WorldWideScience

Sample records for generalized conformational energy

  1. General Conformity

    Science.gov (United States)

    The General Conformity requirements ensure that the actions taken by federal agencies in nonattainment and maintenance areas do not interfere with a state’s plans to meet national standards for air quality.

  2. Conformal General Relativity

    CERN Document Server

    Pervushin, V

    2001-01-01

    The inflation-free solution of problems of the modern cosmology (horizon, cosmic initial data, Planck era, arrow of time, singularity,homogeneity, and so on) is considered in the conformal-invariant unified theory given in the space with geometry of similarity where we can measure only the conformal-invariant ratio of all quantities. Conformal General Relativity is defined as the $SU_c(3)\\times SU(2)\\times U(1)$-Standard Model where the dimensional parameter in the Higgs potential is replaced by a dilaton scalar field described by the negative Penrose-Chernikov-Tagirov action. Spontaneous SU(2) symmetry breaking is made on the level of the conformal-invariant angle of the dilaton-Higgs mixing, and it allows us to keep the structure of Einstein's theory with the equivalence principle. We show that the lowest order of the linearized equations of motion solves the problems mentioned above and describes the Cold Universe Scenario with the constant temperature T and z-history of all masses with respect to an obser...

  3. 40 CFR 52.2133 - General conformity.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false General conformity. 52.2133 Section 52...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) South Carolina § 52.2133 General conformity. The General Conformity regulations adopted into the South Carolina State Implementation Plan...

  4. 40 CFR 52.938 - General conformity.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false General conformity. 52.938 Section 52...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Kentucky § 52.938 General conformity. The General Conformity regulations were submitted on November 10, 1995, and adopted into the Kentucky...

  5. Conformal Gravity: Dark Matter and Dark Energy

    Directory of Open Access Journals (Sweden)

    Robert K. Nesbet

    2013-01-01

    Full Text Available This short review examines recent progress in understanding dark matter, dark energy, and galactic halos using theory that departs minimally from standard particle physics and cosmology. Strict conformal symmetry (local Weyl scaling covariance, postulated for all elementary massless fields, retains standard fermion and gauge boson theory but modifies Einstein–Hilbert general relativity and the Higgs scalar field model, with no new physical fields. Subgalactic phenomenology is retained. Without invoking dark matter, conformal gravity and a conformal Higgs model fit empirical data on galactic rotational velocities, galactic halos, and Hubble expansion including dark energy.

  6. Conformal methods in general relativity

    CERN Document Server

    Valiente Kroon, Juan A

    2016-01-01

    This book offers a systematic exposition of conformal methods and how they can be used to study the global properties of solutions to the equations of Einstein's theory of gravity. It shows that combining these ideas with differential geometry can elucidate the existence and stability of the basic solutions of the theory. Introducing the differential geometric, spinorial and PDE background required to gain a deep understanding of conformal methods, this text provides an accessible account of key results in mathematical relativity over the last thirty years, including the stability of de Sitter and Minkowski spacetimes. For graduate students and researchers, this self-contained account includes useful visual models to help the reader grasp abstract concepts and a list of further reading, making this the perfect reference companion on the topic.

  7. Conformal collider physics: Energy and charge correlations

    CERN Document Server

    Hofman, Diego M

    2008-01-01

    We study observables in a conformal field theory which are very closely related to the ones used to describe hadronic events at colliders. We focus on the correlation functions of the energies deposited on calorimeters placed at a large distance from the collision. We consider initial states produced by an operator insertion and we study some general properties of the energy correlation functions for conformal field theories. We argue that the small angle singularities of energy correlation functions are controlled by the twist of non-local light-ray operators with a definite spin. We relate the charge two point function to a particular moment of the parton distribution functions appearing in deep inelastic scattering. The one point energy correlation functions are characterized by a few numbers. For ${\\cal N}=1$ superconformal theories the one point function for states created by the R-current or the stress tensor are determined by the two parameters $a$ and $c$ characterizing the conformal anomaly. Demandin...

  8. Conformal general relativity contains the quantum

    CERN Document Server

    Bonal, R; Cardenas, R

    2000-01-01

    Based on the de Broglie-Bohm relativistic quantum theory of motion we show that the conformal formulation of general relativity, being linked with a Weyl-integrable geometry, may implicitly contain the quantum effects of matter. In this context the Mach's principle is discussed.

  9. Generalized Orbifold Construction for Conformal Nets

    CERN Document Server

    Bischoff, Marcel

    2016-01-01

    Let $\\mathcal{B}$ be a conformal net. We give the notion of a proper action of a finite hypergroup acting by vacuum preserving unital completely positive (so-called stochastic) maps, which generalizes the proper actions of finite groups. Taking fixed points under such an action gives a finite index subnet $\\mathcal{B}^K$ of $\\mathcal{B}$, which generalizes the $G$-orbifold. Conversely, we show that if $\\mathcal{A}\\subset \\mathcal{B}$ is a finite inclusion of conformal nets, then $\\mathcal{A}$ is a generalized orbifold $\\mathcal{A}=\\mathcal{B}^K$ of the conformal net $\\mathcal{B}$ by a unique finite hypergroup $K$. There is a Galois correspondence between intermediate nets $\\mathcal{B}^K\\subset \\mathcal{A} \\subset \\mathcal{B}$ and subhypergroups $L\\subset K$ given by $\\mathcal{A}=\\mathcal{B}^L$. In this case, the fixed point of $\\mathcal{B}^K\\subset \\mathcal{A}$ is the generalized orbifold by the hypergroup of double cosets $L\\backslash K/ L$. If $\\mathcal{A}\\subset \\mathcal{B}$ is an finite index inclusion of...

  10. Willmore energy estimates in conformal Berger spheres

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Manuel, E-mail: mbarros@ugr.es [Departamento de Geometria y Topologia, Facultad de Ciencias Universidad de Granada, 1807 Granada (Spain); Ferrandez, Angel, E-mail: aferr@um.es [Departamento de Matematicas, Universidad de Murcia Campus de Espinardo, 30100 Murcia (Spain)

    2011-07-15

    Highlights: > The Willmore energy is computed in a wide class of surfaces. > Isoperimetric inequalities for the Willmore energy of Hopf tori are obtained. > The best possible lower bound is achieved on isoareal Hopf tori. - Abstract: We obtain isoperimetric inequalities for the Willmore energy of Hopf tori in a wide class of conformal structures on the three sphere. This class includes, on the one hand, the family of conformal Berger spheres and, on the other hand, a one parameter family of Lorentzian conformal structures. This allows us to give the best possible lower bound of Willmore energies concerning isoareal Hopf tori.

  11. Slice Energy and Conformal Frames in Theories of Gravitation

    CERN Document Server

    Cotsakis, S

    2004-01-01

    We examine and compare the behaviour of the scalar field slice energy in different classes of theories of gravity, in particular higher-order and scalar-tensor theories. We find a universal formula for the energy and compare the resulting conservation laws with those known in general relativity. This leads to a comparison between the inflaton, the dilaton and other forms of scalar fields present in these generalized theories. It also shows that all such conformally-related, generalized theories of gravitation allow for the energy on a slice to be invariably defined and its fundamental properties be insensitive to conformal transformations.

  12. On gravitational energy in conformal teleparallel gravity

    Science.gov (United States)

    da Silva, J. G.; Ulhoa, S. C.

    2017-07-01

    The paper deals with the definition of gravitational energy in conformal teleparallel gravity. The total energy is defined by means of the field equations which allow a local conservation law. Then such an expression is analyzed for a homogeneous and isotropic Universe. This model is implemented by the Friedmann-Robertson-Walker (FRW) line element. The energy of the Universe in the absence of matter is identified with the dark energy, however it can be expanded for curved models defining such an energy as the difference between the total energy and the energy of the perfect fluid which is the matter field in the FRW model.

  13. Simple Space-Time Symmetries: Generalizing Conformal Field Theory

    CERN Document Server

    Mack, G; Mack, Gerhard; Riese, Mathias de

    2004-01-01

    We study simple space-time symmetry groups G which act on a space-time manifold M=G/H which admits a G-invariant global causal structure. We classify pairs (G,M) which share the following additional properties of conformal field theory: 1) The stability subgroup H of a point in M is the identity component of a parabolic subgroup of G, implying factorization H=MAN, where M generalizes Lorentz transformations, A dilatations, and N special conformal transformations. 2) special conformal transformations in N act trivially on tangent vectors to the space-time manifold M. The allowed simple Lie groups G are the universal coverings of SU(m,m), SO(2,D), Sp(l,R), SO*(4n) and E_7(-25) and H are particular maximal parabolic subgroups. All these groups G admit positive energy representations. It will also be shown that the classical conformal groups SO(2,D) are the only allowed groups which possess a time reflection automorphism; in all other cases space-time has an intrinsic chiral structure.

  14. 75 FR 17253 - Revisions to the General Conformity Regulations

    Science.gov (United States)

    2010-04-05

    ... Protection Agency 40 CFR Parts 51 and 93 Revisions to the General Conformity Regulations; Final Rule #0;#0... PROTECTION AGENCY 40 CFR Parts 51 and 93 RIN 2060-AH93 Revisions to the General Conformity Regulations AGENCY... or Federal implementation plan (SIP, TIP, or FIP) for attaining clean air (``General...

  15. General Information for Transportation and Conformity

    Science.gov (United States)

    Transportation conformity is required by the Clean Air Act section 176(c) (42 U.S.C. 7506(c)) to ensure that federal funding and approval are given to highway and transit projects that are consistent with SIP.

  16. On Useful Conformal Tranformations In General Relativity

    CERN Document Server

    Carneiro, D F; De Lima, A G; Shapiro, I L

    2004-01-01

    Local conformal transformations are known as a useful tool in various applications of the gravitational theory, especially in cosmology. We describe some new aspects of these transformations, in particular using them for derivation of Einstein equations for the cosmological and Schwarzschild metrics. Furthermore, the conformal transformation is applied for the dimensional reduction of the Gauss-Bonnet topological invariant in $d=4$ to the spaces of lower dimensions.

  17. On useful conformal tranformations in general relativity

    Science.gov (United States)

    Carneiro, D. F.; Freiras, E. A.; Gonçalves, B.; de Lima, A. G.; Shapiro, I.

    2004-12-01

    Local conformal transformations are known as a useful tool in various applications of the gravitational theory, especially in cosmology. We describe some new aspects of these transformations, in particular using them for derivation of Einstein equations for the cosmological and Schwarzschild metrics. Furthermore, the conformal transformation is applied for the dimensional reduction of the Gauss-Bonnet topological invariant in $d=4$ to the spaces of lower dimensions.

  18. Energy of knots and conformal geometry

    CERN Document Server

    O'Hara, Jun

    2003-01-01

    Energy of knots is a theory that was introduced to create a "canonical configuration" of a knot - a beautiful knot which represents its knot type. This book introduces several kinds of energies, and studies the problem of whether or not there is a "canonical configuration" of a knot in each knot type. It also considers this problems in the context of conformal geometry. The energies presented in the book are defined geometrically. They measure the complexity of embeddings and have applications to physical knotting and unknotting through numerical experiments. Contents: In Search of the "Optima

  19. Conformal Invariance and Conserved Quantities of General Holonomic Systems

    Institute of Scientific and Technical Information of China (English)

    CAI Jian-Le

    2008-01-01

    Conformal invarianee and conserved quantities of general holonomic systems are studied. A one-parameter infinitesimal transformation group and its infinitesimal transformation vector of generators are described.The definition of conformal invariance and determining equation for the system are provided.The conformal factor expression is deduced from conformal invariance and Lie symmetry.The necessary and sufficient condition,that conformal invariance of the system would be Lie symmetry,is obtained under the infinitesimal one-parameter transformation group. The corresponding conserved quantity is derived with the aid of a structure equation.Lastly,an example is given to demonstrate the application of the result.

  20. Basic Information About the General Conformity Rule

    Science.gov (United States)

    These regulations ensure that federal activities or actions don't cause new violations to the NAAQS and ensure that NAAQS attainment is not delayed. This page has general information about how and where these regulations apply.

  1. Conformational Nonequilibrium Enzyme Kinetics: Generalized Michaelis-Menten Equation.

    Science.gov (United States)

    Piephoff, D Evan; Wu, Jianlan; Cao, Jianshu

    2017-08-03

    In a conformational nonequilibrium steady state (cNESS), enzyme turnover is modulated by the underlying conformational dynamics. On the basis of a discrete kinetic network model, we use an integrated probability flux balance method to derive the cNESS turnover rate for a conformation-modulated enzymatic reaction. The traditional Michaelis-Menten (MM) rate equation is extended to a generalized form, which includes non-MM corrections induced by conformational population currents within combined cyclic kinetic loops. When conformational detailed balance is satisfied, the turnover rate reduces to the MM functional form, explaining its general validity. For the first time, a one-to-one correspondence is established between non-MM terms and combined cyclic loops with unbalanced conformational currents. Cooperativity resulting from nonequilibrium conformational dynamics can be achieved in enzymatic reactions, and we provide a novel, rigorous means of predicting and characterizing such behavior. Our generalized MM equation affords a systematic approach for exploring cNESS enzyme kinetics.

  2. PDB ligand conformational energies calculated quantum-mechanically.

    Science.gov (United States)

    Sitzmann, Markus; Weidlich, Iwona E; Filippov, Igor V; Liao, Chenzhong; Peach, Megan L; Ihlenfeldt, Wolf-Dietrich; Karki, Rajeshri G; Borodina, Yulia V; Cachau, Raul E; Nicklaus, Marc C

    2012-03-26

    (RSCC). We repeated these calculations with the solvent model IEFPCM, which yielded energy differences that were generally somewhat lower than the corresponding vacuum results but did not produce a qualitatively different picture. Torsional sampling around the crystal conformation at the molecular mechanics level using the MMFF94s force field typically led to an increase in energy. © 2012 American Chemical Society

  3. Energy flow in non-equilibrium conformal field theory

    Science.gov (United States)

    Bernard, Denis; Doyon, Benjamin

    2012-09-01

    We study the energy current and its fluctuations in quantum gapless 1d systems far from equilibrium modeled by conformal field theory, where two separated halves are prepared at distinct temperatures and glued together at a point contact. We prove that these systems converge towards steady states, and give a general description of such non-equilibrium steady states in terms of quantum field theory data. We compute the large deviation function, also called the full counting statistics, of energy transfer through the contact. These are universal and satisfy fluctuation relations. We provide a simple representation of these quantum fluctuations in terms of classical Poisson processes whose intensities are proportional to Boltzmann weights.

  4. Generalized Wilson-Fisher critical points from the conformal OPE

    CERN Document Server

    Gliozzi, Ferdinando; Petkou, Anastasios C; Wen, Congkao

    2016-01-01

    We study possible smooth deformations of Generalized Free Conformal Field Theories in arbitrary dimensions by exploiting the singularity structure of the conformal blocks dictated by the null states. We derive in this way, at the first non trivial order in the $\\epsilon$-expansion, the anomalous dimensions of an infinite class of scalar local operators, without using the equations of motion. In the cases where other computational methods apply, the results agree.

  5. Conformal anomaly of generalized form factors and finite loop integrals

    CERN Document Server

    Chicherin, Dmitry

    2017-01-01

    We reveal a new mechanism of conformal symmetry breaking at Born level. It occurs in generalized form factors with several local operators and an on-shell state of massless particles. The effect is due to hidden singularities on collinear configurations of the momenta. This conformal anomaly is different from the holomorphic anomaly of amplitudes. We present a number of examples in four and six dimensions. We find an application of the new conformal anomaly to finite loop momentum integrals with one or more massless legs. The collinear region around a massless leg creates a contact anomaly, made visible by the loop integration. The anomalous conformal Ward identity for an $\\ell-$loop integral is a 2nd-order differential equation whose right-hand side is an $(\\ell-1)-$loop integral. We show several examples, in particular the four-dimensional scalar double box.

  6. 76 FR 77182 - Approval and Promulgation of Air Quality Implementation Plans; Virginia; General Conformity...

    Science.gov (United States)

    2011-12-12

    ... Conformity Requirements for Federal Agencies Applicable to Federal Actions AGENCY: Environmental Protection... adopted by Virginia for the purpose of incorporating Federal general conformity requirements revisions... approving Virginia's general conformity SIP revision and if that provision may be severed from the...

  7. 76 FR 77150 - Approval and Promulgation of Air Quality Implementation Plans; Virginia; General Conformity...

    Science.gov (United States)

    2011-12-12

    ... Conformity Requirements for Federal Agencies Applicable to Federal Actions AGENCY: Environmental Protection... regulation adopted by Virginia to incorporate revisions to Federal general conformity requirements... state general conformity requirements rule for Federal agencies applicable to Federal actions...

  8. Singular conformally invariant trilinear forms and generalized Rankin Cohen operators

    CERN Document Server

    Jean-Louis, Clerc

    2011-01-01

    The most singular residues of the standard meromorphic family of trilinear conformally invariant forms on $\\mathcal C^\\infty_c(\\mathbb R^d)$ are computed. Their expression involves covariant bidifferential operators (generalized Rankin Cohen operators), for which new formul\\ae \\ are obtained. The main tool is a Bernstein-Sato identity for the kernel of the forms.

  9. A phenomenological relationship between molecular geometry change and conformational energy change

    Science.gov (United States)

    Bodi, Andras; Bjornsson, Ragnar; Arnason, Ingvar

    2010-08-01

    A linear correlation is established between the change in the axial/equatorial conformational energy difference and the change in the molecular geometry transformation during conformational inversion in substituted six-membered ring systems, namely in the 1-substituted cyclohexane/silacyclohexane, cyclohexane/ N-substituted piperidine and 1-substituted silacyclohexane/ P-substituted phosphorinane compound families, and for the analogous gauche/anti conformational isomerism in 1-substituted propanes/1-silapropanes. The nuclear repulsion energy parameterizes the molecular geometry, and changes in the conformational energy between the related compound families are linearly correlated with the changes in the nuclear repulsion energy difference based on DFT (B3LYP, M06-2X), G3B3, and CBS-QB3 calculations. This correlation reproduces the sometimes remarkable contrast between the conformational behavior of analogous compounds, e.g., the lack of a general equatorial preference in silacyclohexanes.

  10. Vacuum energy sequestering and conformal symmetry

    Science.gov (United States)

    Ben-Dayan, Ido; Richter, Robert; Ruehle, Fabian; Westphal, Alexander

    2016-05-01

    In a series of recent papers Kaloper and Padilla proposed a mechanism to sequester standard model vacuum contributions to the cosmological constant. We study the consequences of embedding their proposal into a fully local quantum theory. In the original work, the bare cosmological constant Λ and a scaling parameter λ are introduced as global fields. We find that in the local case the resulting Lagrangian is that of a spontaneously broken conformal field theory where λ plays the role of the dilaton. A vanishing or a small cosmological constant is thus a consequence of the underlying conformal field theory structure.

  11. Conformal Gravity with the most general ELKO Matter

    OpenAIRE

    Fabbri, Luca

    2011-01-01

    Recently we have constructed the conformal gravity with metric and torsion, finding the gravitational field equations that give the conservation laws and trace condition; in the present paper we apply this theory to the case of ELKO matter field, proving that their spin and energy densities once the matter field equations are considered imply the validity of the conservation laws and trace condition mentioned above.

  12. Conformally-modified gravity and vacuum energy

    CERN Document Server

    Henke, Christian

    2016-01-01

    The paper deals with a modified theory of gravity and the cosmological consequences. Instead of concerning the field equations directly, we modify a conformally-related and equivalent equation, such that a spontaneous symmetry breaking at Planck scale occurs in the trace equation. As the consequence the cosmological constant problem is solved.

  13. Anisotropic scaling and generalized conformal invariance at Lifshitz points

    Science.gov (United States)

    Henkel, Malte; Pleimling, Michel

    2002-08-01

    A new variant of the Wolff cluster algorithm is proposed for simulating systems with competing interactions. This method is used in a high-precision study of the Lifshitz point of the 3D ANNNI model. At the Lifshitz point, several critical exponents are found and the anisotropic scaling of the correlators is verified. The functional form of the two-point correlators is shown to be consistent with the predictions of generalized conformal invariance.

  14. Prosocial Conformity: Prosocial Norms Generalize Across Behavior and Empathy.

    Science.gov (United States)

    Nook, Erik C; Ong, Desmond C; Morelli, Sylvia A; Mitchell, Jason P; Zaki, Jamil

    2016-08-01

    Generosity is contagious: People imitate others' prosocial behaviors. However, research on such prosocial conformity focuses on cases in which people merely reproduce others' positive actions. Hence, we know little about the breadth of prosocial conformity. Can prosocial conformity cross behavior types or even jump from behavior to affect? Five studies address these questions. In Studies 1 to 3, participants decided how much to donate to charities before learning that others donated generously or stingily. Participants who observed generous donations donated more than those who observed stingy donations (Studies 1 and 2). Crucially, this generalized across behaviors: Participants who observed generous donations later wrote more supportive notes to another participant (Study 3). In Studies 4 and 5, participants observed empathic or non-empathic group responses to vignettes. Group empathy ratings not only shifted participants' own empathic feelings (Study 4), but they also influenced participants' donations to a homeless shelter (Study 5). These findings reveal the remarkable breadth of prosocial conformity. © 2016 by the Society for Personality and Social Psychology, Inc.

  15. 78 FR 57335 - Approval and Promulgation of Implementation Plans; State of Missouri; Conformity of General...

    Science.gov (United States)

    2013-09-18

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Implementation Plans; State of Missouri; Conformity of... conformity rule in its entirety to bring it into compliance with the Federal general conformity rule which was updated in the Federal Register on April 5, 2010. General conformity regulations prohibit...

  16. Energy flux positivity and unitarity in conformal field theories

    NARCIS (Netherlands)

    Kulaxizi, M.; Parnachev, A.

    2011-01-01

    We show that in most conformal field theories the condition of the energy flux positivity, proposed by Hofman and Maldacena, is equivalent to the absence of ghosts. At finite temperature and large energy and momenta, the two-point functions of the stress energy tensor develop lightlike poles. The re

  17. Gauge formulation of general relativity using conformal and spin symmetries.

    Science.gov (United States)

    Wang, Charles H-T

    2008-05-28

    The gauge symmetry inherent in Maxwell's electromagnetics has a profound impact on modern physics. Following the successful quantization of electromagnetics and other higher order gauge field theories, the gauge principle has been applied in various forms to quantize gravity. A notable development in this direction is loop quantum gravity based on the spin-gauge treatment. This paper considers a further incorporation of the conformal gauge symmetry in canonical general relativity. This is a new conformal decomposition in that it is applied to simplify recently formulated parameter-free construction of spin-gauge variables for gravity. The resulting framework preserves many main features of the existing canonical framework for loop quantum gravity regarding the spin network representation and Thiemann's regularization. However, the Barbero-Immirzi parameter is converted into the conformal factor as a canonical variable. It behaves like a scalar field but is somehow non-dynamical since the Hamiltonian constraint does not depend on its momentum. The essential steps of the mathematical derivation of this parameter-free framework for the spin-gauge variables of gravity are spelled out. The implications for the loop quantum gravity programme are briefly discussed.

  18. Enhanced conformational sampling technique provides an energy landscape view of large-scale protein conformational transitions.

    Science.gov (United States)

    Shao, Qiang

    2016-10-26

    Large-scale conformational changes in proteins are important for their functions. Tracking the conformational change in real time at the level of a single protein molecule, however, remains a great challenge. In this article, we present a novel in silico approach with the combination of normal mode analysis and integrated-tempering-sampling molecular simulation (NMA-ITS) to give quantitative data for exploring the conformational transition pathway in multi-dimensional energy landscapes starting only from the knowledge of the two endpoint structures of the protein. The open-to-closed transitions of three proteins, including nCaM, AdK, and HIV-1 PR, were investigated using NMA-ITS simulations. The three proteins have varied structural flexibilities and domain communications in their respective conformational changes. The transition state structure in the conformational change of nCaM and the associated free-energy barrier are in agreement with those measured in a standard explicit-solvent REMD simulation. The experimentally measured transition intermediate structures of the intrinsically flexible AdK are captured by the conformational transition pathway measured here. The dominant transition pathways between the closed and fully open states of HIV-1 PR are very similar to those observed in recent REMD simulations. Finally, the evaluated relaxation times of the conformational transitions of three proteins are roughly at the same level as reported experimental data. Therefore, the NMA-ITS method is applicable for a variety of cases, providing both qualitative and quantitative insights into the conformational changes associated with the real functions of proteins.

  19. Generalized conformal realizations of Kac-Moody algebras

    Science.gov (United States)

    Palmkvist, Jakob

    2009-01-01

    We present a construction which associates an infinite sequence of Kac-Moody algebras, labeled by a positive integer n, to one single Jordan algebra. For n =1, this reduces to the well known Kantor-Koecher-Tits construction. Our generalization utilizes a new relation between different generalized Jordan triple systems, together with their known connections to Jordan and Lie algebras. Applied to the Jordan algebra of Hermitian 3×3 matrices over the division algebras R, C, H, O, the construction gives the exceptional Lie algebras f4, e6, e7, e8 for n =2. Moreover, we obtain their infinite-dimensional extensions for n ≥3. In the case of 2×2 matrices, the resulting Lie algebras are of the form so(p +n,q+n) and the concomitant nonlinear realization generalizes the conformal transformations in a spacetime of signature (p,q).

  20. Anisotropic scaling and generalized conformal invariance at Lifshitz points

    CERN Document Server

    Pleimling, M; Pleimling, Michel; Henkel, Malte

    2001-01-01

    The behaviour of the 3D axial next-nearest neighbour Ising (ANNNI) model at the uniaxial Lifshitz point is studied using Monte Carlo techniques. A new variant of the Wolff cluster algorithm permits the analysis of systems far larger than in previous studies. The Lifshitz point critical exponents are $\\alpha=0.18(2)$, $\\beta=0.238(5)$ and $\\gamma=1.36(3)$. Data for the spin-spin correlation function are shown to be consistent with the explicit scaling function derived from the assumption of local scale invariance, which is a generalization of conformal invariance to the anisotropic scaling {\\em at} the Lifshitz point.

  1. Conformal invariance and generalized Hojman conserved quantities of mechanico-electrical systems

    Institute of Scientific and Technical Information of China (English)

    Li Yuan-Cheng; Xia Li-Li; Wang Xiao-Ming

    2009-01-01

    This paper studies conformal invariance and generalized Hojman conserved quantities of mechanico-electrical systems. The definition and the determining equation of conformal invariance for mechanico-electrical systems are provided. The conformal factor expression is deduced from conformal invariance and Lie symmetry under the infinitesimal singleparameter transformation group. The generalized Hojman conserved quantities from the conformal invariance of the system are given. An example is given to illustrate the application of the result.

  2. General Relativity and Energy

    Science.gov (United States)

    Jackson, A. T.

    1973-01-01

    Reviews theoretical and experimental fundamentals of Einstein's theory of general relativity. Indicates that recent development of the theory of the continually expanding universe may lead to revision of the space-time continuum of the finite and unbounded universe. (CC)

  3. Wormholes admitting conformal Killing vectors and supported by generalized Chaplygin gas

    Energy Technology Data Exchange (ETDEWEB)

    Kuhfittig, Peter K.F. [Milwaukee School of Engineering, Department of Mathematics, Milwaukee, WI (United States)

    2015-08-15

    When Morris and Thorne first proposed that traversable wormholes may be actual physical objects, they concentrated on the geometry by specifying the shape and redshift functions. This mathematical approach necessarily raises questions regarding the determination of the required stress-energy tensor. This paper discusses a natural way to obtain a complete wormhole solution by assuming that the wormhole (1) is supported by generalized Chaplygin gas and (2) admits conformal Killing vectors. (orig.)

  4. Conformal symmetry wormholes and the null energy condition

    CERN Document Server

    Kuhfittig, Peter K F

    2016-01-01

    In this paper we seek a relationship between the assumption of conformal symmetry and the exotic matter needed to hold a wormhole open. By starting with a Morris-Thorne wormhole having a constant energy density, it is shown that the conformal factor provides the extra degree of freedom sufficient to account for the exotic matter. The same holds for Morris-Thorne wormholes in a noncommutative-geometry setting. Applied to thin shells, there would exist a radius that results in a wormhole with positive surface density and negative surface pressure and which violates the null energy condition on the thin shell.

  5. Slice Energy in Higher Order Gravity Theories and Conformal Transformations

    CERN Document Server

    Cotsakis, S

    2004-01-01

    We show that there is a generic transport of energy between the scalar field generated by the conformal transformation of higher order gravity theories and the matter component. We give precise relations of this exchange and show that, unless we are in a stationary spacetime, slice energy is not generically conserved. These results translate into statements about the relative behaviour of ordinary matter, dark matter and dark energy in the context of higher order gravity.

  6. Conformal invariance, dark energy, and CMB non-gaussianity

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, Ignatios [Department of Physics, CERN, Theory Division CH-1211 Geneva 23 (Switzerland); Mazur, Pawel O. [Department of Physics and Astronomy, University of South Carolina Columbia SC 29208 (United States); Mottola, Emil, E-mail: ignatios.antoniadis@cern.ch, E-mail: mazur@physics.sc.edu, E-mail: emil@lanl.gov [Theoretical Division, MS B285 Los Alamos National Laboratory Los Alamos, NM 87545 (United States)

    2012-09-01

    In addition to simple scale invariance, a universe dominated by dark energy naturally gives rise to correlation functions possessing full conformal invariance. This is due to the mathematical isomorphism between the conformal group of certain three dimensional slices of de Sitter space and the de Sitter isometry group SO(4,1). In the standard homogeneous, isotropic cosmological model in which primordial density perturbations are generated during a long vacuum energy dominated de Sitter phase, the embedding of flat spatial R{sup 3} sections in de Sitter space induces a conformal invariant perturbation spectrum and definite prediction for the shape of the non-Gaussian CMB bispectrum. In the case in which the density fluctuations are generated instead on the de Sitter horizon, conformal invariance of the S{sup 2} horizon embedding implies a different but also quite definite prediction for the angular correlations of CMB non-Gaussianity on the sky. Each of these forms for the bispectrum is intrinsic to the symmetries of de Sitter space, and in that sense, independent of specific model assumptions. Each is different from the predictions of single field slow roll inflation models, which rely on the breaking of de Sitter invariance. We propose a quantum origin for the CMB fluctuations in the scalar gravitational sector from the conformal anomaly that could give rise to these non-Gaussianities without a slow roll inflaton field, and argue that conformal invariance also leads to the expectation for the relation n{sub S}−1 = n{sub T} between the spectral indices of the scalar and tensor power spectrum. Confirmation of this prediction or detection of non-Gaussian correlations in the CMB of one of the bispectral shape functions predicted by conformal invariance can be used both to establish the physical origins of primordial density fluctuations, and distinguish between different dynamical models of cosmological vacuum dark energy.

  7. Conformal invariance and particle aspects in general relativity

    CERN Document Server

    Salehi, H; Darabi, F

    2000-01-01

    We study the breakdown of conformal symmetry in a conformally invariantgravitational model. The symmetry breaking is introduced by defining apreferred conformal frame in terms of the large scale characteristics of theuniverse. In this context we show that a local change of the preferredconformal frame results in a Hamilton-Jacobi equation describing a particlewith adjustable mass. In this equation the dynamical characteristics of theparticle substantially depends on the applied conformal factor and localgeometry. Relevant interpretations of the results are also discussed.

  8. Conformally invariant gauge conditions in electromagnetism and general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, Giampiero; Stornaiolo, Cosimo

    2000-06-01

    The construction of conformally invariant gauge conditions for Maxwell and Einstein theories on a manifold M is found to involve two basic ingredients. First, covariant derivatives of a linear gauge (e.g. Lorenz or de Donder), completely contracted with the tensor field representing the metric on the vector bundle of the theory. Second, the addition of a compensating term, obtained by covariant differentiation of a suitable tensor field built from the geometric data of the problem. The existence theorem for such a gauge in gravitational theory is here proved when the manifold M is endowed with a m-dimensional positive-definite metric g. An application to a generally covariant integral formulation of the Einstein equations is also outlined.

  9. 40 CFR 51.858 - Criteria for determining conformity of general Federal actions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Criteria for determining conformity of... Determining Conformity of General Federal Actions to State or Federal Implementation Plans § 51.858 Criteria for determining conformity of general Federal actions. Link to an amendment published at 75 FR...

  10. 40 CFR 51.859 - Procedures for conformity determinations of general Federal actions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Procedures for conformity... IMPLEMENTATION PLANS Determining Conformity of General Federal Actions to State or Federal Implementation Plans § 51.859 Procedures for conformity determinations of general Federal actions. Link to an...

  11. Investigation on the low energy conformational surface of tabun to probe the role of its different conformers on biological activity

    Science.gov (United States)

    Paukku, Yuliya; Michalkova, Andrea; Majumdar, D.; Leszczynski, Jerzy

    2006-05-01

    Conformational studies have been carried out on the two different enantiomers of tabun at the density functional and second order Møller-Plesset perturbation levels of theory to generate low energy potential energy surfaces in the gas phase as well as in aqueous environment. The structures of the low energy conformers together with their molecular electrostatic potential surfaces have been compared with those of the non-aged acetylcholinesterase-tabun complex to locate the active conformer of this molecule.

  12. Accurate calculation of conformational free energy differences in explicit water: the confinement-solvation free energy approach.

    Science.gov (United States)

    Esque, Jeremy; Cecchini, Marco

    2015-04-23

    The calculation of the free energy of conformation is key to understanding the function of biomolecules and has attracted significant interest in recent years. Here, we present an improvement of the confinement method that was designed for use in the context of explicit solvent MD simulations. The development involves an additional step in which the solvation free energy of the harmonically restrained conformers is accurately determined by multistage free energy perturbation simulations. As a test-case application, the newly introduced confinement/solvation free energy (CSF) approach was used to compute differences in free energy between conformers of the alanine dipeptide in explicit water. The results are in excellent agreement with reference calculations based on both converged molecular dynamics and umbrella sampling. To illustrate the general applicability of the method, conformational equilibria of met-enkephalin (5 aa) and deca-alanine (10 aa) in solution were also analyzed. In both cases, smoothly converged free-energy results were obtained in agreement with equilibrium sampling or literature calculations. These results demonstrate that the CSF method may provide conformational free-energy differences of biomolecules with small statistical errors (below 0.5 kcal/mol) and at a moderate computational cost even with a full representation of the solvent.

  13. Conformal invariance and conserved quantities of general holonomic systems in phase space

    Institute of Scientific and Technical Information of China (English)

    Xia Li-Li; Cai Jian-Le; Li Yuan-Cheng

    2009-01-01

    This paper studies the conformed invariance and conserved quantities of general holonomic systems in phase space.The definition and the determining equation of conformed invariance for general holonomic systems in phase space are provided.The conformal factor expression is deduced from conformeal invariance and Lie symmetry.The relationship between the conformed invaxiance and the Lie symmetry is discussed,and the necessary and sufficient condition that the conformal invaxiance would be the Lie symmetry of the system under the infinitesimal single-parameter transformation group is deduced.The conserved quantities of the system axe given.An example is given to illustrate the application of the result.

  14. An introduction to conformal geometry and tractor calculus, with a view to applications in general relativity

    CERN Document Server

    Curry, Sean

    2014-01-01

    The following are expanded lecture notes for the course of eight one hour lectures given by the second author at the 2014 summer school Asymptotic Analysis in General Relativity held in Grenoble by the Institut Fourier. The first four lectures deal with conformal geometry and the conformal tractor calculus, taking as primary motivation the search for conformally invariant tensors and diffrerential operators. The final four lectures apply the conformal tractor calculus to the study of conformally compactified geometries, motivated by the conformal treatment of infinity in general relativity.

  15. Hawking-Hayward quasi-local energy under conformal transformations

    CERN Document Server

    Prain, Angus; Faraoni, Valerio; Lapierre-Léonard, Marianne

    2015-01-01

    We derive a formula describing the transformation of the Hawking-Hayward quasi-local energy under a conformal rescaling of the spacetime metric. A known formula for the transformation of the Misner-Sharp-Hernandez mass is recovered as a special case.

  16. Generalized BRST symmetry for arbitrary spin conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Sudhaker, E-mail: sudhakerupadhyay@gmail.com [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Mandal, Bhabani Prasad, E-mail: bhabani.mandal@gmail.com [Department of Physics, Banaras Hindu University, Varanasi 221005 (India)

    2015-05-11

    We develop the finite field-dependent BRST (FFBRST) transformation for arbitrary spin-s conformal field theories. We discuss the novel features of the FFBRST transformation in these systems. To illustrate the results we consider the spin-1 and spin-2 conformal field theories in two examples. Within the formalism we found that FFBRST transformation connects the generating functionals of spin-1 and spin-2 conformal field theories in linear and non-linear gauges. Further, the conformal field theories in the framework of FFBRST transformation are also analyzed in Batalin–Vilkovisky (BV) formulation to establish the results.

  17. Wormhole supported by dark energy admitting conformal motion

    Science.gov (United States)

    Bhar, Piyali; Rahaman, Farook; Manna, Tuhina; Banerjee, Ayan

    2016-12-01

    In this article, we study the possibility of sustaining static and spherically symmetric traversable wormhole geometries admitting conformal motion in Einstein gravity, which presents a more systematic approach to search a relation between matter and geometry. In wormhole physics, the presence of exotic matter is a fundamental ingredient and we show that this exotic source can be dark energy type which support the existence of wormhole spacetimes. In this work we model a wormhole supported by dark energy which admits conformal motion. We also discuss the possibility of the detection of wormholes in the outer regions of galactic halos by means of gravitational lensing. Studies of the total gravitational energy for the exotic matter inside a static wormhole configuration are also performed.

  18. Wormhole supported by dark energy admitting conformal motion

    Energy Technology Data Exchange (ETDEWEB)

    Bhar, Piyali [Government General Degree College, Singur, Department of Mathematics, Hooghly, West Bengal (India); Rahaman, Farook; Banerjee, Ayan [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India); Manna, Tuhina [St. Xavier' s College, Department of Mathematics and Statistics (Commerce Evening), Kolkata, West Bengal (India)

    2016-12-15

    In this article, we study the possibility of sustaining static and spherically symmetric traversable wormhole geometries admitting conformal motion in Einstein gravity, which presents a more systematic approach to search a relation between matter and geometry. In wormhole physics, the presence of exotic matter is a fundamental ingredient and we show that this exotic source can be dark energy type which support the existence of wormhole spacetimes. In this work we model a wormhole supported by dark energy which admits conformal motion. We also discuss the possibility of the detection of wormholes in the outer regions of galactic halos by means of gravitational lensing. Studies of the total gravitational energy for the exotic matter inside a static wormhole configuration are also performed. (orig.)

  19. A robust force field based method for calculating conformational energies of charged drug-like molecules

    DEFF Research Database (Denmark)

    Pøhlsgaard, Jacob; Harpsøe, Kasper; Jørgensen, Flemming Steen

    2012-01-01

    The binding affinity of a drug like molecule depends among other things on the availability of the bioactive conformation. If the bioactive conformation has a significantly higher energy than the global minimum energy conformation, the molecule is unlikely to bind to its target. Determination of ...... compounds generated by conformational analysis with modified electrostatics are good approximations of the conformational distributions predicted by experimental data and in simulated annealing performed in explicit solvent.......The binding affinity of a drug like molecule depends among other things on the availability of the bioactive conformation. If the bioactive conformation has a significantly higher energy than the global minimum energy conformation, the molecule is unlikely to bind to its target. Determination...... of the global minimum energy conformation and calculation of conformational penalties of binding are prerequisites for prediction of reliable binding affinities. Here, we present a simple and computationally efficient procedure to estimate the global energy minimum for a wide variety of structurally diverse...

  20. 40 CFR 1033.201 - General requirements for obtaining a certificate of conformity.

    Science.gov (United States)

    2010-07-01

    ... certificate of conformity. 1033.201 Section 1033.201 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....201 General requirements for obtaining a certificate of conformity. Certification is the process by... certificate of conformity for freshly manufactured locomotives. Anyone meeting the definition...

  1. 77 FR 47621 - Appalachian Gateway Project; Notice of Availability of Draft General Conformity Analysis

    Science.gov (United States)

    2012-08-09

    ... Conformity Analysis In accordance with the National Environmental Policy Act of 1969, the Clean Air Act and... prepared this draft General Conformity Determination (GCD) for the Appalachian Gateway Project (Project) to... the Project will achieve conformity in Pennsylvania with the use of Pennsylvania Department...

  2. 40 CFR 93.158 - Criteria for determining conformity of general Federal actions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Criteria for determining conformity of... (CONTINUED) AIR PROGRAMS (CONTINUED) DETERMINING CONFORMITY OF FEDERAL ACTIONS TO STATE OR FEDERAL IMPLEMENTATION PLANS Determining Conformity of General Federal Actions to State or Federal Implementation...

  3. 40 CFR 93.159 - Procedures for conformity determinations of general Federal actions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Procedures for conformity... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DETERMINING CONFORMITY OF FEDERAL ACTIONS TO STATE OR FEDERAL IMPLEMENTATION PLANS Determining Conformity of General Federal Actions to State or...

  4. The energy profiles of atomic conformational transition intermediates of adenylate kinase.

    Science.gov (United States)

    Feng, Yaping; Yang, Lei; Kloczkowski, Andrzej; Jernigan, Robert L

    2009-11-15

    The elastic network interpolation (ENI) (Kim et al., Biophys J 2002;83:1620-1630) is a computationally efficient and physically realistic method to generate conformational transition intermediates between two forms of a given protein. However it can be asked whether these calculated conformations provide good representatives for these intermediates. In this study, we use ENI to generate conformational transition intermediates between the open form and the closed form of adenylate kinase (AK). Based on C(alpha)-only intermediates, we construct atomic intermediates by grafting all the atoms of known AK structures onto the C(alpha) atoms and then perform CHARMM energy minimization to remove steric conflicts and optimize these intermediate structures. We compare the energy profiles for all intermediates from both the CHARMM force-field and from knowledge-based energy functions. We find that the CHARMM energies can successfully capture the two energy minima representing the open AK and closed AK forms, while the energies computed from the knowledge-based energy functions can detect the local energy minimum representing the closed AK form and show some general features of the transition pathway with a somewhat similar energy profile as the CHARMM energies. The combinatorial extension structural alignment (Shindyalov et al., 1998;11:739-747) and the k-means clustering algorithm are then used to show that known PDB structures closely resemble computed intermediates along the transition pathway.

  5. Energy Flux Positivity and Unitarity in Conformal Field Theories

    Science.gov (United States)

    Kulaxizi, Manuela; Parnachev, Andrei

    2011-01-01

    We show that in most conformal field theories the condition of the energy flux positivity, proposed by Hofman and Maldacena, is equivalent to the absence of ghosts. At finite temperature and large energy and momenta, the two-point functions of the stress energy tensor develop lightlike poles. The residues of the poles can be computed, as long as the only spin-two conserved current, which appears in the stress energy tensor operator-product expansion and acquires a nonvanishing expectation value at finite temperature, is the stress energy tensor. The condition for the residues to stay positive and the theory to remain ghost-free is equivalent to the condition of positivity of energy flux.

  6. Energy flux positivity and unitarity in conformal field theories.

    Science.gov (United States)

    Kulaxizi, Manuela; Parnachev, Andrei

    2011-01-07

    We show that in most conformal field theories the condition of the energy flux positivity, proposed by Hofman and Maldacena, is equivalent to the absence of ghosts. At finite temperature and large energy and momenta, the two-point functions of the stress energy tensor develop lightlike poles. The residues of the poles can be computed, as long as the only spin-two conserved current, which appears in the stress energy tensor operator-product expansion and acquires a nonvanishing expectation value at finite temperature, is the stress energy tensor. The condition for the residues to stay positive and the theory to remain ghost-free is equivalent to the condition of positivity of energy flux.

  7. Generally covariant vs. gauge structure for conformal field theories

    Energy Technology Data Exchange (ETDEWEB)

    Campigotto, M., E-mail: martacostanza.campigotto@to.infn.it [Dipartimento di Fisica, University of Torino, Via P. Giuria 1, 10125, Torino (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Via P. Giuria 1, 10125, Torino (Italy); Fatibene, L. [Dipartimento di Matematica, University of Torino, Via C. Alberto 10, 10123, Torino (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Via P. Giuria 1, 10125, Torino (Italy)

    2015-11-15

    We introduce the natural lift of spacetime diffeomorphisms for conformal gravity and discuss the physical equivalence between the natural and gauge natural structure of the theory. Accordingly, we argue that conformal transformations must be introduced as gauge transformations (affecting fields but not spacetime point) and then discuss special structures implied by the splitting of the conformal group. -- Highlights: •Both a natural and a gauge natural structure for conformal gravity are defined. •Global properties and natural lift of spacetime transformations are described. •The possible definitions of physical state are considered and discussed. •The gauge natural theory has less physical states than the corresponding natural one. •The dynamics forces to prefer the gauge natural structure over the natural one.

  8. Conformation of antifreeze glycoproteins as determined from conformational energy calculations and fully assigned proton NMR spectra

    Energy Technology Data Exchange (ETDEWEB)

    Bush, C.A.; Rao, B.N.N.

    1986-05-01

    The /sup 1/H NMR spectra of AFGP's ranging in molecular weight from 2600 to 30,000 Daltons isolated from several different species of polar fish have been measured. The spectrum of AFGP 1-4 from Pagothenia borchgrevinki with an average of 30 repeating subunits has a single resonance for each proton of the glycotripeptide repeating unit, (ala-(gal-(..beta..-1..-->..3) galNAc-(..cap alpha..--O-)thr-ala)/sub n/. Its /sup 1/H NMR spectrum including resonances of the amide protons has been completely assigned. Coupling constants and nuclear Overhauser enhancements (n.O.e.) between protons on distant residues imply conformational order. The 2600 dalton molecular weight glycopeptides (AFGP-8) have pro in place of ala at certain specific points in the sequence and AFGP-8R of Eleginus gracilis has arg in place of one thr. The resonances of pro and arg were assigned by decoupling. The resonances of the carboxy and amino terminals have distinct chemical shifts and were assigned in AFGP-8 of Boreogadus saida by titration. n.O.e. between ..cap alpha..--protons and amide protons of the adjacent residue (sequential n.O.e.) were used in assignments of additional resonances and to assign the distinctive resonances of thr followed by pro. Conformational energy calculations on the repeating glycotripeptide subunit of AFGP show that the ..cap alpha..--glucosidic linkage has a fixed conformation while the ..beta..--linkage is less rigid. A conformational model for AFGP 1-4, which is based on the calculations has the peptide in an extended left-handed helix with three residues per turn similar to polyproline II. The model is consistent with CD data, amide proton coupling constants, temperature dependence of amide proton chemical shifts.

  9. CALCULATION OF CONFORMATIONAL ENTROPY AND FREE ENERGY OF POLYSILANE CHAIN

    Institute of Scientific and Technical Information of China (English)

    Meng-bo Luo; Ying-cai Chen; Jian-hua Huang; Jian-min Xu

    2001-01-01

    The conformational entropy S and free energy F were calculated by exact enumeration of polysilane chain up to 23 segments with excluded volume (EV) and long-range van der Waals (VW) interaction. A nonlinear relation between SEV+VW and chain length n was found though SEV was found to vary linearly with n. We found that the second-order transition temperature of polysilane chain with VW interaction increases with the increase of chain length, while that of polysilane chain without VW interaction is chain length independent. Moreover, the free energies FEV+VW and FEV are both linearly related with n, and FEV+VW<FEV for all temperatures.``

  10. Assignment of Side-Chain Conformation Using Adiabatic Energy Mapping, Free Energy Perturbation, and Molecular Dynamic Simulations

    DEFF Research Database (Denmark)

    Frimurer, Thomas M.; Günther, Peter H.; Sørensen, Morten Dahl

    1999-01-01

    adiabatic mapping, conformational change, essentialdynamics, free energy simulations, Kunitz type inhibitor *ga3(VI)......adiabatic mapping, conformational change, essentialdynamics, free energy simulations, Kunitz type inhibitor *ga3(VI)...

  11. 75 FR 20591 - AES Sparrows Point LNG, LLC and Mid-Atlantic Express, LLC; Notice of Final General Conformity...

    Science.gov (United States)

    2010-04-20

    ... Energy Regulatory Commission AES Sparrows Point LNG, LLC and Mid-Atlantic Express, LLC; Notice of Final General Conformity Determination for Pennsylvania for the Proposed Sparrows Point LNG Terminal and... liquefied natural gas (LNG) import terminal and natural gas pipeline proposed by AES Sparrows Point LNG,...

  12. Stable phantom-energy wormholes admitting conformal motions

    CERN Document Server

    Kuhfittig, Peter K F

    2016-01-01

    It has been argued that wormholes are as good a prediction of Einstein's theory as black holes but the theoretical construction requires a reverse strategy, specifying the desired geometric properties of the wormhole and leaving open the determination of the stress-energy tensor. We begin by confirming an earlier result by the author showing that a complete wormhole solution can be obtained by adopting the equation of state $p=\\omega\\rho$ and assuming that the wormhole admits a one-parameter group of conformal motions. The main purpose of this paper is to use the assumption of conformal symmetry to show that the wormhole is stable to linearized radial perturbations whenever $-1.5<\\omega <-1$.

  13. Stable phantom-energy wormholes admitting conformal motions

    Science.gov (United States)

    Kuhfittig, Peter K. F.

    It has been argued that wormholes are as good a prediction of Einstein’s theory as black holes but the theoretical construction requires a reverse strategy, specifying the desired geometric properties of the wormhole and leaving open the determination of the stress-energy tensor. We begin by confirming an earlier result by the author showing that a complete wormhole solution can be obtained by adopting the equation of state p = ωρ and assuming that the wormhole admits a one-parameter group of conformal motions. The main purpose of this paper is to use the assumption of conformal symmetry to show that the wormhole is stable to linearized radial perturbations whenever ‑ 1.5 < ω < ‑1.

  14. [Conformal radiotherapy of prostatic cancer: a general review].

    Science.gov (United States)

    Chauvet, B; Oozeer, R; Bey, P; Pontvert, D; Bolla, M

    1999-01-01

    Recent progress in radiotherapeutic management of localized prostate cancer is reviewed. Clinical aspects--including dose-effect beyond 70 Gy, relative role of conformal radiation therapy techniques and of early hormonal treatment--are discussed as well as technical components--including patient immobilization, organ motion, prostate contouring, beam arrangement, 3-D treatment planning and portal imaging. The local control and biological relapse-free survival rates appear to be improved by high dose conformal radiotherapy from 20 to 30% for patients with intermediate and high risk of relapse. A benefit of overall survival is expected but not yet demonstrated. Late reactions, especially the rectal toxicity, remain moderate despite the dose escalation. However, conformal radiotherapy demands a high precision at all steps of the procedure.

  15. Conformational energy calculations and proton nuclear overhauser enhancements reveal a unique conformation for blood group A oligosaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Bush, C.A.; Yan, Z.Y.; Rao, B.N.N.

    1986-10-01

    The H NMR spectra of a series of blood group A active oligosaccharides containing from four to ten sugar residues have been completely assigned, and quantitative nuclear Overhauser enhancements (NOE) have been measured between protons separated by known distances within the pyranoside ring. The observation of NOE between anomeric protons and those of the aglycon sugar as well as small effects between protons of distant rings suggests that the oligosaccharides have well-defined conformations. Conformational energy calculations were carried out on a trisaccharide, Fuc( -1 2)(GalNAc( -1 3))-GalUS -O-me, which models the nonreducing terminal fragments of the blood group A oligosaccharides. The results of calculations with three different potential energy functions which have been widely used in peptides and carbohydrates gave several minimum energy conformations. In NOE calculations from conformational models, the rotational correlation time was adjusted to fit T1's and intra-ring NOE. Comparison of calculated maps of NOE as a function of glycosidic dihedral angles showed that only a small region of conformational space was consistent with experimental data on a blood group A tetrasaccharide alditol. This conformation occurs at an energy minimum in all three energy calculations. Temperature dependence of the NOE implies that the oligosaccharides adopt single rigid conformations which do not change with temperature.

  16. Predictive Sampling of Rare Conformational Events in Aqueous Solution: Designing a Generalized Orthogonal Space Tempering Method.

    Science.gov (United States)

    Lu, Chao; Li, Xubin; Wu, Dongsheng; Zheng, Lianqing; Yang, Wei

    2016-01-12

    In aqueous solution, solute conformational transitions are governed by intimate interplays of the fluctuations of solute-solute, solute-water, and water-water interactions. To promote molecular fluctuations to enhance sampling of essential conformational changes, a common strategy is to construct an expanded Hamiltonian through a series of Hamiltonian perturbations and thereby broaden the distribution of certain interactions of focus. Due to a lack of active sampling of configuration response to Hamiltonian transitions, it is challenging for common expanded Hamiltonian methods to robustly explore solvent mediated rare conformational events. The orthogonal space sampling (OSS) scheme, as exemplified by the orthogonal space random walk and orthogonal space tempering methods, provides a general framework for synchronous acceleration of slow configuration responses. To more effectively sample conformational transitions in aqueous solution, in this work, we devised a generalized orthogonal space tempering (gOST) algorithm. Specifically, in the Hamiltonian perturbation part, a solvent-accessible-surface-area-dependent term is introduced to implicitly perturb near-solute water-water fluctuations; more importantly in the orthogonal space response part, the generalized force order parameter is generalized as a two-dimension order parameter set, in which essential solute-solvent and solute-solute components are separately treated. The gOST algorithm is evaluated through a molecular dynamics simulation study on the explicitly solvated deca-alanine (Ala10) peptide. On the basis of a fully automated sampling protocol, the gOST simulation enabled repetitive folding and unfolding of the solvated peptide within a single continuous trajectory and allowed for detailed constructions of Ala10 folding/unfolding free energy surfaces. The gOST result reveals that solvent cooperative fluctuations play a pivotal role in Ala10 folding/unfolding transitions. In addition, our assessment

  17. Positive Energy Conditions in 4D Conformal Field Theory

    CERN Document Server

    Farnsworth, Kara; Prilepina, Valentina

    2015-01-01

    We argue that all consistent 4D quantum field theories obey a spacetime-averaged weak energy inequality $\\langle T^{00} \\rangle \\ge -C/L^4$, where $L$ is the size of the smearing region, and $C$ is a positive constant that depends on the theory. If this condition is violated, the theory has states that are indistinguishable from states of negative total energy by any local measurement, and we expect instabilities or other inconsistencies. We apply this condition to 4D conformal field theories, and find that it places constraints on the OPE coefficients of the theory. The constraints we find are weaker than the "conformal collider" constraints of Hofman and Maldacena. We speculate that there may be theories that violate the Hofman-Maldacena bounds, but satisfy our bounds. In 3D CFTs, the only constraint we find is equivalent to the positivity of 2-point function of the energy-momentum tensor, which follows from unitarity. Our calculations are performed using momentum-space Wightman functions, which are remarka...

  18. Positive energy conditions in 4D conformal field theory

    Science.gov (United States)

    Farnsworth, Kara; Luty, Markus A.; Prilepina, Valentina

    2016-10-01

    We argue that all consistent 4D quantum field theories obey a spacetime-averaged weak energy inequality ≥ - C/L 4, where L is the size of the smearing region, and C is a positive constant that depends on the theory. If this condition is violated, the theory has states that are indistinguishable from states of negative total energy by any local measurement, and we expect instabilities or other inconsistencies. We apply this condition to 4D conformal field theories, and find that it places constraints on the OPE coefficients of the theory. The constraints we find are weaker than the "conformal collider" constraints of Hofman and Maldacena. In 3D CFTs, the only constraint we find is equivalent to the positivity of 2-point function of the energy-momentum tensor, which follows from unitarity. Our calculations are performed using momentum-space Wightman functions, which are remarkably simple functions of momenta, and may be of interest in their own right.

  19. Theoretical study of the conformation and energy of supercoiled DNA

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, N. G. [Lawrence Berkeley Lab., CA (United States). Structural Biology Div.; California Univ., Berkeley, CA (United States). Dept. of Physics

    1992-01-01

    The two sugar-phosphate backbones of the DNA molecule wind about each other in helical paths. For circular DNA molecules, or for linear pieces of DNA with the ends anchored, the two strands have a well-defined linking number, Lk. If Lk differs from the equilibrium linking number Lk{sub 0}, the molecule is supercoiled. The linking difference {Delta}Lk = Lk-Lk{sub 0} is partitioned between torsional deformation of the DNA, or twist ({Delta}Tw), and a winding of the DNA axis about itself known as writhe (Wr). In this dissertation, the conformation and energy of supercoiled DNA are examined by treating DNA as an elastic cylinder. Finite-length and entropic effects are ignored, and all extensive quantities are treated as linear densities. Two classes of conformation are considered: the plectonemic or interwound form, in which the axis of the DNA double helix winds about itself in a double superhelix, and the toroidal shape in which the axis is wrapped around a torus. Minimum energy conformation are found. For biologically relevant values of specific linking differences, the plectonemic DNA, the superhelical pitch angle {alpha} is in the range 45{degree} < {alpha} {le} 90{degree}. For low values of specific linking difference {vert_bar}{sigma}{vert_bar} ({sigma} = {Delta}Lk/Lk{sub 0}), most linking difference is in writhe. As {vert_bar}{sigma}{vert_bar} increases, a greater proportion of linking difference is in twist. Interaction between DNA strands is treated first as a hard-body excluded volume and then as a screened electrostatic repulsion. Ionic strength is found to have a large effect, resulting in significantly greater torsional stress in supercoiled DNA at low ionic strength.

  20. Binary cluster collision dynamics and minimum energy conformations

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, Francisco [Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Germany); Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Avenida Ecuador 3493, Santiago (Chile); Rogan, José; Valdivia, J.A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Avenida Ecuador 3493, Santiago (Chile); Varas, A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Nano-Bio Spectroscopy Group, ETSF Scientific Development Centre, Departamento de Física de Materiales, Universidad del País Vasco UPV/EHU, Av. Tolosa 72, E-20018 San Sebastián (Spain); Kiwi, Miguel, E-mail: m.kiwi.t@gmail.com [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Avenida Ecuador 3493, Santiago (Chile)

    2013-10-15

    The collision dynamics of one Ag or Cu atom impinging on a Au{sub 12} cluster is investigated by means of DFT molecular dynamics. Our results show that the experimentally confirmed 2D to 3D transition of Au{sub 12}→Au{sub 13} is mostly preserved by the resulting planar Au{sub 12}Ag and Au{sub 12}Cu minimum energy clusters, which is quite remarkable in view of the excess energy, well larger than the 2D–3D potential barrier height. The process is accompanied by a large s−d hybridization and charge transfer from Au to Ag or Cu. The dynamics of the collision process mainly yields fusion of projectile and target, however scattering and cluster fragmentation also occur for large energies and large impact parameters. While Ag projectiles favor fragmentation, Cu favors scattering due to its smaller mass. The projectile size does not play a major role in favoring the fragmentation or scattering channels. By comparing our collision results with those obtained by an unbiased minimum energy search of 4483 Au{sub 12}Ag and 4483 Au{sub 12}Cu configurations obtained phenomenologically, we find that there is an extra bonus: without increase of computer time collisions yield the planar lower energy structures that are not feasible to obtain using semi-classical potentials. In fact, we conclude that phenomenological potentials do not even provide adequate seeds for the search of global energy minima for planar structures. Since the fabrication of nanoclusters is mainly achieved by synthesis or laser ablation, the set of local minima configurations we provide here, and their distribution as a function of energy, are more relevant than the global minimum to analyze experimental results obtained at finite temperatures, and is consistent with the dynamical coexistence of 2D and 3D liquid Au clusters conformations obtained previously.

  1. Exclusion Statistics in Conformal Field Theory -- generalized fermions and spinons for level-1 WZW theories

    OpenAIRE

    1998-01-01

    We systematically study the exclusion statistics for quasi-particles for Conformal Field Theory spectra by employing a method based on recursion relations for truncated spectra. Our examples include generalized fermions in c

  2. General Conformity Training Module 2.5: Proactive Role for Federal Agencies

    Science.gov (United States)

    Module 2.5 explains how taking a proactive role will allow a federal agency to more effectively participate in newly promulgated programs under the General Conformity Regulations, such as the emission reduction credits and the emission budgets programs.

  3. Conformational disorder in energy transfer: beyond Förster theory.

    Science.gov (United States)

    Nelson, Tammie; Fernandez-Alberti, Sebastian; Roitberg, Adrian E; Tretiak, Sergei

    2013-06-21

    Energy transfer in donor-acceptor chromophore pairs, where the absorption of each species is well separated while donor emission and acceptor absorption overlap, can be understood through a Förster resonance energy transfer model. The picture is more complex for organic conjugated polymers, where the total absorption spectrum can be described as a sum of the individual contributions from each subunit (chromophore), whose absorption is not well separated. Although excitations in these systems tend to be well localized, traditional donors and acceptors cannot be defined and energy transfer can occur through various pathways where each subunit (chromophore) is capable of playing either role. In addition, fast torsional motions between individual monomers can break conjugation and lead to reordering of excited state energy levels. Fast torsional fluctuations occur on the same timescale as electronic transitions leading to multiple trivial unavoided crossings between excited states during dynamics. We use the non-adiabatic excited state molecular dynamics (NA-ESMD) approach to simulate energy transfer between two poly-phenylene vinylene (PPV) oligomers composed of 3-rings and 4-rings, respectively, separated by varying distances. The change in the spatial localization of the transient electronic transition density, initially localized on the donors, is used to determine the transfer rate. Our analysis shows that evolution of the intramolecular transition density can be decomposed into contributions from multiple transfer pathways. Here we present a detailed analysis of ensemble dynamics as well as a few representative trajectories which demonstrate the intertwined role of electronic and conformational processes. Our study reveals the complex nature of energy transfer in organic conjugated polymer systems and emphasizes the caution that must be taken in performing such an analysis when a single simple unidirectional pathway is unlikely.

  4. Enhanced conformational sampling to visualize a free-energy landscape of protein complex formation.

    Science.gov (United States)

    Iida, Shinji; Nakamura, Haruki; Higo, Junichi

    2016-06-15

    We introduce various, recently developed, generalized ensemble methods, which are useful to sample various molecular configurations emerging in the process of protein-protein or protein-ligand binding. The methods introduced here are those that have been or will be applied to biomolecular binding, where the biomolecules are treated as flexible molecules expressed by an all-atom model in an explicit solvent. Sampling produces an ensemble of conformations (snapshots) that are thermodynamically probable at room temperature. Then, projection of those conformations to an abstract low-dimensional space generates a free-energy landscape. As an example, we show a landscape of homo-dimer formation of an endothelin-1-like molecule computed using a generalized ensemble method. The lowest free-energy cluster at room temperature coincided precisely with the experimentally determined complex structure. Two minor clusters were also found in the landscape, which were largely different from the native complex form. Although those clusters were isolated at room temperature, with rising temperature a pathway emerged linking the lowest and second-lowest free-energy clusters, and a further temperature increment connected all the clusters. This exemplifies that the generalized ensemble method is a powerful tool for computing the free-energy landscape, by which one can discuss the thermodynamic stability of clusters and the temperature dependence of the cluster networks.

  5. Generalized Wick theorems in conformal field theory and the Borcherds identity

    CERN Document Server

    Takagi, Taichiro

    2016-01-01

    As the missing counterpart of the well-known generalized Wick theorem for interacting fields in two dimensional conformal field theory, we present a new formula for the operator product expansion of a normally ordered operator and a single operator on its right hand. Quite similar to the original Wick theorem for the opposite order operator product, it expresses the contraction i.e. the singular part of the operator product expansion as a contour integral of only two terms, each of which is a product of a contraction and a single operator. We discuss the relationship between these formulas and the Borcherds identity satisfied by the quantum fields associated with the theory of vertex algebras. A derivation of these formulas by an analytic method is also presented. The validity of our new formula is illustrated by a few examples including the Sugawara construction of the energy momentum tensor for the quantized currents of affine Lie algebras.

  6. Comparative structural and vibrational study of the four lowest energy conformers of serotonin

    Science.gov (United States)

    Jha, Omkant; Yadav, T. K.; Yadav, R. A.

    2017-02-01

    A computational investigation of all possible lowest energy conformers of serotonin was carried out at the B3LYP/6-311 ++G** level. Out of the 14 possible lowest energy conformers, the first 4 conformers were investigated thoroughly for the optimized geometries, fundamental frequencies, the potential energy distributions, APT and natural charges, natural bond orbital (NBO) analysis, MEP, Contour map, total density array, HOMO, LUMO energies. The second third and fourth conformers are energetically at higher temperatures of 78, 94 and 312 K respectively with respect to the first one. Bond angles and bond lengths do not show significant variations while the dihedral angles vary significantly in going from one conformer to the other. Some of the vibrational modes of the indole moiety are conformation dependent to some extent whereas most of the normal modes of vibration of amino-ethyl side chain vary significantly in going from one conformer to conformer. The MEP for the four conformers suggested that the sites of the maximum positive and negative ESP change on changing the conformation. The charges at some atomic sites also change significantly from conformer to conformer.

  7. A Calculus for Conformal Hypersurfaces and new higher Willmore energy functionals

    CERN Document Server

    Gover, A Rod

    2016-01-01

    The invariant theory for conformal hypersurfaces is studied by treating these as the conformal infinity of a conformally compact manifold: For a given conformal hypersurface embedding, a distinguished ambient metric is found (within its conformal class) by solving a singular version of the Yamabe problem. Using existence results for asymptotic solutions to this problem, we develop the details of how to proliferate conformal hypersurface invariants. In addition we show how to compute the the solution's asymptotics. We also develop a calculus of conformal hypersurface invariant differential operators and in particular, describe how to compute extrinsically coupled analogues of conformal Laplacian powers. Our methods also enable the study of integrated conformal hypersurface invariants and their functional variations. As a main application we develop new higher dimensional analogues of the Willmore energy for embedded surfaces. This complements recent progress on the existence and construction of such functional...

  8. Numerical conformal mapping via a boundary integral equation with the adjoint generalized Neumann kernel

    OpenAIRE

    Nasser, Mohamed M. S.; Murid, Ali H. M.; Sangawi, Ali W. K.

    2013-01-01

    This paper presents a new uniquely solvable boundary integral equation for computing the conformal mapping, its derivative and its inverse from bounded multiply connected regions onto the five classical canonical slit regions. The integral equation is derived by reformulating the conformal mapping as an adjoint Riemann-Hilbert problem. From the adjoint Riemann-Hilbert problem, we derive a boundary integral equation with the adjoint generalized Neumann kernel for the derivative of the boundary...

  9. Rotational Spectroscopy of the Lowest Energy Conformer of 2-Cyanobutane.

    Science.gov (United States)

    Müller, Holger S P; Zingsheim, Oliver; Wehres, Nadine; Grabow, Jens-Uwe; Lewen, Frank; Schlemmer, Stephan

    2017-09-28

    Isopropyl cyanide was recently detected in space as the first branched alkyl compound. Its abundance with respect to n-propyl cyanide in the Galactic center source Sagittarius B2(N2) is about 0.4. Astrochemical model calculations suggest that for the heavier homologue butyl cyanide the branched isomers dominate over the unbranched n-butyl cyanide and that 2-cyanobutane is the most abundant isomer. We have studied the rotational spectrum of 2-cyanobutane between 2 and 24 GHz using Fourier transform microwave spectroscopy and between 36 and 402 GHz employing (sub)millimeter absorption spectroscopy. Transitions of the lowest energy conformer were identified easily. Its rotational spectrum is very rich, and the quantum numbers J and Ka reach values of 111 and 73, respectively. This wealth of data yielded rotational and centrifugal distortion parameters up to tenth order, diagonal and one off-diagonal (14)N nuclear quadrupole coupling parameters, and one nuclear spin-rotation coupling parameter. We have also carried out quantum chemical calculations in part to facilitate the assignments. The molecule 2-cyanobutane was not found in the present ALMA data of Sagittarius B2(N2), but it may be found in the more sensitive data that have been completed very recently in the ALMA Cycle 4.

  10. Triangulating Nucleic Acid Conformations Using Multicolor Surface Energy Transfer.

    Science.gov (United States)

    Riskowski, Ryan A; Armstrong, Rachel E; Greenbaum, Nancy L; Strouse, Geoffrey F

    2016-02-23

    Optical ruler methods employing multiple fluorescent labels offer great potential for correlating distances among several sites, but are generally limited to interlabel distances under 10 nm and suffer from complications due to spectral overlap. Here we demonstrate a multicolor surface energy transfer (McSET) technique able to triangulate multiple points on a biopolymer, allowing for analysis of global structure in complex biomolecules. McSET couples the competitive energy transfer pathways of Förster Resonance Energy Transfer (FRET) with gold-nanoparticle mediated Surface Energy Transfer (SET) in order to correlate systematically labeled points on the structure at distances greater than 10 nm and with reduced spectral overlap. To demonstrate the McSET method, the structures of a linear B-DNA and a more complex folded RNA ribozyme were analyzed within the McSET mathematical framework. The improved multicolor optical ruler method takes advantage of the broad spectral range and distances achievable when using a gold nanoparticle as the lowest energy acceptor. The ability to report distance information simultaneously across multiple length scales, short-range (10-50 Å), mid-range (50-150 Å), and long-range (150-350 Å), distinguishes this approach from other multicolor energy transfer methods.

  11. Stalking Higher Energy Conformers on the Potential Energy Surface of Charged Species.

    Science.gov (United States)

    Brites, Vincent; Cimas, Alvaro; Spezia, Riccardo; Sieffert, Nicolas; Lisy, James M; Gaigeot, Marie-Pierre

    2015-03-10

    Combined theoretical DFT-MD and RRKM methodologies and experimental spectroscopic infrared predissociation (IRPD) strategies to map potential energy surfaces (PES) of complex ionic clusters are presented, providing lowest and high energy conformers, thresholds to isomerization, and cluster formation pathways. We believe this association not only represents a significant advance in the field of mapping minima and transition states on the PES but also directly measures dynamical pathways for the formation of structural conformers and isomers. Pathways are unraveled over picosecond (DFT-MD) and microsecond (RRKM) time scales while changing the amount of internal energy is experimentally achieved by changing the loss channel for the IRPD measurements, thus directly probing different kinetic and isomerization pathways. Demonstration is provided for Li(+)(H2O)3,4 ionic clusters. Nonstatistical formation of these ionic clusters by both direct and cascade processes, involving isomerization processes that can lead to trapping of high energy conformers along the paths due to evaporative cooling, has been unraveled.

  12. General Randic matrix and general Randi'c energy

    Directory of Open Access Journals (Sweden)

    Ran Gu;

    2014-09-01

    Full Text Available Let $G$ be a simple graph with vertex set $V(G = {v_1, v_2,ldots , v_n}$ and $d_i$ the degree of its vertex $v_i$, $i = 1, 2, cdots, n$. Inspired by the Randi'c matrix and the general Randi'c index of a graph, we introduce the concept of general Randi'c matrix $textbf{R}_alpha$ of $G$, which is defined by $(textbf{R}_alpha_{i,j}=(d_id_j^alpha$ if $v_i$ and $v_j$ are adjacent, and zero otherwise. Similarly, the general Randi'{c} eigenvalues are the eigenvalues of the general Randi'{c} matrix, the greatest general Randi'{c} eigenvalue is the general Randi'{c} spectral radius of $G$, and the general Randi'{c} energy is the sum of the absolute values of the general Randi'{c} eigenvalues. In this paper, we prove some properties of the general Randi'c matrix and obtain lower and upper bounds for general Randi'{c} energy, also, we get some lower bounds for general Randi'{c} spectral radius of a connected graph. Moreover, we give a new sharp upper bound for the general Randi'{c} energy when $alpha=-1/2$.[2mm] noindent{bf Keywords:} general Randi'c matrix, general Randi'c energy, eigenvalues, spectral radius.

  13. Energy levels and quantum states of [Leu]enkephalin conformations based on theoretical and experimental investigations

    Energy Technology Data Exchange (ETDEWEB)

    Abdali, Salim; Jensen, Morten O; Bohr, Henrik [Quantum Protein Centre (QUP), Department of Physics, Bldg. 309, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2003-05-14

    This paper describes a theoretical and experimental study of [Leu]enkephalin conformations with respect to the quantum states of the atomic structure of the peptide. Results from vibrational absorption measurements and quantum calculations are used to outline a quantum picture and to assign vibrational modes to the different conformations. The energy landscape of the conformations is reported as a function of a Hamming distance in Ramachandran space. Molecular dynamics simulations reveal a pronounced stability of the so-called single-bend low-energy conformation, which supports the derived quantum picture of this peptide.

  14. Energy levels and quantum states of [Leu]enkephalin conformations based on theoretical and experimental investigations

    DEFF Research Database (Denmark)

    Abdali, Salim; Jensen, Morten Østergaard; Bohr, Henrik

    2003-01-01

    This paper describes a theoretical and experimental study of [Leu]enkephalin conformations with respect to the quantum estates of the atomic structure of the peptide. Results from vibrational absorption measurements and quantum calculations are used to outline a quantum picture and to assign...... vibrational modes to the different conformations. The energy landscape of the conformations is reported as a function of a Hamming distance in Ramachandran space. Molecular dynamics simulations reveal a pronounced stability of the so-called single-bend low-energy conformation, which supports the derived...... quantum picture of this peptide....

  15. Conformal transformations and conformal invariance in gravitation

    CERN Document Server

    Dabrowski, Mariusz P; Blaschke, David B

    2008-01-01

    Conformal transformations are frequently used tools in order to study relations between various theories of gravity and Einstein relativity. Because of that, in this paper we discuss the rules of conformal transformations for geometric quantities in general relativity. In particular, we discuss the conformal transformations of the matter energy-momentum tensor. We thoroughly discuss the latter and show the subtlety of the conservation law (i.e., the geometrical Bianchi identity) imposed in one of the conformal frames in reference to the other. The subtlety refers to the fact that conformal transformation ``creates'' an extra matter term composed of the conformal factor which enters the conservation law. In an extreme case of the flat original spacetime the matter is ``created'' due to work done by the conformal transformation to bend the spacetime which was originally flat. We also discuss how to construct the conformally invariant gravity which, in the simplest version, is a special case of the Brans-Dicke t...

  16. Peptoid conformational free energy landscapes from implicit-solvent molecular simulations in AMBER.

    Science.gov (United States)

    Voelz, Vincent A; Dill, Ken A; Chorny, Ilya

    2011-01-01

    To test the accuracy of existing AMBER force field models in predicting peptoid conformation and dynamics, we simulated a set of model peptoid molecules recently examined by Butterfoss et al. (JACS 2009, 131, 16798-16807) using QM methods as well as three peptoid sequences with experimentally determined structures. We found that AMBER force fields, when used with a Generalized Born/Surface Area (GBSA) implicit solvation model, could accurately reproduce the peptoid torsional landscape as well as the major conformers of known peptoid structures. Enhanced sampling by replica exchange molecular dynamics (REMD) using temperatures from 300 to 800 K was used to sample over cis-trans isomerization barriers. Compared to (Nrch)5 and cyclo-octasarcosyl, the free energy of N-(2-nitro-3-hydroxyl phenyl)glycine-N-(phenyl)glycine has the most "foldable" free energy landscape, due to deep trans-amide minima dictated by N-aryl sidechains. For peptoids with (S)-N (1-phenylethyl) (Nspe) side chains, we observe a discrepancy in backbone dihedral propensities between molecular simulations and QM calculations, which may be due to force field effects or the inability to capture n --> n* interactions. For these residues, an empirical phi-angle biasing potential can "rescue" the backbone propensities seen in QM. This approach can serve as a general strategy for addressing force fields without resorting to a complete reparameterization. Overall, this study demonstrates the utility of implicit-solvent REMD simulations for efficient sampling to predict peptoid conformational landscapes, providing a potential tool for first-principles design of sequences with specific folding properties.

  17. Free Energy-Based Conformational Search Algorithm Using the Movable Type Sampling Method.

    Science.gov (United States)

    Pan, Li-Li; Zheng, Zheng; Wang, Ting; Merz, Kenneth M

    2015-12-08

    In this article, we extend the movable type (MT) sampling method to molecular conformational searches (MT-CS) on the free energy surface of the molecule in question. Differing from traditional systematic and stochastic searching algorithms, this method uses Boltzmann energy information to facilitate the selection of the best conformations. The generated ensembles provided good coverage of the available conformational space including available crystal structures. Furthermore, our approach directly provides the solvation free energies and the relative gas and aqueous phase free energies for all generated conformers. The method is validated by a thorough analysis of thrombin ligands as well as against structures extracted from both the Protein Data Bank (PDB) and the Cambridge Structural Database (CSD). An in-depth comparison between OMEGA and MT-CS is presented to illustrate the differences between the two conformational searching strategies, i.e., energy-based versus free energy-based searching. These studies demonstrate that our MT-based ligand conformational search algorithm is a powerful approach to delineate the conformational ensembles of molecular species on free energy surfaces.

  18. 78 FR 57267 - Approval and Promulgation of Implementation Plans; State of Missouri; Conformity of General...

    Science.gov (United States)

    2013-09-18

    ... (44 U.S.C. 3501 et seq.); is certified as not having a significant economic impact on a substantial... revision amends rule 10 CSR 10-6.300 Conformity of General Federal Actions to State Implementation Plans... affect the stringency of the SIP or adversely impact air quality. II. Have the requirements for approval...

  19. On a Generalization of GKO Coset Construction of Conformal Field Theories

    CERN Document Server

    Kumar, Dushyant

    2015-01-01

    We introduce a generalization of Goddard-Kent-Olive (GKO) coset construction of two dimensional conformal field theories based on a choice of a scaled affine subalgebra $\\hat{\\mathfrak{h}}^s$ of a given affine Lie algebra $\\hat{\\mathfrak{h}}$. We study some aspects of the construction through the example of Ising CFT as a generalized GKO coset of $\\text{su(2)}_1$ with a scaling factor $s=2$.

  20. Elucidation of the conformational free energy landscape in H.pylori LuxS and its implications to catalysis

    Directory of Open Access Journals (Sweden)

    Bhattacharyya Moitrayee

    2010-08-01

    Full Text Available Abstract Background One of the major challenges in understanding enzyme catalysis is to identify the different conformations and their populations at detailed molecular level in response to ligand binding/environment. A detail description of the ligand induced conformational changes provides meaningful insights into the mechanism of action of enzymes and thus its function. Results In this study, we have explored the ligand induced conformational changes in H.pylori LuxS and the associated mechanistic features. LuxS, a dimeric protein, produces the precursor (4,5-dihydroxy-2,3-pentanedione for autoinducer-2 production which is a signalling molecule for bacterial quorum sensing. We have performed molecular dynamics simulations on H.pylori LuxS in its various ligand bound forms and analyzed the simulation trajectories using various techniques including the structure network analysis, free energy evaluation and water dynamics at the active site. The results bring out the mechanistic details such as co-operativity and asymmetry between the two subunits, subtle changes in the conformation as a response to the binding of active and inactive forms of ligands and the population distribution of different conformations in equilibrium. These investigations have enabled us to probe the free energy landscape and identify the corresponding conformations in terms of network parameters. In addition, we have also elucidated the variations in the dynamics of water co-ordination to the Zn2+ ion in LuxS and its relation to the rigidity at the active sites. Conclusions In this article, we provide details of a novel method for the identification of conformational changes in the different ligand bound states of the protein, evaluation of ligand-induced free energy changes and the biological relevance of our results in the context of LuxS structure-function. The methodology outlined here is highly generalized to illuminate the linkage between structure and function in

  1. Experimental conformational energy maps of proteins and peptides.

    Science.gov (United States)

    Balaji, Govardhan A; Nagendra, H G; Balaji, Vitukudi N; Rao, Shashidhar N

    2017-06-01

    We have presented an extensive analysis of the peptide backbone dihedral angles in the PDB structures and computed experimental Ramachandran plots for their distributions seen under a various constraints on X-ray resolution, representativeness at different sequence identity percentages, and hydrogen bonding distances. These experimental distributions have been converted into isoenergy contour plots using the approach employed previously by F. M. Pohl. This has led to the identification of energetically favored minima in the Ramachandran (ϕ, ψ) plots in which global minima are predominantly observed either in the right-handed α-helical or the polyproline II regions. Further, we have identified low energy pathways for transitions between various minima in the (ϕ,ψ) plots. We have compared and presented the experimental plots with published theoretical plots obtained from both molecular mechanics and quantum mechanical approaches. In addition, we have developed and employed a root mean square deviation (RMSD) metric for isoenergy contours in various ranges, as a measure (in kcal.mol(-1) ) to compare any two plots and determine the extent of correlation and similarity between their isoenergy contours. In general, we observe a greater degree of compatibility with experimental plots for energy maps obtained from molecular mechanics methods compared to most quantum mechanical methods. The experimental energy plots we have investigated could be helpful in refining protein structures obtained from X-ray, NMR, and electron microscopy and in refining force field parameters to enable simulations of peptide and protein structures that have higher degree of consistency with experiments. Proteins 2017; 85:979-1001. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Protein Conformational Change Based on a Two-dimensional Generalized Langevin Equation

    Institute of Scientific and Technical Information of China (English)

    Ying-xi Wang; Shuang-mu Linguang; Nan-rong Zhao; Yi-jing Yan

    2011-01-01

    A two-dimensional generalized Langevin equation is proposed to describe the protein conformational change,compatible to the electron transfer process governed by atomic packing density model.We assume a fractional Gaussian noise and a white noise through bond and through space coordinates respectively,and introduce the coupling effect coming from both fluctuations and equilibrium variances.The general expressions for autocorrelation functions of distance fluctuation and fluorescence lifetime variation are derived,based on which the exact conformational change dynamics can be evaluated with the aid of numerical Laplace inversion technique.We explicitly elaborate the short time and long time approximations.The relationship between the two-dimensional description and the one-dimensional theory is also discussed.

  3. NIR Laser Radiation Induced Conformational Changes and Tunneling Lifetimes of High-Energy Conformers of Amino Acids in Low-Temperature Matrices

    Science.gov (United States)

    Bazso, Gabor; Najbauer, Eszter E.; Magyarfalvi, Gabor; Tarczay, Gyorgy

    2013-06-01

    We review our recent results on combined matrix isolation FT-IR and NIR laser irradiation studies on glycine alanine, and cysteine. The OH and the NH stretching overtones of the low-energy conformers of these amino acids deposited in Ar, Kr, Xe, and N_{2} matrices were irradiated. At the expense of the irradiated conformer, other conformers were enriched and new, high-energy, formerly unobserved conformers were formed in the matrices. This enabled the separation and unambiguous assignment of the vibrational transitions of the different conformers. The main conversion paths and their efficiencies are described qualitatively showing that there are significant differences in different matrices. It was shown that the high-energy conformer decays in the matrix by H-atom tunneling. The lifetimes of the high-energy conformers in different matrices were measured. Based on our results we conclude that some theoretically predicted low-energy conformers of amino acids are likely even absent in low-energy matrices due to fast H-atom tunneling. G. Bazso, G. Magyarfalvi, G. Tarczay J. Mol. Struct. 1025 (Light-Induced Processes in Cryogenic Matrices Special Issue) 33-42 (2012). G. Bazso, G. Magyarfalvi, G. Tarczay J. Phys. Chem. A 116 (43) 10539-10547 (2012). G. Bazso, E. E. Najbauer, G. Magyarfalvi, G. Tarczay J. Phys. Chem. A in press, DOI: 10.1021/jp400196b. E. E. Najbauer, G. Bazso, G. Magyarfalvi, G. Tarczay in preparation.

  4. Conformal generally covariant quantum field theory. The scalar field and its Wick products

    Energy Technology Data Exchange (ETDEWEB)

    Pinamonti, N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2008-06-15

    In this paper we generalize the construction of generally covariant quantum theories given in [R. Brunetti, K. Fredenhagen, R. Verch, Commun. Math. Phys. 237, 31 (2003)] to encompass the conformal covariant case. After introducing the abstract framework, we discuss the massless conformally coupled Klein Gordon field theory, showing that its quantization corresponds to a functor between two certain categories. At the abstract level, the ordinary fields, could be thought as natural transformations in the sense of category theory. We show that, the Wick monomials without derivatives (Wick powers), can be interpreted as fields in this generalized sense, provided a non trivial choice of the renormalization constants is given. A careful analysis shows that the transformation law of Wick powers is characterized by a weight, and it turns out that the sum of fields with different weights breaks the conformal covariance. At this point there is a difference between the previously given picture due to the presence of a bigger group of covariance. It is furthermore shown that the construction does not depend upon the scale {mu} appearing in the Hadamard parametrix, used to regularize the fields. Finally, we briefly discuss some further examples of more involved fields. (orig.)

  5. Solar energy education. Renewable energy activities for general science

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Renewable energy topics are integrated with the study of general science. The literature is provided in the form of a teaching manual and includes such topics as passive solar homes, siting a home for solar energy, and wind power for the home. Other energy topics are explored through library research activities. (BCS)

  6. Characterization of low-energy conformational domains for Met-enkephalin.

    Science.gov (United States)

    Perez, J J; Villar, H O; Loew, G H

    1992-04-01

    An extensive exploration of the conformational hypersurface of Met-enkephalin has been carried out, in order to characterize different low-energy conformational domains accessible to this pentapeptide. The search strategy used consisted of two steps. First, systematic nested rotations were performed using the ECEPP potential. Ninety-two low-energy structures were found and minimized using the CHARMm potential. High and low-temperature molecular dynamics trajectories were then computed for the lowest energy structures in an interative fashion until no lower energy conformers could be found. The same search strategy was used in these studies simulating three different environments, a distance-dependent dielectric epsilon = r, and two constant dielectrics epsilon = 10 and epsilon = 80. The lowest energy structure found in a distance-dependent dielectric is a Gly-Gly beta-II'-type turn. All other structures found for epsilon = r within 10 kcal/mol of this lowest energy structure are also bends. In the more polar environments, the density of conformational states is significantly larger compared to the apolar media. Moreover, fewer hydrogen bonds are formed in the more polar environments, which increases the flexibility of the peptide and results in less structured conformers. Comparisons are made with previous calculations and experimental results.

  7. Assessing Energy-Dependent Protein Conformational Changes in the TonB System.

    Science.gov (United States)

    Larsen, Ray A

    2017-01-01

    Changes in conformation can alter a protein's vulnerability to proteolysis. Thus, in vivo differential proteinase sensitivity provides a means for identifying conformational changes that mark discrete states in the activity cycle of a protein. The ability to detect a specific conformational state allows for experiments to address specific protein-protein interactions and other physiological components that potentially contribute to the function of the protein. This chapter presents the application of this technique to the TonB-dependent energy transduction system of Gram-negative bacteria, a strategy that has refined our understanding of how the TonB protein is coupled to the ion electrochemical gradient of the cytoplasmic membrane.

  8. Conformational Control of Energy Transfer: A Mechanism for Biocompatible Nanocrystal-Based Sensors

    OpenAIRE

    Kay, Euan R; Lee, Jungmin; Nocera, Daniel; Bawendi, Moungi G

    2012-01-01

    Fold-up fluorophore: A new paradigm for designing self-referencing fluorescent nanosensors is demonstrated by interfacing a pH-triggered molecular conformational switch with quantum dots. Analytedependent, large-amplitude conformational motion controls the distance between the nanocrystal energy donor and an organic FRET acceptor. The result is a fluorescence signal capable of reporting pH values from individual endosomes in living cells.

  9. Scalar vacuum structure in general relativity and alternative theories. Conformal continuations

    CERN Document Server

    Bronnikov, K A

    2001-01-01

    We discuss the global properties of static, spherically symmetric configurations of a self-gravitating real scalar field $\\phi$ in general relativity (GR), scalar-tensor theories (STT) and high-order gravity ($L=f(R)$) in various dimensions. In GR, for fields with arbitrary potentials $V(\\phi)$, not necessarily positive-definite, it is shown that the list of all possible types of space-time causal structure in the models under consideration is the same as the one for $\\phi = const$. In particular, there are no regular black holes with any asymptotics. These features are extended to STT and $f(R)$ theories, connected with GR by conformal mappings, unless there is a conformal continuation, i.e., a case when a singularity in a solution of GR maps to a regular surface in an alternative theory, and the solution is continued through such a surface. This effect is exemplified by exact solutions in GR with a massless conformal scalar field, considered as a special STT. Necessary conditions for the existence of a conf...

  10. The analytic structure of conformal blocks and the generalized Wilson-Fisher fixed points

    Science.gov (United States)

    Gliozzi, Ferdinando; Guerrieri, Andrea L.; Petkou, Anastasios C.; Wen, Congkao

    2017-04-01

    We describe in detail the method used in our previous work arXiv:1611.10344 https://arxiv.org/abs/1611.10344 to study the Wilson-Fisher critical points nearby generalized free CFTs, exploiting the analytic structure of conformal blocks as functions of the conformal dimension of the exchanged operator. Our method is equivalent to the mechanism of conformal multiplet recombination set up by null states. We compute, to the first non-trivial order in the ɛ-expansion, the anomalous dimensions and the OPE coefficients of infinite classes of scalar local operators using just CFT data. We study single-scalar and O( N)-invariant theories, as well as theories with multiple deformations. When available we agree with older results, but we also produce a wealth of new ones. Unitarity and crossing symmetry are not used in our approach and we are able to apply our method to non-unitary theories as well. Some implications of our results for the study of the non-unitary theories containing partially conserved higher-spin currents are briefly mentioned.

  11. Octonionic M-theory and /D=11 generalized conformal and superconformal algebras

    Science.gov (United States)

    Lukierski, Jerzy; Toppan, Francesco

    2003-08-01

    Following [Phys. Lett. B 539 (2002) 266] we further apply the octonionic structure to supersymmetric D=11 M-theory. We consider the octonionic 2n+1×2n+1 Dirac matrices describing the sequence of Clifford algebras with signatures (9+n,n) (n=0,1,2,…) and derive the identities following from the octonionic multiplication table. The case n=1 (4×4 octonion-valued matrices) is used for the description of the D=11 octonionic M-superalgebra with 52 real bosonic charges; the n=2 case (8×8 octonion-valued matrices) for the D=11 conformal M-algebra with 232 real bosonic charges. The octonionic structure is described explicitly for n=1 by the relations between the 528 Abelian O(10,1) tensorial charges Zμ, Zμν, Zμ…μ5 of the M-superalgebra. For n=2 we obtain 2080 real non-Abelian bosonic tensorial charges Zμν, Zμ1μ2μ3, Zμ1…μ6 which, suitably constrained describe the generalized D=11 octonionic conformal algebra. Further, we consider the supersymmetric extension of this octonionic conformal algebra which can be described as D=11 octonionic superconformal algebra with a total number of 64 real fermionic and 239 real bosonic generators.

  12. Generalized dark energy interactions with multiple fluids

    CERN Document Server

    van de Bruck, Carsten; Mimoso, José P; Nunes, Nelson J

    2016-01-01

    In the search for an explanation for the current acceleration of the Universe, scalar fields are the most simple and useful tools to build models of dark energy. This field, however, must in principle couple with the rest of the world and not necessarily in the same way to different particles or fluids. We provide the most complete dynamical system analysis to date, consisting of a canonical scalar field conformally and disformally coupled to both dust and radiation. We perform a detailed study of the existence and stability conditions of the systems and comment on constraints imposed on the disformal coupling from Big-Bang Nucleosynthesis and given current limits on the variation of the fine-structure constant.

  13. Generalized dark energy interactions with multiple fluids

    Science.gov (United States)

    van de Bruck, Carsten; Mifsud, Jurgen; Mimoso, José P.; Nunes, Nelson J.

    2016-11-01

    In the search for an explanation for the current acceleration of the Universe, scalar fields are the most simple and useful tools to build models of dark energy. This field, however, must in principle couple with the rest of the world and not necessarily in the same way to different particles or fluids. We provide the most complete dynamical system analysis to date, consisting of a canonical scalar field conformally and disformally coupled to both dust and radiation. We perform a detailed study of the existence and stability conditions of the systems and comment on constraints imposed on the disformal coupling from Big-Bang Nucleosynthesis and given current limits on the variation of the fine-structure constant.

  14. Anisotropic Generalized Ghost Pilgrim Dark Energy Model in General Relativity

    Science.gov (United States)

    Santhi, M. Vijaya; Rao, V. U. M.; Aditya, Y.

    2017-02-01

    A spatially homogeneous and anisotropic locally rotationally symmetric (LRS) Bianchi type- I Universe filled with matter and generalized ghost pilgrim dark energy (GGPDE) has been studied in general theory of relativity. To obtain determinate solution of the field equations we have used scalar expansion proportional to the shear scalar which leads to a relation between the metric potentials. Some well-known cosmological parameters (equation of state (EoS) parameter ( ω Λ), deceleration parameter ( q) and squared speed of sound {vs2}) and planes (ω _{Λ }-dot {ω }_{Λ } and statefinder) are constructed for obtained model. The discussion and significance of these parameters is totally done through pilgrim dark energy parameter ( β) and cosmic time ( t).

  15. Simple implementation of general dark energy models

    Energy Technology Data Exchange (ETDEWEB)

    Bloomfield, Jolyon K. [MIT Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Ave #37241, Cambridge, MA, 02139 (United States); Pearson, Jonathan A., E-mail: jolyon@mit.edu, E-mail: jonathan.pearson@durham.ac.uk [Centre for Particle Theory, Department of Mathematical Sciences, Durham University, South Road, Durham, DH1 3LE (United Kingdom)

    2014-03-01

    We present a formalism for the numerical implementation of general theories of dark energy, combining the computational simplicity of the equation of state for perturbations approach with the generality of the effective field theory approach. An effective fluid description is employed, based on a general action describing single-scalar field models. The formalism is developed from first principles, and constructed keeping the goal of a simple implementation into CAMB in mind. Benefits of this approach include its straightforward implementation, the generality of the underlying theory, the fact that the evolved variables are physical quantities, and that model-independent phenomenological descriptions may be straightforwardly investigated. We hope this formulation will provide a powerful tool for the comparison of theoretical models of dark energy with observational data.

  16. Potential Energy Surface-Based Automatic Deduction of Conformational Transition Networks and Its Application on Quantum Mechanical Landscapes of d-Glucose Conformers.

    Science.gov (United States)

    Satoh, Hiroko; Oda, Tomohiro; Nakakoji, Kumiyo; Uno, Takeaki; Tanaka, Hiroaki; Iwata, Satoru; Ohno, Koichi

    2016-11-08

    This paper describes our approach that is built upon the potential energy surface (PES)-based conformational analysis. This approach automatically deduces a conformational transition network, called a conformational reaction route map (r-map), by using the Scaled Hypersphere Search of the Anharmonic Downward Distortion Following method (SHS-ADDF). The PES-based conformational search has been achieved by using large ADDF, which makes it possible to trace only low transition state (TS) barriers while restraining bond lengths and structures with high free energy. It automatically performs sampling the minima and TS structures by simply taking into account the mathematical feature of PES without requiring any a priori specification of variable internal coordinates. An obtained r-map is composed of equilibrium (EQ) conformers connected by reaction routes via TS conformers, where all of the reaction routes are already confirmed during the process of the deduction using the intrinsic reaction coordinate (IRC) method. The postcalculation analysis of the deduced r-map is interactively carried out using the RMapViewer software we have developed. This paper presents computational details of the PES-based conformational analysis and its application to d-glucose. The calculations have been performed for an isolated glucose molecule in the gas phase at the RHF/6-31G level. The obtained conformational r-map for α-d-glucose is composed of 201 EQ and 435 TS conformers and that for β-d-glucose is composed of 202 EQ and 371 TS conformers. For the postcalculation analysis of the conformational r-maps by using the RMapViewer software program we have found multiple minimum energy paths (MEPs) between global minima of (1)C4 and (4)C1 chair conformations. The analysis using RMapViewer allows us to confirm the thermodynamic and kinetic predominance of (4)C1 conformations; that is, the potential energy of the global minimum of (4)C1 is lower than that of (1)C4 (thermodynamic predominance

  17. The first experimental observation of the higher-energy trans conformer of trifluoroacetic acid

    Science.gov (United States)

    Apóstolo, R. F. G.; Bazsó, Gábor; Bento, R. R. F.; Tarczay, G.; Fausto, R.

    2016-12-01

    We report here the first experimental observation of the higher-energy conformer of trifluoroacetic acid (trans-TFA). The new conformer was generated by selective narrowband near-infrared vibrational excitation of the lower-energy cis-TFA conformer isolated in cryogenic matrices (Ar, Kr, N2) and shown to spontaneously decay to this latter form in the various matrix media, by tunneling. The decay rates in the different matrices were measured and compared with those of the trans conformers of other carboxylic acids in similar experimental conditions. The experimental studies received support from quantum chemistry calculations undertaken at various levels of approximation, which allowed a detailed characterization of the relevant regions of the potential energy surface of the molecule and the detailed assignment of the infrared spectra of the two conformers in the various matrices. Noteworthly, in contrast to cis-TFA that has its trifluoromethyl group eclipsed with the Cdbnd O bond of the carboxylic moiety, trans-TFA has the trifluoromethyl group eclipsed with the Csbnd O bond. This unusual structure of trans-TFA results from the fact that the relative orientation of the CF3 and COOH groups in this geometry facilitates the establishment of an intramolecular hydrogen-bond-like interaction between the OH group and the closely located in-plane fluorine atom of the CF3 moiety.

  18. Conformity to the surviving sepsis campaign international guidelines among physicians in a general intensive care unit in Nairobi.

    Science.gov (United States)

    Mung'ayi, V; Karuga, R

    2010-08-01

    There are emerging therapies for managing septic critically-ill patients. There is little data from the developing world on their usage. To determine the conformity rate for resuscitation and management bundles for septic patients amongst physicians in a general intensive care unit. Cross sectional observational study. The general intensive care unit, Aga Khan University Hospital,Nairobi. Admitting physicians from all specialties in the general intensive care unit. The physicians had high conformity rates of 92% and 96% for the fluid resuscitation and use of va so pressors respectively for the initial resuscitation bundle. They had moderate conformity rates for blood cultures prior to administering antibiotics (57%) and administration of antibiotics within first hour of recognition of septic shock (54%). There was high conformity rate to the glucose control policy (81%), use of protective lung strategy in acute lung injury/Acute respiratory distress syndrome, venous thromboembolism prophylaxis (100%) and stress ulcer prophylaxis (100%) in the management bundle. Conformity was moderate for use of sedation, analgesia and muscle relaxant policy (69%), continuous renal replacement therapies (54%) and low for steroid policy (35%), administration ofdrotrecogin alfa (0%) and selective digestive decontamination (15%). There is varying conformity to the international sepsis guidelines among physicians caring for patients in our general ICU. Since increased conformity would improve survival and reduce morbidity, there is need for sustained education and guideline based performance improvement.

  19. 40 CFR 1039.201 - What are the general requirements for obtaining a certificate of conformity?

    Science.gov (United States)

    2010-07-01

    ... obtaining a certificate of conformity? 1039.201 Section 1039.201 Protection of Environment ENVIRONMENTAL... obtaining a certificate of conformity? (a) You must send us a separate application for a certificate of conformity for each engine family. A certificate of conformity is valid from the indicated effective...

  20. 40 CFR 1042.201 - General requirements for obtaining a certificate of conformity.

    Science.gov (United States)

    2010-07-01

    ... certificate of conformity. 1042.201 Section 1042.201 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... of conformity. (a) You must send us a separate application for a certificate of conformity for each engine family. A certificate of conformity is valid starting with the indicated effective date, but it...

  1. 40 CFR 1048.201 - What are the general requirements for obtaining a certificate of conformity?

    Science.gov (United States)

    2010-07-01

    ... obtaining a certificate of conformity? 1048.201 Section 1048.201 Protection of Environment ENVIRONMENTAL... certificate of conformity? (a) You must send us a separate application for a certificate of conformity for each engine family. A certificate of conformity is valid starting with the indicated effective...

  2. 40 CFR 1045.201 - What are the general requirements for obtaining a certificate of conformity?

    Science.gov (United States)

    2010-07-01

    ... obtaining a certificate of conformity? 1045.201 Section 1045.201 Protection of Environment ENVIRONMENTAL... obtaining a certificate of conformity? Engine manufacturers must certify their engines with respect to the... conformity: (a) You must send us a separate application for a certificate of conformity for each...

  3. Conformational search by potential energy annealing: Algorithm and application to cyclosporin A

    Science.gov (United States)

    van Schaik, René C.; van Gunsteren, Wilfred F.; Berendsen, Herman J. C.

    1992-04-01

    A major problem in modelling (biological) macromolecules is the search for low-energy conformations. The complexity of a conformational search problem increases exponentially with the number of degrees of freedom which means that a systematic search can only be performed for very small structures. Here we introduce a new method (PEACS) which has a far better performance than conventional search methods. To show the advantages of PEACS we applied it to the refinement of Cyclosporin A and compared the results with normal molecular dynamics (MD) refinement. The structures obtained with PEACS were lower in energy and agreed with the NMR parameters much better than those obtained with MD. From the results it is further clear that PEACS samples a much larger part of the available conformational space than MD does.

  4. A New Conformal Theory of Semi-Classical Quantum General Relativity

    Directory of Open Access Journals (Sweden)

    Suhendro I.

    2007-10-01

    Full Text Available We consider a new four-dimensional formulation of semi-classical quantum general relativity in which the classical space-time manifold, whose intrinsic geometric properties give rise to the effects of gravitation, is allowed to evolve microscopically by means of a conformal function which is assumed to depend on some quantum mechanical wave function. As a result, the theory presented here produces a unified field theory of gravitation and (microscopic electromagnetism in a somewhat simple, effective manner. In the process, it is seen that electromagnetism is actually an emergent quantum field originating in some kind of stochastic smooth extension (evolution of the gravitational field in the general theory of relativity.

  5. Dynamic energy landscapes of riboswitches help interpret conformational rearrangements and function.

    Directory of Open Access Journals (Sweden)

    Giulio Quarta

    Full Text Available Riboswitches are RNAs that modulate gene expression by ligand-induced conformational changes. However, the way in which sequence dictates alternative folding pathways of gene regulation remains unclear. In this study, we compute energy landscapes, which describe the accessible secondary structures for a range of sequence lengths, to analyze the transcriptional process as a given sequence elongates to full length. In line with experimental evidence, we find that most riboswitch landscapes can be characterized by three broad classes as a function of sequence length in terms of the distribution and barrier type of the conformational clusters: low-barrier landscape with an ensemble of different conformations in equilibrium before encountering a substrate; barrier-free landscape in which a direct, dominant "downhill" pathway to the minimum free energy structure is apparent; and a barrier-dominated landscape with two isolated conformational states, each associated with a different biological function. Sharing concepts with the "new view" of protein folding energy landscapes, we term the three sequence ranges above as the sensing, downhill folding, and functional windows, respectively. We find that these energy landscape patterns are conserved in various riboswitch classes, though the order of the windows may vary. In fact, the order of the three windows suggests either kinetic or thermodynamic control of ligand binding. These findings help understand riboswitch structure/function relationships and open new avenues to riboswitch design.

  6. Conformational energy range of ligands in protein crystal structures: The difficult quest for accurate understanding.

    Science.gov (United States)

    Peach, Megan L; Cachau, Raul E; Nicklaus, Marc C

    2017-02-24

    In this review, we address a fundamental question: What is the range of conformational energies seen in ligands in protein-ligand crystal structures? This value is important biophysically, for better understanding the protein-ligand binding process; and practically, for providing a parameter to be used in many computational drug design methods such as docking and pharmacophore searches. We synthesize a selection of previously reported conflicting results from computational studies of this issue and conclude that high ligand conformational energies really are present in some crystal structures. The main source of disagreement between different analyses appears to be due to divergent treatments of electrostatics and solvation. At the same time, however, for many ligands, a high conformational energy is in error, due to either crystal structure inaccuracies or incorrect determination of the reference state. Aside from simple chemistry mistakes, we argue that crystal structure error may mainly be because of the heuristic weighting of ligand stereochemical restraints relative to the fit of the structure to the electron density. This problem cannot be fixed with improvements to electron density fitting or with simple ligand geometry checks, though better metrics are needed for evaluating ligand and binding site chemistry in addition to geometry during structure refinement. The ultimate solution for accurately determining ligand conformational energies lies in ultrahigh-resolution crystal structures that can be refined without restraints.

  7. Calculation of relative free energies for ligand-protein binding, solvation, and conformational transitions using the GROMOS software.

    Science.gov (United States)

    Riniker, Sereina; Christ, Clara D; Hansen, Halvor S; Hünenberger, Philippe H; Oostenbrink, Chris; Steiner, Denise; van Gunsteren, Wilfred F

    2011-11-24

    The calculation of the relative free energies of ligand-protein binding, of solvation for different compounds, and of different conformational states of a polypeptide is of considerable interest in the design or selection of potential enzyme inhibitors. Since such processes in aqueous solution generally comprise energetic and entropic contributions from many molecular configurations, adequate sampling of the relevant parts of configurational space is required and can be achieved through molecular dynamics simulations. Various techniques to obtain converged ensemble averages and their implementation in the GROMOS software for biomolecular simulation are discussed, and examples of their application to biomolecules in aqueous solution are given.

  8. Four-Node Generalized Conforming Membrane Elements with Drilling DOFs Using Quadrilateral Area Coordinate Methods

    Directory of Open Access Journals (Sweden)

    Xiao-Ming Chen

    2015-01-01

    Full Text Available Two 4-node generalized conforming quadrilateral membrane elements with drilling DOF, named QAC4θ and QAC4θM, were successfully developed. Two kinds of quadrilateral area coordinates are used together in the assumed displacement fields of the new elements, so that the related formulations are quite straightforward and will keep the order of the Cartesian coordinates unchangeable while the mesh is distorted. The drilling DOF is defined as the additional rigid rotation at the element nodes to avoid improper constraint. Both elements can pass the strict patch test and exhibit better performance than other similar models. In particular, they are both free of trapezoidal locking in MacNeal’s beam test and insensitive to various mesh distortions.

  9. A general approach to visualize protein binding and DNA conformation without protein labelling.

    Science.gov (United States)

    Song, Dan; Graham, Thomas G W; Loparo, Joseph J

    2016-01-01

    Single-molecule manipulation methods, such as magnetic tweezers and flow stretching, generally use the measurement of changes in DNA extension as a proxy for examining interactions between a DNA-binding protein and its substrate. These approaches are unable to directly measure protein-DNA association without fluorescently labelling the protein, which can be challenging. Here we address this limitation by developing a new approach that visualizes unlabelled protein binding on DNA with changes in DNA conformation in a relatively high-throughput manner. Protein binding to DNA molecules sparsely labelled with Cy3 results in an increase in fluorescence intensity due to protein-induced fluorescence enhancement (PIFE), whereas DNA length is monitored under flow of buffer through a microfluidic flow cell. Given that our assay uses unlabelled protein, it is not limited to the low protein concentrations normally required for single-molecule fluorescence imaging and should be broadly applicable to studying protein-DNA interactions.

  10. 77 FR 59100 - Approval and Promulgation of Implementation Plans; Alabama: General and Transportation Conformity...

    Science.gov (United States)

    2012-09-26

    ... Transportation Conformity & New Source Review Prevention of Significant Deterioration for Fine Particulate Matter... transportation conformity regulations. EPA is approving portions of Alabama's May 2, 2011, SIP revision because... transportation conformity regulations into the SIP. Alabama's May 2, 2011, SIP revision includes changes to...

  11. Parallel cascade selection molecular dynamics for efficient conformational sampling and free energy calculation of proteins

    Science.gov (United States)

    Kitao, Akio; Harada, Ryuhei; Nishihara, Yasutaka; Tran, Duy Phuoc

    2016-12-01

    Parallel Cascade Selection Molecular Dynamics (PaCS-MD) was proposed as an efficient conformational sampling method to investigate conformational transition pathway of proteins. In PaCS-MD, cycles of (i) selection of initial structures for multiple independent MD simulations and (ii) conformational sampling by independent MD simulations are repeated until the convergence of the sampling. The selection is conducted so that protein conformation gradually approaches a target. The selection of snapshots is a key to enhance conformational changes by increasing the probability of rare event occurrence. Since the procedure of PaCS-MD is simple, no modification of MD programs is required; the selections of initial structures and the restart of the next cycle in the MD simulations can be handled with relatively simple scripts with straightforward implementation. Trajectories generated by PaCS-MD were further analyzed by the Markov state model (MSM), which enables calculation of free energy landscape. The combination of PaCS-MD and MSM is reported in this work.

  12. Mapping transiently formed and sparsely populated conformations on a complex energy landscape

    Science.gov (United States)

    Wang, Yong; Papaleo, Elena; Lindorff-Larsen, Kresten

    2016-01-01

    Determining the structures, kinetics, thermodynamics and mechanisms that underlie conformational exchange processes in proteins remains extremely difficult. Only in favourable cases is it possible to provide atomic-level descriptions of sparsely populated and transiently formed alternative conformations. Here we benchmark the ability of enhanced-sampling molecular dynamics simulations to determine the free energy landscape of the L99A cavity mutant of T4 lysozyme. We find that the simulations capture key properties previously measured by NMR relaxation dispersion methods including the structure of a minor conformation, the kinetics and thermodynamics of conformational exchange, and the effect of mutations. We discover a new tunnel that involves the transient exposure towards the solvent of an internal cavity, and show it to be relevant for ligand escape. Together, our results provide a comprehensive view of the structural landscape of a protein, and point forward to studies of conformational exchange in systems that are less characterized experimentally. DOI: http://dx.doi.org/10.7554/eLife.17505.001 PMID:27552057

  13. Toward accurate prediction of pKa values for internal protein residues: the importance of conformational relaxation and desolvation energy.

    Science.gov (United States)

    Wallace, Jason A; Wang, Yuhang; Shi, Chuanyin; Pastoor, Kevin J; Nguyen, Bao-Linh; Xia, Kai; Shen, Jana K

    2011-12-01

    Proton uptake or release controls many important biological processes, such as energy transduction, virus replication, and catalysis. Accurate pK(a) prediction informs about proton pathways, thereby revealing detailed acid-base mechanisms. Physics-based methods in the framework of molecular dynamics simulations not only offer pK(a) predictions but also inform about the physical origins of pK(a) shifts and provide details of ionization-induced conformational relaxation and large-scale transitions. One such method is the recently developed continuous constant pH molecular dynamics (CPHMD) method, which has been shown to be an accurate and robust pK(a) prediction tool for naturally occurring titratable residues. To further examine the accuracy and limitations of CPHMD, we blindly predicted the pK(a) values for 87 titratable residues introduced in various hydrophobic regions of staphylococcal nuclease and variants. The predictions gave a root-mean-square deviation of 1.69 pK units from experiment, and there were only two pK(a)'s with errors greater than 3.5 pK units. Analysis of the conformational fluctuation of titrating side-chains in the context of the errors of calculated pK(a) values indicate that explicit treatment of conformational flexibility and the associated dielectric relaxation gives CPHMD a distinct advantage. Analysis of the sources of errors suggests that more accurate pK(a) predictions can be obtained for the most deeply buried residues by improving the accuracy in calculating desolvation energies. Furthermore, it is found that the generalized Born implicit-solvent model underlying the current CPHMD implementation slightly distorts the local conformational environment such that the inclusion of an explicit-solvent representation may offer improvement of accuracy.

  14. Teaching Energy to a General Audience

    Science.gov (United States)

    Baski, Alison; Hunnicutt, Sally

    2010-02-01

    A new, interdisciplinary course entitled ``Energy!'' has been developed by faculty in the physics and chemistry departments to meet the university's science and technology general education requirement. This course now enrolls over 400 students each semester in a single lecture where faculty from both departments co-teach throughout the term. Topics include the fundamentals of energy, fossil fuels, global climate change, nuclear energy, and renewable energy sources. The students represent an impressive range of majors (science, engineering, business, humanities, etc.) and comprise freshmen to seniors. To effectively teach this diverse audience and increase classroom engagement, in-class ``clickers'' are used with guided questions to teach concepts, which are then explicitly reinforced with online LON-CAPAfootnotetextFree open-source distributed learning content management and assessment system (www.lon-capa.org) homework. This online system enables immediate feedback in a structured manner, where students can practice randomized versions of problems for homework, quizzes, and exams. The course is already in high demand after only two semesters, in part because it is particularly relevant to students given the challenging energy and climate issues facing the nation and world. )

  15. General solar energy information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-03-01

    This report describes the results of a series of telephone interviews with groups of users of information on general solar energy. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from 13 groups of respondents are analyzed in this report: Loan Officers, Real Estate Appraisers, Tax Assessors, Insurers, Lawyers, Utility Representatives, Public Interest Group Representatives, Information and Agricultural Representatives, Public Interest Group Representatives, Information and Agricultural Specialists at State Cooperative Extension Service Offices, and State Energy Office Representatives. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  16. Elucidating molecular motion through structural and dynamic filters of energy-minimized conformer ensembles.

    Science.gov (United States)

    Emani, Prashant S; Bardaro, Michael F; Huang, Wei; Aragon, Sergio; Varani, Gabriele; Drobny, Gary P

    2014-02-20

    Complex RNA structures are constructed from helical segments connected by flexible loops that move spontaneously and in response to binding of small molecule ligands and proteins. Understanding the conformational variability of RNA requires the characterization of the coupled time evolution of interconnected flexible domains. To elucidate the collective molecular motions and explore the conformational landscape of the HIV-1 TAR RNA, we describe a new methodology that utilizes energy-minimized structures generated by the program "Fragment Assembly of RNA with Full-Atom Refinement (FARFAR)". We apply structural filters in the form of experimental residual dipolar couplings (RDCs) to select a subset of discrete energy-minimized conformers and carry out principal component analyses (PCA) to corroborate the choice of the filtered subset. We use this subset of structures to calculate solution T1 and T(1ρ) relaxation times for (13)C spins in multiple residues in different domains of the molecule using two simulation protocols that we previously published. We match the experimental T1 times to within 2% and the T(1ρ) times to within less than 10% for helical residues. These results introduce a protocol to construct viable dynamic trajectories for RNA molecules that accord well with experimental NMR data and support the notion that the motions of the helical portions of this small RNA can be described by a relatively small number of discrete conformations exchanging over time scales longer than 1 μs.

  17. The effect of tensile stress on the conformational free energy landscape of disulfide bonds.

    Directory of Open Access Journals (Sweden)

    Padmesh Anjukandi

    Full Text Available Disulfide bridges are no longer considered to merely stabilize protein structure, but are increasingly recognized to play a functional role in many regulatory biomolecular processes. Recent studies have uncovered that the redox activity of native disulfides depends on their C-C-S-S dihedrals, χ2 and χ'2. Moreover, the interplay of chemical reactivity and mechanical stress of disulfide switches has been recently elucidated using force-clamp spectroscopy and computer simulation. The χ2 and χ'2 angles have been found to change from conformations that are open to nucleophilic attack to sterically hindered, so-called closed states upon exerting tensile stress. In view of the growing evidence of the importance of C-C-S-S dihedrals in tuning the reactivity of disulfides, here we present a systematic study of the conformational diversity of disulfides as a function of tensile stress. With the help of force-clamp metadynamics simulations, we show that tensile stress brings about a large stabilization of the closed conformers, thereby giving rise to drastic changes in the conformational free energy landscape of disulfides. Statistical analysis shows that native TDi, DO and interchain Ig protein disulfides prefer open conformations, whereas the intrachain disulfide bridges in Ig proteins favor closed conformations. Correlating mechanical stress with the distance between the two a-carbons of the disulfide moiety reveals that the strain of intrachain Ig protein disulfides corresponds to a mechanical activation of about 100 pN. Such mechanical activation leads to a severalfold increase of the rate of the elementary redox S(N2 reaction step. All these findings constitute a step forward towards achieving a full understanding of functional disulfides.

  18. FEARCF a multidimensional free energy method for investigating conformational landscapes and chemical reaction mechanisms

    Institute of Scientific and Technical Information of China (English)

    NAIDOO Kevin J.

    2012-01-01

    The development and implementation of a computational method able to produce free energies in multiple dimensions,descriptively named the free energies from adaptive reaction coordinate forces (FEARCF) method is described in this paper.While the method can be used to calculate free energies of association,conformation and reactivity here it is shown in the context of chemical reaction landscapes.A reaction free energy surface for the Claisen rearrangement of chorismate to prephenate is used as an illustration of the method's efficient convergence.FEARCF simulations are shown to achieve fiat histograms for complex multidimensional free energy volumes.The sampling efficiency by which it produces multidimensional free energies is demonstrated on the complex puckering of a pyranose ring,that is described by a three dimensional W(θ1,θ2,θ3) potential of mean force.

  19. Millimeter and submillimeter wave spectroscopy of higher energy conformers of 1,2-propanediol

    Science.gov (United States)

    Zakharenko, O.; Bossa, J.-B.; Lewen, F.; Schlemmer, S.; Müller, H. S. P.

    2017-03-01

    We have performed a study of the millimeter/submillimeter wave spectrum of four higher energy conformers of 1,2-propanediol. The present analysis of rotational transitions carried out in the frequency range 38-400 GHz represents a significant extension of previous microwave work. The new data were combined with previously-measured microwave transitions and fitted using a Watson's S-reduced Hamiltonian. The final fits were within experimental accuracy, and included spectroscopic parameters up to sixth order of angular momentum, for the ground states of the four higher energy conformers following previously studied ones: g‧Ga, gG‧g‧, aGg‧ and g‧Gg. The present analysis provides reliable frequency predictions for astrophysical detection of 1,2-propanediol by radio telescope arrays at millimeter wavelengths.

  20. Transportation Conformity

    Science.gov (United States)

    This section provides information on: current laws, regulations and guidance, policy and technical guidance, project-level conformity, general information, contacts and training, adequacy review of SIP submissions

  1. Energy flow in the cryptophyte PE545 antenna is directed by bilin pigment conformation.

    Science.gov (United States)

    Curutchet, Carles; Novoderezhkin, Vladimir I; Kongsted, Jacob; Muñoz-Losa, Aurora; van Grondelle, Rienk; Scholes, Gregory D; Mennucci, Benedetta

    2013-04-25

    Structure-based calculations are combined with quantitative modeling of spectra and energy transfer dynamics to detemine the energy transfer scheme of the PE545 principal light-harvesting antenna of the cryptomonad Rhodomonas CS24. We use a recently developed quantum-mechanics/molecular mechanics (QM/MM) method that allows us to account for pigment-protein interactions at atomic detail in site energies, transition dipole moments, and electronic couplings. In addition, conformational flexibility of the pigment-protein complex is accounted for through molecular dynamics (MD) simulations. We find that conformational disorder largely smoothes the large energetic differences predicted from the crystal structure between the pseudosymmetric pairs PEB50/61C-PEB50/61D and PEB82C-PEB82D. Moreover, we find that, in contrast to chlorophyll-based photosynthetic complexes, pigment composition and conformation play a major role in defining the energy ladder in the PE545 complex, rather than specific pigment-protein interactions. This is explained by the remarkable conformational flexibility of the eight bilin pigments in PE545, characterized by a quasi-linear arrangement of four pyrrole units. The MD-QM/MM site energies allow us to reproduce the main features of the spectra, and minor adjustments of the energies of the three red-most pigments DBV19A, DBV19B, and PEB82D allow us to model the spectra of PE545 with a similar quality compared to our original model (model E from Novoderezhkin et al. Biophys. J.2010, 99, 344), which was extracted from the spectral and kinetic fit. Moreover, the fit of the transient absorption kinetics is even better in the new structure-based model. The largest difference between our previous and present results is that the MD-QM/MM calculations predict a much smaller gap between the PEB50/61C and PEB50/61D sites, in better accord with chemical intuition. We conclude that the current adjusted MD-QM/MM energies are more reliable in order to explore the

  2. The generalized Erlangen program and setting a geometry for four- dimensional conformal fields

    Energy Technology Data Exchange (ETDEWEB)

    Ne`eman, Y. [Tel Aviv Univ. (Israel). Sackler Faculty of Exact Sciences]|[Texas Univ., Austin, TX (United States). Center for Particle Physics; Hehl, F.W.; Mielke, E.W. [Koeln Univ. (Germany). Inst. fuer Theoretische Physik

    1993-10-22

    This is the text of a talk at the International Symposium on ``Mathematical Physics towards the XXI Century`` held in March 1993 at Beersheva, Israel. In the first part we attempt to summarize XXth Century Physics, in the light of Kelvin`s 1900 speech ``Dark Clouds over XIXth Century Physics.`` Contrary to what is usually said, Kelvin predicted that the ``clouds`` (relativity and quantum mechanics) would revolutionize physics and that one hundred years might be needed to harmonize them with classical physics. Quantum Gravity can be considered as a leftover from Kelvin`s program -- so are the problems with the interpretation of quantum mechanics. At the end of the XXth Century, the Standard Model is the new panoramic synthesis, drawn in gauge-geometric lines -- realizing the Erlangen program beyond F. Klein`s expectations. The hierarchy problem and the smallness of the cosmological constant are our ``clouds``, generations and the Higgs sector are to us what radioactivity was in 1900. In the second part we describe Metric-Affine spacetimes. We construct the Noether machinery and provide expressions for the conserved energy and hypermomentum. Superimposing conformal invariance over the affine structure induces the Virasoro-like infinite constraining algebra of diffeomorphisms, applied with constant parameters and opening the possibility of a 4DCFT, similar to 2DCFT.

  3. Elucidating Hyperconjugation from Electronegativity to Predict Drug Conformational Energy in a High Throughput Manner.

    Science.gov (United States)

    Liu, Zhaomin; Pottel, Joshua; Shahamat, Moeed; Tomberg, Anna; Labute, Paul; Moitessier, Nicolas

    2016-04-25

    Computational chemists use structure-based drug design and molecular dynamics of drug/protein complexes which require an accurate description of the conformational space of drugs. Organic chemists use qualitative chemical principles such as the effect of electronegativity on hyperconjugation, the impact of steric clashes on stereochemical outcome of reactions, and the consequence of resonance on the shape of molecules to rationalize experimental observations. While computational chemists speak about electron densities and molecular orbitals, organic chemists speak about partial charges and localized molecular orbitals. Attempts to reconcile these two parallel approaches such as programs for natural bond orbitals and intrinsic atomic orbitals computing Lewis structures-like orbitals and reaction mechanism have appeared. In the past, we have shown that encoding and quantifying chemistry knowledge and qualitative principles can lead to predictive methods. In the same vein, we thought to understand the conformational behaviors of molecules and to encode this knowledge back into a molecular mechanics tool computing conformational potential energy and to develop an alternative to atom types and training of force fields on large sets of molecules. Herein, we describe a conceptually new approach to model torsion energies based on fundamental chemistry principles. To demonstrate our approach, torsional energy parameters were derived on-the-fly from atomic properties. When the torsional energy terms implemented in GAFF, Parm@Frosst, and MMFF94 were substituted by our method, the accuracy of these force fields to reproduce MP2-derived torsional energy profiles and their transferability to a variety of functional groups and drug fragments were overall improved. In addition, our method did not rely on atom types and consequently did not suffer from poor automated atom type assignments.

  4. A Low Energy Consumption DOA Estimation Approach for Conformal Array in Ultra-Wideband

    Directory of Open Access Journals (Sweden)

    Liangtian Wan

    2013-12-01

    Full Text Available Most direction-of-arrival (DOA estimation approaches for conformal array suffer from high computational complexity, which cause high energy loss for the direction finding system. Thus, a low energy consumption DOA estimation algorithm for conformal array antenna is proposed in this paper. The arbitrary baseline direction finding algorithm is extended to estimate DOA for a conformal array in ultra-wideband. The rotation comparison method is adopted to solve the ambiguity of direction finding. The virtual baseline approach is used to construct the virtual elements. Theoretically, the virtual elements can be extended in the space flexibility. Four elements (both actual and virtual elements can be used to obtain a group of solutions. The space angle estimation can be obtained by using sub-array divided technique and matrix inversion method. The stability of the proposed algorithm can be guaranteed by averaging the angles obtained by different sub-arrays. Finally, the simulation results verify the effectiveness of the proposed method with high DOA estimation accuracy and relatively low computational complexity.

  5. Conformational Explosion: Understanding the Complexity of the Para-Dialkylbenzene Potential Energy Surfaces

    Science.gov (United States)

    Mishra, Piyush; Hewett, Daniel M.; Zwier, Timothy S.

    2017-06-01

    This talk focuses on the single-conformation spectroscopy of small-chain para-dialkylbenzenes. This work builds on previous studies from our group on long-chain n-alkylbenzenes that identified the first folded structure in octylbenzene. The dialkylbenzenes are representative of a class of molecules that are common components of coal and aviation fuel and are known to be present in vehicle exhaust. We bring the molecules para-diethylbenzene, para-dipropylbenzene and para-dibutylbenzene into the gas phase and cool the molecules in a supersonic expansion. The jet-cooled molecules are then interrogated using laser-induced fluorescence excitation, fluorescence dip IR spectroscopy (FDIRS) and dispersed fluorescence. The LIF spectra in the S_{0}-S_{1} origin region show dramatic increases in the number of resolved transitions with increasing length of alkyl chains, reflecting an explosion in the number of unique low-energy conformations formed when two independent alkyl chains are present. Since the barriers to isomerization of the alkyl chain are similar in size, this results in an 'egg carton' shape to the potential energy surface. We use a combination of electronic frequency shift and alkyl CH stretch infrared spectra to generate a consistent set of conformational assignments.

  6. Coarse-grained free energy functions for studying protein conformational changes: a double-well network model.

    Science.gov (United States)

    Chu, Jhih-Wei; Voth, Gregory A

    2007-12-01

    In this work, a double-well network model (DWNM) is presented for generating a coarse-grained free energy function that can be used to study the transition between reference conformational states of a protein molecule. Compared to earlier work that uses a single, multidimensional double-well potential to connect two conformational states, the DWNM uses a set of interconnected double-well potentials for this purpose. The DWNM free energy function has multiple intermediate states and saddle points, and is hence a "rough" free energy landscape. In this implementation of the DWNM, the free energy function is reduced to an elastic-network model representation near the two reference states. The effects of free energy function roughness on the reaction pathways of protein conformational change is demonstrated by applying the DWNM to the conformational changes of two protein systems: the coil-to-helix transition of the DB-loop in G-actin and the open-to-closed transition of adenylate kinase. In both systems, the rough free energy function of the DWNM leads to the identification of distinct minimum free energy paths connecting two conformational states. These results indicate that while the elastic-network model captures the low-frequency vibrational motions of a protein, the roughness in the free energy function introduced by the DWNM can be used to characterize the transition mechanism between protein conformations.

  7. 77 FR 64183 - Notice of Availability of a Final General Conformity Determination for the California High-Speed...

    Science.gov (United States)

    2012-10-18

    ... California High-Speed Train System Merced to Fresno Section AGENCY: Federal Railroad Administration (FRA... Section of the California High-Speed Train (HST) System on September 18, 2012. FRA is the lead Federal... General Conformity requirements. The California High Speed Rail Authority (Authority), as the...

  8. The Relationship between Alcohol Use and Peer Pressure Susceptibility, Peer Popularity and General Conformity in Northern Irish School Children

    Science.gov (United States)

    McKay, Michael T.; Cole, Jon C.

    2012-01-01

    This cross-sectional study investigated the bivariate and more fully controlled (with socio-demographic measures) relationship between self-reported drinking behaviour and peer pressure susceptibility, desire for peer popularity and general conformity in a sample of 11-16-year-old school children in Northern Ireland. Self-reported drinking…

  9. The Relationship between Alcohol Use and Peer Pressure Susceptibility, Peer Popularity and General Conformity in Northern Irish School Children

    Science.gov (United States)

    McKay, Michael T.; Cole, Jon C.

    2012-01-01

    This cross-sectional study investigated the bivariate and more fully controlled (with socio-demographic measures) relationship between self-reported drinking behaviour and peer pressure susceptibility, desire for peer popularity and general conformity in a sample of 11-16-year-old school children in Northern Ireland. Self-reported drinking…

  10. Semiexperimental equilibrium structure of the lower energy conformer of glycidol by the mixed estimation method.

    Science.gov (United States)

    Demaison, Jean; Craig, Norman C; Conrad, Andrew R; Tubergen, Michael J; Rudolph, Heinz Dieter

    2012-09-13

    Rotational constants were determined for (18)O-substituted isotopologues of the lower energy conformer of glycidol, which has an intramolecular inner hydrogen bond from the hydroxyl group to the oxirane ring oxygen. Rotational constants were previously determined for the (13)C and the OD species. These rotational constants have been corrected with the rovibrational constants calculated from an ab initio cubic force field. The derived semiexperimental equilibrium rotational constants have been supplemented by carefully chosen structural parameters, including those for hydrogen atoms, from medium level ab initio calculations. The combined data have been used in a weighted least-squares fit to determine an equilibrium structure for the glycidol H-bond inner conformer. This work shows that the mixed estimation method allows us to determine a complete and reliable equilibrium structure for large molecules, even when the rotational constants of a number of isotopologues are unavailable.

  11. Cation-π Interactions in Serotonin:  Conformational, Electronic Distribution, and Energy Decomposition Analysis.

    Science.gov (United States)

    Pratuangdejkul, Jaturong; Jaudon, Pascale; Ducrocq, Claire; Nosoongnoen, Wichit; Guerin, Georges-Alexandre; Conti, Marc; Loric, Sylvain; Launay, Jean-Marie; Manivet, Philippe

    2006-05-01

    An adiabatic conformational analysis of serotonin (5-hydroxytryptamine, 5-HT) using quantum chemistry led to six stable conformers that can be either +gauche (Gp), -gauche (Gm), and anti (At) depending upon the value taken by ethylamine side chain and 5-hydroxyl group dihedral angles φ1, φ2, and φ4, respectively. Further vibrational frequency analysis of the GmGp, GmGm, and GmAt conformers with the 5-hydroxyl group in the anti position revealed an additional red-shifted N-H stretch mode band in GmGp and GmGm that is absent in GmAt. This band corresponds to the 5-HT side-chain N-H bond involved in an intramolecular nonbonded interaction with the 5-hydroxy indole ring. The influence of this nonbonded interaction on the electronic distribution was assessed by analysis of the spin-spin coupling constants of GmGp and GmGm that show a marked increase for C2-C3 and C8-C9 bonds in GmGm and GmGp, respectively, with a decrease of their double bond character and an increase of their length. The Atoms in Molecules (AIM), Natural Bond Orbital (NBO), and fluorescence and CD spectra (TDDFT method) analyses confirmed the existence in GmGp and GmGm of a through-space charge-transfer between the HOMO and the HOMO-1 π-orbital of the indole ring and the LUMO σ* N-H antibonding orbital of the ammonium group. The strength of the cation-π interaction was determined by calculating binding energies of the NH4(+)/5-hydroxyindole complexes extracted from stable conformers. The energy decomposition analysis indicated that cationic-π interactions in the GmGp and GmGm conformers are governed by the electrostatic term with significant contributions from polarization and charge transfer. The lower stability of the GmGm over the GmGp comes from a higher exchange repulsion and a weaker polarization contributions. Our results provide insight into the nature of intramolecular forces that influence the conformational properties of 5-HT.

  12. Narrowband NIR-Induced In Situ Generation of the High-Energy Trans Conformer of Trichloroacetic Acid Isolated in Solid Nitrogen and its Spontaneous Decay by Tunneling to the Low-Energy Cis Conformer

    Directory of Open Access Journals (Sweden)

    R. F. G. Apóstolo

    2015-12-01

    Full Text Available The monomeric form of trichloroacetic acid (CCl3COOH; TCA was isolated in a cryogenic nitrogen matrix (15 K and the higher energy trans conformer (O=C–O–H dihedral: 180° was generated in situ by narrowband near-infrared selective excitation the 1st OH stretching overtone of the low-energy cis conformer (O=C–O–H dihedral: 0°. The spontaneous decay, by tunneling, of the generated high-energy conformer into the cis form was then evaluated and compared with those observed previously for the trans conformers of acetic and formic acids in identical experimental conditions. The much faster decay of the high-energy conformer of TCA compared to both formic and acetic acids (by ~35 and ca. 25 times, respectively was found to correlate well with the lower energy barrier for the trans→cis isomerization in the studied compound. The experimental studies received support from quantum chemistry calculations undertaken at the DFT(B3LYP/cc-pVDZ level of approximation, which allowed a detailed characterization of the potential energy surface of the molecule and the detailed assignment of the infrared spectra of the two conformers.

  13. Connecting free energy surfaces in implicit and explicit solvent: an efficient method to compute conformational and solvation free energies.

    Science.gov (United States)

    Deng, Nanjie; Zhang, Bin W; Levy, Ronald M

    2015-06-09

    The ability to accurately model solvent effects on free energy surfaces is important for understanding many biophysical processes including protein folding and misfolding, allosteric transitions, and protein–ligand binding. Although all-atom simulations in explicit solvent can provide an accurate model for biomolecules in solution, explicit solvent simulations are hampered by the slow equilibration on rugged landscapes containing multiple basins separated by barriers. In many cases, implicit solvent models can be used to significantly speed up the conformational sampling; however, implicit solvent simulations do not fully capture the effects of a molecular solvent, and this can lead to loss of accuracy in the estimated free energies. Here we introduce a new approach to compute free energy changes in which the molecular details of explicit solvent simulations are retained while also taking advantage of the speed of the implicit solvent simulations. In this approach, the slow equilibration in explicit solvent, due to the long waiting times before barrier crossing, is avoided by using a thermodynamic cycle which connects the free energy basins in implicit solvent and explicit solvent using a localized decoupling scheme. We test this method by computing conformational free energy differences and solvation free energies of the model system alanine dipeptide in water. The free energy changes between basins in explicit solvent calculated using fully explicit solvent paths agree with the corresponding free energy differences obtained using the implicit/explicit thermodynamic cycle to within 0.3 kcal/mol out of ∼3 kcal/mol at only ∼8% of the computational cost. We note that WHAM methods can be used to further improve the efficiency and accuracy of the implicit/explicit thermodynamic cycle.

  14. Conformal "Thin-Sandwich" Data for the Initail-Value Problem of General Relativity

    CERN Document Server

    York, J W

    1999-01-01

    The initial-value problem is posed by giving a conformal three-metric on each of two nearby spacelike hypersurfaces, their proper-time separation up to a multiplier to be determined, and the mean (extrinsic) curvature of one slice. The resulting equations have the {\\it same} elliptic form as does the one-hypersurface formulation. The metrical roots of this form are revealed by a conformal ``thin sandwich'' viewpoint coupled with the transformation properties of the lapse function.

  15. Experimental and computational study of crystalline formic acid composed of the higher-energy conformer.

    Science.gov (United States)

    Hakala, Mikko; Marushkevich, Kseniya; Khriachtchev, Leonid; Hämäläinen, Keijo; Räsänen, Markku

    2011-02-07

    Crystalline formic acid (FA) is studied experimentally and by first-principles simulations in order to identify a bulk solid structure composed of the higher-energy (cis) conformer. In the experiments, deuterated FA (HCOOD) was deposited in a Ne matrix and transformed to the cis conformer by vibrational excitation of the ground state (trans) form. Evaporation of the Ne host above 13 K prepared FA in a bulk solid state mainly composed of cis-FA. Infrared absorption spectroscopy at 4.3 K shows that the obtained solid differs from that composed of trans-FA molecules and that the state persists up to the annealing temperature of at least 110 K. The first-principles simulations reveal various energetically stable periodic chain structures containing cis-FA conformers. These chain structures contain either purely cis or both cis and trans forms. The vibrational frequencies of the calculated structures were compared to the experiment and a tentative assignment is given for a novel solid composed of cis-FA.

  16. Visualizing potential energy curves and conformations on ultra high-resolution display walls.

    Science.gov (United States)

    Kirschner, Karl N; Reith, Dirk; Jato, Oliver; Hinkenjann, André

    2015-11-01

    In this contribution, we examine how visualization on an ultra high-resolution display wall can augment force-field research in the field of molecular modeling. Accurate force fields are essential for producing reliable simulations, and subsequently important for several fields of applications (e.g. rational drug design and biomolecular modeling). We discuss how using HORNET, a recently constructed specific ultra high-resolution tiled display wall, enhances the visual analytics that are necessary for conformational-based interpretation of the raw data from molecular calculations. Simultaneously viewing multiple potential energy graphs and conformation overlays leads to an enhanced way of evaluating force fields and in their optimization. Consequently, we have integrated visual analytics into our existing Wolf2Pack workflow. We applied this workflow component to analyze how major AMBER force fields (Parm14SB, Gaff, Lipid14, Glycam06j) perform at reproducing the quantum mechanics relative energies and geometries of saturated hydrocarbons. Included in this comparison are the 1996 OPLS force field and our newly developed ExTrM force field. While we focus on atomistic force fields the ideas presented herein are generalizable to other research areas, particularly those that involve numerous representations of large data amounts and whose simultaneous visualization enhances the analysis.

  17. Energy management and conservation at General Motors

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, R.L.

    1982-07-01

    An energy conservation plan on a corporate level, some results and potential benefits, two areas for future savings and a national energy policy, as revealed at the 1982 National Industrial Electric Conference are described. Phases of the program are Administrative Controls, Engineering Solutions, and Financial Controls. Heating, ventilation and air conditioning, the largest energy users in the corporation, comprise 27.6% of the total energy used. Suggested engineering solutions cover product specifications, process changes, heat recovery applications, materials conservation, improved equipment control, and facility changes. Computerized Facility Monitoring and Control Systems (FMC) automatically start and stop energy consuming equipment for maximum conservation. Conservation centers around energy accountability- knowing where, how much, and how wisely it is being used, and its cost.

  18. Conformal field theory

    CERN Document Server

    Ketov, Sergei V

    1995-01-01

    Conformal field theory is an elegant and powerful theory in the field of high energy physics and statistics. In fact, it can be said to be one of the greatest achievements in the development of this field. Presented in two dimensions, this book is designed for students who already have a basic knowledge of quantum mechanics, field theory and general relativity. The main idea used throughout the book is that conformal symmetry causes both classical and quantum integrability. Instead of concentrating on the numerous applications of the theory, the author puts forward a discussion of the general

  19. A coarse-grained generalized second law for holographic conformal field theories

    Science.gov (United States)

    Bunting, William; Fu, Zicao; Marolf, Donald

    2016-03-01

    We consider the universal sector of a d\\gt 2 dimensional large-N strongly interacting holographic CFT on a black hole spacetime background B. When our CFT d is coupled to dynamical Einstein-Hilbert gravity with Newton constant G d , the combined system can be shown to satisfy a version of the thermodynamic generalized second law (GSL) at leading order in G d . The quantity {S}{CFT}+\\frac{A({H}B,{perturbed})}{4{G}d} is non-decreasing, where A({H}B,{perturbed}) is the (time-dependent) area of the new event horizon in the coupled theory. Our S CFT is the notion of (coarse-grained) CFT entropy outside the black hole given by causal holographic information—a quantity in turn defined in the AdS{}d+1 dual by the renormalized area {A}{ren}({H}{{bulk}}) of a corresponding bulk causal horizon. A corollary is that the fine-grained GSL must hold for finite processes taken as a whole, though local decreases of the fine-grained generalized entropy are not obviously forbidden. Another corollary, given by setting {G}d=0, states that no finite process taken as a whole can increase the renormalized free energy F={E}{out}-{{TS}}{CFT}-{{Ω }}J, with T,{{Ω }} constants set by {H}B. This latter corollary constitutes a 2nd law for appropriate non-compact AdS event horizons.

  20. The effect of beam energy on the quality of IMRT plans for prostate conformal radiotherapy.

    Science.gov (United States)

    de Boer, Steven F; Kumek, Yunus; Jaggernauth, Wainwright; Podgorsak, Matthew B

    2007-04-01

    Three dimensional conformal radiation therapy (3DCRT) for prostate cancer is most commonly delivered with high-energy photons, typically in the range of 10-21 MV. With the advent of Intensity Modulated Radiation Therapy (IMRT), an increase in the number of monitor units (MU) relative to 3DCRT has lead to a concern about secondary malignancies. This risk becomes more relevant at higher photon energies where there is a greater neutron contribution. Subsequently, the majority of IMRT prostate treatments being delivered today are with 6-10 MV photons where neutron production is negligible. However, the absolute risk is small [Hall, E. J. Intensity Modulated Radiation Therapy, Protons, and the Risk of Second Cancers. Int J Radiat Oncol Bio Phys 65, 1-7 (2006); Kry, F. S., Salehpour, M., Followill, D. S., Stovall, M., Kuban, D. A., White, R. A., and Rosen, I. I. The Calculated Risk of Fatal Secondary Malignancies From Intensity Modulated Radiation Therapy. Int J Radiat Oncol Bio Phys 62, 1195-1203 (2005).] and therefore it has been suggested that the use of an 18MV IMRT may achieve better target coverage and normal tissue sparing such that this benefit outweighs the risks. This paper investigates whether 18MV IMRT offer better target coverage and normal tissue sparing. Computed Tomography (CT) image sets of ten prostate cancer patients were acquired and two separate IMRT plans were created for each patient. One plan used 6 MV beams, and the other used 18 MV, both in a coplanar, non-opposed beam geometry. Beam arrangements and optimization constraints were the same for all plans. This work includes a comparison and discussion of the total integral dose, neutron dose conformity index, and total number of MU for plans generated with both energies.

  1. A reoptimized GROMOS force field for hexopyranose-based carbohydrates accounting for the relative free energies of ring conformers, anomers, epimers, hydroxymethyl rotamers, and glycosidic linkage conformers.

    Science.gov (United States)

    Hansen, Halvor S; Hünenberger, Philippe H

    2011-04-30

    This article presents a reoptimization of the GROMOS 53A6 force field for hexopyranose-based carbohydrates (nearly equivalent to 45A4 for pure carbohydrate systems) into a new version 56A(CARBO) (nearly equivalent to 53A6 for non-carbohydrate systems). This reoptimization was found necessary to repair a number of shortcomings of the 53A6 (45A4) parameter set and to extend the scope of the force field to properties that had not been included previously into the parameterization procedure. The new 56A(CARBO) force field is characterized by: (i) the formulation of systematic build-up rules for the automatic generation of force-field topologies over a large class of compounds including (but not restricted to) unfunctionalized polyhexopyranoses with arbritrary connectivities; (ii) the systematic use of enhanced sampling methods for inclusion of experimental thermodynamic data concerning slow or unphysical processes into the parameterization procedure; and (iii) an extensive validation against available experimental data in solution and, to a limited extent, theoretical (quantum-mechanical) data in the gas phase. At present, the 56A(CARBO) force field is restricted to compounds of the elements C, O, and H presenting single bonds only, no oxygen functions other than alcohol, ether, hemiacetal, or acetal, and no cyclic segments other than six-membered rings (separated by at least one intermediate atom). After calibration, this force field is shown to reproduce well the relative free energies of ring conformers, anomers, epimers, hydroxymethyl rotamers, and glycosidic linkage conformers. As a result, the 56A(CARBO) force field should be suitable for: (i) the characterization of the dynamics of pyranose ring conformational transitions (in simulations on the microsecond timescale); (ii) the investigation of systems where alternative ring conformations become significantly populated; (iii) the investigation of anomerization or epimerization in terms of free-energy differences

  2. Energy management and conservation at General Motors

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, R.L.

    1982-07-01

    An energy conservation plan on a corporate level, some of the results and potential benefits, two specific areas for future savings and a national energy policy are described. It is from a paper presented during the 1982 National Industrial Electric Conference, sponsored by The Electrification Council and held in Lexington, Ky. The formal energy conservation program has evolved into three phases: Phase I - Administrative Controls; Phase II - Engineering Solutions; Phase III - Financial Controls. All GM plants worldwide have completed a Five Year Energy Conservation Plan for the period 1981 through 1985. A summary of the Plans from 217 locations reveals that the potential exists to save another 39.1 billion Btu by 1985 at a cost of /572 million. The payback for such projects averages three years.

  3. LEAR (Low Energy Antiproton Ring), general view.

    CERN Multimedia

    1990-01-01

    When the Antiproton Project was launched in the late 1970s, it was recognized that in addition to the primary purpose of high-energy proton-antiproton collisions in the SPS, there was interesting physics to be done with low-energy antiprotons. In 1982, LEAR was ready to receive antiprotons from the Antiproton Accumulator (AA), via the PS. A year later, delivery of antiprotons to the experiments began, at momenta as low as 100 MeV/c (kinetic energy 5.3 MeV), in an "Ultra-Slow Extraction" mode, dispensing some E9 antiprotons over times counted in hours. For such an achievement, stochastic and electron cooling had to be brought to high levels of perfection.

  4. The Activation of c-Src Tyrosine Kinase: Conformational Transition Pathway and Free Energy Landscape.

    Science.gov (United States)

    Fajer, Mikolai; Meng, Yilin; Roux, Benoît

    2016-10-28

    Tyrosine kinases are important cellular signaling allosteric enzymes that regulate cell growth, proliferation, metabolism, differentiation, and migration. Their activity must be tightly controlled, and malfunction can lead to a variety of diseases, particularly cancer. The nonreceptor tyrosine kinase c-Src, a prototypical model system and a representative member of the Src-family, functions as complex multidomain allosteric molecular switches comprising SH2 and SH3 domains modulating the activity of the catalytic domain. The broad picture of self-inhibition of c-Src via the SH2 and SH3 regulatory domains is well characterized from a structural point of view, but a detailed molecular mechanism understanding is nonetheless still lacking. Here, we use advanced computational methods based on all-atom molecular dynamics simulations with explicit solvent to advance our understanding of kinase activation. To elucidate the mechanism of regulation and self-inhibition, we have computed the pathway and the free energy landscapes for the "inactive-to-active" conformational transition of c-Src for different configurations of the SH2 and SH3 domains. Using the isolated c-Src catalytic domain as a baseline for comparison, it is observed that the SH2 and SH3 domains, depending upon their bound orientation, promote either the inactive or active state of the catalytic domain. The regulatory structural information from the SH2-SH3 tandem is allosterically transmitted via the N-terminal linker of the catalytic domain. Analysis of the conformational transition pathways also illustrates the importance of the conserved tryptophan 260 in activating c-Src, and reveals a series of concerted events during the activation process.

  5. Computing conformational free energy differences in explicit solvent: An efficient thermodynamic cycle using an auxiliary potential and a free energy functional constructed from the end points.

    Science.gov (United States)

    Harris, Robert C; Deng, Nanjie; Levy, Ronald M; Ishizuka, Ryosuke; Matubayasi, Nobuyuki

    2016-12-23

    Many biomolecules undergo conformational changes associated with allostery or ligand binding. Observing these changes in computer simulations is difficult if their timescales are long. These calculations can be accelerated by observing the transition on an auxiliary free energy surface with a simpler Hamiltonian and connecting this free energy surface to the target free energy surface with free energy calculations. Here, we show that the free energy legs of the cycle can be replaced with energy representation (ER) density functional approximations. We compute: (1) The conformational free energy changes for alanine dipeptide transitioning from the right-handed free energy basin to the left-handed basin and (2) the free energy difference between the open and closed conformations of β-cyclodextrin, a "host" molecule that serves as a model for molecular recognition in host-guest binding. β-cyclodextrin contains 147 atoms compared to 22 atoms for alanine dipeptide, making β-cyclodextrin a large molecule for which to compute solvation free energies by free energy perturbation or integration methods and the largest system for which the ER method has been compared to exact free energy methods. The ER method replaced the 28 simulations to compute each coupling free energy with two endpoint simulations, reducing the computational time for the alanine dipeptide calculation by about 70% and for the β-cyclodextrin by > 95%. The method works even when the distribution of conformations on the auxiliary free energy surface differs substantially from that on the target free energy surface, although some degree of overlap between the two surfaces is required. © 2016 Wiley Periodicals, Inc.

  6. Integrated Hamiltonian sampling: a simple and versatile method for free energy simulations and conformational sampling.

    Science.gov (United States)

    Mori, Toshifumi; Hamers, Robert J; Pedersen, Joel A; Cui, Qiang

    2014-07-17

    Motivated by specific applications and the recent work of Gao and co-workers on integrated tempering sampling (ITS), we have developed a novel sampling approach referred to as integrated Hamiltonian sampling (IHS). IHS is straightforward to implement and complementary to existing methods for free energy simulation and enhanced configurational sampling. The method carries out sampling using an effective Hamiltonian constructed by integrating the Boltzmann distributions of a series of Hamiltonians. By judiciously selecting the weights of the different Hamiltonians, one achieves rapid transitions among the energy landscapes that underlie different Hamiltonians and therefore an efficient sampling of important regions of the conformational space. Along this line, IHS shares similar motivations as the enveloping distribution sampling (EDS) approach of van Gunsteren and co-workers, although the ways that distributions of different Hamiltonians are integrated are rather different in IHS and EDS. Specifically, we report efficient ways for determining the weights using a combination of histogram flattening and weighted histogram analysis approaches, which make it straightforward to include many end-state and intermediate Hamiltonians in IHS so as to enhance its flexibility. Using several relatively simple condensed phase examples, we illustrate the implementation and application of IHS as well as potential developments for the near future. The relation of IHS to several related sampling methods such as Hamiltonian replica exchange molecular dynamics and λ-dynamics is also briefly discussed.

  7. Universal geometrical factor of protein conformations as a consequence of energy minimization

    CERN Document Server

    Wu, Ming-Chya; Ma, Wen-Jong; Kouza, Maksim; Hu, Chin-Kun; 10.1209/0295-5075/96/68005

    2012-01-01

    The biological activity and functional specificity of proteins depend on their native three-dimensional structures determined by inter- and intra-molecular interactions. In this paper, we investigate the geometrical factor of protein conformation as a consequence of energy minimization in protein folding. Folding simulations of 10 polypeptides with chain length ranging from 183 to 548 residues manifest that the dimensionless ratio (V/(A)) of the van der Waals volume V to the surface area A and average atomic radius of the folded structures, calculated with atomic radii setting used in SMMP [Eisenmenger F., et. al., Comput. Phys. Commun., 138 (2001) 192], approach 0.49 quickly during the course of energy minimization. A large scale analysis of protein structures show that the ratio for real and well-designed proteins is universal and equal to 0.491\\pm0.005. The fractional composition of hydrophobic and hydrophilic residues does not affect the ratio substantially. The ratio also holds for intrinsically disorde...

  8. Octonionic M-theory and D=11 Generalized Conformal and Superconformal Algebras

    CERN Document Server

    Lukierski, J

    2003-01-01

    Following [1] we further apply the octonionic structure to supersymmetric D=11 $M$-theory. We consider the octonionic $2^{n+1} \\times 2^{n+1}$ Dirac matrices describing the sequence of Clifford algebras with signatures ($9+n,n$) ($n=0,1,2, ...$) and derive the identities following from the octonionic multiplication table. The case $n=1$ ($4\\times 4$ octonion-valued matrices) is used for the description of the D=11 octonionic $M$-superalgebra with 52 real bosonic charges; the $n=2$ case ($8 \\times 8$ octonion-valued matrices) for the D=11 conformal $M$-algebra with 232 real bosonic charges. The octonionic structure is described explicitly for $n=1$ by the relations between the 512 Abelian O(10,1) tensorial charges $Z_\\mu$, $Z_{\\mu\

  9. The clinical potential of high energy, intensity and energy modulated electron beams optimized by simulated annealing for conformal radiation therapy

    Science.gov (United States)

    Salter, Bill Jean, Jr.

    Purpose. The advent of new, so called IVth Generation, external beam radiation therapy treatment machines (e.g. Scanditronix' MM50 Racetrack Microtron) has raised the question of how the capabilities of these new machines might be exploited to produce extremely conformal dose distributions. Such machines possess the ability to produce electron energies as high as 50 MeV and, due to their scanned beam delivery of electron treatments, to modulate intensity and even energy, within a broad field. Materials and methods. Two patients with 'challenging' tumor geometries were selected from the patient archives of the Cancer Therapy and Research Center (CTRC), in San Antonio Texas. The treatment scheme that was tested allowed for twelve, energy and intensity modulated beams, equi-spaced about the patient-only intensity was modulated for the photon treatment. The elementary beams, incident from any of the twelve allowed directions, were assumed parallel, and the elementary electron beams were modeled by elementary beam data. The optimal arrangement of elementary beam energies and/or intensities was optimized by Szu-Hartley Fast Simulated Annealing Optimization. Optimized treatment plans were determined for each patient using both the high energy, intensity and energy modulated electron (HIEME) modality, and the 6 MV photon modality. The 'quality' of rival plans were scored using three different, popular objective functions which included Root Mean Square (RMS), Maximize Dose Subject to Dose and Volume Limitations (MDVL - Morrill et. al.), and Probability of Uncomplicated Tumor Control (PUTC) methods. The scores of the two optimized treatments (i.e. HIEME and intensity modulated photons) were compared to the score of the conventional plan with which the patient was actually treated. Results. The first patient evaluated presented a deeply located target volume, partially surrounding the spinal cord. A healthy right kidney was immediately adjacent to the tumor volume, separated

  10. Paul Scherrer Institute Scientific Report 1998. Volume V: General Energy

    Energy Technology Data Exchange (ETDEWEB)

    Daum, C.; Leuenberger, J. [eds.

    1999-08-01

    In view of its mission to contribute towards the development of a globally more sustainable energy supply system, the General Energy Department is focusing on four topical areas: advancing technologies for the use of renewable energies; investigating options for chemical and electrochemical energy storage on various time scales; developing highly efficient converters for the low emission use of fossil and renewable fuels, including both combustion devices and fuel cells; analyzing the consequences of energy use, and advancing scenarios for the development of the energy supply system. Progress in 1998 in these topical areas is described in this report. A list of scientific publications in 1998 is also provided. (author) figs., tabs., refs.

  11. Combined experimental powder X-ray diffraction and DFT data to obtain the lowest energy molecular conformation of friedelin

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Djalma Menezes de; Mussel, Wagner da Nova; Duarte, Lucienir Pains; Silva, Gracia Divina de Fatima; Duarte, Helio Anderson; Gomes, Elionai Cassiana de Lima [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Quimica; Guimaraes, Luciana [Universidade Federal de Sao Joao Del-Rei (UFSJ), MG (Brazil). Dept. de Ciencias Naturais; Vieira Filho, Sidney A., E-mail: bibo@ef.ufop.br [Universidade Federal de Ouro Preto (UFOP), MG (Brazil). Dept. de Farmacia

    2012-07-01

    Friedelin molecular conformers were obtained by Density Functional Theory (DFT) and by ab initio structure determination from powder X-ray diffraction. Their conformers with the five rings in chair-chair-chair-boat-boat, and with all rings in chair, are energy degenerated in gas-phase according to DFT results. The powder diffraction data reveals that rings A, B and C of friedelin are in chair, and rings D and E in boat-boat, conformation. The high correlation values among powder diffraction data, DFT and reported single crystal data indicate that the use of conventional X-ray diffractometer can be applied in routine laboratory analysis in the absence of a single-crystal diffractometer. (author)

  12. Combined experimental powder X-ray diffraction and DFT data to obtain the lowest energy molecular conformation of friedelin

    Directory of Open Access Journals (Sweden)

    Djalma Menezes de Oliveira

    2012-01-01

    Full Text Available Friedelin molecular conformers were obtained by Density Functional Theory (DFT and by ab initio structure determination from powder X-ray diffraction. Their conformers with the five rings in chair-chair-chair-boat-boat, and with all rings in chair, are energy degenerated in gas-phase according to DFT results. The powder diffraction data reveals that rings A, B and C of friedelin are in chair, and rings D and E in boat-boat, conformation. The high correlation values among powder diffraction data, DFT and reported single-crystal data indicate that the use of conventional X-ray diffractometer can be applied in routine laboratory analysis in the absence of a single-crystal diffractometer.

  13. Generalized ghost dark energy in Brans-Dicke theory

    CERN Document Server

    Sheykhi, A; Yosefi, Y

    2013-01-01

    It was argued that the vacuum energy of the Veneziano ghost field of QCD, in a time-dependent background, can be written in the general form, $H + O(H^2)$, where $H$ is the Hubble parameter. Based on this, a phenomenological dark energy model whose energy density is of the form $\\rho=\\alpha H+\\beta H^{2}$ was recently proposed to explain the dark energy dominated universe. In this paper, we investigate this generalized ghost dark energy model in the setup of Brans-Dicke cosmology. We study the cosmological implications of this model. In particular, we obtain the equation of state and the deceleration parameters and a differential equation governing the evolution of this dark energy model. It is shown that the equation of state parameter of the new ghost dark energy can cross the phantom line ($w_D=-1$) provided the parameters of the model are chosen suitably.

  14. Commercial Building Partnership General Merchandise Energy Savings Overview

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    The Commercial Building Partnership (CBP) paired selected commercial building owners and operators with representatives of DOE, national laboratories and private sector exports to explore energy efficiency measures across general merchandise commercial buildings.

  15. General Merchandise 50% Energy Savings Technical Support Document

    Energy Technology Data Exchange (ETDEWEB)

    Hale, E.; Leach, M.; Hirsch, A.; Torcellini, P.

    2009-09-01

    This report documents technical analysis for medium-box general merchandise stores aimed at providing design guidance that achieves whole-building energy savings of at least 50% over ASHRAE Standard 90.1-2004.

  16. Chinese hotel general managers' perspectives on energy-saving practices

    Science.gov (United States)

    Zhu, Yidan

    As hotels' concern about sustainability and budget-control is growing steadily, energy-saving issues have become one of the important management concerns hospitality industry face. By executing proper energy-saving practices, previous scholars believed that hotel operation costs can decrease dramatically. Moreover, they believed that conducting energy-saving practices may eventually help the hotel to gain other benefits such as an improved reputation and stronger competitive advantage. The energy-saving issue also has become a critical management problem for the hotel industry in China. Previous research has not investigated energy-saving in China's hotel segment. To achieve a better understanding of the importance of energy-saving, this document attempts to present some insights into China's energy-saving practices in the tourist accommodations sector. Results of the study show the Chinese general managers' attitudes toward energy-saving issues and the differences among the diverse hotel managers who responded to the study. Study results indicate that in China, most of the hotels' energy bills decrease due to the implementation of energy-saving equipments. General managers of hotels in operation for a shorter period of time are typically responsible for making decisions about energy-saving issues; older hotels are used to choosing corporate level concerning to this issue. Larger Chinese hotels generally have official energy-saving usage training sessions for employees, but smaller Chinese hotels sometimes overlook the importance of employee training. The study also found that for the Chinese hospitality industry, energy-saving practices related to electricity are the most efficient and common way to save energy, but older hotels also should pay attention to other ways of saving energy such as water conservation or heating/cooling system.

  17. Conformal Infinity

    Directory of Open Access Journals (Sweden)

    Frauendiener Jörg

    2000-08-01

    Full Text Available The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, ``conformal infinity'' is related with almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved out of physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation and how it lends itself very naturally to solve radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.

  18. Conformal Infinity

    Science.gov (United States)

    Frauendiener, Jörg

    2004-12-01

    The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, "conformal infinity" is related to almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved from physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation, and how it lends itself very naturally to the solution of radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.

  19. Conformal Infinity

    Directory of Open Access Journals (Sweden)

    Frauendiener Jörg

    2004-01-01

    Full Text Available The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, 'conformal infinity' is related to almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved from physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation, and how it lends itself very naturally to the solution of radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.

  20. Full QM Calculation of RNA Energy Using Electrostatically Embedded Generalized Molecular Fractionation with Conjugate Caps Method.

    Science.gov (United States)

    Jin, Xinsheng; Zhang, John Z H; He, Xiao

    2017-03-30

    In this study, the electrostatically embedded generalized molecular fractionation with conjugate caps (concaps) method (EE-GMFCC) was employed for efficient linear-scaling quantum mechanical (QM) calculation of total energies of RNAs. In the EE-GMFCC approach, the total energy of RNA is calculated by taking a proper combination of the QM energy of each nucleotide-centric fragment with large caps or small caps (termed EE-GMFCC-LC and EE-GMFCC-SC, respectively) deducted by the energies of concaps. The two-body QM interaction energy between non-neighboring ribonucleotides which are spatially in close contact are also taken into account for the energy calculation. Numerical studies were carried out to calculate the total energies of a number of RNAs using the EE-GMFCC-LC and EE-GMFCC-SC methods at levels of the Hartree-Fock (HF) method, density functional theory (DFT), and second-order many-body perturbation theory (MP2), respectively. The results show that the efficiency of the EE-GMFCC-SC method is about 3 times faster than the EE-GMFCC-LC method with minimal accuracy sacrifice. The EE-GMFCC-SC method is also applied for relative energy calculations of 20 different conformers of two RNA systems using HF and DFT, respectively. Both single-point and relative energy calculations demonstrate that the EE-GMFCC method has deviations from the full system results of only a few kcal/mol.

  1. Determination of the electron-detachment energies of 2'-deoxyguanosine 5'-monophosphate anion: influence of the conformation.

    Science.gov (United States)

    Rubio, Mercedes; Roca-Sanjuán, Daniel; Serrano-Andrés, Luis; Merchán, Manuela

    2009-02-26

    The vertical electron-detachment energies (VDEs) of the singly charged 2'-deoxyguanosine 5'-monophosphate anion (dGMP-) are determined by using the multiconfigurational second-order perturbation CASPT2 method at the MP2 ground-state equilibrium geometry of relevant conformers. The origin of the unique low-energy band in the gas phase photoelectron spectrum of dGMP-, with maximum at around 5.05 eV, is unambiguously assigned to electron detachment from the highest occupied molecular orbital of pi-character belonging to guanine fragment of a syn conformation. The presence of a short H-bond linking the 2-amino and phosphate groups, the guanine moiety acting as proton donor, is precisely responsible for the pronounced decrease of the computed VDE with respect to that obtained in other conformations. As a whole, the present research supports the nucleobase as the site with the lowest ionization potential in negatively charged (deprotonated) nucleotides at the most stable conformations as well as for B-DNA-like type arrangements, in agreement with experimental evidence.

  2. Control systems are General Motors' biggest energy saver

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    In 1978, General Motors Corp. used almost 3% less energy than it did in 1972, even though production had increased about 25%. Most of the savings are the result of improved technology and design changes in buildings, equipment, and processes. Computerized energy management control systems are now in operation or being installed in 78 GM buildings.

  3. Development of the Model of the Generalized Quintom Dark Energy

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; GUI Yuan-Xing; SHAO Ying

    2006-01-01

    @@ We consider a generalized quintom (GQ) dark energy modelfor changing the equal weight of the negative-kinetic scalar field (phantom) and the normal scalar field (quintessence) in quintom dark energy. Though the phantomdominated scaling solution is a stable late-time attractor, the early evolution of GQ is different from that of the quintom model and the adjustability of the dark energy state equation in the model is improved.

  4. Available Potential Energy and the Maintenance of the General Circulation

    OpenAIRE

    Lorenz, Edward N.

    2011-01-01

    The available potential energy of the atmosphere may be defined as the difference between the total potential energy and the minimum total potential energy which could result from any adiabatic redistribution of mass. It vanishes if the density stratification is horizontal and statically stable everywhere, and is positive otherwise. It is measured approximately by a weighted vertical average of the horizontal variance of temperature. In magnitude it is generally about ten times the total kine...

  5. Dissecting CFT Correlators and String Amplitudes. Conformal Blocks and On-Shell Recursion for General Tensor Fields

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Tobias

    2015-07-15

    This thesis covers two main topics: the tensorial structure of quantum field theory correlators in general spacetime dimensions and a method for computing string theory scattering amplitudes directly in target space. In the first part tensor structures in generic bosonic CFT correlators and scattering amplitudes are studied. To this end arbitrary irreducible tensor representations of SO(d) (traceless mixed-symmetry tensors) are encoded in group invariant polynomials, by contracting with sets of commuting and anticommuting polarization vectors which implement the index symmetries of the tensors. The tensor structures appearing in CFT{sub d} correlators can then be inferred by studying these polynomials in a d + 2 dimensional embedding space. It is shown with an example how these correlators can be used to compute general conformal blocks describing the exchange of mixed-symmetry tensors in four-point functions, which are crucial for advancing the conformal bootstrap program to correlators of operators with spin. Bosonic string theory lends itself as an ideal example for applying the same methods to scattering amplitudes, due to its particle spectrum of arbitrary mixed-symmetry tensors. This allows in principle the definition of on-shell recursion relations for string theory amplitudes. A further chapter introduces a different target space definition of string scattering amplitudes. As in the case of on-shell recursion relations, the amplitudes are expressed in terms of their residues via BCFW shifts. The new idea here is that the residues are determined by use of the monodromy relations for open string theory, avoiding the infinite sums over the spectrum arising in on-shell recursion relations. Several checks of the method are presented, including a derivation of the Koba-Nielsen amplitude in the bosonic string. It is argued that this method provides a target space definition of the complete S-matrix of string theory at tree-level in a at background in terms of a

  6. A coarse-grained generalized second law for holographic conformal field theories

    CERN Document Server

    Bunting, William; Marolf, Donald

    2015-01-01

    We consider the universal sector of a $d$-dimensional large-$N$ strongly-interacting holographic CFT on a black hole spacetime background $B$. When our CFT$_d$ is coupled to dynamical Einstein-Hilbert gravity with Newton constant $G_{d}$, the combined system can be shown to satisfy a version of the thermodynamic Generalized Second Law (GSL) at leading order in $G_{d}$. The quantity $S_{CFT} + \\frac{A(H_{B, \\text{perturbed}})}{4G_{d}}$ is non-decreasing, where $A(H_{B, \\text{perturbed}})$ is the (time-dependent) area of the new event horizon in the coupled theory. Our $S_{CFT}$ is the notion of (coarse-grained) CFT entropy outside the black hole given by causal holographic information -- a quantity in turn defined in the AdS$_{d+1}$ dual by the renormalized area $A_{ren}(H_{\\rm bulk})$ of a corresponding bulk causal horizon. A corollary is that the fine-grained GSL must hold for finite processes taken as a whole, though local decreases of the fine-grained generalized entropy are not obviously forbidden. Anothe...

  7. 76 FR 11437 - Application To Export Electric Energy; Societe Generale Energy Corp.

    Science.gov (United States)

    2011-03-02

    ... Application To Export Electric Energy; Societe Generale Energy Corp. AGENCY: Office of Electricity Delivery.... (SGEC) has applied for authority to transmit electric energy from the United States to Canada pursuant... application from the SGEC for authority to transmit electric energy from the United States to Canada as...

  8. Finding low-energy conformations of lattice protein models by quantum annealing

    CERN Document Server

    Perdomo-Ortiz, Alejandro; Drew-Brook, Marshall; Rose, Geordie; Aspuru-Guzik, Alán

    2012-01-01

    Lattice protein folding models are a cornerstone of computational biophysics. Although these models are a coarse grained representation, they provide useful insight into the energy landscape of natural proteins. Finding low-energy three-dimensional structures is an intractable problem even in the simplest model, the Hydrophobic-Polar (HP) model. Exhaustive search of all possible global minima is limited to sequences in the tens of amino acids. Description of protein-like properties are more accurately described by generalized models, such as the one proposed by Miyazawa and Jernigan (MJ), which explicitly take into account the unique interactions among all 20 amino acids. There is theoretical and experimental evidence of the advantage of solving classical optimization problems using quantum annealing over its classical analogue (simulated annealing). In this report, we present a benchmark implementation of quantum annealing for a biophysical problem (six different experiments up to 81 superconducting quantum ...

  9. General relativistic models for rotating magnetized neutron stars in conformally flat space-time

    Science.gov (United States)

    Pili, A. G.; Bucciantini, N.; Del Zanna, L.

    2017-09-01

    The extraordinary energetic activity of magnetars is usually explained in terms of dissipation of a huge internal magnetic field of the order of 1015-16 G. How such a strong magnetic field can originate during the formation of a neutron star (NS) is still subject of active research. An important role can be played by fast rotation: if magnetars are born as millisecond rotators dynamo mechanisms may efficiently amplify the magnetic field inherited from the progenitor star during the collapse. In this case, the combination of rapid rotation and strong magnetic field determine the right physical condition not only for the development of a powerful jet-driven explosion, manifesting as a gamma-ray burst, but also for a copious gravitational waves emission. Strong magnetic fields are indeed able to induce substantial quadrupolar deformations in the star. In this paper, we analyse the joint effect of rotation and magnetization on the structure of a polytropic and axisymmetric NS, within the ideal magneto-hydrodynamic regime. We will consider either purely toroidal or purely poloidal magnetic field geometries. Through the sampling of a large parameter space, we generalize previous results in literature, inferring new quantitative relations that allow for a parametrization of the induced deformation, that takes into account also the effects due to the stellar compactness and the current distribution. Finally, in the case of purely poloidal field, we also discuss how different prescription on the surface charge distribution (a gauge freedom) modify the properties of the surrounding electrosphere and its physical implications.

  10. Kerr-Taub-NUT General Frame, Energy, and Momentum in Teleparallel Equivalent of General Relativity

    Directory of Open Access Journals (Sweden)

    Gamal G. L. Nashed

    2012-01-01

    Full Text Available A new exact solution describing a general stationary and axisymmetric object of the gravitational field in the framework of teleparallel equivalent of general relativity (TEGR is derived. The solution is characterized by three parameters “the gravitational mass M, the rotation a, and the NUT L.” The vierbein field is axially symmetric, and the associated metric gives the Kerr-Taub-NUT spacetime. Calculation of the total energy using two different methods, the gravitational energy momentum and the Riemannian connection 1-form Γα̃β, is carried out. It is shown that the two methods give the same results of energy and momentum. The value of energy is shown to depend on the mass M and the NUT parameter L. If L is vanishing, then the total energy reduced to the energy of Kerr black hole.

  11. How Do DFT-DCP, DFT-NL, and DFT-D3 Compare for the Description of London-Dispersion Effects in Conformers and General Thermochemistry?

    Science.gov (United States)

    Goerigk, Lars

    2014-03-11

    The dispersion-core-potential corrected B3LYP-DCP method (Torres and DiLabio J. Phys. Chem. Lett. 2012, 3, 1738) is for the first time thoroughly assessed and compared with the B3LYP-NL (Hujo and Grimme J. Chem. Theory Comput. 2011, 7, 3866) and B3LYP-D3 (Grimme et al. J. Comput. Chem. 2011, 32, 1456) methods for a broad range of chemical problems that particularly shed light on intramolecular London-dispersion effects in conformers and general thermochemistry. The analysis is based on a compilation of 473 reference cases, the majority of which are taken from the GMTKN30 database (Goerigk and Grimme J. Chem. Theory Comput. 2010, 6, 107; 2011, 7, 291). The results confirm previous findings that B3LYP-DCP indeed predicts very good binding energies for noncovalently bound complexes, particularly with small basis sets. However, problems are identified for the description of intramolecular effects in some conformers and chemical reactions, for which B3LYP-DCP sometimes gives results similar or worse than uncorrected B3LYP. Surprisingly large errors for total atomization energies reveal an unwanted influence of the DCPs on the short-range electronic structure of the investigated systems. However, a recently modified carbon potential for B3LYP-DCP (DiLabio et al. Theor. Chem. Acc. 2013, 132, 1389) was additionally tested that seems to solve most of those problems and provides improved results. An overall comparison between all tested methods shows that B3LYP-NL is the most robust and accurate approach, closely followed by B3LYP-D3. This is also true when small basis sets of double-ζ quality are applied for which those methods have not been parametrized. However, binding energies of noncovalently bound complexes can be more strongly influenced by basis-set superposition-error effects than for B3LYP-DCP. Finally, it is noted that the DFT-D3 and DFT-NL schemes are readily applicable to a large range of chemical elements and they are therefore particularly recommended for

  12. How universal are hydrogen bond correlations? A density functional study of intramolecular hydrogen bonding in low-energy conformers of α-amino acids

    Science.gov (United States)

    Ramaniah, Lavanya M.; Kamal, C.; Kshirsagar, Rohidas J.; Chakrabarti, Aparna; Banerjee, Arup

    2013-10-01

    Hydrogen bonding is one of the most important and ubiquitous interactions present in Nature. Several studies have attempted to characterise and understand the nature of this very basic interaction. These include both experimental and theoretical investigations of different types of chemical compounds, as well as systems subjected to high pressure. The O-H..O bond is of course the best studied hydrogen bond, and most studies have concentrated on intermolecular hydrogen bonding in solids and liquids. In this paper, we analyse and characterise normal hydrogen bonding of the general type, D-H...A, in intramolecular hydrogen bonding interactions. Using a first-principles density functional theory approach, we investigate low energy conformers of the twenty α-amino acids. Within these conformers, several different types of intramolecular hydrogen bonds are identified. The hydrogen bond within a given conformer occurs between two molecular groups, either both within the backbone itself, or one in the backbone and one in the side chain. In a few conformers, more than one (type of) hydrogen bond is seen to occur. Interestingly, the strength of the hydrogen bonds in the amino acids spans quite a large range, from weak to strong. The signature of hydrogen bonding in these molecules, as reflected in their theoretical vibrational spectra, is analysed. With the new first-principles data from 51 hydrogen bonds, various parameters relating to the hydrogen bond, such as hydrogen bond length, hydrogen bond angle, bond length and vibrational frequencies are studied. Interestingly, the correlation between these parameters in these bonds is found to be in consonance with those obtained in earlier experimental studies of normal hydrogen bonds on vastly different systems. Our study provides some of the most detailed first-principles support, and the first involving vibrational frequencies, for the universality of hydrogen bond correlations in materials.

  13. Paul Scherrer Institute Scientific Report 1999. Volume V: General Energy

    Energy Technology Data Exchange (ETDEWEB)

    Daum, Christina; Leuenberger, Jakob [eds.

    2000-07-01

    Strengthening of international collaborations represented a strategic goal of the General Energy Research Department for 1999. For the Fifth Framework Program of the European Union, we participated in consortia and in the successful preparation of several proposals. National networks with partners from academia and Industry have been formed in two topical areas of central interest in the context of sustainability, i.e. 'Ecoefficient energy use and material cycles' and 'Sustainable transportation' on the other hand. Research at PSI comprises all aspects of human energy use, with the ultimate goal of promoting development towards a sustainable energy supply system. In the General Energy Research Department, technologies are being advanced for the utilization of renewable energy sources, low-loss energy storage, efficient conversion, and low emission energy use. Experimental and model-based assessment of these emissions forms the basis of a comprehensive assessment of economic, ecological and environmental consequences, for both present and future energy supply systems. The research program of the department is centered around 1) development, use, and characterisation of catalysts for energy technologies in many different fields, like e.g. the partial oxidation of methanol for hydrogen production, the processing of methane by catalytic combustion and reforming; 2) use of concentrated solar radiation to induce chemical conversions, thereby producing energy carriers; 3) development of efficient, less polluting combustion engines and burners by advancing the detailed understanding of reaction mechanisms and combustion pathways; 4) research and development of low temperature polymer electrolyte fuel cells, novel batteries and capacitors, with applications envisaged for electric vehicles, photovoltaics and on-site load leveling; 5) experimental and model based research concerning transportation and chemistry of atmospheric trace gases related to

  14. Extended Theories of Gravity with Generalized Energy Conditions

    CERN Document Server

    Mimoso, José P; Capozziello, Salvatore

    2014-01-01

    We address the problem of the energy conditions in modified gravity taking into account the additional degrees of freedom related to scalar fields and curvature invariants. The latter are usually interpreted as generalized {\\it geometrical fluids} that differ in meaning with respect to the matter fluids generally considered as sources of the field equations. In extended gravity theories the curvature terms are encapsulated in a tensor $H^{ab}$ and a coupling $g(\\Psi^i)$ that can be recast as effective Einstein field equations, with corrections to the energy-momentum tensor of matter. The formal validity of standard energy inequalities does not assure basic requirements such as the attractive nature of gravity, so we argue that the energy conditions have to be considered in a wider sense.

  15. Cosmological constraints on the generalized holographic dark energy

    CERN Document Server

    Lu, Jianbo; Wu, Yabo; Wang, Tianqiang

    2012-01-01

    We use the Markov ChainMonte Carlo method to investigate global constraints on the generalized holographic (GH) dark energy with flat and non-flat universe from the current observed data: the Union2 dataset of type supernovae Ia (SNIa), high-redshift Gamma-Ray Bursts (GRBs), the observational Hubble data (OHD), the cluster X-ray gas mass fraction, the baryon acoustic oscillation (BAO), and the cosmic microwave background (CMB) data. The most stringent constraints on the GH model parameter are obtained. In addition, it is found that the equation of state for this generalized holographic dark energy can cross over the phantom boundary wde =-1.

  16. High energy collisions of particles inside ergosphere: general approach

    CERN Document Server

    Zaslavskii, O B

    2013-01-01

    We show that recent observation made in Grib and Pavlov, arXiv:1301.0698 for the Kerr black hole is valid in the general case of rotating axially symmetric metric. Namely, collision of two particles in the ergosphere leads to indefinite growth of the energy in the centre of mass frame, provided the angular momentum of one of two particles is negative and increases without limit for a fixed energy at infinity. General approach enabled us to elucidate, why the role of the ergosphere in this process is crucial.

  17. Paul Scherrer Institut Scientific Report 2003. Volume V: General Energy

    Energy Technology Data Exchange (ETDEWEB)

    Wokaun, Alexander; Daum, Christina (eds.)

    2004-03-01

    Research at PSI comprises all aspects of human energy use, with the ultimate goal of promoting development towards a sustainable energy supply system. In the General Energy Research Department, technologies are being advanced for the utilization of renewable energy sources, low-loss energy storage, efficient conversion, and low emission energy use. Experimental and model-based assessment of these emissions forms the basis of a comprehensive assessment of economic, ecological and environmental consequences, for both present and future energy supply systems. The research program of the department is centered around 1) development, use, and characterisation of catalysts for energy technologies in many different fields, like e.g. the partial oxidation of methanol for hydrogen production, the processing of methane by catalytic combustion and reforming; 2) use of concentrated solar radiation to induce chemical conversions, thereby producing energy carriers; 3) development of efficient, less polluting combustion engines and burners by advancing the detailed understanding of reaction mechanisms and combustion pathways; 4) research and development of low temperature polymer electrolyte fuel cells, novel batteries and capacitors, with applications envisaged for electric vehicles, photovoltaics and on-site load leveling; 5) experimental and model based research concerning transportation and chemistry of atmospheric trace gases related to anthropogenic energy transformations. Progress in 2000 in these topical areas is described in this report. A list of scientific publications in 2002 is also provided.

  18. Paul Scherrer Institut Scientific Report 2001. Volume V: General Energy

    Energy Technology Data Exchange (ETDEWEB)

    Wokaun, Alexander; Daum, Christina (eds.)

    2002-03-01

    Research at PSI comprises all aspects of human energy use, with the ultimate goal of promoting development towards a sustainable energy supply system. In the General Energy Research Department, technologies are being advanced for the utilization of renewable energy sources, low-loss energy storage, efficient conversion, and low emission energy use. Experimental and model-based assessment of these emissions forms the basis of a comprehensive assessment of economic, ecological and environmental consequences, for both present and future energy supply systems. The research program of the department is centered around 1) development, use, and characterisation of catalysts for energy technologies in many different fields, like e.g. the partial oxidation of methanol for hydrogen production, the processing of methane by catalytic combustion and reforming; 2) use of concentrated solar radiation to induce chemical conversions, thereby producing energy carriers; 3) development of efficient, less polluting combustion engines and burners by advancing the detailed understanding of reaction mechanisms and combustion pathways; 4) research and development of low temperature polymer electrolyte fuel cells, novel batteries and capacitors, with applications envisaged for electric vehicles, photovoltaics and on-site load leveling; 5) experimental and model based research concerning transportation and chemistry of atmospheric trace gases related to anthropogenic energy transformations. Progress in 2000 in these topical areas is described in this report. A list of scientific publications in 2001 is also provided.

  19. Paul Scherrer Institute Scientific Report 2000. Volume V: General Energy

    Energy Technology Data Exchange (ETDEWEB)

    Daum, Christina; Leuenberger, Jakob [eds.

    2001-03-01

    Research at PSI comprises all aspects of human energy use, with the ultimate goal of promoting development towards a sustainable energy supply system. In the General Energy Research Department, technologies are being advanced for the utilization of renewable energy sources, low-loss energy storage, efficient conversion, and low emission energy use. Experimental and model-based assessment of these emissions forms the basis of a comprehensive assessment of economic, ecological and environmental consequences, for both present and future energy supply systems. The research program of the department is centered around (1) development, use, and characterisation of catalysts for energy technologies in many different fields, like e.g. the partial oxidation of methanol for hydrogen production, the processing of methane by catalytic combustion and reforming; (2) use of concentrated solar radiation to induce chemical conversions, thereby producing energy carriers; (3) development of efficient, less polluting combustion engines and burners by advancing the detailed understanding of reaction mechanisms and combustion pathways; (4) research and development of low temperature polymer electrolyte fuel cells, novel batteries and capacitors, with applications envisaged for electric vehicles, photovoltaics and on-site load leveling; (5) experimental and model based research concerning transportation and chemistry of atmospheric trace gases related to anthropogenic energy transformations. Progress in 2000 in these topical areas is described in this report. A list of scientific publications in 2000 is also provided.

  20. General business model patterns for Local Energy Management concepts

    Directory of Open Access Journals (Sweden)

    Emanuele eFacchinetti

    2016-03-01

    Full Text Available The transition towards a more sustainable global energy system, significantly relying on renewable energies and decentralized energy systems, requires a deep reorganization of the energy sector. The way how energy services are generated, delivered and traded is expected to be very different in the coming years. Business model innovation is recognized as a key driver for the successful implementation of the energy turnaround. This work contributes to this topic by introducing a heuristic methodology easing the identification of general business model patterns best suited for Local Energy Management concepts such as Energy Hubs. A conceptual framework characterizing the Local Energy Management business model solution space is developed. Three reference business model patterns providing orientation across the defined solution space are identified, analyzed and compared. Through a market review a number of successfully implemented innovative business models have been analyzed and allocated within the defined solution space. The outcomes of this work offer to potential stakeholders a starting point and guidelines for the business model innovation process, as well as insights for policy makers on challenges and opportunities related to Local Energy Management concepts.

  1. Paul Scherrer Institut Scientific Report 2004. Volume V: General Energy

    Energy Technology Data Exchange (ETDEWEB)

    Wokaun, Alexander; Daum, Christina (eds.)

    2005-03-01

    Research at PSI comprises all aspects of human energy use, with the ultimate goal of promoting development towards a sustainable energy supply system. In the General Energy Research Department, technologies are being advanced for the utilization of renewable energy sources, low-loss energy storage, efficient conversion, and low emission energy use. Experimental and model-based assessment of these emissions forms the basis of a comprehensive assessment of economic, ecological and environmental consequences, for both present and future energy supply systems. The research program of the department is centered around 1) development, use, and characterisation of catalysts for energy technologies in many different fields, like e.g. the partial oxidation of methanol for hydrogen production, the processing of methane by catalytic combustion and reforming; 2) use of concentrated solar radiation to induce chemical conversions, thereby producing energy carriers; 3) development of efficient, less polluting combustion engines and burners by advancing the detailed understanding of reaction mechanisms and combustion pathways; 4) research and development of low temperature polymer electrolyte fuel cells, novel batteries and capacitors, with applications envisaged for electric vehicles, photovoltaics and on-site load leveling; 5) experimental and model based research concerning transportation and chemistry of atmospheric trace gases related to anthropogenic energy transformations. Progress in 2000 in these topical areas is described in this report. A list of scientific publications in 2002 is also provided.

  2. Paul Scherrer Institut Scientific Report 2002. Volume V: General Energy

    Energy Technology Data Exchange (ETDEWEB)

    Wokaun, Alexander; Daum, Christina (eds.)

    2003-03-01

    Research at PSI comprises all aspects of human energy use, with the ultimate goal of promoting development towards a sustainable energy supply system. In the General Energy Research Department, technologies are being advanced for the utilization of renewable energy sources, low-loss energy storage, efficient conversion, and low emission energy use. Experimental and model-based assessment of these emissions forms the basis of a comprehensive assessment of economic, ecological and environmental consequences, for both present and future energy supply systems. The research program of the department is centered around 1) development, use, and characterisation of catalysts for energy technologies in many different fields, like e.g. the partial oxidation of methanol for hydrogen production, the processing of methane by catalytic combustion and reforming; 2) use of concentrated solar radiation to induce chemical conversions, thereby producing energy carriers; 3) development of efficient, less polluting combustion engines and burners by advancing the detailed understanding of reaction mechanisms and combustion pathways; 4) research and development of low temperature polymer electrolyte fuel cells, novel batteries and capacitors, with applications envisaged for electric vehicles, photovoltaics and on-site load leveling; 5) experimental and model based research concerning transportation and chemistry of atmospheric trace gases related to anthropogenic energy transformations. Progress in 2000 in these topical areas is described in this report. A list of scientific publications in 2002 is also provided.

  3. Paul Scherrer Institute Scientific Report 2000. Volume V: General Energy

    Energy Technology Data Exchange (ETDEWEB)

    Daum, Christina; Leuenberger, Jakob [eds.

    2001-07-01

    Research at PSI comprises all aspects of human energy use, with the ultimate goal of promoting development towards a sustainable energy supply system. In the General Energy Research Department, technologies are being advanced for the utilization of renewable energy sources, low-loss energy storage, efficient conversion, and low emission energy use. Experimental and model-based assessment of these emissions forms the basis of a comprehensive assessment of economic, ecological and environmental consequences, for both present and future energy supply systems. The research program of the department is centered around 1) development, use, and characterisation of catalysts for energy technologies in many different fields, like e.g. the partial oxidation of methanol for hydrogen production, the processing of methane by catalytic combustion and reforming; 2) use of concentrated solar radiation to induce chemical conversions, thereby producing energy carriers; 3) development of efficient, less polluting combustion engines and burners by advancing the detailed understanding of reaction mechanisms and combustion pathways; 4) research and development of low temperature polymer electrolyte fuel cells, novel batteries and capacitors, with applications envisaged for electric vehicles, photovoltaics and on-site load leveling; 5) experimental and model based research concerning transportation and chemistry of atmospheric trace gases related to anthropogenic energy transformations. Progress in 2000 in these topical areas is described in this report. A list of scientific publications in 2000 is also provided.

  4. Generalized Lorentz invariance with an invariant energy scale

    CERN Document Server

    Magueijo, J; Magueijo, Joao; Smolin, Lee

    2003-01-01

    The hypothesis that the Lorentz transformations may be modified at Planck scale energies is further explored. We present a general formalism for theories which preserve the relativity of inertial frames with a non-linear action of the Lorentz transformations on momentum space. Several examples are discussed in which the speed of light varies with energy and elementary particles have a maximum momenta and/or energy. Energy and momentum conservation are suitably generalized and a proposal is made for how the new transformation laws apply to composite systems. We then use these results to explain the ultra high energy cosmic ray anomaly and we find a form of the theory that explains the anomaly, and leads also to a maximum momentum and a speed of light that diverges with energy. We finally propose that the spatial coordinates be identified as the generators of translation in Minkowski spacetime. In some examples this leads to a commutative geometry, but with an energy dependent Planck constant.

  5. Exploring transition pathway and free-energy profile of large-scale protein conformational change by combining normal mode analysis and umbrella sampling molecular dynamics.

    Science.gov (United States)

    Wang, Jinan; Shao, Qiang; Xu, Zhijian; Liu, Yingtao; Yang, Zhuo; Cossins, Benjamin P; Jiang, Hualiang; Chen, Kaixian; Shi, Jiye; Zhu, Weiliang

    2014-01-09

    Large-scale conformational changes of proteins are usually associated with the binding of ligands. Because the conformational changes are often related to the biological functions of proteins, understanding the molecular mechanisms of these motions and the effects of ligand binding becomes very necessary. In the present study, we use the combination of normal-mode analysis and umbrella sampling molecular dynamics simulation to delineate the atomically detailed conformational transition pathways and the associated free-energy landscapes for three well-known protein systems, viz., adenylate kinase (AdK), calmodulin (CaM), and p38α kinase in the absence and presence of respective ligands. For each protein under study, the transient conformations along the conformational transition pathway and thermodynamic observables are in agreement with experimentally and computationally determined ones. The calculated free-energy profiles reveal that AdK and CaM are intrinsically flexible in structures without obvious energy barrier, and their ligand binding shifts the equilibrium from the ligand-free to ligand-bound conformation (population shift mechanism). In contrast, the ligand binding to p38α leads to a large change in free-energy barrier (ΔΔG ≈ 7 kcal/mol), promoting the transition from DFG-in to DFG-out conformation (induced fit mechanism). Moreover, the effect of the protonation of D168 on the conformational change of p38α is also studied, which reduces the free-energy difference between the two functional states of p38α and thus further facilitates the conformational interconversion. Therefore, the present study suggests that the detailed mechanism of ligand binding and the associated conformational transition is not uniform for all kinds of proteins but correlated to their respective biological functions.

  6. Conformational selection through electrostatics: Free energy simulations of GTP and GDP binding to archaeal initiation factor 2.

    Science.gov (United States)

    Satpati, Priyadarshi; Simonson, Thomas

    2012-05-01

    Archaeal Initiation Factor 2 is a GTPase involved in protein biosynthesis. In its GTP-bound, "ON" conformation, it binds an initiator tRNA and carries it to the ribosome. In its GDP-bound, "OFF" conformation, it dissociates from tRNA. To understand the specific binding of GTP and GDP and their dependence on the conformational state, molecular dynamics free energy simulations were performed. The ON state specificity was predicted to be weak, with a GTP/GDP binding free energy difference of -1 kcal/mol, favoring GTP. The OFF state specificity is larger, 4 kcal/mol, favoring GDP. The overall effects result from a competition among many interactions in several complexes. To interpret them, we use a simpler, dielectric continuum model. Several effects are robust with respect to the model details. Both nucleotides have a net negative charge, so that removing them from solvent into the binding pocket carries a desolvation penalty, which is large for the ON state, and strongly disfavors GTP binding compared to GDP. Short-range interactions between the additional GTP phosphate group and ionized sidechains in the binding pocket offset most, but not all of the desolvation penalty; more distant groups also contribute significantly, and the switch 1 loop only slightly. The desolvation penalty is lower for the more open, wetter OFF state, and the GTP/GDP difference much smaller. Short-range interactions in the binding pocket and with more distant groups again make a significant contribution. Overall, the simulations help explain how conformational selection is achieved with a single phosphate group. Copyright © 2012 Wiley Periodicals, Inc.

  7. The quantum mechanics based on a general kinetic energy

    CERN Document Server

    Wei, Yuchuan

    2016-01-01

    In this paper, we introduce the Schrodinger equation with a general kinetic energy operator. The conservation law is proved and the probability continuity equation is deducted in a general sense. Examples with a Hermitian kinetic energy operator include the standard Schrodinger equation, the relativistic Schrodinger equation, the fractional Schrodinger equation, the Dirac equation, and the deformed Schrodinger equation. We reveal that the Klein-Gordon equation has a hidden non-Hermitian kinetic energy operator. The probability continuity equation with sources indicates that there exists a different way of probability transportation, which is probability teleportation. An average formula is deducted from the relativistic Schrodinger equation, the Dirac equation, and the K-G equation.

  8. Generalized energy conditions in Extended Theories of Gravity

    CERN Document Server

    Capozziello, Salvatore; Mimoso, José P

    2014-01-01

    Theories of physics can be considered viable if the initial value problem and the energy conditions are formulated self-consistently. The former allow a uniquely determined dynamical evolution of the system, and the latter guarantee that causality is preserved and that "plausible" physical sources have been considered. In this work, we consider the further degrees of freedom related to curvature invariants and scalar fields in Extended Theories of Gravity (ETG). These new degrees of freedom can be recast as effective perfect fluids that carry different meanings with respect to the standard matter fluids generally adopted as sources of the field equations. It is thus somewhat misleading to apply the standard general relativistic energy conditions to this effective energy-momentum, as the latter contains the matter content and a geometrical quantity, which arises from the ETG considered. Here, we explore this subtlety, extending on previous work, in particular, to cases with the contracted Bianchi identities wi...

  9. Generalized Ensemble Sampling of Enzyme Reaction Free Energy Pathways

    Science.gov (United States)

    Wu, Dongsheng; Fajer, Mikolai I.; Cao, Liaoran; Cheng, Xiaolin; Yang, Wei

    2016-01-01

    Free energy path sampling plays an essential role in computational understanding of chemical reactions, particularly those occurring in enzymatic environments. Among a variety of molecular dynamics simulation approaches, the generalized ensemble sampling strategy is uniquely attractive for the fact that it not only can enhance the sampling of rare chemical events but also can naturally ensure consistent exploration of environmental degrees of freedom. In this review, we plan to provide a tutorial-like tour on an emerging topic: generalized ensemble sampling of enzyme reaction free energy path. The discussion is largely focused on our own studies, particularly ones based on the metadynamics free energy sampling method and the on-the-path random walk path sampling method. We hope that this mini presentation will provide interested practitioners some meaningful guidance for future algorithm formulation and application study. PMID:27498634

  10. Generalized trends in the formation energies of perovskite oxides

    DEFF Research Database (Denmark)

    Zeng, Zhenhua; Calle-Vallejo, Federico; Mogensen, Mogens Bjerg

    2013-01-01

    Generalized trends in the formation energies of several families of perovskite oxides (ABO3) and plausible explanations to their existence are provided in this study through a combination of DFT calculations, solid-state physics analyses and simple physical/chemical descriptors. The studied...... systematically on the oxidation state of the A-site cation; and (IV) the trends in formation energies of perovskites with elements from different periods at the B site depend on the oxidation state of A-site cations. Since the energetics of perovskites is shown to be the superposition of the individual...... contributions of their constituent oxides, the trends can be rationalized in terms of A–O and B–O interactions in the ionic crystal. These findings reveal the existence of general systematic trends in the formation energies of perovskites and provide further insight into the role of ion–ion interactions...

  11. Cosmological General Relativity With Scale Factor and Dark Energy

    CERN Document Server

    Oliveira, Firmin J

    2014-01-01

    In this paper the four-dimensional space-velocity Cosmological General Relativity of Carmeli is developed by a general solution to the Einstein field equations. The metric is given in the Tolman form and the vacuum mass density is included in the energy-momentum tensor. The scale factor redshift equation is obtained, forming the basis for deriving the various redshift-distance relations of cosmological analysis. A linear equation of state dependent on the scale factor is assumed to account for the effects of an evolving dark energy in the expansion of the universe. Modeling simulations are provided for a few combinations of mass density, vacuum density and state parameter values over a sample of high redshift SNe Ia data. Also, the Carmeli cosmological model is derived as a special case of the general solution.

  12. General-equilibrium approach to energy/environmental economic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Groncki, P J

    1978-08-01

    This paper presents a brief critique of the use of fixed-coefficient input-output models for use in energy/environmental modeling systems, a shortcoming of input-output models that has been often been noted. Then, given the existence of aggregate, general-equilibrium, variable-coefficient growth models, a methodology is presented for using this information to adjust a recent disaggregated input-output table. This methodology takes into account all of the general-equilibrium aspects of the aggregate model in making the changes in the disaggregate model. The use of various weighting schemes and the implicit technological change biases they embody are examined. The methodology is being tested on historical tables for the United States, and preliminary results are discussed. This methodology's ability to fully capture the general-equilibrium nature of the economy should enhance the usefulness of input-output models in energy/environmental modeling systems.

  13. A big bounce, slow-roll inflation and dark energy from conformal gravity

    CERN Document Server

    Gegenberg, Jack; Seahra, Sanjeev S

    2016-01-01

    We examine the cosmological sector of a gauge theory of gravity based on the SO(4,2) conformal group of Minkowski space. We allow for conventional matter coupled to the spacetime metric as well as matter coupled to the field that gauges special conformal transformations. An effective cosmological constant is generated dynamically via solution of the equations of motion, and this allows us to recover the late time acceleration of the universe. Furthermore, gravitational fields sourced by ordinary cosmological matter (i.e. dust and radiation) are significantly weakened in the very early universe, which has the effect of replacing the big bang with a big bounce. Finally, we find that this bounce is followed by a period of nearly-exponential slow roll inflation that can last long enough to explain the large scale homogeneity of the cosmic microwave background.

  14. Extracting black-hole's rotational energy: the generalized Penrose process

    CERN Document Server

    Lasota, J -P; Abramowicz, M; Tchekhovskoy, A; Narayan, R

    2014-01-01

    In the case involving particles the necessary and sufficient condition for the Penrose process to extract energy from a rotating black hole is absorption of particles with negative energies and angular momenta. No torque at the black hole horizon occurs. In this article we consider the case of arbitrary fields or matter described by an unspecified, general energy-momentum tensor and show that the necessary and sufficient condition for extraction of black-hole's rotational energy is analogous to that in mechanical Penrose process: absorption of negative energy and negative angular momentum. We also show that a necessary condition for the Penrose process to occur is for the Noether current (the conserved energy-momentum density vector) to be spacelike or past-directed (timelike or null) on some part of the horizon. In the particle case our general criterion for the occurrence of a Penrose process reproduces the standard result. In the case of relativistic jet-producing "magnetically arrested disks" we show that...

  15. High Energy Physics Signatures from Inflation and Conformal Symmetry of de Sitter

    CERN Document Server

    Kehagias, Alex

    2015-01-01

    During inflation, the geometry of spacetime is described by a (quasi-)de Sitter phase. Inflationary observables are determined by the underlying (softly broken) de Sitter isometry group SO(1, 4) which acts like a conformal group on R^3: when the fluctuations are on super-Hubble scales, the correlators of the scalar fields are constrained by conformal invariance. Heavy fields with mass m larger than the Hubble rate H correspond to operators with imaginary dimensions in the dual Euclidean three-dimensional conformal field theory. By making use of the dS/CFT correspondence we show that, besides the Boltzmann suppression expected from the thermal properties of de Sitter space, the generic effect of heavy fields in the inflationary correlators of the light fields is to introduce power-law suppressed corrections of the form O(H^2/m^2). This can be seen, for instance, at the level of the four-point correlator for which we provide the correction due to a massive scalar field exchange.

  16. Superspace conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Quella, Thomas [Koeln Univ. (Germany). Inst. fuer Theoretische Physik; Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-07-15

    Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.

  17. Energy-Dependent Fission Q Values Generalized for All Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, R

    2008-09-25

    We generalize Madland's parameterization of the energy release in fission to obtain the dependence of the fission Q values on incident neutron energy, E{sub n}, for all major and minor actinides. These Q(E{sub n}) parameterizations are included in the ENDL2008 release. This paper describes calculations of energy-dependent fission Q values based on parameterizations of the prompt energy release in fission [1], developed by Madland [1] to describe the prompt energy release in neutron-induced fission of {sup 235}U, {sup 238}U, and {sup 239}Pu. The energy release is then related to the energy deposited during fission so that experimentally measurable quantities can be used to obtain the Q values. A discussion of these specific parameterizations and their implementation in the processing code for Monte Carlo neutron transport, MCFGEN, [2] is described in Ref. [3]. We extend this model to describe Q(E) for all actinides, major and minor, in the Evaluated Nuclear Data Library (ENDL) 2008 release, ENDL2008.

  18. Generalized Energy-Dependent Q Values for Fission

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, R

    2010-03-31

    We extend Madland's parameterization of the energy release in fission to obtain the dependence of the fission Q value for major and minor actinides on the incident neutron energies in the range 0 {le} E{sub n} {le} 20 MeV. Our parameterization is based on the actinide evaluations recommended for the ENDF/B-VII.1 release. This paper describes the calculation of energydependent fission Q values based on the calculation of the prompt energy release in fission by Madland. This calculation was adopted for use in the LLNL ENDL database and then generalized to obtain the prompt fission energy release for all actinides. Here the calculation is further generalized to the total energy release in fission. There are several stages in a fission event, depending on the time scale. Neutrons and gammas may be emitted at any time during the fission event.While our discussion here is focussed on compound nucleus creation by an incident neutron, similar parameterizations could be obtained for incident gammas or spontaneous fission.

  19. Oscillatory Universe, dark energy equation of state and general relativity

    CERN Document Server

    Ghosh, Partha Pratim; Usmani, A A; Mukhopadhyay, Utpal

    2012-01-01

    The concept of oscillatory Universe appears to be realistic and buried in the dynamic dark energy equation of state. We explore its evolutionary history under the frame work of general relativity. We observe that oscillations do not go unnoticed with such an equation of state and that their effects persist later on in cosmic evolution. The `classical' general relativity seems to retain the past history of oscillatory Universe in the form of increasing scale factor as the classical thermodynamics retains this history in the form of increasing cosmological entropy.

  20. Disulphide trapping of an in vivo energy-dependent conformation of Escherichia coli TonB protein.

    Science.gov (United States)

    Ghosh, Joydeep; Postle, Kathleen

    2005-01-01

    In Escherichia coli, the TonB system transduces the protonmotive force (pmf) of the cytoplasmic membrane to support a variety of transport events across the outer membrane. Cytoplasmic membrane proteins ExbB and ExbD appear to harvest pmf and transduce it to TonB. Experimental evidence suggests that TonB shuttles to the outer membrane, apparently to deliver conformationally stored potential energy to outer membrane transporters. In the most recent model, discharged TonB is then recycled to the cytoplasmic membrane to be re-energized by the energy coupling proteins, ExbB/D. It has been suggested that the carboxy-terminal 75 amino acids of active TonB could be represented by the rigid, strand-exchanged, dimeric crystal structure of the corresponding fragment. In contrast, recent genetic studies of alanine substitutions have suggested instead that in vivo the carboxy-terminus of intact TonB is dynamic and flexible. The biochemical studies presented here confirm and extend those results by demonstrating that individual cys substitution at aromatic residues in one monomeric subunit can form spontaneous dimers in vivo with the identical residue in the other monomeric subunit. Two energized TonBs appear to form a single cluster of 8-10 aromatic amino acids, including those found at opposite ends of the crystal structure. The aromatic cluster requires both the amino-terminal energy coupling domain of TonB, and ExbB/D (and cross-talk analogues TolQ/R) for in vivo formation. The large aromatic cluster is detected in cytoplasmic membrane-, but not outer membrane-associated TonB. Consistent with those observations, the aromatic cluster can form in the first half of the energy transduction cycle, before release of conformationally stored potential energy to ligand-loaded outer membrane transporters. The model that emerges is one in which, after input of pmf mediated through ExbB/D and the TonB transmembrane domain, the TonB carboxy-terminus can form a meta-stable high-energy

  1. Limits of the energy-momentum tensor in general relativity

    CERN Document Server

    Paiva, F M; Hall, G S; MacCallum, M A H; Paiva, Filipe M.; Reboucas, Marcelo J.; Hall, Graham S.; Callum, Malcolm A.H. Mac

    1998-01-01

    A limiting diagram for the Segre classification of the energy-momentum tensor is obtained and discussed in connection with a Penrose specialization diagram for the Segre types. A generalization of the coordinate-free approach to limits of Paiva et al. to include non-vacuum space-times is made. Geroch's work on limits of space-times is also extended. The same argument also justifies part of the procedure for classification of a given spacetime using Cartan scalars.

  2. The Generalized Conversion Factor in Einstein's Mass-Energy Equation

    Directory of Open Access Journals (Sweden)

    Sharma A.

    2008-07-01

    Full Text Available Einstein’s September 1905 paper is origin of light energy-mass inter conversion equa- tion ( L = mc 2 and Einstein speculated E = mc 2 from it by simply replacing L by E . From its critical analysis it follows that L = mc 2 is only true under special or ideal conditions. Under general cases the result is L / mc 2 ( E / mc 2 . Conse- quently an alternate equation E = Ac 2 M has been suggested, which implies that energy emitted on annihilation of mass can be equal, less and more than predicted by E = mc 2 . The total kinetic energy of fission fragments of U 235 or Pu 239 is found experimentally 20–60 MeV less than Q -value predicted by mc 2 . The mass of parti- cle Ds (2317 discovered at SLAC, is more than current estimates. In many reactions including chemical reactions E = mc 2 is not confirmed yet, but regarded as true. It implies the conversion factor than c 2 is possible. These phenomena can be explained with help of generalized mass-energy equation E = Ac 2 M .

  3. The Generalized Conversion Factor in Einstein's Mass-Energy Equation

    Directory of Open Access Journals (Sweden)

    Ajay Sharma

    2008-07-01

    Full Text Available Einstein's September 1905 paper is origin of light energy-mass inter conversion equation ($L = Delta mc^{2}$ and Einstein speculated $E = Delta mc^{2}$ from it by simply replacing $L$ by $E$. From its critical analysis it follows that $L = Delta mc^{2}$ is only true under special or ideal conditions. Under general cases the result is $L propto Delta mc^{2}$ ($E propto Delta mc^{2}$. Consequently an alternate equation $Delta E = A ub c^{2}Delta M$ has been suggested, which implies that energy emitted on annihilation of mass can be equal, less and more than predicted by $Delta E = Delta mc^{2}$. The total kinetic energy of fission fragments of U-235 or Pu-239 is found experimentally 20-60 MeV less than Q-value predicted by $Delta mc^{2}$. The mass of particle Ds (2317 discovered at SLAC, is more than current estimates. In many reactions including chemical reactions $E = Delta mc^{2}$ is not confirmed yet, but regarded as true. It implies the conversion factor than $c^{2}$ is possible. These phenomena can be explained with help of generalized mass-energy equation $Delta E = A ub c^{2}Delta M$.

  4. Generalized trends in the formation energies of perovskite oxides.

    Science.gov (United States)

    Zeng, ZhenHua; Calle-Vallejo, Federico; Mogensen, Mogens B; Rossmeisl, Jan

    2013-05-28

    Generalized trends in the formation energies of several families of perovskite oxides (ABO3) and plausible explanations to their existence are provided in this study through a combination of DFT calculations, solid-state physics analyses and simple physical/chemical descriptors. The studied elements at the A site of perovskites comprise rare-earth, alkaline-earth and alkaline metals, whereas 3d and 5d metals were studied at the B site. We also include ReO3-type compounds, which have the same crystal structure of cubic ABO3 perovskites except without A-site elements. From the observations we extract the following four conclusions for the perovskites studied in the present paper: for a given cation at the B site, (I) perovskites with cations of identical oxidation state at the A site possess close formation energies; and (II) perovskites with cations of different oxidation states at the A site usually have quite different but ordered formation energies. On the other hand, for a given A-site cation, (III) the formation energies of perovskites vary linearly with respect to the atomic number of the elements at the B site within the same period of the periodic table, and the slopes depend systematically on the oxidation state of the A-site cation; and (IV) the trends in formation energies of perovskites with elements from different periods at the B site depend on the oxidation state of A-site cations. Since the energetics of perovskites is shown to be the superposition of the individual contributions of their constituent oxides, the trends can be rationalized in terms of A-O and B-O interactions in the ionic crystal. These findings reveal the existence of general systematic trends in the formation energies of perovskites and provide further insight into the role of ion-ion interactions in the properties of ternary compounds.

  5. GENERALIZED ENERGY CONSERVATION AND UNSTABLE PERTURBATION PROPERTY IN BAROTROPIC VORTEX

    Institute of Scientific and Technical Information of China (English)

    HUANG Hong; ZHANG Ming

    2006-01-01

    Based on a barotropic vortex model, generalized energy-conserving equation was derived and two necessary conditions of basic flow destabilization are gained. These conditions correspond to generalized barotropic instability and super speed instability. They are instabilities of vortex and gravity inertial wave respectively. In order to relate to practical situation, a barotropic vortex was analyzed, the basic flow of which is similar to lower level basic wind field of tropical cyclones and the maximum wind radius of which is 500 km.The results show that generalized barotropic instability depending upon the radial gradient of relative vorticity can appear in this vortex. It can be concluded that unstable vortex Rossby wave may appear in barotropic vortex.

  6. A general end point free energy calculation method based on microscopic configurational space coarse-graining

    CERN Document Server

    Tian, Pu

    2015-01-01

    Free energy is arguably the most important thermodynamic property for physical systems. Despite the fact that free energy is a state function, presently available rigorous methodologies, such as those based on thermodynamic integration (TI) or non-equilibrium work (NEW) analysis, involve energetic calculations on path(s) connecting the starting and the end macrostates. Meanwhile, presently widely utilized approximate end-point free energy methods lack rigorous treatment of conformational variation within end macrostates, and are consequently not sufficiently reliable. Here we present an alternative and rigorous end point free energy calculation formulation based on microscopic configurational space coarse graining, where the configurational space of a high dimensional system is divided into a large number of sufficiently fine and uniform elements, which were termed conformers. It was found that change of free energy is essentially decided by change of the number of conformers, with an error term that accounts...

  7. New potentials for conformal mechanics

    CERN Document Server

    Papadopoulos, G

    2012-01-01

    We show that V=\\alpha x^2+\\beta x^{-2} arises as a potential of 1-dimensional conformal theories. This class of conformal models includes the DFF model \\alpha=0 and the harmonic oscillator \\beta=0. The construction is based on a different embedding of the conformal symmetry group into the time re-parameterizations from that of the DFF model and its generalizations. Depending on the range of the couplings $\\alpha, \\beta$, these models can have a ground state and a well-defined energy spectrum, and exhibit either a $SL(2,\\bR)$ or a SO(3) conformal symmetry. The latter group can also be embedded in Diff(S^1). We also present several generalizations of these models which include the Calogero models with harmonic oscillator couplings and non-linear models with suitable metric and potential couplings. In addition, we give the conditions on the couplings for a class of gaugetheories to admit a SL(2,\\bR) or SO(3) conformal symmetry. We present examples of such systems with general gauge groups and global symmetries t...

  8. A generalized recipe to construct elementary or multi-step reaction paths via a stochastic formulation: Application to the conformational change in noble gas clusters

    Energy Technology Data Exchange (ETDEWEB)

    Talukder, Srijeeta; Sen, Shrabani [Department of Chemistry, University of Calcutta, 92 A P C Road, Kolkata 700 009 (India); Sharma, Rahul [Department of Chemistry, St. Xavier’s College, 30 Mother Teresa Sarani, Kolkata 700 016 (India); Banik, Suman K., E-mail: skbanik@bic.boseinst.ernet.in [Department of Chemistry, Bose Institute, 93/1 A P C Road, Kolkata 700 009 (India); Chaudhury, Pinaki, E-mail: pinakc@rediffmail.com [Department of Chemistry, University of Calcutta, 92 A P C Road, Kolkata 700 009 (India)

    2014-03-18

    Highlights: • We demonstrate a general strategy to map out reaction paths irrespective of the number of kinetic steps involved. • The objective function proposed does not need the information of gradient norm and eigenvalue of Hessian matrix explicitly. • A stochastic optimizer Simulated Annealing is used in searching reaction path. • The strategy is applied in mapping out the path for conformational changes in pure Ar clusters and Ar{sub N}Xe mixed clusters. - abstract: In this paper we demonstrate a general strategy to map out reaction paths irrespective of the number of kinetic steps required to bring about the change. i.e., whether the transformation takes place in a single step or in multiple steps with the appearance of intermediates. The objective function proposed is unique and works equally well for a concerted or a multiple step pathway. As the objective function proposed does not explicitly involves the calculation of the gradient of the potential energy function or the eigenvalues of the Hessian Matrix during the iterative process, the calculation is computationally economical. To map out the reaction path, we cast the entire problem as one of optimization and the solution is done with the use of the stochastic optimizer Simulated Annealing. The formalism is tested on Argon clusters (Ar{sub N}) and Argon clusters singly doped with Xenon (Ar{sub N-1}Xe). The size of the systems for which the method is applied ranges from N=7-25, where N is the total number of atoms in the cluster. We also test the results obtained by us by comparing with an established gradient only method. Moreover to demonstrate that our strategy can overcome the standard problems of drag method, we apply our strategy to a two dimensional LEPS + harmonic oscillator Potential to locate the TS, in which standard drag method has been seen to encounter problems.

  9. Conformational characteristics of dimeric subunits of RNA from energy minimization studies. Mixed sugar-puckered ApG, ApU, CpG, and CpU.

    Science.gov (United States)

    Thiyagarajan, P; Ponnuswamy, P K

    1981-09-01

    Following the procedure described in the preceding article, the low energy conformations located for the four dimeric subunits of RNA, ApG, ApU, CpG, and CpU are presented. The A-RNA type and Watson-Crick type helical conformations and a number of different kinds of loop promoting ones were identified as low energy in all the units. The 3E-3E and 3E-2E pucker sequences are found to be more or less equally preferred; the 2E-2E sequence is occasionally preferred, while the 2E-3E is highly prohibited in all the units. A conformation similar to the one observed in the drug-dinucleoside monophosphate complex crystals becomes a low energy case only for the CpG unit. The low energy conformations obtained for the four model units were used to assess the stability of the conformational states of the dinucleotide segments in the four crystal models of the tRNAPhe molecule. Information on the occurrence of the less preferred sugar-pucker sequences in the various loop regions in the tRNAPhe molecule has been obtained. A detailed comparison of the conformational characteristics of DNA and RNA subunits at the dimeric level is presented on the basis of the results.

  10. Generalized Ghost Dark Energy with Non-Linear Interaction

    CERN Document Server

    Ebrahimi, E; Mehrabi, A; Movahed, S M S

    2016-01-01

    In this paper we investigate ghost dark energy model in the presence of non-linear interaction between dark energy and dark matter. The functional form of dark energy density in the generalized ghost dark energy (GGDE) model is $\\rho_D\\equiv f(H, H^2)$ with coefficient of $H^2$ represented by $\\zeta$ and the model contains three free parameters as $\\Omega_D, \\zeta$ and $b^2$ (the coupling coefficient of interactions). We propose three kinds of non-linear interaction terms and discuss the behavior of equation of state, deceleration and dark energy density parameters of the model. We also find the squared sound speed and search for signs of stability of the model. To compare the interacting GGDE model with observational data sets, we use more recent observational outcomes, namely SNIa, gamma-ray bursts, baryonic acoustic oscillation and the most relevant CMB parameters including, the position of acoustic peaks, shift parameters and redshift to recombination. For GGDE with the first non-linear interaction, the j...

  11. Wang-Landau molecular dynamics technique to search for low-energy conformational space of proteins

    CERN Document Server

    Nagasima, Takehiro; Mitsui, Takashi; Nishikawa, Ken-Ichi

    2007-01-01

    Multicanonical molecular dynamics (MD) is a powerful technique for sampling conformations on rugged potential surfaces such as protein. However, it is notoriously difficult to estimate the multicanonical temperature effectively. Wang and Landau developed a convenient method for estimating the density of states based on a multicanonical Monte Carlo method. In their method, the density of states is calculated autonomously during a simulation. In this paper we develop a set of techniques to effectively apply the Wang-Landau method to MD simulations. In the multicanonical MD, the estimation of the derivative of the density of states is critical. In order to estimate it accurately, we devise two original improvements. First, the correction for the density of states is made smooth by using the Gaussian distribution obtained by a short canonical simulation. Second, an approximation is applied to the derivative, which is based on the Gaussian distribution and the multiple weighted histogram technique. A test of this ...

  12. 18 CFR 153.21 - Conformity with requirements.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Conformity with requirements. 153.21 Section 153.21 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Requirements § 153.21 Conformity with requirements. (a) General Rule. Applications under subparts B and C...

  13. Conformational Dynamics and Binding Free Energies of Inhibitors of BACE-1: From the Perspective of Protonation Equilibria.

    Directory of Open Access Journals (Sweden)

    M Olivia Kim

    2015-10-01

    Full Text Available BACE-1 is the β-secretase responsible for the initial amyloidogenesis in Alzheimer's disease, catalyzing hydrolytic cleavage of substrate in a pH-sensitive manner. The catalytic mechanism of BACE-1 requires water-mediated proton transfer from aspartyl dyad to the substrate, as well as structural flexibility in the flap region. Thus, the coupling of protonation and conformational equilibria is essential to a full in silico characterization of BACE-1. In this work, we perform constant pH replica exchange molecular dynamics simulations on both apo BACE-1 and five BACE-1-inhibitor complexes to examine the effect of pH on dynamics and inhibitor binding properties of BACE-1. In our simulations, we find that solution pH controls the conformational flexibility of apo BACE-1, whereas bound inhibitors largely limit the motions of the holo enzyme at all levels of pH. The microscopic pKa values of titratable residues in BACE-1 including its aspartyl dyad are computed and compared between apo and inhibitor-bound states. Changes in protonation between the apo and holo forms suggest a thermodynamic linkage between binding of inhibitors and protons localized at the dyad. Utilizing our recently developed computational protocol applying the binding polynomial formalism to the constant pH molecular dynamics (CpHMD framework, we are able to obtain the pH-dependent binding free energy profiles for various BACE-1-inhibitor complexes. Our results highlight the importance of correctly addressing the binding-induced protonation changes in protein-ligand systems where binding accompanies a net proton transfer. This work comprises the first application of our CpHMD-based free energy computational method to protein-ligand complexes and illustrates the value of CpHMD as an all-purpose tool for obtaining pH-dependent dynamics and binding free energies of biological systems.

  14. Generalized holographic Ricci dark energy and generalized second law of thermodynamics in Bianchi Type I universe

    CERN Document Server

    Li, En-Kun; Geng, Jin-Ling; Duan, Peng-Fei

    2016-01-01

    Generalized second law of thermodynamics in the Bianchi type I universe with the generalized holographic Ricci dark energy model is studied in this paper. The behavior of dark energy's equation of state parameter indicates that it is matter-like in the early time of the universe but phantom-like in the future. By analysing the evolution of the deviations of state parameter and the total pressure of the universe, we find that for an anisotropic Bianchi type I universe, it transits from a high anisotropy stage to a more homogeneous stage in the near past. Using the normal entropy given by Gibbs' law of thermodynamics, it is proved that the generalized second law of thermodynamics does not always satisfied throughout the history of the universe when we assume the universe is enclosed by the generalized Ricci scalar radius $R_{gr}$. It becomes invalid in the near past to the future, and the formation of the galaxies will be helpful in explaining such phenomenon, for that the galaxies's formation is an entropy inc...

  15. Energy density and spatial curvature in general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Frankel, T.; Galloway, G.J.

    1981-04-01

    Positive energy density tends to limit the size of space. This effect is studied within several contexts. We obtain sufficient conditions (which involve the energy density in a crucial way) for the compactness of spatial hypersurfaces in space-time. We then obtain some results concerning static or, more generally, stationary space-times. The Schwarzchild solution puts an upper bound on the size of a static spherically symmetric fluid with density bounded from below. We derive a result of roughly the same nature which, however, requires no symmetry and allows for rotation. Also, we show that static or rotating universes with L = 0 require that the density along some spatial geodesic must fall off rapidly with distance from a point.

  16. Dissipative generalized Chaplygin gas as phantom dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Norman [Departamento de Fisica, Facultad de Ciencia, Universidad de Santiago, Casilla 307, Santiago (Chile)]. E-mail: ncruz@lauca.usach.cl; Lepe, Samuel [Instituto de Fisica, Facultad de Ciencias Basicas y Matematicas, Pontificia Universidad Catolica de Valparaiso, Avenida Brasil 2950, Valparaiso (Chile)]. E-mail: slepe@ucv.cl; Pena, Francisco [Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Universidad de la Frontera, Avda. Francisco Salazar 01145, Casilla 54-D, Temuco (Chile)]. E-mail: fcampos@ufro.cl

    2007-03-15

    The generalized Chaplygin gas, characterized by the equation of state p=-A/{rho}{sup {alpha}}, has been considered as a model for dark energy due to its dark-energy-like evolution at late times. When dissipative processes are taken into account, within the framework of the standard Eckart theory of relativistic irreversible thermodynamics, cosmological analytical solutions are found. Using the truncated causal version of the Israel-Stewart formalism, a suitable model was constructed which crosses the w=-1 barrier. The future-singularities encountered in both approaches are of a new type, and not included in the classification presented by Nojiri and Odintsov [S. Nojiri, S.D. Odintsov, Phys. Rev. D 72 (2005) 023003].

  17. Energies and 2'-Hydroxyl Group Orientations of RNA Backbone Conformations. Benchmark CCSD(T)/CBS Database, Electronic Analysis, and Assessment of DFT Methods and MD Simulations.

    Science.gov (United States)

    Mládek, Arnošt; Banáš, Pavel; Jurečka, Petr; Otyepka, Michal; Zgarbová, Marie; Šponer, Jiří

    2014-01-14

    Sugar-phosphate backbone is an electronically complex molecular segment imparting RNA molecules high flexibility and architectonic heterogeneity necessary for their biological functions. The structural variability of RNA molecules is amplified by the presence of the 2'-hydroxyl group, capable of forming multitude of intra- and intermolecular interactions. Bioinformatics studies based on X-ray structure database revealed that RNA backbone samples at least 46 substates known as rotameric families. The present study provides a comprehensive analysis of RNA backbone conformational preferences and 2'-hydroxyl group orientations. First, we create a benchmark database of estimated CCSD(T)/CBS relative energies of all rotameric families and test performance of dispersion-corrected DFT-D3 methods and molecular mechanics in vacuum and in continuum solvent. The performance of the DFT-D3 methods is in general quite satisfactory. The B-LYP-D3 method provides the best trade-off between accuracy and computational demands. B3-LYP-D3 slightly outperforms the new PW6B95-D3 and MPW1B95-D3 and is the second most accurate density functional of the study. The best agreement with CCSD(T)/CBS is provided by DSD-B-LYP-D3 double-hybrid functional, although its large-scale applications may be limited by high computational costs. Molecular mechanics does not reproduce the fine energy differences between the RNA backbone substates. We also demonstrate that the differences in the magnitude of the hyperconjugation effect do not correlate with the energy ranking of the backbone conformations. Further, we investigated the 2'-hydroxyl group orientation preferences. For all families, we conducted a QM and MM hydroxyl group rigid scan in gas phase and solvent. We then carried out set of explicit solvent MD simulations of folded RNAs and analyze 2'-hydroxyl group orientations of different backbone families in MD. The solvent energy profiles determined primarily by the sugar pucker match well with the

  18. Generalized average local ionization energy and its representations in terms of Dyson and energy orbitals.

    Science.gov (United States)

    Kohut, Sviataslau V; Cuevas-Saavedra, Rogelio; Staroverov, Viktor N

    2016-08-21

    Ryabinkin and Staroverov [J. Chem. Phys. 141, 084107 (2014)] extended the concept of average local ionization energy (ALIE) to correlated wavefunctions by defining the generalized ALIE as Ī(r)=-∑jλj|fj(r)|(2)/ρ(r), where λj are the eigenvalues of the generalized Fock operator and fj(r) are the corresponding eigenfunctions (energy orbitals). Here we show that one can equivalently express the generalized ALIE as Ī(r)=∑kIk|dk(r)|(2)/ρ(r), where Ik are single-electron removal energies and dk(r) are the corresponding Dyson orbitals. The two expressions for Ī(r) emphasize different physical interpretations of this quantity; their equivalence enables one to calculate the ALIE at any level of ab initio theory without generating the computationally expensive Dyson orbitals.

  19. Towards understanding the free and receptor bound conformation of neuropeptide Y by fluorescence resonance energy transfer studies.

    Science.gov (United States)

    Haack, Michael; Beck-Sickinger, Annette G

    2009-06-01

    Despite a considerable sequence identity of the three mammalian hormones of the neuropeptide Y family, namely neuropeptide Y, peptide YY and pancreatic polypeptide, their structure in solution is described to be different. A so-called pancreatic polypeptide-fold has been identified for pancreatic polypeptide, whereas the structure of the N-terminal segment of neuropeptide Y is unknown. This element is important for the binding of neuropeptide Y to two of its relevant receptors, Y(1) and Y(5), but not to the Y(2) receptor subtype. In this study now, three doubly fluorescent-labeled analogs of neuropeptide Y have been synthesized that still bind to the Y(5) receptor with high affinity to investigate the conformation in solution and, for the first time, to probe the conformational changes upon binding of the ligand to its receptor in cell membrane preparations. The results obtained from the fluorescence resonance energy transfer investigations clearly show considerable differences in transfer efficiency that depend both on the solvent as well as on the peptide concentration. However, the studies do not support a pancreatic polypeptide-like folding of neuropeptide Y in the presence of membranes that express the human Y(5) receptor subtype.

  20. Some invariant solutions for non-conformal perfect fluid plates in 5-flat form in general relativity

    Indian Academy of Sciences (India)

    Mukesh Kumar; Y K Gupta

    2010-06-01

    A set of six invariant solutions for non-conformal perfect fluid plates in 5-flat form is obtained using one-parametric Lie group of transformations. Out of the six solutions so obtained, three are in implicit form while the remaining three could be expressed explicitly. Each solution describes an accelerating fluid distribution and is new as far as authors are aware.

  1. Gravitational Energy-Momentum and Conservation of Energy-Momentum in General Relativity

    Science.gov (United States)

    Wu, Zhao-Yan

    2016-06-01

    Based on a general variational principle, Einstein-Hilbert action and sound facts from geometry, it is shown that the long existing pseudotensor, non-localizability problem of gravitational energy-momentum is a result of mistaking different geometrical, physical objects as one and the same. It is also pointed out that in a curved spacetime, the sum vector of matter energy-momentum over a finite hyper-surface can not be defined. In curvilinear coordinate systems conservation of matter energy-momentum is not the continuity equations for its components. Conservation of matter energy-momentum is the vanishing of the covariant divergence of its density-flux tensor field. Introducing gravitational energy-momentum to save the law of conservation of energy-momentum is unnecessary and improper. After reasonably defining “change of a particle's energy-momentum”, we show that gravitational field does not exchange energy-momentum with particles. And it does not exchange energy-momentum with matter fields either. Therefore, the gravitational field does not carry energy-momentum, it is not a force field and gravity is not a natural force.

  2. Conformational Transitions

    Science.gov (United States)

    Czerminski, Ryszard; Roitberg, Adrian; Choi, Chyung; Ulitsky, Alexander; Elber, Ron

    1991-10-01

    on the number of the direct paths between the minima. The influence on the distribution of the barriers and the minima energies is less significant. Calculation of reaction paths in large molecular systems requires new computational techniques. We employed our newly developed reaction path algorithm (SPW) for the study of the B to Z transition in DNA. The SPW (Self Penalty Walk) algorithm is explained in detail. A complex reaction coordinate (the B to Z transition in DNA) is calculated and analyzed. The calculated reaction path is for six basepairs DNA (including all 376 atoms). The path consists of 180° flips of two basepairs from the B DNA conformation to the Z DNA conformation.

  3. Anisotropic conjugated polymer chain conformation tailors the energy migration in nanofibers

    CERN Document Server

    Camposeo, Andrea; Moffa, Maria; Fasano, Vito; Altamura, Davide; Giannini, Cinzia; Pisignano, Dario; Scholes, Gregory D

    2016-01-01

    Conjugated polymers are complex multi-chromophore systems, with emission properties strongly dependent on the electronic energy transfer through active sub-units. Although the packing of the conjugated chains in the solid state is known to be a key factor to tailor the electronic energy transfer and the resulting optical properties, most of the current solution-based processing methods do not allow for effectively controlling the molecular order, thus making the full unveiling of energy transfer mechanisms very complex. Here we report on conjugated polymer fibers with tailored internal molecular order, leading to a significant enhancement of the emission quantum yield. Steady state and femtosecond time-resolved polarized spectroscopies evidence that excitation is directed toward those chromophores oriented along the fiber axis, on a typical timescale of picoseconds. These aligned and more extended chromophores, resulting from the high stretching rate and electric field applied during the fiber spinning proces...

  4. Rotational Spectroscopy of the Low Energy Conformer of 2-METHYLBUTYRONITRILE and Search for it Toward Sagittarius B2(N2)

    Science.gov (United States)

    Müller, Holger S. P.; Wehres, Nadine; Zingsheim, Oliver; Lewen, Frank; Schlemmer, Stephan; Grabow, Jens-Uwe; Garrod, Robin T.; Belloche, Arnaud; Menten, Karl M.

    2017-06-01

    Quite recently, some of us detected iso-propyl cyanide as the first branched alkyl molecule in space. The identification was made in an ALMA Cycle 0 and 1 molecular line survey of Sagittarius B2(N) at 3 mm. The branched isomer was only slightly less abundant than its straight-chain isomer with a ratio of about 2:5. While initial chemical models favored the branched isomer somewhat, more recent models are able to reproduce the observed ratio. Moreover, the models predicted that among the next longer butyl cyanides (BuCNs) 2-methylbutyronitrile (2-MBN) should be more abundant than both n-BuCN and 3-MBN by factors of around 2, with t-BuCN being almost negligible. With the rotational spectra of t- and n-BuCN studied, we investigated those of 2-MBN and 3-MBN betwen ˜40 and ˜400 GHz by conventional absorption spectroscopy and by chirped-pulse and resonator Fourier transform microwave (FTMW) spectroscopy. The analyses were guided by quantum-chemical calculations. A. Belloche, R. T. Garrod, H. S. P. Müller, and K. M. Menten, Science 345 1584. R. T. Garrod, A. Belloche, H. S. P. Müller, and K. M. Menten, Astron. Astrophys., in press; doi: 10.1051/0004-6361/201630254. With the rotational spectra of t- and n-BuCN studied, we investigated those of 2-MBN and 3-MBN betwen ˜40 and ˜400 GHz by conventional absorption spectroscopy and by chirped-pulse and resonator Fourier transform microwave (FTMW) spectroscopy. The analyses were guided by quantum-chemical calculations. Here we report the analysis of the low-energy conformer of 2-MBN and a search for it in our current ALMA data. Two additional conformers are higher by ˜250 and ˜280 cm^{-1}. The low-energy conformer displays a very rich rotational spectrum because of its great asymmetry (κ ≈ 0.14) and large a- and b-dipole moment components. Accurate ^{14}N quadrupole coupling parameters were obtained from the FTMW spectral recordings.

  5. EL JUICIO DE APARIENCIA DE BUEN DERECHO FRENTE A LA IMPARCIALIDAD DEL JUEZ QUE DECRETA MEDIDAS CAUTELARES INNOMINADAS CONFORME EL CODIGO GENERAL DEL PROCESO EN COLOMBIA

    OpenAIRE

    Laguado Serrano, Cristian Eduardo; Vargas Buitrago, Jordan Aquiles

    2015-01-01

    La presente tesis denominada “El juicio de apariencia de buen derecho frente a la imparcialidad del juez que decreta medidas cautelares innominadas conforme el código general del proceso en Colombia”, plantea que a través la reforma del código de procedimiento civil buscando lograr un código general del proceso, al implementar las denominadas medidas cautelares innominadas se establecieron una serie de requisitos que a simple vista son claros y precisos; no obstante, al llevar ...

  6. Predicting free energy contributions to the conformational stability of folded proteins from the residue sequence with radial basis function networks

    Energy Technology Data Exchange (ETDEWEB)

    Casadio, R.; Fariselli, P.; Vivarelli, F. [Univ. of Bologna (Italy); Compiani, M. [Univ. of Camerino (Italy)

    1995-12-31

    Radial basis function neural networks are trained on a data base comprising 38 globular proteins of well resolved crystallographic structure and the corresponding free energy contributions to the overall protein stability (as computed partially from crystallographic analysis and partially with multiple regression from experimental thermodynamic data by Ponnuswamy and Gromiha (1994)). Starting from the residue sequence and using as input code the percentage of each residue and the total residue number of the protein, it is found with a cross-validation method that neural networks can optimally predict the free energy contributions due to hydrogen bonds, hydrophobic interactions and the unfolded state. Terms due to electrostatic and disulfide bonding free energies are poorly predicted. This is so also when other input codes, including the percentage of secondary structure type of the protein and/or residue-pair information are used. Furthermore, trained on the computed and/or experimental {Delta}G values of the data base, neural networks predict a conformational stability ranging from about 10 to 20 kcal mol{sup -1} rather independently of the residue sequence, with an average error per protein of about 9 kcal mol{sup -1}.

  7. Predicting free energy contributions to the conformational stability of folded proteins from the residue sequence with radial basis function networks.

    Science.gov (United States)

    Casadio, R; Compiani, M; Fariselli, P; Vivarelli, F

    1995-01-01

    Radial basis function neural networks are trained on a data base comprising 38 globular proteins of well resolved crystallographic structure and the corresponding free energy contributions to the overall protein stability (as computed partially from chrystallographic analysis and partially with multiple regression from experimental thermodynamic data by Ponnuswamy and Gromiha (1994)). Starting from the residue sequence and using as input code the percentage of each residue and the total residue number of the protein, it is found with a cross-validation method that neural networks can optimally predict the free energy contributions due to hydrogen bonds, hydrophobic interactions and the unfolded state. Terms due to electrostatic and disulfide bonding free energies are poorly predicted. This is so also when other input codes, including the percentage of secondary structure type of the protein and/or residue-pair information are used. Furthermore, trained on the computed and/or experimental delta G values of the data base, neural networks predict a conformational stability ranging from about 10 to 20 kcal mol-1 rather independently of the residue sequence, with an average error per protein of about 9 kcal mol-1.

  8. Supergravitational conformal Galileons

    Science.gov (United States)

    Deen, Rehan; Ovrut, Burt

    2017-08-01

    The worldvolume actions of 3+1 dimensional bosonic branes embedded in a five-dimensional bulk space can lead to important effective field theories, such as the DBI conformal Galileons, and may, when the Null Energy Condition is violated, play an essential role in cosmological theories of the early universe. These include Galileon Genesis and "bouncing" cosmology, where a pre-Big Bang contracting phase bounces smoothly to the presently observed expanding universe. Perhaps the most natural arena for such branes to arise is within the context of superstring and M -theory vacua. Here, not only are branes required for the consistency of the theory, but, in many cases, the exact spectrum of particle physics occurs at low energy. However, such theories have the additional constraint that they must be N = 1 supersymmetric. This motivates us to compute the worldvolume actions of N = 1 supersymmetric three-branes, first in flat superspace and then to generalize them to N = 1 supergravitation. In this paper, for simplicity, we begin the process, not within the context of a superstring vacuum but, rather, for the conformal Galileons arising on a co-dimension one brane embedded in a maximally symmetric AdS 5 bulk space. We proceed to N = 1 supersymmetrize the associated worldvolume theory and then generalize the results to N = 1 supergravity, opening the door to possible new cosmological scenarios

  9. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm.

    Science.gov (United States)

    Dagdeviren, Canan; Yang, Byung Duk; Su, Yewang; Tran, Phat L; Joe, Pauline; Anderson, Eric; Xia, Jing; Doraiswamy, Vijay; Dehdashti, Behrooz; Feng, Xue; Lu, Bingwei; Poston, Robert; Khalpey, Zain; Ghaffari, Roozbeh; Huang, Yonggang; Slepian, Marvin J; Rogers, John A

    2014-02-01

    Here, we report advanced materials and devices that enable high-efficiency mechanical-to-electrical energy conversion from the natural contractile and relaxation motions of the heart, lung, and diaphragm, demonstrated in several different animal models, each of which has organs with sizes that approach human scales. A cointegrated collection of such energy-harvesting elements with rectifiers and microbatteries provides an entire flexible system, capable of viable integration with the beating heart via medical sutures and operation with efficiencies of ∼2%. Additional experiments, computational models, and results in multilayer configurations capture the key behaviors, illuminate essential design aspects, and offer sufficient power outputs for operation of pacemakers, with or without battery assist.

  10. Probing bulk defect energy bands using generalized charge pumping method

    Science.gov (United States)

    Masuduzzaman, Muhammad; Weir, Bonnie; Alam, Muhammad Ashraful

    2012-04-01

    The multifrequency charge pumping (CP) technique has long been used to probe the density of defects at the substrate-oxide interface, as well as in the bulk of the oxide of MOS transistors. However, profiling the energy levels of the defects has been more difficult due to the narrow scanning range of the voltage of a typical CP signal, and the uncertainty associated with the defect capture cross-section. In this paper, we discuss a generalized CP method that can identify defect energy bands within a bulk oxide, without requiring separate characterization of the defect capture cross-section. We use the new technique to characterize defects in both fresh and stressed samples of various dielectric compositions. By quantifying the way defects are generated as a function of time, we gain insight into the nature of defect generation in a particular gate dielectric. We also discuss the relative merits of voltage, time, and other variables of CP to probe bulk defect density, and compare the technique with related characterization approaches.

  11. Laplacian-based generalized gradient approximations for the exchange energy

    CERN Document Server

    Cancio, Antonio C

    2013-01-01

    It is well known that in the gradient expansion approximation to density functional theory (DFT) the gradient and Laplacian of the density make interchangeable contributions to the exchange correlation (XC) energy. This is an arbitrary "gauge" freedom for building DFT models, normally used to eliminate the Laplacian from the generalized gradient approximation (GGA) level of DFT development. We explore the implications of keeping the Laplacian at this level of DFT, to develop a model that fits the known behavior of the XC hole, which can only be described as a system average in conventional GGA. We generate a family of exchange models that obey the same constraints as conventional GGA's, but which in addition have a finite-valued potential at the atomic nucleus unlike GGA's. These are tested against exact densities and exchange potentials for small atoms, and for constraints chosen to reproduce the SOGGA and the APBE variants of the GGA. The model reliably reproduces exchange energies of closed shell atoms, on...

  12. Incidence angle modifiers. A general approach for energy calculations

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Maria Joao; Horta, Pedro; Mendes, Joao Farinha [INETI - Inst. Nacional de Engenharia Tecnologia, Inovacao, IP, Lisboa (Portugal); Collares Pereira, Manuel; Carbajal, Wildor Maldonado [AO SOL, Energias Renovaveis, S.A., Samora Correia (Portugal)

    2008-07-01

    The calculation of the energy (power) delivered by a given solar collector, requires special care in the consideration of the way it handles the incoming solar radiation. Some collectors, e.g. flat plate types, are easy to characterize from an optical point of view, given their rotational symmetry with respect to the incident angle on the entrance aperture. This in contrast with collectors possessing a 2D (or cylindrical) symmetry, such as collectors using evacuated tubes or CPC collectors, requiring the incident radiation to be decomposed and treated in two orthogonal planes. Analyses of incidence angle modifier (IAM) along these lines were done in the past for parabolic through, evacuated tube (ETC) or compound parabolic concentrator (CPC) collectors. The present paper addresses a general approach to IAM calculation, treating in a general, equivalent and systematic way all collector types. This approach will allow the proper handling of the solar radiation available to each collector type, subdivided in its different components, folding that with the optical effects present in the solar collector and enabling more accurate comparisons between different collector types, in terms of long term performance calculation. (orig.)

  13. Feasibility of using intermediate x-ray energies for highly conformal extracranial radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Peng; Yu, Victoria; Nguyen, Dan; Demarco, John; Low, Daniel A.; Sheng, Ke, E-mail: ksheng@mednet.ucla.edy [Department of Radiation Oncology, University of California Los Angeles, California 90095 (United States); Woods, Kaley; Boucher, Salime [RadiaBeam Technologies, Santa Monica, California 90404 (United States)

    2014-04-15

    Purpose: To investigate the feasibility of using intermediate energy 2 MV x-rays for extracranial robotic intensity modulated radiation therapy. Methods: Two megavolts flattening filter free x-rays were simulated using the Monte Carlo code MCNP (v4c). A convolution/superposition dose calculation program was tuned to match the Monte Carlo calculation. The modeled 2 MV x-rays and actual 6 MV flattened x-rays from existing Varian Linacs were used in integrated beam orientation and fluence optimization for a head and neck, a liver, a lung, and a partial breast treatment. A column generation algorithm was used for the intensity modulation and beam orientation optimization. Identical optimization parameters were applied in three different planning modes for each site: 2, 6 MV, and dual energy 2/6 MV. Results: Excellent agreement was observed between the convolution/superposition and the Monte Carlo calculated percent depth dose profiles. For the patient plans, overall, the 2/6 MV x-ray plans had the best dosimetry followed by 2 MV only and 6 MV only plans. Between the two single energy plans, the PTV coverage was equivalent but 2 MV x-rays improved organs-at-risk sparing. For the head and neck case, the 2MV plan reduced lips, mandible, tongue, oral cavity, brain, larynx, left and right parotid gland mean doses by 14%, 8%, 4%, 14%, 24%, 6%, 30% and 16%, respectively. For the liver case, the 2 MV plan reduced the liver and body mean doses by 17% and 18%, respectively. For the lung case, lung V20, V10, and V5 were reduced by 13%, 25%, and 30%, respectively. V10 of heart with 2 MV plan was reduced by 59%. For the partial breast treatment, the 2 MV plan reduced the mean dose to the ipsilateral and contralateral lungs by 27% and 47%, respectively. The mean body dose was reduced by 16%. Conclusions: The authors showed the feasibility of using flattening filter free 2 MV x-rays for extracranial treatments as evidenced by equivalent or superior dosimetry compared to 6 MV plans

  14. Near-IR laser generation of a high-energy conformer of L-alanine and the mechanism of its decay in a low-temperature nitrogen matrix.

    Science.gov (United States)

    Nunes, Cláudio M; Lapinski, Leszek; Fausto, Rui; Reva, Igor

    2013-03-28

    Monomers of L-alanine (ALA) were isolated in cryogenic nitrogen matrices at 14 K. Two conformers were identified for the compound trapped from the gas-phase into the solid nitrogen environment. The potential energy surface (PES) of ALA was theoretically calculated at the MP2 and QCISD levels. Twelve minima were located on this PES. Seven low-energy conformers fall within the 0-10 kJ mol(-1) range and should be appreciably populated in the equilibrium gas phase prior to deposition. Observation of only two forms in the matrices is explained in terms of calculated barriers to conformational rearrangements. All conformers with the O=C-O-H moiety in the cis orientation are separated by low barriers and collapse to the most stable form I during deposition of the matrix onto the low-temperature substrate. The second observed form II has the O=C-O-H group in the trans orientation. The remaining trans forms have very high relative energies (between 24 and 30 kJ mol(-1)) and are not populated. The high-energy trans form VI, that differs from I only by rotation of the OH group, was found to be separated from other conformers by barriers that are high enough to open a perspective for its stabilization in a matrix. The form VI was photoproduced in situ by narrow-band near-infrared irradiation of the samples at 6935-6910 cm(-1), where the first overtone of the OH stretching vibration in form I appears. The photogenerated form VI decays in N2 matrices back to conformer I with a characteristic decay time of ∼15 min. The mechanism of the VI → I relaxation is rationalized in terms of the proton tunneling.

  15. Conformational unfolding in the N-terminal region of ribonuclease A detected by nonradiative energy transfer.

    Science.gov (United States)

    McWherter, C A; Haas, E; Leed, A R; Scheraga, H A

    1986-04-22

    Unfolding in the N-terminal region of RNase A was studied by the nonradiative energy-transfer technique. RNase A was labeled with a nonfluorescent acceptor (2,4-dinitrophenyl) on the alpha-amino group and a fluorescent donor (ethylenediamine monoamide of 2-naphthoxyacetic acid) on a carboxyl group in the vicinity of residue 50 (75% at Glu-49 and 25% at Asp-53). The distribution of donor labeling sites does not affect the results of this study since they are close in both the sequence and the three-dimensional structure. The sites of labeling were determined by peptide mapping. The derivatives possessed full enzymatic activity and underwent reversible thermal transitions. However, there were some quantitative differences in the thermodynamic parameters. When the carboxyl groups were masked, there was a 5 degrees C lowering of the melting temperature at pH 2 and 4, and no significant change in delta H(Tm). Labeling of the alpha-amino group had no effect on the melting temperature or delta H(Tm) at pH 2 but did result in a dramatic decrease in delta H(Tm) of the unfolding reaction at pH 4. The melting temperature did not change appreciably at pH 4, indicating that an enthalpy/entropy compensation had occurred. The efficiencies of energy transfer determined with both fluorescence intensity and lifetime measurements were in reasonably good agreement. The transfer efficiency dropped from about 60% under folding conditions to roughly 20% when the derivatives were unfolded with disulfide bonds intact and was further reduced to 5% when the disulfide bonds were reduced. The interprobe separation distance was estimated to be 35 +/- 2 A under folding conditions. The contribution to the interprobe distance resulting from the finite size of the probes was treated by using simple geometric considerations and a rotational isomeric state model of the donor probe linkage. With this model, the estimated average interprobe distance of 36 A is in excellent agreement with the

  16. Conformal Nets II: Conformal Blocks

    Science.gov (United States)

    Bartels, Arthur; Douglas, Christopher L.; Henriques, André

    2017-03-01

    Conformal nets provide a mathematical formalism for conformal field theory. Associated to a conformal net with finite index, we give a construction of the `bundle of conformal blocks', a representation of the mapping class groupoid of closed topological surfaces into the category of finite-dimensional projective Hilbert spaces. We also construct infinite-dimensional spaces of conformal blocks for topological surfaces with smooth boundary. We prove that the conformal blocks satisfy a factorization formula for gluing surfaces along circles, and an analogous formula for gluing surfaces along intervals. We use this interval factorization property to give a new proof of the modularity of the category of representations of a conformal net.

  17. Conformal Nets II: Conformal Blocks

    Science.gov (United States)

    Bartels, Arthur; Douglas, Christopher L.; Henriques, André

    2017-08-01

    Conformal nets provide a mathematical formalism for conformal field theory. Associated to a conformal net with finite index, we give a construction of the `bundle of conformal blocks', a representation of the mapping class groupoid of closed topological surfaces into the category of finite-dimensional projective Hilbert spaces. We also construct infinite-dimensional spaces of conformal blocks for topological surfaces with smooth boundary. We prove that the conformal blocks satisfy a factorization formula for gluing surfaces along circles, and an analogous formula for gluing surfaces along intervals. We use this interval factorization property to give a new proof of the modularity of the category of representations of a conformal net.

  18. Energy loss of ions in a magnetized plasma: conformity between linear response and binary collision treatments.

    Science.gov (United States)

    Nersisyan, H B; Zwicknagel, G; Toepffer, C

    2003-02-01

    The energy loss of a heavy ion moving in a magnetized electron plasma is considered within the linear response (LR) and binary collision (BC) treatments with the purpose to look for a connection between these two models. These two complementary approaches yield close results if no magnetic field is present, but there develop discrepancies with growing magnetic field at ion velocities that are lower than, or comparable with, the thermal velocity of the electrons. We show that this is a peculiarity of the Coulomb interaction which requires cutoff procedures to account for its singularity at the origin and its infinite range. The cutoff procedures in the LR and BC treatments are different as the order of integrations in velocity and in ordinary (Fourier) spaces is reversed in both treatments. While BC involves a velocity average of Coulomb logarithms, there appear in LR Coulomb logarithms of velocity averaged cutoffs. The discrepancies between LR and BC vanish, except for small contributions of collective modes, for smoothened potentials that require no cutoffs. This is shown explicitly with the help of an improved BC in which the velocity transfer is treated up to second order in the interaction in Fourier space.

  19. Exact solutions of the general equilibrium shape equations in a general power model of free energy for DNA structures

    Science.gov (United States)

    Yavari, Morteza

    2014-02-01

    The aim of this paper is to generalize the results of the Feoli's formalism (A. Feoli et al., Nucl. Phys. B 705, 577 (2005)) for DNA structures. The exact solutions of the general equilibrium shape equations for a general power model of free energy are investigated using the Feoli's formalism. The free energy of B- to Z-DNA transition is also calculated in this formalism.

  20. On conformally related -waves

    Indian Academy of Sciences (India)

    Varsha Daftardar-Gejji

    2001-05-01

    Brinkmann [1] has shown that conformally related distinct Ricci flat solutions are -waves. Brinkmann's result has been generalized to include the conformally invariant source terms. It has been shown that [4] if $g_{ik}$ and $\\overline{g}_{ik}$ ($=^{-2}g_{ik}$, : a scalar function), are distinct metrics having the same Einstein tensor, $G_{ik}=\\overline{G}_{ik}$, then both represent (generalized) $pp$-waves and $_{i}$ is a null convariantly constant vector of $g_{ik}$. Thus $pp$-waves are the only candidates which yield conformally related nontrivial solutions of $G_{ik}=T_{ik}=\\overline{G}_{ik}$, with $T_{ik}$ being conformally invariant source. In this paper the functional form of the conformal factor for the conformally related $pp$-waves/generalized $pp$-waves has been obtained. It has been shown that the most general $pp$-wave, conformally related to ${\\rm d}s^{2}=-2{\\rm d}u[{\\rm d}v-m{\\rm d}y+H{\\rm d}u]+P^{-2}[{\\rm d}y^{2}+{\\rm d}z^{2}]$, turns out to the $(au+b)^{-2}{\\rm d}s^{2}$, where , are constants. Only in the special case when $m=0$, $H=1$, and $P=P(y,z)$, the conformal factor is $(au+b)^{-2}$ or $(a(u+v)+b)^{-2}$.

  1. Conformal Relativity: Theory and Observations

    CERN Document Server

    Pervushin, V; Zorin, A

    2005-01-01

    Theoretical and observational arguments are listed in favor of a new principle of relativity of units of measurements as the basis of a conformal-invariant unification of General Relativity and Standard Model by replacement of all masses with a scalar (dilaton) field. The relative units mean conformal observables: the coordinate distance, conformal time, running masses, and constant temperature. They reveal to us a motion of a universe along its hypersurface in the field space of events like a motion of a relativistic particle in the Minkowski space, where the postulate of the vacuum as a state with minimal energy leads to arrow of the geometric time. In relative units, the unified theory describes the Cold Universe Scenario, where the role of the conformal dark energy is played by a free minimal coupling scalar field in agreement with the most recent distance-redshift data from type Ia supernovae. In this Scenario, the evolution of the Universe begins with the effect of intensive creation of primordial W-Z-b...

  2. A generalized model for estimating the energy density of invertebrates

    Science.gov (United States)

    James, Daniel A.; Csargo, Isak J.; Von Eschen, Aaron; Thul, Megan D.; Baker, James M.; Hayer, Cari-Ann; Howell, Jessica; Krause, Jacob; Letvin, Alex; Chipps, Steven R.

    2012-01-01

    Invertebrate energy density (ED) values are traditionally measured using bomb calorimetry. However, many researchers rely on a few published literature sources to obtain ED values because of time and sampling constraints on measuring ED with bomb calorimetry. Literature values often do not account for spatial or temporal variability associated with invertebrate ED. Thus, these values can be unreliable for use in models and other ecological applications. We evaluated the generality of the relationship between invertebrate ED and proportion of dry-to-wet mass (pDM). We then developed and tested a regression model to predict ED from pDM based on a taxonomically, spatially, and temporally diverse sample of invertebrates representing 28 orders in aquatic (freshwater, estuarine, and marine) and terrestrial (temperate and arid) habitats from 4 continents and 2 oceans. Samples included invertebrates collected in all seasons over the last 19 y. Evaluation of these data revealed a significant relationship between ED and pDM (r2  =  0.96, p calorimetry approaches. This model should prove useful for a wide range of ecological studies because it is unaffected by taxonomic, seasonal, or spatial variability.

  3. DFT Conformation and Energies of Amylose Fragments at Atomic Resolution Part I: Syn Forms of Alpha-Maltotetraose

    Science.gov (United States)

    DFT optimization studies of ninety syn '-maltotetraose (DP-4) amylose fragments have been carried out at the B3LYP/6-311++G** level of theory. The DP-4 fragments studied include V-helix, tightly bent conformations, a boat, and a 1C4 conformer. The standard hydroxymethyl rotamers (gg, gt, tg) were ...

  4. DFT studies of the conformation and relative energies of alpha-maltotetraose (DP-4): An amylose fragment at atomic resolution

    Science.gov (United States)

    DFT optimization studies of more than one hundred conformations of a-maltotetraose have been carried out at the B3LYP/6-311++G** level of theory. The DP-4 fragments of predominately 4C1 chair residues include tightly bent forms, helix, band-flips, kinks, boat, and some 1C4 conformers. The three do...

  5. The Augmenting Effects of Desolvation and Conformational Energy Terms on the Predictions of Docking Programs against mPGES-1.

    Directory of Open Access Journals (Sweden)

    Ashish Gupta

    Full Text Available In this study we introduce a rescoring method to improve the accuracy of docking programs against mPGES-1. The rescoring method developed is a result of extensive computational study in which different scoring functions and molecular descriptors were combined to develop consensus and rescoring methods. 127 mPGES-1 inhibitors were collected from literature and were segregated into training and external test sets. Docking of the 27 training set compounds was carried out using default settings in AutoDock Vina, AutoDock, DOCK6 and GOLD programs. The programs showed low to moderate correlation with the experimental activities. In order to introduce the contributions of desolvation penalty and conformation energy of the inhibitors various molecular descriptors were calculated. Later, rescoring method was developed as empirical sum of normalised values of docking scores, LogP and Nrotb. The results clearly indicated that LogP and Nrotb recuperate the predictions of these docking programs. Further the efficiency of the rescoring method was validated using 100 test set compounds. The accurate prediction of binding affinities for analogues of the same compounds is a major challenge for many of the existing docking programs; in the present study the high correlation obtained for experimental and predicted pIC50 values for the test set compounds validates the efficiency of the scoring method.

  6. The Augmenting Effects of Desolvation and Conformational Energy Terms on the Predictions of Docking Programs against mPGES-1

    Science.gov (United States)

    Gupta, Ashish; Chaudhary, Neha; Kakularam, Kumar Reddy; Pallu, Reddanna; Polamarasetty, Aparoy

    2015-01-01

    In this study we introduce a rescoring method to improve the accuracy of docking programs against mPGES-1. The rescoring method developed is a result of extensive computational study in which different scoring functions and molecular descriptors were combined to develop consensus and rescoring methods. 127 mPGES-1 inhibitors were collected from literature and were segregated into training and external test sets. Docking of the 27 training set compounds was carried out using default settings in AutoDock Vina, AutoDock, DOCK6 and GOLD programs. The programs showed low to moderate correlation with the experimental activities. In order to introduce the contributions of desolvation penalty and conformation energy of the inhibitors various molecular descriptors were calculated. Later, rescoring method was developed as empirical sum of normalised values of docking scores, LogP and Nrotb. The results clearly indicated that LogP and Nrotb recuperate the predictions of these docking programs. Further the efficiency of the rescoring method was validated using 100 test set compounds. The accurate prediction of binding affinities for analogues of the same compounds is a major challenge for many of the existing docking programs; in the present study the high correlation obtained for experimental and predicted pIC50 values for the test set compounds validates the efficiency of the scoring method. PMID:26305898

  7. Decipher the mechanisms of protein conformational changes induced by nucleotide binding through free-energy landscape analysis: ATP binding to Hsp70.

    Directory of Open Access Journals (Sweden)

    Adrien Nicolaï

    Full Text Available ATP regulates the function of many proteins in the cell by transducing its binding and hydrolysis energies into protein conformational changes by mechanisms which are challenging to identify at the atomic scale. Based on molecular dynamics (MD simulations, a method is proposed to analyze the structural changes induced by ATP binding to a protein by computing the effective free-energy landscape (FEL of a subset of its coordinates along its amino-acid sequence. The method is applied to characterize the mechanism by which the binding of ATP to the nucleotide-binding domain (NBD of Hsp70 propagates a signal to its substrate-binding domain (SBD. Unbiased MD simulations were performed for Hsp70-DnaK chaperone in nucleotide-free, ADP-bound and ATP-bound states. The simulations revealed that the SBD does not interact with the NBD for DnaK in its nucleotide-free and ADP-bound states whereas the docking of the SBD was found in the ATP-bound state. The docked state induced by ATP binding found in MD is an intermediate state between the initial nucleotide-free and final ATP-bound states of Hsp70. The analysis of the FEL projected along the amino-acid sequence permitted to identify a subset of 27 protein internal coordinates corresponding to a network of 91 key residues involved in the conformational change induced by ATP binding. Among the 91 residues, 26 are identified for the first time, whereas the others were shown relevant for the allosteric communication of Hsp70 s in several experiments and bioinformatics analysis. The FEL analysis revealed also the origin of the ATP-induced structural modifications of the SBD recently measured by Electron Paramagnetic Resonance. The pathway between the nucleotide-free and the intermediate state of DnaK was extracted by applying principal component analysis to the subset of internal coordinates describing the transition. The methodology proposed is general and could be applied to analyze allosteric communication in

  8. Conformal house

    DEFF Research Database (Denmark)

    Ryttov, Thomas Aaby; Sannino, Francesco

    2010-01-01

    fixed point. As a consistency check we recover the previously investigated bounds of the conformal windows when restricting to a single matter representation. The earlier conformal windows can be imagined to be part now of the new conformal house. We predict the nonperturbative anomalous dimensions...... at the infrared fixed points. We further investigate the effects of adding mass terms to the condensates on the conformal house chiral dynamics and construct the simplest instanton induced effective Lagrangian terms...

  9. Annual report 2005 General Direction of the Energy and raw materials; Rapport annuel 2005 Direction Generale de L'Energie et des Matieres Premieres

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This 2005 annual report of the DGEMP (General Direction of the Energy and the raw Materials), takes stock on the energy bill and accounting of the France. The first part presents the electric power, natural gas and raw materials market in France. The second part is devoted to the diversification of the energy resources with a special attention to the renewable energies and the nuclear energy. The third part discusses the energy and raw materials prices and the last part presents the international cooperation in the energy domain. (A.L.B.)

  10. 77 FR 4203 - Energy Conservation Program: Test Procedures for General Service Fluorescent Lamps, General...

    Science.gov (United States)

    2012-01-27

    ... Fluorescent Lamps, General Service Incandescent Lamps, and Incandescent Reflector Lamps AGENCY: Office of... the test procedures for general service fluorescent lamps (GSFLs), general service incandescent lamps (GSILs), and incandescent reflector lamps (IRLs). That proposed rulemaking serves as the basis for...

  11. Molecular Mechanism and Energy Basis of Conformational Diversity of Antibody SPE7 Revealed by Molecular Dynamics Simulation and Principal Component Analysis

    Science.gov (United States)

    Chen, Jianzhong; Wang, Jinan; Zhu, Weiliang

    2016-11-01

    More and more researchers are interested in and focused on how a limited repertoire of antibodies can bind and correspondingly protect against an almost limitless diversity of invading antigens. In this work, a series of 200-ns molecular dynamics (MD) simulations followed by principal component (PC) analysis and free energy calculations were performed to probe potential mechanism of conformational diversity of antibody SPE7. The results show that the motion direction of loops H3 and L3 is different relative to each other, implying that a big structural difference exists between these two loops. The calculated energy landscapes suggest that the changes in the backbone angles ψ and φ of H-Y101 and H-Y105 provide significant contributions to the conformational diversity of SPE7. The dihedral angle analyses based on MD trajectories show that the side-chain conformational changes of several key residues H-W33, H-Y105, L-Y34 and L-W93 around binding site of SPE7 play a key role in the conformational diversity of SPE7, which gives a reasonable explanation for potential mechanism of cross-reactivity of single antibody toward multiple antigens.

  12. GM energy management: organization and results. [General Motors

    Energy Technology Data Exchange (ETDEWEB)

    DeKoker, N.

    1975-01-01

    Energy conservation is not new to industry. The effective and efficient use of labor and materials including energy has been an important tool in cost control for many years. Today, an even greater emphasis must be placed on conserving energy while at the same time stimulating the longer term development of existing as well as new energy resources. Energy conservation in manufacturing can involve product material and/or finish specification changes, process changes or elimination, improved control of equipment, the installation of heat recovery devices and the consolidation of operations. GM's organization to meet these energy management challenges and some of the specific measures taken to improve the efficiency of manufacturing operations are presented.

  13. Conformational sampling techniques.

    Science.gov (United States)

    Hatfield, Marcus P D; Lovas, Sándor

    2014-01-01

    The potential energy hyper-surface of a protein relates the potential energy of the protein to its conformational space. This surface is useful in determining the native conformation of a protein or in examining a statistical-mechanical ensemble of structures (canonical ensemble). In determining the potential energy hyper-surface of a protein three aspects must be considered; reducing the degrees of freedom, a method to determine the energy of each conformation and a method to sample the conformational space. For reducing the degrees of freedom the choice of solvent, coarse graining, constraining degrees of freedom and periodic boundary conditions are discussed. The use of quantum mechanics versus molecular mechanics and the choice of force fields are also discussed, as well as the sampling of the conformational space through deterministic and heuristic approaches. Deterministic methods include knowledge-based statistical methods, rotamer libraries, homology modeling, the build-up method, self-consistent electrostatic field, deformation methods, tree-based elimination and eigenvector following routines. The heuristic methods include Monte Carlo chain growing, energy minimizations, metropolis monte carlo and molecular dynamics. In addition, various methods to enhance the conformational search including the deformation or smoothing of the surface, scaling of system parameters, and multi copy searching are also discussed.

  14. A conformal model of gravitons

    CERN Document Server

    Donoghue, John F

    2016-01-01

    In the description of general covariance, the vierbein and the Lorentz connection can be treated as independent fundamental fields. With the usual gauge Lagrangian, the Lorentz connection is characterized by an asymptotically free running coupling. When running from high energy, the coupling gets large at a scale which can be called the Planck mass. If the Lorentz connection is confined at that scale, the low energy theory can have the Einstein Lagrangian induced at low energy through dimensional transmutation. However, in general there will be new divergences in such a theory and the Lagrangian basis should be expanded. I construct a conformally invariant model with a larger basis size which potentially may have the same property.

  15. 76 FR 56661 - Energy Conservation Program: Test Procedures for General Service Fluorescent Lamps, General...

    Science.gov (United States)

    2011-09-14

    ... energy efficiency, energy use, or estimated annual operating cost of a covered product during a... test procedures and offer the public an opportunity to present oral and written comments on them. (42 U...''), 10 CFR 430.23 (``Test procedures for the measurement of energy and water consumption''), 10 CFR...

  16. Vacuum polarization energy for general backgrounds in one space dimension

    Science.gov (United States)

    Weigel, H.

    2017-03-01

    For field theories in one time and one space dimensions we propose an efficient method to compute the vacuum polarization energy of static field configurations that do not allow a decomposition into symmetric and anti-symmetric channels. The method also applies to scenarios in which the masses of the quantum fluctuations at positive and negative spatial infinity are different. As an example we compute the vacuum polarization energy of the kink soliton in the ϕ6 model. We link the dependence of this energy on the position of the soliton to the different masses.

  17. Vertical Ionization Energies of α-L-Amino Acids as a Function of Their Conformation: an Ab Initio Study

    Directory of Open Access Journals (Sweden)

    Georges Dive

    2004-11-01

    Full Text Available Abstract: Vertical ionization energies (IE as a function of the conformation are determined at the quantum chemistry level for eighteen α-L-amino acids. Geometry optimization of the neutrals are performed within the Density Functional Theory (DFT framework using the hybrid method B3LYP and the 6-31G**(5d basis set. Few comparisons are made with wave-function-based ab initio correlated methods like MP2, QCISD or CCSD. For each amino acid, several conformations are considered that lie in the range 10-15 kJ/mol by reference to the more stable one. Their IE are calculated using the Outer-Valence-Green's-Functions (OVGF method at the neutrals' geometry. Few comparisons are made with MP2 and QCISD IE. It turns out that the OVGF results are satisfactory but an uncertainty relative to the most stable conformer at the B3LYP level persists. Moreover, the value of the IE can largely depend on the conformation due to the fact that the ionized molecular orbitals (MO can change a lot as a function of the nuclear structure.

  18. Energy conservation: Policies, programs, and general studies. Citations from the NTIS data base

    Science.gov (United States)

    Hundemann, A. S.

    1980-08-01

    National policies, programs, and general studies or ways to conserve energy are presented. Topic areas cover such subjects as electric load management, effects of price and taxation on energy conservation, public attitudes and behavior toward energy saving, energy savings through reduction in hot water consumption, and telecommunications substitutability for travel.

  19. General engineering ethics and multiple stress of atomic energy engineering

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Kunihiko [Shibaura Inst. of Tech., Tokyo (Japan)

    1999-08-01

    The factors, by which the modern engineering ethics has been profoundly affected, were classified to three categories, namely mental blow, the destruction of human function and environment damage. The role of atomic energy engineering in the ethic field has been shown in the first place. It is pointed out that it has brought about the mental blow by the elucidation of universal truth and discipline and the functional disorder by the power supply. However, the direct effect of radiation to the human kinds is only a part of the stresses comparing to the accumulation of the social stress which should be taken into account of by the possibility of disaster and the suspicion of the atomic energy politics. An increase in the multiple stresses as well as the restriction of criticism will place obstacles on the promotion of atomic energy. (author)

  20. DGP cosmological model with generalized Ricci dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera, Yeremy [Universidad de Santiago, Departamento de Matematicas y Ciencia de la Computacion, Santiago (Chile); Avelino, Arturo [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Cruz, Norman [Universidad de Santiago, Departamento de Fisica, Facultad de Ciencia, Santiago (Chile); Lepe, Samuel [Pontificia Universidad Catolica de Valparaiso, Facultad de Ciencias, Instituto de Fisica, Valparaiso (Chile); Pena, Francisco [Universidad de La Frontera, Departamento de Ciencias Fisicas, Facultad de Ingenieria y Ciencias, Temuco (Chile)

    2014-11-15

    The brane-world model proposed by Dvali, Gabadadze and Porrati (DGP) leads to an accelerated universe without cosmological constant or other form of dark energy for the positive branch (element of = +1). For the negative branch (element of = -1) we have investigated the behavior of a model with an holographic Ricci-like dark energy and dark matter, where the IR cutoff takes the form αH{sup 2} + βH, H being the Hubble parameter and α, β positive constants of the model. We perform an analytical study of the model in the late-time dark energy dominated epoch, where we obtain a solution for r{sub c}H(z), where r{sub c} is the leakage scale of gravity into the bulk, and conditions for the negative branch on the holographic parameters α and β, in order to hold the conditions of weak energy and accelerated universe. On the other hand, we compare the model versus the late-time cosmological data using the latest type Ia supernova sample of the Joint Light-curve Analysis (JLA), in order to constrain the holographic parameters in the negative branch, as well as r{sub c}H{sub 0} in the positive branch, where H{sub 0} is the Hubble constant. We find that the model has a good fit to the data and that the most likely values for (r{sub c}H{sub 0}, α, β) lie in the permitted region found from an analytical solution in a dark energy dominated universe. We give a justification to use a holographic cutoff in 4D for the dark energy in the 5-dimensional DGP model. Finally, using the Bayesian Information Criterion we find that this model is disfavored compared with the flat ΛCDM model. (orig.)

  1. Stress-energy-momentum of affine-metric gravity generalized Komar superpotential

    CERN Document Server

    Giachetta, G

    1995-01-01

    In case of the Einstein's gravitation theory and its first order Palatini reformulation, the stress-energy-momentum of gravity has been proved to reduce to the Komar superpotential. We generalize this result to the affine-metric theory of gravity in case of general connections and arbitrary Lagrangian densities invariant under general covariant transformations. In this case, the stress-energy-momentum of gravity comes to the generalized Komar superpotential depending on a Lagrangian density in a precise way.

  2. Quantum massive conformal gravity

    Energy Technology Data Exchange (ETDEWEB)

    Faria, F.F. [Universidade Estadual do Piaui, Centro de Ciencias da Natureza, Teresina, PI (Brazil)

    2016-04-15

    We first find the linear approximation of the second plus fourth order derivative massive conformal gravity action. Then we reduce the linearized action to separated second order derivative terms, which allows us to quantize the theory by using the standard first order canonical quantization method. It is shown that quantum massive conformal gravity is renormalizable but has ghost states. A possible decoupling of these ghost states at high energies is discussed. (orig.)

  3. Workers’ Conformism

    Directory of Open Access Journals (Sweden)

    Nikolay Ivantchev

    2013-10-01

    Full Text Available Conformism was studied among 46 workers with different kinds of occupations by means of two modified scales measuring conformity by Santor, Messervey, and Kusumakar (2000 – scale for perceived peer pressure and scale for conformism in antisocial situations. The hypothesis of the study that workers’ conformism is expressed in a medium degree was confirmed partly. More than a half of the workers conform in a medium degree for taking risk, and for the use of alcohol and drugs, and for sexual relationships. More than a half of the respondents conform in a small degree for anti-social activities (like a theft. The workers were more inclined to conform for risk taking (10.9%, then – for the use of alcohol, drugs and for sexual relationships (8.7%, and in the lowest degree – for anti-social activities (6.5%. The workers who were inclined for the use of alcohol and drugs tended also to conform for anti-social activities.

  4. A CONFORMATIONAL ELASTICITY THEORY

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    A new statistical theory based on the rotational isomeric state model describing the chain conformational free energy has been proposed. This theory can be used to predict different tensions of rubber elongation for chemically different polymers, and the energy term during the elongation of natural rubber coincides with the experimental one.

  5. DNA – A General Energy System Simulation Tool

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Houbak, Niels

    2005-01-01

    operation. The program decides at runtime to apply the DAE solver if the system contains differential equations. This makes it easy to extend an existing steady state model to simulate dynamic operation of the plant. The use of the program is illustrated by examples of gas turbine models. The paper also......The paper reviews the development of the energy system simulation tool DNA (Dynamic Network Analysis). DNA has been developed since 1989 to be able to handle models of any kind of energy system based on the control volume approach, usually systems of lumped parameter components. DNA has proven...... to be a useful tool in the analysis and optimization of several types of thermal systems: Steam turbines, gas turbines, fuels cells, gasification, refrigeration and heat pumps for both conventional fossil fuels and different types of biomass. DNA is applicable for models of both steady state and dynamic...

  6. Energy, momentum, and center of mass in general relativity

    CERN Document Server

    Wang, Mu-Tao

    2016-01-01

    These notions in the title are of fundamental importance in any branch of physics. However, there have been great difficulties in finding physically acceptable definitions of them in general relativity since Einstein's time. I shall explain these difficulties and progresses that have been made. In particular, I shall introduce new definitions of center of mass and angular momentum at both the quasi-local and total levels, which are derived from first principles in general relativity and by the method of geometric analysis. With these new definitions, the classical formula p=mv is shown to be consistent with Einstein's field equation for the first time. This paper is based on joint work [14][15] with Po-Ning Chen and Shing-Tung Yau.

  7. Conformationally averaged vertical detachment energy of finite size NO3(-)·nH2O clusters: a route connecting few to many.

    Science.gov (United States)

    Pathak, Arup Kumar; Samanta, Alok Kumar; Maity, Dilip Kumar

    2011-04-07

    We report conformationally averaged VDEs (VDE(w)(n)) for different sizes of NO(3)(-)·nH(2)O clusters calculated by using uncorrelated HF, correlated hybrid density functional (B3LYP, BHHLYP) and correlated ab intio (MP2 and CCSD(T)) theory. It is observed that the VDE(w)(n) at the B3LYP/6-311++G(d,p), B3LYP/Aug-cc-Pvtz and CCSD(T)/6-311++G(d,p) levels is very close to the experimentally measured VDE. It is shown that the use of calculated results of the conformationally averaged VDE for small-sized solvated negatively-charged clusters and a microscopic theory-based general expression for the same provides a route to obtain the VDE for a wide range of cluster sizes, including bulk.

  8. High energy light scattering in the generalized eikonal approximation.

    Science.gov (United States)

    Chen, T W

    1989-10-01

    The generalized eikonal approximation method is applied to the study of light scattering by a dielectric medium. In this method, the propagation of light inside the medium is assumed to be rectilinear, as in the usual eikonal method, but with a parameterized propagator which is used to include the edge effect and ray optics behavior at the limit of very short wavelengths. The resulting formulas for the intensity and extinction efficiency factor are compared numerically and shown to agree excellently with the exact results for a homogeneous dielectric sphere.

  9. A Generalization of Electromagnetic Fluctuation-Induced Casimir Energy

    Directory of Open Access Journals (Sweden)

    Yi Zheng

    2015-01-01

    Full Text Available Intermolecular forces responsible for adhesion and cohesion can be classified according to their origins; interactions between charges, ions, random dipole—random dipole (Keesom, random dipole—induced dipole (Debye are due to electrostatic effects; covalent bonding, London dispersion forces between fluctuating dipoles, and Lewis acid-base interactions are due to quantum mechanical effects; pressure and osmotic forces are of entropic origin. Of all these interactions, the London dispersion interaction is universal and exists between all types of atoms as well as macroscopic objects. The dispersion force between macroscopic objects is called Casimir/van der Waals force. It results from alteration of the quantum and thermal fluctuations of the electrodynamic field due to the presence of interfaces and plays a significant role in the interaction between macroscopic objects at micrometer and nanometer length scales. This paper discusses how fluctuational electrodynamics can be used to determine the Casimir energy/pressure between planar multilayer objects. Though it is confirmation of the famous work of Dzyaloshinskii, Lifshitz, and Pitaevskii (DLP, we have solved the problem without having to use methods from quantum field theory that DLP resorted to. Because of this new approach, we have been able to clarify the contributions of propagating and evanescent waves to Casimir energy/pressure in dissipative media.

  10. A Generalized Framework for Energy Conservation in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    V. S. Anita Sofia

    2011-01-01

    Full Text Available A Wireless Sensor Networks (WSN consists of spatially distributed autonomous sensors to cooperatively monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants. WSN contains a large number of nodes with a limited energy supply. A wireless sensor network consists of nodes that can communicate with each other via wireless links. Sensors are be remotely deployed in large numbers and operates autonomously in unattended environments. One way to support efficient communication between sensors is to organize the network into several groups, called clusters, with each cluster electing one node as the head of cluster To support scalability, nodes are often grouped into disjoint and mostly non-overlapping clusters. This paper deals about the frame work for energy conservation of a Wireless sensor network. The frame work is developed such a way that the nodes are to be clustered, electing the cluster head, performing intra cluster transmission and from the cluster head the information is transmitted to the base station.

  11. 40 CFR 93.154 - Conformity analysis.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Conformity analysis. 93.154 Section 93...) DETERMINING CONFORMITY OF FEDERAL ACTIONS TO STATE OR FEDERAL IMPLEMENTATION PLANS Determining Conformity of General Federal Actions to State or Federal Implementation Plans § 93.154 Conformity analysis. Any...

  12. Students' Misunderstandings about the Energy Conservation Principle: A General View to Studies in Literature

    Science.gov (United States)

    Tatar, Erdal; Oktay, Munir

    2007-01-01

    This paper serves to review previously reported studies on students' misunderstandings about the energy conservation principle (the first law of thermodynamics). Generally, studies in literature highlighted students' misunderstandings about the energy conservation principle stem from preliminaries about energy concept in daily life. Since prior…

  13. Paul Scherrer Institut Scientific Report 2001. Volume V: General Energy

    Energy Technology Data Exchange (ETDEWEB)

    Wokaun, A.; Daum, C. (eds.)

    2002-03-01

    Major advances in 'Energy and Materials Cycles' have been achieved in the removal of heavy metals from the solid residues of municipal waste incineration. It has been conclusively shown that the oxidation/reduction conditions established during the thermal treatment of filter ash have a decisive influence on the evaporation of groups of heavy metals. With respect to biomass gasification, studies have been carried out with respect to the best way of extracting pure hydrogen from the low calorific value gas that is typically obtained from a biomass gasifier. The overarching goal of the laboratory 'High Temperature Solar Technology' is the use of solar energy for the production of solar fuels, or for the reduction of CO{sub 2} emissions in large scale industrial processes that are conventionally carried out with the use of fossil fuels. In a short-term project targeted at the solar production of lime, highly encouraging results (98% degree of calcination, adjustable reactivity of the lime) have been obtained in a 10 kW prototype reactor. Hybrid processes, in which the calorific value of fossil fuels is upgraded by solar energy, represent the medium-term strategy. In this context, the successful operation of the SYNMET reactor, in which zinc oxide is reacted with methane to produce zinc and synthesis gas, represents an important milestone. The physical sciences group has come up with a novel scheme in which sulfides, rather than oxides, are used as starting materials. Copper sulfide Cu{sub 2}S has been identified as a promising raw material, from which metallic copper would be produced in a solar reduction step. For the use of a catalytic combustor upstream of the main burning chamber of the gas turbine, it is crucial to know the stream wise distance over the catalyst where homogeneous ignition is initiated. The combustion-group working at this concept has made great advances in matching the observed ignition distances with theory. In addition, the

  14. Paul Scherrer Institut Scientific Report 2001. Volume V: General Energy

    Energy Technology Data Exchange (ETDEWEB)

    Wokaun, A.; Daum, C. (eds.)

    2002-03-01

    Major advances in 'Energy and Materials Cycles' have been achieved in the removal of heavy metals from the solid residues of municipal waste incineration. It has been conclusively shown that the oxidation/reduction conditions established during the thermal treatment of filter ash have a decisive influence on the evaporation of groups of heavy metals. With respect to biomass gasification, studies have been carried out with respect to the best way of extracting pure hydrogen from the low calorific value gas that is typically obtained from a biomass gasifier. The overarching goal of the laboratory 'High Temperature Solar Technology' is the use of solar energy for the production of solar fuels, or for the reduction of CO{sub 2} emissions in large scale industrial processes that are conventionally carried out with the use of fossil fuels. In a short-term project targeted at the solar production of lime, highly encouraging results (98% degree of calcination, adjustable reactivity of the lime) have been obtained in a 10 kW prototype reactor. Hybrid processes, in which the calorific value of fossil fuels is upgraded by solar energy, represent the medium-term strategy. In this context, the successful operation of the SYNMET reactor, in which zinc oxide is reacted with methane to produce zinc and synthesis gas, represents an important milestone. The physical sciences group has come up with a novel scheme in which sulfides, rather than oxides, are used as starting materials. Copper sulfide Cu{sub 2}S has been identified as a promising raw material, from which metallic copper would be produced in a solar reduction step. For the use of a catalytic combustor upstream of the main burning chamber of the gas turbine, it is crucial to know the stream wise distance over the catalyst where homogeneous ignition is initiated. The combustion-group working at this concept has made great advances in matching the observed ignition distances with theory. In addition, the

  15. Frequent Questions about General Conformity

    Science.gov (United States)

    These regulations ensure that federal activities or actions don't cause new violations to the NAAQS and ensure that NAAQS attainment is not delayed. This page has information about other agency representatives or stakeholders

  16. 群体工作中用势艺术之探讨%Discussion on Art of Conforming to General Drift During Mass Sports Work

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    Based on the successful examples of conforming to general drift in Chinese history ,this article focus on the reality of jiangsu mass sports .From leadership and methodology perspective , the author discuss mass sports in nowadays ,in order to improve ability and level of mass sports worker to know things ,analyze this situation and solve problems .%  本文源于对江苏群体工作的现实关注,从领导学和方法论的视角出发,在探究中国历史中“用势艺术”成功范例的基础上,试图对当今群体工作作相应的梳理与探讨,以期提高广大群体工作者看待事物、分析情况、解决问题的能力和层次。

  17. Charged Dilaton, Energy, Momentum and Angular-Momentum in Teleparallel Theory Equivalent to General Relativity

    CERN Document Server

    Nashed, Gamal Gergess Lamee

    2008-01-01

    We apply the energy-momentum tensor to calculate energy, momentum and angular-momentum of two different tetrad fields. This tensor is coordinate independent of the gravitational field established in the Hamiltonian structure of the teleparallel equivalent of general relativity (TEGR). The spacetime of these tetrad fields is the charged dilaton. Our results show that the energy associated with one of these tetrad fields is consistent, while the other one does not show this consistency. Therefore, we use the regularized expression of the gravitational energy-momentum tensor of the TEGR. We investigate the energy within the external event horizon using the definition of the gravitational energy-momentum.

  18. Non-linear Realizations of Conformal Symmetry and Effective Field Theory for the Pseudo-Conformal Universe

    CERN Document Server

    Hinterbichler, Kurt; Khoury, Justin

    2012-01-01

    The pseudo-conformal scenario is an alternative to inflation in which the early universe is described by an approximate conformal field theory on flat, Minkowski space. Some fields acquire a time-dependent expectation value, which breaks the flat space so(4,2) conformal algebra to its so(4,1) de Sitter subalgebra. As a result, weight-0 fields acquire a scale invariant spectrum of perturbations. The scenario is very general, and its essential features are determined by the symmetry breaking pattern, irrespective of the details of the underlying microphysics. In this paper, we apply the well-known coset technique to derive the most general effective lagrangian describing the Goldstone field and matter fields, consistent with the assumed symmetries. The resulting action captures the low energy dynamics of any pseudo-conformal realization, including the U(1)-invariant quartic model and the Galilean Genesis scenario. We also derive this lagrangian using an alternative method of curvature invariants, consisting of ...

  19. M(o)ller Energy Complexes of Monopoles and Textures in General Relativity and Teleparallel Gravity

    Institute of Scientific and Technical Information of China (English)

    Melis Aygün; Ihsan Yllmaz

    2007-01-01

    The energy problem of monopole and texture spacetimes is investigated in the context of two different approaches of gravity such as general relativity and teleparallel gravity.In this connection,firstly the energies for monopoles and textures are evaluated by using the Moiler energy-momentum prescription in different approximations.It is obtained that energy distributions of M?ller definition give the same results for these topological defects (monopole and texture)in general relativity(GR)and teleparallel gravity(TG).The results strengthen the importance of the M?ller energy-momentum definitions in giyen spacetimes and the viewpoint of Lessner that M(o)ller energy-momentum complex is a powerful concept for energy and momentum.

  20. Nuclear matter symmetry energy from generalized polarizabilities: dependences on momentum, isospin, density and temperature

    CERN Document Server

    Braghin, F L

    2004-01-01

    Symmetry energy terms from macroscopic mass formulae are investigated as generalized polarizabilities of nuclear matter. Besides the neutron-proton (n-p) symmetry energy the spin dependent symmetry energies and a scalar one are also defined. They depend on the nuclear densities ($\\rho$), neutron-proton asymmetry ($b$), temperature ($T$) and exchanged energy and momentum ($q$). Based on a standard expression for the generalized polarizabilities, a differential equation is proposed to constrain the dependence of the symmetry energy on the n-p asymmetry and on the density. Some solutions are discussed. The q-dependence (zero frequence) of the symmetry energy coefficients with Skyrme-type forces is investigated in the four channels of the particle-hole interaction. Spin dependent symmetry energies are also investigated indicating much stronger differences in behavior with $q$ for each Skyrme force than the results for the neutron-proton one.

  1. Annual report 2001. General direction of energy and raw materials; Rapport annuel 2001. Direction generale de l'energie et des matieres premieres

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This report summarizes the 2001 activity of the French general direction of energy and raw materials (DGEMP) of the ministry of finances and industry: 1 - security of energy supplies: a recurrent problem; 2001, a transition year for nuclear energy worldwide; petroleum refining in font of the 2005 dead-line; the OPEC and the upset of the oil market; the pluri-annual planning of power production investments; renewable energies: a reconfirmed priority; 2 - the opening of markets: the opening of French electricity and gas markets; the international development of Electricite de France (EdF) and of Gaz de France (GdF); electricity and gas industries: first branch agreements; 3 - the present-day topics: 2001, the year of objective contracts; AREVA, the future to be prepared; the new IRSN; the agreements on climate and the energy policy; the mastery of domestic energy consumptions; the safety of hydroelectric dams; Technip-Coflexip: the birth of a para-petroleum industry giant; the cleansing of the mining activity in French Guyana; the future of workmen of Lorraine basin coal mines; 4 - 2001 at a glance: highlights; main legislative and regulatory texts; 5 - DGEMP: November 2001 reorganization and new organization chart; energy and raw materials publications; www.industrie.gouv.fr/energie. (J.S.)

  2. Conformational analysis of six- and twelve-membered ring compounds by molecular dynamics

    DEFF Research Database (Denmark)

    Christensen, I T; Jørgensen, Flemming Steen

    1997-01-01

    A molecular dynamics (MD)-based conformational analysis has been performed on a number of cycloalkanes in order to demonstrate the reliability and generality of MD as a tool for conformational analysis. MD simulations on cyclohexane and a series of methyl-substituted cyclohexanes were performed...... provided 19 out of the 20 most stable conformations found in the MM2 force field. Finally, the general performance of the MD method for conformational analysis is discussed........ A series of methyl-substituted 1,3-dioxanes were investigated at 1000 K, and the number of chair-chair interconversions could be quantitatively correlated to the experimentally determined ring inversion barrier. Similarly, the distribution of sampled minimum-energy conformations correlated with the energy...

  3. Office of Inspector General audit report on the U.S. Department of Energy`s aircraft activities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    On October 19, 1998, the Office of Inspector General (OIG) was asked to undertake a review of the Department of Energy`s aircraft activities. It was also requested that they report back within 90 days. The OIG has gathered information concerning the number of aircraft, the level of utilization, and the cost of the Department`s aircraft operations. They have also briefly summarized four issues that, in their judgment, may require management attention.

  4. Variations in energy spectra and water-to-material stopping-power ratios in three-dimensional conformal and intensity-modulated photon fields.

    Science.gov (United States)

    Jang, Si Young; Liu, H Helen; Mohan, Radhe; Siebers, Jeffrey V

    2007-04-01

    Because of complex dose distributions and dose gradients that are created in three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiation therapy (IMRT), photon- and electron-energy spectra might change significantly with spatial locations and doses. This study examined variations in photon- and electron-energy spectra in 3D-CRT and IMRT photon fields. The effects of spectral variations on water-to-material stopping-power ratios used in Monte Carlo treatment planning systems and the responses of energy-dependent dosimeters, such as thermoluminescent dosimeters (TLDs) and radiographic films were further studied. The EGSnrc Monte Carlo code was used to simulate megavoltage 3D-CRT and IMRT photon fields. The photon- and electron-energy spectra were calculated in 3D water phantoms and anthropomorphic phantoms based on the fluence scored in voxel grids. We then obtained the water-to-material stopping-power ratios in the local voxels using the Spencer-Attix cavity theory. Changes in the responses of films and TLDs were estimated based on the calculated local energy spectra and published data on the dosimeter energy dependency. Results showed that the photon-energy spectra strongly depended on spatial positions and doses in both the 3D-CRT and IMRT fields. The relative fraction of low-energy photons (stopping-power ratio over the range of calculated dose for both 3D-CRT and IMRT was negligible (< 1.0%) for ICRU tissue, cortical bone, and soft bone and less than 3.6% for dry air and lung. Because of spectral softening at low doses, radiographic films in the phantoms could over-respond to dose by more than 30%, whereas the over-response of TLDs was less than 10%. Thus, spatial variations of the photon- and electron-energy spectra should be considered as important factors in 3D-CRT and IMRT dosimetry.

  5. Pontential energies and potential-energy tensors for subsystems: general properties

    CERN Document Server

    Caimmi, R

    2016-01-01

    With regard to generic two-component systems, the theory of first variations of global quantities is reviewed and explicit expressions are inferred for subsystem potential energies and potential-energy tensors. Performing a conceptual experiment, a physical interpretation of subsystem potential energies and potential-energy tensors is discussed. Subsystem tidal radii are defined by requiring an unbound component in absence of the other one. To this respect, a few guidance examples are presented as: (i) an embedding and an embedded homogeneous sphere; (ii) an embedding and an embedded truncated, singular isothermal sphere where related centres are sufficiently distant; (iii) a homogeneous sphere and a Roche system i.e. a mass point surrounded by a vanishing atmosphere. The results are discussed and compared with the findings of earlier investigations.

  6. An Analysis of Metaphors Used by Students to Describe Energy in an Interdisciplinary General Science Course

    Science.gov (United States)

    Lancor, Rachael

    2015-01-01

    The meaning of the term energy varies widely in scientific and colloquial discourse. Teasing apart the different connotations of the term can be especially challenging for non-science majors. In this study, undergraduate students taking an interdisciplinary, general science course (n?=?49) were asked to explain the role of energy in five contexts:…

  7. Wormhole geometries in fourth-order conformal Weyl gravity

    Science.gov (United States)

    Varieschi, Gabriele U.; Ault, Kellie L.

    2016-04-01

    We present an analysis of the classic wormhole geometries based on conformal Weyl gravity, rather than standard general relativity. The main characteristics of the resulting traversable wormholes remains the same as in the seminal study by Morris and Thorne, namely, that effective super-luminal motion is a viable consequence of the metric. Improving on previous work on the subject, we show that for particular choices of the shape and redshift functions the wormhole metric in the context of conformal gravity does not violate the main energy conditions at or near the wormhole throat. Some exotic matter might still be needed at the junction between our solutions and flat spacetime, but we demonstrate that the averaged null energy condition (as evaluated along radial null geodesics) is satisfied for a particular set of wormhole geometries. Therefore, if fourth-order conformal Weyl gravity is a correct extension of general relativity, traversable wormholes might become a realistic solution for interstellar travel.

  8. Stress-energy tensor correlators in N-dimensional hot flat spaces via the generalized zeta-function method

    Science.gov (United States)

    Cho, H. T.; Hu, B. L.

    2012-09-01

    We calculate the expectation values of the stress-energy bitensor defined at two different spacetime points x, x‧ of a massless, minimally coupled scalar field with respect to a quantum state at finite temperature T in a flat N-dimensional spacetime by means of the generalized zeta-function method. These correlators, also known as the noise kernels, give the fluctuations of energy and momentum density of a quantum field which are essential for the investigation of the physical effects of negative energy density in certain spacetimes or quantum states. They also act as the sources of the Einstein-Langevin equations in stochastic gravity which one can solve for the dynamics of metric fluctuations as in spacetime foams. In terms of constitutions these correlators are one rung above (in the sense of the correlation—BBGKY or Schwinger-Dyson—hierarchies) the mean (vacuum and thermal expectation) values of the stress-energy tensor which drive the semiclassical Einstein equation in semiclassical gravity. The low- and the high-temperature expansions of these correlators are also given here: at low temperatures, the leading order temperature dependence goes like TN while at high temperatures they have a T2 dependence with the subleading terms exponentially suppressed by e-T. We also discuss the singular behavior of the correlators in the x‧ → x coincident limit as was done before for massless conformal quantum fields. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker’s 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’.

  9. Spacetime Conformal Fluctuations and Quantum Dephasing

    Science.gov (United States)

    Bonifacio, Paolo M.

    2009-06-01

    Any quantum system interacting with a complex environment undergoes decoherence. Empty space is filled with vacuum energy due to matter fields in their ground state and represents an underlying environment that any quantum particle has to cope with. In particular quantum gravity vacuum fluctuations should represent a universal source of decoherence. To study this problem we employ a stochastic approach that models spacetime fluctuations close to the Planck scale by means of a classical, randomly fluctuating metric (random gravity framework). We enrich the classical scheme for metric perturbations over a curved background by also including matter fields and metric conformal fluctuations. We show in general that a conformally modulated metric induces dephasing as a result of an effective nonlinear newtonian potential obtained in the appropriate nonrelativistic limit of a minimally coupled Klein-Gordon field. The special case of vacuum fluctuations is considered and a quantitative estimate of the expected effect deduced. Secondly we address the question of how conformal fluctuations could physically arise. By applying the random gravity framework we first show that standard GR seems to forbid spontaneous conformal metric modulations. Finally we argue that a different result follows within scalar-tensor theories of gravity such as e.g. Brans-Dicke theory. In this case a conformal modulation of the metric arises naturally as a result of the fluctuations in the Brans-Dicke field and quantum dephasing of a test particle is expected to occur. For large negative values of the coupling parameter the conformal fluctuations may also contribute to alleviate the well known problem of the large zero point energy due to quantum matter fields.

  10. Gravitational radiation fields in teleparallel equivalent of general relativity and their energies

    Institute of Scientific and Technical Information of China (English)

    Gamal G.L. Nashed

    2010-01-01

    We derive two new retarded solutions in the teleparallel theory equivalent to general relativity (TEGR). One of these solutions gives a divergent energy. Therefore, we use the regularized expression of the gravitational energy-momentum tensor, which is a coordinate dependent. A detailed analysis of the loss of the mass of Bondi space-time is carried out using the flux of the gravitational energy-momentum.

  11. Gravitational collapse with standard and dark energy in the teleparallel equivalent of general relativity

    Institute of Scientific and Technical Information of China (English)

    Gamal G.L.Nashed

    2012-01-01

    A perfect fluid with self-similarity of the second kind is studied within the framework of the teleparallel equivalent of general relativity (TEGR).A spacetime which is not asymptotically flat is derived.The energy conditions of this spacetime are studied.It is shown that after some time the strong energy condition is not enough to satisfy showing a transition from standard matter to dark energy.The singularities of this solution are discussed.

  12. Molecular mechanics conformational analysis of tylosin

    Science.gov (United States)

    Ivanov, Petko M.

    1998-01-01

    The conformations of the 16-membered macrolide antibiotic tylosin were studied with molecular mechanics (AMBER∗ force field) including modelling of the effect of the solvent on the conformational preferences (GB/SA). A Monte Carlo conformational search procedure was used for finding the most probable low-energy conformations. The present study provides complementary data to recently reported analysis of the conformations of tylosin based on NMR techniques. A search for the low-energy conformations of protynolide, a 16-membered lactone containing the same aglycone as tylosin, was also carried out, and the results were compared with the observed conformation in the crystal as well as with the most probable conformations of the macrocyclic ring of tylosin. The dependence of the results on force field was also studied by utilizing the MM3 force field. Some particular conformations were computed with the semiempirical molecular orbital methods AM1 and PM3.

  13. On Energy and Momentum of the Friedman and Some More General Universes

    CERN Document Server

    Garecki, Janusz

    2016-01-01

    Recently some authors concluded that the energy and momentum of the Fiedman universes, flat and closed, are equal to zero locally and globally (flat universes) or only globally (closed universes). The similar conclusion was also done for more general only homogeneous universes (Kasner and Bianchi type I). Such conclusions originated from coordinate dependent calculations performed only in comoving Cartesian coordinates by using the so-called {\\it energy-momentum complexes}. By using new coordinate independent expressions on energy and momentum one can show that the Friedman and more general universes {\\it needn't be energetic nonentity}.

  14. Energy Savings Forecast of Solid-State Lighting in General Illumination Applications

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-08-29

    With declining production costs and increasing technical capabilities, LED adoption has recently gained momentum in general illumination applications. This is a positive development for our energy infrastructure, as LEDs use significantly less electricity per lumen produced than many traditional lighting technologies. The U.S. Department of Energy’s Energy Savings Forecast of Solid-State Lighting in General Illumination Applications examines the expected market penetration and resulting energy savings of light-emitting diode, or LED, lamps and luminaires from today through 2030.

  15. Ligand-induced conformational changes: Improved predictions of ligand binding conformations and affinities

    DEFF Research Database (Denmark)

    Frimurer, T.M.; Peters, Günther H.J.; Iversen, L.F.

    2003-01-01

    A computational docking strategy using multiple conformations of the target protein is discussed and evaluated. A series of low molecular weight, competitive, nonpeptide protein tyrosine phosphatase inhibitors are considered for which the x-ray crystallographic structures in complex with protein...... tyrosine phosphatase 1 B (PTP1B) are known. To obtain a quantitative measure of the impact of conformational changes induced by the inhibitors, these were docked to the active site region of various structures of PTP1B using the docking program FlexX. Firstly, the inhibitors were docked to a PTP1B crystal...... predicted binding energy and a correct docking mode. Thirdly, to improve the predictability of the docking procedure in the general case, where only a single target protein structure is known, we evaluate an approach which takes possible protein side-chain conformational changes into account. Here, side...

  16. Free Energy and the Generalized Optimality Equations for Sequential Decision Making

    CERN Document Server

    Ortega, Pedro A

    2012-01-01

    The free energy functional has recently been proposed as a variational principle for bounded rational decision-making, since it instantiates a natural trade-off between utility gains and information processing costs that can be axiomatically derived. Here we apply the free energy principle to general decision trees that include both adversarial and stochastic environments. We derive generalized sequential optimality equations that not only include the Bellman optimality equations as a limit case, but also lead to well-known decision-rules such as Expectimax, Minimax and Expectiminimax. We show how these decision-rules can be derived from a single free energy principle that assigns a resource parameter to each node in the decision tree. These resource parameters express a concrete computational cost that can be measured as the amount of samples that are needed from the distribution that belongs to each node. The free energy principle therefore provides the normative basis for generalized optimality equations t...

  17. Generalized Scaling of Urban Heat Island Effect and Its Applications for Energy Consumption and Renewable Energy

    Directory of Open Access Journals (Sweden)

    T.-W. Lee

    2014-01-01

    Full Text Available In previous work from this laboratory, it has been found that the urban heat island intensity (UHI can be scaled with the urban length scale and the wind speed, through the time-dependent energy balance. The heating of the urban surfaces during the daytime sets the initial temperature, and this overheating is dissipated during the night-time through mean convection motion over the urban surface. This may appear to be in contrast to the classical work by Oke (1973. However, in this work, we show that if the population density is used in converting the population data into urbanized area, then a good agreement with the current theory is found. An additional parameter is the “urban flow parameter,” which depends on the urban building characteristics and affects the horizontal convection of heat due to wind. This scaling can be used to estimate the UHI intensity in any cities and therefore predict the required energy consumption during summer months. In addition, all urbanized surfaces are expected to exhibit this scaling, so that increase in the surface temperature in large energy-consumption or energy-producing facilities (e.g., solar electric or thermal power plants can be estimated.

  18. Conformal Coating of Three-Dimensional Nanostructures via Atomic Layer Deposition for Development of Advanced Energy Storage Devices and Plasmonic Transparent Conductors

    Science.gov (United States)

    Malek, Gary A.

    Due to the prodigious amount of electrical energy consumed throughout the world, there exists a great demand for new and improved methods of generating electrical energy in a clean and renewable manner as well as finding more effective ways to store it. This enormous task is of great interest to scientists and engineers, and much headway is being made by utilizing three-dimensional (3D) nanostructured materials. This work explores the application of two types of 3D nanostructured materials toward fabrication of advanced electrical energy storage and conversion devices. The first nanostructured material consists of vertically aligned carbon nanofibers. This three-dimensional structure is opaque, electrically conducting, and contains active sites along the outside of each fiber that are conducive to chemical reactions. Therefore, they make the perfect 3D conducting nanostructured substrate for advanced energy storage devices. In this work, the details for transforming vertically aligned carbon nanofiber arrays into core-shell structures via atomic layer deposition as well as into a mesoporous manganese oxide coated supercapacitor electrode are given. Another unique type of three-dimensional nanostructured substrate is nanotextured glass, which is transparent but non-conducting. Therefore, it can be converted to a 3D transparent conductor for possible application in photovoltaics if it can be conformally coated with a conducting material. This work details that transformation as well as the addition of plasmonic gold nanoparticles to complete the transition to a 3D plasmonic transparent conductor.

  19. Spherically symmetric conformal gravity and "gravitational bubbles"

    CERN Document Server

    Berezin, V A; Eroshenko, Yu N

    2016-01-01

    The general structure of the spherically symmetric solutions in the Weyl conformal gravity is described. The corresponding Bach equation are derived for the special type of metrics, which can be considered as the representative of the general class. The complete set of the pure vacuum solutions is found. It consists of two classes. The first one contains the solutions with constant two-dimensional curvature scalar of our specific metrics, and the representatives are the famous Robertson-Walker metrics. One of them we called the "gravitational bubbles", which is compact and with zero Weyl tensor. The second class is more general, with varying curvature scalar. We found its representative as the one-parameter family. It appears that it can be conformally covered by the thee-parameter Mannheim-Kazanas solution. We also investigated the general structure of the energy-momentum tensor in the spherical conformal gravity and constructed the vectorial equation that reveals clearly the same features of non-vacuum solu...

  20. Generalization of radiative jet energy loss to non-zero magnetic mass

    Energy Technology Data Exchange (ETDEWEB)

    Djordjevic, Magdalena, E-mail: magda@ipb.ac.rs [Institute of Physics Belgrade, University of Belgrade (Serbia); Djordjevic, Marko [Faculty of Biology, University of Belgrade (Serbia)

    2012-03-19

    Reliable predictions for jet quenching in ultra-relativistic heavy ion collisions require accurate computation of radiative energy loss. While all available energy loss formalisms assume zero magnetic mass - in accordance with the one-loop perturbative calculations - different non-perturbative approaches report a non-zero magnetic mass at RHIC and LHC. We here generalize a recently developed energy loss formalism in a realistic finite size QCD medium, to consistently include a possibility for existence of non-zero magnetic screening. We also present how the inclusion of finite magnetic mass changes the energy loss results. Our analysis suggests a fundamental constraint on magnetic to electric mass ratio.

  1. Recursion Relations for Conformal Blocks

    CERN Document Server

    Penedones, João; Yamazaki, Masahito

    2016-09-12

    In the context of conformal field theories in general space-time dimension, we find all the possible singularities of the conformal blocks as functions of the scaling dimension $\\Delta$ of the exchanged operator. In particular, we argue, using representation theory of parabolic Verma modules, that in odd spacetime dimension the singularities are only simple poles. We discuss how to use this information to write recursion relations that determine the conformal blocks. We first recover the recursion relation introduced in 1307.6856 for conformal blocks of external scalar operators. We then generalize this recursion relation for the conformal blocks associated to the four point function of three scalar and one vector operator. Finally we specialize to the case in which the vector operator is a conserved current.

  2. NEW PRINCIPLES OF POWER AND ENERGY RATE OF INCREMENTAL RATE TYPE FOR GENERALIZED CONTINUUM FIELD THEORIES

    Institute of Scientific and Technical Information of China (English)

    戴天民

    2001-01-01

    The aim of this paper is to establish new principles of power and energy rate of incremental type in generalized continuum mechanics. By combining new principles of virtual velocity and virtual angular velocity as well as of virtual stress and virtual couple stress with cross terms of incremental rate type a new principle of power and energy rate of incremental rate type with cross terms for micropolar continuum field theories is presented and from it all corresponding equations of motion and boundary conditions as well as power and energy rate equations of incremental rate type for micropolar and nonlocal micropolar continua with the help of generalized Piola's theorems in all and without any additional requirement are derived. Complete results for micromorphic continua could be similarly derived. The derived results in the present paper are believed to be new. They could be used to establish corresponding finite element methods of incremental rate type for generalized continuum mechanics.

  3. Generalized energy balance and reciprocity relations for thin-film optics

    Energy Technology Data Exchange (ETDEWEB)

    Dupertuis, M.A.; Proctor, M. [Institut de Micro- et Optoelectronique, Lausanne (Switzerland); Acklin, B. [AT& T Bell Labs., Holmdel, NJ (United States)

    1994-03-01

    Energy balance and reciprocity relations are studied for harmonic inhomogeneous plane waves that are incident upon a stack of continuous absorbing dielectric media that are macroscopically characterized by their electric and magnetic permittivities and their conductivities. New cross terms between parallel electric and parallel magnetic modes are identified in the fully generalized Poynting vector. The symmetry and the relations between the general Fresnel coefficients are investigated in the context of energy balance at the interface. The contributions of the so-called mixed Poynting vector are discussed in detail. In particular a new transfer matrix is introduced for energy fluxes in thin-film optics based on the Poynting and mixed Poynting vectors. Finally, the study of reciprocity relations leads to a generalization of a theorem of reversibility for conducting and dielectric media. 16 refs.

  4. Energy-Momentum of the Friedmann Models in General Relativity and Teleparallel Theory of Gravity

    CERN Document Server

    Sharif, M

    2008-01-01

    This paper is devoted to the evaluation of the energy-momentum density components for the Friedmann models. For this purpose, we have used M${\\o}$ller's pseudotensor prescription in General Relativity and a certain energy-momentum density developed from his teleparallel formulation. It is shown that the energy density of the closed Friedmann universe vanishes on the spherical shell at the radius $\\rho=2\\sqrt{3}$. This coincides with the earlier results available in the literature. We also discuss the energy of the flat and open models. A comparison shows a partial consistency between the M${\\o}$ller's pseudotensor for General Relativity and teleparallel theory. Further, it is shown that the results are independent of the free dimensionless coupling constant of the teleparallel gravity.

  5. General Relativistic Energy Conditions The Hubble expansion in the epoch of galaxy formation

    CERN Document Server

    Visser, M

    1997-01-01

    The energy conditions of Einstein gravity (classical general relativity) are designed to extract as much information as possible from classical general relativity without enforcing a particular equation of state for the stress-energy. This systematic avoidance of the need to specify a particular equation of state is particularly useful in a cosmological setting --- since the equation of state for the cosmological fluid in a Friedmann-Robertson-Walker type universe is extremely uncertain. I shall show that the energy conditions provide simple and robust bounds on the behaviour of both the density and look-back time as a function of red-shift. I shall show that current observations suggest that the so-called strong energy condition (SEC) is violated sometime between the epoch of galaxy formation and the present. This implies that no possible combination of ``normal'' matter is capable of fitting the observational data.

  6. Fake Conformal Symmetry in Unimodular Gravity

    CERN Document Server

    Oda, Ichiro

    2016-01-01

    We study Weyl symmetry (local conformal symmetry) in unimodular gravity. It is shown that the Noether currents for both Weyl symmetry and global scale symmetry, identically vanish as in the conformally invariant scalar-tensor gravity. We clearly explain why in the class of conformally invariant gravitational theories, the Noether currents vanish by starting with the conformally invariant scalar-tensor gravity. Moreover, we comment on both classical and quantum-mechanical equivalences among Einstein's general relativity, the conformally invariant scalar-tensor gravity and the Weyl-transverse (WTDiff) gravity. Finally, we discuss the Weyl current in the conformally invariant scalar action and see that it is also vanishing.

  7. Fake conformal symmetry in unimodular gravity

    Science.gov (United States)

    Oda, Ichiro

    2016-08-01

    We study Weyl symmetry (local conformal symmetry) in unimodular gravity. It is shown that the Noether currents for both Weyl symmetry and global scale symmetry vanish exactly as in conformally invariant scalar-tensor gravity. We clearly explain why in the class of conformally invariant gravitational theories, the Noether currents vanish by starting with conformally invariant scalar-tensor gravity. Moreover, we comment on both classical and quantum-mechanical equivalences in Einstein's general relativity, conformally invariant scalar-tensor gravity, and the Weyl-transverse gravity. Finally, we discuss the Weyl current in the conformally invariant scalar action and see that it is also vanishing.

  8. Proving the Achronal Averaged Null Energy Condition from the Generalized Second Law

    CERN Document Server

    Wall, Aron C

    2009-01-01

    A null line is a complete achronal null geodesic. It is proven that for any quantum fields minimally coupled to semiclassical Einstein gravity, the averaged null energy condition (ANEC) on null lines is a consequence of the generalized second law of thermodynamics for causal horizons. Auxiliary assumptions include CPT and the existence of a suitable renormalization scheme for the generalized entropy. Although the ANEC can be violated on general geodesics in curved spacetimes, as long as the ANEC holds on null lines there exist theorems showing that semiclassical gravity should satisfy positivity of energy, topological censorship, and should not admit closed timelike curves. It is pointed out that these theorems fail once the linearized graviton field is quantized, because then the renormalized shear squared term in the Raychaudhuri equation can be negative. A "shear-inclusive" generalization of the ANEC is proposed to remedy this, and is proven under an additional assumption about perturbations to horizons in...

  9. CONTINUOUS-ENERGY MONTE CARLO METHODS FOR CALCULATING GENERALIZED RESPONSE SENSITIVITIES USING TSUNAMI-3D

    Energy Technology Data Exchange (ETDEWEB)

    Perfetti, Christopher M [ORNL; Rearden, Bradley T [ORNL

    2014-01-01

    This work introduces a new approach for calculating sensitivity coefficients for generalized neutronic responses to nuclear data uncertainties using continuous-energy Monte Carlo methods. The approach presented in this paper, known as the GEAR-MC method, allows for the calculation of generalized sensitivity coefficients for multiple responses in a single Monte Carlo calculation with no nuclear data perturbations or knowledge of nuclear covariance data. The theory behind the GEAR-MC method is presented here, and proof of principle is demonstrated by using the GEAR-MC method to calculate sensitivity coefficients for responses in several 3D, continuous-energy Monte Carlo applications.

  10. Energy Savings Forecast of Solid-State Lighting in General Illumination Applications

    Energy Technology Data Exchange (ETDEWEB)

    Penning, Julie [Navigant Consulting Inc., Washington, DC (United States); Stober, Kelsey [Navigant Consulting Inc., Washington, DC (United States); Taylor, Victor [Navigant Consulting Inc., Washington, DC (United States); Yamada, Mary [Navigant Consulting Inc., Washington, DC (United States)

    2016-09-01

    The DOE report, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications, is a biannual report which models the adoption of LEDs in the U.S. general-lighting market, along with associated energy savings, based on the full potential DOE has determined to be technically feasible over time. This version of the report uses an updated 2016 U.S. lighting-market model that is more finely calibrated and granular than previous models, and extends the forecast period to 2035 from the 2030 limit that was used in previous editions.

  11. General Navier–Stokes-like momentum and mass-energy equations

    Energy Technology Data Exchange (ETDEWEB)

    Monreal, Jorge, E-mail: jmonreal@mail.usf.edu

    2015-03-15

    A new system of general Navier–Stokes-like equations is proposed to model electromagnetic flow utilizing analogues of hydrodynamic conservation equations. Such equations are intended to provide a different perspective and, potentially, a better understanding of electromagnetic mass, energy and momentum behaviour. Under such a new framework additional insights into electromagnetism could be gained. To that end, we propose a system of momentum and mass-energy conservation equations coupled through both momentum density and velocity vectors.

  12. 40 CFR 51.854 - Conformity analysis.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Conformity analysis. 51.854 Section 51... FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Determining Conformity of General Federal Actions to State or Federal Implementation Plans § 51.854 Conformity analysis. Link to...

  13. Hybridization of General Cargo Ships to meet the Required Energy Efficiency Design Index

    OpenAIRE

    Øverleir, Magnus Anders

    2015-01-01

    In this thesis a hybrid propulsion system is proposed for a general cargo ship with the aim to meet the required Energy Efficiency Design Index (EEDI). The study has investigated how a hybrid propulsion system will influence the ship s EEDI value and fuel economy. The central problem is the coming challenge for the general cargo segment meeting the required efficiency value. Especially small vessels (3 000-15 000 DWT) with high speed will have troubles complying with the stricter regulations....

  14. A general theory of evolution based on energy efficiency: its implications for diseases.

    Science.gov (United States)

    Yun, Anthony J; Lee, Patrick Y; Doux, John D; Conley, Buford R

    2006-01-01

    We propose a general theory of evolution based on energy efficiency. Life represents an emergent property of energy. The earth receives energy from cosmic sources such as the sun. Biologic life can be characterized by the conversion of available energy into complex systems. Direct energy converters such as photosynthetic microorganisms and plants transform light energy into high-energy phosphate bonds that fuel biochemical work. Indirect converters such as herbivores and carnivores predominantly feed off the food chain supplied by these direct converters. Improving energy efficiency confers competitive advantage in the contest among organisms for energy. We introduce a term, return on energy (ROE), as a measure of energy efficiency. We define ROE as a ratio of the amount of energy acquired by a system to the amount of energy consumed to generate that gain. Life-death cycling represents a tactic to sample the environment for innovations that allow increases in ROE to develop over generations rather than an individual lifespan. However, the variation-selection strategem of Darwinian evolution may define a particular tactic rather than an overarching biological paradigm. A theory of evolution based on competition for energy and driven by improvements in ROE both encompasses prior notions of evolution and portends post-Darwinian mechanisms. Such processes may involve the exchange of non-genetic traits that improve ROE, as exemplified by cognitive adaptations or memes. Under these circumstances, indefinite persistence may become favored over life-death cycling, as increases in ROE may then occur more efficiently within a single lifespan rather than over multiple generations. The key to this transition may involve novel methods to address the promotion of health and cognitive plasticity. We describe the implications of this theory for human diseases.

  15. Conformational plasticity and dynamics in the generic protein folding catalyst SlyD unraveled by single-molecule FRET.

    Science.gov (United States)

    Kahra, Dana; Kovermann, Michael; Löw, Christian; Hirschfeld, Verena; Haupt, Caroline; Balbach, Jochen; Hübner, Christian Gerhard

    2011-08-26

    The relation between conformational dynamics and chemistry in enzyme catalysis recently has received increasing attention. While, in the past, the mechanochemical coupling was mainly attributed to molecular motors, nowadays, it seems that this linkage is far more general. Single-molecule fluorescence methods are perfectly suited to directly evidence conformational flexibility and dynamics. By labeling the enzyme SlyD, a member of peptidyl-prolyl cis-trans isomerases of the FK506 binding protein type with an inserted chaperone domain, with donor and acceptor fluorophores for single-molecule fluorescence resonance energy transfer, we directly monitor conformational flexibility and conformational dynamics between the chaperone domain and the FK506 binding protein domain. We find a broad distribution of distances between the labels with two main maxima, which we attribute to an open conformation and to a closed conformation of the enzyme. Correlation analysis demonstrates that the conformations exchange on a rate in the 100 Hz range. With the aid from Monte Carlo simulations, we show that there must be conformational flexibility beyond the two main conformational states. Interestingly, neither the conformational distribution nor the dynamics is significantly altered upon binding of substrates or other known binding partners. Based on these experimental findings, we propose a model where the conformational dynamics is used to search the conformation enabling the chemical step, which also explains the remarkable substrate promiscuity connected with a high efficiency of this class of peptidyl-prolyl cis-trans isomerases.

  16. Thermal corrections to the Casimir energy in a general weak gravitational field

    Science.gov (United States)

    Nazari, Borzoo

    2016-12-01

    We calculate finite temperature corrections to the energy of the Casimir effect of a two conducting parallel plates in a general weak gravitational field. After solving the Klein-Gordon equation inside the apparatus, mode frequencies inside the apparatus are obtained in terms of the parameters of the weak background. Using Matsubara’s approach to quantum statistical mechanics gravity-induced thermal corrections of the energy density are obtained. Well-known weak static and stationary gravitational fields are analyzed and it is found that in the low temperature limit the energy of the system increases compared to that in the zero temperature case.

  17. The Generalized Energy Equation and Instability in the Two-layer Barotropic Vortex

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The linear two-layer barotropic primitive equations in cylindrical coordinates are used to derive a generalized energy equation, which is subsequently applied to explain the instability of the spiral wave in the model. In the two-layer model, there are not only the generalized barotropic instability and the super highspeed instability, but also some other new instabilities, which fall into the range of the Kelvin-Helmholtz instability and the generalized baroclinic instability, when the upper and lower basic flows are different.They are perhaps the mechanisms of the generation of spiral cloud bands in tropical cyclones as well.

  18. How to be smart and energy efficient: a general discussion on thermochromic windows.

    Science.gov (United States)

    Long, Linshuang; Ye, Hong

    2014-09-19

    A window is a unique element in a building because of its simultaneous properties of being "opaque" to inclement weather yet transparent to the observer. However, these unique features make the window an element that can reduce the energy efficiency of buildings. A thermochromic window is a type of smart window whose solar radiation properties vary with temperature. It is thought that the solar radiation gain of a room can be intelligently regulated through the use of thermochromic windows, resulting in lower energy consumption than with standard windows. Materials scientists have made many efforts to improve the performance of thermochromic materials. Despite these efforts, fundamental problems continue to confront us. How should a "smart" window behave? Is a "smart" window really the best candidate for energy-efficient applications? What is the relationship between smartness and energy performance? To answer these questions, a general discussion of smartness and energy performance is provided.

  19. An Analysis of Metaphors Used by Students to Describe Energy in an Interdisciplinary General Science Course

    Science.gov (United States)

    Lancor, Rachael

    2015-04-01

    The meaning of the term energy varies widely in scientific and colloquial discourse. Teasing apart the different connotations of the term can be especially challenging for non-science majors. In this study, undergraduate students taking an interdisciplinary, general science course (n = 49) were asked to explain the role of energy in five contexts: radiation, transportation, generating electricity, earthquakes, and the big bang theory. The responses were qualitatively analyzed under the framework of conceptual metaphor theory. This study presents evidence that non-science major students spontaneously use metaphorical language that is consistent with the conceptual metaphors of energy previously identified in the discourse of students in introductory physics, biology, and chemistry courses. Furthermore, most students used multiple coherent metaphors to explain the role of energy in these complex topics. This demonstrates that these conceptual metaphors for energy have broader applicability than just traditional scientific contexts. Implications for this work as a formative assessment tool in instruction will also be discussed.

  20. Generalizing the McClelland bounds for total {pi}-electron energy

    Energy Technology Data Exchange (ETDEWEB)

    Gutman, I. [Univ. of Kragujevac (Czechoslovakia). Faculty of Science; Indulal, G. [St. Aloysius Coll., Edathua, Alappuzha (India). Dept. of Mathematics; Todeschini, R. [Univ. of Milano (Italy). Dept. of Environmental Science

    2008-05-15

    In 1971 McClelland obtained lower and upper bounds for the total {pi}-electron energy. We now formulate the generalized version of these bounds, applicable to the energy-like expression E{sub X}={sigma}{sub i=1}{sup n} vertical stroke x{sub i}-x vertical stroke, where x{sub 1},x{sub 2},.., x{sub n} are any real numbers, and x is their arithmetic mean. In particular, if x{sub 1},x{sub 2},..,x{sub n} are the eigenvalues of the adjacency, Laplacian, or distance matrix of some graph G, then E{sub X} is the graph energy, Laplacian energy, or distance energy, respectively, of G. (orig.)

  1. Conformation-mediated Förster resonance energy transfer (FRET) in blue-emitting polyvinylpyrrolidone (PVP)-passivated zinc oxide (ZnO) nanoparticles.

    Science.gov (United States)

    Kurt, Hasan; Alpaslan, Ece; Yildiz, Burçin; Taralp, Alpay; Ow-Yang, Cleva W

    2017-02-15

    Homopolymers, such as polyvinylpyrrolidone (PVP), are commonly used to passivate the surface of blue-light emitting ZnO nanoparticles during colloid nucleation and growth. However, although PVP is known to auto-fluoresce at 400nm, which is near the absorption edge of ZnO, the impact of PVP adsorption characteristics on the surface of ZnO and the surface-related photophysics of PVP-capped ZnO nanoparticles is not well understood. To investigate, we have synthesized ZnO nanoparticles in solvents containing PVP of 3 concentrations-0.5, 0.7, and 0.11gmL(-1). Using time-domain NMR, we show that the adsorbed polymer conformation differs with polymer concentration-head-to-tail under low concentration (e.g., 0.05gmL(-1)) and looping, then train-like, with increasing concentration (e.g., 0.07gmL(-1) and 0.11gmL(-1), respectively). When the surface-adsorbed PVP is entrained, the surface states of ZnO are passivated and radiative emission from surface trap states is suppressed, allowing emission to be dominated by exciton transitions in the UV (ca. 310nm). Moreover, the reduced proximity between the PVP molecule and the ZnO gives rise to increased efficiency of energy transfer between the exciton emission of ZnO and the HOMO-LUMO absorption of PVP (ca. 400nm). As a result, light emission in the blue is enhanced in the PVP-capped ZnO nanoparticles. We thus show that the emission properties of ZnO can be tuned by controlling the adsorbed PVP conformation on the ZnO surface via the PVP concentration in the ZnO precipitation medium.

  2. Intramolecular ex vivo Fluorescence Resonance Energy Transfer (FRET of Dihydropyridine Receptor (DHPR β1a Subunit Reveals Conformational Change Induced by RYR1 in Mouse Skeletal Myotubes.

    Directory of Open Access Journals (Sweden)

    Dipankar Bhattacharya

    Full Text Available The dihydropyridine receptor (DHPR β1a subunit is essential for skeletal muscle excitation-contraction coupling, but the structural organization of β1a as part of the macromolecular DHPR-ryanodine receptor type I (RyR1 complex is still debatable. We used fluorescence resonance energy transfer (FRET to probe proximity relationships within the β1a subunit in cultured skeletal myotubes lacking or expressing RyR1. The fluorescein biarsenical reagent FlAsH was used as the FRET acceptor, which exhibits fluorescence upon binding to specific tetracysteine motifs, and enhanced cyan fluorescent protein (CFP was used as the FRET donor. Ten β1a reporter constructs were generated by inserting the CCPGCC FlAsH binding motif into five positions probing the five domains of β1a with either carboxyl or amino terminal fused CFP. FRET efficiency was largest when CCPGCC was positioned next to CFP, and significant intramolecular FRET was observed for all constructs suggesting that in situ the β1a subunit has a relatively compact conformation in which the carboxyl and amino termini are not extended. Comparison of the FRET efficiency in wild type to that in dyspedic (lacking RyR1 myotubes revealed that in only one construct (H458 CCPGCC β1a -CFP FRET efficiency was specifically altered by the presence of RyR1. The present study reveals that the C-terminal of the β1a subunit changes conformation in the presence of RyR1 consistent with an interaction between the C-terminal of β1a and RyR1 in resting myotubes.

  3. Fluorescence Resonance Energy Transfer-based Structural Analysis of the Dihydropyridine Receptor α1S Subunit Reveals Conformational Differences Induced by Binding of the β1a Subunit*

    Science.gov (United States)

    Mahalingam, Mohana; Perez, Claudio F.; Fessenden, James D.

    2016-01-01

    The skeletal muscle dihydropyridine receptor α1S subunit plays a key role in skeletal muscle excitation-contraction coupling by sensing membrane voltage changes and then triggering intracellular calcium release. The cytoplasmic loops connecting four homologous α1S structural domains have diverse functions, but their structural arrangement is poorly understood. Here, we used a novel FRET-based method to characterize the relative proximity of these intracellular loops in α1S subunits expressed in intact cells. In dysgenic myotubes, energy transfer was observed from an N-terminal-fused YFP to a FRET acceptor, ReAsH (resorufin arsenical hairpin binder), targeted to each α1S intracellular loop, with the highest FRET efficiencies measured to the α1S II-III loop and C-terminal tail. However, in HEK-293T cells, FRET efficiencies from the α1S N terminus to the II-III and III-IV loops and the C-terminal tail were significantly lower, thus suggesting that these loop structures are influenced by the cellular microenvironment. The addition of the β1a dihydropyridine receptor subunit enhanced FRET to the II-III loop, thus indicating that β1a binding directly affects II-III loop conformation. This specific structural change required the C-terminal 36 amino acids of β1a, which are essential to support EC coupling. Direct FRET measurements between α1S and β1a confirmed that both wild type and truncated β1a bind similarly to α1S. These results provide new insights into the role of muscle-specific proteins on the structural arrangement of α1S intracellular loops and point to a new conformational effect of the β1a subunit in supporting skeletal muscle excitation-contraction coupling. PMID:27129199

  4. Fluorescence Resonance Energy Transfer-based Structural Analysis of the Dihydropyridine Receptor α1S Subunit Reveals Conformational Differences Induced by Binding of the β1a Subunit.

    Science.gov (United States)

    Mahalingam, Mohana; Perez, Claudio F; Fessenden, James D

    2016-06-24

    The skeletal muscle dihydropyridine receptor α1S subunit plays a key role in skeletal muscle excitation-contraction coupling by sensing membrane voltage changes and then triggering intracellular calcium release. The cytoplasmic loops connecting four homologous α1S structural domains have diverse functions, but their structural arrangement is poorly understood. Here, we used a novel FRET-based method to characterize the relative proximity of these intracellular loops in α1S subunits expressed in intact cells. In dysgenic myotubes, energy transfer was observed from an N-terminal-fused YFP to a FRET acceptor, ReAsH (resorufin arsenical hairpin binder), targeted to each α1S intracellular loop, with the highest FRET efficiencies measured to the α1S II-III loop and C-terminal tail. However, in HEK-293T cells, FRET efficiencies from the α1S N terminus to the II-III and III-IV loops and the C-terminal tail were significantly lower, thus suggesting that these loop structures are influenced by the cellular microenvironment. The addition of the β1a dihydropyridine receptor subunit enhanced FRET to the II-III loop, thus indicating that β1a binding directly affects II-III loop conformation. This specific structural change required the C-terminal 36 amino acids of β1a, which are essential to support EC coupling. Direct FRET measurements between α1S and β1a confirmed that both wild type and truncated β1a bind similarly to α1S These results provide new insights into the role of muscle-specific proteins on the structural arrangement of α1S intracellular loops and point to a new conformational effect of the β1a subunit in supporting skeletal muscle excitation-contraction coupling. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Wormhole geometries in fourth-order conformal Weyl gravity

    CERN Document Server

    Varieschi, Gabriele U

    2015-01-01

    We present an analysis of the classic wormhole geometries based on conformal Weyl gravity, rather than standard general relativity. The main characteristics of the resulting traversable wormholes remain the same as in the seminal study by Morris and Thorne, namely, that effective super-luminal motion is a viable consequence of the metric. Improving on previous work on the subject, we show that for particular choices of the shape and redshift functions, the wormhole metric in the context of conformal gravity does not violate the main energy conditions, as was the case of the original solutions. In particular, the resulting geometry does not require the use of exotic matter at or near the wormhole throat. Therefore, if fourth-order conformal Weyl gravity is a correct extension of general relativity, traversable wormholes might become a realistic solution for interstellar travel.

  6. Conformal Gravity and the Alcubierre Warp Drive Metric

    CERN Document Server

    Varieschi, Gabriele U

    2012-01-01

    We present an analysis of the classic Alcubierre metric based on conformal gravity, rather than standard general relativity. The main characteristics of the resulting warp drive remain the same as in the original study by Alcubierre, namely that effective super-luminal motion is a viable outcome of the metric. We show that for particular choices of the shaping function, the Alcubierre metric in the context of conformal gravity does not violate the weak energy condition, as was the case of the original solution. In particular, the resulting warp drive does not require the use of exotic matter. Therefore, if conformal gravity is a correct extension of general relativity, super-luminal motion via an Alcubierre metric might be a realistic solution, thus allowing faster-than-light interstellar travel.

  7. Helix 3 acts as a conformational hinge in Class A GPCR activation: An analysis of interhelical interaction energies in crystal structures.

    Science.gov (United States)

    Lans, Isaias; Dalton, James A R; Giraldo, Jesús

    2015-12-01

    A collection of crystal structures of rhodopsin, β2-adrenergic and adenosine A2A receptors in active, intermediate and inactive states were selected for structural and energetic analyses to identify the changes involved in the activation/deactivation of Class A GPCRs. A set of helix interactions exclusive to either inactive or active/intermediate states were identified. The analysis of these interactions distinguished some local conformational changes involved in receptor activation, in particular, a packing between the intracellular domains of transmembrane helices H3 and H7 and a separation between those of H2 and H6. Also, differential movements of the extracellular and intracellular domains of these helices are apparent. Moreover, a segment of residues in helix H3, including residues L/I3.40 to L3.43, is identified as a key component of the activation mechanism, acting as a conformational hinge between extracellular and intracellular regions. Remarkably, the influence on the activation process of some glutamic and aspartic acidic residues and, as a consequence, the influence of variations on local pH is highlighted. Structural hypotheses that arose from the analysis of rhodopsin, β2-adrenergic and adenosine A2A receptors were tested on the active and inactive M2 muscarinic acetylcholine receptor structures and further discussed in the context of the new mechanistic insights provided by the recently determined active and inactive crystal structures of the μ-opioid receptor. Overall, the structural and energetic analyses of the interhelical interactions present in this collection of Class A GPCRs suggests the existence of a common general activation mechanism featuring a chemical space useful for drug discovery exploration.

  8. Energy Conservation: Policies, Programs, and General Studies. 1979-July, 1980 (Citations from the NTIS Data Base).

    Science.gov (United States)

    Hundemann, Audrey S.

    The 135 abstracts presented pertain to national policies, programs, and general strategies for conserving energy. In addition to the abstract, each citation lists the title, author, sponsoring agency, subject categories, number of pages, date, descriptors, identifiers, and ordering information for each document. Topics covered in this compilation…

  9. Energy density in general relativity a possible role of cosmological constant

    CERN Document Server

    Ray, S; Ray, Saibal; Bhadra, Sumana

    2004-01-01

    We consider a static spherically symmetric charged anisotropic fluid source of finite physical radius (\\sim 10^{-16} cm) by introducing a scalar variable \\Lambda dependent on the radial coordinate r under general relativity. From the solution sets a possible role of the cosmological constant is investigated which indicates the dependency of energy density of electron on the variable \\Lambda.

  10. Non-existence of global solutions to generalized dissipative Klein-Gordon equations with positive energy

    Directory of Open Access Journals (Sweden)

    Maxim Olegovich Korpusov

    2012-07-01

    Full Text Available In this article the initial-boundary-value problem for generalized dissipative high-order equation of Klein-Gordon type is considered. We continue our study of nonlinear hyperbolic equations and systems with arbitrary positive energy. The modified concavity method by Levine is used for proving blow-up of solutions.

  11. Deriving Internal Energy by Virtue of Generalized Feynman-Hellmann Theorem for Mixed States

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi; JIANG Zhong-Hua

    2005-01-01

    We show how to directly use the generalized Feynman-Hellmann theorem, which is suitable for mixed state ensemble average, to derive the internal energy of Hamiltonian systems. A concrete example, which is a two coupled harminic oscillators, is used for elucidating our approach.

  12. Conformal supermultiplets without superpartners

    CERN Document Server

    Jarvis, Peter

    2011-01-01

    We consider polynomial deformations of Lie superalgebras and their representations. For the class A(n-1,0) ~ sl(n/1), we identify families of superalgebras of quadratic and cubic type, consistent with Jacobi identities. For such deformed superalgebras we point out the possibility of zero step supermultiplets, carried on a single, irreducible representation of the even (Lie) subalgebra. For the conformal group SU(2,2) in 1+3-dimensional spacetime, such irreducible (unitary) representations correspond to standard conformal fields (j_1,j_2;d), where (j_1,j_2) is the spin and d the conformal dimension; in the massless class j_1 j_2=0, and d=j_1+j_2+1. We show that these repesentations are zero step supermultiplets for the superalgebra SU_(2)(2,2/1), the quadratic deformation of conformal supersymmetry SU(2,2/1). We propose to elevate SU_(2)(2,2/1) to a symmetry of the S-matrix. Under this scenario, low-energy standard model matter fields (leptons, quarks, Higgs scalars and gauge fields) descended from such confor...

  13. P-loop conformation governed crizotinib resistance in G2032R-mutated ROS1 tyrosine kinase: clues from free energy landscape.

    Directory of Open Access Journals (Sweden)

    Huiyong Sun

    2014-07-01

    Full Text Available Tyrosine kinases are regarded as excellent targets for chemical drug therapy of carcinomas. However, under strong purifying selection, drug resistance usually occurs in the cancer cells within a short term. Many cases of drug resistance have been found to be associated with secondary mutations in drug target, which lead to the attenuated drug-target interactions. For example, recently, an acquired secondary mutation, G2032R, has been detected in the drug target, ROS1 tyrosine kinase, from a crizotinib-resistant patient, who responded poorly to crizotinib within a very short therapeutic term. It was supposed that the mutation was located at the solvent front and might hinder the drug binding. However, a different fact could be uncovered by the simulations reported in this study. Here, free energy surfaces were characterized by the drug-target distance and the phosphate-binding loop (P-loop conformational change of the crizotinib-ROS1 complex through advanced molecular dynamics techniques, and it was revealed that the more rigid P-loop region in the G2032R-mutated ROS1 was primarily responsible for the crizotinib resistance, which on one hand, impaired the binding of crizotinib directly, and on the other hand, shortened the residence time induced by the flattened free energy surface. Therefore, both of the binding affinity and the drug residence time should be emphasized in rational drug design to overcome the kinase resistance.

  14. P-loop conformation governed crizotinib resistance in G2032R-mutated ROS1 tyrosine kinase: clues from free energy landscape.

    Science.gov (United States)

    Sun, Huiyong; Li, Youyong; Tian, Sheng; Wang, Junmei; Hou, Tingjun

    2014-07-01

    Tyrosine kinases are regarded as excellent targets for chemical drug therapy of carcinomas. However, under strong purifying selection, drug resistance usually occurs in the cancer cells within a short term. Many cases of drug resistance have been found to be associated with secondary mutations in drug target, which lead to the attenuated drug-target interactions. For example, recently, an acquired secondary mutation, G2032R, has been detected in the drug target, ROS1 tyrosine kinase, from a crizotinib-resistant patient, who responded poorly to crizotinib within a very short therapeutic term. It was supposed that the mutation was located at the solvent front and might hinder the drug binding. However, a different fact could be uncovered by the simulations reported in this study. Here, free energy surfaces were characterized by the drug-target distance and the phosphate-binding loop (P-loop) conformational change of the crizotinib-ROS1 complex through advanced molecular dynamics techniques, and it was revealed that the more rigid P-loop region in the G2032R-mutated ROS1 was primarily responsible for the crizotinib resistance, which on one hand, impaired the binding of crizotinib directly, and on the other hand, shortened the residence time induced by the flattened free energy surface. Therefore, both of the binding affinity and the drug residence time should be emphasized in rational drug design to overcome the kinase resistance.

  15. Spacetime Conformal Fluctuations and Quantum Dephasing

    CERN Document Server

    Bonifacio, Paolo M

    Any quantum system interacting with a complex environment undergoes decoherence. Empty space is filled with vacuum energy due to matter fields in their ground state and represents an underlying environment that any quantum particle has to cope with. In particular quantum gravity vacuum fluctuations should represent a universal source of decoherence. To study this problem we employ a stochastic approach that models spacetime fluctuations close to the Planck scale by means of a classical, randomly fluctuating metric (random gravity framework). We enrich the classical scheme for metric perturbations over a curved background by also including matter fields and metric conformal fluctuations. We show in general that a conformally modulated metric induces dephasing as a result of an effective nonlinear newtonian potential obtained in the appropriate nonrelativistic limit of a minimally coupled Klein-Gordon field. The special case of vacuum fluctuations is considered and a quantitative estimate of the expected effect...

  16. A chord error conforming tool path B-spline fitting method for NC machining based on energy minimization and LSPIA

    Directory of Open Access Journals (Sweden)

    Shanshan He

    2015-10-01

    Full Text Available Piecewise linear (G01-based tool paths generated by CAM systems lack G1 and G2 continuity. The discontinuity causes vibration and unnecessary hesitation during machining. To ensure efficient high-speed machining, a method to improve the continuity of the tool paths is required, such as B-spline fitting that approximates G01 paths with B-spline curves. Conventional B-spline fitting approaches cannot be directly used for tool path B-spline fitting, because they have shortages such as numerical instability, lack of chord error constraint, and lack of assurance of a usable result. Progressive and Iterative Approximation for Least Squares (LSPIA is an efficient method for data fitting that solves the numerical instability problem. However, it does not consider chord errors and needs more work to ensure ironclad results for commercial applications. In this paper, we use LSPIA method incorporating Energy term (ELSPIA to avoid the numerical instability, and lower chord errors by using stretching energy term. We implement several algorithm improvements, including (1 an improved technique for initial control point determination over Dominant Point Method, (2 an algorithm that updates foot point parameters as needed, (3 analysis of the degrees of freedom of control points to insert new control points only when needed, (4 chord error refinement using a similar ELSPIA method with the above enhancements. The proposed approach can generate a shape-preserving B-spline curve. Experiments with data analysis and machining tests are presented for verification of quality and efficiency. Comparisons with other known solutions are included to evaluate the worthiness of the proposed solution.

  17. Energy distributions of Bianchi type-VI h Universe in general relativity and teleparallel gravity

    Science.gov (United States)

    Özkurt, Şeref; Aygün, Sezg&idot; n.

    2017-04-01

    In this paper, we have investigated the energy and momentum density distributions for the inhomogeneous generalizations of homogeneous Bianchi type-VI h metric with Einstein, Bergmann-Thomson, Landau-Lifshitz, Papapetrou, Tolman and Møller prescriptions in general relativity (GR) and teleparallel gravity (TG). We have found exactly the same results for Einstein, Bergmann-Thomson and Landau-Lifshitz energy-momentum distributions in Bianchi type-VI h metric for different gravitation theories. The energy-momentum distributions of the Bianchi type- VI h metric are found to be zero for h = -1 in GR and TG. However, our results agree with Tripathy et al, Tryon, Rosen and Aygün et al.

  18. Cloud-radiative effects on implied oceanic energy transport as simulated by atmospheric general circulation models

    Science.gov (United States)

    Gleckler, P. J.; Randall, D. A.; Boer, G.; Colman, R.; Dix, M.; Galin, V.; Helfand, M.; Kiehl, J.; Kitoh, A.; Lau, W.

    1995-01-01

    This paper summarizes the ocean surface net energy flux simulated by fifteen atmospheric general circulation models constrained by realistically-varying sea surface temperatures and sea ice as part of the Atmospheric Model Intercomparison Project. In general, the simulated energy fluxes are within the very large observational uncertainties. However, the annual mean oceanic meridional heat transport that would be required to balance the simulated surface fluxes is shown to be critically sensitive to the radiative effects of clouds, to the extent that even the sign of the Southern Hemisphere ocean heat transport can be affected by the errors in simulated cloud-radiation interactions. It is suggested that improved treatment of cloud radiative effects should help in the development of coupled atmosphere-ocean general circulation models.

  19. Generalization of radiative jet energy loss to non-zero magnetic mass

    CERN Document Server

    Djordjevic, Magdalena

    2011-01-01

    Reliable predictions for jet quenching in ultra-relativistic heavy ion collisions require accurate computation of radiative energy loss. With this goal, an energy loss formalism in a realistic finite size dynamical QCD medium was recently developed. While this formalism assumes zero magnetic mass - in accordance with the one-loop perturbative calculations - different non-perturbative approaches report a non-zero magnetic mass at RHIC and LHC. We here generalize the energy loss to consistently include a possibility for existence of non-zero magnetic screening. We also present how the inclusion of finite magnetic mass changes the energy loss results. Our analysis indicates a fundamental constraint on magnetic to electric mass ratio.

  20. Moller Energy-Momentum Complex in General Relativity for Higher Dimensional Universes

    Institute of Scientific and Technical Information of China (English)

    M. Aygün; S. Aygün; (I). Yilmaz; H. Baysal; (I). Tarhan

    2007-01-01

    Using the Moller energy-momentum definition in general relativity (GR) we calculate the total energy-momentum distribution associated with (n + 2)-dimensional homogeneous and isotropic model of the universe. It is found that total energy of Moller is vanishing in (n+ 2) dimensions everywhere but n-momentum components of Moller in (n + 2) dimensions are different from zero. Also, we evaluate the static Einstein Universe, FRW universe and de Sitter universe in four dimensions by using (n + 2)-type metric, then calculate the Moller energy-momentum distribution of these spacetimes. However, our results are consistent with the results of Banerjee and Sen, Xulu, Radinschi, Vargas, Cooperstock-Israelit, A ygin et al., Rosen, and Johri et al. in four dimensions.

  1. Conformal Patterson-Walker metrics

    CERN Document Server

    Hammerl, Matthias; Šilhan, Josef; Taghavi-Chabert, Arman; Žádník, Vojtěch

    2016-01-01

    The classical Patterson-Walker construction of a split-signature (pseudo-)Riemannian structure from a given torsion-free affine connection is generalized to a construction of a split-signature conformal structure from a given projective class of connections. A characterization of the induced structures is obtained. We achieve a complete description of Einstein metrics in the conformal class formed by the Patterson-Walker metric. Finally, we describe all symmetries of the conformal Patterson-Walker metric. In both cases we obtain descriptions in terms of geometric data on the original structure.

  2. Controlling the Conformational Energy of a Phenyl Group by Tuning the Strength of a Nonclassical CH···O Hydrogen Bond: The Case of 5-Phenyl-1,3-dioxane.

    Science.gov (United States)

    Bailey, William F; Lambert, Kyle M; Stempel, Zachary D; Wiberg, Kenneth B; Mercado, Brandon Q

    2016-12-16

    Anancomeric 5-phenyl-1,3-dioxanes provide a unique opportunity to study factors that control conformation. Whereas one might expect an axial phenyl group at C(5) of 1,3-dioxane to adopt a conformation similar to that in axial phenylcyclohexane, a series of studies including X-ray crystallography, NOE measurements, and DFT calculations demonstrate that the phenyl prefers to lie over the dioxane ring in order to position an ortho-hydrogen to participate in a stabilizing, nonclassical CH···O hydrogen bond with a ring oxygen of the dioxane. Acid-catalyzed equilibration of a series of anancomeric 2-tert-butyl-5-aryl-1,3-dioxane isomers demonstrates that remote substituents on the phenyl ring affect the conformational energy of a 5-aryl-1,3-dioxane: electron-withdrawing substituents decrease the conformational energy of the aryl group, while electron-donating substituents increase the conformational energy of the group. This effect is correlated in a very linear way to Hammett substituent parameters. In short, the strength of the CH···O hydrogen bond may be tuned in a predictable way in response to the electron-withdrawing or electron-donating ability of substituents positioned remotely on the aryl ring. This effect may be profound: a 3,5-bis-CF3 phenyl group at C(5) in 1,3-dioxane displays a pronounced preference for the axial orientation. The results are relevant to broader conformational issues involving heterocyclic systems bearing aryl substituents.

  3. Conformational changes in glycine tri- and hexapeptide

    DEFF Research Database (Denmark)

    Yakubovich, Alexander V.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2006-01-01

    conformations and calculated the energy barriers for transitions between them. Using a thermodynamic approach, we have estimated the times of the characteristic transitions between these conformations. The results of our calculations have been compared with those obtained by other theoretical methods...... also investigated the influence of the secondary structure of polypeptide chains on the formation of the potential energy landscape. This analysis has been performed for the sheet and the helix conformations of chains of six amino acids....

  4. Strategies to Save 50% Site Energy in Grocery and General Merchandise Stores

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, A.; Hale, E.; Leach, M.

    2011-03-01

    This paper summarizes the methodology and main results of two recently published Technical Support Documents. These reports explore the feasibility of designing general merchandise and grocery stores that use half the energy of a minimally code-compliant building, as measured on a whole-building basis. We used an optimization algorithm to trace out a minimum cost curve and identify designs that satisfy the 50% energy savings goal. We started from baseline building energy use and progressed to more energy-efficient designs by sequentially adding energy design measures (EDMs). Certain EDMs figured prominently in reaching the 50% energy savings goal for both building types: (1) reduced lighting power density; (2) optimized area fraction and construction of view glass or skylights, or both, as part of a daylighting system tuned to 46.5 fc (500 lux); (3) reduced infiltration with a main entrance vestibule or an envelope air barrier, or both; and (4) energy recovery ventilators, especially in humid and cold climates. In grocery stores, the most effective EDM, which was chosen for all climates, was replacing baseline medium-temperature refrigerated cases with high-efficiency models that have doors.

  5. Paul Scherrer Institut annual report 1996. Annex V: PSI general energy technology newsletter 1996

    Energy Technology Data Exchange (ETDEWEB)

    Daum, C.; Leuenberger, J. [eds.

    1997-06-01

    Surveying the results of General Energy Research in 1996, three major trends can be identified. First, in areas where research results have reached an advanced stage, decisive steps have been taken to promote a transfer towards industrial realization; examples include biomass gasification, advanced battery concepts, and combustion research. Second, in projects with longer term orientation, several options are being evaluated by exploratory studies, e.g. in solar chemistry and reaction analysis. Third, in line with the strategic planning of our institute, the development and characterization of materials for energy research has received increased attention. (author) figs., tabs., refs.

  6. Generalized Chou-Yang Model and Meson-Proton Elastic Scattering at High Energies

    Science.gov (United States)

    Saleem, Mohammad; Aleem, Fazal-E.; Rashid, Haris

    The various characteristics of meson-proton elastic scattering at high energies are explained by using the generalized Chou-Yang model which takes into consideration the anisotropic scattering of objects constituting pions(kaons) and protons. A new parametrization of the proton form factor consistent with the recent experimental data is proposed. It is then shown that all the data for meson-proton elastic scattering at 200 and 250 GeV/c are in agreement with theoretical computations. The physical picture of generalized Chou-Yang model which is based on multiple scattering theory is given in detail.

  7. Generalized Chou-Yang model and meson-proton elastic scattering at high energies

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, M.; Aleem, F.E.; Rashid, H.

    1989-01-01

    The various characteristics of meson-proton elastic scattering at high energies are explained by using the generalized Chou-Yang model which takes into consideration the anisotropic scattering of objects constituting pions(kaons) and protons. A new parametrization of the proton form factor consistent with the recent experimental data is proposed. It is then shown that all the data for meson-proton elastic scattering at 200 and 250 GeV/c are in agreement with theoretical computations. The physical picture of generalized Chou-Yang model which is based on multiple scattering theory is given in detail.

  8. Escherichia coli Phosphoenolpyruvate Dependent Phosphotransferase System. NMR Studies of the Conformation of HPr and P-HPr and the Mechanism of Energy Coupling

    NARCIS (Netherlands)

    Dooijewaard, G.; Roossien, F.F.; Robillard, G.T.

    1979-01-01

    1H and 31P nuclear magnetic resonance investigations of the phosphoprotein intermediate P-HPr and the parent molecule HPr of the E. coli phosphoenolpyruvate dependent phosphotransferase system (PTS) show that HPr can exist in two conformations. These conformations influence the protonation state of

  9. DFT Conformation and Energies of Amylose Fragments at Atomic Resolution Part 2: “Band-flip” and “Kink” Forms of Alpha-Maltotetraose

    Science.gov (United States)

    In Part 2 of this series of DFT optimization studies of '-maltotetraose, we present results at the B3LYP/6-311++G** level of theory for conformations denoted “band-flips” and “kinks”. Recent experimental X-ray studies have found examples of amylose fragments with conformations distorted from the us...

  10. Gas-phase hydrogen/deuterium exchange of 5'- and 3'-mononucleotides in a quadrupole ion trap: exploring the role of conformation and system energy.

    Science.gov (United States)

    Chipuk, Joseph E; Brodbelt, Jennifer S

    2007-04-01

    Gas-phase hydrogen/deuterium (H/D) exchange reactions for deprotonated 2'-deoxy-5'-monophosphate and 2'-deoxy-3'-monophosphate nucleotides with D(2)O were performed in a quadrupole ion trap mass spectrometer. To augment these experiments, molecular modeling was also conducted to identify likely deprotonation sites and potential gas-phase conformations of the anions. A majority of the 5'-monophosphates exchanged extensively with several of the compounds completely incorporating deuterium in place of their labile hydrogen atoms. In contrast, most of the 3'-monophosphate isomers exchanged relatively few hydrogen atoms, even though the rate of the first two exchanges was greater than observed for the 5'-monophosphates. Mononucleotides that failed to incorporate more than two deuterium atoms under default reaction conditions were often found to exchange more extensively when reactions were performed under higher energy conditions. Integration of the experimental and theoretical results supports the use of a relay exchange mechanism and suggests that the exchange behavior depends highly on the identity and orientation of the nucleobase and the position and flexibility of the deprotonated phosphate moiety. These observations also highlight the importance of the distance between the various participating groups in addition to their gas-phase acidity and basicity.

  11. Palatini wormholes and energy conditions from the prism of General Relativity

    CERN Document Server

    Bejarano, C; Olmo, Gonzalo J; Rubiera-Garcia, D

    2016-01-01

    Wormholes are hypothetical shortcuts in spacetime that in General Relativity unavoidably violate all of the pointwise energy conditions. In this paper, we consider several wormhole spacetimes that, as opposed to the standard \\emph{designer} procedure frequently employed in the literature, arise directly from gravitational actions including additional terms resulting from contractions of the Ricci tensor with the metric, and which are formulated assuming independence between metric and connection (Palatini approach). We reinterpret such wormhole solutions under the prism of General Relativity and study the matter sources that thread them. We discuss the size of violation of the energy conditions in different cases, and how this is related to the same spacetimes when viewed from the modified gravity side.

  12. Fluorescence resonance energy transfer biosensors that detect Ran conformational changes and a Ran x GDP-importin-beta -RanBP1 complex in vitro and in intact cells.

    Science.gov (United States)

    Plafker, Kendra; Macara, Ian G

    2002-08-16

    The Ran GTPase plays a central role in nucleocytoplasmic transport. Association of Ran x GTP with transport carriers (karyopherins) triggers the loading/unloading of export or import cargo, respectively. The C-terminal tail of Ran x GTP is deployed in an extended conformation when associated with a Ran binding domain or importins. To monitor tail orientation, a Ran-GFP fusion was labeled with the fluorophore Alexa546. Fluorescence resonance energy transfer (FRET) occurs efficiently between the green fluorescent protein (GFP) and Alexa546 for Ran x GDP and Ran x GTP, suggesting that the tail is tethered in both states. However, Ran x GTP complexes with importin-beta, RanBP1, and Crm1 all show reduced FRET consistent with tail extension. Displacement of the C-terminal tail of Ran by karyopherins may be a general mechanism to facilitate RanBP1 binding. A Ran x GDP-RanBP1-importin-beta complex also displayed a low FRET signal. To detect this complex in vivo, a bipartite biosensor consisting of Ran-Alexa546 plus GST-GFP-RanBP1, was co-injected into the cytoplasm of cells. The Ran redistributed predominantly to the nucleus, and RanBP1 remained cytoplasmic. Nonetheless, a robust cytoplasmic FRET signal was detectable, which suggests that a significant fraction of cytoplasmic Ran.GDP may exist in a ternary complex with RanBP1 and importins.

  13. Deformed Potential Energy of 263Db in a Generalized Liquid Drop Model

    Institute of Scientific and Technical Information of China (English)

    陈宝秋; 马中玉; 赵耀林

    2003-01-01

    The macroscopic deformed potential energy for super-heavy nuclei 263 Db,which governs the entrance and alpha decay channels,is determined within a generalized liquid drop model(GLDM).A quasi-molecular shape is as sumed in the GLDM,which includes volume-,surface-,and Coulomb-energies,proximity effects,mass asymmetry,and an accurate nuclear radius.The microscopic single particle energies are derived from a shell model in an axially deformed Woods-Saxon potential with a quasi-molecular shape.The shell correction is calculated by the Strutinsky method.The total deformed potential energy of a nucleus can be calculated by the macro-microscopic method as the summation of the liquid-drop energy and the Strutinsky shell correction.The theory is applied to predict the deformed potential energy of the experiment 22Ne + 241Am → 263Db* → 259Db + 4n,which was performed on the Heavy Ion Accelerator in Lanzhou.It is found that the neck in the quasi-molecular shape is responsible for the deep valley of the fusion barrier due to the shell corrections.In the cold fusion path,the double-hump fusion barrier is predicted by the shell correction and complete fusion events may occur.

  14. Stereoelectronic effects dictate molecular conformation and biological function of heterocyclic amides.

    Science.gov (United States)

    Reid, Robert C; Yau, Mei-Kwan; Singh, Ranee; Lim, Junxian; Fairlie, David P

    2014-08-27

    Heterocycles adjacent to amides can have important influences on molecular conformation due to stereoelectronic effects exerted by the heteroatom. This was shown for imidazole- and thiazole-amides by comparing low energy conformations (ab initio MP2 and DFT calculations), charge distribution, dipole moments, and known crystal structures which support a general principle. Switching a heteroatom from nitrogen to sulfur altered the amide conformation, producing different three-dimensional electrostatic surfaces. Differences were attributed to different dipole and orbital alignments and spectacularly translated into opposing agonist vs antagonist functions in modulating a G-protein coupled receptor for inflammatory protein complement C3a on human macrophages. Influences of the heteroatom were confirmed by locking the amide conformation using fused bicyclic rings. These findings show that stereoelectronic effects of heterocycles modulate molecular conformation and can impart strikingly different biological properties.

  15. Conformally-related Einstein-Langevin equations for metric fluctuations in stochastic gravity

    CERN Document Server

    Satin, Seema; Hu, Bei Lok

    2016-01-01

    For a conformally-coupled scalar field we obtain the conformally-related Einstein-Langevin equations, using appropriate transformations for all the quantities in the equations between two conformally-related spacetimes. In particular, we analyze the transformations of the influence action, the stress energy tensor, the noise kernel and the dissipation kernel. In due course the fluctuation-dissipation relation is also discussed. The analysis in this paper thereby facilitates a general solution to the Einstein-Langevin equation once the solution of the equation in a simpler, conformally-related spacetime is known. For example, from the Minkowski solution of Martin and Verdaguer, those of the Einstein-Langevin equations in conformally-flat spacetimes, especially for spatially-flat Friedmann-Robertson-Walker models, can be readily obtained.

  16. Conformally related Einstein-Langevin equations for metric fluctuations in stochastic gravity

    Science.gov (United States)

    Satin, Seema; Cho, H. T.; Hu, Bei Lok

    2016-09-01

    For a conformally coupled scalar field we obtain the conformally related Einstein-Langevin equations, using appropriate transformations for all the quantities in the equations between two conformally related spacetimes. In particular, we analyze the transformations of the influence action, the stress energy tensor, the noise kernel and the dissipation kernel. In due course the fluctuation-dissipation relation is also discussed. The analysis in this paper thereby facilitates a general solution to the Einstein-Langevin equation once the solution of the equation in a simpler, conformally related spacetime is known. For example, from the Minkowski solution of Martín and Verdaguer, those of the Einstein-Langevin equations in conformally flat spacetimes, especially for spatially flat Friedmann-Robertson-Walker models, can be readily obtained.

  17. Cosmological isotropic matter-energy generalizations of Schwarzschild and Kerr metrics

    CERN Document Server

    Arik, Metin

    2016-01-01

    We present a time dependent isotropic fluid solution around a Schwarzschild black hole. We offer the solutions and discuss the effects on the field equations and the horizon. We derive the energy density, pressure and the equation of state parameter. In the second part, we generalize the rotating black hole solution to an expanding universe. We derive from the proposed metric the special solutions of the field equations for the dust approximation and the dark energy solution. We show that the presence of a rotating black hole does not modify the scale factor $b(t)=t^{2/3}$ law for dust, nor $b(t)=e^{\\lambda\\hspace{1mm}t}$ and $p=-\\rho$ for dark energy.

  18. Energy and angular momentum of general 4-dimensional stationary axi-symmetric spacetime in teleparallel geometry

    CERN Document Server

    Nashed, Gamal Gergess Lamee

    2008-01-01

    We derive an exact general axi-symmetric solution of the coupled gravitational and electromagnetic fields in the tetrad theory of gravitation. The solution is characterized by four parameters $M$ (mass), $Q$ (charge), $a$ (rotation) and $L$ (NUT). We then, calculate the total exterior energy using the energy-momentum complex given by M{\\o}ller in the framework of Weitzenb$\\ddot{o}$ck geometry. We show that the energy contained in a sphere is shared by its interior as well as exterior. We also calculate the components of the spatial momentum to evaluate the angular momentum distribution. We show that the only non-vanishing components of the angular momentum is in the Z direction.

  19. Intercomparison and interpretation of surface energy fluxes in atmospheric general circulation models

    Science.gov (United States)

    Randall, D. A.; Cess, R. D.; Blanchet, J. P.; Boer, G. J.; Dazlich, D. A.; Del Genio, A. D.; Deque, M.; Dymnikov, V.; Galin, V.; Ghan, S. J.

    1992-01-01

    Responses of the surface energy budgets and hydrologic cycles of 19 atmospheric general circulation models to an imposed, globally uniform sea surface temperature perturbation of 4 K were analyzed. The responses of the simulated surface energy budgets are extremely diverse and are closely linked to the responses of the simulated hydrologic cycles. The response of the net surface energy flux is not controlled by cloud effects; instead, it is determined primarily by the response of the latent heat flux. The prescribed warming of the oceans leads to major increases in the atmospheric water vapor content and the rates of evaporation and precipitation. The increased water vapor amount drastically increases the downwelling IR radiation at the earth's surface, but the amount of the change varies dramatically from one model to another.

  20. Modeling conformational ensembles of slow functional motions in Pin1-WW.

    Directory of Open Access Journals (Sweden)

    Faruck Morcos

    Full Text Available Protein-protein interactions are often mediated by flexible loops that experience conformational dynamics on the microsecond to millisecond time scales. NMR relaxation studies can map these dynamics. However, defining the network of inter-converting conformers that underlie the relaxation data remains generally challenging. Here, we combine NMR relaxation experiments with simulation to visualize networks of inter-converting conformers. We demonstrate our approach with the apo Pin1-WW domain, for which NMR has revealed conformational dynamics of a flexible loop in the millisecond range. We sample and cluster the free energy landscape using Markov State Models (MSM with major and minor exchange states with high correlation with the NMR relaxation data and low NOE violations. These MSM are hierarchical ensembles of slowly interconverting, metastable macrostates and rapidly interconverting microstates. We found a low population state that consists primarily of holo-like conformations and is a "hub" visited by most pathways between macrostates. These results suggest that conformational equilibria between holo-like and alternative conformers pre-exist in the intrinsic dynamics of apo Pin1-WW. Analysis using MutInf, a mutual information method for quantifying correlated motions, reveals that WW dynamics not only play a role in substrate recognition, but also may help couple the substrate binding site on the WW domain to the one on the catalytic domain. Our work represents an important step towards building networks of inter-converting conformational states and is generally applicable.

  1. f(R in Holographic and Agegraphic Dark Energy Models and the Generalized Uncertainty Principle

    Directory of Open Access Journals (Sweden)

    Barun Majumder

    2013-01-01

    Full Text Available We studied a unified approach with the holographic, new agegraphic, and f(R dark energy model to construct the form of f(R which in general is responsible for the curvature driven explanation of the very early inflation along with presently observed late time acceleration. We considered the generalized uncertainty principle in our approach which incorporated the corrections in the entropy-area relation and thereby modified the energy densities for the cosmological dark energy models considered. We found that holographic and new agegraphic f(R gravity models can behave like phantom or quintessence models in the spatially flat FRW universe. We also found a distinct term in the form of f(R which goes as R 3 / 2 due to the consideration of the GUP modified energy densities. Although the presence of this term in the action can be important in explaining the early inflationary scenario, Capozziello et al. recently showed that f(R ~ R 3 / 2 leads to an accelerated expansion, that is, a negative value for the deceleration parameter q which fits well with SNeIa and WMAP data.

  2. Implications of conformal invariance in momentum space

    Energy Technology Data Exchange (ETDEWEB)

    Bzowski, Adam [Institute for Theoretical Physics,K.U. Leuven, Celestijnenlaan 200D, 3000 Leuven (Belgium); McFadden, Paul [Perimeter Institute for Theoretical Physics,31 Caroline St. N. Waterloo, N2L 2Y5 Ontario (Canada); Skenderis, Kostas [Mathematical Sciences, University of Southampton,Highfield, SO17 1BJ Southampton (United Kingdom)

    2014-03-25

    We present a comprehensive analysis of the implications of conformal invariance for 3-point functions of the stress-energy tensor, conserved currents and scalar operators in general dimension and in momentum space. Our starting point is a novel and very effective decomposition of tensor correlators which reduces their computation to that of a number of scalar form factors. For example, the most general 3-point function of a conserved and traceless stress-energy tensor is determined by only five form factors. Dilatations and special conformal Ward identities then impose additional conditions on these form factors. The special conformal Ward identities become a set of first and second order differential equations, whose general solution is given in terms of integrals involving a product of three Bessel functions (‘triple-K integrals’). All in all, the correlators are completely determined up to a number of constants, in agreement with well-known position space results. In odd dimensions 3-point functions are finite without renormalisation while in even dimensions non-trivial renormalisation in required. In this paper we restrict ourselves to odd dimensions. A comprehensive analysis of renormalisation will be discussed elsewhere. This paper contains two parts that can be read independently of each other. In the first part, we explain the method that leads to the solution for the correlators in terms of triple-K integrals while the second part contains a self-contained presentation of all results. Readers interested only in results may directly consult the second part of the paper.

  3. Conformal Coating of Cobalt-Nickel Layered Double Hydroxides Nanoflakes on Carbon Fibers for High-performance Electrochemical Energy Storage Supercapacitor Devices

    KAUST Repository

    Warsi, Muhammad Farooq

    2014-07-01

    High specific capacitance coupled with the ease of large scale production is two desirable characteristics of a potential pseudo-supercapacitor material. In the current study, the uniform and conformal coating of nickel-cobalt layered double hydroxides (CoNi0.5LDH,) nanoflakes on fibrous carbon (FC) cloth has been achieved through cost-effective and scalable chemical precipitation method, followed by a simple heat treatment step. The conformally coated CoNi0.5LDH/FC electrode showed 1.5 times greater specific capacitance compared to the electrodes prepared by conventional non-conformal (drop casting) method of depositing CoNi0.5LDH powder on the carbon microfibers (1938 Fg-1 vs 1292 Fg-1). Further comparison of conformally and non-conformally coated CoNi0.5LDH electrodes showed the rate capability of 79%: 43% capacity retention at 50 Ag-1 and cycling stability 4.6%: 27.9% loss after 3000 cycles respectively. The superior performance of the conformally coated CoNi0.5LDH is mainly due to the reduced internal resistance and fast ionic mobility between electrodes as compared to non-conformally coated electrodes which is evidenced by EIS and CV studies. © 2014 Elsevier Ltd.

  4. Conformal isoparametric hypersurfaces with two distinct conformal principal curvatures in conformal space

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The conformal geometry of regular hypersurfaces in the conformal space is studied.We classify all the conformal isoparametric hypersurfaces with two distinct conformal principal curvatures in the conformal space up to conformal equivalence.

  5. Deformed Potential Energy of Super Heavy Element Z = 120 in a Generalized Liquid Drop Model

    Institute of Scientific and Technical Information of China (English)

    CHEN Bao-Qiu; MA Zhong-Yu; ZHU Zhi-Yuan; SONG Hong-Qiu; ZHAO Yao-Lin

    2005-01-01

    @@ The macroscopic deformed potential energy for super-heavy elements Z = 120 is determined within a generalized liquid drop model (GLDM). The shell correction is calculated with the Strutinsky method and the microscopic single particle energies are derived from the shell model in an axially deformed Woods-Saxon potential with the same quasi-molecular shape. The total potential energy of a nucleus is calculated by the macro-microscopic method as the summation of the liquid-drop energy and the Strutinsky shell correction. The theory is adopted to describe the deformed potential energies in a set of cold reactions. The neck in the quasi-molecular shape is responsible to the deep valley of the fusion barrier due to shell corrections. In the cold fusion path, the doublehump fusion barrier is predicted by the shell correction and complete fusion events may occur. The results show that some of projectile-target combinations in the entrance channel, such as 50Ca+252Fm→ 302120* and 58Fe+244pu→ 302120*, favour the fusion reaction, which can be considered as candidates for the synthesis of super heavy nuclei Z = 120 and the former might be the best cold fusion reaction to produce the nucleus 302120among them.

  6. Conformal invariant saturation

    CERN Document Server

    Navelet, H

    2002-01-01

    We show that, in onium-onium scattering at (very) high energy, a transition to saturation happens due to quantum fluctuations of QCD dipoles. This transition starts when the order alpha^2 correction of the dipole loop is compensated by its faster energy evolution, leading to a negative interference with the tree level amplitude. After a derivation of the the one-loop dipole contribution using conformal invariance of the elastic 4-gluon amplitude in high energy QCD, we obtain an exact expression of the saturation line in the plane (Y,L) where Y is the total rapidity and L, the logarithm of the onium scale ratio. It shows universal features implying the Balitskyi - Fadin - Kuraev - Lipatov (BFKL) evolution kernel and the square of the QCD triple Pomeron vertex. For large L, only the higher BFKL Eigenvalue contributes, leading to a saturation depending on leading log perturbative QCD characteristics. For initial onium scales of same order, however, it involves an unlimited summation over all conformal BFKL Eigen...

  7. Hot Conformal Gauge Theories

    CERN Document Server

    Mojaza, Matin; Sannino, Francesco

    2010-01-01

    We compute the nonzero temperature free energy up to the order g^6 \\ln(1/g) in the coupling constant for vector like SU(N) gauge theories featuring matter transforming according to different representations of the underlying gauge group. The number of matter fields, i.e. flavors, is arranged in such a way that the theory develops a perturbative stable infrared fixed point at zero temperature. Due to large distance conformality we trade the coupling constant with its fixed point value and define a reduced free energy which depends only on the number of flavors, colors and matter representation. We show that the reduced free energy changes sign, at the second, fifth and sixth order in the coupling, when decreasing the number of flavors from the upper end of the conformal window. If the change in sign is interpreted as signal of an instability of the system then we infer a critical number of flavors. Surprisingly this number, if computed to the order g^2, agrees with previous predictions for the lower boundary o...

  8. Impacts of the EISA 2007 Energy Efficiency Standard on General Service Lamps

    Energy Technology Data Exchange (ETDEWEB)

    Kantner, Colleen L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Alstone, Andrea L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ganeshalingam, Mohan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gerke, Brian F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hosbach, Robert [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-01-20

    The Energy Policy and Conservation Act of 1975, as amended by the Energy Independence and Security Act of 2007 (EISA 2007), requires that, effective beginning January 1, 2020, the Secretary of Energy shall prohibit the sale of any general service lamp (GSL) that does not meet a minimum efficacy standard of 45 lumens per watt. This is referred to as the EISA 2007 backstop. The U.S. Department of Energy recently revised the definition of the term GSL to include certain lamps that were either previously excluded or not explicitly mentioned in the EISA 2007 definition. For this subset of GSLs, we assess the impacts of the EISA 2007 backstop on national energy consumption, carbon dioxide emissions, and consumer expenditures. To estimate these impacts, we projected the energy use, purchase price, and operating cost of representative lamps purchased during a 30-year analysis period, 2020-2049, for cases in which the EISA 2007 backstop does and does not take effect; the impacts of the backstop are then given by the difference between the two cases. In developing the projection model, we also performed the most comprehensive assessment to date of usage patterns and lifetime distributions for the analyzed lamp types in the United States. There is substantial uncertainty in the estimated impacts, which arises from uncertainty in the speed and extent of the market conversion to solid state lighting technology that would occur in the absence of the EISA 2007 backstop. In our central estimate we find that the EISA 2007 backstop results in significant energy savings of 27 quads and consumer net present value of $120 billion (at a seven percent discount rate) for lamps shipped between 2020 and 2049, and carbon dioxide emissions reduction of 540 million metric tons by 2030 for those GSLs not explicitly included in the EISA 2007 definition of a GSL.

  9. Impact of the EISA 2007 Energy Efficiency Standard on General Service Lamps

    Energy Technology Data Exchange (ETDEWEB)

    Kantner, Colleen L.S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Alstone, Andrea L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ganeshalingam, Mohan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gerke, Brian F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hosbach, Robert [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-06-20

    The Energy Policy and Conservation Act of 1975, as amended by the Energy Independence and Security Act of 2007 (EISA 2007), requires that, effective beginning January 1, 2020, the Secretary of Energy shall prohibit the sale of any general service lamp (GSL) that does not meet a minimum efficacy standard of 45 lumens per watt. This is referred to as the EISA 2007 backstop. The U.S. Department of Energy recently revised the definition of the term GSL to include certain lamps that were either previously excluded or not explicitly mentioned in the EISA 2007 definition. For this subset of GSLs, we assess the impacts of the EISA 2007 backstop on national energy consumption, carbon dioxide emissions, and consumer expenditures. To estimate these impacts, we projected the energy use, purchase price, and operating cost of representative lamps purchased during a 30-year analysis period, 2020-2049, for cases in which the EISA 2007 backstop does and does not take effect; the impacts of the backstop are then given by the difference between the two cases. In developing the projection model, we also performed the most comprehensive assessment to date of usage patterns and lifetime distributions for the analyzed lamp types in the United States. There is substantial uncertainty in the estimated impacts, which arises from uncertainty in the speed and extent of the market conversion to solid state lighting technology that would occur in the absence of the EISA 2007 backstop. In our central estimate we find that the EISA 2007 backstop results in significant energy savings of 27 quads and consumer net present value of $120 billion (at a seven percent discount rate) for lamps shipped between 2020 and 2049, and carbon dioxide emissions reduction of 540 million metric tons by 2030 for those GSLs not explicitly included in the EISA 2007 definition of a GSL.

  10. Nonlocal gravity: Conformally flat spacetimes

    CERN Document Server

    Bini, Donato

    2016-01-01

    The field equations of the recent nonlocal generalization of Einstein's theory of gravitation are presented in a form that is reminiscent of general relativity. The implications of the nonlocal field equations are studied in the case of conformally flat spacetimes. Even in this simple case, the field equations are intractable. Therefore, to gain insight into the nature of these equations, we investigate the structure of nonlocal gravity in two-dimensional spacetimes. While any smooth 2D spacetime is conformally flat and satisfies Einstein's field equations, only a subset containing either a Killing vector or a homothetic Killing vector can satisfy the field equations of nonlocal gravity.

  11. Generalization of classical mechanics for nuclear motions on nonadiabatically coupled potential energy surfaces in chemical reactions.

    Science.gov (United States)

    Takatsuka, Kazuo

    2007-10-18

    Classical trajectory study of nuclear motion on the Born-Oppenheimer potential energy surfaces is now one of the standard methods of chemical dynamics. In particular, this approach is inevitable in the studies of large molecular systems. However, as soon as more than a single potential energy surface is involved due to nonadiabatic coupling, such a naive application of classical mechanics loses its theoretical foundation. This is a classic and fundamental issue in the foundation of chemistry. To cope with this problem, we propose a generalization of classical mechanics that provides a path even in cases where multiple potential energy surfaces are involved in a single event and the Born-Oppenheimer approximation breaks down. This generalization is made by diagonalization of the matrix representation of nuclear forces in nonadiabatic dynamics, which is derived from a mixed quantum-classical representation of the electron-nucleus entangled Hamiltonian [Takatsuka, K. J. Chem. Phys. 2006, 124, 064111]. A manifestation of quantum fluctuation on a classical subsystem that directly contacts with a quantum subsystem is discussed. We also show that the Hamiltonian thus represented gives a theoretical foundation to examine the validity of the so-called semiclassical Ehrenfest theory (or mean-field theory) for electron quantum wavepacket dynamics, and indeed, it is pointed out that the electronic Hamiltonian to be used in this theory should be slightly modified.

  12. High energy conformers of M(+)(APE)(H2O)(0-1)Ar(0-1) clusters revealed by combined IR-PD and DFT-MD anharmonic vibrational spectroscopy.

    Science.gov (United States)

    Brites, V; Nicely, A L; Sieffert, N; Gaigeot, M-P; Lisy, J M

    2014-07-14

    IR-PD vibrational spectroscopy and DFT-based molecular dynamics simulations are combined in order to unravel the structures of M(+)(APE)(H2O)0-1 ionic clusters (M = Na, K), where APE (2-amino-1-phenyl ethanol) is commonly used as an analogue for the noradrenaline neurotransmitter. The strength of the synergy between experiments and simulations presented here is that DFT-MD provides anharmonic vibrational spectra that unambiguously help assign the ionic clusters structures. Depending on the interacting cation, we have found that the lowest energy conformers of K(+)(APE)(H2O)0-1 clusters are formed, while the lowest energy conformers of Na(+)(APE)(H2O)0-1 clusters can only be observed through water loss channel (i.e. without argon tagged to the clusters). Trapping of higher energy conformers is observed when the argon loss channel is recorded in the experiment. This has been rationalized by transition state energies. The dynamical anharmonic vibrational spectra unambiguously provide the prominent OH stretch due to the OH···NH2 H-bond, within 10 cm(-1) of the experiment, hence reproducing the 240-300 cm(-1) red-shift (depending on the interacting cation) from bare neutral APE. When this H-bond is not present, the dynamical anharmonic spectra provide the water O-H stretches as well as the rotational motion of the water molecule at finite temperature, as observed in the experiment.

  13. Spatial separation of molecular conformers and clusters.

    Science.gov (United States)

    Horke, Daniel; Trippel, Sebastian; Chang, Yuan-Pin; Stern, Stephan; Mullins, Terry; Kierspel, Thomas; Küpper, Jochen

    2014-01-09

    Gas-phase molecular physics and physical chemistry experiments commonly use supersonic expansions through pulsed valves for the production of cold molecular beams. However, these beams often contain multiple conformers and clusters, even at low rotational temperatures. We present an experimental methodology that allows the spatial separation of these constituent parts of a molecular beam expansion. Using an electric deflector the beam is separated by its mass-to-dipole moment ratio, analogous to a bender or an electric sector mass spectrometer spatially dispersing charged molecules on the basis of their mass-to-charge ratio. This deflector exploits the Stark effect in an inhomogeneous electric field and allows the separation of individual species of polar neutral molecules and clusters. It furthermore allows the selection of the coldest part of a molecular beam, as low-energy rotational quantum states generally experience the largest deflection. Different structural isomers (conformers) of a species can be separated due to the different arrangement of functional groups, which leads to distinct dipole moments. These are exploited by the electrostatic deflector for the production of a conformationally pure sample from a molecular beam. Similarly, specific cluster stoichiometries can be selected, as the mass and dipole moment of a given cluster depends on the degree of solvation around the parent molecule. This allows experiments on specific cluster sizes and structures, enabling the systematic study of solvation of neutral molecules.

  14. RECOVERY AND ENERGY SAVINGS OF ALUMINUM CAN BEVERAGE CONSUMED IN GENERAL AND VOCATIONAL TECHNICAL HIGH SCHOOLS

    Directory of Open Access Journals (Sweden)

    Mert ZORAĞA

    2012-01-01

    Full Text Available In commitments of Kyoto protocol principles, 100% recyclable features aluminum is one of most current metal. In this protocol, Turkey is not contractor to develop policies to prevent climate change to apply, to take measures to increase energy efficiency and savings, to limit greenhouse gas emissions. Aluminum production from used aluminum requires 95% less energy than production from raw material and recycled aluminum put in the production reduces flue gases pollutant emissions at rate of 99%. Between 2004-2005 and 2009-2010 academic year education is estimated that every one of 5 and 10 students were consumed average 1 aluminum can beverage each day to take into account habits of general and vocational high school students. In case of recovery of 50% this cans will save approximately 4.7 and 13.1 million kWh electrical energy, in the case of 75% recovery will save between 7.2 and 19.9 million kWh electrical energy, in the case of 100% will save the 9.4 and 25 million kWh electrical energy than the same amount of aluminum in the primary method (from ore in our country. In the same conditions is estimated that realization of an efficient recycling project will provide between 5.2 and 20 million kWh of electrical energy savings in the 2010 -2011 academic year education. In this study, anymore it turned into a habit of recovery of packaging waste application in most countries as the name “Blue Angels Project” to place in our country has been trying to bring clarity to issues.

  15. On the generalized eigenvalue method for energies and matrix elements in lattice field theory

    CERN Document Server

    Blossier, Benoit; von Hippel, Georg; Mendes, Tereza; Sommer, Rainer

    2009-01-01

    We discuss the generalized eigenvalue problem for computing energies and matrix elements in lattice gauge theory, including effective theories such as HQET. It is analyzed how the extracted effective energies and matrix elements converge when the time separations are made large. This suggests a particularly efficient application of the method for which we can prove that corrections vanish asymptotically as $\\exp(-(E_{N+1}-E_n) t)$. The gap $E_{N+1}-E_n$ can be made large by increasing the number $N$ of interpolating fields in the correlation matrix. We also show how excited state matrix elements can be extracted such that contaminations from all other states disappear exponentially in time. As a demonstration we present numerical results for the extraction of ground state and excited B-meson masses and decay constants in static approximation and to order $1/m_b$ in HQET.

  16. Energy and momentum of general spherically symmetric frames on the regularizing teleparallelism

    Institute of Scientific and Technical Information of China (English)

    Gamal G. L. Nashed

    2012-01-01

    In the context of the covariant teleparallel framework,we use the 2-form translational momentum to compute the total energy of two general spherically symmetric frames.The first one is characterized by an arbitrary function H(γ),which preserves the spherical symmetry and reproduces all the previous solutions,while the other one is characterized by a parameter ξ which ensures the vanishing of the axial of trace of the torsion.We calculate the total energy by using two procedures,i.e.,when the Weitzenb?ck connection Γαβ is trivial,and show how H(r) and ξ play the role of an inertia that leads the total energy to be unphysical.Therefore,we take into account Γαβ and show that although the spacetimes we use contain an arbitrary function and one parameter,they have no effect on the form of the total energy and momentum as it should be.

  17. A generalized free energy perturbation theory accounting for end states with differing configuration space volume.

    Science.gov (United States)

    Ullmann, R Thomas; Ullmann, G Matthias

    2011-01-27

    We present a generalized free energy perturbation theory that is inspired by Monte Carlo techniques and based on a microstate description of a transformation between two states of a physical system. It is shown that the present free energy perturbation theory stated by the Zwanzig equation follows as a special case of our theory. Our method uses a stochastic mapping of the end states that associates a given microstate from one ensemble with a microstate from the adjacent ensemble according to a probability distribution. In contrast, previous free energy perturbation methods use a static, deterministic mapping that associates fixed pairs of microstates from the two ensembles. The advantages of our approach are that end states of differing configuration space volume can be treated easily also in the case of discrete configuration spaces and that the method does not require the potentially cumbersome search for an optimal deterministic mapping. The application of our theory is illustrated by some example problems. We discuss practical applications for which our findings could be relevant and point out perspectives for further development of the free energy perturbation theory.

  18. Quasi-Local Energy-Momentum and Angular Momentum in General Relativity

    Directory of Open Access Journals (Sweden)

    Szabados László B.

    2009-06-01

    Full Text Available The present status of the quasi-local mass, energy-momentum and angular-momentum constructions in general relativity is reviewed. First, the general ideas, concepts, and strategies, as well as the necessary tools to construct and analyze the quasi-local quantities, are recalled. Then, the various specific constructions and their properties (both successes and deficiencies are discussed. Finally, some of the (actual and potential applications of the quasi-local concepts and specific constructions are briefly mentioned.This review is based on talks given at the Erwin Schrödinger Institute, Vienna in July 1997, at the Universität Tübingen in May 1998, and at the National Center for Theoretical Sciences in Hsinchu, Taiwan and at the National Central University, Chungli, Taiwan, in July 2000.

  19. Energy distributions of Bianchi type-$VI_{h}$ Universe in general relativity and teleparallel gravity

    Indian Academy of Sciences (India)

    SEREF ÖZKURT; SEZGIN AYGÜN

    2017-04-01

    In this paper, we have investigated the energy and momentum density distributions for the inhomogeneous generalizations of homogeneous Bianchi type-$VI_{h}$ metric with Einstein, Bergmann–Thomson, Landau–Lifshitz,Papapetrou, Tolman and M$\\phi$ller prescriptions in general relativity (GR) and teleparallel gravity (TG). We have found exactly the same results for Einstein, Bergmann–Thomson and Landau–Lifshitz energy–momentum distributions in Bianchi type-$VI_{h}$ metric for different gravitation theories. The energy–momentum distributions of the Bianchi type-$VI_{h}$ metric are found to be zero for $h$ = −1 in GR and TG. However, our results agree with Tripathy et al, Tryon, Rosen and Aygün et al.

  20. Quartet-metric general relativity: scalar graviton, dark matter, and dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Pirogov, Yury F. [SRC Institute for High Energy Physics of NRC Kurchatov Institute, Protvino (Russian Federation)

    2016-04-15

    General relativity extended through a dynamical scalar quartet is proposed as a theory of the scalar-vector-tensor gravity, generically describing the unified gravitational dark matter (DM) and dark energy (DE). The implementation in the weak-field limit of the Higgs mechanism for the extended gravity, with a redefinition of metric field, is exposed in a generally covariant form. Under a natural restriction on the parameters, the redefined theory possesses in the linearized approximation a residual transverse-diffeomorphism invariance, and consistently comprises the massless tensor graviton and a massive scalar one as a DM particle. The number of adjustable parameters in the full nonlinear theory and a partial decoupling of the latter from its weak-field limit noticeably extend the perspectives for the unified description of the gravity DM and DE in the various phenomena at the different scales. (orig.)

  1. Generalized Analysis of a Distributed Energy Efficient Algorithm for Change Detection

    CERN Document Server

    Banerjee, Taposh

    2009-01-01

    An energy efficient distributed Change Detection scheme based on Page's CUSUM algorithm was presented in \\cite{icassp}. In this paper we consider a nonparametric version of this algorithm. In the algorithm in \\cite{icassp}, each sensor runs CUSUM and transmits only when the CUSUM is above some threshold. The transmissions from the sensors are fused at the physical layer. The channel is modeled as a Multiple Access Channel (MAC) corrupted with noise. The fusion center performs another CUSUM to detect the change. In this paper, we generalize the algorithm to also include nonparametric CUSUM and provide a unified analysis.

  2. On the stability of the dark energy based on generalized uncertainty principle

    CERN Document Server

    Pasqua, Antonio; Khomenko, Iuliia

    2013-01-01

    The new agegraphic Dark Energy (NADE) model (based on generalized uncertainty principle) interacting with Dark Matter (DM) is considered in this study via power-law form of the scale factor $a(t)$. The equation of state (EoS) parameter $\\omega_{G}$ is observed to have a phantom-like behaviour. The stability of this model is investigated through the squared speed of sound $v_{s}^{2}$: it is found that $v_{s}^{2}$ always stays at negative level, which indicates instability of the considered model.

  3. Generalized Least Energy of Separation for Desalination and Other Chemical Separation Processes

    Directory of Open Access Journals (Sweden)

    Karan H. Mistry

    2013-05-01

    Full Text Available Increasing global demand for fresh water is driving the development and implementation of a wide variety of seawater desalination technologies driven by different combinations of heat, work, and chemical energy. This paper develops a consistent basis for comparing the energy consumption of such technologies using Second Law efficiency. The Second Law efficiency for a chemical separation process is defined in terms of the useful exergy output, which is the minimum least work of separation required to extract a unit of product from a feed stream of a given composition. For a desalination process, this is the minimum least work of separation for producing one kilogram of product water from feed of a given salinity. While definitions in terms of work and heat input have been proposed before, this work generalizes the Second Law efficiency to allow for systems that operate on a combination of energy inputs, including fuel. The generalized equation is then evaluated through a parametric study considering work input, heat inputs at various temperatures, and various chemical fuel inputs. Further, since most modern, large-scale desalination plants operate in cogeneration schemes, a methodology for correctly evaluating Second Law efficiency for the desalination plant based on primary energy inputs is demonstrated. It is shown that, from a strictly energetic point of view and based on currently available technology, cogeneration using electricity to power a reverse osmosis system is energetically superior to thermal systems such as multiple effect distillation and multistage flash distillation, despite the very low grade heat input normally applied in those systems.

  4. The sensitivity of BAO dark energy constraints to general isocurvature perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Kasanda, S. Muya; Zunckel, C.; Moodley, K. [School of Mathematical Sciences, University of KwaZulu-Natal, University Road, Durban, 4041 (South Africa); Bassett, B.A.; Okouma, P., E-mail: simon.muya.kasanda@gmail.com, E-mail: caroline.zunckel@gmail.com, E-mail: kavilan.moodley@gmail.com, E-mail: bruce.a.bassett@gmail.com, E-mail: okouma@gmail.com [Dept. of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, Cape Town (South Africa)

    2012-07-01

    Baryon Acoustic Oscillation (BAO) surveys will be a leading method for addressing the dark energy challenge in the next decade. We explore in detail the effect of allowing for small amplitude admixtures of general isocurvature perturbations in addition to the dominant adiabatic mode. We find that non-adiabatic initial conditions leave the sound speed unchanged but instead excite different harmonics. These harmonics couple differently to Silk damping, altering the form and evolution of acoustic waves in the baryon-photon fluid prior to decoupling. This modifies not only the scale on which the sound waves imprint onto the baryon distribution, which is used as the standard ruler in BAO surveys, but also the shape, width and height of the BAO peak. We discuss these effects in detail and show how more general initial conditions impact our interpretation of cosmological data in dark energy studies. We find that the inclusion of these additional isocurvature modes leads to a decrease in the Dark Energy Task Force figure of merit (FoM) by 46% i.e., FoM{sub ISO} = 0.54 × FoM{sub AD} and 53% for the BOSS and ADEPT experiments respectively when considered in conjunction with PLANK data. We also show that the incorrect assumption of adiabaticity has the potential to bias our estimates of the dark energy parameters by 2.7σ (2.2σ) for a single correlated isocurvature mode (CDM isocurvature), and up to 4.9σ (5.7σ) for three correlated isocurvature modes in the case of the BOSS (ADEPT) experiment. We find that the use of the large scale structure data in conjunction with CMB data improves our ability to measure the contributions of different modes to the initial conditions by as much as 95% for certain modes in the fully correlated case.

  5. Logarithmic conformal field theory

    Science.gov (United States)

    Gainutdinov, Azat; Ridout, David; Runkel, Ingo

    2013-12-01

    Conformal field theory (CFT) has proven to be one of the richest and deepest subjects of modern theoretical and mathematical physics research, especially as regards statistical mechanics and string theory. It has also stimulated an enormous amount of activity in mathematics, shaping and building bridges between seemingly disparate fields through the study of vertex operator algebras, a (partial) axiomatisation of a chiral CFT. One can add to this that the successes of CFT, particularly when applied to statistical lattice models, have also served as an inspiration for mathematicians to develop entirely new fields: the Schramm-Loewner evolution and Smirnov's discrete complex analysis being notable examples. When the energy operator fails to be diagonalisable on the quantum state space, the CFT is said to be logarithmic. Consequently, a logarithmic CFT is one whose quantum space of states is constructed from a collection of representations which includes reducible but indecomposable ones. This qualifier arises because of the consequence that certain correlation functions will possess logarithmic singularities, something that contrasts with the familiar case of power law singularities. While such logarithmic singularities and reducible representations were noted by Rozansky and Saleur in their study of the U (1|1) Wess-Zumino-Witten model in 1992, the link between the non-diagonalisability of the energy operator and logarithmic singularities in correlators is usually ascribed to Gurarie's 1993 article (his paper also contains the first usage of the term 'logarithmic conformal field theory'). The class of CFTs that were under control at this time was quite small. In particular, an enormous amount of work from the statistical mechanics and string theory communities had produced a fairly detailed understanding of the (so-called) rational CFTs. However, physicists from both camps were well aware that applications from many diverse fields required significantly more

  6. Non-conformable, partial and conformable transposition

    DEFF Research Database (Denmark)

    König, Thomas; Mäder, Lars Kai

    2013-01-01

    Although member states are obliged to transpose directives into domestic law in a conformable manner and receive considerable time for their transposition activities, we identify three levels of transposition outcomes for EU directives: conformable, partially conformable and non-conformable....... Compared with existing transposition models, which do not distinguish between different transposition outcomes, we examine the factors influencing each transposition process by means of a competing risk analysis. We find that preference-related factors, in particular the disagreement of a member state...... and the Commission regarding a directive’s outcome, play a much more strategic role than has to date acknowledged in the transposition literature. Whereas disagreement of a member state delays conformable transposition, it speeds up non-conformable transposition. Disagreement of the Commission only prolongs...

  7. Conformational landscape of an amyloid intra-cellular domain and Landau-Ginzburg-Wilson paradigm in protein dynamics

    Science.gov (United States)

    Dai, Jin; Niemi, Antti J.; He, Jianfeng

    2016-07-01

    The Landau-Ginzburg-Wilson paradigm is proposed as a framework, to investigate the conformational landscape of intrinsically unstructured proteins. A universal Cα-trace Landau free energy is deduced from general symmetry considerations, with the ensuing all-atom structure modeled using publicly available reconstruction programs Pulchra and Scwrl. As an example, the conformational stability of an amyloid precursor protein intra-cellular domain (AICD) is inspected; the reference conformation is the crystallographic structure with code 3DXC in Protein Data Bank (PDB) that describes a heterodimer of AICD and a nuclear multi-domain adaptor protein Fe65. Those conformations of AICD that correspond to local or near-local minima of the Landau free energy are identified. For this, the response of the original 3DXC conformation to variations in the ambient temperature is investigated, using the Glauber algorithm. The conclusion is that in isolation the AICD conformation in 3DXC must be unstable. A family of degenerate conformations that minimise the Landau free energy is identified, and it is proposed that the native state of an isolated AICD is a superposition of these conformations. The results are fully in line with the presumed intrinsically unstructured character of isolated AICD and should provide a basis for a systematic analysis of AICD structure in future NMR experiments.

  8. Conformational landscape of an amyloid intra-cellular domain and Landau-Ginzburg-Wilson paradigm in protein dynamics.

    Science.gov (United States)

    Dai, Jin; Niemi, Antti J; He, Jianfeng

    2016-07-28

    The Landau-Ginzburg-Wilson paradigm is proposed as a framework, to investigate the conformational landscape of intrinsically unstructured proteins. A universal Cα-trace Landau free energy is deduced from general symmetry considerations, with the ensuing all-atom structure modeled using publicly available reconstruction programs Pulchra and Scwrl. As an example, the conformational stability of an amyloid precursor protein intra-cellular domain (AICD) is inspected; the reference conformation is the crystallographic structure with code 3DXC in Protein Data Bank (PDB) that describes a heterodimer of AICD and a nuclear multi-domain adaptor protein Fe65. Those conformations of AICD that correspond to local or near-local minima of the Landau free energy are identified. For this, the response of the original 3DXC conformation to variations in the ambient temperature is investigated, using the Glauber algorithm. The conclusion is that in isolation the AICD conformation in 3DXC must be unstable. A family of degenerate conformations that minimise the Landau free energy is identified, and it is proposed that the native state of an isolated AICD is a superposition of these conformations. The results are fully in line with the presumed intrinsically unstructured character of isolated AICD and should provide a basis for a systematic analysis of AICD structure in future NMR experiments.

  9. Cavity as a source of conformational fluctuation and high-energy state: High-pressure NMR study of a cavity-enlarged mutant of T4 lysozyme

    CERN Document Server

    Maeno, Akihiro; Hirata, Fumio; Otten, Renee; Dahlquist, Frederick W; Yokoyama, Shigeyuki; Akasaka, Kazuyuki; Mulder, Frans A A; Kitahara, Ryo

    2014-01-01

    Although the structure, function, conformational dynamics, and controlled thermodynamics of proteins are manifested by their corresponding amino acid sequences, the natural rules for molecular design and their corresponding interplay remain obscure. In this study, we focused on the role of internal cavities of proteins in conformational dynamics. We investigated the pressure-induced responses from the cavity-enlarged L99A mutant of T4 lysozyme, using high-pressure NMR spectroscopy. The signal intensities of the methyl groups in the 1H/13C HSQC spectra, particularly those around the enlarged cavity, decreased with the increasing pressure, and disappeared at 200 MPa, without the appearance of new resonances, thus indicating the presence of heterogeneous conformations around the cavity within the ground state ensemble. Above 200 MPa, the signal intensities of more than 20 methyl groups gradually decreased with the increasing pressure, without the appearance of new resonances. Interestingly, these residues closel...

  10. Dissipation, generalized free energy, and a self-consistent nonequilibrium thermodynamics of chemically driven open subsystems.

    Science.gov (United States)

    Ge, Hao; Qian, Hong

    2013-06-01

    Nonequilibrium thermodynamics of a system situated in a sustained environment with influx and efflux is usually treated as a subsystem in a larger, closed "universe." A question remains with regard to what the minimally required description for the surrounding of such an open driven system is so that its nonequilibrium thermodynamics can be established solely based on the internal stochastic kinetics. We provide a solution to this problem using insights from studies of molecular motors in a chemical nonequilibrium steady state (NESS) with sustained external drive through a regenerating system or in a quasisteady state (QSS) with an excess amount of adenosine triphosphate (ATP), adenosine diphosphate (ADP), and inorganic phosphate (Pi). We introduce the key notion of minimal work that is needed, W(min), for the external regenerating system to sustain a NESS (e.g., maintaining constant concentrations of ATP, ADP and Pi for a molecular motor). Using a Markov (master-equation) description of a motor protein, we illustrate that the NESS and QSS have identical kinetics as well as the second law in terms of the same positive entropy production rate. The heat dissipation of a NESS without mechanical output is exactly the W(min). This provides a justification for introducing an ideal external regenerating system and yields a free-energy balance equation between the net free-energy input F(in) and total dissipation F(dis) in an NESS: F(in) consists of chemical input minus mechanical output; F(dis) consists of dissipative heat, i.e. the amount of useful energy becoming heat, which also equals the NESS entropy production. Furthermore, we show that for nonstationary systems, the F(dis) and F(in) correspond to the entropy production rate and housekeeping heat in stochastic thermodynamics and identify a relative entropy H as a generalized free energy. We reach a new formulation of Markovian nonequilibrium thermodynamics based on only the internal kinetic equation without further

  11. Impact of Dust on Mars Surface Albedo and Energy Flux with LMD General Circulation Model

    Science.gov (United States)

    Singh, D.; Flanner, M.; Millour, E.; Martinez, G.

    2015-12-01

    Mars, just like Earth experience different seasons because of its axial tilt (about 25°). This causes growth and retreat of snow cover (primarily CO2) in Martian Polar regions. The perennial caps are the only place on the planet where condensed H2O is available at surface. On Mars, as much as 30% atmospheric CO2 deposits in each hemisphere depending upon the season. This leads to a significant variation on planet's surface albedo and hence effecting the amount of solar flux absorbed or reflected at the surface. General Circulation Model (GCM) of Laboratoire de Météorologie Dynamique (LMD) currently uses observationally derived surface albedo from Thermal Emission Spectrometer (TES) instrument for the polar caps. These TES albedo values do not have any inter-annual variability, and are independent of presence of any dust/impurity on surface. Presence of dust or other surface impurities can significantly reduce the surface albedo especially during and right after a dust storm. This change will also be evident in the surface energy flux interactions. Our work focuses on combining earth based Snow, Ice, and Aerosol Radiation (SNICAR) model with current state of GCM to incorporate the impact of dust on Martian surface albedo, and hence the energy flux. Inter-annual variability of surface albedo and planet's top of atmosphere (TOA) energy budget along with their correlation with currently available mission data will be presented.

  12. Generalized gradient approximation exchange energy functional with correct asymptotic behavior of the corresponding potential

    Energy Technology Data Exchange (ETDEWEB)

    Carmona-Espíndola, Javier, E-mail: jcarmona-26@yahoo.com.mx [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México D. F. 09340, México (Mexico); Gázquez, José L., E-mail: jlgm@xanum.uam.mx [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México D. F. 09340, México (Mexico); Departamento de Química, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, México D. F. 07360, México (Mexico); Vela, Alberto [Departamento de Química, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, México D. F. 07360, México (Mexico); Trickey, S. B. [Quantum Theory Project, Department of Physics and Department of Chemistry, University of Florida, P.O. Box 118435, Gainesville, Florida 32611-8435 (United States)

    2015-02-07

    A new non-empirical exchange energy functional of the generalized gradient approximation (GGA) type, which gives an exchange potential with the correct asymptotic behavior, is developed and explored. In combination with the Perdew-Burke-Ernzerhof (PBE) correlation energy functional, the new CAP-PBE (CAP stands for correct asymptotic potential) exchange-correlation functional gives heats of formation, ionization potentials, electron affinities, proton affinities, binding energies of weakly interacting systems, barrier heights for hydrogen and non-hydrogen transfer reactions, bond distances, and harmonic frequencies on standard test sets that are fully competitive with those obtained from other GGA-type functionals that do not have the correct asymptotic exchange potential behavior. Distinct from them, the new functional provides important improvements in quantities dependent upon response functions, e.g., static and dynamic polarizabilities and hyperpolarizabilities. CAP combined with the Lee-Yang-Parr correlation functional gives roughly equivalent results. Consideration of the computed dynamical polarizabilities in the context of the broad spectrum of other properties considered tips the balance to the non-empirical CAP-PBE combination. Intriguingly, these improvements arise primarily from improvements in the highest occupied and lowest unoccupied molecular orbitals, and not from shifts in the associated eigenvalues. Those eigenvalues do not change dramatically with respect to eigenvalues from other GGA-type functionals that do not provide the correct asymptotic behavior of the potential. Unexpected behavior of the potential at intermediate distances from the nucleus explains this unexpected result and indicates a clear route for improvement.

  13. The Energy-Momentum Tensor for a Dissipative Fluid in General Relativity

    CERN Document Server

    Pimentel, Oscar M; Lora-Clavijo, F D

    2016-01-01

    Considering the growing interest of the astrophysicist community in the study of dissipative fluids with the aim of getting a more realistic description of the universe, we present in this paper a physical analysis of the energy-momentum tensor of a viscous fluid with heat flux. We introduce the general form of this tensor and, using the approximation of small velocity gradients, we relate the stresses of the fluid with the viscosity coefficients, the shear tensor and the expansion factor. Exploiting these relations, we can write the stresses in terms of the extrinsic curvature of the normal surface to the 4-velocity vector of the fluid, and we can also establish a connection between the perfect fluid and the symmetries of the spacetime. On the other hand, we calculate the energy conditions for a dissipative fluid through contractions of the energy-momentum tensor with the 4-velocity vector of an arbitrary observer. This method is interesting because it allows us to compute the conditions in a reasonable easy...

  14. Charged Axially Symmetric Solution and Energy in Teleparallel Theory Equivalent to General Relativity

    CERN Document Server

    Nashed, Gamal Gergess Lamee

    2007-01-01

    An exact charged solution with axial symmetry is obtained in the teleparallel equivalent of general relativity (TEGR). The associated metric has the structure function $G(\\xi)=1-{\\xi}^2-2mA{\\xi}^3-q^2A^2{\\xi}^4$. The fourth order nature of the structure function can make calculations cumbersome. Using a coordinate transformation we get a tetrad whose metric has the structure function in a factorisable form $(1-{\\xi}^2)(1+r_{+}A\\xi)(1+r_{-}A\\xi)$ with $r_{\\pm}$ as the horizons of Reissner-Nordstr$\\ddot{o}$m space-time. This new form has the advantage that its roots are now trivial to write down. Then, we study the singularities of this space-time. Using another coordinate transformation, we obtain a tetrad field. Its associated metric yields the Reissner-Nordstr$\\ddot{o}$m black hole. In Calculating the energy content of this tetrad field using the gravitational energy-momentum, we find that the resulting form depends on the radial coordinate! Using the regularized expression of the gravitational energy-moment...

  15. Generalized Extreme Value Distribution Models for the Assessment of Seasonal Wind Energy Potential of Debuncha, Cameroon

    Directory of Open Access Journals (Sweden)

    Nkongho Ayuketang Arreyndip

    2016-01-01

    Full Text Available The method of generalized extreme value family of distributions (Weibull, Gumbel, and Frechet is employed for the first time to assess the wind energy potential of Debuncha, South-West Cameroon, and to study the variation of energy over the seasons on this site. The 29-year (1983–2013 average daily wind speed data over Debuncha due to missing values in the years 1992 and 1994 is gotten from NASA satellite data through the RETScreen software tool provided by CANMET Canada. The data is partitioned into min-monthly, mean-monthly, and max-monthly data and fitted using maximum likelihood method to the two-parameter Weibull, Gumbel, and Frechet distributions for the purpose of determining the best fit to be used for assessing the wind energy potential on this site. The respective shape and scale parameters are estimated. By making use of the P values of the Kolmogorov-Smirnov statistic (K-S and the standard error (s.e analysis, the results show that the Frechet distribution best fits the min-monthly, mean-monthly, and max-monthly data compared to the Weibull and Gumbel distributions. Wind speed distributions and wind power densities of both the wet and dry seasons are compared. The results show that the wind power density of the wet season was higher than in the dry season. The wind speeds at this site seem quite low; maximum wind speeds are listed as between 3.1 and 4.2 m/s, which is below the cut-in wind speed of many modern turbines (6–10 m/s. However, we recommend the installation of low cut-in wind turbines like the Savonius or Aircon (10 KW for stand-alone low energy need.

  16. The conformal approach to asymptotic analysis

    CERN Document Server

    Nicolas, Jean-Philippe

    2015-01-01

    This essay was written as an extended version of a talk given at a conference in Strasbourg on "Riemann, Einstein and geometry", organized by Athanase Papadopoulos in September 2014. Its aim is to present Roger Penrose's approach to asymptotic analysis in general relativity, which is based on conformal geometric techniques, focusing on historical and recent aspects of two specialized topics~: conformal scattering and peeling.

  17. Asymptotic symmetry algebra of conformal gravity

    CERN Document Server

    Irakleidou, M

    2016-01-01

    We compute asymptotic symmetry algebras of conformal gravity. Due to more general boundary conditions allowed in conformal gravity in comparison to those in Einstein gravity, we can classify the corresponding algebras. The highest algebra for non-trivial boundary conditions is five dimensional and it leads to global geon solution with non-vanishing charges.

  18. An extension theorem for conformal gauge singularities

    CERN Document Server

    Tod, Paul

    2007-01-01

    We analyse conformal gauge, or isotropic, singularities in cosmological models in general relativity. Using the calculus of tractors, we find conditions in terms of tractor curvature for a local extension of the conformal structure through a cosmological singularity and prove a local extension theorem.

  19. Using Graphs of Gibbs Energy versus Temperature in General Chemistry Discussions of Phase Changes and Colligative Properties

    Science.gov (United States)

    Hanson, Robert M.; Riley, Patrick; Schwinefus, Jeff; Fischer, Paul J.

    2008-01-01

    The use of qualitative graphs of Gibbs energy versus temperature is described in the context of chemical demonstrations involving phase changes and colligative properties at the general chemistry level. (Contains 5 figures and 1 note.)

  20. Measuring the mechanical properties of molecular conformers

    Science.gov (United States)

    Jarvis, S. P.; Taylor, S.; Baran, J. D.; Champness, N. R.; Larsson, J. A.; Moriarty, P.

    2015-09-01

    Scanning probe-actuated single molecule manipulation has proven to be an exceptionally powerful tool for the systematic atomic-scale interrogation of molecular adsorbates. To date, however, the extent to which molecular conformation affects the force required to push or pull a single molecule has not been explored. Here we probe the mechanochemical response of two tetra(4-bromophenyl)porphyrin conformers using non-contact atomic force microscopy where we find a large difference between the lateral forces required for manipulation. Remarkably, despite sharing very similar adsorption characteristics, variations in the potential energy surface are capable of prohibiting probe-induced positioning of one conformer, while simultaneously permitting manipulation of the alternative conformational form. Our results are interpreted in the context of dispersion-corrected density functional theory calculations which reveal significant differences in the diffusion barriers for each conformer. These results demonstrate that conformational variation significantly modifies the mechanical response of even simple porpyhrins, potentially affecting many other flexible molecules.

  1. Fast adaptive principal component extraction based on a generalized energy function

    Institute of Scientific and Technical Information of China (English)

    欧阳缮; 保铮; 廖桂生

    2003-01-01

    By introducing an arbitrary diagonal matrix, a generalized energy function (GEF) is proposed for searching for the optimum weights of a two layer linear neural network. From the GEF, we derive a recur- sive least squares (RLS) algorithm to extract in parallel multiple principal components of the input covari-ance matrix without designing an asymmetrical circuit. The local stability of the GEF algorithm at the equilibrium is analytically verified. Simulation resultsshow that the GEF algorithm for parallel multiple principal components extraction exhibits the fast convergence and has the improved robustness resis- tance tothe eigenvalue spread of the input covariance matrix as compared to the well-known lateral inhi- bition model (APEX) and least mean square error reconstruction(LMSER) algorithms.

  2. Effect of vacancy defects on generalized stacking fault energy of fcc metals.

    Science.gov (United States)

    Asadi, Ebrahim; Zaeem, Mohsen Asle; Moitra, Amitava; Tschopp, Mark A

    2014-03-19

    Molecular dynamics (MD) and density functional theory (DFT) studies were performed to investigate the influence of vacancy defects on generalized stacking fault (GSF) energy of fcc metals. MEAM and EAM potentials were used for MD simulations, and DFT calculations were performed to test the accuracy of different common parameter sets for MEAM and EAM potentials in predicting GSF with different fractions of vacancy defects. Vacancy defects were placed at the stacking fault plane or at nearby atomic layers. The effect of vacancy defects at the stacking fault plane and the plane directly underneath of it was dominant compared to the effect of vacancies at other adjacent planes. The effects of vacancy fraction, the distance between vacancies, and lateral relaxation of atoms on the GSF curves with vacancy defects were investigated. A very similar variation of normalized SFEs with respect to vacancy fractions were observed for Ni and Cu. MEAM potentials qualitatively captured the effect of vacancies on GSF.

  3. Derrida's Generalized Random Energy models; 4, Continuous state branching and coalescents

    CERN Document Server

    Bovier, A

    2003-01-01

    In this paper we conclude our analysis of Derrida's Generalized Random Energy Models (GREM) by identifying the thermodynamic limit with a one-parameter family of probability measures related to a continuous state branching process introduced by Neveu. Using a construction introduced by Bertoin and Le Gall in terms of a coherent family of subordinators related to Neveu's branching process, we show how the Gibbs geometry of the limiting Gibbs measure is given in terms of the genealogy of this process via a deterministic time-change. This construction is fully universal in that all different models (characterized by the covariance of the underlying Gaussian process) differ only through that time change, which in turn is expressed in terms of Parisi's overlap distribution. The proof uses strongly the Ghirlanda-Guerra identities that impose the structure of Neveu's process as the only possible asymptotic random mechanism.

  4. Generalized ghost pilgrim dark energy in F(T,TG) cosmology

    Science.gov (United States)

    Sharif, M.; Nazir, Kanwal

    2016-07-01

    This paper is devoted to study the generalized ghost pilgrim dark energy (PDE) model in F(T,TG) gravity with flat Friedmann-Robertson-Walker (FRW) universe. In this scenario, we reconstruct F(T,TG) models and evaluate the corresponding equation of state (EoS) parameter for different choices of the scale factors. We assume power-law scale factor, scale factor for unification of two phases, intermediate and bouncing scale factor. We study the behavior of reconstructed models and EoS parameters graphically. It is found that all the reconstructed models show decreasing behavior for PDE parameter u = -2. On the other hand, the EoS parameter indicates transition from dust-like matter to phantom era for all choices of the scale factor except intermediate for which this is less than - 1. We conclude that all the results are in agreement with PDE phenomenon.

  5. Axial symmetry and conformal Killing vectors

    CERN Document Server

    Mars, M; Mars, Marc; Senovilla, Jose M.M.

    1993-01-01

    Axisymmetric spacetimes with a conformal symmetry are studied and it is shown that, if there is no further conformal symmetry, the axial Killing vector and the conformal Killing vector must commute. As a direct consequence, in conformally stationary and axisymmetric spacetimes, no restriction is made by assuming that the axial symmetry and the conformal timelike symmetry commute. Furthermore, we prove that in axisymmetric spacetimes with another symmetry (such as stationary and axisymmetric or cylindrically symmetric spacetimes) and a conformal symmetry, the commutator of the axial Killing vector with the two others mush vanish or else the symmetry is larger than that originally considered. The results are completely general and do not depend on Einstein's equations or any particular matter content.

  6. Einstein and the conservation of energy-momentum in general relativity

    CERN Document Server

    Weinstein, Galina

    2013-01-01

    The main purpose of the present paper is to show that a correction of one mistake was crucial for Einstein's pathway to the first version of the 1915 general theory of relativity, but also might have played a role in obtaining the final version of Einstein's 1915 field equations. In 1914 Einstein wrote the equations for conservation of energy-momentum for matter, and established a connection between these equations and the components of the gravitational field. He showed that a material point in gravitational fields moves on a geodesic line in space-time, the equation of which is written in terms of the Christoffel symbols. By November 4, 1915, Einstein found it advantageous to use for the components of the gravitational field, not the previous equation, but the Christoffel symbols. He corrected the 1914 equations of conservation of energy-momentum for matter. Einstein had already basically possessed the field equations in 1912 together with his mathematician friend Marcel Grossman, but because he had not rec...

  7. On the optimization of the generalized coplanar Hohmann impulsive transfer adopting energy change concept

    Energy Technology Data Exchange (ETDEWEB)

    Kamel, Osman M. [Cairo Univ., Astronomy and Space Sciences Dept., Giza (Egypt); Soliman, Adel S. [National Research Center, Theoretical Physics Dept., Dokki, Giza (Egypt)

    2005-02-15

    We considered the problem of transferring the rocket's orbit to higher energy orbit, using minimum fuel cost, as a problem in change of energy, since this is most convenient. For the generalized Hohmann case (the departure; the transferring and the destination orbits are ellipses), we adopt the first configuration only, when the apogee of transfer orbit, and the apogee of destination orbit are coincident. Firstly, we assign the {delta}v{sub A}, {delta}v{sub B} increments in velocity at points A,B (the position of peri-apse and apo-apse impulses respectively), as functions of the eccentricity of the transfer orbit, e{sub T}. Subsequently, we apply the optimum condition leading to the derivation of the quartic equation in e{sub T}, and showed how to deduce ({delta}v{sub A}+{delta}v{sub B}){sub Min}. A numerical example is presented, in which we determined the four roots of the quartic equation, by a numerical Mathematica Version 2.2. We selected the adequate consistent root, only one in this case, and evaluated ({delta}v{sub A}+{delta}v{sub B}){sub Min} for the two orbits of the couple Earth and Mars. This article is a new approach and leads to new discoveries involved in the problem, consequently adds new insight and avoids complexities of previous procedures. (Author)

  8. Lectures on Conformal Field Theory

    CERN Document Server

    Qualls, Joshua D

    2015-01-01

    These lectures notes are based on courses given at National Taiwan University, National Chiao-Tung University, and National Tsing Hua University in the spring term of 2015. Although the course was offered primarily for graduate students, these lecture notes have been prepared for a more general audience. They are intended as an introduction to conformal field theories in various dimensions, with applications related to topics of particular interest: topics include the conformal bootstrap program, boundary conformal field theory, and applications related to the AdS/CFT correspondence. We assume the reader to be familiar with quantum mechanics at the graduate level and to have some basic knowledge of quantum field theory. Familiarity with string theory is not a prerequisite for this lectures, although it can only help.

  9. Renyi entropy and conformal defects

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Lorenzo [Humboldt-Univ. Berlin (Germany). Inst. fuer Physik; Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Meineri, Marco [Scuola Normale Superiore, Pisa (Italy); Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); Istituto Nazionale di Fisica Nucleare, Pisa (Italy); Myers, Robert C. [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); Smolkin, Michael [California Univ., Berkely, CA (United States). Center for Theoretical Physics and Department of Physics

    2016-04-18

    We propose a field theoretic framework for calculating the dependence of Renyi entropies on the shape of the entangling surface in a conformal field theory. Our approach rests on regarding the corresponding twist operator as a conformal defect and in particular, we define the displacement operator which implements small local deformations of the entangling surface. We identify a simple constraint between the coefficient defining the two-point function of the displacement operator and the conformal weight of the twist operator, which consolidates a number of distinct conjectures on the shape dependence of the Renyi entropy. As an example, using this approach, we examine a conjecture regarding the universal coefficient associated with a conical singularity in the entangling surface for CFTs in any number of spacetime dimensions. We also provide a general formula for the second order variation of the Renyi entropy arising from small deformations of a spherical entangling surface, extending Mezei's results for the entanglement entropy.

  10. Calculation of positron binding energies using the generalized any particle propagator theory

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Jonathan; Charry, Jorge A. [Department of Chemistry, Universidad Nacional de Colombia, Av. Cra. 30 #45-03, Bogotá (Colombia); Flores-Moreno, Roberto [Departamento de Química, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Guadalajara Jal., C. P. 44430 (Mexico); Varella, Márcio T. do N. [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo, SP (Brazil); Reyes, Andrés, E-mail: areyesv@unal.edu.co [Department of Chemistry, Universidad Nacional de Colombia, Av. Cra. 30 #45-03, Bogotá (Colombia); Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo, SP (Brazil)

    2014-09-21

    We recently extended the electron propagator theory to any type of quantum species based in the framework of the Any-Particle Molecular Orbital (APMO) approach [J. Romero, E. Posada, R. Flores-Moreno, and A. Reyes, J. Chem. Phys. 137, 074105 (2012)]. The generalized any particle molecular orbital propagator theory (APMO/PT) was implemented in its quasiparticle second order version in the LOWDIN code and was applied to calculate nuclear quantum effects in electron binding energies and proton binding energies in molecular systems [M. Díaz-Tinoco, J. Romero, J. V. Ortiz, A. Reyes, and R. Flores-Moreno, J. Chem. Phys. 138, 194108 (2013)]. In this work, we present the derivation of third order quasiparticle APMO/PT methods and we apply them to calculate positron binding energies (PBEs) of atoms and molecules. We calculated the PBEs of anions and some diatomic molecules using the second order, third order, and renormalized third order quasiparticle APMO/PT approaches and compared our results with those previously calculated employing configuration interaction (CI), explicitly correlated and quantum Montecarlo methodologies. We found that renormalized APMO/PT methods can achieve accuracies of ∼0.35 eV for anionic systems, compared to Full-CI results, and provide a quantitative description of positron binding to anionic and highly polar species. Third order APMO/PT approaches display considerable potential to study positron binding to large molecules because of the fifth power scaling with respect to the number of basis sets. In this regard, we present additional PBE calculations of some small polar organic molecules, amino acids and DNA nucleobases. We complement our numerical assessment with formal and numerical analyses of the treatment of electron-positron correlation within the quasiparticle propagator approach.

  11. Calculation of positron binding energies using the generalized any particle propagator theory

    Science.gov (United States)

    Romero, Jonathan; Charry, Jorge A.; Flores-Moreno, Roberto; Varella, Márcio T. do N.; Reyes, Andrés

    2014-09-01

    We recently extended the electron propagator theory to any type of quantum species based in the framework of the Any-Particle Molecular Orbital (APMO) approach [J. Romero, E. Posada, R. Flores-Moreno, and A. Reyes, J. Chem. Phys. 137, 074105 (2012)]. The generalized any particle molecular orbital propagator theory (APMO/PT) was implemented in its quasiparticle second order version in the LOWDIN code and was applied to calculate nuclear quantum effects in electron binding energies and proton binding energies in molecular systems [M. Díaz-Tinoco, J. Romero, J. V. Ortiz, A. Reyes, and R. Flores-Moreno, J. Chem. Phys. 138, 194108 (2013)]. In this work, we present the derivation of third order quasiparticle APMO/PT methods and we apply them to calculate positron binding energies (PBEs) of atoms and molecules. We calculated the PBEs of anions and some diatomic molecules using the second order, third order, and renormalized third order quasiparticle APMO/PT approaches and compared our results with those previously calculated employing configuration interaction (CI), explicitly correlated and quantum Montecarlo methodologies. We found that renormalized APMO/PT methods can achieve accuracies of ˜0.35 eV for anionic systems, compared to Full-CI results, and provide a quantitative description of positron binding to anionic and highly polar species. Third order APMO/PT approaches display considerable potential to study positron binding to large molecules because of the fifth power scaling with respect to the number of basis sets. In this regard, we present additional PBE calculations of some small polar organic molecules, amino acids and DNA nucleobases. We complement our numerical assessment with formal and numerical analyses of the treatment of electron-positron correlation within the quasiparticle propagator approach.

  12. Energy Conversions in the Atmosphere on the Scale of the General Circulation

    OpenAIRE

    Mieghem, Jacques Van

    2011-01-01

    From the equations of balance established for the different forms of energy (potential, kinetic and internal energies), the energy fluxes, the rates of energy production and conversion are deduced. Provided weighted mean values are considered the zonally averaged value of the kinetic energy may be decomposed into kinetic energy of the mean motion and the mean kinetic energy of the large-scale eddies. The corresponding equations of balance are established. The axial symmetry with respect to th...

  13. 76 FR 50204 - Decision and Order Granting a Waiver to Fujitsu General Limited From the Department of Energy...

    Science.gov (United States)

    2011-08-12

    ... No. CAC-033, which grants Fujitsu General Limited (Fujitsu) a waiver from the existing DOE test... Energy. Decision and Order In the Matter of: Fujitsu General Limited (Fujitsu) (Case No. CAC- 033... petition for waiver filed by Fujitsu (Case No. CAC-033) is hereby granted as set forth in the...

  14. Energy, momentum and angular momentum in the dyadosphere of a charged spacetime in teleparallel equivalent of general relativity

    Institute of Scientific and Technical Information of China (English)

    Gamal G.L.Nashed

    2012-01-01

    We apply the energy momentum and angular momentum tensor to a tetrad field,with two unknown functions of radial coordinate,in the framework of a teleparallel equivalent of general relativity (TEGR).The definition of the gravitational energy is used to investigate the energy within the external event horizon of the dyadosphere region for the Reissner-Nordstr(o)m black hole.We also calculate the spatial momentum and angular momentum.

  15. Viscous conformal gauge theories

    DEFF Research Database (Denmark)

    Toniato, Arianna; Sannino, Francesco; Rischke, Dirk H.

    2017-01-01

    We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories.......We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories....

  16. Conformal gravity and "gravitational bubbles"

    CERN Document Server

    Berezin, V A; Eroshenko, Yu N

    2015-01-01

    We describe the general structure of the spherically symmetric solutions in the Weyl conformal gravity. The corresponding Bach equations are derived for the special type of metrics, which can be considered as the representative of the general class. The complete set of the pure vacuum solutions, consisting of two classes, is found. The first one contains the solutions with constant two-dimensional curvature scalar, and the representatives are the famous Robertson--Walker metrics. We called one of them the "gravitational bubbles", which is compact and with zero Weyl tensor. These "gravitational bubbles" are the pure vacuum curved space-times (without any material sources, including the cosmological constant), which are absolutely impossible in General Relativity. This phenomenon makes it easier to create the universe from "nothing". The second class consists of the solutions with varying curvature scalar. We found its representative as the one-parameter family, which can be conformally covered by the thee-para...

  17. Implications of conformal symmetry in quantum mechanics

    Science.gov (United States)

    Okazaki, Tadashi

    2017-09-01

    In conformal quantum mechanics with the vacuum of a real scaling dimension and with a complete orthonormal set of energy eigenstates, which is preferable under the unitary evolution, the dilatation expectation value between energy eigenstates monotonically decreases along the flow from the UV to the IR. In such conformal quantum mechanics, there exist bounds on scaling dimensions of the physical states and the gauge operators.

  18. Representation of target-bound drugs by computed conformers: implications for conformational libraries

    Directory of Open Access Journals (Sweden)

    Goede Andrean

    2006-06-01

    Full Text Available Abstract Background The increasing number of known protein structures provides valuable information about pharmaceutical targets. Drug binding sites are identifiable and suitable lead compounds can be proposed. The flexibility of ligands is a critical point for the selection of potential drugs. Since computed 3D structures of millions of compounds are available, the knowledge of their binding conformations would be a great benefit for the development of efficient screening methods. Results Integration of two public databases allowed superposition of conformers for 193 approved drugs with 5507 crystallised target-bound counterparts. The generation of 9600 drug conformers using an atomic force field was carried out to obtain an optimal coverage of the conformational space. Bioactive conformations are best described by a conformational ensemble: half of all drugs exhibit multiple active states, distributed over the entire range of the reachable energy and conformational space. A number of up to 100 conformers per drug enabled us to reproduce the bound states within a similarity threshold of 1.0 Å in 70% of all cases. This fraction rises to about 90% for smaller or average sized drugs. Conclusion Single drugs adopt multiple bioactive conformations if they interact with different target proteins. Due to the structural diversity of binding sites they adopt conformations that are distributed over a broad conformational space and wide energy range. Since the majority of drugs is well represented by a predefined low number of conformers (up to 100 this procedure is a valuable method to compare compounds by three-dimensional features or for fast similarity searches starting with pharmacophores. The underlying 9600 generated drug conformers are downloadable from the Super Drug Web site 1. All superpositions are visualised at the same source. Additional conformers (110,000 of 2400 classified WHO-drugs are also available.

  19. Five-dimensional teleparallel theory equivalent to general relativity, the axially symmetric solution,energy and spatial momentum

    Institute of Scientific and Technical Information of China (English)

    Gamal G.L. Nashed

    2011-01-01

    A theory of (4+1)-dimensional gravity is developed on the basis of the teleparallel theory equivalent to general relativity.The fundamental gravitational field variables are the five-dimensional vector fields (pentad),defined globally on a manifold M,and gravity is attributed to the torsion.The Lagrangian density is quadratic in the torsion tensor.We then give the exact five-dimensional solution.The solution is a generalization of the familiar Schwarzschild and Kerr solutions of the four-dimensional teleparallel equivalent of general relativity.We also use the definition of the gravitational energy to calculate the energy and the spatial momentum.

  20. Conformational and Vibrational Studies of Triclosan

    Science.gov (United States)

    Özişik, Haci; Bayari, S. Haman; Saǧlam, Semran

    2010-01-01

    The conformational equilibrium of triclosan (5-chloro-2-(2, 4-dichlorophenoxy) phenol) have been calculated using density functional theory (DFTe/B3LYP/6-311++G(d, p)) method. Four different geometries were found to correspond to energy minimum conformations. The IR spectrum of triclosan was measured in the 4000-400 cm-1 region. We calculated the harmonic frequencies and intensities of the most stable conformers in order to assist in the assignment of the vibrational bands in the experimental spectrum. The fundamental vibrational modes were characterized depending on their total energy distribution (TED%) using scaled quantum mechanical (SQM) force field method.

  1. Hot Conformal Gauge Theories

    DEFF Research Database (Denmark)

    Mojaza, Matin; Pica, Claudio; Sannino, Francesco

    2010-01-01

    We compute the nonzero temperature free energy up to the order g^6 \\ln(1/g) in the coupling constant for vector like SU(N) gauge theories featuring matter transforming according to different representations of the underlying gauge group. The number of matter fields, i.e. flavors, is arranged in s.......e. they are independent on the specific matter representation.......We compute the nonzero temperature free energy up to the order g^6 \\ln(1/g) in the coupling constant for vector like SU(N) gauge theories featuring matter transforming according to different representations of the underlying gauge group. The number of matter fields, i.e. flavors, is arranged...... in such a way that the theory develops a perturbative stable infrared fixed point at zero temperature. Due to large distance conformality we trade the coupling constant with its fixed point value and define a reduced free energy which depends only on the number of flavors, colors and matter representation. We...

  2. Conformal mapping for multiple terminals

    Science.gov (United States)

    Wang, Weimin; Ma, Wenying; Wang, Qiang; Ren, Hao

    2016-11-01

    Conformal mapping is an important mathematical tool that can be used to solve various physical and engineering problems in many fields, including electrostatics, fluid mechanics, classical mechanics, and transformation optics. It is an accurate and convenient way to solve problems involving two terminals. However, when faced with problems involving three or more terminals, which are more common in practical applications, existing conformal mapping methods apply assumptions or approximations. A general exact method does not exist for a structure with an arbitrary number of terminals. This study presents a conformal mapping method for multiple terminals. Through an accurate analysis of boundary conditions, additional terminals or boundaries are folded into the inner part of a mapped region. The method is applied to several typical situations, and the calculation process is described for two examples of an electrostatic actuator with three electrodes and of a light beam splitter with three ports. Compared with previously reported results, the solutions for the two examples based on our method are more precise and general. The proposed method is helpful in promoting the application of conformal mapping in analysis of practical problems.

  3. A general method to derive tissue parameters for Monte Carlo dose calculation with multi-energy CT

    Science.gov (United States)

    Lalonde, Arthur; Bouchard, Hugo

    2016-11-01

    To develop a general method for human tissue characterization with dual- and multi-energy CT and evaluate its performance in determining elemental compositions and quantities relevant to radiotherapy Monte Carlo dose calculation. Ideal materials to describe human tissue are obtained applying principal component analysis on elemental weight and density data available in literature. The theory is adapted to elemental composition for solving tissue information from CT data. A novel stoichiometric calibration method is integrated to the technique to make it suitable for a clinical environment. The performance of the method is compared with two techniques known in literature using theoretical CT data. In determining elemental weights with dual-energy CT, the method is shown to be systematically superior to the water-lipid-protein material decomposition and comparable to the parameterization technique. In determining proton stopping powers and energy absorption coefficients with dual-energy CT, the method generally shows better accuracy and unbiased results. The generality of the method is demonstrated simulating multi-energy CT data to show the potential to extract more information with multiple energies. The method proposed in this paper shows good performance to determine elemental compositions from dual-energy CT data and physical quantities relevant to radiotherapy dose calculation. The method is particularly suitable for Monte Carlo calculations and shows promise in using more than two energies to characterize human tissue with CT.

  4. A general method to derive tissue parameters for Monte Carlo dose calculation with multi-energy CT.

    Science.gov (United States)

    Lalonde, Arthur; Bouchard, Hugo

    2016-11-21

    To develop a general method for human tissue characterization with dual- and multi-energy CT and evaluate its performance in determining elemental compositions and quantities relevant to radiotherapy Monte Carlo dose calculation. Ideal materials to describe human tissue are obtained applying principal component analysis on elemental weight and density data available in literature. The theory is adapted to elemental composition for solving tissue information from CT data. A novel stoichiometric calibration method is integrated to the technique to make it suitable for a clinical environment. The performance of the method is compared with two techniques known in literature using theoretical CT data. In determining elemental weights with dual-energy CT, the method is shown to be systematically superior to the water-lipid-protein material decomposition and comparable to the parameterization technique. In determining proton stopping powers and energy absorption coefficients with dual-energy CT, the method generally shows better accuracy and unbiased results. The generality of the method is demonstrated simulating multi-energy CT data to show the potential to extract more information with multiple energies. The method proposed in this paper shows good performance to determine elemental compositions from dual-energy CT data and physical quantities relevant to radiotherapy dose calculation. The method is particularly suitable for Monte Carlo calculations and shows promise in using more than two energies to characterize human tissue with CT.

  5. Econometrically calibrated computable general equilibrium models: Applications to the analysis of energy and climate politics

    Science.gov (United States)

    Schu, Kathryn L.

    Economy-energy-environment models are the mainstay of economic assessments of policies to reduce carbon dioxide (CO2) emissions, yet their empirical basis is often criticized as being weak. This thesis addresses these limitations by constructing econometrically calibrated models in two policy areas. The first is a 35-sector computable general equilibrium (CGE) model of the U.S. economy which analyzes the uncertain impacts of CO2 emission abatement. Econometric modeling of sectors' nested constant elasticity of substitution (CES) cost functions based on a 45-year price-quantity dataset yields estimates of capital-labor-energy-material input substitution elasticities and biases of technical change that are incorporated into the CGE model. I use the estimated standard errors and variance-covariance matrices to construct the joint distribution of the parameters of the economy's supply side, which I sample to perform Monte Carlo baseline and counterfactual runs of the model. The resulting probabilistic abatement cost estimates highlight the importance of the uncertainty in baseline emissions growth. The second model is an equilibrium simulation of the market for new vehicles which I use to assess the response of vehicle prices, sales and mileage to CO2 taxes and increased corporate average fuel economy (CAFE) standards. I specify an econometric model of a representative consumer's vehicle preferences using a nested CES expenditure function which incorporates mileage and other characteristics in addition to prices, and develop a novel calibration algorithm to link this structure to vehicle model supplies by manufacturers engaged in Bertrand competition. CO2 taxes' effects on gasoline prices reduce vehicle sales and manufacturers' profits if vehicles' mileage is fixed, but these losses shrink once mileage can be adjusted. Accelerated CAFE standards induce manufacturers to pay fines for noncompliance rather than incur the higher costs of radical mileage improvements

  6. Generalized hard-core dimer model approach to low-energy Heisenberg frustrated antiferromagnets: General properties and application to the kagome antiferromagnet

    Science.gov (United States)

    Schwandt, David; Mambrini, Matthieu; Poilblanc, Didier

    2010-06-01

    We propose a general nonperturbative scheme that quantitatively maps the low-energy sector of spin-1/2 frustrated Heisenberg antiferromagnets to effective generalized quantum dimer models. We develop the formal lattice-independent frame and establish some important results on (i) the locality of the generated Hamiltonians, (ii) how full resummations can be performed in this renormalization scheme. The method is then applied to the much debated kagome antiferromagnet for which a fully resummed effective Hamiltonian—shown to capture the essential properties and provide deep insights on the microscopic model [D. Poilblanc, M. Mambrini, and D. Schwandt, Phys. Rev. B 81, 180402(R) (2010)]—is derived.

  7. Phenomenology of dark energy: general features of large-scale perturbations

    Science.gov (United States)

    Pèrenon, Louis; Piazza, Federico; Marinoni, Christian; Hui, Lam

    2015-11-01

    We present a systematic exploration of dark energy and modified gravity models containing a single scalar field non-minimally coupled to the metric. Even though the parameter space is large, by exploiting an effective field theory (EFT) formulation and by imposing simple physical constraints such as stability conditions and (sub-)luminal propagation of perturbations, we arrive at a number of generic predictions. (1) The linear growth rate of matter density fluctuations is generally suppressed compared to ΛCDM at intermediate redshifts (0.5 lesssim z lesssim 1), despite the introduction of an attractive long-range scalar force. This is due to the fact that, in self-accelerating models, the background gravitational coupling weakens at intermediate redshifts, over-compensating the effect of the attractive scalar force. (2) At higher redshifts, the opposite happens; we identify a period of super-growth when the linear growth rate is larger than that predicted by ΛCDM. (3) The gravitational slip parameter η—the ratio of the space part of the metric perturbation to the time part—is bounded from above. For Brans-Dicke-type theories η is at most unity. For more general theories, η can exceed unity at intermediate redshifts, but not more than about 1.5 if, at the same time, the linear growth rate is to be compatible with current observational constraints. We caution against phenomenological parametrization of data that do not correspond to predictions from viable physical theories. We advocate the EFT approach as a way to constrain new physics from future large-scale-structure data.

  8. BayeSED: A General Approach to Fitting the Spectral Energy Distribution of Galaxies

    Science.gov (United States)

    Han, Yunkun; Han, Zhanwen

    2014-11-01

    We present a newly developed version of BayeSED, a general Bayesian approach to the spectral energy distribution (SED) fitting of galaxies. The new BayeSED code has been systematically tested on a mock sample of galaxies. The comparison between the estimated and input values of the parameters shows that BayeSED can recover the physical parameters of galaxies reasonably well. We then applied BayeSED to interpret the SEDs of a large Ks -selected sample of galaxies in the COSMOS/UltraVISTA field with stellar population synthesis models. Using the new BayeSED code, a Bayesian model comparison of stellar population synthesis models has been performed for the first time. We found that the 2003 model by Bruzual & Charlot, statistically speaking, has greater Bayesian evidence than the 2005 model by Maraston for the Ks -selected sample. In addition, while setting the stellar metallicity as a free parameter obviously increases the Bayesian evidence of both models, varying the initial mass function has a notable effect only on the Maraston model. Meanwhile, the physical parameters estimated with BayeSED are found to be generally consistent with those obtained using the popular grid-based FAST code, while the former parameters exhibit more natural distributions. Based on the estimated physical parameters of the galaxies in the sample, we qualitatively classified the galaxies in the sample into five populations that may represent galaxies at different evolution stages or in different environments. We conclude that BayeSED could be a reliable and powerful tool for investigating the formation and evolution of galaxies from the rich multi-wavelength observations currently available. A binary version of the BayeSED code parallelized with Message Passing Interface is publicly available at https://bitbucket.org/hanyk/bayesed.

  9. Simple, yet powerful methodologies for conformational sampling of proteins.

    Science.gov (United States)

    Harada, Ryuhei; Takano, Yu; Baba, Takeshi; Shigeta, Yasuteru

    2015-03-07

    Several biological functions, such as molecular recognition, enzyme catalysis, signal transduction, allosteric regulation, and protein folding, are strongly related to conformational transitions of proteins. These conformational transitions are generally induced as slow dynamics upon collective motions, including biologically relevant large-amplitude fluctuations of proteins. Although molecular dynamics (MD) simulation has become a powerful tool for extracting conformational transitions of proteins, it might still be difficult to reach time scales of the biological functions because the accessible time scales of MD simulations are far from biological time scales, even if straightforward conventional MD (CMD) simulations using massively parallel computers are employed. Thus, it is desirable to develop efficient methods to achieve canonical ensembles with low computational costs. From this perspective, we review several enhanced conformational sampling techniques of biomolecules developed by us. In our methods, multiple independent short-time MD simulations are employed instead of single straightforward long-time CMD simulations. Our basic strategy is as follows: (i) selection of initial seeds (initial structures) for the conformational sampling in restarting MD simulations. Here, the seeds should be selected as candidates with high potential to transit. (ii) Resampling from the selected seeds by initializing velocities in restarting short-time MD simulations. A cycle of these simple protocols might drastically promote the conformational transitions of biomolecules. (iii) Once reactive trajectories extracted from the cycles of short-time MD simulations are obtained, a free energy profile is evaluated by means of umbrella sampling (US) techniques with the weighted histogram analysis method (WHAM) as a post-processing technique. For the selection of the initial seeds, we proposed four different choices: (1) Parallel CaScade molecular dynamics (PaCS-MD), (2) Fluctuation

  10. CO2, energy and economy interactions: A multisectoral, dynamic, computable general equilibrium model for Korea

    Science.gov (United States)

    Kang, Yoonyoung

    While vast resources have been invested in the development of computational models for cost-benefit analysis for the "whole world" or for the largest economies (e.g. United States, Japan, Germany), the remainder have been thrown together into one model for the "rest of the world." This study presents a multi-sectoral, dynamic, computable general equilibrium (CGE) model for Korea. This research evaluates the impacts of controlling COsb2 emissions using a multisectoral CGE model. This CGE economy-energy-environment model analyzes and quantifies the interactions between COsb2, energy and economy. This study examines interactions and influences of key environmental policy components: applied economic instruments, emission targets, and environmental tax revenue recycling methods. The most cost-effective economic instrument is the carbon tax. The economic effects discussed include impacts on main macroeconomic variables (in particular, economic growth), sectoral production, and the energy market. This study considers several aspects of various COsb2 control policies, such as the basic variables in the economy: capital stock and net foreign debt. The results indicate emissions might be stabilized in Korea at the expense of economic growth and with dramatic sectoral allocation effects. Carbon dioxide emissions stabilization could be achieved to the tune of a 600 trillion won loss over a 20 year period (1990-2010). The average annual real GDP would decrease by 2.10% over the simulation period compared to the 5.87% increase in the Business-as-Usual. This model satisfies an immediate need for a policy simulation model for Korea and provides the basic framework for similar economies. It is critical to keep the central economic question at the forefront of any discussion regarding environmental protection. How much will reform cost, and what does the economy stand to gain and lose? Without this model, the policy makers might resort to hesitation or even blind speculation. With

  11. 40 CFR 51.857 - Frequency of conformity determinations.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Frequency of conformity determinations... Conformity of General Federal Actions to State or Federal Implementation Plans § 51.857 Frequency of conformity determinations. Link to an amendment published at 75 FR 17272, April 5, 2010. (a) The...

  12. 40 CFR 93.157 - Frequency of conformity determinations.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Frequency of conformity determinations... PROGRAMS (CONTINUED) DETERMINING CONFORMITY OF FEDERAL ACTIONS TO STATE OR FEDERAL IMPLEMENTATION PLANS Determining Conformity of General Federal Actions to State or Federal Implementation Plans § 93.157...

  13. 40 CFR 86.407-78 - Certificate of conformity required.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Certificate of conformity required. 86... Regulations for 1978 and Later New Motorcycles, General Provisions § 86.407-78 Certificate of conformity... conformity issued pursuant to this subpart, except as specified in paragraph (b) of this section,...

  14. Conserved Quantities and Conformal Mechanico-Electrical Systems

    Institute of Scientific and Technical Information of China (English)

    FU Jing-Li; WANG Xian-Jun; XIE Feng-Ping

    2008-01-01

    The conformal mechanico-electrical systems are presented by infinitesimal point transformations of time and generalized coordinates. The necessary and sufficient conditions that the conformal mechanico-electrical systems possess Lie symmetry are given. The Noether conserved quantities of the conformal mechanico-electrical systems are obtained from Lie symmetries.

  15. Entanglement Temperature in Non-conformal Cases

    CERN Document Server

    He, Song; Wu, Jun-Bao

    2013-01-01

    Potential reconstruction can be used to find various analytical asymptotical AdS solutions in Einstein dilation system generally. We have generated two simple solutions without physical singularity called zero temperature solutions. We also proposed a numerical way to obtain black hole solution in Einstein dilaton system with special dilaton potential. By using this method, we obtain the corresponding black hole solutions numerically and investigate the thermal stability of the black hole by comparing the free energy of thermal gas and the corresponding black hole. In two groups of non-conformal gravity solutions obtained in this paper, we find that the two thermal gas solutions are more unstable than black hole solutions respectively. Finally, we consider black hole solutions as a thermal state of zero temperature solutions to check that the first thermal dynamical law exists in entanglement system from holographic point of view.

  16. Phenomenology of dark energy: general features of large-scale perturbations

    CERN Document Server

    Perenon, Louis; Marinoni, Christian; Hui, Lam

    2015-01-01

    We present a systematic exploration of dark energy and modified gravity models containing a single scalar field non-minimally coupled to the metric. Even though the parameter space is large, by exploiting an effective field theory (EFT) formulation and by imposing simple physical constraints such as stability conditions and (sub-)luminal propagation of perturbations, we arrive at a number of generic predictions. (1) The linear growth rate of matter density fluctuations is generally suppressed compared to $\\Lambda$CDM at intermediate redshifts ($0.5 \\lesssim z \\lesssim 1$), despite the introduction of an attractive long-range scalar force. This is due to the fact that, in self-accelerating models, the background gravitational coupling weakens at intermediate redshifts, over-compensating the effect of the attractive scalar force. (2) At higher redshifts, the opposite happens; we identify a period of super-growth when the linear growth rate is larger than that predicted by $\\Lambda$CDM. (3) The gravitational sli...

  17. BayeSED: A General Approach to Fitting the Spectral Energy Distribution of Galaxies

    CERN Document Server

    Han, Yunkun

    2014-01-01

    We present a newly developed version of BayeSED, a general Bayesian approach to the spectral energy distribution (SED) fitting of galaxies. The new BayeSED code has been systematically tested on a mock sample of galaxies. The comparison between estimated and inputted value of the parameters show that BayeSED can recover the physical parameters of galaxies reasonably well. We then applied BayeSED to interpret the SEDs of a large Ks-selected sample of galaxies in the COSMOS/UltraVISTA field with stellar population synthesis models. With the new BayeSED code, a Bayesian model comparison of stellar population synthesis models has been done for the first time. We found that the model by Bruzual & Charlot (2003), statistically speaking, has larger Bayesian evidence than the model by Maraston (2005) for the Ks-selected sample. Besides, while setting the stellar metallicity as a free parameter obviously increases the Bayesian evidence of both models, varying the IMF has a notable effect only on the Maraston (2005...

  18. Consumer protection issues in energy: a guide for attorneys general. Insulation, solar, automobile device, home devices

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Harry I.; Hulse, William S.; Jones, Robert R.; Langer, Robert M.; Petrucelli, Paul J.; Schroeder, Robert J.

    1979-11-01

    The guide attempts to bring together two important and current issues: energy and consumer protection. Perhaps the most basic consumer-protection issue in the energy area is assuring adequate supplies at adequate prices. It is anticipated, though, that consumers will want to consider new ways to lower enegy consumption and cost, and will thus be susceptible to fraudulent energy claims. Information is prepared on insulation, solar, energy-saving devices for the home, and energy-saving devices for the automobile.

  19. Office of Inspector General audit report on the U.S. Department of Energy`s consolidated financial statements for fiscal year 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The Department prepared the Fiscal Year 1998 Accountability Report to combine critical financial and program performance information in a single report. The Department`s consolidated financial statements and the related audit reports are included as major components of the Accountability Report. The Office of Inspector General audited the Department`s consolidated financial statements as of and for the years ended September 30, 1998 and 1997. In the opinion of the Office of Inspector General, except for the environmental liabilities lines items in Fiscal year 1998, these financial statements present fairly, in all material respects, the financial position of the Department as of September 30, 1998 and 1997, and its consolidated net cost, changes in net position, budgetary resources, financing activities, and custodial activities for the years then ended in conformity with Federal accounting standards. In accordance with Government Auditing Standards, the Office of Inspector General issued a separate report on the Department internal controls. This report discusses needed improvements to the environmental liabilities estimating process and the reporting of performance measure information.

  20. Expansion Formulation of General Relativity: the Gauge Functions for Energy-Momentum Tensor

    Science.gov (United States)

    Beloushko, Konstantin; Karbanovski, Valeri

    At present the one of the GR (General Relativity) basic problem remains a definition of the gravitation field (GF) energy. We shall analyze this content. As well known, the energy-momentum ``tensor'' (EMT) of GF was introduced by Einstein [1] with purpose of the SRT (Special Relativity Theory) generalization. It supposed also, that EMT of matter satisfy to the condition begin{equation} ⪉bel{GrindEQ__1_1_} T^{ik} _{;i} =0 (a semicolon denotes a covariant differentiation with respect to coordinates). In absence of GF the equation (ref{GrindEQ__1_1_}) reduces to a corresponding SRT expression begin{equation} ⪉bel{GrindEQ__1_2_} T^{ik} _{,i} =0 (a comma denotes a differentiation with respect to coordinates of space-time). Obviously, the ``conservation law'' (ref{GrindEQ__1_2_}) is not broken by transformation begin{equation} ⪉bel{GrindEQ__1_3_} T^{ik} to tilde{T}^{ik} =T^{ik} +h^{ikl} _{,l} , where for h(ikl) takes place a constrain begin{equation} ⪉bel{GrindEQ__1_4_} h^{ikl} =-h^{ilk} Later the given property has been used for a construction ``pseudo-tensor'' tau (ik) of ``pure'' GF [2, S 96] begin{equation} ⪉bel{GrindEQ__1_5_} -gleft(frac{c^{4} }{8pi G} left(R^{ik} -frac{1}{2} g^{ik} Rright)+tau ^{ik} right)=h^{ikl} _{,l} However such definition was a consequence of non-covariant transition from a reference system with condition g(ik) _{,l} =0 to an arbitrary frame. Therefore the Landau-Lifshitz pseudo-tensor has no physical contents and considered problem remains actual. ``The non-covariant character'' of GF energy was the reason for criticism of GR as Einstein's contemporaries [3, 4], as and during the subsequent period (see, for example, [5]). In [6] were analyzed the grounds of given problem, which are connected with a formulation indefiniteness of ``the conservation law'' in curved space-time. In [7] contends, that the gravitational energy in EMT can be separated only ``artificially'' by a choice of the certain coordinate system. In [8] is concluded

  1. On functional representations of the conformal algebra

    Science.gov (United States)

    Rosten, Oliver J.

    2017-07-01

    Starting with conformally covariant correlation functions, a sequence of functional representations of the conformal algebra is constructed. A key step is the introduction of representations which involve an auxiliary functional. It is observed that these functionals are not arbitrary but rather must satisfy a pair of consistency equations corresponding to dilatation and special conformal invariance. In a particular representation, the former corresponds to the canonical form of the exact renormalization group equation specialized to a fixed point whereas the latter is new. This provides a concrete understanding of how conformal invariance is realized as a property of the Wilsonian effective action and the relationship to action-free formulations of conformal field theory. Subsequently, it is argued that the conformal Ward Identities serve to define a particular representation of the energy-momentum tensor. Consistency of this construction implies Polchinski's conditions for improving the energy-momentum tensor of a conformal field theory such that it is traceless. In the Wilsonian approach, the exactly marginal, redundant field which generates lines of physically equivalent fixed points is identified as the trace of the energy-momentum tensor.

  2. Conformational elasticity theory of chain molecules

    Institute of Scientific and Technical Information of China (English)

    YANG; Xiaozhen

    2001-01-01

    This paper develops a conformational elasticity theory of chain molecules, which is based on three key points: (ⅰ) the molecular model is the rotational isomeric state (RIS) model; (ⅱ) the conformational distribution function of a chain molecule is described by a function of two variables, the end-to-end distance of a chain conformation and the energy of the conformation; (ⅲ) the rule of changes in the chain conformational states during deformation is that a number of chain conformations would vanish. The ideal deformation behavior calculated by the theory shows that the change in chain conformations is physically able to make the upward curvature of the stress-strain curve at the large-scale deformation of natural rubber. With the theory, different deformation behaviors between polymers with different chemical structures can be described, the energy term of the stress in the deformations can be predicted, and for natural rubber the fraction of the energy term is around 13%, coinciding with the experimental results.

  3. Conformal theory of galactic halos

    CERN Document Server

    Nesbet, R K

    2011-01-01

    Current cosmological theory describes an isolated galaxy as an observable central galaxy, surrounded by a large spherical halo attributed to dark matter. Galaxy formation by condensation of mass-energy out of a primordial uniform background is shown here to leave a scar, observed as a centripetal gravitational field halo in anomalous galactic rotation and in gravitational lensing. Conformal theory accounts for the otherwise counterintuitive centripetal effect.

  4. Energy

    Science.gov (United States)

    2003-01-01

    Canada, Britain, and Spain. We found that the energy industry is not in crisis ; however, U.S. government policies, laws, dollars, and even public...CEIMAT (Centro de Investagaciones Energeticas , Medioambeintales y Tecnologicas) Research and development Page 3 of 28ENERGY 8/10/04http://www.ndu.edu...meet an emerging national crisis (war), emergency (natural disaster), or major impact event (Y2K). Certain resources are generally critical to the

  5. Evolution of holographic dark energy with interaction term $Q \\propto H\\rho_{\\rm de}$ and generalized second law

    Indian Academy of Sciences (India)

    Praseetha P; Mathew Titus K

    2016-03-01

    A flat FLRW Universe with dark matter and dark energy, which are interacting witheach other, is considered. The dark energy is represented by the holographic dark energy model and the interaction term is taken as proportional to the dark energy density. We have studied the cosmological evolution and analysed the validity of the generalized second law of thermodynamics (GSL) under thermal equilibrium conditions and non-equilibrium conditions. We have found thatthe GSL is completely valid at the apparent horizon but violated at the event horizon under thermal equilibrium condition. Under thermal non-equilibrium condition, for the GSL to be valid, we found out that the temperature of the dark energy must be greater than the temperature of the apparent horizon if the dark energy behaves as a quintessence fluid.

  6. Temperature effects on the generalized planar fault energies and twinnabilities of Al, Ni and Cu: First principles calculations

    KAUST Repository

    Liu, Lili

    2014-06-01

    Based on the quasiharmonic approach from first-principles phonon calculations, the volume versus temperature relations for Al, Ni and Cu are obtained. Using the equilibrium volumes at temperature T, the temperature dependences of generalized planar fault energies have also been calculated by first-principles calculations. It is found that the generalized planar fault energies reduce slightly with increasing temperature. Based on the calculated generalized planar fault energies, the twinnabilities of Al, Ni and Cu are discussed with the three typical criteria for crack tip twinning, grain boundary twinning and inherent twinning at different temperatures. The twinnabilities of Al, Ni and Cu also decrease slightly with increasing temperature. Ni and Cu have the inherent twinnabilities. But, Al does not exhibit inherent twinnability. These results are in agreement with the previous theoretical studies at 0 K and experimental observations at ambient temperature. © 2014 Elsevier B.V. All rights reserved.

  7. Radiation Analysis and Characteristics of Conformal Reflectarray Antennas

    Directory of Open Access Journals (Sweden)

    Payam Nayeri

    2012-01-01

    Full Text Available This paper investigates the feasibility of designing reflectarray antennas on conformal surfaces. A generalized analysis approach is presented that can be applied to compute the radiation performance of conformal reflectarray antennas. Using this approach, radiation characteristics of conformal reflectarray antennas on singly curved platforms are studied and the performances of these designs are compared with planar designs. It is demonstrated that a conformal reflectarray antenna can be a suitable choice for applications requiring high-gain antennas on curved platforms.

  8. A study of the kinetic energy generation with general circulation models

    Science.gov (United States)

    Chen, T.-C.; Lee, Y.-H.

    1983-01-01

    The history data of winter simulation by the GLAS climate model and the NCAR community climate model are used to examine the generation of atmospheric kinetic energy. The contrast between the geographic distributions of the generation of kinetic energy and divergence of kinetic energy flux shows that kinetic energy is generated in the upstream side of jets, transported to the downstream side and destroyed there. The contributions from the time-mean and transient modes to the counterbalance between generation of kinetic energy and divergence of kinetic energy flux are also investigated. It is observed that the kinetic energy generated by the time-mean mode is essentially redistributed by the time-mean flow, while that generated by the transient flow is mainly responsible for the maintenance of the kinetic energy of the entire atmospheric flow.

  9. Conformant Planning via Symbolic Model Checking

    CERN Document Server

    Cimatti, A; 10.1613/jair.774

    2011-01-01

    We tackle the problem of planning in nondeterministic domains, by presenting a new approach to conformant planning. Conformant planning is the problem of finding a sequence of actions that is guaranteed to achieve the goal despite the nondeterminism of the domain. Our approach is based on the representation of the planning domain as a finite state automaton. We use Symbolic Model Checking techniques, in particular Binary Decision Diagrams, to compactly represent and efficiently search the automaton. In this paper we make the following contributions. First, we present a general planning algorithm for conformant planning, which applies to fully nondeterministic domains, with uncertainty in the initial condition and in action effects. The algorithm is based on a breadth-first, backward search, and returns conformant plans of minimal length, if a solution to the planning problem exists, otherwise it terminates concluding that the problem admits no conformant solution. Second, we provide a symbolic representation ...

  10. A geodesic model in conformal superspace

    CERN Document Server

    Gomes, Henrique de A

    2016-01-01

    In this paper, I look for the most general geometrodynamical symmetries compatible with spatial relational principles. I argue that they lead either to a completely static Universe, or one embodying spatial conformal diffeomorphisms. Demanding locality for an action compatible with these principles severely limits its form, both for the gravitational part as well as all matter couplings. The simplest and most natural choice for pure gravity has two propagating physical degrees of freedom (and no refoliation-invariance). The system has a geometric interpretation as a geodesic model in infinite dimensional conformal superspace. Conformal superspace is a stratified manifold, with different strata corresponding to different isometry groups. Choosing space to be (homeomorphic to) $S^3$, conformal superspace has a preferred stratum with maximal stabilizer group. This stratum consists of a single point -- corresponding to the conformal geometry of the round 3-sphere. This is the most homogeneous non-degenerate geome...

  11. Transitive conformal holonomy groups

    CERN Document Server

    Alt, Jesse

    2011-01-01

    For $(M,[g])$ a conformal manifold of signature $(p,q)$ and dimension at least three, the conformal holonomy group $\\mathrm{Hol}(M,[g]) \\subset O(p+1,q+1)$ is an invariant induced by the canonical Cartan geometry of $(M,[g])$. We give a description of all possible connected conformal holonomy groups which act transitively on the M\\"obius sphere $S^{p,q}$, the homogeneous model space for conformal structures of signature $(p,q)$. The main part of this description is a list of all such groups which also act irreducibly on $\\R^{p+1,q+1}$. For the rest, we show that they must be compact and act decomposably on $\\R^{p+1,q+1}$, in particular, by known facts about conformal holonomy the conformal class $[g]$ must contain a metric which is locally isometric to a so-called special Einstein product.

  12. LINEAR GENERAL EQUILIBRIUM MODEL OF ENERGY DEMAND AND CO2 EMISSIONS GENERATED BY THE ANDALUSIAN PRODUCTIVE SYSTEM

    Directory of Open Access Journals (Sweden)

    Manuel Alejandro Cardenete

    2012-01-01

    Full Text Available In this study we apply a multiplier decomposition methodology of a linear general equilibrium model based on the regional social accounting matrix to the Andalusian economy. The aim of this methodology is to separate the size of the different effects in terms of energy expenditure and total emissions generated by the whole productive system to satisfy the final demand of each branch of the Andalusian economy and the direct emissions generated to produce energy for each subsystem.

  13. Stress-energy distribution for a cylindrical artificial gravity field via the Darmois-Israel junction conditions of general relativity

    Science.gov (United States)

    Istrate, Nicolae; Lindner, John

    2014-03-01

    We design an Earth-like artificial gravity field using the Darmois-Israel junction conditions of general relativity to connect the flat spacetime outside an infinitesimally thin cylinder to the curved spacetime inside. In the calculation of extrinsic curvature, our construction exploits Earth's weak gravity, which implies similar inside and outside curvatures, to approximate the unit normal inside by the negative unit normal outside. The stress-energy distribution on the cylinder's sides includes negative energy density.

  14. Conformal dynamical equivalence and applications

    Science.gov (United States)

    Spyrou, N. K.

    2011-02-01

    The "Conformal Dynamical Equivalence" (CDE) approach is briefly reviewed, and some of its applications, at various astrophysical levels (Sun, Solar System, Stars, Galaxies, Clusters of Galaxies, Universe as a whole), are presented. According to the CDE approach, in both the Newtonian and general-relativistic theories of gravity, the isentropic hydrodynamic flows in the interior of a bounded gravitating perfect-fluid source are dynamically equivalent to geodesic motions in a virtual, fully defined fluid source. Equivalently, the equations of hydrodynamic motion in the former source are functionally similar to those of the geodesic motions in the latter, physically, fully defined source. The CDE approach is followed for the dynamical description of the motions in the fluid source. After an observational introduction, taking into account all the internal physical characteristics of the corresponding perfect-fluid source, and based on the property of the isentropic hydrodynamic flows (quite reasonable for an isolated physical system), we examine a number of issues, namely, (i) the classical Newtonian explanation of the celebrated Pioneer-Anomaly effect in the Solar System, (ii) the possibility of both the attractive gravity and the repulsive gravity in a non-quantum Newtonian framework, (iii) the evaluation of the masses - theoretical, dynamical, and missing - and of the linear dimensions of non-magnetized and magnetized large-scale cosmological structures, (iv) the explanation of the flat-rotation curves of disc galaxies, (v) possible formation mechanisms of winds and jets, and (vi) a brief presentation of a conventional approach - toy model to the dynamics of the Universe, characterized by the dominant collisional dark matter (with its subdominant luminous baryonic "contamination"), correctly interpreting the cosmological observational data without the need of the notions dark energy, cosmological constant, and universal accelerating expansion.

  15. On Functional Representations of the Conformal Algebra

    CERN Document Server

    Rosten, Oliver J

    2014-01-01

    Starting with conformally covariant correlation functions, a sequence of functional representations of the conformal algebra is constructed. A key step is the introduction of representations which involve an auxiliary functional. It is observed that these functionals are not arbitrary but rather must satisfy a pair of consistency equations; one such is identified, in a particular representation, as an Exact Renormalization Group equation specialized to a fixed-point. Therefore, the associated functional is identified with the Wilsonian Effective Action and this creates a concrete link between action-free formulations of Conformal Field Theory and the cutoff-regularized path integral approach. Following this, the energy-momentum tensor is investigated, from which it becomes apparent that the conformal Ward Identities serve to define a particular representation of the energy-momentum tensor. It follows, essentially trivially, that if the Schwinger functional exists and is non-vanishing then theories exhibiting ...

  16. Radical covalent organic frameworks: a general strategy to immobilize open-accessible polyradicals for high-performance capacitive energy storage.

    Science.gov (United States)

    Xu, Fei; Xu, Hong; Chen, Xiong; Wu, Dingcai; Wu, Yang; Liu, Hao; Gu, Cheng; Fu, Ruowen; Jiang, Donglin

    2015-06-01

    Ordered π-columns and open nanochannels found in covalent organic frameworks (COFs) could render them able to store electric energy. However, the synthetic difficulty in achieving redox-active skeletons has thus far restricted their potential for energy storage. A general strategy is presented for converting a conventional COF into an outstanding platform for energy storage through post-synthetic functionalization with organic radicals. The radical frameworks with openly accessible polyradicals immobilized on the pore walls undergo rapid and reversible redox reactions, leading to capacitive energy storage with high capacitance, high-rate kinetics, and robust cycle stability. The results suggest that channel-wall functional engineering with redox-active species will be a facile and versatile strategy to explore COFs for energy storage.

  17. The Optimal Price Ratio of Typical Energy Sources in Beijing Based on the Computable General Equilibrium Model

    Directory of Open Access Journals (Sweden)

    Yongxiu He

    2014-04-01

    Full Text Available In Beijing, China, the rational consumption of energy is affected by the insufficient linkage mechanism of the energy pricing system, the unreasonable price ratio and other issues. This paper combines the characteristics of Beijing’s energy market, putting forward the society-economy equilibrium indicator R maximization taking into consideration the mitigation cost to determine a reasonable price ratio range. Based on the computable general equilibrium (CGE model, and dividing four kinds of energy sources into three groups, the impact of price fluctuations of electricity and natural gas on the Gross Domestic Product (GDP, Consumer Price Index (CPI, energy consumption and CO2 and SO2 emissions can be simulated for various scenarios. On this basis, the integrated effects of electricity and natural gas price shocks on the Beijing economy and environment can be calculated. The results show that relative to the coal prices, the electricity and natural gas prices in Beijing are currently below reasonable levels; the solution to these unreasonable energy price ratios should begin by improving the energy pricing mechanism, through means such as the establishment of a sound dynamic adjustment mechanism between regulated prices and market prices. This provides a new idea for exploring the rationality of energy price ratios in imperfect competitive energy markets.

  18. Conformal higher-order viscoelastic fluid mechanics

    CERN Document Server

    Fukuma, Masafumi

    2012-01-01

    We present a generally covariant formulation of conformal higher-order viscoelastic fluid mechanics with strain allowed to take arbitrarily large values. We give a general prescription to determine the dynamics of a relativistic viscoelastic fluid in a way consistent with the hypothesis of local thermodynamic equilibrium and the second law of thermodynamics. We then elaborately study the transient time scales at which the strain almost relaxes and becomes proportional to the gradients of velocity. We particularly show that a conformal second-order fluid with all possible parameters in the constitutive equations can be obtained without breaking the hypothesis of local thermodynamic equilibrium, if the conformal fluid is defined as the long time limit of a conformal second-order viscoelastic system. We also discuss how local thermodynamic equilibrium could be understood in the context of the fluid/gravity correspondence.

  19. Conformal higher-order viscoelastic fluid mechanics

    Science.gov (United States)

    Fukuma, Masafumi; Sakatani, Yuho

    2012-06-01

    We present a generally covariant formulation of conformal higher-order viscoelastic fluid mechanics with strain allowed to take arbitrarily large values. We give a general prescription to determine the dynamics of a relativistic viscoelastic fluid in a way consistent with the hypothesis of local thermodynamic equilibrium and the second law of thermodynamics. We then elaborately study the transient time scales at which the strain almost relaxes and becomes proportional to the gradients of velocity. We particularly show that a conformal second-order fluid with all possible parameters in the constitutive equations can be obtained without breaking the hypothesis of local thermodynamic equilibrium, if the conformal fluid is defined as the long time limit of a conformal second-order viscoelastic system. We also discuss how local thermodynamic equilibrium could be understood in the context of the fluid/gravity correspondence.

  20. Conformal field theory on the plane

    CERN Document Server

    Ribault, Sylvain

    2014-01-01

    We provide an introduction to conformal field theory on the plane in the conformal bootstrap approach. We introduce the main ideas of the bootstrap approach to quantum field theory, and how they apply to two-dimensional theories with local conformal symmetry. We describe the mathematical structures which appear in such theories, from the Virasoro algebra and its representations, to the BPZ equations and their solutions. As examples, we study a number of models: Liouville theory, (generalized) minimal models, free bosonic theories, the $H_3^+$ model, and the $SU_2$ and $\\widetilde{SL}_2(\\mathbb{R})$ WZW models.

  1. 75 FR 62141 - In the Matter of Certain Energy Drink Products; Notice of Issuance of a Corrected General...

    Science.gov (United States)

    2010-10-07

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION In the Matter of Certain Energy Drink Products; Notice of Issuance of a Corrected General Exclusion Order AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby...

  2. Generalized Chou-Yang model for p(antip)p and. lambda. (anti. lambda. )p elastic scattering at high energies

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, M.; Fazal-E-Aleem; Azhar, I.A.

    1988-06-01

    The various characteristics of pp and antipp elastic scattering at high energies are explained by using the generalized Chou-Yang model which takes into consideration the anisotropic scattering of objects constituting colliding particles. The model is also used to extract the form factor and radius of the ..lambda.. particle.

  3. Identification of general linear relationships between activation energies and enthalpy changes for dissociation reactions at surfaces.

    Science.gov (United States)

    Michaelides, Angelos; Liu, Z-P; Zhang, C J; Alavi, Ali; King, David A; Hu, P

    2003-04-02

    The activation energy to reaction is a key quantity that controls catalytic activity. Having used ab inito calculations to determine an extensive and broad ranging set of activation energies and enthalpy changes for surface-catalyzed reactions, we show that linear relationships exist between dissociation activation energies and enthalpy changes. Known in the literature as empirical Brønsted-Evans-Polanyi (BEP) relationships, we identify and discuss the physical origin of their presence in heterogeneous catalysis. The key implication is that merely from knowledge of adsorption energies the barriers to catalytic elementary reaction steps can be estimated.

  4. [Dosimetric evaluation of conformal radiotherapy: conformity factor].

    Science.gov (United States)

    Oozeer, R; Chauvet, B; Garcia, R; Berger, C; Felix-Faure, C; Reboul, F

    2000-01-01

    The aim of three-dimensional conformal therapy (3DCRT) is to treat the Planning Target Volume (PTV) to the prescribed dose while reducing doses to normal tissues and critical structures, in order to increase local control and reduce toxicity. The evaluation tools used for optimizing treatment techniques are three-dimensional visualization of dose distributions, dose-volume histograms, tumor control probabilities (TCP) and normal tissue complication probabilities (NTCP). These tools, however, do not fully quantify the conformity of dose distributions to the PTV. Specific tools were introduced to measure this conformity for a given dose level. We have extended those definitions to different dose levels, using a conformity index (CI). CI is based on the relative volumes of PTV and outside the PTV receiving more than a given dose. This parameter has been evaluated by a clinical study including 82 patients treated for lung cancer and 82 patients treated for prostate cancer. The CI was low for lung dosimetric studies (0.35 at the prescribed dose 66 Gy) due to build-up around the GTV and to spinal cord sparing. For prostate dosimetric studies, the CI was higher (0.57 at the prescribed dose 70 Gy). The CI has been used to compare treatment plans for lung 3DCRT (2 vs 3 beams) and prostate 3DCRT (4 vs 7 beams). The variation of CI with dose can be used to optimize dose prescription.

  5. Conformational stability of calreticulin

    DEFF Research Database (Denmark)

    Jørgensen, C.S.; Trandum, C.; Larsen, N.

    2005-01-01

    The conformational stability of calreticulin was investigated. Apparent unfolding temperatures (T-m) increased from 31 degrees C at pH 5 to 51 degrees C at pH 9, but electrophoretic analysis revealed that calreticulin oligomerized instead of unfolding. Structural analyses showed that the single C......-terminal a-helix was of major importance to the conformational stability of calreticulin....

  6. The simulated features of heliospheric cosmic-ray modulation with a time-dependent drift model. III - General energy dependence

    Science.gov (United States)

    Potgieter, M. S.; Le Roux, J. A.

    1992-01-01

    The time-dependent cosmic-ray transport equation is solved numerically in an axially symmetric heliosphere. Gradient and curvature drifts are incorporated, together with an emulated wavy neutral sheet. This model is used to simulate heliospheric cosmic-ray modulation for the period 1985-1989 during which drifts are considered to be important. The general energy dependence of the modulation of Galactic protons is studied as predicted by the model for the energy range 1 MeV to 10 GeV. The corresponding instantaneous radial and latitudinal gradients are calculated, and it is found that, whereas the latitudinal gradients follow the trends in the waviness of the neutral sheet to a large extent for all energies, the radial gradients below about 200 MeV deviate from this general pattern. In particular, these gradients increase when the waviness decreases for the simulated period 1985-1987.3, after which they again follow the neutral sheet by increasing rapidly.

  7. N = 4 l-conformal Galilei superalgebra

    Science.gov (United States)

    Galajinsky, Anton; Masterov, Ivan

    2017-08-01

    An N = 4 supersymmetric extension of the l-conformal Galilei algebra is constructed. This is achieved by combining generators of spatial symmetries from the l-conformal Galilei algebra and those underlying the most general superconformal group in one dimension D (2 , 1 ; α). The value of the group parameter α is fixed from the requirement that the resulting superalgebra is finite-dimensional. The analysis reveals α = -1/2 thus reducing D (2 , 1 ; α) to OSp (4 | 2).

  8. Effective Conformal Descriptions of Black Hole Entropy

    Directory of Open Access Journals (Sweden)

    Steven Carlip

    2011-07-01

    Full Text Available It is no longer considered surprising that black holes have temperatures and entropies. What remains surprising, though, is the universality of these thermodynamic properties: their exceptionally simple and general form, and the fact that they can be derived from many very different descriptions of the underlying microscopic degrees of freedom. I review the proposal that this universality arises from an approximate conformal symmetry, which permits an effective “conformal dual” description that is largely independent of the microscopic details.

  9. Conformally Invariant Spinorial Equations in Six Dimensions

    CERN Document Server

    Batista, Carlos

    2016-01-01

    This work deals with the conformal transformations in six-dimensional spinorial formalism. Several conformally invariant equations are obtained and their geometrical interpretation are worked out. Finally, the integrability conditions for some of these equations are established. Moreover, in the course of the article, some useful identities involving the curvature of the spinorial connection are attained and a digression about harmonic forms and more general massless fields is made.

  10. Conformal Killing Vectors Of Plane Symmetric Four Dimensional Lorentzian Manifolds

    CERN Document Server

    Khan, Suhail; Bokhari, Ashfaque H; Khan, Gulzar Ali; Mathematics, Department of; Peshawar, University of; Pakhtoonkhwa, Peshawar Khyber; Pakistan.,; Petroleum, King Fahd University of; Minerals,; 31261, Dhahran; Arabia, Saudi

    2015-01-01

    In this paper, we investigate conformal Killing's vectors (CKVs) admitted by some plane symmetric spacetimes. Ten conformal Killing's equations and their general forms of CKVs are derived along with their conformal factor. The existence of conformal Killing's symmetry imposes restrictions on the metric functions. The conditions imposing restrictions on these metric functions are obtained as a set of integrability conditions. Considering the cases of time-like and inheriting CKVs, we obtain spacetimes admitting plane conformal symmetry. Integrability conditions are solved completely for some known non-conformally flat and conformally flat classes of plane symmetric spacetimes. A special vacuum plane symmetric spacetime is obtained, and it is shown that for such a metric CKVs are just the homothetic vectors (HVs). Among all the examples considered, there exists only one case with a six dimensional algebra of special CKVs admitting one proper CKV. In all other examples of non-conformally flat metrics, no proper ...

  11. Generative models of conformational dynamics.

    Science.gov (United States)

    Langmead, Christopher James

    2014-01-01

    Atomistic simulations of the conformational dynamics of proteins can be performed using either Molecular Dynamics or Monte Carlo procedures. The ensembles of three-dimensional structures produced during simulation can be analyzed in a number of ways to elucidate the thermodynamic and kinetic properties of the system. The goal of this chapter is to review both traditional and emerging methods for learning generative models from atomistic simulation data. Here, the term 'generative' refers to a model of the joint probability distribution over the behaviors of the constituent atoms. In the context of molecular modeling, generative models reveal the correlation structure between the atoms, and may be used to predict how the system will respond to structural perturbations. We begin by discussing traditional methods, which produce multivariate Gaussian models. We then discuss GAMELAN (GRAPHICAL MODELS OF ENERGY LANDSCAPES), which produces generative models of complex, non-Gaussian conformational dynamics (e.g., allostery, binding, folding, etc.) from long timescale simulation data.

  12. Geothermal energy: Technology and general studies. Citations from the NTIS data base

    Science.gov (United States)

    Hundemann, A. S.

    1980-09-01

    This bibliography contains 311 citations of Government-sponsored research on geothermal energy conversion, power plants, heat extraction, and space heating. Studies on fluid flow, heat transfer, rock fracturing, environmental impacts, pressure, and reservoir engineering are included. Reports on economics, legislation, technology assessment, comparative evaluation with other energy sources, Government policies, and planning are also cited.

  13. Eikonalization of Conformal Blocks

    CERN Document Server

    Fitzpatrick, A Liam; Walters, Matthew T; Wang, Junpu

    2015-01-01

    Classical field configurations such as the Coulomb potential and Schwarzschild solution are built from the $t$-channel exchange of many light degrees of freedom. We study the CFT analog of this phenomenon, which we term the `eikonalization' of conformal blocks. We show that when an operator $T$ appears in the OPE $\\mathcal{O}(x) \\mathcal{O}(0)$, then the large spin $\\ell$ Fock space states $[TT \\cdots T]_{\\ell}$ also appear in this OPE with a computable coefficient. The sum over the exchange of these Fock space states in an $\\langle \\mathcal{O} \\mathcal{O} \\mathcal{O} \\mathcal{O} \\rangle$ correlator build the classical `$T$ field' in the dual AdS description. In some limits the sum of all Fock space exchanges can be represented as the exponential of a single $T$ exchange in the 4-pt correlator of $\\mathcal{O}$. Our results should be useful for systematizing $1/\\ell$ perturbation theory in general CFTs and simplifying the computation of large spin OPE coefficients. As examples we obtain the leading $\\log \\ell$...

  14. Energy care. The tool for structured attention for energy efficiency. For profit and non-profit organizations conform ISO 14001(2004); Energiezorg. Het middel voor structurele aandacht voor energie-efficiency. Voor profit- en non-profitorganisaties conform ISO14001:2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    An energy care ('energiezorg' in Dutch) system has been developed by means of which profit and non-profit organizations can continuously control the consumption of energy and improve the energy efficiency within their organization. [Dutch] Steeds meer organisaties en bedrijven nemen maatregelen om energie te besparen of de energie-efficiency te verbeteren. Dit levert zowel financiele als milieuwinst op. Helaas zijn de effecten van de inspanningen vaak maar tijdelijk. Zodra de aandacht voor het onderwerp wegebt, neemt het energiegebruik weer toe. Daarom heeft SenterNovem een systeem voor structurele aandacht ontwikkeld. Dit zorgt ervoor dat energiegebruik binnen de onderneming of organisatie de aandacht krijgt die het verdient en dat de aandacht nooit verslapt. Dat blijkt ook uit de ervaringen van veel bedrijven en instellingen. Zij constateren dat invoering van Energiezorg niet alleen bijdraagt aan een blijvende verlaging van het energiegebruik, maar zelfs ook extra energiebesparing oplevert van gemiddeld 3 procent. Dit geldt voor zowel profit- als non-profitorganisaties. Het instrument Energiezorg is geschikt voor kleine, middelgrote en grote organisaties en bedrijven.

  15. Boundary terms of conformal anomaly

    Directory of Open Access Journals (Sweden)

    Sergey N. Solodukhin

    2016-01-01

    Full Text Available We analyze the structure of the boundary terms in the conformal anomaly integrated over a manifold with boundaries. We suggest that the anomalies of type B, polynomial in the Weyl tensor, are accompanied with the respective boundary terms of the Gibbons–Hawking type. Their form is dictated by the requirement that they produce a variation which compensates the normal derivatives of the metric variation on the boundary in order to have a well-defined variational procedure. This suggestion agrees with recent findings in four dimensions for free fields of various spins. We generalize this consideration to six dimensions and derive explicitly the respective boundary terms. We point out that the integrated conformal anomaly in odd dimensions is non-vanishing due to the boundary terms. These terms are specified in three and five dimensions.

  16. Boundary terms of conformal anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Solodukhin, Sergey N., E-mail: Sergey.Solodukhin@lmpt.univ-tours.fr

    2016-01-10

    We analyze the structure of the boundary terms in the conformal anomaly integrated over a manifold with boundaries. We suggest that the anomalies of type B, polynomial in the Weyl tensor, are accompanied with the respective boundary terms of the Gibbons–Hawking type. Their form is dictated by the requirement that they produce a variation which compensates the normal derivatives of the metric variation on the boundary in order to have a well-defined variational procedure. This suggestion agrees with recent findings in four dimensions for free fields of various spins. We generalize this consideration to six dimensions and derive explicitly the respective boundary terms. We point out that the integrated conformal anomaly in odd dimensions is non-vanishing due to the boundary terms. These terms are specified in three and five dimensions.

  17. The impact of a stimulus to energy efficiency on the economy and the environment: A regional computable general equilibrium analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hanley, Nick D. [Department of Economics, University of Stirling, Stirling FK9 4LA (United Kingdom); McGregor, Peter G.; Swales, J. Kim [Fraser of Allander Institute, CPPR and Department of Economics, University of Strathclyde, Sir William Duncan Building, 130 Rottenrow, Glasgow G4 0GE (United Kingdom); Turner, Karen [Fraser of Allander Institute and Department of Economics, University of Strathclyde, Sir William Duncan Building, 130 Rottenrow, Glasgow G4 0GE (United Kingdom)

    2006-02-01

    Sustainable development is a key objective of UK national and regional policies. Improvements in resource productivity have been suggested as both a measure of progress towards sustainable development and as a means of achieving sustainability. Making 'more with less' intuitively seems to be good for the environment, and this is the presumption of current UK policy. However, in a system-wide context, improvements in energy efficiency lower the cost of energy in efficiency units and may even stimulate the consumption and production of energy measured in physical units, and increase pollution. Simulations of a computable general equilibrium model of Scotland suggest that an across the board stimulus to energy efficiency there would actually stimulate energy production and consumption and lead to a deterioration in environmental indicators. The implication is that policies directed at stimulating energy efficiency are not, in themselves, sufficient to secure environmental improvements: this may require the use of complementary energy policies designed to moderate incentives to increased energy consumption. (author)

  18. 75 FR 22586 - Energy Conservation Program for Consumer Products: Notice of Petition for Waiver of General...

    Science.gov (United States)

    2010-04-29

    ... asterisks, or wild cards, denote color or other features that do not affect energy performance.) DOE notes...****, ZFGP21HZ****. The asterisks, or wild cards, denote color or other features that do not affect...

  19. A general scheme for the estimation of oxygen binding energies on binary transition metal surface alloys

    DEFF Research Database (Denmark)

    Greeley, Jeffrey Philip; Nørskov, Jens Kehlet

    2005-01-01

    A simple scheme for the estimation of oxygen binding energies on transition metal surface alloys is presented. It is shown that a d-band center model of the alloy surfaces is a convenient and appropriate basis for this scheme; variations in chemical composition, strain effects, and ligand effects...... for the estimation of oxygen binding energies on a wide variety of transition metal alloys. (c) 2005 Elsevier B.V. All rights reserved....

  20. EC declaration of conformity.

    Science.gov (United States)

    Donawa, M E

    1996-05-01

    The CE-marking procedure requires that manufacturers draw up a written declaration of conformity before placing their products on the market. However, some companies do not realize that this is a requirement for all devices. Also, there is no detailed information concerning the contents and format of the EC declaration of conformity in the medical device Directives or in EC guidance documentation. This article will discuss some important aspects of the EC declaration of conformity and some of the guidance that is available on its contents and format.