Decomposition of almost-Poisson structure of generalised Chaplygin's nonholonomic systems
International Nuclear Information System (INIS)
Chang, Liu; Peng, Chang; Shi-Xing, Liu; Yong-Xin, Guo
2010-01-01
This paper constructs an almost-Poisson structure for the non-self-adjoint dynamical systems, which can be decomposed into a sum of a Poisson bracket and the other almost-Poisson bracket. The necessary and sufficient condition for the decomposition of the almost-Poisson bracket to be two Poisson ones is obtained. As an application, the almost-Poisson structure for generalised Chaplygin's systems is discussed in the framework of the decomposition theory. It proves that the almost-Poisson bracket for the systems can be decomposed into the sum of a canonical Poisson bracket and another two noncanonical Poisson brackets in some special cases, which is useful for integrating the equations of motion
A Note On the Estimation of the Poisson Parameter
Directory of Open Access Journals (Sweden)
S. S. Chitgopekar
1985-01-01
distribution when there are errors in observing the zeros and ones and obtains both the maximum likelihood and moments estimates of the Poisson mean and the error probabilities. It is interesting to note that either method fails to give unique estimates of these parameters unless the error probabilities are functionally related. However, it is equally interesting to observe that the estimate of the Poisson mean does not depend on the functional relationship between the error probabilities.
Multi-parameter full waveform inversion using Poisson
Oh, Juwon
2016-07-21
In multi-parameter full waveform inversion (FWI), the success of recovering each parameter is dependent on characteristics of the partial derivative wavefields (or virtual sources), which differ according to parameterisation. Elastic FWIs based on the two conventional parameterisations (one uses Lame constants and density; the other employs P- and S-wave velocities and density) have low resolution of gradients for P-wave velocities (or ). Limitations occur because the virtual sources for P-wave velocity or (one of the Lame constants) are related only to P-P diffracted waves, and generate isotropic explosions, which reduce the spatial resolution of the FWI for these parameters. To increase the spatial resolution, we propose a new parameterisation using P-wave velocity, Poisson\\'s ratio, and density for frequency-domain multi-parameter FWI for isotropic elastic media. By introducing Poisson\\'s ratio instead of S-wave velocity, the virtual source for the P-wave velocity generates P-S and S-S diffracted waves as well as P-P diffracted waves in the partial derivative wavefields for the P-wave velocity. Numerical examples of the cross-triangle-square (CTS) model indicate that the new parameterisation provides highly resolved descent directions for the P-wave velocity. Numerical examples of noise-free and noisy data synthesised for the elastic Marmousi-II model support the fact that the new parameterisation is more robust for noise than the two conventional parameterisations.
Estimation of Poisson-Dirichlet Parameters with Monotone Missing Data
Directory of Open Access Journals (Sweden)
Xueqin Zhou
2017-01-01
Full Text Available This article considers the estimation of the unknown numerical parameters and the density of the base measure in a Poisson-Dirichlet process prior with grouped monotone missing data. The numerical parameters are estimated by the method of maximum likelihood estimates and the density function is estimated by kernel method. A set of simulations was conducted, which shows that the estimates perform well.
Confidence limits for parameters of Poisson and binomial distributions
International Nuclear Information System (INIS)
Arnett, L.M.
1976-04-01
The confidence limits for the frequency in a Poisson process and for the proportion of successes in a binomial process were calculated and tabulated for the situations in which the observed values of the frequency or proportion and an a priori distribution of these parameters are available. Methods are used that produce limits with exactly the stated confidence levels. The confidence interval [a,b] is calculated so that Pr [a less than or equal to lambda less than or equal to b c,μ], where c is the observed value of the parameter, and μ is the a priori hypothesis of the distribution of this parameter. A Bayesian type analysis is used. The intervals calculated are narrower and appreciably different from results, known to be conservative, that are often used in problems of this type. Pearson and Hartley recognized the characteristics of their methods and contemplated that exact methods could someday be used. The calculation of the exact intervals requires involved numerical analyses readily implemented only on digital computers not available to Pearson and Hartley. A Monte Carlo experiment was conducted to verify a selected interval from those calculated. This numerical experiment confirmed the results of the analytical methods and the prediction of Pearson and Hartley that their published tables give conservative results
Directory of Open Access Journals (Sweden)
Karl Friston
2010-01-01
Full Text Available We describe a Bayesian filtering scheme for nonlinear state-space models in continuous time. This scheme is called Generalised Filtering and furnishes posterior (conditional densities on hidden states and unknown parameters generating observed data. Crucially, the scheme operates online, assimilating data to optimize the conditional density on time-varying states and time-invariant parameters. In contrast to Kalman and Particle smoothing, Generalised Filtering does not require a backwards pass. In contrast to variational schemes, it does not assume conditional independence between the states and parameters. Generalised Filtering optimises the conditional density with respect to a free-energy bound on the model's log-evidence. This optimisation uses the generalised motion of hidden states and parameters, under the prior assumption that the motion of the parameters is small. We describe the scheme, present comparative evaluations with a fixed-form variational version, and conclude with an illustrative application to a nonlinear state-space model of brain imaging time-series.
Regularization parameter selection methods for ill-posed Poisson maximum likelihood estimation
International Nuclear Information System (INIS)
Bardsley, Johnathan M; Goldes, John
2009-01-01
In image processing applications, image intensity is often measured via the counting of incident photons emitted by the object of interest. In such cases, image data noise is accurately modeled by a Poisson distribution. This motivates the use of Poisson maximum likelihood estimation for image reconstruction. However, when the underlying model equation is ill-posed, regularization is needed. Regularized Poisson likelihood estimation has been studied extensively by the authors, though a problem of high importance remains: the choice of the regularization parameter. We will present three statistically motivated methods for choosing the regularization parameter, and numerical examples will be presented to illustrate their effectiveness
Amalia, Junita; Purhadi, Otok, Bambang Widjanarko
2017-11-01
Poisson distribution is a discrete distribution with count data as the random variables and it has one parameter defines both mean and variance. Poisson regression assumes mean and variance should be same (equidispersion). Nonetheless, some case of the count data unsatisfied this assumption because variance exceeds mean (over-dispersion). The ignorance of over-dispersion causes underestimates in standard error. Furthermore, it causes incorrect decision in the statistical test. Previously, paired count data has a correlation and it has bivariate Poisson distribution. If there is over-dispersion, modeling paired count data is not sufficient with simple bivariate Poisson regression. Bivariate Poisson Inverse Gaussian Regression (BPIGR) model is mix Poisson regression for modeling paired count data within over-dispersion. BPIGR model produces a global model for all locations. In another hand, each location has different geographic conditions, social, cultural and economic so that Geographically Weighted Regression (GWR) is needed. The weighting function of each location in GWR generates a different local model. Geographically Weighted Bivariate Poisson Inverse Gaussian Regression (GWBPIGR) model is used to solve over-dispersion and to generate local models. Parameter estimation of GWBPIGR model obtained by Maximum Likelihood Estimation (MLE) method. Meanwhile, hypothesis testing of GWBPIGR model acquired by Maximum Likelihood Ratio Test (MLRT) method.
Hallin, M.; Piegorsch, W.; El Shaarawi, A.
2012-01-01
The random variable X taking values 0,1,2,…,x,… with probabilities pλ(x) = e−λλx/x!, where λ∈R0+ is called a Poisson variable, and its distribution a Poisson distribution, with parameter λ. The Poisson distribution with parameter λ can be obtained as the limit, as n → ∞ and p → 0 in such a way that
Directory of Open Access Journals (Sweden)
Karapeychik Igor M.
2013-03-01
Full Text Available Within the frameworks of the author’s concept of the potential of an enterprise as the ability to conduct its immanently appropriate activity and also the idea of presentation of the size of the potential in the form of potential function from parameters of the state of an enterprise and foreign economic environment the article develops a scientific and methodical approach to construction and analysis of the potential function of an enterprise. The offered approach envisages building an economic and mathematical model of an enterprise of the optimisation type with consideration of environmental factors, determination of the size of economic potential as a maximum possible (optimal with the set condition of an enterprise and external environment of net income, statistical test of the model with possible values of external parameters (formation of statistical sampling of the graph of the potential function of an enterprise and application of statistical methods including methods of correlation, factor and regression analysis, for the study of its properties. Operability of this approach is shown on the example of the study of properties of the potential function of a model enterprise. In the course of approbation the article demonstrates its ability to reveal specific features of impact of external factors on economic potential of an enterprise; establishes, as a common regularity, differential influence of various environmental factors, caused not only by the nature of these factors, but also production and economic specific features and specific state of an enterprise. The article shows that the quantitative values of the force of influence of the said factors upon the value of economic potential, obtained during statistical analysis of the potential function of an enterprise, could serve as an instrument of ranking these factors by the priority level in the goal setting tasks at the stage of formation of the strategy of enterprise development
Generalised shot noise Cox processes
DEFF Research Database (Denmark)
Møller, Jesper; Torrisi, Giovanni Luca
2005-01-01
We introduce a class of cox cluster processes called generalised shot noise Cox processes (GSNCPs), which extends the definition of shot noise Cox processes (SNCPs) in two directions: the point process that drives the shot noise is not necessarily Poisson, and the kernel of the shot noise can...
Sun, Weiwei; Ma, Jun; Yang, Gang; Du, Bo; Zhang, Liangpei
2017-06-01
A new Bayesian method named Poisson Nonnegative Matrix Factorization with Parameter Subspace Clustering Constraint (PNMF-PSCC) has been presented to extract endmembers from Hyperspectral Imagery (HSI). First, the method integrates the liner spectral mixture model with the Bayesian framework and it formulates endmember extraction into a Bayesian inference problem. Second, the Parameter Subspace Clustering Constraint (PSCC) is incorporated into the statistical program to consider the clustering of all pixels in the parameter subspace. The PSCC could enlarge differences among ground objects and helps finding endmembers with smaller spectrum divergences. Meanwhile, the PNMF-PSCC method utilizes the Poisson distribution as the prior knowledge of spectral signals to better explain the quantum nature of light in imaging spectrometer. Third, the optimization problem of PNMF-PSCC is formulated into maximizing the joint density via the Maximum A Posterior (MAP) estimator. The program is finally solved by iteratively optimizing two sub-problems via the Alternating Direction Method of Multipliers (ADMM) framework and the FURTHESTSUM initialization scheme. Five state-of-the art methods are implemented to make comparisons with the performance of PNMF-PSCC on both the synthetic and real HSI datasets. Experimental results show that the PNMF-PSCC outperforms all the five methods in Spectral Angle Distance (SAD) and Root-Mean-Square-Error (RMSE), and especially it could identify good endmembers for ground objects with smaller spectrum divergences.
Burkatovskaya, Yuliya Borisovna; Kabanova, T.; Khaustov, Pavel Aleksandrovich
2016-01-01
CUSUM algorithm for controlling chain state switching in the Markov modulated Poissonprocess was investigated via simulation. Recommendations concerning the parameter choice were givensubject to characteristics of the process. Procedure of the process parameter estimation was described.
Compositions, Random Sums and Continued Random Fractions of Poisson and Fractional Poisson Processes
Orsingher, Enzo; Polito, Federico
2012-08-01
In this paper we consider the relation between random sums and compositions of different processes. In particular, for independent Poisson processes N α ( t), N β ( t), t>0, we have that N_{α}(N_{β}(t)) stackrel{d}{=} sum_{j=1}^{N_{β}(t)} Xj, where the X j s are Poisson random variables. We present a series of similar cases, where the outer process is Poisson with different inner processes. We highlight generalisations of these results where the external process is infinitely divisible. A section of the paper concerns compositions of the form N_{α}(tauk^{ν}), ν∈(0,1], where tauk^{ν} is the inverse of the fractional Poisson process, and we show how these compositions can be represented as random sums. Furthermore we study compositions of the form Θ( N( t)), t>0, which can be represented as random products. The last section is devoted to studying continued fractions of Cauchy random variables with a Poisson number of levels. We evaluate the exact distribution and derive the scale parameter in terms of ratios of Fibonacci numbers.
Schmidt, Philip J; Pintar, Katarina D M; Fazil, Aamir M; Topp, Edward
2013-09-01
Dose-response models are the essential link between exposure assessment and computed risk values in quantitative microbial risk assessment, yet the uncertainty that is inherent to computed risks because the dose-response model parameters are estimated using limited epidemiological data is rarely quantified. Second-order risk characterization approaches incorporating uncertainty in dose-response model parameters can provide more complete information to decisionmakers by separating variability and uncertainty to quantify the uncertainty in computed risks. Therefore, the objective of this work is to develop procedures to sample from posterior distributions describing uncertainty in the parameters of exponential and beta-Poisson dose-response models using Bayes's theorem and Markov Chain Monte Carlo (in OpenBUGS). The theoretical origins of the beta-Poisson dose-response model are used to identify a decomposed version of the model that enables Bayesian analysis without the need to evaluate Kummer confluent hypergeometric functions. Herein, it is also established that the beta distribution in the beta-Poisson dose-response model cannot address variation among individual pathogens, criteria to validate use of the conventional approximation to the beta-Poisson model are proposed, and simple algorithms to evaluate actual beta-Poisson probabilities of infection are investigated. The developed MCMC procedures are applied to analysis of a case study data set, and it is demonstrated that an important region of the posterior distribution of the beta-Poisson dose-response model parameters is attributable to the absence of low-dose data. This region includes beta-Poisson models for which the conventional approximation is especially invalid and in which many beta distributions have an extreme shape with questionable plausibility. © Her Majesty the Queen in Right of Canada 2013. Reproduced with the permission of the Minister of the Public Health Agency of Canada.
Poisson hierarchy of discrete strings
International Nuclear Information System (INIS)
Ioannidou, Theodora; Niemi, Antti J.
2016-01-01
The Poisson geometry of a discrete string in three dimensional Euclidean space is investigated. For this the Frenet frames are converted into a spinorial representation, the discrete spinor Frenet equation is interpreted in terms of a transfer matrix formalism, and Poisson brackets are introduced in terms of the spinor components. The construction is then generalised, in a self-similar manner, into an infinite hierarchy of Poisson algebras. As an example, the classical Virasoro (Witt) algebra that determines reparametrisation diffeomorphism along a continuous string, is identified as a particular sub-algebra, in the hierarchy of the discrete string Poisson algebra. - Highlights: • Witt (classical Virasoro) algebra is derived in the case of discrete string. • Infinite dimensional hierarchy of Poisson bracket algebras is constructed for discrete strings. • Spinor representation of discrete Frenet equations is developed.
Poisson hierarchy of discrete strings
Energy Technology Data Exchange (ETDEWEB)
Ioannidou, Theodora, E-mail: ti3@auth.gr [Faculty of Civil Engineering, School of Engineering, Aristotle University of Thessaloniki, 54249, Thessaloniki (Greece); Niemi, Antti J., E-mail: Antti.Niemi@physics.uu.se [Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108, Uppsala (Sweden); Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fédération Denis Poisson, Université de Tours, Parc de Grandmont, F37200, Tours (France); Department of Physics, Beijing Institute of Technology, Haidian District, Beijing 100081 (China)
2016-01-28
The Poisson geometry of a discrete string in three dimensional Euclidean space is investigated. For this the Frenet frames are converted into a spinorial representation, the discrete spinor Frenet equation is interpreted in terms of a transfer matrix formalism, and Poisson brackets are introduced in terms of the spinor components. The construction is then generalised, in a self-similar manner, into an infinite hierarchy of Poisson algebras. As an example, the classical Virasoro (Witt) algebra that determines reparametrisation diffeomorphism along a continuous string, is identified as a particular sub-algebra, in the hierarchy of the discrete string Poisson algebra. - Highlights: • Witt (classical Virasoro) algebra is derived in the case of discrete string. • Infinite dimensional hierarchy of Poisson bracket algebras is constructed for discrete strings. • Spinor representation of discrete Frenet equations is developed.
Generalising the staircase models
International Nuclear Information System (INIS)
Dorey, P.; Ravanini, F.
1993-01-01
Systems of integral equations are proposed which generalise those previously encountered in connection with the so-called staircase models. Under the assumption that these equations describe the finite-size effects of relativistic field theories via the thermodynamic Bethe ansatz, analytical and numerical evidence is given for the existence of a variety of new roaming renormalisation group trajectories. For each positive integer k and s=0, .., k-1, these is a one-parameter family of trajectories, passing close by the coset conformal field theories G (k) xG (nk+s) /G ((n+1)k+s) before finally flowing to a massive theory for s=0, or to another coset model for s.=|0. (orig.)
DEFF Research Database (Denmark)
Fokianos, Konstantinos; Rahbek, Anders Christian; Tjøstheim, Dag
This paper considers geometric ergodicity and likelihood based inference for linear and nonlinear Poisson autoregressions. In the linear case the conditional mean is linked linearly to its past values as well as the observed values of the Poisson process. This also applies to the conditional...... variance, implying an interpretation as an integer valued GARCH process. In a nonlinear conditional Poisson model, the conditional mean is a nonlinear function of its past values and a nonlinear function of past observations. As a particular example an exponential autoregressive Poisson model for time...
DEFF Research Database (Denmark)
Fokianos, Konstantinos; Rahbæk, Anders; Tjøstheim, Dag
This paper considers geometric ergodicity and likelihood based inference for linear and nonlinear Poisson autoregressions. In the linear case the conditional mean is linked linearly to its past values as well as the observed values of the Poisson process. This also applies to the conditional...... variance, making an interpretation as an integer valued GARCH process possible. In a nonlinear conditional Poisson model, the conditional mean is a nonlinear function of its past values and a nonlinear function of past observations. As a particular example an exponential autoregressive Poisson model...
Generalised shot noise Cox processes
DEFF Research Database (Denmark)
Møller, Jesper; Torrisi, Giovanni Luca
We introduce a new class of Cox cluster processes called generalised shot-noise processes (GSNCPs), which extends the definition of shot noise Cox processes (SNCPs) in two directions: the point process which drives the shot noise is not necessarily Poisson, and the kernel of the shot noise can...... be random. Thereby a very large class of models for aggregated or clustered point patterns is obtained. Due to the structure of GSNCPs, a number of useful results can be established. We focus first on deriving summary statistics for GSNCPs and next on how to make simulation for GSNCPs. Particularly, results...... for first and second order moment measures, reduced Palm distributions, the -function, simulation with or without edge effects, and conditional simulation of the intensity function driving a GSNCP are given. Our results are exemplified for special important cases of GSNCPs, and we discuss the relation...
Boxma, O.J.; Yechiali, U.; Ruggeri, F.; Kenett, R.S.; Faltin, F.W.
2007-01-01
The Poisson process is a stochastic counting process that arises naturally in a large variety of daily life situations. We present a few definitions of the Poisson process and discuss several properties as well as relations to some well-known probability distributions. We further briefly discuss the
International Nuclear Information System (INIS)
Meusburger, C.; Schroers, B. J.
2008-01-01
Each of the local isometry groups arising in three-dimensional (3d) gravity can be viewed as a group of unit (split) quaternions over a ring which depends on the cosmological constant. In this paper we explain and prove this statement and use it as a unifying framework for studying Poisson structures associated with the local isometry groups. We show that, in all cases except for the case of Euclidean signature with positive cosmological constant, the local isometry groups are equipped with the Poisson-Lie structure of a classical double. We calculate the dressing action of the factor groups on each other and find, among others, a simple and unified description of the symplectic leaves of SU(2) and SL(2,R). We also compute the Poisson structure on the dual Poisson-Lie groups of the local isometry groups and on their Heisenberg doubles; together, they determine the Poisson structure of the phase space of 3d gravity in the so-called combinatorial description
Cumulative Poisson Distribution Program
Bowerman, Paul N.; Scheuer, Ernest M.; Nolty, Robert
1990-01-01
Overflow and underflow in sums prevented. Cumulative Poisson Distribution Program, CUMPOIS, one of two computer programs that make calculations involving cumulative Poisson distributions. Both programs, CUMPOIS (NPO-17714) and NEWTPOIS (NPO-17715), used independently of one another. CUMPOIS determines cumulative Poisson distribution, used to evaluate cumulative distribution function (cdf) for gamma distributions with integer shape parameters and cdf for X (sup2) distributions with even degrees of freedom. Used by statisticians and others concerned with probabilities of independent events occurring over specific units of time, area, or volume. Written in C.
DEFF Research Database (Denmark)
Fokianos, Konstantinos; Rahbek, Anders Christian; Tjøstheim, Dag
2009-01-01
In this article we consider geometric ergodicity and likelihood-based inference for linear and nonlinear Poisson autoregression. In the linear case, the conditional mean is linked linearly to its past values, as well as to the observed values of the Poisson process. This also applies...... to the conditional variance, making possible interpretation as an integer-valued generalized autoregressive conditional heteroscedasticity process. In a nonlinear conditional Poisson model, the conditional mean is a nonlinear function of its past values and past observations. As a particular example, we consider...... an exponential autoregressive Poisson model for time series. Under geometric ergodicity, the maximum likelihood estimators are shown to be asymptotically Gaussian in the linear model. In addition, we provide a consistent estimator of their asymptotic covariance matrix. Our approach to verifying geometric...
Acute generalised exanthematous pustulosis
Directory of Open Access Journals (Sweden)
Criton S
2001-01-01
Full Text Available Acute generalised exanthernatous pustulosis (AGEP is a condition characterised by sudden onset of non-follicular aseptic pustules all over the body. It is distinct from pustular psoriasis with characteristic morphology, histopathology and evolution.
Acute generalised exanthematous pustulosis.
Criton, S; Sofia, B
2001-01-01
Acute generalised exanthernatous pustulosis (AGEP) is a condition characterised by sudden onset of non-follicular aseptic pustules all over the body. It is distinct from pustular psoriasis with characteristic morphology, histopathology and evolution.
Li, Xian-Ying; Hu, Shi-Min
2013-02-01
Harmonic functions are the critical points of a Dirichlet energy functional, the linear projections of conformal maps. They play an important role in computer graphics, particularly for gradient-domain image processing and shape-preserving geometric computation. We propose Poisson coordinates, a novel transfinite interpolation scheme based on the Poisson integral formula, as a rapid way to estimate a harmonic function on a certain domain with desired boundary values. Poisson coordinates are an extension of the Mean Value coordinates (MVCs) which inherit their linear precision, smoothness, and kernel positivity. We give explicit formulas for Poisson coordinates in both continuous and 2D discrete forms. Superior to MVCs, Poisson coordinates are proved to be pseudoharmonic (i.e., they reproduce harmonic functions on n-dimensional balls). Our experimental results show that Poisson coordinates have lower Dirichlet energies than MVCs on a number of typical 2D domains (particularly convex domains). As well as presenting a formula, our approach provides useful insights for further studies on coordinates-based interpolation and fast estimation of harmonic functions.
Understanding poisson regression.
Hayat, Matthew J; Higgins, Melinda
2014-04-01
Nurse investigators often collect study data in the form of counts. Traditional methods of data analysis have historically approached analysis of count data either as if the count data were continuous and normally distributed or with dichotomization of the counts into the categories of occurred or did not occur. These outdated methods for analyzing count data have been replaced with more appropriate statistical methods that make use of the Poisson probability distribution, which is useful for analyzing count data. The purpose of this article is to provide an overview of the Poisson distribution and its use in Poisson regression. Assumption violations for the standard Poisson regression model are addressed with alternative approaches, including addition of an overdispersion parameter or negative binomial regression. An illustrative example is presented with an application from the ENSPIRE study, and regression modeling of comorbidity data is included for illustrative purposes. Copyright 2014, SLACK Incorporated.
Extended Poisson Exponential Distribution
Directory of Open Access Journals (Sweden)
Anum Fatima
2015-09-01
Full Text Available A new mixture of Modified Exponential (ME and Poisson distribution has been introduced in this paper. Taking the Maximum of Modified Exponential random variable when the sample size follows a zero truncated Poisson distribution we have derived the new distribution, named as Extended Poisson Exponential distribution. This distribution possesses increasing and decreasing failure rates. The Poisson-Exponential, Modified Exponential and Exponential distributions are special cases of this distribution. We have also investigated some mathematical properties of the distribution along with Information entropies and Order statistics of the distribution. The estimation of parameters has been obtained using the Maximum Likelihood Estimation procedure. Finally we have illustrated a real data application of our distribution.
Terashima, Yuji
2008-01-01
In this paper, defining Poisson functions on super manifolds, we show that the graphs of Poisson functions are Dirac structures, and find Poisson functions which include as special cases both quasi-Poisson structures and twisted Poisson structures.
Directory of Open Access Journals (Sweden)
Bojana Avguštin Avčin
2013-10-01
Full Text Available Generalised anxiety disorder is characterised by persistent, excessive and difficult-to-control worry, which may be accompanied by several psychic and somatic symptoms, including suicidality. Generalized anxiety disorder is the most common psychiatric disorder in the primary care, although it is often underrecognised and undertreated. Generalized anxiety disorder is typically a chronic condition with low short- and medium-term remission rates. Clinical presentations often include depression, somatic illness, pain, fatigue and problems sleeping. The evaluation of prognosis is complicated by frequent comorbidity with other anxiety disorders and depression, which worsen the long-term outcome and accompanying burden of disability. The two main treatments for generalised anxiety disorder are medications and psychotherapy. Selective serotonin reuptake inhibitors and serotonin-norepinephrine reuptake inhibitors represent first-line psychopharmacologic treatment for generalised anxiety disorder. The most extensively studied psychotherapy for anxiety is cognitive behavioural therapy which has demonstrated efficacy throughout controlled studies.
Gale, Christopher K; Millichamp, Jane
2011-01-01
Generalised anxiety disorder is characterised by persistent, excessive and difficult-to-control worry, which may be accompanied by several psychic and somatic symptoms, including suicidality. Generalized anxiety disorder is the most common psychiatric disorder in the primary care, although it is often underrecognised and undertreated. Generalized anxiety disorder is typically a chronic condition with low short- and medium-term remission rates. Clinical presentations often include depression, ...
Generalised twisted partition functions
Petkova, V B
2001-01-01
We consider the set of partition functions that result from the insertion of twist operators compatible with conformal invariance in a given 2D Conformal Field Theory (CFT). A consistency equation, which gives a classification of twists, is written and solved in particular cases. This generalises old results on twisted torus boundary conditions, gives a physical interpretation of Ocneanu's algebraic construction, and might offer a new route to the study of properties of CFT.
Hyperscaling violating solutions in generalised EMD theory
Directory of Open Access Journals (Sweden)
Li Li
2017-04-01
Full Text Available This short note is devoted to deriving scaling but hyperscaling violating solutions in a generalised Einstein–Maxwell-Dilaton theory with an arbitrary number of scalars and vectors. We obtain analytic solutions in some special case and discuss the physical constraints on the allowed parameter range in order to have a well-defined holographic ground-state solution.
Hyperscaling violating solutions in generalised EMD theory
Energy Technology Data Exchange (ETDEWEB)
Li, Li, E-mail: lil416@lehigh.edu [Crete Center for Theoretical Physics, Institute for Theoretical and Computational Physics, Department of Physics, University of Crete, 71003 Heraklion (Greece); Crete Center for Quantum Complexity and Nanotechnology, Department of Physics, University of Crete, 71003 Heraklion (Greece); Department of Physics, Lehigh University, Bethlehem, PA, 18018 (United States)
2017-04-10
This short note is devoted to deriving scaling but hyperscaling violating solutions in a generalised Einstein–Maxwell-Dilaton theory with an arbitrary number of scalars and vectors. We obtain analytic solutions in some special case and discuss the physical constraints on the allowed parameter range in order to have a well-defined holographic ground-state solution.
Generalisability of a composite student selection programme
DEFF Research Database (Denmark)
O'Neill, Lotte Dyhrberg; Korsholm, Lars; Wallstedt, Birgitta
2009-01-01
format); general knowledge (multiple-choice test), and a semi-structured admission interview. The aim of this study was to estimate the generalisability of a composite selection. METHODS: Data from 307 applicants who participated in the admission to medicine in 2007 were available for analysis. Each...... admission parameter was double-scored using two random, blinded and independent raters. Variance components for applicant, rater and residual effects were estimated for a mixed model with the restricted maximum likelihood (REML) method. The reliability of obtained applicant ranks (G coefficients......) was calculated for individual admission criteria and for composite admission procedures. RESULTS: A pre-selection procedure combining qualification and motivation scores showed insufficient generalisability (G = 0.45). The written motivation in particular, displayed low generalisability (G = 0.10). Good...
Newton/Poisson-Distribution Program
Bowerman, Paul N.; Scheuer, Ernest M.
1990-01-01
NEWTPOIS, one of two computer programs making calculations involving cumulative Poisson distributions. NEWTPOIS (NPO-17715) and CUMPOIS (NPO-17714) used independently of one another. NEWTPOIS determines Poisson parameter for given cumulative probability, from which one obtains percentiles for gamma distributions with integer shape parameters and percentiles for X(sup2) distributions with even degrees of freedom. Used by statisticians and others concerned with probabilities of independent events occurring over specific units of time, area, or volume. Program written in C.
Mino, H
2007-01-01
To estimate the parameters, the impulse response (IR) functions of some linear time-invariant systems generating intensity processes, in Shot-Noise-Driven Doubly Stochastic Poisson Process (SND-DSPP) in which multivariate presynaptic spike trains and postsynaptic spike trains can be assumed to be modeled by the SND-DSPPs. An explicit formula for estimating the IR functions from observations of multivariate input processes of the linear systems and the corresponding counting process (output process) is derived utilizing the expectation maximization (EM) algorithm. The validity of the estimation formula was verified through Monte Carlo simulations in which two presynaptic spike trains and one postsynaptic spike train were assumed to be observable. The IR functions estimated on the basis of the proposed identification method were close to the true IR functions. The proposed method will play an important role in identifying the input-output relationship of pre- and postsynaptic neural spike trains in practical situations.
On the exceptional generalised Lie derivative for d≥7
International Nuclear Information System (INIS)
Rosabal, J.A.
2015-01-01
In this work we revisit the E_8×ℝ"+ generalised Lie derivative encoding the algebra of diffeomorphisms and gauge transformations of compactifications of M-theory on eight-dimensional manifolds, by extending certain features of the E_7×ℝ"+ one. Compared to its E_d×ℝ"+, d≤7 counterparts, a new term is needed for consistency. However, we find that no compensating parameters need to be introduced, but rather that the new term can be written in terms of the ordinary generalised gauge parameters by means of a connection. This implies that no further degrees of freedom, beyond those of the field content of the E_8 group, are needed to have a well defined theory. We discuss the implications of the structure of the E_8×ℝ"+ generalised transformation on the construction of the d=8 generalised geometry. Finally, we suggest how to lift the generalised Lie derivative to eleven dimensions.
On a Poisson homogeneous space of bilinear forms with a Poisson-Lie action
Chekhov, L. O.; Mazzocco, M.
2017-12-01
Let \\mathscr A be the space of bilinear forms on C^N with defining matrices A endowed with a quadratic Poisson structure of reflection equation type. The paper begins with a short description of previous studies of the structure, and then this structure is extended to systems of bilinear forms whose dynamics is governed by the natural action A\\mapsto B ABT} of the {GL}_N Poisson-Lie group on \\mathscr A. A classification is given of all possible quadratic brackets on (B, A)\\in {GL}_N× \\mathscr A preserving the Poisson property of the action, thus endowing \\mathscr A with the structure of a Poisson homogeneous space. Besides the product Poisson structure on {GL}_N× \\mathscr A, there are two other (mutually dual) structures, which (unlike the product Poisson structure) admit reductions by the Dirac procedure to a space of bilinear forms with block upper triangular defining matrices. Further generalisations of this construction are considered, to triples (B,C, A)\\in {GL}_N× {GL}_N× \\mathscr A with the Poisson action A\\mapsto B ACT}, and it is shown that \\mathscr A then acquires the structure of a Poisson symmetric space. Generalisations to chains of transformations and to the quantum and quantum affine algebras are investigated, as well as the relations between constructions of Poisson symmetric spaces and the Poisson groupoid. Bibliography: 30 titles.
Generalised Batho correction factor
International Nuclear Information System (INIS)
Siddon, R.L.
1984-01-01
There are various approximate algorithms available to calculate the radiation dose in the presence of a heterogeneous medium. The Webb and Fox product over layers formulation of the generalised Batho correction factor requires determination of the number of layers and the layer densities for each ray path. It has been shown that the Webb and Fox expression is inefficient for the heterogeneous medium which is expressed as regions of inhomogeneity rather than layers. The inefficiency of the layer formulation is identified as the repeated problem of determining for each ray path which inhomogeneity region corresponds to a particular layer. It has been shown that the formulation of the Batho correction factor as a product over inhomogeneity regions avoids that topological problem entirely. The formulation in terms of a product over regions simplifies the computer code and reduces the time required to calculate the Batho correction factor for the general heterogeneous medium. (U.K.)
Support vector machines and generalisation in HEP
Bevan, Adrian; Gamboa Goñi, Rodrigo; Hays, Jon; Stevenson, Tom
2017-10-01
We review the concept of Support Vector Machines (SVMs) and discuss examples of their use in a number of scenarios. Several SVM implementations have been used in HEP and we exemplify this algorithm using the Toolkit for Multivariate Analysis (TMVA) implementation. We discuss examples relevant to HEP including background suppression for H → τ + τ - at the LHC with several different kernel functions. Performance benchmarking leads to the issue of generalisation of hyper-parameter selection. The avoidance of fine tuning (over training or over fitting) in MVA hyper-parameter optimisation, i.e. the ability to ensure generalised performance of an MVA that is independent of the training, validation and test samples, is of utmost importance. We discuss this issue and compare and contrast performance of hold-out and k-fold cross-validation. We have extended the SVM functionality and introduced tools to facilitate cross validation in TMVA and present results based on these improvements.
Directory of Open Access Journals (Sweden)
N. Mielenz
2015-01-01
Full Text Available Population-averaged and subject-specific models are available to evaluate count data when repeated observations per subject are present. The latter are also known in the literature as generalised linear mixed models (GLMM. In GLMM repeated measures are taken into account explicitly through random animal effects in the linear predictor. In this paper the relevant GLMMs are presented based on conditional Poisson or negative binomial distribution of the response variable for given random animal effects. Equations for the repeatability of count data are derived assuming normal distribution and logarithmic gamma distribution for the random animal effects. Using count data on aggressive behaviour events of pigs (barrows, sows and boars in mixed-sex housing, we demonstrate the use of the Poisson »log-gamma intercept«, the Poisson »normal intercept« and the »normal intercept« model with negative binomial distribution. Since not all count data can definitely be seen as Poisson or negative-binomially distributed, questions of model selection and model checking are examined. Emanating from the example, we also interpret the least squares means, estimated on the link as well as the response scale. Options provided by the SAS procedure NLMIXED for estimating model parameters and for estimating marginal expected values are presented.
Directory of Open Access Journals (Sweden)
Lusi Eka Afri
2017-03-01
Full Text Available Regresi Binomial Negatif dan regresi Conway-Maxwell-Poisson merupakan solusi untuk mengatasi overdispersi pada regresi Poisson. Kedua model tersebut merupakan perluasan dari model regresi Poisson. Menurut Hinde dan Demetrio (2007, terdapat beberapa kemungkinan terjadi overdispersi pada regresi Poisson yaitu keragaman hasil pengamatan keragaman individu sebagai komponen yang tidak dijelaskan oleh model, korelasi antar respon individu, terjadinya pengelompokan dalam populasi dan peubah teramati yang dihilangkan. Akibatnya dapat menyebabkan pendugaan galat baku yang terlalu rendah dan akan menghasilkan pendugaan parameter yang bias ke bawah (underestimate. Penelitian ini bertujuan untuk membandingan model Regresi Binomial Negatif dan model regresi Conway-Maxwell-Poisson (COM-Poisson dalam mengatasi overdispersi pada data distribusi Poisson berdasarkan statistik uji devians. Data yang digunakan dalam penelitian ini terdiri dari dua sumber data yaitu data simulasi dan data kasus terapan. Data simulasi yang digunakan diperoleh dengan membangkitkan data berdistribusi Poisson yang mengandung overdispersi dengan menggunakan bahasa pemrograman R berdasarkan karakteristik data berupa , peluang munculnya nilai nol (p serta ukuran sampel (n. Data dibangkitkan berguna untuk mendapatkan estimasi koefisien parameter pada regresi binomial negatif dan COM-Poisson. Kata Kunci: overdispersi, regresi binomial negatif, regresi Conway-Maxwell-Poisson Negative binomial regression and Conway-Maxwell-Poisson regression could be used to overcome over dispersion on Poisson regression. Both models are the extension of Poisson regression model. According to Hinde and Demetrio (2007, there will be some over dispersion on Poisson regression: observed variance in individual variance cannot be described by a model, correlation among individual response, and the population group and the observed variables are eliminated. Consequently, this can lead to low standard error
NEWTPOIS- NEWTON POISSON DISTRIBUTION PROGRAM
Bowerman, P. N.
1994-01-01
The cumulative poisson distribution program, NEWTPOIS, is one of two programs which make calculations involving cumulative poisson distributions. Both programs, NEWTPOIS (NPO-17715) and CUMPOIS (NPO-17714), can be used independently of one another. NEWTPOIS determines percentiles for gamma distributions with integer shape parameters and calculates percentiles for chi-square distributions with even degrees of freedom. It can be used by statisticians and others concerned with probabilities of independent events occurring over specific units of time, area, or volume. NEWTPOIS determines the Poisson parameter (lambda), that is; the mean (or expected) number of events occurring in a given unit of time, area, or space. Given that the user already knows the cumulative probability for a specific number of occurrences (n) it is usually a simple matter of substitution into the Poisson distribution summation to arrive at lambda. However, direct calculation of the Poisson parameter becomes difficult for small positive values of n and unmanageable for large values. NEWTPOIS uses Newton's iteration method to extract lambda from the initial value condition of the Poisson distribution where n=0, taking successive estimations until some user specified error term (epsilon) is reached. The NEWTPOIS program is written in C. It was developed on an IBM AT with a numeric co-processor using Microsoft C 5.0. Because the source code is written using standard C structures and functions, it should compile correctly on most C compilers. The program format is interactive, accepting epsilon, n, and the cumulative probability of the occurrence of n as inputs. It has been implemented under DOS 3.2 and has a memory requirement of 30K. NEWTPOIS was developed in 1988.
Generalisations of Fisher Matrices
Directory of Open Access Journals (Sweden)
Alan Heavens
2016-06-01
Full Text Available Fisher matrices play an important role in experimental design and in data analysis. Their primary role is to make predictions for the inference of model parameters—both their errors and covariances. In this short review, I outline a number of extensions to the simple Fisher matrix formalism, covering a number of recent developments in the field. These are: (a situations where the data (in the form of ( x , y pairs have errors in both x and y; (b modifications to parameter inference in the presence of systematic errors, or through fixing the values of some model parameters; (c Derivative Approximation for LIkelihoods (DALI - higher-order expansions of the likelihood surface, going beyond the Gaussian shape approximation; (d extensions of the Fisher-like formalism, to treat model selection problems with Bayesian evidence.
Dyads, a generalisation of monads
Fokkinga, M.M.
The concept of dyad is defined as the least common generalisation of monads and co-monads. So, taking some of the ingredients to be the identity, the concept specialises to the concept of monad, and taking other ingredients to be the identity it specialises to co-monads. Except for one axiom, all
(Quasi-)Poisson enveloping algebras
Yang, Yan-Hong; Yao, Yuan; Ye, Yu
2010-01-01
We introduce the quasi-Poisson enveloping algebra and Poisson enveloping algebra for a non-commutative Poisson algebra. We prove that for a non-commutative Poisson algebra, the category of quasi-Poisson modules is equivalent to the category of left modules over its quasi-Poisson enveloping algebra, and the category of Poisson modules is equivalent to the category of left modules over its Poisson enveloping algebra.
Primary small bowel anastomosis in generalised peritonitis
deGraaf, JS; van Goor, Harry; Bleichrodt, RP
Objective: To find out if primary small bowel anastomosis of the bowel is safe in patients with generalised peritonitis who are treated by planned relaparotomies. Design: Retrospective study. Setting: University hospital, The Netherlands. Subjects. 10 Patients with generalised purulent peritonitis
Homogeneous Poisson structures
International Nuclear Information System (INIS)
Shafei Deh Abad, A.; Malek, F.
1993-09-01
We provide an algebraic definition for Schouten product and give a decomposition for any homogenenous Poisson structure in any n-dimensional vector space. A large class of n-homogeneous Poisson structures in R k is also characterized. (author). 4 refs
Asymptotic Behaviour of Total Generalised Variation
Papafitsoros, Konstantinos; Valkonen, Tuomo
2015-01-01
© Springer International Publishing Switzerland 2015. The recently introduced second order total generalised variation functional TGV2 β,α has been a successful regulariser for image processing purposes. Its definition involves two positive parameters α and β whose values determine the amount and the quality of the regularisation. In this paper we report on the behaviour of TGV2 β,α in the cases where the parameters α, β as well as their ratio β/α becomes very large or very small. Among others, we prove that for sufficiently symmetric two dimensional data and large ratio β/α, TGV2 β,α regularisation coincides with total variation (TV) regularization
International Nuclear Information System (INIS)
Littlejohn, R.G.
1982-01-01
The Hamiltonian structures discovered by Morrison and Greene for various fluid equations were obtained by guessing a Hamiltonian and a suitable Poisson bracket formula, expressed in terms of noncanonical (but physical) coordinates. In general, such a procedure for obtaining a Hamiltonian system does not produce a Hamiltonian phase space in the usual sense (a symplectic manifold), but rather a family of symplectic manifolds. To state the matter in terms of a system with a finite number of degrees of freedom, the family of symplectic manifolds is parametrized by a set of Casimir functions, which are characterized by having vanishing Poisson brackets with all other functions. The number of independent Casimir functions is the corank of the Poisson tensor J/sup ij/, the components of which are the Poisson brackets of the coordinates among themselves. Thus, these Casimir functions exist only when the Poisson tensor is singular
On poisson-stopped-sums that are mixed poisson
Valero Baya, Jordi; Pérez Casany, Marta; Ginebra Molins, Josep
2013-01-01
Maceda (1948) characterized the mixed Poisson distributions that are Poisson-stopped-sum distributions based on the mixing distribution. In an alternative characterization of the same set of distributions here the Poisson-stopped-sum distributions that are mixed Poisson distributions is proved to be the set of Poisson-stopped-sums of either a mixture of zero-truncated Poisson distributions or a zero-modification of it. Peer Reviewed
Zeroth Poisson Homology, Foliated Cohomology and Perfect Poisson Manifolds
Martínez-Torres, David; Miranda, Eva
2018-01-01
We prove that, for compact regular Poisson manifolds, the zeroth homology group is isomorphic to the top foliated cohomology group, and we give some applications. In particular, we show that, for regular unimodular Poisson manifolds, top Poisson and foliated cohomology groups are isomorphic. Inspired by the symplectic setting, we define what a perfect Poisson manifold is. We use these Poisson homology computations to provide families of perfect Poisson manifolds.
Poisson-Hopf limit of quantum algebras
International Nuclear Information System (INIS)
Ballesteros, A; Celeghini, E; Olmo, M A del
2009-01-01
The Poisson-Hopf analogue of an arbitrary quantum algebra U z (g) is constructed by introducing a one-parameter family of quantizations U z,ℎ (g) depending explicitly on ℎ and by taking the appropriate ℎ → 0 limit. The q-Poisson analogues of the su(2) algebra are discussed and the novel su q P (3) case is introduced. The q-Serre relations are also extended to the Poisson limit. This approach opens the perspective for possible applications of higher rank q-deformed Hopf algebras in semiclassical contexts
International Nuclear Information System (INIS)
Harwood, L.H.
1981-01-01
At MSU we have used the POISSON family of programs extensively for magnetic field calculations. In the presently super-saturated computer situation, reducing the run time for the program is imperative. Thus, a series of modifications have been made to POISSON to speed up convergence. Two of the modifications aim at having the first guess solution as close as possible to the final solution. The other two aim at increasing the convergence rate. In this discussion, a working knowledge of POISSON is assumed. The amount of new code and expected time saving for each modification is discussed
Poisson Processes in Free Probability
An, Guimei; Gao, Mingchu
2015-01-01
We prove a multidimensional Poisson limit theorem in free probability, and define joint free Poisson distributions in a non-commutative probability space. We define (compound) free Poisson process explicitly, similar to the definitions of (compound) Poisson processes in classical probability. We proved that the sum of finitely many freely independent compound free Poisson processes is a compound free Poisson processes. We give a step by step procedure for constructing a (compound) free Poisso...
On Poisson Nonlinear Transformations
Directory of Open Access Journals (Sweden)
Nasir Ganikhodjaev
2014-01-01
Full Text Available We construct the family of Poisson nonlinear transformations defined on the countable sample space of nonnegative integers and investigate their trajectory behavior. We have proved that these nonlinear transformations are regular.
Scaling the Poisson Distribution
Farnsworth, David L.
2014-01-01
We derive the additive property of Poisson random variables directly from the probability mass function. An important application of the additive property to quality testing of computer chips is presented.
Poisson branching point processes
International Nuclear Information System (INIS)
Matsuo, K.; Teich, M.C.; Saleh, B.E.A.
1984-01-01
We investigate the statistical properties of a special branching point process. The initial process is assumed to be a homogeneous Poisson point process (HPP). The initiating events at each branching stage are carried forward to the following stage. In addition, each initiating event independently contributes a nonstationary Poisson point process (whose rate is a specified function) located at that point. The additional contributions from all points of a given stage constitute a doubly stochastic Poisson point process (DSPP) whose rate is a filtered version of the initiating point process at that stage. The process studied is a generalization of a Poisson branching process in which random time delays are permitted in the generation of events. Particular attention is given to the limit in which the number of branching stages is infinite while the average number of added events per event of the previous stage is infinitesimal. In the special case when the branching is instantaneous this limit of continuous branching corresponds to the well-known Yule--Furry process with an initial Poisson population. The Poisson branching point process provides a useful description for many problems in various scientific disciplines, such as the behavior of electron multipliers, neutron chain reactions, and cosmic ray showers
Relaxed Poisson cure rate models.
Rodrigues, Josemar; Cordeiro, Gauss M; Cancho, Vicente G; Balakrishnan, N
2016-03-01
The purpose of this article is to make the standard promotion cure rate model (Yakovlev and Tsodikov, ) more flexible by assuming that the number of lesions or altered cells after a treatment follows a fractional Poisson distribution (Laskin, ). It is proved that the well-known Mittag-Leffler relaxation function (Berberan-Santos, ) is a simple way to obtain a new cure rate model that is a compromise between the promotion and geometric cure rate models allowing for superdispersion. So, the relaxed cure rate model developed here can be considered as a natural and less restrictive extension of the popular Poisson cure rate model at the cost of an additional parameter, but a competitor to negative-binomial cure rate models (Rodrigues et al., ). Some mathematical properties of a proper relaxed Poisson density are explored. A simulation study and an illustration of the proposed cure rate model from the Bayesian point of view are finally presented. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multiplicative quiver varieties and generalised Ruijsenaars-Schneider models
Chalykh, Oleg; Fairon, Maxime
2017-11-01
We study some classical integrable systems naturally associated with multiplicative quiver varieties for the (extended) cyclic quiver with m vertices. The phase space of our integrable systems is obtained by quasi-Hamiltonian reduction from the space of representations of the quiver. Three families of Poisson-commuting functions are constructed and written explicitly in suitable Darboux coordinates. The case m = 1 corresponds to the tadpole quiver and the Ruijsenaars-Schneider system and its variants, while for m > 1 we obtain new integrable systems that generalise the Ruijsenaars-Schneider system. These systems and their quantum versions also appeared recently in the context of supersymmetric gauge theory and cyclotomic DAHAs (Braverman et al. [32,34,35] and Kodera and Nakajima [36]), as well as in the context of the Macdonald theory (Chalykh and Etingof, 2013).
Cloverleaf skull with generalised bone dysplasia
International Nuclear Information System (INIS)
Kozlowski, K.; Warren, P.S.; Fisher, C.C.; Royal Hospital for Women, Camperdown
1985-01-01
A case of cloverleaf skull with generalised bone dysplasia is reported. The authors believe that bone dysplasia associated with cloverleaf is neither identical with thanatophoric dysplasia nor achondroplasia. Until identity of thanatophoric dysplasia and cloverleaf skull with generalised bone dysplasia is proved the diseases should be looked upon as separate entities and the wording ''thanatophoric dysplasia with cloverleaf skull'' should be abolished. (orig.)
Wagner’s theory of generalised heaps
Hollings, Christopher D
2017-01-01
The theories of V. V. Wagner (1908-1981) on abstractions of systems of binary relations are presented here within their historical and mathematical contexts. This book contains the first translation from Russian into English of a selection of Wagner’s papers, the ideas of which are connected to present-day mathematical research. Along with a translation of Wagner’s main work in this area, his 1953 paper ‘Theory of generalised heaps and generalised groups,’ the book also includes translations of three short precursor articles that provide additional context for his major work. Researchers and students interested in both algebra (in particular, heaps, semiheaps, generalised heaps, semigroups, and groups) and differential geometry will benefit from the techniques offered by these translations, owing to the natural connections between generalised heaps and generalised groups, and the role played by these concepts in differential geometry. This book gives examples from present-day mathematics where ideas r...
Principles of applying Poisson units in radiology
International Nuclear Information System (INIS)
Benyumovich, M.S.
2000-01-01
The probability that radioactive particles hit particular space patterns (e.g. cells in the squares of a count chamber net) and time intervals (e.g. radioactive particles hit a given area per time unit) follows the Poisson distribution. The mean is the only parameter from which all this distribution depends. A metrological base of counting the cells and radioactive particles is a property of the Poisson distribution assuming equality of a standard deviation to a root square of mean (property 1). The application of Poisson units in counting of blood formed elements and cultured cells was proposed by us (Russian Federation Patent No. 2126230). Poisson units relate to the means which make the property 1 valid. In a case of cells counting, the square of these units is equal to 1/10 of one of count chamber net where they count the cells. Thus one finds the means from the single cell count rate divided by 10. Finding the Poisson units when counting the radioactive particles should assume determination of a number of these particles sufficient to make equality 1 valid. To this end one should subdivide a time interval used in counting a single particle count rate into different number of equal portions (count numbers). Next one should pick out the count number ensuring the satisfaction of equality 1. Such a portion is taken as a Poisson unit in the radioactive particles count. If the flux of particles is controllable one should set up a count rate sufficient to make equality 1 valid. Operations with means obtained by with the use of Poisson units are performed on the base of approximation of the Poisson distribution by a normal one. (author)
Fractional Poisson process (II)
International Nuclear Information System (INIS)
Wang Xiaotian; Wen Zhixiong; Zhang Shiying
2006-01-01
In this paper, we propose a stochastic process W H (t)(H-bar (12,1)) which we call fractional Poisson process. The process W H (t) is self-similar in wide sense, displays long range dependence, and has more fatter tail than Gaussian process. In addition, it converges to fractional Brownian motion in distribution
Quan, Naicheng; Zhang, Chunmin; Mu, Tingkui
2018-05-01
We address the optimal configuration of a partial Mueller matrix polarimeter used to determine the ellipsometric parameters in the presence of additive Gaussian noise and signal-dependent shot noise. The numerical results show that, for the PSG/PSA consisting of a variable retarder and a fixed polarizer, the detection process immune to these two types of noise can be optimally composed by 121.2° retardation with a pair of azimuths ±71.34° and a 144.48° retardation with a pair of azimuths ±31.56° for four Mueller matrix elements measurement. Compared with the existing configurations, the configuration presented in this paper can effectively decrease the measurement variance and thus statistically improve the measurement precision of the ellipsometric parameters.
Formal equivalence of Poisson structures around Poisson submanifolds
Marcut, I.T.
2012-01-01
Let (M,π) be a Poisson manifold. A Poisson submanifold P ⊂ M gives rise to a Lie algebroid AP → P. Formal deformations of π around P are controlled by certain cohomology groups associated to AP. Assuming that these groups vanish, we prove that π is formally rigid around P; that is, any other Poisson
Poisson brackets of orthogonal polynomials
Cantero, María José; Simon, Barry
2009-01-01
For the standard symplectic forms on Jacobi and CMV matrices, we compute Poisson brackets of OPRL and OPUC, and relate these to other basic Poisson brackets and to Jacobians of basic changes of variable.
Classical r-matrices for the generalised Chern–Simons formulation of 3d gravity
Osei, Prince K.; Schroers, Bernd J.
2018-04-01
We study the conditions for classical r-matrices to be compatible with the generalised Chern–Simons action for 3d gravity. Compatibility means solving the classical Yang–Baxter equations with a prescribed symmetric part for each of the real Lie algebras and bilinear pairings arising in the generalised Chern–Simons action. We give a new construction of r-matrices via a generalised complexification and derive a non-linear set of matrix equations determining the most general compatible r-matrix. We exhibit new families of solutions and show that they contain some known r-matrices for special parameter values.
Quantum generalisation of feedforward neural networks
Wan, Kwok Ho; Dahlsten, Oscar; Kristjánsson, Hlér; Gardner, Robert; Kim, M. S.
2017-09-01
We propose a quantum generalisation of a classical neural network. The classical neurons are firstly rendered reversible by adding ancillary bits. Then they are generalised to being quantum reversible, i.e., unitary (the classical networks we generalise are called feedforward, and have step-function activation functions). The quantum network can be trained efficiently using gradient descent on a cost function to perform quantum generalisations of classical tasks. We demonstrate numerically that it can: (i) compress quantum states onto a minimal number of qubits, creating a quantum autoencoder, and (ii) discover quantum communication protocols such as teleportation. Our general recipe is theoretical and implementation-independent. The quantum neuron module can naturally be implemented photonically.
Energy Technology Data Exchange (ETDEWEB)
Jurčo, Branislav, E-mail: jurco@karlin.mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, Mathematical Institute, Prague 186 75 (Czech Republic); Schupp, Peter, E-mail: p.schupp@jacobs-university.de [Jacobs University Bremen, 28759 Bremen (Germany); Vysoký, Jan, E-mail: vysokjan@fjfi.cvut.cz [Jacobs University Bremen, 28759 Bremen (Germany); Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Prague 115 19 (Czech Republic)
2014-06-02
We generalize noncommutative gauge theory using Nambu–Poisson structures to obtain a new type of gauge theory with higher brackets and gauge fields. The approach is based on covariant coordinates and higher versions of the Seiberg–Witten map. We construct a covariant Nambu–Poisson gauge theory action, give its first order expansion in the Nambu–Poisson tensor and relate it to a Nambu–Poisson matrix model.
International Nuclear Information System (INIS)
Jurčo, Branislav; Schupp, Peter; Vysoký, Jan
2014-01-01
We generalize noncommutative gauge theory using Nambu–Poisson structures to obtain a new type of gauge theory with higher brackets and gauge fields. The approach is based on covariant coordinates and higher versions of the Seiberg–Witten map. We construct a covariant Nambu–Poisson gauge theory action, give its first order expansion in the Nambu–Poisson tensor and relate it to a Nambu–Poisson matrix model.
Branes in Poisson sigma models
International Nuclear Information System (INIS)
Falceto, Fernando
2010-01-01
In this review we discuss possible boundary conditions (branes) for the Poisson sigma model. We show how to carry out the perturbative quantization in the presence of a general pre-Poisson brane and how this is related to the deformation quantization of Poisson structures. We conclude with an open problem: the perturbative quantization of the system when the boundary has several connected components and we use a different pre-Poisson brane in every component.
Generalised derived limits for radioisotopes of iodine
International Nuclear Information System (INIS)
Hughes, J.S.; Haywood, S.M.; Simmonds, J.R.
1984-04-01
Generalised Derived Limits (GDLs) are evaluated for iodine-125,129,131,132,133,134,135 in selected materials from the terrestrial and aquatic environments and for discharge to atmosphere. They are intended for use as convenient reference levels against which the results of environmental monitoring can be compared and atmospheric discharges assessed. GDLs are intended for use when the environmental contamination or discharge to atmosphere is less than about 5% of the GDL. If the level of environmental contamination or discharge to the atmosphere exceeds this percentage of the GDL it does not necessarily mean that the dose equivalents to members of the public are approaching the dose equivalent limit. It is rather an indication that it may be appropriate to obtain a more specific derived limit for the particular situation by reviewing the values of the parameters involved in the calculation. GDL values are specified for iodine radionuclides in water, soil, grass, sediments and various foodstuffs derived from the terrestrial and aquatic environments. GDLs are also given for iodine radionuclides on terrestrial surfaces and for their discharge to atmosphere. (author)
Cloverleaf skull with generalised bone dysplasia
Energy Technology Data Exchange (ETDEWEB)
Kozlowski, K.; Warren, P.S.; Fisher, C.C.
1985-09-01
A case of cloverleaf skull with generalised bone dysplasia is reported. The authors believe that bone dysplasia associated with cloverleaf is neither identical with thanatophoric dysplasia nor achondroplasia. Until identity of thanatophoric dysplasia and cloverleaf skull with generalised bone dysplasia is proved the diseases should be looked upon as separate entities and the wording ''thanatophoric dysplasia with cloverleaf skull'' should be abolished.
Improvement on generalised synchronisation of chaotic systems
International Nuclear Information System (INIS)
Hui-Bin, Zhu; Fang, Qiu; Bao-Tong, Cui
2010-01-01
In this paper, the problem of generalised synchronisation of two different chaotic systems is investigated. Some less conservative conditions are derived using linear matrix inequality other than existing results. Furthermore, a simple adaptive control scheme is proposed to achieve the generalised synchronisation of chaotic systems. The proposed method is simple and easy to implement in practice and can be applied to secure communications. Numerical simulations are also given to demonstrate the effectiveness and feasibility of the theoretical analysis
Further Generalisations of Twisted Gabidulin Codes
DEFF Research Database (Denmark)
Puchinger, Sven; Rosenkilde, Johan Sebastian Heesemann; Sheekey, John
2017-01-01
We present a new family of maximum rank distance (MRD) codes. The new class contains codes that are neither equivalent to a generalised Gabidulin nor to a twisted Gabidulin code, the only two known general constructions of linear MRD codes.......We present a new family of maximum rank distance (MRD) codes. The new class contains codes that are neither equivalent to a generalised Gabidulin nor to a twisted Gabidulin code, the only two known general constructions of linear MRD codes....
Normal forms in Poisson geometry
Marcut, I.T.
2013-01-01
The structure of Poisson manifolds is highly nontrivial even locally. The first important result in this direction is Conn's linearization theorem around fixed points. One of the main results of this thesis (Theorem 2) is a normal form theorem in Poisson geometry, which is the Poisson-geometric
PENERAPAN REGRESI BINOMIAL NEGATIF UNTUK MENGATASI OVERDISPERSI PADA REGRESI POISSON
Directory of Open Access Journals (Sweden)
PUTU SUSAN PRADAWATI
2013-09-01
Full Text Available Poisson regression was used to analyze the count data which Poisson distributed. Poisson regression analysis requires state equidispersion, in which the mean value of the response variable is equal to the value of the variance. However, there are deviations in which the value of the response variable variance is greater than the mean. This is called overdispersion. If overdispersion happens and Poisson Regression analysis is being used, then underestimated standard errors will be obtained. Negative Binomial Regression can handle overdispersion because it contains a dispersion parameter. From the simulation data which experienced overdispersion in the Poisson Regression model it was found that the Negative Binomial Regression was better than the Poisson Regression model.
Estimation of Poisson noise in spatial domain
Švihlík, Jan; Fliegel, Karel; Vítek, Stanislav; Kukal, Jaromír.; Krbcová, Zuzana
2017-09-01
This paper deals with modeling of astronomical images in the spatial domain. We consider astronomical light images contaminated by the dark current which is modeled by Poisson random process. Dark frame image maps the thermally generated charge of the CCD sensor. In this paper, we solve the problem of an addition of two Poisson random variables. At first, the noise analysis of images obtained from the astronomical camera is performed. It allows estimating parameters of the Poisson probability mass functions in every pixel of the acquired dark frame. Then the resulting distributions of the light image can be found. If the distributions of the light image pixels are identified, then the denoising algorithm can be applied. The performance of the Bayesian approach in the spatial domain is compared with the direct approach based on the method of moments and the dark frame subtraction.
Ifremer
1992-01-01
Vous trouverez dans ce document les 24 poissons les plus courants de Guyane (sur un nombre d'espèces approchant les 200) avec leurs principales caractéristiques, leurs noms scientifiques, français, anglais et espagnol et leurs photographies. Ils sont classés, de l'acoupa au vivaneau ti yeux, par ordre alphabétique. Si vous ne trouvez pas de chiffres sur la production de telle ou telle espèce, c'est parce qu'ils n'existent pas, mais aussi et surtout parce qu'ils ne signifieraient rien, l...
Dehghan, Mehdi; Hajarian, Masoud
2012-08-01
A matrix P is called a symmetric orthogonal if P = P T = P -1. A matrix X is said to be a generalised bisymmetric with respect to P if X = X T = PXP. It is obvious that any symmetric matrix is also a generalised bisymmetric matrix with respect to I (identity matrix). By extending the idea of the Jacobi and the Gauss-Seidel iterations, this article proposes two new iterative methods, respectively, for computing the generalised bisymmetric (containing symmetric solution as a special case) and skew-symmetric solutions of the generalised Sylvester matrix equation ? (including Sylvester and Lyapunov matrix equations as special cases) which is encountered in many systems and control applications. When the generalised Sylvester matrix equation has a unique generalised bisymmetric (skew-symmetric) solution, the first (second) iterative method converges to the generalised bisymmetric (skew-symmetric) solution of this matrix equation for any initial generalised bisymmetric (skew-symmetric) matrix. Finally, some numerical results are given to illustrate the effect of the theoretical results.
Automatic map generalisation from research to production
Nyberg, Rose; Johansson, Mikael; Zhang, Yang
2018-05-01
The manual work of map generalisation is known to be a complex and time consuming task. With the development of technology and societies, the demands for more flexible map products with higher quality are growing. The Swedish mapping, cadastral and land registration authority Lantmäteriet has manual production lines for databases in five different scales, 1 : 10 000 (SE10), 1 : 50 000 (SE50), 1 : 100 000 (SE100), 1 : 250 000 (SE250) and 1 : 1 million (SE1M). To streamline this work, Lantmäteriet started a project to automatically generalise geographic information. Planned timespan for the project is 2015-2022. Below the project background together with the methods for the automatic generalisation are described. The paper is completed with a description of results and conclusions.
Generalised Computability and Applications to Hybrid Systems
DEFF Research Database (Denmark)
Korovina, Margarita V.; Kudinov, Oleg V.
2001-01-01
We investigate the concept of generalised computability of operators and functionals defined on the set of continuous functions, firstly introduced in [9]. By working in the reals, with equality and without equality, we study properties of generalised computable operators and functionals. Also we...... propose an interesting application to formalisation of hybrid systems. We obtain some class of hybrid systems, which trajectories are computable in the sense of computable analysis. This research was supported in part by the RFBR (grants N 99-01-00485, N 00-01- 00810) and by the Siberian Branch of RAS (a...... grant for young researchers, 2000)...
International Nuclear Information System (INIS)
Xing-Yuan, Wang; Na, Zhang
2010-01-01
Coupled map lattices are taken as examples to study the synchronisation of spatiotemporal chaotic systems. First, a generalised synchronisation of two coupled map lattices is realised through selecting an appropriate feedback function and appropriate range of feedback parameter. Based on this method we use the phase compression method to extend the range of the parameter. So, we integrate the feedback control method with the phase compression method to implement the generalised synchronisation and obtain an exact range of feedback parameter. This technique is simple to implement in practice. Numerical simulations show the effectiveness and the feasibility of the proposed program. (general)
Nonhomogeneous fractional Poisson processes
Energy Technology Data Exchange (ETDEWEB)
Wang Xiaotian [School of Management, Tianjin University, Tianjin 300072 (China)]. E-mail: swa001@126.com; Zhang Shiying [School of Management, Tianjin University, Tianjin 300072 (China); Fan Shen [Computer and Information School, Zhejiang Wanli University, Ningbo 315100 (China)
2007-01-15
In this paper, we propose a class of non-Gaussian stationary increment processes, named nonhomogeneous fractional Poisson processes W{sub H}{sup (j)}(t), which permit the study of the effects of long-range dependance in a large number of fields including quantum physics and finance. The processes W{sub H}{sup (j)}(t) are self-similar in a wide sense, exhibit more fatter tail than Gaussian processes, and converge to the Gaussian processes in distribution in some cases. In addition, we also show that the intensity function {lambda}(t) strongly influences the existence of the highest finite moment of W{sub H}{sup (j)}(t) and the behaviour of the tail probability of W{sub H}{sup (j)}(t)
Nonhomogeneous fractional Poisson processes
International Nuclear Information System (INIS)
Wang Xiaotian; Zhang Shiying; Fan Shen
2007-01-01
In this paper, we propose a class of non-Gaussian stationary increment processes, named nonhomogeneous fractional Poisson processes W H (j) (t), which permit the study of the effects of long-range dependance in a large number of fields including quantum physics and finance. The processes W H (j) (t) are self-similar in a wide sense, exhibit more fatter tail than Gaussian processes, and converge to the Gaussian processes in distribution in some cases. In addition, we also show that the intensity function λ(t) strongly influences the existence of the highest finite moment of W H (j) (t) and the behaviour of the tail probability of W H (j) (t)
On quantization, the generalised Schroedinger equation and classical mechanics
International Nuclear Information System (INIS)
Jones, K.R.W.
1991-01-01
A ψ-dependent linear functional operator, was defined, which solves the problem of quantization in non-relativistic quantum mechanics. Weyl ordering is implemented automatically and permits derivation of many of the quantum to classical correspondences. The parameter λ presents a natural C ∞ deformation of the dynamical structure of quantum mechanics via a non-linear integro-differential 'Generalised Schroedinger Equation', admitting an infinite family of soliton solutions. All these solutions are presented and it is shown that this equation gives an exact dynamic and energetic reproduction of classical mechanics with the correct measurement theoretic limit. 23 refs
The oculocerebral syndrome in association with generalised ...
African Journals Online (AJOL)
A 14-year-old girl with generalised hypopigmentation, mental retardation, abnormal movements, and ocular anomalies is described. It is suggested that she represents a further case of oculocerebral albinism, a rare autosomal recessive condition. Reference is made to previous similar cases.
On Generalisation of Polynomials in Complex Plane
Directory of Open Access Journals (Sweden)
Maslina Darus
2010-01-01
Full Text Available The generalised Bell and Laguerre polynomials of fractional-order in complex z-plane are defined. Some properties are studied. Moreover, we proved that these polynomials are univalent solutions for second order differential equations. Also, the Laguerre-type of some special functions are introduced.
Exactly marginal deformations from exceptional generalised geometry
Energy Technology Data Exchange (ETDEWEB)
Ashmore, Anthony [Merton College, University of Oxford,Merton Street, Oxford, OX1 4JD (United Kingdom); Mathematical Institute, University of Oxford,Andrew Wiles Building, Woodstock Road, Oxford, OX2 6GG (United Kingdom); Gabella, Maxime [Institute for Advanced Study,Einstein Drive, Princeton, NJ 08540 (United States); Graña, Mariana [Institut de Physique Théorique, CEA/Saclay,91191 Gif-sur-Yvette (France); Petrini, Michela [Sorbonne Université, UPMC Paris 05, UMR 7589, LPTHE,75005 Paris (France); Waldram, Daniel [Department of Physics, Imperial College London,Prince Consort Road, London, SW7 2AZ (United Kingdom)
2017-01-27
We apply exceptional generalised geometry to the study of exactly marginal deformations of N=1 SCFTs that are dual to generic AdS{sub 5} flux backgrounds in type IIB or eleven-dimensional supergravity. In the gauge theory, marginal deformations are parametrised by the space of chiral primary operators of conformal dimension three, while exactly marginal deformations correspond to quotienting this space by the complexified global symmetry group. We show how the supergravity analysis gives a geometric interpretation of the gauge theory results. The marginal deformations arise from deformations of generalised structures that solve moment maps for the generalised diffeomorphism group and have the correct charge under the generalised Reeb vector, generating the R-symmetry. If this is the only symmetry of the background, all marginal deformations are exactly marginal. If the background possesses extra isometries, there are obstructions that come from fixed points of the moment maps. The exactly marginal deformations are then given by a further quotient by these extra isometries. Our analysis holds for any N=2 AdS{sub 5} flux background. Focussing on the particular case of type IIB Sasaki-Einstein backgrounds we recover the result that marginal deformations correspond to perturbing the solution by three-form flux at first order. In various explicit examples, we show that our expression for the three-form flux matches those in the literature and the obstruction conditions match the one-loop beta functions of the dual SCFT.
Generalised fluid dynamics and quantum mechanics
Broer, L.J.F.
1974-01-01
A generalised theory of irrotational fluid flow is developed in hamiltonian form. This allows a systematic derivation of equations for momentum, energy and the rate of work. It is shown that a nonlinear field equation for weakly interacting condensed bosons as given by Gross1) and the one-electron
Generalised phase contrast: microscopy, manipulation and more
DEFF Research Database (Denmark)
Palima, Darwin; Glückstad, Jesper
2010-01-01
Generalised phase contrast (GPC) not only leads to more accurate phase imaging beyond thin biological samples, but serves as an enabling framework in developing tools over a wide spectrum of contemporary applications in optics and photonics, including optical trapping and micromanipulation, optic...
Poisson Spot with Magnetic Levitation
Hoover, Matthew; Everhart, Michael; D'Arruda, Jose
2010-01-01
In this paper we describe a unique method for obtaining the famous Poisson spot without adding obstacles to the light path, which could interfere with the effect. A Poisson spot is the interference effect from parallel rays of light diffracting around a solid spherical object, creating a bright spot in the center of the shadow.
Avoiding negative populations in explicit Poisson tau-leaping.
Cao, Yang; Gillespie, Daniel T; Petzold, Linda R
2005-08-01
The explicit tau-leaping procedure attempts to speed up the stochastic simulation of a chemically reacting system by approximating the number of firings of each reaction channel during a chosen time increment tau as a Poisson random variable. Since the Poisson random variable can have arbitrarily large sample values, there is always the possibility that this procedure will cause one or more reaction channels to fire so many times during tau that the population of some reactant species will be driven negative. Two recent papers have shown how that unacceptable occurrence can be avoided by replacing the Poisson random variables with binomial random variables, whose values are naturally bounded. This paper describes a modified Poisson tau-leaping procedure that also avoids negative populations, but is easier to implement than the binomial procedure. The new Poisson procedure also introduces a second control parameter, whose value essentially dials the procedure from the original Poisson tau-leaping at one extreme to the exact stochastic simulation algorithm at the other; therefore, the modified Poisson procedure will generally be more accurate than the original Poisson procedure.
Computation of solar perturbations with Poisson series
Broucke, R.
1974-01-01
Description of a project for computing first-order perturbations of natural or artificial satellites by integrating the equations of motion on a computer with automatic Poisson series expansions. A basic feature of the method of solution is that the classical variation-of-parameters formulation is used rather than rectangular coordinates. However, the variation-of-parameters formulation uses the three rectangular components of the disturbing force rather than the classical disturbing function, so that there is no problem in expanding the disturbing function in series. Another characteristic of the variation-of-parameters formulation employed is that six rather unusual variables are used in order to avoid singularities at the zero eccentricity and zero (or 90 deg) inclination. The integration process starts by assuming that all the orbit elements present on the right-hand sides of the equations of motion are constants. These right-hand sides are then simple Poisson series which can be obtained with the use of the Bessel expansions of the two-body problem in conjunction with certain interation methods. These Poisson series can then be integrated term by term, and a first-order solution is obtained.
Ak, Turgut; Aydemir, Tugba; Saha, Asit; Kara, Abdul Hamid
2018-06-01
Propagation of nonlinear shock waves for the generalised Oskolkov equation and dynamic motions of the perturbed Oskolkov equation are investigated. Employing the unified method, a collection of exact shock wave solutions for the generalised Oskolkov equations is presented. Collocation finite element method is applied to the generalised Oskolkov equation for checking the accuracy of the proposed method by two test problems including the motion of shock wave and evolution of waves with Gaussian and undular bore initial conditions. Considering an external periodic perturbation, the dynamic motions of the perturbed generalised Oskolkov equation are studied depending on the system parameters with the help of phase portrait and time series plot. The perturbed generalised Oskolkov equation exhibits period-3, quasiperiodic and chaotic motions for some special values of the system parameters, whereas the generalised Oskolkov equation presents shock waves in the absence of external periodic perturbation.
Polynomial Poisson algebras: Gel'fand-Kirillov problem and Poisson spectra
Lecoutre, César
2014-01-01
We study the fields of fractions and the Poisson spectra of polynomial Poisson algebras.\\ud \\ud First we investigate a Poisson birational equivalence problem for polynomial Poisson algebras over a field of arbitrary characteristic. Namely, the quadratic Poisson Gel'fand-Kirillov problem asks whether the field of fractions of a Poisson algebra is isomorphic to the field of fractions of a Poisson affine space, i.e. a polynomial algebra such that the Poisson bracket of two generators is equal to...
Network Traffic Monitoring Using Poisson Dynamic Linear Models
Energy Technology Data Exchange (ETDEWEB)
Merl, D. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2011-05-09
In this article, we discuss an approach for network forensics using a class of nonstationary Poisson processes with embedded dynamic linear models. As a modeling strategy, the Poisson DLM (PoDLM) provides a very flexible framework for specifying structured effects that may influence the evolution of the underlying Poisson rate parameter, including diurnal and weekly usage patterns. We develop a novel particle learning algorithm for online smoothing and prediction for the PoDLM, and demonstrate the suitability of the approach to real-time deployment settings via a new application to computer network traffic monitoring.
Boundary Lax pairs from non-ultra-local Poisson algebras
International Nuclear Information System (INIS)
Avan, Jean; Doikou, Anastasia
2009-01-01
We consider non-ultra-local linear Poisson algebras on a continuous line. Suitable combinations of representations of these algebras yield representations of novel generalized linear Poisson algebras or 'boundary' extensions. They are parametrized by a boundary scalar matrix and depend, in addition, on the choice of an antiautomorphism. The new algebras are the classical-linear counterparts of the known quadratic quantum boundary algebras. For any choice of parameters, the non-ultra-local contribution of the original Poisson algebra disappears. We also systematically construct the associated classical Lax pair. The classical boundary principal chiral model is examined as a physical example.
Quantum mechanics of a generalised rigid body
International Nuclear Information System (INIS)
Gripaios, Ben; Sutherland, Dave
2016-01-01
We consider the quantum version of Arnold’s generalisation of a rigid body in classical mechanics. Thus, we quantise the motion on an arbitrary Lie group manifold of a particle whose classical trajectories correspond to the geodesics of any one-sided-invariant metric. We show how the derivation of the spectrum of energy eigenstates can be simplified by making use of automorphisms of the Lie algebra and (for groups of type I) by methods of harmonic analysis. We show how the method can be extended to cosets, generalising the linear rigid rotor. As examples, we consider all connected and simply connected Lie groups up to dimension 3. This includes the universal cover of the archetypical rigid body, along with a number of new exactly solvable models. We also discuss a possible application to the topical problem of quantising a perfect fluid. (paper)
Open quantum generalisation of Hopfield neural networks
Rotondo, P.; Marcuzzi, M.; Garrahan, J. P.; Lesanovsky, I.; Müller, M.
2018-03-01
We propose a new framework to understand how quantum effects may impact on the dynamics of neural networks. We implement the dynamics of neural networks in terms of Markovian open quantum systems, which allows us to treat thermal and quantum coherent effects on the same footing. In particular, we propose an open quantum generalisation of the Hopfield neural network, the simplest toy model of associative memory. We determine its phase diagram and show that quantum fluctuations give rise to a qualitatively new non-equilibrium phase. This novel phase is characterised by limit cycles corresponding to high-dimensional stationary manifolds that may be regarded as a generalisation of storage patterns to the quantum domain.
Non-equal-time Poisson brackets
Nikolic, H.
1998-01-01
The standard definition of the Poisson brackets is generalized to the non-equal-time Poisson brackets. Their relationship to the equal-time Poisson brackets, as well as to the equal- and non-equal-time commutators, is discussed.
Quantum field theory in generalised Snyder spaces
International Nuclear Information System (INIS)
Meljanac, S.; Meljanac, D.; Mignemi, S.; Štrajn, R.
2017-01-01
We discuss the generalisation of the Snyder model that includes all possible deformations of the Heisenberg algebra compatible with Lorentz invariance and investigate its properties. We calculate perturbatively the law of addition of momenta and the star product in the general case. We also undertake the construction of a scalar field theory on these noncommutative spaces showing that the free theory is equivalent to the commutative one, like in other models of noncommutative QFT.
Quantum field theory in generalised Snyder spaces
Energy Technology Data Exchange (ETDEWEB)
Meljanac, S.; Meljanac, D. [Rudjer Bošković Institute, Bijenička cesta 54, 10002 Zagreb (Croatia); Mignemi, S., E-mail: smignemi@unica.it [Dipartimento di Matematica e Informatica, Università di Cagliari, viale Merello 92, 09123 Cagliari (Italy); INFN, Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy); Štrajn, R. [Dipartimento di Matematica e Informatica, Università di Cagliari, viale Merello 92, 09123 Cagliari (Italy); INFN, Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy)
2017-05-10
We discuss the generalisation of the Snyder model that includes all possible deformations of the Heisenberg algebra compatible with Lorentz invariance and investigate its properties. We calculate perturbatively the law of addition of momenta and the star product in the general case. We also undertake the construction of a scalar field theory on these noncommutative spaces showing that the free theory is equivalent to the commutative one, like in other models of noncommutative QFT.
Concurrent analysis: towards generalisable qualitative research.
Snowden, Austyn; Martin, Colin R
2011-10-01
This study develops an original method of qualitative analysis coherent with its interpretivist principles. The objective is to increase the likelihood of achieving generalisability and so improve the chance of the findings being translated into practice. Good qualitative research depends on coherent analysis of different types of data. The limitations of existing methodologies are first discussed to justify the need for a novel approach. To illustrate this approach, primary evidence is presented using the new methodology. The primary evidence consists of a constructivist grounded theory of how mental health nurses with prescribing authority integrate prescribing into practice. This theory is built concurrently from interviews, reflective accounts and case study data from the literature. Concurrent analysis. Ten research articles and 13 semi-structured interviews were sampled purposively and then theoretically and analysed concurrently using constructivist grounded theory. A theory of the process of becoming competent in mental health nurse prescribing was generated through this process. This theory was validated by 32 practising mental health nurse prescribers as an accurate representation of their experience. The methodology generated a coherent and generalisable theory. It is therefore claimed that concurrent analysis engenders consistent and iterative treatment of different sources of qualitative data in a manageable manner. This process supports facilitation of the highest standard of qualitative research. Concurrent analysis removes the artificial delineation of relevant literature from other forms of constructed data. This gives researchers clear direction to treat qualitative data consistently raising the chances of generalisability of the findings. Raising the generalisability of qualitative research will increase its chances of informing clinical practice. © 2010 Blackwell Publishing Ltd.
Sequential experimental design based generalised ANOVA
Energy Technology Data Exchange (ETDEWEB)
Chakraborty, Souvik, E-mail: csouvik41@gmail.com; Chowdhury, Rajib, E-mail: rajibfce@iitr.ac.in
2016-07-15
Over the last decade, surrogate modelling technique has gained wide popularity in the field of uncertainty quantification, optimization, model exploration and sensitivity analysis. This approach relies on experimental design to generate training points and regression/interpolation for generating the surrogate. In this work, it is argued that conventional experimental design may render a surrogate model inefficient. In order to address this issue, this paper presents a novel distribution adaptive sequential experimental design (DA-SED). The proposed DA-SED has been coupled with a variant of generalised analysis of variance (G-ANOVA), developed by representing the component function using the generalised polynomial chaos expansion. Moreover, generalised analytical expressions for calculating the first two statistical moments of the response, which are utilized in predicting the probability of failure, have also been developed. The proposed approach has been utilized in predicting probability of failure of three structural mechanics problems. It is observed that the proposed approach yields accurate and computationally efficient estimate of the failure probability.
Poisson-Boltzmann versus Size-Modified Poisson-Boltzmann Electrostatics Applied to Lipid Bilayers.
Wang, Nuo; Zhou, Shenggao; Kekenes-Huskey, Peter M; Li, Bo; McCammon, J Andrew
2014-12-26
Mean-field methods, such as the Poisson-Boltzmann equation (PBE), are often used to calculate the electrostatic properties of molecular systems. In the past two decades, an enhancement of the PBE, the size-modified Poisson-Boltzmann equation (SMPBE), has been reported. Here, the PBE and the SMPBE are reevaluated for realistic molecular systems, namely, lipid bilayers, under eight different sets of input parameters. The SMPBE appears to reproduce the molecular dynamics simulation results better than the PBE only under specific parameter sets, but in general, it performs no better than the Stern layer correction of the PBE. These results emphasize the need for careful discussions of the accuracy of mean-field calculations on realistic systems with respect to the choice of parameters and call for reconsideration of the cost-efficiency and the significance of the current SMPBE formulation.
POISSON SUPERFISH, Poisson Equation Solver for Radio Frequency Cavity
International Nuclear Information System (INIS)
Colman, J.
2001-01-01
1 - Description of program or function: POISSON, SUPERFISH is a group of (1) codes that solve Poisson's equation and are used to compute field quality for both magnets and fixed electric potentials and (2) RF cavity codes that calculate resonant frequencies and field distributions of the fundamental and higher modes. The group includes: POISSON, PANDIRA, SUPERFISH, AUTOMESH, LATTICE, FORCE, MIRT, PAN-T, TEKPLOT, SF01, and SHY. POISSON solves Poisson's (or Laplace's) equation for the vector (scalar) potential with nonlinear isotropic iron (dielectric) and electric current (charge) distributions for two-dimensional Cartesian or three-dimensional cylindrical symmetry. It calculates the derivatives of the potential, the stored energy, and performs harmonic (multipole) analysis of the potential. PANDIRA is similar to POISSON except it allows anisotropic and permanent magnet materials and uses a different numerical method to obtain the potential. SUPERFISH solves for the accelerating (TM) and deflecting (TE) resonant frequencies and field distributions in an RF cavity with two-dimensional Cartesian or three-dimensional cylindrical symmetry. Only the azimuthally symmetric modes are found for cylindrically symmetric cavities. AUTOMESH prepares input for LATTICE from geometrical data describing the problem, (i.e., it constructs the 'logical' mesh and generates (x,y) coordinate data for straight lines, arcs of circles, and segments of hyperbolas). LATTICE generates an irregular triangular (physical) mesh from the input data, calculates the 'point current' terms at each mesh point in regions with distributed current density, and sets up the mesh point relaxation order needed to write the binary problem file for the equation-solving POISSON, PANDIRA, or SUPERFISH. FORCE calculates forces and torques on coils and iron regions from POISSON or PANDIRA solutions for the potential. MIRT optimizes magnet profiles, coil shapes, and current densities from POISSON output based on a
Coordination of Conditional Poisson Samples
Directory of Open Access Journals (Sweden)
Grafström Anton
2015-12-01
Full Text Available Sample coordination seeks to maximize or to minimize the overlap of two or more samples. The former is known as positive coordination, and the latter as negative coordination. Positive coordination is mainly used for estimation purposes and to reduce data collection costs. Negative coordination is mainly performed to diminish the response burden of the sampled units. Poisson sampling design with permanent random numbers provides an optimum coordination degree of two or more samples. The size of a Poisson sample is, however, random. Conditional Poisson (CP sampling is a modification of the classical Poisson sampling that produces a fixed-size πps sample. We introduce two methods to coordinate Conditional Poisson samples over time or simultaneously. The first one uses permanent random numbers and the list-sequential implementation of CP sampling. The second method uses a CP sample in the first selection and provides an approximate one in the second selection because the prescribed inclusion probabilities are not respected exactly. The methods are evaluated using the size of the expected sample overlap, and are compared with their competitors using Monte Carlo simulation. The new methods provide a good coordination degree of two samples, close to the performance of Poisson sampling with permanent random numbers.
DEFF Research Database (Denmark)
Andersen, Per Kragh; Klein, John P.; Rosthøj, Susanne
2003-01-01
Generalised estimating equation; Generalised linear model; Jackknife pseudo-value; Logistic regression; Markov Model; Multi-state model......Generalised estimating equation; Generalised linear model; Jackknife pseudo-value; Logistic regression; Markov Model; Multi-state model...
Topological Poisson Sigma models on Poisson-Lie groups
International Nuclear Information System (INIS)
Calvo, Ivan; Falceto, Fernando; Garcia-Alvarez, David
2003-01-01
We solve the topological Poisson Sigma model for a Poisson-Lie group G and its dual G*. We show that the gauge symmetry for each model is given by its dual group that acts by dressing transformations on the target. The resolution of both models in the open geometry reveals that there exists a map from the reduced phase of each model (P and P*) to the main symplectic leaf of the Heisenberg double (D 0 ) such that the symplectic forms on P, P* are obtained as the pull-back by those maps of the symplectic structure on D 0 . This uncovers a duality between P and P* under the exchange of bulk degrees of freedom of one model with boundary degrees of freedom of the other one. We finally solve the Poisson Sigma model for the Poisson structure on G given by a pair of r-matrices that generalizes the Poisson-Lie case. The Hamiltonian analysis of the theory requires the introduction of a deformation of the Heisenberg double. (author)
The applicability of the Poisson distribution in radiochemical measurements
International Nuclear Information System (INIS)
Luthardt, M.; Proesch, U.
1980-01-01
The fact that, on principle, the Poisson distribution describes the statistics of nuclear decay is generally accepted. The applicability of this distribution to nuclear radiation measurements has recently been questioned. Applying the chi-squared test for goodness of fit on the analogy of the moving average, at least 3 cases may be distinguished, which lead to an incorrect rejection of the Poisson distribution for measurements. Examples are given. Distributions, which make allowance for special parameters, should only be used after careful examination of the data with regard to other interfering effects. The Poisson distribution will further on be applicable to many simple measuring operations. Some basic equations for the analysis of poisson-distributed data are given. (author)
Modeling laser velocimeter signals as triply stochastic Poisson processes
Mayo, W. T., Jr.
1976-01-01
Previous models of laser Doppler velocimeter (LDV) systems have not adequately described dual-scatter signals in a manner useful for analysis and simulation of low-level photon-limited signals. At low photon rates, an LDV signal at the output of a photomultiplier tube is a compound nonhomogeneous filtered Poisson process, whose intensity function is another (slower) Poisson process with the nonstationary rate and frequency parameters controlled by a random flow (slowest) process. In the present paper, generalized Poisson shot noise models are developed for low-level LDV signals. Theoretical results useful in detection error analysis and simulation are presented, along with measurements of burst amplitude statistics. Computer generated simulations illustrate the difference between Gaussian and Poisson models of low-level signals.
Statistics of weighted Poisson events and its applications
International Nuclear Information System (INIS)
Bohm, G.; Zech, G.
2014-01-01
The statistics of the sum of random weights where the number of weights is Poisson distributed has important applications in nuclear physics, particle physics and astrophysics. Events are frequently weighted according to their acceptance or relevance to a certain type of reaction. The sum is described by the compound Poisson distribution (CPD) which is shortly reviewed. It is shown that the CPD can be approximated by a scaled Poisson distribution (SPD). The SPD is applied to parameter estimation in situations where the data are distorted by resolution effects. It performs considerably better than the normal approximation that is usually used. A special Poisson bootstrap technique is presented which permits to derive confidence limits for observations following the CPD
Generalised model for anisotropic compact stars
Energy Technology Data Exchange (ETDEWEB)
Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Raj Kumar Goel Institute of Technology, Department of Mathematics, Ghaziabad, Uttar Pradesh (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India); Deb, Debabrata [Indian Institute of Engineering Science and Technology, Shibpur, Department of Physics, Howrah, West Bengal (India)
2016-12-15
In the present investigation an exact generalised model for anisotropic compact stars of embedding class 1 is sought with a general relativistic background. The generic solutions are verified by exploring different physical aspects, viz. energy conditions, mass-radius relation, stability of the models, in connection to their validity. It is observed that the model presented here for compact stars is compatible with all these physical tests and thus physically acceptable as far as the compact star candidates RXJ 1856-37, SAX J 1808.4-3658 (SS1) and SAX J 1808.4-3658 (SS2) are concerned. (orig.)
da Paz, I. G.; Soldati, Rodolfo; Cabral, L. A.; de Oliveira, J. G. G.; Sampaio, Marcos
2016-12-01
Recently there have been experimental results on Poisson spot matter-wave interferometry followed by theoretical models describing the relative importance of the wave and particle behaviors for the phenomenon. We propose an analytical theoretical model for Poisson's spot with matter waves based on the Babinet principle, in which we use the results for free propagation and single-slit diffraction. We take into account effects of loss of coherence and finite detection area using the propagator for a quantum particle interacting with an environment. We observe that the matter-wave Gouy phase plays a role in the existence of the central peak and thus corroborates the predominantly wavelike character of the Poisson's spot. Our model shows remarkable agreement with the experimental data for deuterium (D2) molecules.
Generalised additive modelling approach to the fermentation process of glutamate.
Liu, Chun-Bo; Li, Yun; Pan, Feng; Shi, Zhong-Ping
2011-03-01
In this work, generalised additive models (GAMs) were used for the first time to model the fermentation of glutamate (Glu). It was found that three fermentation parameters fermentation time (T), dissolved oxygen (DO) and oxygen uptake rate (OUR) could capture 97% variance of the production of Glu during the fermentation process through a GAM model calibrated using online data from 15 fermentation experiments. This model was applied to investigate the individual and combined effects of T, DO and OUR on the production of Glu. The conditions to optimize the fermentation process were proposed based on the simulation study from this model. Results suggested that the production of Glu can reach a high level by controlling concentration levels of DO and OUR to the proposed optimization conditions during the fermentation process. The GAM approach therefore provides an alternative way to model and optimize the fermentation process of Glu. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.
Spatial generalised linear mixed models based on distances.
Melo, Oscar O; Mateu, Jorge; Melo, Carlos E
2016-10-01
Risk models derived from environmental data have been widely shown to be effective in delineating geographical areas of risk because they are intuitively easy to understand. We present a new method based on distances, which allows the modelling of continuous and non-continuous random variables through distance-based spatial generalised linear mixed models. The parameters are estimated using Markov chain Monte Carlo maximum likelihood, which is a feasible and a useful technique. The proposed method depends on a detrending step built from continuous or categorical explanatory variables, or a mixture among them, by using an appropriate Euclidean distance. The method is illustrated through the analysis of the variation in the prevalence of Loa loa among a sample of village residents in Cameroon, where the explanatory variables included elevation, together with maximum normalised-difference vegetation index and the standard deviation of normalised-difference vegetation index calculated from repeated satellite scans over time. © The Author(s) 2013.
Comparison of Poisson structures and Poisson-Lie dynamical r-matrices
Enriquez, B.; Etingof, P.; Marshall, I.
2004-01-01
We construct a Poisson isomorphism between the formal Poisson manifolds g^* and G^*, where g is a finite dimensional quasitriangular Lie bialgebra. Here g^* is equipped with its Lie-Poisson (or Kostant-Kirillov-Souriau) structure, and G^* with its Poisson-Lie structure. We also quantize Poisson-Lie dynamical r-matrices of Balog-Feher-Palla.
Generalised structures for N=1 AdS backgrounds
Energy Technology Data Exchange (ETDEWEB)
Coimbra, André [Institut für Theoretische Physik & Center for Quantum Engineering and Spacetime Research,Leibniz Universität Hannover,Appelstraße 2, 30167 Hannover (Germany); Strickland-Constable, Charles [Institut de physique théorique, Université Paris Saclay, CEA, CNRS, Orme des Merisiers, F-91191 Gif-sur-Yvette (France)
2016-11-16
We expand upon a claim made in a recent paper [http://arxiv.org/abs/1411.5721] that generic minimally supersymmetric AdS backgrounds of warped flux compactifications of Type II and M theory can be understood as satisfying a straightforward weak integrability condition in the language of E{sub d(d)}×ℝ{sup +} generalised geometry. Namely, they are spaces admitting a generalised G-structure set by the Killing spinor and with constant singlet generalised intrinsic torsion.
Background stratified Poisson regression analysis of cohort data.
Richardson, David B; Langholz, Bryan
2012-03-01
Background stratified Poisson regression is an approach that has been used in the analysis of data derived from a variety of epidemiologically important studies of radiation-exposed populations, including uranium miners, nuclear industry workers, and atomic bomb survivors. We describe a novel approach to fit Poisson regression models that adjust for a set of covariates through background stratification while directly estimating the radiation-disease association of primary interest. The approach makes use of an expression for the Poisson likelihood that treats the coefficients for stratum-specific indicator variables as 'nuisance' variables and avoids the need to explicitly estimate the coefficients for these stratum-specific parameters. Log-linear models, as well as other general relative rate models, are accommodated. This approach is illustrated using data from the Life Span Study of Japanese atomic bomb survivors and data from a study of underground uranium miners. The point estimate and confidence interval obtained from this 'conditional' regression approach are identical to the values obtained using unconditional Poisson regression with model terms for each background stratum. Moreover, it is shown that the proposed approach allows estimation of background stratified Poisson regression models of non-standard form, such as models that parameterize latency effects, as well as regression models in which the number of strata is large, thereby overcoming the limitations of previously available statistical software for fitting background stratified Poisson regression models.
Fast and Accurate Poisson Denoising With Trainable Nonlinear Diffusion.
Feng, Wensen; Qiao, Peng; Chen, Yunjin; Wensen Feng; Peng Qiao; Yunjin Chen; Feng, Wensen; Chen, Yunjin; Qiao, Peng
2018-06-01
The degradation of the acquired signal by Poisson noise is a common problem for various imaging applications, such as medical imaging, night vision, and microscopy. Up to now, many state-of-the-art Poisson denoising techniques mainly concentrate on achieving utmost performance, with little consideration for the computation efficiency. Therefore, in this paper we aim to propose an efficient Poisson denoising model with both high computational efficiency and recovery quality. To this end, we exploit the newly developed trainable nonlinear reaction diffusion (TNRD) model which has proven an extremely fast image restoration approach with performance surpassing recent state-of-the-arts. However, the straightforward direct gradient descent employed in the original TNRD-based denoising task is not applicable in this paper. To solve this problem, we resort to the proximal gradient descent method. We retrain the model parameters, including the linear filters and influence functions by taking into account the Poisson noise statistics, and end up with a well-trained nonlinear diffusion model specialized for Poisson denoising. The trained model provides strongly competitive results against state-of-the-art approaches, meanwhile bearing the properties of simple structure and high efficiency. Furthermore, our proposed model comes along with an additional advantage, that the diffusion process is well-suited for parallel computation on graphics processing units (GPUs). For images of size , our GPU implementation takes less than 0.1 s to produce state-of-the-art Poisson denoising performance.
Background stratified Poisson regression analysis of cohort data
International Nuclear Information System (INIS)
Richardson, David B.; Langholz, Bryan
2012-01-01
Background stratified Poisson regression is an approach that has been used in the analysis of data derived from a variety of epidemiologically important studies of radiation-exposed populations, including uranium miners, nuclear industry workers, and atomic bomb survivors. We describe a novel approach to fit Poisson regression models that adjust for a set of covariates through background stratification while directly estimating the radiation-disease association of primary interest. The approach makes use of an expression for the Poisson likelihood that treats the coefficients for stratum-specific indicator variables as 'nuisance' variables and avoids the need to explicitly estimate the coefficients for these stratum-specific parameters. Log-linear models, as well as other general relative rate models, are accommodated. This approach is illustrated using data from the Life Span Study of Japanese atomic bomb survivors and data from a study of underground uranium miners. The point estimate and confidence interval obtained from this 'conditional' regression approach are identical to the values obtained using unconditional Poisson regression with model terms for each background stratum. Moreover, it is shown that the proposed approach allows estimation of background stratified Poisson regression models of non-standard form, such as models that parameterize latency effects, as well as regression models in which the number of strata is large, thereby overcoming the limitations of previously available statistical software for fitting background stratified Poisson regression models. (orig.)
Graded geometry and Poisson reduction
Cattaneo, A S; Zambon, M
2009-01-01
The main result of [2] extends the Marsden-Ratiu reduction theorem [4] in Poisson geometry, and is proven by means of graded geometry. In this note we provide the background material about graded geometry necessary for the proof in [2]. Further, we provide an alternative algebraic proof for the main result. ©2009 American Institute of Physics
Acute generalised exanthematous pustulosis: An update
Directory of Open Access Journals (Sweden)
Abhishek De
2018-01-01
Full Text Available Acute generalised exanthematous pustulosis (AGEP is a severe cutaneous adverse reaction and is attributed to drugs in more than 90% of cases. It is a rare disease, with an estimated incidence of 1–5 patients per million per year. The clinical manifestations characterised by the rapid development of sterile pustular lesions, fever and leucocytosis. Number of drugs has been reported to be associated with AGEP, most common being the antibiotics. Histopathologically there is intraepidermal pustules and papillary dermal oedema with neutrophilic and eosinophilic infiltrations. Systemic involvement can be present in more severe cases. Early diagnosis with withdrawal of the causative drug is the most important step in the management. Treatment includes supportive care, prevention of antibiotics and use of a potent topical steroid.
Threshold corrections, generalised prepotentials and Eichler integrals
Angelantonj, Carlo; Pioline, Boris
2015-06-12
We continue our study of one-loop integrals associated to BPS-saturated amplitudes in $\\mathcal{N}=2$ heterotic vacua. We compute their large-volume behaviour, and express them as Fourier series in the complexified volume, with Fourier coefficients given in terms of Niebur-Poincar\\'e series in the complex structure modulus. The closure of Niebur-Poincar\\'e series under modular derivatives implies that such integrals derive from holomorphic prepotentials $f_n$, generalising the familiar prepotential of $\\mathcal{N}=2$ supergravity. These holomorphic prepotentials transform anomalously under T-duality, in a way characteristic of Eichler integrals. We use this observation to compute their quantum monodromies under the duality group. We extend the analysis to modular integrals with respect to Hecke congruence subgroups, which naturally arise in compactifications on non-factorisable tori and freely-acting orbifolds. In this case, we derive new explicit results including closed-form expressions for integrals involv...
Acute Generalised Exanthematous Pustulosis: An Update.
De, Abhishek; Das, Sudip; Sarda, Aarti; Pal, Dayamay; Biswas, Projna
2018-01-01
Acute generalised exanthematous pustulosis (AGEP) is a severe cutaneous adverse reaction and is attributed to drugs in more than 90% of cases. It is a rare disease, with an estimated incidence of 1-5 patients per million per year. The clinical manifestations characterised by the rapid development of sterile pustular lesions, fever and leucocytosis. Number of drugs has been reported to be associated with AGEP, most common being the antibiotics. Histopathologically there is intraepidermal pustules and papillary dermal oedema with neutrophilic and eosinophilic infiltrations. Systemic involvement can be present in more severe cases. Early diagnosis with withdrawal of the causative drug is the most important step in the management. Treatment includes supportive care, prevention of antibiotics and use of a potent topical steroid.
Normal forms for Poisson maps and symplectic groupoids around Poisson transversals.
Frejlich, Pedro; Mărcuț, Ioan
2018-01-01
Poisson transversals are submanifolds in a Poisson manifold which intersect all symplectic leaves transversally and symplectically. In this communication, we prove a normal form theorem for Poisson maps around Poisson transversals. A Poisson map pulls a Poisson transversal back to a Poisson transversal, and our first main result states that simultaneous normal forms exist around such transversals, for which the Poisson map becomes transversally linear, and intertwines the normal form data of the transversals. Our second result concerns symplectic integrations. We prove that a neighborhood of a Poisson transversal is integrable exactly when the Poisson transversal itself is integrable, and in that case we prove a normal form theorem for the symplectic groupoid around its restriction to the Poisson transversal, which puts all structure maps in normal form. We conclude by illustrating our results with examples arising from Lie algebras.
The two ∇6R4 type invariants and their higher order generalisation
International Nuclear Information System (INIS)
Bossard, Guillaume; Verschinin, Valentin
2015-01-01
We show that there are two distinct classes of ∇ 6 R 4 type supersymmetry invariants in maximal supergravity. The second class includes a coupling in F 2 ∇ 4 R 4 that generalises to 1/8 BPS protected F 2k ∇ 4 R 4 couplings. We work out the supersymmetry constraints on the corresponding threshold functions, and argue that the functions in the second class satisfy to homogeneous differential equations for arbitrary k≥1, such that the corresponding exact threshold functions in type II string theory should be proportional to Eisenstein series, which we identify. This analysis explains in particular that the exact ∇ 6 R 4 threshold function is the sum of an Eisenstein function and a solution to an inhomogeneous Poisson equation in string theory.
On a quaternionic generalisation of the Riccati differential equation
Kravchenko, Viktor; Kravchenko, Vladislav; Williams, Benjamin
2001-01-01
A quaternionic partial differential equation is shown to be a generalisation of the Riccati ordinary differential equation and its relationship with the Schrodinger equation is established. Various approaches to the problem of finding particular solutions are explored, and the generalisations of two theorems of Euler on the Riccati differential equation, which correspond to the quaternionic equation, are given.
A generalised groundwater flow equation using the concept of non ...
African Journals Online (AJOL)
The classical Darcy law is generalised by regarding the water flow as a function of a non-integer order derivative of the piezometric head. This generalised law and the law of conservation of mass are then used to derive a new equation for groundwater flow. Numerical solutions of this equation for various fractional orders of ...
Generalised Brown Clustering and Roll-up Feature Generation
DEFF Research Database (Denmark)
Derczynski, Leon; Chester, Sean
2016-01-01
active set size. Moreover, the generalisation permits a novel approach to feature selection from Brown clusters: We show that the standard approach of shearing the Brown clustering output tree at arbitrary bitlengths is lossy and that features should be chosen instead by rolling up Generalised Brown...
Independent production and Poisson distribution
International Nuclear Information System (INIS)
Golokhvastov, A.I.
1994-01-01
The well-known statement of factorization of inclusive cross-sections in case of independent production of particles (or clusters, jets etc.) and the conclusion of Poisson distribution over their multiplicity arising from it do not follow from the probability theory in any way. Using accurately the theorem of the product of independent probabilities, quite different equations are obtained and no consequences relative to multiplicity distributions are obtained. 11 refs
A generalized gyrokinetic Poisson solver
International Nuclear Information System (INIS)
Lin, Z.; Lee, W.W.
1995-03-01
A generalized gyrokinetic Poisson solver has been developed, which employs local operations in the configuration space to compute the polarization density response. The new technique is based on the actual physical process of gyrophase-averaging. It is useful for nonlocal simulations using general geometry equilibrium. Since it utilizes local operations rather than the global ones such as FFT, the new method is most amenable to massively parallel algorithms
Analogues of Euler and Poisson Summation Formulae
Indian Academy of Sciences (India)
... f ( n ) have been obtained in a unified manner, where (()) is a periodic complex sequence; () is the divisor function and () is a sufficiently smooth function on [, ]. We also state a generalised Abel's summation formula, generalised Euler's summation formula and Euler's summation formula in several variables.
Deformations of the generalised Picard bundle
International Nuclear Information System (INIS)
Biswas, I.; Brambila-Paz, L.; Newstead, P.E.
2004-08-01
Let X be a nonsingular algebraic curve of genus g ≥ 3, and let Mξ denote the moduli space of stable vector bundles of rank n ≥ 2 and degree d with fixed determinant ξ over X such that n and d are coprime. We assume that if g = 3 then n ≥ 4 and if g = 4 then n ≥ 3, and suppose further that n 0 , d 0 are integers such that n 0 ≥ 1 and nd 0 + n 0 d > nn 0 (2g - 2). Let E be a semistable vector bundle over X of rank n 0 and degree d 0 . The generalised Picard bundle W ξ (E) is by definition the vector bundle over M ξ defined by the direct image p M ξ *(U ξ x p X * E) where U ξ is a universal vector bundle over X x M ξ . We obtain an inversion formula allowing us to recover E from W ξ (E) and show that the space of infinitesimal deformations of W ξ (E) is isomorphic to H 1 (X, End(E)). This construction gives a locally complete family of vector bundles over M ξ parametrised by the moduli space M(n 0 ,d 0 ) of stable bundles of rank n 0 and degree d 0 over X. If (n 0 ,d 0 ) = 1 and W ξ (E) is stable for all E is an element of M(n 0 ,d 0 ), the construction determines an isomorphism from M(n 0 ,d 0 ) to a connected component M 0 of a moduli space of stable sheaves over M ξ . This applies in particular when n 0 = 1, in which case M 0 is isomorphic to the Jacobian J of X as a polarised variety. The paper as a whole is a generalisation of results of Kempf and Mukai on Picard bundles over J, and is also related to a paper of Tyurin on the geometry of moduli of vector bundles. (author)
Poisson denoising on the sphere
Schmitt, J.; Starck, J. L.; Fadili, J.; Grenier, I.; Casandjian, J. M.
2009-08-01
In the scope of the Fermi mission, Poisson noise removal should improve data quality and make source detection easier. This paper presents a method for Poisson data denoising on sphere, called Multi-Scale Variance Stabilizing Transform on Sphere (MS-VSTS). This method is based on a Variance Stabilizing Transform (VST), a transform which aims to stabilize a Poisson data set such that each stabilized sample has an (asymptotically) constant variance. In addition, for the VST used in the method, the transformed data are asymptotically Gaussian. Thus, MS-VSTS consists in decomposing the data into a sparse multi-scale dictionary (wavelets, curvelets, ridgelets...), and then applying a VST on the coefficients in order to get quasi-Gaussian stabilized coefficients. In this present article, the used multi-scale transform is the Isotropic Undecimated Wavelet Transform. Then, hypothesis tests are made to detect significant coefficients, and the denoised image is reconstructed with an iterative method based on Hybrid Steepest Descent (HST). The method is tested on simulated Fermi data.
Singularities of Poisson structures and Hamiltonian bifurcations
Meer, van der J.C.
2010-01-01
Consider a Poisson structure on C8(R3,R) with bracket {, } and suppose that C is a Casimir function. Then {f, g} =<¿C, (¿g x ¿f) > is a possible Poisson structure. This confirms earlier observations concerning the Poisson structure for Hamiltonian systems that are reduced to a one degree of freedom
A Martingale Characterization of Mixed Poisson Processes.
1985-10-01
03LA A 11. TITLE (Inciuae Security Clanafication, ",A martingale characterization of mixed Poisson processes " ________________ 12. PERSONAL AUTHOR... POISSON PROCESSES Jostification .......... . ... . . Di.;t ib,,jtion by Availability Codes Dietmar Pfeifer* Technical University Aachen Dist Special and...Mixed Poisson processes play an important role in many branches of applied probability, for instance in insurance mathematics and physics (see Albrecht
An application of the Autoregressive Conditional Poisson (ACP) model
CSIR Research Space (South Africa)
Holloway, Jennifer P
2010-11-01
Full Text Available When modelling count data that comes in the form of a time series, the static Poisson regression and standard time series models are often not appropriate. A current study therefore involves the evaluation of several observation-driven and parameter...
Nonhomogeneous Poisson process with nonparametric frailty
International Nuclear Information System (INIS)
Slimacek, Vaclav; Lindqvist, Bo Henry
2016-01-01
The failure processes of heterogeneous repairable systems are often modeled by non-homogeneous Poisson processes. The common way to describe an unobserved heterogeneity between systems is to multiply the basic rate of occurrence of failures by a random variable (a so-called frailty) having a specified parametric distribution. Since the frailty is unobservable, the choice of its distribution is a problematic part of using these models, as are often the numerical computations needed in the estimation of these models. The main purpose of this paper is to develop a method for estimation of the parameters of a nonhomogeneous Poisson process with unobserved heterogeneity which does not require parametric assumptions about the heterogeneity and which avoids the frequently encountered numerical problems associated with the standard models for unobserved heterogeneity. The introduced method is illustrated on an example involving the power law process, and is compared to the standard gamma frailty model and to the classical model without unobserved heterogeneity. The derived results are confirmed in a simulation study which also reveals several not commonly known properties of the gamma frailty model and the classical model, and on a real life example. - Highlights: • A new method for estimation of a NHPP with frailty is introduced. • Introduced method does not require parametric assumptions about frailty. • The approach is illustrated on an example with the power law process. • The method is compared to the gamma frailty model and to the model without frailty.
Do horses generalise between objects during habituation?
DEFF Research Database (Denmark)
Christensen, Janne Winther; Zharkikh, Tatjana; Ladevig, Jan
2008-01-01
Habituation to frightening stimuli plays an important role in horse training. To investigate the extent to which horses generalise between different visual objects, 2-year-old stallions were habituated to feeding from a container placed inside a test arena and assigned as TEST (n = 12) or REFERENCE...... horses (n = 12). In Experiment 1, TEST horses were habituated to six objects (ball, barrel, board, box, cone, cylinder) presented in sequence in a balanced order. The objects were of similar size but different colour. Each object was placed 0.5 m in front of the feed container, forcing the horses to pass...... the object to get to the food. TEST horses received as many 2 min exposures to each object as required to meet a habituation criterion. We recorded behavioural reactions to the object, latency to feed, total eating time, and heart rate (HR) during all exposures. There was no significant decrease in initial...
Threshold corrections, generalised prepotentials and Eichler integrals
Directory of Open Access Journals (Sweden)
Carlo Angelantonj
2015-08-01
Full Text Available We continue our study of one-loop integrals associated to BPS-saturated amplitudes in N=2 heterotic vacua. We compute their large-volume behaviour, and express them as Fourier series in the complexified volume, with Fourier coefficients given in terms of Niebur–Poincaré series in the complex structure modulus. The closure of Niebur–Poincaré series under modular derivatives implies that such integrals derive from holomorphic prepotentials fn, generalising the familiar prepotential of N=2 supergravity. These holomorphic prepotentials transform anomalously under T-duality, in a way characteristic of Eichler integrals. We use this observation to compute their quantum monodromies under the duality group. We extend the analysis to modular integrals with respect to Hecke congruence subgroups, which naturally arise in compactifications on non-factorisable tori and freely-acting orbifolds. In this case, we derive new explicit results including closed-form expressions for integrals involving the Γ0(N Hauptmodul, a full characterisation of holomorphic prepotentials including their quantum monodromies, as well as concrete formulæ for holomorphic Yukawa couplings.
The cylindrical K-function and Poisson line cluster point processes
DEFF Research Database (Denmark)
Møller, Jesper; Safavimanesh, Farzaneh; Rasmussen, Jakob G.
Poisson line cluster point processes, is also introduced. Parameter estimation based on moment methods or Bayesian inference for this model is discussed when the underlying Poisson line process and the cluster memberships are treated as hidden processes. To illustrate the methodologies, we analyze two...
Modeling Repeated Count Data : Some Extensions of the Rasch Poisson Counts Model
van Duijn, M.A.J.; Jansen, Margo
1995-01-01
We consider data that can be summarized as an N X K table of counts-for example, test data obtained by administering K tests to N subjects. The cell entries y(ij) are assumed to be conditionally independent Poisson-distributed random variables, given the NK Poisson intensity parameters mu(ij). The
Wang, Fengwen
2018-05-01
This paper presents a systematic approach for designing 3D auxetic lattice materials, which exhibit constant negative Poisson's ratios over large strain intervals. A unit cell model mimicking tensile tests is established and based on the proposed model, the secant Poisson's ratio is defined as the negative ratio between the lateral and the longitudinal engineering strains. The optimization problem for designing a material unit cell with a target Poisson's ratio is formulated to minimize the average lateral engineering stresses under the prescribed deformations. Numerical results demonstrate that 3D auxetic lattice materials with constant Poisson's ratios can be achieved by the proposed optimization formulation and that two sets of material architectures are obtained by imposing different symmetry on the unit cell. Moreover, inspired by the topology-optimized material architecture, a subsequent shape optimization is proposed by parametrizing material architectures using super-ellipsoids. By designing two geometrical parameters, simple optimized material microstructures with different target Poisson's ratios are obtained. By interpolating these two parameters as polynomial functions of Poisson's ratios, material architectures for any Poisson's ratio in the interval of ν ∈ [ - 0.78 , 0.00 ] are explicitly presented. Numerical evaluations show that interpolated auxetic lattice materials exhibit constant Poisson's ratios in the target strain interval of [0.00, 0.20] and that 3D auxetic lattice material architectures with programmable Poisson's ratio are achievable.
Markov modulated Poisson process models incorporating covariates for rainfall intensity.
Thayakaran, R; Ramesh, N I
2013-01-01
Time series of rainfall bucket tip times at the Beaufort Park station, Bracknell, in the UK are modelled by a class of Markov modulated Poisson processes (MMPP) which may be thought of as a generalization of the Poisson process. Our main focus in this paper is to investigate the effects of including covariate information into the MMPP model framework on statistical properties. In particular, we look at three types of time-varying covariates namely temperature, sea level pressure, and relative humidity that are thought to be affecting the rainfall arrival process. Maximum likelihood estimation is used to obtain the parameter estimates, and likelihood ratio tests are employed in model comparison. Simulated data from the fitted model are used to make statistical inferences about the accumulated rainfall in the discrete time interval. Variability of the daily Poisson arrival rates is studied.
Stability analysis and observational measurement in chameleonic generalised Brans-Dicke cosmology
International Nuclear Information System (INIS)
Farajollahi, Hossein; Salehi, Amin
2011-01-01
We investigate the dynamics of the chameleonic Generalised Brans-Dicke model in flat FRW cosmology. In a new approach, a framework to study stability and attractor solutions in the phase space for the model is developed by simultaneously best fitting the stability and model parameters with the observational data. The results show that for an accelerating universe the phantom crossing does not occur in the past and near future
A study of the one dimensional total generalised variation regularisation problem
Papafitsoros, Konstantinos
2015-03-01
© 2015 American Institute of Mathematical Sciences. In this paper we study the one dimensional second order total generalised variation regularisation (TGV) problem with L2 data fitting term. We examine the properties of this model and we calculate exact solutions using simple piecewise affine functions as data terms. We investigate how these solutions behave with respect to the TGV parameters and we verify our results using numerical experiments.
A study of the one dimensional total generalised variation regularisation problem
Papafitsoros, Konstantinos; Bredies, Kristian
2015-01-01
© 2015 American Institute of Mathematical Sciences. In this paper we study the one dimensional second order total generalised variation regularisation (TGV) problem with L2 data fitting term. We examine the properties of this model and we calculate exact solutions using simple piecewise affine functions as data terms. We investigate how these solutions behave with respect to the TGV parameters and we verify our results using numerical experiments.
Semi-Poisson statistics in quantum chaos.
García-García, Antonio M; Wang, Jiao
2006-03-01
We investigate the quantum properties of a nonrandom Hamiltonian with a steplike singularity. It is shown that the eigenfunctions are multifractals and, in a certain range of parameters, the level statistics is described exactly by semi-Poisson statistics (SP) typical of pseudointegrable systems. It is also shown that our results are universal, namely, they depend exclusively on the presence of the steplike singularity and are not modified by smooth perturbations of the potential or the addition of a magnetic flux. Although the quantum properties of our system are similar to those of a disordered conductor at the Anderson transition, we report important quantitative differences in both the level statistics and the multifractal dimensions controlling the transition. Finally, the study of quantum transport properties suggests that the classical singularity induces quantum anomalous diffusion. We discuss how these findings may be experimentally corroborated by using ultracold atoms techniques.
Abad, A
2015-09-15
The purpose of this paper is to introduce an environmental generalised productivity indicator and its ratio-based counterpart. The innovative environmental generalised total factor productivity measures inherit the basic structure of both Hicks-Moorsteen productivity index and Luenberger-Hicks-Moorsteen productivity indicator. This methodological contribution shows that these new environmental generalised total factor productivity measures yield the earlier standard Hicks-Moorsteen index and Luenberger-Hicks-Moorsteen indicator, as well as environmental performance index, as special cases. Copyright © 2015 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
García-Artiles, María Dolores
2014-12-01
Full Text Available This paper presents the zero-inflated generalised Poisson distribution, which is useful when there is a large presence of zeros in the sample. After presenting the model, we develop a specific program based on Mathematica, overcoming some limitations of alternative approaches such as STATA or EViews, which do not include the zero-inflated Poisson distribution among its routines. The advantages of the model used and the proposed program are illustrated with a real example that is very appropriate to its features, namely an analysis of the factors influencing university students’ attendance at tutoring sessions. This example is particularly suitable to show the usefulness of the methodology presented because it includes a large number of zeros, reflecting the many occasions on which the students do not attend these sessions. The students’ place of residence, their attendance at lectures and the application of continual assessment are variables that seem to account for attendance at tutoring sessions.
Rational first integrals of geodesic equations and generalised hidden symmetries
International Nuclear Information System (INIS)
Aoki, Arata; Houri, Tsuyoshi; Tomoda, Kentaro
2016-01-01
We discuss novel generalisations of Killing tensors, which are introduced by considering rational first integrals of geodesic equations. We introduce the notion of inconstructible generalised Killing tensors, which cannot be constructed from ordinary Killing tensors. Moreover, we introduce inconstructible rational first integrals, which are constructed from inconstructible generalised Killing tensors, and provide a method for checking the inconstructibility of a rational first integral. Using the method, we show that the rational first integral of the Collinson–O’Donnell solution is not inconstructible. We also provide several examples of metrics admitting an inconstructible rational first integral in two and four-dimensions, by using the Maciejewski–Przybylska system. Furthermore, we attempt to generalise other hidden symmetries such as Killing–Yano tensors. (paper)
Supersymmetric backgrounds, the Killing superalgebra, and generalised special holonomy
Energy Technology Data Exchange (ETDEWEB)
Coimbra, André [Institut des Hautes Études Scientifiques, Le Bois-Marie,35 route de Chartres, F-91440 Bures-sur-Yvette (France); Strickland-Constable, Charles [Institut des Hautes Études Scientifiques, Le Bois-Marie,35 route de Chartres, F-91440 Bures-sur-Yvette (France); Institut de physique théorique, Université Paris Saclay, CEA, CNRS,Orme des Merisiers, F-91191 Gif-sur-Yvette (France)
2016-11-10
We prove that, for M theory or type II, generic Minkowski flux backgrounds preserving N supersymmetries in dimensions D≥4 correspond precisely to integrable generalised G{sub N} structures, where G{sub N} is the generalised structure group defined by the Killing spinors. In other words, they are the analogues of special holonomy manifolds in E{sub d(d)}×ℝ{sup +} generalised geometry. In establishing this result, we introduce the Kosmann-Dorfman bracket, a generalisation of Kosmann’s Lie derivative of spinors. This allows us to write down the internal sector of the Killing superalgebra, which takes a rather simple form and whose closure is the key step in proving the main result. In addition, we find that the eleven-dimensional Killing superalgebra of these backgrounds is necessarily the supertranslational part of the N-extended super-Poincaré algebra.
Superstatistical generalised Langevin equation: non-Gaussian viscoelastic anomalous diffusion
Ślęzak, Jakub; Metzler, Ralf; Magdziarz, Marcin
2018-02-01
Recent advances in single particle tracking and supercomputing techniques demonstrate the emergence of normal or anomalous, viscoelastic diffusion in conjunction with non-Gaussian distributions in soft, biological, and active matter systems. We here formulate a stochastic model based on a generalised Langevin equation in which non-Gaussian shapes of the probability density function and normal or anomalous diffusion have a common origin, namely a random parametrisation of the stochastic force. We perform a detailed analysis demonstrating how various types of parameter distributions for the memory kernel result in exponential, power law, or power-log law tails of the memory functions. The studied system is also shown to exhibit a further unusual property: the velocity has a Gaussian one point probability density but non-Gaussian joint distributions. This behaviour is reflected in the relaxation from a Gaussian to a non-Gaussian distribution observed for the position variable. We show that our theoretical results are in excellent agreement with stochastic simulations.
Kolkata Restaurant Problem as a Generalised El Farol Bar Problem
Chakrabarti, Bikas K.
Generalisation of the El Farol bar problem to that of many bars here leads to the Kolkata restaurant problem, where the decision to go to any restaurant or not is much simpler (depending on the previous experience of course, as in the El Farol bar problem). This generalised problem can be exactly analysed in some limiting cases discussed here. The fluctuation in the restaurant service can be shown to have precisely an inverse cubic behavior, as widely seen in the stock market fluctuations.
Loop Amplitudes in Pure Yang-Mills from Generalised Unitarity
Brandhuber, Andreas; McNamara, Simon; Spence, Bill; Travaglini, Gabriele
2005-01-01
We show how generalised unitarity cuts in D = 4 - 2 epsilon dimensions can be used to calculate efficiently complete one-loop scattering amplitudes in non-supersymmetric Yang-Mills theory. This approach naturally generates the rational terms in the amplitudes, as well as the cut-constructible parts. We test the validity of our method by re-deriving the one-loop ++++, -+++, --++, -+-+ and +++++ gluon scattering amplitudes using generalised quadruple cuts and triple cuts in D dimensions.
Loop amplitudes in pure Yang-Mills from generalised unitarity
International Nuclear Information System (INIS)
Brandhuber, Andreas; McNamara, Simon; Spence, Bill; Travaglini, Gabriele
2005-01-01
We show how generalised unitarity cuts in D = 4-2ε dimensions can be used to calculate efficiently complete one-loop scattering amplitudes in non-supersymmetric Yang-Mills theory. This approach naturally generates the rational terms in the amplitudes, as well as the cut-constructible parts. We test the validity of our method by re-deriving the one-loop ++++, -+++, --++, -+-+ and +++++ gluon scattering amplitudes using generalised quadruple cuts and triple cuts in D dimensions
Loop amplitudes in pure Yang-Mills from generalised unitarity
Energy Technology Data Exchange (ETDEWEB)
Brandhuber, Andreas [Department of Physics, Queen Mary, University of London, Mile End Road, London, E1 4NS (United Kingdom); McNamara, Simon [Department of Physics, Queen Mary, University of London, Mile End Road, London, E1 4NS (United Kingdom); Spence, Bill [Department of Physics, Queen Mary, University of London, Mile End Road, London, E1 4NS (United Kingdom); Travaglini, Gabriele [Department of Physics, Queen Mary, University of London, Mile End Road, London, E1 4NS (United Kingdom)
2005-10-15
We show how generalised unitarity cuts in D = 4-2{epsilon} dimensions can be used to calculate efficiently complete one-loop scattering amplitudes in non-supersymmetric Yang-Mills theory. This approach naturally generates the rational terms in the amplitudes, as well as the cut-constructible parts. We test the validity of our method by re-deriving the one-loop ++++, -+++, --++, -+-+ and +++++ gluon scattering amplitudes using generalised quadruple cuts and triple cuts in D dimensions.
Towards a 'pointless' generalisation of Yang-Mills theory
International Nuclear Information System (INIS)
Chan Hongmo; Tsou Sheungtsun
1989-05-01
We examine some generalisations in physical concepts of gauge theories, leading towards a scenario corresponding to non-commutative geometry, where the concept of locality loses its usual meaning of being associated with points on a base manifold and becomes intertwined with the concept of internal symmetry, suggesting thereby a gauge theory of extended objects. Examples are given where such generalised gauge structures can be realised, in particular that of string theory. (author)
Generalised BRST symmetry and gaugeon formalism for perturbative quantum gravity: Novel observation
International Nuclear Information System (INIS)
Upadhyay, Sudhaker
2014-01-01
In this paper the novel features of Yokoyama gaugeon formalism are stressed out for the theory of perturbative quantum gravity in the Einstein curved spacetime. The quantum gauge transformations for the theory of perturbative gravity are demonstrated in the framework of gaugeon formalism. These quantum gauge transformations lead to renormalised gauge parameter. Further, we analyse the BRST symmetric gaugeon formalism which embeds more acceptable Kugo–Ojima subsidiary condition. Further, the BRST symmetry is made finite and field-dependent. Remarkably, the Jacobian of path integral under finite and field-dependent BRST symmetry amounts to the exact gaugeon action in the effective theory of perturbative quantum gravity. -- Highlights: •We analyse the perturbative gravity in gaugeon formalism. •The generalisation of BRST transformation is also studied in this context. •Within the generalised BRST framework we found the exact gaugeon modes in the theory
Poisson's ratio of fiber-reinforced composites
Christiansson, Henrik; Helsing, Johan
1996-05-01
Poisson's ratio flow diagrams, that is, the Poisson's ratio versus the fiber fraction, are obtained numerically for hexagonal arrays of elastic circular fibers in an elastic matrix. High numerical accuracy is achieved through the use of an interface integral equation method. Questions concerning fixed point theorems and the validity of existing asymptotic relations are investigated and partially resolved. Our findings for the transverse effective Poisson's ratio, together with earlier results for random systems by other authors, make it possible to formulate a general statement for Poisson's ratio flow diagrams: For composites with circular fibers and where the phase Poisson's ratios are equal to 1/3, the system with the lowest stiffness ratio has the highest Poisson's ratio. For other choices of the elastic moduli for the phases, no simple statement can be made.
International Nuclear Information System (INIS)
Debnath, S.; Maji, Smarajit; Meyur, Sanjib
2014-01-01
We have obtained exact solution of the effective mass Schrödinger equation for the generalised Hylleraas potential. The exact bound state energy eigenvalues and corresponding eigenfunctions are presented. The bound state eigenfunctions are obtained in terms of the hypergeometric functions. Results are also given for the special case of potential parameter.
Singular reduction of Nambu-Poisson manifolds
Das, Apurba
The version of Marsden-Ratiu Poisson reduction theorem for Nambu-Poisson manifolds by a regular foliation have been studied by Ibáñez et al. In this paper, we show that this reduction procedure can be extended to the singular case. Under a suitable notion of Hamiltonian flow on the reduced space, we show that a set of Hamiltonians on a Nambu-Poisson manifold can also be reduced.
Characterizing the performance of the Conway-Maxwell Poisson generalized linear model.
Francis, Royce A; Geedipally, Srinivas Reddy; Guikema, Seth D; Dhavala, Soma Sekhar; Lord, Dominique; LaRocca, Sarah
2012-01-01
Count data are pervasive in many areas of risk analysis; deaths, adverse health outcomes, infrastructure system failures, and traffic accidents are all recorded as count events, for example. Risk analysts often wish to estimate the probability distribution for the number of discrete events as part of doing a risk assessment. Traditional count data regression models of the type often used in risk assessment for this problem suffer from limitations due to the assumed variance structure. A more flexible model based on the Conway-Maxwell Poisson (COM-Poisson) distribution was recently proposed, a model that has the potential to overcome the limitations of the traditional model. However, the statistical performance of this new model has not yet been fully characterized. This article assesses the performance of a maximum likelihood estimation method for fitting the COM-Poisson generalized linear model (GLM). The objectives of this article are to (1) characterize the parameter estimation accuracy of the MLE implementation of the COM-Poisson GLM, and (2) estimate the prediction accuracy of the COM-Poisson GLM using simulated data sets. The results of the study indicate that the COM-Poisson GLM is flexible enough to model under-, equi-, and overdispersed data sets with different sample mean values. The results also show that the COM-Poisson GLM yields accurate parameter estimates. The COM-Poisson GLM provides a promising and flexible approach for performing count data regression. © 2011 Society for Risk Analysis.
Nonlinear Poisson equation for heterogeneous media.
Hu, Langhua; Wei, Guo-Wei
2012-08-22
The Poisson equation is a widely accepted model for electrostatic analysis. However, the Poisson equation is derived based on electric polarizations in a linear, isotropic, and homogeneous dielectric medium. This article introduces a nonlinear Poisson equation to take into consideration of hyperpolarization effects due to intensive charges and possible nonlinear, anisotropic, and heterogeneous media. Variational principle is utilized to derive the nonlinear Poisson model from an electrostatic energy functional. To apply the proposed nonlinear Poisson equation for the solvation analysis, we also construct a nonpolar solvation energy functional based on the nonlinear Poisson equation by using the geometric measure theory. At a fixed temperature, the proposed nonlinear Poisson theory is extensively validated by the electrostatic analysis of the Kirkwood model and a set of 20 proteins, and the solvation analysis of a set of 17 small molecules whose experimental measurements are also available for a comparison. Moreover, the nonlinear Poisson equation is further applied to the solvation analysis of 21 compounds at different temperatures. Numerical results are compared to theoretical prediction, experimental measurements, and those obtained from other theoretical methods in the literature. A good agreement between our results and experimental data as well as theoretical results suggests that the proposed nonlinear Poisson model is a potentially useful model for electrostatic analysis involving hyperpolarization effects. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Non-holonomic dynamics and Poisson geometry
International Nuclear Information System (INIS)
Borisov, A V; Mamaev, I S; Tsiganov, A V
2014-01-01
This is a survey of basic facts presently known about non-linear Poisson structures in the analysis of integrable systems in non-holonomic mechanics. It is shown that by using the theory of Poisson deformations it is possible to reduce various non-holonomic systems to dynamical systems on well-understood phase spaces equipped with linear Lie-Poisson brackets. As a result, not only can different non-holonomic systems be compared, but also fairly advanced methods of Poisson geometry and topology can be used for investigating them. Bibliography: 95 titles
Information content of poisson images
International Nuclear Information System (INIS)
Cederlund, J.
1979-04-01
One major problem when producing images with the aid of Poisson distributed quanta is how best to compromise between spatial and contrast resolution. Increasing the number of image elements improves spatial resolution, but at the cost of fewer quanta per image element, which reduces contrast resolution. Information theory arguments are used to analyse this problem. It is argued that information capacity is a useful concept to describe an important property of the imaging device, but that in order to compute the information content of an image produced by this device some statistical properties (such as the a priori probability of the densities) of the object to be depicted must be taken into account. If these statistical properties are not known one cannot make a correct choice between spatial and contrast resolution. (author)
Designing synthetic networks in silico: a generalised evolutionary algorithm approach.
Smith, Robert W; van Sluijs, Bob; Fleck, Christian
2017-12-02
Evolution has led to the development of biological networks that are shaped by environmental signals. Elucidating, understanding and then reconstructing important network motifs is one of the principal aims of Systems & Synthetic Biology. Consequently, previous research has focused on finding optimal network structures and reaction rates that respond to pulses or produce stable oscillations. In this work we present a generalised in silico evolutionary algorithm that simultaneously finds network structures and reaction rates (genotypes) that can satisfy multiple defined objectives (phenotypes). The key step to our approach is to translate a schema/binary-based description of biological networks into systems of ordinary differential equations (ODEs). The ODEs can then be solved numerically to provide dynamic information about an evolved networks functionality. Initially we benchmark algorithm performance by finding optimal networks that can recapitulate concentration time-series data and perform parameter optimisation on oscillatory dynamics of the Repressilator. We go on to show the utility of our algorithm by finding new designs for robust synthetic oscillators, and by performing multi-objective optimisation to find a set of oscillators and feed-forward loops that are optimal at balancing different system properties. In sum, our results not only confirm and build on previous observations but we also provide new designs of synthetic oscillators for experimental construction. In this work we have presented and tested an evolutionary algorithm that can design a biological network to produce desired output. Given that previous designs of synthetic networks have been limited to subregions of network- and parameter-space, the use of our evolutionary optimisation algorithm will enable Synthetic Biologists to construct new systems with the potential to display a wider range of complex responses.
On (co)homology of Frobenius Poisson algebras
Zhu, Can; Van Oystaeyen, Fred; ZHANG, Yinhuo
2014-01-01
In this paper, we study Poisson (co)homology of a Frobenius Poisson algebra. More precisely, we show that there exists a duality between Poisson homology and Poisson cohomology of Frobenius Poisson algebras, similar to that between Hochschild homology and Hochschild cohomology of Frobenius algebras. Then we use the non-degenerate bilinear form on a unimodular Frobenius Poisson algebra to construct a Batalin-Vilkovisky structure on the Poisson cohomology ring making it into a Batalin-Vilkovisk...
A New Generalisation of Macdonald Polynomials
Garbali, Alexandr; de Gier, Jan; Wheeler, Michael
2017-06-01
We introduce a new family of symmetric multivariate polynomials, whose coefficients are meromorphic functions of two parameters ( q, t) and polynomial in a further two parameters ( u, v). We evaluate these polynomials explicitly as a matrix product. At u = v = 0 they reduce to Macdonald polynomials, while at q = 0, u = v = s they recover a family of inhomogeneous symmetric functions originally introduced by Borodin.
Long, Kai; Yuan, Philip F.; Xu, Shanqing; Xie, Yi Min
2018-04-01
Most studies on composites assume that the constituent phases have different values of stiffness. Little attention has been paid to the effect of constituent phases having distinct Poisson's ratios. This research focuses on a concurrent optimization method for simultaneously designing composite structures and materials with distinct Poisson's ratios. The proposed method aims to minimize the mean compliance of the macrostructure with a given mass of base materials. In contrast to the traditional interpolation of the stiffness matrix through numerical results, an interpolation scheme of the Young's modulus and Poisson's ratio using different parameters is adopted. The numerical results demonstrate that the Poisson effect plays a key role in reducing the mean compliance of the final design. An important contribution of the present study is that the proposed concurrent optimization method can automatically distribute base materials with distinct Poisson's ratios between the macrostructural and microstructural levels under a single constraint of the total mass.
Comment on: 'A Poisson resampling method for simulating reduced counts in nuclear medicine images'
DEFF Research Database (Denmark)
de Nijs, Robin
2015-01-01
In order to be able to calculate half-count images from already acquired data, White and Lawson published their method based on Poisson resampling. They verified their method experimentally by measurements with a Co-57 flood source. In this comment their results are reproduced and confirmed...... by a direct numerical simulation in Matlab. Not only Poisson resampling, but also two direct redrawing methods were investigated. Redrawing methods were based on a Poisson and a Gaussian distribution. Mean, standard deviation, skewness and excess kurtosis half-count/full-count ratios were determined for all...... methods, and compared to the theoretical values for a Poisson distribution. Statistical parameters showed the same behavior as in the original note and showed the superiority of the Poisson resampling method. Rounding off before saving of the half count image had a severe impact on counting statistics...
Particle-wave discrimination in Poisson spot experiments
International Nuclear Information System (INIS)
Reisinger, T; Bracco, G; Holst, B
2011-01-01
Matter-wave interferometry has been used extensively over the last few years to demonstrate the quantum-mechanical wave nature of increasingly larger and more massive particles. We have recently suggested the use of the historical Poisson spot setup to test the diffraction properties of larger objects. In this paper, we present the results of a classical particle van der Waals (vdW) force model for a Poisson spot experimental setup and compare these to Fresnel diffraction calculations with a vdW phase term. We include the effect of disc-edge roughness in both models. Calculations are performed with D 2 and with C 70 using realistic parameters. We find that the sensitivity of the on-axis interference/focus spot to disc-edge roughness is very different in the two cases. We conclude that by measuring the intensity on the optical axis as a function of disc-edge roughness, it can be determined whether the objects behave as de Broglie waves or classical particles. The scaling of the Poisson spot experiment to larger molecular masses is, however, not as favorable as in the case of near-field light-grating-based interferometers. Instead, we discuss the possibility of studying the Casimir-Polder potential using the Poisson spot setup.
POISSON, Analysis Solution of Poisson Problems in Probabilistic Risk Assessment
International Nuclear Information System (INIS)
Froehner, F.H.
1986-01-01
1 - Description of program or function: Purpose of program: Analytic treatment of two-stage Poisson problem in Probabilistic Risk Assessment. Input: estimated a-priori mean failure rate and error factor of system considered (for calculation of stage-1 prior), number of failures and operating times for similar systems (for calculation of stage-2 prior). Output: a-posteriori probability distributions on linear and logarithmic time scale (on specified time grid) and expectation values of failure rate and error factors are calculated for: - stage-1 a-priori distribution, - stage-1 a-posteriori distribution, - stage-2 a-priori distribution, - stage-2 a-posteriori distribution. 2 - Method of solution: Bayesian approach with conjugate stage-1 prior, improved with experience from similar systems to yield stage-2 prior, and likelihood function from experience with system under study (documentation see below under 10.). 3 - Restrictions on the complexity of the problem: Up to 100 similar systems (including the system considered), arbitrary number of problems (failure types) with same grid
Critical elements on fitting the Bayesian multivariate Poisson Lognormal model
Zamzuri, Zamira Hasanah binti
2015-10-01
Motivated by a problem on fitting multivariate models to traffic accident data, a detailed discussion of the Multivariate Poisson Lognormal (MPL) model is presented. This paper reveals three critical elements on fitting the MPL model: the setting of initial estimates, hyperparameters and tuning parameters. These issues have not been highlighted in the literature. Based on simulation studies conducted, we have shown that to use the Univariate Poisson Model (UPM) estimates as starting values, at least 20,000 iterations are needed to obtain reliable final estimates. We also illustrated the sensitivity of the specific hyperparameter, which if it is not given extra attention, may affect the final estimates. The last issue is regarding the tuning parameters where they depend on the acceptance rate. Finally, a heuristic algorithm to fit the MPL model is presented. This acts as a guide to ensure that the model works satisfactorily given any data set.
Square root approximation to the poisson channel
Tsiatmas, A.; Willems, F.M.J.; Baggen, C.P.M.J.
2013-01-01
Starting from the Poisson model we present a channel model for optical communications, called the Square Root (SR) Channel, in which the noise is additive Gaussian with constant variance. Initially, we prove that for large peak or average power, the transmission rate of a Poisson Channel when coding
A Seemingly Unrelated Poisson Regression Model
King, Gary
1989-01-01
This article introduces a new estimator for the analysis of two contemporaneously correlated endogenous event count variables. This seemingly unrelated Poisson regression model (SUPREME) estimator combines the efficiencies created by single equation Poisson regression model estimators and insights from "seemingly unrelated" linear regression models.
Poisson geometry from a Dirac perspective
Meinrenken, Eckhard
2018-03-01
We present proofs of classical results in Poisson geometry using techniques from Dirac geometry. This article is based on mini-courses at the Poisson summer school in Geneva, June 2016, and at the workshop Quantum Groups and Gravity at the University of Waterloo, April 2016.
Associative and Lie deformations of Poisson algebras
Remm, Elisabeth
2011-01-01
Considering a Poisson algebra as a non associative algebra satisfying the Markl-Remm identity, we study deformations of Poisson algebras as deformations of this non associative algebra. This gives a natural interpretation of deformations which preserves the underlying associative structure and we study deformations which preserve the underlying Lie algebra.
Comment on: 'A Poisson resampling method for simulating reduced counts in nuclear medicine images'.
de Nijs, Robin
2015-07-21
In order to be able to calculate half-count images from already acquired data, White and Lawson published their method based on Poisson resampling. They verified their method experimentally by measurements with a Co-57 flood source. In this comment their results are reproduced and confirmed by a direct numerical simulation in Matlab. Not only Poisson resampling, but also two direct redrawing methods were investigated. Redrawing methods were based on a Poisson and a Gaussian distribution. Mean, standard deviation, skewness and excess kurtosis half-count/full-count ratios were determined for all methods, and compared to the theoretical values for a Poisson distribution. Statistical parameters showed the same behavior as in the original note and showed the superiority of the Poisson resampling method. Rounding off before saving of the half count image had a severe impact on counting statistics for counts below 100. Only Poisson resampling was not affected by this, while Gaussian redrawing was less affected by it than Poisson redrawing. Poisson resampling is the method of choice, when simulating half-count (or less) images from full-count images. It simulates correctly the statistical properties, also in the case of rounding off of the images.
A twisted generalization of Novikov-Poisson algebras
Yau, Donald
2010-01-01
Hom-Novikov-Poisson algebras, which are twisted generalizations of Novikov-Poisson algebras, are studied. Hom-Novikov-Poisson algebras are shown to be closed under tensor products and several kinds of twistings. Necessary and sufficient conditions are given under which Hom-Novikov-Poisson algebras give rise to Hom-Poisson algebras.
Speech parts as Poisson processes.
Badalamenti, A F
2001-09-01
This paper presents evidence that six of the seven parts of speech occur in written text as Poisson processes, simple or recurring. The six major parts are nouns, verbs, adjectives, adverbs, prepositions, and conjunctions, with the interjection occurring too infrequently to support a model. The data consist of more than the first 5000 words of works by four major authors coded to label the parts of speech, as well as periods (sentence terminators). Sentence length is measured via the period and found to be normally distributed with no stochastic model identified for its occurrence. The models for all six speech parts but the noun significantly distinguish some pairs of authors and likewise for the joint use of all words types. Any one author is significantly distinguished from any other by at least one word type and sentence length very significantly distinguishes each from all others. The variety of word type use, measured by Shannon entropy, builds to about 90% of its maximum possible value. The rate constants for nouns are close to the fractions of maximum entropy achieved. This finding together with the stochastic models and the relations among them suggest that the noun may be a primitive organizer of written text.
[Application of detecting and taking overdispersion into account in Poisson regression model].
Bouche, G; Lepage, B; Migeot, V; Ingrand, P
2009-08-01
Researchers often use the Poisson regression model to analyze count data. Overdispersion can occur when a Poisson regression model is used, resulting in an underestimation of variance of the regression model parameters. Our objective was to take overdispersion into account and assess its impact with an illustration based on the data of a study investigating the relationship between use of the Internet to seek health information and number of primary care consultations. Three methods, overdispersed Poisson, a robust estimator, and negative binomial regression, were performed to take overdispersion into account in explaining variation in the number (Y) of primary care consultations. We tested overdispersion in the Poisson regression model using the ratio of the sum of Pearson residuals over the number of degrees of freedom (chi(2)/df). We then fitted the three models and compared parameter estimation to the estimations given by Poisson regression model. Variance of the number of primary care consultations (Var[Y]=21.03) was greater than the mean (E[Y]=5.93) and the chi(2)/df ratio was 3.26, which confirmed overdispersion. Standard errors of the parameters varied greatly between the Poisson regression model and the three other regression models. Interpretation of estimates from two variables (using the Internet to seek health information and single parent family) would have changed according to the model retained, with significant levels of 0.06 and 0.002 (Poisson), 0.29 and 0.09 (overdispersed Poisson), 0.29 and 0.13 (use of a robust estimator) and 0.45 and 0.13 (negative binomial) respectively. Different methods exist to solve the problem of underestimating variance in the Poisson regression model when overdispersion is present. The negative binomial regression model seems to be particularly accurate because of its theorical distribution ; in addition this regression is easy to perform with ordinary statistical software packages.
Poisson Regression Analysis of Illness and Injury Surveillance Data
Energy Technology Data Exchange (ETDEWEB)
Frome E.L., Watkins J.P., Ellis E.D.
2012-12-12
The Department of Energy (DOE) uses illness and injury surveillance to monitor morbidity and assess the overall health of the work force. Data collected from each participating site include health events and a roster file with demographic information. The source data files are maintained in a relational data base, and are used to obtain stratified tables of health event counts and person time at risk that serve as the starting point for Poisson regression analysis. The explanatory variables that define these tables are age, gender, occupational group, and time. Typical response variables of interest are the number of absences due to illness or injury, i.e., the response variable is a count. Poisson regression methods are used to describe the effect of the explanatory variables on the health event rates using a log-linear main effects model. Results of fitting the main effects model are summarized in a tabular and graphical form and interpretation of model parameters is provided. An analysis of deviance table is used to evaluate the importance of each of the explanatory variables on the event rate of interest and to determine if interaction terms should be considered in the analysis. Although Poisson regression methods are widely used in the analysis of count data, there are situations in which over-dispersion occurs. This could be due to lack-of-fit of the regression model, extra-Poisson variation, or both. A score test statistic and regression diagnostics are used to identify over-dispersion. A quasi-likelihood method of moments procedure is used to evaluate and adjust for extra-Poisson variation when necessary. Two examples are presented using respiratory disease absence rates at two DOE sites to illustrate the methods and interpretation of the results. In the first example the Poisson main effects model is adequate. In the second example the score test indicates considerable over-dispersion and a more detailed analysis attributes the over-dispersion to extra-Poisson
Thoracic involvement in generalised lymphatic anomaly (or lymphangiomatosis
Directory of Open Access Journals (Sweden)
Francesca Luisi
2016-06-01
Full Text Available Generalised lymphatic anomaly (GLA, also known as lymphangiomatosis, is a rare disease caused by congenital abnormalities of lymphatic development. It usually presents in childhood but can also be diagnosed in adults. GLA encompasses a wide spectrum of clinical manifestations ranging from single-organ involvement to generalised disease. Given the rarity of the disease, most of the information regarding it comes from case reports. To date, no clinical trials concerning treatment are available. This review focuses on thoracic GLA and summarises possible diagnostic and therapeutic approaches.
Generalised discrete torsion and mirror symmetry for G2 manifolds
International Nuclear Information System (INIS)
Gaberdiel, Matthias R.; Kaste, Peter
2004-01-01
A generalisation of discrete torsion is introduced in which different discrete torsion phases are considered for the different fixed points or twist fields of a twisted sector. The constraints that arise from modular invariance are analysed carefully. As an application we show how all the different resolutions of the T 7 /Z 2 3 orbifold of Joyce have an interpretation in terms of such generalised discrete torsion orbifolds. Furthermore, we show that these manifolds are pairwise identified under G 2 mirror symmetry. From a conformal field theory point of view, this mirror symmetry arises from an automorphism of the extended chiral algebra of the G 2 compactification. (author)
Constructions and classifications of projective Poisson varieties
Pym, Brent
2018-03-01
This paper is intended both as an introduction to the algebraic geometry of holomorphic Poisson brackets, and as a survey of results on the classification of projective Poisson manifolds that have been obtained in the past 20 years. It is based on the lecture series delivered by the author at the Poisson 2016 Summer School in Geneva. The paper begins with a detailed treatment of Poisson surfaces, including adjunction, ruled surfaces and blowups, and leading to a statement of the full birational classification. We then describe several constructions of Poisson threefolds, outlining the classification in the regular case, and the case of rank-one Fano threefolds (such as projective space). Following a brief introduction to the notion of Poisson subspaces, we discuss Bondal's conjecture on the dimensions of degeneracy loci on Poisson Fano manifolds. We close with a discussion of log symplectic manifolds with simple normal crossings degeneracy divisor, including a new proof of the classification in the case of rank-one Fano manifolds.
Constructions and classifications of projective Poisson varieties.
Pym, Brent
2018-01-01
This paper is intended both as an introduction to the algebraic geometry of holomorphic Poisson brackets, and as a survey of results on the classification of projective Poisson manifolds that have been obtained in the past 20 years. It is based on the lecture series delivered by the author at the Poisson 2016 Summer School in Geneva. The paper begins with a detailed treatment of Poisson surfaces, including adjunction, ruled surfaces and blowups, and leading to a statement of the full birational classification. We then describe several constructions of Poisson threefolds, outlining the classification in the regular case, and the case of rank-one Fano threefolds (such as projective space). Following a brief introduction to the notion of Poisson subspaces, we discuss Bondal's conjecture on the dimensions of degeneracy loci on Poisson Fano manifolds. We close with a discussion of log symplectic manifolds with simple normal crossings degeneracy divisor, including a new proof of the classification in the case of rank-one Fano manifolds.
Fractional poisson--a simple dose-response model for human norovirus.
Messner, Michael J; Berger, Philip; Nappier, Sharon P
2014-10-01
This study utilizes old and new Norovirus (NoV) human challenge data to model the dose-response relationship for human NoV infection. The combined data set is used to update estimates from a previously published beta-Poisson dose-response model that includes parameters for virus aggregation and for a beta-distribution that describes variable susceptibility among hosts. The quality of the beta-Poisson model is examined and a simpler model is proposed. The new model (fractional Poisson) characterizes hosts as either perfectly susceptible or perfectly immune, requiring a single parameter (the fraction of perfectly susceptible hosts) in place of the two-parameter beta-distribution. A second parameter is included to account for virus aggregation in the same fashion as it is added to the beta-Poisson model. Infection probability is simply the product of the probability of nonzero exposure (at least one virus or aggregate is ingested) and the fraction of susceptible hosts. The model is computationally simple and appears to be well suited to the data from the NoV human challenge studies. The model's deviance is similar to that of the beta-Poisson, but with one parameter, rather than two. As a result, the Akaike information criterion favors the fractional Poisson over the beta-Poisson model. At low, environmentally relevant exposure levels (Poisson model; however, caution is advised because no subjects were challenged at such a low dose. New low-dose data would be of great value to further clarify the NoV dose-response relationship and to support improved risk assessment for environmentally relevant exposures. © 2014 Society for Risk Analysis Published 2014. This article is a U.S. Government work and is in the public domain for the U.S.A.
Zero-inflated Conway-Maxwell Poisson Distribution to Analyze Discrete Data.
Sim, Shin Zhu; Gupta, Ramesh C; Ong, Seng Huat
2018-01-09
In this paper, we study the zero-inflated Conway-Maxwell Poisson (ZICMP) distribution and develop a regression model. Score and likelihood ratio tests are also implemented for testing the inflation/deflation parameter. Simulation studies are carried out to examine the performance of these tests. A data example is presented to illustrate the concepts. In this example, the proposed model is compared to the well-known zero-inflated Poisson (ZIP) and the zero- inflated generalized Poisson (ZIGP) regression models. It is shown that the fit by ZICMP is comparable or better than these models.
Poisson-Boltzmann-Nernst-Planck model
International Nuclear Information System (INIS)
Zheng Qiong; Wei Guowei
2011-01-01
The Poisson-Nernst-Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species in the system, since each ion species corresponds to one Nernst-Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst-Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst-Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson-Boltzmann and Nernst-Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations and external
Poisson-Boltzmann-Nernst-Planck model.
Zheng, Qiong; Wei, Guo-Wei
2011-05-21
The Poisson-Nernst-Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species in the system, since each ion species corresponds to one Nernst-Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst-Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst-Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson-Boltzmann and Nernst-Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations and external
Utility of natural generalised inverse technique in the interpretation of dyke structures
Digital Repository Service at National Institute of Oceanography (India)
Rao, M.M.M.; Murty, T.V.R.; Rao, P.R.; Lakshminarayana, S.; Subrahmanyam, A.S.; Murthy, K.S.R.
environs along the central west coast of India: analysis using EOF, J. Geophys.Res.,91(1986) 8523 -8526. 9 Marquardt D W, An algorithm for least-squares estimation of non-linear parameters, J. Soc. Indust. Appl. Math, 11 (1963) 431-441. INDIAN J. MAR... technique in reconstruction of gravity anomalies due to a fault, Indian J. Pure. Appl. Math., 34 (2003) 31-47. 16 Ramana Murty T V, Somayajulu Y K & Murty C S, Reconstruction of sound speed profile through natural generalised inverse technique, Indian J...
Relativistic generalisation of the Kroll-Watson formula
International Nuclear Information System (INIS)
Kaminski, J.Z.
1985-01-01
The relativistic analogue of the space-translation method is derived. Using this method the generalisation of the Kroll-Watson formula [1973, Phys. Rev. A. 8 804] is obtained for the scattering of an arbitrary charged particle (e.g. mesons, hyperons, quarks, etc). The separation of the background and resonant parts of the scattering amplitude is predicted. (author)
A note on a generalisation of Weyl's theory of gravitation
International Nuclear Information System (INIS)
Dereli, T.; Tucker, R.W.
1982-01-01
A scale-invariant gravitational theory due to Bach and Weyl is generalised by the inclusion of space-time torsion. The difference between the arbitrary and zero torsion constrained variations of the Weyl action is elucidated. Conformal rescaling properties of the gravitational fields are discussed. A new class of classical solutions with torsion is presented. (author)
Commitment of mathematicians in medicine: a personal experience, and generalisations.
Clairambault, Jean
2011-12-01
I will present here a personal point of view on the commitment of mathematicians in medicine. Starting from my personal experience, I will suggest generalisations including favourable signs and caveats to show how mathematicians can be welcome and helpful in medicine, both in a theoretical and in a practical way.
Gait analysis of adults with generalised joint hypermobility
DEFF Research Database (Denmark)
Simonsen, Erik B; Tegner, Heidi; Alkjær, Tine
2012-01-01
BACKGROUND: The majority of adults with Generalised Joint Hypermobility experience symptoms such as pain and joint instability, which is likely to influence their gait pattern. Accordingly, the purpose of the present project was to perform a biomechanical gait analysis on a group of patients...
Generalised time functions and finiteness of the Lorentzian distance
Rennie, Adam; Whale, Ben E.
2014-01-01
We show that finiteness of the Lorentzian distance is equivalent to the existence of generalised time functions with gradient uniformly bounded away from light cones. To derive this result we introduce new techniques to construct and manipulate achronal sets. As a consequence of these techniques we obtain a functional description of the Lorentzian distance extending the work of Franco and Moretti.
Conditional Poisson models: a flexible alternative to conditional logistic case cross-over analysis.
Armstrong, Ben G; Gasparrini, Antonio; Tobias, Aurelio
2014-11-24
The time stratified case cross-over approach is a popular alternative to conventional time series regression for analysing associations between time series of environmental exposures (air pollution, weather) and counts of health outcomes. These are almost always analyzed using conditional logistic regression on data expanded to case-control (case crossover) format, but this has some limitations. In particular adjusting for overdispersion and auto-correlation in the counts is not possible. It has been established that a Poisson model for counts with stratum indicators gives identical estimates to those from conditional logistic regression and does not have these limitations, but it is little used, probably because of the overheads in estimating many stratum parameters. The conditional Poisson model avoids estimating stratum parameters by conditioning on the total event count in each stratum, thus simplifying the computing and increasing the number of strata for which fitting is feasible compared with the standard unconditional Poisson model. Unlike the conditional logistic model, the conditional Poisson model does not require expanding the data, and can adjust for overdispersion and auto-correlation. It is available in Stata, R, and other packages. By applying to some real data and using simulations, we demonstrate that conditional Poisson models were simpler to code and shorter to run than are conditional logistic analyses and can be fitted to larger data sets than possible with standard Poisson models. Allowing for overdispersion or autocorrelation was possible with the conditional Poisson model but when not required this model gave identical estimates to those from conditional logistic regression. Conditional Poisson regression models provide an alternative to case crossover analysis of stratified time series data with some advantages. The conditional Poisson model can also be used in other contexts in which primary control for confounding is by fine
The two ∇{sup 6}R{sup 4} type invariants and their higher order generalisation
Energy Technology Data Exchange (ETDEWEB)
Bossard, Guillaume; Verschinin, Valentin [Centre de Physique Théorique, Ecole Polytechnique, CNRS,91128 Palaiseau cedex (France)
2015-07-29
We show that there are two distinct classes of ∇{sup 6}R{sup 4} type supersymmetry invariants in maximal supergravity. The second class includes a coupling in F{sup 2}∇{sup 4}R{sup 4} that generalises to 1/8 BPS protected F{sup 2k}∇{sup 4}R{sup 4} couplings. We work out the supersymmetry constraints on the corresponding threshold functions, and argue that the functions in the second class satisfy to homogeneous differential equations for arbitrary k≥1, such that the corresponding exact threshold functions in type II string theory should be proportional to Eisenstein series, which we identify. This analysis explains in particular that the exact ∇{sup 6}R{sup 4} threshold function is the sum of an Eisenstein function and a solution to an inhomogeneous Poisson equation in string theory.
The Poisson equation on Klein surfaces
Directory of Open Access Journals (Sweden)
Monica Rosiu
2016-04-01
Full Text Available We obtain a formula for the solution of the Poisson equation with Dirichlet boundary condition on a region of a Klein surface. This formula reveals the symmetric character of the solution.
Poisson point processes imaging, tracking, and sensing
Streit, Roy L
2010-01-01
This overview of non-homogeneous and multidimensional Poisson point processes and their applications features mathematical tools and applications from emission- and transmission-computed tomography to multiple target tracking and distributed sensor detection.
Noncommutative gauge theory for Poisson manifolds
Energy Technology Data Exchange (ETDEWEB)
Jurco, Branislav E-mail: jurco@mpim-bonn.mpg.de; Schupp, Peter E-mail: schupp@theorie.physik.uni-muenchen.de; Wess, Julius E-mail: wess@theorie.physik.uni-muenchen.de
2000-09-25
A noncommutative gauge theory is associated to every Abelian gauge theory on a Poisson manifold. The semi-classical and full quantum version of the map from the ordinary gauge theory to the noncommutative gauge theory (Seiberg-Witten map) is given explicitly to all orders for any Poisson manifold in the Abelian case. In the quantum case the construction is based on Kontsevich's formality theorem.
Noncommutative gauge theory for Poisson manifolds
International Nuclear Information System (INIS)
Jurco, Branislav; Schupp, Peter; Wess, Julius
2000-01-01
A noncommutative gauge theory is associated to every Abelian gauge theory on a Poisson manifold. The semi-classical and full quantum version of the map from the ordinary gauge theory to the noncommutative gauge theory (Seiberg-Witten map) is given explicitly to all orders for any Poisson manifold in the Abelian case. In the quantum case the construction is based on Kontsevich's formality theorem
Multivariate fractional Poisson processes and compound sums
Beghin, Luisa; Macci, Claudio
2015-01-01
In this paper we present multivariate space-time fractional Poisson processes by considering common random time-changes of a (finite-dimensional) vector of independent classical (non-fractional) Poisson processes. In some cases we also consider compound processes. We obtain some equations in terms of some suitable fractional derivatives and fractional difference operators, which provides the extension of known equations for the univariate processes.
Generalisability of an online randomised controlled trial: an empirical analysis.
Wang, Cheng; Mollan, Katie R; Hudgens, Michael G; Tucker, Joseph D; Zheng, Heping; Tang, Weiming; Ling, Li
2018-02-01
Investigators increasingly use online methods to recruit participants for randomised controlled trials (RCTs). However, the extent to which participants recruited online represent populations of interest is unknown. We evaluated how generalisable an online RCT sample is to men who have sex with men in China. Inverse probability of sampling weights (IPSW) and the G-formula were used to examine the generalisability of an online RCT using model-based approaches. Online RCT data and national cross-sectional study data from China were analysed to illustrate the process of quantitatively assessing generalisability. The RCT (identifier NCT02248558) randomly assigned participants to a crowdsourced or health marketing video for promotion of HIV testing. The primary outcome was self-reported HIV testing within 4 weeks, with a non-inferiority margin of -3%. In the original online RCT analysis, the estimated difference in proportions of HIV tested between the two arms (crowdsourcing and health marketing) was 2.1% (95% CI, -5.4% to 9.7%). The hypothesis that the crowdsourced video was not inferior to the health marketing video to promote HIV testing was not demonstrated. The IPSW and G-formula estimated differences were -2.6% (95% CI, -14.2 to 8.9) and 2.7% (95% CI, -10.7 to 16.2), with both approaches also not establishing non-inferiority. Conducting generalisability analysis of an online RCT is feasible. Examining the generalisability of online RCTs is an important step before an intervention is scaled up. NCT02248558. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Quantization of the Poisson SU(2) and its Poisson homogeneous space - the 2-sphere
International Nuclear Information System (INIS)
Sheu, A.J.L.
1991-01-01
We show that deformation quantizations of the Poisson structures on the Poisson Lie group SU(2) and its homogeneous space, the 2-sphere, are compatible with Woronowicz's deformation quantization of SU(2)'s group structure and Podles' deformation quantization of 2-sphere's homogeneous structure, respectively. So in a certain sense the multiplicativity of the Lie Poisson structure on SU(2) at the classical level is preserved under quantization. (orig.)
Zhong, Jie; Zhao, Honggang; Yang, Haibin; Yin, Jianfei; Wen, Jihong
2018-06-01
Rubbery coatings embedded with air cavities are commonly used on underwater structures to reduce reflection of incoming sound waves. In this paper, the relationships between Poisson's and modulus loss factors of rubbery materials are theoretically derived, the different effects of the tiny Poisson's loss factor on characterizing the loss factors of shear and longitudinal moduli are revealed. Given complex Young's modulus and dynamic Poisson's ratio, it is found that the shear loss factor has almost invisible variation with the Poisson's loss factor and is very close to the loss factor of Young's modulus, while the longitudinal loss factor almost linearly decreases with the increase of Poisson's loss factor. Then, a finite element (FE) model is used to investigate the effect of the tiny Poisson's loss factor, which is generally neglected in some FE models, on the underwater sound absorption of rubbery coatings. Results show that the tiny Poisson's loss factor has a significant effect on the sound absorption of homogeneous coatings within the concerned frequency range, while it has both frequency- and structure-dependent influence on the sound absorption of inhomogeneous coatings with embedded air cavities. Given the material parameters and cavity dimensions, more obvious effect can be observed for the rubbery coating with a larger lattice constant and/or a thicker cover layer.
A Generalized QMRA Beta-Poisson Dose-Response Model.
Xie, Gang; Roiko, Anne; Stratton, Helen; Lemckert, Charles; Dunn, Peter K; Mengersen, Kerrie
2016-10-01
Quantitative microbial risk assessment (QMRA) is widely accepted for characterizing the microbial risks associated with food, water, and wastewater. Single-hit dose-response models are the most commonly used dose-response models in QMRA. Denoting PI(d) as the probability of infection at a given mean dose d, a three-parameter generalized QMRA beta-Poisson dose-response model, PI(d|α,β,r*), is proposed in which the minimum number of organisms required for causing infection, K min , is not fixed, but a random variable following a geometric distribution with parameter 0Poisson model, PI(d|α,β), is a special case of the generalized model with K min = 1 (which implies r*=1). The generalized beta-Poisson model is based on a conceptual model with greater detail in the dose-response mechanism. Since a maximum likelihood solution is not easily available, a likelihood-free approximate Bayesian computation (ABC) algorithm is employed for parameter estimation. By fitting the generalized model to four experimental data sets from the literature, this study reveals that the posterior median r* estimates produced fall short of meeting the required condition of r* = 1 for single-hit assumption. However, three out of four data sets fitted by the generalized models could not achieve an improvement in goodness of fit. These combined results imply that, at least in some cases, a single-hit assumption for characterizing the dose-response process may not be appropriate, but that the more complex models may be difficult to support especially if the sample size is small. The three-parameter generalized model provides a possibility to investigate the mechanism of a dose-response process in greater detail than is possible under a single-hit model. © 2016 Society for Risk Analysis.
Multi-parameter full waveform inversion using Poisson
Oh, Juwon; Min, Dong-Joo
2016-01-01
on the two conventional parameterisations (one uses Lame constants and density; the other employs P- and S-wave velocities and density) have low resolution of gradients for P-wave velocities (or ). Limitations occur because the virtual sources for P
Poisson-Like Spiking in Circuits with Probabilistic Synapses
Moreno-Bote, Rubén
2014-01-01
Neuronal activity in cortex is variable both spontaneously and during stimulation, and it has the remarkable property that it is Poisson-like over broad ranges of firing rates covering from virtually zero to hundreds of spikes per second. The mechanisms underlying cortical-like spiking variability over such a broad continuum of rates are currently unknown. We show that neuronal networks endowed with probabilistic synaptic transmission, a well-documented source of variability in cortex, robustly generate Poisson-like variability over several orders of magnitude in their firing rate without fine-tuning of the network parameters. Other sources of variability, such as random synaptic delays or spike generation jittering, do not lead to Poisson-like variability at high rates because they cannot be sufficiently amplified by recurrent neuronal networks. We also show that probabilistic synapses predict Fano factor constancy of synaptic conductances. Our results suggest that synaptic noise is a robust and sufficient mechanism for the type of variability found in cortex. PMID:25032705
Modeling environmental noise exceedances using non-homogeneous Poisson processes.
Guarnaccia, Claudio; Quartieri, Joseph; Barrios, Juan M; Rodrigues, Eliane R
2014-10-01
In this work a non-homogeneous Poisson model is considered to study noise exposure. The Poisson process, counting the number of times that a sound level surpasses a threshold, is used to estimate the probability that a population is exposed to high levels of noise a certain number of times in a given time interval. The rate function of the Poisson process is assumed to be of a Weibull type. The presented model is applied to community noise data from Messina, Sicily (Italy). Four sets of data are used to estimate the parameters involved in the model. After the estimation and tuning are made, a way of estimating the probability that an environmental noise threshold is exceeded a certain number of times in a given time interval is presented. This estimation can be very useful in the study of noise exposure of a population and also to predict, given the current behavior of the data, the probability of occurrence of high levels of noise in the near future. One of the most important features of the model is that it implicitly takes into account different noise sources, which need to be treated separately when using usual models.
Blind beam-hardening correction from Poisson measurements
Gu, Renliang; Dogandžić, Aleksandar
2016-02-01
We develop a sparse image reconstruction method for Poisson-distributed polychromatic X-ray computed tomography (CT) measurements under the blind scenario where the material of the inspected object and the incident energy spectrum are unknown. We employ our mass-attenuation spectrum parameterization of the noiseless measurements and express the mass- attenuation spectrum as a linear combination of B-spline basis functions of order one. A block coordinate-descent algorithm is developed for constrained minimization of a penalized Poisson negative log-likelihood (NLL) cost function, where constraints and penalty terms ensure nonnegativity of the spline coefficients and nonnegativity and sparsity of the density map image; the image sparsity is imposed using a convex total-variation (TV) norm penalty term. This algorithm alternates between a Nesterov's proximal-gradient (NPG) step for estimating the density map image and a limited-memory Broyden-Fletcher-Goldfarb-Shanno with box constraints (L-BFGS-B) step for estimating the incident-spectrum parameters. To accelerate convergence of the density- map NPG steps, we apply function restart and a step-size selection scheme that accounts for varying local Lipschitz constants of the Poisson NLL. Real X-ray CT reconstruction examples demonstrate the performance of the proposed scheme.
Myocardial infarction and generalised anxiety disorder : 10-year follow-up
Roest, Annelieke M.; Zuidersma, Marij; de Jonge, Peter
Background Few studies have addressed the relationship between generalised anxiety disorder and cardiovascular prognosis using a diagnostic interview. Aims To assess the association between generalised anxiety disorder and adverse outcomes in patients with myocardial infarction. Method Patients with
Application of the Hyper-Poisson Generalized Linear Model for Analyzing Motor Vehicle Crashes.
Khazraee, S Hadi; Sáez-Castillo, Antonio Jose; Geedipally, Srinivas Reddy; Lord, Dominique
2015-05-01
The hyper-Poisson distribution can handle both over- and underdispersion, and its generalized linear model formulation allows the dispersion of the distribution to be observation-specific and dependent on model covariates. This study's objective is to examine the potential applicability of a newly proposed generalized linear model framework for the hyper-Poisson distribution in analyzing motor vehicle crash count data. The hyper-Poisson generalized linear model was first fitted to intersection crash data from Toronto, characterized by overdispersion, and then to crash data from railway-highway crossings in Korea, characterized by underdispersion. The results of this study are promising. When fitted to the Toronto data set, the goodness-of-fit measures indicated that the hyper-Poisson model with a variable dispersion parameter provided a statistical fit as good as the traditional negative binomial model. The hyper-Poisson model was also successful in handling the underdispersed data from Korea; the model performed as well as the gamma probability model and the Conway-Maxwell-Poisson model previously developed for the same data set. The advantages of the hyper-Poisson model studied in this article are noteworthy. Unlike the negative binomial model, which has difficulties in handling underdispersed data, the hyper-Poisson model can handle both over- and underdispersed crash data. Although not a major issue for the Conway-Maxwell-Poisson model, the effect of each variable on the expected mean of crashes is easily interpretable in the case of this new model. © 2014 Society for Risk Analysis.
Generalising the logistic map through the q-product
International Nuclear Information System (INIS)
Pessoa, R W S; Borges, E P
2011-01-01
We investigate a generalisation of the logistic map as x n+1 = 1 - ax n x qmap x n (-1 ≤ x n ≤ 1, 0 map → ∞. The generalisation of this (and others) algebraic operator has been widely used within nonextensive statistical mechanics context (see C. Tsallis, Introduction to Nonextensive Statistical Mechanics, Springer, NY, 2009). We focus the analysis for q map > 1 at the edge of chaos, particularly at the first critical point a c , that depends on the value of q map . Bifurcation diagrams, sensitivity to initial conditions, fractal dimension and rate of entropy growth are evaluated at a c (q map ), and connections with nonextensive statistical mechanics are explored.
Generalising the logistic map through the q-product
Pessoa, R. W. S.; Borges, E. P.
2011-03-01
We investigate a generalisation of the logistic map as xn+1 = 1 - axn otimesqmap xn (-1 Borges, E.P. Physica A 340, 95 (2004)]. The usual product, and consequently the usual logistic map, is recovered in the limit q → 1, The tent map is also a particular case for qmap → ∞. The generalisation of this (and others) algebraic operator has been widely used within nonextensive statistical mechanics context (see C. Tsallis, Introduction to Nonextensive Statistical Mechanics, Springer, NY, 2009). We focus the analysis for qmap > 1 at the edge of chaos, particularly at the first critical point ac, that depends on the value of qmap. Bifurcation diagrams, sensitivity to initial conditions, fractal dimension and rate of entropy growth are evaluated at ac(qmap), and connections with nonextensive statistical mechanics are explored.
Object recognition and generalisation during habituation in horses
DEFF Research Database (Denmark)
Christensen, Janne Winther; Zharkikh, Tjatjana; Chovaux, Elodie
2011-01-01
The ability of horses to habituate to frightening stimuli greatly increases safety in the horse–human relationship. A recent experiment suggested, however, that habituation to frightening visual stimuli is relatively stimulus-specific in horses and that shape and colour are important factors...... for object generalisation (Christensen et al., 2008). In a series of experiments, we aimed to further explore the ability of horses (n = 30, 1 and 2-year-old mares) to recognise and generalise between objects during habituation. TEST horses (n = 15) were habituated to a complex object, composed of five...... simple objects of varying shape and colour, whereas CONTROL horses (n = 15) were habituated to the test arena, but not to the complex object. In the first experiment, we investigated whether TEST horses subsequently reacted less to i) simple objects that were previously part of the complex object (i...
Generalisation of geographic information cartographic modelling and applications
Mackaness, William A; Sarjakoski, L Tiina
2011-01-01
Theoretical and Applied Solutions in Multi Scale MappingUsers have come to expect instant access to up-to-date geographical information, with global coverage--presented at widely varying levels of detail, as digital and paper products; customisable data that can readily combined with other geographic information. These requirements present an immense challenge to those supporting the delivery of such services (National Mapping Agencies (NMA), Government Departments, and private business. Generalisation of Geographic Information: Cartographic Modelling and Applications provides detailed review
Projecting UK mortality using Bayesian generalised additive models
Hilton, Jason; Dodd, Erengul; Forster, Jonathan; Smith, Peter W.F.
2018-01-01
Forecasts of mortality provide vital information about future populations, with implications for pension and health-care policy as well as for decisions made by private companies about life insurance and annuity pricing. This paper presents a Bayesian approach to the forecasting of mortality that jointly estimates a Generalised Additive Model (GAM) for mortality for the majority of the age-range and a parametric model for older ages where the data are sparser. The GAM allows smooth components...
Generalised pole-placement control of steam turbine speed
Energy Technology Data Exchange (ETDEWEB)
Fernandez-del-Busto, R. [ITESM, Cuernavaca (Mexico). Div. de Ingenieria y Ciencias; Munoz, J. [ITESM, Xochimilco (Mexico). Div. de Ingenieria y Ciencias
1996-12-31
An application of a pole-placement self-tuning predictive control algorithm is developed to regulate speed of a power plant steam turbine model. Two types of system representation (CARMA and CARIMA) are used to test the control algorithm. Simulation results show that when using a CARMA model better results are produced. Two further comparisons are made when using a PI controller and a generalised predictive controller. (author)
The stability of vacuum solutions in generalised gravity
Energy Technology Data Exchange (ETDEWEB)
Madsen, M.S. (Sussex Univ., Brighton (UK). Astronomy Centre); Low, R.J. (Coventry (Lanchester) Polytechnic (UK). Dept. of Mathematics)
1990-05-10
The stability of the Ricci-flat solutions of a large class of generalised gravity theories is examined. It is shown by use of complementary methods that all such solutions are stable in a given theory if that theory admits a truncation to a quadratic theory in which the solution is stable. In particular, this means that the exterior Schwarzschild solution is stable in any gravity theory constructed purely from the Ricci scalar, provided that it exists in that theory. (orig.).
The stability of vacuum solutions in generalised gravity
International Nuclear Information System (INIS)
Madsen, M.S.; Low, R.J.
1990-01-01
The stability of the Ricci-flat solutions of a large class of generalised gravity theories is examined. It is shown by use of complementary methods that all such solutions are stable in a given theory if that theory admits a truncation to a quadratic theory in which the solution is stable. In particular, this means that the exterior Schwarzschild solution is stable in any gravity theory constructed purely from the Ricci scalar, provided that it exists in that theory. (orig.)
Learning and Generalisation in Neural Networks with Local Preprocessing
Kutsia, Merab
2007-01-01
We study learning and generalisation ability of a specific two-layer feed-forward neural network and compare its properties to that of a simple perceptron. The input patterns are mapped nonlinearly onto a hidden layer, much larger than the input layer, and this mapping is either fixed or may result from an unsupervised learning process. Such preprocessing of initially uncorrelated random patterns results in the correlated patterns in the hidden layer. The hidden-to-output mapping of the net...
Generalised Multiplicative Indices of Polycyclic Aromatic Hydrocarbons and Benzenoid Systems
Kulli, V. R.; Stone, Branden; Wang, Shaohui; Wei, Bing
2017-05-01
Many types of topological indices such as degree-based topological indices, distance-based topological indices, and counting-related topological indices are explored during past recent years. Among degree-based topological indices, Zagreb indices are the oldest one and studied well. In the paper, we define a generalised multiplicative version of these indices and compute exact formulas for Polycyclic Aromatic Hydrocarbons and jagged-rectangle Benzenoid systems.
Generalised Chou-Yang model and recent results
International Nuclear Information System (INIS)
Fazal-e-Aleem; Rashid, H.
1995-09-01
It is shown that most recent results of E710 and UA4/2 collaboration for the total cross section and ρ together with earlier measurements give good agreement with measurements for the differential cross section at 546 and 1800 GeV the framework of Generalised Chou-Yang model. These results are also compared with the predictions of other models. (author). 16 refs, 2 figs
Generalised Chou-Yang model and recent results
Energy Technology Data Exchange (ETDEWEB)
Fazal-e-Aleem [International Centre for Theoretical Physics, Trieste (Italy); Rashid, H. [Punjab Univ., Lahore (Pakistan). Centre for High Energy Physics
1996-12-31
It is shown that most recent results of E710 and UA4/2 collaboration for the total cross section and {rho} together with earlier measurements give good agreement with measurements for the differential cross section at 546 and 1800 GeV within the framework of Generalised Chou-Yang model. These results are also compared with the predictions of other models. (author) 16 refs.
Generalised Chou-Yang model and recent results
International Nuclear Information System (INIS)
Fazal-e-Aleem; Rashid, H.
1996-01-01
It is shown that most recent results of E710 and UA4/2 collaboration for the total cross section and ρ together with earlier measurements give good agreement with measurements for the differential cross section at 546 and 1800 GeV within the framework of Generalised Chou-Yang model. These results are also compared with the predictions of other models. (author)
A study of idiopathic generalised epilepsy in an Irish population.
LENUS (Irish Health Repository)
Mullins, G M
2012-02-03
Idiopathic generalised epilepsy (IGE) is subdivided into syndromes based on clinical and EEG features. PURPOSE: The aim of this study was to characterise all cases of IGE with supportive EEG abnormalities in terms of gender differences, seizure types reported, IGE syndromes, family history of epilepsy and EEG findings. We also calculated the limited duration prevalence of IGE in our cohort. METHODS: Data on abnormal EEGs were collected retrospectively from two EEG databases at two tertiary referral centres for neurology. Clinical information was obtained from EEG request forms, standardised EEG questionnaires and medical notes of patients. RESULTS: two hundred twenty-three patients met our inclusion criteria, 89 (39.9%) male and 134 (60.1%) females. Tonic clonic seizures were the most common seizure type reported, 162 (72.65%) having a generalised tonic clonic seizure (GTCS) at some time. IGE with GTCS only (EGTCSA) was the most common syndrome in our cohort being present in 94 patients (34 male, 60 female), with 42 (15 male, 27 female) patients diagnosed with Juvenile myoclonic epilepsy (JME), 23 (9 male, 14 female) with Juvenile absence epilepsy (JAE) and 20 (9 male, 11 female) with childhood absence epilepsy (CAE). EEG studies in all patients showed generalised epileptiform activity. CONCLUSIONS: More women than men were diagnosed with generalised epilepsy. Tonic clonic seizures were the most common seizure type reported. EGTCSA was the most frequent syndrome seen. Gender differences were evident for JAE and JME as previously reported and for EGTCSA, which was not reported to date, and reached statistical significance for EGTCA and JME.
Generalised pruritus as a presentation of Grave’s disease
Tan, CE; Loh, KY
2013-01-01
Pruritus is a lesser known symptom of hyperthyroidism, particularly in autoimmune thyroid disorders. This is a case report of a 27-year-old woman who presented with generalised pruritus at a primary care clinic. Incidental findings of tachycardia and a goiter led to the investigations of her thyroid status. The thyroid function test revealed elevated serum free T4 and suppressed thyroid stimulating hormone levels. The anti-thyroid antibodies were positive. She was diagnosed with Graves’ disea...
Dirac equations for generalised Yang-Mills systems
International Nuclear Information System (INIS)
Lechtenfeld, O.; Nahm, W.; Tchrakian, D.H.
1985-06-01
We present Dirac equations in 4p dimensions for the generalised Yang-Mills (GYM) theories introduced earlier. These Dirac equations are related to the self-duality equations of the GYM and are checked to be elliptic in a 'BPST' background. In this background these Dirac equations are integrated exactly. The possibility of imposing supersymmetry in the GYM-Dirac system is investigated, with negative results. (orig.)
Generalised summation-by-parts operators and variable coefficients
Ranocha, Hendrik
2018-06-01
High-order methods for conservation laws can be highly efficient if their stability is ensured. A suitable means mimicking estimates of the continuous level is provided by summation-by-parts (SBP) operators and the weak enforcement of boundary conditions. Recently, there has been an increasing interest in generalised SBP operators both in the finite difference and the discontinuous Galerkin spectral element framework. However, if generalised SBP operators are used, the treatment of the boundaries becomes more difficult since some properties of the continuous level are no longer mimicked discretely - interpolating the product of two functions will in general result in a value different from the product of the interpolations. Thus, desired properties such as conservation and stability are more difficult to obtain. Here, new formulations are proposed, allowing the creation of discretisations using general SBP operators that are both conservative and stable. Thus, several shortcomings that might be attributed to generalised SBP operators are overcome (cf. Nordström and Ruggiu (2017) [38] and Manzanero et al. (2017) [39]).
Generalised pollination systems for three invasive milkweeds in Australia.
Ward, M; Johnson, S D
2013-05-01
Because most plants require pollinator visits for seed production, the ability of an introduced plant species to establish pollinator relationships in a new ecosystem may have a central role in determining its success or failure as an invader. We investigated the pollination ecology of three milkweed species - Asclepias curassavica, Gomphocarpus fruticosus and G. physocarpus - in their invaded range in southeast Queensland, Australia. The complex floral morphology of milkweeds has often been interpreted as a general trend towards specialised pollination requirements. Based on this interpretation, invasion by milkweeds contradicts the expectation than plant species with specialised pollination systems are less likely to become invasive that those with more generalised pollination requirements. However, observations of flower visitors in natural populations of the three study species revealed that their pollination systems are essentially specialised at the taxonomic level of the order, but generalised at the species level. Specifically, pollinators of the two Gomphocarpus species included various species of Hymenoptera (particularly vespid wasps), while pollinators of A. curassavica were primarily Lepidoptera (particularly nymphalid butterflies). Pollinators of all three species are rewarded with copious amounts of highly concentrated nectar. It is likely that successful invasion by these three milkweed species is attributable, at least in part, to their generalised pollinator requirements. The results of this study are discussed in terms of how data from the native range may be useful in predicting pollination success of species in a new environment. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.
Influence of colour on acquisition and generalisation of graphic symbols.
Hetzroni, O E; Ne'eman, A
2013-07-01
Children with autism may benefit from using graphic symbols for their communication, language and literacy development. The purpose of this study was to investigate the influence of colour versus grey-scale displays on the identification of graphic symbols using a computer-based intervention. An alternating treatment design was employed to examine the learning and generalisation of 58 colour and grey-scale symbols by four preschool children with autism. The graphic symbols were taught via a meaning-based intervention using stories and educational games. Results demonstrate that all of the children were able to learn and maintain symbol identification over time for both symbol displays with no apparent differences. Differences were apparent for two of the children who exhibited better generalisation when learning grey-scale symbols first. The other two showed no noticeable difference, between displays when generalising from one display to the other. Implications and further research are discussed. © 2012 The Authors. Journal of Intellectual Disability Research © 2012 John Wiley & Sons Ltd, MENCAP & IASSID.
A Generalised Approach to Petri Nets and Algebraic Specifications
International Nuclear Information System (INIS)
Sivertsen, Terje
1998-02-01
The present report represents a continuation of the work on Petri nets and algebraic specifications. The reported research has focused on generalising the approach introduced in HWR-454, with the aim of facilitating the translation of a wider class of Petri nets into algebraic specification. This includes autonomous Petri nets with increased descriptive power, as well as non-autonomous Petri nets allowing the modelling of systems (1) involving extensive data processing; (2) with transitions synchronized on external events; (3) whose evolutions are time dependent. The generalised approach has the important property of being modular in the sense that the translated specifications can be gradually extended to include data processing, synchronization, and timing. The report also discusses the relative merits of state-based and transition-based specifications, and includes a non-trivial case study involving automated proofs of a large number of interrelated theorems. The examples in the report illustrate the use of the new HRP Prover. Of particular importance in this context is the automatic transformation between state-based and transitionbased specifications. It is expected that the approach introduced in HWR-454 and generalised in the present report will prove useful in future work on combination of wide variety of specification techniques
An ontological system for interoperable spatial generalisation in biodiversity monitoring
Nieland, Simon; Moran, Niklas; Kleinschmit, Birgit; Förster, Michael
2015-11-01
Semantic heterogeneity remains a barrier to data comparability and standardisation of results in different fields of spatial research. Because of its thematic complexity, differing acquisition methods and national nomenclatures, interoperability of biodiversity monitoring information is especially difficult. Since data collection methods and interpretation manuals broadly vary there is a need for automatised, objective methodologies for the generation of comparable data-sets. Ontology-based applications offer vast opportunities in data management and standardisation. This study examines two data-sets of protected heathlands in Germany and Belgium which are based on remote sensing image classification and semantically formalised in an OWL2 ontology. The proposed methodology uses semantic relations of the two data-sets, which are (semi-)automatically derived from remote sensing imagery, to generate objective and comparable information about the status of protected areas by utilising kernel-based spatial reclassification. This automatised method suggests a generalisation approach, which is able to generate delineation of Special Areas of Conservation (SAC) of the European biodiversity Natura 2000 network. Furthermore, it is able to transfer generalisation rules between areas surveyed with varying acquisition methods in different countries by taking into account automated inference of the underlying semantics. The generalisation results were compared with the manual delineation of terrestrial monitoring. For the different habitats in the two sites an accuracy of above 70% was detected. However, it has to be highlighted that the delineation of the ground-truth data inherits a high degree of uncertainty, which is discussed in this study.
Working dogs cooperate among one another by generalised reciprocity.
Gfrerer, Nastassja; Taborsky, Michael
2017-03-06
Cooperation by generalised reciprocity implies that individuals apply the decision rule "help anyone if helped by someone". This mechanism has been shown to generate evolutionarily stable levels of cooperation, but as yet it is unclear how widely this cooperation mechanism is applied among animals. Dogs (Canis familiaris) are highly social animals with considerable cognitive potential and the ability to differentiate between individual social partners. But although dogs can solve complex problems, they may use simple rules for behavioural decisions. Here we show that dogs trained in an instrumental cooperative task to provide food to a social partner help conspecifics more often after receiving help from a dog before. Remarkably, in so doing they show no distinction between partners that had helped them before and completely unfamiliar conspecifics. Apparently, dogs use the simple decision rule characterizing generalised reciprocity, although they are probably capable of using the more complex decision rule of direct reciprocity: "help someone who has helped you". However, generalized reciprocity involves lower information processing costs and is therefore a cheaper cooperation strategy. Our results imply that generalised reciprocity might be applied more commonly than direct reciprocity also in other mutually cooperating animals.
Selective Contrast Adjustment by Poisson Equation
Directory of Open Access Journals (Sweden)
Ana-Belen Petro
2013-09-01
Full Text Available Poisson Image Editing is a new technique permitting to modify the gradient vector field of an image, and then to recover an image with a gradient approaching this modified gradient field. This amounts to solve a Poisson equation, an operation which can be efficiently performed by Fast Fourier Transform (FFT. This paper describes an algorithm applying this technique, with two different variants. The first variant enhances the contrast by increasing the gradient in the dark regions of the image. This method is well adapted to images with back light or strong shadows, and reveals details in the shadows. The second variant of the same Poisson technique enhances all small gradients in the image, thus also sometimes revealing details and texture.
High order Poisson Solver for unbounded flows
DEFF Research Database (Denmark)
Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe
2015-01-01
This paper presents a high order method for solving the unbounded Poisson equation on a regular mesh using a Green’s function solution. The high order convergence was achieved by formulating mollified integration kernels, that were derived from a filter regularisation of the solution field....... The method was implemented on a rectangular domain using fast Fourier transforms (FFT) to increase computational efficiency. The Poisson solver was extended to directly solve the derivatives of the solution. This is achieved either by including the differential operator in the integration kernel...... the equations of fluid mechanics as an example, but can be used in many physical problems to solve the Poisson equation on a rectangular unbounded domain. For the two-dimensional case we propose an infinitely smooth test function which allows for arbitrary high order convergence. Using Gaussian smoothing...
Poisson-Jacobi reduction of homogeneous tensors
International Nuclear Information System (INIS)
Grabowski, J; Iglesias, D; Marrero, J C; Padron, E; Urbanski, P
2004-01-01
The notion of homogeneous tensors is discussed. We show that there is a one-to-one correspondence between multivector fields on a manifold M, homogeneous with respect to a vector field Δ on M, and first-order polydifferential operators on a closed submanifold N of codimension 1 such that Δ is transversal to N. This correspondence relates the Schouten-Nijenhuis bracket of multivector fields on M to the Schouten-Jacobi bracket of first-order polydifferential operators on N and generalizes the Poissonization of Jacobi manifolds. Actually, it can be viewed as a super-Poissonization. This procedure of passing from a homogeneous multivector field to a first-order polydifferential operator can also be understood as a sort of reduction; in the standard case-a half of a Poisson reduction. A dual version of the above correspondence yields in particular the correspondence between Δ-homogeneous symplectic structures on M and contact structures on N
The BRST complex of homological Poisson reduction
Müller-Lennert, Martin
2017-02-01
BRST complexes are differential graded Poisson algebras. They are associated with a coisotropic ideal J of a Poisson algebra P and provide a description of the Poisson algebra (P/J)^J as their cohomology in degree zero. Using the notion of stable equivalence introduced in Felder and Kazhdan (Contemporary Mathematics 610, Perspectives in representation theory, 2014), we prove that any two BRST complexes associated with the same coisotropic ideal are quasi-isomorphic in the case P = R[V] where V is a finite-dimensional symplectic vector space and the bracket on P is induced by the symplectic structure on V. As a corollary, the cohomology of the BRST complexes is canonically associated with the coisotropic ideal J in the symplectic case. We do not require any regularity assumptions on the constraints generating the ideal J. We finally quantize the BRST complex rigorously in the presence of infinitely many ghost variables and discuss the uniqueness of the quantization procedure.
On population size estimators in the Poisson mixture model.
Mao, Chang Xuan; Yang, Nan; Zhong, Jinhua
2013-09-01
Estimating population sizes via capture-recapture experiments has enormous applications. The Poisson mixture model can be adopted for those applications with a single list in which individuals appear one or more times. We compare several nonparametric estimators, including the Chao estimator, the Zelterman estimator, two jackknife estimators and the bootstrap estimator. The target parameter of the Chao estimator is a lower bound of the population size. Those of the other four estimators are not lower bounds, and they may produce lower confidence limits for the population size with poor coverage probabilities. A simulation study is reported and two examples are investigated. © 2013, The International Biometric Society.
Large Time Behavior of the Vlasov-Poisson-Boltzmann System
Directory of Open Access Journals (Sweden)
Li Li
2013-01-01
Full Text Available The motion of dilute charged particles can be modeled by Vlasov-Poisson-Boltzmann system. We study the large time stability of the VPB system. To be precise, we prove that when time goes to infinity, the solution of VPB system tends to global Maxwellian state in a rate Ot−∞, by using a method developed for Boltzmann equation without force in the work of Desvillettes and Villani (2005. The improvement of the present paper is the removal of condition on parameter λ as in the work of Li (2008.
Evaluating the double Poisson generalized linear model.
Zou, Yaotian; Geedipally, Srinivas Reddy; Lord, Dominique
2013-10-01
The objectives of this study are to: (1) examine the applicability of the double Poisson (DP) generalized linear model (GLM) for analyzing motor vehicle crash data characterized by over- and under-dispersion and (2) compare the performance of the DP GLM with the Conway-Maxwell-Poisson (COM-Poisson) GLM in terms of goodness-of-fit and theoretical soundness. The DP distribution has seldom been investigated and applied since its first introduction two decades ago. The hurdle for applying the DP is related to its normalizing constant (or multiplicative constant) which is not available in closed form. This study proposed a new method to approximate the normalizing constant of the DP with high accuracy and reliability. The DP GLM and COM-Poisson GLM were developed using two observed over-dispersed datasets and one observed under-dispersed dataset. The modeling results indicate that the DP GLM with its normalizing constant approximated by the new method can handle crash data characterized by over- and under-dispersion. Its performance is comparable to the COM-Poisson GLM in terms of goodness-of-fit (GOF), although COM-Poisson GLM provides a slightly better fit. For the over-dispersed data, the DP GLM performs similar to the NB GLM. Considering the fact that the DP GLM can be easily estimated with inexpensive computation and that it is simpler to interpret coefficients, it offers a flexible and efficient alternative for researchers to model count data. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bayesian regression of piecewise homogeneous Poisson processes
Directory of Open Access Journals (Sweden)
Diego Sevilla
2015-12-01
Full Text Available In this paper, a Bayesian method for piecewise regression is adapted to handle counting processes data distributed as Poisson. A numerical code in Mathematica is developed and tested analyzing simulated data. The resulting method is valuable for detecting breaking points in the count rate of time series for Poisson processes. Received: 2 November 2015, Accepted: 27 November 2015; Edited by: R. Dickman; Reviewed by: M. Hutter, Australian National University, Canberra, Australia.; DOI: http://dx.doi.org/10.4279/PIP.070018 Cite as: D J R Sevilla, Papers in Physics 7, 070018 (2015
Beyond the relativistic point particle: A reciprocally invariant system and its generalisation
International Nuclear Information System (INIS)
Pavsic, Matej
2009-01-01
We investigate a reciprocally invariant system proposed by Low and Govaerts et al., whose action contains both the orthogonal and the symplectic forms and is invariant under global O(2,4) intersection Sp(2,4) transformations. We find that the general solution to the classical equations of motion has no linear term in the evolution parameter, τ, but only the oscillatory terms, and therefore cannot represent a particle propagating in spacetime. As a remedy, we consider a generalisation of the action by adopting a procedure similar to that of Bars et al., who introduced the concept of a τ derivative that is covariant under local Sp(2) transformations between the phase space variables x μ (τ) and p μ (τ). This system, in particular, is similar to a rigid particle whose action contains the extrinsic curvature of the world line, which turns out to be helical in spacetime. Another possible generalisation is the introduction of a symplectic potential proposed by Montesinos. We show how the latter approach is related to Kaluza-Klein theories and to the concept of Clifford space, a manifold whose tangent space at any point is Clifford algebra Cl(8), a promising framework for the unification of particles and forces.
Lefkimmiatis, Stamatios; Maragos, Petros; Papandreou, George
2009-08-01
We present an improved statistical model for analyzing Poisson processes, with applications to photon-limited imaging. We build on previous work, adopting a multiscale representation of the Poisson process in which the ratios of the underlying Poisson intensities (rates) in adjacent scales are modeled as mixtures of conjugate parametric distributions. Our main contributions include: 1) a rigorous and robust regularized expectation-maximization (EM) algorithm for maximum-likelihood estimation of the rate-ratio density parameters directly from the noisy observed Poisson data (counts); 2) extension of the method to work under a multiscale hidden Markov tree model (HMT) which couples the mixture label assignments in consecutive scales, thus modeling interscale coefficient dependencies in the vicinity of image edges; 3) exploration of a 2-D recursive quad-tree image representation, involving Dirichlet-mixture rate-ratio densities, instead of the conventional separable binary-tree image representation involving beta-mixture rate-ratio densities; and 4) a novel multiscale image representation, which we term Poisson-Haar decomposition, that better models the image edge structure, thus yielding improved performance. Experimental results on standard images with artificially simulated Poisson noise and on real photon-limited images demonstrate the effectiveness of the proposed techniques.
Directory of Open Access Journals (Sweden)
Rodrigues-Motta Mariana
2008-07-01
Full Text Available Abstract Dark spots in the fleece area are often associated with dark fibres in wool, which limits its competitiveness with other textile fibres. Field data from a sheep experiment in Uruguay revealed an excess number of zeros for dark spots. We compared the performance of four Poisson and zero-inflated Poisson (ZIP models under four simulation scenarios. All models performed reasonably well under the same scenario for which the data were simulated. The deviance information criterion favoured a Poisson model with residual, while the ZIP model with a residual gave estimates closer to their true values under all simulation scenarios. Both Poisson and ZIP models with an error term at the regression level performed better than their counterparts without such an error. Field data from Corriedale sheep were analysed with Poisson and ZIP models with residuals. Parameter estimates were similar for both models. Although the posterior distribution of the sire variance was skewed due to a small number of rams in the dataset, the median of this variance suggested a scope for genetic selection. The main environmental factor was the age of the sheep at shearing. In summary, age related processes seem to drive the number of dark spots in this breed of sheep.
Modeling animal-vehicle collisions using diagonal inflated bivariate Poisson regression.
Lao, Yunteng; Wu, Yao-Jan; Corey, Jonathan; Wang, Yinhai
2011-01-01
Two types of animal-vehicle collision (AVC) data are commonly adopted for AVC-related risk analysis research: reported AVC data and carcass removal data. One issue with these two data sets is that they were found to have significant discrepancies by previous studies. In order to model these two types of data together and provide a better understanding of highway AVCs, this study adopts a diagonal inflated bivariate Poisson regression method, an inflated version of bivariate Poisson regression model, to fit the reported AVC and carcass removal data sets collected in Washington State during 2002-2006. The diagonal inflated bivariate Poisson model not only can model paired data with correlation, but also handle under- or over-dispersed data sets as well. Compared with three other types of models, double Poisson, bivariate Poisson, and zero-inflated double Poisson, the diagonal inflated bivariate Poisson model demonstrates its capability of fitting two data sets with remarkable overlapping portions resulting from the same stochastic process. Therefore, the diagonal inflated bivariate Poisson model provides researchers a new approach to investigating AVCs from a different perspective involving the three distribution parameters (λ(1), λ(2) and λ(3)). The modeling results show the impacts of traffic elements, geometric design and geographic characteristics on the occurrences of both reported AVC and carcass removal data. It is found that the increase of some associated factors, such as speed limit, annual average daily traffic, and shoulder width, will increase the numbers of reported AVCs and carcass removals. Conversely, the presence of some geometric factors, such as rolling and mountainous terrain, will decrease the number of reported AVCs. Published by Elsevier Ltd.
Poisson processes and a Bessel function integral
Steutel, F.W.
1985-01-01
The probability of winning a simple game of competing Poisson processes turns out to be equal to the well-known Bessel function integral J(x, y) (cf. Y. L. Luke, Integrals of Bessel Functions, McGraw-Hill, New York, 1962). Several properties of J, some of which seem to be new, follow quite easily
Almost Poisson integration of rigid body systems
International Nuclear Information System (INIS)
Austin, M.A.; Krishnaprasad, P.S.; Li-Sheng Wang
1993-01-01
In this paper we discuss the numerical integration of Lie-Poisson systems using the mid-point rule. Since such systems result from the reduction of hamiltonian systems with symmetry by lie group actions, we also present examples of reconstruction rules for the full dynamics. A primary motivation is to preserve in the integration process, various conserved quantities of the original dynamics. A main result of this paper is an O(h 3 ) error estimate for the Lie-Poisson structure, where h is the integration step-size. We note that Lie-Poisson systems appear naturally in many areas of physical science and engineering, including theoretical mechanics of fluids and plasmas, satellite dynamics, and polarization dynamics. In the present paper we consider a series of progressively complicated examples related to rigid body systems. We also consider a dissipative example associated to a Lie-Poisson system. The behavior of the mid-point rule and an associated reconstruction rule is numerically explored. 24 refs., 9 figs
Measuring Poisson Ratios at Low Temperatures
Boozon, R. S.; Shepic, J. A.
1987-01-01
Simple extensometer ring measures bulges of specimens in compression. New method of measuring Poisson's ratio used on brittle ceramic materials at cryogenic temperatures. Extensometer ring encircles cylindrical specimen. Four strain gauges connected in fully active Wheatstone bridge self-temperature-compensating. Used at temperatures as low as liquid helium.
Affine Poisson Groups and WZW Model
Directory of Open Access Journals (Sweden)
Ctirad Klimcík
2008-01-01
Full Text Available We give a detailed description of a dynamical system which enjoys a Poisson-Lie symmetry with two non-isomorphic dual groups. The system is obtained by taking the q → ∞ limit of the q-deformed WZW model and the understanding of its symmetry structure results in uncovering an interesting duality of its exchange relations.
Easy Demonstration of the Poisson Spot
Gluck, Paul
2010-01-01
Many physics teachers have a set of slides of single, double and multiple slits to show their students the phenomena of interference and diffraction. Thomas Young's historic experiments with double slits were indeed a milestone in proving the wave nature of light. But another experiment, namely the Poisson spot, was also important historically and…
Quantum fields and Poisson processes. Pt. 2
International Nuclear Information System (INIS)
Bertrand, J.; Gaveau, B.; Rideau, G.
1985-01-01
Quantum field evolutions are written as expectation values with respect to Poisson processes in two simple models; interaction of two boson fields (with conservation of the number of particles in one field) and interaction of a boson with a fermion field. The introduction of a cutt-off ensures that the expectation values are well-defined. (orig.)
Evolutionary inference via the Poisson Indel Process.
Bouchard-Côté, Alexandre; Jordan, Michael I
2013-01-22
We address the problem of the joint statistical inference of phylogenetic trees and multiple sequence alignments from unaligned molecular sequences. This problem is generally formulated in terms of string-valued evolutionary processes along the branches of a phylogenetic tree. The classic evolutionary process, the TKF91 model [Thorne JL, Kishino H, Felsenstein J (1991) J Mol Evol 33(2):114-124] is a continuous-time Markov chain model composed of insertion, deletion, and substitution events. Unfortunately, this model gives rise to an intractable computational problem: The computation of the marginal likelihood under the TKF91 model is exponential in the number of taxa. In this work, we present a stochastic process, the Poisson Indel Process (PIP), in which the complexity of this computation is reduced to linear. The Poisson Indel Process is closely related to the TKF91 model, differing only in its treatment of insertions, but it has a global characterization as a Poisson process on the phylogeny. Standard results for Poisson processes allow key computations to be decoupled, which yields the favorable computational profile of inference under the PIP model. We present illustrative experiments in which Bayesian inference under the PIP model is compared with separate inference of phylogenies and alignments.
Natural Poisson structures of nonlinear plasma dynamics
International Nuclear Information System (INIS)
Kaufman, A.N.
1982-01-01
Hamiltonian field theories, for models of nonlinear plasma dynamics, require a Poisson bracket structure for functionals of the field variables. These are presented, applied, and derived for several sets of field variables: coherent waves, incoherent waves, particle distributions, and multifluid electrodynamics. Parametric coupling of waves and plasma yields concise expressions for ponderomotive effects (in kinetic and fluid models) and for induced scattering. (Auth.)
Poisson brackets for fluids and plasmas
International Nuclear Information System (INIS)
Morrison, P.J.
1982-01-01
Noncanonical yet Hamiltonian descriptions are presented of many of the non-dissipative field equations that govern fluids and plasmas. The dynamical variables are the usually encountered physical variables. These descriptions have the advantage that gauge conditions are absent, but at the expense of introducing peculiar Poisson brackets. Clebsch-like potential descriptions that reverse this situations are also introduced
Natural Poisson structures of nonlinear plasma dynamics
International Nuclear Information System (INIS)
Kaufman, A.N.
1982-06-01
Hamiltonian field theories, for models of nonlinear plasma dynamics, require a Poisson bracket structure for functionals of the field variables. These are presented, applied, and derived for several sets of field variables: coherent waves, incoherent waves, particle distributions, and multifluid electrodynamics. Parametric coupling of waves and plasma yields concise expressions for ponderomotive effects (in kinetic and fluid models) and for induced scattering
Coherent transform, quantization, and Poisson geometry
Novikova, E; Itskov, V; Karasev, M V
1998-01-01
This volume contains three extensive articles written by Karasev and his pupils. Topics covered include the following: coherent states and irreducible representations for algebras with non-Lie permutation relations, Hamilton dynamics and quantization over stable isotropic submanifolds, and infinitesimal tensor complexes over degenerate symplectic leaves in Poisson manifolds. The articles contain many examples (including from physics) and complete proofs.
Efficient information transfer by Poisson neurons
Czech Academy of Sciences Publication Activity Database
Košťál, Lubomír; Shinomoto, S.
2016-01-01
Roč. 13, č. 3 (2016), s. 509-520 ISSN 1547-1063 R&D Projects: GA ČR(CZ) GA15-08066S Institutional support: RVO:67985823 Keywords : information capacity * Poisson neuron * metabolic cost * decoding error Subject RIV: BD - Theory of Information Impact factor: 1.035, year: 2016
A Conway-Maxwell-Poisson (CMP) model to address data dispersion on positron emission tomography.
Santarelli, Maria Filomena; Della Latta, Daniele; Scipioni, Michele; Positano, Vincenzo; Landini, Luigi
2016-10-01
Positron emission tomography (PET) in medicine exploits the properties of positron-emitting unstable nuclei. The pairs of γ- rays emitted after annihilation are revealed by coincidence detectors and stored as projections in a sinogram. It is well known that radioactive decay follows a Poisson distribution; however, deviation from Poisson statistics occurs on PET projection data prior to reconstruction due to physical effects, measurement errors, correction of deadtime, scatter, and random coincidences. A model that describes the statistical behavior of measured and corrected PET data can aid in understanding the statistical nature of the data: it is a prerequisite to develop efficient reconstruction and processing methods and to reduce noise. The deviation from Poisson statistics in PET data could be described by the Conway-Maxwell-Poisson (CMP) distribution model, which is characterized by the centring parameter λ and the dispersion parameter ν, the latter quantifying the deviation from a Poisson distribution model. In particular, the parameter ν allows quantifying over-dispersion (ν1) of data. A simple and efficient method for λ and ν parameters estimation is introduced and assessed using Monte Carlo simulation for a wide range of activity values. The application of the method to simulated and experimental PET phantom data demonstrated that the CMP distribution parameters could detect deviation from the Poisson distribution both in raw and corrected PET data. It may be usefully implemented in image reconstruction algorithms and quantitative PET data analysis, especially in low counting emission data, as in dynamic PET data, where the method demonstrated the best accuracy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Coherence Generalises Duality: A Logical Explanation of Multiparty Session Types
DEFF Research Database (Denmark)
Carbone, Marco; Lindley, Sam; Montesi, Fabrizio
2016-01-01
the duality of classical linear logic (relating two types) with a more general notion of coherence (relating an arbitrary number of types). This paper introduces variants of CP and MCP, plus a new intermediate calculus of Globally-governed Classical Processes (GCP). We show a tight relation between......Wadler introduced Classical Processes (CP), a calculus based on a propositions-as-types correspondence between propositions of classical linear logic and session types. Carbone et al. introduced Multiparty Classical Processes, a calculus that generalises CP to multiparty session types, by replacing...
Generalised boundary terms for higher derivative theories of gravity
Energy Technology Data Exchange (ETDEWEB)
Teimouri, Ali; Talaganis, Spyridon; Edholm, James [Consortium for Fundamental Physics, Lancaster University,North West Drive, Lancaster, LA1 4YB (United Kingdom); Mazumdar, Anupam [Consortium for Fundamental Physics, Lancaster University,North West Drive, Lancaster, LA1 4YB (United Kingdom); Kapteyn Astronomical Institute, University of Groningen,9700 AV Groningen (Netherlands)
2016-08-24
In this paper we wish to find the corresponding Gibbons-Hawking-York term for the most general quadratic in curvature gravity by using Coframe slicing within the Arnowitt-Deser-Misner (ADM) decomposition of spacetime in four dimensions. In order to make sure that the higher derivative gravity is ghost and tachyon free at a perturbative level, one requires infinite covariant derivatives, which yields a generalised covariant infinite derivative theory of gravity. We will be exploring the boundary term for such a covariant infinite derivative theory of gravity.
Building Abelian Functions with Generalised Baker-Hirota Operators
Directory of Open Access Journals (Sweden)
Matthew England
2012-06-01
Full Text Available We present a new systematic method to construct Abelian functions on Jacobian varieties of plane, algebraic curves. The main tool used is a symmetric generalisation of the bilinear operator defined in the work of Baker and Hirota. We give explicit formulae for the multiple applications of the operators, use them to define infinite sequences of Abelian functions of a prescribed pole structure and deduce the key properties of these functions. We apply the theory on the two canonical curves of genus three, presenting new explicit examples of vector space bases of Abelian functions. These reveal previously unseen similarities between the theories of functions associated to curves of the same genus.
A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments
International Nuclear Information System (INIS)
Fisicaro, G.; Goedecker, S.; Genovese, L.; Andreussi, O.; Marzari, N.
2016-01-01
The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes
A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments.
Fisicaro, G; Genovese, L; Andreussi, O; Marzari, N; Goedecker, S
2016-01-07
The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes.
A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments
Energy Technology Data Exchange (ETDEWEB)
Fisicaro, G., E-mail: giuseppe.fisicaro@unibas.ch; Goedecker, S. [Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland); Genovese, L. [University of Grenoble Alpes, CEA, INAC-SP2M, L-Sim, F-38000 Grenoble (France); Andreussi, O. [Institute of Computational Science, Università della Svizzera Italiana, Via Giuseppe Buffi 13, CH-6904 Lugano (Switzerland); Theory and Simulations of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, Station 12, CH-1015 Lausanne (Switzerland); Marzari, N. [Theory and Simulations of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, Station 12, CH-1015 Lausanne (Switzerland)
2016-01-07
The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes.
Analysis of Blood Transfusion Data Using Bivariate Zero-Inflated Poisson Model: A Bayesian Approach.
Mohammadi, Tayeb; Kheiri, Soleiman; Sedehi, Morteza
2016-01-01
Recognizing the factors affecting the number of blood donation and blood deferral has a major impact on blood transfusion. There is a positive correlation between the variables "number of blood donation" and "number of blood deferral": as the number of return for donation increases, so does the number of blood deferral. On the other hand, due to the fact that many donors never return to donate, there is an extra zero frequency for both of the above-mentioned variables. In this study, in order to apply the correlation and to explain the frequency of the excessive zero, the bivariate zero-inflated Poisson regression model was used for joint modeling of the number of blood donation and number of blood deferral. The data was analyzed using the Bayesian approach applying noninformative priors at the presence and absence of covariates. Estimating the parameters of the model, that is, correlation, zero-inflation parameter, and regression coefficients, was done through MCMC simulation. Eventually double-Poisson model, bivariate Poisson model, and bivariate zero-inflated Poisson model were fitted on the data and were compared using the deviance information criteria (DIC). The results showed that the bivariate zero-inflated Poisson regression model fitted the data better than the other models.
Tatlier, Mehmet Seha
Random fibrous can be found among natural and synthetic materials. Some of these random fibrous networks possess negative Poisson's ratio and they are extensively called auxetic materials. The governing mechanisms behind this counter intuitive property in random networks are yet to be understood and this kind of auxetic material remains widely under-explored. However, most of synthetic auxetic materials suffer from their low strength. This shortcoming can be rectified by developing high strength auxetic composites. The process of embedding auxetic random fibrous networks in a polymer matrix is an attractive alternate route to the manufacture of auxetic composites, however before such an approach can be developed, a methodology for designing fibrous networks with the desired negative Poisson's ratios must first be established. This requires an understanding of the factors which bring about negative Poisson's ratios in these materials. In this study, a numerical model is presented in order to investigate the auxetic behavior in compressed random fiber networks. Finite element analyses of three-dimensional stochastic fiber networks were performed to gain insight into the effects of parameters such as network anisotropy, network density, and degree of network compression on the out-of-plane Poisson's ratio and Young's modulus. The simulation results suggest that the compression is the critical parameter that gives rise to negative Poisson's ratio while anisotropy significantly promotes the auxetic behavior. This model can be utilized to design fibrous auxetic materials and to evaluate feasibility of developing auxetic composites by using auxetic fibrous networks as the reinforcing layer.
Collision prediction models using multivariate Poisson-lognormal regression.
El-Basyouny, Karim; Sayed, Tarek
2009-07-01
This paper advocates the use of multivariate Poisson-lognormal (MVPLN) regression to develop models for collision count data. The MVPLN approach presents an opportunity to incorporate the correlations across collision severity levels and their influence on safety analyses. The paper introduces a new multivariate hazardous location identification technique, which generalizes the univariate posterior probability of excess that has been commonly proposed and applied in the literature. In addition, the paper presents an alternative approach for quantifying the effect of the multivariate structure on the precision of expected collision frequency. The MVPLN approach is compared with the independent (separate) univariate Poisson-lognormal (PLN) models with respect to model inference, goodness-of-fit, identification of hot spots and precision of expected collision frequency. The MVPLN is modeled using the WinBUGS platform which facilitates computation of posterior distributions as well as providing a goodness-of-fit measure for model comparisons. The results indicate that the estimates of the extra Poisson variation parameters were considerably smaller under MVPLN leading to higher precision. The improvement in precision is due mainly to the fact that MVPLN accounts for the correlation between the latent variables representing property damage only (PDO) and injuries plus fatalities (I+F). This correlation was estimated at 0.758, which is highly significant, suggesting that higher PDO rates are associated with higher I+F rates, as the collision likelihood for both types is likely to rise due to similar deficiencies in roadway design and/or other unobserved factors. In terms of goodness-of-fit, the MVPLN model provided a superior fit than the independent univariate models. The multivariate hazardous location identification results demonstrated that some hazardous locations could be overlooked if the analysis was restricted to the univariate models.
Effect Displays in R for Generalised Linear Models
Directory of Open Access Journals (Sweden)
John Fox
2003-07-01
Full Text Available This paper describes the implementation in R of a method for tabular or graphical display of terms in a complex generalised linear model. By complex, I mean a model that contains terms related by marginality or hierarchy, such as polynomial terms, or main effects and interactions. I call these tables or graphs effect displays. Effect displays are constructed by identifying high-order terms in a generalised linear model. Fitted values under the model are computed for each such term. The lower-order "relatives" of a high-order term (e.g., main effects marginal to an interaction are absorbed into the term, allowing the predictors appearing in the high-order term to range over their values. The values of other predictors are fixed at typical values: for example, a covariate could be fixed at its mean or median, a factor at its proportional distribution in the data, or to equal proportions in its several levels. Variations of effect displays are also described, including representation of terms higher-order to any appearing in the model.
Laplace-Laplace analysis of the fractional Poisson process
Gorenflo, Rudolf; Mainardi, Francesco
2013-01-01
We generate the fractional Poisson process by subordinating the standard Poisson process to the inverse stable subordinator. Our analysis is based on application of the Laplace transform with respect to both arguments of the evolving probability densities.
Generalised Adaptive Harmony Search: A Comparative Analysis of Modern Harmony Search
Directory of Open Access Journals (Sweden)
Jaco Fourie
2013-01-01
Full Text Available Harmony search (HS was introduced in 2001 as a heuristic population-based optimisation algorithm. Since then HS has become a popular alternative to other heuristic algorithms like simulated annealing and particle swarm optimisation. However, some flaws, like the need for parameter tuning, were identified and have been a topic of study for much research over the last 10 years. Many variants of HS were developed to address some of these flaws, and most of them have made substantial improvements. In this paper we compare the performance of three recent HS variants: exploratory harmony search, self-adaptive harmony search, and dynamic local-best harmony search. We compare the accuracy of these algorithms, using a set of well-known optimisation benchmark functions that include both unimodal and multimodal problems. Observations from this comparison led us to design a novel hybrid that combines the best attributes of these modern variants into a single optimiser called generalised adaptive harmony search.
Baqué, Michèle; Amendt, Jens
2013-01-01
Developmental data of juvenile blow flies (Diptera: Calliphoridae) are typically used to calculate the age of immature stages found on or around a corpse and thus to estimate a minimum post-mortem interval (PMI(min)). However, many of those data sets don't take into account that immature blow flies grow in a non-linear fashion. Linear models do not supply a sufficient reliability on age estimates and may even lead to an erroneous determination of the PMI(min). According to the Daubert standard and the need for improvements in forensic science, new statistic tools like smoothing methods and mixed models allow the modelling of non-linear relationships and expand the field of statistical analyses. The present study introduces into the background and application of these statistical techniques by analysing a model which describes the development of the forensically important blow fly Calliphora vicina at different temperatures. The comparison of three statistical methods (linear regression, generalised additive modelling and generalised additive mixed modelling) clearly demonstrates that only the latter provided regression parameters that reflect the data adequately. We focus explicitly on both the exploration of the data--to assure their quality and to show the importance of checking it carefully prior to conducting the statistical tests--and the validation of the resulting models. Hence, we present a common method for evaluating and testing forensic entomological data sets by using for the first time generalised additive mixed models.
Poisson equation for weak gravitational lensing
International Nuclear Information System (INIS)
Kling, Thomas P.; Campbell, Bryan
2008-01-01
Using the Newman and Penrose [E. T. Newman and R. Penrose, J. Math. Phys. (N.Y.) 3, 566 (1962).] spin-coefficient formalism, we examine the full Bianchi identities of general relativity in the context of gravitational lensing, where the matter and space-time curvature are projected into a lens plane perpendicular to the line of sight. From one component of the Bianchi identity, we provide a rigorous, new derivation of a Poisson equation for the projected matter density where the source term involves second derivatives of the observed weak gravitational lensing shear. We also show that the other components of the Bianchi identity reveal no new results. Numerical integration of the Poisson equation in test cases shows an accurate mass map can be constructed from the combination of a ground-based, wide-field image and a Hubble Space Telescope image of the same system
International Nuclear Information System (INIS)
Unge, Rikard von
2002-01-01
We extend the path-integral formalism for Poisson-Lie T-duality to include the case of Drinfeld doubles which can be decomposed into bi-algebras in more than one way. We give the correct shift of the dilaton, correcting a mistake in the literature. We then use the fact that the six dimensional Drinfeld doubles have been classified to write down all possible conformal Poisson-Lie T-duals of three dimensional space times and we explicitly work out two duals to the constant dilaton and zero anti-symmetric tensor Bianchi type V space time and show that they satisfy the string equations of motion. This space-time was previously thought to have no duals because of the tracefulness of the structure constants. (author)
Linear odd Poisson bracket on Grassmann variables
International Nuclear Information System (INIS)
Soroka, V.A.
1999-01-01
A linear odd Poisson bracket (antibracket) realized solely in terms of Grassmann variables is suggested. It is revealed that the bracket, which corresponds to a semi-simple Lie group, has at once three Grassmann-odd nilpotent Δ-like differential operators of the first, the second and the third orders with respect to Grassmann derivatives, in contrast with the canonical odd Poisson bracket having the only Grassmann-odd nilpotent differential Δ-operator of the second order. It is shown that these Δ-like operators together with a Grassmann-odd nilpotent Casimir function of this bracket form a finite-dimensional Lie superalgebra. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)
The Fractional Poisson Process and the Inverse Stable Subordinator
Meerschaert, Mark; Nane, Erkan; Vellaisamy, P.
2011-01-01
The fractional Poisson process is a renewal process with Mittag-Leffler waiting times. Its distributions solve a time-fractional analogue of the Kolmogorov forward equation for a Poisson process. This paper shows that a traditional Poisson process, with the time variable replaced by an independent inverse stable subordinator, is also a fractional Poisson process. This result unifies the two main approaches in the stochastic theory of time-fractional diffusion equations. The equivalence extend...
Reduction of Nambu-Poisson Manifolds by Regular Distributions
Das, Apurba
2018-03-01
The version of Marsden-Ratiu reduction theorem for Nambu-Poisson manifolds by a regular distribution has been studied by Ibáñez et al. In this paper we show that the reduction is always ensured unless the distribution is zero. Next we extend the more general Falceto-Zambon Poisson reduction theorem for Nambu-Poisson manifolds. Finally, we define gauge transformations of Nambu-Poisson structures and show that these transformations commute with the reduction procedure.
Comparing two Poisson populations sequentially: an application
International Nuclear Information System (INIS)
Halteman, E.J.
1986-01-01
Rocky Flats Plant in Golden, Colorado monitors each of its employees for radiation exposure. Excess exposure is detected by comparing the means of two Poisson populations. A sequential probability ratio test (SPRT) is proposed as a replacement for the fixed sample normal approximation test. A uniformly most efficient SPRT exists, however logistics suggest using a truncated SPRT. The truncated SPRT is evaluated in detail and shown to possess large potential savings in average time spent by employees in the monitoring process
Poisson filtering of laser ranging data
Ricklefs, Randall L.; Shelus, Peter J.
1993-01-01
The filtering of data in a high noise, low signal strength environment is a situation encountered routinely in lunar laser ranging (LLR) and, to a lesser extent, in artificial satellite laser ranging (SLR). The use of Poisson statistics as one of the tools for filtering LLR data is described first in a historical context. The more recent application of this statistical technique to noisy SLR data is also described.
Irreversible thermodynamics of Poisson processes with reaction.
Méndez, V; Fort, J
1999-11-01
A kinetic model is derived to study the successive movements of particles, described by a Poisson process, as well as their generation. The irreversible thermodynamics of this system is also studied from the kinetic model. This makes it possible to evaluate the differences between thermodynamical quantities computed exactly and up to second-order. Such differences determine the range of validity of the second-order approximation to extended irreversible thermodynamics.
Degenerate odd Poisson bracket on Grassmann variables
International Nuclear Information System (INIS)
Soroka, V.A.
2000-01-01
A linear degenerate odd Poisson bracket (antibracket) realized solely on Grassmann variables is proposed. It is revealed that this bracket has at once three Grassmann-odd nilpotent Δ-like differential operators of the first, second and third orders with respect to the Grassmann derivatives. It is shown that these Δ-like operators, together with the Grassmann-odd nilpotent Casimir function of this bracket, form a finite-dimensional Lie superalgebra
Poisson/Superfish codes for personal computers
International Nuclear Information System (INIS)
Humphries, S.
1992-01-01
The Poisson/Superfish codes calculate static E or B fields in two-dimensions and electromagnetic fields in resonant structures. New versions for 386/486 PCs and Macintosh computers have capabilities that exceed the mainframe versions. Notable improvements are interactive graphical post-processors, improved field calculation routines, and a new program for charged particle orbit tracking. (author). 4 refs., 1 tab., figs
Alternative Forms of Compound Fractional Poisson Processes
Directory of Open Access Journals (Sweden)
Luisa Beghin
2012-01-01
Full Text Available We study here different fractional versions of the compound Poisson process. The fractionality is introduced in the counting process representing the number of jumps as well as in the density of the jumps themselves. The corresponding distributions are obtained explicitly and proved to be solution of fractional equations of order less than one. Only in the final case treated in this paper, where the number of jumps is given by the fractional-difference Poisson process defined in Orsingher and Polito (2012, we have a fractional driving equation, with respect to the time argument, with order greater than one. Moreover, in this case, the compound Poisson process is Markovian and this is also true for the corresponding limiting process. All the processes considered here are proved to be compositions of continuous time random walks with stable processes (or inverse stable subordinators. These subordinating relationships hold, not only in the limit, but also in the finite domain. In some cases the densities satisfy master equations which are the fractional analogues of the well-known Kolmogorov one.
Exterior differentials in superspace and Poisson brackets
International Nuclear Information System (INIS)
Soroka, Dmitrij V.; Soroka, Vyacheslav A.
2003-01-01
It is shown that two definitions for an exterior differential in superspace, giving the same exterior calculus, yet lead to different results when applied to the Poisson bracket. A prescription for the transition with the help of these exterior differentials from the given Poisson bracket of definite Grassmann parity to another bracket is introduced. It is also indicated that the resulting bracket leads to generalization of the Schouten-Nijenhuis bracket for the cases of superspace and brackets of diverse Grassmann parities. It is shown that in the case of the Grassmann-odd exterior differential the resulting bracket is the bracket given on exterior forms. The above-mentioned transition with the use of the odd exterior differential applied to the linear even/odd Poisson brackets, that correspond to semi-simple Lie groups, results, respectively, in also linear odd/even brackets which are naturally connected with the Lie superalgebra. The latter contains the BRST and anti-BRST charges and can be used for calculation of the BRST operator cogomology. (author)
Duality and modular class of a Nambu-Poisson structure
International Nuclear Information System (INIS)
Ibanez, R.; Leon, M. de; Lopez, B.; Marrero, J.C.; Padron, E.
2001-01-01
In this paper we introduce cohomology and homology theories for Nambu-Poisson manifolds. Also we study the relation between the existence of a duality for these theories and the vanishing of a particular Nambu-Poisson cohomology class, the modular class. The case of a regular Nambu-Poisson structure and some singular examples are discussed. (author)
Variable choices of scaling in the homogenization of a Nernst-Planck-Poisson problem
Ray, N.; Eck, C.; Muntean, A.; Knabner, P.
2011-01-01
We perform the periodic homogenization (i. e. e ¿ 0) of the non-stationary Nernst-Planck-Poisson system using two-scale convergence, where e is a suitable scale parameter. The objective is to investigate the influence of variable choices of scaling in e of the microscopic system of partial
Rigorous homogenization of a Stokes-Nernst-Planck-Poisson problem for various boundary conditions
Ray, N.; Muntean, A.; Knabner, P.
2011-01-01
We perform the periodic homogenization (i. e. e ¿ 0) of the non-stationary Stokes-Nernst-Planck-Poisson system using two-scale convergence, where e is a suitable scale parameter. The objective is to investigate the influence of different boundary conditions and variable choices of scaling in e of
Manton, Jonathan H.
2012-01-01
The Newton iteration is a popular method for minimising a cost function on Euclidean space. Various generalisations to cost functions defined on manifolds appear in the literature. In each case, the convergence rate of the generalised Newton iteration needed establishing from first principles. The present paper presents a framework for generalising iterative methods from Euclidean space to manifolds that ensures local convergence rates are preserved. It applies to any (memoryless) iterative m...
Supersymmetry for gauged double field theory and generalised Scherk–Schwarz reductions
International Nuclear Information System (INIS)
Berman, David S.; Lee, Kanghoon
2014-01-01
Previous constructions of supersymmetry for double field theory have relied on the so-called strong constraint. In this paper, the strong constraint is relaxed and the theory is shown to possess supersymmetry once the generalised Scherk–Schwarz reduction is imposed. The equivalence between the generalised Scherk–Schwarz reduced theory and the gauged double field theory is then examined in detail for the supersymmetric theory. As a biproduct we write the generalised Killing spinor equations for the supersymmetric double field theory
Generalised relativistic Ohm's laws, extended gauge transformations, and magnetic linking
International Nuclear Information System (INIS)
Pegoraro, F.
2015-01-01
Generalisations of the relativistic ideal Ohm's law are presented that include specific dynamical features of the current carrying particles in a plasma. Cases of interest for space and laboratory plasmas are identified where these generalisations allow for the definition of generalised electromagnetic fields that transform under a Lorentz boost in the same way as the real electromagnetic fields and that obey the same set of homogeneous Maxwell's equations
Field-Theoretic Weyl Deformation Quantization of Enlarged Poisson Algebras
Directory of Open Access Journals (Sweden)
Lothar Schlafer
2008-05-01
Full Text Available C*-algebraic Weyl quantization is extended by allowing also degenerate pre-symplectic forms for the Weyl relations with infinitely many degrees of freedom, and by starting out from enlarged classical Poisson algebras. A powerful tool is found in the construction of Poisson algebras and non-commutative twisted Banach-*-algebras on the stage of measures on the not locally compact test function space. Already within this frame strict deformation quantization is obtained, but in terms of Banach-*-algebras instead of C*-algebras. Fourier transformation and representation theory of the measure Banach-*-algebras are combined with the theory of continuous projective group representations to arrive at the genuine C*-algebraic strict deformation quantization in the sense of Rieffel and Landsman. Weyl quantization is recognized to depend in the first step functorially on the (in general infinite dimensional, pre-symplectic test function space; but in the second step one has to select a family of representations, indexed by the deformation parameter h. The latter ambiguity is in the present investigation connected with the choice of a folium of states, a structure, which does not necessarily require a Hilbert space representation.
Zero-inflated Poisson model based likelihood ratio test for drug safety signal detection.
Huang, Lan; Zheng, Dan; Zalkikar, Jyoti; Tiwari, Ram
2017-02-01
In recent decades, numerous methods have been developed for data mining of large drug safety databases, such as Food and Drug Administration's (FDA's) Adverse Event Reporting System, where data matrices are formed by drugs such as columns and adverse events as rows. Often, a large number of cells in these data matrices have zero cell counts and some of them are "true zeros" indicating that the drug-adverse event pairs cannot occur, and these zero counts are distinguished from the other zero counts that are modeled zero counts and simply indicate that the drug-adverse event pairs have not occurred yet or have not been reported yet. In this paper, a zero-inflated Poisson model based likelihood ratio test method is proposed to identify drug-adverse event pairs that have disproportionately high reporting rates, which are also called signals. The maximum likelihood estimates of the model parameters of zero-inflated Poisson model based likelihood ratio test are obtained using the expectation and maximization algorithm. The zero-inflated Poisson model based likelihood ratio test is also modified to handle the stratified analyses for binary and categorical covariates (e.g. gender and age) in the data. The proposed zero-inflated Poisson model based likelihood ratio test method is shown to asymptotically control the type I error and false discovery rate, and its finite sample performance for signal detection is evaluated through a simulation study. The simulation results show that the zero-inflated Poisson model based likelihood ratio test method performs similar to Poisson model based likelihood ratio test method when the estimated percentage of true zeros in the database is small. Both the zero-inflated Poisson model based likelihood ratio test and likelihood ratio test methods are applied to six selected drugs, from the 2006 to 2011 Adverse Event Reporting System database, with varying percentages of observed zero-count cells.
A Family of Poisson Processes for Use in Stochastic Models of Precipitation
Penland, C.
2013-12-01
Both modified Poisson processes and compound Poisson processes can be relevant to stochastic parameterization of precipitation. This presentation compares the dynamical properties of these systems and discusses the physical situations in which each might be appropriate. If the parameters describing either class of systems originate in hydrodynamics, then proper consideration of stochastic calculus is required during numerical implementation of the parameterization. It is shown here that an improper numerical treatment can have severe implications for estimating rainfall distributions, particularly in the tails of the distributions and, thus, on the frequency of extreme events.
Nonlocal Poisson-Fermi model for ionic solvent.
Xie, Dexuan; Liu, Jinn-Liang; Eisenberg, Bob
2016-07-01
We propose a nonlocal Poisson-Fermi model for ionic solvent that includes ion size effects and polarization correlations among water molecules in the calculation of electrostatic potential. It includes the previous Poisson-Fermi models as special cases, and its solution is the convolution of a solution of the corresponding nonlocal Poisson dielectric model with a Yukawa-like kernel function. The Fermi distribution is shown to be a set of optimal ionic concentration functions in the sense of minimizing an electrostatic potential free energy. Numerical results are reported to show the difference between a Poisson-Fermi solution and a corresponding Poisson solution.
Vacancies and a generalised melting curve of metals
International Nuclear Information System (INIS)
Gorecki, T.
1979-01-01
The vacancy mechanism of the melting process is used as a starting point for deriving an expression for the pressure dependence of the melting temperature of metals. The results obtained for the initial slope of the melting curve are compared with experimental data for 45 metals and in most cases the agreement is very good. The nonlinearity of the melting curve and the appearance of a maximum on the melting curve at a pressure approximately equal to the bulk modules is also predicted, with qualitative agreement with experimental data. A relation between bonding energy, atomic volume, and bulk modulus of metals is established. On the basis of this relation and the proposed vacancy mechanism, a generalised equation for the pressure dependence of the melting temperature of metals is derived. (author)
Adapting Metacognitive Therapy to Children with Generalised Anxiety Disorder
DEFF Research Database (Denmark)
Esbjørn, Barbara Hoff; Normann, Nicoline; Reinholdt-Dunne, Marie Louise
2015-01-01
-c) with generalised anxiety disorder (GAD) and create suggestions for an adapted manual. The adaptation was based on the structure and techniques used in MCT for adults with GAD. However, the developmental limitations of children were taken into account. For instance, therapy was aided with worksheets, practical......The metacognitive model and therapy has proven to be a promising theory and intervention for emotional disorders in adults. The model has also received empirical support in normal and clinical child samples. The purpose of the present study was to adapt metacognitive therapy to children (MCT...... exercises and delivered in a group format. Overall, the intervention relied heavily on practising MCT techniques in vivo with therapist assistance. A detailed description of how the manual was adapted for this age group is given, and examples from a group of four children are presented in a case series...
Visceral obesity and psychosocial stress: a generalised control theory model
Wallace, Rodrick
2016-07-01
The linking of control theory and information theory via the Data Rate Theorem and its generalisations allows for construction of necessary conditions statistical models of body mass regulation in the context of interaction with a complex dynamic environment. By focusing on the stress-related induction of central obesity via failure of HPA axis regulation, we explore implications for strategies of prevention and treatment. It rapidly becomes evident that individual-centred biomedical reductionism is an inadequate paradigm. Without mitigation of HPA axis or related dysfunctions arising from social pathologies of power imbalance, economic insecurity, and so on, it is unlikely that permanent changes in visceral obesity for individuals can be maintained without constant therapeutic effort, an expensive - and likely unsustainable - public policy.
Optimising, generalising and integrating educational practice using neuroscience
Colvin, Robert
2016-07-01
Practical collaboration at the intersection of education and neuroscience research is difficult because the combined discipline encompasses both the activity of microscopic neurons and the complex social interactions of teachers and students in a classroom. Taking a pragmatic view, this paper discusses three education objectives to which neuroscience can be effectively applied: optimising, generalising and integrating instructional techniques. These objectives are characterised by: (1) being of practical importance; (2) building on existing education and cognitive research; and (3) being infeasible to address based on behavioural experiments alone. The focus of the neuroscientific aspect of collaborative research should be on the activity of the brain before, during and after learning a task, as opposed to performance of a task. The objectives are informed by literature that highlights possible pitfalls with educational neuroscience research, and are described with respect to the static and dynamic aspects of brain physiology that can be measured by current technology.
Generalised pruritus as a presentation of Grave’s disease
Directory of Open Access Journals (Sweden)
Tan CE
2013-05-01
Full Text Available Pruritus is a lesser known symptom of hyperthyroidism, particularly in autoimmune thyroid disorders. This is a case report of a 27-year-old woman who presented with generalised pruritus at a primary care clinic. Incidental findings of tachycardia and a goiter led to the investigations of her thyroid status. The thyroid function test revealed elevated serum free T4 and suppressed thyroid stimulating hormone levels. The anti-thyroid antibodies were positive. She was diagnosed with Graves’ disease and treated with carbimazole until her symptoms subsided. Graves’ disease should be considered as an underlying cause for patients presenting with pruritus. A thorough history and complete physical examination are crucial in making an accurate diagnosis. Underlying causes must be determined before treating the symptoms.
Generalised two target localisation using passive monopulse radar
Jardak, Seifallah
2017-04-07
The simultaneous lobing technique, also known as monopulse technique, has been widely used for fast target localisation and tracking purposes. Many works focused on accurately localising one or two targets lying within a narrow beam centred around the monopulse antenna boresight. In this study, a new approach is proposed, which uses the outputs of four antennas to rapidly localise two point targets present in the hemisphere. If both targets have the same elevation angle, the proposed scheme cannot detect them. To detect such targets, a second set of antennas is required. In this study, to detect two targets at generalised locations, the antenna array is divided into multiple overlapping sets each of four antennas. Two algorithms are proposed to combine the outputs from multiple sets and improve the detection performance. Simulation results show that the algorithm is able to localise both targets with <;2° mean square error in azimuth and elevation.
Generalised pruritus as a presentation of Grave's disease.
Tan, Ce; Loh, Ky
2013-01-01
Pruritus is a lesser known symptom of hyperthyroidism, particularly in autoimmune thyroid disorders. This is a case report of a 27-year-old woman who presented with generalised pruritus at a primary care clinic. Incidental findings of tachycardia and a goiter led to the investigations of her thyroid status. The thyroid function test revealed elevated serum free T4 and suppressed thyroid stimulating hormone levels. The anti-thyroid antibodies were positive. She was diagnosed with Graves' disease and treated with carbimazole until her symptoms subsided. Graves' disease should be considered as an underlying cause for patients presenting with pruritus. A thorough history and complete physical examination are crucial in making an accurate diagnosis. Underlying causes must be determined before treating the symptoms.
Species Abundance in a Forest Community in South China: A Case of Poisson Lognormal Distribution
Institute of Scientific and Technical Information of China (English)
Zuo-Yun YIN; Hai REN; Qian-Mei ZHANG; Shao-Lin PENG; Qin-Feng GUO; Guo-Yi ZHOU
2005-01-01
Case studies on Poisson lognormal distribution of species abundance have been rare, especially in forest communities. We propose a numerical method to fit the Poisson lognormal to the species abundance data at an evergreen mixed forest in the Dinghushan Biosphere Reserve, South China. Plants in the tree, shrub and herb layers in 25 quadrats of 20 m×20 m, 5 m×5 m, and 1 m×1 m were surveyed. Results indicated that: (i) for each layer, the observed species abundance with a similarly small median, mode, and a variance larger than the mean was reverse J-shaped and followed well the zero-truncated Poisson lognormal;(ii) the coefficient of variation, skewness and kurtosis of abundance, and two Poisson lognormal parameters (σ andμ) for shrub layer were closer to those for the herb layer than those for the tree layer; and (iii) from the tree to the shrub to the herb layer, the σ and the coefficient of variation decreased, whereas diversity increased. We suggest that: (i) the species abundance distributions in the three layers reflects the overall community characteristics; (ii) the Poisson lognormal can describe the species abundance distribution in diverse communities with a few abundant species but many rare species; and (iii) 1/σ should be an alternative measure of diversity.
Generalised partition functions: inferences on phase space distributions
Directory of Open Access Journals (Sweden)
R. A. Treumann
2016-06-01
Full Text Available It is demonstrated that the statistical mechanical partition function can be used to construct various different forms of phase space distributions. This indicates that its structure is not restricted to the Gibbs–Boltzmann factor prescription which is based on counting statistics. With the widely used replacement of the Boltzmann factor by a generalised Lorentzian (also known as the q-deformed exponential function, where κ = 1∕|q − 1|, with κ, q ∈ R both the kappa-Bose and kappa-Fermi partition functions are obtained in quite a straightforward way, from which the conventional Bose and Fermi distributions follow for κ → ∞. For κ ≠ ∞ these are subject to the restrictions that they can be used only at temperatures far from zero. They thus, as shown earlier, have little value for quantum physics. This is reasonable, because physical κ systems imply strong correlations which are absent at zero temperature where apart from stochastics all dynamical interactions are frozen. In the classical large temperature limit one obtains physically reasonable κ distributions which depend on energy respectively momentum as well as on chemical potential. Looking for other functional dependencies, we examine Bessel functions whether they can be used for obtaining valid distributions. Again and for the same reason, no Fermi and Bose distributions exist in the low temperature limit. However, a classical Bessel–Boltzmann distribution can be constructed which is a Bessel-modified Lorentzian distribution. Whether it makes any physical sense remains an open question. This is not investigated here. The choice of Bessel functions is motivated solely by their convergence properties and not by reference to any physical demands. This result suggests that the Gibbs–Boltzmann partition function is fundamental not only to Gibbs–Boltzmann but also to a large class of generalised Lorentzian distributions as well as to the
An anisotropic elastoplastic constitutive formulation generalised for orthotropic materials
Mohd Nor, M. K.; Ma'at, N.; Ho, C. S.
2018-03-01
This paper presents a finite strain constitutive model to predict a complex elastoplastic deformation behaviour that involves very high pressures and shockwaves in orthotropic materials using an anisotropic Hill's yield criterion by means of the evolving structural tensors. The yield surface of this hyperelastic-plastic constitutive model is aligned uniquely within the principal stress space due to the combination of Mandel stress tensor and a new generalised orthotropic pressure. The formulation is developed in the isoclinic configuration and allows for a unique treatment for elastic and plastic orthotropy. An isotropic hardening is adopted to define the evolution of plastic orthotropy. The important feature of the proposed hyperelastic-plastic constitutive model is the introduction of anisotropic effect in the Mie-Gruneisen equation of state (EOS). The formulation is further combined with Grady spall failure model to predict spall failure in the materials. The proposed constitutive model is implemented as a new material model in the Lawrence Livermore National Laboratory (LLNL)-DYNA3D code of UTHM's version, named Material Type 92 (Mat92). The combination of the proposed stress tensor decomposition and the Mie-Gruneisen EOS requires some modifications in the code to reflect the formulation of the generalised orthotropic pressure. The validation approach is also presented in this paper for guidance purpose. The \\varvec{ψ} tensor used to define the alignment of the adopted yield surface is first validated. This is continued with an internal validation related to elastic isotropic, elastic orthotropic and elastic-plastic orthotropic of the proposed formulation before a comparison against range of plate impact test data at 234, 450 and {895 ms}^{-1} impact velocities is performed. A good agreement is obtained in each test.
Poisson Mixture Regression Models for Heart Disease Prediction.
Mufudza, Chipo; Erol, Hamza
2016-01-01
Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model.
On the fractal characterization of Paretian Poisson processes
Eliazar, Iddo I.; Sokolov, Igor M.
2012-06-01
Paretian Poisson processes are Poisson processes which are defined on the positive half-line, have maximal points, and are quantified by power-law intensities. Paretian Poisson processes are elemental in statistical physics, and are the bedrock of a host of power-law statistics ranging from Pareto's law to anomalous diffusion. In this paper we establish evenness-based fractal characterizations of Paretian Poisson processes. Considering an array of socioeconomic evenness-based measures of statistical heterogeneity, we show that: amongst the realm of Poisson processes which are defined on the positive half-line, and have maximal points, Paretian Poisson processes are the unique class of 'fractal processes' exhibiting scale-invariance. The results established in this paper are diametric to previous results asserting that the scale-invariance of Poisson processes-with respect to physical randomness-based measures of statistical heterogeneity-is characterized by exponential Poissonian intensities.
Analysis of overdispersed count data by mixtures of Poisson variables and Poisson processes.
Hougaard, P; Lee, M L; Whitmore, G A
1997-12-01
Count data often show overdispersion compared to the Poisson distribution. Overdispersion is typically modeled by a random effect for the mean, based on the gamma distribution, leading to the negative binomial distribution for the count. This paper considers a larger family of mixture distributions, including the inverse Gaussian mixture distribution. It is demonstrated that it gives a significantly better fit for a data set on the frequency of epileptic seizures. The same approach can be used to generate counting processes from Poisson processes, where the rate or the time is random. A random rate corresponds to variation between patients, whereas a random time corresponds to variation within patients.
Lindley frailty model for a class of compound Poisson processes
Kadilar, Gamze Özel; Ata, Nihal
2013-10-01
The Lindley distribution gain importance in survival analysis for the similarity of exponential distribution and allowance for the different shapes of hazard function. Frailty models provide an alternative to proportional hazards model where misspecified or omitted covariates are described by an unobservable random variable. Despite of the distribution of the frailty is generally assumed to be continuous, it is appropriate to consider discrete frailty distributions In some circumstances. In this paper, frailty models with discrete compound Poisson process for the Lindley distributed failure time are introduced. Survival functions are derived and maximum likelihood estimation procedures for the parameters are studied. Then, the fit of the models to the earthquake data set of Turkey are examined.
The transverse Poisson's ratio of composites.
Foye, R. L.
1972-01-01
An expression is developed that makes possible the prediction of Poisson's ratio for unidirectional composites with reference to any pair of orthogonal axes that are normal to the direction of the reinforcing fibers. This prediction appears to be a reasonable one in that it follows the trends of the finite element analysis and the bounding estimates, and has the correct limiting value for zero fiber content. It can only be expected to apply to composites containing stiff, circular, isotropic fibers bonded to a soft matrix material.
Risk Sensitive Filtering with Poisson Process Observations
International Nuclear Information System (INIS)
Malcolm, W. P.; James, M. R.; Elliott, R. J.
2000-01-01
In this paper we consider risk sensitive filtering for Poisson process observations. Risk sensitive filtering is a type of robust filtering which offers performance benefits in the presence of uncertainties. We derive a risk sensitive filter for a stochastic system where the signal variable has dynamics described by a diffusion equation and determines the rate function for an observation process. The filtering equations are stochastic integral equations. Computer simulations are presented to demonstrate the performance gain for the risk sensitive filter compared with the risk neutral filter
Moments analysis of concurrent Poisson processes
International Nuclear Information System (INIS)
McBeth, G.W.; Cross, P.
1975-01-01
A moments analysis of concurrent Poisson processes has been carried out. Equations are given which relate combinations of distribution moments to sums of products involving the number of counts associated with the processes and the mean rate of the processes. Elimination of background is discussed and equations suitable for processing random radiation, parent-daughter pairs in the presence of background, and triple and double correlations in the presence of background are given. The theory of identification of the four principle radioactive series by moments analysis is discussed. (Auth.)
Renewal characterization of Markov modulated Poisson processes
Directory of Open Access Journals (Sweden)
Marcel F. Neuts
1989-01-01
Full Text Available A Markov Modulated Poisson Process (MMPP M(t defined on a Markov chain J(t is a pure jump process where jumps of M(t occur according to a Poisson process with intensity λi whenever the Markov chain J(t is in state i. M(t is called strongly renewal (SR if M(t is a renewal process for an arbitrary initial probability vector of J(t with full support on P={i:λi>0}. M(t is called weakly renewal (WR if there exists an initial probability vector of J(t such that the resulting MMPP is a renewal process. The purpose of this paper is to develop general characterization theorems for the class SR and some sufficiency theorems for the class WR in terms of the first passage times of the bivariate Markov chain [J(t,M(t]. Relevance to the lumpability of J(t is also studied.
Binomial vs poisson statistics in radiation studies
International Nuclear Information System (INIS)
Foster, J.; Kouris, K.; Spyrou, N.M.; Matthews, I.P.; Welsh National School of Medicine, Cardiff
1983-01-01
The processes of radioactive decay, decay and growth of radioactive species in a radioactive chain, prompt emission(s) from nuclear reactions, conventional activation and cyclic activation are discussed with respect to their underlying statistical density function. By considering the transformation(s) that each nucleus may undergo it is shown that all these processes are fundamentally binomial. Formally, when the number of experiments N is large and the probability of success p is close to zero, the binomial is closely approximated by the Poisson density function. In radiation and nuclear physics, N is always large: each experiment can be conceived of as the observation of the fate of each of the N nuclei initially present. Whether p, the probability that a given nucleus undergoes a prescribed transformation, is close to zero depends on the process and nuclide(s) concerned. Hence, although a binomial description is always valid, the Poisson approximation is not always adequate. Therefore further clarification is provided as to when the binomial distribution must be used in the statistical treatment of detected events. (orig.)
Variational Gaussian approximation for Poisson data
Arridge, Simon R.; Ito, Kazufumi; Jin, Bangti; Zhang, Chen
2018-02-01
The Poisson model is frequently employed to describe count data, but in a Bayesian context it leads to an analytically intractable posterior probability distribution. In this work, we analyze a variational Gaussian approximation to the posterior distribution arising from the Poisson model with a Gaussian prior. This is achieved by seeking an optimal Gaussian distribution minimizing the Kullback-Leibler divergence from the posterior distribution to the approximation, or equivalently maximizing the lower bound for the model evidence. We derive an explicit expression for the lower bound, and show the existence and uniqueness of the optimal Gaussian approximation. The lower bound functional can be viewed as a variant of classical Tikhonov regularization that penalizes also the covariance. Then we develop an efficient alternating direction maximization algorithm for solving the optimization problem, and analyze its convergence. We discuss strategies for reducing the computational complexity via low rank structure of the forward operator and the sparsity of the covariance. Further, as an application of the lower bound, we discuss hierarchical Bayesian modeling for selecting the hyperparameter in the prior distribution, and propose a monotonically convergent algorithm for determining the hyperparameter. We present extensive numerical experiments to illustrate the Gaussian approximation and the algorithms.
Guidelines for Use of the Approximate Beta-Poisson Dose-Response Model.
Xie, Gang; Roiko, Anne; Stratton, Helen; Lemckert, Charles; Dunn, Peter K; Mengersen, Kerrie
2017-07-01
For dose-response analysis in quantitative microbial risk assessment (QMRA), the exact beta-Poisson model is a two-parameter mechanistic dose-response model with parameters α>0 and β>0, which involves the Kummer confluent hypergeometric function. Evaluation of a hypergeometric function is a computational challenge. Denoting PI(d) as the probability of infection at a given mean dose d, the widely used dose-response model PI(d)=1-(1+dβ)-α is an approximate formula for the exact beta-Poisson model. Notwithstanding the required conditions α1, issues related to the validity and approximation accuracy of this approximate formula have remained largely ignored in practice, partly because these conditions are too general to provide clear guidance. Consequently, this study proposes a probability measure Pr(0 (22α̂)0.50 for 0.020.99) . This validity measure and rule of thumb were validated by application to all the completed beta-Poisson models (related to 85 data sets) from the QMRA community portal (QMRA Wiki). The results showed that the higher the probability Pr(0 Poisson model dose-response curve. © 2016 Society for Risk Analysis.
A test of inflated zeros for Poisson regression models.
He, Hua; Zhang, Hui; Ye, Peng; Tang, Wan
2017-01-01
Excessive zeros are common in practice and may cause overdispersion and invalidate inference when fitting Poisson regression models. There is a large body of literature on zero-inflated Poisson models. However, methods for testing whether there are excessive zeros are less well developed. The Vuong test comparing a Poisson and a zero-inflated Poisson model is commonly applied in practice. However, the type I error of the test often deviates seriously from the nominal level, rendering serious doubts on the validity of the test in such applications. In this paper, we develop a new approach for testing inflated zeros under the Poisson model. Unlike the Vuong test for inflated zeros, our method does not require a zero-inflated Poisson model to perform the test. Simulation studies show that when compared with the Vuong test our approach not only better at controlling type I error rate, but also yield more power.
A Method of Poisson's Ration Imaging Within a Material Part
Roth, Don J. (Inventor)
1994-01-01
The present invention is directed to a method of displaying the Poisson's ratio image of a material part. In the present invention, longitudinal data is produced using a longitudinal wave transducer and shear wave data is produced using a shear wave transducer. The respective data is then used to calculate the Poisson's ratio for the entire material part. The Poisson's ratio approximations are then used to display the data.
Method of Poisson's ratio imaging within a material part
Roth, Don J. (Inventor)
1996-01-01
The present invention is directed to a method of displaying the Poisson's ratio image of a material part. In the present invention longitudinal data is produced using a longitudinal wave transducer and shear wave data is produced using a shear wave transducer. The respective data is then used to calculate the Poisson's ratio for the entire material part. The Poisson's ratio approximations are then used to displayed the image.
Compound Poisson Approximations for Sums of Random Variables
Serfozo, Richard F.
1986-01-01
We show that a sum of dependent random variables is approximately compound Poisson when the variables are rarely nonzero and, given they are nonzero, their conditional distributions are nearly identical. We give several upper bounds on the total-variation distance between the distribution of such a sum and a compound Poisson distribution. Included is an example for Markovian occurrences of a rare event. Our bounds are consistent with those that are known for Poisson approximations for sums of...
The creep analysis of shell structures using generalised models
International Nuclear Information System (INIS)
Boyle, J.T.; Spence, J.
1981-01-01
In this paper a new, more complete estimate of the accuracy of the stationary creep model is given for the general case through the evaluation of exact and approximate energy surfaces. In addition, the stationary model is extended to include more general non-stationary (combined elastic-creep) behaviour and to include the possibility of material deterioration through damage. The resulting models are then compared to existing exact solutions for several shell structures - e.g. a thin pressurised cylinder, a curved pipe in bending and an S-bellows under axial extension with large deflections. In each case very good agreement is obtained. Although requiring similar computing effort, so that the same solution techniques can be utilised, the calculation times are shown to be significantly reduced using the generalised approach. In conclusion, it has been demonstrated that a new simple mechanical model of a thin shell in creep, with or without material deterioration can be constructed; the model is assessed in detail and successfully compared to existing solutions. (orig./HP)
Generalised perturbation theory and source of information through chemical measurements
International Nuclear Information System (INIS)
Lelek, V.; Marek, T.
2001-01-01
It is important to make all analyses and collect all information from the work of the new facility (which the transmutation demonstration unit will surely be) to be sure that the operation corresponds to the forecast or to correct the equations of the facility. The behaviour of the molten salt reactor and in particular the system of measurement are very different from that of the solid fuel reactor. Key information from the long time kinetics could be the nearly on line knowledge of the fuel composition. In this work it is shown how to include it into the control and use such data for the correction of neutron cross-sections for the high actinides or other characteristics. Also the problem of safety - change of the boundary problem to the initial problem - is mentioned. The problem is transformed into the generalised perturbation theory in which the adjoint function is obtained through the solution of the equations with right hand side having the form of source. Such an approach should be a theoretical base for the calculation of the sensitivity coefficients. (authors)
Radio pulsar glitches as a state-dependent Poisson process
Fulgenzi, W.; Melatos, A.; Hughes, B. D.
2017-10-01
Gross-Pitaevskii simulations of vortex avalanches in a neutron star superfluid are limited computationally to ≲102 vortices and ≲102 avalanches, making it hard to study the long-term statistics of radio pulsar glitches in realistically sized systems. Here, an idealized, mean-field model of the observed Gross-Pitaevskii dynamics is presented, in which vortex unpinning is approximated as a state-dependent, compound Poisson process in a single random variable, the spatially averaged crust-superfluid lag. Both the lag-dependent Poisson rate and the conditional distribution of avalanche-driven lag decrements are inputs into the model, which is solved numerically (via Monte Carlo simulations) and analytically (via a master equation). The output statistics are controlled by two dimensionless free parameters: α, the glitch rate at a reference lag, multiplied by the critical lag for unpinning, divided by the spin-down rate; and β, the minimum fraction of the lag that can be restored by a glitch. The system evolves naturally to a self-regulated stationary state, whose properties are determined by α/αc(β), where αc(β) ≈ β-1/2 is a transition value. In the regime α ≳ αc(β), one recovers qualitatively the power-law size and exponential waiting-time distributions observed in many radio pulsars and Gross-Pitaevskii simulations. For α ≪ αc(β), the size and waiting-time distributions are both power-law-like, and a correlation emerges between size and waiting time until the next glitch, contrary to what is observed in most pulsars. Comparisons with astrophysical data are restricted by the small sample sizes available at present, with ≤35 events observed per pulsar.
Surface reconstruction through poisson disk sampling.
Directory of Open Access Journals (Sweden)
Wenguang Hou
Full Text Available This paper intends to generate the approximate Voronoi diagram in the geodesic metric for some unbiased samples selected from original points. The mesh model of seeds is then constructed on basis of the Voronoi diagram. Rather than constructing the Voronoi diagram for all original points, the proposed strategy is to run around the obstacle that the geodesic distances among neighboring points are sensitive to nearest neighbor definition. It is obvious that the reconstructed model is the level of detail of original points. Hence, our main motivation is to deal with the redundant scattered points. In implementation, Poisson disk sampling is taken to select seeds and helps to produce the Voronoi diagram. Adaptive reconstructions can be achieved by slightly changing the uniform strategy in selecting seeds. Behaviors of this method are investigated and accuracy evaluations are done. Experimental results show the proposed method is reliable and effective.
Thinning spatial point processes into Poisson processes
DEFF Research Database (Denmark)
Møller, Jesper; Schoenberg, Frederic Paik
2010-01-01
are identified, and where we simulate backwards and forwards in order to obtain the thinned process. In the case of a Cox process, a simple independent thinning technique is proposed. In both cases, the thinning results in a Poisson process if and only if the true Papangelou conditional intensity is used, and......In this paper we describe methods for randomly thinning certain classes of spatial point processes. In the case of a Markov point process, the proposed method involves a dependent thinning of a spatial birth-and-death process, where clans of ancestors associated with the original points......, thus, can be used as a graphical exploratory tool for inspecting the goodness-of-fit of a spatial point process model. Several examples, including clustered and inhibitive point processes, are considered....
Thinning spatial point processes into Poisson processes
DEFF Research Database (Denmark)
Møller, Jesper; Schoenberg, Frederic Paik
, and where one simulates backwards and forwards in order to obtain the thinned process. In the case of a Cox process, a simple independent thinning technique is proposed. In both cases, the thinning results in a Poisson process if and only if the true Papangelou conditional intensity is used, and thus can......This paper describes methods for randomly thinning certain classes of spatial point processes. In the case of a Markov point process, the proposed method involves a dependent thinning of a spatial birth-and-death process, where clans of ancestors associated with the original points are identified...... be used as a diagnostic for assessing the goodness-of-fit of a spatial point process model. Several examples, including clustered and inhibitive point processes, are considered....
Periodic Poisson Solver for Particle Tracking
International Nuclear Information System (INIS)
Dohlus, M.; Henning, C.
2015-05-01
A method is described to solve the Poisson problem for a three dimensional source distribution that is periodic into one direction. Perpendicular to the direction of periodicity a free space (or open) boundary is realized. In beam physics, this approach allows to calculate the space charge field of a continualized charged particle distribution with periodic pattern. The method is based on a particle mesh approach with equidistant grid and fast convolution with a Green's function. The periodic approach uses only one period of the source distribution, but a periodic extension of the Green's function. The approach is numerically efficient and allows the investigation of periodic- and pseudo-periodic structures with period lengths that are small compared to the source dimensions, for instance of laser modulated beams or of the evolution of micro bunch structures. Applications for laser modulated beams are given.
Nonlinear poisson brackets geometry and quantization
Karasev, M V
2012-01-01
This book deals with two old mathematical problems. The first is the problem of constructing an analog of a Lie group for general nonlinear Poisson brackets. The second is the quantization problem for such brackets in the semiclassical approximation (which is the problem of exact quantization for the simplest classes of brackets). These problems are progressively coming to the fore in the modern theory of differential equations and quantum theory, since the approach based on constructions of algebras and Lie groups seems, in a certain sense, to be exhausted. The authors' main goal is to describe in detail the new objects that appear in the solution of these problems. Many ideas of algebra, modern differential geometry, algebraic topology, and operator theory are synthesized here. The authors prove all statements in detail, thus making the book accessible to graduate students.
Directory of Open Access Journals (Sweden)
SANKU DEY
2010-11-01
Full Text Available The generalized exponential (GE distribution proposed by Gupta and Kundu (1999 is an important lifetime distribution in survival analysis. In this article, we propose to obtain Bayes estimators and its associated risk based on a class of non-informative prior under the assumption of three loss functions, namely, quadratic loss function (QLF, squared log-error loss function (SLELF and general entropy loss function (GELF. The motivation is to explore the most appropriate loss function among these three loss functions. The performances of the estimators are, therefore, compared on the basis of their risks obtained under QLF, SLELF and GELF separately. The relative efficiency of the estimators is also obtained. Finally, Monte Carlo simulations are performed to compare the performances of the Bayes estimates under different situations.
Fearing shades of grey: individual differences in fear responding towards generalisation stimuli.
Arnaudova, Inna; Krypotos, Angelos-Miltiadis; Effting, Marieke; Kindt, Merel; Beckers, Tom
2017-09-01
Individual differences in fear generalisation have been proposed to play a role in the aetiology and/or maintenance of anxiety disorders, but few data are available to directly support that claim. The research that is available has focused mostly on generalisation of peripheral and central physiological fear responses. Far less is known about the generalisation of avoidance, the behavioural component of fear. In two experiments, we evaluated how neuroticism, a known vulnerability factor for anxiety, modulates an array of fear responses, including avoidance tendencies, towards generalisation stimuli (GS). Participants underwent differential fear conditioning, in which one conditioned stimulus (CS+) was repeatedly paired with an aversive outcome (shock; unconditioned stimulus, US), whereas another was not (CS-). Fear generalisation was observed across measures in Experiment 1 (US expectancy and evaluative ratings) and Experiment 2 (US expectancy, evaluative ratings, skin conductance, startle responses, safety behaviours), with overall highest responding to the CS+, lowest to the CS- and intermediate responding to the GSs. Neuroticism had very little impact on fear generalisation (but did affect GS recognition rates in Experiment 1), in line with the idea that fear generalisation is largely an adaptive process.
Koyama, Kento; Hokunan, Hidekazu; Hasegawa, Mayumi; Kawamura, Shuso; Koseki, Shigenobu
2016-12-01
We investigated a bacterial sample preparation procedure for single-cell studies. In the present study, we examined whether single bacterial cells obtained via 10-fold dilution followed a theoretical Poisson distribution. Four serotypes of Salmonella enterica, three serotypes of enterohaemorrhagic Escherichia coli and one serotype of Listeria monocytogenes were used as sample bacteria. An inoculum of each serotype was prepared via a 10-fold dilution series to obtain bacterial cell counts with mean values of one or two. To determine whether the experimentally obtained bacterial cell counts follow a theoretical Poisson distribution, a likelihood ratio test between the experimentally obtained cell counts and Poisson distribution which parameter estimated by maximum likelihood estimation (MLE) was conducted. The bacterial cell counts of each serotype sufficiently followed a Poisson distribution. Furthermore, to examine the validity of the parameters of Poisson distribution from experimentally obtained bacterial cell counts, we compared these with the parameters of a Poisson distribution that were estimated using random number generation via computer simulation. The Poisson distribution parameters experimentally obtained from bacterial cell counts were within the range of the parameters estimated using a computer simulation. These results demonstrate that the bacterial cell counts of each serotype obtained via 10-fold dilution followed a Poisson distribution. The fact that the frequency of bacterial cell counts follows a Poisson distribution at low number would be applied to some single-cell studies with a few bacterial cells. In particular, the procedure presented in this study enables us to develop an inactivation model at the single-cell level that can estimate the variability of survival bacterial numbers during the bacterial death process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Stochastic Dynamics of a Time-Delayed Ecosystem Driven by Poisson White Noise Excitation
Directory of Open Access Journals (Sweden)
Wantao Jia
2018-02-01
Full Text Available We investigate the stochastic dynamics of a prey-predator type ecosystem with time delay and the discrete random environmental fluctuations. In this model, the delay effect is represented by a time delay parameter and the effect of the environmental randomness is modeled as Poisson white noise. The stochastic averaging method and the perturbation method are applied to calculate the approximate stationary probability density functions for both predator and prey populations. The influences of system parameters and the Poisson white noises are investigated in detail based on the approximate stationary probability density functions. It is found that, increasing time delay parameter as well as the mean arrival rate and the variance of the amplitude of the Poisson white noise will enhance the fluctuations of the prey and predator population. While the larger value of self-competition parameter will reduce the fluctuation of the system. Furthermore, the results from Monte Carlo simulation are also obtained to show the effectiveness of the results from averaging method.
ColDICE: A parallel Vlasov–Poisson solver using moving adaptive simplicial tessellation
International Nuclear Information System (INIS)
Sousbie, Thierry; Colombi, Stéphane
2016-01-01
Resolving numerically Vlasov–Poisson equations for initially cold systems can be reduced to following the evolution of a three-dimensional sheet evolving in six-dimensional phase-space. We describe a public parallel numerical algorithm consisting in representing the phase-space sheet with a conforming, self-adaptive simplicial tessellation of which the vertices follow the Lagrangian equations of motion. The algorithm is implemented both in six- and four-dimensional phase-space. Refinement of the tessellation mesh is performed using the bisection method and a local representation of the phase-space sheet at second order relying on additional tracers created when needed at runtime. In order to preserve in the best way the Hamiltonian nature of the system, refinement is anisotropic and constrained by measurements of local Poincaré invariants. Resolution of Poisson equation is performed using the fast Fourier method on a regular rectangular grid, similarly to particle in cells codes. To compute the density projected onto this grid, the intersection of the tessellation and the grid is calculated using the method of Franklin and Kankanhalli [65–67] generalised to linear order. As preliminary tests of the code, we study in four dimensional phase-space the evolution of an initially small patch in a chaotic potential and the cosmological collapse of a fluctuation composed of two sinusoidal waves. We also perform a “warm” dark matter simulation in six-dimensional phase-space that we use to check the parallel scaling of the code.
ColDICE: A parallel Vlasov–Poisson solver using moving adaptive simplicial tessellation
Energy Technology Data Exchange (ETDEWEB)
Sousbie, Thierry, E-mail: tsousbie@gmail.com [Institut d' Astrophysique de Paris, CNRS UMR 7095 and UPMC, 98bis, bd Arago, F-75014 Paris (France); Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan); Research Center for the Early Universe, School of Science, The University of Tokyo, Tokyo 113-0033 (Japan); Colombi, Stéphane, E-mail: colombi@iap.fr [Institut d' Astrophysique de Paris, CNRS UMR 7095 and UPMC, 98bis, bd Arago, F-75014 Paris (France); Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)
2016-09-15
Resolving numerically Vlasov–Poisson equations for initially cold systems can be reduced to following the evolution of a three-dimensional sheet evolving in six-dimensional phase-space. We describe a public parallel numerical algorithm consisting in representing the phase-space sheet with a conforming, self-adaptive simplicial tessellation of which the vertices follow the Lagrangian equations of motion. The algorithm is implemented both in six- and four-dimensional phase-space. Refinement of the tessellation mesh is performed using the bisection method and a local representation of the phase-space sheet at second order relying on additional tracers created when needed at runtime. In order to preserve in the best way the Hamiltonian nature of the system, refinement is anisotropic and constrained by measurements of local Poincaré invariants. Resolution of Poisson equation is performed using the fast Fourier method on a regular rectangular grid, similarly to particle in cells codes. To compute the density projected onto this grid, the intersection of the tessellation and the grid is calculated using the method of Franklin and Kankanhalli [65–67] generalised to linear order. As preliminary tests of the code, we study in four dimensional phase-space the evolution of an initially small patch in a chaotic potential and the cosmological collapse of a fluctuation composed of two sinusoidal waves. We also perform a “warm” dark matter simulation in six-dimensional phase-space that we use to check the parallel scaling of the code.
The Generalised Ecosystem Modelling Approach in Radiological Assessment
International Nuclear Information System (INIS)
Klos, Richard
2008-03-01
An independent modelling capability is required by SSI in order to evaluate dose assessments carried out in Sweden by, amongst others, SKB. The main focus is the evaluation of the long-term radiological safety of radioactive waste repositories for both spent fuel and low-level radioactive waste. To meet the requirement for an independent modelling tool for use in biosphere dose assessments, SSI through its modelling team CLIMB commissioned the development of a new model in 2004, a project to produce an integrated model of radionuclides in the landscape. The generalised ecosystem modelling approach (GEMA) is the result. GEMA is a modular system of compartments representing the surface environment. It can be configured, through water and solid material fluxes, to represent local details in the range of ecosystem types found in the past, present and future Swedish landscapes. The approach is generic but fine tuning can be carried out using local details of the surface drainage system. The modular nature of the modelling approach means that GEMA modules can be linked to represent large scale surface drainage features over an extended domain in the landscape. System change can also be managed in GEMA, allowing a flexible and comprehensive model of the evolving landscape to be constructed. Environmental concentrations of radionuclides can be calculated and the GEMA dose pathway model provides a means of evaluating the radiological impact of radionuclide release to the surface environment. This document sets out the philosophy and details of GEMA and illustrates the functioning of the model with a range of examples featuring the recent CLIMB review of SKB's SR-Can assessment
The Generalised Ecosystem Modelling Approach in Radiological Assessment
Energy Technology Data Exchange (ETDEWEB)
Klos, Richard
2008-03-15
An independent modelling capability is required by SSI in order to evaluate dose assessments carried out in Sweden by, amongst others, SKB. The main focus is the evaluation of the long-term radiological safety of radioactive waste repositories for both spent fuel and low-level radioactive waste. To meet the requirement for an independent modelling tool for use in biosphere dose assessments, SSI through its modelling team CLIMB commissioned the development of a new model in 2004, a project to produce an integrated model of radionuclides in the landscape. The generalised ecosystem modelling approach (GEMA) is the result. GEMA is a modular system of compartments representing the surface environment. It can be configured, through water and solid material fluxes, to represent local details in the range of ecosystem types found in the past, present and future Swedish landscapes. The approach is generic but fine tuning can be carried out using local details of the surface drainage system. The modular nature of the modelling approach means that GEMA modules can be linked to represent large scale surface drainage features over an extended domain in the landscape. System change can also be managed in GEMA, allowing a flexible and comprehensive model of the evolving landscape to be constructed. Environmental concentrations of radionuclides can be calculated and the GEMA dose pathway model provides a means of evaluating the radiological impact of radionuclide release to the surface environment. This document sets out the philosophy and details of GEMA and illustrates the functioning of the model with a range of examples featuring the recent CLIMB review of SKB's SR-Can assessment
Work and entropy production in generalised Gibbs ensembles
International Nuclear Information System (INIS)
Perarnau-Llobet, Martí; Riera, Arnau; Gallego, Rodrigo; Wilming, Henrik; Eisert, Jens
2016-01-01
Recent years have seen an enormously revived interest in the study of thermodynamic notions in the quantum regime. This applies both to the study of notions of work extraction in thermal machines in the quantum regime, as well as to questions of equilibration and thermalisation of interacting quantum many-body systems as such. In this work we bring together these two lines of research by studying work extraction in a closed system that undergoes a sequence of quenches and equilibration steps concomitant with free evolutions. In this way, we incorporate an important insight from the study of the dynamics of quantum many body systems: the evolution of closed systems is expected to be well described, for relevant observables and most times, by a suitable equilibrium state. We will consider three kinds of equilibration, namely to (i) the time averaged state, (ii) the Gibbs ensemble and (iii) the generalised Gibbs ensemble, reflecting further constants of motion in integrable models. For each effective description, we investigate notions of entropy production, the validity of the minimal work principle and properties of optimal work extraction protocols. While we keep the discussion general, much room is dedicated to the discussion of paradigmatic non-interacting fermionic quantum many-body systems, for which we identify significant differences with respect to the role of the minimal work principle. Our work not only has implications for experiments with cold atoms, but also can be viewed as suggesting a mindset for quantum thermodynamics where the role of the external heat baths is instead played by the system itself, with its internal degrees of freedom bringing coarse-grained observables to equilibrium. (paper)
Perturbation-induced emergence of Poisson-like behavior in non-Poisson systems
International Nuclear Information System (INIS)
Akin, Osman C; Grigolini, Paolo; Paradisi, Paolo
2009-01-01
The response of a system with ON–OFF intermittency to an external harmonic perturbation is discussed. ON–OFF intermittency is described by means of a sequence of random events, i.e., the transitions from the ON to the OFF state and vice versa. The unperturbed waiting times (WTs) between two events are assumed to satisfy a renewal condition, i.e., the WTs are statistically independent random variables. The response of a renewal model with non-Poisson ON–OFF intermittency, associated with non-exponential WT distribution, is analyzed by looking at the changes induced in the WT statistical distribution by the harmonic perturbation. The scaling properties are also studied by means of diffusion entropy analysis. It is found that, in the range of fast and relatively strong perturbation, the non-Poisson system displays a Poisson-like behavior in both WT distribution and scaling. In particular, the histogram of perturbed WTs becomes a sequence of equally spaced peaks, with intensity decaying exponentially in time. Further, the diffusion entropy detects an ordinary scaling (related to normal diffusion) instead of the expected unperturbed anomalous scaling related to the inverse power-law decay. Thus, an analysis based on the WT histogram and/or on scaling methods has to be considered with some care when dealing with perturbed intermittent systems
Generic Schemes for Single-Molecule Kinetics. 2: Information Content of the Poisson Indicator.
Avila, Thomas R; Piephoff, D Evan; Cao, Jianshu
2017-08-24
Recently, we described a pathway analysis technique (paper 1) for analyzing generic schemes for single-molecule kinetics based upon the first-passage time distribution. Here, we employ this method to derive expressions for the Poisson indicator, a normalized measure of stochastic variation (essentially equivalent to the Fano factor and Mandel's Q parameter), for various renewal (i.e., memoryless) enzymatic reactions. We examine its dependence on substrate concentration, without assuming all steps follow Poissonian kinetics. Based upon fitting to the functional forms of the first two waiting time moments, we show that, to second order, the non-Poissonian kinetics are generally underdetermined but can be specified in certain scenarios. For an enzymatic reaction with an arbitrary intermediate topology, we identify a generic minimum of the Poisson indicator as a function of substrate concentration, which can be used to tune substrate concentration to the stochastic fluctuations and to estimate the largest number of underlying consecutive links in a turnover cycle. We identify a local maximum of the Poisson indicator (with respect to substrate concentration) for a renewal process as a signature of competitive binding, either between a substrate and an inhibitor or between multiple substrates. Our analysis explores the rich connections between Poisson indicator measurements and microscopic kinetic mechanisms.
TCP (truncated compound Poisson) process for multiplicity distributions in high energy collisions
International Nuclear Information System (INIS)
Srivastave, P.P.
1990-01-01
On using the Poisson distribution truncated at zero for intermediate cluster decay in a compound Poisson process, the authors obtain TCP distribution which describes quite well the multiplicity distributions in high energy collisions. A detailed comparison is made between TCP and NB for UA5 data. The reduced moments up to the fifth agree very well with the observed ones. The TCP curves are narrower than NB at high multiplicity tail, look narrower at very high energy and develop shoulders and oscillations which become increasingly pronounced as the energy grows. At lower energies the distributions, of the data for fixed intervals of rapidity for UA5 data and for the data (at low energy) for e + e - annihilation and pion-proton, proton-proton and muon-proton scattering. A discussion of compound Poisson distribution, expression of reduced moments and Poisson transforms are also given. The TCP curves and curves of the reduced moments for different values of the parameters are also presented
Downlink Non-Orthogonal Multiple Access (NOMA) in Poisson Networks
Ali, Konpal S.
2018-03-21
A network model is considered where Poisson distributed base stations transmit to $N$ power-domain non-orthogonal multiple access (NOMA) users (UEs) each that employ successive interference cancellation (SIC) for decoding. We propose three models for the clustering of NOMA UEs and consider two different ordering techniques for the NOMA UEs: mean signal power-based and instantaneous signal-to-intercell-interference-and-noise-ratio-based. For each technique, we present a signal-to-interference-and-noise ratio analysis for the coverage of the typical UE. We plot the rate region for the two-user case and show that neither ordering technique is consistently superior to the other. We propose two efficient algorithms for finding a feasible resource allocation that maximize the cell sum rate $\\\\mathcal{R}_{\\ m tot}$, for general $N$, constrained to: 1) a minimum rate $\\\\mathcal{T}$ for each UE, 2) identical rates for all UEs. We show the existence of: 1) an optimum $N$ that maximizes the constrained $\\\\mathcal{R}_{\\ m tot}$ given a set of network parameters, 2) a critical SIC level necessary for NOMA to outperform orthogonal multiple access. The results highlight the importance in choosing the network parameters $N$, the constraints, and the ordering technique to balance the $\\\\mathcal{R}_{\\ m tot}$ and fairness requirements. We also show that interference-aware UE clustering can significantly improve performance.
Cooperative HARQ with Poisson Interference and Opportunistic Routing
Kaveh, Mostafa
2014-01-06
This presentation considers reliable transmission of data from a source to a destination, aided cooperatively by wireless relays selected opportunistically and utilizing hybrid forward error correction/detection, and automatic repeat request (Hybrid ARQ, or HARQ). Specifically, we present a performance analysis of the cooperative HARQ protocol in a wireless adhoc multihop network employing spatial ALOHA. We model the nodes in such a network by a homogeneous 2-D Poisson point process. We study the tradeoff between the per-hop rate, spatial density and range of transmissions inherent in the network by optimizing the transport capacity with respect to the network design parameters, HARQ coding rate and medium access probability. We obtain an approximate analytic expression for the expected progress of opportunistic routing and optimize the capacity approximation by convex optimization. By way of numerical results, we show that the network design parameters obtained by optimizing the analytic approximation of transport capacity closely follows that of Monte Carlo based exact transport capacity optimization. As a result of the analysis, we argue that the optimal HARQ coding rate and medium access probability are independent of the node density in the network.
Downlink Non-Orthogonal Multiple Access (NOMA) in Poisson Networks
Ali, Konpal S.; Haenggi, Martin; Elsawy, Hesham; Chaaban, Anas; Alouini, Mohamed-Slim
2018-01-01
A network model is considered where Poisson distributed base stations transmit to $N$ power-domain non-orthogonal multiple access (NOMA) users (UEs) each that employ successive interference cancellation (SIC) for decoding. We propose three models for the clustering of NOMA UEs and consider two different ordering techniques for the NOMA UEs: mean signal power-based and instantaneous signal-to-intercell-interference-and-noise-ratio-based. For each technique, we present a signal-to-interference-and-noise ratio analysis for the coverage of the typical UE. We plot the rate region for the two-user case and show that neither ordering technique is consistently superior to the other. We propose two efficient algorithms for finding a feasible resource allocation that maximize the cell sum rate $\\mathcal{R}_{\\rm tot}$, for general $N$, constrained to: 1) a minimum rate $\\mathcal{T}$ for each UE, 2) identical rates for all UEs. We show the existence of: 1) an optimum $N$ that maximizes the constrained $\\mathcal{R}_{\\rm tot}$ given a set of network parameters, 2) a critical SIC level necessary for NOMA to outperform orthogonal multiple access. The results highlight the importance in choosing the network parameters $N$, the constraints, and the ordering technique to balance the $\\mathcal{R}_{\\rm tot}$ and fairness requirements. We also show that interference-aware UE clustering can significantly improve performance.
Estimation of a Non-homogeneous Poisson Model: An Empirical ...
African Journals Online (AJOL)
This article aims at applying the Nonhomogeneous Poisson process to trends of economic development. For this purpose, a modified Nonhomogeneous Poisson process is derived when the intensity rate is considered as a solution of stochastic differential equation which satisfies the geometric Brownian motion. The mean ...
Formulation of Hamiltonian mechanics with even and odd Poisson brackets
International Nuclear Information System (INIS)
Khudaverdyan, O.M.; Nersesyan, A.P.
1987-01-01
A possibility is studied as to constrict the odd Poisson bracket and odd Hamiltonian by the given dynamics in phase superspace - the even Poisson bracket and even Hamiltonian so the transition to the new structure does not change the equations of motion. 9 refs
Double generalized linear compound poisson models to insurance claims data
DEFF Research Database (Denmark)
Andersen, Daniel Arnfeldt; Bonat, Wagner Hugo
2017-01-01
This paper describes the specification, estimation and comparison of double generalized linear compound Poisson models based on the likelihood paradigm. The models are motivated by insurance applications, where the distribution of the response variable is composed by a degenerate distribution...... implementation and illustrate the application of double generalized linear compound Poisson models using a data set about car insurances....
Rate-optimal Bayesian intensity smoothing for inhomogeneous Poisson processes
Belitser, E.N.; Serra, P.; van Zanten, H.
2015-01-01
We apply nonparametric Bayesian methods to study the problem of estimating the intensity function of an inhomogeneous Poisson process. To motivate our results we start by analyzing count data coming from a call center which we model as a Poisson process. This analysis is carried out using a certain
Quantum algebras and Poisson geometry in mathematical physics
Karasev, M V
2005-01-01
This collection presents new and interesting applications of Poisson geometry to some fundamental well-known problems in mathematical physics. The methods used by the authors include, in addition to advanced Poisson geometry, unexpected algebras with non-Lie commutation relations, nontrivial (quantum) Kählerian structures of hypergeometric type, dynamical systems theory, semiclassical asymptotics, etc.
Cluster X-varieties, amalgamation, and Poisson-Lie groups
DEFF Research Database (Denmark)
Fock, V. V.; Goncharov, A. B.
2006-01-01
In this paper, starting from a split semisimple real Lie group G with trivial center, we define a family of varieties with additional structures. We describe them as cluster χ-varieties, as defined in [FG2]. In particular they are Poisson varieties. We define canonical Poisson maps of these varie...
Poisson cohomology of scalar multidimensional Dubrovin-Novikov brackets
Carlet, Guido; Casati, Matteo; Shadrin, Sergey
2017-04-01
We compute the Poisson cohomology of a scalar Poisson bracket of Dubrovin-Novikov type with D independent variables. We find that the second and third cohomology groups are generically non-vanishing in D > 1. Hence, in contrast with the D = 1 case, the deformation theory in the multivariable case is non-trivial.
Construction of Nodal Bubbling Solutions for the Weighted Sinh-Poisson Equation
Directory of Open Access Journals (Sweden)
Yibin Zhang
2013-01-01
Full Text Available We consider the weighted sinh-Poisson equation in , on , where is a small parameter, , and is a unit ball in . By a constructive way, we prove that for any positive integer , there exists a nodal bubbling solution which concentrates at the origin and the other -points , , such that as , , where and is an odd integer with , or is an even integer. The same techniques lead also to a more general result on general domains.
Unimodularity criteria for Poisson structures on foliated manifolds
Pedroza, Andrés; Velasco-Barreras, Eduardo; Vorobiev, Yury
2018-03-01
We study the behavior of the modular class of an orientable Poisson manifold and formulate some unimodularity criteria in the semilocal context, around a (singular) symplectic leaf. Our results generalize some known unimodularity criteria for regular Poisson manifolds related to the notion of the Reeb class. In particular, we show that the unimodularity of the transverse Poisson structure of the leaf is a necessary condition for the semilocal unimodular property. Our main tool is an explicit formula for a bigraded decomposition of modular vector fields of a coupling Poisson structure on a foliated manifold. Moreover, we also exploit the notion of the modular class of a Poisson foliation and its relationship with the Reeb class.
Dalili, Michael N; Schofield-Toloza, Lawrence; Munafò, Marcus R; Penton-Voak, Ian S
2017-08-01
Many cognitive bias modification (CBM) tasks use facial expressions of emotion as stimuli. Some tasks use unique facial stimuli, while others use composite stimuli, given evidence that emotion is encoded prototypically. However, CBM using composite stimuli may be identity- or emotion-specific, and may not generalise to other stimuli. We investigated the generalisability of effects using composite faces in two experiments. Healthy adults in each study were randomised to one of four training conditions: two stimulus-congruent conditions, where same faces were used during all phases of the task, and two stimulus-incongruent conditions, where faces of the opposite sex (Experiment 1) or faces depicting another emotion (Experiment 2) were used after the modification phase. Our results suggested that training effects generalised across identities. However, our results indicated only partial generalisation across emotions. These findings suggest effects obtained using composite stimuli may extend beyond the stimuli used in the task but remain emotion-specific.
Dosimetric quantities and basic data for the evaluation of generalised derived limits
International Nuclear Information System (INIS)
Harrison, N.T.; Simmonds, J.R.
1980-12-01
The procedures, dosimetric quantities and basic data to be used for the evaluation of Generalised Derived Limits (GDLs) in environmental materials and of Generalised Derived Limits for discharges to atmosphere are described. The dosimetric considerations and the appropriate intake rates for both children and adults are discussed. In most situations in the nuclear industry and in those institutions, hospitals and laboratories which use relatively small quantities of radioactive material, the Generalised Derived Limits provide convenient reference levels against which the results of environmental monitoring can be compared, and atmospheric discharges can be assessed. They are intended for application when the environmental contamination or discharge to atmosphere is less than about 5% of the Generalised Derived Limit; above this level, it will usually be necessary to undertake a more detailed site-specific assessment. (author)
International Nuclear Information System (INIS)
Toedt, C.; Hoetzinger, H.; Salbeck, R.; Beyer, H.K.
1989-01-01
Abuse of ergotamine can release a generalised brain edema and brain infarctions. This can be visualized by CT, MR and angiography. The reason, however, can only be found in the patients history. (orig.) [de
Control configuration selection for bilinear systems via generalised Hankel interaction index array
DEFF Research Database (Denmark)
Shaker, Hamid Reza; Tahavori, Maryamsadat
2015-01-01
configuration selection. It is well known that a suitable control configuration selection is an important prerequisite for a successful industrial control. In this paper the problem of control configuration selection for multiple-input and multiple-output (MIMO) bilinear processes is addressed. First...... way, an iterative method for solving the generalised Sylvester equation is proposed. The generalised cross-gramian is used to form the generalised Hankel interaction index array. The generalised Hankel interaction index array is used for control configuration selection of MIMO bilinear processes. Most......Decentralised and partially decentralised control strategies are very popular in practice. To come up with a suitable decentralised or partially decentralised control structure, it is important to select the appropriate input and output pairs for control design. This procedure is called control...
HITCHCOCK, ELAINE R.; BYUN, TARA McALLISTER
2014-01-01
Biofeedback intervention can help children achieve correct production of a treatment-resistant error sound, but generalisation is often limited. This case study suggests that generalisation can be enhanced when biofeedback intervention is structured in accordance with a “challenge point” framework for speech-motor learning. The participant was an 11-year-old with residual /r/ misarticulation who had previously attained correct /r/ production through a structured course of ultrasound biofeedback treatment but did not generalise these gains beyond the word level. Treatment difficulty was adjusted in an adaptive manner following predetermined criteria for advancing, maintaining, or moving back a level in a multidimensional hierarchy of functional task complexity. The participant achieved and maintained virtually 100% accuracy in producing /r/ at both word and sentence levels. These preliminary results support the efficacy of a semi-structured implementation of the challenge point framework as a means of achieving generalisation and maintenance of treatment gains. PMID:25216375
Vali Ahmadi, Mohammad; Doostparast, Mahdi; Ahmadi, Jafar
2015-04-01
In manufacturing industries, the lifetime of an item is usually characterised by a random variable X and considered to be satisfactory if X exceeds a given lower lifetime limit L. The probability of a satisfactory item is then ηL := P(X ≥ L), called conforming rate. In industrial companies, however, the lifetime performance index, proposed by Montgomery and denoted by CL, is widely used as a process capability index instead of the conforming rate. Assuming a parametric model for the random variable X, we show that there is a connection between the conforming rate and the lifetime performance index. Consequently, the statistical inferences about ηL and CL are equivalent. Hence, we restrict ourselves to statistical inference for CL based on generalised order statistics, which contains several ordered data models such as usual order statistics, progressively Type-II censored data and records. Various point and interval estimators for the parameter CL are obtained and optimal critical regions for the hypothesis testing problems concerning CL are proposed. Finally, two real data-sets on the lifetimes of insulating fluid and ball bearings, due to Nelson (1982) and Caroni (2002), respectively, and a simulated sample are analysed.
A generalised porous medium approach to study thermo-fluid dynamics in human eyes.
Mauro, Alessandro; Massarotti, Nicola; Salahudeen, Mohamed; Romano, Mario R; Romano, Vito; Nithiarasu, Perumal
2018-03-22
The present work describes the application of the generalised porous medium model to study heat and fluid flow in healthy and glaucomatous eyes of different subject specimens, considering the presence of ocular cavities and porous tissues. The 2D computational model, implemented into the open-source software OpenFOAM, has been verified against benchmark data for mixed convection in domains partially filled with a porous medium. The verified model has been employed to simulate the thermo-fluid dynamic phenomena occurring in the anterior section of four patient-specific human eyes, considering the presence of anterior chamber (AC), trabecular meshwork (TM), Schlemm's canal (SC), and collector channels (CC). The computational domains of the eye are extracted from tomographic images. The dependence of TM porosity and permeability on intraocular pressure (IOP) has been analysed in detail, and the differences between healthy and glaucomatous eye conditions have been highlighted, proving that the different physiological conditions of patients have a significant influence on the thermo-fluid dynamic phenomena. The influence of different eye positions (supine and standing) on thermo-fluid dynamic variables has been also investigated: results are presented in terms of velocity, pressure, temperature, friction coefficient and local Nusselt number. The results clearly indicate that porosity and permeability of TM are two important parameters that affect eye pressure distribution. Graphical abstract Velocity contours and vectors for healthy eyes (top) and glaucomatous eyes (bottom) for standing position.
Smit, Jacoba E; Hanekom, Tania; Hanekom, Johan J
2009-08-01
The objective of this study was to determine if a recently developed human Ranvier node model, which is based on a modified version of the Hodgkin-Huxley model, could predict the excitability behaviour in human peripheral sensory nerve fibres with diameters ranging from 5.0 to 15.0 microm. The Ranvier node model was extended to include a persistent sodium current and was incorporated into a generalised single cable nerve fibre model. Parameter temperature dependence was included. All calculations were performed in Matlab. Sensory nerve fibre excitability behaviour characteristics predicted by the new nerve fibre model at different temperatures and fibre diameters compared well with measured data. Absolute refractory periods deviated from measured data, while relative refractory periods were similar to measured data. Conduction velocities showed both fibre diameter and temperature dependence and were underestimated in fibres thinner than 12.5 microm. Calculated strength-duration time constants ranged from 128.5 to 183.0 micros at 37 degrees C over the studied nerve fibre diameter range, with chronaxie times about 30% shorter than strength-duration time constants. Chronaxie times exhibited temperature dependence, with values overestimated by a factor 5 at temperatures lower than body temperature. Possible explanations include the deviated absolute refractory period trend and inclusion of a nodal strangulation relationship.
Modelling of extreme minimum rainfall using generalised extreme value distribution for Zimbabwe
Directory of Open Access Journals (Sweden)
Delson Chikobvu
2015-09-01
Full Text Available We modelled the mean annual rainfall for data recorded in Zimbabwe from 1901 to 2009. Extreme value theory was used to estimate the probabilities of meteorological droughts. Droughts can be viewed as extreme events which go beyond and/or below normal rainfall occurrences, such as exceptionally low mean annual rainfall. The duality between the distribution of the minima and maxima was exploited and used to fit the generalised extreme value distribution (GEVD to the data and hence find probabilities of extreme low levels of mean annual rainfall. The augmented Dickey Fuller test confirmed that rainfall data were stationary, while the normal quantile-quantile plot indicated that rainfall data deviated from the normality assumption at both ends of the tails of the distribution. The maximum likelihood estimation method and the Bayesian approach were used to find the parameters of the GEVD. The Kolmogorov-Smirnov and Anderson-Darling goodnessof- fit tests showed that the Weibull class of distributions was a good fit to the minima mean annual rainfall using the maximum likelihood estimation method. The mean return period estimate of a meteorological drought using the threshold value of mean annual rainfall of 473 mm was 8 years. This implies that if in the year there is a meteorological drought then another drought of the same intensity or greater is expected after 8 years. It is expected that the use of Bayesian inference may better quantify the level of uncertainty associated with the GEVD parameter estimates than with the maximum likelihood estimation method. The Markov chain Monte Carlo algorithm for the GEVD was applied to construct the model parameter estimates using the Bayesian approach. These findings are significant because results based on non-informative priors (Bayesian method and the maximum likelihood method approach are expected to be similar.
The diagnostic value of the alveolar lamina dura in generalised bone disease
International Nuclear Information System (INIS)
Kuhlencordt, J.; Kruse, H.P.; Franke, J.; Hamburg Univ.
1981-01-01
Changes in the alveolar lamina dura in 134 patients have been analysed. They included 32 cases with urolithiasis in whom generalised bone disease had been excluded, 37 cases of primary hyperparathyroidism, 31 cases of secondary hyperparathyroidism and 34 cases with primary osteoporosis. The state of the lamina dura was related to biochemical, radiological and histological findings in the various groups. The value of the lamina dura in the diagnosis of generalised skeletal abnormalities has been defined. (orig.) [de
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard; Laurençot, P.
2007-01-01
Roč. 88, - (2007), s. 325-349 ISSN 0021-7824 R&D Projects: GA ČR GA201/05/0164 Institutional research plan: CEZ:AV0Z10190503 Keywords : Navier-Stokes-Fourier- Poisson system * Smoluchowski- Poisson system * singular limit Subject RIV: BA - General Mathematics Impact factor: 1.118, year: 2007
Test of Poisson Process for Earthquakes in and around Korea
International Nuclear Information System (INIS)
Noh, Myunghyun; Choi, Hoseon
2015-01-01
Since Cornell's work on the probabilistic seismic hazard analysis (hereafter, PSHA), majority of PSHA computer codes are assuming that the earthquake occurrence is Poissonian. To the author's knowledge, it is uncertain who first opened the issue of the Poisson process for the earthquake occurrence. The systematic PSHA in Korea, led by the nuclear industry, were carried out for more than 25 year with the assumption of the Poisson process. However, the assumption of the Poisson process has never been tested. Therefore, the test is of significance. We tested whether the Korean earthquakes follow the Poisson process or not. The Chi-square test with the significance level of 5% was applied. The test turned out that the Poisson process could not be rejected for the earthquakes of magnitude 2.9 or larger. However, it was still observed in the graphical comparison that some portion of the observed distribution significantly deviated from the Poisson distribution. We think this is due to the small earthquake data. The earthquakes of magnitude 2.9 or larger occurred only 376 times during 34 years. Therefore, the judgment on the Poisson process derived in the present study is not conclusive
Poisson Mixture Regression Models for Heart Disease Prediction
Erol, Hamza
2016-01-01
Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model. PMID:27999611
Quantized Algebras of Functions on Homogeneous Spaces with Poisson Stabilizers
Neshveyev, Sergey; Tuset, Lars
2012-05-01
Let G be a simply connected semisimple compact Lie group with standard Poisson structure, K a closed Poisson-Lie subgroup, 0 topology on the spectrum of C( G q / K q ). Next we show that the family of C*-algebras C( G q / K q ), 0 < q ≤ 1, has a canonical structure of a continuous field of C*-algebras and provides a strict deformation quantization of the Poisson algebra {{C}[G/K]} . Finally, extending a result of Nagy, we show that C( G q / K q ) is canonically KK-equivalent to C( G/ K).
Intertime jump statistics of state-dependent Poisson processes.
Daly, Edoardo; Porporato, Amilcare
2007-01-01
A method to obtain the probability distribution of the interarrival times of jump occurrences in systems driven by state-dependent Poisson noise is proposed. Such a method uses the survivor function obtained by a modified version of the master equation associated to the stochastic process under analysis. A model for the timing of human activities shows the capability of state-dependent Poisson noise to generate power-law distributions. The application of the method to a model for neuron dynamics and to a hydrological model accounting for land-atmosphere interaction elucidates the origin of characteristic recurrence intervals and possible persistence in state-dependent Poisson models.
Poisson solvers for self-consistent multi-particle simulations
International Nuclear Information System (INIS)
Qiang, J; Paret, S
2014-01-01
Self-consistent multi-particle simulation plays an important role in studying beam-beam effects and space charge effects in high-intensity beams. The Poisson equation has to be solved at each time-step based on the particle density distribution in the multi-particle simulation. In this paper, we review a number of numerical methods that can be used to solve the Poisson equation efficiently. The computational complexity of those numerical methods will be O(N log(N)) or O(N) instead of O(N2), where N is the total number of grid points used to solve the Poisson equation
DEFF Research Database (Denmark)
Harrod, Steven; Kelton, W. David
2006-01-01
Nonstationary Poisson processes are appropriate in many applications, including disease studies, transportation, finance, and social policy. The authors review the risks of ignoring nonstationarity in Poisson processes and demonstrate three algorithms for generation of Poisson processes...
Unobserved heterogeneity in the power law nonhomogeneous Poisson process
International Nuclear Information System (INIS)
Asfaw, Zeytu Gashaw; Lindqvist, Bo Henry
2015-01-01
A study of possible consequences of heterogeneity in the failure intensity of repairable systems is presented. The basic model studied is the nonhomogeneous Poisson process with power law intensity function. When several similar systems are under observation, the assumption that the corresponding processes are independent and identically distributed is often questionable. In practice there may be an unobserved heterogeneity among the systems. The heterogeneity is modeled by introduction of unobserved gamma distributed frailties. The relevant likelihood function is derived, and maximum likelihood estimation is illustrated. In a simulation study we then compare results when using a power law model without taking into account heterogeneity, with the corresponding results obtained when the heterogeneity is accounted for. A motivating data example is also given. - Highlights: • Consequences of overlooking heterogeneity in similar repairable systems are studied. • Likelihood functions are established for power law NHPP w/ and w/o heterogeneity. • ML estimators for parameters of power law NHPP with heterogeneity are derived. • A simulation study shows the effects of heterogeneity and its ignorance in models
The Poisson equation in axisymmetric domains with conical points
International Nuclear Information System (INIS)
Nkemzi, B.
2003-01-01
This paper analyzes the application of the Fourier-finite-element method (FFEM) for the resolution of the Derichlet problem for the Poisson equation -Δu-circumflex = f-circumflex in axisymmetric domains Ω-circumflex subset of R 3 with conical points on the rotation axis. The FFEM combines the approximate Fourier method with respect to one space direction with the finite element method for the approximate calculation of the Fourier coefficients of the solution. Here, the influence of the conical points on the regularity of the Fourier coefficients of the solution is analyzed and the asymptotic behaviour of the coefficients near the conical points is described by some singularity functions and treated numerically by mesh grading in the two-dimensional meridian of Ω-circumflex. It is proved that for f-circumflex in L 2 (Ω-circumflex), the rate of convergence of the combined approximations in the Sobolev space W 2 1 (Ω-circumflex) is of the order O(h + N -1 ), where h and N represent, respectively, the parameters of the finite-element- and the Fourier-approximation, with h → 0 and n → ∞. (author)
METHOD OF FOREST FIRES PROBABILITY ASSESSMENT WITH POISSON LAW
Directory of Open Access Journals (Sweden)
A. S. Plotnikova
2016-01-01
Full Text Available The article describes the method for the forest fire burn probability estimation on a base of Poisson distribution. The λ parameter is assumed to be a mean daily number of fires detected for each Forest Fire Danger Index class within specific period of time. Thus, λ was calculated for spring, summer and autumn seasons separately. Multi-annual daily Forest Fire Danger Index values together with EO-derived hot spot map were input data for the statistical analysis. The major result of the study is generation of the database on forest fire burn probability. Results were validated against EO daily data on forest fires detected over Irkutsk oblast in 2013. Daily weighted average probability was shown to be linked with the daily number of detected forest fires. Meanwhile, there was found a number of fires which were developed when estimated probability was low. The possible explanation of this phenomenon was provided.
International Nuclear Information System (INIS)
Xie Yigang; Chai Yong
1994-01-01
The charged multiplicity distributions of hadron final states in the e + e - annihilation at the 91.2 GeV Z 0 energy region are fitted with Poisson shape in different rapidity windows for double and single hemisphere. The multiplicities which are in Poisson-like shapes can be got according to the parameter /D and fitting qualities are compared with the results derived from the relevant theoretical models. The relationship between the Poisson-like shape and KNO scaling is discussed. The connection between the parameters expressing the deviation from the Poisson shape and non-independent particle emission and multiplicity correlation strength is analyzed. The 'shoulder structure' is observed in the central rapidity region and analyzed with multi-jets by using the JADE jet analysis algorithm
Maximum-likelihood fitting of data dominated by Poisson statistical uncertainties
International Nuclear Information System (INIS)
Stoneking, M.R.; Den Hartog, D.J.
1996-06-01
The fitting of data by χ 2 -minimization is valid only when the uncertainties in the data are normally distributed. When analyzing spectroscopic or particle counting data at very low signal level (e.g., a Thomson scattering diagnostic), the uncertainties are distributed with a Poisson distribution. The authors have developed a maximum-likelihood method for fitting data that correctly treats the Poisson statistical character of the uncertainties. This method maximizes the total probability that the observed data are drawn from the assumed fit function using the Poisson probability function to determine the probability for each data point. The algorithm also returns uncertainty estimates for the fit parameters. They compare this method with a χ 2 -minimization routine applied to both simulated and real data. Differences in the returned fits are greater at low signal level (less than ∼20 counts per measurement). the maximum-likelihood method is found to be more accurate and robust, returning a narrower distribution of values for the fit parameters with fewer outliers
Effets Josephson generalises entre antiferroaimants et entre supraconducteurs antiferromagnetiques
Chasse, Dominique
L'effet Josephson est generalement presente comme le resultat de l'effet tunnel coherent de paires de Cooper a travers une jonction tunnel entre deux supraconducteurs, mais il est possible de l'expliquer dans un contexte plus general. Par exemple, Esposito & al. ont recemment demontre que l'effet Josephson DC peut etre decrit a l'aide du boson pseudo-Goldstone de deux systemes couples brisant chacun la symetrie abelienne U(1). Puisque cette description se generalise de facon naturelle a des brisures de symetries continues non-abeliennes, l'equivalent de l'effet Josephson devrait donc exister pour des types d'ordre a longue portee differents de la supraconductivite. Le cas de deux ferroaimants itinerants (brisure de symetrie 0(3)) couples a travers une jonction tunnel a deja ete traite dans la litterature Afin de mettre en evidence la generalite du phenomene et dans le but de faire des predictions a partir d'un modele realiste, nous etudions le cas d'une jonction tunnel entre deux antiferroaimants itinerants. En adoptant une approche Similaire a celle d'Ambegaokar & Baratoff pour une jonction Josephson, nous trouvons un courant d'aimantation alternee a travers la jonction qui est proportionnel a sG x sD ou fG et sD sont les vecteurs de Neel de part et d'autre de la jonction. La fonction sinus caracteristique du courant Josephson standard est donc remplacee.ici par un produit vectoriel. Nous montrons que, d'un point de vue microscopique, ce phenomene resulte de l'effet tunnel coherent de paires particule-trou de spin 1 et de vecteur d'onde net egal au vecteur d'onde antiferromagnetique Q. Nous trouvons egalement la dependance en temperature de l'analogue du courant critique. En presence d'un champ magnetique externe, nous obtenons l'analogue de l'effet Josephson AC et la description complete que nous en donnons s'applique aussi au cas d'une jonction tunnel entre ferroaimants (dans ce dernier cas, les traitements anterieurs de cet effet AC s'averent incomplets). Nous
Asymptotic Poisson distribution for the number of system failures of a monotone system
International Nuclear Information System (INIS)
Aven, Terje; Haukis, Harald
1997-01-01
It is well known that for highly available monotone systems, the time to the first system failure is approximately exponentially distributed. Various normalising factors can be used as the parameter of the exponential distribution to ensure the asymptotic exponentiality. More generally, it can be shown that the number of system failures is asymptotic Poisson distributed. In this paper we study the performance of some of the normalising factors by using Monte Carlo simulation. The results show that the exponential/Poisson distribution gives in general very good approximations for highly available components. The asymptotic failure rate of the system gives best results when the process is in steady state, whereas other normalising factors seem preferable when the process is not in steady state. From a computational point of view the asymptotic system failure rate is most attractive
Poisson and negative binomial item count techniques for surveys with sensitive question.
Tian, Guo-Liang; Tang, Man-Lai; Wu, Qin; Liu, Yin
2017-04-01
Although the item count technique is useful in surveys with sensitive questions, privacy of those respondents who possess the sensitive characteristic of interest may not be well protected due to a defect in its original design. In this article, we propose two new survey designs (namely the Poisson item count technique and negative binomial item count technique) which replace several independent Bernoulli random variables required by the original item count technique with a single Poisson or negative binomial random variable, respectively. The proposed models not only provide closed form variance estimate and confidence interval within [0, 1] for the sensitive proportion, but also simplify the survey design of the original item count technique. Most importantly, the new designs do not leak respondents' privacy. Empirical results show that the proposed techniques perform satisfactorily in the sense that it yields accurate parameter estimate and confidence interval.
A Poisson-Fault Model for Testing Power Transformers in Service
Directory of Open Access Journals (Sweden)
Dengfu Zhao
2014-01-01
Full Text Available This paper presents a method for assessing the instant failure rate of a power transformer under different working conditions. The method can be applied to a dataset of a power transformer under periodic inspections and maintenance. We use a Poisson-fault model to describe failures of a power transformer. When investigating a Bayes estimate of the instant failure rate under the model, we find that complexities of a classical method and a Monte Carlo simulation are unacceptable. Through establishing a new filtered estimate of Poisson process observations, we propose a quick algorithm of the Bayes estimate of the instant failure rate. The proposed algorithm is tested by simulation datasets of a power transformer. For these datasets, the proposed estimators of parameters of the model have better performance than other estimators. The simulation results reveal the suggested algorithms are quickest among three candidates.
Stochastic Interest Model Based on Compound Poisson Process and Applications in Actuarial Science
Directory of Open Access Journals (Sweden)
Shilong Li
2017-01-01
Full Text Available Considering stochastic behavior of interest rates in financial market, we construct a new class of interest models based on compound Poisson process. Different from the references, this paper describes the randomness of interest rates by modeling the force of interest with Poisson random jumps directly. To solve the problem in calculation of accumulated interest force function, one important integral technique is employed. And a conception called the critical value is introduced to investigate the validity condition of this new model. We also discuss actuarial present values of several life annuities under this new interest model. Simulations are done to illustrate the theoretical results and the effect of parameters in interest model on actuarial present values is also analyzed.
Dynamics of a prey-predator system under Poisson white noise excitation
Pan, Shan-Shan; Zhu, Wei-Qiu
2014-10-01
The classical Lotka-Volterra (LV) model is a well-known mathematical model for prey-predator ecosystems. In the present paper, the pulse-type version of stochastic LV model, in which the effect of a random natural environment has been modeled as Poisson white noise, is investigated by using the stochastic averaging method. The averaged generalized Itô stochastic differential equation and Fokker-Planck-Kolmogorov (FPK) equation are derived for prey-predator ecosystem driven by Poisson white noise. Approximate stationary solution for the averaged generalized FPK equation is obtained by using the perturbation method. The effect of prey self-competition parameter ɛ2 s on ecosystem behavior is evaluated. The analytical result is confirmed by corresponding Monte Carlo (MC) simulation.
Determination of maximum negative Poisson's ratio for laminated fiber composites
Energy Technology Data Exchange (ETDEWEB)
Shokrieh, M.M.; Assadi, A. [Composites Research Laboratory, Mechanical Engineering Department, Center of Excellence in Experimental Solid Mechanics and Dynamics, Iran University of Science and Technology, Tehran 16846-13114 (Iran, Islamic Republic of)
2011-05-15
Contrary to isotropic materials, composites always show complicated mechanical behavior under external loadings. In this article, an efficient algorithm is employed to obtain the maximum negative Poisson's ratio for laminated composite plates. We try to simplify the problem based on normalization of parameters and some manufacturing constraints to overlook the additional constraint of the optimization procedure. A genetic algorithm is used to find the optimal thickness of each lamina with a specified fiber direction. It is observed that the laminated composite with the configuration of (15/60/15) has the maximum negative Poisson's ratio. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Directory of Open Access Journals (Sweden)
L.B.Bhuiyan
2005-01-01
Full Text Available The density functional and modified Poisson-Boltzmann descriptions of a spherical (electric double layer are compared and contrasted vis-a-vis existing Monte Carlo simulation data (for small ion diameter 4.25·10-10 m from the literature for a range of physical parameters such as macroion surface charge, macroion radius, valencies of the small ions, and electrolyte concentration. Overall, the theoretical predictions are seen to be remarkably consistent between themselves, being also in very good agreement with the simulations. Some modified Poisson-Boltzmann results for the zeta potential at small ion diameters of 3 and 2·10-10 m are also reported.
Contravariant gravity on Poisson manifolds and Einstein gravity
International Nuclear Information System (INIS)
Kaneko, Yukio; Watamura, Satoshi; Muraki, Hisayoshi
2017-01-01
A relation between gravity on Poisson manifolds proposed in Asakawa et al (2015 Fortschr. Phys . 63 683–704) and Einstein gravity is investigated. The compatibility of the Poisson and Riemann structures defines a unique connection, the contravariant Levi-Civita connection, and leads to the idea of the contravariant gravity. The Einstein–Hilbert-type action yields an equation of motion which is written in terms of the analog of the Einstein tensor, and it includes couplings between the metric and the Poisson tensor. The study of the Weyl transformation reveals properties of those interactions. It is argued that this theory can have an equivalent description as a system of Einstein gravity coupled to matter. As an example, it is shown that the contravariant gravity on a two-dimensional Poisson manifold can be described by a real scalar field coupled to the metric in a specific manner. (paper)
Modified Regression Correlation Coefficient for Poisson Regression Model
Kaengthong, Nattacha; Domthong, Uthumporn
2017-09-01
This study gives attention to indicators in predictive power of the Generalized Linear Model (GLM) which are widely used; however, often having some restrictions. We are interested in regression correlation coefficient for a Poisson regression model. This is a measure of predictive power, and defined by the relationship between the dependent variable (Y) and the expected value of the dependent variable given the independent variables [E(Y|X)] for the Poisson regression model. The dependent variable is distributed as Poisson. The purpose of this research was modifying regression correlation coefficient for Poisson regression model. We also compare the proposed modified regression correlation coefficient with the traditional regression correlation coefficient in the case of two or more independent variables, and having multicollinearity in independent variables. The result shows that the proposed regression correlation coefficient is better than the traditional regression correlation coefficient based on Bias and the Root Mean Square Error (RMSE).
Improved Denoising via Poisson Mixture Modeling of Image Sensor Noise.
Zhang, Jiachao; Hirakawa, Keigo
2017-04-01
This paper describes a study aimed at comparing the real image sensor noise distribution to the models of noise often assumed in image denoising designs. A quantile analysis in pixel, wavelet transform, and variance stabilization domains reveal that the tails of Poisson, signal-dependent Gaussian, and Poisson-Gaussian models are too short to capture real sensor noise behavior. A new Poisson mixture noise model is proposed to correct the mismatch of tail behavior. Based on the fact that noise model mismatch results in image denoising that undersmoothes real sensor data, we propose a mixture of Poisson denoising method to remove the denoising artifacts without affecting image details, such as edge and textures. Experiments with real sensor data verify that denoising for real image sensor data is indeed improved by this new technique.
Transforming spatial point processes into Poisson processes using random superposition
DEFF Research Database (Denmark)
Møller, Jesper; Berthelsen, Kasper Klitgaaard
with a complementary spatial point process Y to obtain a Poisson process X∪Y with intensity function β. Underlying this is a bivariate spatial birth-death process (Xt,Yt) which converges towards the distribution of (X,Y). We study the joint distribution of X and Y, and their marginal and conditional distributions....... In particular, we introduce a fast and easy simulation procedure for Y conditional on X. This may be used for model checking: given a model for the Papangelou intensity of the original spatial point process, this model is used to generate the complementary process, and the resulting superposition is a Poisson...... process with intensity function β if and only if the true Papangelou intensity is used. Whether the superposition is actually such a Poisson process can easily be examined using well known results and fast simulation procedures for Poisson processes. We illustrate this approach to model checking...
Optimal linear filtering of Poisson process with dead time
International Nuclear Information System (INIS)
Glukhova, E.V.
1993-01-01
The paper presents a derivation of an integral equation defining the impulsed transient of optimum linear filtering for evaluation of the intensity of the fluctuating Poisson process with allowance for dead time of transducers
Doubly stochastic Poisson processes in artificial neural learning.
Card, H C
1998-01-01
This paper investigates neuron activation statistics in artificial neural networks employing stochastic arithmetic. It is shown that a doubly stochastic Poisson process is an appropriate model for the signals in these circuits.
A high order solver for the unbounded Poisson equation
DEFF Research Database (Denmark)
Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe
2013-01-01
. The method is extended to directly solve the derivatives of the solution to Poissonʼs equation. In this way differential operators such as the divergence or curl of the solution field can be solved to the same high order convergence without additional computational effort. The method, is applied......A high order converging Poisson solver is presented, based on the Greenʼs function solution to Poissonʼs equation subject to free-space boundary conditions. The high order convergence is achieved by formulating regularised integration kernels, analogous to a smoothing of the solution field...... and validated, however not restricted, to the equations of fluid mechanics, and can be used in many applications to solve Poissonʼs equation on a rectangular unbounded domain....
Comparison between two bivariate Poisson distributions through the ...
African Journals Online (AJOL)
These two models express themselves by their probability mass function. ... To remedy this problem, Berkhout and Plug proposed a bivariate Poisson distribution accepting the correlation as well negative, equal to zero, that positive.
Farkašovský, Pavol
2018-05-01
The small-cluster exact-diagonalization calculations and the projector quantum Monte Carlo method are used to examine the competing effects of geometrical frustration and interaction on ferromagnetism in the Hubbard model on the generalised Shastry-Sutherland lattice. It is shown that the geometrical frustration stabilizes the ferromagnetic state at high electron concentrations ( n ≳ 7/4), where strong correlations between ferromagnetism and the shape of the noninteracting density of states are observed. In particular, it is found that ferromagnetism is stabilized for these values of frustration parameters, which lead to the single-peaked noninterating density of states at the band edge. Once, two or more peaks appear in the noninteracting density of states at the band edge the ferromagnetic state is suppressed. This opens a new route towards the understanding of ferromagnetism in strongly correlated systems.
Formality theory from Poisson structures to deformation quantization
Esposito, Chiara
2015-01-01
This book is a survey of the theory of formal deformation quantization of Poisson manifolds, in the formalism developed by Kontsevich. It is intended as an educational introduction for mathematical physicists who are dealing with the subject for the first time. The main topics covered are the theory of Poisson manifolds, star products and their classification, deformations of associative algebras and the formality theorem. Readers will also be familiarized with the relevant physical motivations underlying the purely mathematical construction.
Analyzing hospitalization data: potential limitations of Poisson regression.
Weaver, Colin G; Ravani, Pietro; Oliver, Matthew J; Austin, Peter C; Quinn, Robert R
2015-08-01
Poisson regression is commonly used to analyze hospitalization data when outcomes are expressed as counts (e.g. number of days in hospital). However, data often violate the assumptions on which Poisson regression is based. More appropriate extensions of this model, while available, are rarely used. We compared hospitalization data between 206 patients treated with hemodialysis (HD) and 107 treated with peritoneal dialysis (PD) using Poisson regression and compared results from standard Poisson regression with those obtained using three other approaches for modeling count data: negative binomial (NB) regression, zero-inflated Poisson (ZIP) regression and zero-inflated negative binomial (ZINB) regression. We examined the appropriateness of each model and compared the results obtained with each approach. During a mean 1.9 years of follow-up, 183 of 313 patients (58%) were never hospitalized (indicating an excess of 'zeros'). The data also displayed overdispersion (variance greater than mean), violating another assumption of the Poisson model. Using four criteria, we determined that the NB and ZINB models performed best. According to these two models, patients treated with HD experienced similar hospitalization rates as those receiving PD {NB rate ratio (RR): 1.04 [bootstrapped 95% confidence interval (CI): 0.49-2.20]; ZINB summary RR: 1.21 (bootstrapped 95% CI 0.60-2.46)}. Poisson and ZIP models fit the data poorly and had much larger point estimates than the NB and ZINB models [Poisson RR: 1.93 (bootstrapped 95% CI 0.88-4.23); ZIP summary RR: 1.84 (bootstrapped 95% CI 0.88-3.84)]. We found substantially different results when modeling hospitalization data, depending on the approach used. Our results argue strongly for a sound model selection process and improved reporting around statistical methods used for modeling count data. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Poisson structure of the equations of ideal multispecies fluid electrodynamics
International Nuclear Information System (INIS)
Spencer, R.G.
1984-01-01
The equations of the two- (or multi-) fluid model of plasma physics are recast in Hamiltonian form, following general methods of symplectic geometry. The dynamical variables are the fields of physical interest, but are noncanonical, so that the Poisson bracket in the theory is not the standard one. However, it is a skew-symmetric bilinear form which, from the method of derivation, automatically satisfies the Jacobi identity; therefore, this noncanonical structure has all the essential properties of a canonical Poisson bracket
Null canonical formalism 1, Maxwell field. [Poisson brackets, boundary conditions
Energy Technology Data Exchange (ETDEWEB)
Wodkiewicz, K [Warsaw Univ. (Poland). Inst. Fizyki Teoretycznej
1975-01-01
The purpose of this paper is to formulate the canonical formalism on null hypersurfaces for the Maxwell electrodynamics. The set of the Poisson brackets relations for null variables of the Maxwell field is obtained. The asymptotic properties of the theory are investigated. The Poisson bracket relations for the news-functions of the Maxwell field are computed. The Hamiltonian form of the asymptotic Maxwell equations in terms of these news-functions is obtained.
GEPOIS: a two dimensional nonuniform mesh Poisson solver
International Nuclear Information System (INIS)
Quintenz, J.P.; Freeman, J.R.
1979-06-01
A computer code is described which solves Poisson's equation for the electric potential over a two dimensional cylindrical (r,z) nonuniform mesh which can contain internal electrodes. Poisson's equation is solved over a given region subject to a specified charge distribution with either Neumann or Dirichlet perimeter boundary conditions and with Dirichlet boundary conditions on internal surfaces. The static electric field is also computed over the region with special care given to normal electric field components at boundary surfaces
2D Poisson sigma models with gauged vectorial supersymmetry
Energy Technology Data Exchange (ETDEWEB)
Bonezzi, Roberto [Dipartimento di Fisica ed Astronomia, Università di Bologna and INFN, Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy); Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago (Chile); Sundell, Per [Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago (Chile); Torres-Gomez, Alexander [Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago (Chile); Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile-UACh,Valdivia (Chile)
2015-08-12
In this note, we gauge the rigid vectorial supersymmetry of the two-dimensional Poisson sigma model presented in arXiv:1503.05625. We show that the consistency of the construction does not impose any further constraints on the differential Poisson algebra geometry than those required for the ungauged model. We conclude by proposing that the gauged model provides a first-quantized framework for higher spin gravity.
On the Fedosov deformation quantization beyond the regular Poisson manifolds
International Nuclear Information System (INIS)
Dolgushev, V.A.; Isaev, A.P.; Lyakhovich, S.L.; Sharapov, A.A.
2002-01-01
A simple iterative procedure is suggested for the deformation quantization of (irregular) Poisson brackets associated to the classical Yang-Baxter equation. The construction is shown to admit a pure algebraic reformulation giving the Universal Deformation Formula (UDF) for any triangular Lie bialgebra. A simple proof of classification theorem for inequivalent UDF's is given. As an example the explicit quantization formula is presented for the quasi-homogeneous Poisson brackets on two-plane
International Nuclear Information System (INIS)
Cruz Saldanha, Pedro Luiz da.
1995-12-01
The purpose of this study is to evaluate the nonhomogeneous Poisson process as a model to rate of occurrence of failures when it is not constant, and the times between failures are not independent nor identically distributed. To this evaluation, an analyse of reliability of service water pumps of a typical nuclear power plant is made considering the model discussed in the last paragraph, as long as the pumps are effectively repairable components. Standard statistical techniques, such as maximum likelihood and linear regression, are applied to estimate parameters of nonhomogeneous Poisson process model. As a conclusion of the study, the nonhomogeneous Poisson process is adequate to model rate of occurrence of failures that are function of time, and can be used where the aging mechanisms are present in operation of repairable systems. (author). 72 refs., 45 figs., 21 tabs
The generalised anxiety stigma scale (GASS): psychometric properties in a community sample
2011-01-01
Background Although there is substantial concern about negative attitudes to mental illness, little is known about the stigma associated with Generalised Anxiety Disorder (GAD) or its measurement. The aim of this study was to develop a multi-item measure of Generalised Anxiety Disorder stigma (the GASS). Methods Stigma items were developed from a thematic analysis of web-based text about the stigma associated with GAD. Six hundred and seventeen members of the public completed a survey comprising the resulting 20 stigma items and measures designed to evaluate construct validity. Follow-up data were collected for a subset of the participants (n = 212). Results The factor structure comprised two components: Personal Stigma (views about Generalised Anxiety Disorder); and Perceived Stigma (views about the beliefs of most others in the community). There was evidence of good construct validity and reliability for each of the Generalised Anxiety Stigma Scale (GASS) subscales. Conclusions The GASS is a promising brief measure of the stigma associated with Generalised Anxiety Disorder. PMID:22108099
The exceptional generalised geometry of supersymmetric AdS flux backgrounds
Energy Technology Data Exchange (ETDEWEB)
Ashmore, Anthony [Merton College, University of Oxford,Merton Street, Oxford, OX1 4JD (United Kingdom); Mathematical Institute, University of Oxford, Andrew Wiles Building,Woodstock Road, Oxford, OX2 6GG (United Kingdom); Petrini, Michela [Sorbonne Université, UPMC Paris 06, UMR 7589,LPTHE, 75005 Paris (France); Waldram, Daniel [Department of Physics, Imperial College London,Prince Consort Road, London, SW7 2AZ (United Kingdom)
2016-12-29
We analyse generic AdS flux backgrounds preserving eight supercharges in D=4 and D=5 dimensions using exceptional generalised geometry. We show that they are described by a pair of globally defined, generalised structures, identical to those that appear for flat flux backgrounds but with different integrability conditions. We give a number of explicit examples of such “exceptional Sasaki-Einstein” backgrounds in type IIB supergravity and M-theory. In particular, we give the complete analysis of the generic AdS{sub 5} M-theory backgrounds. We also briefly discuss the structure of the moduli space of solutions. In all cases, one structure defines a “generalised Reeb vector” that generates a Killing symmetry of the background corresponding to the R-symmetry of the dual field theory, and in addition encodes the generic contact structures that appear in the D=4 M-theory and D=5 type IIB cases. Finally, we investigate the relation between generalised structures and quantities in the dual field theory, showing that the central charge and R-charge of BPS wrapped-brane states are both encoded by the generalised Reeb vector, as well as discussing how volume minimisation (the dual of a- and F-maximisation) is encoded.
The generalised anxiety stigma scale (GASS: psychometric properties in a community sample
Directory of Open Access Journals (Sweden)
Griffiths Kathleen M
2011-11-01
Full Text Available Abstract Background Although there is substantial concern about negative attitudes to mental illness, little is known about the stigma associated with Generalised Anxiety Disorder (GAD or its measurement. The aim of this study was to develop a multi-item measure of Generalised Anxiety Disorder stigma (the GASS. Methods Stigma items were developed from a thematic analysis of web-based text about the stigma associated with GAD. Six hundred and seventeen members of the public completed a survey comprising the resulting 20 stigma items and measures designed to evaluate construct validity. Follow-up data were collected for a subset of the participants (n = 212. Results The factor structure comprised two components: Personal Stigma (views about Generalised Anxiety Disorder; and Perceived Stigma (views about the beliefs of most others in the community. There was evidence of good construct validity and reliability for each of the Generalised Anxiety Stigma Scale (GASS subscales. Conclusions The GASS is a promising brief measure of the stigma associated with Generalised Anxiety Disorder.
Limitations of Poisson statistics in describing radioactive decay.
Sitek, Arkadiusz; Celler, Anna M
2015-12-01
The assumption that nuclear decays are governed by Poisson statistics is an approximation. This approximation becomes unjustified when data acquisition times longer than or even comparable with the half-lives of the radioisotope in the sample are considered. In this work, the limits of the Poisson-statistics approximation are investigated. The formalism for the statistics of radioactive decay based on binomial distribution is derived. The theoretical factor describing the deviation of variance of the number of decays predicated by the Poisson distribution from the true variance is defined and investigated for several commonly used radiotracers such as (18)F, (15)O, (82)Rb, (13)N, (99m)Tc, (123)I, and (201)Tl. The variance of the number of decays estimated using the Poisson distribution is significantly different than the true variance for a 5-minute observation time of (11)C, (15)O, (13)N, and (82)Rb. Durations of nuclear medicine studies often are relatively long; they may be even a few times longer than the half-lives of some short-lived radiotracers. Our study shows that in such situations the Poisson statistics is unsuitable and should not be applied to describe the statistics of the number of decays in radioactive samples. However, the above statement does not directly apply to counting statistics at the level of event detection. Low sensitivities of detectors which are used in imaging studies make the Poisson approximation near perfect. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Candy, Adam S.; Pietrzak, Julie D.
2018-01-01
The approaches taken to describe and develop spatial discretisations of the domains required for geophysical simulation models are commonly ad hoc, model- or application-specific, and under-documented. This is particularly acute for simulation models that are flexible in their use of multi-scale, anisotropic, fully unstructured meshes where a relatively large number of heterogeneous parameters are required to constrain their full description. As a consequence, it can be difficult to reproduce simulations, to ensure a provenance in model data handling and initialisation, and a challenge to conduct model intercomparisons rigorously. This paper takes a novel approach to spatial discretisation, considering it much like a numerical simulation model problem of its own. It introduces a generalised, extensible, self-documenting approach to carefully describe, and necessarily fully, the constraints over the heterogeneous parameter space that determine how a domain is spatially discretised. This additionally provides a method to accurately record these constraints, using high-level natural language based abstractions that enable full accounts of provenance, sharing, and distribution. Together with this description, a generalised consistent approach to unstructured mesh generation for geophysical models is developed that is automated, robust and repeatable, quick-to-draft, rigorously verified, and consistent with the source data throughout. This interprets the description above to execute a self-consistent spatial discretisation process, which is automatically validated to expected discrete characteristics and metrics. Library code, verification tests, and examples available in the repository at https://github.com/shingleproject/Shingle. Further details of the project presented at http://shingleproject.org.
1983-05-20
Poisson processes is introduced: the amplitude has a law which is spherically invariant and the filter is real, linear and causal. It is shown how such a model can be identified from experimental data. (Author)
Efficient Levenberg-Marquardt minimization of the maximum likelihood estimator for Poisson deviates
International Nuclear Information System (INIS)
Laurence, T.; Chromy, B.
2010-01-01
Histograms of counted events are Poisson distributed, but are typically fitted without justification using nonlinear least squares fitting. The more appropriate maximum likelihood estimator (MLE) for Poisson distributed data is seldom used. We extend the use of the Levenberg-Marquardt algorithm commonly used for nonlinear least squares minimization for use with the MLE for Poisson distributed data. In so doing, we remove any excuse for not using this more appropriate MLE. We demonstrate the use of the algorithm and the superior performance of the MLE using simulations and experiments in the context of fluorescence lifetime imaging. Scientists commonly form histograms of counted events from their data, and extract parameters by fitting to a specified model. Assuming that the probability of occurrence for each bin is small, event counts in the histogram bins will be distributed according to the Poisson distribution. We develop here an efficient algorithm for fitting event counting histograms using the maximum likelihood estimator (MLE) for Poisson distributed data, rather than the non-linear least squares measure. This algorithm is a simple extension of the common Levenberg-Marquardt (L-M) algorithm, is simple to implement, quick and robust. Fitting using a least squares measure is most common, but it is the maximum likelihood estimator only for Gaussian-distributed data. Non-linear least squares methods may be applied to event counting histograms in cases where the number of events is very large, so that the Poisson distribution is well approximated by a Gaussian. However, it is not easy to satisfy this criterion in practice - which requires a large number of events. It has been well-known for years that least squares procedures lead to biased results when applied to Poisson-distributed data; a recent paper providing extensive characterization of these biases in exponential fitting is given. The more appropriate measure based on the maximum likelihood estimator (MLE
International Nuclear Information System (INIS)
Mueller, E.Z.
1991-01-01
An equivalent diffusion theory PWR reflector model is presented, which has as its basis Smith's generalisation of Koebke's Equivalent Theory. This method is an adaptation, in one-dimensional slab geometry, of the Generalised Equivalence Theory (GET). Since the method involves the renormalisation of the GET discontinuity factors at nodal interfaces, it is called the Normalised Generalised Equivalence Theory (NGET) method. The advantages of the NGET method for modelling the ex-core nodes of a PWR are summarized. 23 refs
Generalised Einstein mass-variation formulae: II Superluminal relative frame velocities
Directory of Open Access Journals (Sweden)
James M. Hill
Full Text Available In part I of this paper we have deduced generalised Einstein mass variation formulae assuming relative frame velocities vc. We again use the notion of the residual mass m0(v which for v>c is defined by the equation m(v=m0(v[(v/c2-1]-1/2 for the actual mass m(v. The residual mass is essentially the actual mass with the Einstein factor removed, and we emphasise that we make no restrictions on m0(v. Using this formal device we deduce corresponding new mass variation formulae applicable to superluminal relative frame velocities, assuming only the extended Lorentz transformations and their consequences, and two invariants that are known to apply in special relativity. The present authors have previously speculated a dual framework such that both the rest mass m0∗ and the residual mass at infinite velocity m∞∗ (by which we mean p∞∗/c, assuming finite momentum at infinity are equally important parameters in the specification of mass as a function of its velocity, and the two arbitrary constants can be so determined. The new formulae involving two arbitrary constants may also be exploited so that the mass remains finite at the speed of light, and two distinct mass profiles are determined as functions of their velocity with the rest mass assumed to be alternatively prescribed at the origin of either frame. The two profiles so obtained (M(U,m(u and (M∗(U,m∗(u although distinct have a common ratio M(U/M∗(U=m(u/m∗(u that is a function of v>c, indicating that observable mass depends upon the frame in which the rest mass is prescribed. Keywords: Special relativity, Einstein mass variation, New formulae
Korvigo, Ilia; Afanasyev, Andrey; Romashchenko, Nikolay; Skoblov, Mikhail
2018-01-01
Many automatic classifiers were introduced to aid inference of phenotypical effects of uncategorised nsSNVs (nonsynonymous Single Nucleotide Variations) in theoretical and medical applications. Lately, several meta-estimators have been proposed that combine different predictors, such as PolyPhen and SIFT, to integrate more information in a single score. Although many advances have been made in feature design and machine learning algorithms used, the shortage of high-quality reference data along with the bias towards intensively studied in vitro models call for improved generalisation ability in order to further increase classification accuracy and handle records with insufficient data. Since a meta-estimator basically combines different scoring systems with highly complicated nonlinear relationships, we investigated how deep learning (supervised and unsupervised), which is particularly efficient at discovering hierarchies of features, can improve classification performance. While it is believed that one should only use deep learning for high-dimensional input spaces and other models (logistic regression, support vector machines, Bayesian classifiers, etc) for simpler inputs, we still believe that the ability of neural networks to discover intricate structure in highly heterogenous datasets can aid a meta-estimator. We compare the performance with various popular predictors, many of which are recommended by the American College of Medical Genetics and Genomics (ACMG), as well as available deep learning-based predictors. Thanks to hardware acceleration we were able to use a computationally expensive genetic algorithm to stochastically optimise hyper-parameters over many generations. Overfitting was hindered by noise injection and dropout, limiting coadaptation of hidden units. Although we stress that this work was not conceived as a tool comparison, but rather an exploration of the possibilities of deep learning application in ensemble scores, our results show that
Non-chiral, molecular model of negative Poisson ratio in two dimensions
International Nuclear Information System (INIS)
Wojciechowski, K W
2003-01-01
A two-dimensional model of tri-atomic molecules (in which 'atoms' are distributed on vertices of equilateral triangles, and which are further referred to as cyclic trimers) is solved exactly in the static (zero-temperature) limit for the nearest-neighbour site-site interactions. It is shown that the cyclic trimers form a mechanically stable and elastically isotropic non-chiral phase of negative Poisson ratio. The properties of the system are illustrated by three examples of atom-atom interaction potentials: (i) the purely repulsive (n-inverse-power) potential, (ii) the purely attractive (n-power) potential and (iii) the Lennard-Jones potential which shows both the repulsive and the attractive part. The analytic form of the dependence of the Poisson ratio on the interatomic potential is obtained. It is shown that the Poisson ratio depends, in a universal way, only on the trimer anisotropy parameter both (1) in the limit of n → ∞ for cases (i) and (ii), as well as (2) at the zero external pressure for any potential with a doubly differentiable minimum, case (iii) is an example
Grafting and Poisson Structure in (2+1)-Gravity with Vanishing Cosmological Constant
Meusburger, C.
2006-09-01
We relate the geometrical construction of (2+1)-spacetimes via grafting to phase space and Poisson structure in the Chern-Simons formulation of (2+1)-dimensional gravity with vanishing cosmological constant on manifolds of topology mathbb{R} × S_g, where S g is an orientable two-surface of genus g>1. We show how grafting along simple closed geodesics λ is implemented in the Chern-Simons formalism and derive explicit expressions for its action on the holonomies of general closed curves on S g .We prove that this action is generated via the Poisson bracket by a gauge invariant observable associated to the holonomy of λ. We deduce a symmetry relation between the Poisson brackets of observables associated to the Lorentz and translational components of the holonomies of general closed curves on S g and discuss its physical interpretation. Finally, we relate the action of grafting on the phase space to the action of Dehn twists and show that grafting can be viewed as a Dehn twist with a formal parameter θ satisfying θ2 = 0.
Zero inflated Poisson and negative binomial regression models: application in education.
Salehi, Masoud; Roudbari, Masoud
2015-01-01
The number of failed courses and semesters in students are indicators of their performance. These amounts have zero inflated (ZI) distributions. Using ZI Poisson and negative binomial distributions we can model these count data to find the associated factors and estimate the parameters. This study aims at to investigate the important factors related to the educational performance of students. This cross-sectional study performed in 2008-2009 at Iran University of Medical Sciences (IUMS) with a population of almost 6000 students, 670 students selected using stratified random sampling. The educational and demographical data were collected using the University records. The study design was approved at IUMS and the students' data kept confidential. The descriptive statistics and ZI Poisson and negative binomial regressions were used to analyze the data. The data were analyzed using STATA. In the number of failed semesters, Poisson and negative binomial distributions with ZI, students' total average and quota system had the most roles. For the number of failed courses, total average, and being in undergraduate or master levels had the most effect in both models. In all models the total average have the most effect on the number of failed courses or semesters. The next important factor is quota system in failed semester and undergraduate and master levels in failed courses. Therefore, average has an important inverse effect on the numbers of failed courses and semester.
Bayesian spatial modeling of HIV mortality via zero-inflated Poisson models.
Musal, Muzaffer; Aktekin, Tevfik
2013-01-30
In this paper, we investigate the effects of poverty and inequality on the number of HIV-related deaths in 62 New York counties via Bayesian zero-inflated Poisson models that exhibit spatial dependence. We quantify inequality via the Theil index and poverty via the ratios of two Census 2000 variables, the number of people under the poverty line and the number of people for whom poverty status is determined, in each Zip Code Tabulation Area. The purpose of this study was to investigate the effects of inequality and poverty in addition to spatial dependence between neighboring regions on HIV mortality rate, which can lead to improved health resource allocation decisions. In modeling county-specific HIV counts, we propose Bayesian zero-inflated Poisson models whose rates are functions of both covariate and spatial/random effects. To show how the proposed models work, we used three different publicly available data sets: TIGER Shapefiles, Census 2000, and mortality index files. In addition, we introduce parameter estimation issues of Bayesian zero-inflated Poisson models and discuss MCMC method implications. Copyright © 2012 John Wiley & Sons, Ltd.
Energy Technology Data Exchange (ETDEWEB)
Suescun-Diaz, Daniel [Surcolombiana Univ., Neiva (Colombia). Groupo de Fisica Teorica; Narvaez-Paredes, Mauricio [Javeriana Univ., Cali (Colombia). Groupo de Matematica y Estadistica Aplicada Pontificia; Lozano-Parada, Jamie H. [Univ. del Valle, Cali (Colombia). Dept. de Ingenieria
2016-03-15
In this paper, the generalisation of the 4th-order Adams-Bashforth-Moulton predictor-corrector method is proposed to numerically solve the point kinetic equations of the nuclear reactivity calculations without using the nuclear power history. Due to the nature of the point kinetic equations, different predictor modifiers are used in order improve the precision of the approximations obtained. The results obtained with the prediction formulas and generalised corrections improve the precision when compared with previous methods and are valid for various forms of nuclear power and different time steps.
Anaesthesia for caesarean section in a patient with acute generalised pustular psoriasis.
Samieh-Tucker, A; Rupasinghe, M
2007-10-01
We describe a 30-year-old parturient with acute generalised pustular psoriasis who presented for urgent caesarean section. A multidisciplinary team was involved and general anaesthesia was used successfully. Management of this condition is discussed and the literature reviewed. While generalised pustular psoriasis or impetigo herpetiformis is well recognised in pregnancy, it has not hitherto been reported in obstetric anaesthesia literature. The purpose of this article is to delineate the clinical picture of this disease, its treatment, and the effect on the mother and the fetus.
Log-normal frailty models fitted as Poisson generalized linear mixed models.
Hirsch, Katharina; Wienke, Andreas; Kuss, Oliver
2016-12-01
The equivalence of a survival model with a piecewise constant baseline hazard function and a Poisson regression model has been known since decades. As shown in recent studies, this equivalence carries over to clustered survival data: A frailty model with a log-normal frailty term can be interpreted and estimated as a generalized linear mixed model with a binary response, a Poisson likelihood, and a specific offset. Proceeding this way, statistical theory and software for generalized linear mixed models are readily available for fitting frailty models. This gain in flexibility comes at the small price of (1) having to fix the number of pieces for the baseline hazard in advance and (2) having to "explode" the data set by the number of pieces. In this paper we extend the simulations of former studies by using a more realistic baseline hazard (Gompertz) and by comparing the model under consideration with competing models. Furthermore, the SAS macro %PCFrailty is introduced to apply the Poisson generalized linear mixed approach to frailty models. The simulations show good results for the shared frailty model. Our new %PCFrailty macro provides proper estimates, especially in case of 4 events per piece. The suggested Poisson generalized linear mixed approach for log-normal frailty models based on the %PCFrailty macro provides several advantages in the analysis of clustered survival data with respect to more flexible modelling of fixed and random effects, exact (in the sense of non-approximate) maximum likelihood estimation, and standard errors and different types of confidence intervals for all variance parameters. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DEFF Research Database (Denmark)
Andersen, Anders Holst; Korsgaard, Inge Riis; Jensen, Just
2002-01-01
In this paper, we consider selection based on the best predictor of animal additive genetic values in Gaussian linear mixed models, threshold models, Poisson mixed models, and log normal frailty models for survival data (including models with time-dependent covariates with associated fixed...... or random effects). In the different models, expressions are given (when these can be found - otherwise unbiased estimates are given) for prediction error variance, accuracy of selection and expected response to selection on the additive genetic scale and on the observed scale. The expressions given for non...... Gaussian traits are generalisations of the well-known formulas for Gaussian traits - and reflect, for Poisson mixed models and frailty models for survival data, the hierarchal structure of the models. In general the ratio of the additive genetic variance to the total variance in the Gaussian part...
Poisson sigma model with branes and hyperelliptic Riemann surfaces
International Nuclear Information System (INIS)
Ferrario, Andrea
2008-01-01
We derive the explicit form of the superpropagators in the presence of general boundary conditions (coisotropic branes) for the Poisson sigma model. This generalizes the results presented by Cattaneo and Felder [''A path integral approach to the Kontsevich quantization formula,'' Commun. Math. Phys. 212, 591 (2000)] and Cattaneo and Felder ['Coisotropic submanifolds in Poisson geometry and branes in the Poisson sigma model', Lett. Math. Phys. 69, 157 (2004)] for Kontsevich's angle function [Kontsevich, M., 'Deformation quantization of Poisson manifolds I', e-print arXiv:hep.th/0101170] used in the deformation quantization program of Poisson manifolds. The relevant superpropagators for n branes are defined as gauge fixed homotopy operators of a complex of differential forms on n sided polygons P n with particular ''alternating'' boundary conditions. In the presence of more than three branes we use first order Riemann theta functions with odd singular characteristics on the Jacobian variety of a hyperelliptic Riemann surface (canonical setting). In genus g the superpropagators present g zero mode contributions
Poisson image reconstruction with Hessian Schatten-norm regularization.
Lefkimmiatis, Stamatios; Unser, Michael
2013-11-01
Poisson inverse problems arise in many modern imaging applications, including biomedical and astronomical ones. The main challenge is to obtain an estimate of the underlying image from a set of measurements degraded by a linear operator and further corrupted by Poisson noise. In this paper, we propose an efficient framework for Poisson image reconstruction, under a regularization approach, which depends on matrix-valued regularization operators. In particular, the employed regularizers involve the Hessian as the regularization operator and Schatten matrix norms as the potential functions. For the solution of the problem, we propose two optimization algorithms that are specifically tailored to the Poisson nature of the noise. These algorithms are based on an augmented-Lagrangian formulation of the problem and correspond to two variants of the alternating direction method of multipliers. Further, we derive a link that relates the proximal map of an l(p) norm with the proximal map of a Schatten matrix norm of order p. This link plays a key role in the development of one of the proposed algorithms. Finally, we provide experimental results on natural and biological images for the task of Poisson image deblurring and demonstrate the practical relevance and effectiveness of the proposed framework.
Seasonally adjusted birth frequencies follow the Poisson distribution.
Barra, Mathias; Lindstrøm, Jonas C; Adams, Samantha S; Augestad, Liv A
2015-12-15
Variations in birth frequencies have an impact on activity planning in maternity wards. Previous studies of this phenomenon have commonly included elective births. A Danish study of spontaneous births found that birth frequencies were well modelled by a Poisson process. Somewhat unexpectedly, there were also weekly variations in the frequency of spontaneous births. Another study claimed that birth frequencies follow the Benford distribution. Our objective was to test these results. We analysed 50,017 spontaneous births at Akershus University Hospital in the period 1999-2014. To investigate the Poisson distribution of these births, we plotted their variance over a sliding average. We specified various Poisson regression models, with the number of births on a given day as the outcome variable. The explanatory variables included various combinations of years, months, days of the week and the digit sum of the date. The relationship between the variance and the average fits well with an underlying Poisson process. A Benford distribution was disproved by a goodness-of-fit test (p Poisson process when monthly and day-of-the-week variation is included. The frequency is highest in summer towards June and July, Friday and Tuesday stand out as particularly busy days, and the activity level is at its lowest during weekends.
Khazraee, S Hadi; Johnson, Valen; Lord, Dominique
2018-08-01
The Poisson-gamma (PG) and Poisson-lognormal (PLN) regression models are among the most popular means for motor vehicle crash data analysis. Both models belong to the Poisson-hierarchical family of models. While numerous studies have compared the overall performance of alternative Bayesian Poisson-hierarchical models, little research has addressed the impact of model choice on the expected crash frequency prediction at individual sites. This paper sought to examine whether there are any trends among candidate models predictions e.g., that an alternative model's prediction for sites with certain conditions tends to be higher (or lower) than that from another model. In addition to the PG and PLN models, this research formulated a new member of the Poisson-hierarchical family of models: the Poisson-inverse gamma (PIGam). Three field datasets (from Texas, Michigan and Indiana) covering a wide range of over-dispersion characteristics were selected for analysis. This study demonstrated that the model choice can be critical when the calibrated models are used for prediction at new sites, especially when the data are highly over-dispersed. For all three datasets, the PIGam model would predict higher expected crash frequencies than would the PLN and PG models, in order, indicating a clear link between the models predictions and the shape of their mixing distributions (i.e., gamma, lognormal, and inverse gamma, respectively). The thicker tail of the PIGam and PLN models (in order) may provide an advantage when the data are highly over-dispersed. The analysis results also illustrated a major deficiency of the Deviance Information Criterion (DIC) in comparing the goodness-of-fit of hierarchical models; models with drastically different set of coefficients (and thus predictions for new sites) may yield similar DIC values, because the DIC only accounts for the parameters in the lowest (observation) level of the hierarchy and ignores the higher levels (regression coefficients
Development of generalised model for grate combustion of biomass
DEFF Research Database (Denmark)
Rosendahl, Lasse; Kær, Søren Knudsen; Sørensen, Henrik
for two reasons: 1) to improve emission understanding and reduction measures and 2) to improve boundary conditions for CFD-based furnace modelling. The selected approach has been based on a diffusion coefficient formulation, where conservation equations for the concentration of fuel are solved...... in a spatially resolved grid, much in the same manner as in a finite volume CFD code. Within this porous layer of fuel, gas flows according to the Ergun equation. The diffusion coefficient links the properties of the fuel to the grate type and vibration mode, and is determined for each combination of fuel, grate...... is big enough to represent real, full scale conditions, and yet small enough to be operational in terms of parameter studies of different nature. Apart from full SRO data, measurements (gas sampling, velocity, temperature, particle sampling) can be taken through a heated, water-cooled probe...
Iqbal, Z.; Mehmood, Zaffar; Ahmad, Bilal
2018-05-01
This paper concerns an application to optimal energy by incorporating thermal equilibrium on MHD-generalised non-Newtonian fluid model with melting heat effect. Highly nonlinear system of partial differential equations is simplified to a nonlinear system using boundary layer approach and similarity transformations. Numerical solutions of velocity and temperature profile are obtained by using shooting method. The contribution of entropy generation is appraised on thermal and fluid velocities. Physical features of relevant parameters have been discussed by plotting graphs and tables. Some noteworthy findings are: Prandtl number, power law index and Weissenberg number contribute in lowering mass boundary layer thickness and entropy effect and enlarging thermal boundary layer thickness. However, an increasing mass boundary layer effect is only due to melting heat parameter. Moreover, thermal boundary layers have same trend for all parameters, i.e., temperature enhances with increase in values of significant parameters. Similarly, Hartman and Weissenberg numbers enhance Bejan number.
Dynamics of screw dislocations : a generalised minimising-movements scheme approach
Bonaschi, G.A.; Meurs, van P.J.P.; Morandotti, M.
2015-01-01
The gradient flow structure of the model introduced in [CG99] for the dynamics of screw dislocations is investigated by means of a generalised minimising-movements scheme approach. The assumption of a finite number of available glide directions, together with the "maximal dissipation criterion" that
Multi-Trial Guruswami–Sudan Decoding for Generalised Reed–Solomon Codes
DEFF Research Database (Denmark)
Nielsen, Johan Sebastian Rosenkilde; Zeh, Alexander
2013-01-01
An iterated refinement procedure for the Guruswami–Sudan list decoding algorithm for Generalised Reed–Solomon codes based on Alekhnovich’s module minimisation is proposed. The method is parametrisable and allows variants of the usual list decoding approach. In particular, finding the list...
A retrospective study of carbamazepine therapy in the treatment of idiopathic generalised epilepsy
LENUS (Irish Health Repository)
O'Connor, G
2011-05-01
Objective: The exacerbation of idiopathic generalised epilepsy (IGE) by some anti-epileptic drugs (AEDs) such as carbamazepine (CBZ) has been well documented. However, it is unclear whether IGE is always worsened by the use of CBZ, or whether some patients with IGE benefit from its use. \\r\
Generalisation of a 1:10k map from municipal data
Van Altena, V.; Bakermans, J.; Lentjes, P.; Nijhuis, R.; Post, M.; Reuvers, M.; Stoter, J.E.
2014-01-01
This paper reports about the feasibility study carried out by the Dutch Kadaster to automatically generalise the largest scale topographical data set maintained by the Kadaster (i.e. TOP10NL) from the 1:1k topographical object oriented data set, which is currently being collected and structured by
Passivation controller design for turbo-generators based on generalised Hamiltonian system theory
Cao, M.; Shen, T.L.; Song, Y.H.
2002-01-01
A method of pre-feedback to formulate the generalised forced Hamiltonian system model for speed governor control systems is proposed. Furthermore, passivation controllers are designed based on the scheme of Hamiltonian structure for single machne infinite bus and multimachine power systems. In
W-algebra symmetries of generalised Drinfel'd-Sokolov hierarchies
International Nuclear Information System (INIS)
Spence, B.
1992-01-01
Using the zero curvature formulation, it is shown that W-algebra transformations are symmetries of corresponding generalised Drinfel'd-Sokolov hierarchies. This result is illustrated with the examples of the KdV and Boussinesque hierarchies, and the hierarchy associated to the Polyakov-Bershadsky W-algebra. (orig.)
Hartley, Calum; Allen, Melissa L.
2014-01-01
We investigated whether low-functioning children with autism generalise labels from colour photographs based on sameness of shape, colour, or both. Children with autism and language-matched controls were taught novel words paired with photographs of unfamiliar objects, and then sorted pictures and objects into two buckets according to whether or…
Fergusson, David M.; Boden, Joseph M.; Horwood, L. John
2009-01-01
Background: There is considerable evidence suggesting that many children show conduct problems that are specific to a given context (home; school). What is less well understood is the extent to which children with situation-specific conduct problems show similar outcomes to those with generalised conduct problems. Methods: Data were gathered as…
Generalised Multi-sequence Shift-Register Synthesis using Module Minimisation
DEFF Research Database (Denmark)
Nielsen, Johan Sebastian Rosenkilde
2013-01-01
We show how to solve a generalised version of the Multi-sequence Linear Feedback Shift-Register (MLFSR) problem using minimisation of free modules over F[x]. We show how two existing algorithms for minimising such modules run particularly fast on these instances. Furthermore, we show how one...
DEFF Research Database (Denmark)
Dlugosz, Stephan; Mammen, Enno; Wilke, Ralf
We consider the semiparametric generalised linear regression model which has mainstream empirical models such as the (partially) linear mean regression, logistic and multinomial regression as special cases. As an extension to related literature we allow a misclassified covariate to be interacted...
Modelling Problem-Solving Situations into Number Theory Tasks: The Route towards Generalisation
Papadopoulos, Ioannis; Iatridou, Maria
2010-01-01
This paper examines the way two 10th graders cope with a non-standard generalisation problem that involves elementary concepts of number theory (more specifically linear Diophantine equations) in the geometrical context of a rectangle's area. Emphasis is given on how the students' past experience of problem solving (expressed through interplay…
Kindt, M.; Bögels, S.M.; Morren, M.
2003-01-01
The present study examined processing bias in children suffering from anxiety disorders. Processing bias was assessed using of the emotional Stroop task in clinically referred children with separation anxiety disorder (SAD), social phobia (SP), and/or generalised anxiety disorder (GAD) and normal
Bogels, S.M.; Snieder, N.; Kindt, M.
2003-01-01
The present study investigated whether children with high symptom levels of either social phobia (SP), separation anxiety disorder (SAD), or generalised anxiety disorder (GAD) are characterised by a specific set of dysfunctional interpretations that are consistent with the cognitive model of their
First-ever generalised tonic-clonic seizures in adults in the ...
African Journals Online (AJOL)
First-ever generalised tonic-clonic seizures in adults in the emergency room: Review of cranial computed tomography of 76 cases in a tertiary hospital in Benin-city, Nigeria. ... Clinical and CT diagnoses agreed only in 8.4% of the cases.
[Epileptic seizures during childbirth in a patient with idiopathic generalised epilepsy
Voermans, N.C.; Zwarts, M.J.; Renier, W.O.; Bloem, B.R.
2005-01-01
During her first pregnancy, a 37-year-old woman with idiopathic generalised epilepsy that was adequately controlled with lamotrigine experienced a series of epileptic seizures following an elective caesarean section. The attacks were terminated with diazepam. The following day, she developed
Quantitative modelling of HDPE spurt experiments using wall slip and generalised Newtonian flow
Doelder, den C.F.J.; Koopmans, R.J.; Molenaar, J.
1998-01-01
A quantitative model to describe capillary rheometer experiments is presented. The model can generate ‘two-branched' discontinuous flow curves and the associated pressure oscillations. Polymer compressibility in the barrel, incompressible axisymmetric generalised Newtonian flow in the die, and a
Baldwin, David S.; den Boer, Johan A.; Lyndon, Gavin; Emir, Birol; Schweizer, Edward; Haswell, Hannah
2015-01-01
The aim of this review is to summarise the literature on the efficacy and safety of pregabalin for the treatment of generalised anxiety disorder (GAD). Of 241 literature citations, 13 clinical trials were identified that were specifically designed to evaluate the efficacy and safety of pregabalin in
Vicsek, Lilla
2010-01-01
In this paper I discuss some concerns related to the analysis of focus groups: (a) the issue of generalisation; (b) the problems of using numbers and quantifying in the analysis; (c) how the concrete situation of the focus groups could be included in the analysis, and (d) what formats can be used when quoting from focus groups. Problems with…
Four-dimensional gravity as an almost-Poisson system
Ita, Eyo Eyo
2015-04-01
In this paper, we examine the phase space structure of a noncanonical formulation of four-dimensional gravity referred to as the Instanton representation of Plebanski gravity (IRPG). The typical Hamiltonian (symplectic) approach leads to an obstruction to the definition of a symplectic structure on the full phase space of the IRPG. We circumvent this obstruction, using the Lagrange equations of motion, to find the appropriate generalization of the Poisson bracket. It is shown that the IRPG does not support a Poisson bracket except on the vector constraint surface. Yet there exists a fundamental bilinear operation on its phase space which produces the correct equations of motion and induces the correct transformation properties of the basic fields. This bilinear operation is known as the almost-Poisson bracket, which fails to satisfy the Jacobi identity and in this case also the condition of antisymmetry. We place these results into the overall context of nonsymplectic systems.
The coupling of Poisson sigma models to topological backgrounds
Energy Technology Data Exchange (ETDEWEB)
Rosa, Dario [School of Physics, Korea Institute for Advanced Study,Seoul 02455 (Korea, Republic of)
2016-12-13
We extend the coupling to the topological backgrounds, recently worked out for the 2-dimensional BF-model, to the most general Poisson sigma models. The coupling involves the choice of a Casimir function on the target manifold and modifies the BRST transformations. This in turn induces a change in the BRST cohomology of the resulting theory. The observables of the coupled theory are analyzed and their geometrical interpretation is given. We finally couple the theory to 2-dimensional topological gravity: this is the first step to study a topological string theory in propagation on a Poisson manifold. As an application, we show that the gauge-fixed vectorial supersymmetry of the Poisson sigma models has a natural explanation in terms of the theory coupled to topological gravity.
Modified Poisson eigenfunctions for electrostatic Bernstein--Greene--Kruskal equilibria
International Nuclear Information System (INIS)
Ling, K.; Abraham-Shrauner, B.
1981-01-01
The stability of an electrostatic Bernstein--Greene--Kruskal equilibrium by Lewis and Symon's general linear stability analysis for spatially inhomogeneous Vlasov equilibria, which employs eigenfunctions and eigenvalues of the equilibrium Liouville operator and the modified Poisson operator, is considered. Analytic expressions for the Liouville eigenfuctions and eigenvalues have already been given; approximate analytic expressions for the dominant eigenfunction and eigenvalue of the modified Poisson operator are given. In the kinetic limit three methods are given: (i) the perturbation method, (ii) the Rayleigh--Ritz method, and (iii) a method based on a Hill's equation. In the fluid limit the Rayleigh--Ritz method is used. The dominant eigenfunction and eigenvalue are then substituted in the dispersion relation and the growth rate calculated. The growth rate agrees very well with previous results found by numerical simulation and by modified Poisson eigenfunctions calculated numerically
Quantization with maximally degenerate Poisson brackets: the harmonic oscillator!
International Nuclear Information System (INIS)
Nutku, Yavuz
2003-01-01
Nambu's construction of multi-linear brackets for super-integrable systems can be thought of as degenerate Poisson brackets with a maximal set of Casimirs in their kernel. By introducing privileged coordinates in phase space these degenerate Poisson brackets are brought to the form of Heisenberg's equations. We propose a definition for constructing quantum operators for classical functions, which enables us to turn the maximally degenerate Poisson brackets into operators. They pose a set of eigenvalue problems for a new state vector. The requirement of the single-valuedness of this eigenfunction leads to quantization. The example of the harmonic oscillator is used to illustrate this general procedure for quantizing a class of maximally super-integrable systems
Poisson structures for reduced non-holonomic systems
International Nuclear Information System (INIS)
Ramos, Arturo
2004-01-01
Borisov, Mamaev and Kilin have recently found certain Poisson structures with respect to which the reduced and rescaled systems of certain non-holonomic problems, involving rolling bodies without slipping, become Hamiltonian, the Hamiltonian function being the reduced energy. We study further the algebraic origin of these Poisson structures, showing that they are of rank 2 and therefore the mentioned rescaling is not necessary. We show that they are determined, up to a non-vanishing factor function, by the existence of a system of first-order differential equations providing two integrals of motion. We generalize the form of the Poisson structures and extend their domain of definition. We apply the theory to the rolling disc, the Routh's sphere, the ball rolling on a surface of revolution, and its special case of a ball rolling inside a cylinder
A high order solver for the unbounded Poisson equation
DEFF Research Database (Denmark)
Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe
In mesh-free particle methods a high order solution to the unbounded Poisson equation is usually achieved by constructing regularised integration kernels for the Biot-Savart law. Here the singular, point particles are regularised using smoothed particles to obtain an accurate solution with an order...... of convergence consistent with the moments conserved by the applied smoothing function. In the hybrid particle-mesh method of Hockney and Eastwood (HE) the particles are interpolated onto a regular mesh where the unbounded Poisson equation is solved by a discrete non-cyclic convolution of the mesh values...... and the integration kernel. In this work we show an implementation of high order regularised integration kernels in the HE algorithm for the unbounded Poisson equation to formally achieve an arbitrary high order convergence. We further present a quantitative study of the convergence rate to give further insight...
Poisson-Fermi Formulation of Nonlocal Electrostatics in Electrolyte Solutions
Directory of Open Access Journals (Sweden)
Liu Jinn-Liang
2017-10-01
Full Text Available We present a nonlocal electrostatic formulation of nonuniform ions and water molecules with interstitial voids that uses a Fermi-like distribution to account for steric and correlation efects in electrolyte solutions. The formulation is based on the volume exclusion of hard spheres leading to a steric potential and Maxwell’s displacement field with Yukawa-type interactions resulting in a nonlocal electric potential. The classical Poisson-Boltzmann model fails to describe steric and correlation effects important in a variety of chemical and biological systems, especially in high field or large concentration conditions found in and near binding sites, ion channels, and electrodes. Steric effects and correlations are apparent when we compare nonlocal Poisson-Fermi results to Poisson-Boltzmann calculations in electric double layer and to experimental measurements on the selectivity of potassium channels for K+ over Na+.
A random matrix approach to the crossover of energy-level statistics from Wigner to Poisson
International Nuclear Information System (INIS)
Datta, Nilanjana; Kunz, Herve
2004-01-01
We analyze a class of parametrized random matrix models, introduced by Rosenzweig and Porter, which is expected to describe the energy level statistics of quantum systems whose classical dynamics varies from regular to chaotic as a function of a parameter. We compute the generating function for the correlations of energy levels, in the limit of infinite matrix size. The crossover between Poisson and Wigner statistics is measured by a renormalized coupling constant. The model is exactly solved in the sense that, in the limit of infinite matrix size, the energy-level correlation functions and their generating function are given in terms of a finite set of integrals
Giona, Massimiliano; Brasiello, Antonio; Crescitelli, Silvestro
2017-07-01
We analyze the thermodynamic properties of stochastic differential equations driven by smooth Poisson-Kac fluctuations, and their convergence, in the Kac limit, towards Wiener-driven Langevin equations. Using a Markovian embedding of the stochastic work variable, it is proved that the Kac-limit convergence implies a Stratonovich formulation of the limit Langevin equations, in accordance with the Wong-Zakai theorem. Exact moment analysis applied to the case of a purely frictional system shows the occurrence of different regimes and crossover phenomena in the parameter space.
Chang, Yu-Wei; Tsong, Yi; Zhao, Zhigen
2017-01-01
Assessing equivalence or similarity has drawn much attention recently as many drug products have lost or will lose their patents in the next few years, especially certain best-selling biologics. To claim equivalence between the test treatment and the reference treatment when assay sensitivity is well established from historical data, one has to demonstrate both superiority of the test treatment over placebo and equivalence between the test treatment and the reference treatment. Thus, there is urgency for practitioners to derive a practical way to calculate sample size for a three-arm equivalence trial. The primary endpoints of a clinical trial may not always be continuous, but may be discrete. In this paper, the authors derive power function and discuss sample size requirement for a three-arm equivalence trial with Poisson and negative binomial clinical endpoints. In addition, the authors examine the effect of the dispersion parameter on the power and the sample size by varying its coefficient from small to large. In extensive numerical studies, the authors demonstrate that required sample size heavily depends on the dispersion parameter. Therefore, misusing a Poisson model for negative binomial data may easily lose power up to 20%, depending on the value of the dispersion parameter.
Efficient maximal Poisson-disk sampling and remeshing on surfaces
Guo, Jianwei; Yan, Dongming; Jia, Xiaohong; Zhang, Xiaopeng
2015-01-01
Poisson-disk sampling is one of the fundamental research problems in computer graphics that has many applications. In this paper, we study the problem of maximal Poisson-disk sampling on mesh surfaces. We present a simple approach that generalizes the 2D maximal sampling framework to surfaces. The key observation is to use a subdivided mesh as the sampling domain for conflict checking and void detection. Our approach improves the state-of-the-art approach in efficiency, quality and the memory consumption.
Robust iterative observer for source localization for Poisson equation
Majeed, Muhammad Usman
2017-01-05
Source localization problem for Poisson equation with available noisy boundary data is well known to be highly sensitive to noise. The problem is ill posed and lacks to fulfill Hadamards stability criteria for well posedness. In this work, first a robust iterative observer is presented for boundary estimation problem for Laplace equation, and then this algorithm along with the available noisy boundary data from the Poisson problem is used to localize point sources inside a rectangular domain. The algorithm is inspired from Kalman filter design, however one of the space variables is used as time-like. Numerical implementation along with simulation results is detailed towards the end.
Gyrokinetic energy conservation and Poisson-bracket formulation
International Nuclear Information System (INIS)
Brizard, A.
1989-01-01
An integral expression for the gyrokinetic total energy of a magnetized plasma, with general magnetic field configuration perturbed by fully electromagnetic fields, was recently derived through the use of a gyrocenter Lie transformation. It is shown that the gyrokinetic energy is conserved by the gyrokinetic Hamiltonian flow to all orders in perturbed fields. An explicit demonstration that a gyrokinetic Hamiltonian containing quadratic nonlinearities preserves the gyrokinetic energy up to third order is given. The Poisson-bracket formulation greatly facilitates this demonstration with the help of the Jacobi identity and other properties of the Poisson brackets
Dilaton gravity, Poisson sigma models and loop quantum gravity
International Nuclear Information System (INIS)
Bojowald, Martin; Reyes, Juan D
2009-01-01
Spherically symmetric gravity in Ashtekar variables coupled to Yang-Mills theory in two dimensions and its relation to dilaton gravity and Poisson sigma models are discussed. After introducing its loop quantization, quantum corrections for inverse triad components are shown to provide a consistent deformation without anomalies. The relation to Poisson sigma models provides a covariant action principle of the quantum-corrected theory with effective couplings. Results are also used to provide loop quantizations of spherically symmetric models in arbitrary D spacetime dimensions.
? filtering for stochastic systems driven by Poisson processes
Song, Bo; Wu, Zheng-Guang; Park, Ju H.; Shi, Guodong; Zhang, Ya
2015-01-01
This paper investigates the ? filtering problem for stochastic systems driven by Poisson processes. By utilising the martingale theory such as the predictable projection operator and the dual predictable projection operator, this paper transforms the expectation of stochastic integral with respect to the Poisson process into the expectation of Lebesgue integral. Then, based on this, this paper designs an ? filter such that the filtering error system is mean-square asymptotically stable and satisfies a prescribed ? performance level. Finally, a simulation example is given to illustrate the effectiveness of the proposed filtering scheme.
Poisson's theorem and integrals of KdV equation
International Nuclear Information System (INIS)
Tasso, H.
1978-01-01
Using Poisson's theorem it is proved that if F = integral sub(-infinity)sup(+infinity) T(u,usub(x),...usub(n,t))dx is an invariant functional of KdV equation, then integral sub(-infinity)sup(+infinity) delta F/delta u dx integral sub(-infinity)sup(+infinity) delta T/delta u dx is also an invariant functional. In the case of a polynomial T, one finds in a simple way the known recursion ΔTr/Δu = Tsub(r-1). This note gives an example of the usefulness of Poisson's theorem. (author)
Robust iterative observer for source localization for Poisson equation
Majeed, Muhammad Usman; Laleg-Kirati, Taous-Meriem
2017-01-01
Source localization problem for Poisson equation with available noisy boundary data is well known to be highly sensitive to noise. The problem is ill posed and lacks to fulfill Hadamards stability criteria for well posedness. In this work, first a robust iterative observer is presented for boundary estimation problem for Laplace equation, and then this algorithm along with the available noisy boundary data from the Poisson problem is used to localize point sources inside a rectangular domain. The algorithm is inspired from Kalman filter design, however one of the space variables is used as time-like. Numerical implementation along with simulation results is detailed towards the end.
Efficient maximal Poisson-disk sampling and remeshing on surfaces
Guo, Jianwei
2015-02-01
Poisson-disk sampling is one of the fundamental research problems in computer graphics that has many applications. In this paper, we study the problem of maximal Poisson-disk sampling on mesh surfaces. We present a simple approach that generalizes the 2D maximal sampling framework to surfaces. The key observation is to use a subdivided mesh as the sampling domain for conflict checking and void detection. Our approach improves the state-of-the-art approach in efficiency, quality and the memory consumption.
Adaptive maximal poisson-disk sampling on surfaces
Yan, Dongming
2012-01-01
In this paper, we study the generation of maximal Poisson-disk sets with varying radii on surfaces. Based on the concepts of power diagram and regular triangulation, we present a geometric analysis of gaps in such disk sets on surfaces, which is the key ingredient of the adaptive maximal Poisson-disk sampling framework. Moreover, we adapt the presented sampling framework for remeshing applications. Several novel and efficient operators are developed for improving the sampling/meshing quality over the state-of-theart. © 2012 ACM.
Efficient triangulation of Poisson-disk sampled point sets
Guo, Jianwei
2014-05-06
In this paper, we present a simple yet efficient algorithm for triangulating a 2D input domain containing a Poisson-disk sampled point set. The proposed algorithm combines a regular grid and a discrete clustering approach to speedup the triangulation. Moreover, our triangulation algorithm is flexible and performs well on more general point sets such as adaptive, non-maximal Poisson-disk sets. The experimental results demonstrate that our algorithm is robust for a wide range of input domains and achieves significant performance improvement compared to the current state-of-the-art approaches. © 2014 Springer-Verlag Berlin Heidelberg.
Modifications in the AUTOMESH and other POISSON Group Codes
International Nuclear Information System (INIS)
Gupta, R.C.
1986-01-01
Improvements in the POISSON Group Codes are discussed. These improvements allow one to compute magnetic field to an accuracy of a few parts in 100,000 in quite complicated geometries with a reduced requirement on computational time and computer memory. This can be accomplished mainly by making the mesh dense at some places and sparse at other places. AUTOMESH has been modified so that one can use variable mesh size conveniently and efficiently at a number of places. We will present an example to illustrate these techniques. Several other improvements in the codes AUTOMESH, LATTICE and POISSON will also be discussed
Quadratic Hamiltonians on non-symmetric Poisson structures
International Nuclear Information System (INIS)
Arribas, M.; Blesa, F.; Elipe, A.
2007-01-01
Many dynamical systems may be represented in a set of non-canonical coordinates that generate an su(2) algebraic structure. The topology of the phase space is the one of the S 2 sphere, the Poisson structure is the one of the rigid body, and the Hamiltonian is a parametric quadratic form in these 'spherical' coordinates. However, there are other problems in which the Poisson structure losses its symmetry. In this paper we analyze this case and, we show how the loss of the spherical symmetry affects the phase flow and parametric bifurcations for the bi-parametric cases
Screened Poisson Equation for Image Contrast Enhancement
Directory of Open Access Journals (Sweden)
Jean-Michel Morel
2014-03-01
Full Text Available In this work we propose a discussion and detailed implementation of a very simple gradient domain method that tries to eliminate the effect of nonuniform illumination and at the same time preserves the images details. This model, which to the best of our knowledge has not been explored in spite of its simplicity, acts as a high pass filter. We show that with a single contrast parameter (which keeps the same value in most experiments, the model delivers state of the art results. They compare favorably to results obtained with more complex algorithms. Our algorithm is designed for all kinds of images, but with the special specification of making minimal image detail alteration thanks to a first order fidelity term, instead of the usual zero order term. Experiments on non-uniform medical images and on hazy images illustrate significant perception gain.
Womack, James C; Anton, Lucian; Dziedzic, Jacek; Hasnip, Phil J; Probert, Matt I J; Skylaris, Chris-Kriton
2018-03-13
The solution of the Poisson equation is a crucial step in electronic structure calculations, yielding the electrostatic potential-a key component of the quantum mechanical Hamiltonian. In recent decades, theoretical advances and increases in computer performance have made it possible to simulate the electronic structure of extended systems in complex environments. This requires the solution of more complicated variants of the Poisson equation, featuring nonhomogeneous dielectric permittivities, ionic concentrations with nonlinear dependencies, and diverse boundary conditions. The analytic solutions generally used to solve the Poisson equation in vacuum (or with homogeneous permittivity) are not applicable in these circumstances, and numerical methods must be used. In this work, we present DL_MG, a flexible, scalable, and accurate solver library, developed specifically to tackle the challenges of solving the Poisson equation in modern large-scale electronic structure calculations on parallel computers. Our solver is based on the multigrid approach and uses an iterative high-order defect correction method to improve the accuracy of solutions. Using two chemically relevant model systems, we tested the accuracy and computational performance of DL_MG when solving the generalized Poisson and Poisson-Boltzmann equations, demonstrating excellent agreement with analytic solutions and efficient scaling to ∼10 9 unknowns and 100s of CPU cores. We also applied DL_MG in actual large-scale electronic structure calculations, using the ONETEP linear-scaling electronic structure package to study a 2615 atom protein-ligand complex with routinely available computational resources. In these calculations, the overall execution time with DL_MG was not significantly greater than the time required for calculations using a conventional FFT-based solver.
Liu, Jinn-Liang; Eisenberg, Bob
2018-02-01
The combinatorial explosion of empirical parameters in tens of thousands presents a tremendous challenge for extended Debye-Hückel models to calculate activity coefficients of aqueous mixtures of the most important salts in chemistry. The explosion of parameters originates from the phenomenological extension of the Debye-Hückel theory that does not take steric and correlation effects of ions and water into account. By contrast, the Poisson-Fermi theory developed in recent years treats ions and water molecules as nonuniform hard spheres of any size with interstitial voids and includes ion-water and ion-ion correlations. We present a Poisson-Fermi model and numerical methods for calculating the individual or mean activity coefficient of electrolyte solutions with any arbitrary number of ionic species in a large range of salt concentrations and temperatures. For each activity-concentration curve, we show that the Poisson-Fermi model requires only three unchanging parameters at most to well fit the corresponding experimental data. The three parameters are associated with the Born radius of the solvation energy of an ion in electrolyte solution that changes with salt concentrations in a highly nonlinear manner.
Steady state solution of the Poisson-Nernst-Planck equations
International Nuclear Information System (INIS)
Golovnev, A.; Trimper, S.
2010-01-01
The exact steady state solution of the Poisson-Nernst-Planck equations (PNP) is given in terms of Jacobi elliptic functions. A more tractable approximate solution is derived which can be used to compare the results with experimental observations in binary electrolytes. The breakdown of the PNP for high concentration and high applied voltage is discussed.
Coefficient Inverse Problem for Poisson's Equation in a Cylinder
Solov'ev, V. V.
2011-01-01
The inverse problem of determining the coefficient on the right-hand side of Poisson's equation in a cylindrical domain is considered. The Dirichlet boundary value problem is studied. Two types of additional information (overdetermination) can be specified: (i) the trace of the solution to the
Poisson equation in the Kohn-Sham Coulomb problem
Manby, F. R.; Knowles, Peter James
2001-01-01
We apply the Poisson equation to the quantum mechanical Coulomb problem for many-particle systems. By introducing a suitable basis set, the two-electron Coulomb integrals become simple overlaps. This offers the possibility of very rapid linear-scaling treatment of the Coulomb contribution to Kohn-Sham theory.
Poisson and Gaussian approximation of weighted local empirical processes
Einmahl, J.H.J.
1995-01-01
We consider the local empirical process indexed by sets, a greatly generalized version of the well-studied uniform tail empirical process. We show that the weak limit of weighted versions of this process is Poisson under certain conditions, whereas it is Gaussian in other situations. Our main
Modeling corporate defaults: Poisson autoregressions with exogenous covariates (PARX)
DEFF Research Database (Denmark)
Agosto, Arianna; Cavaliere, Guiseppe; Kristensen, Dennis
We develop a class of Poisson autoregressive models with additional covariates (PARX) that can be used to model and forecast time series of counts. We establish the time series properties of the models, including conditions for stationarity and existence of moments. These results are in turn used...
A high order solver for the unbounded Poisson equation
DEFF Research Database (Denmark)
Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe
2012-01-01
This work improves upon Hockney and Eastwood's Fourier-based algorithm for the unbounded Poisson equation to formally achieve arbitrary high order of convergence without any additional computational cost. We assess the methodology on the kinematic relations between the velocity and vorticity fields....
Monitoring Poisson time series using multi-process models
DEFF Research Database (Denmark)
Engebjerg, Malene Dahl Skov; Lundbye-Christensen, Søren; Kjær, Birgitte B.
aspects of health resource management may also be addressed. In this paper we center on the detection of outbreaks of infectious diseases. This is achieved by a multi-process Poisson state space model taking autocorrelation and overdispersion into account, which has been applied to a data set concerning...
Area-to-Area Poisson Kriging and Spatial Bayesian Analysis
Asmarian, Naeimehossadat; Jafari-Koshki, Tohid; Soleimani, Ali; Taghi Ayatollahi, Seyyed Mohammad
2016-10-01
Background: In many countries gastric cancer has the highest incidence among the gastrointestinal cancers and is the second most common cancer in Iran. The aim of this study was to identify and map high risk gastric cancer regions at the county-level in Iran. Methods: In this study we analyzed gastric cancer data for Iran in the years 2003-2010. Areato- area Poisson kriging and Besag, York and Mollie (BYM) spatial models were applied to smoothing the standardized incidence ratios of gastric cancer for the 373 counties surveyed in this study. The two methods were compared in term of accuracy and precision in identifying high risk regions. Result: The highest smoothed standardized incidence rate (SIR) according to area-to-area Poisson kriging was in Meshkinshahr county in Ardabil province in north-western Iran (2.4,SD=0.05), while the highest smoothed standardized incidence rate (SIR) according to the BYM model was in Ardabil, the capital of that province (2.9,SD=0.09). Conclusion: Both methods of mapping, ATA Poisson kriging and BYM, showed the gastric cancer incidence rate to be highest in north and north-west Iran. However, area-to-area Poisson kriging was more precise than the BYM model and required less smoothing. According to the results obtained, preventive measures and treatment programs should be focused on particular counties of Iran. Creative Commons Attribution License
Ruin probabilities for a regenerative Poisson gap generated risk process
DEFF Research Database (Denmark)
Asmussen, Søren; Biard, Romain
A risk process with constant premium rate c and Poisson arrivals of claims is considered. A threshold r is deﬁned for claim interarrival times, such that if k consecutive interarrival times are larger than r, then the next claim has distribution G. Otherwise, the claim size distribution is F...
Optimality of Poisson Processes Intensity Learning with Gaussian Processes
Kirichenko, A.; van Zanten, H.
2015-01-01
In this paper we provide theoretical support for the so-called "Sigmoidal Gaussian Cox Process" approach to learning the intensity of an inhomogeneous Poisson process on a d-dimensional domain. This method was proposed by Adams, Murray and MacKay (ICML, 2009), who developed a tractable computational
Rate-optimal Bayesian intensity smoothing for inhomogeneous Poisson processes
Belitser, E.; Andrade Serra, De P.J.; Zanten, van J.H.
2013-01-01
We apply nonparametric Bayesian methods to study the problem of estimating the intensity function of an inhomogeneous Poisson process. We exhibit a prior on intensities which both leads to a computationally feasible method and enjoys desirable theoretical optimality properties. The prior we use is
Nonparametric Bayesian inference for multidimensional compound Poisson processes
Gugushvili, S.; van der Meulen, F.; Spreij, P.
2015-01-01
Given a sample from a discretely observed multidimensional compound Poisson process, we study the problem of nonparametric estimation of its jump size density r0 and intensity λ0. We take a nonparametric Bayesian approach to the problem and determine posterior contraction rates in this context,
Poisson processes on groups and Feynamn path integrals
International Nuclear Information System (INIS)
Combe, P.; Rodriguez, R.; Aix-Marseille-2 Univ., 13 - Marseille; Sirugue, M.; Sirugue-Collin, M.; Centre National de la Recherche Scientifique, 13 - Marseille; Hoegh-Krohn, R.
1980-01-01
We give an expression for the perturbed evolution of a free evolution by gentle, possibly velocity dependent, potential, in terms of the expectation with respect to a Poisson process on a group. Various applications are given in particular to usual quantum mechanics but also to Fermi and spin systems. (orig.)
Some applications of the fractional Poisson probability distribution
International Nuclear Information System (INIS)
Laskin, Nick
2009-01-01
Physical and mathematical applications of the recently invented fractional Poisson probability distribution have been presented. As a physical application, a new family of quantum coherent states has been introduced and studied. As mathematical applications, we have developed the fractional generalization of Bell polynomials, Bell numbers, and Stirling numbers of the second kind. The appearance of fractional Bell polynomials is natural if one evaluates the diagonal matrix element of the evolution operator in the basis of newly introduced quantum coherent states. Fractional Stirling numbers of the second kind have been introduced and applied to evaluate the skewness and kurtosis of the fractional Poisson probability distribution function. A representation of the Bernoulli numbers in terms of fractional Stirling numbers of the second kind has been found. In the limit case when the fractional Poisson probability distribution becomes the Poisson probability distribution, all of the above listed developments and implementations turn into the well-known results of the quantum optics and the theory of combinatorial numbers.
Poisson processes on groups and Feynman path integrals
International Nuclear Information System (INIS)
Combe, P.; Rodriguez, R.; Sirugue-Collin, M.; Centre National de la Recherche Scientifique, 13 - Marseille; Sirugue, M.
1979-09-01
An expression is given for the perturbed evolution of a free evolution by gentle, possibly velocity dependent, potential, in terms of the expectation with respect to a Poisson process on a group. Various applications are given in particular to usual quantum mechanics but also to Fermi and spin systems
Poisson's equation in de Sitter space-time
Energy Technology Data Exchange (ETDEWEB)
Pessa, E [Rome Univ. (Italy). Ist. di Matematica
1980-11-01
Based on a suitable generalization of Poisson's equation for de Sitter space-time the form of gravitation's law in 'projective relativity' is examined; it is found that, in the interior case, a small difference with the customary Newtonian law arises. This difference, of a repulsive character, can be very important in cosmological problems.
Is it safe to use Poisson statistics in nuclear spectrometry?
International Nuclear Information System (INIS)
Pomme, S.; Robouch, P.; Arana, G.; Eguskiza, M.; Maguregui, M.I.
2000-01-01
The boundary conditions in which Poisson statistics can be applied in nuclear spectrometry are investigated. Improved formulas for the uncertainty of nuclear counting with deadtime and pulse pileup are presented. A comparison is made between the expected statistical uncertainty for loss-free counting, fixed live-time and fixed real-time measurements. (author)
Poisson sampling - The adjusted and unadjusted estimator revisited
Michael S. Williams; Hans T. Schreuder; Gerardo H. Terrazas
1998-01-01
The prevailing assumption, that for Poisson sampling the adjusted estimator "Y-hat a" is always substantially more efficient than the unadjusted estimator "Y-hat u" , is shown to be incorrect. Some well known theoretical results are applicable since "Y-hat a" is a ratio-of-means estimator and "Y-hat u" a simple unbiased estimator...
Characterization and global analysis of a family of Poisson structures
International Nuclear Information System (INIS)
Hernandez-Bermejo, Benito
2006-01-01
A three-dimensional family of solutions of the Jacobi equations for Poisson systems is characterized. In spite of its general form it is possible the explicit and global determination of its main features, such as the symplectic structure and the construction of the Darboux canonical form. Examples are given
Characterization and global analysis of a family of Poisson structures
Energy Technology Data Exchange (ETDEWEB)
Hernandez-Bermejo, Benito [Escuela Superior de Ciencias Experimentales y Tecnologia, Edificio Departamental II, Universidad Rey Juan Carlos, Calle Tulipan S/N, 28933 (Mostoles), Madrid (Spain)]. E-mail: benito.hernandez@urjc.es
2006-06-26
A three-dimensional family of solutions of the Jacobi equations for Poisson systems is characterized. In spite of its general form it is possible the explicit and global determination of its main features, such as the symplectic structure and the construction of the Darboux canonical form. Examples are given.
A Poisson type formula for Hardy classes on Heisenberg's group
Directory of Open Access Journals (Sweden)
Lopushansky O.V.
2010-06-01
Full Text Available The Hardy type class of complex functions with infinite many variables defined on the Schrodinger irreducible unitary orbit of reduced Heisenberg group, generated by the Gauss density, is investigated. A Poisson integral type formula for their analytic extensions on an open ball is established. Taylor coefficients for analytic extensions are described by the associatedsymmetric Fock space.
Boundary singularity of Poisson and harmonic Bergman kernels
Czech Academy of Sciences Publication Activity Database
Engliš, Miroslav
2015-01-01
Roč. 429, č. 1 (2015), s. 233-272 ISSN 0022-247X R&D Projects: GA AV ČR IAA100190802 Institutional support: RVO:67985840 Keywords : harmonic Bergman kernel * Poisson kernel * pseudodifferential boundary operators Subject RIV: BA - General Mathematics Impact factor: 1.014, year: 2015 http://www.sciencedirect.com/science/article/pii/S0022247X15003170
Adaptive maximal poisson-disk sampling on surfaces
Yan, Dongming; Wonka, Peter
2012-01-01
In this paper, we study the generation of maximal Poisson-disk sets with varying radii on surfaces. Based on the concepts of power diagram and regular triangulation, we present a geometric analysis of gaps in such disk sets on surfaces, which
Quadratic Poisson brackets compatible with an algebra structure
Balinsky, A. A.; Burman, Yu.
1994-01-01
Quadratic Poisson brackets on a vector space equipped with a bilinear multiplication are studied. A notion of a bracket compatible with the multiplication is introduced and an effective criterion of such compatibility is given. Among compatible brackets, a subclass of coboundary brackets is described, and such brackets are enumerated in a number of examples.
On covariant Poisson brackets in classical field theory
International Nuclear Information System (INIS)
Forger, Michael; Salles, Mário O.
2015-01-01
How to give a natural geometric definition of a covariant Poisson bracket in classical field theory has for a long time been an open problem—as testified by the extensive literature on “multisymplectic Poisson brackets,” together with the fact that all these proposals suffer from serious defects. On the other hand, the functional approach does provide a good candidate which has come to be known as the Peierls–De Witt bracket and whose construction in a geometrical setting is now well understood. Here, we show how the basic “multisymplectic Poisson bracket” already proposed in the 1970s can be derived from the Peierls–De Witt bracket, applied to a special class of functionals. This relation allows to trace back most (if not all) of the problems encountered in the past to ambiguities (the relation between differential forms on multiphase space and the functionals they define is not one-to-one) and also to the fact that this class of functionals does not form a Poisson subalgebra
On covariant Poisson brackets in classical field theory
Energy Technology Data Exchange (ETDEWEB)
Forger, Michael [Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, BR–05315-970 São Paulo, SP (Brazil); Salles, Mário O. [Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, BR–05315-970 São Paulo, SP (Brazil); Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Campus Universitário – Lagoa Nova, BR–59078-970 Natal, RN (Brazil)
2015-10-15
How to give a natural geometric definition of a covariant Poisson bracket in classical field theory has for a long time been an open problem—as testified by the extensive literature on “multisymplectic Poisson brackets,” together with the fact that all these proposals suffer from serious defects. On the other hand, the functional approach does provide a good candidate which has come to be known as the Peierls–De Witt bracket and whose construction in a geometrical setting is now well understood. Here, we show how the basic “multisymplectic Poisson bracket” already proposed in the 1970s can be derived from the Peierls–De Witt bracket, applied to a special class of functionals. This relation allows to trace back most (if not all) of the problems encountered in the past to ambiguities (the relation between differential forms on multiphase space and the functionals they define is not one-to-one) and also to the fact that this class of functionals does not form a Poisson subalgebra.
Poisson-generalized gamma empirical Bayes model for disease ...
African Journals Online (AJOL)
In spatial disease mapping, the use of Bayesian models of estimation technique is becoming popular for smoothing relative risks estimates for disease mapping. The most common Bayesian conjugate model for disease mapping is the Poisson-Gamma Model (PG). To explore further the activity of smoothing of relative risk ...