both scalar and electromagnetic problems are discussed. The report may serve as an introduction to general diffraction theory although the main emphasis is on diffraction by plane obstacles. Various modifications of
Glauber model and its generalizations
International Nuclear Information System (INIS)
Bialkowski, G.
The physical aspects of the Glauber model problems are studied: potential model, profile function and Feynman diagrams approaches. Different generalizations of the Glauber model are discussed: particularly higher and lower energy processes and large angles [fr
Generalized, Linear, and Mixed Models
McCulloch, Charles E; Neuhaus, John M
2011-01-01
An accessible and self-contained introduction to statistical models-now in a modernized new editionGeneralized, Linear, and Mixed Models, Second Edition provides an up-to-date treatment of the essential techniques for developing and applying a wide variety of statistical models. The book presents thorough and unified coverage of the theory behind generalized, linear, and mixed models and highlights their similarities and differences in various construction, application, and computational aspects.A clear introduction to the basic ideas of fixed effects models, random effects models, and mixed m
Diffractive ''semioptical'' model for nucleus-nucleus collisions
International Nuclear Information System (INIS)
Barashenkov, V.S.; Musulmanbekov, Zh.Zh.
1979-01-01
Diffraction Glauber theory for nucleus-nucleus collisions is considered in approximation when the initial nucleus interacts as a whole with nucleons of the target nucleus. Such an approach, being intermediate between precise Glauber theory and its optical limit, essentially simplifies numerical calculations and gives a good agreement with experiments as well. (author)
Introduction to generalized linear models
Dobson, Annette J
2008-01-01
Introduction Background Scope Notation Distributions Related to the Normal Distribution Quadratic Forms Estimation Model Fitting Introduction Examples Some Principles of Statistical Modeling Notation and Coding for Explanatory Variables Exponential Family and Generalized Linear Models Introduction Exponential Family of Distributions Properties of Distributions in the Exponential Family Generalized Linear Models Examples Estimation Introduction Example: Failure Times for Pressure Vessels Maximum Likelihood Estimation Poisson Regression Example Inference Introduction Sampling Distribution for Score Statistics Taylor Series Approximations Sampling Distribution for MLEs Log-Likelihood Ratio Statistic Sampling Distribution for the Deviance Hypothesis Testing Normal Linear Models Introduction Basic Results Multiple Linear Regression Analysis of Variance Analysis of Covariance General Linear Models Binary Variables and Logistic Regression Probability Distributions ...
A smooth and differentiable bulk-solvent model for macromolecular diffraction
Energy Technology Data Exchange (ETDEWEB)
Fenn, T. D. [Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford, California (United States); Schnieders, M. J. [Department of Chemistry, Stanford, California (United States); Brunger, A. T., E-mail: brunger@stanford.edu [Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford, California (United States); Departments of Neurology and Neurological Sciences, Structural Biology and Photon Science, Stanford, California (United States)
2010-09-01
A new method for modeling the bulk solvent in macromolecular diffraction data based on Babinet’s principle is presented. The proposed models offer the advantage of differentiability with respect to atomic coordinates. Inclusion of low-resolution data in macromolecular crystallography requires a model for the bulk solvent. Previous methods have used a binary mask to accomplish this, which has proven to be very effective, but the mask is discontinuous at the solute–solvent boundary (i.e. the mask value jumps from zero to one) and is not differentiable with respect to atomic parameters. Here, two algorithms are introduced for computing bulk-solvent models using either a polynomial switch or a smoothly thresholded product of Gaussians, and both models are shown to be efficient and differentiable with respect to atomic coordinates. These alternative bulk-solvent models offer algorithmic improvements, while showing similar agreement of the model with the observed amplitudes relative to the binary model as monitored using R, R{sub free} and differences between experimental and model phases. As with the standard solvent models, the alternative models improve the agreement primarily with lower resolution (>6 Å) data versus no bulk solvent. The models are easily implemented into crystallographic software packages and can be used as a general method for bulk-solvent correction in macromolecular crystallography.
A smooth and differentiable bulk-solvent model for macromolecular diffraction
International Nuclear Information System (INIS)
Fenn, T. D.; Schnieders, M. J.; Brunger, A. T.
2010-01-01
A new method for modeling the bulk solvent in macromolecular diffraction data based on Babinet’s principle is presented. The proposed models offer the advantage of differentiability with respect to atomic coordinates. Inclusion of low-resolution data in macromolecular crystallography requires a model for the bulk solvent. Previous methods have used a binary mask to accomplish this, which has proven to be very effective, but the mask is discontinuous at the solute–solvent boundary (i.e. the mask value jumps from zero to one) and is not differentiable with respect to atomic parameters. Here, two algorithms are introduced for computing bulk-solvent models using either a polynomial switch or a smoothly thresholded product of Gaussians, and both models are shown to be efficient and differentiable with respect to atomic coordinates. These alternative bulk-solvent models offer algorithmic improvements, while showing similar agreement of the model with the observed amplitudes relative to the binary model as monitored using R, R free and differences between experimental and model phases. As with the standard solvent models, the alternative models improve the agreement primarily with lower resolution (>6 Å) data versus no bulk solvent. The models are easily implemented into crystallographic software packages and can be used as a general method for bulk-solvent correction in macromolecular crystallography
Diffraction by disordered polycrystalline fibers
International Nuclear Information System (INIS)
Stroud, W.J.; Millane, R.P.
1995-01-01
X-ray diffraction patterns from some polycrystalline fibers show that the constituent microcrystallites are disordered. The relationship between the crystal structure and the diffracted intensities is then quite complicated and depends on the precise kind and degree of disorder present. The effects of disorder on diffracted intensities must be included in structure determinations using diffraction data from such specimens. Theory and algorithms are developed here that allow the full diffraction pattern to be calculated for a disordered polycrystalline fiber made up of helical molecules. The model accommodates various kinds of disorder and includes the effects of finite crystallite size and cylindrical averaging of the diffracted intensities from a fiber. Simulations using these methods show how different kinds, or components, of disorder produce particular diffraction effects. General properties of disordered arrays of helical molecules and their effects on diffraction patterns are described. Implications for structure determination are discussed. (orig.)
Generalized Ordinary Differential Equation Models.
Miao, Hongyu; Wu, Hulin; Xue, Hongqi
2014-10-01
Existing estimation methods for ordinary differential equation (ODE) models are not applicable to discrete data. The generalized ODE (GODE) model is therefore proposed and investigated for the first time. We develop the likelihood-based parameter estimation and inference methods for GODE models. We propose robust computing algorithms and rigorously investigate the asymptotic properties of the proposed estimator by considering both measurement errors and numerical errors in solving ODEs. The simulation study and application of our methods to an influenza viral dynamics study suggest that the proposed methods have a superior performance in terms of accuracy over the existing ODE model estimation approach and the extended smoothing-based (ESB) method.
Directory of Open Access Journals (Sweden)
Eray Arik
2017-03-01
Full Text Available In urban, rural and indoor applications, diffraction mechanism is very important to predict the field strength and calculate the coverage accurately. The diffraction mechanism takes place on NLOS (non-line-of-sight cases like rooftop, vertex, corner, edge and sharp surfaces. S-UTD-CH model computes three type of electromagnetic wave incidence such as direct, reflected and diffracted waves, respectively. As obstacles in diffraction geometry are in the same or closer height, contribution of the diffraction mechanism is dominant. To predict the diffracted fields accurately, amplitude and slope diffraction coefficients and the derivative of these coefficients have to be taken correctly. In this paper, all the derivations about diffraction coefficients are made for knife edge type structures and extensive simulations are performed in order to analyze the amplitude and diffraction coefficients. In plane angle diffraction, contributions of amplitude and slope diffraction coefficient are maxima.
Colour-singlet exchange and tests of models of diffractive DIS
International Nuclear Information System (INIS)
Williams, J.C.
2000-03-01
Diffractive deep-inelastic scattering events observed at the HERA electron-proton collider are interpreted as an interaction involving a virtual photon scattering off a colour-singlet state within the proton. Models which attempt to describe the colour-singlet exchanged in diffractive interactions range from the purely phenomenological Donnachie-Landshoff form factor approach to the QCD-motivated gluon-exchange models and the scalar-pomeron model. It is important to find ways to test these models. In this thesis colour-singlet exchange models of diffractive DIS are compared with cross section and structure function data from the H1 detector. H1 select diffractive data by requiring there to be a large angle between the forward proton direction and any other significant detector activity. This pseudo-rapidity gap cut extracts colour-singlet exchange events from the standard DIS data sample. For a wide range of the parameter space covered by the HERA experiments, however, the pseudo-rapidity gap cuts restrict the final-state phase space available for diffractive scattering. One consequence is that pseudo-rapidity gap cuts can be used to select diffractive events in which the colour-singlet only couples to off-shell partons. To leading order in the strong coupling constant, the diffractive final state consists of a quark-antiquark pair. Higher-order events include diffractive production of quark-antiquark-gluon states. In the region where pseudo-rapidity gap cuts restrict the accessible phase space, the cuts reject low transverse momentum quark-antiquark diffractive events. Pseudo-rapidity gap data selection cuts also allow selection of an enhanced 3-jet data sample. The structure function and transverse momentum distribution data can be described by either a two-gluon model or by the Donnachie-Landshoff model, both models requiring a significant contribution from quark-antiquark-gluon diffractive final states to fit the full kinematic range of the diffractive data
Diffractive open charm production at DESY HERA. Experiment versus two-gluon exchange model
Energy Technology Data Exchange (ETDEWEB)
Baranov, S.P. [P.N. Lebedev Inst. of Physics, Moscow (Russian Federation)
2010-03-15
Diffractive production of D{sup *} mesons at HERA conditions is considered in the framework of collinear two-gluon exchange model. Theoretical results are compared with recent experimental data. (orig.)
Potrzebowski, Wojciech; André, Ingemar
2015-07-01
For highly oriented fibrillar molecules, three-dimensional structures can often be determined from X-ray fiber diffraction data. However, because of limited information content, structure determination and validation can be challenging. We demonstrate that automated structure determination of protein fibers can be achieved by guiding the building of macromolecular models with fiber diffraction data. We illustrate the power of our approach by determining the structures of six bacteriophage viruses de novo using fiber diffraction data alone and together with solid-state NMR data. Furthermore, we demonstrate the feasibility of molecular replacement from monomeric and fibrillar templates by solving the structure of a plant virus using homology modeling and protein-protein docking. The generated models explain the experimental data to the same degree as deposited reference structures but with improved structural quality. We also developed a cross-validation method for model selection. The results highlight the power of fiber diffraction data as structural constraints.
Cosmological models in general relativity
Indian Academy of Sciences (India)
Cosmological models in general relativity. B B PAUL. Department of Physics, Nowgong College, Nagaon, Assam, India. MS received 4 October 2002; revised 6 March 2003; accepted 21 May 2003. Abstract. LRS Bianchi type-I space-time filled with perfect fluid is considered here with deceler- ation parameter as variable.
Diffractive jet production in a simple model with applications to DESY HERA
International Nuclear Information System (INIS)
Berera, A.; Soper, D.E.
1994-01-01
In diffractive jet production, two high energy hardons A and B collide and produce high transverse momentum jets, while hadron A is diffractively scattered. Ingelman and Schlein predicted this phenomenon. In their model, part of the longitudinal momentum transferred from hadron A is delivered to the jet system, part is lost. Lossless diffractive jet production, in which all of this longitudinal momentum is delivered to the jet system, has been discussed by Collins, Frankfurt, and Strikman. We study the structure of lossless diffractive jet production in a simple model. The model suggests that the phenomenon can be probed experimentally at DESY HERA, with A being a proton and B being a bremsstrahlung photon with virtuality Q 2 . Lossless events should be present for small Q 2 , but not for Q 2 larger than 1/R P 2 , where R P is a characteristic size of the Pomeron
Multipole electron-density modelling of synchrotron powder diffraction data: the case of diamond
DEFF Research Database (Denmark)
Svendsen, H.; Overgaard, J.; Busselez, R.
2010-01-01
between experiment and theory, and the study therefore demonstrates that synchrotron powder diffraction can indeed provide accurate structure-factor values based on data measured in minutes with limited sample preparation. Thus, potential systematic errors such as extinction and twinning commonly......Accurate structure factors are extracted from synchrotron powder diffraction data measured on crystalline diamond based on a novel multipole model division of overlapping reflection intensities. The approach limits the spherical-atom bias in structure factors extracted from overlapping powder data...
Generalized waste package containment model
International Nuclear Information System (INIS)
Liebetrau, A.M.; Apted, M.J.
1985-02-01
The US Department of Energy (DOE) is developing a performance assessment strategy to demonstrate compliance with standards and technical requirements of the Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC) for the permanent disposal of high-level nuclear wastes in geologic repositories. One aspect of this strategy is the development of a unified performance model of the entire geologic repository system. Details of a generalized waste package containment (WPC) model and its relationship with other components of an overall repository model are presented in this paper. The WPC model provides stochastically determined estimates of the distributions of times-to-failure of the barriers of a waste package by various corrosion mechanisms and degradation processes. The model consists of a series of modules which employ various combinations of stochastic (probabilistic) and mechanistic process models, and which are individually designed to reflect the current state of knowledge. The WPC model is designed not only to take account of various site-specific conditions and processes, but also to deal with a wide range of site, repository, and waste package configurations. 11 refs., 3 figs., 2 tabs
Multivariate covariance generalized linear models
DEFF Research Database (Denmark)
Bonat, W. H.; Jørgensen, Bent
2016-01-01
are fitted by using an efficient Newton scoring algorithm based on quasi-likelihood and Pearson estimating functions, using only second-moment assumptions. This provides a unified approach to a wide variety of types of response variables and covariance structures, including multivariate extensions......We propose a general framework for non-normal multivariate data analysis called multivariate covariance generalized linear models, designed to handle multivariate response variables, along with a wide range of temporal and spatial correlation structures defined in terms of a covariance link...... function combined with a matrix linear predictor involving known matrices. The method is motivated by three data examples that are not easily handled by existing methods. The first example concerns multivariate count data, the second involves response variables of mixed types, combined with repeated...
Unitarized model of inclusive and diffractive DIS with Q2 evolution
International Nuclear Information System (INIS)
Armesto, Nestor; Salgado, Carlos A.; Tywoniuk, Konrad; Kaidalov, Alexei B.
2010-01-01
We discuss the interplay of low-x physics and QCD scaling violations by extending the unified approach describing inclusive structure functions and diffractive production in γ*p interactions proposed in previous papers to large values of Q 2 . We describe the procedure of extracting, from the nonperturbative model, initial conditions for the QCD evolution that respect unitarity. Assuming Regge factorization of the diffractive structure function, a similar procedure is proposed for the calculation of hard diffraction. The results are in good agreement with experimental data on the proton structure function F 2 and the most recent data on the reduced diffractive cross section, x P σ r D(3) . Predictions for both F 2 and F L are presented in a wide kinematical range and compared to calculations within high-energy QCD.
Fermions as generalized Ising models
Directory of Open Access Journals (Sweden)
C. Wetterich
2017-04-01
Full Text Available We establish a general map between Grassmann functionals for fermions and probability or weight distributions for Ising spins. The equivalence between the two formulations is based on identical transfer matrices and expectation values of products of observables. The map preserves locality properties and can be realized for arbitrary dimensions. We present a simple example where a quantum field theory for free massless Dirac fermions in two-dimensional Minkowski space is represented by an asymmetric Ising model on a euclidean square lattice.
Diffractive production off nuclei-shadow of hadronic bremsstrahlung
International Nuclear Information System (INIS)
Bialas, A.; Czyz, W.
1974-01-01
Diffractive production on nuclei is calculated using as an input a specific model for diffractive production on nucleons. In this model diffractive production is described as a shadow of non-diffractive multiple production of particles. The mechanism for non-diffractive production is taken to be hadronic bremsstrahlung of independently produced clusters. It is shown that such a model naturally explains the strikingly simple pattern of absorption observed in coherent production on nuclei. Possible generalizations of these results are indicated. (author)
Anisotropic charged generalized polytropic models
Nasim, A.; Azam, M.
2018-06-01
In this paper, we found some new anisotropic charged models admitting generalized polytropic equation of state with spherically symmetry. An analytic solution of the Einstein-Maxwell field equations is obtained through the transformation introduced by Durgapal and Banerji (Phys. Rev. D 27:328, 1983). The physical viability of solutions corresponding to polytropic index η =1/2, 2/3, 1, 2 is analyzed graphically. For this, we plot physical quantities such as radial and tangential pressure, anisotropy, speed of sound which demonstrated that these models achieve all the considerable physical conditions required for a relativistic star. Further, it is mentioned here that previous results for anisotropic charged matter with linear, quadratic and polytropic equation of state can be retrieved.
DEFF Research Database (Denmark)
Clausen, Bjørn; Lorentzen, Torben
1997-01-01
The uniaxial behavior of aluminum polycrystals is simulated using a rate-independent incremental self-consistent elastic-plastic polycrystal deformation model, and the results are evaluated by neutron diffraction measurements. The elastic strains deduced from the model show good agreement...
Generalized phase contrast-enhanced diffractive coupling to light-driven microtools
DEFF Research Database (Denmark)
Villangca, Mark Jayson; Bañas, Andrew Rafael; Palima, Darwin
2015-01-01
capability of the microtools, the applied spatial light modulator has been illuminated with a properly matched input beam cross section based on the generalized phase contrast method. Our results show a significant gain in the output at the tip of each microtool as measured from the fluorescence signal...... of the coupling spots is done in real time following the position of each microtool with the aid of an object tracking routine. This approach allows continuous coupling of light through the microtools which can be useful in a variety of biophotonics applications. To complement the targeted-light delivery...
Diffraction enhanced imaging of a rat model of gastric acid aspiration pneumonitis.
Connor, Dean M; Zhong, Zhong; Foda, Hussein D; Wiebe, Sheldon; Parham, Christopher A; Dilmanian, F Avraham; Cole, Elodia B; Pisano, Etta D
2011-12-01
Diffraction-enhanced imaging (DEI) is a type of phase contrast x-ray imaging that has improved image contrast at a lower dose than conventional radiography for many imaging applications, but no studies have been done to determine if DEI might be useful for diagnosing lung injury. The goals of this study were to determine if DEI could differentiate between healthy and injured lungs for a rat model of gastric aspiration and to compare diffraction-enhanced images with chest radiographs. Radiographs and diffraction-enhanced chest images of adult Sprague Dawley rats were obtained before and 4 hours after the aspiration of 0.4 mL/kg of 0.1 mol/L hydrochloric acid. Lung damage was confirmed with histopathology. The radiographs and diffraction-enhanced peak images revealed regions of atelectasis in the injured rat lung. The diffraction-enhanced peak images revealed the full extent of the lung with improved clarity relative to the chest radiographs, especially in the portion of the lower lobe that extended behind the diaphragm on the anteroposterior projection. For a rat model of gastric acid aspiration, DEI is capable of distinguishing between a healthy and an injured lung and more clearly than radiography reveals the full extent of the lung and the lung damage. Copyright Â© 2011 AUR. All rights reserved.
Generalized model of island biodiversity
Kessler, David A.; Shnerb, Nadav M.
2015-04-01
The dynamics of a local community of competing species with weak immigration from a static regional pool is studied. Implementing the generalized competitive Lotka-Volterra model with demographic noise, a rich dynamics with four qualitatively distinct phases is unfolded. When the overall interspecies competition is weak, the island species recapitulate the mainland species. For higher values of the competition parameter, the system still admits an equilibrium community, but now some of the mainland species are absent on the island. Further increase in competition leads to an intermittent "disordered" phase, where the dynamics is controlled by invadable combinations of species and the turnover rate is governed by the migration. Finally, the strong competition phase is glasslike, dominated by uninvadable states and noise-induced transitions. Our model contains, as a special case, the celebrated neutral island theories of Wilson-MacArthur and Hubbell. Moreover, we show that slight deviations from perfect neutrality may lead to each of the phases, as the Hubbell point appears to be quadracritical.
International Nuclear Information System (INIS)
Kraus, H.G.
1991-01-01
This paper discusses methods for calculating Fraunhofer intensity fields resulting from diffraction through one- and two-dimensional apertures are presented. These methods are based on the geometric concept of finite elements and on Fourier and Abbe transforms. The geometry of the two-dimensional diffracting aperture(s) is based on biquadratic isoparametric elements, which are used to define aperture(s) of complex geometry. These elements are also used to build complex amplitude and phase functions across the aperture(s) which may be of continuous or discontinuous form. The transform integrals are accurately and efficiently integrated numerically using Gaussian quadrature. The power of these methods is most evident in two dimensions, where several examples are presented which include secondary obstructions, straight and curved secondary spider supports, multiple-mirror arrays, synthetic aperture arrays, segmented mirrors, apertures covered by screens, apodization, and phase plates. Typically, the finite element Abbe transform method results in significant gains in computational efficiency over the finite element Fourier transform method, but is also subject to some loss in generality
Soneson, Joshua E
2017-04-01
Wide-angle parabolic models are commonly used in geophysics and underwater acoustics but have seen little application in medical ultrasound. Here, a wide-angle model for continuous-wave high-intensity ultrasound beams is derived, which approximates the diffraction process more accurately than the commonly used Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation without increasing implementation complexity or computing time. A method for preventing the high spatial frequencies often present in source boundary conditions from corrupting the solution is presented. Simulations of shallowly focused axisymmetric beams using both the wide-angle and standard parabolic models are compared to assess the accuracy with which they model diffraction effects. The wide-angle model proposed here offers improved focusing accuracy and less error throughout the computational domain than the standard parabolic model, offering a facile method for extending the utility of existing KZK codes.
A structural view of Pd model catalysts : high-pressure surface X-Ray diffraction
Rijn, Richard van
2012-01-01
This thesis describes the development of a combined high-pressure/ultrahigh-vacuum flow reactor for the study of model catalysts by means of surface x-ray diffraction and grazing incidence small angle scattering. The system was used to measure a stability diagram for the different oxide phases
Modeling laser beam diffraction and propagation by the mode-expansion method.
Snyder, James J
2007-08-01
In the mode-expansion method for modeling propagation of a diffracted beam, the beam at the aperture can be expanded as a weighted set of orthogonal modes. The parameters of the expansion modes are chosen to maximize the weighting coefficient of the lowest-order mode. As the beam propagates, its field distribution can be reconstructed from the set of weighting coefficients and the Gouy phase of the lowest-order mode. We have developed a simple procedure to implement the mode-expansion method for propagation through an arbitrary ABCD matrix, and we have demonstrated that it is accurate in comparison with direct calculations of diffraction integrals and much faster.
Shan, Mingguang; Tan, Jiubin
2007-12-10
A theoretical model is established using Rayleigh-Sommerfeld diffraction theory to describe the diffraction focusing characteristics of low F-number diffractive optical elements with continuous relief fabricated by laser direct writing, and continuous-relief diffractive optical elements with a design wavelength of 441.6nm and a F-number of F/4 are fabricated and measured to verify the validity of the diffraction focusing model. The measurements made indicate that the spot size is 1.75mum and the diffraction efficiency is 70.7% at the design wavelength, which coincide well with the theoretical results: a spot size of 1.66mum and a diffraction efficiency of 71.2%.
π- -12C elastic scattering above the Δ resonance using diffraction model
International Nuclear Information System (INIS)
Arafah, M.R.
2008-01-01
Phenomenological analysis of the π - - 12 C elastic scattering differential cross-section at 400, 486, 500, 584, 663, 672 and 766 MeV is presented. The analysis is made in the diffraction model framework using recently proposed parameterization of the phase-shift function. Good description of the experimental data is achieved at all energies. Microscopic interpretation of the parameters of the phase-shift function is provided in terms of Helm's model density parameters. (author)
A unified model for diffractive and inelastic scattering of a light atom from a solid surface
International Nuclear Information System (INIS)
Adams, J.E.; Miller, W.H.
1979-01-01
A simple model for gas-surface scattering is presented which permits treatment of inelastic effects in diffractive systems. The model, founded on an impulsive collision assumption, leads to an intensity distribution which is just a sum of contributions from n-phonon scattering events. Furthemore, by using a convenient form for the repulsive interaction potential, analytic expressions are obtained for the elastic and one-phonon intensities that are in qualitative agreement with experimental results. (Auth.)
International Nuclear Information System (INIS)
Abarbanel, H.
1972-01-01
An attempt is made to analyse the present theoretical situation in the field of diffraction scattering. Two not yet fully answered questions related with a typical diffraction process AB→CD, namely: what is the structure of the transition matrix elements, and what is the structure of the exchange mechanism responsible for the scattering, are formulated and various proposals for answers are reviewed. Interesting general statement that the products (-1)sup(J)P, where J and P are respectively spin and parity, is conserved at each vertex has been discussed. The exchange mechanism in diffractive scattering has been considered using the language of the complex J-plane as the most appropriate. The known facts about the exchange mechanism are recalled and several routs to way out are proposed. The idea to consider the moving pole and associated branch points as like a particle and the associated two and many particle unitarity cuts is described in more details. (S.B.)
Background modelling of diffraction data in the presence of ice rings
Directory of Open Access Journals (Sweden)
James M. Parkhurst
2017-09-01
Full Text Available An algorithm for modelling the background for each Bragg reflection in a series of X-ray diffraction images containing Debye–Scherrer diffraction from ice in the sample is presented. The method involves the use of a global background model which is generated from the complete X-ray diffraction data set. Fitting of this model to the background pixels is then performed for each reflection independently. The algorithm uses a static background model that does not vary over the course of the scan. The greatest improvement can be expected for data where ice rings are present throughout the data set and the local background shape at the size of a spot on the detector does not exhibit large time-dependent variation. However, the algorithm has been applied to data sets whose background showed large pixel variations (variance/mean > 2 and has been shown to improve the results of processing for these data sets. It is shown that the use of a simple flat-background model as in traditional integration programs causes systematic bias in the background determination at ice-ring resolutions, resulting in an overestimation of reflection intensities at the peaks of the ice rings and an underestimation of reflection intensities either side of the ice ring. The new global background-model algorithm presented here corrects for this bias, resulting in a noticeable improvement in R factors following refinement.
Radius anomaly in the diffraction model for heavy-ion elastic scattering
Pandey, L. N.; Mukherjee, S. N.
1984-04-01
The elastic scattering of heavy ions, 20Ne on 208Pb, 20Ne on 235U, 84Kr on 208Pb, and 84Kr on 232Th, is examined within the framework of Frahn's diffraction model. An analysis of the experiment using the "quarter point recipe" of the expected Fresnel cross sections yields a larger radius for 208Pb than the radii for 235U and 232Th. It is shown that inclusion of the nuclear deformation in the model removes the above anomaly in the radii, and the assumption of smooth cutoff of the angular momentum simultaneously leads to a better fit to elastic scattering data, compared to those obtained by the earlier workers on the assumption of sharp cutoff. [NUCLEAR REACTIONS Elastic scattering, 20Ne+208Pb (161.2 MeV), 20Ne+235U (175 MeV), 84Kr+208Pb (500 MeV), 84Kr+232Th (500 MeV), diffraction model, nuclear deformation.
Thermodynamic modelling and in-situ neutron diffraction investigation of the (Ce + Mg + Zn) system
International Nuclear Information System (INIS)
Zhu, Zhijun; Gharghouri, Michael A.; Medraj, Mamoun; Lee, Soo Yeol; Pelton, Arthur D.
2016-01-01
Highlights: • All phase diagram and thermodynamic data critically assessed for the (Ce + Mg + Zn) system. • All phases described by optimized thermodynamic models. • In-situ neutron diffraction performed to identify phases and transition temperatures. • Assessments of other (RE + Mg + Zn) systems have been carried out simultaneously. • The final product is a thermodynamic database for multicomponent (Mg + RE + Zn) systems. - Abstract: All available phase diagram data for the (Ce + Mg + Zn) system were critically assessed. In-situ neutron diffraction (ND) experiments were performed on selected samples to identify phases and transition temperatures. A critical thermodynamic evaluation and optimization of the (Ce + Mg + Zn) system were carried out and model parameters for the thermodynamic properties of all phases were obtained. The phase transformation behaviour of selected samples was well resolved from the ND experiments and experimental data were used to refine the thermodynamic model parameters.
Generalized complex geometry, generalized branes and the Hitchin sigma model
International Nuclear Information System (INIS)
Zucchini, Roberto
2005-01-01
Hitchin's generalized complex geometry has been shown to be relevant in compactifications of superstring theory with fluxes and is expected to lead to a deeper understanding of mirror symmetry. Gualtieri's notion of generalized complex submanifold seems to be a natural candidate for the description of branes in this context. Recently, we introduced a Batalin-Vilkovisky field theoretic realization of generalized complex geometry, the Hitchin sigma model, extending the well known Poisson sigma model. In this paper, exploiting Gualtieri's formalism, we incorporate branes into the model. A detailed study of the boundary conditions obeyed by the world sheet fields is provided. Finally, it is found that, when branes are present, the classical Batalin-Vilkovisky cohomology contains an extra sector that is related non trivially to a novel cohomology associated with the branes as generalized complex submanifolds. (author)
General introduction to simulation models
DEFF Research Database (Denmark)
Hisham Beshara Halasa, Tariq; Boklund, Anette
2012-01-01
trials. However, if simulation models would be used, good quality input data must be available. To model FMD, several disease spread models are available. For this project, we chose three simulation model; Davis Animal Disease Spread (DADS), that has been upgraded to DTU-DADS, InterSpread Plus (ISP......Monte Carlo simulation can be defined as a representation of real life systems to gain insight into their functions and to investigate the effects of alternative conditions or actions on the modeled system. Models are a simplification of a system. Most often, it is best to use experiments and field...... trials to investigate the effect of alternative conditions or actions on a specific system. Nonetheless, field trials are expensive and sometimes not possible to conduct, as in case of foot-and-mouth disease (FMD). Instead, simulation models can be a good and cheap substitute for experiments and field...
Murray, Ian B.; Densmore, Victor; Bora, Vaibhav; Pieratt, Matthew W.; Hibbard, Douglas L.; Milster, Tom D.
2011-06-01
Coatings of various metalized patterns are used for heating and electromagnetic interference (EMI) shielding applications. Previous work has focused on macro differences between different types of grids, and has shown good correlation between measurements and analyses of grid diffraction. To advance this work, we have utilized the University of Arizona's OptiScan software, which has been optimized for this application by using the Babinet Principle. When operating on an appropriate computer system, this algorithm produces results hundreds of times faster than standard Fourier-based methods, and allows realistic cases to be modeled for the first time. By using previously published derivations by Exotic Electro-Optics, we compare diffraction performance of repeating and randomized grid patterns with equivalent sheet resistance using numerical performance metrics. Grid patterns of each type are printed on optical substrates and measured energy is compared against modeled energy.
De Wolf, E.A.
2002-01-01
We discuss basic concepts and properties of diffractive phenomena in soft hadron collisions and in deep-inelastic scattering at low Bjorken-x. The paper is not a review of the rapidly developing field but presents an attempt to show in simple terms the close inter-relationship between the dynamics of high-energy hadronic and deep-inelastic diffraction. Using the saturation model of Golec-Biernat and Wusthoff as an example, a simple explanation of geometrical scaling is presented. The relation between the QCD anomalous multiplicity dimension and the Pomeron intercept is discussed.
International Nuclear Information System (INIS)
Wolf, E.A. de
2002-01-01
We discuss basic concepts and properties of diffractive phenomena in soft hadron collisions and in deep-inelastic scattering at low Bjorken - x. The paper is not a review of the rapidly developing field but presents an attempt to show in simple terms the close inter-relationship between the dynamics of high-energy hadronic and deep-inelastic diffraction. Using the saturation model of Golec-Biernat and Wuesthoff as an example, a simple explanation of geometrical scaling is presented. The relation between the QCD anomalous multiplicity dimension and the Pomeron intercept is discussed. (author)
Validation of a Crystal Plasticity Model Using High Energy Diffraction Microscopy
Beaudoin, A. J.; Obstalecki, M.; Storer, R.; Tayon, W.; Mach, J.; Kenesei, P.; Lienert, U.
2012-01-01
High energy diffraction microscopy is used to measure the crystallographic orientation and evolution of lattice strain in an Al Li alloy. The relative spatial arrangement of the several pancake-shaped grains in a tensile sample is determined through in situ and ex situ techniques. A model for crystal plasticity with continuity of lattice spin is posed, where grains are represented by layers in a finite element mesh following the arrangement indicated by experiment. Comparison is drawn between experiment and simulation.
Thermodynamic model for the elastic form factor in diffraction scattering of protons
International Nuclear Information System (INIS)
Grashin, A.F.; Evstratenko, A.S.; Lepeshkin, M.V.
1988-01-01
An explicit expression is obtained for the differential pp(p-bar)-scattering cross section in the diffraction-cone region by employing the thermodynamic model for the elastic form factor previously proposed in Ref. 4. Data for the energy region 16.3≤(s)/sup 1/2/ ≤546 GeV have been analyzed and significant deviations have been discovered from the commonly used approximations in the form of linear or quadratic exponentials
Multivariate generalized linear mixed models using R
Berridge, Damon Mark
2011-01-01
Multivariate Generalized Linear Mixed Models Using R presents robust and methodologically sound models for analyzing large and complex data sets, enabling readers to answer increasingly complex research questions. The book applies the principles of modeling to longitudinal data from panel and related studies via the Sabre software package in R. A Unified Framework for a Broad Class of Models The authors first discuss members of the family of generalized linear models, gradually adding complexity to the modeling framework by incorporating random effects. After reviewing the generalized linear model notation, they illustrate a range of random effects models, including three-level, multivariate, endpoint, event history, and state dependence models. They estimate the multivariate generalized linear mixed models (MGLMMs) using either standard or adaptive Gaussian quadrature. The authors also compare two-level fixed and random effects linear models. The appendices contain additional information on quadrature, model...
Analytic model of electron pulse propagation in ultrafast electron diffraction experiments
International Nuclear Information System (INIS)
Michalik, A.M.; Sipe, J.E.
2006-01-01
We present a mean-field analytic model to study the propagation of electron pulses used in ultrafast electron diffraction experiments (UED). We assume a Gaussian form to characterize the electron pulse, and derive a system of ordinary differential equations that are solved quickly and easily to give the pulse dynamics. We compare our model to an N-body numerical simulation and are able to show excellent agreement between the two result sets. This model is a convenient alternative to time consuming and computationally intense N-body simulations in exploring the dynamics of UED electron pulses, and as a tool for refining UED experimental designs
International Nuclear Information System (INIS)
Clausen, B.
1997-09-01
The deformation of polycrystals are modelled using three micron mechanic models; the Taylor model, the Sachs model and Hutchinson's self-consistent (SC) model. The predictions of the rigid plastic Taylor and Sachs models are compared with the predictions of the SC model. As expected, the results of the SC model is about half-way between the upper- and lower-bound models. The influence of the elastic anisotropy is investigated by comparing the SC predictions for aluminium, copper and a hypothetical material (Hybrid) with the elastic anisotropy of copper and the Young's modulus and hardening behaviour of aluminium. It is concluded that the effect of the elastic anisotropy is limited to the very early stages of plasticity, as the deformation pattern is almost identical for the three materials at higher strains. The predictions of the three models are evaluated by neutron diffraction measurements of elastic lattice strains in grain sub-sets within the polycrystal. The two rigid plastic models do not include any material parameters and therefore the predictions of the SC model is more accurate and more detailed than the predictions of the Taylor and Sachs models. The SC model is used to determine the most suitable reflection for technological applications of neutron diffraction, where focus is on the volume average stress state in engineering components. To be able to successfully to convert the measured elastic lattice strains for a specific reflection into overall volume average stresses, there must be a linear relation between the lattice strain of the reflection and the overall stress. According to the model predictions the 311-reflection is the most suitable reflection as it shows the smallest deviations from linearity and thereby also the smallest build-up of residual strains. The model predictions have pin pointed that the selection of the reflection is crucial for the validity of stresses calculated from the measured elastic lattice strains. (au) 14 tabs., 41
Generalized latent variable modeling multilevel, longitudinal, and structural equation models
Skrondal, Anders; Rabe-Hesketh, Sophia
2004-01-01
This book unifies and extends latent variable models, including multilevel or generalized linear mixed models, longitudinal or panel models, item response or factor models, latent class or finite mixture models, and structural equation models.
General Pressurization Model in Simscape
Servin, Mario; Garcia, Vicky
2010-01-01
System integration is an essential part of the engineering design process. The Ares I Upper Stage (US) is a complex system which is made up of thousands of components assembled into subsystems including a J2-X engine, liquid hydrogen (LH2) and liquid oxygen (LO2) tanks, avionics, thrust vector control, motors, etc. System integration is the task of connecting together all of the subsystems into one large system. To ensure that all the components will "fit together" as well as safety and, quality, integration analysis is required. Integration analysis verifies that, as an integrated system, the system will behave as designed. Models that represent the actual subsystems are built for more comprehensive analysis. Matlab has been an instrument widely use by engineers to construct mathematical models of systems. Simulink, one of the tools offered by Matlab, provides multi-domain graphical environment to simulate and design time-varying systems. Simulink is a powerful tool to analyze the dynamic behavior of systems over time. Furthermore, Simscape, a tool provided by Simulink, allows users to model physical (such as mechanical, thermal and hydraulic) systems using physical networks. Using Simscape, a model representing an inflow of gas to a pressurized tank was created where the temperature and pressure of the tank are measured over time to show the behavior of the gas. By further incorporation of Simscape into model building, the full potential of this software can be discovered and it hopefully can become a more utilized tool.
Process generalization in conceptual models
Wieringa, Roelf J.
In conceptual modeling, the universe of discourse (UoD) is divided into classes which have a taxonomic structure. The classes are usually defined in terms of attributes (all objects in a class share attribute names) and possibly of events. For enmple, the class of employees is the set of objects to
Vector models and generalized SYK models
Energy Technology Data Exchange (ETDEWEB)
Peng, Cheng [Department of Physics, Brown University,Providence RI 02912 (United States)
2017-05-23
We consider the relation between SYK-like models and vector models by studying a toy model where a tensor field is coupled with a vector field. By integrating out the tensor field, the toy model reduces to the Gross-Neveu model in 1 dimension. On the other hand, a certain perturbation can be turned on and the toy model flows to an SYK-like model at low energy. A chaotic-nonchaotic phase transition occurs as the sign of the perturbation is altered. We further study similar models that possess chaos and enhanced reparameterization symmetries.
Testing the generalized partial credit model
Glas, Cornelis A.W.
1996-01-01
The partial credit model (PCM) (G.N. Masters, 1982) can be viewed as a generalization of the Rasch model for dichotomous items to the case of polytomous items. In many cases, the PCM is too restrictive to fit the data. Several generalizations of the PCM have been proposed. In this paper, a generalization of the PCM (GPCM), a further generalization of the one-parameter logistic model, is discussed. The model is defined and the conditional maximum likelihood procedure for the method is describe...
Edmiston, John Kearney
This work explores the field of continuum plasticity from two fronts. On the theory side, we establish a complete specification of a phenomenological theory of plasticity for single crystals. The model serves as an alternative to the popular crystal plasticity formulation. Such a model has been previously proposed in the literature; the new contribution made here is the constitutive framework and resulting simulations. We calibrate the model to available data and use a simple numerical method to explore resulting predictions in plane strain boundary value problems. Results show promise for further investigation of the plasticity model. Conveniently, this theory comes with a corresponding experimental tool in X-ray diffraction. Recent advances in hardware technology at synchrotron sources have led to an increased use of the technique for studies of plasticity in the bulk of materials. The method has been successful in qualitative observations of material behavior, but its use in quantitative studies seeking to extract material properties is open for investigation. Therefore in the second component of the thesis several contributions are made to synchrotron X-ray diffraction experiments, in terms of method development as well as the quantitative reporting of constitutive parameters. In the area of method development, analytical tools are developed to determine the available precision of this type of experiment—a crucial aspect to determine if the method is to be used for quantitative studies. We also extract kinematic information relating to intragranular inhomogeneity which is not accessible with traditional methods of data analysis. In the area of constitutive parameter identification, we use the method to extract parameters corresponding to the proposed formulation of plasticity for a titanium alloy (HCP) which is continuously sampled by X-ray diffraction during uniaxial extension. These results and the lessons learned from the efforts constitute early reporting
Theory of hard diffraction and rapidity gaps
International Nuclear Information System (INIS)
Del Duca, V.
1995-06-01
In this talk we review the models describing the hard diffractive production of jets or more generally high-mass states in presence of rapidity gaps in hadron-hadron and lepton-hadron collisions. By rapidity gaps we mean regions on the lego plot in (pseudo)-rapidity and azimuthal angle where no hadrons are produced, between the jet(s) and an elastically scattered hadron (single hard diffraction) or between two jets (double hard diffraction). (orig.)
Theory of hard diffraction and rapidity gaps
International Nuclear Information System (INIS)
Del Duca, V.
1996-01-01
In this talk we review the models describing the hard diffractive production of jets or more generally high-mass states in presence of rapidity gaps in hadron-hadron and lepton-hadron collisions. By rapidity gaps we mean regions on the lego plot in (pseudo)-rapidity and azimuthal angle where no hadrons are produced, between the jet(s) and an elastically scattered hadron (single hard diffraction) or between two jets (double hard diffraction). copyright 1996 American Institute of Physics
Actuarial statistics with generalized linear mixed models
Antonio, K.; Beirlant, J.
2007-01-01
Over the last decade the use of generalized linear models (GLMs) in actuarial statistics has received a lot of attention, starting from the actuarial illustrations in the standard text by McCullagh and Nelder [McCullagh, P., Nelder, J.A., 1989. Generalized linear models. In: Monographs on Statistics
Testing the generalized partial credit model
Glas, Cornelis A.W.
1996-01-01
The partial credit model (PCM) (G.N. Masters, 1982) can be viewed as a generalization of the Rasch model for dichotomous items to the case of polytomous items. In many cases, the PCM is too restrictive to fit the data. Several generalizations of the PCM have been proposed. In this paper, a
Highly-optimized TWSM software package for seismic diffraction modeling adapted for GPU-cluster
Zyatkov, Nikolay; Ayzenberg, Alena; Aizenberg, Arkady
2015-04-01
Oil producing companies concern to increase resolution capability of seismic data for complex oil-and-gas bearing deposits connected with salt domes, basalt traps, reefs, lenses, etc. Known methods of seismic wave theory define shape of hydrocarbon accumulation with nonsufficient resolution, since they do not account for multiple diffractions explicitly. We elaborate alternative seismic wave theory in terms of operators of propagation in layers and reflection-transmission at curved interfaces. Approximation of this theory is realized in the seismic frequency range as the Tip-Wave Superposition Method (TWSM). TWSM based on the operator theory allows to evaluate of wavefield in bounded domains/layers with geometrical shadow zones (in nature it can be: salt domes, basalt traps, reefs, lenses, etc.) accounting for so-called cascade diffraction. Cascade diffraction includes edge waves from sharp edges, creeping waves near concave parts of interfaces, waves of the whispering galleries near convex parts of interfaces, etc. The basic algorithm of TWSM package is based on multiplication of large-size matrices (make hundreds of terabytes in size). We use advanced information technologies for effective realization of numerical procedures of the TWSM. In particular, we actively use NVIDIA CUDA technology and GPU accelerators allowing to significantly improve the performance of the TWSM software package, that is important in using it for direct and inverse problems. The accuracy, stability and efficiency of the algorithm are justified by numerical examples with curved interfaces. TWSM package and its separate components can be used in different modeling tasks such as planning of acquisition systems, physical interpretation of laboratory modeling, modeling of individual waves of different types and in some inverse tasks such as imaging in case of laterally inhomogeneous overburden, AVO inversion.
Wang, Tiansi; Zhang, Chong; Aleksov, Aleksandar; Salama, Islam; Kar, Aravinda
2017-04-01
Phased array ultrasonic transducers enable modulating the focal position of the acoustic waves, and this capability is utilized in many applications, such as medical imaging and non-destructive testing. This type of transducers also provides a mechanism to generate tilted wavefronts in acousto-optic deflectors to deflect laser beams for high precision advanced laser material processing. In this paper, a theoretical model is presented for the diffraction of ultrasonic waves emitted by several phased array transducers into an acousto-optic medium such as TeO 2 crystal. A simple analytic expression is obtained for the distribution of the ultrasonic displacement field in the crystal. The model prediction is found to be in good agreement with the results of a numerical model that is based on a non-paraxial multi-Gaussian beam (NMGB) model. Published by Elsevier B.V.
Scaling of multiplicity distribution in hadron collisions and diffractive-excitation like models
International Nuclear Information System (INIS)
Buras, A.J.; Dethlefsen, J.M.; Koba, Z.
1974-01-01
Multiplicity distribution of secondary particles in inelastic hadron collision at high energy is studied in the semiclassical impact parameter representation. The scaling function is shown to consist of two factors: one geometrical and the other dynamical. We propose a specific choice of these factors, which describe satisfactorily the elastic scattering, the ratio of elastic to total cross-section and the simple scaling behaviour of multiplicity distribution in p-p collisions. Two versions of diffractive-excitation like models (global and local excitation) are presented as interpretation of our choice of dynamical factor. (author)
Micro Data and General Equilibrium Models
DEFF Research Database (Denmark)
Browning, Martin; Hansen, Lars Peter; Heckman, James J.
1999-01-01
Dynamic general equilibrium models are required to evaluate policies applied at the national level. To use these models to make quantitative forecasts requires knowledge of an extensive array of parameter values for the economy at large. This essay describes the parameters required for different...... economic models, assesses the discordance between the macromodels used in policy evaluation and the microeconomic models used to generate the empirical evidence. For concreteness, we focus on two general equilibrium models: the stochastic growth model extended to include some forms of heterogeneity...
Modeling the Radar Return of Powerlines Using an Incremental Length Diffraction Coefficient Approach
Macdonald, Douglas
A method for modeling the signal from cables and powerlines in Synthetic Aperture Radar (SAR) imagery is presented. Powerline detection using radar is an active area of research. Accurately identifing the location of powerlines in a scene can be used to aid pilots of low flying aircraft in collision avoidance, or map the electrical infrastructure of an area. The focus of this research was on the forward modeling problem of generating the powerline SAR signal from first principles. Previous work on simulating SAR imagery involved methods that ranged from efficient but insufficiently accurate, depending on the application, to more exact but computationally complex. A brief survey of the numerous ways to model the scattering of electromagnetic radiation is provided. A popular tool that uses the geometric optics approximation for modeling imagery for remote sensing applications across a wide range of modalities is the Digitial Imaging and Remote Sensing Image Generation (DIRSIG) tool. This research shows the way in which DIRSIG generates the SAR phase history is unique compared to other methods used. In particular, DIRSIG uses the geometric optics approximation for the scattering of electromagnetic radiation and builds the phase history in the time domain on a pulse-by-pulse basis. This enables an efficient generation of the phase history of complex scenes. The drawback to this method is the inability to account for diffraction. Since the characteristic diameter of many communication cables and powerlines is on the order of the wavelength of the incident radiation, diffraction is the dominant mechanism by which the radiation gets scattered for these targets. Comparison of DIRSIG imagery to field data shows good scene-wide qualitative agreement as well as Rayleigh distributed noise in the amplitude data, as expected for coherent imaging with speckle. A closer inspection of the Radar Cross Sections of canonical targets such as trihedrals and dihedrals, however, shows
A general consumer-resource population model
Lafferty, Kevin D.; DeLeo, Giulio; Briggs, Cheryl J.; Dobson, Andrew P.; Gross, Thilo; Kuris, Armand M.
2015-01-01
Food-web dynamics arise from predator-prey, parasite-host, and herbivore-plant interactions. Models for such interactions include up to three consumer activity states (questing, attacking, consuming) and up to four resource response states (susceptible, exposed, ingested, resistant). Articulating these states into a general model allows for dissecting, comparing, and deriving consumer-resource models. We specify this general model for 11 generic consumer strategies that group mathematically into predators, parasites, and micropredators and then derive conditions for consumer success, including a universal saturating functional response. We further show how to use this framework to create simple models with a common mathematical lineage and transparent assumptions. Underlying assumptions, missing elements, and composite parameters are revealed when classic consumer-resource models are derived from the general model.
Diffraction-based overlay measurement on dedicated mark using rigorous modeling method
Lu, Hailiang; Wang, Fan; Zhang, Qingyun; Chen, Yonghui; Zhou, Chang
2012-03-01
Diffraction Based Overlay (DBO) is widely evaluated by numerous authors, results show DBO can provide better performance than Imaging Based Overlay (IBO). However, DBO has its own problems. As well known, Modeling based DBO (mDBO) faces challenges of low measurement sensitivity and crosstalk between various structure parameters, which may result in poor accuracy and precision. Meanwhile, main obstacle encountered by empirical DBO (eDBO) is that a few pads must be employed to gain sufficient information on overlay-induced diffraction signature variations, which consumes more wafer space and costs more measuring time. Also, eDBO may suffer from mark profile asymmetry caused by processes. In this paper, we propose an alternative DBO technology that employs a dedicated overlay mark and takes a rigorous modeling approach. This technology needs only two or three pads for each direction, which is economic and time saving. While overlay measurement error induced by mark profile asymmetry being reduced, this technology is expected to be as accurate and precise as scatterometry technologies.
A Generalized Random Regret Minimization Model
Chorus, C.G.
2013-01-01
This paper presents, discusses and tests a generalized Random Regret Minimization (G-RRM) model. The G-RRM model is created by replacing a fixed constant in the attribute-specific regret functions of the RRM model, by a regret-weight variable. Depending on the value of the regret-weights, the G-RRM
EOP MIT General Circulation Model (MITgcm)
National Oceanic and Atmospheric Administration, Department of Commerce — This data contains a regional implementation of the Massachusetts Institute of Technology general circulation model (MITgcm) at a 1-km spatial resolution for the...
Generalized Reduced Order Model Generation, Phase I
National Aeronautics and Space Administration — M4 Engineering proposes to develop a generalized reduced order model generation method. This method will allow for creation of reduced order aeroservoelastic state...
International Nuclear Information System (INIS)
Bonnet, M.; Delapalme, A.; Becker, P.
1976-01-01
This paper shows that polarized neutron experiments, which do not depend on any scale factor, are very dependent on extinction and provide original tests for extinction models. Moon, Koehler, Cable and Child (1972) have formulated the problem and proposed a first-order solution applicable only when the extinction is small. In the first part, some analytical derivations of secondary extinction corrections are discussed, using the formalism of Becker and Coppens (1974). In the second part, the main principles governing polarized neutron diffraction are briefly reviewed, with a special discussion of extinction problems. The method is then applied to the case of yttrium iron garnet (YIG). This experiment shows the technique of polarized neutrons to be very powerful for testing extinction models and for deciding whether the crystal behaves dynamically or kinematically (following Kato's criterion). (Auth.)
Foundations of linear and generalized linear models
Agresti, Alan
2015-01-01
A valuable overview of the most important ideas and results in statistical analysis Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linear statistical models. The book presents a broad, in-depth overview of the most commonly used statistical models by discussing the theory underlying the models, R software applications, and examples with crafted models to elucidate key ideas and promote practical model building. The book begins by illustrating the fundamentals of linear models,
Korsunsky, Alexander M; Hofmann, Felix; Song, Xu; Eve, Sophie; Collins, Steve P
2010-09-01
Materials characterization at the nano-scale is motivated by the desire to resolve the structural aspects and deformation behavior at length scales relevant to those mechanisms that define the novel and unusual properties of nano-structured materials. A range of novel techniques has recently become accessible with the help of synchrotron X-ray beams that can be focused down to spot sizes of less than a few microns on the sample. The unique combination of tunability (energy selection), parallelism and brightness of synchrotron X-ray beams allows their use for high resolution diffraction (determination of crystal structure and transformations, analysis of dislocation sub-structures, orientation and texture analysis, strain mapping); small angle X-ray scattering (analysis of nano-scale voids and defects; orientation analysis) and imaging (radiography and tomography). After a brief review of the state-of-the-art capabilities for monochromatic and white beam synchrotron diffraction, we consider the usefulness of these techniques for the task of bridging the gap between experiment and modeling. Namely, we discuss how the experiments can be configured to provide information relevant to the validation and improvement of modeling approaches, and also how the results of various simulations can be post-processed to improve the possibility of (more or less) direct comparison with experiments. Using the example of some recent experiments carried out on beamline 116 at Diamond Light Source near Oxford, we discuss how such experimental results can be interpreted in view and in conjunction with numerical deformation models, particularly those incorporating dislocation effects, e.g., finite-element based pseudo-continuum strain gradient formulations, and discrete dislocation simulations. Post-processing of FE and discrete dislocation simulations is described, illustrating the kind of information that can be extracted from comparisons between modeling and experimental data.
Simple implementation of general dark energy models
International Nuclear Information System (INIS)
Bloomfield, Jolyon K.; Pearson, Jonathan A.
2014-01-01
We present a formalism for the numerical implementation of general theories of dark energy, combining the computational simplicity of the equation of state for perturbations approach with the generality of the effective field theory approach. An effective fluid description is employed, based on a general action describing single-scalar field models. The formalism is developed from first principles, and constructed keeping the goal of a simple implementation into CAMB in mind. Benefits of this approach include its straightforward implementation, the generality of the underlying theory, the fact that the evolved variables are physical quantities, and that model-independent phenomenological descriptions may be straightforwardly investigated. We hope this formulation will provide a powerful tool for the comparison of theoretical models of dark energy with observational data
Generalization of the quark rearrangement model
International Nuclear Information System (INIS)
Fields, T.; Chen, C.K.
1976-01-01
An extension and generalization of the quark rearrangement model of baryon annihilation is described which can be applied to all annihilation reactions and which incorporates some of the features of the highly successful quark parton model. Some p anti-p interactions are discussed
Geometrical efficiency in computerized tomography: generalized model
International Nuclear Information System (INIS)
Costa, P.R.; Robilotta, C.C.
1992-01-01
A simplified model for producing sensitivity and exposure profiles in computerized tomographic system was recently developed allowing the forecast of profiles behaviour in the rotation center of the system. The generalization of this model for some point of the image plane was described, and the geometrical efficiency could be evaluated. (C.G.C.)
Wakefield and the diffraction model due to a flat beam moving past a conducting wedge
International Nuclear Information System (INIS)
Chao, A.W.; Henke, H.
1995-07-01
A collimator is often used to clean a beam of its excessive tail particles. If the beam intensity is high enough or if the beam is brought too close to the collimator, however, the wakefields generated by the beam-collimator interaction can cause additional beam tails to grow, thus defeating, or even worsening, the beam-tail cleaning process. The wakefield generated by a sheet beam moving past a conducting wedge has been obtained in closed form by Henke using the method of conformal mapping. This result is applied in the present work to obtain the wake force and the transverse kick received by a test charge moving with the beam. For the beam to be approximated as sheet beams, it is assumed to be flat and the collimator is assumed to have an infinite extent in the flat dimention. We derive an exact expression for the transverse wake force delivered to particles in the beam bunch. Implication of emittance growth as a beam passes closely by a collimator is discussed. We consider two idealized wedge geometries: In Section 2, when the wedge has the geometry as a disrupted beam pipe, and in Section 3, when it is like a semi-infinite screen. Unfortunately, we do not have solutions for more realistic collimator geometries such as when it is tapered to minimize the wakefield effects. However, our results should still serve as pessimistic limiting cases. An interesting opportunity is offered by our exact calculation of the wakefields: it can be used to confront the diffraction model used to estimate the high-frequency impedance of a cavity structure. It is shown that the field pattern, as well as the impedance, agrees with those obtained by the diffraction model in appropriate limits
Topics in the generalized vector dominance model
International Nuclear Information System (INIS)
Chavin, S.
1976-01-01
Two topics are covered in the generalized vector dominance model. In the first topic a model is constructed for dilepton production in hadron-hadron interactions based on the idea of generalized vector-dominance. It is argued that in the high mass region the generalized vector-dominance model and the Drell-Yan parton model are alternative descriptions of the same underlying physics. In the low mass regions the models differ; the vector-dominance approach predicts a greater production of dileptons. It is found that the high mass vector mesons which are the hallmark of the generalized vector-dominance model make little contribution to the large yield of leptons observed in the transverse-momentum range 1 less than p/sub perpendicular/ less than 6 GeV. The recently measured hadronic parameters lead one to believe that detailed fits to the data are possible under the model. The possibility was expected, and illustrated with a simple model the extreme sensitivity of the large-p/sub perpendicular/ lepton yield to the large-transverse-momentum tail of vector-meson production. The second topic is an attempt to explain the mysterious phenomenon of photon shadowing in nuclei utilizing the contribution of the longitudinally polarized photon. It is argued that if the scalar photon anti-shadows, it could compensate for the transverse photon, which is presumed to shadow. It is found in a very simple model that the scalar photon could indeed anti-shadow. The principal feature of the model is a cancellation of amplitudes. The scheme is consistent with scalar photon-nucleon data as well. The idea is tested with two simple GVDM models and finds that the anti-shadowing contribution of the scalar photon is not sufficient to compensate for the contribution of the transverse photon. It is found doubtful that the scalar photon makes a significant contribution to the total photon-nuclear cross section
Generalized Born Models of Macromolecular Solvation Effects
Bashford, Donald; Case, David A.
2000-10-01
It would often be useful in computer simulations to use a simple description of solvation effects, instead of explicitly representing the individual solvent molecules. Continuum dielectric models often work well in describing the thermodynamic aspects of aqueous solvation, and approximations to such models that avoid the need to solve the Poisson equation are attractive because of their computational efficiency. Here we give an overview of one such approximation, the generalized Born model, which is simple and fast enough to be used for molecular dynamics simulations of proteins and nucleic acids. We discuss its strengths and weaknesses, both for its fidelity to the underlying continuum model and for its ability to replace explicit consideration of solvent molecules in macromolecular simulations. We focus particularly on versions of the generalized Born model that have a pair-wise analytical form, and therefore fit most naturally into conventional molecular mechanics calculations.
Crash data modeling with a generalized estimator.
Ye, Zhirui; Xu, Yueru; Lord, Dominique
2018-05-11
The investigation of relationships between traffic crashes and relevant factors is important in traffic safety management. Various methods have been developed for modeling crash data. In real world scenarios, crash data often display the characteristics of over-dispersion. However, on occasions, some crash datasets have exhibited under-dispersion, especially in cases where the data are conditioned upon the mean. The commonly used models (such as the Poisson and the NB regression models) have associated limitations to cope with various degrees of dispersion. In light of this, a generalized event count (GEC) model, which can be generally used to handle over-, equi-, and under-dispersed data, is proposed in this study. This model was first applied to case studies using data from Toronto, characterized by over-dispersion, and then to crash data from railway-highway crossings in Korea, characterized with under-dispersion. The results from the GEC model were compared with those from the Negative binomial and the hyper-Poisson models. The cases studies show that the proposed model provides good performance for crash data characterized with over- and under-dispersion. Moreover, the proposed model simplifies the modeling process and the prediction of crash data. Copyright © 2018 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Laurent P. René de Cotret
2017-07-01
Full Text Available The general problem of background subtraction in ultrafast electron powder diffraction (UEPD is presented with a focus on the diffraction patterns obtained from materials of moderately complex structure which contain many overlapping peaks and effectively no scattering vector regions that can be considered exclusively background. We compare the performance of background subtraction algorithms based on discrete and dual-tree complex (DTCWT wavelet transforms when applied to simulated UEPD data on the M1–R phase transition in VO2 with a time-varying background. We find that the DTCWT approach is capable of extracting intensities that are accurate to better than 2% across the whole range of scattering vector simulated, effectively independent of delay time. A Python package is available.
Modelling the X-ray powder diffraction of nitrogen-expanded austenite using the Debye formula
DEFF Research Database (Denmark)
Oddershede, Jette; Christiansen, Thomas; Ståhl, Kenny
2008-01-01
Stress-free and homogeneous samples of nitrogen-expanded austenite, a defect-rich f.c.c. structure with a high interstitial nitrogen occupancy (between 0.36 and 0.61), have been studied using X-ray powder diffraction and Debye simulations. The simulations confirm the presence of deformation...... to be indistinguishable to X-ray powder diffraction....
Generalized formal model of Big Data
Shakhovska, N.; Veres, O.; Hirnyak, M.
2016-01-01
This article dwells on the basic characteristic features of the Big Data technologies. It is analyzed the existing definition of the “big data” term. The article proposes and describes the elements of the generalized formal model of big data. It is analyzed the peculiarities of the application of the proposed model components. It is described the fundamental differences between Big Data technology and business analytics. Big Data is supported by the distributed file system Google File System ...
A new General Lorentz Transformation model
International Nuclear Information System (INIS)
Novakovic, Branko; Novakovic, Alen; Novakovic, Dario
2000-01-01
A new general structure of Lorentz Transformations, in the form of General Lorentz Transformation model (GLT-model), has been derived. This structure includes both Lorentz-Einstein and Galilean Transformations as its particular (special) realizations. Since the free parameters of GLT-model have been identified in a gravitational field, GLT-model can be employed both in Special and General Relativity. Consequently, the possibilities of an unification of Einstein's Special and General Theories of Relativity, as well as an unification of electromagnetic and gravitational fields are opened. If GLT-model is correct then there exist four new observation phenomena (a length and time neutrality, and a length dilation and a time contraction). Besides, the well-known phenomena (a length contraction, and a time dilation) are also the constituents of GLT-model. It means that there is a symmetry in GLT-model, where the center of this symmetry is represented by a length and a time neutrality. A time and a length neutrality in a gravitational field can be realized if the velocity of a moving system is equal to the free fall velocity. A time and a length neutrality include an observation of a particle mass neutrality. A special consideration has been devoted to a correlation between GLT-model and a limitation on particle velocities in order to investigate the possibility of a travel time reduction. It is found out that an observation of a particle speed faster then c=299 792 458 m/s, is possible in a gravitational field, if certain conditions are fulfilled
Generalizations of the noisy-or model
Czech Academy of Sciences Publication Activity Database
Vomlel, Jiří
2015-01-01
Roč. 51, č. 3 (2015), s. 508-524 ISSN 0023-5954 R&D Projects: GA ČR GA13-20012S Institutional support: RVO:67985556 Keywords : Bayesian networks * noisy-or model * classification * generalized linear models Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.628, year: 2015 http://library.utia.cas.cz/separaty/2015/MTR/vomlel-0447357.pdf
Adaptive Inference on General Graphical Models
Acar, Umut A.; Ihler, Alexander T.; Mettu, Ramgopal; Sumer, Ozgur
2012-01-01
Many algorithms and applications involve repeatedly solving variations of the same inference problem; for example we may want to introduce new evidence to the model or perform updates to conditional dependencies. The goal of adaptive inference is to take advantage of what is preserved in the model and perform inference more rapidly than from scratch. In this paper, we describe techniques for adaptive inference on general graphs that support marginal computation and updates to the conditional ...
The General Education Collaboration Model: A Model for Successful Mainstreaming.
Simpson, Richard L.; Myles, Brenda Smith
1990-01-01
The General Education Collaboration Model is designed to support general educators teaching mainstreamed disabled students, through collaboration with special educators. The model is based on flexible departmentalization, program ownership, identification and development of supportive attitudes, student assessment as a measure of program…
General Equilibrium Models: Improving the Microeconomics Classroom
Nicholson, Walter; Westhoff, Frank
2009-01-01
General equilibrium models now play important roles in many fields of economics including tax policy, environmental regulation, international trade, and economic development. The intermediate microeconomics classroom has not kept pace with these trends, however. Microeconomics textbooks primarily focus on the insights that can be drawn from the…
Universal fit to p-p elastic diffraction scattering from the Lorentz contracted geometrical model
International Nuclear Information System (INIS)
Hansen, P.H.; Krisch, A.D.
1976-01-01
The prediction of the Lorentz contracted geometical model for proton-proton elastic scattering at small angles is examined. The model assumes that when two high energy particles collide, each behaves as a geometrical object which has a Gaussian density and is spherically symmetric except for the Lorentz contraction in the incident direction. It is predicted that dsigma/dt should be independent of energy when plotted against the variable β 2 P 2 sub(perpendicular) sigmasub(TOT)(s)/38.3. Thus the energy dependence of the diffraction peak slope (b in an esup(-b mod(t))plot) is given by b(s)=A 2 β 2 sigmasub(TOT)(s)/38.3 where β is the proton's c.m. velocity and A is its radius. Recently measured values of sigmasub(TOT)(s) were used and an excellent fit obtained to the elastic slope in both t regions [-t 2 and 0.1 2 ] at all energies from s=6 to 4000(GeV/c) 2 . (Auth.)
X-ray diffraction and local order modelling of GexSesub(1-x) amorphous alloys
Energy Technology Data Exchange (ETDEWEB)
Malaurent, J C; Dixmier, J [Paris-11 Univ., 91 - Orsay (France). Lab. de Physique des Solides
1980-01-01
X-ray diffraction studies are made for GexSesub(1-x) glasses with 0 < x < 0.4. Interference functions exhibit a peculiar peak at about 1 Angstroem/sup -1/. The areas of the first two peaks of the Radial Distribution Functions increase with X. According to the experimental results, a random network model is made of Ge atoms with coordination number four and Se atoms with coordination number two. A computer program sets atoms one by one by allowing free rotation about all bonds. First results of this model are presented. Calculated interference functions are compared with the experimental curve for X = 0.2. We draw attention to the first peak at about 1 Angstroem/sup -1/. Results are in agreement with optical absorption edge measurements and Raman scattering experiments by P. Tronc and al., i.e. there is no Ge-Ge bond and furthermore, Ge-Se-Ge sequences remain scarce, as long as the germanium concentration of the mixture makes its possible.
International Nuclear Information System (INIS)
Drezet, J.-M.; Evans, A.; Pirling, T.
2011-01-01
Thermally-induced residual stresses, generated during the industrial Direct Chill casting process of aluminum alloys, can cause both significant safety concerns as well as the formation of defects during down-stream processing. Although these thermally induced strains can be partially relieved by permanent deformation, cracks will be generated either during solidification (hot tears) or post-solidification cooling (cold cracks) when stresses exceed the deformation limit of the alloy. Furthermore, the thermally induced strains result in the presence of large internal stresses within the billet before further processing steps. Although numerical models have been previously developed to compute these residual stresses, most of the computations have been validated only against measured surface distortions. In the present work, the variation in residual elastic strains and stresses in the steady state regime of casting has been measured as a function of radial position using neutron diffraction in an AA6063 grain-refined cylindrical billet. These measurements have been carried out on the same billet section at Poldi at PSI-Villigen and at Salsa at ILL-Grenoble and compare favorably. The results are used to validate a thermo-mechanical finite element casting model and to assess the level of stored elastic energy within the billet.
The structure of liquid water by polarized neutron diffraction and reverse Monte Carlo modelling.
Temleitner, László; Pusztai, László; Schweika, Werner
2007-08-22
The coherent static structure factor of water has been investigated by polarized neutron diffraction. Polarization analysis allows us to separate the huge incoherent scattering background from hydrogen and to obtain high quality data of the coherent scattering from four different mixtures of liquid H(2)O and D(2)O. The information obtained by the variation of the scattering contrast confines the configurational space of water and is used by the reverse Monte Carlo technique to model the total structure factors. Structural characteristics have been calculated directly from the resulting sets of particle coordinates. Consistency with existing partial pair correlation functions, derived without the application of polarized neutrons, was checked by incorporating them into our reverse Monte Carlo calculations. We also performed Monte Carlo simulations of a hard sphere system, which provides an accurate estimate of the information content of the measured data. It is shown that the present combination of polarized neutron scattering and reverse Monte Carlo structural modelling is a promising approach towards a detailed understanding of the microscopic structure of water.
The generalized spherical model of ferromagnetic films
International Nuclear Information System (INIS)
Costache, G.
1977-12-01
The D→ infinity of the D-vectorial model of a ferromagnetic film with free surfaces is exactly solved. The mathematical mechanism responsible for the onset of a phase transition in the system is a generalized sticking phenomenon. It is shown that the temperature at which the sticking appears, the transition temperature of the model is monotonously increasing with increasing the number of layers of the film, contrary to what happens in the spherical model with overall constraint. Certain correlation inequalities of Griffiths type are shown to hold. (author)
Energy Technology Data Exchange (ETDEWEB)
Itoh, Keiji, E-mail: itoh@okayama-u.ac.jp [Graduate School of Education, Okayama University, Tsushima-naka, Okayama 700-8530 (Japan); Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494 (Japan)
2017-02-15
Pulsed neutron diffraction and synchrotron X-ray diffraction measurements were performed on Se{sub 100-x}Te{sub x} bulk glasses with x=10, 20, 30 and 40. The coordination numbers obtained from the diffraction results demonstrate that Se and Te atoms are twofold coordinated and the glass structure is formed by the chain network. The three-dimensional structure model for Se{sub 60}Te{sub 40} glass obtained by using reverse Monte Carlo modelling shows that the alternating arrangements of Se and Te atoms compose the major part of the chain clusters but several other fragments such as Se{sub n} chains and Te-Te dimers are also present in large numbers. The chain clusters have geometrically disordered forms and the interchain atomic order is different from those in the crystal structures of trigonal Se and trigonal Te. - Graphical abstract: Coordination environment in Se{sub 60}Te{sub 40} glass.
A boundary element model for diffraction of water waves on varying water depth
Energy Technology Data Exchange (ETDEWEB)
Poulin, Sanne
1997-12-31
In this thesis a boundary element model for calculating diffraction of water waves on varying water depth is presented. The varying water depth is approximated with a perturbed constant depth in the mild-slope wave equation. By doing this, the domain integral which is a result of the varying depth is no longer a function of the unknown wave potential but only a function of position and the constant depth wave potential. The number of unknowns is the resulting system of equations is thus reduced significantly. The integration procedures in the model are tested very thoroughly and it is found that a combination of analytical integration in the singular region and standard numerical integration outside works very well. The gradient of the wave potential is evaluated successfully using a hypersingular integral equation. Deviations from the analytical solution are only found on the boundary or very close to, but these deviations have no significant influence on the accuracy of the solution. The domain integral is evaluated using the dual reciprocity method. The results are compared with a direct integration of the integral, and the accuracy is quite satisfactory. The problem with irregular frequencies is taken care of by the CBIEM (or CHIEF-method) together with a singular value decomposition technique. This method is simple to implement and works very well. The model is verified using Homma`s island as a test case. The test cases are limited to shallow water since the analytical solution is only valid in this region. Several depth ratios are examined, and it is found that the accuracy of the model increases with increasing wave period and decreasing depth ratio. Short waves, e.g. wind generated waves, can allow depth variations up to approximately 2 before the error exceeds 10%, while long waves can allow larger depth ratios. It is concluded that the perturbation idea is highly usable. A study of (partially) absorbing boundary conditions is also conducted. (EG)
A General Model for Estimating Macroevolutionary Landscapes.
Boucher, Florian C; Démery, Vincent; Conti, Elena; Harmon, Luke J; Uyeda, Josef
2018-03-01
The evolution of quantitative characters over long timescales is often studied using stochastic diffusion models. The current toolbox available to students of macroevolution is however limited to two main models: Brownian motion and the Ornstein-Uhlenbeck process, plus some of their extensions. Here, we present a very general model for inferring the dynamics of quantitative characters evolving under both random diffusion and deterministic forces of any possible shape and strength, which can accommodate interesting evolutionary scenarios like directional trends, disruptive selection, or macroevolutionary landscapes with multiple peaks. This model is based on a general partial differential equation widely used in statistical mechanics: the Fokker-Planck equation, also known in population genetics as the Kolmogorov forward equation. We thus call the model FPK, for Fokker-Planck-Kolmogorov. We first explain how this model can be used to describe macroevolutionary landscapes over which quantitative traits evolve and, more importantly, we detail how it can be fitted to empirical data. Using simulations, we show that the model has good behavior both in terms of discrimination from alternative models and in terms of parameter inference. We provide R code to fit the model to empirical data using either maximum-likelihood or Bayesian estimation, and illustrate the use of this code with two empirical examples of body mass evolution in mammals. FPK should greatly expand the set of macroevolutionary scenarios that can be studied since it opens the way to estimating macroevolutionary landscapes of any conceivable shape. [Adaptation; bounds; diffusion; FPK model; macroevolution; maximum-likelihood estimation; MCMC methods; phylogenetic comparative data; selection.].
Observables of QCD diffraction
Mieskolainen, Mikael; Orava, Risto
2017-03-01
A new combinatorial vector space measurement model is introduced for soft QCD diffraction. The model independent mathematical construction resolves experimental complications; the theoretical framework of the approach includes the Good-Walker view of diffraction, Regge phenomenology together with AGK cutting rules and random fluctuations.
General regression and representation model for classification.
Directory of Open Access Journals (Sweden)
Jianjun Qian
Full Text Available Recently, the regularized coding-based classification methods (e.g. SRC and CRC show a great potential for pattern classification. However, most existing coding methods assume that the representation residuals are uncorrelated. In real-world applications, this assumption does not hold. In this paper, we take account of the correlations of the representation residuals and develop a general regression and representation model (GRR for classification. GRR not only has advantages of CRC, but also takes full use of the prior information (e.g. the correlations between representation residuals and representation coefficients and the specific information (weight matrix of image pixels to enhance the classification performance. GRR uses the generalized Tikhonov regularization and K Nearest Neighbors to learn the prior information from the training data. Meanwhile, the specific information is obtained by using an iterative algorithm to update the feature (or image pixel weights of the test sample. With the proposed model as a platform, we design two classifiers: basic general regression and representation classifier (B-GRR and robust general regression and representation classifier (R-GRR. The experimental results demonstrate the performance advantages of proposed methods over state-of-the-art algorithms.
Higher dimensional generalizations of the SYK model
Energy Technology Data Exchange (ETDEWEB)
Berkooz, Micha [Department of Particle Physics and Astrophysics, Weizmann Institute of Science,Rehovot 7610001 (Israel); Narayan, Prithvi [International Centre for Theoretical Sciences, Hesaraghatta,Bengaluru North, 560 089 (India); Rozali, Moshe [Department of Physics and Astronomy, University of British Columbia,Vancouver, BC V6T 1Z1 (Canada); Simón, Joan [School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh,King’s Buildings, Edinburgh EH9 3FD (United Kingdom)
2017-01-31
We discuss a 1+1 dimensional generalization of the Sachdev-Ye-Kitaev model. The model contains N Majorana fermions at each lattice site with a nearest-neighbour hopping term. The SYK random interaction is restricted to low momentum fermions of definite chirality within each lattice site. This gives rise to an ordinary 1+1 field theory above some energy scale and a low energy SYK-like behavior. We exhibit a class of low-pass filters which give rise to a rich variety of hyperscaling behaviour in the IR. We also discuss another set of generalizations which describes probing an SYK system with an external fermion, together with the new scaling behavior they exhibit in the IR.
Current definition and a generalized federbush model
International Nuclear Information System (INIS)
Singh, L.P.S.; Hagen, C.R.
1978-01-01
The Federbush model is studied, with particular attention being given to the definition of currents. Inasmuch as there is no a priori restriction of local gauge invariance, the currents in the interacting case can be defined more generally than in Q.E.D. It is found that two arbitrary parameters are thereby introduced into the theory. Lowest order perturbation calculations for the current correlation functions and the Fermion propagators indicate that the theory admits a whole class of solutions dependent upon these parameters with the closed solution of Federbush emerging as a special case. The theory is shown to be locally covariant, and a conserved energy--momentum tensor is displayed. One finds in addition that the generators of gauge transformations for the fields are conserved. Finally it is shown that the general theory yields the Federbush solution if suitable Thirring model type counterterms are added
Generalized Additive Models for Nowcasting Cloud Shading
Czech Academy of Sciences Publication Activity Database
Brabec, Marek; Paulescu, M.; Badescu, V.
2014-01-01
Roč. 101, March (2014), s. 272-282 ISSN 0038-092X R&D Projects: GA MŠk LD12009 Grant - others:European Cooperation in Science and Technology(XE) COST ES1002 Institutional support: RVO:67985807 Keywords : sunshine number * nowcasting * generalized additive model * Markov chain Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 3.469, year: 2014
Simulation of X-ray diffraction-line broadening due to dislocations in a model composite material
Bor, Teunis Cornelis; Cleveringa, H.H.M.; Delhez, R; van der Giessen, E.
2001-01-01
X-ray diffraction-line profiles of two-dimensional, plastically deformed model composite materials are calculated and analysed in detail. The composite consists of elastic reinforcements in a crystalline solid and is subjected to macroscopic shear. Slip occurs in the matrix only due to the
A General Business Model for Marine Reserves
Sala, Enric; Costello, Christopher; Dougherty, Dawn; Heal, Geoffrey; Kelleher, Kieran; Murray, Jason H.; Rosenberg, Andrew A.; Sumaila, Rashid
2013-01-01
Marine reserves are an effective tool for protecting biodiversity locally, with potential economic benefits including enhancement of local fisheries, increased tourism, and maintenance of ecosystem services. However, fishing communities often fear short-term income losses associated with closures, and thus may oppose marine reserves. Here we review empirical data and develop bioeconomic models to show that the value of marine reserves (enhanced adjacent fishing + tourism) may often exceed the pre-reserve value, and that economic benefits can offset the costs in as little as five years. These results suggest the need for a new business model for creating and managing reserves, which could pay for themselves and turn a profit for stakeholder groups. Our model could be expanded to include ecosystem services and other benefits, and it provides a general framework to estimate costs and benefits of reserves and to develop such business models. PMID:23573192
A proposed general model of information behaviour.
Directory of Open Access Journals (Sweden)
2003-01-01
Full Text Available Presents a critical description of Wilson's (1996 global model of information behaviour and proposes major modification on the basis of research into information behaviour of managers, conducted in Poland. The theoretical analysis and research results suggest that Wilson's model has certain imperfections, both in its conceptual content, and in graphical presentation. The model, for example, cannot be used to describe managers' information behaviour, since managers basically are not the end users of external from organization or computerized information services, and they acquire information mainly through various intermediaries. Therefore, the model cannot be considered as a general model, applicable to every category of information users. The proposed new model encompasses the main concepts of Wilson's model, such as: person-in-context, three categories of intervening variables (individual, social and environmental, activating mechanisms, cyclic character of information behaviours, and the adoption of a multidisciplinary approach to explain them. However, the new model introduces several changes. They include: 1. identification of 'context' with the intervening variables; 2. immersion of the chain of information behaviour in the 'context', to indicate that the context variables influence behaviour at all stages of the process (identification of needs, looking for information, processing and using it; 3. stress is put on the fact that the activating mechanisms also can occur at all stages of the information acquisition process; 4. introduction of two basic strategies of looking for information: personally and/or using various intermediaries.
Multibreather solitons in the diffraction managed NLS equation
International Nuclear Information System (INIS)
Panayotaros, Panayotis
2006-01-01
We study analytically and numerically localized breather solutions in the averaged discrete nonlinear Schroedinger equation (NLS) with diffraction management, a system that models coupled waveguide arrays with periodic diffraction management geometries. Localized breathers can be characterized as constrained critical points of the Hamiltonian of the averaged diffraction managed NLS. In addition to local extrema, we find numerically more general solutions that are saddle points of the constrained Hamiltonian. An interesting class of saddle points are 'multi-bump' solutions that are close to superpositions of translates of simpler breathers. In the case of zero residual diffraction and small diffraction management, the existence of multibumps can be shown rigorously by a continuation argument
International Nuclear Information System (INIS)
Lam, E.J.W.; Beurskens, P.T.; Smaalen, S. van
1994-01-01
Statistical methods are used to derive an expression for the average X-ray diffraction intensity, as a function of (sinθ)/λ, of crystals with an incommensurate one-dimensional modulation. Displacive and density modulations are considered, as well as a combination of these two. The atomic modulation functions are given by truncated Fourier series that may contain higher-order harmonics. The resulting expression for the average X-ray diffraction intensity is valid for main reflections and low-order satellite reflections. The modulation of individual atoms is taken into account by the introduction of overall modulation amplitudes. The accuracy of this expression for the average X-ray diffraction intensity is illustrated by comparison with model structures. A definition is presented for normalized structure factors of crystals with an incommensurate one-dimensional modulation that can be used in direct-methods procedures for solving the phase problem in X-ray crystallography. A numerical fitting procedure is described that can extract a scale factor, an overall temperature parameter and overall modulation amplitudes from experimental reflection intensities. (orig.)
A generalized additive regression model for survival times
DEFF Research Database (Denmark)
Scheike, Thomas H.
2001-01-01
Additive Aalen model; counting process; disability model; illness-death model; generalized additive models; multiple time-scales; non-parametric estimation; survival data; varying-coefficient models......Additive Aalen model; counting process; disability model; illness-death model; generalized additive models; multiple time-scales; non-parametric estimation; survival data; varying-coefficient models...
Generalized model of the microwave auditory effect
International Nuclear Information System (INIS)
Yitzhak, N M; Ruppin, R; Hareuveny, R
2009-01-01
A generalized theoretical model for evaluating the amplitudes of the sound waves generated in a spherical head model, which is irradiated by microwave pulses, is developed. The thermoelastic equation of motion is solved for a spherically symmetric heating pattern of arbitrary form. For previously treated heating patterns that are peaked at the sphere centre, the results reduce to those presented before. The generalized model is applied to the case in which the microwave absorption is concentrated near the sphere surface. It is found that, for equal average specific absorption rates, the sound intensity generated by a surface localized heating pattern is comparable to that generated by a heating pattern that is peaked at the centre. The dependence of the induced sound pressure on the shape of the microwave pulse is explored. Another theoretical extension, to the case of repeated pulses, is developed and applied to the interpretation of existing experimental data on the dependence of the human hearing effect threshold on the pulse repetition frequency.
Modelling debris flows down general channels
Directory of Open Access Journals (Sweden)
S. P. Pudasaini
2005-01-01
Full Text Available This paper is an extension of the single-phase cohesionless dry granular avalanche model over curved and twisted channels proposed by Pudasaini and Hutter (2003. It is a generalisation of the Savage and Hutter (1989, 1991 equations based on simple channel topography to a two-phase fluid-solid mixture of debris material. Important terms emerging from the correct treatment of the kinematic and dynamic boundary condition, and the variable basal topography are systematically taken into account. For vanishing fluid contribution and torsion-free channel topography our new model equations exactly degenerate to the previous Savage-Hutter model equations while such a degeneration was not possible by the Iverson and Denlinger (2001 model, which, in fact, also aimed to extend the Savage and Hutter model. The model equations of this paper have been rigorously derived; they include the effects of the curvature and torsion of the topography, generally for arbitrarily curved and twisted channels of variable channel width. The equations are put into a standard conservative form of partial differential equations. From these one can easily infer the importance and influence of the pore-fluid-pressure distribution in debris flow dynamics. The solid-phase is modelled by applying a Coulomb dry friction law whereas the fluid phase is assumed to be an incompressible Newtonian fluid. Input parameters of the equations are the internal and bed friction angles of the solid particles, the viscosity and volume fraction of the fluid, the total mixture density and the pore pressure distribution of the fluid at the bed. Given the bed topography and initial geometry and the initial velocity profile of the debris mixture, the model equations are able to describe the dynamics of the depth profile and bed parallel depth-averaged velocity distribution from the initial position to the final deposit. A shock capturing, total variation diminishing numerical scheme is implemented to
A generalized model for compact stars
Energy Technology Data Exchange (ETDEWEB)
Aziz, Abdul [Bodai High School (H.S.), Department of Physics, Kolkata, West Bengal (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India); Rahaman, Farook [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India)
2016-05-15
By virtue of the maximum entropy principle, we get an Euler-Lagrange equation which is a highly nonlinear differential equation containing the mass function and its derivatives. Solving the equation by a homotopy perturbation method we derive a generalized expression for the mass which is a polynomial function of the radial distance. Using the mass function we find a partially stable configuration and its characteristics. We show that different physical features of the known compact stars, viz. Her X-1, RX J 1856-37, SAX J (SS1), SAX J (SS2), and PSR J 1614-2230, can be explained by the present model. (orig.)
Testing Parametric versus Semiparametric Modelling in Generalized Linear Models
Härdle, W.K.; Mammen, E.; Müller, M.D.
1996-01-01
We consider a generalized partially linear model E(Y|X,T) = G{X'b + m(T)} where G is a known function, b is an unknown parameter vector, and m is an unknown function.The paper introduces a test statistic which allows to decide between a parametric and a semiparametric model: (i) m is linear, i.e.
A Model Fit Statistic for Generalized Partial Credit Model
Liang, Tie; Wells, Craig S.
2009-01-01
Investigating the fit of a parametric model is an important part of the measurement process when implementing item response theory (IRT), but research examining it is limited. A general nonparametric approach for detecting model misfit, introduced by J. Douglas and A. S. Cohen (2001), has exhibited promising results for the two-parameter logistic…
The Generalized Quantum Episodic Memory Model.
Trueblood, Jennifer S; Hemmer, Pernille
2017-11-01
Recent evidence suggests that experienced events are often mapped to too many episodic states, including those that are logically or experimentally incompatible with one another. For example, episodic over-distribution patterns show that the probability of accepting an item under different mutually exclusive conditions violates the disjunction rule. A related example, called subadditivity, occurs when the probability of accepting an item under mutually exclusive and exhaustive instruction conditions sums to a number >1. Both the over-distribution effect and subadditivity have been widely observed in item and source-memory paradigms. These phenomena are difficult to explain using standard memory frameworks, such as signal-detection theory. A dual-trace model called the over-distribution (OD) model (Brainerd & Reyna, 2008) can explain the episodic over-distribution effect, but not subadditivity. Our goal is to develop a model that can explain both effects. In this paper, we propose the Generalized Quantum Episodic Memory (GQEM) model, which extends the Quantum Episodic Memory (QEM) model developed by Brainerd, Wang, and Reyna (2013). We test GQEM by comparing it to the OD model using data from a novel item-memory experiment and a previously published source-memory experiment (Kellen, Singmann, & Klauer, 2014) examining the over-distribution effect. Using the best-fit parameters from the over-distribution experiments, we conclude by showing that the GQEM model can also account for subadditivity. Overall these results add to a growing body of evidence suggesting that quantum probability theory is a valuable tool in modeling recognition memory. Copyright © 2016 Cognitive Science Society, Inc.
The epistemological status of general circulation models
Loehle, Craig
2018-03-01
Forecasts of both likely anthropogenic effects on climate and consequent effects on nature and society are based on large, complex software tools called general circulation models (GCMs). Forecasts generated by GCMs have been used extensively in policy decisions related to climate change. However, the relation between underlying physical theories and results produced by GCMs is unclear. In the case of GCMs, many discretizations and approximations are made, and simulating Earth system processes is far from simple and currently leads to some results with unknown energy balance implications. Statistical testing of GCM forecasts for degree of agreement with data would facilitate assessment of fitness for use. If model results need to be put on an anomaly basis due to model bias, then both visual and quantitative measures of model fit depend strongly on the reference period used for normalization, making testing problematic. Epistemology is here applied to problems of statistical inference during testing, the relationship between the underlying physics and the models, the epistemic meaning of ensemble statistics, problems of spatial and temporal scale, the existence or not of an unforced null for climate fluctuations, the meaning of existing uncertainty estimates, and other issues. Rigorous reasoning entails carefully quantifying levels of uncertainty.
Neutron diffraction and Vitamin E
Energy Technology Data Exchange (ETDEWEB)
Harroun, T A; Marquardt, D; Katsaras, J; Atkinson, J, E-mail: tharroun@brocku.ca
2010-11-01
It is generally accepted that neutron diffraction from model membrane systems is an effective biophysical technique for determining membrane structure. Here we describe an example of how deuterium labelling can elucidate the location of specific membrane soluble molecules, including a brief discussion of the technique itself. We show that deuterium labelled {alpha}-tocopherol sits upright in the bilayer, as might be expected, but at very different locations within the bilayer, depending on the degree of lipid chain unsaturation.
Generalized Penner models and multicritical behavior
International Nuclear Information System (INIS)
Tan, C.
1992-01-01
In this paper, we are interested in the critical behavior of generalized Penner models at t∼-1+μ/N where the topological expansion for the free energy develops logarithmic singularities: Γ∼-(χ 0 μ 2 lnμ+χ 1 lnμ+...). We demonstrate that these criticalities can best be characterized by the fact that the large-N generating function becomes meromorphic with a single pole term of unit residue, F(z)→1/(z-a), where a is the location of the ''sink.'' For a one-band eigenvalue distribution, we identify multicritical potentials; we find that none of these can be associated with the c=1 string compactified at an integral multiple of the self-dual radius. We also give an exact solution to the Gaussian Penner model and explicitly demonstrate that, at criticality, this solution does not correspond to a c=1 string compactified at twice the self-dual radius
Aspects of general linear modelling of migration.
Congdon, P
1992-01-01
"This paper investigates the application of general linear modelling principles to analysing migration flows between areas. Particular attention is paid to specifying the form of the regression and error components, and the nature of departures from Poisson randomness. Extensions to take account of spatial and temporal correlation are discussed as well as constrained estimation. The issue of specification bears on the testing of migration theories, and assessing the role migration plays in job and housing markets: the direction and significance of the effects of economic variates on migration depends on the specification of the statistical model. The application is in the context of migration in London and South East England in the 1970s and 1980s." excerpt
The ATLAS collaboration
2016-01-01
We present a new tune of the Pythia8 event generator, titled ``A3'' and suitable for inclusive QCD modelling, including minimum bias physics and pile-up overlay. The tuning uses the early Run~2 charged particle distribution and inelastic cross section results from ATLAS in addition to the Run~1 data used to construct previous minimum-bias tunes. For the first time, the tuning included a consideration of diffraction modelling parameters and a diffractive model other than the Pythia8 default is used in the final configuration. That resulted in a better descriptions of the measured inelastic cross-sections, and similar or better level of agreement compared to the currently used A2 tune for other distributions considered.
Analytical model for neutron diffraction peak shifts due to the surface effect
Czech Academy of Sciences Publication Activity Database
Šaroun, Jan; Kornmeier, J. R.; Hofmann, M.; Mikula, Pavol; Vrána, Miroslav
2013-01-01
Roč. 46, č. 6 (2013), s. 628-638 ISSN 0021-8898 R&D Projects: GA ČR GAP204/10/0654 Institutional support: RVO:61389005 Keywords : residual-stress * neutron diffraction * Monte Carlo simulation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.950, year: 2013
Low mass diffractive dissociation in a simple t-dependent dual bootstrap model
International Nuclear Information System (INIS)
Bishari, M.
1978-08-01
The smallness of inelastic diffractive dissociation is explicitly demonstrated, in the framework of the '1/N dual unitarization' scheme, by incorporating a Deck type mechanism with the crucial planar bootstrap equation. Although both inelastic and elastic pomeron couplings are of the same order in 1/N, the origin for their smallness, however, is not identical. (author)
DEFF Research Database (Denmark)
Katerinopoulou, Anna; Balic Zunic, Tonci; Lundegaard, Lars Fahl
2012-01-01
Anisotropic broadening correction in X-ray powder diffraction by an ellipsoidal formula is applied on samples with nanosized crystals. Two cases of minerals with largely anisotropic crystallite shapes are presented. The properly applied formalism not only improves the fitting of the theoretical...
Generalized Linear Models in Vehicle Insurance
Directory of Open Access Journals (Sweden)
Silvie Kafková
2014-01-01
Full Text Available Actuaries in insurance companies try to find the best model for an estimation of insurance premium. It depends on many risk factors, e.g. the car characteristics and the profile of the driver. In this paper, an analysis of the portfolio of vehicle insurance data using a generalized linear model (GLM is performed. The main advantage of the approach presented in this article is that the GLMs are not limited by inflexible preconditions. Our aim is to predict the relation of annual claim frequency on given risk factors. Based on a large real-world sample of data from 57 410 vehicles, the present study proposed a classification analysis approach that addresses the selection of predictor variables. The models with different predictor variables are compared by analysis of deviance and Akaike information criterion (AIC. Based on this comparison, the model for the best estimate of annual claim frequency is chosen. All statistical calculations are computed in R environment, which contains stats package with the function for the estimation of parameters of GLM and the function for analysis of deviation.
Duality in diffraction dissociations
International Nuclear Information System (INIS)
Santoro, Alberto.
1977-01-01
Diffractive dissociations (aN→a*πN) are naturally explained and a model that accounts for the three-variable correlation (mass-transfer-Jackson angle correlation) is presented. This model takes into account the three possible exchanges: t (pion), u(a*) and s(a) channel exchanger. The physical consequences of the model are: a strong mass-slope correlation due to the zeros of the amplitude, a factorization of diffractive dissociations (factorization of the Pomeron), the possibility of extending this model to double diffractive dissociation and diffraction by nuclei. This model was applied to the NN→NπN reaction. Using the usual parameters of the Deck model, a comparison is made with experiments for all available distributions. the strong slope of the peak at 1400 MeV is naturally explained [fr
A general phenomenological model for work function
Brodie, I.; Chou, S. H.; Yuan, H.
2014-07-01
A general phenomenological model is presented for obtaining the zero Kelvin work function of any crystal facet of metals and semiconductors, both clean and covered with a monolayer of electropositive atoms. It utilizes the known physical structure of the crystal and the Fermi energy of the two-dimensional electron gas assumed to form on the surface. A key parameter is the number of electrons donated to the surface electron gas per surface lattice site or adsorbed atom, which is taken to be an integer. Initially this is found by trial and later justified by examining the state of the valence electrons of the relevant atoms. In the case of adsorbed monolayers of electropositive atoms a satisfactory justification could not always be found, particularly for cesium, but a trial value always predicted work functions close to the experimental values. The model can also predict the variation of work function with temperature for clean crystal facets. The model is applied to various crystal faces of tungsten, aluminium, silver, and select metal oxides, and most demonstrate good fits compared to available experimental values.
Symplectic models for general insertion devices
International Nuclear Information System (INIS)
Wu, Y.; Forest, E.; Robin, D. S.; Nishimura, H.; Wolski, A.; Litvinenko, V. N.
2001-01-01
A variety of insertion devices (IDs), wigglers and undulators, linearly or elliptically polarized,are widely used as high brightness radiation sources at the modern light source rings. Long and high-field wigglers have also been proposed as the main source of radiation damping at next generation damping rings. As a result, it becomes increasingly important to understand the impact of IDs on the charged particle dynamics in the storage ring. In this paper, we report our recent development of a general explicit symplectic model for IDs with the paraxial ray approximation. High-order explicit symplectic integrators are developed to study real-world insertion devices with a number of wiggler harmonics and arbitrary polarizations
A generalized model for coincidence counting
International Nuclear Information System (INIS)
Lu, Ming-Shih; Teichmann, T.
1992-01-01
The aim of this paper is to provide a description of the multiplicative processes associated with coincidence counting techniques, for example in the NDA of plutonium bearing materials. The model elucidates both the physical processes and the underlying mathematical formalism in a relatively simple but comprehensive way. In particular, it includes the effect of absorption by impurities or poisons, as well as that of neutron leakage on a parallel basis to the treatment of induced fission itself. The work thus parallels and generalizes the methods of Boehnel of Hage and Cifarelli, and more recently of Yanjushkin. This paper introduces the concept of a dual probability generating function to account for both the basic physical multiplication phenomena, as well as the detection phenomena. The underlying approach extends the idea of a simple probability generating function, due to De Moivre. The basic mathematical background may be found, for example, in Feller 1966
An investigation of single diffractive p-Be, p-Al, and p-W interactions within the Dual Parton Model
International Nuclear Information System (INIS)
Ranft, J.; Roesler, S.
1994-01-01
Single diffractive proton-beryllium, -aluminium, and -tungsten interactions are studied within the framework of the Dual Parton Model. Their implementation into the Monte-Carlo event generator DTUNUC is described, and the main features of single diffractive particle production are discussed, comparing them to recent experimental results. Furthermore, single diffractive hadron-nucleus cross sections are calculated using the Glauber theory and the influence of hadronic cross section fluctuations is investigated. (author). 17 refs., 3 figs., 2 tabs
Model experiment of in vivo synchrotron X-ray diffraction of human kidney stones
Energy Technology Data Exchange (ETDEWEB)
Ancharov, A.I. [Institute of Solid State Chemistry and Mechanochemistry SB RAS, Novosibirsk (Russian Federation)]. E-mail: ancharov@mail.ru; Potapov, S.S. [Institute of Mineralogy UB RAS, Miass (Russian Federation); Moiseenko, T.N. [The State Regional Clinical Hospital, Novosibirsk (Russian Federation); Feofilov, I.V. [The State Regional Clinical Hospital, Novosibirsk (Russian Federation); Nizovskii, A.I. [Boreskov Institute of Catalysis SB RAS, Novosibirsk (Russian Federation)
2007-05-21
The diffraction of synchrotron radiation (SR) was used to explore the phase composition of kidney stones placed into a specific object phantom, which imitated the human body. As an imitation of the patient breath, the kidney stone was moved vertically and rotated to an angle of 15{sup o} during the recording of the X-ray pattern. It was shown that rotation and displacement did not distort the X-ray pattern.
Model experiment of in vivo synchrotron X-ray diffraction of human kidney stones
International Nuclear Information System (INIS)
Ancharov, A.I.; Potapov, S.S.; Moiseenko, T.N.; Feofilov, I.V.; Nizovskii, A.I.
2007-01-01
The diffraction of synchrotron radiation (SR) was used to explore the phase composition of kidney stones placed into a specific object phantom, which imitated the human body. As an imitation of the patient breath, the kidney stone was moved vertically and rotated to an angle of 15 o during the recording of the X-ray pattern. It was shown that rotation and displacement did not distort the X-ray pattern
Dynamical reduction models with general gaussian noises
International Nuclear Information System (INIS)
Bassi, Angelo; Ghirardi, GianCarlo
2002-02-01
We consider the effect of replacing in stochastic differential equations leading to the dynamical collapse of the statevector, white noise stochastic processes with non white ones. We prove that such a modification can be consistently performed without altering the most interesting features of the previous models. One of the reasons to discuss this matter derives from the desire of being allowed to deal with physical stochastic fields, such as the gravitational one, which cannot give rise to white noises. From our point of view the most relevant motivation for the approach we propose here derives from the fact that in relativistic models the occurrence of white noises is the main responsible for the appearance of untractable divergences. Therefore, one can hope that resorting to non white noises one can overcome such a difficulty. We investigate stochastic equations with non white noises, we discuss their reduction properties and their physical implications. Our analysis has a precise interest not only for the above mentioned subject but also for the general study of dissipative systems and decoherence. (author)
Dynamical reduction models with general Gaussian noises
International Nuclear Information System (INIS)
Bassi, Angelo; Ghirardi, GianCarlo
2002-01-01
We consider the effect of replacing in stochastic differential equations leading to the dynamical collapse of the state vector, white-noise stochastic processes with nonwhite ones. We prove that such a modification can be consistently performed without altering the most interesting features of the previous models. One of the reasons to discuss this matter derives from the desire of being allowed to deal with physical stochastic fields, such as the gravitational one, which cannot give rise to white noises. From our point of view, the most relevant motivation for the approach we propose here derives from the fact that in relativistic models intractable divergences appear as a consequence of the white nature of the noises. Therefore, one can hope that resorting to nonwhite noises, one can overcome such a difficulty. We investigate stochastic equations with nonwhite noises, we discuss their reduction properties and their physical implications. Our analysis has a precise interest not only for the above-mentioned subject but also for the general study of dissipative systems and decoherence
MODEL OF BRAZILIAN URBANIZATION: GENERAL NOTES
Directory of Open Access Journals (Sweden)
Leandro da Silva Guimarães
2016-07-01
Full Text Available The full text format seeks to analyze the social inequality in Brazil through the spatial process of that inequality in this sense it analyzes, scratching the edges of what is known of the Brazilian urbanization model and how this same model produced gentrification cities and exclusive. So search the text discuss the country’s urban exclusion through consolidation of what is conventionally called peripheral areas, or more generally, of peripheries. The text on screen is the result of research carried out at the Federal Fluminense University in Masters level. In this study, we tried to understand the genesis of an urban housing development located in São Gonçalo, Rio de Janeiro called Jardim Catarina. Understand what the problem space partner who originated it. In this sense, his analysis becomes consubstantial to understand the social and spatial inequalities in Brazil, as well as the role of the state as planning manager socio-spatial planning and principal agent in the solution of such problems. It is expected that with the realization of a study of greater amounts, from which this article is just a micro work can contribute subsidies that contribute to the arrangement and crystallization of public policies that give account of social inequalities and serve to leverage a country more fair and equitable cities.
Evaluating the double Poisson generalized linear model.
Zou, Yaotian; Geedipally, Srinivas Reddy; Lord, Dominique
2013-10-01
The objectives of this study are to: (1) examine the applicability of the double Poisson (DP) generalized linear model (GLM) for analyzing motor vehicle crash data characterized by over- and under-dispersion and (2) compare the performance of the DP GLM with the Conway-Maxwell-Poisson (COM-Poisson) GLM in terms of goodness-of-fit and theoretical soundness. The DP distribution has seldom been investigated and applied since its first introduction two decades ago. The hurdle for applying the DP is related to its normalizing constant (or multiplicative constant) which is not available in closed form. This study proposed a new method to approximate the normalizing constant of the DP with high accuracy and reliability. The DP GLM and COM-Poisson GLM were developed using two observed over-dispersed datasets and one observed under-dispersed dataset. The modeling results indicate that the DP GLM with its normalizing constant approximated by the new method can handle crash data characterized by over- and under-dispersion. Its performance is comparable to the COM-Poisson GLM in terms of goodness-of-fit (GOF), although COM-Poisson GLM provides a slightly better fit. For the over-dispersed data, the DP GLM performs similar to the NB GLM. Considering the fact that the DP GLM can be easily estimated with inexpensive computation and that it is simpler to interpret coefficients, it offers a flexible and efficient alternative for researchers to model count data. Copyright © 2013 Elsevier Ltd. All rights reserved.
Generalized Reduced Order Modeling of Aeroservoelastic Systems
Gariffo, James Michael
Transonic aeroelastic and aeroservoelastic (ASE) modeling presents a significant technical and computational challenge. Flow fields with a mixture of subsonic and supersonic flow, as well as moving shock waves, can only be captured through high-fidelity CFD analysis. With modern computing power, it is realtively straightforward to determine the flutter boundary for a single structural configuration at a single flight condition, but problems of larger scope remain quite costly. Some such problems include characterizing a vehicle's flutter boundary over its full flight envelope, optimizing its structural weight subject to aeroelastic constraints, and designing control laws for flutter suppression. For all of these applications, reduced-order models (ROMs) offer substantial computational savings. ROM techniques in general have existed for decades, and the methodology presented in this dissertation builds on successful previous techniques to create a powerful new scheme for modeling aeroelastic systems, and predicting and interpolating their transonic flutter boundaries. In this method, linear ASE state-space models are constructed from modal structural and actuator models coupled to state-space models of the linearized aerodynamic forces through feedback loops. Flutter predictions can be made from these models through simple eigenvalue analysis of their state-transition matrices for an appropriate set of dynamic pressures. Moreover, this analysis returns the frequency and damping trend of every aeroelastic branch. In contrast, determining the critical dynamic pressure by direct time-marching CFD requires a separate run for every dynamic pressure being analyzed simply to obtain the trend for the critical branch. The present ROM methodology also includes a new model interpolation technique that greatly enhances the benefits of these ROMs. This enables predictions of the dynamic behavior of the system for flight conditions where CFD analysis has not been explicitly
A Note on the Identifiability of Generalized Linear Mixed Models
DEFF Research Database (Denmark)
Labouriau, Rodrigo
2014-01-01
I present here a simple proof that, under general regularity conditions, the standard parametrization of generalized linear mixed model is identifiable. The proof is based on the assumptions of generalized linear mixed models on the first and second order moments and some general mild regularity...... conditions, and, therefore, is extensible to quasi-likelihood based generalized linear models. In particular, binomial and Poisson mixed models with dispersion parameter are identifiable when equipped with the standard parametrization...
Chevret, P; Chatillon, J
2012-11-01
Sound prediction in open-plan offices is a real challenge because of the complexity of the layout of such offices, and therefore because of the multitude of acoustic phenomena involved. One such phenomenon, of primary importance, and not the least challenging of them, is the diffraction by screens and low dividers that usually partition the workspace. This paper describes implementing the equations of the Uniform Theory of Diffraction [McNamara et al. (1990). Introduction to the Uniform Theory of Diffraction (Artech House, Boston)] in an existing ray-tracing model initially dedicated to sound prediction in industrial premises. For the purposes of validation, a series of measurements was conducted in a semi-anechoic chamber in the same manner as Wang and Bradley [(2002). Appl. Acoust. 63, 849-866] but including real desktops instead of single screens. A first phase was dedicated to controlling the quality of the installation by making comparisons with McNamara's solution for a single screen on a rigid floor. Then, the validation itself was conducted with measurements on real desktops, first without a ceiling, and then with a rigid ceiling suspended above the double desk. The results of the comparisons between calculations and measurements in this configuration have demonstrated that the model is an effective tool for predicting sound levels in an open-plan office.
Directory of Open Access Journals (Sweden)
Victoria Gómez-Murcia
2016-06-01
Full Text Available Here we present some of our data about the interaction of idebenone and idebenol with dipalmitoyl-phosphatidylcholine (DPPC. In particular, we include data of small angle X-ray diffraction (SAXD and wide angle X-ray diffraction experiments, obtention of electronic profiles of the membranes, 2H-NMR and 31P-NMR, as part of the research article: “Both idebenone and idebenol are localized near the lipid-water interface of the membrane and increase its fluidity” (Gomez-Murcia et al., 2016 [1]. These data were obtained from model membranes that included different proportions of idebenone and idebenol, at temperatures both above and below of the gel to fluid phase. The X-ray experiments were carried out by using a modified Kratky compact camera (MBraun-Graz-Optical Systems, Graz Austria, incorporating two coupled linear position sensitive detectors. The NMR data were collected from a a Bruker Avance 600 instrument.
Borehole radar diffraction tomography
Energy Technology Data Exchange (ETDEWEB)
Cho, Seong Jun; Kim, Jung Ho; Yi, Myeong Jong; Chung, Seung Hwan; Lee, Hee Il [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)
1997-12-01
Tomography is widely used as imaging method for determining subsurface structure. Among the reconstruction algorithms for tomographic imaging, travel time tomography is almost applied to imaging subsurface. But isolated small body comparable with the wavelength could not be well recognized by travel time tomography. Other tomographic method are need to improve the imaging process. In the study of this year, diffraction tomography was investigated. The theory for diffraction tomography is based on the 1st-order Born approximation. Multisource holography, which is similar to Kirchihoff migration, is compared with diffraction tomography. To improve 1st-order Born diffraction tomography, two kinds of filter designed from multisource holography and 2-D green function, respectively, applied on the reconstructed image. The algorithm was tested for the numerical modeling data of which algorithm consists of the analytic computation of radar signal in transmitter and receiver regions and 2-D FDM scheme for the propagation of electromagnetic waves in media. The air-filled cavity model to show a typical diffraction pattern was applied to diffraction tomography imaging, and the result shows accurate location and area of cavity. But the calculated object function is not well matched the real object function, because the air-filled cavity model is not satisfied week scattered inhomogeneity for 1st born approximation, and the error term is included in estimating source wavelet from received signals. In spite of the object function error, the diffraction tomography assist for interpretation of subsurface as if conducted with travel time tomography. And the fracture model was tested, 1st born diffraction tomographic image is poor because of limited view angle coverage and violation of week scatter assumption, but the filtered image resolve the fracture somewhat better. The tested diffraction tomography image confirms effectiveness of filter for enhancing resolution. (author). 14
International Nuclear Information System (INIS)
Anon.
1986-01-01
Elastic scattering – when colliding particles 'bounce' off each other like billiard balls – has always had a special interest for high energy physicists. While its simplicity makes for deep analogies with classical ideas like diffraction, its jbtle details also test our understanding of the intricate inner mechanisms which drive particle interactions. With a new stock of elastic scattering data now available thanks to experiments at the CERN proton-antiproton Collider, and with studies at higher energies imminent or planned, some seventy physicists gathered in the magnificent chateau at Blois, France, for a 'Workshop on Elastic and Diffractive Scattering at the Collider and Beyond'
Energy Technology Data Exchange (ETDEWEB)
Anon.
1986-03-15
Elastic scattering – when colliding particles 'bounce' off each other like billiard balls – has always had a special interest for high energy physicists. While its simplicity makes for deep analogies with classical ideas like diffraction, its jbtle details also test our understanding of the intricate inner mechanisms which drive particle interactions. With a new stock of elastic scattering data now available thanks to experiments at the CERN proton-antiproton Collider, and with studies at higher energies imminent or planned, some seventy physicists gathered in the magnificent chateau at Blois, France, for a 'Workshop on Elastic and Diffractive Scattering at the Collider and Beyond'.
Extending the reach of powder diffraction modelling by user defined macros
Scardi, Paolo
2010-01-01
The main focus of this special topic volume is the development and possibilities of the MACRO language within TOPAS, with a specific session dedicated to WPPM. The collection is presented here in the form of a ""macro tutorial"" for the benefit of the entire powder diffraction community. More than a collection of standard scientific papers, the contributions to this special issue provide methods, tutorials and practical suggestions and solutions for the proper use of TOPAS and WPPM in a number of applications; ranging from the most common to the most refined and specific cases.Readers will fin
International Nuclear Information System (INIS)
Evlanov, M.V.; Sokolov, A.M.
1986-01-01
A diffraction approach is developed for description of kinematically complete experiments on the disintegration on nuclei with diffuse edges of light, weakly bound ions consisting of one neutral and one charged cluster. The theoretical formalism is used to analyze exclusive experiments on deuteron disintegration in the region of intermediate energies and for a broad range of nuclear mass numbers with a view to studying the structural characteristics of the nuclei and the mechanisms underlying the disintegration process. The possibility of the occurrence of the Nemets effect in the case of the disintegration of other (not only deuterons) light, weakly bound ions on nuclei is discussed
Study on exclusive processes of light ion disintegration in the framework of diffraction model
International Nuclear Information System (INIS)
Evlanov, M.V.; Sokolov, A.M.
1986-01-01
A diffraction approach is developed for description of kinematically complete experiments on disintegration of light weakly-bound ions formed by two clusters (one being charged) on nuclei with diffused edge. The theoretical formalism is applied to analyze exclusive deuteron disintegration experiments at intermediate energies for a wide nuclear mass numbers. The aim of the analysis is to study structure peculiarities of nuclei and disintegration mechanisms. Possible existence of the Nemets effect is discussed for disintegration of other than deuterons weakly-bound ions by nuclei
Bayesian Subset Modeling for High-Dimensional Generalized Linear Models
Liang, Faming
2013-06-01
This article presents a new prior setting for high-dimensional generalized linear models, which leads to a Bayesian subset regression (BSR) with the maximum a posteriori model approximately equivalent to the minimum extended Bayesian information criterion model. The consistency of the resulting posterior is established under mild conditions. Further, a variable screening procedure is proposed based on the marginal inclusion probability, which shares the same properties of sure screening and consistency with the existing sure independence screening (SIS) and iterative sure independence screening (ISIS) procedures. However, since the proposed procedure makes use of joint information from all predictors, it generally outperforms SIS and ISIS in real applications. This article also makes extensive comparisons of BSR with the popular penalized likelihood methods, including Lasso, elastic net, SIS, and ISIS. The numerical results indicate that BSR can generally outperform the penalized likelihood methods. The models selected by BSR tend to be sparser and, more importantly, of higher prediction ability. In addition, the performance of the penalized likelihood methods tends to deteriorate as the number of predictors increases, while this is not significant for BSR. Supplementary materials for this article are available online. © 2013 American Statistical Association.
Cosmological models in the generalized Einstein action
International Nuclear Information System (INIS)
Arbab, A.I.
2007-12-01
We have studied the evolution of the Universe in the generalized Einstein action of the form R + β R 2 , where R is the scalar curvature and β = const. We have found exact cosmological solutions that predict the present cosmic acceleration. These models predict an inflationary de-Sitter era occurring in the early Universe. The cosmological constant (Λ) is found to decay with the Hubble constant (H) as, Λ ∝ H 4 . In this scenario the cosmological constant varies quadratically with the energy density (ρ), i.e., Λ ∝ ρ 2 . Such a variation is found to describe a two-component cosmic fluid in the Universe. One of the components accelerated the Universe in the early era, and the other in the present era. The scale factor of the Universe varies as a ∼ t n = 1/2 in the radiation era. The cosmological constant vanishes when n = 4/3 and n =1/2. We have found that the inclusion of the term R 2 mimics a cosmic matter that could substitute the ordinary matter. (author)
A generalized model for homogenized reflectors
International Nuclear Information System (INIS)
Pogosbekyan, Leonid; Kim, Yeong Il; Kim, Young Jin; Joo, Hyung Kook
1996-01-01
A new concept of equivalent homogenization is proposed. The concept employs new set of homogenized parameters: homogenized cross sections (XS) and interface matrix (IM), which relates partial currents at the cell interfaces. The idea of interface matrix generalizes the idea of discontinuity factors (DFs), proposed and developed by K. Koebke and K. Smith. The method of K. Smith can be simulated within framework of new method, while the new method approximates hetero-geneous cell better in case of the steep flux gradients at the cell interfaces. The attractive shapes of new concept are:improved accuracy, simplicity of incorporation in the existing codes, equal numerical expenses in comparison to the K. Smith's approach. The new concept is useful for: (a) explicit reflector/baffle simulation; (b)control blades simulation; (c) mixed UO 2 /MOX core simulation. The offered model has been incorporated in the finite difference code and in the nodal code PANBOX. The numerical results show good accuracy of core calculations and insensitivity of homogenized parameters with respect to in-core conditions
Climatology of the HOPE-G global ocean general circulation model - Sea ice general circulation model
Energy Technology Data Exchange (ETDEWEB)
Legutke, S. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Maier-Reimer, E. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)
1999-12-01
The HOPE-G global ocean general circulation model (OGCM) climatology, obtained in a long-term forced integration is described. HOPE-G is a primitive-equation z-level ocean model which contains a dynamic-thermodynamic sea-ice model. It is formulated on a 2.8 grid with increased resolution in low latitudes in order to better resolve equatorial dynamics. The vertical resolution is 20 layers. The purpose of the integration was both to investigate the models ability to reproduce the observed general circulation of the world ocean and to obtain an initial state for coupled atmosphere - ocean - sea-ice climate simulations. The model was driven with daily mean data of a 15-year integration of the atmosphere general circulation model ECHAM4, the atmospheric component in later coupled runs. Thereby, a maximum of the flux variability that is expected to appear in coupled simulations is included already in the ocean spin-up experiment described here. The model was run for more than 2000 years until a quasi-steady state was achieved. It reproduces the major current systems and the main features of the so-called conveyor belt circulation. The observed distribution of water masses is reproduced reasonably well, although with a saline bias in the intermediate water masses and a warm bias in the deep and bottom water of the Atlantic and Indian Oceans. The model underestimates the meridional transport of heat in the Atlantic Ocean. The simulated heat transport in the other basins, though, is in good agreement with observations. (orig.)
Application of Improved Radiation Modeling to General Circulation Models
Energy Technology Data Exchange (ETDEWEB)
Michael J Iacono
2011-04-07
This research has accomplished its primary objectives of developing accurate and efficient radiation codes, validating them with measurements and higher resolution models, and providing these advancements to the global modeling community to enhance the treatment of cloud and radiative processes in weather and climate prediction models. A critical component of this research has been the development of the longwave and shortwave broadband radiative transfer code for general circulation model (GCM) applications, RRTMG, which is based on the single-column reference code, RRTM, also developed at AER. RRTMG is a rigorously tested radiation model that retains a considerable level of accuracy relative to higher resolution models and measurements despite the performance enhancements that have made it possible to apply this radiation code successfully to global dynamical models. This model includes the radiative effects of all significant atmospheric gases, and it treats the absorption and scattering from liquid and ice clouds and aerosols. RRTMG also includes a statistical technique for representing small-scale cloud variability, such as cloud fraction and the vertical overlap of clouds, which has been shown to improve cloud radiative forcing in global models. This development approach has provided a direct link from observations to the enhanced radiative transfer provided by RRTMG for application to GCMs. Recent comparison of existing climate model radiation codes with high resolution models has documented the improved radiative forcing capability provided by RRTMG, especially at the surface, relative to other GCM radiation models. Due to its high accuracy, its connection to observations, and its computational efficiency, RRTMG has been implemented operationally in many national and international dynamical models to provide validated radiative transfer for improving weather forecasts and enhancing the prediction of global climate change.
Thurstonian models for sensory discrimination tests as generalized linear models
DEFF Research Database (Denmark)
Brockhoff, Per B.; Christensen, Rune Haubo Bojesen
2010-01-01
as a so-called generalized linear model. The underlying sensory difference 6 becomes directly a parameter of the statistical model and the estimate d' and it's standard error becomes the "usual" output of the statistical analysis. The d' for the monadic A-NOT A method is shown to appear as a standard......Sensory discrimination tests such as the triangle, duo-trio, 2-AFC and 3-AFC tests produce binary data and the Thurstonian decision rule links the underlying sensory difference 6 to the observed number of correct responses. In this paper it is shown how each of these four situations can be viewed...
Katsukawa, Y.; Suematsu, Y.; Tsuneta, S.; Ichimoto, K.; Shimizu, T.
2011-09-01
HINODE, Japanese for "sunrise", is a spacecraft dedicated for observations of the Sun, and was launched in 2006 to study the Sun's magnetic fields and how their explosive energies propagate through the different atmospheric layers. The spacecraft carries the Solar Optical Telescope (SOT), which has a 50 cm diameter clear aperture and provides a continuous series of diffraction-limited visible light images from space. The telescope was developed through international collaboration between Japan and US. In order to achieve the diffraction-limited performance, thermal and structural modeling of the telescope was extensively used in its development phase to predict how the optical performance changes dependent on the thermal condition in orbit. Not only the modeling, we devoted many efforts to verify the optical performance in ground tests before the launch. The verification in the ground tests helped us to find many issues, such as temperature dependent focus shifts, which were not identified only through the thermal-structural modeling. Another critical issue was micro-vibrations induced by internal disturbances of mechanical gyroscopes and momentum wheels for attitude control of the spacecraft. Because the structural modeling was not accurate enough to predict how much the image quality was degraded by the micro-vibrations, we measured their transmission in a spacecraft-level test.
Hoser, Anna A; Madsen, Anders Ø
2017-03-01
In the first paper of this series [Hoser & Madsen (2016). Acta Cryst. A72, 206-214], a new approach was introduced which enables the refinement of frequencies of normal modes obtained from ab initio periodic computations against single-crystal diffraction data. In this contribution, the performance of this approach is tested by refinement against data in the temperature range from 23 to 205 K on the molecular crystals of L-alanine, naphthalene and xylitol. The models, which are lattice-dynamical models derived at the Γ point of the Brillouin zone, are able to describe the atomic vibrations of L-alanine and naphthalene to a level where the residual densities are similar to those obtained from the independent atom model. For the more flexible molecule xylitol, larger deviations are found. Hydrogen ADPs (anisotropic displacement parameters) derived from the models are in similar or better agreement with neutron diffraction results than ADPs obtained by other procedures. The heat capacity calculated after normal mode refinement for naphthalene is in reasonable agreement with the heat capacity obtained from calorimetric measurements (to less than 1 cal mol -1 K -1 below 300 K), with deviations at higher temperatures indicating anharmonicity. Standard uncertainties and correlation of the refined parameters have been derived based on a Monte Carlo procedure. The uncertainties are quite small and probably underestimated.
Multivariate statistical modelling based on generalized linear models
Fahrmeir, Ludwig
1994-01-01
This book is concerned with the use of generalized linear models for univariate and multivariate regression analysis. Its emphasis is to provide a detailed introductory survey of the subject based on the analysis of real data drawn from a variety of subjects including the biological sciences, economics, and the social sciences. Where possible, technical details and proofs are deferred to an appendix in order to provide an accessible account for non-experts. Topics covered include: models for multi-categorical responses, model checking, time series and longitudinal data, random effects models, and state-space models. Throughout, the authors have taken great pains to discuss the underlying theoretical ideas in ways that relate well to the data at hand. As a result, numerous researchers whose work relies on the use of these models will find this an invaluable account to have on their desks. "The basic aim of the authors is to bring together and review a large part of recent advances in statistical modelling of m...
A generalized multivariate regression model for modelling ocean wave heights
Wang, X. L.; Feng, Y.; Swail, V. R.
2012-04-01
In this study, a generalized multivariate linear regression model is developed to represent the relationship between 6-hourly ocean significant wave heights (Hs) and the corresponding 6-hourly mean sea level pressure (MSLP) fields. The model is calibrated using the ERA-Interim reanalysis of Hs and MSLP fields for 1981-2000, and is validated using the ERA-Interim reanalysis for 2001-2010 and ERA40 reanalysis of Hs and MSLP for 1958-2001. The performance of the fitted model is evaluated in terms of Pierce skill score, frequency bias index, and correlation skill score. Being not normally distributed, wave heights are subjected to a data adaptive Box-Cox transformation before being used in the model fitting. Also, since 6-hourly data are being modelled, lag-1 autocorrelation must be and is accounted for. The models with and without Box-Cox transformation, and with and without accounting for autocorrelation, are inter-compared in terms of their prediction skills. The fitted MSLP-Hs relationship is then used to reconstruct historical wave height climate from the 6-hourly MSLP fields taken from the Twentieth Century Reanalysis (20CR, Compo et al. 2011), and to project possible future wave height climates using CMIP5 model simulations of MSLP fields. The reconstructed and projected wave heights, both seasonal means and maxima, are subject to a trend analysis that allows for non-linear (polynomial) trends.
The ECHAM3 atmospheric general circulation model
International Nuclear Information System (INIS)
1993-09-01
The ECHAM model has been developed from the ECMWF model (cycle 31, November 1988). It contains several changes, mostly in the parameterization, in order to adjust the model for climate simulations. The technical details of the ECHAM operational model are described. (orig./KW)
Energy Technology Data Exchange (ETDEWEB)
Hart, M.
1995-12-31
the importance of x-ray powder diffraction as an analytical tool for phase identification of materials was first pointed out by Debye and Scherrer in Germany and, quite independently, by Hull in the US. Three distinct periods of evolution lead to ubiquitous application in many fields of science and technology. In the first period, until the mid-1940`s, applications were and developed covering broad categories of materials including inorganic materials, minerals, ceramics, metals, alloys, organic materials and polymers. During this formative period, the concept of quantitative phase analysis was demonstrated. In the second period there followed the blossoming of technology and commercial instruments became widely used. The history is well summarized by Parrish and by Langford and Loueer. By 1980 there were probably 10,000 powder diffractometers in routine use, making it the most widely used of all x-ray crystallographic instruments. In the third, present, period data bases became firmly established and sophisticated pattern fitting and recognition software made many aspects of powder diffraction analysis routine. High resolution, tunable powder diffractometers were developed at sources of synchrotron radiation. The tunability of the spectrum made it possible to exploit all the subtleties of x-ray spectroscopy in diffraction experiments.
International Nuclear Information System (INIS)
Hart, M.
1995-01-01
The importance of x-ray powder diffraction as an analytical tool for phase identification of materials was first pointed out by Debye and Scherrer in Germany and, quite independently, by Hull in the US. Three distinct periods of evolution lead to ubiquitous application in many fields of science and technology. In the first period, until the mid-1940's, applications were and developed covering broad categories of materials including inorganic materials, minerals, ceramics, metals, alloys, organic materials and polymers. During this formative period, the concept of quantitative phase analysis was demonstrated. In the second period there followed the blossoming of technology and commercial instruments became widely used. The history is well summarized by Parrish and by Langford and Loueer. By 1980 there were probably 10,000 powder diffractometers in routine use, making it the most widely used of all x-ray crystallographic instruments. In the third, present, period data bases became firmly established and sophisticated pattern fitting and recognition software made many aspects of powder diffraction analysis routine. High resolution, tunable powder diffractometers were developed at sources of synchrotron radiation. The tunability of the spectrum made it possible to exploit all the subtleties of x-ray spectroscopy in diffraction experiments
INFORMATION MODEL OF A GENERAL PRACTITIONER
Directory of Open Access Journals (Sweden)
S. M. Zlepko
2016-06-01
Full Text Available In the paper the authors developed information model family doctor shows its innovation and functionality. The proposed model meets the requirements of the current job description and criteria World Organization of Family Doctors.
Generalization of Random Intercept Multilevel Models
Directory of Open Access Journals (Sweden)
Rehan Ahmad Khan
2013-10-01
Full Text Available The concept of random intercept models in a multilevel model developed by Goldstein (1986 has been extended for k-levels. The random variation in intercepts at individual level is marginally split into components by incorporating higher levels of hierarchy in the single level model. So, one can control the random variation in intercepts by incorporating the higher levels in the model.
generalized constitutive model for stabilized quick clay
African Journals Online (AJOL)
QUICK CLAY. PANCRAS MUGISHAGWE BUJULU AND GUSTAV GRIMSTAD. ABSTRACT. An experimentally-based two yield surface constitutive model for cemented quick clay has been ... Clay Model, the Koiter Rule and two Mapping Rules. .... models, where a mobilization formulation is used, this is independent of q.
A Generalized Deduction of the Ideal-Solution Model
Leo, Teresa J.; Perez-del-Notario, Pedro; Raso, Miguel A.
2006-01-01
A new general procedure for deriving the Gibbs energy of mixing is developed through general thermodynamic considerations, and the ideal-solution model is obtained as a special particular case of the general one. The deduction of the Gibbs energy of mixing for the ideal-solution model is a rational one and viewed suitable for advanced students who…
Stratospheric General Circulation with Chemistry Model (SGCCM)
Rood, Richard B.; Douglass, Anne R.; Geller, Marvin A.; Kaye, Jack A.; Nielsen, J. Eric; Rosenfield, Joan E.; Stolarski, Richard S.
1990-01-01
In the past two years constituent transport and chemistry experiments have been performed using both simple single constituent models and more complex reservoir species models. Winds for these experiments have been taken from the data assimilation effort, Stratospheric Data Analysis System (STRATAN).
Development of a generalized integral jet model
DEFF Research Database (Denmark)
Duijm, Nijs Jan; Kessler, A.; Markert, Frank
2017-01-01
Integral type models to describe stationary plumes and jets in cross-flows (wind) have been developed since about 1970. These models are widely used for risk analysis, to describe the consequences of many different scenarios. Alternatively, CFD codes are being applied, but computational requireme......Integral type models to describe stationary plumes and jets in cross-flows (wind) have been developed since about 1970. These models are widely used for risk analysis, to describe the consequences of many different scenarios. Alternatively, CFD codes are being applied, but computational...... requirements still limit the number of scenarios that can be dealt with using CFD only. The integral models, however, are not suited to handle transient releases, such as releases from pressurized equipment, where the initially high release rate decreases rapidly with time. Further, on gas ignition, a second...... model is needed to describe the rapid combustion of the flammable part of the plume (flash fire) and a third model has to be applied for the remaining jet fire. The objective of this paper is to describe the first steps of the development of an integral-type model describing the transient development...
Generalized coupling in the Kuramoto model
DEFF Research Database (Denmark)
Filatrella, G.; Pedersen, Niels Falsig; Wiesenfeld, K.
2007-01-01
We propose a modification of the Kuramoto model to account for the effective change in the coupling constant among the oscillators, as suggested by some experiments on Josephson junction, laser arrays, and mechanical systems, where the active elements are turned on one by one. The resulting model...... with the behavior of Josephson junctions coupled via a cavity....
Smooth generalized linear models for aggregated data
Ayma Anza, Diego Armando
2016-01-01
Mención Internacional en el título de doctor Aggregated data commonly appear in areas such as epidemiology, demography, and public health. Generally, the aggregation process is done to protect the privacy of patients, to facilitate compact presentation, or to make it comparable with other coarser datasets. However, this process may hinder the visualization of the underlying distribution that follows the data. Also, it prohibits the direct analysis of relationships between ag...
Universality in generalized models of inflation
Energy Technology Data Exchange (ETDEWEB)
Binétruy, P.; Pieroni, M. [AstroParticule et Cosmologie, Université Paris Diderot, CNRS, CEA, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, F-75205 Paris Cedex 13 (France); Mabillard, J., E-mail: pierre.binetruy@apc.univ-paris7.fr, E-mail: joel.mabillard@ed.ac.uk, E-mail: mauro.pieroni@apc.in2p3.fr [School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3JZ (United Kingdom)
2017-03-01
We discuss the cosmological evolution of a scalar field with non standard kinetic term in terms of a Renormalization Group Equation (RGE). In this framework inflation corresponds to the slow evolution in a neighborhood of a fixed point and universality classes for inflationary models naturally arise. Using some examples we show the application of the formalism. The predicted values for the speed of sound c {sub s} {sup 2} and for the amount of non-Gaussianities produced in these models are discussed. In particular, we show that it is possible to introduce models with c {sub s} {sup 2} ≠ 1 that can be in agreement with present cosmological observations.
Energy Technology Data Exchange (ETDEWEB)
Lane, M. [Emory & Henry College, VA (United States); Chaiken, A.; Michel, R.P. [Lawrence Livermore National Lab., CA (United States)
1994-12-01
We have characterized thin-film multilayers grown by ion-beam sputtering using magnetization curves and modeling of low-angle x-ray diffraction data. In our films, we use ferromagnetic layer = Co, Fe, and NiFe and spacer layer = Si, Ge, FeSi{sub 2}, and CoSi{sub 2}. We have studied the effects of (1) deposition conditions; (2) thickness of layers; (3) different layer materials; and (4) annealing. We find higher magnetization in films grown at 1000V rather than 500V and in films with spacer layers of 50{angstrom} rather than 100{angstrom}. We find higher coercivity in films with cobalt grown on germanium rather than silicon, metal grown on gold underlayers rather than on glass substrates, and when using thinner spacer layers. Finally, modeling reveals that films grown with disilicide layers are more thermally stable than films grown with silicon spacer layers.
International Nuclear Information System (INIS)
Wilkens, P.H.
1978-01-01
This system of gauging is now being designed to fit on an Excello NC lathe to measure the form, accuracy, and size of external contoured surfaces as they approach the finish machined size. A template profile of the finished workpiece, but 0.003 in. bigger on radius, will be aligned with the workpiece using a reference diameter and face on the machining fixture to leave a gap between the profile of the template and workpiece. A helium--neon laser beam will be projected through this gap using a rotating retroreflector and a fixed laser. The resulting diffraction pattern produced by the laser beam passing through the template to workpiece gap will be reflected and focused on a fixed diode array via a second retroreflector which moves and remains in optical alignment with the first. These retroreflectors will be rotated about a center that will enable the laser beam, which is shaped in a long slit, to scan the template workpiece gap from the pole to the equator of the workpiece. The characteristic diffraction pattern will be detected by the fixed diode array, and the signal levels from this array will be processed in a mini-computer programmed to produce a best fit through the two minima of the diode signals. The separation of the two minima will yield the size of the workpiece to template gap and this information will be presented to the machine tool operator
International Nuclear Information System (INIS)
Den Besten, J.L.; Jamieson, D.N.; Allen, L.J.
1998-01-01
The Lindhard theory on ion channeling in crystals has been widely accepted throughout ion beam analysis for use in simulating such experiments. The simulations use a Monte Carlo method developed by Barret, which utilises the classical 'billiard ball' theory of ions 'bouncing' between planes or tubes of atoms in the crystal. This theory is not valid for 'thin' crystals where the planes or strings of atoms can no longer be assumed to be of infinite proportions. We propose that a theory similar to that used for high energy electron diffraction can be applied to MeV ions, especially protons, in thin crystals to simulate the intensities of transmission channeling and of RBS spectra. The diffraction theory is based on a Bloch wave solution of the Schroedinger equation for an ion passing through the periodic crystal potential. The widely used universal potential for proton-nucleus scattering is used to construct the crystal potential. Absorption due to thermal diffuse scattering is included. Experimental parameters such as convergence angle, beam tilt and scanning directions are considered in our calculations. Comparison between theory and experiment is encouraging and suggests that further work is justified. (authors)
International Nuclear Information System (INIS)
Alcaraz, Olga; Trullàs, Joaquim; Tahara, Shuta; Kawakita, Yukinobu; Takeda, Shin’ichi
2016-01-01
The results of the structural properties of molten copper chloride are reported from high-energy X-ray diffraction measurements, reverse Monte Carlo modeling method, and molecular dynamics simulations using a polarizable ion model. The simulated X-ray structure factor reproduces all trends observed experimentally, in particular the shoulder at around 1 Å −1 related to intermediate range ordering, as well as the partial copper-copper correlations from the reverse Monte Carlo modeling, which cannot be reproduced by using a simple rigid ion model. It is shown that the shoulder comes from intermediate range copper-copper correlations caused by the polarized chlorides.
Energy Technology Data Exchange (ETDEWEB)
Alcaraz, Olga; Trullàs, Joaquim, E-mail: quim.trullas@upc.edu [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Campus Nord UPC B4-B5, 08034 Barcelona (Spain); Tahara, Shuta [Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, Okinawa 903-0213 (Japan); Kawakita, Yukinobu [J-PARC Center, Japan Atomic Energy Agency (JAEA), Ibaraki 319-1195 (Japan); Takeda, Shin’ichi [Department of Physics, Faculty of Sciences, Kyushu University, Fukuoka 819-0395 (Japan)
2016-09-07
The results of the structural properties of molten copper chloride are reported from high-energy X-ray diffraction measurements, reverse Monte Carlo modeling method, and molecular dynamics simulations using a polarizable ion model. The simulated X-ray structure factor reproduces all trends observed experimentally, in particular the shoulder at around 1 Å{sup −1} related to intermediate range ordering, as well as the partial copper-copper correlations from the reverse Monte Carlo modeling, which cannot be reproduced by using a simple rigid ion model. It is shown that the shoulder comes from intermediate range copper-copper correlations caused by the polarized chlorides.
Tsai, Tien-Lung; Shau, Wen-Yi; Hu, Fu-Chang
2006-01-01
This article generalizes linear path analysis (PA) and simultaneous equations models (SiEM) to deal with mixed responses of different types in a recursive or triangular system. An efficient instrumental variable (IV) method for estimating the structural coefficients of a 2-equation partially recursive generalized path analysis (GPA) model and…
International Nuclear Information System (INIS)
Ibrahim, Marcelle
2015-01-01
In order to study the mechanical behavior of nuclear fuel during direct long term storage, UO 2 polycrystals were implanted with Helium ions at a thin surface layer (1 μm approximately), which leads to stress and strain fields in the layer. Strains were measured, at the grains scale, by X-ray micro-diffraction, using synchrotron radiation (ESRF). Image analysis methods were developed for an automatic analysis of the large number of diffraction patterns. Applying statistical tools to Laue patterns allows an automatic detection of low quality images, and enhances the measurement precision. At low layer thickness, the mechanical interaction between grains can be neglected. At higher thickness, experimental results showed a higher mechanical interaction near grain boundaries that can be modeled using finite elements method. Geostatistical tools were used to quantify these interactions. The swelling and the elastic constants in the implanted layer can be estimated through the measured strains on a large number of grains with different orientations. This work allows the determination of the swelling of nuclear fuel in irradiation conditions, as well as the modification of its elastic properties. (author) [fr
Double generalized linear compound poisson models to insurance claims data
DEFF Research Database (Denmark)
Andersen, Daniel Arnfeldt; Bonat, Wagner Hugo
2017-01-01
This paper describes the specification, estimation and comparison of double generalized linear compound Poisson models based on the likelihood paradigm. The models are motivated by insurance applications, where the distribution of the response variable is composed by a degenerate distribution...... implementation and illustrate the application of double generalized linear compound Poisson models using a data set about car insurances....
The Five-Factor Model: General Overview
Directory of Open Access Journals (Sweden)
A A Vorobyeva
2011-12-01
Full Text Available The article describes the five-factor model (FFM, giving an overview of its history, basic dimensions, cross-cultural research conducted on the model and highlights some practical studies based on the FFM, including the studies on job performance, leader performance and daily social interactions. An overview of the recent five-factor theory is also provided. According to the theory, the five factors are encoded in human genes, therefore it is almost impossible to change the basic factors themselves, but a person's behavior might be changed due to characteristic adaptations which do not alter personality dimensions, only a person's behavior.
Esperanto: A Unique Model for General Linguistics.
Dulichenko, Aleksandr D.
1988-01-01
Esperanto presents a unique model for linguistic research by allowing the study of language development from project to fully functioning language. Esperanto provides insight into the growth of polysemy and redundancy, as well as into language universals and the phenomenon of social control. (Author/CB)
DEFF Research Database (Denmark)
Clausen, Bjørn
of calculated and measured lattice strains are made for three diﬀerent materials; alu-minium, copper and austenitic stainless steel. The predictions of the self-consistent model is more accurate and detailed than the predictions of the Taylor and Sachs models, though some discrepancies are noted for some...... to the Sachs model. The inﬂuence of the elastic anisotropy is investigated by comparing the self-consistent predictions for aluminium, copper and a hypothetical material (hybrid) with the elastic anisotropy of copper and the Young’s modulus and work hardening behaviour of aluminium. It is concluded......, that the eﬀect of the elastic anisotropy is limited to the very early stages of plasticity (εP materials at higher strains. The predictions of the three models are evaluated by neutron diﬀraction mea-surements of elastic lattice strains...
Multiple phase transitions in the generalized Curie-Weiss model
International Nuclear Information System (INIS)
Eisele, T.; Ellis, R.S.
1988-01-01
The generalized Curie-Weiss model is an extension of the classical Curie-Weiss model in which the quadratic interaction function of the mean spin value is replaced by a more general interaction function. It is shown that the generalized Curie-Weiss model can have a sequence of phase transitions at different critical temperatures. Both first-order and second-order phase transitions can occur, and explicit criteria for the two types are given. Three examples of generalized Curie-Weiss models are worked out in detail, including one example with infinitely many phase transitions. A number of results are derived using large-deviation techniques
On A General Frame For Macroeconomic Modelling
Directory of Open Access Journals (Sweden)
Emil DINGA
2012-03-01
Full Text Available The purpose of the research project was to identify the methodological bases for the aggregate description of the Romanian national economy, both logically and in terms of the sources of empirical data for modelling. The specific objectives of the project were: a description of the economic markets in correlation with the logic description of the economic behaviours; b determination of the sectoral blocks of the Romanian economy, on the basis of the homogeneity of the economic; activity and behaviour; c association of the sectoral blocks to the national accounts, so as to ensure the sources of empirical data for the calibration and utilisation of the model; d association of the sectoral blocks to the economic markets; e association of the national accounts with the economic markets; f identification of the classes of interactions between the determined sectoral blocks.
Generalized Mathai-Quillen Topological Sigma Models
Llatas, Pablo M.
1995-01-01
A simple field theoretical approach to Mathai-Quillen topological field theories of maps $X: M_I \\to M_T$ from an internal space to a target space is presented. As an example of applications of our formalism we compute by applying our formulas the action and Q-variations of the fields of two well known topological systems: Topological Quantum Mechanics and type-A topological Sigma Model.
Reduced Order Modeling in General Relativity
Tiglio, Manuel
2014-03-01
Reduced Order Modeling is an emerging yet fast developing filed in gravitational wave physics. The main goals are to enable fast modeling and parameter estimation of any detected signal, along with rapid matched filtering detecting. I will focus on the first two. Some accomplishments include being able to replace, with essentially no lost of physical accuracy, the original models with surrogate ones (which are not effective ones, that is, they do not simplify the physics but go on a very different track, exploiting the particulars of the waveform family under consideration and state of the art dimensional reduction techniques) which are very fast to evaluate. For example, for EOB models they are at least around 3 orders of magnitude faster than solving the original equations, with physically equivalent results. For numerical simulations the speedup is at least 11 orders of magnitude. For parameter estimation our current numbers are about bringing ~100 days for a single SPA inspiral binary neutron star Bayesian parameter estimation analysis to under a day. More recently, it has been shown that the full precessing problem for, say, 200 cycles, can be represented, through some new ideas, by a remarkably compact set of carefully chosen reduced basis waveforms (~10-100, depending on the accuracy requirements). I will highlight what I personally believe are the challenges to face next in this subarea of GW physics and where efforts should be directed. This talk will summarize work in collaboration with: Harbir Antil (GMU), Jonathan Blackman (Caltech), Priscila Canizares (IoA, Cambridge, UK), Sarah Caudill (UWM), Jonathan Gair (IoA. Cambridge. UK), Scott Field (UMD), Chad R. Galley (Caltech), Frank Herrmann (Germany), Han Hestahven (EPFL, Switzerland), Jason Kaye (Brown, Stanford & Courant). Evan Ochsner (UWM), Ricardo Nochetto (UMD), Vivien Raymond (LIGO, Caltech), Rory Smith (LIGO, Caltech) Bela Ssilagyi (Caltech) and MT (UMD & Caltech).
Models and materials for generalized Kitaev magnetism
Winter, Stephen M.; Tsirlin, Alexander A.; Daghofer, Maria; van den Brink, Jeroen; Singh, Yogesh; Gegenwart, Philipp; Valentí, Roser
2017-12-01
The exactly solvable Kitaev model on the honeycomb lattice has recently received enormous attention linked to the hope of achieving novel spin-liquid states with fractionalized Majorana-like excitations. In this review, we analyze the mechanism proposed by Jackeli and Khaliullin to identify Kitaev materials based on spin-orbital dependent bond interactions and provide a comprehensive overview of its implications in real materials. We set the focus on experimental results and current theoretical understanding of planar honeycomb systems (Na2IrO3, α-Li2IrO3, and α-RuCl3), three-dimensional Kitaev materials (β- and γ-Li2IrO3), and other potential candidates, completing the review with the list of open questions awaiting new insights.
Modeling electrokinetics in ionic liquids: General
Energy Technology Data Exchange (ETDEWEB)
Wang, Chao [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA USA; Bao, Jie [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA USA; Pan, Wenxiao [Department of Mechanical Engineering, University of Wisconsin-Madison, Madison WI USA; Sun, Xin [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA USA
2017-04-07
Using direct numerical simulations we provide a thorough study on the electrokinetics of ionic liquids. In particular, the modfied Poisson-Nernst-Planck (MPNP) equations are solved to capture the crowding and overscreening effects that are the characteristics of an ionic liquid. For modeling electrokinetic flows in an ionic liquid, the MPNP equations are coupled with the Navier-Stokes equations to study the coupling of ion transport, hydrodynamics, and electrostatic forces. Specifically, we consider the ion transport between two parallel plates, charging dynamics in a 2D straight-walled pore, electro-osmotic ow in a nano-channel, electroconvective instability on a plane ion-selective surface, and electroconvective ow on a curved ion-selective surface. We discuss how the crowding and overscreening effects and their interplay affect the electrokinetic behaviors of ionic liquids in these application problems.
The DART general equilibrium model: A technical description
Springer, Katrin
1998-01-01
This paper provides a technical description of the Dynamic Applied Regional Trade (DART) General Equilibrium Model. The DART model is a recursive dynamic, multi-region, multi-sector computable general equilibrium model. All regions are fully specified and linked by bilateral trade flows. The DART model can be used to project economic activities, energy use and trade flows for each of the specified regions to simulate various trade policy as well as environmental policy scenarios, and to analy...
International Nuclear Information System (INIS)
Evlanov, M.V.; Sokolov, A.M.; Tartakovskij, V.K.
1998-01-01
Using numerical calculations the investigation of the influence of triple scattering, finite-range of nuclear Λd and np forces and general structure of the hyper-triton on the total cross section of diffraction interaction of Λ 3 H with different nuclei at high energies is performed. It is shown that the factors mentioned above can noticeably influence the cross section
Coutelot, F.; Seaman, J. C.; Simner, S.
2017-12-01
In this study the hydration of Portland cements containing blast-furnace slag and type V fly ash were investigated during cement curing using X-ray diffraction, with geochemical modeling used to calculate the total volume of hydrates. The goal was to evaluate the relationship between the starting component levels and the hydrate assemblages that develop during the curing process. Blast furnace-slag levels of 60, 45 and 30 wt.% were studied in blends containing fly ash and Portland cement. Geochemical modelling described the dissolution of the clinker, and predicted quantitatively the amount of hydrates. In all cases the experiments showed the presence of C-S-H, portlandite and ettringite. The quantities of ettringite, portlandite and the amorphous phases as determined by XRD agreed well with the calculated amounts of these phases after different periods of time. These findings show that changes in the bulk composition of hydrating cements can be described by geochemical models. Such a comparison between experimental and modelled data helps to understand in more detail the active processes occurring during cement hydration.
Diffraction through partial identity
International Nuclear Information System (INIS)
Blum, W.
1981-06-01
A model of diffraction dissociation is proposed in which the quantum-mechanical interference between the incoming and the outgoing wave determines the cross-section. This interference occurs due to the finite life-time of the excited state. (orig.)
Generalized bi-additive modelling for categorical data
P.J.F. Groenen (Patrick); A.J. Koning (Alex)
2004-01-01
textabstractGeneralized linear modelling (GLM) is a versatile technique, which may be viewed as a generalization of well-known techniques such as least squares regression, analysis of variance, loglinear modelling, and logistic regression. In may applications, low-order interaction (such as
A QCD Model Using Generalized Yang-Mills Theory
International Nuclear Information System (INIS)
Wang Dianfu; Song Heshan; Kou Lina
2007-01-01
Generalized Yang-Mills theory has a covariant derivative, which contains both vector and scalar gauge bosons. Based on this theory, we construct a strong interaction model by using the group U(4). By using this U(4) generalized Yang-Mills model, we also obtain a gauge potential solution, which can be used to explain the asymptotic behavior and color confinement.
International Nuclear Information System (INIS)
Goodwin, Andrew L.; Tucker, Matthew G.; Cope, Elizabeth R.; Dove, Martin T.; Keen, David A.
2006-01-01
We explore the possibility that detailed dynamical information might be extracted from powder diffraction data. Our focus is a recently reported technique that employs statistical analysis of atomistic configurations to calculate dynamical properties from neutron total scattering data. We show that it is possible to access the phonon dispersion of low-frequency modes using such an approach, without constraining the results in terms of some pre-defined dynamical model. The high-frequency regions of the phonon spectrum are found to be less well preserved in the diffraction data
Diffraction at a Straight Edge
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 5. Diffraction at a Straight Edge: A Gem from Sommerfeld's Work in Classical Physics. Rajaram Nityananda. General Article Volume 20 Issue 5 May 2015 pp 389-400 ...
Experimental investigation of shock wave diffraction over a single- or double-sphere model
Zhang, L. T.; Wang, T. H.; Hao, L. N.; Huang, B. Q.; Chen, W. J.; Shi, H. H.
2017-01-01
In this study, the unsteady drag produced by the interaction of a shock wave with a single- and a double-sphere model is measured using imbedded accelerometers. The shock wave is generated in a horizontal circular shock tube with an inner diameter of 200 mm. The effect of the shock Mach number and the dimensionless distance between spheres is investigated. The time-history of the drag coefficient is obtained based on Fast Fourier Transformation (FFT) band-block filtering and polynomial fitting of the measured acceleration. The measured peak values of the drag coefficient, with the associated uncertainty, are reported.
In situ neutron diffraction and Elastic–Plastic Self-Consistent polycrystal modeling of HT-9
International Nuclear Information System (INIS)
Clausen, B.; Brown, D.W.; Bourke, M.A.M.; Saleh, T.A.; Maloy, S.A.
2012-01-01
Qualifying materials for use in reactors with fluences greater than 200 dpa (displacements per atom) requires development of advanced alloys and irradiations in fast reactors to test these alloys. Research into the mechanical behavior of these materials under reactor conditions is ongoing. In order to probe changes in deformation mechanisms due to radiation in these materials, samples of HT-9 were tested in tension in situ on the SMARTS instrument at Los Alamos Neutron Science Center. Experimental results, confirmed with modeling, show significant load sharing between the carbides and parent phase of the steel beyond yield, displaying the critical role of carbides during deformation, along with basic texture development.
In situ neutron diffraction and Elastic-Plastic Self-Consistent polycrystal modeling of HT-9
Energy Technology Data Exchange (ETDEWEB)
Clausen, B., E-mail: clausen@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Brown, D.W.; Bourke, M.A.M.; Saleh, T.A.; Maloy, S.A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2012-06-15
Qualifying materials for use in reactors with fluences greater than 200 dpa (displacements per atom) requires development of advanced alloys and irradiations in fast reactors to test these alloys. Research into the mechanical behavior of these materials under reactor conditions is ongoing. In order to probe changes in deformation mechanisms due to radiation in these materials, samples of HT-9 were tested in tension in situ on the SMARTS instrument at Los Alamos Neutron Science Center. Experimental results, confirmed with modeling, show significant load sharing between the carbides and parent phase of the steel beyond yield, displaying the critical role of carbides during deformation, along with basic texture development.
A generalized model via random walks for information filtering
International Nuclear Information System (INIS)
Ren, Zhuo-Ming; Kong, Yixiu; Shang, Ming-Sheng; Zhang, Yi-Cheng
2016-01-01
There could exist a simple general mechanism lurking beneath collaborative filtering and interdisciplinary physics approaches which have been successfully applied to online E-commerce platforms. Motivated by this idea, we propose a generalized model employing the dynamics of the random walk in the bipartite networks. Taking into account the degree information, the proposed generalized model could deduce the collaborative filtering, interdisciplinary physics approaches and even the enormous expansion of them. Furthermore, we analyze the generalized model with single and hybrid of degree information on the process of random walk in bipartite networks, and propose a possible strategy by using the hybrid degree information for different popular objects to toward promising precision of the recommendation. - Highlights: • We propose a generalized recommendation model employing the random walk dynamics. • The proposed model with single and hybrid of degree information is analyzed. • A strategy with the hybrid degree information improves precision of recommendation.
A generalized model via random walks for information filtering
Energy Technology Data Exchange (ETDEWEB)
Ren, Zhuo-Ming, E-mail: zhuomingren@gmail.com [Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700, Fribourg (Switzerland); Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, ChongQing, 400714 (China); Kong, Yixiu [Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700, Fribourg (Switzerland); Shang, Ming-Sheng, E-mail: msshang@cigit.ac.cn [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, ChongQing, 400714 (China); Zhang, Yi-Cheng [Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700, Fribourg (Switzerland)
2016-08-06
There could exist a simple general mechanism lurking beneath collaborative filtering and interdisciplinary physics approaches which have been successfully applied to online E-commerce platforms. Motivated by this idea, we propose a generalized model employing the dynamics of the random walk in the bipartite networks. Taking into account the degree information, the proposed generalized model could deduce the collaborative filtering, interdisciplinary physics approaches and even the enormous expansion of them. Furthermore, we analyze the generalized model with single and hybrid of degree information on the process of random walk in bipartite networks, and propose a possible strategy by using the hybrid degree information for different popular objects to toward promising precision of the recommendation. - Highlights: • We propose a generalized recommendation model employing the random walk dynamics. • The proposed model with single and hybrid of degree information is analyzed. • A strategy with the hybrid degree information improves precision of recommendation.
Directory of Open Access Journals (Sweden)
Rafał Babilas
2017-05-01
Full Text Available The structure of a multicomponent metallic glass, Mg65Cu20Y10Ni5, was investigated by the combined methods of neutron diffraction (ND, reverse Monte Carlo modeling (RMC and high-resolution transmission electron microscopy (HRTEM. The RMC method, based on the results of ND measurements, was used to develop a realistic structure model of a quaternary alloy in a glassy state. The calculated model consists of a random packing structure of atoms in which some ordered regions can be indicated. The amorphous structure was also described by peak values of partial pair correlation functions and coordination numbers, which illustrated some types of cluster packing. The N = 9 clusters correspond to the tri-capped trigonal prisms, which are one of Bernal’s canonical clusters, and atomic clusters with N = 6 and N = 12 are suitable for octahedral and icosahedral atomic configurations. The nanocrystalline character of the alloy after annealing was also studied by HRTEM. The selected HRTEM images of the nanocrystalline regions were also processed by inverse Fourier transform analysis. The high-angle annular dark-ﬁeld (HAADF technique was used to determine phase separation in the studied glass after heat treatment. The HAADF mode allows for the observation of randomly distributed, dark contrast regions of about 4–6 nm. The interplanar spacing identified for the orthorhombic Mg2Cu crystalline phase is similar to the value of the first coordination shell radius from the short-range order.
Huang, Xingguo; Sun, Hui
2018-05-01
Gaussian beam is an important complex geometrical optical technology for modeling seismic wave propagation and diffraction in the subsurface with complex geological structure. Current methods for Gaussian beam modeling rely on the dynamic ray tracing and the evanescent wave tracking. However, the dynamic ray tracing method is based on the paraxial ray approximation and the evanescent wave tracking method cannot describe strongly evanescent fields. This leads to inaccuracy of the computed wave fields in the region with a strong inhomogeneous medium. To address this problem, we compute Gaussian beam wave fields using the complex phase by directly solving the complex eikonal equation. In this method, the fast marching method, which is widely used for phase calculation, is combined with Gauss-Newton optimization algorithm to obtain the complex phase at the regular grid points. The main theoretical challenge in combination of this method with Gaussian beam modeling is to address the irregular boundary near the curved central ray. To cope with this challenge, we present the non-uniform finite difference operator and a modified fast marching method. The numerical results confirm the proposed approach.
Abdi, Mohamad; Hajihasani, Mojtaba; Gharibzadeh, Shahriar; Tavakkoli, Jahan
2012-12-01
Ultrasound waves have been widely used in diagnostic and therapeutic medical applications. Accurate and effective simulation of ultrasound beam propagation and its interaction with tissue has been proved to be important. The nonlinear nature of the ultrasound beam propagation, especially in the therapeutic regime, plays an important role in the mechanisms of interaction with tissue. There are three main approaches in current computational fluid dynamics (CFD) methods to model and simulate nonlinear ultrasound beams: macroscopic, mesoscopic and microscopic approaches. In this work, a mesoscopic CFD method based on the Lattice-Boltzmann model (LBM) was investigated. In the developed method, the Boltzmann equation is evolved to simulate the flow of a Newtonian fluid with the collision model instead of solving the Navier-Stokes, continuity and state equations which are used in conventional CFD methods. The LBM has some prominent advantages over conventional CFD methods, including: (1) its parallel computational nature; (2) taking microscopic boundaries into account; and (3) capability of simulating in porous and inhomogeneous media. In our proposed method, the propagating medium is discretized with a square grid in 2 dimensions with 9 velocity vectors for each node. Using the developed model, the nonlinear distortion and shock front development of a finiteamplitude diffractive ultrasonic beam in a dissipative fluid medium was computed and validated against the published data. The results confirm that the LBM is an accurate and effective approach to model and simulate nonlinearity in finite-amplitude ultrasound beams with Mach numbers of up to 0.01 which, among others, falls within the range of therapeutic ultrasound regime such as high intensity focused ultrasound (HIFU) beams. A comparison between the HIFU nonlinear beam simulations using the proposed model and pseudospectral methods in a 2D geometry is presented.
Reliability assessment of competing risks with generalized mixed shock models
International Nuclear Information System (INIS)
Rafiee, Koosha; Feng, Qianmei; Coit, David W.
2017-01-01
This paper investigates reliability modeling for systems subject to dependent competing risks considering the impact from a new generalized mixed shock model. Two dependent competing risks are soft failure due to a degradation process, and hard failure due to random shocks. The shock process contains fatal shocks that can cause hard failure instantaneously, and nonfatal shocks that impact the system in three different ways: 1) damaging the unit by immediately increasing the degradation level, 2) speeding up the deterioration by accelerating the degradation rate, and 3) weakening the unit strength by reducing the hard failure threshold. While the first impact from nonfatal shocks comes from each individual shock, the other two impacts are realized when the condition for a new generalized mixed shock model is satisfied. Unlike most existing mixed shock models that consider a combination of two shock patterns, our new generalized mixed shock model includes three classic shock patterns. According to the proposed generalized mixed shock model, the degradation rate and the hard failure threshold can simultaneously shift multiple times, whenever the condition for one of these three shock patterns is satisfied. An example using micro-electro-mechanical systems devices illustrates the effectiveness of the proposed approach with sensitivity analysis. - Highlights: • A rich reliability model for systems subject to dependent failures is proposed. • The degradation rate and the hard failure threshold can shift simultaneously. • The shift is triggered by a new generalized mixed shock model. • The shift can occur multiple times under the generalized mixed shock model.
Gluon radiation in diffractive electroproduction
International Nuclear Information System (INIS)
Buchmueller, W.; McDermott, M.F.; Hebecker, A.
1996-07-01
Order α s -correlations to the diffractive structure functions F L D and F 2 D at large Q 2 and small x are evaluated in the semiclassical approach, where the initial proton is treated as a classical colour field. The diffractive final state contains a fast gluon in addition to a quark-antiquark pair. Two of these partons may have large transverse momentum. Our calculations lead to an intuitive picture of deep-inelastic diffractive processes which is very similar to Bjorken's aligned-jet model. Both diffractive structure functions contain leading twist contributions from high-p perpendicular to jets. (orig.)
Diffraction radiation from relativistic particles
Potylitsyn, Alexander Petrovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich
2010-01-01
This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results.
Diffraction radiation from relativistic particles
International Nuclear Information System (INIS)
Potylitsyn, Alexander Petrovich; Ryazanov, Mikhail Ivanovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich
2010-01-01
This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results. (orig.)
International Nuclear Information System (INIS)
Faurie, D.; Djemia, P.; Le Bourhis, E.; Renault, P.-O.; Roussigne, Y.; Cherif, S.M.; Brenner, R.; Castelnau, O.; Patriarche, G.; Goudeau, Ph.
2010-01-01
Elastic properties of non-textured and {1 1 1}-fiber-textured gold thin films were investigated experimentally by several complementary techniques, namely in situ tensile testing under X-ray diffraction (XRD), nanoindentation and Brillouin light scattering (BLS). Specimens were probed along different directions to reveal the strong effects of elastic anisotropy at the (local) grain and (global) film scales. XRD allows the investigation of both local and global anisotropies, while BLS and nanoindentation are limited to global analyses. A micromechanical model, based on the self-consistent scheme, and accounting for the actual microstructure of the films, is applied to interpret experimental data. Although different types of elastic constants can be determined with the used experimental techniques (static/dynamic, local/global), a good agreement is obtained, showing that comparison of these techniques is feasible when carried out carefully. In particular, the use of a micromechanical model to estimate the effects of the local elastic anisotropy at the film scale is unavoidable. The presented results show that XRD, BLS and nanoindentation should capture anisotropic texture effects on elastic constants measurements for materials with a Zener anisotropy index larger than 2. Conversely, the actual texture of a given specimen should be taken into account for a proper analysis of elastic constants measurements using those three experimental techniques.
Learning general phonological rules from distributional information: a computational model.
Calamaro, Shira; Jarosz, Gaja
2015-04-01
Phonological rules create alternations in the phonetic realizations of related words. These rules must be learned by infants in order to identify the phonological inventory, the morphological structure, and the lexicon of a language. Recent work proposes a computational model for the learning of one kind of phonological alternation, allophony (Peperkamp, Le Calvez, Nadal, & Dupoux, 2006). This paper extends the model to account for learning of a broader set of phonological alternations and the formalization of these alternations as general rules. In Experiment 1, we apply the original model to new data in Dutch and demonstrate its limitations in learning nonallophonic rules. In Experiment 2, we extend the model to allow it to learn general rules for alternations that apply to a class of segments. In Experiment 3, the model is further extended to allow for generalization by context; we argue that this generalization must be constrained by linguistic principles. Copyright © 2014 Cognitive Science Society, Inc.
Theoretical review of diffractive phenomena
International Nuclear Information System (INIS)
Golec-Biernat, K.
2005-01-01
We review QCD based descriptions of diffractive deep inelastic scattering emphasising the role of models with parton saturation. These models provide natural explanation of such experimentally observed facts as the constant ratio of σ diff /σ tot as a function of the Bjorken variable x, and Regge factorization of diffractive parton distributions. The Ingelman-Schlein model and the soft color interaction model are also presented
General Friction Model Extended by the Effect of Strain Hardening
DEFF Research Database (Denmark)
Nielsen, Chris V.; Martins, Paulo A.F.; Bay, Niels
2016-01-01
An extension to the general friction model proposed by Wanheim and Bay [1] to include the effect of strain hardening is proposed. The friction model relates the friction stress to the fraction of real contact area by a friction factor under steady state sliding. The original model for the real...... contact area as function of the normalized contact pressure is based on slip-line analysis and hence on the assumption of rigid-ideally plastic material behavior. In the present work, a general finite element model is established to, firstly, reproduce the original model under the assumption of rigid...
On a Generalized Squared Gaussian Diffusion Model for Option Valuation
Directory of Open Access Journals (Sweden)
Edeki S.O.
2017-01-01
Full Text Available In financial mathematics, option pricing models are vital tools whose usefulness cannot be overemphasized. Modern approaches and modelling of financial derivatives are therefore required in option pricing and valuation settings. In this paper, we derive via the application of Ito lemma, a pricing model referred to as Generalized Squared Gaussian Diffusion Model (GSGDM for option pricing and valuation. Same approach can be considered via Stratonovich stochastic dynamics. We also show that the classical Black-Scholes, and the square root constant elasticity of variance models are special cases of the GSGDM. In addition, general solution of the GSGDM is obtained using modified variational iterative method (MVIM.
Contribution to diffraction theory
International Nuclear Information System (INIS)
Chako, N.
1966-11-01
In a first part, we have given a general and detailed treatment of the modern theory of diffraction. The rigorous theory is formulated as a boundary value problem of the wave equation or Maxwell equations. However, up to the present time, such a program of treating diffraction by optical systems, even for simple optical instruments, has not been realized due to the complicated character of the boundary conditions. The recent developments show clearly the nature of the approximation of the classical theories originally due to Fresnel and Young, later formulated in a rigorous manner by Kirchhoff and Rubinowicz, respectively and, at the same time the insufficiency of these theories in explaining a number of diffraction phenomena. Furthermore, we have made a study of the limitations of the approximate theories and the recent attempts to improve these. The second part is devoted to a general mathematical treatment of the theory of diffraction of optical systems including aberrations. After a general and specific analysis of geometrical and wave aberrations along classical and modern (Nijboer) lines, we have been able to evaluate the diffraction integrals representing the image field at any point in image space explicitly, when the aberrations are small. Our formulas are the generalisations of all anterior results obtained by previous investigators. Moreover, we have discussed the Zernike-Nijboer theory of aberration and generalised it not only for rotational systems, but also for non-symmetric systems as well, including the case of non circular apertures. The extension to non-circular apertures is done by introducing orthogonal functions or polynomials over such aperture shapes. So far the results are valid for small aberrations, that is to say, where the deformation of the real wave front emerging from the optical system is less than a wave length of light or of the electromagnetic wave from the ideal wave front. If the aberrations are large, then one must employ the
Kalman Filter for Generalized 2-D Roesser Models
Institute of Scientific and Technical Information of China (English)
SHENG Mei; ZOU Yun
2007-01-01
The design problem of the state filter for the generalized stochastic 2-D Roesser models, which appears when both the state and measurement are simultaneously subjected to the interference from white noise, is discussed. The wellknown Kalman filter design is extended to the generalized 2-D Roesser models. Based on the method of "scanning line by line", the filtering problem of generalized 2-D Roesser models with mode-energy reconstruction is solved. The formula of the optimal filtering, which minimizes the variance of the estimation error of the state vectors, is derived. The validity of the designed filter is verified by the calculation steps and the examples are introduced.
Generalized Linear Models with Applications in Engineering and the Sciences
Myers, Raymond H; Vining, G Geoffrey; Robinson, Timothy J
2012-01-01
Praise for the First Edition "The obvious enthusiasm of Myers, Montgomery, and Vining and their reliance on their many examples as a major focus of their pedagogy make Generalized Linear Models a joy to read. Every statistician working in any area of applied science should buy it and experience the excitement of these new approaches to familiar activities."-Technometrics Generalized Linear Models: With Applications in Engineering and the Sciences, Second Edition continues to provide a clear introduction to the theoretical foundations and key applications of generalized linear models (GLMs). Ma
Critical Comments on the General Model of Instructional Communication
Walton, Justin D.
2014-01-01
This essay presents a critical commentary on McCroskey et al.'s (2004) general model of instructional communication. In particular, five points are examined which make explicit and problematize the meta-theoretical assumptions of the model. Comments call attention to the limitations of the model and argue for a broader approach to…
Membrane models and generalized Z2 gauge theories
International Nuclear Information System (INIS)
Lowe, M.J.; Wallace, D.J.
1980-01-01
We consider models of (d-n)-dimensional membranes fluctuating in a d-dimensional space under the action of surface tension. We investigate the renormalization properties of these models perturbatively and in 1/n expansion. The potential relationships of these models to generalized Z 2 gauge theories are indicated. (orig.)
A Duality Result for the Generalized Erlang Risk Model
Directory of Open Access Journals (Sweden)
Lanpeng Ji
2014-11-01
Full Text Available In this article, we consider the generalized Erlang risk model and its dual model. By using a conditional measure-preserving correspondence between the two models, we derive an identity for two interesting conditional probabilities. Applications to the discounted joint density of the surplus prior to ruin and the deficit at ruin are also discussed.
A Generalized Partial Credit Model: Application of an EM Algorithm.
Muraki, Eiji
1992-01-01
The partial credit model with a varying slope parameter is developed and called the generalized partial credit model (GPCM). Analysis results for simulated data by this and other polytomous item-response models demonstrate that the rating formulation of the GPCM is adaptable to the analysis of polytomous item responses. (SLD)
Linear and Generalized Linear Mixed Models and Their Applications
Jiang, Jiming
2007-01-01
This book covers two major classes of mixed effects models, linear mixed models and generalized linear mixed models, and it presents an up-to-date account of theory and methods in analysis of these models as well as their applications in various fields. The book offers a systematic approach to inference about non-Gaussian linear mixed models. Furthermore, it has included recently developed methods, such as mixed model diagnostics, mixed model selection, and jackknife method in the context of mixed models. The book is aimed at students, researchers and other practitioners who are interested
Blazed Grating Resonance Conditions and Diffraction Efficiency Optical Transfer Function
Stegenburgs, Edgars
2017-01-08
We introduce a general approach to study diffraction harmonics or resonances and resonance conditions for blazed reflecting gratings providing knowledge of fundamental diffraction pattern and qualitative understanding of predicting parameters for the most efficient diffraction.
Blazed Grating Resonance Conditions and Diffraction Efficiency Optical Transfer Function
Stegenburgs, Edgars; Alias, Mohd Sharizal B.; Ng, Tien Khee; Ooi, Boon S.
2017-01-01
We introduce a general approach to study diffraction harmonics or resonances and resonance conditions for blazed reflecting gratings providing knowledge of fundamental diffraction pattern and qualitative understanding of predicting parameters for the most efficient diffraction.
a Proposal for Generalization of 3d Models
Uyar, A.; Ulugtekin, N. N.
2017-11-01
In recent years, 3D models have been created of many cities around the world. Most of the 3D city models have been introduced as completely graphic or geometric models, and the semantic and topographic aspects of the models have been neglected. In order to use 3D city models beyond the task, a generalization is necessary. CityGML is an open data model and XML-based format for the storage and exchange of virtual 3D city models. Level of Details (LoD) which is an important concept for 3D modelling, can be defined as outlined degree or prior representation of real-world objects. The paper aim is first describes some requirements of 3D model generalization, then presents problems and approaches that have been developed in recent years. In conclude the paper will be a summary and outlook on problems and future work.
General classical solutions in the noncommutative CPN-1 model
International Nuclear Information System (INIS)
Foda, O.; Jack, I.; Jones, D.R.T.
2002-01-01
We give an explicit construction of general classical solutions for the noncommutative CP N-1 model in two dimensions, showing that they correspond to integer values for the action and topological charge. We also give explicit solutions for the Dirac equation in the background of these general solutions and show that the index theorem is satisfied
Parameter Estimation for a Computable General Equilibrium Model
DEFF Research Database (Denmark)
Arndt, Channing; Robinson, Sherman; Tarp, Finn
2002-01-01
We introduce a maximum entropy approach to parameter estimation for computable general equilibrium (CGE) models. The approach applies information theory to estimating a system of non-linear simultaneous equations. It has a number of advantages. First, it imposes all general equilibrium constraints...
Parameter Estimation for a Computable General Equilibrium Model
DEFF Research Database (Denmark)
Arndt, Channing; Robinson, Sherman; Tarp, Finn
We introduce a maximum entropy approach to parameter estimation for computable general equilibrium (CGE) models. The approach applies information theory to estimating a system of nonlinear simultaneous equations. It has a number of advantages. First, it imposes all general equilibrium constraints...
Dividend taxation in an infinite-horizon general equilibrium model
Pham, Ngoc-Sang
2017-01-01
We consider an infinite-horizon general equilibrium model with heterogeneous agents and financial market imperfections. We investigate the role of dividend taxation on economic growth and asset price. The optimal dividend taxation is also studied.
Two point function for a simple general relativistic quantum model
Colosi, Daniele
2007-01-01
We study the quantum theory of a simple general relativistic quantum model of two coupled harmonic oscillators and compute the two-point function following a proposal first introduced in the context of loop quantum gravity.
Generalized model for Memristor-based Wien family oscillators
Talukdar, Abdul Hafiz Ibne; Radwan, Ahmed G.; Salama, Khaled N.
2012-01-01
In this paper, we report the unconventional characteristics of Memristor in Wien oscillators. Generalized mathematical models are developed to analyze four members of the Wien family using Memristors. Sustained oscillation is reported for all types
The DINA model as a constrained general diagnostic model: Two variants of a model equivalency.
von Davier, Matthias
2014-02-01
The 'deterministic-input noisy-AND' (DINA) model is one of the more frequently applied diagnostic classification models for binary observed responses and binary latent variables. The purpose of this paper is to show that the model is equivalent to a special case of a more general compensatory family of diagnostic models. Two equivalencies are presented. Both project the original DINA skill space and design Q-matrix using mappings into a transformed skill space as well as a transformed Q-matrix space. Both variants of the equivalency produce a compensatory model that is mathematically equivalent to the (conjunctive) DINA model. This equivalency holds for all DINA models with any type of Q-matrix, not only for trivial (simple-structure) cases. The two versions of the equivalency presented in this paper are not implied by the recently suggested log-linear cognitive diagnosis model or the generalized DINA approach. The equivalencies presented here exist independent of these recently derived models since they solely require a linear - compensatory - general diagnostic model without any skill interaction terms. Whenever it can be shown that one model can be viewed as a special case of another more general one, conclusions derived from any particular model-based estimates are drawn into question. It is widely known that multidimensional models can often be specified in multiple ways while the model-based probabilities of observed variables stay the same. This paper goes beyond this type of equivalency by showing that a conjunctive diagnostic classification model can be expressed as a constrained special case of a general compensatory diagnostic modelling framework. © 2013 The British Psychological Society.
A Generalized QMRA Beta-Poisson Dose-Response Model.
Xie, Gang; Roiko, Anne; Stratton, Helen; Lemckert, Charles; Dunn, Peter K; Mengersen, Kerrie
2016-10-01
Quantitative microbial risk assessment (QMRA) is widely accepted for characterizing the microbial risks associated with food, water, and wastewater. Single-hit dose-response models are the most commonly used dose-response models in QMRA. Denoting PI(d) as the probability of infection at a given mean dose d, a three-parameter generalized QMRA beta-Poisson dose-response model, PI(d|α,β,r*), is proposed in which the minimum number of organisms required for causing infection, K min , is not fixed, but a random variable following a geometric distribution with parameter 0Poisson model, PI(d|α,β), is a special case of the generalized model with K min = 1 (which implies r*=1). The generalized beta-Poisson model is based on a conceptual model with greater detail in the dose-response mechanism. Since a maximum likelihood solution is not easily available, a likelihood-free approximate Bayesian computation (ABC) algorithm is employed for parameter estimation. By fitting the generalized model to four experimental data sets from the literature, this study reveals that the posterior median r* estimates produced fall short of meeting the required condition of r* = 1 for single-hit assumption. However, three out of four data sets fitted by the generalized models could not achieve an improvement in goodness of fit. These combined results imply that, at least in some cases, a single-hit assumption for characterizing the dose-response process may not be appropriate, but that the more complex models may be difficult to support especially if the sample size is small. The three-parameter generalized model provides a possibility to investigate the mechanism of a dose-response process in greater detail than is possible under a single-hit model. © 2016 Society for Risk Analysis.
Specific and General Human Capital in an Endogenous Growth Model
Evangelia Vourvachaki; Vahagn Jerbashian; : Sergey Slobodyan
2014-01-01
In this article, we define specific (general) human capital in terms of the occupations whose use is spread in a limited (wide) set of industries. We analyze the growth impact of an economy's composition of specific and general human capital, in a model where education and research and development are costly and complementary activities. The model suggests that a declining share of specific human capital, as observed in the Czech Republic, can be associated with a lower rate of long-term grow...
Dynamical CP violation of the generalized Yang-Mills model
International Nuclear Information System (INIS)
Wang Dianfu; Chang Xiaojing; Sun Xiaoyu
2011-01-01
Starting from the generalized Yang-Mills model which contains, besides the vector part V μ , also a scalar part S and a pseudoscalar part P . It is shown, in terms of the Nambu-Jona-Lasinio (NJL) mechanism, that CP violation can be realized dynamically. The combination of the generalized Yang-Mills model and the NJL mechanism provides a new way to explain CP violation. (authors)
Structure of AgxNa1-xPO3 glasses by neutron diffraction and reverse Monte Carlo modelling
International Nuclear Information System (INIS)
Hall, Andreas; Swenson, Jan; Karlsson, Christian; Adams, Stefan; Bowron, Daniel T
2007-01-01
We have performed structural studies of mixed mobile ion phosphate glasses Ag x Na 1-x PO 3 using diffraction experiments and reverse Monte Carlo simulations. This glass system is particularly interesting as a model system for investigations of the mixed mobile ion effect, due to its anomalously low magnitude in the system. As for previously studied mixed alkali phosphate glasses, with a much more pronounced mixed mobile ion effect, we find no substantial structural alterations of the phosphorous-oxygen network and the local coordination of the mobile cations. Furthermore, the mobile Ag + and Na + ions are randomly mixed with no detectable preference for either similar or dissimilar pairs of cations. However, in contrast to mixed mobile ion systems with a very pronounced mixed mobile ion effect, the two types of mobile ions have, in this case, very similar local environments. For all the studied glass compositions the average Ag-O and Na-O distances in the first coordination shell are determined to be 2.5 ± 0.1 and 2.5 ± 0.1 A, and the corresponding average coordination numbers are approximately 3.2 and 3.7, respectively. The similar local coordinations of the two types of mobile ions suggests that the energy mismatch for a Na + ion to occupy a site that previously has been occupied by a Ag + ion (and vice versa) is low, and that this low energy mismatch is responsible for the anomalously weak mixed mobile ion effect
A general model for membrane-based separation processes
DEFF Research Database (Denmark)
Soni, Vipasha; Abildskov, Jens; Jonsson, Gunnar Eigil
2009-01-01
behaviour will play an important role. In this paper, modelling of membrane-based processes for separation of gas and liquid mixtures are considered. Two general models, one for membrane-based liquid separation processes (with phase change) and another for membrane-based gas separation are presented....... The separation processes covered are: membrane-based gas separation processes, pervaporation and various types of membrane distillation processes. The specific model for each type of membrane-based process is generated from the two general models by applying the specific system descriptions and the corresponding...
Generalized continua as models for classical and advanced materials
Forest, Samuel
2016-01-01
This volume is devoted to an actual topic which is the focus world-wide of various research groups. It contains contributions describing the material behavior on different scales, new existence and uniqueness theorems, the formulation of constitutive equations for advanced materials. The main emphasis of the contributions is directed on the following items - Modelling and simulation of natural and artificial materials with significant microstructure, - Generalized continua as a result of multi-scale models, - Multi-field actions on materials resulting in generalized material models, - Theories including higher gradients, and - Comparison with discrete modelling approaches.
Pricing Participating Products under a Generalized Jump-Diffusion Model
Directory of Open Access Journals (Sweden)
Tak Kuen Siu
2008-01-01
Full Text Available We propose a model for valuing participating life insurance products under a generalized jump-diffusion model with a Markov-switching compensator. It also nests a number of important and popular models in finance, including the classes of jump-diffusion models and Markovian regime-switching models. The Esscher transform is employed to determine an equivalent martingale measure. Simulation experiments are conducted to illustrate the practical implementation of the model and to highlight some features that can be obtained from our model.
International Competition and Inequality: A Generalized Ricardian Model
Adolfo Figueroa
2014-01-01
Why does the gap in real wage rates persist between the First World and the Third World after so many years of increasing globalization? The standard neoclassical trade model predicts that real wage rates will be equalized with international trade, whereas the standard Ricardian trade model does not. Facts are thus consistent with the Ricardian model. However, this model leaves undetermined income distribution. The objective of this paper is to fill this gap by developing a generalized Ricard...
Adaptation of a general circulation model to ocean dynamics
Turner, R. E.; Rees, T. H.; Woodbury, G. E.
1976-01-01
A primitive-variable general circulation model of the ocean was formulated in which fast external gravity waves are suppressed with rigid-lid surface constraint pressires which also provide a means for simulating the effects of large-scale free-surface topography. The surface pressure method is simpler to apply than the conventional stream function models, and the resulting model can be applied to both global ocean and limited region situations. Strengths and weaknesses of the model are also presented.
A generalized statistical model for the size distribution of wealth
International Nuclear Information System (INIS)
Clementi, F; Gallegati, M; Kaniadakis, G
2012-01-01
In a recent paper in this journal (Clementi et al 2009 J. Stat. Mech. P02037), we proposed a new, physically motivated, distribution function for modeling individual incomes, having its roots in the framework of the κ-generalized statistical mechanics. The performance of the κ-generalized distribution was checked against real data on personal income for the United States in 2003. In this paper we extend our previous model so as to be able to account for the distribution of wealth. Probabilistic functions and inequality measures of this generalized model for wealth distribution are obtained in closed form. In order to check the validity of the proposed model, we analyze the US household wealth distributions from 1984 to 2009 and conclude an excellent agreement with the data that is superior to any other model already known in the literature. (paper)
A generalized statistical model for the size distribution of wealth
Clementi, F.; Gallegati, M.; Kaniadakis, G.
2012-12-01
In a recent paper in this journal (Clementi et al 2009 J. Stat. Mech. P02037), we proposed a new, physically motivated, distribution function for modeling individual incomes, having its roots in the framework of the κ-generalized statistical mechanics. The performance of the κ-generalized distribution was checked against real data on personal income for the United States in 2003. In this paper we extend our previous model so as to be able to account for the distribution of wealth. Probabilistic functions and inequality measures of this generalized model for wealth distribution are obtained in closed form. In order to check the validity of the proposed model, we analyze the US household wealth distributions from 1984 to 2009 and conclude an excellent agreement with the data that is superior to any other model already known in the literature.
Generalized entropy formalism and a new holographic dark energy model
Sayahian Jahromi, A.; Moosavi, S. A.; Moradpour, H.; Morais Graça, J. P.; Lobo, I. P.; Salako, I. G.; Jawad, A.
2018-05-01
Recently, the Rényi and Tsallis generalized entropies have extensively been used in order to study various cosmological and gravitational setups. Here, using a special type of generalized entropy, a generalization of both the Rényi and Tsallis entropy, together with holographic principle, we build a new model for holographic dark energy. Thereinafter, considering a flat FRW universe, filled by a pressureless component and the new obtained dark energy model, the evolution of cosmos has been investigated showing satisfactory results and behavior. In our model, the Hubble horizon plays the role of IR cutoff, and there is no mutual interaction between the cosmos components. Our results indicate that the generalized entropy formalism may open a new window to become more familiar with the nature of spacetime and its properties.
A generalized model via random walks for information filtering
Ren, Zhuo-Ming; Kong, Yixiu; Shang, Ming-Sheng; Zhang, Yi-Cheng
2016-08-01
There could exist a simple general mechanism lurking beneath collaborative filtering and interdisciplinary physics approaches which have been successfully applied to online E-commerce platforms. Motivated by this idea, we propose a generalized model employing the dynamics of the random walk in the bipartite networks. Taking into account the degree information, the proposed generalized model could deduce the collaborative filtering, interdisciplinary physics approaches and even the enormous expansion of them. Furthermore, we analyze the generalized model with single and hybrid of degree information on the process of random walk in bipartite networks, and propose a possible strategy by using the hybrid degree information for different popular objects to toward promising precision of the recommendation.
Diffractive optics and nanophotonics resolution below the diffraction limit
Minin, Igor
2016-01-01
In this book the authors present several examples of techniques used to overcome the Abby diffraction limit using flat and 3D diffractive optical elements, photonic crystal lenses, photonic jets, and surface plasmon diffractive optics. The structures discussed can be used in the microwave and THz range and also as scaled models for optical frequencies. Such nano-optical microlenses can be integrated, for example, into existing semiconductor heterostructure platforms for next-generation optoelectronic applications. Chapter 1 considers flat diffractive lenses and innovative 3D radiating structures including a conical millimeter-wave Fresnel zone plate (FZP) lens proposed for subwavelength focusing. In chapter 2 the subwavelength focusing properties of diffractive photonic crystal lenses are considered and it is shown that at least three different types of photonic crystal lens are possible. With the aim of achieving subwavelength focusing, in chapter 3 an alternative mechanism to produce photonic jets at Tera...
Shan, Mao
2016-10-01
In this dissertation, the mathematical model of effect of manufacturing errors including microstructure relative height error and relative width error on diffraction efficiency for the harmonic diffractive optical elements (HDEs) is set up. According to the expression of the phase delay and diffraction efficiency of the HDEs, the expression of diffraction efficiency of refraction and diffractive optical element with the microstructure height and periodic width errors in fabrication process is presented in this paper. Furthermore, the effect of manufacturing errors on diffraction efficiency for the harmonic diffractive optical elements is studied, and diffraction efficiency change is analyzed as the relative microstructure height-error in the same and in the opposite sign as well as relative width-error in the same and in the opposite sign. Example including infrared wavelength with materials GE has been discussed in this paper. Two kinds of manufacturing errors applied in 3.7 4.3um middle infrared and 8.7-11.5um far infrared optical system which results in diffraction efficiency and PIDE of HDEs are studied. The analysis results can be used for manufacturing error control in micro-structure height and periodic width. Results can be used for HDEs processing.
Merons in a generally covariant model with Gursey term
International Nuclear Information System (INIS)
Akdeniz, K.G.; Smailagic, A.
1982-10-01
We study meron solutions of the generally covariant and Weyl invariant fermionic model with Gursey term. We find that, due to the presence of this term, merons can exist even without the cosmological constant. This is a new feature compared to previously studied models. (author)
Simulation modelling in agriculture: General considerations. | R.I. ...
African Journals Online (AJOL)
A computer simulation model is a detailed working hypothesis about a given system. The computer does all the necessary arithmetic when the hypothesis is invoked to predict the future behaviour of the simulated system under given conditions.A general pragmatic approach to model building is discussed; techniques are ...
Response of an ocean general circulation model to wind and ...
Indian Academy of Sciences (India)
The stretched-coordinate ocean general circulation model has been designed to study the observed variability due to wind and thermodynamic forcings. The model domain extends from 60°N to 60°S and cyclically continuous in the longitudinal direction. The horizontal resolution is 5° × 5° and 9 discrete vertical levels.
General Separations Area (GSA) Groundwater Flow Model Update: Hydrostratigraphic Data
Energy Technology Data Exchange (ETDEWEB)
Bagwell, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Bennett, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
2017-02-21
This document describes the assembly, selection, and interpretation of hydrostratigraphic data for input to an updated groundwater flow model for the General Separations Area (GSA; Figure 1) at the Department of Energy’s (DOE) Savannah River Site (SRS). This report is one of several discrete but interrelated tasks that support development of an updated groundwater model (Bagwell and Flach, 2016).
Simplicial models for trace spaces II: General higher dimensional automata
DEFF Research Database (Denmark)
Raussen, Martin
of directed paths with given end points in a pre-cubical complex as the nerve of a particular category. The paper generalizes the results from Raussen [19, 18] in which we had to assume that the HDA in question arises from a semaphore model. In particular, important for applications, it allows for models...
Generalized algebra-valued models of set theory
Löwe, B.; Tarafder, S.
2015-01-01
We generalize the construction of lattice-valued models of set theory due to Takeuti, Titani, Kozawa and Ozawa to a wider class of algebras and show that this yields a model of a paraconsistent logic that validates all axioms of the negation-free fragment of Zermelo-Fraenkel set theory.
Efficient probabilistic model checking on general purpose graphic processors
Bosnacki, D.; Edelkamp, S.; Sulewski, D.; Pasareanu, C.S.
2009-01-01
We present algorithms for parallel probabilistic model checking on general purpose graphic processing units (GPGPUs). For this purpose we exploit the fact that some of the basic algorithms for probabilistic model checking rely on matrix vector multiplication. Since this kind of linear algebraic
Stability analysis for a general age-dependent vaccination model
International Nuclear Information System (INIS)
El Doma, M.
1995-05-01
An SIR epidemic model of a general age-dependent vaccination model is investigated when the fertility, mortality and removal rates depends on age. We give threshold criteria of the existence of equilibriums and perform stability analysis. Furthermore a critical vaccination coverage that is sufficient to eradicate the disease is determined. (author). 12 refs
A General Polygon-based Deformable Model for Object Recognition
DEFF Research Database (Denmark)
Jensen, Rune Fisker; Carstensen, Jens Michael
1999-01-01
We propose a general scheme for object localization and recognition based on a deformable model. The model combines shape and image properties by warping a arbitrary prototype intensity template according to the deformation in shape. The shape deformations are constrained by a probabilistic distr...
A General Microscopic Traffic Model Yielding Dissipative Shocks
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Caputo, Jean Guy; Christiansen, Peter Leth
2018-01-01
We consider a general microscopic traffic model with a delay. An algebraic traffic function reduces the equation to the Aw-Rascle microscopic model while a sigmoid function gives the standard “follow the leader”. For zero delay we prove that the homogeneous solution is globally stable...
Nature of dynamical suppressions in the generalized Veneziano model
International Nuclear Information System (INIS)
Odorico, R.
1976-05-01
It is shown by explicit numerical calculations that of a class of coupling suppressions existing in the generalized Veneziano model, which have been recently used to interpret the psi data and other related phenomena, only a part can be attributed to the exponential growth with energy of the number of levels in the model. The remaining suppressions have a more direct dual origin
A theoretical overview on single hard diffraction
International Nuclear Information System (INIS)
Wuesthoff, M.
1996-01-01
The concept of the Pomeron structure function and its application in Single Hard Diffraction at hadron colliders and in diffractive Deep Inelastic Scattering is critically reviewed. Some alternative approaches are briefly surveyed with a focus on QCD inspired models
Bayesian Subset Modeling for High-Dimensional Generalized Linear Models
Liang, Faming; Song, Qifan; Yu, Kai
2013-01-01
criterion model. The consistency of the resulting posterior is established under mild conditions. Further, a variable screening procedure is proposed based on the marginal inclusion probability, which shares the same properties of sure screening
Infrared problems in two-dimensional generalized σ-models
International Nuclear Information System (INIS)
Curci, G.; Paffuti, G.
1989-01-01
We study the correlations of the energy-momentum tensor for classically conformally invariant generalized σ-models in the Wilson operator-product-expansion approach. We find that these correlations are, in general, infrared divergent. The absence of infrared divergences is obtained, as one can expect, for σ-models on a group manifold or for σ-models with a string-like interpretation. Moreover, the infrared divergences spoil the naive scaling arguments used by Zamolodchikov in the demonstration of the C-theorem. (orig.)
Calibration and validation of a general infiltration model
Mishra, Surendra Kumar; Ranjan Kumar, Shashi; Singh, Vijay P.
1999-08-01
A general infiltration model proposed by Singh and Yu (1990) was calibrated and validated using a split sampling approach for 191 sets of infiltration data observed in the states of Minnesota and Georgia in the USA. Of the five model parameters, fc (the final infiltration rate), So (the available storage space) and exponent n were found to be more predictable than the other two parameters: m (exponent) and a (proportionality factor). A critical examination of the general model revealed that it is related to the Soil Conservation Service (1956) curve number (SCS-CN) method and its parameter So is equivalent to the potential maximum retention of the SCS-CN method and is, in turn, found to be a function of soil sorptivity and hydraulic conductivity. The general model was found to describe infiltration rate with time varying curve number.
Partially Observed Mixtures of IRT Models: An Extension of the Generalized Partial-Credit Model
Von Davier, Matthias; Yamamoto, Kentaro
2004-01-01
The generalized partial-credit model (GPCM) is used frequently in educational testing and in large-scale assessments for analyzing polytomous data. Special cases of the generalized partial-credit model are the partial-credit model--or Rasch model for ordinal data--and the two parameter logistic (2PL) model. This article extends the GPCM to the…
Generalized Tavis-Cummings models and quantum networks
Gorokhov, A. V.
2018-04-01
The properties of quantum networks based on generalized Tavis-Cummings models are theoretically investigated. We have calculated the information transfer success rate from one node to another in a simple model of a quantum network realized with two-level atoms placed in the cavities and interacting with an external laser field and cavity photons. The method of dynamical group of the Hamiltonian and technique of corresponding coherent states were used for investigation of the temporal dynamics of the two nodes model.
Hahne, G. E.
1991-01-01
A formal theory of the scattering of time-harmonic acoustic scalar waves from impenetrable, immobile obstacles is established. The time-independent formal scattering theory of nonrelativistic quantum mechanics, in particular the theory of the complete Green's function and the transition (T) operator, provides the model. The quantum-mechanical approach is modified to allow the treatment of acoustic-wave scattering with imposed boundary conditions of impedance type on the surface (delta-Omega) of an impenetrable obstacle. With k0 as the free-space wavenumber of the signal, a simplified expression is obtained for the k0-dependent T operator for a general case of homogeneous impedance boundary conditions for the acoustic wave on delta-Omega. All the nonelementary operators entering the expression for the T operator are formally simple rational algebraic functions of a certain invertible linear radiation impedance operator which maps any sufficiently well-behaved complex-valued function on delta-Omega into another such function on delta-Omega. In the subsequent study, the short-wavelength and the long-wavelength behavior of the radiation impedance operator and its inverse (the 'radiation admittance' operator) as two-point kernels on a smooth delta-Omega are studied for pairs of points that are close together.
Estimating and Forecasting Generalized Fractional Long Memory Stochastic Volatility Models
Directory of Open Access Journals (Sweden)
Shelton Peiris
2017-12-01
Full Text Available This paper considers a flexible class of time series models generated by Gegenbauer polynomials incorporating the long memory in stochastic volatility (SV components in order to develop the General Long Memory SV (GLMSV model. We examine the corresponding statistical properties of this model, discuss the spectral likelihood estimation and investigate the finite sample properties via Monte Carlo experiments. We provide empirical evidence by applying the GLMSV model to three exchange rate return series and conjecture that the results of out-of-sample forecasts adequately confirm the use of GLMSV model in certain financial applications.
Generalized heat-transport equations: parabolic and hyperbolic models
Rogolino, Patrizia; Kovács, Robert; Ván, Peter; Cimmelli, Vito Antonio
2018-03-01
We derive two different generalized heat-transport equations: the most general one, of the first order in time and second order in space, encompasses some well-known heat equations and describes the hyperbolic regime in the absence of nonlocal effects. Another, less general, of the second order in time and fourth order in space, is able to describe hyperbolic heat conduction also in the presence of nonlocal effects. We investigate the thermodynamic compatibility of both models by applying some generalizations of the classical Liu and Coleman-Noll procedures. In both cases, constitutive equations for the entropy and for the entropy flux are obtained. For the second model, we consider a heat-transport equation which includes nonlocal terms and study the resulting set of balance laws, proving that the corresponding thermal perturbations propagate with finite speed.
The Diffraction Response Interpolation Method
DEFF Research Database (Denmark)
Jespersen, Søren Kragh; Wilhjelm, Jens Erik; Pedersen, Peder C.
1998-01-01
Computer modeling of the output voltage in a pulse-echo system is computationally very demanding, particularly whenconsidering reflector surfaces of arbitrary geometry. A new, efficient computational tool, the diffraction response interpolationmethod (DRIM), for modeling of reflectors in a fluid...... medium, is presented. The DRIM is based on the velocity potential impulseresponse method, adapted to pulse-echo applications by the use of acoustical reciprocity. Specifically, the DRIM operates bydividing the reflector surface into planar elements, finding the diffraction response at the corners...
Generalized semi-Markovian dividend discount model: risk and return
D'Amico, Guglielmo
2016-01-01
The article presents a general discrete time dividend valuation model when the dividend growth rate is a general continuous variable. The main assumption is that the dividend growth rate follows a discrete time semi-Markov chain with measurable space. The paper furnishes sufficient conditions that assure finiteness of fundamental prices and risks and new equations that describe the first and second order price-dividend ratios. Approximation methods to solve equations are provided and some new...
Practical likelihood analysis for spatial generalized linear mixed models
DEFF Research Database (Denmark)
Bonat, W. H.; Ribeiro, Paulo Justiniano
2016-01-01
We investigate an algorithm for maximum likelihood estimation of spatial generalized linear mixed models based on the Laplace approximation. We compare our algorithm with a set of alternative approaches for two datasets from the literature. The Rhizoctonia root rot and the Rongelap are......, respectively, examples of binomial and count datasets modeled by spatial generalized linear mixed models. Our results show that the Laplace approximation provides similar estimates to Markov Chain Monte Carlo likelihood, Monte Carlo expectation maximization, and modified Laplace approximation. Some advantages...... of Laplace approximation include the computation of the maximized log-likelihood value, which can be used for model selection and tests, and the possibility to obtain realistic confidence intervals for model parameters based on profile likelihoods. The Laplace approximation also avoids the tuning...
Modeling the brain morphology distribution in the general aging population
Huizinga, W.; Poot, D. H. J.; Roshchupkin, G.; Bron, E. E.; Ikram, M. A.; Vernooij, M. W.; Rueckert, D.; Niessen, W. J.; Klein, S.
2016-03-01
Both normal aging and neurodegenerative diseases such as Alzheimer's disease cause morphological changes of the brain. To better distinguish between normal and abnormal cases, it is necessary to model changes in brain morphology owing to normal aging. To this end, we developed a method for analyzing and visualizing these changes for the entire brain morphology distribution in the general aging population. The method is applied to 1000 subjects from a large population imaging study in the elderly, from which 900 were used to train the model and 100 were used for testing. The results of the 100 test subjects show that the model generalizes to subjects outside the model population. Smooth percentile curves showing the brain morphology changes as a function of age and spatiotemporal atlases derived from the model population are publicly available via an interactive web application at agingbrain.bigr.nl.
A general diagnostic model applied to language testing data.
von Davier, Matthias
2008-11-01
Probabilistic models with one or more latent variables are designed to report on a corresponding number of skills or cognitive attributes. Multidimensional skill profiles offer additional information beyond what a single test score can provide, if the reported skills can be identified and distinguished reliably. Many recent approaches to skill profile models are limited to dichotomous data and have made use of computationally intensive estimation methods such as Markov chain Monte Carlo, since standard maximum likelihood (ML) estimation techniques were deemed infeasible. This paper presents a general diagnostic model (GDM) that can be estimated with standard ML techniques and applies to polytomous response variables as well as to skills with two or more proficiency levels. The paper uses one member of a larger class of diagnostic models, a compensatory diagnostic model for dichotomous and partial credit data. Many well-known models, such as univariate and multivariate versions of the Rasch model and the two-parameter logistic item response theory model, the generalized partial credit model, as well as a variety of skill profile models, are special cases of this GDM. In addition to an introduction to this model, the paper presents a parameter recovery study using simulated data and an application to real data from the field test for TOEFL Internet-based testing.
Generalized additive model of air pollution to daily mortality
International Nuclear Information System (INIS)
Kim, J.; Yang, H.E.
2005-01-01
The association of air pollution with daily mortality due to cardiovascular disease, respiratory disease, and old age (65 or older) in Seoul, Korea was investigated in 1999 using daily values of TSP, PM10, O 3 , SO 2 , NO 2 , and CO. Generalized additive Poisson models were applied to allow for the highly flexible fitting of daily trends in air pollution as well as nonlinear association with meteorological variables such as temperature, humidity, and wind speed. To estimate the effect of air pollution and weather on mortality, LOESS smoothing was used in generalized additive models. The findings suggest that air pollution levels affect significantly the daily mortality. (orig.)
Generalized memory associativity in a network model for the neuroses
Wedemann, Roseli S.; Donangelo, Raul; de Carvalho, Luís A. V.
2009-03-01
We review concepts introduced in earlier work, where a neural network mechanism describes some mental processes in neurotic pathology and psychoanalytic working-through, as associative memory functioning, according to the findings of Freud. We developed a complex network model, where modules corresponding to sensorial and symbolic memories interact, representing unconscious and conscious mental processes. The model illustrates Freud's idea that consciousness is related to symbolic and linguistic memory activity in the brain. We have introduced a generalization of the Boltzmann machine to model memory associativity. Model behavior is illustrated with simulations and some of its properties are analyzed with methods from statistical mechanics.
De Rooi, J.J.; Van der Pers, N.M.; Hendrikx, R.W.A.; Delhez, R.; Bottger, A.J.; Eilers, P.H.C.
2014-01-01
X-ray diffraction scans consist of series of counts; these numbers obey Poisson distributions with varying expected values. These scans are often smoothed and the K2 component is removed. This article proposes a framework in which both issues are treated. Penalized likelihood estimation is used to
Automation of electroweak NLO corrections in general models
Energy Technology Data Exchange (ETDEWEB)
Lang, Jean-Nicolas [Universitaet Wuerzburg (Germany)
2016-07-01
I discuss the automation of generation of scattering amplitudes in general quantum field theories at next-to-leading order in perturbation theory. The work is based on Recola, a highly efficient one-loop amplitude generator for the Standard Model, which I have extended so that it can deal with general quantum field theories. Internally, Recola computes off-shell currents and for new models new rules for off-shell currents emerge which are derived from the Feynman rules. My work relies on the UFO format which can be obtained by a suited model builder, e.g. FeynRules. I have developed tools to derive the necessary counterterm structures and to perform the renormalization within Recola in an automated way. I describe the procedure using the example of the two-Higgs-doublet model.
Seasonal predictability of Kiremt rainfall in coupled general circulation models
Gleixner, Stephanie; Keenlyside, Noel S.; Demissie, Teferi D.; Counillon, François; Wang, Yiguo; Viste, Ellen
2017-11-01
The Ethiopian economy and population is strongly dependent on rainfall. Operational seasonal predictions for the main rainy season (Kiremt, June-September) are based on statistical approaches with Pacific sea surface temperatures (SST) as the main predictor. Here we analyse dynamical predictions from 11 coupled general circulation models for the Kiremt seasons from 1985-2005 with the forecasts starting from the beginning of May. We find skillful predictions from three of the 11 models, but no model beats a simple linear prediction model based on the predicted Niño3.4 indices. The skill of the individual models for dynamically predicting Kiremt rainfall depends on the strength of the teleconnection between Kiremt rainfall and concurrent Pacific SST in the models. Models that do not simulate this teleconnection fail to capture the observed relationship between Kiremt rainfall and the large-scale Walker circulation.
Interacting holographic dark energy models: a general approach
Som, S.; Sil, A.
2014-08-01
Dark energy models inspired by the cosmological holographic principle are studied in homogeneous isotropic spacetime with a general choice for the dark energy density . Special choices of the parameters enable us to obtain three different holographic models, including the holographic Ricci dark energy (RDE) model. Effect of interaction between dark matter and dark energy on the dynamics of those models are investigated for different popular forms of interaction. It is found that crossing of phantom divide can be avoided in RDE models for β>0.5 irrespective of the presence of interaction. A choice of α=1 and β=2/3 leads to a varying Λ-like model introducing an IR cutoff length Λ -1/2. It is concluded that among the popular choices an interaction of the form Q∝ Hρ m suits the best in avoiding the coincidence problem in this model.
a Model Study of Small-Scale World Map Generalization
Cheng, Y.; Yin, Y.; Li, C. M.; Wu, W.; Guo, P. P.; Ma, X. L.; Hu, F. M.
2018-04-01
With the globalization and rapid development every filed is taking an increasing interest in physical geography and human economics. There is a surging demand for small scale world map in large formats all over the world. Further study of automated mapping technology, especially the realization of small scale production on a large scale global map, is the key of the cartographic field need to solve. In light of this, this paper adopts the improved model (with the map and data separated) in the field of the mapmaking generalization, which can separate geographic data from mapping data from maps, mainly including cross-platform symbols and automatic map-making knowledge engine. With respect to the cross-platform symbol library, the symbol and the physical symbol in the geographic information are configured at all scale levels. With respect to automatic map-making knowledge engine consists 97 types, 1086 subtypes, 21845 basic algorithm and over 2500 relevant functional modules.In order to evaluate the accuracy and visual effect of our model towards topographic maps and thematic maps, we take the world map generalization in small scale as an example. After mapping generalization process, combining and simplifying the scattered islands make the map more explicit at 1 : 2.1 billion scale, and the map features more complete and accurate. Not only it enhance the map generalization of various scales significantly, but achieve the integration among map-makings of various scales, suggesting that this model provide a reference in cartographic generalization for various scales.
Study of the properties of general relativistic Kink model (GRK)
International Nuclear Information System (INIS)
Oliveira, L.C.S. de.
1980-01-01
The stability of the general relativistic Kink model (GRK) is studied. It is shown that the model is stable at least against radial perturbations. Furthermore, the Dirac field in the background of the geometry generated by the GRK is studied. It is verified that the GRK localizes the Dirac field, around the region of largest curvature. The physical interpretation of this system (the Dirac field in the GRK background) is discussed. (Author) [pt
Optimisation of a parallel ocean general circulation model
M. I. Beare; D. P. Stevens
1997-01-01
International audience; This paper presents the development of a general-purpose parallel ocean circulation model, for use on a wide range of computer platforms, from traditional scalar machines to workstation clusters and massively parallel processors. Parallelism is provided, as a modular option, via high-level message-passing routines, thus hiding the technical intricacies from the user. An initial implementation highlights that the parallel efficiency of the model is adversely affected by...
A general graphical user interface for automatic reliability modeling
Liceaga, Carlos A.; Siewiorek, Daniel P.
1991-01-01
Reported here is a general Graphical User Interface (GUI) for automatic reliability modeling of Processor Memory Switch (PMS) structures using a Markov model. This GUI is based on a hierarchy of windows. One window has graphical editing capabilities for specifying the system's communication structure, hierarchy, reconfiguration capabilities, and requirements. Other windows have field texts, popup menus, and buttons for specifying parameters and selecting actions. An example application of the GUI is given.
Optimal Designs for the Generalized Partial Credit Model
Bürkner, Paul-Christian; Schwabe, Rainer; Holling, Heinz
2018-01-01
Analyzing ordinal data becomes increasingly important in psychology, especially in the context of item response theory. The generalized partial credit model (GPCM) is probably the most widely used ordinal model and finds application in many large scale educational assessment studies such as PISA. In the present paper, optimal test designs are investigated for estimating persons' abilities with the GPCM for calibrated tests when item parameters are known from previous studies. We will derive t...
Directory of Open Access Journals (Sweden)
Qinghua Xie
2017-01-01
Full Text Available Recently, a general polarimetric model-based decomposition framework was proposed by Chen et al., which addresses several well-known limitations in previous decomposition methods and implements a simultaneous full-parameter inversion by using complete polarimetric information. However, it only employs four typical models to characterize the volume scattering component, which limits the parameter inversion performance. To overcome this issue, this paper presents two general polarimetric model-based decomposition methods by incorporating the generalized volume scattering model (GVSM or simplified adaptive volume scattering model, (SAVSM proposed by Antropov et al. and Huang et al., respectively, into the general decomposition framework proposed by Chen et al. By doing so, the final volume coherency matrix structure is selected from a wide range of volume scattering models within a continuous interval according to the data itself without adding unknowns. Moreover, the new approaches rely on one nonlinear optimization stage instead of four as in the previous method proposed by Chen et al. In addition, the parameter inversion procedure adopts the modified algorithm proposed by Xie et al. which leads to higher accuracy and more physically reliable output parameters. A number of Monte Carlo simulations of polarimetric synthetic aperture radar (PolSAR data are carried out and show that the proposed method with GVSM yields an overall improvement in the final accuracy of estimated parameters and outperforms both the version using SAVSM and the original approach. In addition, C-band Radarsat-2 and L-band AIRSAR fully polarimetric images over the San Francisco region are also used for testing purposes. A detailed comparison and analysis of decomposition results over different land-cover types are conducted. According to this study, the use of general decomposition models leads to a more accurate quantitative retrieval of target parameters. However, there
Diffraction dissociation at the LHC
Energy Technology Data Exchange (ETDEWEB)
Jenkovszky, Laszlo [Bogolyubov Institute for Theoretical Physics (BITP), Ukrainian National Academy of Sciences 14-b, Metrolohichna str., Kiev, 03680, Ukraine and Wigner Research Centre for Physics, Hungarian Academy of Sciences 1525 Budapest, POB 49 (Hungary); Orava, Risto [Institute of Physics, Division of Elementary Particle Physics, P.O. Box 64 (Gustaf Haellstroeminkatu 2a), FI-00014 University of Helsinki, Finland and CERN, CH-1211 Geneva 23 (Switzerland); Salii, Andrii [Bogolyubov Institute for Theoretical Physics (BITP), Ukrainian National Academy of Sciences 14-b, Metrolohichna str., Kiev, 03680 (Ukraine)
2013-04-15
We report on recent calculations of low missing mass single (SD) and double (DD) diffractive dissociation at LHC energies. The calculations are based on a dual-Regge model, dominated by a single Pomeron exchange. The diffractively excited states lie on the nucleon trajectory N*, appended by the isolated Roper resonance. Detailed predictions for the squared momentum transfer and missing mass dependence of the differential and integrated single-and double diffraction dissociation in the kinematical range of present and future LHC measurements are given.
Diffraction dissociation at the LHC
International Nuclear Information System (INIS)
Jenkovszky, László; Orava, Risto; Salii, Andrii
2013-01-01
We report on recent calculations of low missing mass single (SD) and double (DD) diffractive dissociation at LHC energies. The calculations are based on a dual-Regge model, dominated by a single Pomeron exchange. The diffractively excited states lie on the nucleon trajectory N*, appended by the isolated Roper resonance. Detailed predictions for the squared momentum transfer and missing mass dependence of the differential and integrated single-and double diffraction dissociation in the kinematical range of present and future LHC measurements are given.
Influence of diffractive interactions on cosmic ray air showers
International Nuclear Information System (INIS)
Luna, R.; Zepeda, A.; Garcia Canal, C.A.; Sciutto, S.J.
2004-01-01
A comparative study of commonly used hadronic collision simulation packages is presented. The characteristics of the products of hadron-nucleus collisions are analyzed from a general perspective, but focusing on their correlation with diffractive processes. One of the purposes of our work is to give quantitative estimations of the impact that different characteristics of the hadronic models have on air shower observables. Several sets of shower simulations using different settings for the parameters controlling the diffractive processes are used to analyze the correlations between diffractivity and shower observables. We find that the relative probability of diffractive processes during the shower development have a non-negligible influence over the longitudinal profile as well as the distribution of muons at ground level. The implications on experimental data analysis are discussed
Anisotropic cosmological models and generalized scalar tensor theory
Indian Academy of Sciences (India)
Abstract. In this paper generalized scalar tensor theory has been considered in the background of anisotropic cosmological models, namely, axially symmetric Bianchi-I, Bianchi-III and Kortowski–. Sachs space-time. For bulk viscous fluid, both exponential and power-law solutions have been stud- ied and some assumptions ...
Anisotropic cosmological models and generalized scalar tensor theory
Indian Academy of Sciences (India)
In this paper generalized scalar tensor theory has been considered in the background of anisotropic cosmological models, namely, axially symmetric Bianchi-I, Bianchi-III and Kortowski–Sachs space-time. For bulk viscous ﬂuid, both exponential and power-law solutions have been studied and some assumptions among the ...
A general circulation model (GCM) parameterization of Pinatubo aerosols
Energy Technology Data Exchange (ETDEWEB)
Lacis, A.A.; Carlson, B.E.; Mishchenko, M.I. [NASA Goddard Institute for Space Studies, New York, NY (United States)
1996-04-01
The June 1991 volcanic eruption of Mt. Pinatubo is the largest and best documented global climate forcing experiment in recorded history. The time development and geographical dispersion of the aerosol has been closely monitored and sampled. Based on preliminary estimates of the Pinatubo aerosol loading, general circulation model predictions of the impact on global climate have been made.
Confidence Intervals for Assessing Heterogeneity in Generalized Linear Mixed Models
Wagler, Amy E.
2014-01-01
Generalized linear mixed models are frequently applied to data with clustered categorical outcomes. The effect of clustering on the response is often difficult to practically assess partly because it is reported on a scale on which comparisons with regression parameters are difficult to make. This article proposes confidence intervals for…
Penalized Estimation in Large-Scale Generalized Linear Array Models
DEFF Research Database (Denmark)
Lund, Adam; Vincent, Martin; Hansen, Niels Richard
2017-01-01
Large-scale generalized linear array models (GLAMs) can be challenging to fit. Computation and storage of its tensor product design matrix can be impossible due to time and memory constraints, and previously considered design matrix free algorithms do not scale well with the dimension...
An applied general equilibrium model for Dutch agribusiness policy analysis
Peerlings, J.
1993-01-01
The purpose of this thesis was to develop a basic static applied general equilibrium (AGE) model to analyse the effects of agricultural policy changes on Dutch agribusiness. In particular the effects on inter-industry transactions, factor demand, income, and trade are of
Transmittivity and wavefunctions in one-dimensional generalized Aubry models
International Nuclear Information System (INIS)
Basu, C.; Mookerjee, A.; Sen, A.K.; Thakur, P.K.
1990-07-01
We use the vector recursion method of Haydock to obtain the transmittance of a class of generalized Aubry models in one-dimension. We also study the phase change of the wavefunctions as they travel through the chain and also the behaviour of the conductance with changes in size. (author). 10 refs, 9 figs
On the general procedure for modelling complex ecological systems
International Nuclear Information System (INIS)
He Shanyu.
1987-12-01
In this paper, the principle of a general procedure for modelling complex ecological systems, i.e. the Adaptive Superposition Procedure (ASP) is shortly stated. The result of application of ASP in a national project for ecological regionalization is also described. (author). 3 refs
A generalized development model for testing GPS user equipment
Hemesath, N.
1978-01-01
The generalized development model (GDM) program, which was intended to establish how well GPS user equipment can perform under a combination of jamming and dynamics, is described. The systems design and the characteristics of the GDM are discussed. The performance aspects of the GDM are listed and the application of the GDM to civil aviation is examined.
Inverse scattering theory foundations of tomography with diffracting wavefields
International Nuclear Information System (INIS)
Devaney, A.J.
1987-01-01
The underlying mathematical models employed in reflection and transmission computed tomography using diffracting wavefields (called diffraction tomography) are reviewed and shown to have a rigorous basis in inverse scattering theory. In transmission diffraction tomography the underlying wave model is shown to be the Rytov approximation to the complex phase of the wavefield transmitted by the object being probed while in reflection diffraction tomography the underlying wave model is shown to be the Born approximation to the backscattered wavefield from the object. In both cases the goal of the reconstruction process is the determination of the objects's complex index of refraction as a function of position r/sup →/ and, possibly, the frequency ω of the probing wavefield. By use of these approximations the reconstruction problem for both transmission and reflection diffraction tomography can be cast into the simple and elegant form of linearized inverse scattering theory. Linearized inverse scattering theory is shown to lead directly to generalized projection-slice theorems for both reflection and transmission diffraction tomography that provide a simple mathematical relationship between the object's complex index of refraction (the unknown) and the data (the complex phase of the transmitted wave or the complex amplitude of the reflected wave). The conventional projection-slice theorem of X-ray CT is shown to result from the generalized projection-slice theorem for transmission diffraction tomography in the limit of vanishing wavelength (in the absence of wave effects). Fourier based and back-projection type reconstruction algorithms are shown to be directly derivable from the generalized projection-slice theorems
A General Model for Testing Mediation and Moderation Effects
MacKinnon, David P.
2010-01-01
This paper describes methods for testing mediation and moderation effects in a dataset, both together and separately. Investigations of this kind are especially valuable in prevention research to obtain information on the process by which a program achieves its effects and whether the program is effective for subgroups of individuals. A general model that simultaneously estimates mediation and moderation effects is presented, and the utility of combining the effects into a single model is described. Possible effects of interest in the model are explained, as are statistical methods to assess these effects. The methods are further illustrated in a hypothetical prevention program example. PMID:19003535
Generalized Jaynes-Cummings model as a quantum search algorithm
International Nuclear Information System (INIS)
Romanelli, A.
2009-01-01
We propose a continuous time quantum search algorithm using a generalization of the Jaynes-Cummings model. In this model the states of the atom are the elements among which the algorithm realizes the search, exciting resonances between the initial and the searched states. This algorithm behaves like Grover's algorithm; the optimal search time is proportional to the square root of the size of the search set and the probability to find the searched state oscillates periodically in time. In this frame, it is possible to reinterpret the usual Jaynes-Cummings model as a trivial case of the quantum search algorithm.
Generalized Roe's numerical scheme for a two-fluid model
International Nuclear Information System (INIS)
Toumi, I.; Raymond, P.
1993-01-01
This paper is devoted to a mathematical and numerical study of a six equation two-fluid model. We will prove that the model is strictly hyperbolic due to the inclusion of the virtual mass force term in the phasic momentum equations. The two-fluid model is naturally written under a nonconservative form. To solve the nonlinear Riemann problem for this nonconservative hyperbolic system, a generalized Roe's approximate Riemann solver, is used, based on a linearization of the nonconservative terms. A Godunov type numerical scheme is built, using this approximate Riemann solver. 10 refs., 5 figs,
Zeros of the partition function for some generalized Ising models
International Nuclear Information System (INIS)
Dunlop, F.
1981-01-01
The author considers generalized Ising Models with two and four body interactions in a complex external field h such that Re h>=mod(Im h) + C, where C is an explicit function of the interaction parameters. The partition function Z(h) is then shown to satisfy mod(Z(h))>=Z(c), so that the pressure is analytic in h inside the given region. The method is applied to specific examples: the gauge invariant Ising Model, and the Widom Rowlinson model on the lattice. (Auth.)
A Graphical User Interface to Generalized Linear Models in MATLAB
Directory of Open Access Journals (Sweden)
Peter Dunn
1999-07-01
Full Text Available Generalized linear models unite a wide variety of statistical models in a common theoretical framework. This paper discusses GLMLAB-software that enables such models to be fitted in the popular mathematical package MATLAB. It provides a graphical user interface to the powerful MATLAB computational engine to produce a program that is easy to use but with many features, including offsets, prior weights and user-defined distributions and link functions. MATLAB's graphical capacities are also utilized in providing a number of simple residual diagnostic plots.
A General Accelerated Degradation Model Based on the Wiener Process.
Liu, Le; Li, Xiaoyang; Sun, Fuqiang; Wang, Ning
2016-12-06
Accelerated degradation testing (ADT) is an efficient tool to conduct material service reliability and safety evaluations by analyzing performance degradation data. Traditional stochastic process models are mainly for linear or linearization degradation paths. However, those methods are not applicable for the situations where the degradation processes cannot be linearized. Hence, in this paper, a general ADT model based on the Wiener process is proposed to solve the problem for accelerated degradation data analysis. The general model can consider the unit-to-unit variation and temporal variation of the degradation process, and is suitable for both linear and nonlinear ADT analyses with single or multiple acceleration variables. The statistical inference is given to estimate the unknown parameters in both constant stress and step stress ADT. The simulation example and two real applications demonstrate that the proposed method can yield reliable lifetime evaluation results compared with the existing linear and time-scale transformation Wiener processes in both linear and nonlinear ADT analyses.
Generalized Landau-Lifshitz models on the interval
International Nuclear Information System (INIS)
Doikou, Anastasia; Karaiskos, Nikos
2011-01-01
We study the classical generalized gl n Landau-Lifshitz (L-L) model with special boundary conditions that preserve integrability. We explicitly derive the first non-trivial local integral of motion, which corresponds to the boundary Hamiltonian for the sl 2 L-L model. Novel expressions of the modified Lax pairs associated to the integrals of motion are also extracted. The relevant equations of motion with the corresponding boundary conditions are determined. Dynamical integrable boundary conditions are also examined within this spirit. Then the generalized isotropic and anisotropic gl n Landau-Lifshitz models are considered, and novel expressions of the boundary Hamiltonians and the relevant equations of motion and boundary conditions are derived.
A generalized conditional heteroscedastic model for temperature downscaling
Modarres, R.; Ouarda, T. B. M. J.
2014-11-01
This study describes a method for deriving the time varying second order moment, or heteroscedasticity, of local daily temperature and its association to large Coupled Canadian General Circulation Models predictors. This is carried out by applying a multivariate generalized autoregressive conditional heteroscedasticity (MGARCH) approach to construct the conditional variance-covariance structure between General Circulation Models (GCMs) predictors and maximum and minimum temperature time series during 1980-2000. Two MGARCH specifications namely diagonal VECH and dynamic conditional correlation (DCC) are applied and 25 GCM predictors were selected for a bivariate temperature heteroscedastic modeling. It is observed that the conditional covariance between predictors and temperature is not very strong and mostly depends on the interaction between the random process governing temporal variation of predictors and predictants. The DCC model reveals a time varying conditional correlation between GCM predictors and temperature time series. No remarkable increasing or decreasing change is observed for correlation coefficients between GCM predictors and observed temperature during 1980-2000 while weak winter-summer seasonality is clear for both conditional covariance and correlation. Furthermore, the stationarity and nonlinearity Kwiatkowski-Phillips-Schmidt-Shin (KPSS) and Brock-Dechert-Scheinkman (BDS) tests showed that GCM predictors, temperature and their conditional correlation time series are nonlinear but stationary during 1980-2000 according to BDS and KPSS test results. However, the degree of nonlinearity of temperature time series is higher than most of the GCM predictors.
Generalized Modeling of the Human Lower Limb Assembly
Cofaru, Ioana; Huzu, Iulia
2014-11-01
The main reason for creating a generalized assembly of the main bones of the lower human member is to create the premises of realizing a biomechanic assisted study which could be used for the study of the high range of varieties of pathologies that exist at this level. Starting from 3D CAD models of the main bones of the lower human member, which were realized in previous researches, in this study a generalized assembly system was developed, system in which are highlighted both the situation of an healthy subject and the situation of the situation of a subject affected by axial deviations. In order to achieve these purpose reference systems were created, systems that are in accordance with the mechanical axes and the anatomic axes of the lower member, which were later generally assembled in a manner that provides an easy customization option
Diffraction coherence in optics
Françon, M; Green, L L
2013-01-01
Diffraction: Coherence in Optics presents a detailed account of the course on Fraunhofer diffraction phenomena, studied at the Faculty of Science in Paris. The publication first elaborates on Huygens' principle and diffraction phenomena for a monochromatic point source and diffraction by an aperture of simple form. Discussions focus on diffraction at infinity and at a finite distance, simplified expressions for the field, calculation of the path difference, diffraction by a rectangular aperture, narrow slit, and circular aperture, and distribution of luminous flux in the airy spot. The book th
Attractive Hubbard model with disorder and the generalized Anderson theorem
International Nuclear Information System (INIS)
Kuchinskii, E. Z.; Kuleeva, N. A.; Sadovskii, M. V.
2015-01-01
Using the generalized DMFT+Σ approach, we study the influence of disorder on single-particle properties of the normal phase and the superconducting transition temperature in the attractive Hubbard model. A wide range of attractive potentials U is studied, from the weak coupling region, where both the instability of the normal phase and superconductivity are well described by the BCS model, to the strong-coupling region, where the superconducting transition is due to Bose-Einstein condensation (BEC) of compact Cooper pairs, formed at temperatures much higher than the superconducting transition temperature. We study two typical models of the conduction band with semi-elliptic and flat densities of states, respectively appropriate for three-dimensional and two-dimensional systems. For the semi-elliptic density of states, the disorder influence on all single-particle properties (e.g., density of states) is universal for an arbitrary strength of electronic correlations and disorder and is due to only the general disorder widening of the conduction band. In the case of a flat density of states, universality is absent in the general case, but still the disorder influence is mainly due to band widening, and the universal behavior is restored for large enough disorder. Using the combination of DMFT+Σ and Nozieres-Schmitt-Rink approximations, we study the disorder influence on the superconducting transition temperature T c for a range of characteristic values of U and disorder, including the BCS-BEC crossover region and the limit of strong-coupling. Disorder can either suppress T c (in the weak-coupling region) or significantly increase T c (in the strong-coupling region). However, in all cases, the generalized Anderson theorem is valid and all changes of the superconducting critical temperature are essentially due to only the general disorder widening of the conduction band
Neutron diffraction studies of glasses
International Nuclear Information System (INIS)
Wright, A.C.
1987-01-01
A survey is given of the application of neutron diffraction to structural studies of oxide and halide glasses. As with crystalline materials, neutron and X-ray diffraction are the major structural probes for glasses and other amorphous solids, particularly in respect of intermediate range order. The glasses discussed mostly have structures which are dominated by a network in which the bonding is predominantly covalent. The examples discussed demonstrate the power of the neutron diffraction technique in the investigation of the structures of inorganic glasses. The best modern diffraction experiments are capable of providing accurate data with high real space resolution, which if used correctly, are an extremely fine filter for the various structural models proposed in the literature. 42 refs
A Non-Gaussian Spatial Generalized Linear Latent Variable Model
Irincheeva, Irina
2012-08-03
We consider a spatial generalized linear latent variable model with and without normality distributional assumption on the latent variables. When the latent variables are assumed to be multivariate normal, we apply a Laplace approximation. To relax the assumption of marginal normality in favor of a mixture of normals, we construct a multivariate density with Gaussian spatial dependence and given multivariate margins. We use the pairwise likelihood to estimate the corresponding spatial generalized linear latent variable model. The properties of the resulting estimators are explored by simulations. In the analysis of an air pollution data set the proposed methodology uncovers weather conditions to be a more important source of variability than air pollution in explaining all the causes of non-accidental mortality excluding accidents. © 2012 International Biometric Society.
A Non-Gaussian Spatial Generalized Linear Latent Variable Model
Irincheeva, Irina; Cantoni, Eva; Genton, Marc G.
2012-01-01
We consider a spatial generalized linear latent variable model with and without normality distributional assumption on the latent variables. When the latent variables are assumed to be multivariate normal, we apply a Laplace approximation. To relax the assumption of marginal normality in favor of a mixture of normals, we construct a multivariate density with Gaussian spatial dependence and given multivariate margins. We use the pairwise likelihood to estimate the corresponding spatial generalized linear latent variable model. The properties of the resulting estimators are explored by simulations. In the analysis of an air pollution data set the proposed methodology uncovers weather conditions to be a more important source of variability than air pollution in explaining all the causes of non-accidental mortality excluding accidents. © 2012 International Biometric Society.
Dynamic generalized linear models for monitoring endemic diseases
DEFF Research Database (Denmark)
Lopes Antunes, Ana Carolina; Jensen, Dan; Hisham Beshara Halasa, Tariq
2016-01-01
The objective was to use a Dynamic Generalized Linear Model (DGLM) based on abinomial distribution with a linear trend, for monitoring the PRRS (Porcine Reproductive and Respiratory Syndrome sero-prevalence in Danish swine herds. The DGLM was described and its performance for monitoring control...... and eradication programmes based on changes in PRRS sero-prevalence was explored. Results showed a declining trend in PRRS sero-prevalence between 2007 and 2014 suggesting that Danish herds are slowly eradicating PRRS. The simulation study demonstrated the flexibility of DGLMs in adapting to changes intrends...... in sero-prevalence. Based on this, it was possible to detect variations in the growth model component. This study is a proof-of-concept, demonstrating the use of DGLMs for monitoring endemic diseases. In addition, the principles stated might be useful in general research on monitoring and surveillance...
Treatment of cloud radiative effects in general circulation models
Energy Technology Data Exchange (ETDEWEB)
Wang, W.C.; Dudek, M.P.; Liang, X.Z.; Ding, M. [State Univ. of New York, Albany, NY (United States)] [and others
1996-04-01
We participate in the Atmospheric Radiation Measurement (ARM) program with two objectives: (1) to improve the general circulation model (GCM) cloud/radiation treatment with a focus on cloud verticle overlapping and layer cloud optical properties, and (2) to study the effects of cloud/radiation-climate interaction on GCM climate simulations. This report summarizes the project progress since the Fourth ARM Science Team meeting February 28-March 4, 1994, in Charleston, South Carolina.
A General Model for Repeated Audit Controls Using Monotone Subsampling
Raats, V.M.; van der Genugten, B.B.; Moors, J.J.A.
2002-01-01
In categorical repeated audit controls, fallible auditors classify sample elements in order to estimate the population fraction of elements in certain categories.To take possible misclassifications into account, subsequent checks are performed with a decreasing number of observations.In this paper a model is presented for a general repeated audit control system, where k subsequent auditors classify elements into r categories.Two different sub-sampling procedures will be discussed, named 'stra...
Electromagnetic axial anomaly in a generalized linear sigma model
Fariborz, Amir H.; Jora, Renata
2017-06-01
We construct the electromagnetic anomaly effective term for a generalized linear sigma model with two chiral nonets, one with a quark-antiquark structure, the other one with a four-quark content. We compute in the leading order of this framework the decays into two photons of six pseudoscalars: π0(137 ), π0(1300 ), η (547 ), η (958 ), η (1295 ) and η (1760 ). Our results agree well with the available experimental data.
Nuclear inertia for fission in a generalized cranking model
International Nuclear Information System (INIS)
Kunz, J.; Nix, J.R.
1984-01-01
A time dependent formalism which is appropriate for β vibrations and fission is developed for a generalized cranking model. The formalism leads to additional terms in the density matrix which affect the nuclear inertia. The case of a harmonic oscillator potential is used to demonstrate the contribution of the pairing gap term on the β vibrational inertia for Pu 240. The inertia remains finite and close to the limiting irrotational value
Generalized isothermal models with strange equation of state
Indian Academy of Sciences (India)
intention to study the Einstein–Maxwell system with a linear equation of state with ... It is our intention to model the interior of a dense realistic star with a general ... The definition m(r) = 1. 2. ∫ r. 0 ω2ρ(ω)dω. (14) represents the mass contained within a radius r which is a useful physical quantity. The mass function (14) has ...
Generalized Calogero-Sutherland systems from many-matrix models
International Nuclear Information System (INIS)
Polychronakos, Alexios P.
1999-01-01
We construct generalizations of the Calogero-Sutherland-Moser system by appropriately reducing a model involving many unitary matrices. The resulting systems consist of particles on the circle with internal degrees of freedom, coupled through modifications of the inverse-square potential. The coupling involves SU(M) non-invariant (anti) ferromagnetic interactions of the internal degrees of freedom. The systems are shown to be integrable and the spectrum and wavefunctions of the quantum version are derived
Generalized Bogoliubov Polariton Model: An Application to Stock Exchange Market
International Nuclear Information System (INIS)
Anh, Chu Thuy; Anh, Truong Thi Ngoc; Lan, Nguyen Tri; Viet, Nguyen Ai
2016-01-01
A generalized Bogoliubov method for investigation non-simple and complex systems was developed. We take two branch polariton Hamiltonian model in second quantization representation and replace the energies of quasi-particles by two distribution functions of research objects. Application to stock exchange market was taken as an example, where the changing the form of return distribution functions from Boltzmann-like to Gaussian-like was studied. (paper)
Structural dynamic analysis with generalized damping models analysis
Adhikari , Sondipon
2013-01-01
Since Lord Rayleigh introduced the idea of viscous damping in his classic work ""The Theory of Sound"" in 1877, it has become standard practice to use this approach in dynamics, covering a wide range of applications from aerospace to civil engineering. However, in the majority of practical cases this approach is adopted more for mathematical convenience than for modeling the physics of vibration damping. Over the past decade, extensive research has been undertaken on more general ""non-viscous"" damping models and vibration of non-viscously damped systems. This book, along with a related book
A generalization of the bond fluctuation model to viscoelastic environments
International Nuclear Information System (INIS)
Fritsch, Christian C
2014-01-01
A lattice-based simulation method for polymer diffusion in a viscoelastic medium is presented. This method combines the eight-site bond fluctuation model with an algorithm for the simulation of fractional Brownian motion on the lattice. The method applies to unentangled self-avoiding chains and is probed for anomalous diffusion exponents α between 0.7 and 1.0. The simulation results are in very good agreement with the predictions of the generalized Rouse model of a self-avoiding chain polymer in a viscoelastic medium. (paper)
Optimisation of a parallel ocean general circulation model
Beare, M. I.; Stevens, D. P.
1997-10-01
This paper presents the development of a general-purpose parallel ocean circulation model, for use on a wide range of computer platforms, from traditional scalar machines to workstation clusters and massively parallel processors. Parallelism is provided, as a modular option, via high-level message-passing routines, thus hiding the technical intricacies from the user. An initial implementation highlights that the parallel efficiency of the model is adversely affected by a number of factors, for which optimisations are discussed and implemented. The resulting ocean code is portable and, in particular, allows science to be achieved on local workstations that could otherwise only be undertaken on state-of-the-art supercomputers.
Energy spectra of odd nuclei in the generalized model
Directory of Open Access Journals (Sweden)
I. O. Korzh
2015-04-01
Full Text Available Based on the generalized nuclear model, energy spectra of the odd nuclei of such elements as 25Mg, 41K, and 65Cu are determined, and the structure of wave functions of these nuclei in the excited and normal states is studied. High quality in determining the energy spectra is possible due to the accurate calculations of all elements of the energy matrix. It is demonstrated that the structure of the wave functions so determined provides the possibility to more accurately select the nuclear model and the method for calculating the nucleon cross-sections of the inelastic scattering of nucleons by odd nuclei.
Generalized model for Memristor-based Wien family oscillators
Talukdar, Abdul Hafiz Ibne
2012-07-23
In this paper, we report the unconventional characteristics of Memristor in Wien oscillators. Generalized mathematical models are developed to analyze four members of the Wien family using Memristors. Sustained oscillation is reported for all types though oscillating resistance and time dependent poles are present. We have also proposed an analytical model to estimate the desired amplitude of oscillation before the oscillation starts. These Memristor-based oscillation results, presented for the first time, are in good agreement with simulation results. © 2011 Elsevier Ltd.
Diffraction patterns from 7-Angstroms tubular halloysite
International Nuclear Information System (INIS)
Eggleton, T.
1998-01-01
Full text: The diffraction patterns from 7-Angstroms tubular halloysite are superficially like those from kaolinite. Diffraction from a tubular aggregate of atoms, however, differs from that from a crystal because there is no linear repetition in two of the three conventional crystallographic directions. In tubular halloysite, the tube axis is [010] or [110] and in this direction the unit cell repeats in the normal linear fashion. The x-axis, by contrast, changes direction tangentially around the tube circumference, and there can be no true z-axis, because unit cells in the radial direction do not superimpose, since each successive tubular layer has a larger radius than its predecessor and therefore must contain more unit cells than its predecessor. Because tubular 'crystals' do not have a lattice repeat, use of Bragg 'hkl' indices is not appropriate. In the xy plane, a small area of the structure approximates a flat layer silicate, and hk indices may been used to label diffraction maxima. Similarly, successive 1:1 layers tangential to the tube walls yield a series of apparent 001 diffraction maxima. Measurement of these shows that the d-spacings do not form an exact integral series. The reason for this lies in the curvature of the structure. Calculated electron and powder X-ray diffraction patterns, based on a model of concentric 1:1 layers with no regular relation between them other than the 7.2 Angstroms spacing, closely simulate the observed data. Evidence for the 2-layer structure that is generally accepted may need to be reassessed in the light of these results
General dosimetry model for internal contamination with radioisotopes
International Nuclear Information System (INIS)
Nino, L.
1989-01-01
Radiation dose by inner contamination with radioisotopes is not measured directly but evaluated by the application of mathematical models of fixation and elimination, taken into account biological activity of each organ with respect to the incorporated material. Models proposed by ICRP for the respiratory and gastrointestinal tracts (30) seems that they should not be applied independently because of the evident correlation between them. In this paper both models are integrated in a more general one with neither modification nor limitation of the starting models. It has been applied to some patients in the Instituto Nacional de Cancerologia, who received some I-131 dose via oral and results are quite similar to dose experimentally obtained via urine spectrograms. Based on this results the method was formalized and applied to professional exposed personnel of the medical staff at the same Institute; due to high doses found in some of the urine samples, probable I-131 air contamination could be supposed
Working covariance model selection for generalized estimating equations.
Carey, Vincent J; Wang, You-Gan
2011-11-20
We investigate methods for data-based selection of working covariance models in the analysis of correlated data with generalized estimating equations. We study two selection criteria: Gaussian pseudolikelihood and a geodesic distance based on discrepancy between model-sensitive and model-robust regression parameter covariance estimators. The Gaussian pseudolikelihood is found in simulation to be reasonably sensitive for several response distributions and noncanonical mean-variance relations for longitudinal data. Application is also made to a clinical dataset. Assessment of adequacy of both correlation and variance models for longitudinal data should be routine in applications, and we describe open-source software supporting this practice. Copyright © 2011 John Wiley & Sons, Ltd.
Pharmaceutical industry and trade liberalization using computable general equilibrium model.
Barouni, M; Ghaderi, H; Banouei, Aa
2012-01-01
Computable general equilibrium models are known as a powerful instrument in economic analyses and widely have been used in order to evaluate trade liberalization effects. The purpose of this study was to provide the impacts of trade openness on pharmaceutical industry using CGE model. Using a computable general equilibrium model in this study, the effects of decrease in tariffs as a symbol of trade liberalization on key variables of Iranian pharmaceutical products were studied. Simulation was performed via two scenarios in this study. The first scenario was the effect of decrease in tariffs of pharmaceutical products as 10, 30, 50, and 100 on key drug variables, and the second was the effect of decrease in other sectors except pharmaceutical products on vital and economic variables of pharmaceutical products. The required data were obtained and the model parameters were calibrated according to the social accounting matrix of Iran in 2006. The results associated with simulation demonstrated that the first scenario has increased import, export, drug supply to markets and household consumption, while import, export, supply of product to market, and household consumption of pharmaceutical products would averagely decrease in the second scenario. Ultimately, society welfare would improve in all scenarios. We presents and synthesizes the CGE model which could be used to analyze trade liberalization policy issue in developing countries (like Iran), and thus provides information that policymakers can use to improve the pharmacy economics.
International Nuclear Information System (INIS)
Wang, H.; Lee, S.Y.; Gharghouri, M.A.; Wu, P.D.; Yoon, S.G.
2016-01-01
The EVPSC-TDT model for polycrystal plasticity and in-situ neutron diffraction have been used to investigate the behavior of a Mg-8.5wt.%Al alloy with two starting textures: 1) a typical extrusion texture in which a majority of the grains are oriented favorably for extension twinning via compression perpendicular to the basal pole, and 2) a modified texture in which extension twinning can be activated via tension parallel to the basal pole in a majority of the grains. Using a small number of adjustable parameters, and only two macroscopic tensile stress–strain curves for calibration, the model is able to capture, quantitatively, the trends in multiple data sets, including grain-level elastic lattice strains, and diffraction peak intensity changes due to lattice re-orientation associated with twinning. For twinning, the model assumes a polar critical resolved shear stress activation criterion and assigns the stress and hardening of the parent crystal to a newly formed twin. The model allows twinning to be driven either by the stress in the parent crystal (matrix reduction), in which case all of the twin transformation strain is assigned to the matrix, or by the stress in the twin (twin propagation), in which case all of the twin transformation strain is assigned to the twin. A detailed comparison between the model predictions and the neutron diffraction data reveals that assigning all of the twin transformation strain either to the matrix or to the twin is too one-sided, leading to excessive relaxation and hardening effects. A more equitable partitioning of the twin transformation strain is necessary. It is suggested that the stress and hardening assigned to a newly formed twin is of less importance to the performance of the model than the partitioning of the twin transformation strain.
Border Collision Bifurcations in a Generalized Model of Population Dynamics
Directory of Open Access Journals (Sweden)
Lilia M. Ladino
2016-01-01
Full Text Available We analyze the dynamics of a generalized discrete time population model of a two-stage species with recruitment and capture. This generalization, which is inspired by other approaches and real data that one can find in literature, consists in considering no restriction for the value of the two key parameters appearing in the model, that is, the natural death rate and the mortality rate due to fishing activity. In the more general case the feasibility of the system has been preserved by posing opportune formulas for the piecewise map defining the model. The resulting two-dimensional nonlinear map is not smooth, though continuous, as its definition changes as any border is crossed in the phase plane. Hence, techniques from the mathematical theory of piecewise smooth dynamical systems must be applied to show that, due to the existence of borders, abrupt changes in the dynamic behavior of population sizes and multistability emerge. The main novelty of the present contribution with respect to the previous ones is that, while using real data, richer dynamics are produced, such as fluctuations and multistability. Such new evidences are of great interest in biology since new strategies to preserve the survival of the species can be suggested.
International Nuclear Information System (INIS)
Niehaus, T A; Suhai, S; March, N H
2008-01-01
Holas, Howard and March (2003 Phys. Lett. A 310 451) have obtained analytic solutions for ground-state properties of a whole family of two-electron spin-compensated harmonically confined model atoms whose different members are characterized by a specific interparticle potential energy u(r 12 ). Here, we make a start on the dynamic generalization of the harmonic external potential, the motivation being the serious criticism levelled recently against the foundations of time-dependent density-functional theory (e.g., Schirmer and Dreuw 2007 Phys. Rev. A 75 022513). In this context, we derive a simplified expression for the time-dependent electron density for arbitrary interparticle interaction, which is fully determined by a one-dimensional non-interacting Hamiltonian. Moreover, a closed solution for the momentum space density in the Moshinsky model is obtained
Soft color interactions and diffractive hard scattering at the Tevatron
International Nuclear Information System (INIS)
Enberg, R.; Timneanu, N.; Ingelman, G.; Uppsala Univ.
2001-06-01
An improved understanding of nonperturbative QCD can be obtained by the recently developed soft color interaction models. Their essence is the variation of color string-field topologies, giving a unified description of final states in high energy interactions, e.g., diffractive and nondiffractive events in ep and pp. Here we present a detailed study of such models (the soft color interaction model and the generalized area law model) applied to pp, considering also the general problem of the underlying event including beam particle remnants. With models turned to HERA ep data, we find a good description also of Tevatron data on production of W, bottom and jets in diffractive events defined either by leading antiprotons or by one or two rapidity gaps in the forward or backward regions. We also give predictions for diffractive J/ψ production where the soft exchange mechanism produces both a gap and a color singlet cc state in the same event. This soft color interaction approach is also compared with Pomeron-based models for diffraction, and some possibilities to experimentally discriminate between these different approaches are discussed. (orig.)
Nuclear inertia for fission in a generalized cranking model
International Nuclear Information System (INIS)
Kunz, J.; Nix, J.R.
1984-01-01
The Inglis cranking model has been widely used to calculate the nuclear inertia associated with collective degrees of freedom. After the inclusion of pairing correlations, theoretical results obtained with the cranking model for nuclear rotations and γ-vibrations were in relatively good agreement with experimental data. Calculations of β-vibrational inertias were also performed in the cranking model for fission deformations. Theoretical results were several times the irrotational values and gave reasonable agreement with experimental spontaneous-fission lifetimes, although in one study a renormalization factor of 0.8 was required. However, as pointed out by many authors, the Inglis cranking model possesses two serious deficiencies. First, problems arise when the single-particle potential contains momentum-dependence terms. Second, in the limit of large pairing strength the inertia approaches zero instead of a finite (irrotational) limit. Alternative approaches to the cranking model which did not lead to such unacceptable results were developed by Migdal, Belyaev and Thouless and Valatin. They showed that these deficiencies of the cranking model are due to a lack of self-consistency, since the reaction of the mean field to the collective motion is neglected in the Inglis model. Previously we used their arguments and developed a generalized cranking model for stationary collective motion. Here it is shown how to develop a time-dependent formalism appropriate to β-vibrations and fission. 10 references
X-ray diffraction study of elastic strains for modelling γ/γ' two-phase behavior
International Nuclear Information System (INIS)
Durand, L.; Massaoudi, M.; Lavelle, B.
2005-01-01
To describe the two-phase monocrystals behavior, we used has X-rays diffraction method. Our study is based on the mechanics of the continuous media framework in elasticity. We extend to the quadratic structure the study by X-rays developed at the laboratory on cubic materials with coarse grains. We show that the two phases γ and γ' undergo a tetragonal distortion and that the strains are not constant in each phase. Our results are in agreement with a study by the finite element method developed in addition
International Nuclear Information System (INIS)
Johnson, D.C.; Kuhr, B.; Farkas, D.; Was, G.S.
2016-01-01
Quantitative measurements of stress near dislocation channel–grain boundary (DC–GB) interaction sites were made using high resolution electron backscatter diffraction (HREBSD) and have been compared with molecular dynamics (MD) simulations. Tensile stress normal to the grain boundary was significantly elevated at discontinuous DC–GB intersections with peak magnitudes roughly an order of magnitude greater than at sites where slip transfer occurred. These results constitute the first measurement of stress amplification at DC–GB intersections and provide support to the theory that high normal stress at the grain boundary may be a key driver for the initiation of irradiation assisted stress corrosion cracks.
A general modeling framework for describing spatially structured population dynamics
Sample, Christine; Fryxell, John; Bieri, Joanna; Federico, Paula; Earl, Julia; Wiederholt, Ruscena; Mattsson, Brady; Flockhart, Tyler; Nicol, Sam; Diffendorfer, James E.; Thogmartin, Wayne E.; Erickson, Richard A.; Norris, D. Ryan
2017-01-01
Variation in movement across time and space fundamentally shapes the abundance and distribution of populations. Although a variety of approaches model structured population dynamics, they are limited to specific types of spatially structured populations and lack a unifying framework. Here, we propose a unified network-based framework sufficiently novel in its flexibility to capture a wide variety of spatiotemporal processes including metapopulations and a range of migratory patterns. It can accommodate different kinds of age structures, forms of population growth, dispersal, nomadism and migration, and alternative life-history strategies. Our objective was to link three general elements common to all spatially structured populations (space, time and movement) under a single mathematical framework. To do this, we adopt a network modeling approach. The spatial structure of a population is represented by a weighted and directed network. Each node and each edge has a set of attributes which vary through time. The dynamics of our network-based population is modeled with discrete time steps. Using both theoretical and real-world examples, we show how common elements recur across species with disparate movement strategies and how they can be combined under a unified mathematical framework. We illustrate how metapopulations, various migratory patterns, and nomadism can be represented with this modeling approach. We also apply our network-based framework to four organisms spanning a wide range of life histories, movement patterns, and carrying capacities. General computer code to implement our framework is provided, which can be applied to almost any spatially structured population. This framework contributes to our theoretical understanding of population dynamics and has practical management applications, including understanding the impact of perturbations on population size, distribution, and movement patterns. By working within a common framework, there is less chance
International Nuclear Information System (INIS)
Checon, A.
1983-01-01
Theoretical formulation of a straight edge diffraction shows a phase difference of π/2 between the incoming and diffracted waves. Experiments using two straight edges do not confirm the π/2 difference but suggest that the incoming wave is in phase with the wave diffracted into the shadowed region of the edge and out of phase by a factor of π with the wave diffracted into the illuminated region. (Author) [pt
General Potential-Current Model and Validation for Electrocoagulation
International Nuclear Information System (INIS)
Dubrawski, Kristian L.; Du, Codey; Mohseni, Madjid
2014-01-01
A model relating potential and current in continuous parallel plate iron electrocoagulation (EC) was developed for application in drinking water treatment. The general model can be applied to any EC parallel plate system relying only on geometric and tabulated input variables without the need of system-specific experimentally derived constants. For the theoretical model, the anode and cathode were vertically divided into n equipotential segments in a single pass, upflow, and adiabatic EC reactor. Potential and energy balances were simultaneously solved at each vertical segment, which included the contribution of ionic concentrations, solution temperature and conductivity, cathodic hydrogen flux, and gas/liquid ratio. We experimentally validated the numerical model with a vertical upflow EC reactor using a 24 cm height 99.99% pure iron anode divided into twelve 2 cm segments. Individual experimental currents from each segment were summed to determine total current, and compared with the theoretically derived value. Several key variables were studied to determine their impact on model accuracy: solute type, solute concentration, current density, flow rate, inter-electrode gap, and electrode surface condition. Model results were in good agreement with experimental values at cell potentials of 2-20 V (corresponding to a current density range of approximately 50-800 A/m 2 ), with mean relative deviation of 9% for low flow rate, narrow electrode gap, polished electrodes, and 150 mg/L NaCl. Highest deviation occurred with a large electrode gap, unpolished electrodes, and Na 2 SO 4 electrolyte, due to parasitic H 2 O oxidation and less than unity current efficiency. This is the first general model which can be applied to any parallel plate EC system for accurate electrochemical voltage or current prediction
A Generalized Dynamic Model of Geared System: Establishment and Application
Directory of Open Access Journals (Sweden)
Hui Liu
2011-12-01
Full Text Available In order to make the dynamic characteristic simulation of the ordinary and planetary gears drive more accurate and more efficient , a generalized dynamic model of geared system is established including internal and external mesh gears in this paper. It is used to build a mathematical model, which achieves the auto judgment of the gear mesh state. We do not need to concern about active or passive gears any more, and the complicated power flow analysis can be avoided. With the numerical integration computation, the axis orbits diagram and dynamic gear mesh force characteristic are acquired and the results show that the dynamic response of translational displacement is greater when contacting line direction change is considered, and with the quickly change of direction of contacting line, the amplitude of mesh force would be increased, which easily causes the damage to the gear tooth. Moreover, compared with ordinary gear, dynamic responses of planetary gear would be affected greater by the gear backlash. Simulation results show the effectiveness of the generalized dynamic model and the mathematical model.
Reshocks, rarefactions, and the generalized Layzer model for hydrodynamic instabilities
International Nuclear Information System (INIS)
Mikaelian, K.O.
2008-01-01
We report numerical simulations and analytic modeling of shock tube experiments on Rayleigh-Taylor and Richtmyer-Meshkov instabilities. We examine single interfaces of the type A/B where the incident shock is initiated in A and the transmitted shock proceeds into B. Examples are He/air and air/He. In addition, we study finite-thickness or double-interface A/B/A configurations like air/SF 6 /air gas-curtain experiments. We first consider conventional shock tubes that have a 'fixed' boundary: A solid endwall which reflects the transmitted shock and reshocks the interface(s). Then we focus on new experiments with a 'free' boundary--a membrane disrupted mechanically or by the transmitted shock, sending back a rarefaction towards the interface(s). Complex acceleration histories are achieved, relevant for Inertial Confinement Fusion implosions. We compare our simulation results with a generalized Layzer model for two fluids with time-dependent densities, and derive a new freeze-out condition whereby accelerating and compressive forces cancel each other out. Except for the recently reported failures of the Layzer model, the generalized Layzer model and hydrocode simulations for reshocks and rarefactions agree well with each other, and remain to be verified experimentally
Reshocks, rarefactions, and the generalized Layzer model for hydrodynamic instabilities
Energy Technology Data Exchange (ETDEWEB)
Mikaelian, K O
2008-06-10
We report numerical simulations and analytic modeling of shock tube experiments on Rayleigh-Taylor and Richtmyer-Meshkov instabilities. We examine single interfaces of the type A/B where the incident shock is initiated in A and the transmitted shock proceeds into B. Examples are He/air and air/He. In addition, we study finite-thickness or double-interface A/B/A configurations like air/SF{sub 6}/air gas-curtain experiments. We first consider conventional shock tubes that have a 'fixed' boundary: A solid endwall which reflects the transmitted shock and reshocks the interface(s). Then we focus on new experiments with a 'free' boundary--a membrane disrupted mechanically or by the transmitted shock, sending back a rarefaction towards the interface(s). Complex acceleration histories are achieved, relevant for Inertial Confinement Fusion implosions. We compare our simulation results with a generalized Layzer model for two fluids with time-dependent densities, and derive a new freeze-out condition whereby accelerating and compressive forces cancel each other out. Except for the recently reported failures of the Layzer model, the generalized Layzer model and hydrocode simulations for reshocks and rarefactions agree well with each other, and remain to be verified experimentally.
Consensus-based training and assessment model for general surgery.
Szasz, P; Louridas, M; de Montbrun, S; Harris, K A; Grantcharov, T P
2016-05-01
Surgical education is becoming competency-based with the implementation of in-training milestones. Training guidelines should reflect these changes and determine the specific procedures for such milestone assessments. This study aimed to develop a consensus view regarding operative procedures and tasks considered appropriate for junior and senior trainees, and the procedures that can be used as technical milestone assessments for trainee progression in general surgery. A Delphi process was followed where questionnaires were distributed to all 17 Canadian general surgery programme directors. Items were ranked on a 5-point Likert scale, with consensus defined as Cronbach's α of at least 0·70. Items rated 4 or above on the 5-point Likert scale by 80 per cent of the programme directors were included in the models. Two Delphi rounds were completed, with 14 programme directors taking part in round one and 11 in round two. The overall consensus was high (Cronbach's α = 0·98). The training model included 101 unique procedures and tasks, 24 specific to junior trainees, 68 specific to senior trainees, and nine appropriate to all. The assessment model included four procedures. A system of operative procedures and tasks for junior- and senior-level trainees has been developed along with an assessment model for trainee progression. These can be used as milestones in competency-based assessments. © 2016 BJS Society Ltd Published by John Wiley & Sons Ltd.
Analog quantum simulation of generalized Dicke models in trapped ions
Aedo, Ibai; Lamata, Lucas
2018-04-01
We propose the analog quantum simulation of generalized Dicke models in trapped ions. By combining bicromatic laser interactions on multiple ions we can generate all regimes of light-matter coupling in these models, where here the light mode is mimicked by a motional mode. We present numerical simulations of the three-qubit Dicke model both in the weak field (WF) regime, where the Jaynes-Cummings behavior arises, and the ultrastrong coupling (USC) regime, where a rotating-wave approximation cannot be considered. We also simulate the two-qubit biased Dicke model in the WF and USC regimes and the two-qubit anisotropic Dicke model in the USC regime and the deep-strong coupling regime. The agreement between the mathematical models and the ion system convinces us that these quantum simulations can be implemented in the laboratory with current or near-future technology. This formalism establishes an avenue for the quantum simulation of many-spin Dicke models in trapped ions.
Topics in conformal invariance and generalized sigma models
International Nuclear Information System (INIS)
Bernardo, L.M.; Lawrence Berkeley National Lab., CA
1997-05-01
This thesis consists of two different parts, having in common the fact that in both, conformal invariance plays a central role. In the first part, the author derives conditions for conformal invariance, in the large N limit, and for the existence of an infinite number of commuting classical conserved quantities, in the Generalized Thirring Model. The treatment uses the bosonized version of the model. Two different approaches are used to derive conditions for conformal invariance: the background field method and the Hamiltonian method based on an operator algebra, and the agreement between them is established. The author constructs two infinite sets of non-local conserved charges, by specifying either periodic or open boundary conditions, and he finds the Poisson Bracket algebra satisfied by them. A free field representation of the algebra satisfied by the relevant dynamical variables of the model is also presented, and the structure of the stress tensor in terms of free fields (and free currents) is studied in detail. In the second part, the author proposes a new approach for deriving the string field equations from a general sigma model on the world sheet. This approach leads to an equation which combines some of the attractive features of both the renormalization group method and the covariant beta function treatment of the massless excitations. It has the advantage of being covariant under a very general set of both local and non-local transformations in the field space. The author applies it to the tachyon, massless and first massive level, and shows that the resulting field equations reproduce the correct spectrum of a left-right symmetric closed bosonic string
A Model Independent General Search for new physics in ATLAS
Amoroso, S; The ATLAS collaboration
2016-01-01
We present results of a model-independent general search for new phenomena in proton-proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS detector at the LHC. The data set corresponds to a total integrated luminosity of 20.3~\\ifb. Event topologies involving isolated electrons, photons and muons, as well as jets, including those identified as originating from \\textit{b}-quarks (\\textit{b}-jets) and missing transverse momentum are investigated. The events are subdivided according to their final states into exclusive event classes. For the 697 classes with a Standard Model expectation greater than 0.1 events, a search algorithm tests the compatibility of data against the Monte Carlo simulated background in three kinematic variables sensitive to new physics effects. No significant deviation is found in data. The number and size of the observed deviations follow the Standard Model expectation obtained from simulated pseudo-experiments.
A Model Independent General Search for new physics in ATLAS
Amoroso, S.; ATLAS Collaboration
2016-04-01
We present results of a model-independent general search for new phenomena in proton-proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS detector at the LHC. The data set corresponds to a total integrated luminosity of 20.3 fb-1. Event topologies involving isolated electrons, photons and muons, as well as jets, including those identified as originating from b-quarks (b-jets) and missing transverse momentum are investigated. The events are subdivided according to their final states into exclusive event classes. For the 697 classes with a Standard Model expectation greater than 0.1 events, a search algorithm tests the compatibility of data against the Monte Carlo simulated background in three kinematic variables sensitive to new physics effects. No significant deviation is found in data. The number and size of the observed deviations follow the Standard Model expectation obtained from simulated pseudo-experiments.
Statistical mechanics of sparse generalization and graphical model selection
International Nuclear Information System (INIS)
Lage-Castellanos, Alejandro; Pagnani, Andrea; Weigt, Martin
2009-01-01
One of the crucial tasks in many inference problems is the extraction of an underlying sparse graphical model from a given number of high-dimensional measurements. In machine learning, this is frequently achieved using, as a penalty term, the L p norm of the model parameters, with p≤1 for efficient dilution. Here we propose a statistical mechanics analysis of the problem in the setting of perceptron memorization and generalization. Using a replica approach, we are able to evaluate the relative performance of naive dilution (obtained by learning without dilution, following by applying a threshold to the model parameters), L 1 dilution (which is frequently used in convex optimization) and L 0 dilution (which is optimal but computationally hard to implement). Whereas both L p diluted approaches clearly outperform the naive approach, we find a small region where L 0 works almost perfectly and strongly outperforms the simpler to implement L 1 dilution
Dimensional Reduction for the General Markov Model on Phylogenetic Trees.
Sumner, Jeremy G
2017-03-01
We present a method of dimensional reduction for the general Markov model of sequence evolution on a phylogenetic tree. We show that taking certain linear combinations of the associated random variables (site pattern counts) reduces the dimensionality of the model from exponential in the number of extant taxa, to quadratic in the number of taxa, while retaining the ability to statistically identify phylogenetic divergence events. A key feature is the identification of an invariant subspace which depends only bilinearly on the model parameters, in contrast to the usual multi-linear dependence in the full space. We discuss potential applications including the computation of split (edge) weights on phylogenetic trees from observed sequence data.
The Michigan Titan Thermospheric General Circulation Model (TTGCM)
Bell, J. M.; Bougher, S. W.; de Lahaye, V.; Waite, J. H.
2005-12-01
The Cassini flybys of Titan since late October, 2004 have provided data critical to better understanding its chemical and thermal structures. With this in mind, a 3-D TGCM of Titan's atmosphere from 600km to the exobase (~1450km) has been developed. This paper presents the first results from the partially operational code. Currently, the TTGCM includes static background chemistry (Lebonnois et al 2001, Vervack et al 2004) coupled with thermal conduction routines. The thermosphere remains dominated by solar EUV forcing and HCN rotational cooling, which is calculated by a full line-by-line radiative transfer routine along the lines of Yelle (1991) and Mueller-Wodarg (2000, 2002). In addition, an approximate treatment of magnetospheric heating is explored. This paper illustrates the model's capabilities as well as some initial results from the Titan Thermospheric General Circulation model that will be compared with both the Cassini INMS data and the model of Mueller-Wodarg (2000,2002).
Three General Theoretical Models in Sociology: An Articulated ?(Disunity?
Directory of Open Access Journals (Sweden)
Thaís García-Pereiro
2015-01-01
Full Text Available After merely a brief, comparative reconstruction of the three most general theoretical models underlying contemporary Sociology (atomic, systemic, and fluid it becomes necessary to review the question about the unity or plurality of Sociology, which is the main objective of this paper. To do so, the basic terms of the question are firstly updated by following the hegemonic trends in current studies of science. Secondly the convergences and divergences among the three models discussed are shown. Following some additional discussion, the conclusion is reached that contemporary Sociology is not unitary, and need not be so. It is plural, but its plurality is limited and articulated by those very models. It may therefore be portrayed as integrated and commensurable, to the extent that a partial and unstable (disunity may be said to exist in Sociology, which is not too far off from what happens in the natural sciences.
Generalized transport model for phase transition with memory
International Nuclear Information System (INIS)
Chen, Chi; Ciucci, Francesco
2013-01-01
A general model for phenomenological transport in phase transition is derived, which extends Jäckle and Frisch model of phase transition with memory and the Cahn–Hilliard model. In addition to including interfacial energy to account for the presence of interfaces, we introduce viscosity and relaxation contributions, which result from incorporating memory effect into the driving potential. Our simulation results show that even without interfacial energy term, the viscous term can lead to transient diffuse interfaces. From the phase transition induced hysteresis, we discover different energy dissipation mechanism for the interfacial energy and the viscosity effect. In addition, by combining viscosity and interfacial energy, we find that if the former dominates, then the concentration difference across the phase boundary is reduced; conversely, if the interfacial energy is greater then this difference is enlarged.
Toward a general psychological model of tension and suspense.
Lehne, Moritz; Koelsch, Stefan
2015-01-01
Tension and suspense are powerful emotional experiences that occur in a wide variety of contexts (e.g., in music, film, literature, and everyday life). The omnipresence of tension and suspense suggests that they build on very basic cognitive and affective mechanisms. However, the psychological underpinnings of tension experiences remain largely unexplained, and tension and suspense are rarely discussed from a general, domain-independent perspective. In this paper, we argue that tension experiences in different contexts (e.g., musical tension or suspense in a movie) build on the same underlying psychological processes. We discuss key components of tension experiences and propose a domain-independent model of tension and suspense. According to this model, tension experiences originate from states of conflict, instability, dissonance, or uncertainty that trigger predictive processes directed at future events of emotional significance. We also discuss possible neural mechanisms underlying tension and suspense. The model provides a theoretical framework that can inform future empirical research on tension phenomena.
A generalized and parameterized interference model for cognitive radio networks
Mahmood, Nurul Huda
2011-06-01
For meaningful co-existence of cognitive radios with primary system, it is imperative that the cognitive radio system is aware of how much interference it generates at the primary receivers. This can be done through statistical modeling of the interference as perceived at the primary receivers. In this work, we propose a generalized model for the interference generated by a cognitive radio network, in the presence of small and large scale fading, at a primary receiver located at the origin. We then demonstrate how this model can be used to estimate the impact of cognitive radio transmission on the primary receiver in terms of different outage probabilities. Finally, our analytical findings are validated through some selected computer-based simulations. © 2011 IEEE.
The generalized hedgehog and the projected chiral soliton model
International Nuclear Information System (INIS)
Fiolhais, M.; Kernforschungsanlage Juelich G.m.b.H.; Goeke, K.; Bochum Univ.; Gruemmer, F.; Urbano, J.N.
1988-01-01
The linear chiral soliton model with quark fields and elementary pion and sigma fields is solved in order to describe static properties of the nucleon and the delta resonance. To this end a Fock state of the system is constructed which consists of three valence quarks in a 1s orbit with a generalized hedgehog spin-flavour configuration cosηvertical strokeu↓> - sin ηvertical stroked↑>. Coherent states are used to provide a quantum description for the mesonic parts of the total wave function. The corresponding classical pion field also exhibits a generalized hedgehog structure. Various nucleon properties are calculated. These include proton and neutron charge raii, and the mangnetic moment of the proton for which experiment is obtained. (orig./HSI)
General Business Model Patterns for Local Energy Management Concepts
Energy Technology Data Exchange (ETDEWEB)
Facchinetti, Emanuele, E-mail: emanuele.facchinetti@hslu.ch; Sulzer, Sabine [Lucerne Competence Center for Energy Research, Lucerne University of Applied Science and Arts, Horw (Switzerland)
2016-03-03
The transition toward a more sustainable global energy system, significantly relying on renewable energies and decentralized energy systems, requires a deep reorganization of the energy sector. The way how energy services are generated, delivered, and traded is expected to be very different in the coming years. Business model innovation is recognized as a key driver for the successful implementation of the energy turnaround. This work contributes to this topic by introducing a heuristic methodology easing the identification of general business model patterns best suited for Local Energy Management concepts such as Energy Hubs. A conceptual framework characterizing the Local Energy Management business model solution space is developed. Three reference business model patterns providing orientation across the defined solution space are identified, analyzed, and compared. Through a market review, a number of successfully implemented innovative business models have been analyzed and allocated within the defined solution space. The outcomes of this work offer to potential stakeholders a starting point and guidelines for the business model innovation process, as well as insights for policy makers on challenges and opportunities related to Local Energy Management concepts.
General Business Model Patterns for Local Energy Management Concepts
International Nuclear Information System (INIS)
Facchinetti, Emanuele; Sulzer, Sabine
2016-01-01
The transition toward a more sustainable global energy system, significantly relying on renewable energies and decentralized energy systems, requires a deep reorganization of the energy sector. The way how energy services are generated, delivered, and traded is expected to be very different in the coming years. Business model innovation is recognized as a key driver for the successful implementation of the energy turnaround. This work contributes to this topic by introducing a heuristic methodology easing the identification of general business model patterns best suited for Local Energy Management concepts such as Energy Hubs. A conceptual framework characterizing the Local Energy Management business model solution space is developed. Three reference business model patterns providing orientation across the defined solution space are identified, analyzed, and compared. Through a market review, a number of successfully implemented innovative business models have been analyzed and allocated within the defined solution space. The outcomes of this work offer to potential stakeholders a starting point and guidelines for the business model innovation process, as well as insights for policy makers on challenges and opportunities related to Local Energy Management concepts.
General circulation model study of atmospheric carbon monoxide
International Nuclear Information System (INIS)
Pinto, J.P.; Yung, Y.L.; Rind, D.; Russell, G.L.; Lerner, J.A.; Hansen, J.E.; Hameed, S.
1983-01-01
The carbon monoxide cycle is studied by incorporating the known and hypothetical sources and sinks in a tracer model that uses the winds generated by a general circulation model. Photochemical production and loss terms, which depend on OH radical concentrations, are calculated in an interactive fashion. The computed global distribution and seasonal variations of CO are compared with observations to obtain constraints on the distribution and magnitude of the sources and sinks of CO, and on the tropospheric abundance of OH. The simplest model that accounts for available observations requires a low latitude plant source of about 1.3 x 10 15 g yr -1 , in addition to sources from incomplete combustion of fossil fuels and oxidation of methane. The globally averaged OH concentration calculated in the model is 7 x 10 5 cm -3 . Models that calculate globally averaged OH concentrations much lower than our nominal value are not consistent with the observed variability of CO. Such models are also inconsistent with measurements of CO isotopic abundances, which imply the existence of plant sources
High-energy particle diffraction
International Nuclear Information System (INIS)
Barone, V.; Predazzi, E.
2002-01-01
This monograph gives a comprehensive and up-to-date overview of soft and hard diffraction processes in strong interaction physics. The first part covers the general formalism (the optical analogy, the eikonal picture, high-energy kinematics, S-matrix theory) and soft hadron-hadron scattering (including the Regge theory) in a complete and mature presentation. It can be used as a textbook in particle physics classes. The remainder of the book is devoted to the 'new diffraction': the pomeron in QCD, low-x physics, diffractive deep inelastic scattering and related processes, jet production etc. It presents recent results and experimental findings and their phenomenological interpretations. This part addresses graduate students as well as researchers. (orig.)
Diffraction of high energy electrons
International Nuclear Information System (INIS)
Bourret, A.
1981-10-01
The diffraction of electrons by a crystal is examined to study its structure. As the electron-substance interaction is strong, it must be treated in a dynamic manner. Using the N waves theory and physical optics the base equations giving the wave at the outlet are deduced for a perfect crystal and their equivalence is shown. The more complex case of an imperfect crystal is then envisaged in these two approaches. In both cases, only the diffraction of high energy electrons ( > 50 KeV) are considered since in the diffraction of slow electrons back scattering cannot be ignored. Taking into account an increasingly greater number of beams, through fast calculations computer techniques, enables images to be simulated in very varied conditions. The general use of the Fast Fourier Transform has given a clear cut practical advantage to the multi-layer method [fr
A General Accelerated Degradation Model Based on the Wiener Process
Directory of Open Access Journals (Sweden)
Le Liu
2016-12-01
Full Text Available Accelerated degradation testing (ADT is an efficient tool to conduct material service reliability and safety evaluations by analyzing performance degradation data. Traditional stochastic process models are mainly for linear or linearization degradation paths. However, those methods are not applicable for the situations where the degradation processes cannot be linearized. Hence, in this paper, a general ADT model based on the Wiener process is proposed to solve the problem for accelerated degradation data analysis. The general model can consider the unit-to-unit variation and temporal variation of the degradation process, and is suitable for both linear and nonlinear ADT analyses with single or multiple acceleration variables. The statistical inference is given to estimate the unknown parameters in both constant stress and step stress ADT. The simulation example and two real applications demonstrate that the proposed method can yield reliable lifetime evaluation results compared with the existing linear and time-scale transformation Wiener processes in both linear and nonlinear ADT analyses.
Generalized fish life-cycle poplulation model and computer program
International Nuclear Information System (INIS)
DeAngelis, D.L.; Van Winkle, W.; Christensen, S.W.; Blum, S.R.; Kirk, B.L.; Rust, B.W.; Ross, C.
1978-03-01
A generalized fish life-cycle population model and computer program have been prepared to evaluate the long-term effect of changes in mortality in age class 0. The general question concerns what happens to a fishery when density-independent sources of mortality are introduced that act on age class 0, particularly entrainment and impingement at power plants. This paper discusses the model formulation and computer program, including sample results. The population model consists of a system of difference equations involving age-dependent fecundity and survival. The fecundity for each age class is assumed to be a function of both the fraction of females sexually mature and the weight of females as they enter each age class. Natural mortality for age classes 1 and older is assumed to be independent of population size. Fishing mortality is assumed to vary with the number and weight of fish available to the fishery. Age class 0 is divided into six life stages. The probability of survival for age class 0 is estimated considering both density-independent mortality (natural and power plant) and density-dependent mortality for each life stage. Two types of density-dependent mortality are included. These are cannibalism of each life stage by older age classes and intra-life-stage competition
A general relativistic hydrostatic model for a galaxy
International Nuclear Information System (INIS)
Hojman, R.; Pena, L.; Zamorano, N.
1991-08-01
The existence of huge amounts of mass laying at the center of some galaxies has been inferred by data gathered at different wavelengths. It seems reasonable then, to incorporate general relativity in the study of these objects. A general relativistic hydrostatic model for a galaxy is studied. We assume that the galaxy is dominated by the dark mass except at the nucleus, where the luminous matter prevails. It considers four different concentric spherically symmetric regions, properly matched and with a specific equation of state for each of them. It yields a slowly raising orbital velocity for a test particle moving in the background gravitational field of the dark matter region. In this sense we think of this model as representing a spiral galaxy. The dependence of the mass on the radius in cluster and field spiral galaxies published recently, can be used to fix the size of the inner luminous core. A vanishing pressure at the edge of the galaxy and the assumption of hydrostatic equilibrium everywhere generates a jump in the density and the orbital velocity at the shell enclosing the galaxy. This is a prediction of this model. The ratio between the size core and the shells introduced here are proportional to their densities. In this sense the model is scale invariant. It can be used to reproduce a galaxy or the central region of a galaxy. We have also compared our results with those obtained with the Newtonian isothermal sphere. The luminosity is not included in our model as an extra variable in the determination of the orbital velocity. (author). 29 refs, 10 figs
A generalized logarithmic image processing model based on the gigavision sensor model.
Deng, Guang
2012-03-01
The logarithmic image processing (LIP) model is a mathematical theory providing generalized linear operations for image processing. The gigavision sensor (GVS) is a new imaging device that can be described by a statistical model. In this paper, by studying these two seemingly unrelated models, we develop a generalized LIP (GLIP) model. With the LIP model being its special case, the GLIP model not only provides new insights into the LIP model but also defines new image representations and operations for solving general image processing problems that are not necessarily related to the GVS. A new parametric LIP model is also developed. To illustrate the application of the new scalar multiplication operation, we propose an energy-preserving algorithm for tone mapping, which is a necessary step in image dehazing. By comparing with results using two state-of-the-art algorithms, we show that the new scalar multiplication operation is an effective tool for tone mapping.
A GENERALIZATION OF TRADITIONAL KANO MODEL FOR CUSTOMER REQUIREMENTS ANALYSIS
Directory of Open Access Journals (Sweden)
Renáta Turisová
2015-07-01
Full Text Available Purpose: The theory of attractiveness determines the relationship between the technically achieved and customer perceived quality of product attributes. The most frequently used approach in the theory of attractiveness is the implementation of Kano‘s model. There exist a lot of generalizations of that model which take into consideration various aspects and approaches focused on understanding the customer preferences and identification of his priorities for a selling product. The aim of this article is to outline another possible generalization of Kano‘s model.Methodology/Approach: The traditional Kano’s model captures the nonlinear relationship between reached attributes of quality and customer requirements. The individual attributes of quality are divided into three main categories: must-be, one-dimensional, attractive quality and into two side categories: indifferent and reverse quality. The well selling product has to contain the must-be attribute. It should contain as many one-dimensional attributes as possible. If there are also supplementary attractive attributes, it means that attractiveness of the entire product, from the viewpoint of the customer, nonlinearly sharply rises what has a direct positive impact on a decision of potential customer when purchasing the product. In this article, we show that inclusion of individual quality attributes of a product to the mentioned categories depends, among other things, also on costs on life cycle of the product, respectively on a price of the product on the market.Findings: In practice, we are often encountering the inclusion of products into different price categories: lower, middle and upper class. For a certain type of products the category is either directly declared by a producer (especially in automotive industry, or is determined by a customer by means of assessment of available market prices. To each of those groups of a products different customer expectations can be assigned
Estimation and variable selection for generalized additive partial linear models
Wang, Li
2011-08-01
We study generalized additive partial linear models, proposing the use of polynomial spline smoothing for estimation of nonparametric functions, and deriving quasi-likelihood based estimators for the linear parameters. We establish asymptotic normality for the estimators of the parametric components. The procedure avoids solving large systems of equations as in kernel-based procedures and thus results in gains in computational simplicity. We further develop a class of variable selection procedures for the linear parameters by employing a nonconcave penalized quasi-likelihood, which is shown to have an asymptotic oracle property. Monte Carlo simulations and an empirical example are presented for illustration. © Institute of Mathematical Statistics, 2011.
Water tracers in the general circulation model ECHAM
International Nuclear Information System (INIS)
Hoffmann, G.; Heimann, M.
1993-01-01
We have installed a water tracer model into the ECHAM General Circulation Model (GCM) parameterizing all fractionation processes of the stable water isotopes ( 1 H 2 18 O and 1 H 2 H 16 O). A five year simulation was performed under present day conditions. We focus on the applicability of such a water tracer model to obtain information about the quality of the hydrological cycle of the GCM. The analysis of the simulated 1 H 2 18 O composition of the precipitation indicates too weak fractionated precipitation over the Antarctic and Greenland ice sheets and too strong fractionated precipitation over large areas of the tropical and subtropical land masses. We can show that these deficiencies are connected with problems of model quantities such as the precipitation and the resolution of the orography. The linear relationship between temperature and the δ 18 O value, i.e. the Dansgaard slope, is reproduced quite well in the model. The slope is slightly too flat and the strong correlation between temperature and δ 18 O vanishes at very low temperatures compared to the observations. (orig.)
Computable general equilibrium model fiscal year 2013 capability development report
Energy Technology Data Exchange (ETDEWEB)
Edwards, Brian Keith [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rivera, Michael Kelly [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boero, Riccardo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-05-17
This report documents progress made on continued developments of the National Infrastructure Simulation and Analysis Center (NISAC) Computable General Equilibrium Model (NCGEM), developed in fiscal year 2012. In fiscal year 2013, NISAC the treatment of the labor market and tests performed with the model to examine the properties of the solutions computed by the model. To examine these, developers conducted a series of 20 simulations for 20 U.S. States. Each of these simulations compared an economic baseline simulation with an alternative simulation that assumed a 20-percent reduction in overall factor productivity in the manufacturing industries of each State. Differences in the simulation results between the baseline and alternative simulations capture the economic impact of the reduction in factor productivity. While not every State is affected in precisely the same way, the reduction in manufacturing industry productivity negatively affects the manufacturing industries in each State to an extent proportional to the reduction in overall factor productivity. Moreover, overall economic activity decreases when manufacturing sector productivity is reduced. Developers ran two additional simulations: (1) a version of the model for the State of Michigan, with manufacturing divided into two sub-industries (automobile and other vehicle manufacturing as one sub-industry and the rest of manufacturing as the other subindustry); and (2) a version of the model for the United States, divided into 30 industries. NISAC conducted these simulations to illustrate the flexibility of industry definitions in NCGEM and to examine the simulation properties of in more detail.
Scaling of Precipitation Extremes Modelled by Generalized Pareto Distribution
Rajulapati, C. R.; Mujumdar, P. P.
2017-12-01
Precipitation extremes are often modelled with data from annual maximum series or peaks over threshold series. The Generalized Pareto Distribution (GPD) is commonly used to fit the peaks over threshold series. Scaling of precipitation extremes from larger time scales to smaller time scales when the extremes are modelled with the GPD is burdened with difficulties arising from varying thresholds for different durations. In this study, the scale invariance theory is used to develop a disaggregation model for precipitation extremes exceeding specified thresholds. A scaling relationship is developed for a range of thresholds obtained from a set of quantiles of non-zero precipitation of different durations. The GPD parameters and exceedance rate parameters are modelled by the Bayesian approach and the uncertainty in scaling exponent is quantified. A quantile based modification in the scaling relationship is proposed for obtaining the varying thresholds and exceedance rate parameters for shorter durations. The disaggregation model is applied to precipitation datasets of Berlin City, Germany and Bangalore City, India. From both the applications, it is observed that the uncertainty in the scaling exponent has a considerable effect on uncertainty in scaled parameters and return levels of shorter durations.
General mirror pairs for gauged linear sigma models
Energy Technology Data Exchange (ETDEWEB)
Aspinwall, Paul S.; Plesser, M. Ronen [Departments of Mathematics and Physics, Duke University,Box 90320, Durham, NC 27708-0320 (United States)
2015-11-05
We carefully analyze the conditions for an abelian gauged linear σ-model to exhibit nontrivial IR behavior described by a nonsingular superconformal field theory determining a superstring vacuum. This is done without reference to a geometric phase, by associating singular behavior to a noncompact space of (semi-)classical vacua. We find that models determined by reflexive combinatorial data are nonsingular for generic values of their parameters. This condition has the pleasant feature that the mirror of a nonsingular gauged linear σ-model is another such model, but it is clearly too strong and we provide an example of a non-reflexive mirror pair. We discuss a weaker condition inspired by considering extremal transitions, which is also mirror symmetric and which we conjecture to be sufficient. We apply these ideas to extremal transitions and to understanding the way in which both Berglund-Hübsch mirror symmetry and the Vafa-Witten mirror orbifold with discrete torsion can be seen as special cases of the general combinatorial duality of gauged linear σ-models. In the former case we encounter an example showing that our weaker condition is still not necessary.
General mirror pairs for gauged linear sigma models
International Nuclear Information System (INIS)
Aspinwall, Paul S.; Plesser, M. Ronen
2015-01-01
We carefully analyze the conditions for an abelian gauged linear σ-model to exhibit nontrivial IR behavior described by a nonsingular superconformal field theory determining a superstring vacuum. This is done without reference to a geometric phase, by associating singular behavior to a noncompact space of (semi-)classical vacua. We find that models determined by reflexive combinatorial data are nonsingular for generic values of their parameters. This condition has the pleasant feature that the mirror of a nonsingular gauged linear σ-model is another such model, but it is clearly too strong and we provide an example of a non-reflexive mirror pair. We discuss a weaker condition inspired by considering extremal transitions, which is also mirror symmetric and which we conjecture to be sufficient. We apply these ideas to extremal transitions and to understanding the way in which both Berglund-Hübsch mirror symmetry and the Vafa-Witten mirror orbifold with discrete torsion can be seen as special cases of the general combinatorial duality of gauged linear σ-models. In the former case we encounter an example showing that our weaker condition is still not necessary.
A Bayesian, generalized frailty model for comet assays.
Ghebretinsae, Aklilu Habteab; Faes, Christel; Molenberghs, Geert; De Boeck, Marlies; Geys, Helena
2013-05-01
This paper proposes a flexible modeling approach for so-called comet assay data regularly encountered in preclinical research. While such data consist of non-Gaussian outcomes in a multilevel hierarchical structure, traditional analyses typically completely or partly ignore this hierarchical nature by summarizing measurements within a cluster. Non-Gaussian outcomes are often modeled using exponential family models. This is true not only for binary and count data, but also for, example, time-to-event outcomes. Two important reasons for extending this family are for (1) the possible occurrence of overdispersion, meaning that the variability in the data may not be adequately described by the models, which often exhibit a prescribed mean-variance link, and (2) the accommodation of a hierarchical structure in the data, owing to clustering in the data. The first issue is dealt with through so-called overdispersion models. Clustering is often accommodated through the inclusion of random subject-specific effects. Though not always, one conventionally assumes such random effects to be normally distributed. In the case of time-to-event data, one encounters, for example, the gamma frailty model (Duchateau and Janssen, 2007 ). While both of these issues may occur simultaneously, models combining both are uncommon. Molenberghs et al. ( 2010 ) proposed a broad class of generalized linear models accommodating overdispersion and clustering through two separate sets of random effects. Here, we use this method to model data from a comet assay with a three-level hierarchical structure. Although a conjugate gamma random effect is used for the overdispersion random effect, both gamma and normal random effects are considered for the hierarchical random effect. Apart from model formulation, we place emphasis on Bayesian estimation. Our proposed method has an upper hand over the traditional analysis in that it (1) uses the appropriate distribution stipulated in the literature; (2) deals
Generalized Skyrme model with the loosely bound potential
Gudnason, Sven Bjarke; Zhang, Baiyang; Ma, Nana
2016-12-01
We study a generalization of the loosely bound Skyrme model which consists of the Skyrme model with a sixth-order derivative term—motivated by its fluidlike properties—and the second-order loosely bound potential—motivated by lowering the classical binding energies of higher-charged Skyrmions. We use the rational map approximation for the Skyrmion of topological charge B =4 , calculate the binding energy of the latter, and estimate the systematic error in using this approximation. In the parameter space that we can explore within the rational map approximation, we find classical binding energies as low as 1.8%, and once taking into account the contribution from spin-isospin quantization, we obtain binding energies as low as 5.3%. We also calculate the contribution from the sixth-order derivative term to the electric charge density and axial coupling.
General informatics teaching with B-Learning teaching model
Directory of Open Access Journals (Sweden)
Nguyen The Dung
2018-03-01
Full Text Available Blended learning (B-learning, a combination of face-to-face teaching and E-learning-supported-teaching in an online course, and Information and Communication Technology (ICT tools have been studied in recent years. In addition, the use of this teaching model is effective in teaching and learning conditions in which some certain subjects are appropriate for the specific teaching context. As it has been a matter of concern of the universities in Vietnam today, deep studies related to this topic is crucial to be conducted. In this article, the process of developing online courses and organizing teaching for the General Informatics subject for first-year students at the Hue University of Education with B-learning teaching model will be presented. The combination of 60% face-to-face and 40% online learning.
Generalized flux states of the t-J model
International Nuclear Information System (INIS)
Nori, F.; Abrahams, E.; Zimanyi, G.T.
1990-01-01
We investigate certain generalized flux phases arising in a mean-field approach to the t-J model. First, we establish that the energy of noninteracting electrons moving in a uniform magnetic field has an absolute minimum as a function of the flux at exactly one flux quantum per particle. Using this result, we show that if the hard-core nature of the hole bosons is taken into account, then the slave-boson mean-field approximation for the t-J Hamiltonian allows for a solution where both the spinons and the holons experience an average flux of one flux quantum per particle. This enables them to achieve the lowest possible energy within the manifold of spatially uniform flux states. In the case of the continuum model, this is possible only for certain fractional fillings and we speculate that the system may react to this frustration effect by phase separation
Optimisation of a parallel ocean general circulation model
Directory of Open Access Journals (Sweden)
M. I. Beare
1997-10-01
Full Text Available This paper presents the development of a general-purpose parallel ocean circulation model, for use on a wide range of computer platforms, from traditional scalar machines to workstation clusters and massively parallel processors. Parallelism is provided, as a modular option, via high-level message-passing routines, thus hiding the technical intricacies from the user. An initial implementation highlights that the parallel efficiency of the model is adversely affected by a number of factors, for which optimisations are discussed and implemented. The resulting ocean code is portable and, in particular, allows science to be achieved on local workstations that could otherwise only be undertaken on state-of-the-art supercomputers.
Optimisation of a parallel ocean general circulation model
Directory of Open Access Journals (Sweden)
M. I. Beare
Full Text Available This paper presents the development of a general-purpose parallel ocean circulation model, for use on a wide range of computer platforms, from traditional scalar machines to workstation clusters and massively parallel processors. Parallelism is provided, as a modular option, via high-level message-passing routines, thus hiding the technical intricacies from the user. An initial implementation highlights that the parallel efficiency of the model is adversely affected by a number of factors, for which optimisations are discussed and implemented. The resulting ocean code is portable and, in particular, allows science to be achieved on local workstations that could otherwise only be undertaken on state-of-the-art supercomputers.
[Treatment of cloud radiative effects in general circulation models
International Nuclear Information System (INIS)
Wang, W.C.
1993-01-01
This is a renewal proposal for an on-going project of the Department of Energy (DOE)/Atmospheric Radiation Measurement (ARM) Program. The objective of the ARM Program is to improve the treatment of radiation-cloud in GCMs so that reliable predictions of the timing and magnitude of greenhouse gas-induced global warming and regional responses can be made. The ARM Program supports two research areas: (I) The modeling and analysis of data related to the parameterization of clouds and radiation in general circulation models (GCMs); and (II) the development of advanced instrumentation for both mapping the three-dimensional structure of the atmosphere and high accuracy/precision radiometric observations. The present project conducts research in area (I) and focuses on GCM treatment of cloud life cycle, optical properties, and vertical overlapping. The project has two tasks: (1) Development and Refinement of GCM Radiation-Cloud Treatment Using ARM Data; and (2) Validation of GCM Radiation-Cloud Treatment
Explicit estimating equations for semiparametric generalized linear latent variable models
Ma, Yanyuan
2010-07-05
We study generalized linear latent variable models without requiring a distributional assumption of the latent variables. Using a geometric approach, we derive consistent semiparametric estimators. We demonstrate that these models have a property which is similar to that of a sufficient complete statistic, which enables us to simplify the estimating procedure and explicitly to formulate the semiparametric estimating equations. We further show that the explicit estimators have the usual root n consistency and asymptotic normality. We explain the computational implementation of our method and illustrate the numerical performance of the estimators in finite sample situations via extensive simulation studies. The advantage of our estimators over the existing likelihood approach is also shown via numerical comparison. We employ the method to analyse a real data example from economics. © 2010 Royal Statistical Society.
Generalized one-loop neutrino mass model with charged particles
Cheung, Kingman; Okada, Hiroshi
2018-04-01
We propose a radiative neutrino-mass model by introducing 3 generations of fermion pairs E-(N +1 )/2E+(N +1 )/2 and a couple of multicharged bosonic doublet fields ΦN /2,ΦN /2 +1, where N =1 , 3, 5, 7, 9. We show that the models can satisfy the neutrino masses and oscillation data, and are consistent with lepton-flavor violations, the muon anomalous magnetic moment, the oblique parameters, and the beta function of the U (1 )Y hypercharge gauge coupling. We also discuss the collider signals for various N , namely, multicharged leptons in the final state from the Drell-Yan production of E-(N +1 )/2E+(N +1 )/2. In general, the larger the N the more charged leptons will appear in the final state.
A stratiform cloud parameterization for General Circulation Models
International Nuclear Information System (INIS)
Ghan, S.J.; Leung, L.R.; Chuang, C.C.; Penner, J.E.; McCaa, J.
1994-01-01
The crude treatment of clouds in General Circulation Models (GCMs) is widely recognized as a major limitation in the application of these models to predictions of global climate change. The purpose of this project is to develop a paxameterization for stratiform clouds in GCMs that expresses stratiform clouds in terms of bulk microphysical properties and their subgrid variability. In this parameterization, precipitating cloud species are distinguished from non-precipitating species, and the liquid phase is distinguished from the ice phase. The size of the non-precipitating cloud particles (which influences both the cloud radiative properties and the conversion of non-precipitating cloud species to precipitating species) is determined by predicting both the mass and number concentrations of each species
A stratiform cloud parameterization for general circulation models
International Nuclear Information System (INIS)
Ghan, S.J.; Leung, L.R.; Chuang, C.C.; Penner, J.E.; McCaa, J.
1994-01-01
The crude treatment of clouds in general circulation models (GCMs) is widely recognized as a major limitation in applying these models to predictions of global climate change. The purpose of this project is to develop in GCMs a stratiform cloud parameterization that expresses clouds in terms of bulk microphysical properties and their subgrid variability. Various clouds variables and their interactions are summarized. Precipitating cloud species are distinguished from non-precipitating species, and the liquid phase is distinguished from the ice phase. The size of the non-precipitating cloud particles (which influences both the cloud radiative properties and the conversion of non-precipitating cloud species to precipitating species) is determined by predicting both the mass and number concentrations of each species
On the thermodynamic properties of the generalized Gaussian core model
Directory of Open Access Journals (Sweden)
B.M.Mladek
2005-01-01
Full Text Available We present results of a systematic investigation of the properties of the generalized Gaussian core model of index n. The potential of this system interpolates via the index n between the potential of the Gaussian core model and the penetrable sphere system, thereby varying the steepness of the repulsion. We have used both conventional and self-consistent liquid state theories to calculate the structural and thermodynamic properties of the system; reference data are provided by computer simulations. The results indicate that the concept of self-consistency becomes indispensable to guarantee excellent agreement with simulation data; in particular, structural consistency (in our approach taken into account via the zero separation theorem is obviously a very important requirement. Simulation results for the dimensionless equation of state, β P / ρ, indicate that for an index-value of 4, a clustering transition, possibly into a structurally ordered phase might set in as the system is compressed.
Convex Relaxations for a Generalized Chan-Vese Model
Bae, Egil
2013-01-01
We revisit the Chan-Vese model of image segmentation with a focus on the encoding with several integer-valued labeling functions. We relate several representations with varying amount of complexity and demonstrate the connection to recent relaxations for product sets and to dual maxflow-based formulations. For some special cases, it can be shown that it is possible to guarantee binary minimizers. While this is not true in general, we show how to derive a convex approximation of the combinatorial problem for more than 4 phases. We also provide a method to avoid overcounting of boundaries in the original Chan-Vese model without departing from the efficient product-set representation. Finally, we derive an algorithm to solve the associated discretized problem, and demonstrate that it allows to obtain good approximations for the segmentation problem with various number of regions. © 2013 Springer-Verlag.
The generalized chiral Schwinger model on the two-sphere
International Nuclear Information System (INIS)
Bassetto, A.
1995-01-01
A family of theories which interpolate between vector and chiral Schwinger models is studied on the two-sphere S 2 . The conflict between the loss of gauge invariance and global geometrical properties is solved by introducing a fixed background connection. In this way the generalized Dirac-Weyl operator can be globally defined on S 2 . The generating functional of the Green functions is obtained by taking carefully into account the contribution of gauge fields with non-trivial topological charge and of the related zero-modes of the Dirac determinant. In the decompactification limit, the Green functions of the flat case are recovered; in particular the fermionic condensate in the vacuum vanishes, at variance with its behaviour in the vector Schwinger model. ((orig.))
A more general interacting model of holographic dark energy
International Nuclear Information System (INIS)
Yu Fei; Zhang Jingfei; Lu Jianbo; Wang Wei; Gui Yuanxing
2010-01-01
So far, there have been no theories or observational data that deny the presence of interaction between dark energy and dark matter. We extend naturally the holographic dark energy (HDE) model, proposed by Granda and Oliveros, in which the dark energy density includes not only the square of the Hubble scale, but also the time derivative of the Hubble scale to the case with interaction and the analytic forms for the cosmic parameters are obtained under the specific boundary conditions. The various behaviors concerning the cosmic expansion depend on the introduced numerical parameters which are also constrained. The more general interacting model inherits the features of the previous ones of HDE, keeping the consistency of the theory.
Diabatic models with transferrable parameters for generalized chemical reactions
International Nuclear Information System (INIS)
Reimers, Jeffrey R; McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S
2017-01-01
Diabatic models applied to adiabatic electron-transfer theory yield many equations involving just a few parameters that connect ground-state geometries and vibration frequencies to excited-state transition energies and vibration frequencies to the rate constants for electron-transfer reactions, utilizing properties of the conical-intersection seam linking the ground and excited states through the Pseudo Jahn-Teller effect. We review how such simplicity in basic understanding can also be obtained for general chemical reactions. The key feature that must be recognized is that electron-transfer (or hole transfer) processes typically involve one electron (hole) moving between two orbitals, whereas general reactions typically involve two electrons or even four electrons for processes in aromatic molecules. Each additional moving electron leads to new high-energy but interrelated conical-intersection seams that distort the shape of the critical lowest-energy seam. Recognizing this feature shows how conical-intersection descriptors can be transferred between systems, and how general chemical reactions can be compared using the same set of simple parameters. Mathematical relationships are presented depicting how different conical-intersection seams relate to each other, showing that complex problems can be reduced into an effective interaction between the ground-state and a critical excited state to provide the first semi-quantitative implementation of Shaik’s “twin state” concept. Applications are made (i) demonstrating why the chemistry of the first-row elements is qualitatively so different to that of the second and later rows, (ii) deducing the bond-length alternation in hypothetical cyclohexatriene from the observed UV spectroscopy of benzene, (iii) demonstrating that commonly used procedures for modelling surface hopping based on inclusion of only the first-derivative correction to the Born-Oppenheimer approximation are valid in no region of the chemical
Singular solitons of generalized Camassa-Holm models
International Nuclear Information System (INIS)
Tian Lixin; Sun Lu
2007-01-01
Two generalizations of the Camassa-Holm system associated with the singular analysis are proposed for Painleve integrability properties and the extensions of already known analytic solitons. A remarkable feature of the physical model is that it has peakon solution which has peak form. An alternative WTC test which allowed the identifying of such models directly if formulated in terms of inserting a formed ansatz into these models. For the two models have Painleve property, Painleve-Baecklund systems can be constructed through the expansion of solitons about the singularity manifold. By the implementations of Maple, plentiful new type solitonic structures and some kink waves, which are affected by the variation of energy, are explored. If the energy is infinite in finite time, there will be a collapse in soliton systems by direct numerical simulations. Particularly, there are two collapses coexisting in our regular solitons, which occurred around its central regions. Simulation shows that in the bottom of periodic waves arises the non-zero parts of compactons and anti-compactons. We also get floating solitary waves whose amplitude is infinite. In contrary to which a finite-amplitude blow-up soliton is obtained. Periodic blow-ups are found too. Special kinks which have periodic cuspons are derived
A general evolving model for growing bipartite networks
International Nuclear Information System (INIS)
Tian, Lixin; He, Yinghuan; Liu, Haijun; Du, Ruijin
2012-01-01
In this Letter, we propose and study an inner evolving bipartite network model. Significantly, we prove that the degree distribution of two different kinds of nodes both obey power-law form with adjustable exponents. Furthermore, the joint degree distribution of any two nodes for bipartite networks model is calculated analytically by the mean-field method. The result displays that such bipartite networks are nearly uncorrelated networks, which is different from one-mode networks. Numerical simulations and empirical results are given to verify the theoretical results. -- Highlights: ► We proposed a general evolving bipartite network model which was based on priority connection, reconnection and breaking edges. ► We prove that the degree distribution of two different kinds of nodes both obey power-law form with adjustable exponents. ► The joint degree distribution of any two nodes for bipartite networks model is calculated analytically by the mean-field method. ► The result displays that such bipartite networks are nearly uncorrelated networks, which is different from one-mode networks.
Generalized model for k -core percolation and interdependent networks
Panduranga, Nagendra K.; Gao, Jianxi; Yuan, Xin; Stanley, H. Eugene; Havlin, Shlomo
2017-09-01
Cascading failures in complex systems have been studied extensively using two different models: k -core percolation and interdependent networks. We combine the two models into a general model, solve it analytically, and validate our theoretical results through extensive simulations. We also study the complete phase diagram of the percolation transition as we tune the average local k -core threshold and the coupling between networks. We find that the phase diagram of the combined processes is very rich and includes novel features that do not appear in the models studying each of the processes separately. For example, the phase diagram consists of first- and second-order transition regions separated by two tricritical lines that merge and enclose a two-stage transition region. In the two-stage transition, the size of the giant component undergoes a first-order jump at a certain occupation probability followed by a continuous second-order transition at a lower occupation probability. Furthermore, at certain fixed interdependencies, the percolation transition changes from first-order → second-order → two-stage → first-order as the k -core threshold is increased. The analytic equations describing the phase boundaries of the two-stage transition region are set up, and the critical exponents for each type of transition are derived analytically.
General Description of Fission Observables - JEFF Report 24. GEF Model
International Nuclear Information System (INIS)
Schmidt, Karl-Heinz; Jurado, Beatriz; Amouroux, Charlotte
2014-06-01
The Joint Evaluated Fission and Fusion (JEFF) Project is a collaborative effort among the member countries of the OECD Nuclear Energy Agency (NEA) Data Bank to develop a reference nuclear data library. The JEFF library contains sets of evaluated nuclear data, mainly for fission and fusion applications; it contains a number of different data types, including neutron and proton interaction data, radioactive decay data, fission yield data and thermal scattering law data. The General fission (GEF) model is based on novel theoretical concepts and ideas developed to model low energy nuclear fission. The GEF code calculates fission-fragment yields and associated quantities (e.g. prompt neutron and gamma) for a large range of nuclei and excitation energy. This opens up the possibility of a qualitative step forward to improve further the JEFF fission yields sub-library. This report describes the GEF model which explains the complex appearance of fission observables by universal principles of theoretical models and considerations on the basis of fundamental laws of physics and mathematics. The approach reveals a high degree of regularity and provides a considerable insight into the physics of the fission process. Fission observables can be calculated with a precision that comply with the needs for applications in nuclear technology. The relevance of the approach for examining the consistency of experimental results and for evaluating nuclear data is demonstrated. (authors)
Modeling containment of large wildfires using generalized linear mixed-model analysis
Mark Finney; Isaac C. Grenfell; Charles W. McHugh
2009-01-01
Billions of dollars are spent annually in the United States to contain large wildland fires, but the factors contributing to suppression success remain poorly understood. We used a regression model (generalized linear mixed-model) to model containment probability of individual fires, assuming that containment was a repeated-measures problem (fixed effect) and...
Modeling Answer Change Behavior: An Application of a Generalized Item Response Tree Model
Jeon, Minjeong; De Boeck, Paul; van der Linden, Wim
2017-01-01
We present a novel application of a generalized item response tree model to investigate test takers' answer change behavior. The model allows us to simultaneously model the observed patterns of the initial and final responses after an answer change as a function of a set of latent traits and item parameters. The proposed application is illustrated…
Generalized PSF modeling for optimized quantitation in PET imaging.
Ashrafinia, Saeed; Mohy-Ud-Din, Hassan; Karakatsanis, Nicolas A; Jha, Abhinav K; Casey, Michael E; Kadrmas, Dan J; Rahmim, Arman
2017-06-21
modeling does not offer optimized PET quantitation, and that PSF overestimation may provide enhanced SUV quantitation. Furthermore, generalized PSF modeling may provide a valuable approach for quantitative tasks such as treatment-response assessment and prognostication.
Complex Environmental Data Modelling Using Adaptive General Regression Neural Networks
Kanevski, Mikhail
2015-04-01
The research deals with an adaptation and application of Adaptive General Regression Neural Networks (GRNN) to high dimensional environmental data. GRNN [1,2,3] are efficient modelling tools both for spatial and temporal data and are based on nonparametric kernel methods closely related to classical Nadaraya-Watson estimator. Adaptive GRNN, using anisotropic kernels, can be also applied for features selection tasks when working with high dimensional data [1,3]. In the present research Adaptive GRNN are used to study geospatial data predictability and relevant feature selection using both simulated and real data case studies. The original raw data were either three dimensional monthly precipitation data or monthly wind speeds embedded into 13 dimensional space constructed by geographical coordinates and geo-features calculated from digital elevation model. GRNN were applied in two different ways: 1) adaptive GRNN with the resulting list of features ordered according to their relevancy; and 2) adaptive GRNN applied to evaluate all possible models N [in case of wind fields N=(2^13 -1)=8191] and rank them according to the cross-validation error. In both cases training were carried out applying leave-one-out procedure. An important result of the study is that the set of the most relevant features depends on the month (strong seasonal effect) and year. The predictabilities of precipitation and wind field patterns, estimated using the cross-validation and testing errors of raw and shuffled data, were studied in detail. The results of both approaches were qualitatively and quantitatively compared. In conclusion, Adaptive GRNN with their ability to select features and efficient modelling of complex high dimensional data can be widely used in automatic/on-line mapping and as an integrated part of environmental decision support systems. 1. Kanevski M., Pozdnoukhov A., Timonin V. Machine Learning for Spatial Environmental Data. Theory, applications and software. EPFL Press
General Methods for Evolutionary Quantitative Genetic Inference from Generalized Mixed Models.
de Villemereuil, Pierre; Schielzeth, Holger; Nakagawa, Shinichi; Morrissey, Michael
2016-11-01
Methods for inference and interpretation of evolutionary quantitative genetic parameters, and for prediction of the response to selection, are best developed for traits with normal distributions. Many traits of evolutionary interest, including many life history and behavioral traits, have inherently nonnormal distributions. The generalized linear mixed model (GLMM) framework has become a widely used tool for estimating quantitative genetic parameters for nonnormal traits. However, whereas GLMMs provide inference on a statistically convenient latent scale, it is often desirable to express quantitative genetic parameters on the scale upon which traits are measured. The parameters of fitted GLMMs, despite being on a latent scale, fully determine all quantities of potential interest on the scale on which traits are expressed. We provide expressions for deriving each of such quantities, including population means, phenotypic (co)variances, variance components including additive genetic (co)variances, and parameters such as heritability. We demonstrate that fixed effects have a strong impact on those parameters and show how to deal with this by averaging or integrating over fixed effects. The expressions require integration of quantities determined by the link function, over distributions of latent values. In general cases, the required integrals must be solved numerically, but efficient methods are available and we provide an implementation in an R package, QGglmm. We show that known formulas for quantities such as heritability of traits with binomial and Poisson distributions are special cases of our expressions. Additionally, we show how fitted GLMM can be incorporated into existing methods for predicting evolutionary trajectories. We demonstrate the accuracy of the resulting method for evolutionary prediction by simulation and apply our approach to data from a wild pedigreed vertebrate population. Copyright © 2016 de Villemereuil et al.
Correlations in the hadronic double diffractive dissociation
International Nuclear Information System (INIS)
Goldegol, Alexandre.
1991-05-01
A given reaction of double diffractive dissociation is studied based on the three-component Deck Model. The correlations among the diffractive slope, the effective mass of the dissociated particle sub-system and the dissociation angle in the Gottfried-Jackson are studied based in this model. 9 refs, 19 figs
Modeling of space environment impact on nanostructured materials. General principles
Voronina, Ekaterina; Novikov, Lev
2016-07-01
In accordance with the resolution of ISO TC20/SC14 WG4/WG6 joint meeting, Technical Specification (TS) 'Modeling of space environment impact on nanostructured materials. General principles' which describes computer simulation methods of space environment impact on nanostructured materials is being prepared. Nanomaterials surpass traditional materials for space applications in many aspects due to their unique properties associated with nanoscale size of their constituents. This superiority in mechanical, thermal, electrical and optical properties will evidently inspire a wide range of applications in the next generation spacecraft intended for the long-term (~15-20 years) operation in near-Earth orbits and the automatic and manned interplanetary missions. Currently, ISO activity on developing standards concerning different issues of nanomaterials manufacturing and applications is high enough. Most such standards are related to production and characterization of nanostructures, however there is no ISO documents concerning nanomaterials behavior in different environmental conditions, including the space environment. The given TS deals with the peculiarities of the space environment impact on nanostructured materials (i.e. materials with structured objects which size in at least one dimension lies within 1-100 nm). The basic purpose of the document is the general description of the methodology of applying computer simulation methods which relate to different space and time scale to modeling processes occurring in nanostructured materials under the space environment impact. This document will emphasize the necessity of applying multiscale simulation approach and present the recommendations for the choice of the most appropriate methods (or a group of methods) for computer modeling of various processes that can occur in nanostructured materials under the influence of different space environment components. In addition, TS includes the description of possible
Do downscaled general circulation models reliably simulate historical climatic conditions?
Bock, Andrew R.; Hay, Lauren E.; McCabe, Gregory J.; Markstrom, Steven L.; Atkinson, R. Dwight
2018-01-01
The accuracy of statistically downscaled (SD) general circulation model (GCM) simulations of monthly surface climate for historical conditions (1950–2005) was assessed for the conterminous United States (CONUS). The SD monthly precipitation (PPT) and temperature (TAVE) from 95 GCMs from phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5) were used as inputs to a monthly water balance model (MWBM). Distributions of MWBM input (PPT and TAVE) and output [runoff (RUN)] variables derived from gridded station data (GSD) and historical SD climate were compared using the Kolmogorov–Smirnov (KS) test For all three variables considered, the KS test results showed that variables simulated using CMIP5 generally are more reliable than those derived from CMIP3, likely due to improvements in PPT simulations. At most locations across the CONUS, the largest differences between GSD and SD PPT and RUN occurred in the lowest part of the distributions (i.e., low-flow RUN and low-magnitude PPT). Results indicate that for the majority of the CONUS, there are downscaled GCMs that can reliably simulate historical climatic conditions. But, in some geographic locations, none of the SD GCMs replicated historical conditions for two of the three variables (PPT and RUN) based on the KS test, with a significance level of 0.05. In these locations, improved GCM simulations of PPT are needed to more reliably estimate components of the hydrologic cycle. Simple metrics and statistical tests, such as those described here, can provide an initial set of criteria to help simplify GCM selection.
Wang, Xiaozhen; Lu, Tianjian; Yu, Xin; Jin, Jian-Ming; Goddard, Lynford L
2017-07-04
We studied the nanoscale thermal expansion of a suspended resistor both theoretically and experimentally and obtained consistent results. In the theoretical analysis, we used a three-dimensional coupled electrical-thermal-mechanical simulation and obtained the temperature and displacement field of the suspended resistor under a direct current (DC) input voltage. In the experiment, we recorded a sequence of images of the axial thermal expansion of the central bridge region of the suspended resistor at a rate of 1.8 frames/s by using epi-illumination diffraction phase microscopy (epi-DPM). This method accurately measured nanometer level relative height changes of the resistor in a temporally and spatially resolved manner. Upon application of a 2 V step in voltage, the resistor exhibited a steady-state increase in resistance of 1.14 Ω and in relative height of 3.5 nm, which agreed reasonably well with the predicted values of 1.08 Ω and 4.4 nm, respectively.
Giani, S; Niewiadomski, H; Antchev, G; Aspell, P; Avati, V; Bagliesi, M G; Berardi, V; Berretti, M; Besta, M; Bozzo, M; Brücken, E; Buzzo, A; Cafagna, F; Calicchio, M; Catanesi, M G
2010-01-01
The primary objective of the TOTEM experiment at the LHC is the measurement of the total proton-proton cross section with the luminosity-independent method and the study of elastic proton-proton cross-section over a wide |t|-range. In addition TOTEM also performs a comprehensive study of diffraction, spanning from cross-section measurements of individual diffractive processes to the analysis of their event topologies. Hard diffraction will be studied in collaboration with CMS taking advantage...
Antchev, G.; Aspell, P.; Avati, V.; Bagliesi, M.G.; Berardi, V.; Berretti, M.; Bottigli, U.; Bozzo, M.; Brucken, E.; Buzzo, A.; Cafagna, F.; Calicchio, M.; Catanesi, M.G.; Catastini, P.L.; Cecchi, R.
2008-01-01
The TOTEM experiment at the LHC measures the total proton-proton cross section with the luminosity-independent method and the elastic proton-proton cross-section over a wide |t|-range. It also performs a comprehensive study of diffraction, spanning from cross-section measurements of individual diffractive processes to the analysis of their event topologies. Hard diffraction will be studied in collaboration with CMS taking advantage of the large common rapidity coverage for charged and neutral...
Dittrich, Birger; Wandtke, Claudia M; Meents, Alke; Pröpper, Kevin; Mondal, Kartik Chandra; Samuel, Prinson P; Amin Sk, Nurul; Singh, Amit Pratap; Roesky, Herbert W; Sidhu, Navdeep
2015-02-02
Single-crystal X-ray diffraction (XRD) is often considered the gold standard in analytical chemistry, as it allows element identification as well as determination of atom connectivity and the solid-state structure of completely unknown samples. Element assignment is based on the number of electrons of an atom, so that a distinction of neighboring heavier elements in the periodic table by XRD is often difficult. A computationally efficient procedure for aspherical-atom least-squares refinement of conventional diffraction data of organometallic compounds is proposed. The iterative procedure is conceptually similar to Hirshfeld-atom refinement (Acta Crystallogr. Sect. A- 2008, 64, 383-393; IUCrJ. 2014, 1,61-79), but it relies on tabulated invariom scattering factors (Acta Crystallogr. Sect. B- 2013, 69, 91-104) and the Hansen/Coppens multipole model; disordered structures can be handled as well. Five linear-coordinate 3d metal complexes, for which the wrong element is found if standard independent-atom model scattering factors are relied upon, are studied, and it is shown that only aspherical-atom scattering factors allow a reliable assignment. The influence of anomalous dispersion in identifying the correct element is investigated and discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A generalized model for estimating the energy density of invertebrates
James, Daniel A.; Csargo, Isak J.; Von Eschen, Aaron; Thul, Megan D.; Baker, James M.; Hayer, Cari-Ann; Howell, Jessica; Krause, Jacob; Letvin, Alex; Chipps, Steven R.
2012-01-01
Invertebrate energy density (ED) values are traditionally measured using bomb calorimetry. However, many researchers rely on a few published literature sources to obtain ED values because of time and sampling constraints on measuring ED with bomb calorimetry. Literature values often do not account for spatial or temporal variability associated with invertebrate ED. Thus, these values can be unreliable for use in models and other ecological applications. We evaluated the generality of the relationship between invertebrate ED and proportion of dry-to-wet mass (pDM). We then developed and tested a regression model to predict ED from pDM based on a taxonomically, spatially, and temporally diverse sample of invertebrates representing 28 orders in aquatic (freshwater, estuarine, and marine) and terrestrial (temperate and arid) habitats from 4 continents and 2 oceans. Samples included invertebrates collected in all seasons over the last 19 y. Evaluation of these data revealed a significant relationship between ED and pDM (r2 = 0.96, p cost savings compared to traditional bomb calorimetry approaches. This model should prove useful for a wide range of ecological studies because it is unaffected by taxonomic, seasonal, or spatial variability.
General relativity cosmological models without the big bang
International Nuclear Information System (INIS)
Rosen, N.
1985-01-01
Attention is given to the so-called standard model of the universe in the framework of the general theory of relativity. This model is taken to be homogeneous and isotropic and filled with an ideal fluid characterized by a density and a pressure. Taking into consideration, however, the assumption that the universe began in a singular state, it is found hard to understand why the universe is so nearly homogeneous and isotropic at present for a singularity represents a breakdown of physical laws, and the initial singularity cannot, therefore, predetermine the subsequent symmetries of the universe. The present investigation has the objective to find a way of avoiding this initial singularity, i.e., to look for a cosmological model without the big bang. The idea is proposed that there exists a limiting density of matter of the order of magnitude of the Planck density, and that this was the density of matter at the moment at which the universe began to expand
Neutron diffraction and oxide research
International Nuclear Information System (INIS)
Hunter, B.; Howard, C.J.; Kennedy, B.J.
1999-01-01
Oxide compounds form a large class of interesting materials that have a diverse range of mechanical and electronic properties. This diversity and its commercial implications has had a significant impact on physics research. This is particularly evident in the fields of superconductivity magnetoresistivity and ferroelectricity, where discoveries in the last 15 years have given rise to significant shifts in research activities. Historically, oxides have been studied for many years, but it is only recently that significant effort has been diverted to the study of oxide materials for their application to mechanical and electronic devices. An important property of such materials is the atomic structure, for the determination of which diffraction techniques are ideally suited. Recent examples of structure determinations using neutron diffraction in oxide based systems are high temperature superconductors, where oxygen defects are a key factor. Here, neutron diffraction played a major role in determining the effect of oxygen on the superconducting properties. Similarly, neutron diffraction has enjoyed much success in the determination of the structures of the manganate based colossal magnetoresistive (CMR) materials. In both these cases the structure plays a pivotal role in determining theoretical models of the electronic properties. The neutron scattering group at ANSTO has investigated several oxide systems using neutron powder diffraction. Two such systems are presented in this paper; the zirconia-based materials that are used as engineering materials, and the perovskite-based oxides that include the well known cuprate superconductors and the manganate CMR materials
Faraway, Julian J
2005-01-01
Linear models are central to the practice of statistics and form the foundation of a vast range of statistical methodologies. Julian J. Faraway''s critically acclaimed Linear Models with R examined regression and analysis of variance, demonstrated the different methods available, and showed in which situations each one applies. Following in those footsteps, Extending the Linear Model with R surveys the techniques that grow from the regression model, presenting three extensions to that framework: generalized linear models (GLMs), mixed effect models, and nonparametric regression models. The author''s treatment is thoroughly modern and covers topics that include GLM diagnostics, generalized linear mixed models, trees, and even the use of neural networks in statistics. To demonstrate the interplay of theory and practice, throughout the book the author weaves the use of the R software environment to analyze the data of real examples, providing all of the R commands necessary to reproduce the analyses. All of the ...
A general Bayes weibull inference model for accelerated life testing
International Nuclear Information System (INIS)
Dorp, J. Rene van; Mazzuchi, Thomas A.
2005-01-01
This article presents the development of a general Bayes inference model for accelerated life testing. The failure times at a constant stress level are assumed to belong to a Weibull distribution, but the specification of strict adherence to a parametric time-transformation function is not required. Rather, prior information is used to indirectly define a multivariate prior distribution for the scale parameters at the various stress levels and the common shape parameter. Using the approach, Bayes point estimates as well as probability statements for use-stress (and accelerated) life parameters may be inferred from a host of testing scenarios. The inference procedure accommodates both the interval data sampling strategy and type I censored sampling strategy for the collection of ALT test data. The inference procedure uses the well-known MCMC (Markov Chain Monte Carlo) methods to derive posterior approximations. The approach is illustrated with an example
Generalized Swept Mid-structure for Polygonal Models
Martin, Tobias; Chen, Guoning; Musuvathy, Suraj; Cohen, Elaine; Hansen, Charles
2012-01-01
We introduce a novel mid-structure called the generalized swept mid-structure (GSM) of a closed polygonal shape, and a framework to compute it. The GSM contains both curve and surface elements and has consistent sheet-by-sheet topology, versus triangle-by-triangle topology produced by other mid-structure methods. To obtain this structure, a harmonic function, defined on the volume that is enclosed by the surface, is used to decompose the volume into a set of slices. A technique for computing the 1D mid-structures of these slices is introduced. The mid-structures of adjacent slices are then iteratively matched through a boundary similarity computation and triangulated to form the GSM. This structure respects the topology of the input surface model is a hybrid mid-structure representation. The construction and topology of the GSM allows for local and global simplification, used in further applications such as parameterization, volumetric mesh generation and medical applications.
Generalized Swept Mid-structure for Polygonal Models
Martin, Tobias
2012-05-01
We introduce a novel mid-structure called the generalized swept mid-structure (GSM) of a closed polygonal shape, and a framework to compute it. The GSM contains both curve and surface elements and has consistent sheet-by-sheet topology, versus triangle-by-triangle topology produced by other mid-structure methods. To obtain this structure, a harmonic function, defined on the volume that is enclosed by the surface, is used to decompose the volume into a set of slices. A technique for computing the 1D mid-structures of these slices is introduced. The mid-structures of adjacent slices are then iteratively matched through a boundary similarity computation and triangulated to form the GSM. This structure respects the topology of the input surface model is a hybrid mid-structure representation. The construction and topology of the GSM allows for local and global simplification, used in further applications such as parameterization, volumetric mesh generation and medical applications.
Industrial applications of neutron diffraction
International Nuclear Information System (INIS)
Felcher, G.P.
1989-01-01
Neutron diffraction (or, to be more general, neutron scattering) is a most versatile and universal tool, which has been widely employed to probe the structure, the dynamics and the magnetism of condensed matter. Traditionally used for fundamental research in solid state physics, this technique more recently has been applied to problems of immediate industrial interest, as illustrated in examples covering the main fields of endeavour. 14 refs., 14 figs
Digital terrain model generalization incorporating scale, semantic and cognitive constraints
Partsinevelos, Panagiotis; Papadogiorgaki, Maria
2014-05-01
Cartographic generalization is a well-known process accommodating spatial data compression, visualization and comprehension under various scales. In the last few years, there are several international attempts to construct tangible GIS systems, forming real 3D surfaces using a vast number of mechanical parts along a matrix formation (i.e., bars, pistons, vacuums). Usually, moving bars upon a structured grid push a stretching membrane resulting in a smooth visualization for a given surface. Most of these attempts suffer either in their cost, accuracy, resolution and/or speed. Under this perspective, the present study proposes a surface generalization process that incorporates intrinsic constrains of tangible GIS systems including robotic-motor movement and surface stretching limitations. The main objective is to provide optimized visualizations of 3D digital terrain models with minimum loss of information. That is, to minimize the number of pixels in a raster dataset used to define a DTM, while reserving the surface information. This neighborhood type of pixel relations adheres to the basics of Self Organizing Map (SOM) artificial neural networks, which are often used for information abstraction since they are indicative of intrinsic statistical features contained in the input patterns and provide concise and characteristic representations. Nevertheless, SOM remains more like a black box procedure not capable to cope with possible particularities and semantics of the application at hand. E.g. for coastal monitoring applications, the near - coast areas, surrounding mountains and lakes are more important than other features and generalization should be "biased"-stratified to fulfill this requirement. Moreover, according to the application objectives, we extend the SOM algorithm to incorporate special types of information generalization by differentiating the underlying strategy based on topologic information of the objects included in the application. The final
Bayes estimation of the general hazard rate model
International Nuclear Information System (INIS)
Sarhan, A.
1999-01-01
In reliability theory and life testing models, the life time distributions are often specified by choosing a relevant hazard rate function. Here a general hazard rate function h(t)=a+bt c-1 , where c, a, b are constants greater than zero, is considered. The parameter c is assumed to be known. The Bayes estimators of (a,b) based on the data of type II/item-censored testing without replacement are obtained. A large simulation study using Monte Carlo Method is done to compare the performance of Bayes with regression estimators of (a,b). The criterion for comparison is made based on the Bayes risk associated with the respective estimator. Also, the influence of the number of failed items on the accuracy of the estimators (Bayes and regression) is investigated. Estimations for the parameters (a,b) of the linearly increasing hazard rate model h(t)=a+bt, where a, b are greater than zero, can be obtained as the special case, letting c=2
Generalized Functional Linear Models With Semiparametric Single-Index Interactions
Li, Yehua
2010-06-01
We introduce a new class of functional generalized linear models, where the response is a scalar and some of the covariates are functional. We assume that the response depends on multiple covariates, a finite number of latent features in the functional predictor, and interaction between the two. To achieve parsimony, the interaction between the multiple covariates and the functional predictor is modeled semiparametrically with a single-index structure. We propose a two step estimation procedure based on local estimating equations, and investigate two situations: (a) when the basis functions are pre-determined, e.g., Fourier or wavelet basis functions and the functional features of interest are known; and (b) when the basis functions are data driven, such as with functional principal components. Asymptotic properties are developed. Notably, we show that when the functional features are data driven, the parameter estimates have an increased asymptotic variance, due to the estimation error of the basis functions. Our methods are illustrated with a simulation study and applied to an empirical data set, where a previously unknown interaction is detected. Technical proofs of our theoretical results are provided in the online supplemental materials.
CHAIN-WISE GENERALIZATION OF ROAD NETWORKS USING MODEL SELECTION
Directory of Open Access Journals (Sweden)
D. Bulatov
2017-05-01
Full Text Available Streets are essential entities of urban terrain and their automatized extraction from airborne sensor data is cumbersome because of a complex interplay of geometric, topological and semantic aspects. Given a binary image, representing the road class, centerlines of road segments are extracted by means of skeletonization. The focus of this paper lies in a well-reasoned representation of these segments by means of geometric primitives, such as straight line segments as well as circle and ellipse arcs. We propose the fusion of raw segments based on similarity criteria; the output of this process are the so-called chains which better match to the intuitive perception of what a street is. Further, we propose a two-step approach for chain-wise generalization. First, the chain is pre-segmented using circlePeucker and finally, model selection is used to decide whether two neighboring segments should be fused to a new geometric entity. Thereby, we consider both variance-covariance analysis of residuals and model complexity. The results on a complex data-set with many traffic roundabouts indicate the benefits of the proposed procedure.
Cognitive performance modeling based on general systems performance theory.
Kondraske, George V
2010-01-01
General Systems Performance Theory (GSPT) was initially motivated by problems associated with quantifying different aspects of human performance. It has proved to be invaluable for measurement development and understanding quantitative relationships between human subsystem capacities and performance in complex tasks. It is now desired to bring focus to the application of GSPT to modeling of cognitive system performance. Previous studies involving two complex tasks (i.e., driving and performing laparoscopic surgery) and incorporating measures that are clearly related to cognitive performance (information processing speed and short-term memory capacity) were revisited. A GSPT-derived method of task analysis and performance prediction termed Nonlinear Causal Resource Analysis (NCRA) was employed to determine the demand on basic cognitive performance resources required to support different levels of complex task performance. This approach is presented as a means to determine a cognitive workload profile and the subsequent computation of a single number measure of cognitive workload (CW). Computation of CW may be a viable alternative to measuring it. Various possible "more basic" performance resources that contribute to cognitive system performance are discussed. It is concluded from this preliminary exploration that a GSPT-based approach can contribute to defining cognitive performance models that are useful for both individual subjects and specific groups (e.g., military pilots).
Critical rotation of general-relativistic polytropic models revisited
Geroyannis, V.; Karageorgopoulos, V.
2013-09-01
We develop a perturbation method for computing the critical rotational parameter as a function of the equatorial radius of a rigidly rotating polytropic model in the "post-Newtonia approximation" (PNA). We treat our models as "initial value problems" (IVP) of ordinary differential equations in the complex plane. The computations are carried out by the code dcrkf54.f95 (Geroyannis and Valvi 2012 [P1]; modified Runge-Kutta-Fehlberg code of fourth and fifth order for solving initial value problems in the complex plane). Such a complex-plane treatment removes the syndromes appearing in this particular family of IVPs (see e.g. P1, Sec. 3) and allows continuation of the numerical integrations beyond the surface of the star. Thus all the required values of the Lane-Emden function(s) in the post-Newtonian approximation are calculated by interpolation (so avoiding any extrapolation). An interesting point is that, in our computations, we take into account the complete correction due to the gravitational term, and this issue is a remarkable difference compared to the classical PNA. We solve the generalized density as a function of the equatorial radius and find the critical rotational parameter. Our computations are extended to certain other physical characteristics (like mass, angular momentum, rotational kinetic energy, etc). We find that our method yields results comparable with those of other reliable methods. REFERENCE: V.S. Geroyannis and F.N. Valvi 2012, International Journal of Modern Physics C, 23, No 5, 1250038:1-15.
Generalized Functional Linear Models With Semiparametric Single-Index Interactions
Li, Yehua; Wang, Naisyin; Carroll, Raymond J.
2010-01-01
We introduce a new class of functional generalized linear models, where the response is a scalar and some of the covariates are functional. We assume that the response depends on multiple covariates, a finite number of latent features in the functional predictor, and interaction between the two. To achieve parsimony, the interaction between the multiple covariates and the functional predictor is modeled semiparametrically with a single-index structure. We propose a two step estimation procedure based on local estimating equations, and investigate two situations: (a) when the basis functions are pre-determined, e.g., Fourier or wavelet basis functions and the functional features of interest are known; and (b) when the basis functions are data driven, such as with functional principal components. Asymptotic properties are developed. Notably, we show that when the functional features are data driven, the parameter estimates have an increased asymptotic variance, due to the estimation error of the basis functions. Our methods are illustrated with a simulation study and applied to an empirical data set, where a previously unknown interaction is detected. Technical proofs of our theoretical results are provided in the online supplemental materials.
Prognostic cloud water in the Los Alamos general circulation model
International Nuclear Information System (INIS)
Kristjansson, J.E.; Kao, C.Y.J.
1993-01-01
Most of today's general circulation models (GCMS) have a greatly simplified treatment of condensation and clouds. Recent observational studies of the earth's radiation budget have suggested cloud-related feedback mechanisms to be of tremendous importance for the issue of global change. Thus, there has arisen an urgent need for improvements in the treatment of clouds in GCMS, especially as the clouds relate to radiation. In the present paper, we investigate the effects of introducing pregnostic cloud water into the Los Alamos GCM. The cloud water field, produced by both stratiform and convective condensation, is subject to 3-dimensional advection and vertical diffusion. The cloud water enters the radiation calculations through the long wave emissivity calculations. Results from several sensitivity simulations show that realistic cloud water and precipitation fields can be obtained with the applied method. Comparisons with observations show that the most realistic results are obtained when more sophisticated schemes for moist convection are introduced at the same time. The model's cold bias is reduced and the zonal winds become stronger, due to more realistic tropical convection
Prognostic cloud water in the Los Alamos general circulation model
International Nuclear Information System (INIS)
Kristjansson, J.E.; Kao, C.Y.J.
1994-01-01
Most of today's general circulation models (GCMs) have a greatly simplified treatment of condensation and clouds. Recent observational studies of the earth's radiation budget have suggested cloud-related feedback mechanisms to be of tremendous importance for the issue of global change. Thus, an urgent need for improvements in the treatment of clouds in GCMs has arisen, especially as the clouds relate to radiation. In this paper, we investigate the effects of introducing prognostic cloud water into the Los Alamos GCM. The cloud water field, produced by both stratiform and convective condensation, is subject to 3-dimensional advection and vertical diffusion. The cloud water enters the radiation calculations through the longwave emissivity calculations. Results from several sensitivity simulations show that realistic water and precipitation fields can be obtained with the applied method. Comparisons with observations show that the most realistic results are obtained when more sophisticated schemes for moist convection are introduced at the same time. The model's cold bias is reduced and the zonal winds becomes stronger because of more realistic tropical convection
Wang, Jimin; Askerka, Mikhail; Brudvig, Gary W; Batista, Victor S
2017-02-10
Understanding structure-function relations in photosystem II (PSII) is important for the development of biomimetic photocatalytic systems. X-ray crystallography, computational modeling, and spectroscopy have played central roles in elucidating the structure and function of PSII. Recent breakthroughs in femtosecond X-ray crystallography offer the possibility of collecting diffraction data from the X-ray free electron laser (XFEL) before radiation damage of the sample, thereby overcoming the main challenge of conventional X-ray diffraction methods. However, the interpretation of XFEL data from PSII intermediates is challenging because of the issues regarding data-processing, uncertainty on the precise positions of light oxygen atoms next to heavy metal centers, and different kinetics of the S-state transition in microcrystals compared to solution. Here, we summarize recent advances and outstanding challenges in PSII structure-function determination with emphasis on the implementation of quantum mechanics/molecular mechanics techniques combined with isomorphous difference Fourier maps, direct methods, and high-resolution spectroscopy.
Design and implementation of a generalized laboratory data model
Directory of Open Access Journals (Sweden)
Nhan Mike
2007-09-01
Full Text Available Abstract Background Investigators in the biological sciences continue to exploit laboratory automation methods and have dramatically increased the rates at which they can generate data. In many environments, the methods themselves also evolve in a rapid and fluid manner. These observations point to the importance of robust information management systems in the modern laboratory. Designing and implementing such systems is non-trivial and it appears that in many cases a database project ultimately proves unserviceable. Results We describe a general modeling framework for laboratory data and its implementation as an information management system. The model utilizes several abstraction techniques, focusing especially on the concepts of inheritance and meta-data. Traditional approaches commingle event-oriented data with regular entity data in ad hoc ways. Instead, we define distinct regular entity and event schemas, but fully integrate these via a standardized interface. The design allows straightforward definition of a "processing pipeline" as a sequence of events, obviating the need for separate workflow management systems. A layer above the event-oriented schema integrates events into a workflow by defining "processing directives", which act as automated project managers of items in the system. Directives can be added or modified in an almost trivial fashion, i.e., without the need for schema modification or re-certification of applications. Association between regular entities and events is managed via simple "many-to-many" relationships. We describe the programming interface, as well as techniques for handling input/output, process control, and state transitions. Conclusion The implementation described here has served as the Washington University Genome Sequencing Center's primary information system for several years. It handles all transactions underlying a throughput rate of about 9 million sequencing reactions of various kinds per month and
Weather regimes in past climate atmospheric general circulation model simulations
Energy Technology Data Exchange (ETDEWEB)
Kageyama, M.; Ramstein, G. [CEA Saclay, Gif-sur-Yvette (France). Lab. des Sci. du Climat et de l' Environnement; D' Andrea, F.; Vautard, R. [Laboratoire de Meteorologie Dynamique, Ecole Normale Superieure, Paris (France); Valdes, P.J. [Department of Meteorology, University of Reading (United Kingdom)
1999-10-01
We investigate the climates of the present-day, inception of the last glaciation (115000 y ago) and last glacial maximum (21000 y ago) in the extratropical north Atlantic and Europe, as simulated by the laboratoire de Meteorologie dynamique atmospheric general circulation model. We use these simulations to investigate the low-frequency variability of the model in different climates. The aim is to evaluate whether changes in the intraseasonal variability, which we characterize using weather regimes, can help describe the impact of different boundary conditions on climate and give a better understanding of climate change processes. Weather regimes are defined as the most recurrent patterns in the 500 hPa geopotential height, using a clustering algorithm method. The regimes found in the climate simulations of the present-day and inception of the last glaciation are similar in their number and their structure. It is the regimes' populations which are found to be different for these climates, with an increase of the model's blocked regime and a decrease in the zonal regime at the inception of the last glaciation. This description reinforces the conclusions from a study of the differences between the climatological averages of the different runs and confirms the northeastward shift to the tail of the Atlantic storm-track, which would favour more precipitation over the site of growth of the Fennoscandian ice-sheet. On the other hand, the last glacial maximum results over this sector are not found to be classifiable, showing that the change in boundary conditions can be responsible for severe changes in the weather regime and low-frequency dynamics. The LGM Atlantic low-frequency variability appears to be dominated by a large-scale retrogressing wave with a period 40 to 50 days. (orig.)
Groundwater Flow Model of the General Separations Area Using PORFLOW
International Nuclear Information System (INIS)
FLACH, GREGORY
2004-01-01
The E Area PA (McDowell-Boyer et al. 2000) includes a steady-state simulation of groundwater flow in the General Separations Area as a prerequisite for saturated zone contaminant transport analyses. The groundwater flow simulations are based on the FACT code (Hamm and Aleman2000). The FACT-based GSA model was selected during preparation of the original PA to take advantage of an existing model developed for environmental restoration applications at the SRS (Flach and Harris 1997, 1999; Flach 1999). The existing GSA/FACT model was then slightly modified for PA use, as described in the PA document. FACT is a finite-element code utilizing deformed brick elements. Material properties are defined at element centers, and state variables such as hydraulic head are located at element vertices. The PORFLOW code (Analytic and Computational Research, Inc. 2000) was selected for performing saturated zone transport simulations of source zone radionuclides and their progeny. PORFLOW utilizes control volume discretization and the nodal point integration method, with all properties and state variables being defined at the center of an interior grid cell. The groundwater flow calculation includes translating the Darcy velocity field computed by FACT into a form compatible for input to PORFLOW. The FACT velocity field is defined at element vertices, whereas PORFLOW requires flux across cell faces. For the present PA, PORFLOW cell face flux is computed in a two-step process. An initial face flux is computed from FACT as an average of the normal components of Darcy velocity at the four corners. The derived flux field approximately conserves mass, but not rigorously. Thus, the flux field is subsequently perturbed to force rigorous mass conservation on a cell-by-cell basis. The undocumented process used is non-unique and can introduce significant artifacts into the final flux field
Diffraction dissociation and elastic scattering
International Nuclear Information System (INIS)
Verebryusov, V.S.; Ponomarev, L.A.; Smorodinskaya, N.Ya.
1987-01-01
In the framework of Regge scheme with supercritical pomeron a model is suggested for the NN-scattering amplitude which takes into account the contribution introduced to the intermediate state by diffraction dissociation (DD) processes. The DD amplitude is written in terms of the Deck model which has been previously applied to describing the main DD features. The calculated NN cross sections are compared with those obtained experimentally. Theoretical predictions for higher energy are presented
Diffraction of polarized light on periodic structures
International Nuclear Information System (INIS)
Bukanina, V; Divakov, D; Tyutyunnik, A; Hohlov, A
2012-01-01
Periodic structures as photonic crystals are widely used in modern laser devices, communication technologies and for creating various beam splitters and filters. Diffraction gratings are applied for creating 3D television sets, DVD and Blu-ray drives and reflective structures (Berkley mirror). It is important to simulate diffraction on such structures to design optical systems with predetermined properties based on photonic crystals and diffraction gratings. Methods of simulating diffraction on periodic structures uses theory of Floquet-Bloch and rigorous coupled-wave analysis (RCWA). Current work is dedicated to analysis of photonic band gaps and simulating diffraction on one-dimensional binary diffraction grating using RCWA. The Maxwell's equations for isotropic media and constitutive relations based on the cgs system were used as a model.
Log-normal frailty models fitted as Poisson generalized linear mixed models.
Hirsch, Katharina; Wienke, Andreas; Kuss, Oliver
2016-12-01
The equivalence of a survival model with a piecewise constant baseline hazard function and a Poisson regression model has been known since decades. As shown in recent studies, this equivalence carries over to clustered survival data: A frailty model with a log-normal frailty term can be interpreted and estimated as a generalized linear mixed model with a binary response, a Poisson likelihood, and a specific offset. Proceeding this way, statistical theory and software for generalized linear mixed models are readily available for fitting frailty models. This gain in flexibility comes at the small price of (1) having to fix the number of pieces for the baseline hazard in advance and (2) having to "explode" the data set by the number of pieces. In this paper we extend the simulations of former studies by using a more realistic baseline hazard (Gompertz) and by comparing the model under consideration with competing models. Furthermore, the SAS macro %PCFrailty is introduced to apply the Poisson generalized linear mixed approach to frailty models. The simulations show good results for the shared frailty model. Our new %PCFrailty macro provides proper estimates, especially in case of 4 events per piece. The suggested Poisson generalized linear mixed approach for log-normal frailty models based on the %PCFrailty macro provides several advantages in the analysis of clustered survival data with respect to more flexible modelling of fixed and random effects, exact (in the sense of non-approximate) maximum likelihood estimation, and standard errors and different types of confidence intervals for all variance parameters. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
General formulation of standard model the standard model is in need of new concepts
International Nuclear Information System (INIS)
Khodjaev, L.Sh.
2001-01-01
The phenomenological basis for formulation of the Standard Model has been reviewed. The Standard Model based on the fundamental postulates has been formulated. The concept of the fundamental symmetries has been introduced: To look for not fundamental particles but fundamental symmetries. By searching of more general theory it is natural to search first of all global symmetries and than to learn consequence connected with the localisation of this global symmetries like wise of the standard Model
Explicit prediction of ice clouds in general circulation models
Kohler, Martin
1999-11-01
Although clouds play extremely important roles in the radiation budget and hydrological cycle of the Earth, there are large quantitative uncertainties in our understanding of their generation, maintenance and decay mechanisms, representing major obstacles in the development of reliable prognostic cloud water schemes for General Circulation Models (GCMs). Recognizing their relative neglect in the past, both observationally and theoretically, this work places special focus on ice clouds. A recent version of the UCLA - University of Utah Cloud Resolving Model (CRM) that includes interactive radiation is used to perform idealized experiments to study ice cloud maintenance and decay mechanisms under various conditions in term of: (1) background static stability, (2) background relative humidity, (3) rate of cloud ice addition over a fixed initial time-period and (4) radiation: daytime, nighttime and no-radiation. Radiation is found to have major effects on the life-time of layer-clouds. Optically thick ice clouds decay significantly slower than expected from pure microphysical crystal fall-out (taucld = 0.9--1.4 h as opposed to no-motion taumicro = 0.5--0.7 h). This is explained by the upward turbulent fluxes of water induced by IR destabilization, which partially balance the downward transport of water by snowfall. Solar radiation further slows the ice-water decay by destruction of the inversion above cloud-top and the resulting upward transport of water. Optically thin ice clouds, on the other hand, may exhibit even longer life-times (>1 day) in the presence of radiational cooling. The resulting saturation mixing ratio reduction provides for a constant cloud ice source. These CRM results are used to develop a prognostic cloud water scheme for the UCLA-GCM. The framework is based on the bulk water phase model of Ose (1993). The model predicts cloud liquid water and cloud ice separately, and which is extended to split the ice phase into suspended cloud ice (predicted
A new theory for X-ray diffraction.
Fewster, Paul F
2014-05-01
This article proposes a new theory of X-ray scattering that has particular relevance to powder diffraction. The underlying concept of this theory is that the scattering from a crystal or crystallite is distributed throughout space: this leads to the effect that enhanced scatter can be observed at the `Bragg position' even if the `Bragg condition' is not satisfied. The scatter from a single crystal or crystallite, in any fixed orientation, has the fascinating property of contributing simultaneously to many `Bragg positions'. It also explains why diffraction peaks are obtained from samples with very few crystallites, which cannot be explained with the conventional theory. The intensity ratios for an Si powder sample are predicted with greater accuracy and the temperature factors are more realistic. Another consequence is that this new theory predicts a reliability in the intensity measurements which agrees much more closely with experimental observations compared to conventional theory that is based on `Bragg-type' scatter. The role of dynamical effects (extinction etc.) is discussed and how they are suppressed with diffuse scattering. An alternative explanation for the Lorentz factor is presented that is more general and based on the capture volume in diffraction space. This theory, when applied to the scattering from powders, will evaluate the full scattering profile, including peak widths and the `background'. The theory should provide an increased understanding of the reliability of powder diffraction measurements, and may also have wider implications for the analysis of powder diffraction data, by increasing the accuracy of intensities predicted from structural models.
Multi-year predictability in a coupled general circulation model
Energy Technology Data Exchange (ETDEWEB)
Power, Scott; Colman, Rob [Bureau of Meteorology Research Centre, Melbourne, VIC (Australia)
2006-02-01
Multi-year to decadal variability in a 100-year integration of a BMRC coupled atmosphere-ocean general circulation model (CGCM) is examined. The fractional contribution made by the decadal component generally increases with depth and latitude away from surface waters in the equatorial Indo-Pacific Ocean. The relative importance of decadal variability is enhanced in off-equatorial ''wings'' in the subtropical eastern Pacific. The model and observations exhibit ''ENSO-like'' decadal patterns. Analytic results are derived, which show that the patterns can, in theory, occur in the absence of any predictability beyond ENSO time-scales. In practice, however, modification to this stochastic view is needed to account for robust differences between ENSO-like decadal patterns and their interannual counterparts. An analysis of variability in the CGCM, a wind-forced shallow water model, and a simple mixed layer model together with existing and new theoretical results are used to improve upon this stochastic paradigm and to provide a new theory for the origin of decadal ENSO-like patterns like the Interdecadal Pacific Oscillation and Pacific Decadal Oscillation. In this theory, ENSO-driven wind-stress variability forces internal equatorially-trapped Kelvin waves that propagate towards the eastern boundary. Kelvin waves can excite reflected internal westward propagating equatorially-trapped Rossby waves (RWs) and coastally-trapped waves (CTWs). CTWs have no impact on the off-equatorial sub-surface ocean outside the coastal wave guide, whereas the RWs do. If the frequency of the incident wave is too high, then only CTWs are excited. At lower frequencies, both CTWs and RWs can be excited. The lower the frequency, the greater the fraction of energy transmitted to RWs. This lowers the characteristic frequency of variability off the equator relative to its equatorial counterpart. Both the eastern boundary interactions and the accumulation of
Generalized internal model robust control for active front steering intervention
Wu, Jian; Zhao, Youqun; Ji, Xuewu; Liu, Yahui; Zhang, Lipeng
2015-03-01
Because of the tire nonlinearity and vehicle's parameters' uncertainties, robust control methods based on the worst cases, such as H ∞, µ synthesis, have been widely used in active front steering control, however, in order to guarantee the stability of active front steering system (AFS) controller, the robust control is at the cost of performance so that the robust controller is a little conservative and has low performance for AFS control. In this paper, a generalized internal model robust control (GIMC) that can overcome the contradiction between performance and stability is used in the AFS control. In GIMC, the Youla parameterization is used in an improved way. And GIMC controller includes two sections: a high performance controller designed for the nominal vehicle model and a robust controller compensating the vehicle parameters' uncertainties and some external disturbances. Simulations of double lane change (DLC) maneuver and that of braking on split- µ road are conducted to compare the performance and stability of the GIMC control, the nominal performance PID controller and the H ∞ controller. Simulation results show that the high nominal performance PID controller will be unstable under some extreme situations because of large vehicle's parameters variations, H ∞ controller is conservative so that the performance is a little low, and only the GIMC controller overcomes the contradiction between performance and robustness, which can both ensure the stability of the AFS controller and guarantee the high performance of the AFS controller. Therefore, the GIMC method proposed for AFS can overcome some disadvantages of control methods used by current AFS system, that is, can solve the instability of PID or LQP control methods and the low performance of the standard H ∞ controller.
Information in general medical practices: the information processing model.
Crowe, Sarah; Tully, Mary P; Cantrill, Judith A
2010-04-01
The need for effective communication and handling of secondary care information in general practices is paramount. To explore practice processes on receiving secondary care correspondence in a way that integrates the information needs and perceptions of practice staff both clinical and administrative. Qualitative study using semi-structured interviews with a wide range of practice staff (n = 36) in nine practices in the Northwest of England. Analysis was based on the framework approach using N-Vivo software and involved transcription, familiarization, coding, charting, mapping and interpretation. The 'information processing model' was developed to describe the six stages involved in practice processing of secondary care information. These included the amendment or updating of practice records whilst simultaneously or separately actioning secondary care recommendations, using either a 'one-step' or 'two-step' approach, respectively. Many factors were found to influence each stage and impact on the continuum of patient care. The primary purpose of processing secondary care information is to support patient care; this study raises the profile of information flow and usage within practices as an issue requiring further consideration.
Statistical mechanics of learning orthogonal signals for general covariance models
International Nuclear Information System (INIS)
Hoyle, David C
2010-01-01
Statistical mechanics techniques have proved to be useful tools in quantifying the accuracy with which signal vectors are extracted from experimental data. However, analysis has previously been limited to specific model forms for the population covariance C, which may be inappropriate for real world data sets. In this paper we obtain new statistical mechanical results for a general population covariance matrix C. For data sets consisting of p sample points in R N we use the replica method to study the accuracy of orthogonal signal vectors estimated from the sample data. In the asymptotic limit of N,p→∞ at fixed α = p/N, we derive analytical results for the signal direction learning curves. In the asymptotic limit the learning curves follow a single universal form, each displaying a retarded learning transition. An explicit formula for the location of the retarded learning transition is obtained and we find marked variation in the location of the retarded learning transition dependent on the distribution of population covariance eigenvalues. The results of the replica analysis are confirmed against simulation
Diffraction. Powder, amorphous, liquid
International Nuclear Information System (INIS)
Sosnowska, I.M.
1999-01-01
Neutron powder diffraction is a unique tool to observe all possible diffraction effects appearing in crystal. High-resolution neutron diffractometers have to be used in this study. Analysis of the magnetic structure of polycrystalline materials requires the use of high-resolution neutron diffraction in the range of large interplanar distances. As distinguished from the double axis diffractometers (DAS), which show high resolution only at small interplanar distances, TOF (time-of-flight) diffractometry offers the best resolution at large interplanar distances. (K.A.)
Hernandez-Figueroa, Hugo E; Recami, Erasmo
2013-01-01
This continuation and extension of the successful book ""Localized Waves"" by the same editors brings together leading researchers in non-diffractive waves to cover the most important results in their field and as such is the first to present the current state.The well-balanced presentation of theory and experiments guides readers through the background of different types of non-diffractive waves, their generation, propagation, and possible applications. The authors include a historical account of the development of the field, and cover different types of non-diffractive waves, including Airy
Tavasszy, L.; Davydenko, I.; Ruijgrok, K.
2009-01-01
The integration of Spatial Equilibrium models and Freight transport network models is important to produce consistent scenarios for future freight transport demand. At various spatial scales, we see the changes in production, trade, logistics networking and transportation, being driven by
DEFF Research Database (Denmark)
Rosthøj, Susanne; Keiding, Niels
2004-01-01
When studying a regression model measures of explained variation are used to assess the degree to which the covariates determine the outcome of interest. Measures of predictive accuracy are used to assess the accuracy of the predictions based on the covariates and the regression model. We give a ...... a detailed and general introduction to the two measures and the estimation procedures. The framework we set up allows for a study of the effect of misspecification on the quantities estimated. We also introduce a generalization to survival analysis....
Background removal in X-ray fiber diffraction patterns
International Nuclear Information System (INIS)
Millane, R.P.; Arnott, S.
1985-01-01
Background can be a major source of error in measurement of diffracted intensities in fiber diffraction patterns. Errors can be large when poorly oriented less-crystalline specimens give diffraction patterns with little uncontaminated background. A method for estimating and removing a general global background in such cases is described and illustrated with an example. (orig.)
Generalized linear mixed models modern concepts, methods and applications
Stroup, Walter W
2012-01-01
PART I The Big PictureModeling BasicsWhat Is a Model?Two Model Forms: Model Equation and Probability DistributionTypes of Model EffectsWriting Models in Matrix FormSummary: Essential Elements for a Complete Statement of the ModelDesign MattersIntroductory Ideas for Translating Design and Objectives into ModelsDescribing ""Data Architecture"" to Facilitate Model SpecificationFrom Plot Plan to Linear PredictorDistribution MattersMore Complex Example: Multiple Factors with Different Units of ReplicationSetting the StageGoals for Inference with Models: OverviewBasic Tools of InferenceIssue I: Data
International Nuclear Information System (INIS)
Berger, C.
1995-11-01
Recent experiments on total hadronic cross sections are reviewed together with results on photo- and electroproduction of vector mesons. New data on diffractive deep inelastic scattering shed light on the nature of the pomeron. (orig.)
Antchev, G.; Avati, V.; Bagliesi, M.G.; Berardi, V.; Berretti, M.; Bottigli, U.; Bozzo, M.; Brucken, E.; Buzzo, A.; Cafagna, F.; Calicchio, M.; Catanesi, M.G.; Catastini, P.L.; Cecchi, R.; Ciocci, M.A.; Deile, M.; Dimovasili, E.; Eggert, K.; Eremin, V.; Ferro, F.; Garcia, F.; Giani, S.; Greco, V.; Heino, J.; Hilden, T.; Kaspar, J.; Kopal, J.; Kundrat, V.; Kurvinen, K.; Lami, S.; Latino, G.; Lauhakangas, R.; Lippmaa, E.; Lokajicek, M.; Lo Vetere, M.; Lucas Rodriguez, F.; Macri, M.; Magazzu, G.; Meucci, M.; Minutoli, S.; Niewiadomski, H.; Noschis, E.; Notarnicola, G.; Oliveri, E.; Oljemark, F.; Orava, R.; Oriunno, M.; Osterberg, K.; Palazzi, P.; Pedreschi, E.; Petajajarvi, J.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Rella, G.; Robutti, E.; Ropelewski, L.; Ruggiero, G.; Rummel, A.; Saarikko, H.; Sanguinetti, G.; Santroni, A.; Scribano, A.; Sette, G.; Snoeys, W.; Spinella, F.; Squillacioti, P.; Ster, A.; Taylor, C.; Trummal, A.; Turini, N.; Whitmore, J.; Wu, J.
2009-01-01
The TOTEM experiment at the LHC measures the total proton-proton cross section with the luminosity-independent method and the elastic proton-proton cross-section over a wide |t|-range. It also performs a comprehensive study of diffraction, spanning from cross-section measurements of individual diffractive processes to the analysis of their event topologies. Hard diffraction will be studied in collaboration with CMS taking advantage of the large common rapidity coverage for charged and neutral particle detection and the large variety of trigger possibilities even at large luminosities. TOTEM will take data under all LHC beam conditions including standard high luminosity runs to maximize its physics reach. This contribution describes the main features of the TOTEM physics programme including measurements to be made in the early LHC runs. In addition, a novel scheme to extend the diffractive proton acceptance for high luminosity runs by installing proton detectors at IP3 is described.
Giani, S; Antchev, G; Aspell, P; Avati, V; Bagliesi, M G; Berardi, V; Berretti, M; Besta, M; Bozzo, M; Brücken, E; Buzzo, A; Cafagna, F; Calicchio, M; Catanesi, M G; Cecchi, R; Ciocci, M A; Dadel, P; Deile, M; Dimovasili, E; Eggert, K; Eremin, V; Ferro, F; Fiergolski, A; García, F; Greco, V; Grzanka, L; Heino, J; Hildén, T; Kaspar, J; Kopal, J; Kundrát, V; Kurvinen, K; Lami, S; Latino, G; Lauhakangas, R; Leszko, R; Lippmaa, E; Lokajícek, M; Lo Vetere, M; Lucas Rodriguez, F; Macrí, M; Magazzù, G; Meucci, M; Minutoli, S; Notarnicola, G; Oliveri, E; Oljemark, F; Orava, R; Oriunno, M; Österberg, K; Pedreschi, E; Petäjäjärvi, J; Prochazka, J; Quinto, M; Radermacher, E; Radicioni, E; Ravotti, F; Rella, G; Robutti, E; Ropelewski, L; Rostkowski, M; Ruggiero, G; Rummel, A; Saarikko, H; Sanguinetti, G; Santroni, A; Scribano, A; Sette, G; Snoeys, W; Spinella, F; Ster, A; Taylor, C; Trummal, A; Turini, N; Whitmore, J; Wu, J; Zalewski, M
2010-01-01
The primary objective of the TOTEM experiment at the LHC is the measurement of the total proton-proton cross section with the luminosity-independent method and the study of elastic proton-proton cross-section over a wide |t|-range. In addition TOTEM also performs a comprehensive study of diffraction, spanning from cross-section measurements of individual diffractive processes to the analysis of their event topologies. Hard diffraction will be studied in collaboration with CMS taking advantage of the large common rapidity coverage for charged and neutral particle detection and the large variety of trigger possibilities even at large luminosities. TOTEM will take data under all LHC beam conditions including standard high luminosity runs to maximise its physics reach. This contribution describes the main features of the TOTEM diffractive physics programme including measurements to be made in the early LHC runs.
DIFFRACTION SYNCHRONIZATION OF LASERS,
semiconductor lasers while suppressing parasitic generation in the plane of the mirror. The diffraction coupling coefficient of open resonators is calculated, and the stability conditions of the synchronized system is determined.
X-ray diffraction 2 - diffraction principles
International Nuclear Information System (INIS)
O'Connor, B.
1999-01-01
Full text: The computation of powder diffraction intensities is based on the principle that the powder pattern comprises the summation of the intensity contributions from each of the crystallites (or single crystals) in the material. Therefore, it is of value for powder diffractionists to appreciate the form of the expression for calculating single crystal diffraction pattern intensities. This knowledge is especially important for Rietveld analysis practitioners in terms of the (i) mathematics of the method and (ii) retrieving single crystal structure data from the literature. We consider the integrated intensity from a small single crystal being rotated at velocity ω through the Bragg angle θ for reflection (hkl).... I(hkl) = [l o /ω]. [e 4 /m 2 c 4 ]. [λ 3 δV F(hkl) 2 /υ 2 ].[(1+cos 2 2θ)/2sin2θ] where e, m and c are the usual fundamental constants; λ is the x-ray wavelength, δV is the crystallite volume; F(hkl) is the structure factor; υ is the unit cell volume; and (1+cos 2 θ)/2sin2θ] is the Lorentz-polarisation factor for an unpolarised incident beam. The expression does not include a contribution for extinction. The influence of factors λ, δV, F(hkl) and υ on the intensities should be appreciated by powder diffractionists, especially the structure factor, F(hkl), which is responsible for the fingerprint nature of diffraction patterns, such as the rise and fall of intensity from peak to peak. The structure factor expression represents the summation of the scattered waves from each of the j scattering centres (i e atoms) in the unit cell: F(hkl) Σ f j exp[2πi (h.x j +k.y i +l. z i )] T j . Symbol f is the scattering factor (representing the atom-type scattering efficiency); (x, y, z) are the fractional position coordinates of atom j within the unit cell; and T is the thermal vibration factor for the atom given by: T j = 8π 2 2 > sin 2 θ/λ 2 with 2 > being the mean-square vibration amplitude of the atom (assumed to be isotropic). The
A general model for use in internal dosimetry
International Nuclear Information System (INIS)
Johnson, J.R.; Carver, M.B.
1981-01-01
A model is described that combines the International Commission on Radiological Protection's Task Group on Lung Dynamics' Model, Eve's model for transport of material through the gastro-intestinal tract and a compartment model for the organs. Differential equations for this model are given, which include urinary and fecal excretion rates, and the method used to obtain solutions to these equations is described. (author)
Three-dimensional simplicial quantum gravity and generalized matrix models
International Nuclear Information System (INIS)
Ambjoern, J.; Durhuus, B.; Jonsson, T.
1990-11-01
We consider a discrete model of Euclidean quantum gravity in three dimensions based on a summation over random simplicial manifolds. We derive some elementary properties of the model and discuss possible 'matrix' models for 3d gravity. (orig.)
Generalized Network Psychometrics : Combining Network and Latent Variable Models
Epskamp, S.; Rhemtulla, M.; Borsboom, D.
2017-01-01
We introduce the network model as a formal psychometric model, conceptualizing the covariance between psychometric indicators as resulting from pairwise interactions between observable variables in a network structure. This contrasts with standard psychometric models, in which the covariance between
Directory of Open Access Journals (Sweden)
A. El-Shafie
2011-03-01
Full Text Available Artificial neural networks (ANN have been found efficient, particularly in problems where characteristics of the processes are stochastic and difficult to describe using explicit mathematical models. However, time series prediction based on ANN algorithms is fundamentally difficult and faces problems. One of the major shortcomings is the search for the optimal input pattern in order to enhance the forecasting capabilities for the output. The second challenge is the over-fitting problem during the training procedure and this occurs when ANN loses its generalization. In this research, autocorrelation and cross correlation analyses are suggested as a method for searching the optimal input pattern. On the other hand, two generalized methods namely, Regularized Neural Network (RNN and Ensemble Neural Network (ENN models are developed to overcome the drawbacks of classical ANN models. Using Generalized Neural Network (GNN helped avoid over-fitting of training data which was observed as a limitation of classical ANN models. Real inflow data collected over the last 130 years at Lake Nasser was used to train, test and validate the proposed model. Results show that the proposed GNN model outperforms non-generalized neural network and conventional auto-regressive models and it could provide accurate inflow forecasting.
Diffraction by m-bonacci gratings
International Nuclear Information System (INIS)
Monsoriu, Juan A; Giménez, Marcos H; Furlan, Walter D; Barreiro, Juan C; Saavedra, Genaro
2015-01-01
We present a simple diffraction experiment with m-bonacci gratings as a new interesting generalization of the Fibonacci ones. Diffraction by these non-conventional structures is proposed as a motivational strategy to introduce students to basic research activities. The Fraunhofer diffraction patterns are obtained with the standard equipment present in most undergraduate physics labs and are compared with those obtained with regular periodic gratings. We show that m-bonacci gratings produce discrete Fraunhofer patterns characterized by a set of diffraction peaks which positions are related to the concept of a generalized golden mean. A very good agreement is obtained between experimental and numerical results and the students’ feedback is discussed. (paper)
Neutron diffraction and lattice defects
International Nuclear Information System (INIS)
Hamaguchi, Yoshikazu
1974-01-01
Study on lattice defects by neutron diffraction technique is described. Wave length of neutron wave is longer than that of X-ray, and absorption cross-section is small. Number of defects observed by ESR is up to several defects, and the number studied with electron microscopes is more than 100. Information obtained by neutron diffraction concerns the number of defects between these two ranges. For practical analysis, several probable models are selected from the data of ESR or electron microscopes, and most probable one is determined by calculation. Then, defect concentration is obtained from scattering cross section. It is possible to measure elastic scattering exclusively by neutron diffraction. Minimum detectable concentration estimated is about 0.5% and 10 20 - 10 21 defects per unit volume. A chopper and a time of flight system are used as a measuring system. Cold neutrons are obtained from the neutron sources inserted into reactors. Examples of measurements by using similar equipments to PTNS-I system of Japan Atomic Energy Research Institute are presented. Interstitial concentration in the graphite irradiated by fast neutrons is shown. Defects in irradiated MgO were also investigated by measuring scattering cross section. Study of defects in Ge was made by measuring total cross section, and model analysis was performed in comparison with various models. (Kato, T.)
International Nuclear Information System (INIS)
Agnew, S.R.; Mulay, R.P.; Polesak, F.J.; Calhoun, C.A.; Bhattacharyya, J.J.; Clausen, B.
2013-01-01
In situ neutron diffraction compression tests were performed on Mg–Y–Nd–Zr alloy WE43, in the solution heat-treated, peak- and over-aged conditions. The flow curves and internal strain evolutions were modeled using polycrystal plasticity simulation, with the inclusion of an elastic phase to account for the presence of precipitates. The results reveal that prismatic plate-shaped precipitates strongly impede basal slip; the critical resolved shear strength (CRSS) of basal slip increases from 12 to 37 MPa, an increase of over 200%. However, hard deformation modes such as non-basal slip of 〈a〉 dislocations are required for macroscopic yielding. These hard modes are not as strongly affected by aging, with CRSS values which increase from 78 to 92 MPa, an increase of only 18%. The results of the study are consistent with recent modeling of the relative Orowan strengthening of individual deformation modes and the superposition of various strengthening effects (solid solution and precipitation). This finding helps to explain why the age-hardening response of Mg–Y–Nd–Zr alloys is not exceptional. It is concluded that future precipitation-strengthened alloy and process design strategies should focus on promoting high number densities of particles. The effect of aging upon twinning is surprising. The most age-hardened material exhibits more twinning than the solutionized material. To model this behavior using polycrystal plasticity, the critical stress to activate twinning (especially the strain hardening thereof) must be decreased
Suarez, R
2001-01-01
In this paper an alternative non-parametric historical simulation approach, the Mixing Unconditional Disturbances model with constant volatility, where price paths are generated by reshuffling disturbances for S&P 500 Index returns over the period 1950 - 1998, is used to estimate a Generalized Extreme Value Distribution and a Generalized Pareto Distribution. An ordinary back-testing for period 1999 - 2008 was made to verify this technique, providing higher accuracy returns level under upper ...
Diffraction efficiency calculations of polarization diffraction gratings with surface relief
Nazarova, D.; Sharlandjiev, P.; Berberova, N.; Blagoeva, B.; Stoykova, E.; Nedelchev, L.
2018-03-01
In this paper, we evaluate the optical response of a stack of two diffraction gratings of equal one-dimensional periodicity. The first one is a surface-relief grating structure; the second, a volume polarization grating. This model is based on our experimental results from polarization holographic recordings in azopolymer films. We used films of commercially available azopolymer (poly[1-[4-(3-carboxy-4-hydroxyphenylazo) benzenesulfonamido]-1,2-ethanediyl, sodium salt]), shortly denoted as PAZO. During the recording process, a polarization grating in the volume of the material and a relief grating on the film surface are formed simultaneously. In order to evaluate numerically the optical response of this “hybrid” diffraction structure, we used the rigorous coupled-wave approach (RCWA). It yields stable numerical solutions of Maxwell’s vector equations using the algebraic eigenvalue method.
Query construction, entropy, and generalization in neural-network models
Sollich, Peter
1994-05-01
We study query construction algorithms, which aim at improving the generalization ability of systems that learn from examples by choosing optimal, nonredundant training sets. We set up a general probabilistic framework for deriving such algorithms from the requirement of optimizing a suitable objective function; specifically, we consider the objective functions entropy (or information gain) and generalization error. For two learning scenarios, the high-low game and the linear perceptron, we evaluate the generalization performance obtained by applying the corresponding query construction algorithms and compare it to training on random examples. We find qualitative differences between the two scenarios due to the different structure of the underlying rules (nonlinear and ``noninvertible'' versus linear); in particular, for the linear perceptron, random examples lead to the same generalization ability as a sequence of queries in the limit of an infinite number of examples. We also investigate learning algorithms which are ill matched to the learning environment and find that, in this case, minimum entropy queries can in fact yield a lower generalization ability than random examples. Finally, we study the efficiency of single queries and its dependence on the learning history, i.e., on whether the previous training examples were generated randomly or by querying, and the difference between globally and locally optimal query construction.
Hard diffraction at HERA and Tevatron
International Nuclear Information System (INIS)
Kaidalov, A.B.
2001-01-01
A relation between hard diffraction at HERA and Tevatron is discussed. A model, which takes into account unitarity effects is developed for interaction of high-energy virtual photons with nucleons. It is shown that this model gives a good description of HERA data on both total γ* p total cross section and diffractive dissociation of virtual photons in a broad region of Q 2 . It is shown how to describe the CDF data on diffractive jet production at Tevatron using an information on distribution of partons in the Pomeron from HERA experiments
Diffraction Techniques in Structural Biology
Egli, Martin
2016-01-01
A detailed understanding of chemical and biological function and the mechanisms underlying the molecular activities ultimately requires atomic-resolution structural data. Diffraction-based techniques such as single-crystal X-ray crystallography, electron microscopy, and neutron diffraction are well established and they have paved the road to the stunning successes of modern-day structural biology. The major advances achieved in the last 20 years in all aspects of structural research, including sample preparation, crystallization, the construction of synchrotron and spallation sources, phasing approaches, and high-speed computing and visualization, now provide specialists and nonspecialists alike with a steady flow of molecular images of unprecedented detail. The present unit combines a general overview of diffraction methods with a detailed description of the process of a single-crystal X-ray structure determination experiment, from chemical synthesis or expression to phasing and refinement, analysis, and quality control. For novices it may serve as a stepping-stone to more in-depth treatises of the individual topics. Readers relying on structural information for interpreting functional data may find it a useful consumer guide. PMID:27248784
A general lexicographic model for a typological variety of ...
African Journals Online (AJOL)
eXtensible Markup Language/Web Ontology Language) representation model. This article follows another route in describing a model based on entities and relations between them; MySQL (usually referred to as: Structured Query Language) ...
Generalized model of a bidirectional DC-DC converter
Hinov, Nikolay; Arnaudov, Dimitar; Penev, Dimitar
2017-12-01
The following paperwork presents models of bidirectional converters. A classic bidirectional converter and a new bidirectional circuit based on a ZCS resonant converter are investigated and compared. The developed models of these converters allow comparison between their characteristics showing their advantages and disadvantages. The models allow precise models of energy storage elements to be implemented as well, which is useful for examination of energy storage systems.
A generalized exponential time series regression model for electricity prices
DEFF Research Database (Denmark)
Haldrup, Niels; Knapik, Oskar; Proietti, Tomasso
on the estimated model, the best linear predictor is constructed. Our modeling approach provides good fit within sample and outperforms competing benchmark predictors in terms of forecasting accuracy. We also find that building separate models for each hour of the day and averaging the forecasts is a better...
Poisson-generalized gamma empirical Bayes model for disease ...
African Journals Online (AJOL)
In spatial disease mapping, the use of Bayesian models of estimation technique is becoming popular for smoothing relative risks estimates for disease mapping. The most common Bayesian conjugate model for disease mapping is the Poisson-Gamma Model (PG). To explore further the activity of smoothing of relative risk ...
Generalized reduced fluid model with finite ion-gyroradius effects
International Nuclear Information System (INIS)
Hsu, C.T.; Hazeltine, R.D.; Morrison, P.J.
1985-04-01
Reduced fluid models have become important tools for studying the nonlinear dynamics of plasma in a large aspect-ratio tokamak. A self-consistent nonlinear reduced fluid model, with finite ion-gyroradius effects is presented. The model is distinctive in allowing for arbitrary beta and in satisfying an exact, relatively simple energy conservation law
A Generalized Nonlocal Calculus with Application to the Peridynamics Model for Solid Mechanics
Alali, Bacim; Liu, Kuo; Gunzburger, Max
2014-01-01
A nonlocal vector calculus was introduced in [2] that has proved useful for the analysis of the peridynamics model of nonlocal mechanics and nonlocal diffusion models. A generalization is developed that provides a more general setting for the nonlocal vector calculus that is independent of particular nonlocal models. It is shown that general nonlocal calculus operators are integral operators with specific integral kernels. General nonlocal calculus properties are developed, including nonlocal...
Diffraction. Single crystal, magnetic
International Nuclear Information System (INIS)
Heger, G.
1999-01-01
The analysis of crystal structure and magnetic ordering is usually based on diffraction phenomena caused by the interaction of matter with X-rays, neutrons, or electrons. Complementary information is achieved due to the different character of X-rays, neutrons and electrons, and hence their different interactions with matter and further practical aspects. X-ray diffraction using conventional laboratory equipment and/or synchrotron installations is the most important method for structure analyses. The purpose of this paper is to discuss special cases, for which, in addition to this indispensable part, neutrons are required to solve structural problems. Even though the huge intensity of modern synchrotron sources allows in principle the study of magnetic X-ray scattering the investigation of magnetic structures is still one of the most important applications of neutron diffraction. (K.A.)
Quantum mechanics vs. general covariance in gravity and string models
International Nuclear Information System (INIS)
Martinec, E.J.
1984-01-01
Quantization of simple low-dimensional systems embodying general covariance is studied. Functional methods are employed in the calculation of effective actions for fermionic strings and 1 + 1 dimensional gravity. The author finds that regularization breaks apparent symmetries of the theory, providing new dynamics for the string and non-trivial dynamics for 1 + 1 gravity. The author moves on to consider the quantization of some generally covariant systems with a finite number of physical degrees of freedom, assuming the existence of an invariant cutoff. The author finds that the wavefunction of the universe in these cases is given by the solution to simple quantum mechanics problems
Generalized Heteroskedasticity ACF for Moving Average Models in Explicit Forms
Samir Khaled Safi
2014-01-01
The autocorrelation function (ACF) measures the correlation between observations at different distances apart. We derive explicit equations for generalized heteroskedasticity ACF for moving average of order q, MA(q). We consider two cases: Firstly: when the disturbance term follow the general covariance matrix structure Cov(wi, wj)=S with si,j ¹ 0 " i¹j . Secondly: when the diagonal elements of S are not all identical but sij = 0 " i¹j, i.e. S=diag(s11, s22,&hellip...
Retrofitting Non-Cognitive-Diagnostic Reading Assessment under the Generalized DINA Model Framework
Chen, Huilin; Chen, Jinsong
2016-01-01
Cognitive diagnosis models (CDMs) are psychometric models developed mainly to assess examinees' specific strengths and weaknesses in a set of skills or attributes within a domain. By adopting the Generalized-DINA model framework, the recently developed general modeling framework, we attempted to retrofit the PISA reading assessments, a…
Diffraction in nuclear scattering
International Nuclear Information System (INIS)
Wojciechowski, H.
1986-01-01
The elastic scattering amplitudes for charged and neutral particles have been decomposed into diffractive and refractive parts by splitting the nuclear elastic scattering matrix elements into components responsible for these effects. It has been shown that the pure geometrical diffractive effect which carries no information about the nuclear interaction is always predominant at forward angle of elastic angular distributions. This fact suggests that for strongly absorbed particles only elastic cross section at backward angles, i.e. the refractive cross section, can give us basic information about the central nuclear potential. 12 refs., 4 figs., 1 tab. (author)
Directory of Open Access Journals (Sweden)
Chaogui Kang
Full Text Available We generalized the recently introduced "radiation model", as an analog to the generalization of the classic "gravity model", to consolidate its nature of universality for modeling diverse mobility systems. By imposing the appropriate scaling exponent λ, normalization factor κ and system constraints including searching direction and trip OD constraint, the generalized radiation model accurately captures real human movements in various scenarios and spatial scales, including two different countries and four different cities. Our analytical results also indicated that the generalized radiation model outperformed alternative mobility models in various empirical analyses.
Rubin's CMS reduction method for general state-space models
Kraker, de A.; Campen, van D.H.
1996-01-01
In this paper the Rubin CMS procedure for the reduction and successive coupling of undamped structural subsystems with symmetric system matrices will be modified for the case of general damping. The final coordinate transformation is based on the use of complex (residual) flexibility modes,
Bianchi type IX string cosmological model in general relativity
Indian Academy of Sciences (India)
Cosmic strings arise during phase transitions after the big-bang explosion as the temperature goes down below some critical temperature [1–3]. These strings have stress energy and couple in a simple way to the gravitational field. The general relativistic formalism of cosmic strings is due to Letelier [4,5]. Stachel [6] has ...
Nutrition counselling in general practice: the stages of change model
Verheijden, M.W.
2004-01-01
Healthy lifestyles in the prevention of cardiovascular diseases are of utmost importance for people with non insulin-dependent diabetes mellitus, hypertension, and/or dyslipidemia. Because of their continuous contact with almost all segments of the population, general practitioners can play an
New models of general relativistic static thick disks
Vogt, D.; Letelier, P.S.
2005-01-01
New families of exact general relativistic thick disks are constructed using the "displace, cut, fill, and reflect" method. A class of functions used to fill the disks is derived imposing conditions on the first and second derivatives to generate physically acceptable disks. The analysis of the
The logarithmic slope in diffractive DIS
International Nuclear Information System (INIS)
Gay Ducati, M.B.; Goncalves, V.P.; Machado, M.V.T.
2002-01-01
The logarithmic slope of diffractive structure function is a potential observable to separate the hard and soft contributions in diffraction, allowing to disentangle the QCD dynamics at small-x region. In this paper we extend our previous analyzes and calculate the diffractive logarithmic slope for three current approaches in the literature: (i) the Bartels-Wusthoff model, based on perturbative QCD, (ii) the CKMT model, based on Regge theory and (iii) the Golec-Biernat-Wusthoff model which assumes that the saturation phenomena is present in the HERA kinematic region. We analyze the transition region of small to large momentum transfer and verify that future experimental results on the diffractive logarithmic slope could discriminate between these approaches
International Nuclear Information System (INIS)
Gaboriaud, R.J.; Paumier, F.; Lacroix, B.
2016-01-01
This work is focused on the transformation of the disordered fluorite cubic-F phase to the ordered cubic-C bixbyite phase, induced by isothermal annealing as a function of the residual stresses resulting from different concentrations of microstructural defects in the yttrium oxide, Y_2O_3. This transformation was studied using in-situ X-ray diffraction and was modelled using Kolmogorov–Johnson–Mehl–Avrami (KJMA) analysis. The degree of the disorder of the oxygen network was associated with the residual stress, which was a key parameter for the stability and the kinetics of the transition of the different phases that were present in the thin oxide film. When the degree of disorder/residual stress level is high, this transition, which occurs at a rather low temperature (300 °C), is interpreted as a transformation of phases that occurs by a complete recrystallization via the nucleation and growth of a new cubic-C structure. Using the KJMA model, we determined the activation energy of the transformation process, which indicates that this transition occurs via a one-dimensional diffusion process. Thus, we present the analysis and modelling of the stress state. When the disorder/residual stress level was low, a transition to the quasi-perfect ordered cubic-C structure of the yttrium oxide appeared at a rather high temperature (800 °C), which is interpreted as a classic recovery mechanism of the cubic-C structure. - Highlights: • Rare earth oxide thin films • XRD analysis • Phase transformation modelling • Residual stress effects • Crystallographic phase stability
Energy Technology Data Exchange (ETDEWEB)
Gaboriaud, R.J.; Paumier, F. [Institut Pprime, Department of Material Sciences, CNRS-University of Poitiers SP2MI-BP 30179, 86962 Futuroscope-Chasseneuil cedex (France); Lacroix, B. [CSIC, Institut de Ciencia de Materiales, University of Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla (Spain)
2016-02-29
This work is focused on the transformation of the disordered fluorite cubic-F phase to the ordered cubic-C bixbyite phase, induced by isothermal annealing as a function of the residual stresses resulting from different concentrations of microstructural defects in the yttrium oxide, Y{sub 2}O{sub 3}. This transformation was studied using in-situ X-ray diffraction and was modelled using Kolmogorov–Johnson–Mehl–Avrami (KJMA) analysis. The degree of the disorder of the oxygen network was associated with the residual stress, which was a key parameter for the stability and the kinetics of the transition of the different phases that were present in the thin oxide film. When the degree of disorder/residual stress level is high, this transition, which occurs at a rather low temperature (300 °C), is interpreted as a transformation of phases that occurs by a complete recrystallization via the nucleation and growth of a new cubic-C structure. Using the KJMA model, we determined the activation energy of the transformation process, which indicates that this transition occurs via a one-dimensional diffusion process. Thus, we present the analysis and modelling of the stress state. When the disorder/residual stress level was low, a transition to the quasi-perfect ordered cubic-C structure of the yttrium oxide appeared at a rather high temperature (800 °C), which is interpreted as a classic recovery mechanism of the cubic-C structure. - Highlights: • Rare earth oxide thin films • XRD analysis • Phase transformation modelling • Residual stress effects • Crystallographic phase stability.
International Nuclear Information System (INIS)
Hall, I.H.; Somashekar, R.
1991-01-01
The intensity profile of the X-ray reflection from a crystalline material is related to the lattice disorder and the distribution of crystal sizes through its Fourier cosine coefficients. However, existing methods of obtaining these structural parameters from the coefficients require more than one order of reflection and this is seldom available with polymer fibres. They also rely heavily on the low-order harmonics which are those determined with least accuracy. The development and testing of a method which overcomes this weakness and which is suitable for use with a single order is described. The coefficients are calculated for a model with paracrystalline disorder and an assumed distribution of crystal sizes and the parameters describing this model are refined to minimize the discrepancy between the calculated and experimental values of the coefficients. Provided the distribution of lengths is asymmetric this discrepancy is no greater than would be expected from experimental error and so the assumed model cannot be rejected on the evidence available. Since a range of model parameters all gave equally good agreement with experiment, it was not possible with a single order to obtain a well defined set of values. Diffraction patterns displaying two orders had been chosen and results from the second order were consistent with the first, only a narrow range satisfying both simultaneously. The method was further developed by calculating the intensity profile from the harmonics and using this in the refinement. There was no advantage over using harmonics; indeed, on occasions the refinement algorithm was unstable producing unreliable results. (orig.)