WorldWideScience

Sample records for generalized diffraction model

  1. Diffraction model of a step-out transition

    Energy Technology Data Exchange (ETDEWEB)

    Chao, A.W.; Zimmermann, F.

    1996-06-01

    The diffraction model of a cavity, suggested by Lawson, Bane and Sands is generalized to a step out transition. Using this model, the high frequency impedance is calculated explicitly for the case that the transition step is small compared with the beam pipe radius. In the diffraction model for a small step out transition, the total energy is conserved, but, unlike the cavity case, the diffracted waves in the geometric shadow and the pipe region, in general, do not always carry equal energy. In the limit of small step sizes, the impedance derived from the diffraction model agrees with that found by Balakin, Novokhatsky and also Kheifets. This impedance can be used to compute the wake field of a round collimator whose half aperture is much larger than the bunch length, as existing in the SLC final focus.

  2. Generalized diffraction-stack migration and filtering of coherent noise

    KAUST Repository

    Zhan, Ge

    2014-01-27

    We reformulate the equation of reverse-time migration so that it can be interpreted as summing data along a series of hyperbola-like curves, each one representing a different type of event such as a reflection or multiple. This is a generalization of the familiar diffraction-stack migration algorithm where the migration image at a point is computed by the sum of trace amplitudes along an appropriate hyperbola-like curve. Instead of summing along the curve associated with the primary reflection, the sum is over all scattering events and so this method is named generalized diffraction-stack migration. This formulation leads to filters that can be applied to the generalized diffraction-stack migration operator to mitigate coherent migration artefacts due to, e.g., crosstalk and aliasing. Results with both synthetic and field data show that generalized diffraction-stack migration images have fewer artefacts than those computed by the standard reverse-time migration algorithm. The main drawback is that generalized diffraction-stack migration is much more memory intensive and I/O limited than the standard reverse-time migration method. © 2014 European Association of Geoscientists & Engineers.

  3. Fast and accurate focusing analysis of large photon sieve using pinhole ring diffraction model.

    Science.gov (United States)

    Liu, Tao; Zhang, Xin; Wang, Lingjie; Wu, Yanxiong; Zhang, Jizhen; Qu, Hemeng

    2015-06-10

    In this paper, we developed a pinhole ring diffraction model for the focusing analysis of a large photon sieve. Instead of analyzing individual pinholes, we discuss the focusing of all of the pinholes in a single ring. An explicit equation for the diffracted field of individual pinhole ring has been proposed. We investigated the validity range of this generalized model and analytically describe the sufficient conditions for the validity of this pinhole ring diffraction model. A practical example and investigation reveals the high accuracy of the pinhole ring diffraction model. This simulation method could be used for fast and accurate focusing analysis of a large photon sieve.

  4. Boundary diffraction wave integrals for diffraction modeling of external occulters

    OpenAIRE

    Cady, E.

    2012-01-01

    An occulter is a large diffracting screen which may be flown in conjunction with a telescope to image extrasolar planets. The edge is shaped to minimize the diffracted light in a region beyond the occulter, and a telescope may be placed in this dark shadow to view an extrasolar system with the starlight removed. Errors in position, orientation, and shape of the occulter will diffract additional light into this region, and a challenge of modeling an occulter system is to accurately and quickly...

  5. Diffractive generalized phase contrast for adaptive phase imaging and optical security

    DEFF Research Database (Denmark)

    Palima, Darwin; Glückstad, Jesper

    2012-01-01

    We analyze the properties of Generalized Phase Contrast (GPC) when the input phase modulation is implemented using diffractive gratings. In GPC applications for patterned illumination, the use of a dynamic diffractive optical element for encoding the GPC input phase allows for onthe- fly optimiza...... security applications and can be used to create phasebased information channels for enhanced information security....

  6. Diffraction enhanced imaging: a simple model

    International Nuclear Information System (INIS)

    Zhu Peiping; Yuan Qingxi; Huang Wanxia; Wang Junyue; Shu Hang; Chen Bo; Liu Yijin; Li Enrong; Wu Ziyu

    2006-01-01

    Based on pinhole imaging and conventional x-ray projection imaging, a more general DEI (diffraction enhanced imaging) equation is derived using simple concepts in this paper. Not only can the new DEI equation explain all the same problems as with the DEI equation proposed by Chapman, but also some problems that cannot be explained with the old DEI equation, such as the noise background caused by small angle scattering diffracted by the analyser

  7. Diffraction enhanced imaging: a simple model

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Peiping; Yuan Qingxi; Huang Wanxia; Wang Junyue; Shu Hang; Chen Bo; Liu Yijin; Li Enrong; Wu Ziyu [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2006-10-07

    Based on pinhole imaging and conventional x-ray projection imaging, a more general DEI (diffraction enhanced imaging) equation is derived using simple concepts in this paper. Not only can the new DEI equation explain all the same problems as with the DEI equation proposed by Chapman, but also some problems that cannot be explained with the old DEI equation, such as the noise background caused by small angle scattering diffracted by the analyser.

  8. New software to model energy dispersive X-ray diffraction in polycrystalline materials

    Energy Technology Data Exchange (ETDEWEB)

    Ghammraoui, B., E-mail: bahaa.ghammraoui@cea.fr [CEA-Leti, MINATEC Campus, 17 rue des Martyrs, F 38054 Grenoble, Cedex 9 (France); Tabary, J. [CEA-Leti, MINATEC Campus, 17 rue des Martyrs, F 38054 Grenoble, Cedex 9 (France); Pouget, S. [CEA-INAC Sciences de la matieres, 17 rue des Martyrs, F 38054 Grenoble, Cedex 9 (France); Paulus, C.; Moulin, V.; Verger, L. [CEA-Leti, MINATEC Campus, 17 rue des Martyrs, F 38054 Grenoble, Cedex 9 (France); Duvauchelle, Ph. [CNDRI-Insa Lyon, Universite de Lyon, F-69621, Villeurbanne Cedex (France)

    2012-02-01

    Detection of illicit materials, such as explosives or drugs, within mixed samples is a major issue, both for general security and as part of forensic analyses. In this paper, we describe a new code simulating energy dispersive X-ray diffraction patterns in polycrystalline materials. This program, SinFullscat, models diffraction of any object in any diffractometer system taking all physical phenomena, including amorphous background, into account. Many system parameters can be tuned: geometry, collimators (slit and cylindrical), sample properties, X-ray source and detector energy resolution. Good agreement between simulations and experimental data was obtained. Simulations using explosive materials indicated that parameters such as the diffraction angle or the energy resolution of the detector have a significant impact on the diffraction signature of the material inspected. This software will be a convenient tool to test many diffractometer configurations, providing information on the one that best restores the spectral diffraction signature of the materials of interest.

  9. Diffractive production off nuclei-shadow of hadronic bremsstrahlung

    International Nuclear Information System (INIS)

    Bialas, A.; Czyz, W.

    1974-01-01

    Diffractive production on nuclei is calculated using as an input a specific model for diffractive production on nucleons. In this model diffractive production is described as a shadow of non-diffractive multiple production of particles. The mechanism for non-diffractive production is taken to be hadronic bremsstrahlung of independently produced clusters. It is shown that such a model naturally explains the strikingly simple pattern of absorption observed in coherent production on nuclei. Possible generalizations of these results are indicated. (author)

  10. Generalized parton distributions and rapidity gap survival in exclusive diffractive pp scattering

    Energy Technology Data Exchange (ETDEWEB)

    Leonid Frankfurt; Charles Hyde-Wright; Mark Strikman; Christian Weiss

    2007-03-01

    We propose a new approach to the problem of rapidity gap survival (RGS) in the production of high-mass systems (H = dijet, heavy quarkonium, Higgs boson) in double-gap exclusive diffractive pp scattering, pp-->p + (gap) + H + (gap) + p. It is based on the idea that hard and soft interactions proceed over widely different time- and distance scales and are thus approximately independent. The high-mass system is produced in a hard scattering process with exchange of two gluons between the protons. Its amplitude is calculable in terms of the gluon generalized parton distributions (GPDs) in the protons, which can be measured in J= production in exclusive ep scattering. The hard scattering process is modified by soft spectator interactions, which we calculate in a model-independent way in terms of the pp elastic scattering amplitude. Contributions from inelastic intermediate states are suppressed. A simple geometric picture of the interplay of hard and soft interactions in diffraction is obtained. The onset of the black-disk limit in pp scattering at TeV energies strongly suppresses diffraction at small impact parameters and is the main factor in determining the RGS probability. Correlations between hard and soft interactions (e.g. due to scattering from the long-range pion field of the proton, or due to possible short-range transverse correlations between partons) further decrease the RGS probability. We also investigate the dependence of the diffractive cross section on the transverse momenta of the final-state protons (''diffraction pattern''). By measuring this dependence one can perform detailed tests of the interplay of hard and soft interactions, and even extract information about the gluon GPD in the proton. Such studies appear to be feasible with the planned forward detectors at the LHC.

  11. Generalized parton distributions and rapidity gap survival in exclusive diffractive pp scattering

    International Nuclear Information System (INIS)

    Leonid Frankfurt; Charles Hyde-Wright; Mark Strikman; Christian Weiss

    2006-01-01

    We propose a new approach to the problem of rapidity gap survival (RGS) in the production of high-mass systems (H = dijet, heavy quarkonium, Higgs boson) in double-gap exclusive diffractive pp scattering, pp-->p + (gap) + H + (gap) + p. It is based on the idea that hard and soft interactions proceed over widely different time- and distance scales and are thus approximately independent. The high-mass system is produced in a hard scattering process with exchange of two gluons between the protons. Its amplitude is calculable in terms of the gluon generalized parton distributions (GPDs) in the protons, which can be measured in J= production in exclusive ep scattering. The hard scattering process is modified by soft spectator interactions, which we calculate in a model-independent way in terms of the pp elastic scattering amplitude. Contributions from inelastic intermediate states are suppressed. A simple geometric picture of the interplay of hard and soft interactions in diffraction is obtained. The onset of the black-disk limit in pp scattering at TeV energies strongly suppresses diffraction at small impact parameters and is the main factor in determining the RGS probability. Correlations between hard and soft interactions (e.g. due to scattering from the long-range pion field of the proton, or due to possible short-range transverse correlations between partons) further decrease the RGS probability. We also investigate the dependence of the diffractive cross section on the transverse momenta of the final-state protons (''diffraction pattern''). By measuring this dependence one can perform detailed tests of the interplay of hard and soft interactions, and even extract information about the gluon GPD in the proton. Such studies appear to be feasible with the planned forward detectors at the LHC

  12. Colour-singlet exchange and tests of models of diffractive DIS

    International Nuclear Information System (INIS)

    Williams, J.C.

    2000-03-01

    Diffractive deep-inelastic scattering events observed at the HERA electron-proton collider are interpreted as an interaction involving a virtual photon scattering off a colour-singlet state within the proton. Models which attempt to describe the colour-singlet exchanged in diffractive interactions range from the purely phenomenological Donnachie-Landshoff form factor approach to the QCD-motivated gluon-exchange models and the scalar-pomeron model. It is important to find ways to test these models. In this thesis colour-singlet exchange models of diffractive DIS are compared with cross section and structure function data from the H1 detector. H1 select diffractive data by requiring there to be a large angle between the forward proton direction and any other significant detector activity. This pseudo-rapidity gap cut extracts colour-singlet exchange events from the standard DIS data sample. For a wide range of the parameter space covered by the HERA experiments, however, the pseudo-rapidity gap cuts restrict the final-state phase space available for diffractive scattering. One consequence is that pseudo-rapidity gap cuts can be used to select diffractive events in which the colour-singlet only couples to off-shell partons. To leading order in the strong coupling constant, the diffractive final state consists of a quark-antiquark pair. Higher-order events include diffractive production of quark-antiquark-gluon states. In the region where pseudo-rapidity gap cuts restrict the accessible phase space, the cuts reject low transverse momentum quark-antiquark diffractive events. Pseudo-rapidity gap data selection cuts also allow selection of an enhanced 3-jet data sample. The structure function and transverse momentum distribution data can be described by either a two-gluon model or by the Donnachie-Landshoff model, both models requiring a significant contribution from quark-antiquark-gluon diffractive final states to fit the full kinematic range of the diffractive data

  13. Higher-order harmonics of general limited diffraction Bessel beams

    International Nuclear Information System (INIS)

    Ding De-Sheng; Huang Jin-Huang

    2016-01-01

    In this paper, we extensively study the higher-order harmonic generation of the general limited diffraction m -th-order Bessel beam. The analysis is based on successive approximations of the Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation. Asymptotic expansions are presented for higher-order harmonic Bessel beams in near and far fields. The validity of asymptotic approximation is also analyzed. The higher-order harmonic of the Bessel beam with the lowest zero-order is taken as a special example. (special topic)

  14. A Study of Simple Diffraction Models

    DEFF Research Database (Denmark)

    Agerkvist, Finn

    In this paper two simple methods for cabinet edge diffraction are examined. Calculations with both models are compared with more sophisticated theoretical models and with measured data. The parameters involved are studied and their importance for normal loudspeaker box designs is examined....

  15. Diffraction by disordered polycrystalline fibers

    International Nuclear Information System (INIS)

    Stroud, W.J.; Millane, R.P.

    1995-01-01

    X-ray diffraction patterns from some polycrystalline fibers show that the constituent microcrystallites are disordered. The relationship between the crystal structure and the diffracted intensities is then quite complicated and depends on the precise kind and degree of disorder present. The effects of disorder on diffracted intensities must be included in structure determinations using diffraction data from such specimens. Theory and algorithms are developed here that allow the full diffraction pattern to be calculated for a disordered polycrystalline fiber made up of helical molecules. The model accommodates various kinds of disorder and includes the effects of finite crystallite size and cylindrical averaging of the diffracted intensities from a fiber. Simulations using these methods show how different kinds, or components, of disorder produce particular diffraction effects. General properties of disordered arrays of helical molecules and their effects on diffraction patterns are described. Implications for structure determination are discussed. (orig.)

  16. Higher-order harmonics of general limited diffraction Bessel beams

    Science.gov (United States)

    Ding, De-Sheng; Huang, Jin-Huang

    2016-12-01

    In this paper, we extensively study the higher-order harmonic generation of the general limited diffraction m-th-order Bessel beam. The analysis is based on successive approximations of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation. Asymptotic expansions are presented for higher-order harmonic Bessel beams in near and far fields. The validity of asymptotic approximation is also analyzed. The higher-order harmonic of the Bessel beam with the lowest zero-order is taken as a special example. Project supported by the National Natural Science Foundation of China (Grant Nos. 11074038 and 11374051).

  17. Diffraction theory

    NARCIS (Netherlands)

    Bouwkamp, C.J.

    1954-01-01

    A critical review is presented of recent progress in classical diffraction theory. Both scalar and electromagnetic problems are discussed. The report may serve as an introduction to general diffraction theory although the main emphasis is on diffraction by plane obstacles. Various modifications of

  18. A model of diffraction scattering with unitary corrections

    International Nuclear Information System (INIS)

    Etim, E.; Malecki, A.; Satta, L.

    1989-01-01

    The inability of the multiple scattering model of Glauber and similar geometrical picture models to fit data at Collider energies, to fit low energy data at large momentum transfers and to explain the absence of multiple diffraction dips in the data is noted. It is argued and shown that a unitary correction to the multiple scattering amplitude gives rise to a better model and allows to fit all available data on nucleon-nucleon and nucleus-nucleus collisions at all energies and all momentum transfers. There are no multiple diffraction dips

  19. Theory of hard diffraction and rapidity gaps

    International Nuclear Information System (INIS)

    Del Duca, V.

    1995-06-01

    In this talk we review the models describing the hard diffractive production of jets or more generally high-mass states in presence of rapidity gaps in hadron-hadron and lepton-hadron collisions. By rapidity gaps we mean regions on the lego plot in (pseudo)-rapidity and azimuthal angle where no hadrons are produced, between the jet(s) and an elastically scattered hadron (single hard diffraction) or between two jets (double hard diffraction). (orig.)

  20. Inverse scattering theory foundations of tomography with diffracting wavefields

    International Nuclear Information System (INIS)

    Devaney, A.J.

    1987-01-01

    The underlying mathematical models employed in reflection and transmission computed tomography using diffracting wavefields (called diffraction tomography) are reviewed and shown to have a rigorous basis in inverse scattering theory. In transmission diffraction tomography the underlying wave model is shown to be the Rytov approximation to the complex phase of the wavefield transmitted by the object being probed while in reflection diffraction tomography the underlying wave model is shown to be the Born approximation to the backscattered wavefield from the object. In both cases the goal of the reconstruction process is the determination of the objects's complex index of refraction as a function of position r/sup →/ and, possibly, the frequency ω of the probing wavefield. By use of these approximations the reconstruction problem for both transmission and reflection diffraction tomography can be cast into the simple and elegant form of linearized inverse scattering theory. Linearized inverse scattering theory is shown to lead directly to generalized projection-slice theorems for both reflection and transmission diffraction tomography that provide a simple mathematical relationship between the object's complex index of refraction (the unknown) and the data (the complex phase of the transmitted wave or the complex amplitude of the reflected wave). The conventional projection-slice theorem of X-ray CT is shown to result from the generalized projection-slice theorem for transmission diffraction tomography in the limit of vanishing wavelength (in the absence of wave effects). Fourier based and back-projection type reconstruction algorithms are shown to be directly derivable from the generalized projection-slice theorems

  1. Comparative study between a QCD inspired model and a multiple diffraction model

    International Nuclear Information System (INIS)

    Luna, E.G.S.; Martini, A.F.; Menon, M.J.

    2003-01-01

    A comparative study between a QCD Inspired Model (QCDIM) and a Multiple Diffraction Model (MDM) is presented, with focus on the results for pp differential cross section at √s = 52.8 GeV. It is shown that the MDM predictions are in agreement with experimental data, except for the dip region and that the QCDIM describes only the diffraction peak region. Interpretations in terms of the corresponding eikonals are also discussed. (author)

  2. Theory of hard diffraction and rapidity gaps

    International Nuclear Information System (INIS)

    Del Duca, V.

    1996-01-01

    In this talk we review the models describing the hard diffractive production of jets or more generally high-mass states in presence of rapidity gaps in hadron-hadron and lepton-hadron collisions. By rapidity gaps we mean regions on the lego plot in (pseudo)-rapidity and azimuthal angle where no hadrons are produced, between the jet(s) and an elastically scattered hadron (single hard diffraction) or between two jets (double hard diffraction). copyright 1996 American Institute of Physics

  3. A Study of Simple Diffraction Models

    DEFF Research Database (Denmark)

    Agerkvist, Finn

    1997-01-01

    Three different models for calculating edge diffraction are examined. The methods of Vanderkooy, Terai and Biot & Tolstoy are compared with measurements. Although a good agreement is obtained, the measurements also show that none of the methods work completely satisfactorily. The desired properties...

  4. Soft color interactions and diffractive hard scattering at the Tevatron

    International Nuclear Information System (INIS)

    Enberg, R.; Timneanu, N.; Ingelman, G.; Uppsala Univ.

    2001-06-01

    An improved understanding of nonperturbative QCD can be obtained by the recently developed soft color interaction models. Their essence is the variation of color string-field topologies, giving a unified description of final states in high energy interactions, e.g., diffractive and nondiffractive events in ep and pp. Here we present a detailed study of such models (the soft color interaction model and the generalized area law model) applied to pp, considering also the general problem of the underlying event including beam particle remnants. With models turned to HERA ep data, we find a good description also of Tevatron data on production of W, bottom and jets in diffractive events defined either by leading antiprotons or by one or two rapidity gaps in the forward or backward regions. We also give predictions for diffractive J/ψ production where the soft exchange mechanism produces both a gap and a color singlet cc state in the same event. This soft color interaction approach is also compared with Pomeron-based models for diffraction, and some possibilities to experimentally discriminate between these different approaches are discussed. (orig.)

  5. Diffractive interactions

    International Nuclear Information System (INIS)

    Del Duca, V.; Marage, P.

    1996-08-01

    The general framework of diffractive deep inelastic scattering is introduced and reports given in the session on diffractive interactions at the international workshop on deep-inelastic scattering and related phenomena, Rome, April 1996, are presented. (orig.)

  6. Multibreather solitons in the diffraction managed NLS equation

    International Nuclear Information System (INIS)

    Panayotaros, Panayotis

    2006-01-01

    We study analytically and numerically localized breather solutions in the averaged discrete nonlinear Schroedinger equation (NLS) with diffraction management, a system that models coupled waveguide arrays with periodic diffraction management geometries. Localized breathers can be characterized as constrained critical points of the Hamiltonian of the averaged diffraction managed NLS. In addition to local extrema, we find numerically more general solutions that are saddle points of the constrained Hamiltonian. An interesting class of saddle points are 'multi-bump' solutions that are close to superpositions of translates of simpler breathers. In the case of zero residual diffraction and small diffraction management, the existence of multibumps can be shown rigorously by a continuation argument

  7. A smooth and differentiable bulk-solvent model for macromolecular diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Fenn, T. D. [Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford, California (United States); Schnieders, M. J. [Department of Chemistry, Stanford, California (United States); Brunger, A. T., E-mail: brunger@stanford.edu [Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford, California (United States); Departments of Neurology and Neurological Sciences, Structural Biology and Photon Science, Stanford, California (United States)

    2010-09-01

    A new method for modeling the bulk solvent in macromolecular diffraction data based on Babinet’s principle is presented. The proposed models offer the advantage of differentiability with respect to atomic coordinates. Inclusion of low-resolution data in macromolecular crystallography requires a model for the bulk solvent. Previous methods have used a binary mask to accomplish this, which has proven to be very effective, but the mask is discontinuous at the solute–solvent boundary (i.e. the mask value jumps from zero to one) and is not differentiable with respect to atomic parameters. Here, two algorithms are introduced for computing bulk-solvent models using either a polynomial switch or a smoothly thresholded product of Gaussians, and both models are shown to be efficient and differentiable with respect to atomic coordinates. These alternative bulk-solvent models offer algorithmic improvements, while showing similar agreement of the model with the observed amplitudes relative to the binary model as monitored using R, R{sub free} and differences between experimental and model phases. As with the standard solvent models, the alternative models improve the agreement primarily with lower resolution (>6 Å) data versus no bulk solvent. The models are easily implemented into crystallographic software packages and can be used as a general method for bulk-solvent correction in macromolecular crystallography.

  8. A smooth and differentiable bulk-solvent model for macromolecular diffraction

    International Nuclear Information System (INIS)

    Fenn, T. D.; Schnieders, M. J.; Brunger, A. T.

    2010-01-01

    A new method for modeling the bulk solvent in macromolecular diffraction data based on Babinet’s principle is presented. The proposed models offer the advantage of differentiability with respect to atomic coordinates. Inclusion of low-resolution data in macromolecular crystallography requires a model for the bulk solvent. Previous methods have used a binary mask to accomplish this, which has proven to be very effective, but the mask is discontinuous at the solute–solvent boundary (i.e. the mask value jumps from zero to one) and is not differentiable with respect to atomic parameters. Here, two algorithms are introduced for computing bulk-solvent models using either a polynomial switch or a smoothly thresholded product of Gaussians, and both models are shown to be efficient and differentiable with respect to atomic coordinates. These alternative bulk-solvent models offer algorithmic improvements, while showing similar agreement of the model with the observed amplitudes relative to the binary model as monitored using R, R free and differences between experimental and model phases. As with the standard solvent models, the alternative models improve the agreement primarily with lower resolution (>6 Å) data versus no bulk solvent. The models are easily implemented into crystallographic software packages and can be used as a general method for bulk-solvent correction in macromolecular crystallography

  9. Diffractive jet production in a simple model with applications to DESY HERA

    International Nuclear Information System (INIS)

    Berera, A.; Soper, D.E.

    1994-01-01

    In diffractive jet production, two high energy hardons A and B collide and produce high transverse momentum jets, while hadron A is diffractively scattered. Ingelman and Schlein predicted this phenomenon. In their model, part of the longitudinal momentum transferred from hadron A is delivered to the jet system, part is lost. Lossless diffractive jet production, in which all of this longitudinal momentum is delivered to the jet system, has been discussed by Collins, Frankfurt, and Strikman. We study the structure of lossless diffractive jet production in a simple model. The model suggests that the phenomenon can be probed experimentally at DESY HERA, with A being a proton and B being a bremsstrahlung photon with virtuality Q 2 . Lossless events should be present for small Q 2 , but not for Q 2 larger than 1/R P 2 , where R P is a characteristic size of the Pomeron

  10. Diffraction by m-bonacci gratings

    International Nuclear Information System (INIS)

    Monsoriu, Juan A; Giménez, Marcos H; Furlan, Walter D; Barreiro, Juan C; Saavedra, Genaro

    2015-01-01

    We present a simple diffraction experiment with m-bonacci gratings as a new interesting generalization of the Fibonacci ones. Diffraction by these non-conventional structures is proposed as a motivational strategy to introduce students to basic research activities. The Fraunhofer diffraction patterns are obtained with the standard equipment present in most undergraduate physics labs and are compared with those obtained with regular periodic gratings. We show that m-bonacci gratings produce discrete Fraunhofer patterns characterized by a set of diffraction peaks which positions are related to the concept of a generalized golden mean. A very good agreement is obtained between experimental and numerical results and the students’ feedback is discussed. (paper)

  11. Diffraction scattering and the parton model in QCD

    International Nuclear Information System (INIS)

    White, A.

    1985-01-01

    Arguments are presented that the validity of the parton model for hadron scattering in QCD is directly related to the occurrence of the Critical Pomeron description of diffraction scattering. An attractive route suggested for Electroweak and Grand Unification is also briefly described

  12. Automated determination of fibrillar structures by simultaneous model building and fiber diffraction refinement.

    Science.gov (United States)

    Potrzebowski, Wojciech; André, Ingemar

    2015-07-01

    For highly oriented fibrillar molecules, three-dimensional structures can often be determined from X-ray fiber diffraction data. However, because of limited information content, structure determination and validation can be challenging. We demonstrate that automated structure determination of protein fibers can be achieved by guiding the building of macromolecular models with fiber diffraction data. We illustrate the power of our approach by determining the structures of six bacteriophage viruses de novo using fiber diffraction data alone and together with solid-state NMR data. Furthermore, we demonstrate the feasibility of molecular replacement from monomeric and fibrillar templates by solving the structure of a plant virus using homology modeling and protein-protein docking. The generated models explain the experimental data to the same degree as deposited reference structures but with improved structural quality. We also developed a cross-validation method for model selection. The results highlight the power of fiber diffraction data as structural constraints.

  13. Tolerance analysis on diffraction efficiency and polychromatic integral diffraction efficiency for harmonic diffractive optics

    Science.gov (United States)

    Shan, Mao

    2016-10-01

    In this dissertation, the mathematical model of effect of manufacturing errors including microstructure relative height error and relative width error on diffraction efficiency for the harmonic diffractive optical elements (HDEs) is set up. According to the expression of the phase delay and diffraction efficiency of the HDEs, the expression of diffraction efficiency of refraction and diffractive optical element with the microstructure height and periodic width errors in fabrication process is presented in this paper. Furthermore, the effect of manufacturing errors on diffraction efficiency for the harmonic diffractive optical elements is studied, and diffraction efficiency change is analyzed as the relative microstructure height-error in the same and in the opposite sign as well as relative width-error in the same and in the opposite sign. Example including infrared wavelength with materials GE has been discussed in this paper. Two kinds of manufacturing errors applied in 3.7 4.3um middle infrared and 8.7-11.5um far infrared optical system which results in diffraction efficiency and PIDE of HDEs are studied. The analysis results can be used for manufacturing error control in micro-structure height and periodic width. Results can be used for HDEs processing.

  14. Memory sparing, fast scattering formalism for rigorous diffraction modeling

    Science.gov (United States)

    Iff, W.; Kämpfe, T.; Jourlin, Y.; Tishchenko, A. V.

    2017-07-01

    The basics and algorithmic steps of a novel scattering formalism suited for memory sparing and fast electromagnetic calculations are presented. The formalism, called ‘S-vector algorithm’ (by analogy with the known scattering-matrix algorithm), allows the calculation of the collective scattering spectra of individual layered micro-structured scattering objects. A rigorous method of linear complexity is applied to model the scattering at individual layers; here the generalized source method (GSM) resorting to Fourier harmonics as basis functions is used as one possible method of linear complexity. The concatenation of the individual scattering events can be achieved sequentially or in parallel, both having pros and cons. The present development will largely concentrate on a consecutive approach based on the multiple reflection series. The latter will be reformulated into an implicit formalism which will be associated with an iterative solver, resulting in improved convergence. The examples will first refer to 1D grating diffraction for the sake of simplicity and intelligibility, with a final 2D application example.

  15. Duality in diffraction dissociations

    International Nuclear Information System (INIS)

    Santoro, Alberto.

    1977-01-01

    Diffractive dissociations (aN→a*πN) are naturally explained and a model that accounts for the three-variable correlation (mass-transfer-Jackson angle correlation) is presented. This model takes into account the three possible exchanges: t (pion), u(a*) and s(a) channel exchanger. The physical consequences of the model are: a strong mass-slope correlation due to the zeros of the amplitude, a factorization of diffractive dissociations (factorization of the Pomeron), the possibility of extending this model to double diffractive dissociation and diffraction by nuclei. This model was applied to the NN→NπN reaction. Using the usual parameters of the Deck model, a comparison is made with experiments for all available distributions. the strong slope of the peak at 1400 MeV is naturally explained [fr

  16. Unitarized model of inclusive and diffractive DIS with Q2 evolution

    International Nuclear Information System (INIS)

    Armesto, Nestor; Salgado, Carlos A.; Tywoniuk, Konrad; Kaidalov, Alexei B.

    2010-01-01

    We discuss the interplay of low-x physics and QCD scaling violations by extending the unified approach describing inclusive structure functions and diffractive production in γ*p interactions proposed in previous papers to large values of Q 2 . We describe the procedure of extracting, from the nonperturbative model, initial conditions for the QCD evolution that respect unitarity. Assuming Regge factorization of the diffractive structure function, a similar procedure is proposed for the calculation of hard diffraction. The results are in good agreement with experimental data on the proton structure function F 2 and the most recent data on the reduced diffractive cross section, x P σ r D(3) . Predictions for both F 2 and F L are presented in a wide kinematical range and compared to calculations within high-energy QCD.

  17. Uniform physical theory of diffraction equivalent edge currents for implementation in general computer codes

    DEFF Research Database (Denmark)

    Johansen, Peter Meincke

    1996-01-01

    New uniform closed-form expressions for physical theory of diffraction equivalent edge currents are derived for truncated incremental wedge strips. In contrast to previously reported expressions, the new expressions are well-behaved for all directions of incidence and observation and take a finite...... value for zero strip length. Consequently, the new equivalent edge currents are, to the knowledge of the author, the first that are well-suited for implementation in general computer codes...

  18. Accurate Antenna Models in Ground Penetrating Radar Diffraction Tomography

    DEFF Research Database (Denmark)

    Meincke, Peter; Kim, Oleksiy S.

    2002-01-01

    are modeled by their plane-wave receiving and transmitting spectra. We find these spectra numerically for a resistively loaded dipole using the method of moments. Also, we illustrate, through a numerical example, the importance of taking into account the correct antenna pattern in GPR diffraction tomography.......Linear inversion schemes based on the concept of diffraction tomography have proven successful for ground penetrating radar (GPR) imaging. In many GPR surveys, the antennas of the GPR are located close to the air-soil interface and, therefore, it is important to incorporate the presence...... of this interface in the inversion scheme (see Hansen, T.B. and Meincke Johansen, P., IEEE Trans. Geoscience and Remote Sensing, vol.38, p.496-506, 2000). Hansen and Meincke Johansen modeled the antennas as ideal (Hertzian) electric dipoles. Since practical GPR antennas are not ideal, it is of interest...

  19. Double Regge model for non diffractive A1 production

    International Nuclear Information System (INIS)

    Anjos, J.C.; Endler, A.; Santoro, A.; Simao, F.R.A.

    1977-07-01

    A Reggeized double-nucleon-exchange model is shown to be able to to reproduce qualitatively the non-diffractive A 1 production recently observed in the reaction K - p → Σ - π + π - π + at 4.15 GeV/c

  20. Background modelling of diffraction data in the presence of ice rings

    Directory of Open Access Journals (Sweden)

    James M. Parkhurst

    2017-09-01

    Full Text Available An algorithm for modelling the background for each Bragg reflection in a series of X-ray diffraction images containing Debye–Scherrer diffraction from ice in the sample is presented. The method involves the use of a global background model which is generated from the complete X-ray diffraction data set. Fitting of this model to the background pixels is then performed for each reflection independently. The algorithm uses a static background model that does not vary over the course of the scan. The greatest improvement can be expected for data where ice rings are present throughout the data set and the local background shape at the size of a spot on the detector does not exhibit large time-dependent variation. However, the algorithm has been applied to data sets whose background showed large pixel variations (variance/mean > 2 and has been shown to improve the results of processing for these data sets. It is shown that the use of a simple flat-background model as in traditional integration programs causes systematic bias in the background determination at ice-ring resolutions, resulting in an overestimation of reflection intensities at the peaks of the ice rings and an underestimation of reflection intensities either side of the ice ring. The new global background-model algorithm presented here corrects for this bias, resulting in a noticeable improvement in R factors following refinement.

  1. Soft and diffractive scattering with the cluster model in Herwig

    Energy Technology Data Exchange (ETDEWEB)

    Gieseke, Stefan; Loshaj, Frasher; Kirchgaesser, Patrick [Karlsruhe Institute of Technology, Institute for Theoretical Physics, Karlsruhe (Germany)

    2017-03-15

    We present a new model for soft interactions in the event-generator Herwig. The model consists of two components. One to model diffractive final states on the basis of the cluster hadronization model and a second component that addresses soft multiple interactions as multiple particle production in multiperipheral kinematics. We present much improved results for minimum-bias measurements at various LHC energies. (orig.)

  2. Modeling focusing characteristics of low Fnumber diffractive optical elements with continuous relief fabricated by laser direct writing.

    Science.gov (United States)

    Shan, Mingguang; Tan, Jiubin

    2007-12-10

    A theoretical model is established using Rayleigh-Sommerfeld diffraction theory to describe the diffraction focusing characteristics of low F-number diffractive optical elements with continuous relief fabricated by laser direct writing, and continuous-relief diffractive optical elements with a design wavelength of 441.6nm and a F-number of F/4 are fabricated and measured to verify the validity of the diffraction focusing model. The measurements made indicate that the spot size is 1.75mum and the diffraction efficiency is 70.7% at the design wavelength, which coincide well with the theoretical results: a spot size of 1.66mum and a diffraction efficiency of 71.2%.

  3. Diffraction enhanced imaging of a rat model of gastric acid aspiration pneumonitis.

    Science.gov (United States)

    Connor, Dean M; Zhong, Zhong; Foda, Hussein D; Wiebe, Sheldon; Parham, Christopher A; Dilmanian, F Avraham; Cole, Elodia B; Pisano, Etta D

    2011-12-01

    Diffraction-enhanced imaging (DEI) is a type of phase contrast x-ray imaging that has improved image contrast at a lower dose than conventional radiography for many imaging applications, but no studies have been done to determine if DEI might be useful for diagnosing lung injury. The goals of this study were to determine if DEI could differentiate between healthy and injured lungs for a rat model of gastric aspiration and to compare diffraction-enhanced images with chest radiographs. Radiographs and diffraction-enhanced chest images of adult Sprague Dawley rats were obtained before and 4 hours after the aspiration of 0.4 mL/kg of 0.1 mol/L hydrochloric acid. Lung damage was confirmed with histopathology. The radiographs and diffraction-enhanced peak images revealed regions of atelectasis in the injured rat lung. The diffraction-enhanced peak images revealed the full extent of the lung with improved clarity relative to the chest radiographs, especially in the portion of the lower lobe that extended behind the diaphragm on the anteroposterior projection. For a rat model of gastric acid aspiration, DEI is capable of distinguishing between a healthy and an injured lung and more clearly than radiography reveals the full extent of the lung and the lung damage. Copyright © 2011 AUR. All rights reserved.

  4. Influence of diffractive interactions on cosmic ray air showers

    International Nuclear Information System (INIS)

    Luna, R.; Zepeda, A.; Garcia Canal, C.A.; Sciutto, S.J.

    2004-01-01

    A comparative study of commonly used hadronic collision simulation packages is presented. The characteristics of the products of hadron-nucleus collisions are analyzed from a general perspective, but focusing on their correlation with diffractive processes. One of the purposes of our work is to give quantitative estimations of the impact that different characteristics of the hadronic models have on air shower observables. Several sets of shower simulations using different settings for the parameters controlling the diffractive processes are used to analyze the correlations between diffractivity and shower observables. We find that the relative probability of diffractive processes during the shower development have a non-negligible influence over the longitudinal profile as well as the distribution of muons at ground level. The implications on experimental data analysis are discussed

  5. Neutron diffraction and Vitamin E

    Energy Technology Data Exchange (ETDEWEB)

    Harroun, T A; Marquardt, D; Katsaras, J; Atkinson, J, E-mail: tharroun@brocku.ca

    2010-11-01

    It is generally accepted that neutron diffraction from model membrane systems is an effective biophysical technique for determining membrane structure. Here we describe an example of how deuterium labelling can elucidate the location of specific membrane soluble molecules, including a brief discussion of the technique itself. We show that deuterium labelled {alpha}-tocopherol sits upright in the bilayer, as might be expected, but at very different locations within the bilayer, depending on the degree of lipid chain unsaturation.

  6. Borehole radar diffraction tomography

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seong Jun; Kim, Jung Ho; Yi, Myeong Jong; Chung, Seung Hwan; Lee, Hee Il [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    Tomography is widely used as imaging method for determining subsurface structure. Among the reconstruction algorithms for tomographic imaging, travel time tomography is almost applied to imaging subsurface. But isolated small body comparable with the wavelength could not be well recognized by travel time tomography. Other tomographic method are need to improve the imaging process. In the study of this year, diffraction tomography was investigated. The theory for diffraction tomography is based on the 1st-order Born approximation. Multisource holography, which is similar to Kirchihoff migration, is compared with diffraction tomography. To improve 1st-order Born diffraction tomography, two kinds of filter designed from multisource holography and 2-D green function, respectively, applied on the reconstructed image. The algorithm was tested for the numerical modeling data of which algorithm consists of the analytic computation of radar signal in transmitter and receiver regions and 2-D FDM scheme for the propagation of electromagnetic waves in media. The air-filled cavity model to show a typical diffraction pattern was applied to diffraction tomography imaging, and the result shows accurate location and area of cavity. But the calculated object function is not well matched the real object function, because the air-filled cavity model is not satisfied week scattered inhomogeneity for 1st born approximation, and the error term is included in estimating source wavelet from received signals. In spite of the object function error, the diffraction tomography assist for interpretation of subsurface as if conducted with travel time tomography. And the fracture model was tested, 1st born diffraction tomographic image is poor because of limited view angle coverage and violation of week scatter assumption, but the filtered image resolve the fracture somewhat better. The tested diffraction tomography image confirms effectiveness of filter for enhancing resolution. (author). 14

  7. Theoretical and numerical investigations of sub-wavelength diffractive optical structures

    DEFF Research Database (Denmark)

    Dridi, Kim

    2000-01-01

    The work in this thesis concerns theoretical and numerical investigations of sub-wavelength diffractive optical structures, relying on advanced two-dimensional vectorial numerical models that have applications in Optics and Electromagnetics. Integrated Optics is predicted to play a major role......, such as in dielectric waveguides with gratings and periodic media or photonic crystal structures. The vectorial electromagnetic nature of light is therefore taken into account in the modeling of these diffractive structures. An electromagnetic vector-field model for optical components design based on the classical...... finite-difference time domain method and exact radiation integrals is implemented for the polarization where the electric field vector is perpendicular to the two dimentional plane of symmetry. The computational model solves the full vectorial time domain Maxwell equations with general sources...

  8. Observables of QCD diffraction

    Science.gov (United States)

    Mieskolainen, Mikael; Orava, Risto

    2017-03-01

    A new combinatorial vector space measurement model is introduced for soft QCD diffraction. The model independent mathematical construction resolves experimental complications; the theoretical framework of the approach includes the Good-Walker view of diffraction, Regge phenomenology together with AGK cutting rules and random fluctuations.

  9. Diffractive optics and nanophotonics resolution below the diffraction limit

    CERN Document Server

    Minin, Igor

    2016-01-01

    In this book the authors present several examples of techniques used to overcome the Abby diffraction limit using flat and 3D diffractive optical elements, photonic crystal lenses, photonic jets, and surface plasmon diffractive optics. The structures discussed can be used in the microwave and THz range and also as scaled models for optical frequencies. Such nano-optical microlenses can be integrated, for example, into existing semiconductor heterostructure platforms for next-generation optoelectronic applications. Chapter 1 considers flat diffractive lenses and innovative 3D radiating structures including a conical millimeter-wave Fresnel zone plate (FZP) lens proposed for subwavelength focusing. In chapter 2 the subwavelength focusing properties of diffractive photonic crystal lenses are considered and it is shown that at least three different types of photonic crystal lens are possible.  With the aim of achieving subwavelength focusing, in chapter 3 an alternative mechanism to produce photonic jets at Tera...

  10. Experimental evaluation of a polycrystal deformation modeling scheme using neutron diffraction measurements

    DEFF Research Database (Denmark)

    Clausen, Bjørn; Lorentzen, Torben

    1997-01-01

    The uniaxial behavior of aluminum polycrystals is simulated using a rate-independent incremental self-consistent elastic-plastic polycrystal deformation model, and the results are evaluated by neutron diffraction measurements. The elastic strains deduced from the model show good agreement...

  11. Diffraction dissociation

    International Nuclear Information System (INIS)

    Abarbanel, H.

    1972-01-01

    An attempt is made to analyse the present theoretical situation in the field of diffraction scattering. Two not yet fully answered questions related with a typical diffraction process AB→CD, namely: what is the structure of the transition matrix elements, and what is the structure of the exchange mechanism responsible for the scattering, are formulated and various proposals for answers are reviewed. Interesting general statement that the products (-1)sup(J)P, where J and P are respectively spin and parity, is conserved at each vertex has been discussed. The exchange mechanism in diffractive scattering has been considered using the language of the complex J-plane as the most appropriate. The known facts about the exchange mechanism are recalled and several routs to way out are proposed. The idea to consider the moving pole and associated branch points as like a particle and the associated two and many particle unitarity cuts is described in more details. (S.B.)

  12. Radius anomaly in the diffraction model for heavy-ion elastic scattering

    Science.gov (United States)

    Pandey, L. N.; Mukherjee, S. N.

    1984-04-01

    The elastic scattering of heavy ions, 20Ne on 208Pb, 20Ne on 235U, 84Kr on 208Pb, and 84Kr on 232Th, is examined within the framework of Frahn's diffraction model. An analysis of the experiment using the "quarter point recipe" of the expected Fresnel cross sections yields a larger radius for 208Pb than the radii for 235U and 232Th. It is shown that inclusion of the nuclear deformation in the model removes the above anomaly in the radii, and the assumption of smooth cutoff of the angular momentum simultaneously leads to a better fit to elastic scattering data, compared to those obtained by the earlier workers on the assumption of sharp cutoff. [NUCLEAR REACTIONS Elastic scattering, 20Ne+208Pb (161.2 MeV), 20Ne+235U (175 MeV), 84Kr+208Pb (500 MeV), 84Kr+232Th (500 MeV), diffraction model, nuclear deformation.

  13. Systematic of the slope-mass-correlations in diffractive dissociation reactions

    International Nuclear Information System (INIS)

    Antunes, A.C.B.; Santoro, A.F.S.; Souza, M.H.G.

    1984-01-01

    A set of several results of the Three Components Deck Model for Diffractive Dissociation Reactions is presented. News and recently published results are summarized to obtain a general overview of the model, its predictions and comparison with experimental results. Two kinds of correlations and amplitudes are given: The slope-mass cos theta sup(GJ) correlation and slope-mass partial wave. (Author) [pt

  14. Contribution to diffraction theory; Contribution a la theorie de la diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Chako, N [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-11-01

    In a first part, we have given a general and detailed treatment of the modern theory of diffraction. The rigorous theory is formulated as a boundary value problem of the wave equation or Maxwell equations. However, up to the present time, such a program of treating diffraction by optical systems, even for simple optical instruments, has not been realized due to the complicated character of the boundary conditions. The recent developments show clearly the nature of the approximation of the classical theories originally due to Fresnel and Young, later formulated in a rigorous manner by Kirchhoff and Rubinowicz, respectively and, at the same time the insufficiency of these theories in explaining a number of diffraction phenomena. Furthermore, we have made a study of the limitations of the approximate theories and the recent attempts to improve these. The second part is devoted to a general mathematical treatment of the theory of diffraction of optical systems including aberrations. After a general and specific analysis of geometrical and wave aberrations along classical and modern (Nijboer) lines, we have been able to evaluate the diffraction integrals representing the image field at any point in image space explicitly, when the aberrations are small. Our formulas are the generalisations of all anterior results obtained by previous investigators. Moreover, we have discussed the Zernike-Nijboer theory of aberration and generalised it not only for rotational systems, but also for non-symmetric systems as well, including the case of non circular apertures. The extension to non-circular apertures is done by introducing orthogonal functions or polynomials over such aperture shapes. So far the results are valid for small aberrations, that is to say, where the deformation of the real wave front emerging from the optical system is less than a wave length of light or of the electromagnetic wave from the ideal wave front. If the aberrations are large, then one must employ the

  15. Contribution to diffraction theory; Contribution a la theorie de la diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Chako, N. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-11-01

    In a first part, we have given a general and detailed treatment of the modern theory of diffraction. The rigorous theory is formulated as a boundary value problem of the wave equation or Maxwell equations. However, up to the present time, such a program of treating diffraction by optical systems, even for simple optical instruments, has not been realized due to the complicated character of the boundary conditions. The recent developments show clearly the nature of the approximation of the classical theories originally due to Fresnel and Young, later formulated in a rigorous manner by Kirchhoff and Rubinowicz, respectively and, at the same time the insufficiency of these theories in explaining a number of diffraction phenomena. Furthermore, we have made a study of the limitations of the approximate theories and the recent attempts to improve these. The second part is devoted to a general mathematical treatment of the theory of diffraction of optical systems including aberrations. After a general and specific analysis of geometrical and wave aberrations along classical and modern (Nijboer) lines, we have been able to evaluate the diffraction integrals representing the image field at any point in image space explicitly, when the aberrations are small. Our formulas are the generalisations of all anterior results obtained by previous investigators. Moreover, we have discussed the Zernike-Nijboer theory of aberration and generalised it not only for rotational systems, but also for non-symmetric systems as well, including the case of non circular apertures. The extension to non-circular apertures is done by introducing orthogonal functions or polynomials over such aperture shapes. So far the results are valid for small aberrations, that is to say, where the deformation of the real wave front emerging from the optical system is less than a wave length of light or of the electromagnetic wave from the ideal wave front. If the aberrations are large, then one must employ the

  16. Contribution to diffraction theory

    International Nuclear Information System (INIS)

    Chako, N.

    1966-11-01

    In a first part, we have given a general and detailed treatment of the modern theory of diffraction. The rigorous theory is formulated as a boundary value problem of the wave equation or Maxwell equations. However, up to the present time, such a program of treating diffraction by optical systems, even for simple optical instruments, has not been realized due to the complicated character of the boundary conditions. The recent developments show clearly the nature of the approximation of the classical theories originally due to Fresnel and Young, later formulated in a rigorous manner by Kirchhoff and Rubinowicz, respectively and, at the same time the insufficiency of these theories in explaining a number of diffraction phenomena. Furthermore, we have made a study of the limitations of the approximate theories and the recent attempts to improve these. The second part is devoted to a general mathematical treatment of the theory of diffraction of optical systems including aberrations. After a general and specific analysis of geometrical and wave aberrations along classical and modern (Nijboer) lines, we have been able to evaluate the diffraction integrals representing the image field at any point in image space explicitly, when the aberrations are small. Our formulas are the generalisations of all anterior results obtained by previous investigators. Moreover, we have discussed the Zernike-Nijboer theory of aberration and generalised it not only for rotational systems, but also for non-symmetric systems as well, including the case of non circular apertures. The extension to non-circular apertures is done by introducing orthogonal functions or polynomials over such aperture shapes. So far the results are valid for small aberrations, that is to say, where the deformation of the real wave front emerging from the optical system is less than a wave length of light or of the electromagnetic wave from the ideal wave front. If the aberrations are large, then one must employ the

  17. Detailed Analysis of Amplitude and Slope Diffraction Coefficients for knife-edge structure in S-UTD-CH Model

    Directory of Open Access Journals (Sweden)

    Eray Arik

    2017-03-01

    Full Text Available In urban, rural and indoor applications, diffraction mechanism is very important to predict the field strength and calculate the coverage accurately. The diffraction mechanism takes place on NLOS (non-line-of-sight cases like rooftop, vertex, corner, edge and sharp surfaces. S-UTD-CH model computes three type of electromagnetic wave incidence such as direct, reflected and diffracted waves, respectively. As obstacles in diffraction geometry are in the same or closer height, contribution of the diffraction mechanism is dominant. To predict the diffracted fields accurately, amplitude and slope diffraction coefficients and the derivative of these coefficients have to be taken correctly. In this paper, all the derivations about diffraction coefficients are made for knife edge type structures and extensive simulations are performed in order to analyze the amplitude and diffraction coefficients. In plane angle diffraction, contributions of amplitude and slope diffraction coefficient are maxima.

  18. High-energy particle diffraction

    International Nuclear Information System (INIS)

    Barone, V.; Predazzi, E.

    2002-01-01

    This monograph gives a comprehensive and up-to-date overview of soft and hard diffraction processes in strong interaction physics. The first part covers the general formalism (the optical analogy, the eikonal picture, high-energy kinematics, S-matrix theory) and soft hadron-hadron scattering (including the Regge theory) in a complete and mature presentation. It can be used as a textbook in particle physics classes. The remainder of the book is devoted to the 'new diffraction': the pomeron in QCD, low-x physics, diffractive deep inelastic scattering and related processes, jet production etc. It presents recent results and experimental findings and their phenomenological interpretations. This part addresses graduate students as well as researchers. (orig.)

  19. Theoretical review of diffractive phenomena

    International Nuclear Information System (INIS)

    Golec-Biernat, K.

    2005-01-01

    We review QCD based descriptions of diffractive deep inelastic scattering emphasising the role of models with parton saturation. These models provide natural explanation of such experimentally observed facts as the constant ratio of σ diff /σ tot as a function of the Bjorken variable x, and Regge factorization of diffractive parton distributions. The Ingelman-Schlein model and the soft color interaction model are also presented

  20. The Massive Yang-Mills Model and Diffractive Scattering

    CERN Document Server

    Forshaw, J R; Parrinello, C

    1999-01-01

    We argue that the massive Yang-Mills model of Kunimasa and Goto, Slavnov, and Cornwall, in which massive gauge vector bosons are introduced in a gauge-invariant way without resorting to the Higgs mechanism, may be useful for studying diffractive scattering of strongly interacting particles. With this motivation, we perform in this model explicit calculations of S-matrix elements between quark states, at tree level, one loop, and two loops, and discuss issues of renormalisability and unitarity. In particular, it is shown that the S-matrix element for quark scattering is renormalisable at one-loop order and is only logarithmically non-renormalisable at two loops. The discrepancies in the ultraviolet regime between the one-loop predictions of this model and those of massless QCD are discussed in detail. In addition, some of the similarities and differences between the massive Yang-Mills model and theories with a Higgs mechanism are analysed at the level of the S-matrix. As an elementary application of the model ...

  1. Modeling laser beam diffraction and propagation by the mode-expansion method.

    Science.gov (United States)

    Snyder, James J

    2007-08-01

    In the mode-expansion method for modeling propagation of a diffracted beam, the beam at the aperture can be expanded as a weighted set of orthogonal modes. The parameters of the expansion modes are chosen to maximize the weighting coefficient of the lowest-order mode. As the beam propagates, its field distribution can be reconstructed from the set of weighting coefficients and the Gouy phase of the lowest-order mode. We have developed a simple procedure to implement the mode-expansion method for propagation through an arbitrary ABCD matrix, and we have demonstrated that it is accurate in comparison with direct calculations of diffraction integrals and much faster.

  2. X-ray Laue diffraction with allowance for second derivatives of amplitudes in dynamical diffraction equations

    International Nuclear Information System (INIS)

    Balyan, M.K.

    2014-01-01

    Asymmetrical Laue diffraction in a perfect crystal with a plane entrance surface is considered. The second derivatives of amplitudes in the direction, perpendicular to diffraction plane in the dynamical diffraction equations are taken into account. Using the corresponding Green function a general form for the amplitude of diffracted wave in the crystal is derived. The sizes of the source in both directions as well as the source of crystal distance and non-monochromaticity of the radiation incident on the crystal are taken into account. On the basis of obtained expression the coherent properties of the field depending on the sizes of the source and on the width of the spectrum of the incident radiation are analyzed. Taking into account the second derivatives of amplitudes with respect to the direction, perpendicular to the diffraction plane, the time dependent propagation equations for an X-ray pulse in a perfect crystal are given

  3. The logarithmic slope in diffractive DIS

    International Nuclear Information System (INIS)

    Gay Ducati, M.B.; Goncalves, V.P.; Machado, M.V.T.

    2002-01-01

    The logarithmic slope of diffractive structure function is a potential observable to separate the hard and soft contributions in diffraction, allowing to disentangle the QCD dynamics at small-x region. In this paper we extend our previous analyzes and calculate the diffractive logarithmic slope for three current approaches in the literature: (i) the Bartels-Wusthoff model, based on perturbative QCD, (ii) the CKMT model, based on Regge theory and (iii) the Golec-Biernat-Wusthoff model which assumes that the saturation phenomena is present in the HERA kinematic region. We analyze the transition region of small to large momentum transfer and verify that future experimental results on the diffractive logarithmic slope could discriminate between these approaches

  4. Background removal in X-ray fiber diffraction patterns

    International Nuclear Information System (INIS)

    Millane, R.P.; Arnott, S.

    1985-01-01

    Background can be a major source of error in measurement of diffracted intensities in fiber diffraction patterns. Errors can be large when poorly oriented less-crystalline specimens give diffraction patterns with little uncontaminated background. A method for estimating and removing a general global background in such cases is described and illustrated with an example. (orig.)

  5. Diffraction-based overlay measurement on dedicated mark using rigorous modeling method

    Science.gov (United States)

    Lu, Hailiang; Wang, Fan; Zhang, Qingyun; Chen, Yonghui; Zhou, Chang

    2012-03-01

    Diffraction Based Overlay (DBO) is widely evaluated by numerous authors, results show DBO can provide better performance than Imaging Based Overlay (IBO). However, DBO has its own problems. As well known, Modeling based DBO (mDBO) faces challenges of low measurement sensitivity and crosstalk between various structure parameters, which may result in poor accuracy and precision. Meanwhile, main obstacle encountered by empirical DBO (eDBO) is that a few pads must be employed to gain sufficient information on overlay-induced diffraction signature variations, which consumes more wafer space and costs more measuring time. Also, eDBO may suffer from mark profile asymmetry caused by processes. In this paper, we propose an alternative DBO technology that employs a dedicated overlay mark and takes a rigorous modeling approach. This technology needs only two or three pads for each direction, which is economic and time saving. While overlay measurement error induced by mark profile asymmetry being reduced, this technology is expected to be as accurate and precise as scatterometry technologies.

  6. Blazed Grating Resonance Conditions and Diffraction Efficiency Optical Transfer Function

    KAUST Repository

    Stegenburgs, Edgars

    2017-01-08

    We introduce a general approach to study diffraction harmonics or resonances and resonance conditions for blazed reflecting gratings providing knowledge of fundamental diffraction pattern and qualitative understanding of predicting parameters for the most efficient diffraction.

  7. Blazed Grating Resonance Conditions and Diffraction Efficiency Optical Transfer Function

    KAUST Repository

    Stegenburgs, Edgars; Alias, Mohd Sharizal B.; Ng, Tien Khee; Ooi, Boon S.

    2017-01-01

    We introduce a general approach to study diffraction harmonics or resonances and resonance conditions for blazed reflecting gratings providing knowledge of fundamental diffraction pattern and qualitative understanding of predicting parameters for the most efficient diffraction.

  8. A general method for baseline-removal in ultrafast electron powder diffraction data using the dual-tree complex wavelet transform

    Directory of Open Access Journals (Sweden)

    Laurent P. René de Cotret

    2017-07-01

    Full Text Available The general problem of background subtraction in ultrafast electron powder diffraction (UEPD is presented with a focus on the diffraction patterns obtained from materials of moderately complex structure which contain many overlapping peaks and effectively no scattering vector regions that can be considered exclusively background. We compare the performance of background subtraction algorithms based on discrete and dual-tree complex (DTCWT wavelet transforms when applied to simulated UEPD data on the M1–R phase transition in VO2 with a time-varying background. We find that the DTCWT approach is capable of extracting intensities that are accurate to better than 2% across the whole range of scattering vector simulated, effectively independent of delay time. A Python package is available.

  9. Multipole electron-density modelling of synchrotron powder diffraction data: the case of diamond

    DEFF Research Database (Denmark)

    Svendsen, H.; Overgaard, J.; Busselez, R.

    2010-01-01

    between experiment and theory, and the study therefore demonstrates that synchrotron powder diffraction can indeed provide accurate structure-factor values based on data measured in minutes with limited sample preparation. Thus, potential systematic errors such as extinction and twinning commonly......Accurate structure factors are extracted from synchrotron powder diffraction data measured on crystalline diamond based on a novel multipole model division of overlapping reflection intensities. The approach limits the spherical-atom bias in structure factors extracted from overlapping powder data...

  10. Diffractive scattering

    CERN Document Server

    De Wolf, E.A.

    2002-01-01

    We discuss basic concepts and properties of diffractive phenomena in soft hadron collisions and in deep-inelastic scattering at low Bjorken-x. The paper is not a review of the rapidly developing field but presents an attempt to show in simple terms the close inter-relationship between the dynamics of high-energy hadronic and deep-inelastic diffraction. Using the saturation model of Golec-Biernat and Wusthoff as an example, a simple explanation of geometrical scaling is presented. The relation between the QCD anomalous multiplicity dimension and the Pomeron intercept is discussed.

  11. Diffractive Scattering

    International Nuclear Information System (INIS)

    Wolf, E.A. de

    2002-01-01

    We discuss basic concepts and properties of diffractive phenomena in soft hadron collisions and in deep-inelastic scattering at low Bjorken - x. The paper is not a review of the rapidly developing field but presents an attempt to show in simple terms the close inter-relationship between the dynamics of high-energy hadronic and deep-inelastic diffraction. Using the saturation model of Golec-Biernat and Wuesthoff as an example, a simple explanation of geometrical scaling is presented. The relation between the QCD anomalous multiplicity dimension and the Pomeron intercept is discussed. (author)

  12. Hard Diffraction - from Blois 1985 to 2005

    Energy Technology Data Exchange (ETDEWEB)

    Gunnar, Ingelman [Uppsala Univ., High Energy Physics (Sweden)

    2005-07-01

    The idea of diffractive processes with a hard scale involved, to resolve the underlying parton dynamics, was presented at the first Blois conference in 1985 and experimentally verified a few years later. Today hard diffraction is an attractive research field with high-quality data and new theoretical models. The trend from Regge-based pomeron models to QCD-based parton level models has given insights on QCD dynamics involving perturbative gluon exchange mechanisms. In the new QCD-based models, the pomeron is not part of the proton wave function, but diffraction is an effect of the scattering process. Models based on interactions with a colour background field provide an interesting approach which avoids conceptual problems of pomeron-based models, such as the pomeron flux, and provide a basis for common theoretical framework for all final states, diffractive gap events as well as non-diffractive events. Finally, the new process of gaps between jets provides strong evidence for the BFKL dynamics as predicted since long by QCD, but so far hard to establish experimentally.

  13. Diffractive open charm production at DESY HERA. Experiment versus two-gluon exchange model

    Energy Technology Data Exchange (ETDEWEB)

    Baranov, S.P. [P.N. Lebedev Inst. of Physics, Moscow (Russian Federation)

    2010-03-15

    Diffractive production of D{sup *} mesons at HERA conditions is considered in the framework of collinear two-gluon exchange model. Theoretical results are compared with recent experimental data. (orig.)

  14. Neutron diffraction studies of thin film multilayer structures

    International Nuclear Information System (INIS)

    Majkrzak, C.F.

    1985-01-01

    The application of neutron diffraction methods to the study of the microscopic chemical and magnetic structures of thin film multilayers is reviewed. Multilayer diffraction phenomena are described in general and in particular for the case in which one of the materials of a bilayer is ferromagnetic and the neutron beam polarized. Recent neutron diffraction measurements performed on some interesting multilayer systems are discussed. 70 refs., 5 figs

  15. Diffraction radiation from relativistic particles

    CERN Document Server

    Potylitsyn, Alexander Petrovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich

    2010-01-01

    This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results.

  16. Diffraction radiation from relativistic particles

    International Nuclear Information System (INIS)

    Potylitsyn, Alexander Petrovich; Ryazanov, Mikhail Ivanovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich

    2010-01-01

    This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results. (orig.)

  17. Diffraction patterns from 7-Angstroms tubular halloysite

    International Nuclear Information System (INIS)

    Eggleton, T.

    1998-01-01

    Full text: The diffraction patterns from 7-Angstroms tubular halloysite are superficially like those from kaolinite. Diffraction from a tubular aggregate of atoms, however, differs from that from a crystal because there is no linear repetition in two of the three conventional crystallographic directions. In tubular halloysite, the tube axis is [010] or [110] and in this direction the unit cell repeats in the normal linear fashion. The x-axis, by contrast, changes direction tangentially around the tube circumference, and there can be no true z-axis, because unit cells in the radial direction do not superimpose, since each successive tubular layer has a larger radius than its predecessor and therefore must contain more unit cells than its predecessor. Because tubular 'crystals' do not have a lattice repeat, use of Bragg 'hkl' indices is not appropriate. In the xy plane, a small area of the structure approximates a flat layer silicate, and hk indices may been used to label diffraction maxima. Similarly, successive 1:1 layers tangential to the tube walls yield a series of apparent 001 diffraction maxima. Measurement of these shows that the d-spacings do not form an exact integral series. The reason for this lies in the curvature of the structure. Calculated electron and powder X-ray diffraction patterns, based on a model of concentric 1:1 layers with no regular relation between them other than the 7.2 Angstroms spacing, closely simulate the observed data. Evidence for the 2-layer structure that is generally accepted may need to be reassessed in the light of these results

  18. A new theory for X-ray diffraction.

    Science.gov (United States)

    Fewster, Paul F

    2014-05-01

    This article proposes a new theory of X-ray scattering that has particular relevance to powder diffraction. The underlying concept of this theory is that the scattering from a crystal or crystallite is distributed throughout space: this leads to the effect that enhanced scatter can be observed at the `Bragg position' even if the `Bragg condition' is not satisfied. The scatter from a single crystal or crystallite, in any fixed orientation, has the fascinating property of contributing simultaneously to many `Bragg positions'. It also explains why diffraction peaks are obtained from samples with very few crystallites, which cannot be explained with the conventional theory. The intensity ratios for an Si powder sample are predicted with greater accuracy and the temperature factors are more realistic. Another consequence is that this new theory predicts a reliability in the intensity measurements which agrees much more closely with experimental observations compared to conventional theory that is based on `Bragg-type' scatter. The role of dynamical effects (extinction etc.) is discussed and how they are suppressed with diffuse scattering. An alternative explanation for the Lorentz factor is presented that is more general and based on the capture volume in diffraction space. This theory, when applied to the scattering from powders, will evaluate the full scattering profile, including peak widths and the `background'. The theory should provide an increased understanding of the reliability of powder diffraction measurements, and may also have wider implications for the analysis of powder diffraction data, by increasing the accuracy of intensities predicted from structural models.

  19. Diffraction and single-crystal elastic constants of Inconel 625 at room and elevated temperatures determined by neutron diffraction

    International Nuclear Information System (INIS)

    Wang, Zhuqing; Stoica, Alexandru D.; Ma, Dong; Beese, Allison M.

    2016-01-01

    In this work, diffraction and single-crystal elastic constants of Inconel 625 have been determined by means of in situ loading at room and elevated temperatures using time-of-flight neutron diffraction. Theoretical models proposed by Voigt, Reuss, and Kroner were used to determine single-crystal elastic constants from measured diffraction elastic constants, with the Kroner model having the best ability to capture experimental data. The magnitude of single-crystal elastic moduli, computed from single-crystal elastic constants, decreases and the single crystal anisotropy increases as temperature increases, indicating the importance of texture in affecting macroscopic stress at elevated temperatures. The experimental data reported here are of great importance in understanding additive manufacturing of metallic components as: diffraction elastic constants are required for computing residual stresses from residual lattice strains measured using neutron diffraction, which can be used to validate thermomechanical models of additive manufacturing, while single-crystal elastic constants can be used in crystal plasticity modeling, for example, to understand mechanical deformation behavior of additively manufactured components.

  20. Diffraction and single-crystal elastic constants of Inconel 625 at room and elevated temperatures determined by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhuqing [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Stoica, Alexandru D. [Chemical and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Ma, Dong, E-mail: dongma@ornl.gov [Chemical and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Beese, Allison M., E-mail: amb961@psu.edu [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2016-09-30

    In this work, diffraction and single-crystal elastic constants of Inconel 625 have been determined by means of in situ loading at room and elevated temperatures using time-of-flight neutron diffraction. Theoretical models proposed by Voigt, Reuss, and Kroner were used to determine single-crystal elastic constants from measured diffraction elastic constants, with the Kroner model having the best ability to capture experimental data. The magnitude of single-crystal elastic moduli, computed from single-crystal elastic constants, decreases and the single crystal anisotropy increases as temperature increases, indicating the importance of texture in affecting macroscopic stress at elevated temperatures. The experimental data reported here are of great importance in understanding additive manufacturing of metallic components as: diffraction elastic constants are required for computing residual stresses from residual lattice strains measured using neutron diffraction, which can be used to validate thermomechanical models of additive manufacturing, while single-crystal elastic constants can be used in crystal plasticity modeling, for example, to understand mechanical deformation behavior of additively manufactured components.

  1. Extending the Utility of the Parabolic Approximation in Medical Ultrasound Using Wide-Angle Diffraction Modeling.

    Science.gov (United States)

    Soneson, Joshua E

    2017-04-01

    Wide-angle parabolic models are commonly used in geophysics and underwater acoustics but have seen little application in medical ultrasound. Here, a wide-angle model for continuous-wave high-intensity ultrasound beams is derived, which approximates the diffraction process more accurately than the commonly used Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation without increasing implementation complexity or computing time. A method for preventing the high spatial frequencies often present in source boundary conditions from corrupting the solution is presented. Simulations of shallowly focused axisymmetric beams using both the wide-angle and standard parabolic models are compared to assess the accuracy with which they model diffraction effects. The wide-angle model proposed here offers improved focusing accuracy and less error throughout the computational domain than the standard parabolic model, offering a facile method for extending the utility of existing KZK codes.

  2. Gluon radiation in diffractive electroproduction

    International Nuclear Information System (INIS)

    Buchmueller, W.; McDermott, M.F.; Hebecker, A.

    1996-07-01

    Order α s -correlations to the diffractive structure functions F L D and F 2 D at large Q 2 and small x are evaluated in the semiclassical approach, where the initial proton is treated as a classical colour field. The diffractive final state contains a fast gluon in addition to a quark-antiquark pair. Two of these partons may have large transverse momentum. Our calculations lead to an intuitive picture of deep-inelastic diffractive processes which is very similar to Bjorken's aligned-jet model. Both diffractive structure functions contain leading twist contributions from high-p perpendicular to jets. (orig.)

  3. Hard diffraction at HERA and Tevatron

    International Nuclear Information System (INIS)

    Kaidalov, A.B.

    2001-01-01

    A relation between hard diffraction at HERA and Tevatron is discussed. A model, which takes into account unitarity effects is developed for interaction of high-energy virtual photons with nucleons. It is shown that this model gives a good description of HERA data on both total γ* p total cross section and diffractive dissociation of virtual photons in a broad region of Q 2 . It is shown how to describe the CDF data on diffractive jet production at Tevatron using an information on distribution of partons in the Pomeron from HERA experiments

  4. Characterisation of polycrystal deformation by numerical modelling and neutron diffraction measurements

    International Nuclear Information System (INIS)

    Clausen, B.

    1997-09-01

    The deformation of polycrystals are modelled using three micron mechanic models; the Taylor model, the Sachs model and Hutchinson's self-consistent (SC) model. The predictions of the rigid plastic Taylor and Sachs models are compared with the predictions of the SC model. As expected, the results of the SC model is about half-way between the upper- and lower-bound models. The influence of the elastic anisotropy is investigated by comparing the SC predictions for aluminium, copper and a hypothetical material (Hybrid) with the elastic anisotropy of copper and the Young's modulus and hardening behaviour of aluminium. It is concluded that the effect of the elastic anisotropy is limited to the very early stages of plasticity, as the deformation pattern is almost identical for the three materials at higher strains. The predictions of the three models are evaluated by neutron diffraction measurements of elastic lattice strains in grain sub-sets within the polycrystal. The two rigid plastic models do not include any material parameters and therefore the predictions of the SC model is more accurate and more detailed than the predictions of the Taylor and Sachs models. The SC model is used to determine the most suitable reflection for technological applications of neutron diffraction, where focus is on the volume average stress state in engineering components. To be able to successfully to convert the measured elastic lattice strains for a specific reflection into overall volume average stresses, there must be a linear relation between the lattice strain of the reflection and the overall stress. According to the model predictions the 311-reflection is the most suitable reflection as it shows the smallest deviations from linearity and thereby also the smallest build-up of residual strains. The model predictions have pin pointed that the selection of the reflection is crucial for the validity of stresses calculated from the measured elastic lattice strains. (au) 14 tabs., 41

  5. Diffraction dissociation at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Jenkovszky, Laszlo [Bogolyubov Institute for Theoretical Physics (BITP), Ukrainian National Academy of Sciences 14-b, Metrolohichna str., Kiev, 03680, Ukraine and Wigner Research Centre for Physics, Hungarian Academy of Sciences 1525 Budapest, POB 49 (Hungary); Orava, Risto [Institute of Physics, Division of Elementary Particle Physics, P.O. Box 64 (Gustaf Haellstroeminkatu 2a), FI-00014 University of Helsinki, Finland and CERN, CH-1211 Geneva 23 (Switzerland); Salii, Andrii [Bogolyubov Institute for Theoretical Physics (BITP), Ukrainian National Academy of Sciences 14-b, Metrolohichna str., Kiev, 03680 (Ukraine)

    2013-04-15

    We report on recent calculations of low missing mass single (SD) and double (DD) diffractive dissociation at LHC energies. The calculations are based on a dual-Regge model, dominated by a single Pomeron exchange. The diffractively excited states lie on the nucleon trajectory N*, appended by the isolated Roper resonance. Detailed predictions for the squared momentum transfer and missing mass dependence of the differential and integrated single-and double diffraction dissociation in the kinematical range of present and future LHC measurements are given.

  6. Diffraction dissociation at the LHC

    International Nuclear Information System (INIS)

    Jenkovszky, László; Orava, Risto; Salii, Andrii

    2013-01-01

    We report on recent calculations of low missing mass single (SD) and double (DD) diffractive dissociation at LHC energies. The calculations are based on a dual-Regge model, dominated by a single Pomeron exchange. The diffractively excited states lie on the nucleon trajectory N*, appended by the isolated Roper resonance. Detailed predictions for the squared momentum transfer and missing mass dependence of the differential and integrated single-and double diffraction dissociation in the kinematical range of present and future LHC measurements are given.

  7. π- -12C elastic scattering above the Δ resonance using diffraction model

    International Nuclear Information System (INIS)

    Arafah, M.R.

    2008-01-01

    Phenomenological analysis of the π - - 12 C elastic scattering differential cross-section at 400, 486, 500, 584, 663, 672 and 766 MeV is presented. The analysis is made in the diffraction model framework using recently proposed parameterization of the phase-shift function. Good description of the experimental data is achieved at all energies. Microscopic interpretation of the parameters of the phase-shift function is provided in terms of Helm's model density parameters. (author)

  8. Light distribution in diffractive multifocal optics and its optimization.

    Science.gov (United States)

    Portney, Valdemar

    2011-11-01

    To expand a geometrical model of diffraction efficiency and its interpretation to the multifocal optic and to introduce formulas for analysis of far and near light distribution and their application to multifocal intraocular lenses (IOLs) and to diffraction efficiency optimization. Medical device consulting firm, Newport Coast, California, USA. Experimental study. Application of a geometrical model to the kinoform (single focus diffractive optical element) was expanded to a multifocal optic to produce analytical definitions of light split between far and near images and light loss to other diffraction orders. The geometrical model gave a simple interpretation of light split in a diffractive multifocal IOL. An analytical definition of light split between far, near, and light loss was introduced as curve fitting formulas. Several examples of application to common multifocal diffractive IOLs were developed; for example, to light-split change with wavelength. The analytical definition of diffraction efficiency may assist in optimization of multifocal diffractive optics that minimize light loss. Formulas for analysis of light split between different foci of multifocal diffractive IOLs are useful in interpreting diffraction efficiency dependence on physical characteristics, such as blaze heights of the diffractive grooves and wavelength of light, as well as for optimizing multifocal diffractive optics. Disclosure is found in the footnotes. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  9. Thermodynamic modelling and in-situ neutron diffraction investigation of the (Ce + Mg + Zn) system

    International Nuclear Information System (INIS)

    Zhu, Zhijun; Gharghouri, Michael A.; Medraj, Mamoun; Lee, Soo Yeol; Pelton, Arthur D.

    2016-01-01

    Highlights: • All phase diagram and thermodynamic data critically assessed for the (Ce + Mg + Zn) system. • All phases described by optimized thermodynamic models. • In-situ neutron diffraction performed to identify phases and transition temperatures. • Assessments of other (RE + Mg + Zn) systems have been carried out simultaneously. • The final product is a thermodynamic database for multicomponent (Mg + RE + Zn) systems. - Abstract: All available phase diagram data for the (Ce + Mg + Zn) system were critically assessed. In-situ neutron diffraction (ND) experiments were performed on selected samples to identify phases and transition temperatures. A critical thermodynamic evaluation and optimization of the (Ce + Mg + Zn) system were carried out and model parameters for the thermodynamic properties of all phases were obtained. The phase transformation behaviour of selected samples was well resolved from the ND experiments and experimental data were used to refine the thermodynamic model parameters.

  10. Diffraction at a Straight Edge

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 5. Diffraction at a Straight Edge: A Gem from Sommerfeld's Work in Classical Physics. Rajaram Nityananda. General Article Volume 20 Issue 5 May 2015 pp 389-400 ...

  11. Analytic model of electron pulse propagation in ultrafast electron diffraction experiments

    International Nuclear Information System (INIS)

    Michalik, A.M.; Sipe, J.E.

    2006-01-01

    We present a mean-field analytic model to study the propagation of electron pulses used in ultrafast electron diffraction experiments (UED). We assume a Gaussian form to characterize the electron pulse, and derive a system of ordinary differential equations that are solved quickly and easily to give the pulse dynamics. We compare our model to an N-body numerical simulation and are able to show excellent agreement between the two result sets. This model is a convenient alternative to time consuming and computationally intense N-body simulations in exploring the dynamics of UED electron pulses, and as a tool for refining UED experimental designs

  12. Dynamics from diffraction

    International Nuclear Information System (INIS)

    Goodwin, Andrew L.; Tucker, Matthew G.; Cope, Elizabeth R.; Dove, Martin T.; Keen, David A.

    2006-01-01

    We explore the possibility that detailed dynamical information might be extracted from powder diffraction data. Our focus is a recently reported technique that employs statistical analysis of atomistic configurations to calculate dynamical properties from neutron total scattering data. We show that it is possible to access the phonon dispersion of low-frequency modes using such an approach, without constraining the results in terms of some pre-defined dynamical model. The high-frequency regions of the phonon spectrum are found to be less well preserved in the diffraction data

  13. The Diffraction Response Interpolation Method

    DEFF Research Database (Denmark)

    Jespersen, Søren Kragh; Wilhjelm, Jens Erik; Pedersen, Peder C.

    1998-01-01

    Computer modeling of the output voltage in a pulse-echo system is computationally very demanding, particularly whenconsidering reflector surfaces of arbitrary geometry. A new, efficient computational tool, the diffraction response interpolationmethod (DRIM), for modeling of reflectors in a fluid...... medium, is presented. The DRIM is based on the velocity potential impulseresponse method, adapted to pulse-echo applications by the use of acoustical reciprocity. Specifically, the DRIM operates bydividing the reflector surface into planar elements, finding the diffraction response at the corners...

  14. Structure of Se-Te glasses studied using neutron, X-ray diffraction and reverse Monte Carlo modelling

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Keiji, E-mail: itoh@okayama-u.ac.jp [Graduate School of Education, Okayama University, Tsushima-naka, Okayama 700-8530 (Japan); Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494 (Japan)

    2017-02-15

    Pulsed neutron diffraction and synchrotron X-ray diffraction measurements were performed on Se{sub 100-x}Te{sub x} bulk glasses with x=10, 20, 30 and 40. The coordination numbers obtained from the diffraction results demonstrate that Se and Te atoms are twofold coordinated and the glass structure is formed by the chain network. The three-dimensional structure model for Se{sub 60}Te{sub 40} glass obtained by using reverse Monte Carlo modelling shows that the alternating arrangements of Se and Te atoms compose the major part of the chain clusters but several other fragments such as Se{sub n} chains and Te-Te dimers are also present in large numbers. The chain clusters have geometrically disordered forms and the interchain atomic order is different from those in the crystal structures of trigonal Se and trigonal Te. - Graphical abstract: Coordination environment in Se{sub 60}Te{sub 40} glass.

  15. Correlations in the hadronic double diffractive dissociation

    International Nuclear Information System (INIS)

    Goldegol, Alexandre.

    1991-05-01

    A given reaction of double diffractive dissociation is studied based on the three-component Deck Model. The correlations among the diffractive slope, the effective mass of the dissociated particle sub-system and the dissociation angle in the Gottfried-Jackson are studied based in this model. 9 refs, 19 figs

  16. Diffraction of high energy electrons

    International Nuclear Information System (INIS)

    Bourret, A.

    1981-10-01

    The diffraction of electrons by a crystal is examined to study its structure. As the electron-substance interaction is strong, it must be treated in a dynamic manner. Using the N waves theory and physical optics the base equations giving the wave at the outlet are deduced for a perfect crystal and their equivalence is shown. The more complex case of an imperfect crystal is then envisaged in these two approaches. In both cases, only the diffraction of high energy electrons ( > 50 KeV) are considered since in the diffraction of slow electrons back scattering cannot be ignored. Taking into account an increasingly greater number of beams, through fast calculations computer techniques, enables images to be simulated in very varied conditions. The general use of the Fast Fourier Transform has given a clear cut practical advantage to the multi-layer method [fr

  17. Diffraction contrast STEM of dislocations: Imaging and simulations

    International Nuclear Information System (INIS)

    Phillips, P.J.; Brandes, M.C.; Mills, M.J.; De Graef, M.

    2011-01-01

    The application of scanning transmission electron microscopy (STEM) to crystalline defect analysis has been extended to dislocations. The present contribution highlights the use of STEM on two oppositely signed sets of near-screw dislocations in hcp α-Ti with 6 wt% Al in solid solution. In addition to common systematic row diffraction conditions, other configurations such as zone axis and 3g imaging are explored, and appear to be very useful not only for defect analysis, but for general defect observation. It is demonstrated that conventional TEM rules for diffraction contrast such as g.b and g.R are applicable in STEM. Experimental and computational micrographs of dislocations imaged in the aforementioned modes are presented. -- Highlights: → STEM defect analysis has been extended to include dislocations. → Systematic row, zone axis and 3g diffraction conditions are all found to be useful for general defect observations in STEM mode. → Conventional contrast visibility rules for diffraction contrast are found to remain valid for STEM observations. → Multi-beam dynamical scattering matrix simulations provide excellent agreement with experimental images.

  18. Atomic structure of large angle grain boundaries determined by quantitative X-ray diffraction techniques

    International Nuclear Information System (INIS)

    Fitzsimmons, M.R.; Sass, S.L.

    1988-01-01

    Quantitative X-ray diffraction techniques have been used to determine the atomic structure of the Σ = 5 and 13 [001] twist boundaries in Au with a resolution of 0.09 Angstrom or better. The reciprocal lattices of these boundaries were mapped out using synchrotron radiation. The atomic structures were obtained by testing model structures against the intensity observations with a chi square analysis. The boundary structure were modeled using polyhedra, including octahedra, special configurations of tetrahedra and Archimedian anti-prisms, interwoven together by the boundary symmetry. The results of this work point to the possibility of obtaining general rules for grain boundary structure based on X-ray diffraction observations that give the atomic positions with high resolution

  19. An investigation of single diffractive p-Be, p-Al, and p-W interactions within the Dual Parton Model

    International Nuclear Information System (INIS)

    Ranft, J.; Roesler, S.

    1994-01-01

    Single diffractive proton-beryllium, -aluminium, and -tungsten interactions are studied within the framework of the Dual Parton Model. Their implementation into the Monte-Carlo event generator DTUNUC is described, and the main features of single diffractive particle production are discussed, comparing them to recent experimental results. Furthermore, single diffractive hadron-nucleus cross sections are calculated using the Glauber theory and the influence of hadronic cross section fluctuations is investigated. (author). 17 refs., 3 figs., 2 tabs

  20. Finite element Fourier and Abbe transform methods for generalization of aperture function and geometry in Fraunhofer diffraction theory

    International Nuclear Information System (INIS)

    Kraus, H.G.

    1991-01-01

    This paper discusses methods for calculating Fraunhofer intensity fields resulting from diffraction through one- and two-dimensional apertures are presented. These methods are based on the geometric concept of finite elements and on Fourier and Abbe transforms. The geometry of the two-dimensional diffracting aperture(s) is based on biquadratic isoparametric elements, which are used to define aperture(s) of complex geometry. These elements are also used to build complex amplitude and phase functions across the aperture(s) which may be of continuous or discontinuous form. The transform integrals are accurately and efficiently integrated numerically using Gaussian quadrature. The power of these methods is most evident in two dimensions, where several examples are presented which include secondary obstructions, straight and curved secondary spider supports, multiple-mirror arrays, synthetic aperture arrays, segmented mirrors, apertures covered by screens, apodization, and phase plates. Typically, the finite element Abbe transform method results in significant gains in computational efficiency over the finite element Fourier transform method, but is also subject to some loss in generality

  1. Computational imaging using lightweight diffractive-refractive optics

    KAUST Repository

    Peng, Yifan

    2015-11-23

    Diffractive optical elements (DOE) show great promise for imaging optics that are thinner and more lightweight than conventional refractive lenses while preserving their light efficiency. Unfortunately, severe spectral dispersion currently limits the use of DOEs in consumer-level lens design. In this article, we jointly design lightweight diffractive-refractive optics and post-processing algorithms to enable imaging under white light illumination. Using the Fresnel lens as a general platform, we show three phase-plate designs, including a super-thin stacked plate design, a diffractive-refractive-hybrid lens, and a phase coded-aperture lens. Combined with cross-channel deconvolution algorithm, both spherical and chromatic aberrations are corrected. Experimental results indicate that using our computational imaging approach, diffractive-refractive optics is an alternative candidate to build light efficient and thin optics for white light imaging.

  2. Computational imaging using lightweight diffractive-refractive optics

    KAUST Repository

    Peng, Yifan; Fu, Qiang; Amata, Hadi; Su, Shuochen; Heide, Felix; Heidrich, Wolfgang

    2015-01-01

    Diffractive optical elements (DOE) show great promise for imaging optics that are thinner and more lightweight than conventional refractive lenses while preserving their light efficiency. Unfortunately, severe spectral dispersion currently limits the use of DOEs in consumer-level lens design. In this article, we jointly design lightweight diffractive-refractive optics and post-processing algorithms to enable imaging under white light illumination. Using the Fresnel lens as a general platform, we show three phase-plate designs, including a super-thin stacked plate design, a diffractive-refractive-hybrid lens, and a phase coded-aperture lens. Combined with cross-channel deconvolution algorithm, both spherical and chromatic aberrations are corrected. Experimental results indicate that using our computational imaging approach, diffractive-refractive optics is an alternative candidate to build light efficient and thin optics for white light imaging.

  3. Neutron diffraction studies of glasses

    International Nuclear Information System (INIS)

    Wright, A.C.

    1987-01-01

    A survey is given of the application of neutron diffraction to structural studies of oxide and halide glasses. As with crystalline materials, neutron and X-ray diffraction are the major structural probes for glasses and other amorphous solids, particularly in respect of intermediate range order. The glasses discussed mostly have structures which are dominated by a network in which the bonding is predominantly covalent. The examples discussed demonstrate the power of the neutron diffraction technique in the investigation of the structures of inorganic glasses. The best modern diffraction experiments are capable of providing accurate data with high real space resolution, which if used correctly, are an extremely fine filter for the various structural models proposed in the literature. 42 refs

  4. A structural view of Pd model catalysts : high-pressure surface X-Ray diffraction

    NARCIS (Netherlands)

    Rijn, Richard van

    2012-01-01

    This thesis describes the development of a combined high-pressure/ultrahigh-vacuum flow reactor for the study of model catalysts by means of surface x-ray diffraction and grazing incidence small angle scattering. The system was used to measure a stability diagram for the different oxide phases

  5. Angular criterion for distinguishing between Fraunhofer and Fresnel diffraction

    International Nuclear Information System (INIS)

    Medina, Francisco F.; Garcia-Sucerquia, Jorge; Castaneda, Roman; Matteucci, Giorgio

    2003-03-01

    The distinction between Fresnel and Fraunhofer diffraction is a crucial condition for the accurate analysis of diffracting structures. In this paper we propose a criterion based on the angle subtended by the first zero of the diffraction pattern from the center of the diffracting aperture. The determination of the zero of the diffraction pattern is the crucial point for assuring the precision of the criterion. It mainly depends on the dynamical range of the detector. Therefore, the applicability of adequate thresholds for different detector types is discussed. The criterion is also generalized by expressing it in terms of the number of Fresnel zones delimited by the aperture. Simulations are reported for illustrating the feasibility of the criterion. (author)

  6. Multiple x-ray diffraction simulation and applications

    International Nuclear Information System (INIS)

    Costa, C.A.B.S. da.

    1989-09-01

    A computer program (MULTX) was implemented for simulation X-ray multiple diffraction diagrams in Renninger geometries. The program uses the X-ray multiple diffraction theory for imperfect crystals. The iterative calculation of the intensities is based on the Taylor series general term, and the primary beam power expansion is given as function of the beam x penetration in the crystal surface. This development allows to consider the simultaneous interaction of the beams involved in the multiple diffraction phenomenon. The simulated diagrams are calculated point-to-point and the tests for the Si and GaAs presented good reproduction of the experimental diagrams for different primary reflections. (L.C.J.A.)

  7. Modeling the Radar Return of Powerlines Using an Incremental Length Diffraction Coefficient Approach

    Science.gov (United States)

    Macdonald, Douglas

    A method for modeling the signal from cables and powerlines in Synthetic Aperture Radar (SAR) imagery is presented. Powerline detection using radar is an active area of research. Accurately identifing the location of powerlines in a scene can be used to aid pilots of low flying aircraft in collision avoidance, or map the electrical infrastructure of an area. The focus of this research was on the forward modeling problem of generating the powerline SAR signal from first principles. Previous work on simulating SAR imagery involved methods that ranged from efficient but insufficiently accurate, depending on the application, to more exact but computationally complex. A brief survey of the numerous ways to model the scattering of electromagnetic radiation is provided. A popular tool that uses the geometric optics approximation for modeling imagery for remote sensing applications across a wide range of modalities is the Digitial Imaging and Remote Sensing Image Generation (DIRSIG) tool. This research shows the way in which DIRSIG generates the SAR phase history is unique compared to other methods used. In particular, DIRSIG uses the geometric optics approximation for the scattering of electromagnetic radiation and builds the phase history in the time domain on a pulse-by-pulse basis. This enables an efficient generation of the phase history of complex scenes. The drawback to this method is the inability to account for diffraction. Since the characteristic diameter of many communication cables and powerlines is on the order of the wavelength of the incident radiation, diffraction is the dominant mechanism by which the radiation gets scattered for these targets. Comparison of DIRSIG imagery to field data shows good scene-wide qualitative agreement as well as Rayleigh distributed noise in the amplitude data, as expected for coherent imaging with speckle. A closer inspection of the Radar Cross Sections of canonical targets such as trihedrals and dihedrals, however, shows

  8. A more general expression for the average X-ray diffraction intensity of crystals with an incommensurate one-dimensional modulation

    International Nuclear Information System (INIS)

    Lam, E.J.W.; Beurskens, P.T.; Smaalen, S. van

    1994-01-01

    Statistical methods are used to derive an expression for the average X-ray diffraction intensity, as a function of (sinθ)/λ, of crystals with an incommensurate one-dimensional modulation. Displacive and density modulations are considered, as well as a combination of these two. The atomic modulation functions are given by truncated Fourier series that may contain higher-order harmonics. The resulting expression for the average X-ray diffraction intensity is valid for main reflections and low-order satellite reflections. The modulation of individual atoms is taken into account by the introduction of overall modulation amplitudes. The accuracy of this expression for the average X-ray diffraction intensity is illustrated by comparison with model structures. A definition is presented for normalized structure factors of crystals with an incommensurate one-dimensional modulation that can be used in direct-methods procedures for solving the phase problem in X-ray crystallography. A numerical fitting procedure is described that can extract a scale factor, an overall temperature parameter and overall modulation amplitudes from experimental reflection intensities. (orig.)

  9. Transverse Imaging of the Proton in Exclusive Diffractive pp Scattering

    International Nuclear Information System (INIS)

    Christian Weiss; Leonid Frankfurt; Charles Hyde-Wright; Mark Strikman

    2006-01-01

    In a forthcoming paper we describe a new approach to rapidity gap survival (RGS) in the production of high-mass systems (H = dijet, Higgs, etc.) in exclusive double-gap diffractive pp scattering, pp -> p + H + p. It is based on the idea that hard and soft interactions are approximately independent (QCD factorization), and allows us to calculate the RGS probability in a model-independent way in terms of the gluon generalized parton distributions (GPDs) in the colliding protons and the pp elastic scattering amplitude. Here we focus on the transverse momentum dependence of the cross section. By measuring the ''diffraction pattern'', one can perform detailed tests of the interplay of hard and soft interactions, and even extract information about the gluon GPD in the proton from the data

  10. Modelling of diffusion from equilibrium diffraction fluctuations in ordered phases

    International Nuclear Information System (INIS)

    Arapaki, E.; Argyrakis, P.; Tringides, M.C.

    2008-01-01

    Measurements of the collective diffusion coefficient D c at equilibrium are difficult because they are based on monitoring low amplitude concentration fluctuations generated spontaneously, that are difficult to measure experimentally. A new experimental method has been recently used to measure time-dependent correlation functions from the diffraction intensity fluctuations and was applied to measure thermal step fluctuations. The method has not been applied yet to measure superstructure intensity fluctuations in surface overlayers and to extract D c . With Monte Carlo simulations we study equilibrium fluctuations in Ising lattice gas models with nearest neighbor attractive and repulsive interactions. The extracted diffusion coefficients are compared to the ones obtained from equilibrium methods. The new results are in good agreement with the results from the other methods, i.e., D c decreases monotonically with coverage Θ for attractive interactions and increases monotonically with Θ for repulsive interactions. Even the absolute value of D c agrees well with the results obtained with the probe area method. These results confirm that this diffraction based method is a novel, reliable way to measure D c especially within the ordered region of the phase diagram when the superstructure spot has large intensity

  11. Diffraction of polarized light on periodic structures

    International Nuclear Information System (INIS)

    Bukanina, V; Divakov, D; Tyutyunnik, A; Hohlov, A

    2012-01-01

    Periodic structures as photonic crystals are widely used in modern laser devices, communication technologies and for creating various beam splitters and filters. Diffraction gratings are applied for creating 3D television sets, DVD and Blu-ray drives and reflective structures (Berkley mirror). It is important to simulate diffraction on such structures to design optical systems with predetermined properties based on photonic crystals and diffraction gratings. Methods of simulating diffraction on periodic structures uses theory of Floquet-Bloch and rigorous coupled-wave analysis (RCWA). Current work is dedicated to analysis of photonic band gaps and simulating diffraction on one-dimensional binary diffraction grating using RCWA. The Maxwell's equations for isotropic media and constitutive relations based on the cgs system were used as a model.

  12. Phase retrieval from diffraction data utilizing pre-determined partial information

    International Nuclear Information System (INIS)

    Kim, S.S.; Marathe, S.; Kim, S.N.; Kang, H.C.; Noh, D.Y.

    2007-01-01

    We developed a phase retrieval algorithm that utilizes pre-determined partial phase information to overcome insufficient oversampling ratio in diffraction data. Implementing the Fourier modulus projection and the modified support projection manifesting the pre-determined information, a generalized difference map and HIO (Hybrid Input-Output) algorithms are developed. Optical laser diffraction data as well as simulated X-ray diffraction data are used to illustrate the validity of the proposed algorithm, which revealed the strength and the limitations of the algorithm. The proposed algorithm can expand the applicability of the diffraction based image reconstruction

  13. Transition operators in electromagnetic-wave diffraction theory - General theory

    Science.gov (United States)

    Hahne, G. E.

    1992-01-01

    A formal theory is developed for the scattering of time-harmonic electromagnetic waves from impenetrable immobile obstacles with given linear, homogeneous, and generally nonlocal boundary conditions of Leontovich (impedance) type for the wave of the obstacle's surface. The theory is modeled on the complete Green's function and the transition (T) operator in time-independent formal scattering theory of nonrelativistic quantum mechanics. An expression for the differential scattering cross section for plane electromagnetic waves is derived in terms of certain matrix elements of the T operator for the obstacle.

  14. Highly-optimized TWSM software package for seismic diffraction modeling adapted for GPU-cluster

    Science.gov (United States)

    Zyatkov, Nikolay; Ayzenberg, Alena; Aizenberg, Arkady

    2015-04-01

    Oil producing companies concern to increase resolution capability of seismic data for complex oil-and-gas bearing deposits connected with salt domes, basalt traps, reefs, lenses, etc. Known methods of seismic wave theory define shape of hydrocarbon accumulation with nonsufficient resolution, since they do not account for multiple diffractions explicitly. We elaborate alternative seismic wave theory in terms of operators of propagation in layers and reflection-transmission at curved interfaces. Approximation of this theory is realized in the seismic frequency range as the Tip-Wave Superposition Method (TWSM). TWSM based on the operator theory allows to evaluate of wavefield in bounded domains/layers with geometrical shadow zones (in nature it can be: salt domes, basalt traps, reefs, lenses, etc.) accounting for so-called cascade diffraction. Cascade diffraction includes edge waves from sharp edges, creeping waves near concave parts of interfaces, waves of the whispering galleries near convex parts of interfaces, etc. The basic algorithm of TWSM package is based on multiplication of large-size matrices (make hundreds of terabytes in size). We use advanced information technologies for effective realization of numerical procedures of the TWSM. In particular, we actively use NVIDIA CUDA technology and GPU accelerators allowing to significantly improve the performance of the TWSM software package, that is important in using it for direct and inverse problems. The accuracy, stability and efficiency of the algorithm are justified by numerical examples with curved interfaces. TWSM package and its separate components can be used in different modeling tasks such as planning of acquisition systems, physical interpretation of laboratory modeling, modeling of individual waves of different types and in some inverse tasks such as imaging in case of laterally inhomogeneous overburden, AVO inversion.

  15. A theoretical overview on single hard diffraction

    International Nuclear Information System (INIS)

    Wuesthoff, M.

    1996-01-01

    The concept of the Pomeron structure function and its application in Single Hard Diffraction at hadron colliders and in diffractive Deep Inelastic Scattering is critically reviewed. Some alternative approaches are briefly surveyed with a focus on QCD inspired models

  16. Validation of a Crystal Plasticity Model Using High Energy Diffraction Microscopy

    Science.gov (United States)

    Beaudoin, A. J.; Obstalecki, M.; Storer, R.; Tayon, W.; Mach, J.; Kenesei, P.; Lienert, U.

    2012-01-01

    High energy diffraction microscopy is used to measure the crystallographic orientation and evolution of lattice strain in an Al Li alloy. The relative spatial arrangement of the several pancake-shaped grains in a tensile sample is determined through in situ and ex situ techniques. A model for crystal plasticity with continuity of lattice spin is posed, where grains are represented by layers in a finite element mesh following the arrangement indicated by experiment. Comparison is drawn between experiment and simulation.

  17. Recent advances in continuum plasticity: phenomenological modeling and experimentation using X-ray diffraction

    Science.gov (United States)

    Edmiston, John Kearney

    This work explores the field of continuum plasticity from two fronts. On the theory side, we establish a complete specification of a phenomenological theory of plasticity for single crystals. The model serves as an alternative to the popular crystal plasticity formulation. Such a model has been previously proposed in the literature; the new contribution made here is the constitutive framework and resulting simulations. We calibrate the model to available data and use a simple numerical method to explore resulting predictions in plane strain boundary value problems. Results show promise for further investigation of the plasticity model. Conveniently, this theory comes with a corresponding experimental tool in X-ray diffraction. Recent advances in hardware technology at synchrotron sources have led to an increased use of the technique for studies of plasticity in the bulk of materials. The method has been successful in qualitative observations of material behavior, but its use in quantitative studies seeking to extract material properties is open for investigation. Therefore in the second component of the thesis several contributions are made to synchrotron X-ray diffraction experiments, in terms of method development as well as the quantitative reporting of constitutive parameters. In the area of method development, analytical tools are developed to determine the available precision of this type of experiment—a crucial aspect to determine if the method is to be used for quantitative studies. We also extract kinematic information relating to intragranular inhomogeneity which is not accessible with traditional methods of data analysis. In the area of constitutive parameter identification, we use the method to extract parameters corresponding to the proposed formulation of plasticity for a titanium alloy (HCP) which is continuously sampled by X-ray diffraction during uniaxial extension. These results and the lessons learned from the efforts constitute early reporting

  18. Elastic diffraction interactions of hadrons at high energies

    International Nuclear Information System (INIS)

    Ismatov, E.I.; Ubaev, J.K.; Tshay, K.V.; Zholdasova, S.M.; Juraev, Sh.Kh.; Essaniazov, Sh.P.

    2006-01-01

    Full text: 1. The diffraction theory of elastic and inelastic scattering of hadron-hadron and hadron-nucleus processes is developed. The description of experimental data on differential cross section of elastic scattering p p, p-bar p in wide range of transferred momentum is made in the frames of the developed inelastic overlap function model. The investigation of nuclei elastic scattering at the low, middle and high energies is carried out, that allowed to execute quantitative control of efficiency or quantum-field and phenomenological theories and make critical analysis of their utility. The principle of construction of realistic amplitudes of the elastic scattering is confirmed on the basic of the s- and t-channel approaches both conditions stationary of amplitudes. For a wide range of models the comparative analysis of amplitude of inelastic scattering in representation of impact parameter is executed. The expression for effective radius of interaction, effective trajectory Regge and slope of inelastic function of overlapping are analysed. In diffraction approximation the satisfactory description of the data on hadrons interaction at the energy of tens GeV with proton and deuterons is received. The features of spectra of fast particles are analysed. The theory of collective variables S, T, P which characterize a deviation degree of angular distribution of particles from spherical symmetry, the general formula for dispersion of any density of obtained, the particles decays are investigated [1-2]. 2. The solution of Lippmann-Schwinger equation investigated within the frameworks of frameworks of high -energy approximation satisfies the generalized Huygens principle used in the diffraction theory nuclear processes. The diffraction emission is considered at the interaction of charged hadrons one with another and the nuclei [3]. 3. Study of elastic interactions of hadrons at high energies is of great interest due to the fact that the amplitude of this process is the

  19. Geometrical optics and the diffraction phenomenon

    International Nuclear Information System (INIS)

    Timofeev, Aleksandr V

    2005-01-01

    This note outlines the principles of the geometrical optics of inhomogeneous waves whose description necessitates the use of complex values of the wave vector. Generalizing geometrical optics to inhomogeneous waves permits including in its scope the analysis of the diffraction phenomenon. (methodological notes)

  20. Spatiotemporal optical pulse transformation by a resonant diffraction grating

    Energy Technology Data Exchange (ETDEWEB)

    Golovastikov, N. V.; Bykov, D. A., E-mail: bykovd@gmail.com; Doskolovich, L. L., E-mail: leonid@smr.ru; Soifer, V. A. [Russian Academy of Sciences, Image Processing Systems Institute (Russian Federation)

    2015-11-15

    The diffraction of a spatiotemporal optical pulse by a resonant diffraction grating is considered. The pulse diffraction is described in terms of the signal (the spatiotemporal incident pulse envelope) passage through a linear system. An analytic approximation in the form of a rational function of two variables corresponding to the angular and spatial frequencies has been obtained for the transfer function of the system. A hyperbolic partial differential equation describing the general form of the incident pulse envelope transformation upon diffraction by a resonant diffraction grating has been derived from the transfer function. A solution of this equation has been obtained for the case of normal incidence of a pulse with a central frequency lying near the guided-mode resonance of a diffraction structure. The presented results of numerical simulations of pulse diffraction by a resonant grating show profound changes in the pulse envelope shape that closely correspond to the proposed theoretical description. The results of the paper can be applied in creating new devices for optical pulse shape transformation, in optical information processing problems, and analog optical computations.

  1. Numerical comparison of grid pattern diffraction effects through measurement and modeling with OptiScan software

    Science.gov (United States)

    Murray, Ian B.; Densmore, Victor; Bora, Vaibhav; Pieratt, Matthew W.; Hibbard, Douglas L.; Milster, Tom D.

    2011-06-01

    Coatings of various metalized patterns are used for heating and electromagnetic interference (EMI) shielding applications. Previous work has focused on macro differences between different types of grids, and has shown good correlation between measurements and analyses of grid diffraction. To advance this work, we have utilized the University of Arizona's OptiScan software, which has been optimized for this application by using the Babinet Principle. When operating on an appropriate computer system, this algorithm produces results hundreds of times faster than standard Fourier-based methods, and allows realistic cases to be modeled for the first time. By using previously published derivations by Exotic Electro-Optics, we compare diffraction performance of repeating and randomized grid patterns with equivalent sheet resistance using numerical performance metrics. Grid patterns of each type are printed on optical substrates and measured energy is compared against modeled energy.

  2. Dynamical diffraction in periodic multilayers

    CERN Document Server

    Sears, V F

    1997-01-01

    Exact reflectivity curves are calculated numerically for various periodic multilayers using the optical matrix method in order to test the dynamical theory of diffraction. The theory is generally valid for values of the bilayer thickness d up to about 100 A. For somewhat larger values of d, where the theory begins to break down, the initial discrepancy is in the phase of the oscillations in the wings of the peaks. For very large values of d, where the first-order Bragg peak approaches the edge of the mirror reflection, two general types of multilayers can be distinguished. In the first (typified in the present work by Ni/Ti), there is a large (30% or more) reduction in the actual value of the critical wave vector for total reflection while, in the second (typified here by Fe/Ge), there is very little reduction (3 % or so). The origin of these two very different types of behavior is explained. It is also shown that, within the dynamical theory of diffraction, the change in the position of the center of the Dar...

  3. Thermodynamic model for the elastic form factor in diffraction scattering of protons

    International Nuclear Information System (INIS)

    Grashin, A.F.; Evstratenko, A.S.; Lepeshkin, M.V.

    1988-01-01

    An explicit expression is obtained for the differential pp(p-bar)-scattering cross section in the diffraction-cone region by employing the thermodynamic model for the elastic form factor previously proposed in Ref. 4. Data for the energy region 16.3≤(s)/sup 1/2/ ≤546 GeV have been analyzed and significant deviations have been discovered from the commonly used approximations in the form of linear or quadratic exponentials

  4. From HERA to the Tevatron: A scaling law in hard diffraction

    International Nuclear Information System (INIS)

    Goulianos, K.

    1997-01-01

    Results on hard diffraction from CDF are reviewed and compared with predictions based on the diffractive structure function of the proton measured in deep inelastic scattering at HERA. The predictions are generally larger than the measured rates by a factor of ∼ 6, suggesting a breakdown of conventional factorization. Correct predictions are obtained by scaling the rapidity gap probability distribution of the diffractive structure function to the total integrated gap probability. The scaling of the gap probability is traced back to the pomeron flux renormalization hypothesis, which was introduced to unitarize the soft diffraction amplitude

  5. A study of the Pythia 8 description of ATLAS minimum bias measurements with the Donnachie-Landshoff diffractive model

    CERN Document Server

    The ATLAS collaboration

    2016-01-01

    We present a new tune of the Pythia8 event generator, titled ``A3'' and suitable for inclusive QCD modelling, including minimum bias physics and pile-up overlay. The tuning uses the early Run~2 charged particle distribution and inelastic cross section results from ATLAS in addition to the Run~1 data used to construct previous minimum-bias tunes. For the first time, the tuning included a consideration of diffraction modelling parameters and a diffractive model other than the Pythia8 default is used in the final configuration. That resulted in a better descriptions of the measured inelastic cross-sections, and similar or better level of agreement compared to the currently used A2 tune for other distributions considered.

  6. Diffraction and diffusion in room acoustics

    DEFF Research Database (Denmark)

    Rindel, Jens Holger; Rasmussen, Birgit

    1996-01-01

    Diffraction and diffusion are two phenomena that are both related to the wave nature of sound. Diffraction due to the finite size of reflecting surfaces and the design of single reflectors and reflector arrays are discussed. Diffusion is the result of scattering of sound reflected from surfaces...... that are not plane but curved or irregular. The importance of diffusion has been demonstrated in concert halls. Methods for the design of diffusing surfaces and the development of new types of diffusers are reviewed. Finally, the importance of diffraction and diffusion in room acoustic computer models is discussed....

  7. Diffraction Techniques in Structural Biology

    Science.gov (United States)

    Egli, Martin

    2016-01-01

    A detailed understanding of chemical and biological function and the mechanisms underlying the molecular activities ultimately requires atomic-resolution structural data. Diffraction-based techniques such as single-crystal X-ray crystallography, electron microscopy, and neutron diffraction are well established and they have paved the road to the stunning successes of modern-day structural biology. The major advances achieved in the last 20 years in all aspects of structural research, including sample preparation, crystallization, the construction of synchrotron and spallation sources, phasing approaches, and high-speed computing and visualization, now provide specialists and nonspecialists alike with a steady flow of molecular images of unprecedented detail. The present unit combines a general overview of diffraction methods with a detailed description of the process of a single-crystal X-ray structure determination experiment, from chemical synthesis or expression to phasing and refinement, analysis, and quality control. For novices it may serve as a stepping-stone to more in-depth treatises of the individual topics. Readers relying on structural information for interpreting functional data may find it a useful consumer guide. PMID:27248784

  8. Updated RENORM/MBR Predictions for Diffraction at the LHC

    CERN Document Server

    Goulianos, K

    2015-01-01

    Updated RENORM/MBR-model predictions of diffractive, total, and total-inelastic cross sections at the LHC are presented and compared with experimental results and predictions from other models. In addition, expectations for diffraction at the upcoming LHC run at √s = 13 TeV are discussed.

  9. Diffraction efficiency calculations of polarization diffraction gratings with surface relief

    Science.gov (United States)

    Nazarova, D.; Sharlandjiev, P.; Berberova, N.; Blagoeva, B.; Stoykova, E.; Nedelchev, L.

    2018-03-01

    In this paper, we evaluate the optical response of a stack of two diffraction gratings of equal one-dimensional periodicity. The first one is a surface-relief grating structure; the second, a volume polarization grating. This model is based on our experimental results from polarization holographic recordings in azopolymer films. We used films of commercially available azopolymer (poly[1-[4-(3-carboxy-4-hydroxyphenylazo) benzenesulfonamido]-1,2-ethanediyl, sodium salt]), shortly denoted as PAZO. During the recording process, a polarization grating in the volume of the material and a relief grating on the film surface are formed simultaneously. In order to evaluate numerically the optical response of this “hybrid” diffraction structure, we used the rigorous coupled-wave approach (RCWA). It yields stable numerical solutions of Maxwell’s vector equations using the algebraic eigenvalue method.

  10. Diffractive ''semioptical'' model for nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Musulmanbekov, Zh.Zh.

    1979-01-01

    Diffraction Glauber theory for nucleus-nucleus collisions is considered in approximation when the initial nucleus interacts as a whole with nucleons of the target nucleus. Such an approach, being intermediate between precise Glauber theory and its optical limit, essentially simplifies numerical calculations and gives a good agreement with experiments as well. (author)

  11. Novel Aspects of Hard Diffraction in QCD

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.

    2005-01-01

    Initial- and final-state interactions from gluon-exchange, normally neglected in the parton model have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, and nuclear shadowing and antishadowing--leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. I also discuss the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD color transparency

  12. Diffraction through partial identity

    International Nuclear Information System (INIS)

    Blum, W.

    1981-06-01

    A model of diffraction dissociation is proposed in which the quantum-mechanical interference between the incoming and the outgoing wave determines the cross-section. This interference occurs due to the finite life-time of the excited state. (orig.)

  13. Probing diffractive production of gauge bosons at forward rapidities

    Energy Technology Data Exchange (ETDEWEB)

    Basso, Eduardo; Rangel, Murilo S. [Universidade Federal do Rio de Janeiro, Instituto de Fisica, Caixa Postal 68528, Rio de Janeiro, RJ (Brazil); Goncalves, Victor P. [Universidade Federal de Pelotas, Instituto de Fisica e Matematica, Pelotas, RS (Brazil)

    2016-12-15

    Gauge boson production at forward rapidities in single diffractive events at the LHC is investigated considering pp collisions at √(s) = 8 and 13 TeV. The impact of gap survival effects is analysed using two different models for the soft rescattering contributions. We demonstrate that using the forward shower counter Project at LHCb-HERSCHEL, together with the Vertex Locator-VELO, it is possible to discriminate diffractive production of the gauge bosons W and Z from the non-diffractive processes and studies of the Pomeron structure and diffraction phenomenology are feasible. Moreover, we show that the analysis of this process can be useful to constrain the modelling of the gap survival effects. (orig.)

  14. The dynamics of diffracted rays in foams

    Energy Technology Data Exchange (ETDEWEB)

    Tufaile, A., E-mail: tufaile@usp.br; Tufaile, A.P.B.

    2015-12-18

    We have studied some aspects of the optics of the light scattering in foams. This paper describes the difference between rays and diffracted rays from the point of view of geometrical theory of diffraction. We have represented some bifurcations of light rays using dynamical systems. Based on our observations of foams, we created a solid optical device. The interference patterns of light scattering in foams forming Airy fringes were explored observing the pattern named as the eye of Horus. In the cases we examine, these Airy fringes are associated with light scattering in curved surfaces, while the halo formation is related to the law of edge diffraction. We are proposing a Pohl interferometer using a three-sided bubble/Plateau border system. - Highlights: • We obtained halos scattering light in foams. • We model the light scattering in foams using the geometrical theory of diffraction. • We examine the difference between rays and the diffracted rays. • We developed optical devices for diffracted rays.

  15. Simulation of X-ray diffraction-line broadening due to dislocations in a model composite material

    NARCIS (Netherlands)

    Bor, Teunis Cornelis; Cleveringa, H.H.M.; Delhez, R; van der Giessen, E.

    2001-01-01

    X-ray diffraction-line profiles of two-dimensional, plastically deformed model composite materials are calculated and analysed in detail. The composite consists of elastic reinforcements in a crystalline solid and is subjected to macroscopic shear. Slip occurs in the matrix only due to the

  16. Dynamical neutron diffraction by curved crystals in the Laue geometry

    International Nuclear Information System (INIS)

    Albertini, G.; Melone, S.; Lagomarsino, S.; Mazkedian, S.; Puliti, P.; Rustichelli, F.

    1977-01-01

    The Taupin dynamical theory of X-ray diffraction by deformed crystals which was previously extended to the neutron diffraction by curved crystals in the Bragg geometry, is applied to calculate neutron diffraction patterns in the Laue geometry. The theoretical results are compared with experimental data on curved silicon crystals. The agreement is quite satisfactory. In the second part a simple model recently presented to describe neutron diffraction properties in the Bragg case is extended to the Laue case. The predictions of such a model are in satisfactory agreement with the rigorous theory and the experimental results. (author)

  17. A scattering approach to sea wave diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, M. L., E-mail: letizia.corradini@unicam.it; Garbuglia, M., E-mail: milena.garbuglia@unicam.it; Maponi, P., E-mail: pierluigi.maponi@unicam.it [University of Camerino, via Madonna delle Carceri, 9, 62032, Camerino (Italy); Ruggeri, M., E-mail: ru.marco@faggiolatipumps.it [Faggiolati Pumps S.p.A., Z.Ind Sforzacosta, 62100, Macerata (Italy)

    2016-06-08

    This paper intends to show a model for the diffraction of sea waves approaching an OWC device, which converts the sea waves motion into mechanical energy and then electrical energy. This is a preliminary study to the optimisation of the device, in fact the computation of sea waves diffraction around the device allows the estimation of the sea waves energy which enters into the device. The computation of the diffraction phenomenon is the result of a sea waves scattering problem, solved with an integral equation method.

  18. Theory of time-resolved inelastic x-ray diffraction

    DEFF Research Database (Denmark)

    Lorenz, Ulf; Møller, Klaus Braagaard; Henriksen, Niels Engholm

    2010-01-01

    Starting from a general theory of time-resolved x-ray scattering, we derive a convenient expression for the diffraction signal based on a careful analysis of the relevant inelastic scattering processes. We demonstrate that the resulting inelastic limit applies to a wider variety of experimental...... conditions than similar, previously derived formulas, and it directly allows the application of selection rules when interpreting diffraction signals. Furthermore, we present a simple extension to systems simultaneously illuminated by x rays and a laser beam....

  19. Detection of electron magnetic circular dichroism signals under zone axial diffraction geometry

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dongsheng [National Center for Electron Microscopy in Beijing, Key Laboratory of Advanced Materials (MOE) and The State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Rusz, Jan [Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala (Sweden); Cai, Jianwang [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Zhu, Jing, E-mail: jzhu@mail.tsinghua.edu.cn [National Center for Electron Microscopy in Beijing, Key Laboratory of Advanced Materials (MOE) and The State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2016-10-15

    EMCD (electron magnetic circular dichroism) technique provides us a new opportunity to explore magnetic properties in the transmission electron microscope. However, specific diffraction geometry is the major limitation. Only the two-beam and three-beam case are demonstrated in the experiments until now. Here, we present the more general case of zone axial (ZA) diffraction geometry through which the EMCD signals can be detected even with the very strong sensitivity to dynamical diffraction conditions. Our detailed calculations and well-controlled diffraction conditions lead to experiments in agreement with theory. The effect of dynamical diffraction conditions on EMCD signals are discussed both in theory and experiments. Moreover, with the detailed analysis of dynamical diffraction effects, we experimentally obtain the separate EMCD signals for each crystallographic site in Y{sub 3}Fe{sub 5}O{sub 12}, which is also applicable for other materials and cannot be achieved by site-specific EMCD and XMCD technique directly. Our work extends application of more general diffraction geometries and will further promote the development of EMCD technique. - Highlights: • The zone axial (ZA) diffraction geometry is presented for EMCD technique. • The detailed calculations for EMCD signals under ZA case are conducted. • The EMCD signals are obtained under the ZA case in the experiments. • The effect of dynamical effect on EMCD signals under ZA case is discussed. • Site-specific EMCD signals of Fe in Y{sub 3}Fe{sub 5}O{sub 12} are obtained by specific ZA conditions.

  20. Factorization and non-factorization in diffractive hard scattering

    International Nuclear Information System (INIS)

    Berera, Arjun

    1997-01-01

    Factorization, in the sense defined for inclusive hard scattering, is discussed for diffractive hard scattering. A factorization theorem similar to its inclusive counterpart is presented for diffractive DIS. For hadron-hadron diffractive hard scattering, in contrast to its inclusive counterpart, the expected breakdown of factorization is discussed. Cross section estimates are given from a simple field theory model for non-factorizing double-pomeron-exchange (DPE) dijet production with and without account for Sudakov suppression

  1. Time-dependent Bragg diffraction by multilayer gratings

    International Nuclear Information System (INIS)

    André, Jean-Michel; Jonnard, Philippe

    2016-01-01

    Time-dependent Bragg diffraction by multilayer gratings working by reflection or by transmission is investigated. The study is performed by generalizing the time-dependent coupled-wave theory previously developed for one-dimensional photonic crystals (André J-M and Jonnard P 2015 J. Opt. 17 085609) and also by extending the Takagi–Taupin approach of the dynamical theory of diffraction. The indicial response is calculated. It presents a time delay with a transient time that is a function of the extinction length for reflection geometry and of the extinction length combined with the thickness of the grating for transmission geometry. (paper)

  2. Probing deformation substructure by synchrotron X-ray diffraction and dislocation dynamics modelling.

    Science.gov (United States)

    Korsunsky, Alexander M; Hofmann, Felix; Song, Xu; Eve, Sophie; Collins, Steve P

    2010-09-01

    Materials characterization at the nano-scale is motivated by the desire to resolve the structural aspects and deformation behavior at length scales relevant to those mechanisms that define the novel and unusual properties of nano-structured materials. A range of novel techniques has recently become accessible with the help of synchrotron X-ray beams that can be focused down to spot sizes of less than a few microns on the sample. The unique combination of tunability (energy selection), parallelism and brightness of synchrotron X-ray beams allows their use for high resolution diffraction (determination of crystal structure and transformations, analysis of dislocation sub-structures, orientation and texture analysis, strain mapping); small angle X-ray scattering (analysis of nano-scale voids and defects; orientation analysis) and imaging (radiography and tomography). After a brief review of the state-of-the-art capabilities for monochromatic and white beam synchrotron diffraction, we consider the usefulness of these techniques for the task of bridging the gap between experiment and modeling. Namely, we discuss how the experiments can be configured to provide information relevant to the validation and improvement of modeling approaches, and also how the results of various simulations can be post-processed to improve the possibility of (more or less) direct comparison with experiments. Using the example of some recent experiments carried out on beamline 116 at Diamond Light Source near Oxford, we discuss how such experimental results can be interpreted in view and in conjunction with numerical deformation models, particularly those incorporating dislocation effects, e.g., finite-element based pseudo-continuum strain gradient formulations, and discrete dislocation simulations. Post-processing of FE and discrete dislocation simulations is described, illustrating the kind of information that can be extracted from comparisons between modeling and experimental data.

  3. Introduction to generalized linear models

    CERN Document Server

    Dobson, Annette J

    2008-01-01

    Introduction Background Scope Notation Distributions Related to the Normal Distribution Quadratic Forms Estimation Model Fitting Introduction Examples Some Principles of Statistical Modeling Notation and Coding for Explanatory Variables Exponential Family and Generalized Linear Models Introduction Exponential Family of Distributions Properties of Distributions in the Exponential Family Generalized Linear Models Examples Estimation Introduction Example: Failure Times for Pressure Vessels Maximum Likelihood Estimation Poisson Regression Example Inference Introduction Sampling Distribution for Score Statistics Taylor Series Approximations Sampling Distribution for MLEs Log-Likelihood Ratio Statistic Sampling Distribution for the Deviance Hypothesis Testing Normal Linear Models Introduction Basic Results Multiple Linear Regression Analysis of Variance Analysis of Covariance General Linear Models Binary Variables and Logistic Regression Probability Distributions ...

  4. Illicit drug detection using energy dispersive x-ray diffraction

    Science.gov (United States)

    Cook, E. J.; Griffiths, J. A.; Koutalonis, M.; Gent, C.; Pani, S.; Horrocks, J. A.; George, L.; Hardwick, S.; Speller, R.

    2009-05-01

    Illicit drugs are imported into countries in myriad ways, including via the postal system and courier services. An automated system is required to detect drugs in parcels for which X-ray diffraction is a suitable technique as it is non-destructive, material specific and uses X-rays of sufficiently high energy to penetrate parcels containing a range of attenuating materials. A database has been constructed containing the measured powder diffraction profiles of several thousand materials likely to be found in parcels. These include drugs, cutting agents, packaging and other innocuous materials. A software model has been developed using these data to predict the diffraction profiles which would be obtained by X-ray diffraction systems with a range of suggested detector (high purity germanium, CZT and scintillation), source and collimation options. The aim of the model was to identify the most promising system geometries, which was done with the aid of multivariate analysis (MVA). The most promising systems were constructed and tested. The diffraction profiles of a range of materials have been measured and used to both validate the model and to identify the presence of drugs in sample packages.

  5. Systematics of 2-body diffractive dissociations and search of double diffractive dissociation in K-p interactions at 14.3 GeV/c

    International Nuclear Information System (INIS)

    Pons, Yvette.

    1977-12-01

    The diffractive dissociation mechanism is shown to be general when looking at 22 mesonic or baryonic threshold enhancements. The dissociation systems are all produced peripherally and present the property of slope-mass correlation. The production slopes and cross-sections mainly depend on the diffractive excitation mass. The comparison of the results with those from the I.S.R. shows that dissociation systems are very similar in their effective mass shape, momentum transfer structure and angular distributions at center-of-mass energies differing by a factor of ten. Evidence for double diffractive dissociation mechanism is found in 2 exclusive reactions at a cross section level of 5-10+-2 μb. The factorisation hypothesis seems well verified [fr

  6. Neutron diffraction and lattice defects

    International Nuclear Information System (INIS)

    Hamaguchi, Yoshikazu

    1974-01-01

    Study on lattice defects by neutron diffraction technique is described. Wave length of neutron wave is longer than that of X-ray, and absorption cross-section is small. Number of defects observed by ESR is up to several defects, and the number studied with electron microscopes is more than 100. Information obtained by neutron diffraction concerns the number of defects between these two ranges. For practical analysis, several probable models are selected from the data of ESR or electron microscopes, and most probable one is determined by calculation. Then, defect concentration is obtained from scattering cross section. It is possible to measure elastic scattering exclusively by neutron diffraction. Minimum detectable concentration estimated is about 0.5% and 10 20 - 10 21 defects per unit volume. A chopper and a time of flight system are used as a measuring system. Cold neutrons are obtained from the neutron sources inserted into reactors. Examples of measurements by using similar equipments to PTNS-I system of Japan Atomic Energy Research Institute are presented. Interstitial concentration in the graphite irradiated by fast neutrons is shown. Defects in irradiated MgO were also investigated by measuring scattering cross section. Study of defects in Ge was made by measuring total cross section, and model analysis was performed in comparison with various models. (Kato, T.)

  7. Optical diffraction by ordered 2D arrays of silica microspheres

    International Nuclear Information System (INIS)

    Shcherbakov, A.A.; Shavdina, O.; Tishchenko, A.V.; Veillas, C.; Verrier, I.; Dellea, O.; Jourlin, Y.

    2017-01-01

    The article presents experimental and theoretical studies of angular dependent diffraction properties of 2D monolayer arrays of silica microspheres. High-quality large area defect-free monolayers of 1 μm diameter silica microspheres were deposited by the Langmuir-Blodgett technique under an accurate optical control. Measured angular dependencies of zeroth and one of the first order diffraction efficiencies produced by deposited samples were simulated by the rigorous Generalized Source Method taking into account particle size dispersion and lattice nonideality. - Highlights: • High quality silica microsphere monolayer was fabricated. • Accurate measurements of diffraction efficiency angular dependencies. • Rigorous diffraction simulation of both ideal hexagonal and realistic microsphere arrangements. • Qualitative rationalization of the obtained results and the observed differences between the experiment and the theory.

  8. The basics of crystallography and diffraction

    CERN Document Server

    Hammond, C

    2015-01-01

    This title provides a clear and very broadly based introduction to crystallography, light, X-ray, and electron diffraction; a knowledge of which is essential to students in a wide range of scientific disciplines but which is otherwise generally covered in subject-specific and more mathematically detailed texts. The book is also designed to appeal to the more general reader since it shows, by historical and biographical references, how the subject has developed from the work and insights of successive generations of crystallographers and scientists.

  9. Testing the generalized partial credit model

    OpenAIRE

    Glas, Cornelis A.W.

    1996-01-01

    The partial credit model (PCM) (G.N. Masters, 1982) can be viewed as a generalization of the Rasch model for dichotomous items to the case of polytomous items. In many cases, the PCM is too restrictive to fit the data. Several generalizations of the PCM have been proposed. In this paper, a generalization of the PCM (GPCM), a further generalization of the one-parameter logistic model, is discussed. The model is defined and the conditional maximum likelihood procedure for the method is describe...

  10. Frequency analysis for modulation-enhanced powder diffraction.

    Science.gov (United States)

    Chernyshov, Dmitry; Dyadkin, Vadim; van Beek, Wouter; Urakawa, Atsushi

    2016-07-01

    Periodic modulation of external conditions on a crystalline sample with a consequent analysis of periodic diffraction response has been recently proposed as a tool to enhance experimental sensitivity for minor structural changes. Here the intensity distributions for both a linear and nonlinear structural response induced by a symmetric and periodic stimulus are analysed. The analysis is further extended for powder diffraction when an external perturbation changes not only the intensity of Bragg lines but also their positions. The derived results should serve as a basis for a quantitative modelling of modulation-enhanced diffraction data measured in real conditions.

  11. X-ray and Neutron Diffraction in the Study of Organic Crystalline Hydrates

    Directory of Open Access Journals (Sweden)

    Katharina Fucke

    2010-07-01

    Full Text Available A review. Diffraction methods are a powerful tool to investigate the crystal structure of organic compounds in general and their hydrates in particular. The laboratory standard technique of single crystal X-ray diffraction gives information about the molecular conformation, packing and hydrogen bonding in the crystal structure, while powder X-ray diffraction on bulk material can trace hydration/dehydration processes and phase transitions under non-ambient conditions. Neutron diffraction is a valuable complementary technique to X-ray diffraction and gives highly accurate hydrogen atom positions due to the interaction of the radiation with the atomic nuclei. Although not yet often applied to organic hydrates, neutron single crystal and neutron powder diffraction give precise structural data on hydrogen bonding networks which will help explain why hydrates form in the first place.

  12. Enhancing core-diffracted arrivals by supervirtual interferometry

    KAUST Repository

    Bharadwaj, P.

    2013-12-03

    A supervirtual interferometry (SVI) method is presented that can enhance the signal-to-noise ratio (SNR) of core diffracted waveforms by as much as O( √ N), where N is the number of inline receivers that record the core-mantle boundary (CMB) diffractions from more than one event. Here, the events are chosen to be approximately inline with the receivers along the same great circle. Results with synthetic and teleseismic data recorded by USArray stations demonstrate that formerly unusable records with low SNR can be transformed to high SNR records with clearly visible CMB diffractions. Another benefit is that SVI allows for the recording of a virtual earthquake at stations not deployed during the time of the earthquake. This means that portable arrays such as USArray can extend the aperture of one recorded earthquake from the West coast to the East coast, even though the teleseism might have only been recorded during theWest coast deployment. In summary, SVI applied to teleseismic data can significantly enlarge the catalogue of usable records both in SNR and available aperture for analysing CMB diffractions. A potential drawback of this method is that it generally provides the correct kinematics of CMB diffractions, but does not necessarily preserve correct amplitude information. © The Authors 2013. Published by Oxford University Press on behalf of The Royal Astronomical Society.

  13. Industrial applications of neutron diffraction

    International Nuclear Information System (INIS)

    Felcher, G.P.

    1989-01-01

    Neutron diffraction (or, to be more general, neutron scattering) is a most versatile and universal tool, which has been widely employed to probe the structure, the dynamics and the magnetism of condensed matter. Traditionally used for fundamental research in solid state physics, this technique more recently has been applied to problems of immediate industrial interest, as illustrated in examples covering the main fields of endeavour. 14 refs., 14 figs

  14. Scaling of multiplicity distribution in hadron collisions and diffractive-excitation like models

    International Nuclear Information System (INIS)

    Buras, A.J.; Dethlefsen, J.M.; Koba, Z.

    1974-01-01

    Multiplicity distribution of secondary particles in inelastic hadron collision at high energy is studied in the semiclassical impact parameter representation. The scaling function is shown to consist of two factors: one geometrical and the other dynamical. We propose a specific choice of these factors, which describe satisfactorily the elastic scattering, the ratio of elastic to total cross-section and the simple scaling behaviour of multiplicity distribution in p-p collisions. Two versions of diffractive-excitation like models (global and local excitation) are presented as interpretation of our choice of dynamical factor. (author)

  15. Generalized, Linear, and Mixed Models

    CERN Document Server

    McCulloch, Charles E; Neuhaus, John M

    2011-01-01

    An accessible and self-contained introduction to statistical models-now in a modernized new editionGeneralized, Linear, and Mixed Models, Second Edition provides an up-to-date treatment of the essential techniques for developing and applying a wide variety of statistical models. The book presents thorough and unified coverage of the theory behind generalized, linear, and mixed models and highlights their similarities and differences in various construction, application, and computational aspects.A clear introduction to the basic ideas of fixed effects models, random effects models, and mixed m

  16. Report of the Working Group on Diffractive Phenomena

    International Nuclear Information System (INIS)

    Bartel, W.; Bartels, J.W.

    1994-01-01

    The discussions in the working group on diffractive processes were structured according to a scheme, in which first the experimental basis was specified followed by a presentation of theoretical papers and a general exchange of views on diffractive phenomena. Since diffraction is observed in many different channels, a common session was organised with participants from other working groups, in particular from the photoproduction and DIS community. A total of about 20 individual contributions were presented including those of the common discussion. Not all of them will be included in the proceedings. Some speakers had contributions to different sessions and submitted only one summary paper, others presented ideas for future analysis and are still working and others were too busy to finish the write up before the deadline. Diffractive phenomena observed at HERA were presented by T. Greenshaw of H1 and T. Docker from the ZEUS collaboration. The DO results on diffraction may be looked up in G. Forden's contribution to the proceedings. Further experimental results relevant to the topic ran be found in papers by M. Costa and S. Levonian issued in the photoproduction subsection. Experimentally it is not always easy to identify diffractive processes because pion and ordinary Regge exchange contributions are also present. This question is addressed in G. Levman's paper. New ideas to exploit a similarity between gluon - and Pomeron exchange were discussed by H. Kowalski, and G. Knies proposed a thrust analysis for diffractive events. In both cases work is going on which is not yet ready for a publication. (i. Ingelman reviewed existing Mt. Carlo programs on diffractive processes like POMPYT, RAPGAP and a program based on the Nikolaev - Zakharov approach to diffraction. These programs are well documented and need no further description in these proceedings. The same argument applies to V. Fadins talk, who reviewed published results on higher order corrections to the BFKL

  17. Neutron diffraction and oxide research

    International Nuclear Information System (INIS)

    Hunter, B.; Howard, C.J.; Kennedy, B.J.

    1999-01-01

    Oxide compounds form a large class of interesting materials that have a diverse range of mechanical and electronic properties. This diversity and its commercial implications has had a significant impact on physics research. This is particularly evident in the fields of superconductivity magnetoresistivity and ferroelectricity, where discoveries in the last 15 years have given rise to significant shifts in research activities. Historically, oxides have been studied for many years, but it is only recently that significant effort has been diverted to the study of oxide materials for their application to mechanical and electronic devices. An important property of such materials is the atomic structure, for the determination of which diffraction techniques are ideally suited. Recent examples of structure determinations using neutron diffraction in oxide based systems are high temperature superconductors, where oxygen defects are a key factor. Here, neutron diffraction played a major role in determining the effect of oxygen on the superconducting properties. Similarly, neutron diffraction has enjoyed much success in the determination of the structures of the manganate based colossal magnetoresistive (CMR) materials. In both these cases the structure plays a pivotal role in determining theoretical models of the electronic properties. The neutron scattering group at ANSTO has investigated several oxide systems using neutron powder diffraction. Two such systems are presented in this paper; the zirconia-based materials that are used as engineering materials, and the perovskite-based oxides that include the well known cuprate superconductors and the manganate CMR materials

  18. Nuclear surface diffuseness revealed in nucleon-nucleus diffraction

    Science.gov (United States)

    Hatakeyama, S.; Horiuchi, W.; Kohama, A.

    2018-05-01

    The nuclear surface provides useful information on nuclear radius, nuclear structure, as well as properties of nuclear matter. We discuss the relationship between the nuclear surface diffuseness and elastic scattering differential cross section at the first diffraction peak of high-energy nucleon-nucleus scattering as an efficient tool in order to extract the nuclear surface information from limited experimental data involving short-lived unstable nuclei. The high-energy reaction is described by a reliable microscopic reaction theory, the Glauber model. Extending the idea of the black sphere model, we find one-to-one correspondence between the nuclear bulk structure information and proton-nucleus elastic scattering diffraction peak. This implies that we can extract both the nuclear radius and diffuseness simultaneously, using the position of the first diffraction peak and its magnitude of the elastic scattering differential cross section. We confirm the reliability of this approach by using realistic density distributions obtained by a mean-field model.

  19. Stray light characteristics of the diffractive telescope system

    Science.gov (United States)

    Liu, Dun; Wang, Lihua; Yang, Wei; Wu, Shibin; Fan, Bin; Wu, Fan

    2018-02-01

    Diffractive telescope technology is an innovation solution in construction of large light-weight space telescope. However, the nondesign orders of diffractive optical elements (DOEs) may affect the imaging performance as stray light. To study the stray light characteristics of a diffractive telescope, a prototype was developed and its stray light analysis model was established. The stray light characteristics including ghost, point source transmittance, and veiling glare index (VGI) were analyzed. During the star imaging test of the prototype, the ghost images appeared around the star image as the exposure time of the charge-coupled device improving, consistent with the simulation results. The test result of VGI was 67.11%, slightly higher than the calculated value 57.88%. The study shows that the same order diffraction of the diffractive primary lens and correcting DOE is the main factor that causes ghost images. The stray light sources outside the field of view can illuminate the image plane through nondesign orders diffraction of the primary lens and contributes to more than 90% of the stray light flux on the image plane. In summary, it is expected that these works will provide some guidance for optimizing the imaging performance of diffractive telescopes.

  20. Modeling and verification of the diffraction-limited visible light telescope aboard the solar observing satellite HINODE

    Science.gov (United States)

    Katsukawa, Y.; Suematsu, Y.; Tsuneta, S.; Ichimoto, K.; Shimizu, T.

    2011-09-01

    HINODE, Japanese for "sunrise", is a spacecraft dedicated for observations of the Sun, and was launched in 2006 to study the Sun's magnetic fields and how their explosive energies propagate through the different atmospheric layers. The spacecraft carries the Solar Optical Telescope (SOT), which has a 50 cm diameter clear aperture and provides a continuous series of diffraction-limited visible light images from space. The telescope was developed through international collaboration between Japan and US. In order to achieve the diffraction-limited performance, thermal and structural modeling of the telescope was extensively used in its development phase to predict how the optical performance changes dependent on the thermal condition in orbit. Not only the modeling, we devoted many efforts to verify the optical performance in ground tests before the launch. The verification in the ground tests helped us to find many issues, such as temperature dependent focus shifts, which were not identified only through the thermal-structural modeling. Another critical issue was micro-vibrations induced by internal disturbances of mechanical gyroscopes and momentum wheels for attitude control of the spacecraft. Because the structural modeling was not accurate enough to predict how much the image quality was degraded by the micro-vibrations, we measured their transmission in a spacecraft-level test.

  1. Diffraction coherence in optics

    CERN Document Server

    Françon, M; Green, L L

    2013-01-01

    Diffraction: Coherence in Optics presents a detailed account of the course on Fraunhofer diffraction phenomena, studied at the Faculty of Science in Paris. The publication first elaborates on Huygens' principle and diffraction phenomena for a monochromatic point source and diffraction by an aperture of simple form. Discussions focus on diffraction at infinity and at a finite distance, simplified expressions for the field, calculation of the path difference, diffraction by a rectangular aperture, narrow slit, and circular aperture, and distribution of luminous flux in the airy spot. The book th

  2. An efficient and accurate method for calculating nonlinear diffraction beam fields

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyun Jo; Cho, Sung Jong; Nam, Ki Woong; Lee, Jang Hyun [Division of Mechanical and Automotive Engineering, Wonkwang University, Iksan (Korea, Republic of)

    2016-04-15

    This study develops an efficient and accurate method for calculating nonlinear diffraction beam fields propagating in fluids or solids. The Westervelt equation and quasilinear theory, from which the integral solutions for the fundamental and second harmonics can be obtained, are first considered. A computationally efficient method is then developed using a multi-Gaussian beam (MGB) model that easily separates the diffraction effects from the plane wave solution. The MGB models provide accurate beam fields when compared with the integral solutions for a number of transmitter-receiver geometries. These models can also serve as fast, powerful modeling tools for many nonlinear acoustics applications, especially in making diffraction corrections for the nonlinearity parameter determination, because of their computational efficiency and accuracy.

  3. Imaging the proton via hard exclusive production in diffractive pp scattering

    International Nuclear Information System (INIS)

    Charles Hyde; Leonid Frankfurt; Mark Strikman; Christian Weiss

    2007-01-01

    We discuss the prospects for probing Generalized Parton Distributions (GPDs) via exclusive production of a high-mass system (H = heavy quarkonium, di-photon, di-jet, Higgs boson) in diffractive pp scattering, pp -> p + H + p. In such processes the interplay of hard and soft interactions gives rise to a diffraction pattern in the final-state proton transverse momenta, which is sensitive to the transverse spatial distribution of partons in the colliding protons. We comment on the plans for diffractive pp measurements at RHIC and LHC. Such studies could complement future measurements of GPDs in hard exclusive ep scattering (JLab, COMPASS, EIC)

  4. A unified model for diffractive and inelastic scattering of a light atom from a solid surface

    International Nuclear Information System (INIS)

    Adams, J.E.; Miller, W.H.

    1979-01-01

    A simple model for gas-surface scattering is presented which permits treatment of inelastic effects in diffractive systems. The model, founded on an impulsive collision assumption, leads to an intensity distribution which is just a sum of contributions from n-phonon scattering events. Furthemore, by using a convenient form for the repulsive interaction potential, analytic expressions are obtained for the elastic and one-phonon intensities that are in qualitative agreement with experimental results. (Auth.)

  5. Low missing mass, single- and double diffraction dissociation at the LHC

    CERN Document Server

    Jenkovszky, Laszlo; Orava, Risto; Salii, Andrii

    2014-01-01

    Low missing mass, single- and double diffraction dissociation is calculated for the LHC energies from a dual-Regge model, dominated by a Pomeron Regge pole exchange. The model reproduces the rich resonance structure in the low missing mass Mx region. The diffractionly excited states lie on the nucleon trajectory, appended by the isolated Roper resonance. Detailed predictions for the squared momentum transfer and missing mass dependence of the differential and integrated single- and double diffraction dissociation in the kinematical range of present and future LHC measurements are given. The model predicts a possible turn-down of the cross section towards, t -> 0 in a region probably accessible in future experiments in the nearly forward direction. The present work is a continuation and extension (e.g. with double diffraction) of a previous work using the dual Regge approach.

  6. Anisotropic parameter inversion in VTI media using diffraction data

    KAUST Repository

    Waheed, Umair bin

    2013-09-22

    Diffracted waves contain useful information regarding the subsurface geometry and velocity. They are particularly valuable for anisotropic media as they inherently possess a wide range of dips necessary to resolve angular dependence of velocity. Using this property of diffraction data to our vantage, we develop an algorithm to invert for effective η model, assuming no prior knowledge of it. The obtained effective η model is then converted to interval η model using Dix-type inversion formula. The effectiveness of this approach is tested on the VTI Marmousi model, which yields good structural match even for a highly complex media such as the Marmousi model.

  7. Optical diffraction tomography in an inhomogeneous background medium

    International Nuclear Information System (INIS)

    Devaney, A; Cheng, J

    2008-01-01

    The filtered back-propagation algorithm (FBP algorithm) is a computationally fast and efficient inversion algorithm for reconstructing the 3D index of refraction distribution of weak scattering samples in free space from scattered field data collected in a set of coherent optical scattering experiments. This algorithm is readily derived using classical Fourier analysis applied to the Born or Rytov weak scattering models appropriate to scatterers embedded in a non-attenuating uniform background. In this paper, the inverse scattering problem for optical diffraction tomography (ODT) is formulated using the so-called distorted wave Born and Rytov approximations and a generalized version of the FBP algorithm is derived that applies to weakly scattering samples that are embedded in realistic, multiple scattering ODT experimental configurations. The new algorithms are based on the generalized linear inverse of the linear transformation relating the scattered field data to the complex index of refraction distribution of the scattering samples and are in the form of a superposition of filtered data, computationally back propagated into the ODT experimental configuration. The paper includes a computer simulation comparing the generalized Born and Rytov based FBP inversion algorithms as well as reconstructions generated using the generalized Born based FBP algorithm of a step index optical fiber from experimental ODT data

  8. Generalized complex geometry, generalized branes and the Hitchin sigma model

    International Nuclear Information System (INIS)

    Zucchini, Roberto

    2005-01-01

    Hitchin's generalized complex geometry has been shown to be relevant in compactifications of superstring theory with fluxes and is expected to lead to a deeper understanding of mirror symmetry. Gualtieri's notion of generalized complex submanifold seems to be a natural candidate for the description of branes in this context. Recently, we introduced a Batalin-Vilkovisky field theoretic realization of generalized complex geometry, the Hitchin sigma model, extending the well known Poisson sigma model. In this paper, exploiting Gualtieri's formalism, we incorporate branes into the model. A detailed study of the boundary conditions obeyed by the world sheet fields is provided. Finally, it is found that, when branes are present, the classical Batalin-Vilkovisky cohomology contains an extra sector that is related non trivially to a novel cohomology associated with the branes as generalized complex submanifolds. (author)

  9. Powder Neutron Diffraction and Magnetic structures

    International Nuclear Information System (INIS)

    Vigneron, F.

    1986-01-01

    The determination of the magnetic structures of materials (ferromagnetic, antiferromagnetic, helimagnetic, .) can be achieved only by neutron diffraction. A general survey of the powder technique is given: 2-axis spectrometer and analysis of the magnetic data. For the REBe/sb13/ intermetallic compounds (RE = Rare Earth), commensurate and/or incommensurate magnetic structures are observed and discussed as a function of RE (Gd, Tb, Dy, Ho, Er)

  10. Light Diffraction by Large Amplitude Ultrasonic Waves in Liquids

    Science.gov (United States)

    Adler, Laszlo; Cantrell, John H.; Yost, William T.

    2016-01-01

    Light diffraction from ultrasound, which can be used to investigate nonlinear acoustic phenomena in liquids, is reported for wave amplitudes larger than that typically reported in the literature. Large amplitude waves result in waveform distortion due to the nonlinearity of the medium that generates harmonics and produces asymmetries in the light diffraction pattern. For standing waves with amplitudes above a threshold value, subharmonics are generated in addition to the harmonics and produce additional diffraction orders of the incident light. With increasing drive amplitude above the threshold a cascade of period-doubling subharmonics are generated, terminating in a region characterized by a random, incoherent (chaotic) diffraction pattern. To explain the experimental results a toy model is introduced, which is derived from traveling wave solutions of the nonlinear wave equation corresponding to the fundamental and second harmonic standing waves. The toy model reduces the nonlinear partial differential equation to a mathematically more tractable nonlinear ordinary differential equation. The model predicts the experimentally observed cascade of period-doubling subharmonics terminating in chaos that occurs with increasing drive amplitudes above the threshold value. The calculated threshold amplitude is consistent with the value estimated from the experimental data.

  11. Application of powder X-ray diffraction in studying the compaction behavior of bulk pharmaceutical powders.

    Science.gov (United States)

    Bandyopadhyay, Rebanta; Selbo, Jon; Amidon, Gregory E; Hawley, Michael

    2005-11-01

    This study investigates the effects of crystal lattice deformation on the powder X-ray diffraction (PXRD) patterns of compressed polycrystalline specimen (compacts/tablets) made from molecular, crystalline powders. The displacement of molecules and the corresponding adjustment of interplanar distances (d-spacings) between diffracting planes of PNU-288034 and PNU-177553, which have crystal habits with a high aspect ratio favoring preferred orientation during tableting, are demonstrated by shifts in the diffracted peak positions. The direction of shift in diffracted peak positions suggests a reduction of interplanar d-spacing in the crystals of PNU-288034 and PNU-177553 following compaction. There is also a general reduction of peak intensities following compression at the different compressive loads. The lattice strain representing the reduction in d-spacing is proportional to the original d-spacing of the uncompressed sample suggesting that, as with systems that obey a simple Hooke's law relationship, the further apart the planes of atoms/molecules within the lattice are, the easier it is for them to approach each other under compressive stresses. For a third model compound comprising more equant-shaped crystals of PNU-141659, the shift in diffracted peak positions are consistent with an expansion of lattice spacing after compression. This apparent anomaly is supported by the PXRD studies of the bulk powder consisting of fractured crystals where also, the shift in peak position suggests expansion of the lattice planes. Thus the crystals of PNU-141659 may be fracturing under the compressive loads used to produce the compacts. Additional studies are underway to relate the PXRD observations with the bulk tableting properties of these model compounds.

  12. Implementation of diffraction in a ray-tracing model for the prediction of noise in open-plan offices.

    Science.gov (United States)

    Chevret, P; Chatillon, J

    2012-11-01

    Sound prediction in open-plan offices is a real challenge because of the complexity of the layout of such offices, and therefore because of the multitude of acoustic phenomena involved. One such phenomenon, of primary importance, and not the least challenging of them, is the diffraction by screens and low dividers that usually partition the workspace. This paper describes implementing the equations of the Uniform Theory of Diffraction [McNamara et al. (1990). Introduction to the Uniform Theory of Diffraction (Artech House, Boston)] in an existing ray-tracing model initially dedicated to sound prediction in industrial premises. For the purposes of validation, a series of measurements was conducted in a semi-anechoic chamber in the same manner as Wang and Bradley [(2002). Appl. Acoust. 63, 849-866] but including real desktops instead of single screens. A first phase was dedicated to controlling the quality of the installation by making comparisons with McNamara's solution for a single screen on a rigid floor. Then, the validation itself was conducted with measurements on real desktops, first without a ceiling, and then with a rigid ceiling suspended above the double desk. The results of the comparisons between calculations and measurements in this configuration have demonstrated that the model is an effective tool for predicting sound levels in an open-plan office.

  13. A general consumer-resource population model

    Science.gov (United States)

    Lafferty, Kevin D.; DeLeo, Giulio; Briggs, Cheryl J.; Dobson, Andrew P.; Gross, Thilo; Kuris, Armand M.

    2015-01-01

    Food-web dynamics arise from predator-prey, parasite-host, and herbivore-plant interactions. Models for such interactions include up to three consumer activity states (questing, attacking, consuming) and up to four resource response states (susceptible, exposed, ingested, resistant). Articulating these states into a general model allows for dissecting, comparing, and deriving consumer-resource models. We specify this general model for 11 generic consumer strategies that group mathematically into predators, parasites, and micropredators and then derive conditions for consumer success, including a universal saturating functional response. We further show how to use this framework to create simple models with a common mathematical lineage and transparent assumptions. Underlying assumptions, missing elements, and composite parameters are revealed when classic consumer-resource models are derived from the general model.

  14. Image degradation characteristics and restoration based on regularization for diffractive imaging

    Science.gov (United States)

    Zhi, Xiyang; Jiang, Shikai; Zhang, Wei; Wang, Dawei; Li, Yun

    2017-11-01

    The diffractive membrane optical imaging system is an important development trend of ultra large aperture and lightweight space camera. However, related investigations on physics-based diffractive imaging degradation characteristics and corresponding image restoration methods are less studied. In this paper, the model of image quality degradation for the diffraction imaging system is first deduced mathematically based on diffraction theory and then the degradation characteristics are analyzed. On this basis, a novel regularization model of image restoration that contains multiple prior constraints is established. After that, the solving approach of the equation with the multi-norm coexistence and multi-regularization parameters (prior's parameters) is presented. Subsequently, the space-variant PSF image restoration method for large aperture diffractive imaging system is proposed combined with block idea of isoplanatic region. Experimentally, the proposed algorithm demonstrates its capacity to achieve multi-objective improvement including MTF enhancing, dispersion correcting, noise and artifact suppressing as well as image's detail preserving, and produce satisfactory visual quality. This can provide scientific basis for applications and possesses potential application prospects on future space applications of diffractive membrane imaging technology.

  15. Optical diffraction by ordered 2D arrays of silica microspheres

    Science.gov (United States)

    Shcherbakov, A. A.; Shavdina, O.; Tishchenko, A. V.; Veillas, C.; Verrier, I.; Dellea, O.; Jourlin, Y.

    2017-03-01

    The article presents experimental and theoretical studies of angular dependent diffraction properties of 2D monolayer arrays of silica microspheres. High-quality large area defect-free monolayers of 1 μm diameter silica microspheres were deposited by the Langmuir-Blodgett technique under an accurate optical control. Measured angular dependencies of zeroth and one of the first order diffraction efficiencies produced by deposited samples were simulated by the rigorous Generalized Source Method taking into account particle size dispersion and lattice nonideality.

  16. Measurement of the longitudinal proton structure function in diffraction at the H1 experiment and prospects for diffraction at LHC

    International Nuclear Information System (INIS)

    Salek, David

    2011-05-01

    A measurement of the longitudinal diffractive structure function F L D using the H1 detector at HERA is presented. The structure function is extracted from first measurements of the diffractive cross section ep→eXY at centre of mass energies √(s) of 225 and 252 GeV at high values of inelasticity y, together with a new measurement at √(s) of 319 GeV, using data taken in 2006 and 2007. Previous H1 data at √(s) of 301 GeV complete the kinematic coverage needed to extract F L D in the range of photon virtualities 2.5 2 2 and fractional proton longitudinal momentum loss 10 -4 P -2 . The measured F L D is compared with leading twist predictions based on diffractive parton densities extracted in NLO QCD fits to previous diffractive DIS data and to a model which additionally includes a higher twist contribution derived from a colour dipole approach. The photoabsorption ratio for diffraction RD is extracted for Q 2 >7 GeV 2 and compared to the analogous quantity for inclusive DIS. (orig.)

  17. Classification using diffraction patterns for single-particle analysis

    International Nuclear Information System (INIS)

    Hu, Hongli; Zhang, Kaiming; Meng, Xing

    2016-01-01

    An alternative method has been assessed; diffraction patterns derived from the single particle data set were used to perform the first round of classification in creating the initial averages for proteins data with symmetrical morphology. The test protein set was a collection of Caenorhabditis elegans small heat shock protein 17 obtained by Cryo EM, which has a tetrahedral (12-fold) symmetry. It is demonstrated that the initial classification on diffraction patterns is workable as well as the real-space classification that is based on the phase contrast. The test results show that the information from diffraction patterns has the enough details to make the initial model faithful. The potential advantage using the alternative method is twofold, the ability to handle the sets with poor signal/noise or/and that break the symmetry properties. - Highlights: • New classification method. • Create the accurate initial model. • Better in handling noisy data.

  18. Classification using diffraction patterns for single-particle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Hongli; Zhang, Kaiming [Department of Biophysics, the Health Science Centre, Peking University, Beijing 100191 (China); Meng, Xing, E-mail: xmeng101@gmail.com [Wadsworth Centre, New York State Department of Health, Albany, New York 12201 (United States)

    2016-05-15

    An alternative method has been assessed; diffraction patterns derived from the single particle data set were used to perform the first round of classification in creating the initial averages for proteins data with symmetrical morphology. The test protein set was a collection of Caenorhabditis elegans small heat shock protein 17 obtained by Cryo EM, which has a tetrahedral (12-fold) symmetry. It is demonstrated that the initial classification on diffraction patterns is workable as well as the real-space classification that is based on the phase contrast. The test results show that the information from diffraction patterns has the enough details to make the initial model faithful. The potential advantage using the alternative method is twofold, the ability to handle the sets with poor signal/noise or/and that break the symmetry properties. - Highlights: • New classification method. • Create the accurate initial model. • Better in handling noisy data.

  19. Multivariate generalized linear mixed models using R

    CERN Document Server

    Berridge, Damon Mark

    2011-01-01

    Multivariate Generalized Linear Mixed Models Using R presents robust and methodologically sound models for analyzing large and complex data sets, enabling readers to answer increasingly complex research questions. The book applies the principles of modeling to longitudinal data from panel and related studies via the Sabre software package in R. A Unified Framework for a Broad Class of Models The authors first discuss members of the family of generalized linear models, gradually adding complexity to the modeling framework by incorporating random effects. After reviewing the generalized linear model notation, they illustrate a range of random effects models, including three-level, multivariate, endpoint, event history, and state dependence models. They estimate the multivariate generalized linear mixed models (MGLMMs) using either standard or adaptive Gaussian quadrature. The authors also compare two-level fixed and random effects linear models. The appendices contain additional information on quadrature, model...

  20. The diffractive achromat full spectrum computational imaging with diffractive optics

    KAUST Repository

    Peng, Yifan

    2016-07-11

    Diffractive optical elements (DOEs) have recently drawn great attention in computational imaging because they can drastically reduce the size and weight of imaging devices compared to their refractive counterparts. However, the inherent strong dispersion is a tremendous obstacle that limits the use of DOEs in full spectrum imaging, causing unacceptable loss of color fidelity in the images. In particular, metamerism introduces a data dependency in the image blur, which has been neglected in computational imaging methods so far. We introduce both a diffractive achromat based on computational optimization, as well as a corresponding algorithm for correction of residual aberrations. Using this approach, we demonstrate high fidelity color diffractive-only imaging over the full visible spectrum. In the optical design, the height profile of a diffractive lens is optimized to balance the focusing contributions of different wavelengths for a specific focal length. The spectral point spread functions (PSFs) become nearly identical to each other, creating approximately spectrally invariant blur kernels. This property guarantees good color preservation in the captured image and facilitates the correction of residual aberrations in our fast two-step deconvolution without additional color priors. We demonstrate our design of diffractive achromat on a 0.5mm ultrathin substrate by photolithography techniques. Experimental results show that our achromatic diffractive lens produces high color fidelity and better image quality in the full visible spectrum. © 2016 ACM.

  1. Restoration of diffracted far field at the output of circular diffraction waveplate

    International Nuclear Information System (INIS)

    Hovhannisyan, D; Margaryan, H; Abrahamyan, V; Hakobyan, N; Tabiryan, N

    2014-01-01

    The light propagation in an anisotropic periodic media, such us circular diffraction waveplate (CDW) by a finite-difference time-domain (FDTD) technique is studied. The FDTD numerical simulation and the subsequent Fourier transform of the diffracted electric near field was been used for study of ability of CDW to diffract a laser beam and simultaneously convert polarization state. The FDTD simulation results used to restore the diffracted electric far field at the CDW output. an abstract

  2. Ray optics for diffraction: a useful paradox in a path integral context

    International Nuclear Information System (INIS)

    Schulman, L.S.

    1984-01-01

    Geometrical diffraction theory uses ray tracing techniques to calculate diffraction and other properties of the electromagnetic field generally considered characteristically wave like. The author studies this dualism of the classical electromagnetic field so as to distinguish those aspects of quantum dualism that arise simply as properties of oscillatory integrals and those that may have deeper origins. By a series of transformations the solutions of certain optics problems are reduced to the evaluation of a Feynman path integral and the known semiclassical approximations for the path integral provide a justification for the geometrical diffraction theory. Particular attention is paid to the problem of edge diffraction and for a half plane barrier a closed form solution is obtained. A classical variational principle for barrier penetration is also presented. (Auth.)

  3. Predictions of diffractive cross sections in proton-proton collisions

    Energy Technology Data Exchange (ETDEWEB)

    Goulianos, Konstantin [Rockefeller University, 1230 York Avenue, New York, NY 10065 (United States)

    2013-04-15

    We review our pre-LHC predictions of the total, elastic, total-inelastic, and diffractive components of proton-proton cross sections at high energies, expressed in the form of unitarized expressions based on a special parton-model approach to diffraction employing inclusive proton parton distribution functions and QCD color factors and compare with recent LHC results.

  4. Diffraction efficiency enhancement of femtosecond laser-engraved diffraction gratings due to CO2 laser polishing

    International Nuclear Information System (INIS)

    Choi, Hun-Kook; Jung, Deok; Sohn, Ik-Bu; Noh, Young-Chul; Lee, Yong-Tak; Kim, Jin-Tae; Ahsan, Shamim

    2014-01-01

    This research demonstrates laser-assisted fabrication of high-efficiency diffraction gratings in fused-silica glass samples. Initially, femtosecond laser pulses are used to engrave diffraction gratings on the glass surfaces. Then, these micro-patterned glass samples undergo CO 2 laser polishing process. unpolished diffraction gratings encoded in the glass samples show an overall diffraction efficiency of 18.1%. diffraction gratings imprinted on the glass samples and then polished four times by using a CO 2 laser beam attain a diffraction efficiency of 32.7%. We also investigate the diffraction patterns of the diffraction gratings encoded on fused-silica glass surfaces. The proposed CO 2 laser polishing technique shows great potential in patterning high-efficiency diffraction gratings on the surfaces of various transparent materials.

  5. X-ray diffraction at Bragg angles around π/2

    International Nuclear Information System (INIS)

    Mayolo, C.M.G. de.

    1991-01-01

    X-ray diffraction at Bragg angles around π/2 is studied from the theoretical and experimental points of view. The proposed corrections to the dynamical theory in the θ β ≅ π/2 cases, has been reviewed showing the equivalence between two formalisms leading to a corrected expression for the dependence of the angular parameter y with the angle of incidence. An expression for y valid in the conventional and θ β ≅ π/2 cases has been obtained. A general expression for Bragg law and for energy resolution after a Bragg diffraction was also deduced. (author)

  6. Rietveld analysis, powder diffraction and cement

    International Nuclear Information System (INIS)

    Peterson, V.

    2002-01-01

    Full text: Phase quantification of cement is essential in its industrial use, however many methods are inaccurate and/or time consuming. Powder diffraction is one of the more accurate techniques used for quantitative phase analysis of cement. There has been an increase in the use of Rietveld refinement and powder diffraction for the analysis and phase quantification of cement and its components in recent years. The complex nature of cement components, existence of solid solutions, polymorphic variation of phases and overlapping phase peaks in diffraction patterns makes phase quantification of cements by powder diffraction difficult. The main phase in cement is alite, a solid solution of tricalcium silicate. Tricalcium silicate has been found to exist in seven modifications in three crystal systems, including triclinic, monoclinic, and rhombohedral structures. Hence, phase quantification of cements using Rietveld methods usually involves the simultaneous modelling of several tricalcium silicate structures to fit the complex alite phase. An industry ordinary Portland cement, industry and standard clinker, and a synthetic tricalcium silicate were characterised using neutron, laboratory x-ray and synchrotron powder diffraction. Diffraction patterns were analysed using full-profile Rietveld refinement. This enabled comparison of x-ray, neutron and synchrotron data for phase quantification of the cement and examination of the tricalcium silicate. Excellent Rietveld fits were achieved, however the results showed that the quantitative phase analysis results differed for some phases in the same clinker sample between various data sources. This presentation will give a short introduction about cement components including polymorphism, followed by the presentation of some problems in phase quantification of cements and the role of Rietveld refinement in solving these problems. Copyright (2002) Australian X-ray Analytical Association Inc

  7. Micro Data and General Equilibrium Models

    DEFF Research Database (Denmark)

    Browning, Martin; Hansen, Lars Peter; Heckman, James J.

    1999-01-01

    Dynamic general equilibrium models are required to evaluate policies applied at the national level. To use these models to make quantitative forecasts requires knowledge of an extensive array of parameter values for the economy at large. This essay describes the parameters required for different...... economic models, assesses the discordance between the macromodels used in policy evaluation and the microeconomic models used to generate the empirical evidence. For concreteness, we focus on two general equilibrium models: the stochastic growth model extended to include some forms of heterogeneity...

  8. Diffractive production of charm quark/antiquark pairs at RHIC and LHC

    International Nuclear Information System (INIS)

    Luszczak, Marta; Szczurek, Antoni

    2013-01-01

    We have discussed single and central diffractive production of c(bar sign)c pairs in the Ingelman-Schlein model. In these calculations we have included diffractive parton distributions obtained by the H1 collaboration at HERA and absorption effects neglected in some early calculations in the literature. The absorption effects which are responsible for the naive Regge factorization breaking cause that the cross section for diffractive processes is much smaller than that for the fully inclusive case, but could be measured at RHIC and LHC by imposing special condition on rapidity gaps. We discuss also different approaches to diffractive production of heavy quark/antiquark [1, 2, 3]. The particular mechanism is similar to the diffractive dissociation of virtual photons into quarks, which drives diffractive deep inelastic production of charm in the low-mass diffraction, or large β-region.

  9. Diffractive production of charm quark/antiquark pairs at RHIC and LHC

    Energy Technology Data Exchange (ETDEWEB)

    Luszczak, Marta [University of Rzeszow, PL-35-959 Rzeszow (Poland); Szczurek, Antoni [Institute of Nuclear Physics PAN, PL-31-342 Cracow and University of Rzeszow, PL-35-959 Rzeszow (Poland)

    2013-04-15

    We have discussed single and central diffractive production of c(bar sign)c pairs in the Ingelman-Schlein model. In these calculations we have included diffractive parton distributions obtained by the H1 collaboration at HERA and absorption effects neglected in some early calculations in the literature. The absorption effects which are responsible for the naive Regge factorization breaking cause that the cross section for diffractive processes is much smaller than that for the fully inclusive case, but could be measured at RHIC and LHC by imposing special condition on rapidity gaps. We discuss also different approaches to diffractive production of heavy quark/antiquark [1, 2, 3]. The particular mechanism is similar to the diffractive dissociation of virtual photons into quarks, which drives diffractive deep inelastic production of charm in the low-mass diffraction, or large {beta}-region.

  10. Diffraction dissociation and elastic scattering

    International Nuclear Information System (INIS)

    Verebryusov, V.S.; Ponomarev, L.A.; Smorodinskaya, N.Ya.

    1987-01-01

    In the framework of Regge scheme with supercritical pomeron a model is suggested for the NN-scattering amplitude which takes into account the contribution introduced to the intermediate state by diffraction dissociation (DD) processes. The DD amplitude is written in terms of the Deck model which has been previously applied to describing the main DD features. The calculated NN cross sections are compared with those obtained experimentally. Theoretical predictions for higher energy are presented

  11. Phase behavior in diffraction

    International Nuclear Information System (INIS)

    Checon, A.

    1983-01-01

    Theoretical formulation of a straight edge diffraction shows a phase difference of π/2 between the incoming and diffracted waves. Experiments using two straight edges do not confirm the π/2 difference but suggest that the incoming wave is in phase with the wave diffracted into the shadowed region of the edge and out of phase by a factor of π with the wave diffracted into the illuminated region. (Author) [pt

  12. Advanced x-ray stress analysis method for a single crystal using different diffraction plane families

    International Nuclear Information System (INIS)

    Imafuku, Muneyuki; Suzuki, Hiroshi; Sueyoshi, Kazuyuki; Akita, Koichi; Ohya, Shin-ichi

    2008-01-01

    Generalized formula of the x-ray stress analysis for a single crystal with unknown stress-free lattice parameter was proposed. This method enables us to evaluate the plane stress states with any combination of diffraction planes. We can choose and combine the appropriate x-ray sources and diffraction plane families, depending on the sample orientation and the apparatus, whenever diffraction condition is satisfied. The analysis of plane stress distributions in an iron single crystal was demonstrated combining with the diffraction data for Fe{211} and Fe{310} plane families

  13. Glauber model and its generalizations

    International Nuclear Information System (INIS)

    Bialkowski, G.

    The physical aspects of the Glauber model problems are studied: potential model, profile function and Feynman diagrams approaches. Different generalizations of the Glauber model are discussed: particularly higher and lower energy processes and large angles [fr

  14. Diffraction at TOTEM

    OpenAIRE

    Antchev, G.; Aspell, P.; Avati, V.; Bagliesi, M.G.; Berardi, V.; Berretti, M.; Bottigli, U.; Bozzo, M.; Brucken, E.; Buzzo, A.; Cafagna, F.; Calicchio, M.; Catanesi, M.G.; Catastini, P.L.; Cecchi, R.

    2008-01-01

    The TOTEM experiment at the LHC measures the total proton-proton cross section with the luminosity-independent method and the elastic proton-proton cross-section over a wide |t|-range. It also performs a comprehensive study of diffraction, spanning from cross-section measurements of individual diffractive processes to the analysis of their event topologies. Hard diffraction will be studied in collaboration with CMS taking advantage of the large common rapidity coverage for charged and neutral...

  15. The generalized circular model

    NARCIS (Netherlands)

    Webers, H.M.

    1995-01-01

    In this paper we present a generalization of the circular model. In this model there are two concentric circular markets, which enables us to study two types of markets simultaneously. There are switching costs involved for moving from one circle to the other circle, which can also be thought of as

  16. Revisit to diffraction anomalous fine structure

    International Nuclear Information System (INIS)

    Kawaguchi, T.; Fukuda, K.; Tokuda, K.; Shimada, K.; Ichitsubo, T.; Oishi, M.; Mizuki, J.; Matsubara, E.

    2014-01-01

    The diffraction anomalous fine structure method has been revisited by applying this measurement technique to polycrystalline samples and using an analytical method with the logarithmic dispersion relation. The diffraction anomalous fine structure (DAFS) method that is a spectroscopic analysis combined with resonant X-ray diffraction enables the determination of the valence state and local structure of a selected element at a specific crystalline site and/or phase. This method has been improved by using a polycrystalline sample, channel-cut monochromator optics with an undulator synchrotron radiation source, an area detector and direct determination of resonant terms with a logarithmic dispersion relation. This study makes the DAFS method more convenient and saves a large amount of measurement time in comparison with the conventional DAFS method with a single crystal. The improved DAFS method has been applied to some model samples, Ni foil and Fe 3 O 4 powder, to demonstrate the validity of the measurement and the analysis of the present DAFS method

  17. Diffraction at TOTEM

    OpenAIRE

    Giani, S; Niewiadomski, H; Antchev, G; Aspell, P; Avati, V; Bagliesi, M G; Berardi, V; Berretti, M; Besta, M; Bozzo, M; Brücken, E; Buzzo, A; Cafagna, F; Calicchio, M; Catanesi, M G

    2010-01-01

    The primary objective of the TOTEM experiment at the LHC is the measurement of the total proton-proton cross section with the luminosity-independent method and the study of elastic proton-proton cross-section over a wide |t|-range. In addition TOTEM also performs a comprehensive study of diffraction, spanning from cross-section measurements of individual diffractive processes to the analysis of their event topologies. Hard diffraction will be studied in collaboration with CMS taking advantage...

  18. High pressure neutron and X-ray diffraction at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ridley, Christopher J.; Kamenev, Konstantin V. [Edinburgh Univ. (United Kingdom). School of Engineering and the Centre for Science at Extreme Conditions

    2014-04-01

    This paper presents a review of techniques and considerations in the design and construction of high pressure, low temperature diffraction experiments. Also intended as an introductory text to new high pressure users, the crucial aspects of pressure cell design are covered. The general classification of common designs, and a discussion into the key beam interaction, mechanical, and thermal properties of commonly used materials is given. The advantages of different materials and high pressure cell classifications are discussed, and examples of designs developed for low temperature diffraction studies are presented, and compared. (orig.)

  19. High pressure neutron and X-ray diffraction at low temperatures

    International Nuclear Information System (INIS)

    Ridley, Christopher J.; Kamenev, Konstantin V.

    2014-01-01

    This paper presents a review of techniques and considerations in the design and construction of high pressure, low temperature diffraction experiments. Also intended as an introductory text to new high pressure users, the crucial aspects of pressure cell design are covered. The general classification of common designs, and a discussion into the key beam interaction, mechanical, and thermal properties of commonly used materials is given. The advantages of different materials and high pressure cell classifications are discussed, and examples of designs developed for low temperature diffraction studies are presented, and compared. (orig.)

  20. Energy-weighted dynamical scattering simulations of electron diffraction modalities in the scanning electron microscope.

    Science.gov (United States)

    Pascal, Elena; Singh, Saransh; Callahan, Patrick G; Hourahine, Ben; Trager-Cowan, Carol; Graef, Marc De

    2018-04-01

    Transmission Kikuchi diffraction (TKD) has been gaining momentum as a high resolution alternative to electron back-scattered diffraction (EBSD), adding to the existing electron diffraction modalities in the scanning electron microscope (SEM). The image simulation of any of these measurement techniques requires an energy dependent diffraction model for which, in turn, knowledge of electron energies and diffraction distances distributions is required. We identify the sample-detector geometry and the effect of inelastic events on the diffracting electron beam as the important factors to be considered when predicting these distributions. However, tractable models taking into account inelastic scattering explicitly are lacking. In this study, we expand the Monte Carlo (MC) energy-weighting dynamical simulations models used for EBSD [1] and ECP [2] to the TKD case. We show that the foil thickness in TKD can be used as a means of energy filtering and compare band sharpness in the different modalities. The current model is shown to correctly predict TKD patterns and, through the dictionary indexing approach, to produce higher quality indexed TKD maps than conventional Hough transform approach, especially close to grain boundaries. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Identifying diffraction effects in measured reflectances

    OpenAIRE

    Holzschuch , Nicolas; Pacanowski , Romain

    2015-01-01

    International audience; There are two different physical models connecting the micro-geometry of a surface and its physical reflectance properties (BRDF). The first, Cook-Torrance, assumes geometrical optics: light is reflected and masked by the micro-facets. In this model, the BRDF depends on the probability distribution of micro-facets normals. The second, Church-Takacs, assumes diffraction by the micro-geometry. In this model, the BRDF depends on the power spectral distribution of the surf...

  2. Calculation of Debye-Scherrer diffraction patterns from highly stressed polycrystalline materials

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, M. J., E-mail: macdonm@umich.edu [Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109 (United States); SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Vorberger, J. [Helmholtz Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Gamboa, E. J.; Glenzer, S. H.; Fletcher, L. B. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Drake, R. P. [Climate and Space Sciences and Engineering, Applied Physics, and Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2016-06-07

    Calculations of Debye-Scherrer diffraction patterns from polycrystalline materials have typically been done in the limit of small deviatoric stresses. Although these methods are well suited for experiments conducted near hydrostatic conditions, more robust models are required to diagnose the large strain anisotropies present in dynamic compression experiments. A method to predict Debye-Scherrer diffraction patterns for arbitrary strains has been presented in the Voigt (iso-strain) limit [Higginbotham, J. Appl. Phys. 115, 174906 (2014)]. Here, we present a method to calculate Debye-Scherrer diffraction patterns from highly stressed polycrystalline samples in the Reuss (iso-stress) limit. This analysis uses elastic constants to calculate lattice strains for all initial crystallite orientations, enabling elastic anisotropy and sample texture effects to be modeled directly. The effects of probing geometry, deviatoric stresses, and sample texture are demonstrated and compared to Voigt limit predictions. An example of shock-compressed polycrystalline diamond is presented to illustrate how this model can be applied and demonstrates the importance of including material strength when interpreting diffraction in dynamic compression experiments.

  3. Diffraction efficiency enhancement of femtosecond laser-engraved diffraction gratings due to CO{sub 2} laser polishing

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hun-Kook [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Chosun University, Gwangju (Korea, Republic of); Jung, Deok; Sohn, Ik-Bu; Noh, Young-Chul; Lee, Yong-Tak [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Kim, Jin-Tae [Chosun University, Gwangju (Korea, Republic of); Ahsan, Shamim [Khulna University, Khulna (Bangladesh)

    2014-11-15

    This research demonstrates laser-assisted fabrication of high-efficiency diffraction gratings in fused-silica glass samples. Initially, femtosecond laser pulses are used to engrave diffraction gratings on the glass surfaces. Then, these micro-patterned glass samples undergo CO{sub 2} laser polishing process. unpolished diffraction gratings encoded in the glass samples show an overall diffraction efficiency of 18.1%. diffraction gratings imprinted on the glass samples and then polished four times by using a CO{sub 2} laser beam attain a diffraction efficiency of 32.7%. We also investigate the diffraction patterns of the diffraction gratings encoded on fused-silica glass surfaces. The proposed CO{sub 2} laser polishing technique shows great potential in patterning high-efficiency diffraction gratings on the surfaces of various transparent materials.

  4. Diffractive optical elements for transformation of modes in lasers

    Science.gov (United States)

    Sridharan, Arun K.; Pax, Paul H.; Heebner, John E.; Drachenberg, Derrek R.; Armstrong, James P.; Dawson, Jay W.

    2015-09-01

    Spatial mode conversion modules are described, with the capability of efficiently transforming a given optical beam profile, at one plane in space into another well-defined optical beam profile at a different plane in space, whose detailed spatial features and symmetry properties can, in general, differ significantly. The modules are comprised of passive, high-efficiency, low-loss diffractive optical elements, combined with Fourier transform optics. Design rules are described that employ phase retrieval techniques and associated algorithms to determine the necessary profiles of the diffractive optical components. System augmentations are described that utilize real-time adaptive optical techniques for enhanced performance as well as power scaling.

  5. Exact and approximate multiple diffraction calculations

    International Nuclear Information System (INIS)

    Alexander, Y.; Wallace, S.J.; Sparrow, D.A.

    1976-08-01

    A three-body potential scattering problem is solved in the fixed scatterer model exactly and approximately to test the validity of commonly used assumptions of multiple scattering calculations. The model problem involves two-body amplitudes that show diffraction-like differential scattering similar to high energy hadron-nucleon amplitudes. The exact fixed scatterer calculations are compared to Glauber approximation, eikonal-expansion results and a noneikonal approximation

  6. Testing the generalized partial credit model

    NARCIS (Netherlands)

    Glas, Cornelis A.W.

    1996-01-01

    The partial credit model (PCM) (G.N. Masters, 1982) can be viewed as a generalization of the Rasch model for dichotomous items to the case of polytomous items. In many cases, the PCM is too restrictive to fit the data. Several generalizations of the PCM have been proposed. In this paper, a

  7. X-ray diffraction using the time structure of the SRS

    International Nuclear Information System (INIS)

    Tanner, B.K.

    1983-01-01

    The subject is discussed under the headings: introduction (advances in the techniques of X-ray topography; comparison with transmission electron microscopy); stroboscopic X-ray topography; stroboscopic X-ray topography of travelling surface acoustic waves; possible general diffraction experiments. (U.K.)

  8. Results of Soft-Diffraction at LHCb

    CERN Document Server

    Meissner, Marco

    2013-01-01

    The LHCb detector with its unique pseudorapidity coverage allows to perform soft-QCD measurements in the kinematic forward region where QCD models have large uncertainties. Selected analyses related to soft-Diffraction will be summarised in these proceedings. Energy flow and charged particle multiplicity have been measured separately in different event classes. They give input for modelling the underlying event in $pp$ collisions. Prompt hadron ratios are important for hadronisation models, while the $p/p$ ratio is a good observable to test models of baryon number transport.

  9. Diffraction at TOTEM

    CERN Document Server

    Giani, S; Antchev, G; Aspell, P; Avati, V; Bagliesi, M G; Berardi, V; Berretti, M; Besta, M; Bozzo, M; Brücken, E; Buzzo, A; Cafagna, F; Calicchio, M; Catanesi, M G; Cecchi, R; Ciocci, M A; Dadel, P; Deile, M; Dimovasili, E; Eggert, K; Eremin, V; Ferro, F; Fiergolski, A; García, F; Greco, V; Grzanka, L; Heino, J; Hildén, T; Kaspar, J; Kopal, J; Kundrát, V; Kurvinen, K; Lami, S; Latino, G; Lauhakangas, R; Leszko, R; Lippmaa, E; Lokajícek, M; Lo Vetere, M; Lucas Rodriguez, F; Macrí, M; Magazzù, G; Meucci, M; Minutoli, S; Notarnicola, G; Oliveri, E; Oljemark, F; Orava, R; Oriunno, M; Österberg, K; Pedreschi, E; Petäjäjärvi, J; Prochazka, J; Quinto, M; Radermacher, E; Radicioni, E; Ravotti, F; Rella, G; Robutti, E; Ropelewski, L; Rostkowski, M; Ruggiero, G; Rummel, A; Saarikko, H; Sanguinetti, G; Santroni, A; Scribano, A; Sette, G; Snoeys, W; Spinella, F; Ster, A; Taylor, C; Trummal, A; Turini, N; Whitmore, J; Wu, J; Zalewski, M

    2010-01-01

    The primary objective of the TOTEM experiment at the LHC is the measurement of the total proton-proton cross section with the luminosity-independent method and the study of elastic proton-proton cross-section over a wide |t|-range. In addition TOTEM also performs a comprehensive study of diffraction, spanning from cross-section measurements of individual diffractive processes to the analysis of their event topologies. Hard diffraction will be studied in collaboration with CMS taking advantage of the large common rapidity coverage for charged and neutral particle detection and the large variety of trigger possibilities even at large luminosities. TOTEM will take data under all LHC beam conditions including standard high luminosity runs to maximise its physics reach. This contribution describes the main features of the TOTEM diffractive physics programme including measurements to be made in the early LHC runs.

  10. Diffractive and non-diffractive wounded nucleons and final states in pA collisions

    Energy Technology Data Exchange (ETDEWEB)

    Bierlich, Christian; Gustafson, Gösta; Lönnblad, Leif [Department of Astronomy and Theoretical Physics,Sölvegatan 14A, S-223 62 Lund (Sweden)

    2016-10-25

    We review the state-of-the-art of Glauber-inspired models for estimating the distribution of the number of participating nucleons in pA and AA collisions. We argue that there is room for improvement in these model when it comes to the treatment of diffractive excitation processes, and present a new simple Glauber-like model where these processes are better taken into account. We also suggest a new way of using the number of participating, or wounded, nucleons to extrapolate event characteristics from pp collisions, and hence get an estimate of basic hadronic final-state properties in pA collisions, which may be used to extract possible nuclear effects. The new method is inspired by the Fritiof model, but based on the full, semi-hard multiparton interaction model of PYTHIA8.

  11. Non-diffractive waves

    CERN Document Server

    Hernandez-Figueroa, Hugo E; Recami, Erasmo

    2013-01-01

    This continuation and extension of the successful book ""Localized Waves"" by the same editors brings together leading researchers in non-diffractive waves to cover the most important results in their field and as such is the first to present the current state.The well-balanced presentation of theory and experiments guides readers through the background of different types of non-diffractive waves, their generation, propagation, and possible applications. The authors include a historical account of the development of the field, and cover different types of non-diffractive waves, including Airy

  12. Generalized Nonlinear Yule Models

    OpenAIRE

    Lansky, Petr; Polito, Federico; Sacerdote, Laura

    2016-01-01

    With the aim of considering models with persistent memory we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macrovolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth...

  13. Theoretical analysis of the total cross section of hyper-triton-nucleus interaction in the framework of the three-cluster diffraction model

    International Nuclear Information System (INIS)

    Evlanov, M.V.; Sokolov, A.M.; Tartakovskij, V.K.

    1998-01-01

    Using numerical calculations the investigation of the influence of triple scattering, finite-range of nuclear Λd and np forces and general structure of the hyper-triton on the total cross section of diffraction interaction of Λ 3 H with different nuclei at high energies is performed. It is shown that the factors mentioned above can noticeably influence the cross section

  14. Correlations in the hadronic double diffractive dissociation; Correlacoes na dupla dissociacao difrativa hadronica

    Energy Technology Data Exchange (ETDEWEB)

    Goldegol, Alexandre

    1991-05-01

    A given reaction of double diffractive dissociation is studied based on the three-component Deck Model. The correlations among the diffractive slope, the effective mass of the dissociated particle sub-system and the dissociation angle in the Gottfried-Jackson are studied based in this model. 9 refs, 19 figs.

  15. A generalized additive regression model for survival times

    DEFF Research Database (Denmark)

    Scheike, Thomas H.

    2001-01-01

    Additive Aalen model; counting process; disability model; illness-death model; generalized additive models; multiple time-scales; non-parametric estimation; survival data; varying-coefficient models......Additive Aalen model; counting process; disability model; illness-death model; generalized additive models; multiple time-scales; non-parametric estimation; survival data; varying-coefficient models...

  16. Measurement of the longitudinal proton structure function in diffraction at the H1 experiment and prospects for diffraction at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Salek, David

    2011-05-15

    A measurement of the longitudinal diffractive structure function F{sub L}{sup D} using the H1 detector at HERA is presented. The structure function is extracted from first measurements of the diffractive cross section ep{yields}eXY at centre of mass energies {radical}(s) of 225 and 252 GeV at high values of inelasticity y, together with a new measurement at {radical}(s) of 319 GeV, using data taken in 2006 and 2007. Previous H1 data at {radical}(s) of 301 GeV complete the kinematic coverage needed to extract F{sub L}{sup D} in the range of photon virtualities 2.5diffractive parton densities extracted in NLO QCD fits to previous diffractive DIS data and to a model which additionally includes a higher twist contribution derived from a colour dipole approach. The photoabsorption ratio for diffraction RD is extracted for Q{sup 2}>7 GeV{sup 2} and compared to the analogous quantity for inclusive DIS. (orig.)

  17. Engineering related neutron diffraction measurements probing strains, texture and microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Bjorn [Los Alamos National Laboratory; Brown, Donald W [Los Alamos National Laboratory; Tome, Carlos N [Los Alamos National Laboratory; Balogh, Levente [Los Alamos National Laboratory; Vogel, Sven C [Los Alamos National Laboratory

    2010-01-01

    Neutron diffraction has been used for engineering applications for nearly three decades. The basis of the technique is powder diffraction following Bragg's Law. From the measured diffraction patterns information about internal, or residual, strain can be deduced from the peak positions, texture information can be extracted from the peak intensities, and finally the peak widths can provide information about the microstructure, e.g. dislocation densities and grain sizes. The strains are measured directly from changes in lattice parameters, however, in many cases it is non-trivial to determine macroscopic values of stress or strain from the measured data. The effects of intergranular strains must be considered, and combining the neutron diffraction measurements with polycrystal deformation modeling has proven invaluable in determining the overall stress and strain values of interest in designing and dimensioning engineering components. Furthelmore, the combined use of measurements and modeling has provided a tool for elucidating basic material properties, such as critical resolved shear stresses for the active deformation modes and their evolution as a function of applied deformation.

  18. Neutron diffraction in a frustrated ferrite

    International Nuclear Information System (INIS)

    Mirebeau, I.; Iancu, G.; Gavoille, G.; Hubsch, J.

    1994-01-01

    The competition between a long range ordered ferrimagnetic lattice and small fluctuating clusters have been probed by neutron diffraction in a titanium magnesium frustrated ferrite. The description of the system is then compared to the predictions of several theoretical models for frustrated systems. 3 figs., 8 refs

  19. An engineered design of a diffractive mask for high precision astrometry

    Science.gov (United States)

    Dennison, Kaitlin; Ammons, S. Mark; Garrel, Vincent; Marin, Eduardo; Sivo, Gaetano; Bendek, Eduardo; Guyon, Oliver

    2016-07-01

    AutoCAD, Zemax Optic Studio 15, and Interactive Data Language (IDL) with the Proper Library are used to computationally model and test a diffractive mask (DiM) suitable for use in the Gemini Multi-Conjugate Adaptive Optics System (GeMS) on the Gemini South Telescope. Systematic errors in telescope imagery are produced when the light travels through the adaptive optics system of the telescope. DiM is a transparent, flat optic with a pattern of miniscule dots lithographically applied to it. It is added ahead of the adaptive optics system in the telescope in order to produce diffraction spots that will encode systematic errors in the optics after it. Once these errors are encoded, they can be corrected for. DiM will allow for more accurate measurements in astrometry and thus improve exoplanet detection. The mechanics and physical attributes of the DiM are modeled in AutoCAD. Zemax models the ray propagation of point sources of light through the telescope. IDL and Proper simulate the wavefront and image results of the telescope. Aberrations are added to the Zemax and IDL models to test how the diffraction spots from the DiM change in the final images. Based on the Zemax and IDL results, the diffraction spots are able to encode the systematic aberrations.

  20. Anisotropic parameter inversion in VTI media using diffraction data

    KAUST Repository

    Waheed, Umair bin; Alkhalifah, Tariq Ali; Stovas, Alexey

    2013-01-01

    . Using this property of diffraction data to our vantage, we develop an algorithm to invert for effective η model, assuming no prior knowledge of it. The obtained effective η model is then converted to interval η model using Dix-type inversion formula

  1. Two-dimensional analytic modeling of acoustic diffraction for ultrasonic beam steering by phased array transducers.

    Science.gov (United States)

    Wang, Tiansi; Zhang, Chong; Aleksov, Aleksandar; Salama, Islam; Kar, Aravinda

    2017-04-01

    Phased array ultrasonic transducers enable modulating the focal position of the acoustic waves, and this capability is utilized in many applications, such as medical imaging and non-destructive testing. This type of transducers also provides a mechanism to generate tilted wavefronts in acousto-optic deflectors to deflect laser beams for high precision advanced laser material processing. In this paper, a theoretical model is presented for the diffraction of ultrasonic waves emitted by several phased array transducers into an acousto-optic medium such as TeO 2 crystal. A simple analytic expression is obtained for the distribution of the ultrasonic displacement field in the crystal. The model prediction is found to be in good agreement with the results of a numerical model that is based on a non-paraxial multi-Gaussian beam (NMGB) model. Published by Elsevier B.V.

  2. Generalized Nonlinear Yule Models

    Science.gov (United States)

    Lansky, Petr; Polito, Federico; Sacerdote, Laura

    2016-11-01

    With the aim of considering models related to random graphs growth exhibiting persistent memory, we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macroevolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth rates. Among the main results we derive the explicit distribution of the number of in-links of a webpage chosen uniformly at random recognizing the contribution to the asymptotics and the finite time correction. The mean value of the latter distribution is also calculated explicitly in the most general case. Furthermore, in order to show the usefulness of our results, we particularize them in the case of specific birth rates giving rise to a saturating behaviour, a property that is often observed in nature. The further specialization to the non-fractional case allows us to extend the Yule model accounting for a nonlinear growth.

  3. Climatology of the HOPE-G global ocean general circulation model - Sea ice general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Legutke, S. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Maier-Reimer, E. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1999-12-01

    The HOPE-G global ocean general circulation model (OGCM) climatology, obtained in a long-term forced integration is described. HOPE-G is a primitive-equation z-level ocean model which contains a dynamic-thermodynamic sea-ice model. It is formulated on a 2.8 grid with increased resolution in low latitudes in order to better resolve equatorial dynamics. The vertical resolution is 20 layers. The purpose of the integration was both to investigate the models ability to reproduce the observed general circulation of the world ocean and to obtain an initial state for coupled atmosphere - ocean - sea-ice climate simulations. The model was driven with daily mean data of a 15-year integration of the atmosphere general circulation model ECHAM4, the atmospheric component in later coupled runs. Thereby, a maximum of the flux variability that is expected to appear in coupled simulations is included already in the ocean spin-up experiment described here. The model was run for more than 2000 years until a quasi-steady state was achieved. It reproduces the major current systems and the main features of the so-called conveyor belt circulation. The observed distribution of water masses is reproduced reasonably well, although with a saline bias in the intermediate water masses and a warm bias in the deep and bottom water of the Atlantic and Indian Oceans. The model underestimates the meridional transport of heat in the Atlantic Ocean. The simulated heat transport in the other basins, though, is in good agreement with observations. (orig.)

  4. Neutron scattering and diffraction instrument for structural study on biology in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Ibaraki-ken (Japan)

    1994-12-31

    Neutron scattering and diffraction instruments in Japan which can be used for structural studies in biology are briefly introduced. Main specifications and general layouts of the instruments are shown.

  5. The General Education Collaboration Model: A Model for Successful Mainstreaming.

    Science.gov (United States)

    Simpson, Richard L.; Myles, Brenda Smith

    1990-01-01

    The General Education Collaboration Model is designed to support general educators teaching mainstreamed disabled students, through collaboration with special educators. The model is based on flexible departmentalization, program ownership, identification and development of supportive attitudes, student assessment as a measure of program…

  6. Diffractive Jet Production in Deep-Inelastic $e^{+}p$ Collisions at HERA

    CERN Document Server

    Adloff, C.; Andrieu, B.; Anthonis, T.; Arkadov, V.; Astvatsatourov, A.; Ayyaz, I.; Babaev, A.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bate, P.; Beglarian, A.; Behnke, O.; Beier, C.; Belousov, A.; Benisch, T.; Berger, Christoph; Berndt, T.; Bizot, J.C.; Boudry, V.; Braunschweig, W.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruckner, W.; Bruel, P.; Bruncko, D.; Burger, J.; Busser, F.W.; Bunyatyan, A.; Burkhardt, H.; Burrage, A.; Buschhorn, G.; Campbell, A.J.; Cao, Jun; Carli, T.; Caron, S.; Chabert, E.; Clarke, D.; Clerbaux, B.; Collard, C.; Contreras, J.G.; Coppens, Y.R.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Davidsson, M.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dixon, P.; Dodonov, V.; Dowell, J.D.; Droutskoi, A.; Duprel, C.; Eckerlin, Guenter; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Ferron, S.; Fleischer, M.; Fleming, Y.H.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Foster, J.M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, Joerg; Gerhards, R.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goodwin, C.; Grab, C.; Grassler, H.; Greenshaw, T.; Grindhammer, Guenter; Hadig, T.; Haidt, D.; Hajduk, L.; Haynes, W.J.; Heinemann, B.; Heinzelmann, G.; Henderson, R.C.W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herrera, G.; Herynek, I.; Hildebrandt, M.; Hilgers, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Horisberger, R.; Hurling, S.; Ibbotson, M.; Issever, C .; Jacquet, M.; Jaffre, M.; Janauschek, L.; Jansen, D.M.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jones, M.A.S.; Jung, H.; Kastli, H.K.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnick, O.; Keil, F.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kermiche, S.; Kiesling, Christian M.; Kjellberg, P.; Klein, M.; Kleinwort, C.; Knies, G.; Koblitz, B.; Kolya, S.D.; Korbel, V.; Kostka, P.; Kotelnikov, S.K.; Koutouev, R.; Koutov, A.; Krasny, M.W.; Krehbiel, H.; Kroseberg, J.; Kruger, K.; Kupper, A.; Kuhr, T.; Kurca, T.; Lahmann, R.; Lamb, D.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Laycock, P.; Lebailly, E.; Lebedev, A.; Leissner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindstroem, M.; List, B.; Lobodzinska, E.; Lobodzinski, B.; Loginov, A.; Loktionova, N.; Lubimov, V.; Luders, S.; Luke, D.; Lytkin, L.; Magnussen, N.; Mahlke-Kruger, H.; Malden, N.; Malinovski, E.; Malinovski, I.; Maracek, R.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.U.; Martyniak, J.; Maxfield, S.J.; Mehta, A.; Meier, K.; Merkel, P.; Meyer, A.B.; Meyer, H.; Meyer, J.; Meyer, P.O.; Mikocki, S.; Milstead, D.; Mkrtchyan, T.; Mohr, R.; Mohrdieck, S.; Mondragon, M.N.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, T.; Nellen, G.; Newman, Paul R.; Nicholls, T.C.; Niebergall, F.; Niebuhr, C.; Nix, O.; Nowak, G.; Nunnemann, T.; Olsson, J.E.; Ozerov, D.; Panassik, V.; Pascaud, C.; Patel, G.D.; Perez, E.; Phillips, J.P.; Pitzl, D.; Poschl, R.; Potachnikova, I.; Povh, B.; Rabbertz, K.; Radel, G.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Reyna, D.; Riess, S.; Risler, C.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Royon, C.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, D.; Schmitt, S.; Schoeffel, L.; Schoning, A.; Schorner, T.; Schroder, V.; Schultz-Coulon, H.C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Chekelian, V.I.; Sheviakov, I.; Shtarkov, L.N.; Sievers, P.; Sirois, Y.; Sloan, T.; Smirnov, P.; Solochenko, V.; Solovev, Y.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Steinhart, J.; Stella, B.; Stellberger, A.; Stiewe, J.; Straumann, U.; Struczinski, W.; Swart, M.; Tasevsky, M.; Chernyshov, V.; Chetchelnitski, S.; Thompson, Graham; Thompson, P.D.; Tobien, N.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Turney, J.E.; Tzamariudaki, E.; Udluft, S.; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vassiliev, S.; Vazdik, Y.; Vichnevski, A.; Wacker, K.; Wallny, R.; Walter, T.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Werner, M.; White, G.; Wiesand, S.; Wilksen, T.; Winde, M.; Winter, G.G.; Wissing, C.; Wobisch, M.; Wollatz, H.; Wunsch, E.; Wyatt, A.C.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zomer, F.; Zsembery, J.; zur Nedden, M.

    2001-01-01

    A measurement is presented of dijet and 3-jet cross sections in low-|t| diffractive deep-inelastic scattering interactions of the type ep -> eXY, where the system X is separated by a large rapidity gap from a low-mass baryonic system Y. Data taken with the H1 detector at HERA, corresponding to an integrated luminosity of 18.0 pb^(-1), are used to measure hadron level single and double differential cross sections for 44 GeV. The energy flow not attributed to jets is also investigated. The measurements are consistent with a factorising diffractive exchange with trajectory intercept close to 1.2 and tightly constrain the dominating diffractive gluon distribution. Viewed in terms of the diffractive scattering of partonic fluctuations of the photon, the data require the dominance of qqbarg over qqbar states. Soft colour neutralisation models in their present form cannot simultaneously reproduce the shapes and the normalisations of the differential cross sections. Models based on 2-gluon exchange are able to reprod...

  7. A new General Lorentz Transformation model

    International Nuclear Information System (INIS)

    Novakovic, Branko; Novakovic, Alen; Novakovic, Dario

    2000-01-01

    A new general structure of Lorentz Transformations, in the form of General Lorentz Transformation model (GLT-model), has been derived. This structure includes both Lorentz-Einstein and Galilean Transformations as its particular (special) realizations. Since the free parameters of GLT-model have been identified in a gravitational field, GLT-model can be employed both in Special and General Relativity. Consequently, the possibilities of an unification of Einstein's Special and General Theories of Relativity, as well as an unification of electromagnetic and gravitational fields are opened. If GLT-model is correct then there exist four new observation phenomena (a length and time neutrality, and a length dilation and a time contraction). Besides, the well-known phenomena (a length contraction, and a time dilation) are also the constituents of GLT-model. It means that there is a symmetry in GLT-model, where the center of this symmetry is represented by a length and a time neutrality. A time and a length neutrality in a gravitational field can be realized if the velocity of a moving system is equal to the free fall velocity. A time and a length neutrality include an observation of a particle mass neutrality. A special consideration has been devoted to a correlation between GLT-model and a limitation on particle velocities in order to investigate the possibility of a travel time reduction. It is found out that an observation of a particle speed faster then c=299 792 458 m/s, is possible in a gravitational field, if certain conditions are fulfilled

  8. Diffractive optics for industrial and commercial applications

    Energy Technology Data Exchange (ETDEWEB)

    Turunen, J. [Joensuu Univ. (Finland); Wyrowski, F. [eds.] [Jena Univ. (Germany)

    1997-12-31

    The following topics were dealt with: diffractive optics, diffraction gratings, optical system design with diffractive optics, continuous-relief diffractive lenses and microlens arrays, diffractive bifocal intraocular lenses, diffractive laser resonators, diffractive optics for semiconductor lasers, diffractive elements for optical image processing, photorefractive crystals in optical measurement systems, subwavelenth-structured elements, security applications, diffractive optics for solar cells, holographic microlithography. 999 refs.

  9. Measurement of residual stress in textured Al alloy by neutron diffraction method

    International Nuclear Information System (INIS)

    Okido, S.; Hayashi, M.; Tanaka, K.; Akiniwa, Y.; Minakawa, N.; Morii, Y.

    1999-01-01

    Residual stress generated in a shrunken aluminum alloy specimen, which was prepared for the round robin test conducted by VAMAS (Versailles Project on Advanced Materials and Standards) TWA-20 organized for the purpose of standardizing residual stress measurement methods, was evaluated by a neutron diffraction method. The main purpose of the round robin test was to assess the reproducibility of data obtained with the measurement facilities of the participants. The general standard of the Residual Stress Analyzer (RESA) constructed in the Japan Atomic Energy Research Institute was verified from the measured residual strains, which were equivalent to the values calculated by FEM and values measured by the research facilities in North America. Residual stress was calculated from residual strain in three perpendicular directions. The diffraction intensities were dependent on measurement directions since the prepared specimen possessed texture. Diffraction profiles in directions having a weak diffraction intensity caused an inaccurate evaluation of the residual stress. To solve this problem, a new method for evaluating residual stress with respect to diffraction plane dependency of the elastic constant was applied. The diffraction plane giving the highest intensity among 110, 200, and 220 diffraction was used to evaluate the residual strain in each of three directions. The residual strain obtained on the used diffraction plane was converted to the equivalent strain for the defined diffraction plane using the ratio of elastic constants of these two planes. The developed evaluation method achieved highly accurate measurement and remarkable efficiency in the measurement process. (author)

  10. Diffraction at TOTEM

    CERN Document Server

    Antchev, G.; Avati, V.; Bagliesi, M.G.; Berardi, V.; Berretti, M.; Bottigli, U.; Bozzo, M.; Brucken, E.; Buzzo, A.; Cafagna, F.; Calicchio, M.; Catanesi, M.G.; Catastini, P.L.; Cecchi, R.; Ciocci, M.A.; Deile, M.; Dimovasili, E.; Eggert, K.; Eremin, V.; Ferro, F.; Garcia, F.; Giani, S.; Greco, V.; Heino, J.; Hilden, T.; Kaspar, J.; Kopal, J.; Kundrat, V.; Kurvinen, K.; Lami, S.; Latino, G.; Lauhakangas, R.; Lippmaa, E.; Lokajicek, M.; Lo Vetere, M.; Lucas Rodriguez, F.; Macri, M.; Magazzu, G.; Meucci, M.; Minutoli, S.; Niewiadomski, H.; Noschis, E.; Notarnicola, G.; Oliveri, E.; Oljemark, F.; Orava, R.; Oriunno, M.; Osterberg, K.; Palazzi, P.; Pedreschi, E.; Petajajarvi, J.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Rella, G.; Robutti, E.; Ropelewski, L.; Ruggiero, G.; Rummel, A.; Saarikko, H.; Sanguinetti, G.; Santroni, A.; Scribano, A.; Sette, G.; Snoeys, W.; Spinella, F.; Squillacioti, P.; Ster, A.; Taylor, C.; Trummal, A.; Turini, N.; Whitmore, J.; Wu, J.

    2009-01-01

    The TOTEM experiment at the LHC measures the total proton-proton cross section with the luminosity-independent method and the elastic proton-proton cross-section over a wide |t|-range. It also performs a comprehensive study of diffraction, spanning from cross-section measurements of individual diffractive processes to the analysis of their event topologies. Hard diffraction will be studied in collaboration with CMS taking advantage of the large common rapidity coverage for charged and neutral particle detection and the large variety of trigger possibilities even at large luminosities. TOTEM will take data under all LHC beam conditions including standard high luminosity runs to maximize its physics reach. This contribution describes the main features of the TOTEM physics programme including measurements to be made in the early LHC runs. In addition, a novel scheme to extend the diffractive proton acceptance for high luminosity runs by installing proton detectors at IP3 is described.

  11. Diffraction-Induced Bidimensional Talbot Self-Imaging with Full Independent Period Control

    Science.gov (United States)

    Guillet de Chatellus, Hugues; Romero Cortés, Luis; Deville, Antonin; Seghilani, Mohamed; Azaña, José

    2017-03-01

    We predict, formulate, and observe experimentally a generalized version of the Talbot effect that allows one to create diffraction-induced self-images of a periodic two-dimensional (2D) waveform with arbitrary control of the image spatial periods. Through the proposed scheme, the periods of the output self-image are multiples of the input ones by any desired integer or fractional factor, and they can be controlled independently across each of the two wave dimensions. The concept involves conditioning the phase profile of the input periodic wave before free-space diffraction. The wave energy is fundamentally preserved through the self-imaging process, enabling, for instance, the possibility of the passive amplification of the periodic patterns in the wave by a purely diffractive effect, without the use of any active gain.

  12. The General Aggression Model

    NARCIS (Netherlands)

    Allen, Johnie J.; Anderson, Craig A.; Bushman, Brad J.

    The General Aggression Model (GAM) is a comprehensive, integrative, framework for understanding aggression. It considers the role of social, cognitive, personality, developmental, and biological factors on aggression. Proximate processes of GAM detail how person and situation factors influence

  13. Polarized neutron diffraction - a tool for testing extinction models: application to yttrium iron garnet

    International Nuclear Information System (INIS)

    Bonnet, M.; Delapalme, A.; Becker, P.

    1976-01-01

    This paper shows that polarized neutron experiments, which do not depend on any scale factor, are very dependent on extinction and provide original tests for extinction models. Moon, Koehler, Cable and Child (1972) have formulated the problem and proposed a first-order solution applicable only when the extinction is small. In the first part, some analytical derivations of secondary extinction corrections are discussed, using the formalism of Becker and Coppens (1974). In the second part, the main principles governing polarized neutron diffraction are briefly reviewed, with a special discussion of extinction problems. The method is then applied to the case of yttrium iron garnet (YIG). This experiment shows the technique of polarized neutrons to be very powerful for testing extinction models and for deciding whether the crystal behaves dynamically or kinematically (following Kato's criterion). (Auth.)

  14. Diffractive hard scattering at ep and p antip colliders

    International Nuclear Information System (INIS)

    Bruni, P.; Ingelman, G.; Uppsala Univ.

    1993-12-01

    Models for diffractive scattering based on the exchange of a pomeron with a parton structure are analysed in terms of hard scattering processes and the resulting characteristics of the final state. Diffractive deep inelastic ep scattering is considered in connection with the recently observed rapidity gap events at HERA. Heavy flavour and W, Z production in p anti p interactions are interesting measures of the gluon and quark component, respectively, in the pomeron. (orig.)

  15. Loss of coherence in double-slit diffraction experiments

    NARCIS (Netherlands)

    Sanz, A.S.; Borondo, F.; Bastiaans, M.J.

    2005-01-01

    By using optical models based on the theory of partially coherent light, and the quantum decoherence model proposed by Joos and Zeh [Z. Phys. B 59, 223 (1985)], we explore incoherence and decoherence in interference phenomena. The problem chosen to study is that of the double-slit diffraction

  16. Phase modulation due to crystal diffraction by ptychographic imaging

    Science.gov (United States)

    Civita, M.; Diaz, A.; Bean, R. J.; Shabalin, A. G.; Gorobtsov, O. Yu.; Vartanyants, I. A.; Robinson, I. K.

    2018-03-01

    Solving the phase problem in x-ray crystallography has occupied a considerable scientific effort in the 20th century and led to great advances in structural science. Here we use x-ray ptychography to demonstrate an interference method which measures the phase of the beam transmitted through a crystal, relative to the incoming beam, when diffraction takes place. The observed phase change of the direct beam through a small gold crystal is found to agree with both a quasikinematical model and full dynamical theories of diffraction. Our discovery of a diffraction contrast mechanism will enhance the interpretation of data obtained from crystalline samples using the ptychography method, which provides some of the most accurate x-ray phase-contrast images.

  17. The influence of texture on the strain measured by diffraction

    International Nuclear Information System (INIS)

    Penning, P.; Brakman, C.M.

    1988-01-01

    Strain, as determined by diffraction techniques, is calculated from its constituents. First, the fraction of the crystals that have the proper orientation for diffraction. One degree of freedom is present: the angle of rotation φ 2 '' about the scattering vector that the diffracting crystals have in common. The proper orientations, expressed in Euler angles, lie on a line ('trace') in orientation space. The density along the trace is asserted to be known as a Fourier series in φ 2 ''. Second, the strain in the diffracting crystals. The simplest possible models are discussed: the Voigt and Reuss approximations. The symmetries of the crystal (m3 or m3m) and of the orientation distribution function (o.d.f.) are taken into account. The dilatation in spacing of the reflecting planes is found as a Fourier series in φ 2 '' also. Only the zeroth, first and second harmonic (including phase angles: five parameters) play a part. The diffraction strain is the average over the angle φ 2 '' of the dilatation, weighted with the product of the orientation density and the square of the structure factor. For each contributing trace, the corresponding Fourier coefficients have to be multiplied and added to obtain the diffraction strain. The symmetry of the diffraction pole figure is derived. (orig.)

  18. Tattoo inks in general usage contain nanoparticles

    DEFF Research Database (Denmark)

    Høgsberg, T; Löschner, Katrin; Löf, D

    2011-01-01

    the particle sizes in tattoo inks in general usage. Methods The particle size was measured by laser diffraction, electron microscopy and X-ray diffraction. Results The size of the pigments could be divided into three main classes. The black pigments were the smallest, the white pigments the largest...... in general usage is new and may contribute to the understanding of tattoo ink kinetics. How the body responds to NP tattoo pigments should be examined further....

  19. Diffractive DIS: Where are we?

    International Nuclear Information System (INIS)

    Nikolaev, N.N.

    2001-01-01

    A brief review of the modern QCD theory of diffractive DIS is given. The recent progress has been remarkably rapid, all the principal predictions from the color dipole approach to diffraction - the (Q 2 + m V 2 ) scaling, the pattern of SCHNC, shrinkage of the diffraction cone in hard diffractive DIS, the strong impact of longitudinal gluons in inclusive J/Ψ production at Tevatron - have been confirmed experimentally

  20. Generalized bi-additive modelling for categorical data

    NARCIS (Netherlands)

    P.J.F. Groenen (Patrick); A.J. Koning (Alex)

    2004-01-01

    textabstractGeneralized linear modelling (GLM) is a versatile technique, which may be viewed as a generalization of well-known techniques such as least squares regression, analysis of variance, loglinear modelling, and logistic regression. In may applications, low-order interaction (such as

  1. Generalized latent variable modeling multilevel, longitudinal, and structural equation models

    CERN Document Server

    Skrondal, Anders; Rabe-Hesketh, Sophia

    2004-01-01

    This book unifies and extends latent variable models, including multilevel or generalized linear mixed models, longitudinal or panel models, item response or factor models, latent class or finite mixture models, and structural equation models.

  2. Dynamic quantum crystallography: lattice-dynamical models refined against diffraction data. II. Applications to L-alanine, naphthalene and xylitol.

    Science.gov (United States)

    Hoser, Anna A; Madsen, Anders Ø

    2017-03-01

    In the first paper of this series [Hoser & Madsen (2016). Acta Cryst. A72, 206-214], a new approach was introduced which enables the refinement of frequencies of normal modes obtained from ab initio periodic computations against single-crystal diffraction data. In this contribution, the performance of this approach is tested by refinement against data in the temperature range from 23 to 205 K on the molecular crystals of L-alanine, naphthalene and xylitol. The models, which are lattice-dynamical models derived at the Γ point of the Brillouin zone, are able to describe the atomic vibrations of L-alanine and naphthalene to a level where the residual densities are similar to those obtained from the independent atom model. For the more flexible molecule xylitol, larger deviations are found. Hydrogen ADPs (anisotropic displacement parameters) derived from the models are in similar or better agreement with neutron diffraction results than ADPs obtained by other procedures. The heat capacity calculated after normal mode refinement for naphthalene is in reasonable agreement with the heat capacity obtained from calorimetric measurements (to less than 1 cal mol -1  K -1 below 300 K), with deviations at higher temperatures indicating anharmonicity. Standard uncertainties and correlation of the refined parameters have been derived based on a Monte Carlo procedure. The uncertainties are quite small and probably underestimated.

  3. Diffraction stress analysis of thin films; investigating elastic grain interaction

    International Nuclear Information System (INIS)

    Kumar, A.

    2005-12-01

    This work is dedicated to the investigation of specimens exhibiting anisotropic microstructures (and thus macroscopic elastic anisotropy) and/or inhomogeneous microstructures, as met near surfaces and in textured materials. The following aspects are covered: (i) Analysis of specimens with direction-dependent (anisotropic) elastic grain-interaction. Elastic grain-interaction determines the distribution of stresses and strains over the (crystallographically) differently oriented grains of a mechanically stressed polycrystal and the mechanical and diffraction (X-ray) elastic constants (relating (diffraction) lattice strains to mechanical stresses). Grain interaction models that allow for anisotropic, direction-dependent grain interaction have been developed very recently. The notion 'direction-dependent' grain-interaction signifies that different grain-interaction constraints prevail along different directions in a specimen. Practical examples of direction-dependent grain interaction are the occurrence of surface anisotropy in thin films and the surface regions of bulk polycrystals and the occurrence of grain-shape (morphological) texture. In this work, for the first time, stress analyses of thin films have been performed on the basis of these newly developed grain-interaction models. It has also been demonstrated that the identification of the (dominant) source of direction-dependent grain interaction is possible. The results for the grain interaction have been discussed in the light of microstructural investigations of the specimens by microscopic techniques. (ii) Analysis of specimens with depth gradients: Diffraction stress analysis can be hindered if gradients of the stress state, the composition or the microstructure occur in the specimen under investigation, as the so-called information depth varies in the course of a traditional stress measurement: Ambiguous results are thus generally obtained. In this work, a strategy for stress measurements at fixed

  4. Theoretical study of the properties of X-ray diffraction moiré fringes. I

    International Nuclear Information System (INIS)

    Yoshimura, Jun-ichi

    2015-01-01

    A detailed and comprehensive theoretical description of X-ray diffraction moiré fringes for a bicrystal specimen is given on the basis of a calculation by plane-wave dynamical diffraction theory, where the effect of the Pendellösung intensity oscillation on the moiré pattern is explained in detail. A detailed and comprehensive theoretical description of X-ray diffraction moiré fringes for a bicrystal specimen is given on the basis of a calculation by plane-wave dynamical diffraction theory. Firstly, prior to discussing the main subject of the paper, a previous article [Yoshimura (1997 ▸). Acta Cryst. A53, 810–812] on the two-dimensionality of diffraction moiré patterns is restated on a thorough calculation of the moiré interference phase. Then, the properties of moiré fringes derived from the above theory are explained for the case of a plane-wave diffraction image, where the significant effect of Pendellösung intensity oscillation on the moiré pattern when the crystal is strained is described in detail with theoretically simulated moiré images. Although such plane-wave moiré images are not widely observed in a nearly pure form, knowledge of their properties is essential for the understanding of diffraction moiré fringes in general

  5. Analysis of the diffraction peaks in the ZrCr2 system

    International Nuclear Information System (INIS)

    Quiroga, A.A.; Esquivel, M.R.

    2009-01-01

    In this work, the crystalline structures of Cr and Zr are characterized by X-ray Diffraction (XRD). The diffraction peaks are simulated using a numerical convolution of the Gauss and Lorentz functions. The simulation of the model is verified using empirical measurements of the diffraction peaks. From these results, the microstructure parameters of Zr and Cr are obtained: crystallite size (d) and strain (s). The advances obtained are used in the design of the synthesis of AB 2 intermetallics applied to thermal compression of hydrogen (Tch). (author)

  6. On the Use of Generalized Volume Scattering Models for the Improvement of General Polarimetric Model-Based Decomposition

    Directory of Open Access Journals (Sweden)

    Qinghua Xie

    2017-01-01

    Full Text Available Recently, a general polarimetric model-based decomposition framework was proposed by Chen et al., which addresses several well-known limitations in previous decomposition methods and implements a simultaneous full-parameter inversion by using complete polarimetric information. However, it only employs four typical models to characterize the volume scattering component, which limits the parameter inversion performance. To overcome this issue, this paper presents two general polarimetric model-based decomposition methods by incorporating the generalized volume scattering model (GVSM or simplified adaptive volume scattering model, (SAVSM proposed by Antropov et al. and Huang et al., respectively, into the general decomposition framework proposed by Chen et al. By doing so, the final volume coherency matrix structure is selected from a wide range of volume scattering models within a continuous interval according to the data itself without adding unknowns. Moreover, the new approaches rely on one nonlinear optimization stage instead of four as in the previous method proposed by Chen et al. In addition, the parameter inversion procedure adopts the modified algorithm proposed by Xie et al. which leads to higher accuracy and more physically reliable output parameters. A number of Monte Carlo simulations of polarimetric synthetic aperture radar (PolSAR data are carried out and show that the proposed method with GVSM yields an overall improvement in the final accuracy of estimated parameters and outperforms both the version using SAVSM and the original approach. In addition, C-band Radarsat-2 and L-band AIRSAR fully polarimetric images over the San Francisco region are also used for testing purposes. A detailed comparison and analysis of decomposition results over different land-cover types are conducted. According to this study, the use of general decomposition models leads to a more accurate quantitative retrieval of target parameters. However, there

  7. Diffractive heavy quark production in AA collisions at the LHC at NLO

    Science.gov (United States)

    Machado, M. M.; Ducati, M. B. Gay; Machado, M. V. T.

    2011-07-01

    The single and double diffractive cross sections for heavy quarks production are evaluated at NLO accuracy for hadronic and heavy ion collisions at the LHC. Diffractive charm and bottom production is the main subject of this work, providing predictions for CaCa, PbPb and pPb collisions. The hard diffraction formalism is considered using the Ingelman-Schlein model where a recent parametrization for the Pomeron structure function (DPDF) is applied. Absorptive corrections are taken into account as well. The diffractive ratios are estimated and theoretical uncertainties are discussed. Comparison with competing production channels is also presented.

  8. Modelling the X-ray powder diffraction of nitrogen-expanded austenite using the Debye formula

    DEFF Research Database (Denmark)

    Oddershede, Jette; Christiansen, Thomas; Ståhl, Kenny

    2008-01-01

    Stress-free and homogeneous samples of nitrogen-expanded austenite, a defect-rich f.c.c. structure with a high interstitial nitrogen occupancy (between 0.36 and 0.61), have been studied using X-ray powder diffraction and Debye simulations. The simulations confirm the presence of deformation...... to be indistinguishable to X-ray powder diffraction....

  9. Improving the diffraction of apoA-IV crystals through extreme dehydration

    International Nuclear Information System (INIS)

    Deng, Xiaodi; Davidson, W. Sean; Thompson, Thomas B.

    2011-01-01

    Apolipoprotein A-IV crystals consisted of a long unit-cell edge (540 Å) with a high mosaic spread, making them intractable for X-ray diffraction analysis. Extreme dehydration in 60% PEG 3350 was utilized as a post-crystallization treatment as well a screening method to significantly sharpen the mosaic spread and increase the overall resolution of diffraction. Apolipoproteins are the protein component of high-density lipoproteins (HDL), which are necessary for mobilizing lipid-like molecules throughout the body. Apolipoproteins undergo self-association, especially at higher concentrations, making them difficult to crystallize. Here, the crystallization and diffraction of the core fragment of apolipoprotein A-IV (apoA-IV), consisting of residues 64–335, is presented. ApoA-IV 64–335 crystallized readily in a variety of hexagonal (P6) morphologies with similar unit-cell parameters, all containing a long axis of nearly 550 Å in length. Preliminary diffraction experiments with the different crystal morphologies all resulted in limited streaky diffraction to 3.5 Å resolution. Crystal dehydration was applied to the different morphologies with variable success and was also used as a quality indicator of crystal-growth conditions. The results show that the morphologies that withstood the most extreme dehydration conditions showed the greatest improvement in diffraction. One morphology in particular was able to withstand dehydration in 60% PEG 3350 for over 12 h, which resulted in well defined intensities to 2.7 Å resolution. These results suggest that the approach of integrating dehydration with variation in crystal-growth conditions might be a general technique to optimize diffraction

  10. Simple implementation of general dark energy models

    International Nuclear Information System (INIS)

    Bloomfield, Jolyon K.; Pearson, Jonathan A.

    2014-01-01

    We present a formalism for the numerical implementation of general theories of dark energy, combining the computational simplicity of the equation of state for perturbations approach with the generality of the effective field theory approach. An effective fluid description is employed, based on a general action describing single-scalar field models. The formalism is developed from first principles, and constructed keeping the goal of a simple implementation into CAMB in mind. Benefits of this approach include its straightforward implementation, the generality of the underlying theory, the fact that the evolved variables are physical quantities, and that model-independent phenomenological descriptions may be straightforwardly investigated. We hope this formulation will provide a powerful tool for the comparison of theoretical models of dark energy with observational data

  11. Electroproduction and photoproduction of vector mesons and generalized vector meson dominance

    International Nuclear Information System (INIS)

    Fraas, H.; Kuroda, M.

    1977-05-01

    Using generalized vector meson dominance, electro- and photoproduction of vector mesons is studied. The unnatural parity exchange part of ω(1.2) production is estimated to be about one fourth of that of ω-production. The off diagonal transition model suggests the suppression of diffractive rho(1.2) and ω(1.2) production. (orig.) [de

  12. Simulation of the diffraction pattern of one dimensional quasicrystal ...

    African Journals Online (AJOL)

    The effects of the variation of atomic spacing ratio of a one dimensional quasicrystal material are investigated. The work involves the use of the solid state simulation code, Laue written by Silsbee and Drager. We are able to observe the general features of the diffraction pattern by a quasicrystal. In addition, it has been found ...

  13. Fourier-Based Diffraction Analysis of Live Caenorhabditis elegans.

    Science.gov (United States)

    Magnes, Jenny; Hastings, Harold M; Raley-Susman, Kathleen M; Alivisatos, Clara; Warner, Adam; Hulsey-Vincent, Miranda

    2017-09-13

    This manuscript describes how to classify nematodes using temporal far-field diffraction signatures. A single C. elegans is suspended in a water column inside an optical cuvette. A 632 nm continuous wave HeNe laser is directed through the cuvette using front surface mirrors. A significant distance of at least 20-30 cm traveled after the light passes through the cuvette ensures a useful far-field (Fraunhofer) diffraction pattern. The diffraction pattern changes in real time as the nematode swims within the laser beam. The photodiode is placed off-center in the diffraction pattern. The voltage signal from the photodiode is observed in real time and recorded using a digital oscilloscope. This process is repeated for 139 wild type and 108 "roller" C. elegans. Wild type worms exhibit a rapid oscillation pattern in solution. The "roller" worms have a mutation in a key component of the cuticle that interferes with smooth locomotion. Time intervals that are not free of saturation and inactivity are discarded. It is practical to divide each average by its maximum to compare relative intensities. The signal for each worm is Fourier transformed so that the frequency pattern for each worm emerges. The signal for each type of worm is averaged. The averaged Fourier spectra for the wild type and the "roller" C. elegans are distinctly different and reveal that the dynamic worm shapes of the two different worm strains can be distinguished using Fourier analysis. The Fourier spectra of each worm strain match an approximate model using two different binary worm shapes that correspond to locomotory moments. The envelope of the averaged frequency distribution for actual and modeled worms confirms the model matches the data. This method can serve as a baseline for Fourier analysis for many microscopic species, as every microorganism will have its unique Fourier spectrum.

  14. Coherent X-ray diffraction studies of mesoscopic materials

    International Nuclear Information System (INIS)

    Shabalin, Anatoly

    2015-12-01

    This thesis is devoted to three separate projects, which can be considered as independent. First, the dynamical scattering effects in the Coherent X-ray Diffractive Imaging (CXDI) method are discussed. Based on the simulation results, a straightforward method for correction for the refraction and absorption artifacts in the Bragg CXDI reconstruction is suggested. The second part summarizes the results of an Coherent X-ray Diffractive Imaging experiment with a single colloidal crystal grain. A remarkable result is that positions of individual particles in the crystal lattice have been resolved in three dimensions. The third project is devoted to X-ray diffraction experimental studies of structural evolution of colloidal crystalline films upon incremental heating. Based on the results of the analysis a model of structural evolution of a colloidal crystal upon heating on nanoscopic and mesoscopic length scales is suggested.

  15. Electron diffraction from carbon nanotubes

    International Nuclear Information System (INIS)

    Qin, L-C

    2006-01-01

    The properties of a carbon nanotube are dependent on its atomic structure. The atomic structure of a carbon nanotube can be defined by specifying its chiral indices (u, v), that specify its perimeter vector (chiral vector), with which the diameter and helicity are also determined. The fine electron beam available in a modern transmission electron microscope (TEM) offers a unique probe to reveal the atomic structure of individual nanotubes. This review covers two aspects related to the use of the electron probe in the TEM for the study of carbon nanotubes: (a) to understand the electron diffraction phenomena for inter-pretation of the electron diffraction patterns of carbon nanotubes and (b) to obtain the chiral indices (u, v), of the carbon nanotubes from the electron diffraction patterns. For a nanotube of a given structure, the electron scattering amplitude from the carbon nanotube is first described analytically in closed form using the helical diffraction theory. From a known structure as given by the chiral indices (u, v), its electron diffraction pattern can be calculated and understood. The reverse problem, i.e. assignment of the chiral indices from an electron diffraction pattern of a carbon nanotube, is approached from the relationship between the electron scattering intensity distribution and the chiral indices (u, v). We show that electron diffraction patterns can provide an accurate and unambiguous assignment of the chiral indices of carbon nanotubes. The chiral indices (u, v) can be read indiscriminately with a high accuracy from the intensity distribution on the principal layer lines in an electron diffraction pattern. The symmetry properties of electron diffraction from carbon nanotubes and the electron diffraction from deformed carbon nanotubes are also discussed in detail. It is shown that 2mm symmetry is always preserved for single-walled carbon nanotubes, but it can break down for multiwalled carbon nanotubes under some special circumstances

  16. Amplitude-phase characteristics of electromagnetic fields diffracted by a hole in a thin film with realistic optical properties

    Science.gov (United States)

    Dorofeyev, Illarion

    2009-03-01

    Characteristics of a quasi-spherical wave front of an electromagnetic field diffracted by a subwavelength hole in a thin film with real optical properties are studied. Related diffraction problem is solved in general by use of the scalar and vector Green's theorems and related Green's function of a boundary-value problem. Local phase deviations of a diffracted wave front from an ideal spherical front are calculated. Diffracted patterns are calculated for the coherent incident fields in case of holes array in a screen of perfect conductivity.

  17. A global analysis of inclusive diffractive cross sections at HERA

    International Nuclear Information System (INIS)

    Royon, C.; Schoeffel, L.; Sapeta, S.; Peschanski, R.; Sauvan, E.

    2006-10-01

    We describe the most recent data on the diffractive structure functions from the H1 and ZEUS Collaborations at HERA using four models. First, a Pomeron Structure Function (PSF) model, in which the Pomeron is considered as an object with parton distribution functions. Then, the Bartels Ellis Kowalski Wuesthoff (BEKW) approach is discussed, assuming the simplest perturbative description of the Pomeron using a two-gluon ladder. A third approach, the Bialas Peschanski (BP) model, based on the dipole formalism is then described. Finally, we discuss the Golec-Biernat-Wuesthoff (GBW) saturation model which takes into account saturation effects. The best description of all available measurements can be achieved with either the PSF based model or the BEKW approach. In particular, the BEKW prediction allows to include the highest β measurements, which are dominated by higher twists effects and provide an efficient and compact parametrisation of the diffractive cross section. The two other models also give a good description of cross section measurements at small x with a small number of parameters. The comparison of all predictions allows us to identify interesting differences in the behaviour of the effective pomeron intercept and in the shape of the longitudinal component of the diffractive structure functions. In this last part, we present some features that can be discriminated by new experimental measurements, completing the HERA program. (authors)

  18. A global analysis of inclusive diffractive cross sections at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Royon, C.; Schoeffel, L. [Service de Physique des Particules, CE-Saclay, F-91191 Gif-sur-Yvette Cedex (France); Sapeta, S. [M. Smoluchowski Institue of Physics Jagellonian University Reymonta 4, 30-059 Krakow (Poland); Peschanski, R. [Service de Physique Theorique, CE-Saclay, F-91191 Gif-sur-Yvette Cedex (France); Sauvan, E. [CPPM, IN2P3-CNRS et Universitie de la Mediterranee, F-13288 Marseille Cedex 09 (France)

    2006-10-15

    We describe the most recent data on the diffractive structure functions from the H1 and ZEUS Collaborations at HERA using four models. First, a Pomeron Structure Function (PSF) model, in which the Pomeron is considered as an object with parton distribution functions. Then, the Bartels Ellis Kowalski Wuesthoff (BEKW) approach is discussed, assuming the simplest perturbative description of the Pomeron using a two-gluon ladder. A third approach, the Bialas Peschanski (BP) model, based on the dipole formalism is then described. Finally, we discuss the Golec-Biernat-Wuesthoff (GBW) saturation model which takes into account saturation effects. The best description of all available measurements can be achieved with either the PSF based model or the BEKW approach. In particular, the BEKW prediction allows to include the highest {beta} measurements, which are dominated by higher twists effects and provide an efficient and compact parametrisation of the diffractive cross section. The two other models also give a good description of cross section measurements at small x with a small number of parameters. The comparison of all predictions allows us to identify interesting differences in the behaviour of the effective pomeron intercept and in the shape of the longitudinal component of the diffractive structure functions. In this last part, we present some features that can be discriminated by new experimental measurements, completing the HERA program. (authors)

  19. A public database of macromolecular diffraction experiments.

    Science.gov (United States)

    Grabowski, Marek; Langner, Karol M; Cymborowski, Marcin; Porebski, Przemyslaw J; Sroka, Piotr; Zheng, Heping; Cooper, David R; Zimmerman, Matthew D; Elsliger, Marc André; Burley, Stephen K; Minor, Wladek

    2016-11-01

    The low reproducibility of published experimental results in many scientific disciplines has recently garnered negative attention in scientific journals and the general media. Public transparency, including the availability of `raw' experimental data, will help to address growing concerns regarding scientific integrity. Macromolecular X-ray crystallography has led the way in requiring the public dissemination of atomic coordinates and a wealth of experimental data, making the field one of the most reproducible in the biological sciences. However, there remains no mandate for public disclosure of the original diffraction data. The Integrated Resource for Reproducibility in Macromolecular Crystallography (IRRMC) has been developed to archive raw data from diffraction experiments and, equally importantly, to provide related metadata. Currently, the database of our resource contains data from 2920 macromolecular diffraction experiments (5767 data sets), accounting for around 3% of all depositions in the Protein Data Bank (PDB), with their corresponding partially curated metadata. IRRMC utilizes distributed storage implemented using a federated architecture of many independent storage servers, which provides both scalability and sustainability. The resource, which is accessible via the web portal at http://www.proteindiffraction.org, can be searched using various criteria. All data are available for unrestricted access and download. The resource serves as a proof of concept and demonstrates the feasibility of archiving raw diffraction data and associated metadata from X-ray crystallographic studies of biological macromolecules. The goal is to expand this resource and include data sets that failed to yield X-ray structures in order to facilitate collaborative efforts that will improve protein structure-determination methods and to ensure the availability of `orphan' data left behind for various reasons by individual investigators and/or extinct structural genomics

  20. Water-wave diffraction and radiation by multiple three-dimensional bodies over a mild-slope bottom

    DEFF Research Database (Denmark)

    Ruiz, Pau Mercadé; Ferri, Francesco; Kofoed, Jens Peter

    2017-01-01

    Highlights •A tool to model wave diffraction and radiation in mild-slope bottoms is proposed. •The tool combines a mild-slope equation model with diffraction transfer matrices. •The tool predictions are verified against analytical solutions for two test problems....

  1. Actuarial statistics with generalized linear mixed models

    NARCIS (Netherlands)

    Antonio, K.; Beirlant, J.

    2007-01-01

    Over the last decade the use of generalized linear models (GLMs) in actuarial statistics has received a lot of attention, starting from the actuarial illustrations in the standard text by McCullagh and Nelder [McCullagh, P., Nelder, J.A., 1989. Generalized linear models. In: Monographs on Statistics

  2. The structure of molten CuCl: Reverse Monte Carlo modeling with high-energy X-ray diffraction data and molecular dynamics of a polarizable ion model

    Energy Technology Data Exchange (ETDEWEB)

    Alcaraz, Olga; Trullàs, Joaquim, E-mail: quim.trullas@upc.edu [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Campus Nord UPC B4-B5, 08034 Barcelona (Spain); Tahara, Shuta [Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, Okinawa 903-0213 (Japan); Kawakita, Yukinobu [J-PARC Center, Japan Atomic Energy Agency (JAEA), Ibaraki 319-1195 (Japan); Takeda, Shin’ichi [Department of Physics, Faculty of Sciences, Kyushu University, Fukuoka 819-0395 (Japan)

    2016-09-07

    The results of the structural properties of molten copper chloride are reported from high-energy X-ray diffraction measurements, reverse Monte Carlo modeling method, and molecular dynamics simulations using a polarizable ion model. The simulated X-ray structure factor reproduces all trends observed experimentally, in particular the shoulder at around 1 Å{sup −1} related to intermediate range ordering, as well as the partial copper-copper correlations from the reverse Monte Carlo modeling, which cannot be reproduced by using a simple rigid ion model. It is shown that the shoulder comes from intermediate range copper-copper correlations caused by the polarized chlorides.

  3. The structure of molten CuCl: Reverse Monte Carlo modeling with high-energy X-ray diffraction data and molecular dynamics of a polarizable ion model

    International Nuclear Information System (INIS)

    Alcaraz, Olga; Trullàs, Joaquim; Tahara, Shuta; Kawakita, Yukinobu; Takeda, Shin’ichi

    2016-01-01

    The results of the structural properties of molten copper chloride are reported from high-energy X-ray diffraction measurements, reverse Monte Carlo modeling method, and molecular dynamics simulations using a polarizable ion model. The simulated X-ray structure factor reproduces all trends observed experimentally, in particular the shoulder at around 1 Å −1 related to intermediate range ordering, as well as the partial copper-copper correlations from the reverse Monte Carlo modeling, which cannot be reproduced by using a simple rigid ion model. It is shown that the shoulder comes from intermediate range copper-copper correlations caused by the polarized chlorides.

  4. Diffraction. Powder, amorphous, liquid

    International Nuclear Information System (INIS)

    Sosnowska, I.M.

    1999-01-01

    Neutron powder diffraction is a unique tool to observe all possible diffraction effects appearing in crystal. High-resolution neutron diffractometers have to be used in this study. Analysis of the magnetic structure of polycrystalline materials requires the use of high-resolution neutron diffraction in the range of large interplanar distances. As distinguished from the double axis diffractometers (DAS), which show high resolution only at small interplanar distances, TOF (time-of-flight) diffractometry offers the best resolution at large interplanar distances. (K.A.)

  5. Exact solution of the Takagi-Taupin equation for dynamical X-ray Bragg diffraction by a crystal with a transition layer

    International Nuclear Information System (INIS)

    Chukhovskii, F.N.; Khapachev, Yu. P.

    1985-01-01

    The general problem of dynamical diffraction on a crystal with a transition layer is theoretically considered. It is shown that the problem of dynamical diffraction on such a crystal can be solved analytically. Special attention is paid to the dependence of the curves of diffractional reflection on the parameters of the transition layer. (author)

  6. Profile analysis of neutron powder diffraction data at ISIS

    International Nuclear Information System (INIS)

    David, W.I.F.; Ibberson, R.M.; Matthewman, J.C.

    1992-05-01

    The aim of this manual is to document the current suite of time-of-flight neutron powder diffraction profile refinement programs available to ISIS users. Aspects of data collation and normalisation specific to the individual diffraction instruments are dealt with elsewhere. It will be assumed the user has produced a suitable data file (.DAT file) containing the profile data consisting of point by point values of the corrected diffraction profile across the pattern. The analysis of neutron powder diffraction data at ISIS by profile refinement utilises a suite of ''in-house'' written and supported programs based on the Cambridge Crystallography Subroutine Library (CCSL). A quick scan through the CCSL manual will give the user a general feel for the procedure to adopt in the use of the library and hence of the profile codes. The instructions documented in this handbook are complementary to those in the more specialist CCSL manual, and consequently go into no great detail regarding technical details of any of the CCSL routines. The programs may be run from each individual user account, for example [USER01], once the appropriate login procedure has been set-up by the instrument scientists. The programs are mostly activated by one line commands and only a basic knowledge of a VAX editor should be required; details can be found in the ''VAX primer'' available from Computer Support. (Author)

  7. Measurement of the diffractive structure function in deep inelastic scattering hat HERA

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1995-05-01

    This paper presents an analysis of the inclusive properties of diffractive deep inelastic scattering events produced in ep interactions at HERA. The events are characterised by a rapidity gap between the outgoing proton system and the remaining hadronic system. Inclusive distributions are presented and compared with Monte Carlo models for diffractive processes. The data are consistent with models where the pomeron structure function has a hard and a soft contribution. The diffractive structure function is measured as a function of x IP , the momentum fraction lost by the proton, of β, the momentum fraction of the struck quark with respect to x IP , and of Q 2 . The x IP dependence is consistent with the form (1/x IP ) a where a=1.30-±0.80(stat) -0.14 +0.08 (sys) in all bins of βand Q 2 . In the measured Q 2 range, the diffractive structure function approximately scales with Q 2 at fixed β. In an Ingelman-Schlein type model, where commonly used pomeron flux factor normalisations are assumed, it is found that the quarks within the pomeron do not saturate the momentum sum rule. (orig.)

  8. 11. international conference on elastic and diffractive scattering: towards high energy frontiers

    International Nuclear Information System (INIS)

    2005-01-01

    This conference is held every 2 years. Every time these conferences on elastic and diffractive scattering adapt their content to the most recent experimental and theoretical results concerning not only quantum chromodynamics (QCD) but also other fields of particle physics where diffractive physics is present. This year, besides classical themes such as: -) forward scattering, -) total cross-sections, -) real parts, and -) pomeron and odderon, the participants have addressed many other subjects such as: -) LHC physics, -) non-perturbative approaches to high-energy scattering, -) the dipole model, -) small-x evolution, -) hard diffraction in QCD, -) nuclear shadowing, -) diffractive Higgs studies, -) spin effects, -) 4-quarks and 5-quarks, or -) B-physics

  9. 11. international conference on elastic and diffractive scattering: towards high energy frontiers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This conference is held every 2 years. Every time these conferences on elastic and diffractive scattering adapt their content to the most recent experimental and theoretical results concerning not only quantum chromodynamics (QCD) but also other fields of particle physics where diffractive physics is present. This year, besides classical themes such as: -) forward scattering, -) total cross-sections, -) real parts, and -) pomeron and odderon, the participants have addressed many other subjects such as: -) LHC physics, -) non-perturbative approaches to high-energy scattering, -) the dipole model, -) small-x evolution, -) hard diffraction in QCD, -) nuclear shadowing, -) diffractive Higgs studies, -) spin effects, -) 4-quarks and 5-quarks, or -) B-physics.

  10. Time-of-flight diffraction at pulsed neutron sources: An introduction to the symposium

    International Nuclear Information System (INIS)

    Jorgensen, J.D.

    1994-01-01

    In the 25 years since the first low-power demonstration experiments, pulsed neutron sources have become as productive as reactor sources for many types of diffraction experiments. The pulsed neutron sources presently operating in the United States, England, and Japan offer state of the art instruments for powder and single crystal diffraction, small angle scattering, and such specialized techniques as grazing-incidence neutron reflection, as well as quasielastic and inelastic scattering. In this symposium, speakers review the latest advances in diffraction instrumentation for pulsed neutron sources and give examples of some of the important science presently being done. In this introduction to the symposium, I briefly define the basic principles of pulsed neutron sources, review their development, comment in general terms on the development of time-of-flight diffraction instrumentation for these sources, and project how this field will develop in the next ten years

  11. Influence of seismic diffraction for high-resolution imaging: applications in offshore Malaysia

    Science.gov (United States)

    Bashir, Yasir; Ghosh, Deva Prasad; Sum, Chow Weng

    2018-04-01

    Small-scale geological discontinuities are not easy to detect and image in seismic data, as these features represent themselves as diffracted rather than reflected waves. However, the combined reflected and diffracted image contains full wave information and is of great value to an interpreter, for instance enabling the identification of faults, fractures, and surfaces in built-up carbonate. Although diffraction imaging has a resolution below the typical seismic wavelength, if the wavelength is much smaller than the width of the discontinuity then interference effects can be ignored, as they would not play a role in generating the seismic diffractions. In this paper, by means of synthetic examples and real data, the potential of diffraction separation for high-resolution seismic imaging is revealed and choosing the best method for preserving diffraction are discussed. We illustrate the accuracy of separating diffractions using the plane-wave destruction (PWD) and dip frequency filtering (DFF) techniques on data from the Sarawak Basin, a carbonate field. PWD is able to preserve the diffraction more intelligently than DFF, which is proven in the results by the model and real data. The final results illustrate the effectiveness of diffraction separation and possible imaging for high-resolution seismic data of small but significant geological features.

  12. A Generalized QMRA Beta-Poisson Dose-Response Model.

    Science.gov (United States)

    Xie, Gang; Roiko, Anne; Stratton, Helen; Lemckert, Charles; Dunn, Peter K; Mengersen, Kerrie

    2016-10-01

    Quantitative microbial risk assessment (QMRA) is widely accepted for characterizing the microbial risks associated with food, water, and wastewater. Single-hit dose-response models are the most commonly used dose-response models in QMRA. Denoting PI(d) as the probability of infection at a given mean dose d, a three-parameter generalized QMRA beta-Poisson dose-response model, PI(d|α,β,r*), is proposed in which the minimum number of organisms required for causing infection, K min , is not fixed, but a random variable following a geometric distribution with parameter 0Poisson model, PI(d|α,β), is a special case of the generalized model with K min = 1 (which implies r*=1). The generalized beta-Poisson model is based on a conceptual model with greater detail in the dose-response mechanism. Since a maximum likelihood solution is not easily available, a likelihood-free approximate Bayesian computation (ABC) algorithm is employed for parameter estimation. By fitting the generalized model to four experimental data sets from the literature, this study reveals that the posterior median r* estimates produced fall short of meeting the required condition of r* = 1 for single-hit assumption. However, three out of four data sets fitted by the generalized models could not achieve an improvement in goodness of fit. These combined results imply that, at least in some cases, a single-hit assumption for characterizing the dose-response process may not be appropriate, but that the more complex models may be difficult to support especially if the sample size is small. The three-parameter generalized model provides a possibility to investigate the mechanism of a dose-response process in greater detail than is possible under a single-hit model. © 2016 Society for Risk Analysis.

  13. Gaussian beam diffraction in weakly anisotropic inhomogeneous media

    Energy Technology Data Exchange (ETDEWEB)

    Kravtsov, Yu.A., E-mail: kravtsov@am.szczecin.p [Institute of Physics, Maritime University of Szczecin, Szczecin 70-500 (Poland); Space Research Institute, Russian Academy of Science, Moscow 117 997 (Russian Federation); Berczynski, P., E-mail: pawel.berczynski@ps.p [Institute of Physics, West Pomeranian University of Technology, Szczecin 70-310 (Poland); Bieg, B., E-mail: b.bieg@am.szczecin.p [Institute of Physics, Maritime University of Szczecin, Szczecin 70-500 (Poland)

    2009-08-10

    Combination of quasi-isotropic approximation (QIA) of geometric optics with paraxial complex geometric optics (PCGO) is suggested, which allows describing both diffraction and polarization evolution of Gaussian electromagnetic beams in weakly anisotropic inhomogeneous media. Combination QIA/PCGO reduces Maxwell equations to the system of the ordinary differential equations of the first order and radically simplifies solution of various problems, related to microwave plasma diagnostics, including plasma polarimetry, interferometry and refractometry in thermonuclear reactors. Efficiency of the method is demonstrated by the example of electromagnetic beam diffraction in a linear layer of magnetized plasma with parameters, modeling tokamak plasma in the project ITER.

  14. Gaussian beam diffraction in weakly anisotropic inhomogeneous media

    International Nuclear Information System (INIS)

    Kravtsov, Yu.A.; Berczynski, P.; Bieg, B.

    2009-01-01

    Combination of quasi-isotropic approximation (QIA) of geometric optics with paraxial complex geometric optics (PCGO) is suggested, which allows describing both diffraction and polarization evolution of Gaussian electromagnetic beams in weakly anisotropic inhomogeneous media. Combination QIA/PCGO reduces Maxwell equations to the system of the ordinary differential equations of the first order and radically simplifies solution of various problems, related to microwave plasma diagnostics, including plasma polarimetry, interferometry and refractometry in thermonuclear reactors. Efficiency of the method is demonstrated by the example of electromagnetic beam diffraction in a linear layer of magnetized plasma with parameters, modeling tokamak plasma in the project ITER.

  15. Neutron-diffraction measurement of the evolution of strain for non-uniform plastic deformation

    CERN Document Server

    Rogge, R B; Boyce, D

    2002-01-01

    Neutrons are particularly adept for the validation of modeling predictions of stress and strain. In recent years, there has been a significant effort to model the evolution of both the macroscopic stresses and the intergranular stress during plastic deformation. These have had broad implications with regard to understanding the evolution of residual stress and to diffraction-based measurements of strain. Generally the modeling and associated measurements have been performed for simple uniaxial tension, leaving questions with regard to plastic deformation under multi-axial stress and non-uniform stress. Extensive measurements of the strain profile across a plastic hinge for each of a series of loading and unloading cycles to progressively higher degrees of plastic deformation are presented. These measurements are used to assess multiple-length-scale finite-element modeling (FEM) of the plastic hinge, in which the elements will range in size from single crystallites (as used in successful simulations of uniaxia...

  16. Neutron-diffraction measurement of the evolution of strain for non-uniform plastic deformation

    International Nuclear Information System (INIS)

    Rogge, R.B.; Dawson, P.R.; Boyce, D.

    2002-01-01

    Neutrons are particularly adept for the validation of modeling predictions of stress and strain. In recent years, there has been a significant effort to model the evolution of both the macroscopic stresses and the intergranular stress during plastic deformation. These have had broad implications with regard to understanding the evolution of residual stress and to diffraction-based measurements of strain. Generally the modeling and associated measurements have been performed for simple uniaxial tension, leaving questions with regard to plastic deformation under multi-axial stress and non-uniform stress. Extensive measurements of the strain profile across a plastic hinge for each of a series of loading and unloading cycles to progressively higher degrees of plastic deformation are presented. These measurements are used to assess multiple-length-scale finite-element modeling (FEM) of the plastic hinge, in which the elements will range in size from single crystallites (as used in successful simulations of uniaxial tension) to macroscopic elements (as typically used in FEM simulations). (orig.)

  17. Bayesian Subset Modeling for High-Dimensional Generalized Linear Models

    KAUST Repository

    Liang, Faming

    2013-06-01

    This article presents a new prior setting for high-dimensional generalized linear models, which leads to a Bayesian subset regression (BSR) with the maximum a posteriori model approximately equivalent to the minimum extended Bayesian information criterion model. The consistency of the resulting posterior is established under mild conditions. Further, a variable screening procedure is proposed based on the marginal inclusion probability, which shares the same properties of sure screening and consistency with the existing sure independence screening (SIS) and iterative sure independence screening (ISIS) procedures. However, since the proposed procedure makes use of joint information from all predictors, it generally outperforms SIS and ISIS in real applications. This article also makes extensive comparisons of BSR with the popular penalized likelihood methods, including Lasso, elastic net, SIS, and ISIS. The numerical results indicate that BSR can generally outperform the penalized likelihood methods. The models selected by BSR tend to be sparser and, more importantly, of higher prediction ability. In addition, the performance of the penalized likelihood methods tends to deteriorate as the number of predictors increases, while this is not significant for BSR. Supplementary materials for this article are available online. © 2013 American Statistical Association.

  18. When holography meets coherent diffraction imaging.

    Science.gov (United States)

    Latychevskaia, Tatiana; Longchamp, Jean-Nicolas; Fink, Hans-Werner

    2012-12-17

    The phase problem is inherent to crystallographic, astronomical and optical imaging where only the intensity of the scattered signal is detected and the phase information is lost and must somehow be recovered to reconstruct the object's structure. Modern imaging techniques at the molecular scale rely on utilizing novel coherent light sources like X-ray free electron lasers for the ultimate goal of visualizing such objects as individual biomolecules rather than crystals. Here, unlike in the case of crystals where structures can be solved by model building and phase refinement, the phase distribution of the wave scattered by an individual molecule must directly be recovered. There are two well-known solutions to the phase problem: holography and coherent diffraction imaging (CDI). Both techniques have their pros and cons. In holography, the reconstruction of the scattered complex-valued object wave is directly provided by a well-defined reference wave that must cover the entire detector area which often is an experimental challenge. CDI provides the highest possible, only wavelength limited, resolution, but the phase recovery is an iterative process which requires some pre-defined information about the object and whose outcome is not always uniquely-defined. Moreover, the diffraction patterns must be recorded under oversampling conditions, a pre-requisite to be able to solve the phase problem. Here, we report how holography and CDI can be merged into one superior technique: holographic coherent diffraction imaging (HCDI). An inline hologram can be recorded by employing a modified CDI experimental scheme. We demonstrate that the amplitude of the Fourier transform of an inline hologram is related to the complex-valued visibility, thus providing information on both, the amplitude and the phase of the scattered wave in the plane of the diffraction pattern. With the phase information available, the condition of oversampling the diffraction patterns can be relaxed, and the

  19. Electro-optic diffraction grating tuned laser

    International Nuclear Information System (INIS)

    Hughes, R.S.

    1975-01-01

    An electro-optic diffraction grating tuned laser comprising a laser medium, output mirror, retro-reflective grating and an electro-optic diffraction grating beam deflector positioned between the laser medium and the reflective diffraction grating is described. An optional angle multiplier may be used between the electro-optic diffraction grating and the reflective grating. (auth)

  20. A method of combining STEM image with parallel beam diffraction and electron-optical conditions for diffractive imaging

    International Nuclear Information System (INIS)

    He Haifeng; Nelson, Chris

    2007-01-01

    We describe a method of combining STEM imaging functionalities with nanoarea parallel beam electron diffraction on a modern TEM. This facilitates the search for individual particles whose diffraction patterns are needed for diffractive imaging or structural studies of nanoparticles. This also lays out a base for 3D diffraction data collection

  1. Solving protein nanocrystals by cryo-EM diffraction: Multiple scattering artifacts

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Ganesh [Department of Materials Science and Engineering, Arizona State University, Tempe, AZ (United States); Basu, Shibom [Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ (United States); Liu, Haiguang [Department of Physics, Arizona State University, Tempe, AZ 85287-1504 (United States); Zuo, Jian-Min [Department of Materials Science and Engineering, University of Illinois, Urbana, IL (United States); Spence, John C.H., E-mail: spence@asu.edu [Department of Physics, Arizona State University, Tempe, AZ 85287-1504 (United States)

    2015-01-15

    The maximum thickness permissible within the single-scattering approximation for the determination of the structure of perfectly ordered protein microcrystals by transmission electron diffraction is estimated for tetragonal hen-egg lysozyme protein crystals using several approaches. Multislice simulations are performed for many diffraction conditions and beam energies to determine the validity domain of the required single-scattering approximation and hence the limit on crystal thickness. The effects of erroneous experimental structure factor amplitudes on the charge density map for lysozyme are noted and their threshold limits calculated. The maximum thickness of lysozyme permissible under the single-scattering approximation is also estimated using R-factor analysis. Successful reconstruction of density maps is found to result mainly from the use of the phase information provided by modeling based on the protein data base through molecular replacement (MR), which dominates the effect of poor quality electron diffraction data at thicknesses larger than about 200 Å. For perfectly ordered protein nanocrystals, a maximum thickness of about 1000 Å is predicted at 200 keV if MR can be used, using R-factor analysis performed over a subset of the simulated diffracted beams. The effects of crystal bending, mosaicity (which has recently been directly imaged by cryo-EM) and secondary scattering are discussed. Structure-independent tests for single-scattering and new microfluidic methods for growing and sorting nanocrystals by size are reviewed. - Highlights: • Validity domain of single-scattering approximation for protein electron diffraction is assessed • Electron Diffraction for tetragonal hen-egg lysozyme is simulated using multislice. • Bias from the use of phase information in modeling by molecular replacement (MR) is evaluated. • We find an approximate upper thickness limit, if MR is used, of 100 nm. • A 35% error in structure factor magnitudes may be

  2. Inelastic nucleon diffraction at high energy

    International Nuclear Information System (INIS)

    Goggi, G.

    1975-01-01

    Experiments carried out at ISR and at FNAL which have yielded a substantial amount of data on double diffraction processes, which were unambiguously indentified and measured and which provide new tools to study the dynamical properties shared by different classes of diffractive reactions are identified. In this review interest is focused on the experimental aspects of inclusive and exclusive results both on single and double diffraction and on the problems arising from their comparison. Problems covered include; inclusive and semi-inclusive diffraction, multiparticle inclusive studies, single-particle inclusive studies, resonance region, high mass region, exclusive single diffractive reactions, mass spectra, cross sections, t-dependence, decay angular properties, and double diffraction. (U.K.)

  3. Structure determination of modulated structures by powder X-ray diffraction and electron diffraction

    Czech Academy of Sciences Publication Activity Database

    Zhou, Z.Y.; Palatinus, Lukáš; Sun, J.L.

    2016-01-01

    Roč. 3, č. 11 (2016), s. 1351-1362 ISSN 2052-1553 Institutional support: RVO:68378271 Keywords : electron diffraction * incommensurate structure * powder diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.036, year: 2016

  4. X-ray diffraction 2 - diffraction principles

    International Nuclear Information System (INIS)

    O'Connor, B.

    1999-01-01

    Full text: The computation of powder diffraction intensities is based on the principle that the powder pattern comprises the summation of the intensity contributions from each of the crystallites (or single crystals) in the material. Therefore, it is of value for powder diffractionists to appreciate the form of the expression for calculating single crystal diffraction pattern intensities. This knowledge is especially important for Rietveld analysis practitioners in terms of the (i) mathematics of the method and (ii) retrieving single crystal structure data from the literature. We consider the integrated intensity from a small single crystal being rotated at velocity ω through the Bragg angle θ for reflection (hkl).... I(hkl) = [l o /ω]. [e 4 /m 2 c 4 ]. [λ 3 δV F(hkl) 2 /υ 2 ].[(1+cos 2 2θ)/2sin2θ] where e, m and c are the usual fundamental constants; λ is the x-ray wavelength, δV is the crystallite volume; F(hkl) is the structure factor; υ is the unit cell volume; and (1+cos 2 θ)/2sin2θ] is the Lorentz-polarisation factor for an unpolarised incident beam. The expression does not include a contribution for extinction. The influence of factors λ, δV, F(hkl) and υ on the intensities should be appreciated by powder diffractionists, especially the structure factor, F(hkl), which is responsible for the fingerprint nature of diffraction patterns, such as the rise and fall of intensity from peak to peak. The structure factor expression represents the summation of the scattered waves from each of the j scattering centres (i e atoms) in the unit cell: F(hkl) Σ f j exp[2πi (h.x j +k.y i +l. z i )] T j . Symbol f is the scattering factor (representing the atom-type scattering efficiency); (x, y, z) are the fractional position coordinates of atom j within the unit cell; and T is the thermal vibration factor for the atom given by: T j = 8π 2 2 > sin 2 θ/λ 2 with 2 > being the mean-square vibration amplitude of the atom (assumed to be isotropic). The

  5. Diffraction and angular momentum effects in semiclassical atomic scattering theory

    International Nuclear Information System (INIS)

    Russek, A.

    1979-01-01

    The semiclassical scattering theory of Mott and Massey and Ford and Wheeler is here extended to multichannel scattering as occurs at a crossing or pseudocrossing of the transient molecule formed by the colliding atoms. The generalized theory incorporates both interference and diffraction phenomena, but the emphasis in this work is on diffraction. For small-angle scattering, diffraction effects become broader, not narrower, as the collision energy increases: ΔbΔtau > or = h[E/sub inc//(2m)]/sup 1/2/ relates the uncertainties in impact parameter b and reduced scattering angle tau = E/sub inc/theta, and determines the range in b required to resolve a structure in the deflection function of height Δtau. In the kilovolt range of collision energies, the effects of local maxima and minima in the deflection function are washed out, and the Airy-function approximation of Ford and Wheeler is inappropriate to describe the differential cross section. More generally, it is shown that at keV collision energies the stationary-phase approximation, heretofore essential in the reduction to the semiclassical limit, breaks down in the vicinity of a level crossing. An approximate theorem is proposed which remains valid in this region and elsewhere reduces to the standard stationary-phase approximation. Several illustrative examples are considered. A separate development treats the effect on the differential scattering cross section of a change in electronic angular momentum when electronic excitation occurs

  6. A Generalized Deduction of the Ideal-Solution Model

    Science.gov (United States)

    Leo, Teresa J.; Perez-del-Notario, Pedro; Raso, Miguel A.

    2006-01-01

    A new general procedure for deriving the Gibbs energy of mixing is developed through general thermodynamic considerations, and the ideal-solution model is obtained as a special particular case of the general one. The deduction of the Gibbs energy of mixing for the ideal-solution model is a rational one and viewed suitable for advanced students who…

  7. Study of optical Laue diffraction

    International Nuclear Information System (INIS)

    Chakravarthy, Giridhar; Allam, Srinivasa Rao; Satyanarayana, S. V. M.; Sharan, Alok

    2014-01-01

    We present the study of the optical diffraction pattern of one and two-dimensional gratings with defects, designed using desktop pc and printed on OHP sheet using laser printer. Gratings so prepared, using novel low cost technique provides good visual aid in teaching. Diffraction pattern of the monochromatic light (632.8nm) from the grating so designed is similar to that of x-ray diffraction pattern of crystal lattice with point defects in one and two-dimensions. Here both optical and x-ray diffractions are Fraunhofer. The information about the crystalline lattice structure and the defect size can be known

  8. Study of optical Laue diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Chakravarthy, Giridhar, E-mail: cgiridhar84@gmail.com, E-mail: aloksharan@email.com; Allam, Srinivasa Rao, E-mail: cgiridhar84@gmail.com, E-mail: aloksharan@email.com; Satyanarayana, S. V. M., E-mail: cgiridhar84@gmail.com, E-mail: aloksharan@email.com; Sharan, Alok, E-mail: cgiridhar84@gmail.com, E-mail: aloksharan@email.com [Department of Physics, Pondicherry University, Puducherry-605014 (India)

    2014-10-15

    We present the study of the optical diffraction pattern of one and two-dimensional gratings with defects, designed using desktop pc and printed on OHP sheet using laser printer. Gratings so prepared, using novel low cost technique provides good visual aid in teaching. Diffraction pattern of the monochromatic light (632.8nm) from the grating so designed is similar to that of x-ray diffraction pattern of crystal lattice with point defects in one and two-dimensions. Here both optical and x-ray diffractions are Fraunhofer. The information about the crystalline lattice structure and the defect size can be known.

  9. Diffraction: what do we know; what can we learn

    International Nuclear Information System (INIS)

    Randa, J.

    1983-05-01

    High energy diffractive scattering is reviewed. We first summarize experimental results and information gleaned from geometric and optical models. We then discuss dynamics from the perspectives of hadron structure and Pomeron structure. Particular emphasis is placed on investigating hadron structure using a simple model of the Pomeron. 58 references

  10. Diffractive jet production in deep-inelastic e+p collisions at HERA

    International Nuclear Information System (INIS)

    Adloff, C.; Andreev, V.; Andrieu, B.

    2001-01-01

    A measurement is presented of dijet and 3-jet cross sections in low- vertical stroke t vertical stroke diffractive deep-inelastic scattering interactions of the type ep →eXY, where the system X is separated by a large rapidity gap from a low-mass baryonic system Y. Data taken with the H1 detector at HERA, corresponding to an integrated luminosity of 18.0 pb -1 , are used to measure hadron level single and double differential cross sections for 4 2 2 , x P T,jet >4 GeV. The energy flow not attributed to jets is also investigated. The measurements are consistent with a factorising diffractive exchange with trajectory intercept close to 1.2 and tightly constrain the dominating diffractive gluon distribution. Viewed in terms of the diffractive scattering of partonic fluctuations of the photon, the data require the dominance of qqg over qq states. Soft colour neutralisation models in their present form cannot simultaneously reproduce the shapes and the normalisations of the differential cross sections. Models based on 2-gluon exchange are able to reproduce the shapes of the cross sections at low x P values. (orig.)

  11. Large-t elastic scattering and diffraction dissocation

    International Nuclear Information System (INIS)

    Timmermans, J.

    1985-05-01

    Recent results, both from the ISR and the SantippS Collider, on proton-antiproton elastic scattering at large values of the four-momentum transfer squared, are presented. The results are compared with predictions of several theoretical models of high-energy collisions. Single diffraction dissociation at the Collider is also discussed. (orig.)

  12. Topics in the generalized vector dominance model

    International Nuclear Information System (INIS)

    Chavin, S.

    1976-01-01

    Two topics are covered in the generalized vector dominance model. In the first topic a model is constructed for dilepton production in hadron-hadron interactions based on the idea of generalized vector-dominance. It is argued that in the high mass region the generalized vector-dominance model and the Drell-Yan parton model are alternative descriptions of the same underlying physics. In the low mass regions the models differ; the vector-dominance approach predicts a greater production of dileptons. It is found that the high mass vector mesons which are the hallmark of the generalized vector-dominance model make little contribution to the large yield of leptons observed in the transverse-momentum range 1 less than p/sub perpendicular/ less than 6 GeV. The recently measured hadronic parameters lead one to believe that detailed fits to the data are possible under the model. The possibility was expected, and illustrated with a simple model the extreme sensitivity of the large-p/sub perpendicular/ lepton yield to the large-transverse-momentum tail of vector-meson production. The second topic is an attempt to explain the mysterious phenomenon of photon shadowing in nuclei utilizing the contribution of the longitudinally polarized photon. It is argued that if the scalar photon anti-shadows, it could compensate for the transverse photon, which is presumed to shadow. It is found in a very simple model that the scalar photon could indeed anti-shadow. The principal feature of the model is a cancellation of amplitudes. The scheme is consistent with scalar photon-nucleon data as well. The idea is tested with two simple GVDM models and finds that the anti-shadowing contribution of the scalar photon is not sufficient to compensate for the contribution of the transverse photon. It is found doubtful that the scalar photon makes a significant contribution to the total photon-nuclear cross section

  13. A Generalized Random Regret Minimization Model

    NARCIS (Netherlands)

    Chorus, C.G.

    2013-01-01

    This paper presents, discusses and tests a generalized Random Regret Minimization (G-RRM) model. The G-RRM model is created by replacing a fixed constant in the attribute-specific regret functions of the RRM model, by a regret-weight variable. Depending on the value of the regret-weights, the G-RRM

  14. The DINA model as a constrained general diagnostic model: Two variants of a model equivalency.

    Science.gov (United States)

    von Davier, Matthias

    2014-02-01

    The 'deterministic-input noisy-AND' (DINA) model is one of the more frequently applied diagnostic classification models for binary observed responses and binary latent variables. The purpose of this paper is to show that the model is equivalent to a special case of a more general compensatory family of diagnostic models. Two equivalencies are presented. Both project the original DINA skill space and design Q-matrix using mappings into a transformed skill space as well as a transformed Q-matrix space. Both variants of the equivalency produce a compensatory model that is mathematically equivalent to the (conjunctive) DINA model. This equivalency holds for all DINA models with any type of Q-matrix, not only for trivial (simple-structure) cases. The two versions of the equivalency presented in this paper are not implied by the recently suggested log-linear cognitive diagnosis model or the generalized DINA approach. The equivalencies presented here exist independent of these recently derived models since they solely require a linear - compensatory - general diagnostic model without any skill interaction terms. Whenever it can be shown that one model can be viewed as a special case of another more general one, conclusions derived from any particular model-based estimates are drawn into question. It is widely known that multidimensional models can often be specified in multiple ways while the model-based probabilities of observed variables stay the same. This paper goes beyond this type of equivalency by showing that a conjunctive diagnostic classification model can be expressed as a constrained special case of a general compensatory diagnostic modelling framework. © 2013 The British Psychological Society.

  15. Diffraction attraction

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Elastic scattering – when colliding particles 'bounce' off each other like billiard balls – has always had a special interest for high energy physicists. While its simplicity makes for deep analogies with classical ideas like diffraction, its jbtle details also test our understanding of the intricate inner mechanisms which drive particle interactions. With a new stock of elastic scattering data now available thanks to experiments at the CERN proton-antiproton Collider, and with studies at higher energies imminent or planned, some seventy physicists gathered in the magnificent chateau at Blois, France, for a 'Workshop on Elastic and Diffractive Scattering at the Collider and Beyond'

  16. Diffraction attraction

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-03-15

    Elastic scattering – when colliding particles 'bounce' off each other like billiard balls – has always had a special interest for high energy physicists. While its simplicity makes for deep analogies with classical ideas like diffraction, its jbtle details also test our understanding of the intricate inner mechanisms which drive particle interactions. With a new stock of elastic scattering data now available thanks to experiments at the CERN proton-antiproton Collider, and with studies at higher energies imminent or planned, some seventy physicists gathered in the magnificent chateau at Blois, France, for a 'Workshop on Elastic and Diffractive Scattering at the Collider and Beyond'.

  17. Log-normal frailty models fitted as Poisson generalized linear mixed models.

    Science.gov (United States)

    Hirsch, Katharina; Wienke, Andreas; Kuss, Oliver

    2016-12-01

    The equivalence of a survival model with a piecewise constant baseline hazard function and a Poisson regression model has been known since decades. As shown in recent studies, this equivalence carries over to clustered survival data: A frailty model with a log-normal frailty term can be interpreted and estimated as a generalized linear mixed model with a binary response, a Poisson likelihood, and a specific offset. Proceeding this way, statistical theory and software for generalized linear mixed models are readily available for fitting frailty models. This gain in flexibility comes at the small price of (1) having to fix the number of pieces for the baseline hazard in advance and (2) having to "explode" the data set by the number of pieces. In this paper we extend the simulations of former studies by using a more realistic baseline hazard (Gompertz) and by comparing the model under consideration with competing models. Furthermore, the SAS macro %PCFrailty is introduced to apply the Poisson generalized linear mixed approach to frailty models. The simulations show good results for the shared frailty model. Our new %PCFrailty macro provides proper estimates, especially in case of 4 events per piece. The suggested Poisson generalized linear mixed approach for log-normal frailty models based on the %PCFrailty macro provides several advantages in the analysis of clustered survival data with respect to more flexible modelling of fixed and random effects, exact (in the sense of non-approximate) maximum likelihood estimation, and standard errors and different types of confidence intervals for all variance parameters. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. A Note on the Identifiability of Generalized Linear Mixed Models

    DEFF Research Database (Denmark)

    Labouriau, Rodrigo

    2014-01-01

    I present here a simple proof that, under general regularity conditions, the standard parametrization of generalized linear mixed model is identifiable. The proof is based on the assumptions of generalized linear mixed models on the first and second order moments and some general mild regularity...... conditions, and, therefore, is extensible to quasi-likelihood based generalized linear models. In particular, binomial and Poisson mixed models with dispersion parameter are identifiable when equipped with the standard parametrization...

  19. The analysis of powder diffraction data

    International Nuclear Information System (INIS)

    David, W.I.F.; Harrison, W.T.A.

    1986-01-01

    The paper reviews neutron powder diffraction data analysis, with emphasis on the structural aspects of powder diffraction and the future possibilities afforded by the latest generation of very high resolution neutron and x-ray powder diffractometers. Traditional x-ray powder diffraction techniques are outlined. Structural studies by powder diffraction are discussed with respect to the Rietveld method, and a case study in the Rietveld refinement method and developments of the Rietveld method are described. Finally studies using high resolution powder diffraction at the Spallation Neutron Source, ISIS at the Rutherford Appleton Laboratory are summarized. (U.K.)

  20. Periodically distributed objects with quasicrystalline diffraction pattern

    Energy Technology Data Exchange (ETDEWEB)

    Wolny, Janusz, E-mail: wolny@fis.agh.edu.pl; Strzalka, Radoslaw [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland); Kuczera, Pawel [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland); Laboratory of Crystallography, ETH Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich (Switzerland)

    2015-03-30

    It is possible to construct fully periodically distributed objects with a diffraction pattern identical to the one obtained for quasicrystals. These objects are probability distributions of distances obtained in the statistical approach to aperiodic structures distributed periodically. The diffraction patterns have been derived by using a two-mode Fourier transform—a very powerful method not used in classical crystallography. It is shown that if scaling is present in the structure, this two-mode Fourier transform can be reduced to a regular Fourier transform with appropriately rescaled scattering vectors and added phases. Detailed case studies for model sets 1D Fibonacci chain and 2D Penrose tiling are discussed. Finally, it is shown that crystalline, quasicrystalline, and approximant structures can be treated in the same way.

  1. About statistical process contribution to elastic diffraction scattering

    International Nuclear Information System (INIS)

    Ismanov, E.I.; Dzhuraev, Sh. Kh.; Paluanov, B.K.

    1999-01-01

    The experimental data on angular distribution show two basic properties. The first one is the presence of back and front peaks. The second one is the angular isotropic distribution near 90 degree, and has a big energy dependence. Different models for partial amplitudes a dl of the diffraction statistical scattering, particularly the model with Gaussian and exponential density distribution, were considered. The experimental data on pp-scattering were analyzed using the examined models

  2. Odd-order o.d.f. expansion coefficient determination. Case of diffraction strain measurements on cubic materials under macrostress loading

    International Nuclear Information System (INIS)

    Brakman, C.M.

    1985-01-01

    Diffraction intensity pole figures are often used for the determination of orientation distribution function (o.d.f.) expansion coefficients. The intensity can be seen as a convolution of the o.d.f. times unity with respect to one rotation angle (about the direction of measurement). The 'normal' polycrystalline diffraction experiment only yields the even-order o.d.f. coefficients. The experiment itself imposes a centre of inversion even upon non-centrosymmetric crystals. Crystals may exhibit a centre of inversion themselves. The hkl and anti hanti kanti l contributions to the intensity are indistinguishable then owing to the centre of inversion. As a consequence, the odd-order coefficients cannot be determined. The mean value of a general physical property determined by means of diffraction can be taken as a convolution of the o.d.f. times the single-crystal value of the physical property with respect to the rotation angle mentioned before. The dependency of the physical property on the rotation angle leads to more information being extracted from the o.d.f. in the property's mean-value pole figure. Then, all o.d.f. coefficients may be present in the mean value, i.e. the measurement. Consequently, diffraction-line-shift strain pole figures exhibit even- and odd-order o.d.f. coefficients, present or induced centres of inversion notwithstanding. If the dependency of the single-crystal strain on the rotation angle is known no model of elastic polycrystal coupling is needed. However, this does not occur in practice. The present state of the art does not allow the Kroener model to be used for textured materials. In this paper the Reuss model is used. If the (applied) macrostresses are known, the o.d.f. coefficients can be obtained from the formulae presented. (orig.)

  3. Comparative study of macrotexture analysis using X-ray diffraction and electron backscattered diffraction techniques

    International Nuclear Information System (INIS)

    Serna, Marilene Morelli

    2002-01-01

    The macrotexture is one of the main characteristics in metallic materials, which the physical properties depend on the crystallographic direction. The analysis of the macrotexture to middles of the decade of 80 was just accomplished by the techniques of Xray diffraction and neutrons diffraction. The possibility of the analysis of the macrotexture using, the technique of electron backscattering diffraction in the scanning electronic microscope, that allowed to correlate the measure of the orientation with its location in the micro structure, was a very welcome tool in the area of engineering of materials. In this work it was studied the theoretical aspects of the two techniques and it was used of both techniques for the analysis of the macrotexture of aluminum sheets 1050 and 3003 with intensity, measured through the texture index 'J', from 2.00 to 5.00. The results obtained by the two techniques were shown reasonably similar, being considered that the statistics of the data obtained by the technique of electron backscatter diffraction is much inferior to the obtained by the X-ray diffraction. (author)

  4. Quantitative study of Portland cement hydration by X-Ray diffraction/Rietveld analysis and geochemical modeling

    Science.gov (United States)

    Coutelot, F.; Seaman, J. C.; Simner, S.

    2017-12-01

    In this study the hydration of Portland cements containing blast-furnace slag and type V fly ash were investigated during cement curing using X-ray diffraction, with geochemical modeling used to calculate the total volume of hydrates. The goal was to evaluate the relationship between the starting component levels and the hydrate assemblages that develop during the curing process. Blast furnace-slag levels of 60, 45 and 30 wt.% were studied in blends containing fly ash and Portland cement. Geochemical modelling described the dissolution of the clinker, and predicted quantitatively the amount of hydrates. In all cases the experiments showed the presence of C-S-H, portlandite and ettringite. The quantities of ettringite, portlandite and the amorphous phases as determined by XRD agreed well with the calculated amounts of these phases after different periods of time. These findings show that changes in the bulk composition of hydrating cements can be described by geochemical models. Such a comparison between experimental and modelled data helps to understand in more detail the active processes occurring during cement hydration.

  5. Multiple phase transitions in the generalized Curie-Weiss model

    International Nuclear Information System (INIS)

    Eisele, T.; Ellis, R.S.

    1988-01-01

    The generalized Curie-Weiss model is an extension of the classical Curie-Weiss model in which the quadratic interaction function of the mean spin value is replaced by a more general interaction function. It is shown that the generalized Curie-Weiss model can have a sequence of phase transitions at different critical temperatures. Both first-order and second-order phase transitions can occur, and explicit criteria for the two types are given. Three examples of generalized Curie-Weiss models are worked out in detail, including one example with infinitely many phase transitions. A number of results are derived using large-deviation techniques

  6. Periodic oscillations of discrete NLS solitons in the presence of diffraction management

    International Nuclear Information System (INIS)

    Panayotaros, Panayotis; Pelinovsky, Dmitry

    2008-01-01

    We consider the discrete NLS equation with a small-amplitude time-periodic diffraction coefficient which models diffraction management in nonlinear lattices. In the space of one dimension and at the zero-amplitude diffraction management, multi-peak localized modes (called discrete solitons or discrete breathers) are stationary solutions of the discrete NLS equation which are uniquely continued from the anti-continuum limit, where they are compactly supported on finitely many non-zero nodes. We prove that the multi-peak localized modes are uniquely continued to the time-periodic space-localized solutions for small-amplitude diffraction management if the period of the diffraction coefficient is not multiple to the period of the stationary solution. The same result is extended to multi-peaked localized modes in the space of two and three dimensions (which include discrete vortices) under additional non-degeneracy assumptions on the stationary solutions in the anti-continuum limit

  7. Materials identification using a small-scale pixellated x-ray diffraction system

    International Nuclear Information System (INIS)

    O’Flynn, D; Crews, C; Drakos, I; Christodoulou, C; Speller, R D; Wilson, M D; Veale, M C; Seller, P

    2016-01-01

    A transmission x-ray diffraction system has been developed using a pixellated, energy-resolving detector (HEXITEC) and a small-scale, mains operated x-ray source (Amptek Mini-X). HEXITEC enables diffraction to be measured without the requirement of incident spectrum filtration, or collimation of the scatter from the sample, preserving a large proportion of the useful signal compared with other diffraction techniques. Due to this efficiency, sufficient molecular information for material identification can be obtained within 5 s despite the relatively low x-ray source power. Diffraction data are presented from caffeine, hexamine, paracetamol, plastic explosives and narcotics. The capability to determine molecular information from aspirin tablets inside their packaging is demonstrated. Material selectivity and the potential for a sample classification model is shown with principal component analysis, through which each different material can be clearly resolved. (paper)

  8. Takagi-Taupin description of x-ray dynamical diffraction from diffractive optics with large numerical aperture

    International Nuclear Information System (INIS)

    Yan Hanfei; Maser, Joerg; Macrander, Albert; Shen Qun; Vogt, Stefan; Stephenson, G. Brian; Kang, Hyon Chol

    2007-01-01

    We present a formalism of x-ray dynamical diffraction from volume diffractive optics with large numerical aperture and high aspect ratio, in an analogy to the Takagi-Taupin equations [Acta Crystallogr. 15, 1311 (1962); Bull. Soc. Fr. Mineral. Crystallogr. 87, 469 (1964)] for strained single crystals. We derive a set of basic equations for dynamical diffraction from volume diffractive optics, which enable us to study the focusing property of these optics with various grating profiles. We study volume diffractive optics that satisfy the Bragg condition to various degrees, namely, flat, tilted, and wedged geometries, and derive the curved geometries required for ultimate focusing. We show that the curved geometries satisfy both the Bragg condition everywhere and phase requirement for point focusing and effectively focus hard x rays to a scale close to the wavelength. Our calculations were made for an x-ray wavelength of 0.064 nm (19.5 keV)

  9. Universal fit to p-p elastic diffraction scattering from the Lorentz contracted geometrical model

    International Nuclear Information System (INIS)

    Hansen, P.H.; Krisch, A.D.

    1976-01-01

    The prediction of the Lorentz contracted geometical model for proton-proton elastic scattering at small angles is examined. The model assumes that when two high energy particles collide, each behaves as a geometrical object which has a Gaussian density and is spherically symmetric except for the Lorentz contraction in the incident direction. It is predicted that dsigma/dt should be independent of energy when plotted against the variable β 2 P 2 sub(perpendicular) sigmasub(TOT)(s)/38.3. Thus the energy dependence of the diffraction peak slope (b in an esup(-b mod(t))plot) is given by b(s)=A 2 β 2 sigmasub(TOT)(s)/38.3 where β is the proton's c.m. velocity and A is its radius. Recently measured values of sigmasub(TOT)(s) were used and an excellent fit obtained to the elastic slope in both t regions [-t 2 and 0.1 2 ] at all energies from s=6 to 4000(GeV/c) 2 . (Auth.)

  10. X-ray diffraction and local order modelling of GexSesub(1-x) amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Malaurent, J C; Dixmier, J [Paris-11 Univ., 91 - Orsay (France). Lab. de Physique des Solides

    1980-01-01

    X-ray diffraction studies are made for GexSesub(1-x) glasses with 0 < x < 0.4. Interference functions exhibit a peculiar peak at about 1 Angstroem/sup -1/. The areas of the first two peaks of the Radial Distribution Functions increase with X. According to the experimental results, a random network model is made of Ge atoms with coordination number four and Se atoms with coordination number two. A computer program sets atoms one by one by allowing free rotation about all bonds. First results of this model are presented. Calculated interference functions are compared with the experimental curve for X = 0.2. We draw attention to the first peak at about 1 Angstroem/sup -1/. Results are in agreement with optical absorption edge measurements and Raman scattering experiments by P. Tronc and al., i.e. there is no Ge-Ge bond and furthermore, Ge-Se-Ge sequences remain scarce, as long as the germanium concentration of the mixture makes its possible.

  11. CMS results on hard diffraction

    CERN Document Server

    INSPIRE-00107098

    2013-01-01

    In these proceedings we present CMS results on hard diffraction. Diffractive dijet production in pp collisions at $\\sqrt{s}$=7 TeV is discussed. The cross section for dijet production is presented as a function of $\\tilde{\\xi}$, representing the fractional momentum loss of the scattered proton in single-diffractive events. The observation of W and Z boson production in events with a large pseudo-rapidity gap is also presented.

  12. Generalization of the quark rearrangement model

    International Nuclear Information System (INIS)

    Fields, T.; Chen, C.K.

    1976-01-01

    An extension and generalization of the quark rearrangement model of baryon annihilation is described which can be applied to all annihilation reactions and which incorporates some of the features of the highly successful quark parton model. Some p anti-p interactions are discussed

  13. New structural studies of liquid crystal by reflectivity and resonant X-ray diffraction; Nouvelles etudes structurales de cristaux liquides par reflectivite et diffraction resonante des rayons X

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, P

    2007-04-15

    This memory presents three structural studies of smectic Liquid Crystals by reflectivity and resonant diffraction of X-rays. It is divided in five chapters. In the first a short introduction to Liquid Crystals is given. In particular, the smectic phases that are the object of this study are presented. The second chapter is consecrated to the X-ray experimental techniques that were used in this work. The three last chapters present the works on which this thesis can be divided. Chapter three demonstrates on free-standing films of MHPOBC (historic liquid crystal that possesses the antiferroelectric sub-phases) the possibility to extend the technique of resonant X-ray diffraction to liquid crystals without resonant element. In the fourth chapter the structure of the B{sub 2} liquid crystal phase of bent-core molecules (or banana molecules) is elucidated by using resonant X-ray diffraction combined with polarization analysis of the diffracted beam. A model of the polarization of the resonant beam diffracted by four different structures proposed for the B{sub 2} phase is developed in this chapter. In the fifth chapter a smectic binary mixture presenting a very original critical point of phase separation is studied by X-ray reflectivity and optical microscopy. A concentration gradient in the direction perpendicular to the plane of the film seems to be induced by the free-standing film geometry. The results of a simplified model of the system are compatible with this interpretation.

  14. Observation of parametric X-ray radiation in an anomalous diffraction region

    Energy Technology Data Exchange (ETDEWEB)

    Alexeyev, V.I., E-mail: vial@x4u.lebedev.ru [P.N. Lebedev Physical Institute RAS, 53 Leninskiy prospect, Moscow (Russian Federation); Belgorod National Research University, 85 Pobedy st., Belgorod (Russian Federation); Eliseyev, A.N., E-mail: elisseev@pluton.lpi.troitsk.ru [P.N. Lebedev Physical Institute RAS, 53 Leninskiy prospect, Moscow (Russian Federation); Belgorod National Research University, 85 Pobedy st., Belgorod (Russian Federation); Irribarra, E., E-mail: esteban.irribarra@epn.edu.ec [Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito (Ecuador); Kishin, I.A., E-mail: ivan.kishin@mail.ru [P.N. Lebedev Physical Institute RAS, 53 Leninskiy prospect, Moscow (Russian Federation); Belgorod National Research University, 85 Pobedy st., Belgorod (Russian Federation); Kubankin, A.S., E-mail: kubankin@bsu.edu.ru [P.N. Lebedev Physical Institute RAS, 53 Leninskiy prospect, Moscow (Russian Federation); Belgorod National Research University, 85 Pobedy st., Belgorod (Russian Federation); Nazhmudinov, R.M., E-mail: fizeg@bk.ru [P.N. Lebedev Physical Institute RAS, 53 Leninskiy prospect, Moscow (Russian Federation); Belgorod National Research University, 85 Pobedy st., Belgorod (Russian Federation)

    2016-08-19

    A new possibility to expand the energy region of diffraction processes based on the interaction of relativistic charged particles with crystalline structures is presented. Diffracted photons related to parametric X-ray radiation produced by relativistic electrons are detected below the low energy threshold for the X-ray diffraction mechanism in crystalline structures for the first time. The measurements were performed during the interaction of 7 MeV electrons with a textured polycrystalline tungsten foil and a highly oriented pyrolytic graphite crystal. The experiment results are in good agreement with a developed model based on the PXR kinematical theory. The developed experimental approach can be applied to separate the contributions of real and virtual photons to the total diffracted radiation generated during the interaction of relativistic charged particles with crystalline targets. - Highlights: • Parametric X-ray radiation below the low energy threshold for diffraction of free X-rays. • Experimental separation of the contributions from different radiation mechanisms. • PXR from relativistic electrons in mosaic crystals and textured polycrystlas.

  15. Large-t elastic scattering and diffraction dissocation

    International Nuclear Information System (INIS)

    Timmermans, J.

    1985-01-01

    Recent results, both from the ISR and the S anti p pS Collider, on proton-antiproton elastic scattering at large values of the four-momentum transfer squared, are presented. The results are compared with predictions of several theoretical models of high-energy collisions. Single diffraction dissociation at the Collider is also discussed. (author)

  16. A generalized logarithmic image processing model based on the gigavision sensor model.

    Science.gov (United States)

    Deng, Guang

    2012-03-01

    The logarithmic image processing (LIP) model is a mathematical theory providing generalized linear operations for image processing. The gigavision sensor (GVS) is a new imaging device that can be described by a statistical model. In this paper, by studying these two seemingly unrelated models, we develop a generalized LIP (GLIP) model. With the LIP model being its special case, the GLIP model not only provides new insights into the LIP model but also defines new image representations and operations for solving general image processing problems that are not necessarily related to the GVS. A new parametric LIP model is also developed. To illustrate the application of the new scalar multiplication operation, we propose an energy-preserving algorithm for tone mapping, which is a necessary step in image dehazing. By comparing with results using two state-of-the-art algorithms, we show that the new scalar multiplication operation is an effective tool for tone mapping.

  17. Powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Hart, M.

    1995-12-31

    the importance of x-ray powder diffraction as an analytical tool for phase identification of materials was first pointed out by Debye and Scherrer in Germany and, quite independently, by Hull in the US. Three distinct periods of evolution lead to ubiquitous application in many fields of science and technology. In the first period, until the mid-1940`s, applications were and developed covering broad categories of materials including inorganic materials, minerals, ceramics, metals, alloys, organic materials and polymers. During this formative period, the concept of quantitative phase analysis was demonstrated. In the second period there followed the blossoming of technology and commercial instruments became widely used. The history is well summarized by Parrish and by Langford and Loueer. By 1980 there were probably 10,000 powder diffractometers in routine use, making it the most widely used of all x-ray crystallographic instruments. In the third, present, period data bases became firmly established and sophisticated pattern fitting and recognition software made many aspects of powder diffraction analysis routine. High resolution, tunable powder diffractometers were developed at sources of synchrotron radiation. The tunability of the spectrum made it possible to exploit all the subtleties of x-ray spectroscopy in diffraction experiments.

  18. Powder diffraction

    International Nuclear Information System (INIS)

    Hart, M.

    1995-01-01

    The importance of x-ray powder diffraction as an analytical tool for phase identification of materials was first pointed out by Debye and Scherrer in Germany and, quite independently, by Hull in the US. Three distinct periods of evolution lead to ubiquitous application in many fields of science and technology. In the first period, until the mid-1940's, applications were and developed covering broad categories of materials including inorganic materials, minerals, ceramics, metals, alloys, organic materials and polymers. During this formative period, the concept of quantitative phase analysis was demonstrated. In the second period there followed the blossoming of technology and commercial instruments became widely used. The history is well summarized by Parrish and by Langford and Loueer. By 1980 there were probably 10,000 powder diffractometers in routine use, making it the most widely used of all x-ray crystallographic instruments. In the third, present, period data bases became firmly established and sophisticated pattern fitting and recognition software made many aspects of powder diffraction analysis routine. High resolution, tunable powder diffractometers were developed at sources of synchrotron radiation. The tunability of the spectrum made it possible to exploit all the subtleties of x-ray spectroscopy in diffraction experiments

  19. Diffractive production of ρ-mesons and of ρπ-systems by neutrinos and antineutrinos on protons

    Science.gov (United States)

    Jones, G. T.; Jones, R. W. L.; Kennedy, B. W.; Morrison, D. R. O.; Miller, D. B.; Mobayyen, M. M.; Wainstein, S.; Aderholz, M.; Hantke, D.; Katz, U. F.; Kern, J.; Schmitz, N.; Wittek, W.; Borner, H. P.; Myatt, G.; Bullock, F. W.; Burke, S.

    1993-09-01

    Evidence is presented for diffractive production of ρ-mesons and of ρπ-systems in vp andbar ν p chargedcurrent interactions. In the (anti-)neutrino energy range 10 GeV< E v <60 GeV the cross sections for diffractive ρ and diffractive ρπ production are found to be (0.64±0.14 (stat.)±0.08 (syst.))% and (0.28±0.08 (stat.)±0.04 (syst.))% of the charged-current cross section. The diffractive ρπ signal is consistent with being entirely due to diffractive a 1 production. However, the data cannot distinguish between diffractive a 1 and diffractive nonresonant ρπ production. The experimental distributions of W, Q 2, x Bj and y Bj for diffractive ρ and ρπ events are consistent with model predictions.

  20. Quantitative measurement of phase variation amplitude of ultrasonic diffraction grating based on diffraction spectral analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Meiyan, E-mail: yphantomohive@gmail.com; Zeng, Yingzhi; Huang, Zuohua, E-mail: zuohuah@163.com [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, Guangdong 510006 (China)

    2014-09-15

    A new method based on diffraction spectral analysis is proposed for the quantitative measurement of the phase variation amplitude of an ultrasonic diffraction grating. For a traveling wave, the phase variation amplitude of the grating depends on the intensity of the zeroth- and first-order diffraction waves. By contrast, for a standing wave, this amplitude depends on the intensity of the zeroth-, first-, and second-order diffraction waves. The proposed method is verified experimentally. The measured phase variation amplitude ranges from 0 to 2π, with a relative error of approximately 5%. A nearly linear relation exists between the phase variation amplitude and driving voltage. Our proposed method can also be applied to ordinary sinusoidal phase grating.

  1. Influence of the crystal-surface unevenness on the angular spread of an x-ray diffracted beam

    International Nuclear Information System (INIS)

    Hrda, JaromIra; Potlovskiy, Kirill; Hrdy, JaromIr; Slechtova, Venceslava

    2005-01-01

    One of the factors influencing the focus size in diffractive-refractive optics is the quality of diffracting surface. If the surface is uneven, as it is when the silicon crystal surface is only etched, then the diffraction at each point of the surface is a combination of an asymmetric and inclined diffraction (general asymmetric diffraction). This somewhat deviates and spreads the diffracted beam. The integration over the surface hit by an incident beam gives the angular spread of the diffracted beam. It is shown theoretically that in some cases (highly asymmetric, highly inclined cut) the etched surface may create the spread of the diffracted beam such that it causes a significant broadening of the focus. In this case a mechanical-chemical polishing is necessary. This has been verified by us earlier in a preliminary experiment with synchrotron radiation. In this work the new experiment with the same crystals is performed using double crystal (+, -) arrangement and a laboratory x-ray source (CuKα radiation). We compared two samples; one of them is mechanically-chemically (MC) polished and thus the diffracting surface is almost perfect; the other is only etched. This experiment allows a better comparison of the result with the theory. The difference between the measured rocking curve widths for the etched and MC polished crystals (10'') roughly agrees with theory (7''), which supports the correctness of the theoretical approach

  2. Inclusive measurement of diffractive deep-inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G.; Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y.; Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N.; Baghdasaryan, A.; Baghdasaryan, S.; Zohrabyan, H.; Barrelet, E.; Bartel, W.; Belov, P.; Brandt, G.; Brinkmann, M.; Britzger, D.; Campbell, A.J.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Habib, S.; Haidt, D.; Kleinwort, C.; Kraemer, M.; Levonian, S.; Lipka, K.; List, B.; List, J.; Lobodzinski, B.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Nowak, K.; Olsson, J.E.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Radescu, V.; Schmitt, S.; Sefkow, F.; Shushkevich, S.; South, D.; Steder, M.; Wuensch, E.; Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B.; Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F.; Boudry, V.; Moreau, F.; Specka, A.; Bozovic-Jelisavcic, I.; Pandurovic, M.; Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Thompson, P.D.; Bruncko, D.; Cerny, V.; Ferencei, J.; Bunyatyan, A.; Bylinkin, A.; Bystritskaya, L.; Fedotov, A.; Lubimov, V.; Ozerov, D.; Rostovtsev, A.; Zhokin, A.; Cantun Avila, K.B.; Contreras, J.G.; Ruiz Tabasco, J.E.; Ceccopieri, F.; Delvax, J.; Wolf, E.A. de; Favart, L.; Hreus, T.; Janssen, X.; Roosen, R.; Staykova, Z.; Mechelen, P. van; Cerny, K.; Pokorny, B.; Polifka, R.; Salek, D.; Valkarova, A.; Zacek, J.; Zlebcik, R.; Chekelian, V.; Dossanov, A.; Grindhammer, G.; Kiesling, C.; Coughlan, J.A.; Morris, J.V.; Sankey, D.P.C.; Cvach, J.; Hladky, J.; Reimer, P.; Zalesak, J.; Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D.; Daum, K.; Meyer, H.; Diaconu, C.; Hoffmann, D.; Sauvan, E.; Vallee, C.; Dobre, M.; Kogler, R.; Dodonov, V.; Povh, B.; Egli, S.; Hildebrandt, M.; Horisberger, R.; Feltesse, J.; Perez, E.; Schoeffel, L.; Goerlich, L.; Mikocki, S.; Milcewicz-Mika, I.; Nowak, G.; Sopicki, P.; Turnau, J.; Grab, C.; Henderson, R.C.W.; Sloan, T.; Hennekemper, E.; Herbst, M.; Krueger, K.; Lendermann, V.; Schultz-Coulon, H.C.; Henschel, H.; Hiller, K.H.; Kostka, P.; Lange, W.; Naumann, T.; Herrera, G.; Lopez-Fernandez, R.; Huber, F.; Pirumov, H.; Sauter, M.; Schoening, A.; Joensson, L.; Jung, H.; Kapichine, M.; Morozov, A.; Nikitin, D.; Palichik, V.; Spaskov, V.; Landon, M.P.J.; Rizvi, E.; Traynor, D.; Martyn, H.U.; Mueller, K.; Robmann, P.; Straumann, U.; Truoel, P.; Stella, B.; Sykora, T.; Tsakov, I.; Wegener, D.

    2012-01-01

    The diffractive process ep→eXY, where Y denotes a proton or its low mass excitation with M Y 2 ≤ 1600 GeV 2 , the square of the four-momentum transfer at the proton vertex vertical stroke t vertical stroke 2 and the longitudinal momentum fraction of the incident proton carried by the colourless exchange x P P , Q 2 and β=x/x P where x is the Bjorken scaling variable. These measurements are made after selecting diffractive events by demanding a large empty rapidity interval separating the final state hadronic systems X and Y. High statistics measurements covering the data taking periods 1999-2000 and 2004-2007 are combined with previously published results in order to provide a single set of diffractive cross sections from the H1 experiment using the large rapidity gap selection method. The combined data represent a factor between three and thirty increase in statistics with respect to the previously published results. The measurements are compared with predictions from NLO QCD calculations based on diffractive parton densities and from a dipole model. The proton vertex factorisation hypothesis is tested. (orig.)

  3. The DART general equilibrium model: A technical description

    OpenAIRE

    Springer, Katrin

    1998-01-01

    This paper provides a technical description of the Dynamic Applied Regional Trade (DART) General Equilibrium Model. The DART model is a recursive dynamic, multi-region, multi-sector computable general equilibrium model. All regions are fully specified and linked by bilateral trade flows. The DART model can be used to project economic activities, energy use and trade flows for each of the specified regions to simulate various trade policy as well as environmental policy scenarios, and to analy...

  4. Undergraduate experiment with fractal diffraction gratings

    International Nuclear Information System (INIS)

    Monsoriu, Juan A; Furlan, Walter D; Pons, Amparo; Barreiro, Juan C; Gimenez, Marcos H

    2011-01-01

    We present a simple diffraction experiment with fractal gratings based on the triadic Cantor set. Diffraction by fractals is proposed as a motivating strategy for students of optics in the potential applications of optical processing. Fraunhofer diffraction patterns are obtained using standard equipment present in most undergraduate physics laboratories and compared with those obtained with conventional periodic gratings. It is shown that fractal gratings produce self-similar diffraction patterns which can be evaluated analytically. Good agreement is obtained between experimental and numerical results.

  5. A measurement of electron-wall interactions using transmission diffraction from nanofabricated gratings

    International Nuclear Information System (INIS)

    Barwick, Brett; Gronniger, Glen; Yuan, Lu; Liou, Sy-Hwang; Batelaan, Herman

    2006-01-01

    Electron diffraction from metal coated freestanding nanofabricated gratings is presented, with a quantitative path integral analysis of the electron-grating interactions. Electron diffraction out to the 20th order was observed indicating the high quality of our nanofabricated gratings. The electron beam is collimated to its diffraction limit with ion-milled material slits. Our path integral analysis is first tested against single slit electron diffraction, and then further expanded with the same theoretical approach to describe grating diffraction. Rotation of the grating with respect to the incident electron beam varies the effective distance between the electron and grating bars. This allows the measurement of the image charge potential between the electron and the grating bars. Image charge potentials that were about 15% of the value for that of a pure electron-metal wall interaction were found. We varied the electron energy from 50 to 900 eV. The interaction time is of the order of typical metal image charge response times and in principle allows the investigation of image charge formation. In addition to the image charge interaction there is a dephasing process reducing the transverse coherence length of the electron wave. The dephasing process causes broadening of the diffraction peaks and is consistent with a model that ascribes the dephasing process to microscopic contact potentials. Surface structures with length scales of about 200 nm observed with a scanning tunneling microscope, and dephasing interaction strength typical of contact potentials of 0.35 eV support this claim. Such a dephasing model motivated the investigation of different metallic coatings, in particular Ni, Ti, Al, and different thickness Au-Pd coatings. Improved quality of diffraction patterns was found for Ni. This coating made electron diffraction possible at energies as low as 50 eV. This energy was limited by our electron gun design. These results are particularly relevant for the

  6. A generalized model via random walks for information filtering

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhuo-Ming, E-mail: zhuomingren@gmail.com [Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700, Fribourg (Switzerland); Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, ChongQing, 400714 (China); Kong, Yixiu [Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700, Fribourg (Switzerland); Shang, Ming-Sheng, E-mail: msshang@cigit.ac.cn [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, ChongQing, 400714 (China); Zhang, Yi-Cheng [Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700, Fribourg (Switzerland)

    2016-08-06

    There could exist a simple general mechanism lurking beneath collaborative filtering and interdisciplinary physics approaches which have been successfully applied to online E-commerce platforms. Motivated by this idea, we propose a generalized model employing the dynamics of the random walk in the bipartite networks. Taking into account the degree information, the proposed generalized model could deduce the collaborative filtering, interdisciplinary physics approaches and even the enormous expansion of them. Furthermore, we analyze the generalized model with single and hybrid of degree information on the process of random walk in bipartite networks, and propose a possible strategy by using the hybrid degree information for different popular objects to toward promising precision of the recommendation. - Highlights: • We propose a generalized recommendation model employing the random walk dynamics. • The proposed model with single and hybrid of degree information is analyzed. • A strategy with the hybrid degree information improves precision of recommendation.

  7. A generalized model via random walks for information filtering

    International Nuclear Information System (INIS)

    Ren, Zhuo-Ming; Kong, Yixiu; Shang, Ming-Sheng; Zhang, Yi-Cheng

    2016-01-01

    There could exist a simple general mechanism lurking beneath collaborative filtering and interdisciplinary physics approaches which have been successfully applied to online E-commerce platforms. Motivated by this idea, we propose a generalized model employing the dynamics of the random walk in the bipartite networks. Taking into account the degree information, the proposed generalized model could deduce the collaborative filtering, interdisciplinary physics approaches and even the enormous expansion of them. Furthermore, we analyze the generalized model with single and hybrid of degree information on the process of random walk in bipartite networks, and propose a possible strategy by using the hybrid degree information for different popular objects to toward promising precision of the recommendation. - Highlights: • We propose a generalized recommendation model employing the random walk dynamics. • The proposed model with single and hybrid of degree information is analyzed. • A strategy with the hybrid degree information improves precision of recommendation.

  8. Generalized Ordinary Differential Equation Models.

    Science.gov (United States)

    Miao, Hongyu; Wu, Hulin; Xue, Hongqi

    2014-10-01

    Existing estimation methods for ordinary differential equation (ODE) models are not applicable to discrete data. The generalized ODE (GODE) model is therefore proposed and investigated for the first time. We develop the likelihood-based parameter estimation and inference methods for GODE models. We propose robust computing algorithms and rigorously investigate the asymptotic properties of the proposed estimator by considering both measurement errors and numerical errors in solving ODEs. The simulation study and application of our methods to an influenza viral dynamics study suggest that the proposed methods have a superior performance in terms of accuracy over the existing ODE model estimation approach and the extended smoothing-based (ESB) method.

  9. Diffraction plane dependency of elastic constants in ferritic steel in neutron stress measurement

    International Nuclear Information System (INIS)

    Hayashi, M.; Ishiwata, M.; Minakawa, N.; Funahashi, S.

    1993-01-01

    Neutron diffraction measurements have been made to investigate the elastic properties of the ferritic steel obtained from socket weld. The Kroner elastic model is found to account for the [hkl]-dependence of Young's modulus and Poisson's ratio in the material. Maps of residual stress are later to be made by measuring lattice strain from shifts in the (112) diffraction peak, for which the diffraction elastic constants the herein found to be E=243±5GPa and ν=0.28±0.01. (author)

  10. Observation of sagittal X-ray diffraction by surface acoustic waves in Bragg geometry.

    Science.gov (United States)

    Vadilonga, Simone; Zizak, Ivo; Roshchupkin, Dmitry; Evgenii, Emelin; Petsiuk, Andrei; Leitenberger, Wolfram; Erko, Alexei

    2017-04-01

    X-ray Bragg diffraction in sagittal geometry on a Y-cut langasite crystal (La 3 Ga 5 SiO 14 ) modulated by Λ = 3 µm Rayleigh surface acoustic waves was studied at the BESSY II synchrotron radiation facility. Owing to the crystal lattice modulation by the surface acoustic wave diffraction, satellites appear. Their intensity and angular separation depend on the amplitude and wavelength of the ultrasonic superlattice. Experimental results are compared with the corresponding theoretical model that exploits the kinematical diffraction theory. This experiment shows that the propagation of the surface acoustic waves creates a dynamical diffraction grating on the crystal surface, and this can be used for space-time modulation of an X-ray beam.

  11. ALICE Diffractive Detector Control System for RUN-II in the ALICE Experiment

    CERN Document Server

    INSPIRE-00522336; Martinez, M.I.; Monzon, I. Leon

    2016-01-01

    This paper describes general characteristics of the deployment and commissioned of the Detector Control System (DCS) AD0 for the second phase of the Large Hadron Collider (LHC). The AD0 detector is installed in the ALICE experiment to provide a better selection of diffractive events.

  12. Diffractive dijet photoproduction in ep collisions at HERA

    International Nuclear Information System (INIS)

    Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G.; Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Loktionova, N.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y.; Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N.; Baghdasaryan, A.; Zohrabyan, H.; Barrelet, E.; Bartel, W.; Brandt, G.; Campbell, A.J.; Cholewa, A.; Deak, M.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Grell, B.R.; Habib, S.; Haidt, D.; Helebrant, C.; Katzy, J.; Kleinwort, C.; Knutsson, A.; Kraemer, M.; Kutak, K.; Levonian, S.; Lipka, K.; List, J.; Marti, Ll.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Nikiforov, A.; Olsson, J.E.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Petrukhin, A.; Piec, S.; Pitzl, D.; Placakyte, R.; Schmitt, S.; Sefkow, F.; Staykova, Z.; Steder, M.; Toll, T.; Vargas Trevino, A.; Driesch, M. von den; Wuensch, E.; Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B.; Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F.; Boudry, V.; Moreau, F.; Specka, A.; Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I.; Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Shaw-West, R.N.; Thompson, P.D.; Brinkmann, M.; Dobre, M.; List, B.; Bruncko, D.; Cerny, V.; Ferencei, J.; Bunyatyan, A.; Buschhorn, G.; Chekelian, V.; Dossanov, A.; Grindhammer, G.; Kiesling, C.; Kogler, R.; Raspiareza, A.; Shushkevich, S.; Bystritskaya, L.; Efremenko, V.; Fedotov, A.; Kropivnitskaya, A.; Lubimov, V.; Ozerov, D.; Rostovtsev, A.; Zhokin, A.; Cantun Avila, K.B.; Contreras, J.G.; Ruiz Tabasco, J.E.; Cerny, K.; Pokorny, B.; Polifka, R.; Salek, D.; Valkarova, A.; Zacek, J.; Coughlan, J.A.; Morris, J.V.; Sankey, D.P.C.; Cvach, J.; Reimer, P.; Zalesak, J.; Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D.; Daum, K.; Meyer, H.; Delvax, J.; Wolf, E.A. de; Favart, L.; Hreus, T.; Janssen, X.; Marage, P.; Mozer, M.U.; Roosen, R.; Sunar, D.; Sykora, T.; Mechelen, P. van; Diaconu, C.; Hoffmann, D.; Sauvan, E.; Vallee, C.; Dodonov, V.; Povh, B.; Egli, S.; Hildebrandt, M.; Horisberger, R.; Falkiewicz, A.; Goerlich, L.; Mikocki, S.; Milcewicz-Mika, I.; Nowak, G.; Sopicki, P.; Turnau, J.; Feltesse, J.; Perez, E.; Schoeffel, L.; Grab, C.; Henderson, R.C.W.; Sloan, T.; Hennekemper, E.; Herbst, M.; Jung, A.W.; Krueger, K.; Lendermann, V.; Schultz-Coulon, H.C.; Urban, K.; Henschel, H.; Hiller, K.H.; Kostka, P.; Lange, W.; Naumann, T.; Herrera, G.; Lopez-Fernandez, R.; Huber, F.; Pirumov, H.; Radescu, V.; Sauter, M.; Schoening, A.; Joensson, L.; Osman, S.; Jung, H.; DESY, Hamburg; Landon, M.P.J.; Rizvi, E.; Thompson, G.; Traynor, D.; Martyn, H.U.; Mueller, K.; Nowak, K.; Robmann, P.; Straumann, U.; Truoel, P.; South, D.; Wegener, D.; Stella, B.; INFN Roma 3, Rome

    2010-01-01

    Measurements are presented of single and double-differential dijet cross sections in diffractive photoproduction based on a data sample with an integrated luminosity of 47 pb -1 . The events are of the type ep→eXY, where the hadronic system X contains at least two jets and is separated by a large rapidity gap from the system Y, which consists of a leading proton or low-mass proton excitation. The dijet cross sections are compared with QCD calculations at next-to-leading order and with a Monte Carlo model based on leading order matrix elements with parton showers. The measured cross sections are smaller than those obtained from the next-to-leading order calculations by a factor of about 0.6. This suppression factor has no significant dependence on the fraction x γ of the photon four-momentum entering the hard subprocess. Ratios of the diffractive to the inclusive dijet cross sections are measured for the first time and are compared with Monte Carlo models. (orig.)

  13. Diffractive Dijet Photoproduction in ep Collisions at HERA

    CERN Document Server

    Aaron, F.D.; Andreev, V.; Backovic, S.; Baghdasaryan, A.; Barrelet, E.; Bartel, W.; Begzsuren, K.; Belousov, A.; Bizot, J.C.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Bunyatyan, A.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; Delcourt, B.; Delvax, J.; De Wolf, E.A.; Diaconu, C.; Dobre, M.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eliseev, A.; Elsen, E.; Falkiewicz, A.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fischer, D.J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, Samvel; Glazov, A.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Helebrant, C.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Huber, F.; Jacquet, M.; Janssen, X.; Jonsson, L.; Jung, A.W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kluge, T.; Knutsson, A.; Kogler, R.; Kostka, P.; Kraemer, M.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kutak, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Lendermann, V.; Levonian, S.; Lipka, K.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Meyer, A.B.; Meyer, H.; Meyer, J.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, M.U.; Mudrinic, M.; Muller, K.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nikiforov, A.; Nikitin, D.; Nowak, G.; Nowak, K.; Olsson, J.E.; Osman, S.; Ozerov, D.; Pahl, P.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Perez, E.; Petrukhin, A.; Picuric, I.; Piec, S.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Pokorny, B.; Polifka, R.; Povh, B.; Radescu, V.; Raicevic, N.; Raspiareza, A.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Tabasco, J.E.Ruiz; Rusakov, S.; Salek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shaw-West, R.N.; Shtarkov, L.N.; Shushkevich, S.; Sloan, T.; Smiljanic, Ivan; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Stoicea, G.; Straumann, U.; Sunar, D.; Sykora, T.; Thompson, G.; Thompson, P.D.; Toll, T.; Tran, T.H.; Traynor, D.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Urban, K.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Trevino, A.Vargas; Vazdik, Y.; von den Driesch, M.; Wegener, D.; Wunsch, E.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zohrabyan, H.; Zomer, F.

    2010-01-01

    Measurements are presented of single and double-differential dijet cross sections in diffractive photoproduction based on a data sample with an integrated luminosity of 47 pb^-1. The events are of the type ep -> eXY, where the hadronic system X contains at least two jets and is separated by a large rapidity gap from the system Y, which consists of a leading proton or low-mass proton excitation. The dijet cross sections are compared with QCD calculations at next-to-leading order and with a Monte Carlo model based on leading order matrix elements with parton showers. The measured cross sections are smaller than those obtained from the next-to-leading order calculations by a factor of about 0.6. This suppression factor has no significant dependence on the fraction x_gamma of the photon four-momentum entering the hard subprocess. Ratios of the diffractive to the inclusive dijet cross sections are measured for the first time and are compared with Monte Carlo models.

  14. Advances in X-ray powder diffraction profile analysis and its application in ceramic material studies

    International Nuclear Information System (INIS)

    Zhang, Y.

    1988-01-01

    This dissertation is concerned with the following major aspects: (1) the development of necessary computer codes to carry out X-ray powder diffraction profile analysis (XPDPA) calculations; (2) the establishment of a general reference material (GRM) which greatly extends the application of XPDPA and the study of the application of the GRM in profile analysis; (3) the determination of the coherent diffracting domain size and the lattice residual microstrain for some shock-modified and jet-milled materials. A computer code for diffraction profile refinement, XRAYL, fits a diffraction profile with any one of five mathematical functions, either as symmetric or asymmetric (split mode) forms. The resulting patterns meet the requirements for successful profile analysis of microstrain and crystallite size. Powder diffraction profile analysis requires an instrument calibration standard to correct data for instrumental profiles due to the system optics. A general reference material, LaB 6 , has been established. The pattern of this LaB 6 powder can be used to generate a reference pattern for any other substance. Through three applications, it has been shown that this LaB 6 sample can be used to remove the instrumental broadenings and gives reasonable size and strain estimates in the profile analysis of other materials. Many previous studies have shown that the solid state reactivity and physical properties of some ceramic materials can be substantially enhanced. XPDPA techniques have been used to study the plastic deformation and the reduction of crystallite size for eight shock-modified ceramic materials. The size and strain values of these materials are correlated with shock parameters

  15. Integrated intensities and flipping ratios in neutron diffraction by perfect magnetic crystals

    International Nuclear Information System (INIS)

    Guigay, J.P.; Schlenker, M.

    1979-01-01

    A theoretical study of neutron diffraction by perfect magnetic crystals is presented which shows that when the magnetization is perpendicular to the diffraction vector (β- π/2), the dispersion surface is made up of two hyperbolic surfaces corresponding to simple polarization states and the results of the two-beam dynamical theory for non-magnetic crystals can be directly applied. The asymptotic properties of the dispersion surface are of the dispersion surface are also discussed in the more general case (β is not equal to π/2) and an analytical treatment of the kinematical limit is presented. Integrated intensities and flipping ratios outside this limit can only be calculated numerically. It is shown that the wave fields defined by the different points of the dispersion surface are polarized in the (g, B 0 ) plane; this is a generalization of the fact that they are (+-) states with respect to B 0 in the simple case (β=π/2). (UK)

  16. Undergraduate Experiment with Fractal Diffraction Gratings

    Science.gov (United States)

    Monsoriu, Juan A.; Furlan, Walter D.; Pons, Amparo; Barreiro, Juan C.; Gimenez, Marcos H.

    2011-01-01

    We present a simple diffraction experiment with fractal gratings based on the triadic Cantor set. Diffraction by fractals is proposed as a motivating strategy for students of optics in the potential applications of optical processing. Fraunhofer diffraction patterns are obtained using standard equipment present in most undergraduate physics…

  17. Diffraction Traveltime Approximation to Estimate Anisotropy Parameters in Complex TI Media

    KAUST Repository

    Waheed, Umair bin

    2013-05-01

    Diffracted waves carry valuable information that can help improve our velocity modeling capability for better imaging of the subsurface. They are especially useful for anisotropic media as they inherently possess a wide range of dips necessary to resolve the angular dependence of velocity. We develop a scheme for diffraction traveltime computations based on perturbation theory for transverse isotropic media with tilted axis of symmetry (TTI). The formulation has advantages on two fronts: firstly it alleviates the computational complexity associated with solving the TTI eikonal equation and secondly it provides a mechanism to scan for the best fit anellipticity parameter without the need for repetitive modeling of traveltimes. The accuracy of such an expansion is further enhanced by the use of Shanks transform. We establish the effectiveness of the proposed formulation with tests on a homogeneous TTI model and the BP TTI model.

  18. A synchrotron X-ray diffraction study of non-proportional strain-path effects

    International Nuclear Information System (INIS)

    Collins, D.M.; Erinosho, T.; Dunne, F.P.E.; Todd, R.I.; Connolley, T.; Mostafavi, M.; Kupfer, H.; Wilkinson, A.J.

    2017-01-01

    Common alloys used in sheet form can display a significant ductility benefit when they are subjected to certain multiaxial strain paths. This effect has been studied here for a polycrystalline ferritic steel using a combination of Nakajima bulge testing, X-ray diffraction during biaxial testing of cruciform samples and crystal plasticity finite element (CPFE) modelling. Greatest gains in strain to failure were found when subjecting sheets to uniaxial loading followed by balanced biaxial deformation, resulting in a total deformation close to plane-strain. A combined strain of approximately double that of proportional loading was achieved. The evolution of macrostrain, microstrain and texture during non-proportional loading were evaluated by in-situ high energy synchrotron diffraction. The results have demonstrated that the inhomogeneous strain accumulation from non-proportional deformation is strongly dependent on texture and the applied strain-ratio of the first deformation pass. Experimental diffraction evidence is supported by results produced by a novel method of CPFE-derived diffraction simulation. Using constitutive laws selected on the basis of good agreement with measured lattice strain development, the CPFE model demonstrated the capability to replicate ductility gains measured experimentally.

  19. Kalman Filter for Generalized 2-D Roesser Models

    Institute of Scientific and Technical Information of China (English)

    SHENG Mei; ZOU Yun

    2007-01-01

    The design problem of the state filter for the generalized stochastic 2-D Roesser models, which appears when both the state and measurement are simultaneously subjected to the interference from white noise, is discussed. The wellknown Kalman filter design is extended to the generalized 2-D Roesser models. Based on the method of "scanning line by line", the filtering problem of generalized 2-D Roesser models with mode-energy reconstruction is solved. The formula of the optimal filtering, which minimizes the variance of the estimation error of the state vectors, is derived. The validity of the designed filter is verified by the calculation steps and the examples are introduced.

  20. A Model Fit Statistic for Generalized Partial Credit Model

    Science.gov (United States)

    Liang, Tie; Wells, Craig S.

    2009-01-01

    Investigating the fit of a parametric model is an important part of the measurement process when implementing item response theory (IRT), but research examining it is limited. A general nonparametric approach for detecting model misfit, introduced by J. Douglas and A. S. Cohen (2001), has exhibited promising results for the two-parameter logistic…

  1. Diffractive production of p-mesons and of pπ-systems by neutrinos and antineutrinos on protons

    International Nuclear Information System (INIS)

    Jones, G.T.; Jones, R.W.L.; Kennedy, B.W.; Morrison, D.R.O.; Borner, H.P.; Myatt, G.; Bullock, F.W.; Burke, S.

    1993-01-01

    Evidence is presented for diffractive production of ρ-mesons and of ρπ-systems in νp and anti νp charged-current interactions. In the (anti-)neutrino energy range 10 GeV ν 1 production. However, the data cannot distinguish between diffractive a 1 and diffractive nonresonant ρπ production. The experimental distributions of W, Q 2 , x Bj and y Bj for diffractive ρ and ρπ events are consistent with model predictions. (orig.)

  2. Study of quartz-glass using Roentgen- and neutron-diffraction

    International Nuclear Information System (INIS)

    Sikkenk, P.J.

    1988-08-01

    An X-ray diffraction measurement, with wavelength 0.0711 nm, is made of a vitreous silica to kappa of 200nm -1 . (faculty of materials science) A second X-ray diffraction measurement has been executed (National Laboratory Oak Ridge). For this research we also used neutron diffraction measurement (IRI), with wavelength 0.085 nm of a vitreous silica to kappa of 132 nm -1 . The intermolecular scattering functions derived from the X-ray measurements and neutron measurements by omitting the intramolecular scattering contribution. A theoretical model for the structure of vitreous silica is used, derived from a mixture of Si en SiO-4 units. The partial scattering functions i-S-i---S-i is determined with help of the model and the intermolecular X-ray scattering functions and intermolecular neutron scattering functions and intermolecular neutron scatteirng functions. The fouriertransform of the partial scattering function i-S-i---S-i leads to the partial radial correlation function. When this partial radial correlation function is compared to a correlation function directly obtained by the intermolecular scattering function, a considerable increase of the resolution is observed in the partial correlation function if r > 0.29 nm and r < 0.45 nm. (author). 16 refs.; 30 figs.; 9 tabs

  3. Two-dimensional x-ray diffraction

    CERN Document Server

    He, Bob B

    2009-01-01

    Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea

  4. Extended ABCD matrix formalism for the description of femtosecond diffraction patterns; application to femtosecond digital in-line holography with anamorphic optical systems.

    Science.gov (United States)

    Brunel, Marc; Shen, Huanhuan; Coetmellec, Sebastien; Lebrun, Denis

    2012-03-10

    We present a new model to predict diffraction patterns of femtosecond pulses through complex optical systems. The model is based on the extension of an ABCD matrix formalism combined with generalized Huygens-Fresnel transforms (already used in the CW regime) to the femtosecond regime. The model is tested to describe femtosecond digital in-line holography experiments realized in situ through a cylindrical Plexiglas pipe. The model allows us to establish analytical relations that link the holographic reconstruction process to the experimental parameters of the pipe and of the incident beam itself. Simulations and experimental results are in good concordance. Femtosecond digital in-line holography is shown to allow significant coherent noise reduction, and this model will be particularly efficient to describe a wide range of optical geometries. More generally, the model developed can be easily used in any experiment where the knowledge of the precise evolution of femtosecond transverse patterns is required.

  5. X-ray diffraction and NMR data for the study of the location of idebenone and idebenol in model membranes

    Directory of Open Access Journals (Sweden)

    Victoria Gómez-Murcia

    2016-06-01

    Full Text Available Here we present some of our data about the interaction of idebenone and idebenol with dipalmitoyl-phosphatidylcholine (DPPC. In particular, we include data of small angle X-ray diffraction (SAXD and wide angle X-ray diffraction experiments, obtention of electronic profiles of the membranes, 2H-NMR and 31P-NMR, as part of the research article: “Both idebenone and idebenol are localized near the lipid-water interface of the membrane and increase its fluidity” (Gomez-Murcia et al., 2016 [1]. These data were obtained from model membranes that included different proportions of idebenone and idebenol, at temperatures both above and below of the gel to fluid phase. The X-ray experiments were carried out by using a modified Kratky compact camera (MBraun-Graz-Optical Systems, Graz Austria, incorporating two coupled linear position sensitive detectors. The NMR data were collected from a a Bruker Avance 600 instrument.

  6. Diffractive Production of Jets and Weak Bosons, and Tests of Hard-Scattering Factorization

    CERN Document Server

    Alvero, L; Terrón, J; Whitmore, J; Alvero, Lyndon; Collins, John C.; Terron, Juan; Whitmore, Jim

    1999-01-01

    We extract diffractive parton densities from diffractive, deep inelastic (DIS) ep data from the ZEUS experiment. Then we use these fits to predict the diffractive production of jets and of W's and Z's in p\\bar p collisions at the Tevatron. Although the DIS data require a hard quark density in the pomeron, we find fairly low rates for the Tevatron processes (a few percent of the inclusive cross section). This results from the combined effects of Q^{2} evolution and of a normalization of the parton densities to the data. The calculated rates for W production are generally consistent with the preliminary data from the Tevatron. However, the jet data from CDF with a ``Roman pot'' trigger are substantially lower than the results of our calculations; if confirmed, this would signal a breakdown of hard-scattering factorization.

  7. Study of the α and β phases of quartz by neutron multiple diffraction

    International Nuclear Information System (INIS)

    Mazzocchi, V.L.

    1984-01-01

    Crystal structures of α and β phases of quartz are studied, employing neutron multiple diffraction as a method of analysis. Theoretical multiple diffraction patterns in a many-beam case were determined by a computer program which calculates intensities of beams as sums of Taylor's series expansions, retaining terms up to a order n. Experimental 'umweg' and transmitted beam patterns were obtained for the 00.1 primary reflection of α and β phases of quartz. To calculate α - quartz multiple diffraction intensities it was necessary to determine the Dauphine twinning fraction for the crystal after having passed by the β-phase. For the two models of β-quartz a better agreement between experimental and calculated integrated intensities was found for the disordered structure model based on split-half-oxigen positions. (Author) [pt

  8. Refinement of the crystal structure of malachite, Cu2(OH)2CO3, by neutron diffraction

    International Nuclear Information System (INIS)

    Zigan, F.; Joswig, W.; Schuster, H.D.; Mason, S.A.

    1977-01-01

    The crystal structure of malachite is refined (R = 0,021) with the intensity values of 635 independent neutron reflexions from a single crystal, rather free from absorption and extinction. Concerning the structural geometry, no essential deviations occur from the known results of x-ray diffraction. The thermal elongations are generally largest about the normal to the (201) layers, between which the bonding is relatively weak. In both of the (medium, bent) OH...O hydrogen bonds, the anisotropic thermal parameters, converted according to the riding model, are - with certain restrictions - in agreement with the measured infrared spectrum as well as with frequencies and directions of the proton vibration calculated from the bonding geometry on the basis of a theoretical model. (orig.) [de

  9. Diffraction traveltime approximation for TI media with an inhomogeneous background

    KAUST Repository

    Waheed, Umair bin; Alkhalifah, Tariq Ali; Stovas, A.

    2013-01-01

    Diffractions in seismic data contain valuable information that can help improve our modeling capability for better imaging of the subsurface. They are especially useful for anisotropic media because they inherently possess a wide range of dips necessary to resolve the angular dependence of velocity. We develop a scheme for diffraction traveltime computations based on perturbation of the anellipticity anisotropy parameter for transversely isotropic media with tilted axis of symmetry (TTI). The expansion, therefore, uses an elliptically anisotropic medium with tilt as the background model. This formulation has advantages on two fronts: first, it alleviates the computational complexity associated with solving the TTI eikonal equation, and second, it provides a mechanism to scan for the best-fitting anellipticity parameter η without the need for repetitive modeling of traveltimes, because the traveltime coefficients of the expansion are independent of the perturbed parameter η. The accuracy of such an expansion is further enhanced by the use of Shanks transform. We established the effectiveness of the proposed formulation with tests on a homogeneous TTI model and complex media such as the Marmousi and BP models.

  10. Diffraction traveltime approximation for TI media with an inhomogeneous background

    KAUST Repository

    Waheed, Umair bin

    2013-09-01

    Diffractions in seismic data contain valuable information that can help improve our modeling capability for better imaging of the subsurface. They are especially useful for anisotropic media because they inherently possess a wide range of dips necessary to resolve the angular dependence of velocity. We develop a scheme for diffraction traveltime computations based on perturbation of the anellipticity anisotropy parameter for transversely isotropic media with tilted axis of symmetry (TTI). The expansion, therefore, uses an elliptically anisotropic medium with tilt as the background model. This formulation has advantages on two fronts: first, it alleviates the computational complexity associated with solving the TTI eikonal equation, and second, it provides a mechanism to scan for the best-fitting anellipticity parameter η without the need for repetitive modeling of traveltimes, because the traveltime coefficients of the expansion are independent of the perturbed parameter η. The accuracy of such an expansion is further enhanced by the use of Shanks transform. We established the effectiveness of the proposed formulation with tests on a homogeneous TTI model and complex media such as the Marmousi and BP models.

  11. Wakefield and the diffraction model due to a flat beam moving past a conducting wedge

    International Nuclear Information System (INIS)

    Chao, A.W.; Henke, H.

    1995-07-01

    A collimator is often used to clean a beam of its excessive tail particles. If the beam intensity is high enough or if the beam is brought too close to the collimator, however, the wakefields generated by the beam-collimator interaction can cause additional beam tails to grow, thus defeating, or even worsening, the beam-tail cleaning process. The wakefield generated by a sheet beam moving past a conducting wedge has been obtained in closed form by Henke using the method of conformal mapping. This result is applied in the present work to obtain the wake force and the transverse kick received by a test charge moving with the beam. For the beam to be approximated as sheet beams, it is assumed to be flat and the collimator is assumed to have an infinite extent in the flat dimention. We derive an exact expression for the transverse wake force delivered to particles in the beam bunch. Implication of emittance growth as a beam passes closely by a collimator is discussed. We consider two idealized wedge geometries: In Section 2, when the wedge has the geometry as a disrupted beam pipe, and in Section 3, when it is like a semi-infinite screen. Unfortunately, we do not have solutions for more realistic collimator geometries such as when it is tapered to minimize the wakefield effects. However, our results should still serve as pessimistic limiting cases. An interesting opportunity is offered by our exact calculation of the wakefields: it can be used to confront the diffraction model used to estimate the high-frequency impedance of a cavity structure. It is shown that the field pattern, as well as the impedance, agrees with those obtained by the diffraction model in appropriate limits

  12. Effect of environmental temperature on diffraction efficiency for multilayer diffractive optical elements in Mid-wave infrared

    Science.gov (United States)

    Piao, Mingxu; Cui, Qingfeng; Zhu, Hao; Zhang, Bo

    2014-11-01

    In this paper, the effect of environmental temperature change on multilayer diffractive optical elements (MLDOEs) is evaluated from the viewpoint of the diffraction efficiency and the polychromatic integral diffraction efficiency (PIDE). As environmental temperature changes, the microstructure heights of MLDOEs expand or contract, and refractive indices of substrate materials also change. Based on the changes in microstructure height and substrate material index with environmental temperature, the theoretical relation between diffraction efficiency of MLDOEs and environmental temperature is deduced. A practical 3-5μm Mid-wave infrared (MWIR) optical system designed with a MLDOE, which made of ZNSE and GE, is discussed to illustrate the influence of environmental temperature change. The result shows that diffraction efficiency reduction is no more than 85% and PIDE reduction is less than 50% when environmental temperature ranges from -20°C to 60°C. According to the calculated diffraction efficiency in different environmental temperatures, the MTF of hybrid optical system is modified and the modified MTF curve is compared with the original MTF curve. Although the hybrid optical system achieved passive athermalization in above environmental temperature range, the modified MTF curve also remarkably decline in environmental temperature extremes after the consideration of diffraction efficiency change of MLDOE. It is indicated that the image quality of hybrid optical system with ZNSE-GE MLDOE is significantly sensitive to environmental temperature change. The analysis result can be used for optical engineering design with MLDOEs in MWIR.

  13. Profiling pleural effusion cells by a diffraction imaging method

    Science.gov (United States)

    Al-Qaysi, Safaa; Hong, Heng; Wen, Yuhua; Lu, Jun Q.; Feng, Yuanming; Hu, Xin-Hua

    2018-02-01

    Assay of cells in pleural effusion (PE) is an important means of disease diagnosis. Conventional cytology of effusion samples, however, has low sensitivity and depends heavily on the expertise of cytopathologists. We applied a polarization diffraction imaging flow cytometry method on effusion cells to investigate their features. Diffraction imaging of the PE cell samples has been performed on 6000 to 12000 cells for each effusion cell sample of three patients. After prescreening to remove images by cellular debris and aggregated non-cellular particles, the image textures were extracted with a gray level co-occurrence matrix (GLCM) algorithm. The distribution of the imaged cells in the GLCM parameters space was analyzed by a Gaussian Mixture Model (GMM) to determine the number of clusters among the effusion cells. These results yield insight on textural features of diffraction images and related cellular morphology in effusion samples and can be used toward the development of a label-free method for effusion cells assay.

  14. A general model for membrane-based separation processes

    DEFF Research Database (Denmark)

    Soni, Vipasha; Abildskov, Jens; Jonsson, Gunnar Eigil

    2009-01-01

    behaviour will play an important role. In this paper, modelling of membrane-based processes for separation of gas and liquid mixtures are considered. Two general models, one for membrane-based liquid separation processes (with phase change) and another for membrane-based gas separation are presented....... The separation processes covered are: membrane-based gas separation processes, pervaporation and various types of membrane distillation processes. The specific model for each type of membrane-based process is generated from the two general models by applying the specific system descriptions and the corresponding...

  15. Testing Parametric versus Semiparametric Modelling in Generalized Linear Models

    NARCIS (Netherlands)

    Härdle, W.K.; Mammen, E.; Müller, M.D.

    1996-01-01

    We consider a generalized partially linear model E(Y|X,T) = G{X'b + m(T)} where G is a known function, b is an unknown parameter vector, and m is an unknown function.The paper introduces a test statistic which allows to decide between a parametric and a semiparametric model: (i) m is linear, i.e.

  16. Hard scattering and a diffractive trigger

    International Nuclear Information System (INIS)

    Berger, E.L.; Collins, J.C.; Soper, D.E.; Sterman, G.

    1986-02-01

    Conclusions concerning the properties of hard scattering in diffractively produced systems are summarized. One motivation for studying diffractive hard scattering is to investigate the interface between Regge theory and perturbative QCD. Another is to see whether diffractive triggering can result in an improvement in the signal-to-background ratio of measurements of production of very heavy quarks. 5 refs

  17. Determination of the strain hardening rate of metals and alloys by X ray diffraction

    International Nuclear Information System (INIS)

    Cadalbert, Robert

    1977-01-01

    This report for engineering graduation is based on the study of X ray diffraction line profile which varies with the plastic strain rate of the metal. After some generalities of strain hardening (consequence of a plastic deformation on the structure of a polycrystalline metal, means to study a strain hardened structure, use of X ray diffraction to analyse the strain hardened crystalline structure), the author reports the strain hardening rate measurement by using X ray diffraction. Several aspects are addressed: principles, experimental technique, apparatus, automation and programming of the measurement cycle, method sensitivity and precision. In the next part, the author reports applications: measurement of the strain hardening rate in different materials (tubes with hexagonal profile, cylindrical tubes in austenitic steel), and study of the evolution of strain hardening with temperature [fr

  18. A QCD analysis of ZEUS diffractive data

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2009-11-15

    ZEUS inclusive diffractive cross-section measurements have been used in a DGLAP next-to-leading-order QCD analysis to extract the diffractive parton distribution functions. Data on diffractive dijet production in deep inelastic scattering have also been included to constrain the gluon density. Predictions based on the extracted parton densities are compared to diffractive charm and dijet photoproduction data. (orig.)

  19. A QCD analysis of ZEUS diffractive data

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2009-11-01

    ZEUS inclusive diffractive cross-section measurements have been used in a DGLAP next-to-leading-order QCD analysis to extract the diffractive parton distribution functions. Data on diffractive dijet production in deep inelastic scattering have also been included to constrain the gluon density. Predictions based on the extracted parton densities are compared to diffractive charm and dijet photoproduction data. (orig.)

  20. Diffraction enhanced x-ray imaging

    International Nuclear Information System (INIS)

    Thomlinson, W.; Zhong, Z.; Johnston, R.E.; Sayers, D.

    1997-09-01

    Diffraction enhanced imaging (DEI) is a new x-ray radiographic imaging modality using synchrotron x-rays which produces images of thick absorbing objects that are almost completely free of scatter. They show dramatically improved contrast over standard imaging applied to the same phantoms. The contrast is based not only on attenuation but also the refraction and diffraction properties of the sample. The diffraction component and the apparent absorption component (absorption plus extinction contrast) can each be determined independently. This imaging method may improve the image quality for medical applications such as mammography

  1. Grazing incidence diffraction : A review

    Energy Technology Data Exchange (ETDEWEB)

    Gilles, B [LTPCM, ENSEEG. St. Martin d` Heres. (France)

    1996-09-01

    Different Grazing Incidence Diffraction (GID) methods for the analysis of thin films and multilayer structures are reviewed in three sections: the reflectivity is developed in the first one, which includes the non-specular diffuse scattering. The second one is devoted to the extremely asymmetric Bragg diffraction and the third one to the in-plane Bragg diffraction. Analytical formulations of the scattered intensities are developed for each geometry, in the framework of the kinetical analysis as well as the dynamical theory. Experimental examples are given to illustrate the quantitative possibility of the GID techniques.

  2. Calibration and validation of a general infiltration model

    Science.gov (United States)

    Mishra, Surendra Kumar; Ranjan Kumar, Shashi; Singh, Vijay P.

    1999-08-01

    A general infiltration model proposed by Singh and Yu (1990) was calibrated and validated using a split sampling approach for 191 sets of infiltration data observed in the states of Minnesota and Georgia in the USA. Of the five model parameters, fc (the final infiltration rate), So (the available storage space) and exponent n were found to be more predictable than the other two parameters: m (exponent) and a (proportionality factor). A critical examination of the general model revealed that it is related to the Soil Conservation Service (1956) curve number (SCS-CN) method and its parameter So is equivalent to the potential maximum retention of the SCS-CN method and is, in turn, found to be a function of soil sorptivity and hydraulic conductivity. The general model was found to describe infiltration rate with time varying curve number.

  3. Uniting Electron Crystallography and Powder Diffraction

    CERN Document Server

    Shankland, Kenneth; Meshi, Louisa; Avilov, Anatoly; David, William

    2012-01-01

    The polycrystalline and nanocrystalline states play an increasingly important role in exploiting the properties of materials, encompassing applications as diverse as pharmaceuticals, catalysts, solar cells and energy storage. A knowledge of the three-dimensional atomic and molecular structure of materials is essential for understanding and controlling their properties, yet traditional single-crystal X-ray diffraction methods lose their power when only polycrystalline and nanocrystalline samples are available. It is here that powder diffraction and single-crystal electron diffraction techniques take over, substantially extending the range of applicability of the crystallographic principles of structure determination.  This volume, a collection of teaching contributions presented at the Crystallographic Course in Erice in 2011, clearly describes the fundamentals and the state-of-the-art of powder diffraction and electron diffraction methods in materials characterisation, encompassing a diverse range of discipl...

  4. Partially Observed Mixtures of IRT Models: An Extension of the Generalized Partial-Credit Model

    Science.gov (United States)

    Von Davier, Matthias; Yamamoto, Kentaro

    2004-01-01

    The generalized partial-credit model (GPCM) is used frequently in educational testing and in large-scale assessments for analyzing polytomous data. Special cases of the generalized partial-credit model are the partial-credit model--or Rasch model for ordinal data--and the two parameter logistic (2PL) model. This article extends the GPCM to the…

  5. Deformation behavior of Mg-8.5wt.%Al alloy under reverse loading investigated by in-situ neutron diffraction and elastic viscoplastic self-consistent modeling

    International Nuclear Information System (INIS)

    Wang, H.; Lee, S.Y.; Gharghouri, M.A.; Wu, P.D.; Yoon, S.G.

    2016-01-01

    The EVPSC-TDT model for polycrystal plasticity and in-situ neutron diffraction have been used to investigate the behavior of a Mg-8.5wt.%Al alloy with two starting textures: 1) a typical extrusion texture in which a majority of the grains are oriented favorably for extension twinning via compression perpendicular to the basal pole, and 2) a modified texture in which extension twinning can be activated via tension parallel to the basal pole in a majority of the grains. Using a small number of adjustable parameters, and only two macroscopic tensile stress–strain curves for calibration, the model is able to capture, quantitatively, the trends in multiple data sets, including grain-level elastic lattice strains, and diffraction peak intensity changes due to lattice re-orientation associated with twinning. For twinning, the model assumes a polar critical resolved shear stress activation criterion and assigns the stress and hardening of the parent crystal to a newly formed twin. The model allows twinning to be driven either by the stress in the parent crystal (matrix reduction), in which case all of the twin transformation strain is assigned to the matrix, or by the stress in the twin (twin propagation), in which case all of the twin transformation strain is assigned to the twin. A detailed comparison between the model predictions and the neutron diffraction data reveals that assigning all of the twin transformation strain either to the matrix or to the twin is too one-sided, leading to excessive relaxation and hardening effects. A more equitable partitioning of the twin transformation strain is necessary. It is suggested that the stress and hardening assigned to a newly formed twin is of less importance to the performance of the model than the partitioning of the twin transformation strain.

  6. Diffraction contrast imaging using virtual apertures

    International Nuclear Information System (INIS)

    Gammer, Christoph; Burak Ozdol, V.; Liebscher, Christian H.; Minor, Andrew M.

    2015-01-01

    Two methods on how to obtain the full diffraction information from a sample region and the associated reconstruction of images or diffraction patterns using virtual apertures are demonstrated. In a STEM-based approach, diffraction patterns are recorded for each beam position using a small probe convergence angle. Similarly, a tilt series of TEM dark-field images is acquired. The resulting datasets allow the reconstruction of either electron diffraction patterns, or bright-, dark- or annular dark-field images using virtual apertures. The experimental procedures of both methods are presented in the paper and are applied to a precipitation strengthened and creep deformed ferritic alloy with a complex microstructure. The reconstructed virtual images are compared with conventional TEM images. The major advantage is that arbitrarily shaped virtual apertures generated with image processing software can be designed without facing any physical limitations. In addition, any virtual detector that is specifically designed according to the underlying crystal structure can be created to optimize image contrast. - Highlights: • A dataset containing all structural information of a given position is recorded. • The dataset allows reconstruction of virtual diffraction patterns or images. • Specific virtual apertures are designed to image precipitates in a complex alloy. • Virtual diffraction patterns from arbitrarily small regions can be established. • Using STEM diffraction to record the dataset is more efficient than TEM dark-field

  7. The structure of liquid water by polarized neutron diffraction and reverse Monte Carlo modelling.

    Science.gov (United States)

    Temleitner, László; Pusztai, László; Schweika, Werner

    2007-08-22

    The coherent static structure factor of water has been investigated by polarized neutron diffraction. Polarization analysis allows us to separate the huge incoherent scattering background from hydrogen and to obtain high quality data of the coherent scattering from four different mixtures of liquid H(2)O and D(2)O. The information obtained by the variation of the scattering contrast confines the configurational space of water and is used by the reverse Monte Carlo technique to model the total structure factors. Structural characteristics have been calculated directly from the resulting sets of particle coordinates. Consistency with existing partial pair correlation functions, derived without the application of polarized neutrons, was checked by incorporating them into our reverse Monte Carlo calculations. We also performed Monte Carlo simulations of a hard sphere system, which provides an accurate estimate of the information content of the measured data. It is shown that the present combination of polarized neutron scattering and reverse Monte Carlo structural modelling is a promising approach towards a detailed understanding of the microscopic structure of water.

  8. Studies of diffraction with the ATLAS detector

    International Nuclear Information System (INIS)

    Trzebinski, Maciej

    2013-01-01

    The thesis is devoted to the study of diffractive physics with the ATLAS detector at the LHC. After a short introduction to diffractive physics including soft and hard diffraction, we discuss Jet-Gap-Jet production at the LHC which is particularly interesting for testing the Balitski Fadin Kuraev Lipatov QCD evolution equation. Using the signal selection requirements and a gap definition based on tracks reconstructed in the ATLAS Inner Detector, we observe a clear signal of Jet-Gap-Jet events in the data. Starting from the half-gap size of 0.8 the data cannot be properly described using only the Jet Monte Carlo sample without gaps. Furthermore, we demonstrated that DPE JGJ production, with both protons tagged in the AFP stations, should provide a significant test of the BFKL theory, once the 300 pb -1 of integrated luminosity is collected. In the last part of the thesis, we discussed the processes of Central Exclusive Jet and Exclusive π + π - production. After the data selection, the signal to background ratio is found to be of about 5/9 (1/13) for μ= 23 (46). For a collected integrated luminosity of 40(300) fb -1 (for pile-up of 23(46)) this measurement will deliver ten times better constraints on the theoretical models than the most recent ones. The additional measurement of exclusive pion production, relying on the use of the ALFA stations, allows to constrain further the exclusive models. We demonstrated that a data sample collected by the ALFA detectors should be sufficient to measure the cross section and to study various distributions, especially the invariant mass of the pion-pion system. (author) [fr

  9. Cosmological models in general relativity

    Indian Academy of Sciences (India)

    Cosmological models in general relativity. B B PAUL. Department of Physics, Nowgong College, Nagaon, Assam, India. MS received 4 October 2002; revised 6 March 2003; accepted 21 May 2003. Abstract. LRS Bianchi type-I space-time filled with perfect fluid is considered here with deceler- ation parameter as variable.

  10. Measurement of the Diffractive Longitudinal Structure Function F_L^D at HERA

    CERN Document Server

    Aaron, F.D.

    2011-12-22

    First measurements are presented of the diffractive cross section $\\sigma_{ep \\rightarrow eXY}$ at centre-of-mass energies $\\sqrt{s}$ of 225 and 252 GeV, together with a precise new measurement at $\\sqrt{s}$ of 319 GeV, using data taken with the H1 detector in the years 2006 and 2007. Together with previous H1 data at $\\sqrt{s}$ of 301 GeV, the measurements are used to extract the diffractive longitudinal structure function F_L^D in the range of photon virtualities 4.0 <= Q^2 <= 44.0 GeV^2 and fractional proton longitudinal momentum loss 5 10^{-4} <= x_{IP} <= 3 10^{-3}. The measured F_L^D is compared with leading twist predictions based on diffractive parton densities extracted in NLO QCD fits to previous measurements of diffractive Deep-Inelastic Scattering and with a model which additionally includes a higher twist contribution derived from a colour dipole approach. The ratio of the diffractive cross section induced by longitudinally polarised photons to that for transversely polarised photons ...

  11. Diffraction. Single crystal, magnetic

    International Nuclear Information System (INIS)

    Heger, G.

    1999-01-01

    The analysis of crystal structure and magnetic ordering is usually based on diffraction phenomena caused by the interaction of matter with X-rays, neutrons, or electrons. Complementary information is achieved due to the different character of X-rays, neutrons and electrons, and hence their different interactions with matter and further practical aspects. X-ray diffraction using conventional laboratory equipment and/or synchrotron installations is the most important method for structure analyses. The purpose of this paper is to discuss special cases, for which, in addition to this indispensable part, neutrons are required to solve structural problems. Even though the huge intensity of modern synchrotron sources allows in principle the study of magnetic X-ray scattering the investigation of magnetic structures is still one of the most important applications of neutron diffraction. (K.A.)

  12. Measurement of inelastic, single- and double-diffraction cross sections in proton-proton collisions at the LHC with ALICE

    CERN Document Server

    Abelev, Betty; Adamova, Dagmar; Adare, Andrew Marshall; Aggarwal, Madan; Aglieri Rinella, Gianluca; Agocs, Andras Gabor; Agostinelli, Andrea; Aguilar Salazar, Saul; Ahammed, Zubayer; Ahmad, Nazeer; Ahmad, Arshad; Ahn, Sul-Ah; Ahn, Sang Un; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Almaraz Avina, Erick Jonathan; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anson, Christopher Daniel; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshauser, Harald; Arbor, Nicolas; Arcelli, Silvia; Arend, Andreas; Armesto, Nestor; Arnaldi, Roberta; Aronsson, Tomas Robert; Arsene, Ionut Cristian; Arslandok, Mesut; Asryan, Andzhey; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Aysto, Juha Heikki; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bailhache, Raphaelle Marie; Bala, Renu; Baldini Ferroli, Rinaldo; Baldisseri, Alberto; Baldit, Alain; Baltasar Dos Santos Pedrosa, Fernando; Ban, Jaroslav; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont-Moreno, Ernesto; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bergognon, Anais Annick Erica; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, F; Blanco, Francesco; Blau, Dmitry; Blume, Christoph; Boccioli, Marco; Bock, Nicolas; Boettger, Stefan; Bogdanov, Alexey; Boggild, Hans; Bogolyubsky, Mikhail; Boldizsar, Laszlo; Bombara, Marek; Book, Julian; Borel, Herve; Borissov, Alexander; Bose, Suvendu Nath; Bossu, Francesco; Botje, Michiel; Botta, Elena; Boyer, Bruno Alexandre; Braidot, Ermes; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Browning, Tyler Allen; Broz, Michal; Brun, Rene; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Busch, Oliver; Buthelezi, Edith Zinhle; Caballero Orduna, Diego; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Cara Romeo, Giovanni; Carena, Wisla; Carena, Francesco; Carlin Filho, Nelson; Carminati, Federico; Casanova Diaz, Amaya Ofelia; Castillo Castellanos, Javier Ernesto; Castillo Hernandez, Juan Francisco; Casula, Ester Anna Rita; Catanescu, Vasile; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chawla, Isha; Cherney, Michael Gerard; Cheshkov, Cvetan; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Coccetti, Fabrizio; Colamaria, Fabio; Colella, Domenico; Conesa Balbastre, Gustavo; Conesa del Valle, Zaida; Contin, Giacomo; Contreras, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortese, Pietro; Cortes Maldonado, Ismael; Cosentino, Mauro Rogerio; Costa, Filippo; Cotallo, Manuel Enrique; Crescio, Elisabetta; Crochet, Philippe; Cruz Alaniz, Emilia; Cuautle, Eleazar; Cunqueiro, Leticia; Dainese, Andrea; Dalsgaard, Hans Hjersing; Danu, Andrea; Das, Kushal; Das, Indranil; Das, Debasish; Dash, Sadhana; Dash, Ajay Kumar; De, Sudipan; de Barros, Gabriel; De Caro, Annalisa; de Cataldo, Giacinto; de Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; Delagrange, Hugues; Deloff, Andrzej; De Marco, Nora; Denes, Ervin; De Pasquale, Salvatore; Deppman, Airton; D'Erasmo, Ginevra; de Rooij, Raoul Stefan; Diaz Corchero, Miguel Angel; Di Bari, Domenico; Dietel, Thomas; Di Giglio, Carmelo; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Dominguez, Isabel; Donigus, Benjamin; Dordic, Olja; Driga, Olga; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Dutta Majumdar, AK; Dutta Majumdar, Mihir Ranjan; Elia, Domenico; Emschermann, David Philip; Engel, Heiko; Erazmus, Barbara; Erdal, Hege Austrheim; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Eyyubova, Gyulnara; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fearick, Roger Worsley; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Fenton-Olsen, Bo; Feofilov, Grigory; Fernandez Tellez, Arturo; Ferretti, Alessandro; Ferretti, Roberta; Festanti, Andrea; Figiel, Jan; Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoje, Jens Joergen; Gagliardi, Martino; Gago, Alberto; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos, Jose; Garcia-Solis, Edmundo; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Geuna, Claudio; Gheata, Mihaela; Gheata, Andrei George; Ghidini, Bruno; Ghosh, Premomoy; Gianotti, Paola; Girard, Martin Robert; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez, Ramon; Gonzalez Ferreiro, Elena; Gonzalez-Trueba, Laura Helena; Gonzalez-Zamora, Pedro; Gorbunov, Sergey; Goswami, Ankita; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grajcarek, Robert; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoriev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grinyov, Boris; Grion, Nevio; Gros, Philippe; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerra Gutierrez, Cesar; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Ramni; Gupta, Anik; Gutbrod, Hans; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Han, Byounghee; Hanratty, Luke David; Hansen, Alexander; Harmanova, Zuzana; Harris, John William; Hartig, Matthias; Hasegan, Dumitru; Hatzifotiadou, Despoina; Hayrapetyan, Arsen; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Norbert; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hicks, Bernard; Hille, Per Thomas; Hippolyte, Boris; Horaguchi, Takuma; Hori, Yasuto; Hristov, Peter Zahariev; Hrivnacova, Ivana; Huang, Meidana; Humanic, Thomas; Hwang, Dae Sung; Ichou, Raphaelle; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Incani, Elisa; Innocenti, Pier Giorgio; Innocenti, Gian Michele; Ippolitov, Mikhail; Irfan, Muhammad; Ivan, Cristian George; Ivanov, Vladimir; Ivanov, Marian; Ivanov, Andrey; Ivanytskyi, Oleksii; Jacobs, Peter; Jang, Haeng Jin; Janik, Malgorzata Anna; Janik, Rudolf; Jayarathna, Sandun; Jena, Satyajit; Jha, Deeptanshu Manu; Jimenez Bustamante, Raul Tonatiuh; Jirden, Lennart; Jones, Peter Graham; Jung, Hyung Taik; Jusko, Anton; Kaidalov, Alexei; Kakoyan, Vanik; Kalcher, Sebastian; Kalinak, Peter; Kalliokoski, Tuomo Esa Aukusti; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kazantsev, Andrey; Kebschull, Udo Wolfgang; Keidel, Ralf; Khan, Shuaib Ahmad; Khan, Palash; Khan, Mohisin Mohammed; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Minwoo; Kim, Se Yong; Kim, Dong Jo; Kim, Do Won; Kim, Jonghyun; Kim, Jin Sook; Kim, Taesoo; Kim, Mimae; Kim, Beomkyu; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Klay, Jennifer Lynn; Klein, Jochen; Klein-Bosing, Christian; Kliemant, Michael; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Koch, Kathrin; Kohler, Markus; Kollegger, Thorsten; Kolojvari, Anatoly; Kondratiev, Valery; Kondratyeva, Natalia; Konevskih, Artem; Kour, Ravjeet; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kraus, Ingrid Christine; Kravcakova, Adela; Krawutschke, Tobias; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Krus, Miroslav; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucheriaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paul; Kulakov, Igor; Kumar, Jitendra; Kurashvili, Podist; Kurepin, A; Kurepin, AB; Kuryakin, Alexey; Kushpil, Vasily; Kushpil, Svetlana; Kvaerno, Henning; Kweon, Min Jung; Kwon, Youngil; Ladron de Guevara, Pedro; Lakomov, Igor; Langoy, Rune; La Pointe, Sarah Louise; Lara, Camilo Ernesto; Lardeux, Antoine Xavier; La Rocca, Paola; Lea, Ramona; Le Bornec, Yves; Lechman, Mateusz; Lee, Ki Sang; Lee, Sung Chul; Lee, Graham Richard; Lefevre, Frederic; Lehnert, Joerg Walter; Lenhardt, Matthieu Laurent; Lenti, Vito; Leon, Hermes; Leoncino, Marco; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Levai, Peter; Lien, Jorgen; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Liu, Lijiao; Loggins, Vera; Loginov, Vitaly; Lohn, Stefan Bernhard; Lohner, Daniel; Loizides, Constantinos; Loo, Kai Krister; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lovhoiden, Gunnar; Lu, Xianguo; Luettig, Philipp; Lunardon, Marcello; Luo, Jiebin; Luparello, Grazia; Luquin, Lionel; Luzzi, Cinzia; Ma, Ke; Ma, Rongrong; Madagodahettige-Don, Dilan Minthaka; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Maire, Antonin; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Ludmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Mangotra, Lalit Kumar; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Marin Tobon, Cesar Augusto; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martinengo, Paolo; Martinez, Mario Ivan; Martinez Davalos, Arnulfo; Martinez Garcia, Gines; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matthews, Zoe Louise; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Mercado Perez, Jorge; Meres, Michal; Miake, Yasuo; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Monteno, Marco; Montes, Esther; Moon, Taebong; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Munhoz, Marcelo; Musa, Luciano; Musso, Alfredo; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Navin, Sparsh; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nicassio, Maria; Niculescu, Mihai; Nielsen, Borge Svane; Niida, Takafumi; Nikolaev, Sergey; Nikolic, Vedran; Nikulin, Vladimir; Nikulin, Sergey; Nilsen, Bjorn Steven; Nilsson, Mads Stormo; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Novitzky, Norbert; Nyanin, Alexandre; Nyatha, Anitha; Nygaard, Casper; Nystrand, Joakim Ingemar; Ochirov, Alexander; Oeschler, Helmut Oskar; Oh, Sun Kun; Oh, Saehanseul; Oleniacz, Janusz; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Ortona, Giacomo; Oskarsson, Anders Nils Erik; Ostrowski, Piotr Krystian; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozawa, Kyoichiro; Pachmayer, Yvonne Chiara; Pachr, Milos; Padilla, Fatima; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares, Carlos; Pal, Susanta Kumar; Palaha, Arvinder Singh; Palmeri, Armando; Papikyan, Vardanush; Pappalardo, Giuseppe; Park, Woo Jin; Passfeld, Annika; Pastircak, Blahoslav; Patalakha, Dmitri Ivanovich; Paticchio, Vincenzo; Pavlinov, Alexei; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitri; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Perini, Diego; Perrino, Davide; Peryt, Wiktor Stanislaw; Pesci, Alessandro; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrov, Plamen Rumenov; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Piccotti, Anna; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Pitz, Nora; Piyarathna, Danthasinghe; Planinic, Mirko; Ploskon, Mateusz Andrzej; Pluta, Jan Marian; Pocheptsov, Timur; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polak, Karel; Polichtchouk, Boris; Pop, Amalia; Porteboeuf-Houssais, Sarah; Pospisil, Vladimir; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puddu, Giovanna; Pulvirenti, Alberto; Punin, Valery; Putis, Marian; Putschke, Jorn Henning; Quercigh, Emanuele; Qvigstad, Henrik; Rachevski, Alexandre; Rademakers, Alphonse; Raiha, Tomi Samuli; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Ramirez Reyes, Abdiel; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Rehman, Attiq Ur; Reichelt, Patrick; Reicher, Martijn; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riccati, Lodovico; Ricci, Renato Angelo; Richert, Tuva; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rodrigues Fernandes Rabacal, Bartolomeu; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roed, Ketil; Rohr, David; Rohrich, Dieter; Romita, Rosa; Ronchetti, Federico; Rosnet, Philippe; Rossegger, Stefan; Rossi, Andrea; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Rybicki, Andrzej; Sadovsky, Sergey; Safarik, Karel; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Sakaguchi, Hiroaki; Sakai, Shingo; Sakata, Dosatsu; Salgado, Carlos Albert; Salzwedel, Jai; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sano, Satoshi; Santo, Rainer; Santoro, Romualdo; Sarkamo, Juho Jaako; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Hans Rudolf; Schmidt, Christian Joachim; Schreiner, Steffen; Schuchmann, Simone; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca; Segato, Gianfranco; Selioujenkov, Ilya; Senyukov, Serhiy; Seo, Jeewon; Serci, Sergio; Serradilla, Eulogio; Sevcenco, Adrian; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Sharma, Satish; Sharma, Natasha; Sharma, Rohini; Shigaki, Kenta; Shimomura, Maya; Shtejer, Katherin; Sibiriak, Yury; Siciliano, Melinda; Sicking, Eva; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smakal, Radek; Smirnov, Nikolai; Snellings, Raimond; Sogaard, Carsten; Soltz, Ron Ariel; Son, Hyungsuk; Song, Myunggeun; Song, Jihye; Soos, Csaba; Soramel, Francesca; Sputowska, Iwona; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strmen, Peter; Suaide, Alexandre Alarcon do Passo; Subieta Vasquez, Martin Alfonso; Sugitate, Toru; Suire, Christophe Pierre; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Symons, Timothy; Szanto de Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szostak, Artur Krzysztof; Szymanski, Maciej; Takahashi, Jun; Tapia Takaki, Daniel Jesus; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Thader, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony; Tlusty, David; Toia, Alberica; Torii, Hisayuki; Toscano, Luca; Trubnikov, Victor; Truesdale, David Christopher; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Ulrich, Jochen; Uras, Antonio; Urban, Jozef; Urciuoli, Guido Marie; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Vande Vyvre, Pierre; van Leeuwen, Marco; Vannucci, Luigi; Vargas, Aurora Diozcora; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Yury; Vinogradov, Leonid; Vinogradov, Alexander; Virgili, Tiziano; Viyogi, Yogendra; Vodopianov, Alexander; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; von Haller, Barthelemy; Vranic, Danilo; vrebekk, Gaute; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Vladimir; Wan, Renzhuo; Wang, Mengliang; Wang, Dong; Wang, Yifei; Wang, Yaping; Watanabe, Kengo; Weber, Michael; Wessels, Johannes; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Alexander; Wilk, Grzegorz Andrzej; Williams, Crispin; Windelband, Bernd Stefan; Xaplanteris Karampatsos, Leonidas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Shiming; Yang, Hongyan; Yasnopolsky, Stanislav; Yi, JunGyu; Yin, Zhongbao; Yoo, In-Kwon; Yoon, Jongik; Yu, Weilin; Yuan, Xianbao; Yushmanov, Igor; Zaccolo, Valentina; Zach, Cenek; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zaviyalov, Nikolai; Zbroszczyk, Hanna Paulina; Zelnicek, Pierre; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Xiaoming; Zhang, Haitao; Zhou, You; Zhou, Fengchu; Zhou, Daicui; Zhu, Jianlin; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zynovyev, Mykhaylo; Zyzak, Maksym

    2013-01-01

    Measurements of cross sections of inelastic and diffractive processes in proton--proton collisions at LHC energies were carried out with the ALICE detector. The fractions of diffractive processes in inelastic collisions were determined from a study of gaps in charged particle pseudorapidity distributions: for single diffraction (diffractive mass $M_X 3$) $\\sigma_{\\rm DD}/\\sigma_{\\rm INEL} = 0.11 \\pm 0.03, 0.12 \\pm 0.05$, and $0.12^{+0.05}_{-0.04}$, respectively at $\\sqrt{s} = 0.9, 2.76$, and 7 TeV. To measure the inelastic cross section, beam properties were determined with van der Meer scans, and, using a simulation of diffraction adjusted to data, the following values were obtained: $\\sigma_{\\rm INEL} = 62.8^{+2.4}_{-4.0} (model) \\pm 1.2 (lumi)$ mb at $\\sqrt{s} =$ 2.76 TeV and $73.2^{+2.0}_{-4.6} (model) \\pm 2.6 (lumi)$ mb at $\\sqrt{s}$ = 7 TeV. The single- and double-diffractive cross sections were calculated combining relative rates of diffraction with inelastic cross sections. The results are compared t...

  13. Generalizations of the noisy-or model

    Czech Academy of Sciences Publication Activity Database

    Vomlel, Jiří

    2015-01-01

    Roč. 51, č. 3 (2015), s. 508-524 ISSN 0023-5954 R&D Projects: GA ČR GA13-20012S Institutional support: RVO:67985556 Keywords : Bayesian networks * noisy-or model * classification * generalized linear models Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.628, year: 2015 http://library.utia.cas.cz/separaty/2015/MTR/vomlel-0447357.pdf

  14. Analysis of neutron diffraction spectra acquired in situ during stress-induced transformations in superelastic NiTi

    International Nuclear Information System (INIS)

    Vaidyanathan, R.; Bourke, M.A.; Dunand, D.C.

    1999-01-01

    Neutron diffraction spectra were obtained during various stages of a reversible stress-induced austenite to martensite phase transformation in superelastic NiTi. This was accomplished by neutron diffraction measurements on bulk polycrystalline NiTi samples simultaneously subjected to mechanical loading. Analysis of the data was carried out using individual lattice plane (hkl) reflections as well as by Rietveld refinement. In the Rietveld procedure, strains in austenite were described in terms of an isotropic (hkl independent) and an anisotropic (hkl dependent) component. At higher stresses, austenite lattice plane reflections exhibited nonlinear and dissimilar elastic responses which may be attributed to the transformation. The texture evolution is significant in both austenite and martensite phases during the transformation and two approaches were used to describe this evolving texture, i.e., an ellipsoidal model due to March - Dollase and a generalized spherical-harmonic approach. The respective predictions of the phase fraction evolution as a function of applied stress were compared. A methodology is thus established to quantify the discrete phase strains, phase volume fractions, and texture during such transformations. copyright 1999 American Institute of Physics

  15. Generalized Born Models of Macromolecular Solvation Effects

    Science.gov (United States)

    Bashford, Donald; Case, David A.

    2000-10-01

    It would often be useful in computer simulations to use a simple description of solvation effects, instead of explicitly representing the individual solvent molecules. Continuum dielectric models often work well in describing the thermodynamic aspects of aqueous solvation, and approximations to such models that avoid the need to solve the Poisson equation are attractive because of their computational efficiency. Here we give an overview of one such approximation, the generalized Born model, which is simple and fast enough to be used for molecular dynamics simulations of proteins and nucleic acids. We discuss its strengths and weaknesses, both for its fidelity to the underlying continuum model and for its ability to replace explicit consideration of solvent molecules in macromolecular simulations. We focus particularly on versions of the generalized Born model that have a pair-wise analytical form, and therefore fit most naturally into conventional molecular mechanics calculations.

  16. Infrared problems in two-dimensional generalized σ-models

    International Nuclear Information System (INIS)

    Curci, G.; Paffuti, G.

    1989-01-01

    We study the correlations of the energy-momentum tensor for classically conformally invariant generalized σ-models in the Wilson operator-product-expansion approach. We find that these correlations are, in general, infrared divergent. The absence of infrared divergences is obtained, as one can expect, for σ-models on a group manifold or for σ-models with a string-like interpretation. Moreover, the infrared divergences spoil the naive scaling arguments used by Zamolodchikov in the demonstration of the C-theorem. (orig.)

  17. Generalized Landau-Lifshitz models on the interval

    International Nuclear Information System (INIS)

    Doikou, Anastasia; Karaiskos, Nikos

    2011-01-01

    We study the classical generalized gl n Landau-Lifshitz (L-L) model with special boundary conditions that preserve integrability. We explicitly derive the first non-trivial local integral of motion, which corresponds to the boundary Hamiltonian for the sl 2 L-L model. Novel expressions of the modified Lax pairs associated to the integrals of motion are also extracted. The relevant equations of motion with the corresponding boundary conditions are determined. Dynamical integrable boundary conditions are also examined within this spirit. Then the generalized isotropic and anisotropic gl n Landau-Lifshitz models are considered, and novel expressions of the boundary Hamiltonians and the relevant equations of motion and boundary conditions are derived.

  18. A QCD Model Using Generalized Yang-Mills Theory

    International Nuclear Information System (INIS)

    Wang Dianfu; Song Heshan; Kou Lina

    2007-01-01

    Generalized Yang-Mills theory has a covariant derivative, which contains both vector and scalar gauge bosons. Based on this theory, we construct a strong interaction model by using the group U(4). By using this U(4) generalized Yang-Mills model, we also obtain a gauge potential solution, which can be used to explain the asymptotic behavior and color confinement.

  19. Analytical model for neutron diffraction peak shifts due to the surface effect

    Czech Academy of Sciences Publication Activity Database

    Šaroun, Jan; Kornmeier, J. R.; Hofmann, M.; Mikula, Pavol; Vrána, Miroslav

    2013-01-01

    Roč. 46, č. 6 (2013), s. 628-638 ISSN 0021-8898 R&D Projects: GA ČR GAP204/10/0654 Institutional support: RVO:61389005 Keywords : residual-stress * neutron diffraction * Monte Carlo simulation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.950, year: 2013

  20. Tomography with energy dispersive diffraction

    Science.gov (United States)

    Stock, S. R.; Okasinski, J. S.; Woods, R.; Baldwin, J.; Madden, T.; Quaranta, O.; Rumaiz, A.; Kuczewski, T.; Mead, J.; Krings, T.; Siddons, P.; Miceli, A.; Almer, J. D.

    2017-09-01

    X-ray diffraction can be used as the signal for tomographic reconstruction and provides a cross-sectional map of the crystallographic phases and related quantities. Diffraction tomography has been developed over the last decade using monochromatic x-radiation and an area detector. This paper reports tomographic reconstruction with polychromatic radiation and an energy sensitive detector array. The energy dispersive diffraction (EDD) geometry, the instrumentation and the reconstruction process are described and related to the expected resolution. Results of EDD tomography are presented for two samples containing hydroxyapatite (hAp). The first is a 3D-printed sample with an elliptical crosssection and contains synthetic hAp. The second is a human second metacarpal bone from the Roman-era cemetery at Ancaster, UK and contains bio-hAp which may have been altered by diagenesis. Reconstructions with different diffraction peaks are compared. Prospects for future EDD tomography are also discussed.

  1. Plane-wave diffraction by periodic structures with artificial anisotropic dielectrics

    International Nuclear Information System (INIS)

    Kazerooni, Azadeh Semsar; Shahabadi, Mahmoud

    2010-01-01

    Periodic structures with artificial anisotropic dielectrics are studied. The artificial anisotropic dielectric material in this work is made of two alternating isotropic dielectric layers. By a proper choice of the dielectric constant of the layers, we can realize a uniaxial anisotropic medium with controllable anisotropy. The artificial anisotropic dielectric is then used in periodic structures. For these structures, the optical axis of the artificial dielectric is assumed to be parallel or perpendicular to the period of the structure. Diffraction of plane waves by these structures is analyzed by a fully vectorial rigorous matrix method based on a generalized transmission line (TL) formulation. The propagation constants and field distributions are computed and diffraction properties of such structures are studied to show that, by a proper choice of structural parameters, these periodic structures with artificial anisotropic dielectrics can be used as polarizers or polarizing mirrors

  2. Digital diffractive optics: Have diffractive optics entered mainstream industry yet?

    Science.gov (United States)

    Kress, Bernard; Hejmadi, Vic

    2010-05-01

    When a new technology is integrated into industry commodity products and consumer electronic devices, and sold worldwide in retail stores, it is usually understood that this technology has then entered the realm of mainstream technology and therefore mainstream industry. Such a leap however does not come cheap, as it has a double edge sword effect: first it becomes democratized and thus massively developed by numerous companies for various applications, but also it becomes a commodity, and thus gets under tremendous pressure to cut down its production and integration costs while not sacrificing to performance. We will show, based on numerous examples extracted from recent industry history, that the field of Diffractive Optics is about to undergo such a major transformation. Such a move has many impacts on all facets of digital diffractive optics technology, from the optical design houses to the micro-optics foundries (for both mastering and volume replication), to the final product integrators or contract manufacturers. The main causes of such a transformation are, as they have been for many other technologies in industry, successive technological bubbles which have carried and lifted up diffractive optics technology within the last decades. These various technological bubbles have been triggered either by real industry needs or by virtual investment hype. Both of these causes will be discussed in the paper. The adjective ""digital"" in "digital diffractive optics" does not refer only, as it is done in digital electronics, to the digital functionality of the element (digital signal processing), but rather to the digital way they are designed (by a digital computer) and fabricated (as wafer level optics using digital masking techniques). However, we can still trace a very strong similarity between the emergence of micro-electronics from analog electronics half a century ago, and the emergence of digital optics from conventional optics today.

  3. A generalized model via random walks for information filtering

    Science.gov (United States)

    Ren, Zhuo-Ming; Kong, Yixiu; Shang, Ming-Sheng; Zhang, Yi-Cheng

    2016-08-01

    There could exist a simple general mechanism lurking beneath collaborative filtering and interdisciplinary physics approaches which have been successfully applied to online E-commerce platforms. Motivated by this idea, we propose a generalized model employing the dynamics of the random walk in the bipartite networks. Taking into account the degree information, the proposed generalized model could deduce the collaborative filtering, interdisciplinary physics approaches and even the enormous expansion of them. Furthermore, we analyze the generalized model with single and hybrid of degree information on the process of random walk in bipartite networks, and propose a possible strategy by using the hybrid degree information for different popular objects to toward promising precision of the recommendation.

  4. Characterization of diffraction gratings by use of a tabletop soft-x-ray laser

    International Nuclear Information System (INIS)

    Seminario, Max; Rocca, Jorge J.; Depine, Ricardo A.; Bach, Benny; Bach, Bernie

    2001-01-01

    We have demonstrated the use of a high-repetition-rate 46.9-mm tabletop laser to characterize diffraction gratings designed for grazing-incidence operation in the soft-x-ray spectral region. The efficiencies for various diffraction orders were measured as a function of angle of incidence and compared with the results of model simulations. This measurement technique provides benchmarks with which to improve electromagnetic codes used in the design of soft-x-ray diffraction gratings. The results illustrate the potential of compact tabletop soft-x-ray lasers for use as a new tool for characterization of short-wavelength optics at the manufacturer's site

  5. Raw diffraction data preservation and reuse: overview, update on practicalities and metadata requirements

    Directory of Open Access Journals (Sweden)

    Loes M. J. Kroon-Batenburg

    2017-01-01

    Full Text Available A topical review is presented of the rapidly developing interest in and storage options for the preservation and reuse of raw data within the scientific domain of the IUCr and its Commissions, each of which operates within a great diversity of instrumentation. A résumé is included of the case for raw diffraction data deposition. An overall context is set by highlighting the initiatives of science policy makers towards an `Open Science' model within which crystallographers will increasingly work in the future; this will bring new funding opportunities but also new codes of procedure within open science frameworks. Skills education and training for crystallographers will need to be expanded. Overall, there are now the means and the organization for the preservation of raw crystallographic diffraction data via different types of archive, such as at universities, discipline-specific repositories (Integrated Resource for Reproducibility in Macromolecular Crystallography, Structural Biology Data Grid, general public data repositories (Zenodo, ResearchGate and centralized neutron and X-ray facilities. Formulation of improved metadata descriptors for the raw data types of each of the IUCr Commissions is in progress; some detailed examples are provided. A number of specific case studies are presented, including an example research thread that provides complete open access to raw data.

  6. Raw diffraction data preservation and reuse: Overview, update on practicalities and metadata requirements

    International Nuclear Information System (INIS)

    Kroon-Batenburg, Loes M. J.; Helliwell, John R.; McMahon, Brian; Terwilliger, Thomas Charles

    2017-01-01

    A topical review is presented of the rapidly developing interest in and storage options for the preservation and reuse of raw data within the scientific domain of the IUCr and its Commissions, each of which operates within a great diversity of instrumentation. A résumé is included of the case for raw diffraction data deposition. An overall context is set by highlighting the initiatives of science policy makers towards an 'Open Science' model within which crystallographers will increasingly work in the future; this will bring new funding opportunities but also new codes of procedure within open science frameworks. Skills education and training for crystallographers will need to be expanded. Overall, there are now the means and the organization for the preservation of raw crystallographic diffraction data via different types of archive, such as at universities, discipline-specific repositories (Integrated Resource for Reproducibility in Macromolecular Crystallography, Structural Biology Data Grid), general public data repositories (Zenodo, ResearchGate) and centralized neutron and X-ray facilities. Formulation of improved metadata descriptors for the raw data types of each of the IUCr Commissions is in progress; some detailed examples are provided. Lastly, a number of specific case studies are presented, including an example research thread that provides complete open access to raw data.

  7. Computer Simulation of Diffraction Patterns.

    Science.gov (United States)

    Dodd, N. A.

    1983-01-01

    Describes an Apple computer program (listing available from author) which simulates Fraunhofer and Fresnel diffraction using vector addition techniques (vector chaining) and allows user to experiment with different shaped multiple apertures. Graphics output include vector resultants, phase difference, diffraction patterns, and the Cornu spiral…

  8. Diffraction limit of refractive compound lens

    International Nuclear Information System (INIS)

    Kolchevsky, N.N.; Petrov, P.V.

    2015-01-01

    A compound X-ray and neutron lenses is an array of lenses with a common axis. The resolution limited by aberration and by diffraction. Diffraction limit comes from theory based on absorption aperture of the compound refractive lenses. Beam passing through transparent lenses form Airy pattern. Results of calculation of diffraction resolution limit for non-transparent X-ray and neutron lenses are discussed. (authors)

  9. Deep-inelastic electron-proton diffraction

    International Nuclear Information System (INIS)

    Dainton, J.B.

    1995-11-01

    Recent measurements by the H1 collaboration at HERA of the cross section for deep-inelastic electron-proton scattering in which the proton interacts with minimal energy transfer and limited 4-momentum transfer squared are presented in the form of the contribution F 2 D(3) to the proton structure function F 2 . By parametrising the cross section phenomenologically in terms of a leading effective Regge pole exchange and comparing the result with a similar parametrisation of hadronic pp physics, the proton interaction is demonstrated to be dominantly of a diffractive nature. The quantitative interpretation of the parametrisation in terms of the properties of an effective leading Regge pole exchange, the pomeron (IP), shows that there is no evidence for a 'harder' BFKL-motivated IP in such deep-inelastic proton diffraction. The total contribution of proton diffraction to deep-inelastic electron-proton scattering is measured to be ∝10% and to be rather insensitive to Bjorken-x and Q 2 . A first measurement of the partonic structure of diffractive exchange is presented. It is shown to be readily interpreted in terms of the exchange of gluons, and to suggest that the bulk of diffractive momentum transfer is carried by a leading gluon. (orig.)

  10. Diffractive dissociation and eikonalization in high energy pp and p bar p collisions

    International Nuclear Information System (INIS)

    Gotsman, E.; Levin, E.M.; Maor, U.

    1994-01-01

    We show that eikonal corrections imposed on diffraction dissociation processes calculated in the triple Regge limit produce a radical change in the energy dependence of the predicted cross section. The induced correction is shown to be in general agreement with the recent Fermilab Tevatron experimental data

  11. X-ray diffraction imaging of material microstructures

    KAUST Repository

    Varga, Laszlo

    2016-10-20

    Various examples are provided for x-ray imaging of the microstructure of materials. In one example, a system for non-destructive material testing includes an x-ray source configured to generate a beam spot on a test item; a grid detector configured to receive x- rays diffracted from the test object; and a computing device configured to determine a microstructure image based at least in part upon a diffraction pattern of the x-rays diffracted from the test object. In another example, a method for determining a microstructure of a material includes illuminating a beam spot on the material with a beam of incident x-rays; detecting, with a grid detector, x-rays diffracted from the material; and determining, by a computing device, a microstructure image based at least in part upon a diffraction pattern of the x-rays diffracted from the material.

  12. Inclusive transverse momentum distributions of charged particles in diffractive and non-diffractive photoproduction at HERA

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1995-03-01

    Inclusive transverse momentum spectra of charged particles in photoproduction events in the laboratory pseudorapidity range -1.2 T =8 GeV using the ZEUS detector. Diffractive and non-diffractive reactions have been selected with an average γp centre of mass (c.m.) energy of =180 GeV. For diffractive reactions, the p T spectra of the photon dissociation events have been measured in two intervals of the dissociated photon mass with mean values X >=5 GeV and 10 GeV. The inclusive transverse momentum spectra fall exponentially in the low p T region. The non-diffractive data show a pronounced high p T tail departing from the exponential shape. The p T distributions are compared to lower energy photoproduction data and to hadron-hadron collisions at a similar c.m. energy. The data are also compared to the results of a next-to-leading order QCD calculation. (orig.)

  13. Neutral-helium-atom diffraction from a micron-scale periodic structure: Photonic-crystal-membrane characterization

    Science.gov (United States)

    Nesse, Torstein; Eder, Sabrina D.; Kaltenbacher, Thomas; Grepstad, Jon Olav; Simonsen, Ingve; Holst, Bodil

    2017-06-01

    Surface scattering of neutral helium beams created by supersonic expansion is an established technique for measuring structural and dynamical properties of surfaces on the atomic scale. Helium beams have also been used in Fraunhofer and Fresnel diffraction experiments. Due to the short wavelength of the atom beams of typically 0.1 nm or less, Fraunhofer diffraction experiments in transmission have so far been limited to grating structures with a period (pitch) of up to 200 nm. However, larger periods are of interest for several applications, for example, for the characterization of photonic-crystal-membrane structures, where the period is typically in the micron to high submicron range. Here we present helium atom diffraction measurements of a photonic-crystal-membrane structure with a two-dimensional square lattice of 100 ×100 circular holes. The nominal period and the hole radius were 490 and 100 nm, respectively. To our knowledge this is the largest period that has been measured with helium diffraction. The helium diffraction measurements are interpreted using a model based on the helium beam characteristics. It is demonstrated how to successfully extract values from the experimental data for the average period of the grating, the hole diameter, and the width of the virtual source used to model the helium beam.

  14. Multivariate statistical modelling based on generalized linear models

    CERN Document Server

    Fahrmeir, Ludwig

    1994-01-01

    This book is concerned with the use of generalized linear models for univariate and multivariate regression analysis. Its emphasis is to provide a detailed introductory survey of the subject based on the analysis of real data drawn from a variety of subjects including the biological sciences, economics, and the social sciences. Where possible, technical details and proofs are deferred to an appendix in order to provide an accessible account for non-experts. Topics covered include: models for multi-categorical responses, model checking, time series and longitudinal data, random effects models, and state-space models. Throughout, the authors have taken great pains to discuss the underlying theoretical ideas in ways that relate well to the data at hand. As a result, numerous researchers whose work relies on the use of these models will find this an invaluable account to have on their desks. "The basic aim of the authors is to bring together and review a large part of recent advances in statistical modelling of m...

  15. Diffractive dijet photoproduction in ep collisions at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Alexa, C. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V. [Lebedev Physical Institute, Moscow (RU)] (and others)

    2010-03-15

    Measurements are presented of single and double-differential dijet cross sections in diffractive photoproduction based on a data sample with an integrated luminosity of 47 pb{sup -1}. The events are of the type ep{yields}eXY, where the hadronic system X contains at least two jets and is separated by a large rapidity gap from the system Y, which consists of a leading proton or low-mass proton excitation. The dijet cross sections are compared with QCD calculations at next-to-leading order and with a Monte Carlo model based on leading order matrix elements with parton showers. The measured cross sections are smaller than those obtained from the next-to-leading order calculations by a factor of about 0.6. This suppression factor has no significant dependence on the fraction x{sub {gamma}} of the photon four-momentum entering the hard subprocess. Ratios of the diffractive to the inclusive dijet cross sections are measured for the first time and are compared with Monte Carlo models. (orig.)

  16. Diffractive dijet photoproduction in ep collisions at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G. [National Inst. for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Loktionova, N.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y. [Lebedev Physical Inst., Moscow (Russian Federation); Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N. [Univ. of Montenegro, Faculty of Science, Podgorica (ME); Baghdasaryan, A.; Zohrabyan, H. [Yerevan Physics Inst. (Armenia); Barrelet, E. [CNRS/IN2P3, LPNHE, Univ. Pierre et Marie Curie Paris 6, Univ. Denis Diderot Paris 7, Paris (France); Bartel, W.; Brandt, G.; Campbell, A.J.; Cholewa, A.; Deak, M.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Grell, B.R.; Habib, S.; Haidt, D.; Helebrant, C.; Katzy, J.; Kleinwort, C.; Knutsson, A.; Kraemer, M.; Kutak, K.; Levonian, S.; Lipka, K.; List, J.; Marti, Ll.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Nikiforov, A.; Olsson, J.E.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Petrukhin, A.; Piec, S.; Pitzl, D.; Placakyte, R.; Schmitt, S.; Sefkow, F.; Staykova, Z.; Steder, M.; Toll, T.; Vargas Trevino, A.; Driesch, M. von den; Wuensch, E. [DESY, Hamburg (Germany); Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B. [Inst. of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar (Mongolia); Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F. [CNRS/IN2P3, LAL, Univ. Paris-Sud, Orsay (France); Boudry, V.; Moreau, F.; Specka, A. [CNRS/IN2P3, LLR, Ecole Polytechnique, Palaiseau (France); Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I. [Vinca Inst. of Nuclear Sciences, Belgrade (RS); Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Shaw-West, R.N.; Thompson, P.D. [Univ. of Birmingham (United Kingdom). School of Physics and Astronomy] (and others)

    2010-11-15

    Measurements are presented of single and double-differential dijet cross sections in diffractive photoproduction based on a data sample with an integrated luminosity of 47 pb{sup -1}. The events are of the type ep{yields}eXY, where the hadronic system X contains at least two jets and is separated by a large rapidity gap from the system Y, which consists of a leading proton or low-mass proton excitation. The dijet cross sections are compared with QCD calculations at next-to-leading order and with a Monte Carlo model based on leading order matrix elements with parton showers. The measured cross sections are smaller than those obtained from the next-to-leading order calculations by a factor of about 0.6. This suppression factor has no significant dependence on the fraction x{sub {gamma}} of the photon four-momentum entering the hard subprocess. Ratios of the diffractive to the inclusive dijet cross sections are measured for the first time and are compared with Monte Carlo models. (orig.)

  17. Quantitative phase analysis by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Hee; Song, Su Ho; Lee, Jin Ho; Shim, Hae Seop [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-06-01

    This study is to apply quantitative phase analysis (QPA) by neutron diffraction to the round robin samples provided by the International Union of Crystallography(IUCr). We measured neutron diffraction patterns for mixed samples which have several different weight percentages and their unique characteristic features. Neutron diffraction method has been known to be superior to its complementary methods such as X-ray or Synchrotron, but it is still accepted as highly reliable under limited conditions or samples. Neutron diffraction has strong capability especially on oxides due to its scattering cross-section of the oxygen and it can become a more strong tool for analysis on the industrial materials with this quantitative phase analysis techniques. By doing this study, we hope not only to do one of instrument performance tests on our HRPD but also to improve our ability on the analysis of neutron diffraction data by comparing our QPA results with others from any advanced reactor facilities. 14 refs., 4 figs., 6 tabs. (Author)

  18. Nonlinear diffraction from a virtual beam

    DEFF Research Database (Denmark)

    Saltiel, Solomon M.; Neshev, Dragomir N.; Krolikowski, Wieslaw

    2010-01-01

    We observe experimentally a novel type of nonlinear diffraction in the process of two-wave mixing on a nonlinear quadratic grating.We demonstrate that when the nonlinear grating is illuminated simultaneously by two noncollinear beams, a second-harmonic diffraction pattern is generated by a virtual...... beam propagating along the bisector of the two pump beams. The observed iffraction phenomena is a purely nonlinear effect that has no analogue in linear diffraction...

  19. Theory of edge diffraction in electromagnetics

    CERN Document Server

    Ufimtsev, Pyotr

    2009-01-01

    This book is an essential resource for researchers involved in designing antennas and RCS calculations. It is also useful for students studying high frequency diffraction techniques. It contains basic original ideas of the Physical Theory of Diffraction (PTD), examples of its practical application, and its validation by the mathematical theory of diffraction. The derived analytic expressions are convenient for numerical calculations and clearly illustrate the physical structure of the scattered field.

  20. EOP MIT General Circulation Model (MITgcm)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data contains a regional implementation of the Massachusetts Institute of Technology general circulation model (MITgcm) at a 1-km spatial resolution for the...

  1. Effect of substrate material selection on polychromatic integral diffraction efficiency for multilayer diffractive optics in oblique incident situation

    Science.gov (United States)

    Zhang, Bo; Cui, Qingfeng; Piao, Mingxu

    2018-05-01

    The effect of substrate material selection for multilayer diffractive optical elements (MLDOEs) on polychromatic integral diffraction efficiency (PIDE) is studied in the oblique incident situation. A mathematical model of substrate material selection is proposed to obtain the high PIDE with large incident angle. The extended expression of the microstructure heights with consideration of incident angle is deduced to calculate the PIDE difference Δ η bar(λ) for different substrate material combinations. The smaller value of Δ η bar(λ) indicates the more optimal substrate material combination in a wide incident angle range. Based on the deduced mathematical model, different MLDOEs are analyzed in visible and infrared wavebands. The results show that the three-layer DOEs can be applied in larger incident angle situation than the double-layer DOEs in visible waveband. When the two substrate materials are the same, polycarbonate (PC) is more reasonable than poly(methyl methacrylate) (PMMA) as the middle filling optical material for the three-layer DOEs. In the infrared waveband, the PIDE decreases in the LWIR are obviously smaller than that in the MWIR for the same substrate material combination, and the PIDE cannot be calculated when the incident angle larger than critical angle. The analysis results can be used to guide the hybrid optical system design with MLDOEs.

  2. Current stage of understanding and description of hadronic elastic diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Godizov, A. A. [Institute for High Energy Physics, 142281 Protvino (Russian Federation)

    2013-04-15

    Current situation with phenomenological description of high-energy nucleon-nucleon diffractive elastic scattering is reviewed. Comparison of various model predictions with the recent D0 and TOTEM data on the nucleon-nucleon differential cross-sections is presented.

  3. a Proposal for Generalization of 3d Models

    Science.gov (United States)

    Uyar, A.; Ulugtekin, N. N.

    2017-11-01

    In recent years, 3D models have been created of many cities around the world. Most of the 3D city models have been introduced as completely graphic or geometric models, and the semantic and topographic aspects of the models have been neglected. In order to use 3D city models beyond the task, a generalization is necessary. CityGML is an open data model and XML-based format for the storage and exchange of virtual 3D city models. Level of Details (LoD) which is an important concept for 3D modelling, can be defined as outlined degree or prior representation of real-world objects. The paper aim is first describes some requirements of 3D model generalization, then presents problems and approaches that have been developed in recent years. In conclude the paper will be a summary and outlook on problems and future work.

  4. Characterization of a polychromatic neutron beam diffracted by pyrolytic graphite crystals

    CERN Document Server

    Byun, S H; Choi, H D

    2002-01-01

    The beam spectrum for polychromatic neutrons diffracted by pyrolytic graphite crystals was characterized. The theoretical beam spectrum was obtained using the diffraction model for a mosaic crystal. The lattice vibration effects were included in the calculation using the reported vibration amplitude of the crystal and the measured time-of-flight spectra in the thermal region. The calculated beam spectrum was compared with the results obtained in the absence of thermal motion. The lattice vibration effects became more important for the higher diffraction orders and a large decrease in the neutron flux induced by the vibrations was identified in the epithermal region. The validity of the beam spectrum was estimated by comparing with the effective quantities determined from prompt gamma-ray measurements and Cd-ratios measured both for 1/nu and non-1/nu nuclides.

  5. Unmitigated numerical solution to the diffraction term in the parabolic nonlinear ultrasound wave equation.

    Science.gov (United States)

    Hasani, Mojtaba H; Gharibzadeh, Shahriar; Farjami, Yaghoub; Tavakkoli, Jahan

    2013-09-01

    Various numerical algorithms have been developed to solve the Khokhlov-Kuznetsov-Zabolotskaya (KZK) parabolic nonlinear wave equation. In this work, a generalized time-domain numerical algorithm is proposed to solve the diffraction term of the KZK equation. This algorithm solves the transverse Laplacian operator of the KZK equation in three-dimensional (3D) Cartesian coordinates using a finite-difference method based on the five-point implicit backward finite difference and the five-point Crank-Nicolson finite difference discretization techniques. This leads to a more uniform discretization of the Laplacian operator which in turn results in fewer calculation gridding nodes without compromising accuracy in the diffraction term. In addition, a new empirical algorithm based on the LU decomposition technique is proposed to solve the system of linear equations obtained from this discretization. The proposed empirical algorithm improves the calculation speed and memory usage, while the order of computational complexity remains linear in calculation of the diffraction term in the KZK equation. For evaluating the accuracy of the proposed algorithm, two previously published algorithms are used as comparison references: the conventional 2D Texas code and its generalization for 3D geometries. The results show that the accuracy/efficiency performance of the proposed algorithm is comparable with the established time-domain methods.

  6. Crash data modeling with a generalized estimator.

    Science.gov (United States)

    Ye, Zhirui; Xu, Yueru; Lord, Dominique

    2018-05-11

    The investigation of relationships between traffic crashes and relevant factors is important in traffic safety management. Various methods have been developed for modeling crash data. In real world scenarios, crash data often display the characteristics of over-dispersion. However, on occasions, some crash datasets have exhibited under-dispersion, especially in cases where the data are conditioned upon the mean. The commonly used models (such as the Poisson and the NB regression models) have associated limitations to cope with various degrees of dispersion. In light of this, a generalized event count (GEC) model, which can be generally used to handle over-, equi-, and under-dispersed data, is proposed in this study. This model was first applied to case studies using data from Toronto, characterized by over-dispersion, and then to crash data from railway-highway crossings in Korea, characterized with under-dispersion. The results from the GEC model were compared with those from the Negative binomial and the hyper-Poisson models. The cases studies show that the proposed model provides good performance for crash data characterized with over- and under-dispersion. Moreover, the proposed model simplifies the modeling process and the prediction of crash data. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Generalized versus non-generalized neural network model for multi-lead inflow forecasting at Aswan High Dam

    Directory of Open Access Journals (Sweden)

    A. El-Shafie

    2011-03-01

    Full Text Available Artificial neural networks (ANN have been found efficient, particularly in problems where characteristics of the processes are stochastic and difficult to describe using explicit mathematical models. However, time series prediction based on ANN algorithms is fundamentally difficult and faces problems. One of the major shortcomings is the search for the optimal input pattern in order to enhance the forecasting capabilities for the output. The second challenge is the over-fitting problem during the training procedure and this occurs when ANN loses its generalization. In this research, autocorrelation and cross correlation analyses are suggested as a method for searching the optimal input pattern. On the other hand, two generalized methods namely, Regularized Neural Network (RNN and Ensemble Neural Network (ENN models are developed to overcome the drawbacks of classical ANN models. Using Generalized Neural Network (GNN helped avoid over-fitting of training data which was observed as a limitation of classical ANN models. Real inflow data collected over the last 130 years at Lake Nasser was used to train, test and validate the proposed model. Results show that the proposed GNN model outperforms non-generalized neural network and conventional auto-regressive models and it could provide accurate inflow forecasting.

  8. Structure of molten TbCl sub 3 measured by neutron diffraction

    CERN Document Server

    Martin, R A; Barnes, A C; Cuello, G J

    2002-01-01

    The total structure factor of molten TbCl sub 3 at 617 deg. C was measured by using neutron diffraction. The data are in agreement with results from previous experimental work but the use of a diffractometer having an extended reciprocal-space measurement window leads to improved resolution in real space. Significant discrepancies with the results obtained from recent molecular dynamics simulations carried out using a polarizable ion model, in which the interaction potentials were optimized to enhance agreement with previous diffraction data, are thereby highlighted. It is hence shown that there is considerable scope for the development of this model for TbCl sub 3 and for other trivalent metal halide systems spanning a wide range of ion size ratios. (letter to the editor)

  9. Residual Stresses in DC cast Aluminum Billet: Neutron Diffraction Measurements and Thermomechanical Modeling

    International Nuclear Information System (INIS)

    Drezet, J.-M.; Evans, A.; Pirling, T.

    2011-01-01

    Thermally-induced residual stresses, generated during the industrial Direct Chill casting process of aluminum alloys, can cause both significant safety concerns as well as the formation of defects during down-stream processing. Although these thermally induced strains can be partially relieved by permanent deformation, cracks will be generated either during solidification (hot tears) or post-solidification cooling (cold cracks) when stresses exceed the deformation limit of the alloy. Furthermore, the thermally induced strains result in the presence of large internal stresses within the billet before further processing steps. Although numerical models have been previously developed to compute these residual stresses, most of the computations have been validated only against measured surface distortions. In the present work, the variation in residual elastic strains and stresses in the steady state regime of casting has been measured as a function of radial position using neutron diffraction in an AA6063 grain-refined cylindrical billet. These measurements have been carried out on the same billet section at Poldi at PSI-Villigen and at Salsa at ILL-Grenoble and compare favorably. The results are used to validate a thermo-mechanical finite element casting model and to assess the level of stored elastic energy within the billet.

  10. Three-dimensional diffraction of a thin metallic cylinder illuminated in conical incidence: application to diameter estimation

    International Nuclear Information System (INIS)

    Miguel Sanchez-Brea, Luis; Javier Salgado-Remacha, Francisco

    2008-01-01

    We present a model to determine the far-field diffraction pattern of a metallic cylinder of infinite length when it is illuminated in oblique incidence. This model is based on the Helmholtz-Kirchhoff integral using the Beckmann conditions for reflection. It considers the three-dimensional nature of the diffracting object as well as the material of which the cylinder is made. This model shows that the diffraction orders are placed in a cone of light. The amplitude at the far field can be divided into three terms: the first term accounts for Babinet's principle, that is, the contribution of the cylinder projection; the second term accounts for the three dimensionality of the cylinder; and the third term accounts for the material of which the cylinder is made. This model is applied to the diameter estimation of the cylinder. Since the amplitude of the Babinet contribution is much larger than the light reflected by the surface, the cylinder diameter can be obtained in a simple way. With this approximation, the locations of the diffraction minima do not vary when the cylinder is inclined. On the other hand, when the reflected light is considered the location of the minima and, hence, the estimation of the diameter, varies. Also, a modification of the diffraction minima is produced by the material of which the cylinder is made. Experimental results are also obtained that corroborate the theoretical approach

  11. Diffractive charm and jet production at HERA

    International Nuclear Information System (INIS)

    Savin, Alexander A.

    2003-01-01

    A new high precision inclusive measurement of the diffractive production of D* ± (2010) mesons in deep inelastic scattering (DIS) in the kinematic region Q 2 >1.5 GeV 2 , 0.02 IP 2 2 , 165 2 , χ IP < 0.03 are presented. Diffractive parton densities extracted using a NLO DGLAP QCD fit are used for comparisons with diffractive DIS and PHP dijet and open charm cross sections at HERA and the Tevatron, thus testing the factorization properties of hard diffraction

  12. On the use of logarithmic scales for analysis of diffraction data.

    Science.gov (United States)

    Urzhumtsev, Alexandre; Afonine, Pavel V; Adams, Paul D

    2009-12-01

    Predictions of the possible model parameterization and of the values of model characteristics such as R factors are important for macromolecular refinement and validation protocols. One of the key parameters defining these and other values is the resolution of the experimentally measured diffraction data. The higher the resolution, the larger the number of diffraction data N(ref), the larger its ratio to the number N(at) of non-H atoms, the more parameters per atom can be used for modelling and the more precise and detailed a model can be obtained. The ratio N(ref)/N(at) was calculated for models deposited in the Protein Data Bank as a function of the resolution at which the structures were reported. The most frequent values for this distribution depend essentially linearly on resolution when the latter is expressed on a uniform logarithmic scale. This defines simple analytic formulae for the typical Matthews coefficient and for the typically allowed number of parameters per atom for crystals diffracting to a given resolution. This simple dependence makes it possible in many cases to estimate the expected resolution of the experimental data for a crystal with a given Matthews coefficient. When expressed using the same logarithmic scale, the most frequent values for R and R(free) factors and for their difference are also essentially linear across a large resolution range. The minimal R-factor values are practically constant at resolutions better than 3 A, below which they begin to grow sharply. This simple dependence on the resolution allows the prediction of expected R-factor values for unknown structures and may be used to guide model refinement and validation.

  13. Magnetic structures: neutron diffraction studies

    International Nuclear Information System (INIS)

    Bouree-Vigneron, F.

    1990-01-01

    Neutron diffraction is often an unequivocal method for determining magnetic structures. Here we present some typical examples, stressing the sequence through experiments, data analysis, interpretation and modelisation. Two series of compounds are chosen: Tb Ni 2 Ge 2 and RBe 13 (R = Gd, Tb, Dy, Ho, Er). Depending on the nature of the elements, the magnetic structures produced can be commensurate, incommensurate or even show a transition between two such phases as a function of temperature. A model, taking magnetic exchange and anisotropy into account, will be presented in the case of commensurate-incommensurate magnetic transitions in RBe 13

  14. On the combination of molecular replacement and single-wavelength anomalous diffraction phasing for automated structure determination

    International Nuclear Information System (INIS)

    Panjikar, Santosh; Parthasarathy, Venkataraman; Lamzin, Victor S.; Weiss, Manfred S.; Tucker, Paul A.

    2009-01-01

    The combination of molecular replacement and single-wavelength anomalous diffraction improves the performance of automated structure determination with Auto-Rickshaw. A combination of molecular replacement and single-wavelength anomalous diffraction phasing has been incorporated into the automated structure-determination platform Auto-Rickshaw. The complete MRSAD procedure includes molecular replacement, model refinement, experimental phasing, phase improvement and automated model building. The improvement over the standard SAD or MR approaches is illustrated by ten test cases taken from the JCSG diffraction data-set database. Poor MR or SAD phases with phase errors larger than 70° can be improved using the described procedure and a large fraction of the model can be determined in a purely automatic manner from X-ray data extending to better than 2.6 Å resolution

  15. Generalized heat-transport equations: parabolic and hyperbolic models

    Science.gov (United States)

    Rogolino, Patrizia; Kovács, Robert; Ván, Peter; Cimmelli, Vito Antonio

    2018-03-01

    We derive two different generalized heat-transport equations: the most general one, of the first order in time and second order in space, encompasses some well-known heat equations and describes the hyperbolic regime in the absence of nonlocal effects. Another, less general, of the second order in time and fourth order in space, is able to describe hyperbolic heat conduction also in the presence of nonlocal effects. We investigate the thermodynamic compatibility of both models by applying some generalizations of the classical Liu and Coleman-Noll procedures. In both cases, constitutive equations for the entropy and for the entropy flux are obtained. For the second model, we consider a heat-transport equation which includes nonlocal terms and study the resulting set of balance laws, proving that the corresponding thermal perturbations propagate with finite speed.

  16. Neutron-diffraction measurements of stress

    International Nuclear Information System (INIS)

    Holden, T.M.

    1995-01-01

    Experiments on bent steam-generator tubing have shown that different diffraction peaks, (1 1 1) or (0 0 2), give different results for the sign and magnitude of the stress and strain. From an engineering standpoint, the macroscopic stress field cannot be both positive and negative in the same volume, so this difference must be due to intergranular effects superposed on the macroscopic stress field. Uniaxial tensile test experiments with applied stresses beyond the 0.2% offset yield stress, help to understand this anomaly, by demonstrating the different strain response to applied stress along different crystallographic axes.When Zr-alloys are cooled from elevated temperatures, thermal stresses always develop, so that it is difficult to obtain a stress-free lattice spacing from which residual strains may be derived. From measurements of the temperature dependence of lattice spacing, the temperature at which the thermal stresses vanish may be found. From the lattice spacing at this temperature the stress-free lattice spacings at room temperature can be obtained readily.To interpret the measured strains in terms of macroscopic stress fields it is necessary to know the diffraction elastic constants. Neutron diffraction measurements of the diffraction elastic constants in a ferritic steel for the [1 1 0], [0 0 2] and [2 2 2] crystallographic axes, in directions parallel and perpendicular to the applied stress are compared with theoretical diffraction elastic constants. (orig.)

  17. Diffractive production in deep inelastic scattering and hadronic interactions

    International Nuclear Information System (INIS)

    Kaidalow, A.

    1996-01-01

    Diffractive processes in hadronic interactions are considered and important role of multi-Pomeron exchanges is emphasized. It is argued that in deep inelastic scattering these contributions are much less important and energy behavior of structure functions at Q 2 ≥ 1 GeV 2 is determined mostly by bare Pomeron intercept. It is shown that the model based on these ideas is in a perfect agreement with recent results from HERA. Diffractive production in DIS is discussed and theoretical predictions for the structure function of the Pomeron are compared with experimental observations. It is emphasized that both quarks and gluons in the Pomeron have hard distributions. Shadowing corrections to structure function of a nucleon are calculated and found to small in the region of x > 10 -4 . A good agreement with experimental data on the shadowing of structure functions of nuclei is obtained. Energy dependence for the cross sections of the diffractive production of vector mesons by real and virtual photons is calculated in the same approach and is found to be in an excellent agreement with experiment. (author)

  18. Neutron diffraction from holographic gratings in PMMA

    International Nuclear Information System (INIS)

    Havermeyer, F.; Kraetzig, E.; Rupp, R.A.; Schubert, D.W.

    1999-01-01

    Complete text of publication follows. By definition photorefractive materials change the refractive index for light under the action of light. Using the spatially modulated light intensity pattern from the interference of two plane waves, volume phase gratings with accurately defined spacings can be produced. Depending on the material there are many physical origins for these gratings, but in most cases they are linked to a density modulation and, consequently, to a refractive index grating for neutrons. By diffraction of light or neutrons from such gratings even small refractive index changes down to Δn ∼ 10 -7 - 10 -9 can be measured. In our photopolymer system PMMA/MMA (poly(methyl methacrylate) with a content of 10-20% of the residual monomer methyl methacrylate) inhomogeneous illumination leads to local post-polymerisation processes of the residual monomer. The resulting light-optical refractive index grating is caused by the modulation of the monomer/polymer ratio as well as by the modulation of the total density. Only by the unique combination of methods for light and neutron diffraction, available at HOLONS (Holography and Neutron Scattering, instrument at the GKSS research centre), both contributions can be separated. We discuss the angular dependence of the neutron diffraction efficiency for weakly and strongly (efficiencies up to 60% have been achieved) modulated gratings and propose a simple model for the evaluation of the gratings. (author)

  19. The general dynamic model

    DEFF Research Database (Denmark)

    Borregaard, Michael K.; Matthews, Thomas J.; Whittaker, Robert James

    2016-01-01

    Aim: Island biogeography focuses on understanding the processes that underlie a set of well-described patterns on islands, but it lacks a unified theoretical framework for integrating these processes. The recently proposed general dynamic model (GDM) of oceanic island biogeography offers a step...... towards this goal. Here, we present an analysis of causality within the GDM and investigate its potential for the further development of island biogeographical theory. Further, we extend the GDM to include subduction-based island arcs and continental fragment islands. Location: A conceptual analysis...... of evolutionary processes in simulations derived from the mechanistic assumptions of the GDM corresponded broadly to those initially suggested, with the exception of trends in extinction rates. Expanding the model to incorporate different scenarios of island ontogeny and isolation revealed a sensitivity...

  20. Comparison of source moment tensor recovered by diffraction stacking migration and source time reversal imaging

    Science.gov (United States)

    Zhang, Q.; Zhang, W.

    2017-12-01

    Diffraction stacking migration is an automatic location methods and widely used in microseismic monitoring of the hydraulic fracturing. It utilizes the stacking of thousands waveform to enhance signal-to-noise ratio of weak events. For surface monitoring, the diffraction stacking method is suffered from polarity reverse among receivers due to radiation pattern of moment source. Joint determination of location and source mechanism has been proposed to overcome the polarity problem but needs significantly increased computational calculations. As an effective method to recover source moment tensor, time reversal imaging based on wave equation can locate microseismic event by using interferometry on the image to extract source position. However, the time reversal imaging is very time consuming compared to the diffraction stacking location because of wave-equation simulation.In this study, we compare the image from diffraction stacking and time reversal imaging to check if the diffraction stacking can obtain similar moment tensor as time reversal imaging. We found that image produced by taking the largest imaging value at each point along time axis does not exhibit the radiation pattern, while with the same level of calculation efficiency, the image produced for each trial origin time can generate radiation pattern similar to time reversal imaging procedure. Thus it is potential to locate the source position by the diffraction stacking method for general moment tensor sources.

  1. Structural refinement and extraction of hydrogen atomic positions in polyoxymethylene crystal based on the first successful measurements of 2-dimensional high-energy synchrotron X-ray diffraction and wide-angle neutron diffraction patterns of hydrogenated and deuterated species

    International Nuclear Information System (INIS)

    Tashiro, Kohji; Hanesaka, Makoto; Ohhara, Takashi; Kurihara, Kazuo; Tamada, Taro; Kuroki, Ryota; Fujiwara, Satoru; Ozeki, Tomoji; Kitano, Toshiaki; Nishu, Takashi; Tanaka, Ichiro; Niimura, Nobuo

    2007-01-01

    2-Dimensional X-ray and neutron diffraction patterns have been successfully measured for deuterated and hydrogenated polyoxymethylene (POM) samples obtained by γ-ray induced solid-state polymerization reaction. More than 700 reflections were collected from the X-ray diffraction data at -150degC by utilizing a high-energy synchrotron X-ray beam at SPring-8, Japan, from which the crystal structure of POM has been refined thoroughly including the extraction of hydrogen atomic positions at clearly seen in the difference Fourier synthesis map. As the first trial the nonuniform (9/5) helical model was analyzed with the reliability factor (R factor) 6.9%. The structural analysis was made also using the X-ray reflections of about 400 observed at room temperature (R 8.8%), and the thermal parameters of constituent atoms were compared between the low and high temperatures to discuss the librational thermal motion of the chains. The 2-dimensional neutron diffraction data, collected for the deuterated and hydrogenated POM samples using an imaging plate system specifically built-up for neutron scattering experiment, have allowed us to pick up the D and H atomic positions clearly in the Fourier synthesis maps. Another possible model, (29/16) helix, which was proposed by several researches, has been also investigated on the basis of the X-ray diffraction data at -150degC. The direct method succeeded in extracting this (29/16) model straightforwardly. The R factor was 8.6%, essentially the same as that of (9/5) helical model. This means that the comparison of the diffraction intensity between the data collected from the full-rotation X-ray diffraction pattern and the intensity calculated for both the (9/5) and (29/16) models cannot be used for the unique determination of the superiority of the model, (9/5) or (29/16) helix. However, we have found the existence of 001 and 002 reflections which give the longer repeating period 55.7 A. Besides there observed a series of meridional

  2. Analyzing shear band formation with high resolution X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Pagan, Darren C.; Obstalecki, Mark; Park, Jun-Sang; Miller, Matthew P.

    2018-04-01

    Localization of crystallographic slip into shear bands during uniaxial compression of a copper single crystal is studied using very far-field high-energy diffraction microscopy (vff-HEDM). Diffracted intensity was collected in-situ as the crystal deformed using a unique mobile detector stage that provided access to multiple diffraction peaks with high-angular resolution. From the diffraction data, single crystal orientation pole figures (SCPFs) were generated and are used to track the evolution of the distribution of lattice orientation that develops as slip localizes. To aid the identification of 'signatures' of shear band formation and analyze the SCPF data, a model of slip-driven lattice reorientation within shear bands is introduced. Confidence is built in conclusions drawn from the SCPF data about the character of internal slip localization through comparisons with strain fields on the sample surface measured simultaneously using digital image correlation. From the diffraction data, we find that the active slip direction and slip plane are not directly aligned with the orientation of the shear bands that formed. In fact, by extracting the underlying slip system activity from the SCPF data, we show that intersecting shear bands measured on the surface of the sample arise from slip primarily on the same underlying single slip system. These new vff-HEDM results raise significant questions on the use of surface measurements for slip system activity estimation. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. In-situ neutron diffraction characterization of temperature dependence deformation in α-uranium

    Science.gov (United States)

    Calhoun, C. A.; Garlea, E.; Sisneros, T. A.; Agnew, S. R.

    2018-04-01

    In-situ strain neutron diffraction measurements were conducted at temperature on specimens coming from a clock-rolled α-uranium plate, and Elasto-Plastic Self-Consistent (EPSC) modeling was employed to interpret the findings. The modeling revealed that the active slip systems exhibit a thermally activated response, while deformation twinning remains athermal over the temperature ranges explored (25-150 °C). The modeling also allowed assessment of the effects of thermal residual stresses on the mechanical response during compression. These results are consistent with those from a prior study of room-temperature deformation, indicating that the thermal residual stresses strongly influence the internal strain evolution of grain families, as monitored with neutron diffraction, even though accounting for these residual stresses has little effect on the macroscopic flow curve, except in the elasto-plastic transition.

  4. Diffraction-based analysis of tunnel size for a scaled external occulter testbed

    Science.gov (United States)

    Sirbu, Dan; Kasdin, N. Jeremy; Vanderbei, Robert J.

    2016-07-01

    For performance verification of an external occulter mask (also called a starshade), scaled testbeds have been developed to measure the suppression of the occulter shadow in the pupil plane and contrast in the image plane. For occulter experiments the scaling is typically performed by maintaining an equivalent Fresnel number. The original Princeton occulter testbed was oversized with respect to both input beam and shadow propagation to limit any diffraction effects due to finite testbed enclosure edges; however, to operate at realistic space-mission equivalent Fresnel numbers an extended testbed is currently under construction. With the longer propagation distances involved, diffraction effects due to the edge of the tunnel must now be considered in the experiment design. Here, we present a diffraction-based model of two separate tunnel effects. First, we consider the effect of tunnel-edge induced diffraction ringing upstream from the occulter mask. Second, we consider the diffraction effect due to clipping of the output shadow by the tunnel downstream from the occulter mask. These calculations are performed for a representative point design relevant to the new Princeton occulter experiment, but we also present an analytical relation that can be used for other propagation distances.

  5. In situ electron backscattered diffraction of individual GaAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Prikhodko, S.V. [Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095 (United States)], E-mail: sergey@seas.ucla.edu; Sitzman, S. [Oxford Instruments America, Concord, MA 01742 (United States); Gambin, V. [Northrop Grumman Space Technology, Redondo Beach, CA 90278 (United States); Kodambaka, S. [Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095 (United States)

    2008-12-15

    We suggest and demonstrate that electron backscattered diffraction, a scanning electron microscope-based technique, can be used for non-destructive structural and morphological characterization of statistically significant number of nanowires in situ on their growth substrate. We obtain morphological, crystal phase, and crystal orientation information of individual GaAs nanowires in situ on the growth substrate GaAs(1 1 1) B. Our results, verified using transmission electron microscopy and selected area electron diffraction analyses of the same set of wires, indicate that most wires possess a wurtzite structure with a high density of thin structural defects aligned normal to the wire growth axis, while others grow defect-free with a zincblende structure. The demonstrated approach is general, applicable to other material systems, and is expected to provide important insights into the role of substrate structure on nanowire structure on nanowire crystallinity and growth orientation.

  6. Electron diffraction of CBr{sub 4} in superfluid helium droplets: A step towards single molecule diffraction

    Energy Technology Data Exchange (ETDEWEB)

    He, Yunteng; Zhang, Jie; Kong, Wei, E-mail: wei.kong@oregonstate.edu [Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003 (United States)

    2016-07-21

    We demonstrate the practicality of electron diffraction of single molecules inside superfluid helium droplets using CBr{sub 4} as a testing case. By reducing the background from pure undoped droplets via multiple doping, with small corrections for dimers and trimers, clearly resolved diffraction rings of CBr{sub 4} similar to those of gas phase molecules can be observed. The experimental data from CBr{sub 4} doped droplets are in agreement with both theoretical calculations and with experimental results of gaseous species. The abundance of monomers and clusters in the droplet beam also qualitatively agrees with the Poisson statistics. Possible extensions of this approach to macromolecular ions will also be discussed. This result marks the first step in building a molecular goniometer using superfluid helium droplet cooling and field induced orientation. The superior cooling effect of helium droplets is ideal for field induced orientation, but the diffraction background from helium is a concern. This work addresses this background issue and identifies a possible solution. Accumulation of diffraction images only becomes meaningful when all images are produced from molecules oriented in the same direction, and hence a molecular goniometer is a crucial technology for serial diffraction of single molecules.

  7. Refinement of the crystal structure of malachite, Cu/sub 2/(OH)/sub 2/CO/sub 3/, by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Zigan, F; Joswig, W; Schuster, H D [Frankfurt Univ. (Germany, F.R.); Mason, S A [Institut Max von Laue - Paul Langevin, 38 - Grenoble (France)

    1977-01-01

    The crystal structure of malachite is refined (R = 0,021) with the intensity values of 635 independent neutron reflexions from a single crystal, rather free from absorption and extinction. Concerning the structural geometry, no essential deviations occur from the known results of x-ray diffraction. The thermal elongations are generally largest about the normal to the (201) layers, between which the bonding is relatively weak. In both of the (medium, bent) OH...O hydrogen bonds, the anisotropic thermal parameters, converted according to the riding model, are - with certain restrictions - in agreement with the measured infrared spectrum as well as with frequencies and directions of the proton vibration calculated from the bonding geometry on the basis of a theoretical model.

  8. A new device for X-ray Diffraction analyses of irradiated materials

    International Nuclear Information System (INIS)

    Valot, Christophe; Blay, Thierry; Caillot, Laurent; Ferroud-Plattet, Marie Pierre

    2008-01-01

    A new X-Ray Diffraction (XRD) equipment is being implemented in the LECA (Cea - Cadarache) hot laboratory. The device will be dedicated to structural characterization on irradiated fuels, as PWR fuels, transmutation targets and innovative fuels. The paper will present the specific design that was decided in order to reduce the number of components in contaminated volume and to make servicing easier. The analytical performances of this new equipment will be illustrated on some model samples: -) micro-diffraction capabilities will be detailed on heterogeneous material; -) strain and stress analyses on fresh uranium oxide pellets. (authors)

  9. New structural studies of liquid crystal by reflectivity and resonant X-ray diffraction

    International Nuclear Information System (INIS)

    Fernandes, P.

    2007-04-01

    This memory presents three structural studies of smectic Liquid Crystals by reflectivity and resonant diffraction of X-rays. It is divided in five chapters. In the first a short introduction to Liquid Crystals is given. In particular, the smectic phases that are the object of this study are presented. The second chapter is consecrated to the X-ray experimental techniques that were used in this work. The three last chapters present the works on which this thesis can be divided. Chapter three demonstrates on free-standing films of MHPOBC (historic liquid crystal that possesses the antiferroelectric sub-phases) the possibility to extend the technique of resonant X-ray diffraction to liquid crystals without resonant element. In the fourth chapter the structure of the B 2 liquid crystal phase of bent-core molecules (or banana molecules) is elucidated by using resonant X-ray diffraction combined with polarization analysis of the diffracted beam. A model of the polarization of the resonant beam diffracted by four different structures proposed for the B 2 phase is developed in this chapter. In the fifth chapter a smectic binary mixture presenting a very original critical point of phase separation is studied by X-ray reflectivity and optical microscopy. A concentration gradient in the direction perpendicular to the plane of the film seems to be induced by the free-standing film geometry. The results of a simplified model of the system are compatible with this interpretation

  10. Diffractive optical elements for space communication terminals

    OpenAIRE

    Herzig, Hans-Peter; Ehbets, Peter; Teijido, Juan M.; Weible, Kenneth J.; Heimbeck, Hans-Joerg

    2007-01-01

    The potential of diffractive optical elements for advanced laser communication terminals has been investigated. Applications include beam shaping of high- power laser diode arrays, optical filter elements for position detection and hybrid (refractive/diffractive) elements. In addition, we present a design example of a miniaturized terminal including diffractive optics.

  11. Analysis of Heuristic Uniform Theory of Diffraction Coefficients for Electromagnetic Scattering Prediction

    Directory of Open Access Journals (Sweden)

    Diego Tami

    2018-01-01

    Full Text Available We discuss three sets of heuristic coefficients used in uniform theory of diffraction (UTD to characterize the electromagnetic scattering in realistic urban scenarios and canonical examples of diffraction by lossy conducting wedges using the three sets of heuristic coefficients and the Malyuzhinets solution as reference model. We compare not only the results of the canonical models but also their implementation in real outdoor scenarios. To predict the coverage of mobile networks, we used propagation models for outdoor environments by using a 3D ray-tracing model based on a brute-force algorithm for ray launching and a propagation model based on image theory. To evaluate each set of coefficients, we analyzed the mean and standard deviation of the absolute error between estimates and measured data in Ottawa, Canada; Valencia, Spain; and Cali, Colombia. Finally, we discuss the path loss prediction for each set of heuristic UTD coefficients in outdoor environment, as well as the comparison with the canonical results.

  12. Tests of QCD factorisation in the diffractive production of dijets in deep-inelastic scattering and photoproduction at HERA

    Science.gov (United States)

    Aktas, A.; Andreev, V.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Cantun Avila, K. B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J. G.; Coughlan, J. A.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; de Roeck, A.; de Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Flucke, G.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B. R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Helebrant, C.; Henderson, R. C. W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Jacquet, M.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, D. P.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Landon, M. P. J.; Lange, W.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, L.; Martisikova, M.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, T.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, T.; Pascaud, C.; Patel, G. D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Plačakytė, R.; Povh, B.; Prideaux, P.; Rahmat, A. J.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schätzel, S.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Sloan, T.; Smiljanic, I.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Stiewe, J.; Stoilov, A.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Toll, T.; Tomasz, F.; Traynor, D.; Trinh, T. N.; Truöl, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Usik, A.; Utkin, D.; Valkárová, A.; Vallée, C.; van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wissing, C.; Wolf, R.; Wünsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2007-08-01

    Measurements are presented of differential dijet cross sections in diffractive photoproduction (Q2<0.01 GeV2) and deep-inelastic scattering processes (DIS, 4diffractive parton densities previously obtained from a QCD analysis of inclusive diffractive DIS cross sections by H1. In DIS, the dijet data are well described, supporting the validity of QCD factorisation. The diffractive DIS dijet data are more sensitive to the diffractive gluon density at high fractional parton momentum than the measurements of inclusive diffractive DIS. In photoproduction, the predicted dijet cross section has to be multiplied by a factor of approximately 0.5 for both direct and resolved photon interactions to describe the measurements. The ratio of measured dijet cross section to NLO prediction in photoproduction is a factor 0.5±0.1 smaller than the same ratio in DIS. This suppression is the first clear observation of QCD hard scattering factorisation breaking at HERA. The measurements are also compared to the two soft colour neutralisation models SCI and GAL. The SCI model describes diffractive dijet production in DIS but not in photoproduction. The GAL model fails in both kinematic regions.

  13. Generalized Path Analysis and Generalized Simultaneous Equations Model for Recursive Systems with Responses of Mixed Types

    Science.gov (United States)

    Tsai, Tien-Lung; Shau, Wen-Yi; Hu, Fu-Chang

    2006-01-01

    This article generalizes linear path analysis (PA) and simultaneous equations models (SiEM) to deal with mixed responses of different types in a recursive or triangular system. An efficient instrumental variable (IV) method for estimating the structural coefficients of a 2-equation partially recursive generalized path analysis (GPA) model and…

  14. Reliability assessment of competing risks with generalized mixed shock models

    International Nuclear Information System (INIS)

    Rafiee, Koosha; Feng, Qianmei; Coit, David W.

    2017-01-01

    This paper investigates reliability modeling for systems subject to dependent competing risks considering the impact from a new generalized mixed shock model. Two dependent competing risks are soft failure due to a degradation process, and hard failure due to random shocks. The shock process contains fatal shocks that can cause hard failure instantaneously, and nonfatal shocks that impact the system in three different ways: 1) damaging the unit by immediately increasing the degradation level, 2) speeding up the deterioration by accelerating the degradation rate, and 3) weakening the unit strength by reducing the hard failure threshold. While the first impact from nonfatal shocks comes from each individual shock, the other two impacts are realized when the condition for a new generalized mixed shock model is satisfied. Unlike most existing mixed shock models that consider a combination of two shock patterns, our new generalized mixed shock model includes three classic shock patterns. According to the proposed generalized mixed shock model, the degradation rate and the hard failure threshold can simultaneously shift multiple times, whenever the condition for one of these three shock patterns is satisfied. An example using micro-electro-mechanical systems devices illustrates the effectiveness of the proposed approach with sensitivity analysis. - Highlights: • A rich reliability model for systems subject to dependent failures is proposed. • The degradation rate and the hard failure threshold can shift simultaneously. • The shift is triggered by a new generalized mixed shock model. • The shift can occur multiple times under the generalized mixed shock model.

  15. Foundations of linear and generalized linear models

    CERN Document Server

    Agresti, Alan

    2015-01-01

    A valuable overview of the most important ideas and results in statistical analysis Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linear statistical models. The book presents a broad, in-depth overview of the most commonly used statistical models by discussing the theory underlying the models, R software applications, and examples with crafted models to elucidate key ideas and promote practical model building. The book begins by illustrating the fundamentals of linear models,

  16. Apparatus development for high-pressure X-ray diffraction using synchrotron radiation

    International Nuclear Information System (INIS)

    Martinez, L.G.; Orlando, M.T.D.; Rossi, J.L.; Passamai Junior, J.L.; Melo, F.C.L.; Ferreira, F.F.

    2006-01-01

    Some phenomena in the field of condensed matter physics can be studied when the matter is submitted to extreme conditions of pressure, magnetic fields or temperatures. Once submitted to these conditions it is generally necessary to measure the properties of the matter in situ. The existence of a synchrotron light laboratory in Brazil opens up the chance of studying materials in extreme conditions by techniques like X-ray diffraction and absorption. However, when compared to high-energy synchrotrons accelerators, the Brazilian source offers a narrower energy range and lower flux. These facts impose limitation to perform diffraction experiments by energy dispersion and, consequently, the use of pressure cells with denser anvils like diamond. However, for a lower-pressure range, preliminary studies showed the viability of measurements in an angular dispersion configuration. This allows the use of silicon carbide anvils B 4C . In this work it is described the development of a hydrostatic pressure cell suitable for X-rays diffraction measurements in the Brazilian Synchrotron Light Laboratory using materials and technologies developed by the institutions and researchers involved in this project (IPEN, UFES, CTA and LNLS). This development can provide the scientific community with the possibility of performing X-ray diffraction measurements under hydrostatic pressure, initially up to 2 GPa, with possibilities of increasing the maximum pressure to higher values, with or without application of magnetic fields and high or low temperatures. (author)

  17. AUSPEX: a graphical tool for X-ray diffraction data analysis.

    Science.gov (United States)

    Thorn, Andrea; Parkhurst, James; Emsley, Paul; Nicholls, Robert A; Vollmar, Melanie; Evans, Gwyndaf; Murshudov, Garib N

    2017-09-01

    In this paper, AUSPEX, a new software tool for experimental X-ray data analysis, is presented. Exploring the behaviour of diffraction intensities and the associated estimated uncertainties facilitates the discovery of underlying problems and can help users to improve their data acquisition and processing in order to obtain better structural models. The program enables users to inspect the distribution of observed intensities (or amplitudes) against resolution as well as the associated estimated uncertainties (sigmas). It is demonstrated how AUSPEX can be used to visually and automatically detect ice-ring artefacts in integrated X-ray diffraction data. Such artefacts can hamper structure determination, but may be difficult to identify from the raw diffraction images produced by modern pixel detectors. The analysis suggests that a significant portion of the data sets deposited in the PDB contain ice-ring artefacts. Furthermore, it is demonstrated how other problems in experimental X-ray data caused, for example, by scaling and data-conversion procedures can be detected by AUSPEX.

  18. Modeling containment of large wildfires using generalized linear mixed-model analysis

    Science.gov (United States)

    Mark Finney; Isaac C. Grenfell; Charles W. McHugh

    2009-01-01

    Billions of dollars are spent annually in the United States to contain large wildland fires, but the factors contributing to suppression success remain poorly understood. We used a regression model (generalized linear mixed-model) to model containment probability of individual fires, assuming that containment was a repeated-measures problem (fixed effect) and...

  19. Significance of accurate diffraction corrections for the second harmonic wave in determining the acoustic nonlinearity parameter

    International Nuclear Information System (INIS)

    Jeong, Hyunjo; Zhang, Shuzeng; Li, Xiongbing; Barnard, Dan

    2015-01-01

    The accurate measurement of acoustic nonlinearity parameter β for fluids or solids generally requires making corrections for diffraction effects due to finite size geometry of transmitter and receiver. These effects are well known in linear acoustics, while those for second harmonic waves have not been well addressed and therefore not properly considered in previous studies. In this work, we explicitly define the attenuation and diffraction corrections using the multi-Gaussian beam (MGB) equations which were developed from the quasilinear solutions of the KZK equation. The effects of making these corrections are examined through the simulation of β determination in water. Diffraction corrections are found to have more significant effects than attenuation corrections, and the β values of water can be estimated experimentally with less than 5% errors when the exact second harmonic diffraction corrections are used together with the negligible attenuation correction effects on the basis of linear frequency dependence between attenuation coefficients, α 2 ≃ 2α 1

  20. Significance of accurate diffraction corrections for the second harmonic wave in determining the acoustic nonlinearity parameter

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyunjo, E-mail: hjjeong@wku.ac.kr [Division of Mechanical and Automotive Engineering, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Zhang, Shuzeng; Li, Xiongbing [School of Traffic and Transportation Engineering, Central South University, Changsha, Hunan 410075 (China); Barnard, Dan [Center for Nondestructive Evaluation, Iowa State University, Ames, IA 50010 (United States)

    2015-09-15

    The accurate measurement of acoustic nonlinearity parameter β for fluids or solids generally requires making corrections for diffraction effects due to finite size geometry of transmitter and receiver. These effects are well known in linear acoustics, while those for second harmonic waves have not been well addressed and therefore not properly considered in previous studies. In this work, we explicitly define the attenuation and diffraction corrections using the multi-Gaussian beam (MGB) equations which were developed from the quasilinear solutions of the KZK equation. The effects of making these corrections are examined through the simulation of β determination in water. Diffraction corrections are found to have more significant effects than attenuation corrections, and the β values of water can be estimated experimentally with less than 5% errors when the exact second harmonic diffraction corrections are used together with the negligible attenuation correction effects on the basis of linear frequency dependence between attenuation coefficients, α{sub 2} ≃ 2α{sub 1}.

  1. Significance of accurate diffraction corrections for the second harmonic wave in determining the acoustic nonlinearity parameter

    Science.gov (United States)

    Jeong, Hyunjo; Zhang, Shuzeng; Barnard, Dan; Li, Xiongbing

    2015-09-01

    The accurate measurement of acoustic nonlinearity parameter β for fluids or solids generally requires making corrections for diffraction effects due to finite size geometry of transmitter and receiver. These effects are well known in linear acoustics, while those for second harmonic waves have not been well addressed and therefore not properly considered in previous studies. In this work, we explicitly define the attenuation and diffraction corrections using the multi-Gaussian beam (MGB) equations which were developed from the quasilinear solutions of the KZK equation. The effects of making these corrections are examined through the simulation of β determination in water. Diffraction corrections are found to have more significant effects than attenuation corrections, and the β values of water can be estimated experimentally with less than 5% errors when the exact second harmonic diffraction corrections are used together with the negligible attenuation correction effects on the basis of linear frequency dependence between attenuation coefficients, α2 ≃ 2α1.

  2. Hard diffraction and rapidity gaps

    International Nuclear Information System (INIS)

    Brandt, A.

    1995-09-01

    The field of hard diffraction, which studies events with a rapidity gap and a hard scattering, has expanded dramatically recently. A review of new results from CDF, D OE, H1 and ZEUS will be given. These results include diffractive jet production, deep-inelastic scattering in large rapidity gap events, rapidity gaps between high transverse energy jets, and a search for diffractive W-boson production. The combination of these results gives new insight into the exchanged object, believed to be the pomeron. The results axe consistent with factorization and with a hard pomeron that contains both quarks and gluons. There is also evidence for the exchange of a strongly interacting color singlet in high momentum transfer (36 2 ) events

  3. Serial single molecule electron diffraction imaging: diffraction background of superfluid helium droplets

    Science.gov (United States)

    Zhang, Jie; He, Yunteng; Lei, Lei; Alghamdi, Maha; Oswalt, Andrew; Kong, Wei

    2017-08-01

    In an effort to solve the crystallization problem in crystallography, we have been engaged in developing a method termed "serial single molecule electron diffraction imaging" (SS-EDI). The unique features of SS-EDI are superfluid helium droplet cooling and field-induced orientation: together the two features constitute a molecular goniometer. Unfortunately, the helium atoms surrounding the sample molecule also contribute to a diffraction background. In this report, we analyze the properties of a superfluid helium droplet beam and its doping statistics, and demonstrate the feasibility of overcoming the background issue by using the velocity slip phenomenon of a pulsed droplet beam. Electron diffraction profiles and pair correlation functions of ferrocene-monomer-doped droplets and iodine-nanocluster-doped droplets are presented. The timing of the pulsed electron gun and the effective doping efficiency under different dopant pressures can both be controlled for size selection. This work clears any doubt of the effectiveness of superfluid helium droplets in SS-EDI, thereby advancing the effort in demonstrating the "proof-of-concept" one step further.

  4. High Resolution Powder Diffraction and Structure Determination

    International Nuclear Information System (INIS)

    Cox, D. E.

    1999-01-01

    are familiar to laboratory diffractionists. This is reflected in the fact that there are already dedicated instruments for powder diffraction at a number of synchrotrons sources, including the NSLS, the Synchrotrons Radiation Source, Daresbury, the Photon Factory, Tsukuba and HASYLAB. In addition, most general purpose beamlines can be adapted for powder diffraction experiments fairly easily. Dedicated beamlines are also planned or under consideration at the next generation of synchrotrons sources, the European Synchrotron Radiation Facility, Grenoble, the Advanced Photon Source, Argonne, and the SPring-8 machine at Harima. These will be high brilliance sources with a much harder radiation spectrum that will offer many new possibilities for powder diffraction experiments, especially at energies above 10 keV

  5. Atomic resolution three-dimensional electron diffraction microscopy

    International Nuclear Information System (INIS)

    Miao Jianwei; Ohsuna, Tetsu; Terasaki, Osamu; Hodgson, Keith O.; O'Keefe, Michael A.

    2002-01-01

    We report the development of a novel form of diffraction-based 3D microscopy to overcome resolution barriers inherent in high-resolution electron microscopy and tomography. By combining coherent electron diffraction with the oversampling phasing method, we show that the 3D structure of a nanocrystal can be determined ab initio at a resolution of 1 Angstrom from 29 simulated noisy diffraction patterns. This new form of microscopy can be used to image the 3D structures of nanocrystals and noncrystalline samples, with resolution limited only by the quality of sample diffraction

  6. Aspherical-atom modeling of coordination compounds by single-crystal X-ray diffraction allows the correct metal atom to be identified.

    Science.gov (United States)

    Dittrich, Birger; Wandtke, Claudia M; Meents, Alke; Pröpper, Kevin; Mondal, Kartik Chandra; Samuel, Prinson P; Amin Sk, Nurul; Singh, Amit Pratap; Roesky, Herbert W; Sidhu, Navdeep

    2015-02-02

    Single-crystal X-ray diffraction (XRD) is often considered the gold standard in analytical chemistry, as it allows element identification as well as determination of atom connectivity and the solid-state structure of completely unknown samples. Element assignment is based on the number of electrons of an atom, so that a distinction of neighboring heavier elements in the periodic table by XRD is often difficult. A computationally efficient procedure for aspherical-atom least-squares refinement of conventional diffraction data of organometallic compounds is proposed. The iterative procedure is conceptually similar to Hirshfeld-atom refinement (Acta Crystallogr. Sect. A- 2008, 64, 383-393; IUCrJ. 2014, 1,61-79), but it relies on tabulated invariom scattering factors (Acta Crystallogr. Sect. B- 2013, 69, 91-104) and the Hansen/Coppens multipole model; disordered structures can be handled as well. Five linear-coordinate 3d metal complexes, for which the wrong element is found if standard independent-atom model scattering factors are relied upon, are studied, and it is shown that only aspherical-atom scattering factors allow a reliable assignment. The influence of anomalous dispersion in identifying the correct element is investigated and discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. High-energy electron diffraction and microscopy

    CERN Document Server

    Peng, L M; Whelan, M J

    2011-01-01

    This book provides a comprehensive introduction to high energy electron diffraction and elastic and inelastic scattering of high energy electrons, with particular emphasis on applications to modern electron microscopy. Starting from a survey of fundamental phenomena, the authors introduce the most important concepts underlying modern understanding of high energy electron diffraction. Dynamical diffraction in transmission (THEED) and reflection (RHEED) geometries is treated using ageneral matrix theory, where computer programs and worked examples are provided to illustrate the concepts and to f

  8. Diffractive variable beam splitter: optimal design.

    Science.gov (United States)

    Borghi, R; Cincotti, G; Santarsiero, M

    2000-01-01

    The analytical expression of the phase profile of the optimum diffractive beam splitter with an arbitrary power ratio between the two output beams is derived. The phase function is obtained by an analytical optimization procedure such that the diffraction efficiency of the resulting optical element is the highest for an actual device. Comparisons are presented with the efficiency of a diffractive beam splitter specified by a sawtooth phase function and with the pertinent theoretical upper bound for this type of element.

  9. Low mass diffractive dissociation in a simple t-dependent dual bootstrap model

    International Nuclear Information System (INIS)

    Bishari, M.

    1978-08-01

    The smallness of inelastic diffractive dissociation is explicitly demonstrated, in the framework of the '1/N dual unitarization' scheme, by incorporating a Deck type mechanism with the crucial planar bootstrap equation. Although both inelastic and elastic pomeron couplings are of the same order in 1/N, the origin for their smallness, however, is not identical. (author)

  10. Diffraction enhanced kinetic depth X-ray imaging

    Science.gov (United States)

    Dicken, A.

    An increasing number of fields would benefit from a single analytical probe that can characterise bulk objects that vary in morphology and/or material composition. These fields include security screening, medicine and material science. In this study the X-ray region is shown to be an effective probe for the characterisation of materials. The most prominent analytical techniques that utilise X-radiation are reviewed. The study then focuses on methods of amalgamating the three dimensional power of kinetic depth X-ray (KDFX) imaging with the materials discrimination of angular dispersive X-ray diffraction (ADXRD), thus providing KDEX with a much needed material specific counterpart. A knowledge of the sample position is essential for the correct interpretation of diffraction signatures. Two different sensor geometries (i.e. circumferential and linear) that are able to collect end interpret multiple unknown material diffraction patterns and attribute them to their respective loci within an inspection volume are investigated. The circumferential and linear detector geometries are hypothesised, simulated and then tested in an experimental setting with the later demonstrating a greater ability at discerning between mixed diffraction patterns produced by differing materials. Factors known to confound the linear diffraction method such as sample thickness and radiation energy have been explored and quantified with a possible means of mitigation being identified (i.e. via increasing the sample to detector distance). A series of diffraction patterns (following the linear diffraction approach) were obtained from a single phantom object that was simultaneously interrogated via KDEX imaging. Areas containing diffraction signatures matched from a threat library have been highlighted in the KDEX imagery via colour encoding and match index is inferred by intensity. This union is the first example of its kind and is called diffraction enhanced KDEX imagery. Finally an additional

  11. Diffractive beauty production at the LHC

    International Nuclear Information System (INIS)

    Eggert, K.; Morsch, A.

    1994-01-01

    Using the framework of Pomeron exchange to describe diffractive pp collisions at the LHC we discuss beauty production in those events. The cross sections for beauty production at different diffractive masses and the topology for the beauty particles and the underlying event are given. When triggering on large diffractive masses, the beauty system is boosted into the Pomeron hemisphere opposite the underlying event, which tends to follow the excited proton direction. This may offer some advantages for the acceptance of beauty and its reconstruction in forward spectrometers. For the identification of diffractive events at the LHC collider, we present a scheme to measure the momentum loss of forward protons in the range 2x10 -3 < Δp/p <0.1. This momentum loss can be determined with a precision of about 10%. ((orig.))

  12. Fluid bilayer structure determination: Joint refinement in composition space using X-ray and neutron diffraction data

    Energy Technology Data Exchange (ETDEWEB)

    White, S.H. [Univ. of California, Irvine, CA (United States); Wiener, M.C. [Univ. of California, San Francisco, CA (United States)

    1994-12-31

    Experimentally-determined structural models of fluid lipid bilayers are essential for verifying molecular dynamics simulations of bilayers and for understanding the structural consequences of peptide interactions. The extreme thermal motion of bilayers precludes the possibility of atomic-level structural models. Defining {open_quote}the structure{close_quote} of a bilayer as the time-averaged transbilayer distribution of the water and the principal lipid structural groups such as the carbonyls and double-bonds (quasimolecular fragments), one can represent the bilayer structure as a sum of Gaussian functions referred to collectively as the quasimolecular structure. One method of determining the structure is by neutron diffraction combined with exhaustive specific deuteration. This method is impractical because of the expense of the chemical syntheses and the limited amount of neutron beam time currently available. We have therefore developed the composition space refinement method for combining X-ray and minimal neutron diffraction data to arrive at remarkably detailed and accurate structures of fluid bilayers. The composition space representation of the bilayer describes the probability of occupancy per unit length across the width of the bilayer of each quasimolecular component and permits the joint refinement of X-ray and neutron lamellar diffraction data by means of a single quasimolecular structure that is fitted simultaneously to both data sets. Scaling of each component by the appropriate neutron or X-ray scattering length maps the composition-space profile to the appropriate scattering length space for comparison to experimental data. The difficulty with the method is that fluid bilayer structures are generally only marginally determined by the experimental data. This means that the space of possible solutions must be extensively explored in conjunction with a thorough analysis of errors.

  13. Fluid bilayer structure determination: Joint refinement in composition space using X-ray and neutron diffraction data

    International Nuclear Information System (INIS)

    White, S.H.; Wiener, M.C.

    1994-01-01

    Experimentally-determined structural models of fluid lipid bilayers are essential for verifying molecular dynamics simulations of bilayers and for understanding the structural consequences of peptide interactions. The extreme thermal motion of bilayers precludes the possibility of atomic-level structural models. Defining open-quote the structure close-quote of a bilayer as the time-averaged transbilayer distribution of the water and the principal lipid structural groups such as the carbonyls and double-bonds (quasimolecular fragments), one can represent the bilayer structure as a sum of Gaussian functions referred to collectively as the quasimolecular structure. One method of determining the structure is by neutron diffraction combined with exhaustive specific deuteration. This method is impractical because of the expense of the chemical syntheses and the limited amount of neutron beam time currently available. We have therefore developed the composition space refinement method for combining X-ray and minimal neutron diffraction data to arrive at remarkably detailed and accurate structures of fluid bilayers. The composition space representation of the bilayer describes the probability of occupancy per unit length across the width of the bilayer of each quasimolecular component and permits the joint refinement of X-ray and neutron lamellar diffraction data by means of a single quasimolecular structure that is fitted simultaneously to both data sets. Scaling of each component by the appropriate neutron or X-ray scattering length maps the composition-space profile to the appropriate scattering length space for comparison to experimental data. The difficulty with the method is that fluid bilayer structures are generally only marginally determined by the experimental data. This means that the space of possible solutions must be extensively explored in conjunction with a thorough analysis of errors

  14. Study of UO2 mechanical behaviour implanted with helium ions using X-ray micro-diffraction and mechanical modeling

    International Nuclear Information System (INIS)

    Ibrahim, Marcelle

    2015-01-01

    In order to study the mechanical behavior of nuclear fuel during direct long term storage, UO 2 polycrystals were implanted with Helium ions at a thin surface layer (1 μm approximately), which leads to stress and strain fields in the layer. Strains were measured, at the grains scale, by X-ray micro-diffraction, using synchrotron radiation (ESRF). Image analysis methods were developed for an automatic analysis of the large number of diffraction patterns. Applying statistical tools to Laue patterns allows an automatic detection of low quality images, and enhances the measurement precision. At low layer thickness, the mechanical interaction between grains can be neglected. At higher thickness, experimental results showed a higher mechanical interaction near grain boundaries that can be modeled using finite elements method. Geostatistical tools were used to quantify these interactions. The swelling and the elastic constants in the implanted layer can be estimated through the measured strains on a large number of grains with different orientations. This work allows the determination of the swelling of nuclear fuel in irradiation conditions, as well as the modification of its elastic properties. (author) [fr

  15. High-pressure powder X-ray diffraction at the turn of the century

    International Nuclear Information System (INIS)

    Paszkowicz, W.

    2002-01-01

    Studies at extreme pressures and temperatures are helpful for understanding the physical properties of the solid state, including such classes of materials as semiconductors, superconductors or minerals. This is connected with the opportunity of tuning the pressure by many orders of magnitude. Diamond-anvil and large-anvil pressure cells installed at dedicated synchrotron beamlines are efficient tools for examination of crystal structure, equation of state, compressibility and phase transitions. One of basic methods in such studies is powder diffraction. This review is devoted to methods of powder X-ray diffraction at high-pressures generated by devices installed at synchrotron radiation sources, in particular to the principles of operation of high-pressure-high-temperature cells. General information on high-pressure diffraction facilities installed at 11 synchrotron storage rings in the world is provided. Measurement aspects are considered, including (i) pressure generation and calibration, (ii) strain in the sample, the pressure marker and the pressure-transmitting medium and (iii) pressure and temperature distributions within the cells. Sources of interest in high-pressure diffraction studies (design of new materials, observation of new phenomena, confrontation of theory with experiment) are briefly discussed. Recent developments of high-pressure methods make that pressure becomes a variable playing a key role in investigation of condensed matter. The paper ends with some remarks on the possible future developments of the technique

  16. Generalized algebra-valued models of set theory

    NARCIS (Netherlands)

    Löwe, B.; Tarafder, S.

    2015-01-01

    We generalize the construction of lattice-valued models of set theory due to Takeuti, Titani, Kozawa and Ozawa to a wider class of algebras and show that this yields a model of a paraconsistent logic that validates all axioms of the negation-free fragment of Zermelo-Fraenkel set theory.

  17. Classical and quantum treatments of the diffraction problem in the case of non-homogeneous media

    International Nuclear Information System (INIS)

    Datzeff, A.B.

    1978-02-01

    The diffraction of waves by an aperture is usually studied in the case of a homogeneous medium. In this paper, a method is proposed for the solution of the same problem in a medium of variable parameters (refractive index, external fields). It is successfully applied to diffraction of a classical scalar wave as well as of an electromagnetic vector wave and a Schroedinger wave, within the framework of this method, the scattering of particles may be considered as a particular case of the diffraction problem. Furthermore, the method is extended to cover the case of diffraction of dense electron beams. This has been achieved by means of a non-linear integro-differential equation, proposed by the author as a generalization of the well-known linear Schroedinger equation. A decisive experiment could be made which, besides showing whether the solution thus obtained is true, would also speak in favour of one of the two equations mentioned above. The latter is pertinent to the discussion of the physical essence of Quantum Mechanics

  18. Parameter Estimation for a Computable General Equilibrium Model

    DEFF Research Database (Denmark)

    Arndt, Channing; Robinson, Sherman; Tarp, Finn

    We introduce a maximum entropy approach to parameter estimation for computable general equilibrium (CGE) models. The approach applies information theory to estimating a system of nonlinear simultaneous equations. It has a number of advantages. First, it imposes all general equilibrium constraints...

  19. New methods of X-ray diffraction spectrometry. II

    International Nuclear Information System (INIS)

    Soerum, H.; Bremer, J.

    1980-01-01

    The construction principles for a flexible X-ray spectrometer can be equipped either with a single curved crystal or with two curved crystals are described. A few of the theoretical 4+32 possible working modes are selected for a closer investigation and examples of recorded spectra are given. It is shown in the general single-crystal case that for a wavelength close to a cut-off energy the narrow diffraction cone has an elliptic section, as predicted by the theory. The spectrometer is discussed in terms of intensity, resolution and dispersive power. A comparison with other types of spectrometer is made. (Auth.)

  20. Multivariate covariance generalized linear models

    DEFF Research Database (Denmark)

    Bonat, W. H.; Jørgensen, Bent

    2016-01-01

    are fitted by using an efficient Newton scoring algorithm based on quasi-likelihood and Pearson estimating functions, using only second-moment assumptions. This provides a unified approach to a wide variety of types of response variables and covariance structures, including multivariate extensions......We propose a general framework for non-normal multivariate data analysis called multivariate covariance generalized linear models, designed to handle multivariate response variables, along with a wide range of temporal and spatial correlation structures defined in terms of a covariance link...... function combined with a matrix linear predictor involving known matrices. The method is motivated by three data examples that are not easily handled by existing methods. The first example concerns multivariate count data, the second involves response variables of mixed types, combined with repeated...

  1. Determining the diffraction properties of a cylindrically bent KAP(001) crystal from 1 to 5 keV

    Energy Technology Data Exchange (ETDEWEB)

    Haugh, Michael [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Lee, Joshua [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Jacoby, Kenneth [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Christensen, C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Loisel, G. [National Security Technologies, LLC. (NSTec), Mercury, NV (United States), Livermore Operations

    2015-08-31

    Various crystals are used for the dispersive component of X-ray spectrometers. The crystals are usually bent to meet the desired measurement needs, such as focusing. The bending can change the crystal diffraction properties, thus altering the spectrometer throughput and resolving power. This work concerns measuring the diffraction properties of a potassium acid phthalate (001) [KAP(001)] crystal bent into a circular cylinder segment. The measurement methods using a diode source and a synchrotron source are described. The multi-lamellar model for calculating the diffraction properties of a bent crystal is described. The measurement results are compared to the multi-lamellar model and show qualitative agreement. The measurements show how to make the multi-lamellar calculations a useful estimate. A method is given to make useful estimates of the diffraction properties of the KAP(001) crystal bent into a circular cylinder segment.

  2. General regression and representation model for classification.

    Directory of Open Access Journals (Sweden)

    Jianjun Qian

    Full Text Available Recently, the regularized coding-based classification methods (e.g. SRC and CRC show a great potential for pattern classification. However, most existing coding methods assume that the representation residuals are uncorrelated. In real-world applications, this assumption does not hold. In this paper, we take account of the correlations of the representation residuals and develop a general regression and representation model (GRR for classification. GRR not only has advantages of CRC, but also takes full use of the prior information (e.g. the correlations between representation residuals and representation coefficients and the specific information (weight matrix of image pixels to enhance the classification performance. GRR uses the generalized Tikhonov regularization and K Nearest Neighbors to learn the prior information from the training data. Meanwhile, the specific information is obtained by using an iterative algorithm to update the feature (or image pixel weights of the test sample. With the proposed model as a platform, we design two classifiers: basic general regression and representation classifier (B-GRR and robust general regression and representation classifier (R-GRR. The experimental results demonstrate the performance advantages of proposed methods over state-of-the-art algorithms.

  3. Combined X-ray and neutron fibre diffraction studies of biological and synthetic polymers

    International Nuclear Information System (INIS)

    Parrot, I.M.; Urban, V.; Gardner, K.H.; Forsyth, V.T.

    2005-01-01

    The fibrous state is a natural one for polymer molecules which tend to assume regular helical conformations rather than the globular structures characteristic of many proteins. Fibre diffraction therefore has broad application to the study of a wide range of biological and synthetic polymers. The purpose of this paper is to illustrate the general scope of the method and in particular to demonstrate the impact of a combined approach involving both X-ray and neutron diffraction methods. While the flux of modern X-ray synchrotron radiation sources allows high quality datasets to be recorded with good resolution within a very short space of time, neutron studies can provide unique information through the ability to locate hydrogen or deuterium atoms that are often difficult or impossible to locate using X-ray methods. Furthermore, neutron fibre diffraction methods can, through the ability to selectively label specific parts of a structure, be used to highlight novel aspects of polymer structure that can not be studied using X-rays. Two examples are given. The first describes X-ray and neutron diffraction studies of conformational transitions in DNA. The second describes structural studies of the synthetic high-performance polymer poly(p-phenylene terephthalamide) (PPTA), known commercially as Kevlar[reg] or Twaron[reg

  4. Combined X-ray and neutron fibre diffraction studies of biological and synthetic polymers.

    Energy Technology Data Exchange (ETDEWEB)

    Parrot, I. M. [Institut Laue-Langevin (ILL); Urban, Volker S [ORNL; Gardner, K. H. [DuPont Experimental Station; Forsyth, V. T. [Institut Laue Langevin and Keele University

    2005-04-01

    The fibrous state is a natural one for polymer molecules which tend to assume regular helical conformations rather than the globular structures characteristic of many proteins. Fibre diffraction therefore has broad application to the study of a wide range of biological and synthetic polymers. The purpose of this paper is to illustrate the general scope of the method and in particular to demonstrate the impact of a combined approach involving both X-ray and neutron diffraction methods. While the flux of modern X-ray synchrotron radiation sources allows high quality datasets to be recorded with good resolution within a very short space of time, neutron studies can provide unique information through the ability to locate hydrogen or deuterium atoms that are often difficult or impossible to locate using X-ray methods. Furthermore, neutron fibre diffraction methods can, through the ability to selectively label specific parts of a structure, be used to highlight novel aspects of polymer structure that can not be studied using X-rays. Two examples are given. The first describes X-ray and neutron diffraction studies of conformational transitions in DNA. The second describes structural studies of the synthetic high-performance polymer poly(p-phenylene terephthalamide) (PPTA), known commercially as Kevlar{reg_sign} or Twaron{reg_sign}.

  5. Combined X-ray and neutron fibre diffraction studies of biological and synthetic polymers

    Science.gov (United States)

    Parrot, I. M.; Urban, V.; Gardner, K. H.; Forsyth, V. T.

    2005-08-01

    The fibrous state is a natural one for polymer molecules which tend to assume regular helical conformations rather than the globular structures characteristic of many proteins. Fibre diffraction therefore has broad application to the study of a wide range of biological and synthetic polymers. The purpose of this paper is to illustrate the general scope of the method and in particular to demonstrate the impact of a combined approach involving both X-ray and neutron diffraction methods. While the flux of modern X-ray synchrotron radiation sources allows high quality datasets to be recorded with good resolution within a very short space of time, neutron studies can provide unique information through the ability to locate hydrogen or deuterium atoms that are often difficult or impossible to locate using X-ray methods. Furthermore, neutron fibre diffraction methods can, through the ability to selectively label specific parts of a structure, be used to highlight novel aspects of polymer structure that can not be studied using X-rays. Two examples are given. The first describes X-ray and neutron diffraction studies of conformational transitions in DNA. The second describes structural studies of the synthetic high-performance polymer poly(p-phenylene terephthalamide) (PPTA), known commercially as Kevlar® or Twaron®.

  6. Combined X-ray and neutron fibre diffraction studies of biological and synthetic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Parrot, I.M. [Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Institute of Science and Technology in Medicine, Keele University Medical School, Staffordshire ST4 7QB (United Kingdom); Urban, V. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6100 (United States); Gardner, K.H. [Department of Materials Science and Engineering University of Delaware, Newark, DE 19719 (United States); Forsyth, V.T. [Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble Cedex 9 (France) and Institute of Science and Technology in Medicine, Keele University Medical School, Staffordshire ST4 7QB (United Kingdom)]. E-mail: tforsyth@ill.fr

    2005-08-15

    The fibrous state is a natural one for polymer molecules which tend to assume regular helical conformations rather than the globular structures characteristic of many proteins. Fibre diffraction therefore has broad application to the study of a wide range of biological and synthetic polymers. The purpose of this paper is to illustrate the general scope of the method and in particular to demonstrate the impact of a combined approach involving both X-ray and neutron diffraction methods. While the flux of modern X-ray synchrotron radiation sources allows high quality datasets to be recorded with good resolution within a very short space of time, neutron studies can provide unique information through the ability to locate hydrogen or deuterium atoms that are often difficult or impossible to locate using X-ray methods. Furthermore, neutron fibre diffraction methods can, through the ability to selectively label specific parts of a structure, be used to highlight novel aspects of polymer structure that can not be studied using X-rays. Two examples are given. The first describes X-ray and neutron diffraction studies of conformational transitions in DNA. The second describes structural studies of the synthetic high-performance polymer poly(p-phenylene terephthalamide) (PPTA), known commercially as Kevlar[reg] or Twaron[reg].

  7. Modelling uncertainty with generalized credal sets: application to conjunction and decision

    Science.gov (United States)

    Bronevich, Andrey G.; Rozenberg, Igor N.

    2018-01-01

    To model conflict, non-specificity and contradiction in information, upper and lower generalized credal sets are introduced. Any upper generalized credal set is a convex subset of plausibility measures interpreted as lower probabilities whose bodies of evidence consist of singletons and a certain event. Analogously, contradiction is modelled in the theory of evidence by a belief function that is greater than zero at empty set. Based on generalized credal sets, we extend the conjunctive rule for contradictory sources of information, introduce constructions like natural extension in the theory of imprecise probabilities and show that the model of generalized credal sets coincides with the model of imprecise probabilities if the profile of a generalized credal set consists of probability measures. We give ways how the introduced model can be applied to decision problems.

  8. Axial and focal-plane diffraction catastrophe integrals

    International Nuclear Information System (INIS)

    Berry, M V; Howls, C J

    2010-01-01

    Exact expressions in terms of Bessel functions are found for some of the diffraction catastrophe integrals that decorate caustics in optics and mechanics. These are the axial and focal-plane sections of the elliptic and hyperbolic umbilic diffraction catastrophes, and symmetric elliptic and hyperbolic unfoldings of the X 9 diffraction catastrophes. These representations reveal unexpected relations between the integrals.

  9. Generalized continua as models for classical and advanced materials

    CERN Document Server

    Forest, Samuel

    2016-01-01

    This volume is devoted to an actual topic which is the focus world-wide of various research groups. It contains contributions describing the material behavior on different scales, new existence and uniqueness theorems, the formulation of constitutive equations for advanced materials. The main emphasis of the contributions is directed on the following items - Modelling and simulation of natural and artificial materials with significant microstructure, - Generalized continua as a result of multi-scale models, - Multi-field actions on materials resulting in generalized material models, - Theories including higher gradients, and - Comparison with discrete modelling approaches.

  10. Extinction correction in white X-ray and neutron diffraction

    International Nuclear Information System (INIS)

    Tomiyoshi, S.; Yamada, M.; Watanabe, H.

    1980-01-01

    Extinction effects in white-beam X-ray and neutron diffraction are considered. In white-beam diffraction, a small deviation of the wavelength from the Bragg condition Δlambda is a variable which represents the line profile of the diffraction peaks, so that by using the new parameter Δlambda the theory is converted to one in white-beam diffraction. It is shown that for a convex crystal, primary extinction agrees with the results calculated already for monochromatic diffraction. The same relation is shown to hold in secondary extinction. It is concluded that extinction theory derived for monochromatic diffraction is applicable without any modification in white-beam diffraction. (Auth.)

  11. X-ray diffraction investigation of the sulphur induced 4x1 reconstruction of Ni(110)

    DEFF Research Database (Denmark)

    Foss, M.; Feidenhans'l, R.; Nielsen, M.

    1993-01-01

    The atomic structure of the Ni(110)4 x 1-S reconstruction has been determined on the basis of surface X-ray diffraction measurements. An analysis of the in-plane diffraction data shows that the model consists of Ni rows along the [001] direction, two for every 4 x 1 unit cell, corresponding to 0....

  12. Parameter Estimation for a Computable General Equilibrium Model

    DEFF Research Database (Denmark)

    Arndt, Channing; Robinson, Sherman; Tarp, Finn

    2002-01-01

    We introduce a maximum entropy approach to parameter estimation for computable general equilibrium (CGE) models. The approach applies information theory to estimating a system of non-linear simultaneous equations. It has a number of advantages. First, it imposes all general equilibrium constraints...

  13. Generalized waste package containment model

    International Nuclear Information System (INIS)

    Liebetrau, A.M.; Apted, M.J.

    1985-02-01

    The US Department of Energy (DOE) is developing a performance assessment strategy to demonstrate compliance with standards and technical requirements of the Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC) for the permanent disposal of high-level nuclear wastes in geologic repositories. One aspect of this strategy is the development of a unified performance model of the entire geologic repository system. Details of a generalized waste package containment (WPC) model and its relationship with other components of an overall repository model are presented in this paper. The WPC model provides stochastically determined estimates of the distributions of times-to-failure of the barriers of a waste package by various corrosion mechanisms and degradation processes. The model consists of a series of modules which employ various combinations of stochastic (probabilistic) and mechanistic process models, and which are individually designed to reflect the current state of knowledge. The WPC model is designed not only to take account of various site-specific conditions and processes, but also to deal with a wide range of site, repository, and waste package configurations. 11 refs., 3 figs., 2 tabs

  14. NIST/Sandia/ICDD Electron Diffraction Database: A Database for Phase Identification by Electron Diffraction.

    Science.gov (United States)

    Carr, M J; Chambers, W F; Melgaard, D; Himes, V L; Stalick, J K; Mighell, A D

    1989-01-01

    A new database containing crystallographic and chemical information designed especially for application to electron diffraction search/match and related problems has been developed. The new database was derived from two well-established x-ray diffraction databases, the JCPDS Powder Diffraction File and NBS CRYSTAL DATA, and incorporates 2 years of experience with an earlier version. It contains 71,142 entries, with space group and unit cell data for 59,612 of those. Unit cell and space group information were used, where available, to calculate patterns consisting of all allowed reflections with d -spacings greater than 0.8 A for ~ 59,000 of the entries. Calculated patterns are used in the database in preference to experimental x-ray data when both are available, since experimental x-ray data sometimes omits high d -spacing data which falls at low diffraction angles. Intensity data are not given when calculated spacings are used. A search scheme using chemistry and r -spacing (reciprocal d -spacing) has been developed. Other potentially searchable data in this new database include space group, Pearson symbol, unit cell edge lengths, reduced cell edge length, and reduced cell volume. Compound and/or mineral names, formulas, and journal references are included in the output, as well as pointers to corresponding entries in NBS CRYSTAL DATA and the Powder Diffraction File where more complete information may be obtained. Atom positions are not given. Rudimentary search software has been written to implement a chemistry and r -spacing bit map search. With typical data, a full search through ~ 71,000 compounds takes 10~20 seconds on a PDP 11/23-RL02 system.

  15. Accurate Charge Densities from Powder Diffraction

    DEFF Research Database (Denmark)

    Bindzus, Niels; Wahlberg, Nanna; Becker, Jacob

    Synchrotron powder X-ray diffraction has in recent years advanced to a level, where it has become realistic to probe extremely subtle electronic features. Compared to single-crystal diffraction, it may be superior for simple, high-symmetry crystals owing to negligible extinction effects and minimal...... peak overlap. Additionally, it offers the opportunity for collecting data on a single scale. For charge densities studies, the critical task is to recover accurate and bias-free structure factors from the diffraction pattern. This is the focal point of the present study, scrutinizing the performance...

  16. Small area analysis using micro-diffraction techniques

    International Nuclear Information System (INIS)

    Goehner, Raymond P.; Tissot, Ralph G. Jr.; Michael, Joseph R.

    2000-01-01

    An overall trend toward smaller electronic packages and devices makes it increasingly important and difficult to obtain meaningful diffraction information from small areas. X-ray micro-diffraction, electron back-scattered diffraction (EBSD) and Kossel are micro-diffraction techniques used for crystallographic analysis including texture, phase identification and strain measurements. X-ray micro-diffraction primarily is used for phase analysis and residual strain measurements. X-ray micro-diffraction primarily is used for phase analysis and residual strain measurements of areas between 10 microm to 100 microm. For areas this small glass capillary optics are used for producing a usable collimated x-ray beam. These optics are designed to reflect x-rays below the critical angle therefore allowing for larger solid acceptance angle at the x-ray source resulting in brighter smaller x-ray beams. The determination of residual strain using micro-diffraction techniques is very important to the semiconductor industry. Residual stresses have caused voiding of the interconnect metal which then destroys electrical continuity. Being able to determine the residual stress helps industry to predict failures from the aging effects of interconnects due to this stress voiding. Stress measurements would be impossible using a conventional x-ray diffractometer; however, utilizing a 30 microm glass capillary these small areas are readily assessable for analysis. Kossel produces a wide angle diffraction pattern from fluorescent x-rays generated in the sample by an e-beam in a SEM. This technique can yield very precise lattice parameters for determining strain. Fig. 2 shows a Kossel pattern from a Ni specimen. Phase analysis on small areas is also possible using an energy dispersive spectrometer (EBSD) and x-ray micro-diffraction techniques. EBSD has the advantage of allowing the user to observe the area of interest using the excellent imaging capabilities of the SEM. An EDS detector has been

  17. Inclusive measurement of diffractive deep-inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Alexa, C. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V. [Lebedev Physical Institute, Moscow (RU)] (and others)

    2012-03-15

    The diffractive process ep {yields} eXY, where Y denotes a proton or its low mass excitation with M{sub Y}<1.6 GeV, is studied with the H1 experiment at HERA. The analysis is restricted to the phase space region of the photon virtuality 3{<=} Q{sup 2} {<=}1600 GeV{sup 2}, the square of the four-momentum transfer at the proton vertex vertical stroke t vertical stroke <1.0 GeV{sup 2} and the longitudinal momentum fraction of the incident proton carried by the colourless exchange x{sub P}<0.05. Triple differential cross sections are measured as a function of x{sub P}, Q{sup 2} and {beta}=x/x{sub P} where x is the Bjorken scaling variable. These measurements are made after selecting diffractive events by demanding a large empty rapidity interval separating the final state hadronic systems X and Y. High statistics measurements covering the data taking periods 1999-2000 and 2004-2007 are combined with previously published results in order to provide a single set of diffractive cross sections from the H1 experiment using the large rapidity gap selection method. The combined data represent a factor between three and thirty increase in statistics with respect to the previously published results. The measurements are compared with predictions from NLO QCD calculations based on diffractive parton densities and from a dipole model. The proton vertex factorisation hypothesis is tested. (orig.)

  18. Inclusive measurement of diffractive deep-inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G.; Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y.; Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N.; Baghdasaryan, A.; Baghdasaryan, S.; Zohrabyan, H.; Barrelet, E.; Bartel, W.; Belov, P.; Brandt, G.; Brinkmann, M.; Britzger, D.; Campbell, A.J.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Habib, S.; Haidt, D.; Kleinwort, C.; Kraemer, M.; Levonian, S.; Lipka, K.; List, B.; List, J.; Lobodzinski, B.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Nowak, K.; Olsson, J.E.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Radescu, V.; Schmitt, S.; Sefkow, F.; Shushkevich, S.; South, D.; Steder, M.; Wuensch, E.; Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B.; Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F.; Boudry, V.; Moreau, F.; Specka, A.; Bozovic-Jelisavcic, I.; Pandurovic, M.; Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Thompson, P.D.; Bruncko, D.; Cerny, V.; Ferencei, J.; Bunyatyan, A.; Bylinkin, A.; Bystritskaya, L.; Fedotov, A.; Lubimov, V.; Ozerov, D.; Rostovtsev, A.; Zhokin, A.; Cantun Avila, K.B.; Contreras, J.G.; Ruiz Tabasco, J.E.; Ceccopieri, F.; Delvax, J.; Wolf, E.A. de; Favart, L.; Hreus, T.; Janssen, X.; Roosen, R.; Staykova, Z.; Mechelen, P. van; Cerny, K.; Pokorny, B.; Polifka, R.; Salek, D.; Valkarova, A.; Zacek, J.; Zlebcik, R.; Chekelian, V.; Dossanov, A.; Grindhammer, G.; Kiesling, C.; Coughlan, J.A.; Morris, J.V.; Sankey, D.P.C.; Cvach, J.; Hladky, J.; Reimer, P.; Zalesak, J.; Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D.; Daum, K.; Meyer, H.; Diaconu, C.; Hoffmann, D.; Sauvan, E.; Vallee, C.; Dobre, M.; Kogler, R.; Dodonov, V.; Povh, B.; Egli, S.; Hildebrandt, M.; Horisberger, R.; Feltesse, J.; Perez, E.; Schoeffel, L.; Goerlich, L.; Mikocki, S.; Milcewicz-Mika, I.; Nowak, G.; Sopicki, P.; Turnau, J.; Grab, C.; Henderson, R.C.W.; Sloan, T.; Hennekemper, E.; Herbst, M.; Krueger, K.; Lendermann, V.; Schultz-Coulon, H.C.; Henschel, H.; Hiller, K.H.; Kostka, P.; Lange, W.; Naumann, T.; Herrera, G.; Lopez-Fernandez, R.; Huber, F.; Pirumov, H.; Sauter, M.; Schoening, A.; Joensson, L.; Jung, H.; Kapichine, M.; Morozov, A.; Nikitin, D.; Palichik, V.; Spaskov, V.; Landon, M.P.J.; Rizvi, E.; Traynor, D.; Martyn, H.U.; Mueller, K.; Robmann, P.; Straumann, U.; Truoel, P.; Stella, B.; Sykora, T.; Tsakov, I.; Wegener, D.; Collaboration: H1 Collaboration

    2012-07-15

    The diffractive process ep{yields}eXY, where Y denotes a proton or its low mass excitation with M{sub Y}<1.6 GeV, is studied with the H1 experiment at HERA. The analysis is restricted to the phase space region of the photon virtuality 3{<=}Q{sup 2}{<=} 1600 GeV {sup 2}, the square of the four-momentum transfer at the proton vertex vertical stroke t vertical stroke < 1.0 GeV {sup 2} and the longitudinal momentum fraction of the incident proton carried by the colourless exchange x{sub P}<0.05. Triple differential cross sections are measured as a function of x{sub P}, Q {sup 2} and {beta}=x/x{sub P} where x is the Bjorken scaling variable. These measurements are made after selecting diffractive events by demanding a large empty rapidity interval separating the final state hadronic systems X and Y. High statistics measurements covering the data taking periods 1999-2000 and 2004-2007 are combined with previously published results in order to provide a single set of diffractive cross sections from the H1 experiment using the large rapidity gap selection method. The combined data represent a factor between three and thirty increase in statistics with respect to the previously published results. The measurements are compared with predictions from NLO QCD calculations based on diffractive parton densities and from a dipole model. The proton vertex factorisation hypothesis is tested. (orig.)

  19. Geometrical efficiency in computerized tomography: generalized model

    International Nuclear Information System (INIS)

    Costa, P.R.; Robilotta, C.C.

    1992-01-01

    A simplified model for producing sensitivity and exposure profiles in computerized tomographic system was recently developed allowing the forecast of profiles behaviour in the rotation center of the system. The generalization of this model for some point of the image plane was described, and the geometrical efficiency could be evaluated. (C.G.C.)

  20. X-ray diffraction characteristics of curved monochromators for sychrotron radiation

    International Nuclear Information System (INIS)

    Boeuf, A.; Rustichelli, F.; Mazkedian, S.; Puliti, P.; Melone, S.

    1978-01-01

    A theoretical study is presented concerning the diffraction characteristics of curved monochromators for X-ray synchrotron radiation used at the laboratories of Hamburg, Orsay and Stanford. The investigation was performed by extending to the X-ray case a simple model recently developed and fruitfully employed to describe the neutron diffraction properties of curved monochromators. Several diffraction patterns were obtained corresponding to different monochromator materials (Ge, Si) used by the different laboratories, for different reflecting planes (111), (220), asymmetry angles, X-ray wave-lengths (Mo Kα, Cu Kα, Cr Kα) and curvature radii. The results are discussed in physical terms and their implications on the design of curved monochromators for synchrotron radiation are presented. In particular, the study shows that all the monochromators used in the different laboratories should behave practically as perfect crystals and therefore should have a very low integrated reflectivity corresponding to an optimized wavelength passband Δlambda/lambda approximately 10 -4 . The gain that can be obtained by increasing the curvature, by introducing a gradient in the lattice spacing or by any other kind of imperfection is quite limited and much lower than the desirable value. The adopted model can help in obtaining a possible moderate gain in intensity by also taking into consideration other parameters, such as crystal material, reflecting plane, asymmetry of the reflection and X-ray wavelength. (Auth.)

  1. Generalized formal model of Big Data

    OpenAIRE

    Shakhovska, N.; Veres, O.; Hirnyak, M.

    2016-01-01

    This article dwells on the basic characteristic features of the Big Data technologies. It is analyzed the existing definition of the “big data” term. The article proposes and describes the elements of the generalized formal model of big data. It is analyzed the peculiarities of the application of the proposed model components. It is described the fundamental differences between Big Data technology and business analytics. Big Data is supported by the distributed file system Google File System ...

  2. Adaptive Inference on General Graphical Models

    OpenAIRE

    Acar, Umut A.; Ihler, Alexander T.; Mettu, Ramgopal; Sumer, Ozgur

    2012-01-01

    Many algorithms and applications involve repeatedly solving variations of the same inference problem; for example we may want to introduce new evidence to the model or perform updates to conditional dependencies. The goal of adaptive inference is to take advantage of what is preserved in the model and perform inference more rapidly than from scratch. In this paper, we describe techniques for adaptive inference on general graphs that support marginal computation and updates to the conditional ...

  3. Higher dimensional generalizations of the SYK model

    Energy Technology Data Exchange (ETDEWEB)

    Berkooz, Micha [Department of Particle Physics and Astrophysics, Weizmann Institute of Science,Rehovot 7610001 (Israel); Narayan, Prithvi [International Centre for Theoretical Sciences, Hesaraghatta,Bengaluru North, 560 089 (India); Rozali, Moshe [Department of Physics and Astronomy, University of British Columbia,Vancouver, BC V6T 1Z1 (Canada); Simón, Joan [School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh,King’s Buildings, Edinburgh EH9 3FD (United Kingdom)

    2017-01-31

    We discuss a 1+1 dimensional generalization of the Sachdev-Ye-Kitaev model. The model contains N Majorana fermions at each lattice site with a nearest-neighbour hopping term. The SYK random interaction is restricted to low momentum fermions of definite chirality within each lattice site. This gives rise to an ordinary 1+1 field theory above some energy scale and a low energy SYK-like behavior. We exhibit a class of low-pass filters which give rise to a rich variety of hyperscaling behaviour in the IR. We also discuss another set of generalizations which describes probing an SYK system with an external fermion, together with the new scaling behavior they exhibit in the IR.

  4. X-ray topography and multiple diffraction

    International Nuclear Information System (INIS)

    Chang, S.-L.

    1983-01-01

    A short summary on X-ray topography, which is based on the dynamical theory of X-ray diffraction, is made. The applications and properties related to the use of the multiple diffraction technique are analized and discussed. (L.C.) [pt

  5. Learning general phonological rules from distributional information: a computational model.

    Science.gov (United States)

    Calamaro, Shira; Jarosz, Gaja

    2015-04-01

    Phonological rules create alternations in the phonetic realizations of related words. These rules must be learned by infants in order to identify the phonological inventory, the morphological structure, and the lexicon of a language. Recent work proposes a computational model for the learning of one kind of phonological alternation, allophony (Peperkamp, Le Calvez, Nadal, & Dupoux, 2006). This paper extends the model to account for learning of a broader set of phonological alternations and the formalization of these alternations as general rules. In Experiment 1, we apply the original model to new data in Dutch and demonstrate its limitations in learning nonallophonic rules. In Experiment 2, we extend the model to allow it to learn general rules for alternations that apply to a class of segments. In Experiment 3, the model is further extended to allow for generalization by context; we argue that this generalization must be constrained by linguistic principles. Copyright © 2014 Cognitive Science Society, Inc.

  6. Double-diffractive processes in high-resolution missing-mass experiments at the Tevatron

    International Nuclear Information System (INIS)

    Khoze, V.A.; Martin, A.D.

    2001-01-01

    We evaluate, in a model-independent way, the signal-to-background ratio for Higgs→b anti b detection in exclusive double-diffractive events at the Tevatron and the LHC. For the missing-mass approach to be able to identify the Higgs boson, it will be necessary to use a central jet detector and to tag b quark jets. The signal is predicted to be very small at the Tevatron, but observable at the LHC. However we note that the background, that is double-diffractive dijet production, may serve as a unique gluon factory. We also give estimates for the double-diffractive production of χ c and χ b mesons at the Tevatron. We emphasize that a high-resolution missing-mass measurement, on its own, is insufficient to identify rare processes. (orig.)

  7. Introduction to the theory of low-energy electron diffraction

    International Nuclear Information System (INIS)

    Fingerland, A.; Tomasek, M.

    1975-01-01

    An elementary introduction to the basic principles of the theory of low-energy electron diffraction is presented. General scattering theory is used to classify the hitherto known approaches to the problem (optical potential and one-electron approximation; formal scattering theory: Born expansion and multiple scattering; translational symmetry: Ewald construction; classification of LEED theories by means of the T matrix; pseudokinematical theory for crystal with clean surface and with an adsorbed monomolecular layer; dynamical theory; inclusion of inelastic collisions; discussion of a simple example by means of the band-structure approach)

  8. Characterization of nanophase materials by x-ray diffraction and computer simulation

    International Nuclear Information System (INIS)

    Eastman, J.A.; Thompson, L.J.

    1989-06-01

    X-ray diffraction experiments on nanophase Pd have been performed with the primary goal of determining the nature of grain boundary structures in nanophase materials. A kinematical diffraction analysis has been developed to interpret x-ray θ--2θ data by comparing actual scans with scans produced by computer simulation. This simulation program has been used to explore the effects on diffracted intensity of a variety of microstructural and grain boundary structural parameters such as void concentration, grain size, grain boundary width, and changes in interplanar spacing and density in grain boundary regions. It has been found that a reasonable match to experimental data is produced by at least two model structures; in one, the material contains randomly positioned voids or vacancies, while in the other, the interplanar spacings in grain boundary regions are varied with respect to the spacings found in the grain interiors. 7 refs., 4 figs

  9. Miniaturized diffraction based interferometric distance measurement sensor

    Science.gov (United States)

    Kim, Byungki

    In this thesis, new metrology hardware is designed, fabricated, and tested to provide improvements over current MEMS metrology. The metrology system is a micromachined scanning interferometer (muSI) having a sub-nm resolution in a compact design. The proposed microinterferometer forms a phase sensitive diffraction grating with interferomeric sensitivity, while adding the capability of better lateral resolution by focusing the laser to a smaller spot size. A detailed diffraction model of the microinterferometer was developed to simulate the device performance and to suggest the location of photo detectors for integrated optoelectronics. A particular device is fabricated on a fused silica substrate using aluminum to form the deformable diffraction grating fingers and AZ P4620 photo resist (PR) for the microlens. The details of the fabrication processes are presented. The structure also enables optoelectronics to be integrated so that the interferometer with photo detectors can fit in an area that is 1 mm x 1 mm. The scanning results using a fixed grating muSI demonstrated that it could measure vibration profile as well as static vertical (less than a half wave length) and lateral dimension of MEMS. The muSI, which is integrated with photo diodes, demonstrated its operation by scanning a cMUT. The PID control has been tested and resulted in improvement in scanned images. The integrated muSI demonstrated that the deformable grating could be used to tune the measurement keep the interferometer in quadrature for highest sensitivity.

  10. Evolution of diffraction and self-diffraction phenomena in thin films of Gelite Bloom/Hibiscus Sabdariffa

    Science.gov (United States)

    Cano-Lara, Miroslava; Severiano-Carrillo, Israel; Trejo-Durán, Mónica; Alvarado-Méndez, Edgar

    2017-09-01

    In this work, we present a study of non-linear optical response in thin films elaborated with Gelite Bloom and extract of Hibiscus Sabdariffa. Non-linear refraction and absorption effects were studied experimentally (Z-scan technique) and numerically, by considering the transmittance as non-linear absorption and refraction contribution. We observe large phase shifts to far field, and diffraction due to self-phase modulation of the sample. Diffraction and self-diffraction effects were observed as time function. The aim of studying non-linear optical properties in thin films is to eliminate thermal vortex effects that occur in liquids. This is desirable in applications such as non-linear phase contrast, optical limiting, optics switches, etc. Finally, we find good agreement between experimental and theoretical results.

  11. Quantitative damage imaging using Lamb wave diffraction tomography

    International Nuclear Information System (INIS)

    Zhang Hai-Yan; Ruan Min; Zhu Wen-Fa; Chai Xiao-Dong

    2016-01-01

    In this paper, we investigate the diffraction tomography for quantitative imaging damages of partly through-thickness holes with various shapes in isotropic plates by using converted and non-converted scattered Lamb waves generated numerically. Finite element simulations are carried out to provide the scattered wave data. The validity of the finite element model is confirmed by the comparison of scattering directivity pattern (SDP) of circle blind hole damage between the finite element simulations and the analytical results. The imaging method is based on a theoretical relation between the one-dimensional (1D) Fourier transform of the scattered projection and two-dimensional (2D) spatial Fourier transform of the scattering object. A quantitative image of the damage is obtained by carrying out the 2D inverse Fourier transform of the scattering object. The proposed approach employs a circle transducer network containing forward and backward projections, which lead to so-called transmission mode (TMDT) and reflection mode diffraction tomography (RMDT), respectively. The reconstructed results of the two projections for a non-converted S0 scattered mode are investigated to illuminate the influence of the scattering field data. The results show that Lamb wave diffraction tomography using the combination of TMDT and RMDT improves the imaging effect compared with by using only the TMDT or RMDT. The scattered data of the converted A0 mode are also used to assess the performance of the diffraction tomography method. It is found that the circle and elliptical shaped damages can still be reasonably identified from the reconstructed images while the reconstructed results of other complex shaped damages like crisscross rectangles and racecourse are relatively poor. (special topics)

  12. Bragg diffraction of fermions at optical potentials

    International Nuclear Information System (INIS)

    Deh, Benjamin

    2008-01-01

    This thesis describes the Bragg diffraction of ultracold fermions at an optical potential. A moving optical lattice was created, by overlaying two slightly detuned lasers. Atoms can be diffracted at this lattice if the detuning fulfills the Bragg condition for resting atoms. This Bragg diffraction is analyzed systematically in this thesis. To this end Rabi oscillations between the diffraction states were driven, as well in the weakly interacting Bragg regime, as in the strongly interacting Kapitza-Dirac regime. Simulations, based on a driven two-, respectively multilevel-system describe the observed effects rather well. Furthermore, the temporal evolution of the diffracted states in the magnetic trapping potential was studied. The anharmonicity of the trap in use and the scattering cross section for p-wave collisions in a 6 Li system was determined from the movement of these states. Moreover the momentum distribution of the fermions was measured with Bragg spectroscopy and first signs of Fermi degeneracy were found. Finally an interferometer with fermions was build, exhibiting a coherence time of more than 100 μs. With this, the possibility for measurement and manipulation of ultracold fermions with Bragg diffraction could bee shown. (orig.)

  13. When fast atom diffraction turns 3D

    International Nuclear Information System (INIS)

    Zugarramurdi, Asier; Borisov, Andrei G.

    2013-01-01

    Fast atom diffraction at surfaces (FAD) in grazing incidence geometry is characterized by the slow motion in the direction perpendicular to the surface and fast motion parallel to the surface plane along a low index direction. It is established experimentally that for the typical surfaces the FAD reveals the 2D diffraction patterns associated with exchange of the reciprocal lattice vector perpendicular to the direction of fast motion. The reciprocal lattice vector exchange along the direction of fast motion is negligible. The usual approximation made in the description of the experimental data is then to assume that the effective potential leading to the diffraction results from the averaging of the 3D surface potential along the atomic strings forming the axial channel. In this work we use full quantum wave packet propagation calculations to study theoretically the possibility to observe the 3D diffraction in FAD experiments. We show that for the surfaces with large unit cell, such as can be the case for reconstructed or vicinal surfaces, the 3D diffraction can be observed. The reciprocal lattice vector exchange along the direction of fast motion leads to several Laue circles in the diffraction pattern

  14. Automation of electroweak NLO corrections in general models

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Jean-Nicolas [Universitaet Wuerzburg (Germany)

    2016-07-01

    I discuss the automation of generation of scattering amplitudes in general quantum field theories at next-to-leading order in perturbation theory. The work is based on Recola, a highly efficient one-loop amplitude generator for the Standard Model, which I have extended so that it can deal with general quantum field theories. Internally, Recola computes off-shell currents and for new models new rules for off-shell currents emerge which are derived from the Feynman rules. My work relies on the UFO format which can be obtained by a suited model builder, e.g. FeynRules. I have developed tools to derive the necessary counterterm structures and to perform the renormalization within Recola in an automated way. I describe the procedure using the example of the two-Higgs-doublet model.

  15. Comparison of body composition between fashion models and women in general.

    Science.gov (United States)

    Park, Sunhee

    2017-12-31

    The present study compared the physical characteristics and body composition of professional fashion models and women in general, utilizing the skinfold test. The research sample consisted of 90 professional fashion models presently active in Korea and 100 females in the general population, all selected through convenience sampling. Measurement was done following standardized methods and procedures set by the International Society for the Advancement of Kinanthropometry. Body density (mg/ mm) and body fat (%) were measured at the biceps, triceps, subscapular, and suprailiac areas. The results showed that the biceps, triceps, subscapular, and suprailiac areas of professional fashion models were significantly thinner than those of women in general (pfashion models were significantly lower than those in women in general (pfashion models was significantly greater (pfashion models is higher, due to taller stature, than in women in general. Moreover, there is an effort on the part of fashion models to lose weight in order to maintain a thin body and a low weight for occupational reasons. ©2017 The Korean Society for Exercise Nutrition

  16. Generalized Linear Models with Applications in Engineering and the Sciences

    CERN Document Server

    Myers, Raymond H; Vining, G Geoffrey; Robinson, Timothy J

    2012-01-01

    Praise for the First Edition "The obvious enthusiasm of Myers, Montgomery, and Vining and their reliance on their many examples as a major focus of their pedagogy make Generalized Linear Models a joy to read. Every statistician working in any area of applied science should buy it and experience the excitement of these new approaches to familiar activities."-Technometrics Generalized Linear Models: With Applications in Engineering and the Sciences, Second Edition continues to provide a clear introduction to the theoretical foundations and key applications of generalized linear models (GLMs). Ma

  17. Zeno dynamics in wave-packet diffraction spreading

    Energy Technology Data Exchange (ETDEWEB)

    Porras, Miguel A. [Departamento de Fisica Aplicada, Universidad Politecnica de Madrid, Rios Rosas 21, ES-28003 Madrid (Spain); Luis, Alfredo; Gonzalo, Isabel [Departamento de Optica, Facultad de Ciencias Fisicas, Universidad Complutense, ES-28040 Madrid (Spain); Sanz, Angel S. [Instituto de Fisica Fundamental-CSIC, Serrano 123, ES-28006 Madrid (Spain)

    2011-11-15

    We analyze a simple and feasible practical scheme displaying Zeno, anti-Zeno, and inverse-Zeno effects in the observation of wave-packet spreading caused by free evolution. The scheme is valid both in spatial diffraction of classical optical waves and in time diffraction of a quantum wave packet. In the optical realization, diffraction spreading is observed by placing slits between a light source and a light-power detector. We show that the occurrence of Zeno or anti-Zeno effects depends just on the frequency of observations between the source and detector. These effects are seen to be related to the diffraction mode theory in Fabry-Perot resonators.

  18. Double generalized linear compound poisson models to insurance claims data

    DEFF Research Database (Denmark)

    Andersen, Daniel Arnfeldt; Bonat, Wagner Hugo

    2017-01-01

    This paper describes the specification, estimation and comparison of double generalized linear compound Poisson models based on the likelihood paradigm. The models are motivated by insurance applications, where the distribution of the response variable is composed by a degenerate distribution...... implementation and illustrate the application of double generalized linear compound Poisson models using a data set about car insurances....

  19. Non-diffractive optically variable security devices

    NARCIS (Netherlands)

    Renesse, R.L. van

    1991-01-01

    At the past optical security conferences attention was focused on diffractive structures, e.g. holograms, embossed gratings and thin—film devices, as security elements on valuable documents. The main reasons for this emphasis are, that the iridescent effect of such diffractive optically variable

  20. Modeling age-specific mortality for countries with generalized HIV epidemics.

    Directory of Open Access Journals (Sweden)

    David J Sharrow

    Full Text Available In a given population the age pattern of mortality is an important determinant of total number of deaths, age structure, and through effects on age structure, the number of births and thereby growth. Good mortality models exist for most populations except those experiencing generalized HIV epidemics and some developing country populations. The large number of deaths concentrated at very young and adult ages in HIV-affected populations produce a unique 'humped' age pattern of mortality that is not reproduced by any existing mortality models. Both burden of disease reporting and population projection methods require age-specific mortality rates to estimate numbers of deaths and produce plausible age structures. For countries with generalized HIV epidemics these estimates should take into account the future trajectory of HIV prevalence and its effects on age-specific mortality. In this paper we present a parsimonious model of age-specific mortality for countries with generalized HIV/AIDS epidemics.The model represents a vector of age-specific mortality rates as the weighted sum of three independent age-varying components. We derive the age-varying components from a Singular Value Decomposition of the matrix of age-specific mortality rate schedules. The weights are modeled as a function of HIV prevalence and one of three possible sets of inputs: life expectancy at birth, a measure of child mortality, or child mortality with a measure of adult mortality. We calibrate the model with 320 five-year life tables for each sex from the World Population Prospects 2010 revision that come from the 40 countries of the world that have and are experiencing a generalized HIV epidemic. Cross validation shows that the model is able to outperform several existing model life table systems.We present a flexible, parsimonious model of age-specific mortality for countries with generalized HIV epidemics. Combined with the outputs of existing epidemiological and