WorldWideScience

Sample records for general non-symmetric toroidal

  1. Markov Jump Processes Approximating a Non-Symmetric Generalized Diffusion

    Limić, Nedžad

    2011-01-01

    Consider a non-symmetric generalized diffusion X(⋅) in ℝ d determined by the differential operator A(x) = -Σ ij ∂ i a ij (x)∂ j + Σ i b i (x)∂ i . In this paper the diffusion process is approximated by Markov jump processes X n (⋅), in homogeneous and isotropic grids G n ⊂ℝ d , which converge in distribution in the Skorokhod space D([0,∞),ℝ d ) to the diffusion X(⋅). The generators of X n (⋅) are constructed explicitly. Due to the homogeneity and isotropy of grids, the proposed method for d≥3 can be applied to processes for which the diffusion tensor {a ij (x)} 11 dd fulfills an additional condition. The proposed construction offers a simple method for simulation of sample paths of non-symmetric generalized diffusion. Simulations are carried out in terms of jump processes X n (⋅). For piece-wise constant functions a ij on ℝ d and piece-wise continuous functions a ij on ℝ 2 the construction and principal algorithm are described enabling an easy implementation into a computer code.

  2. A Non-symmetric Digital Image Secure Communication Scheme Based on Generalized Chaos Synchronization System

    Zhang Xiaohong; Min Lequan

    2005-01-01

    Based on a generalized chaos synchronization system and a discrete Sinai map, a non-symmetric true color (RGB) digital image secure communication scheme is proposed. The scheme first changes an ordinary RGB digital image with 8 bits into unrecognizable disorder codes and then transforms the disorder codes into an RGB digital image with 16 bits for transmitting. A receiver uses a non-symmetric key to verify the authentication of the received data origin, and decrypts the ciphertext. The scheme can encrypt and decrypt most formatted digital RGB images recognized by computers, and recover the plaintext almost without any errors. The scheme is suitable to be applied in network image communications. The analysis of the key space, sensitivity of key parameters, and correlation of encrypted images imply that this scheme has sound security.

  3. General Atomic's superconducting toroidal field coil concept

    Alcorn, J.; Purcell, J.

    1978-01-01

    General Atomic's concept for a superconducting toroidal field coil is presented. The concept is generic for large tokamak devices, while a specific design is indicated for a 3.8 meter (major radius) ignition/burn machine. The concept utilizes bath cooled NbTi conductor to generate a peak field of 10 tesla at 4.2 K. The design is simple and straightforward, requires a minimum of developmental effort, and draws extensively upon the perspective of past experience in the design and construction of large superconducting magnets for high energy physics. Thus, the primary emphasis is upon economy, reliability, and expeditious construction scheduling. (author)

  4. GPCG - generalized preconditioned CG method and its use with non-linear and non-symmetric displacement decomposition preconditioners

    Blaheta, Radim

    2002-01-01

    Roč. 9, 6/7 (2002), s. 525-550 ISSN 1070-5325 Grant - others:INCO Copernicus(XE) KIT977006 Institutional research plan: CEZ:AV0Z3086906 Keywords : elasticity * displacement decomposition Subject RIV: BA - General Mathematics Impact factor: 0.706, year: 2002

  5. Resistive instabilities in general toroidal plasma configurations

    Glasser, A.H.; Greene, J.M.; Johnson, J.L.

    1975-01-01

    Previous work by Johnson and Greene on resistive instabilities is extended to finite-pressure configurations. The Mercier criterion for the stability of the ideal magnetohydrodynamic interchange mode is rederived, the generalization of the earlier stability criterion for the resistive interchange mode is obtained, and a relation between the two is noted. Conditions for tearing mode instability are recovered with the growth rate scaling with the resistivity in a more complicated manner than eta 3 / 5 . Nyquist techniques are used to show that favorable average curvature can convert the tearing mode into an overstable mode and can often stabilize it

  6. Neoclassical toroidal viscosity in perturbed equilibria with general tokamak geometry

    Logan, Nikolas C.; Park, Jong-Kyu; Kim, Kimin; Wang, Zhirui [Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Berkery, John W. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

    2013-12-15

    This paper presents a calculation of neoclassical toroidal viscous torque independent of large-aspect-ratio expansions across kinetic regimes. The Perturbed Equilibrium Nonambipolar Transport (PENT) code was developed for this purpose, and is compared to previous combined regime models as well as regime specific limits and a drift kinetic δf guiding center code. It is shown that retaining general expressions, without circular large-aspect-ratio or other orbit approximations, can be important at experimentally relevant aspect ratio and shaping. The superbanana plateau, a kinetic resonance effect recently recognized for its relevance to ITER, is recovered by the PENT calculations and shown to require highly accurate treatment of geometric effects.

  7. Analytical prediction model for non-symmetric fatigue crack growth in Fibre Metal Laminates

    Wang, W.; Rans, C.D.; Benedictus, R.

    2017-01-01

    This paper proposes an analytical model for predicting the non-symmetric crack growth and accompanying delamination growth in FMLs. The general approach of this model applies Linear Elastic Fracture Mechanics, the principle of superposition, and displacement compatibility based on the

  8. An algebraic approach to the non-symmetric Macdonald polynomial

    Nishino, Akinori; Ujino, Hideaki; Wadati, Miki

    1999-01-01

    In terms of the raising and lowering operators, we algebraically construct the non-symmetric Macdonald polynomials which are simultaneous eigenfunctions of the commuting Cherednik operators. We also calculate Cherednik's scalar product of them

  9. Low-frequency modes with high toroidal mode numbers. A general formulation

    Pegoraro, F.; Schep, T.J.

    1979-09-01

    Low-frequency waves with high toroidal mode numbers in an axisymmetric toroidal configuration are studied. In particular, the relationship between the periodicity constraints imposed by the geometry, magnetic shear and the spatial structure of eigenmodes is investigated. By exploiting the radial translational invariance and the poloidal periodicity of the gyrokinetic and Maxwell equations, the two-dimensional problem can be converted into a one-dimensional one and the mode structure can be expressed in terms of a single extended poloidal variable. This representation is used in the description of electromagnetic modes with phase velocities larger than the ion thermal velocity and with frequencies below the ion gyro-frequency. Trapped particle, curvature and compressional effects are retained. The dispersion equations for drift mode and Alfven-type modes are given in general geometry and simplified solutions are presented in the configuration of a double periodic plane slab. (Auth.)

  10. A parallel algorithm for the non-symmetric eigenvalue problem

    Sidani, M.M.

    1991-01-01

    An algorithm is presented for the solution of the non-symmetric eigenvalue problem. The algorithm is based on a divide-and-conquer procedure that provides initial approximations to the eigenpairs, which are then refined using Newton iterations. Since the smaller subproblems can be solved independently, and since Newton iterations with different initial guesses can be started simultaneously, the algorithm - unlike the standard QR method - is ideal for parallel computers. The author also reports on his investigation of deflation methods designed to obtain further eigenpairs if needed. Numerical results from implementations on a host of parallel machines (distributed and shared-memory) are presented

  11. Two updating methods for dissipative models with non symmetric matrices

    Billet, L.; Moine, P.; Aubry, D.

    1997-01-01

    In this paper the feasibility of the extension of two updating methods to rotating machinery models is considered, the particularity of rotating machinery models is to use non-symmetric stiffness and damping matrices. It is shown that the two methods described here, the inverse Eigen-sensitivity method and the error in constitutive relation method can be adapted to such models given some modification.As far as inverse sensitivity method is concerned, an error function based on the difference between right hand calculated and measured Eigen mode shapes and calculated and measured Eigen values is used. Concerning the error in constitutive relation method, the equation which defines the error has to be modified due to the non definite positiveness of the stiffness matrix. The advantage of this modification is that, in some cases, it is possible to focus the updating process on some specific model parameters. Both methods were validated on a simple test model consisting in a two-bearing and disc rotor system. (author)

  12. The arbitrary order mimetic finite difference method for a diffusion equation with a non-symmetric diffusion tensor

    Gyrya, V.; Lipnikov, K.

    2017-11-01

    We present the arbitrary order mimetic finite difference (MFD) discretization for the diffusion equation with non-symmetric tensorial diffusion coefficient in a mixed formulation on general polygonal meshes. The diffusion tensor is assumed to be positive definite. The asymmetry of the diffusion tensor requires changes to the standard MFD construction. We present new approach for the construction that guarantees positive definiteness of the non-symmetric mass matrix in the space of discrete velocities. The numerically observed convergence rate for the scalar quantity matches the predicted one in the case of the lowest order mimetic scheme. For higher orders schemes, we observed super-convergence by one order for the scalar variable which is consistent with the previously published result for a symmetric diffusion tensor. The new scheme was also tested on a time-dependent problem modeling the Hall effect in the resistive magnetohydrodynamics.

  13. The Direct Effect of Toroidal Magnetic Fields on Stellar Oscillations: An Analytical Expression for the General Matrix Element

    Kiefer, René; Schad, Ariane; Roth, Markus [Kiepenheuer-Institut für Sonnenphysik, Schöneckstraße 6, D-79104 Freiburg (Germany)

    2017-09-10

    Where is the solar dynamo located and what is its modus operandi? These are still open questions in solar physics. Helio- and asteroseismology can help answer them by enabling us to study solar and stellar internal structures through global oscillations. The properties of solar and stellar acoustic modes are changing with the level of magnetic activity. However, until now, the inference on subsurface magnetic fields with seismic measures has been very limited. The aim of this paper is to develop a formalism to calculate the effect of large-scale toroidal magnetic fields on solar and stellar global oscillation eigenfunctions and eigenfrequencies. If the Lorentz force is added to the equilibrium equation of motion, stellar eigenmodes can couple. In quasi-degenerate perturbation theory, this coupling, also known as the direct effect, can be quantified by the general matrix element. We present the analytical expression of the matrix element for a superposition of subsurface zonal toroidal magnetic field configurations. The matrix element is important for forward calculations of perturbed solar and stellar eigenfunctions and frequency perturbations. The results presented here will help to ascertain solar and stellar large-scale subsurface magnetic fields, and their geometric configuration, strength, and change over the course of activity cycles.

  14. Equivelar toroids with few flag-orbits

    Collins, José; Montero, Antonio

    2018-01-01

    An $(n+1)$-toroid is a quotient of a tessellation of the $n$-dimensional Euclidean space with a lattice group. Toroids are generalizations of maps in the torus on higher dimensions and also provide examples of abstract polytopes. Equivelar toroids are those that are induced by regular tessellations. In this paper we present a classification of equivelar $(n+1)$-toroids with at most $n$ flag-orbits; in particular, we discuss a classification of $2$-orbit toroids of arbitrary dimension.

  15. Neoclassical transport in toroidal systems

    Wobig, H.

    1992-01-01

    The neoclassical theory of general toroidal equilibria is reformulated. The toroidal equilibrium of tokamaks and stellarators are described in Hamada coordinates. The relevant geometrical parameters are identified and it is shown how the reduction of Pfirsch-Schluter currents affects neoclassical transport and bootstrap effects. General flux-friction relations between thermodynamic forces and fluxes are derived. In drift-kinetic approximation the neoclassical transport coefficients are Onsager symmetric. Since a toroidal loop voltage is included, the theory is valid for all toroidal systems. (Author)

  16. TOROID II

    2009-01-01

    three axis fluxgate magnetometer , CMOS sun and star sensors, and a Kalman filter. The work and tasks that have been accomplished on the TOROID... magnetometer . The problem was found to be a missing ferrite bead which connects the 12V power supply to the op-amps which are used to appropriately...establish an overall operational timeline for TOROID. Testing and calibration was performed on the three-axis magnetometer which is primary attitude

  17. Numerical Calculation of Transport Based on the Drift Kinetic Equation for plasmas in General Toroidal Magnetic Geometry

    Reynolds, J. M.; Lopez-Bruna, D.

    2009-01-01

    This report is the first of a series dedicated to the numerical calculation of the evolution of fusion plasmas in general toroidal geometry, including TJ-II plasmas. A kinetic treatment has been chosen: the evolution equation of the distribution function of one or several plasma species is solved in guiding center coordinates. The distribution function is written as a Maxwellian one modulated by polynomial series in the kinetic coordinates with no other approximations than those of the guiding center itself and the computation capabilities. The code allows also for the inclusion of the three-dimensional electrostatic potential in a self-consistent manner, but the initial objective has been set to solving only the neoclassical transport. A high order conservative method (Spectral Difference Method) has been chosen in order to discretized the equation for its numerical solution. In this first report, in addition to justifying the work, the evolution equation and its approximations are described, as well as the baseline of the numerical procedures. (Author) 28 refs

  18. Quantum Communication Scheme Using Non-symmetric Quantum Channel

    Cao Haijing; Chen Zhonghua; Song Heshan

    2008-01-01

    A theoretical quantum communication scheme based on entanglement swapping and superdense coding is proposed with a 3-dimensional Bell state and 2-dimensional Bell state function as quantum channel. quantum key distribution and quantum secure direct communication can be simultaneously accomplished in the scheme. The scheme is secure and has high source capacity. At last, we generalize the quantum communication scheme to d-dimensional quantum channel

  19. Quantum Dialogue by Using Non-Symmetric Quantum Channel

    Zhan Youbang; Zhang Lingling; Zhang Qunyong; Wang Yuwu

    2010-01-01

    A protocol for quantum dialogue is proposed to exchange directly the communicator's secret messages by using a three-dimensional Bell state and a two-dimensional Bell state as quantum channel with quantum superdence coding, local collective unitary operations, and entanglement swapping. In this protocol, during the process of transmission of particles, the transmitted particles do not carry any secret messages and are transmitted only one time. The protocol has higher source capacity than protocols using symmetric two-dimensional states. The security is ensured by the unitary operations randomly performed on all checking groups before the particle sequence is transmitted and the application of entanglement swapping. (general)

  20. Bound states for non-symmetric evolution Schroedinger potentials

    Corona, Gulmaro Corona [Area de Analisis Matematico y sus Aplicaciones, Universidad Autonoma Metropolitana-Azcapotalco, Atzcapotzalco, DF (Mexico)). E-mail: ccg@correo.azc.uam.mx

    2001-09-14

    We consider the spectral problem associated with the evolution Schroedinger equation, (D{sup 2}+ k{sup 2}){phi}=u{phi}, where u is a matrix-square-valued function, with entries in the Schwartz class defined on the real line. The solution {phi}, called the wavefunction, consists of a function of one real variable, matrix-square-valued with entries in the Schwartz class. This problem has been dealt for symmetric potentials u. We found for the present case that the bound states are localized similarly to the scalar and symmetric cases, but by the zeroes of an analytic matrix-valued function. If we add an extra condition to the potential u, we can determine these states by an analytic scalar function. We do this by generalizing the scalar and symmetric cases but without using the fact that the Wronskian of a pair of wavefunction is constant. (author)

  1. Emittance growth in non-symmetric beam configurations

    Anderson, O.A.

    1996-06-01

    Emittance growth in intense beams due to nonuniformity, mismatch, and misalignment has been analyzed by Reiser for the special case of axisymmetry. A more complex problem occurs in cases where a number of discrete beamlets are to be merged into a single focusing channel, for example, in designs for Heavy Ion Fusion drivers or Magnetic Fusion negative-ion systems. Celata, assuming the system to be perfectly matched and aligned, analyzed the case of four round beamlets arranged in a square array. We generalize these previous studies and analyze emittance growth in systems that are less symmetric. We include beam systems that are not necessarily matched and where the x and y moments may be unequal. We also include the possibility of initial convergence velocities that may differ in the two planes and allow for misalignment of the beam center-of-mass position and direction

  2. Efficient Nonlocal M-Control and N-Target Controlled Unitary Gate Using Non-symmetric GHZ States

    Chen, Li-Bing; Lu, Hong

    2018-03-01

    Efficient local implementation of a nonlocal M-control and N-target controlled unitary gate is considered. We first show that with the assistance of two non-symmetric qubit(1)-qutrit(N) Greenberger-Horne-Zeilinger (GHZ) states, a nonlocal 2-control and N-target controlled unitary gate can be constructed from 2 local two-qubit CNOT gates, 2 N local two-qutrit conditional SWAP gates, N local qutrit-qubit controlled unitary gates, and 2 N single-qutrit gates. At each target node, the two third levels of the two GHZ target qutrits are used to expose one and only one initial computational state to the local qutrit-qubit controlled unitary gate, instead of being used to hide certain states from the conditional dynamics. This scheme can be generalized straightforwardly to implement a higher-order nonlocal M-control and N-target controlled unitary gate by using M non-symmetric qubit(1)-qutrit(N) GHZ states as quantum channels. Neither the number of the additional levels of each GHZ target particle nor that of single-qutrit gates needs to increase with M. For certain realistic physical systems, the total gate time may be reduced compared with that required in previous schemes.

  3. Schur rings and non-symmetric association schemes on 64 vertices

    Jørgensen, Leif Kjær

    2010-01-01

    In this paper we enumerate essentially all non-symmetric association schemes with three classes, less than 96 vertices and with a regular group of automorphisms. The enumeration is based on a computer search in Schur rings. The most interesting cases have 64 vertices. In one primitive case and in...

  4. A class of non-symmetric band determinants with the Gaussian q ...

    A class of symmetric band matrices of bandwidth 2r+1 with the binomial coefficients entries was studied earlier. We consider a class of non-symmetric band matrices with the Gaussian q-binomial coefficients whose upper bandwith is s and lower bandwith is r. We give explicit formulæ for the determinant, the inverse (along ...

  5. Viscous damping of toroidal angular momentum in tokamaks

    Stacey, W. M. [Georgia Tech Fusion Research Center, Atlanta, Georgia 30332 (United States)

    2014-09-15

    The Braginskii viscous stress tensor formalism was generalized to accommodate non-axisymmetric 3D magnetic fields in general toroidal flux surface geometry in order to provide a representation for the viscous damping of toroidal rotation in tokamaks arising from various “neoclassical toroidal viscosity” mechanisms. In the process, it was verified that the parallel viscosity contribution to damping toroidal angular momentum still vanishes even in the presence of toroidal asymmetries, unless there are 3D radial magnetic fields.

  6. Effects of fast ions and an external inductive electric field on the neoclassical parallel flow, current, and rotation in general toroidal systems

    Nakajima, Noriyoshi; Okamoto, Masao.

    1992-05-01

    Effects of external momentum sources, i.e., fast ions produced by the neutral beam injection and an external inductive electric field, on the neoclassical ion parallel flow, current, and rotation are analytically investigated for a simple plasma in general toroidal systems. It is shown that the contribution of the external sources to the ion parallel flow becomes large as the collision frequency of thermal ions increases because of the momentum conservation of Coulomb collisions and sharply decreasing viscosity coefficients, with collision frequency. As a result, the beam-driven parallel flow of thermal ions becomes comparable to that of electrons in the Pfirsh-Schluter collisionality regime, whereas in the 1/μ or banana regime it is smaller than that of electrons by the order of √(m e /m i ) (m e and m i are electron and ion masses). This beam-driven ion parallel flow can not produce a large beam-driven current because of the cancellation with electron parallel flow, but produces a large toroidal rotation of ions. As both electrons and ions approach the Pfirsh-Schluter collisionality regime the contribution of thermodynamical forces becomes negligibly small and the large toroidal rotation of ions is predominated by the beam-driven component in the non-axisymmetric configuration with large helical ripples. (author)

  7. First step of the project for implementation of two non-symmetric cooling loops modeled by the ALMOD3 code

    Dominguez, L.; Camargo, C.T.M.

    1984-09-01

    The first step of the project for implementation of two non-symmetric cooling loops modeled by the ALMOD3 computer code is presented. This step consists of the introduction of a simplified model for simulating the steam generator. This model is the GEVAP computer code, integrant part of LOOP code, which simulates the primary coolant circuit of PWR nuclear power plants during transients. The ALMOD3 computer code has a model for the steam generator, called UTSG, which is very detailed. This model has spatial dependence, correlations for 2-phase flow, distinguished correlations for different heat transfer process. The GEVAP model has thermal equilibrium between phases (gaseous and liquid homogeneous mixture), no spatial dependence and uses only one generalized correlation to treat several heat transfer processes. (Author) [pt

  8. Tailoring of the electrical and thermal properties using ultra-short period non-symmetric superlattices

    Paulina Komar

    2016-10-01

    Full Text Available Thermoelectric modules based on half-Heusler compounds offer a cheap and clean way to create eco-friendly electrical energy from waste heat. Here we study the impact of the period composition on the electrical and thermal properties in non-symmetric superlattices, where the ratio of components varies according to (TiNiSnn:(HfNiSn6−n, and 0 ⩽ n ⩽ 6 unit cells. The thermal conductivity (κ showed a strong dependence on the material content achieving a minimum value for n = 3, whereas the highest value of the figure of merit ZT was achieved for n = 4. The measured κ can be well modeled using non-symmetric strain relaxation applied to the model of the series of thermal resistances.

  9. Probabilistic Teleportation of Arbitrary Two-Qubit Quantum State via Non-Symmetric Quantum Channel

    Kan Wang

    2018-03-01

    Full Text Available Quantum teleportation has significant meaning in quantum information. In particular, entangled states can also be used for perfectly teleporting the quantum state with some probability. This is more practical and efficient in practice. In this paper, we propose schemes to use non-symmetric quantum channel combinations for probabilistic teleportation of an arbitrary two-qubit quantum state from sender to receiver. The non-symmetric quantum channel is composed of a two-qubit partially entangled state and a three-qubit partially entangled state, where partially entangled Greenberger–Horne–Zeilinger (GHZ state and W state are considered, respectively. All schemes are presented in detail and the unitary operations required are given in concise formulas. Methods are provided for reducing classical communication cost and combining operations to simplify the manipulation. Moreover, our schemes are flexible and applicable in different situations.

  10. Numerical Calculation of Transport Based on the Drift-Kinetic Equation for Plasmas in General Toroidal Magnetic Geometry: Numerical Methods

    Reynolds, J. M.; Lopez-Bruna, D.

    2009-01-01

    In this report we continue with the description of a newly developed numerical method to solve the drift kinetic equation for ions and electrons in toroidal plasmas. Several numerical aspects, already outlined in a previous report [Informes Tecnicos Ciemat 1165, mayo 2009], will be treated now in more detail. Aside from discussing the method in the context of other existing codes, various aspects will be now explained from the viewpoint of numerical methods: the way to solve convection equations, the adopted boundary conditions, the real-space meshing procedures along with a new software developed to build them, and some additional questions related with the parallelization and the numerical integration. (Author) 16 refs

  11. Numerical Calculation of Transport Based on the Drift Kinetic Equation for plasmas in General Toroidal Magnetic Geometry; Calculo Numerico del Transporte mediante la Ecuacion Cinetica de Deriva para Plasmas en Geometria Magnetica Toroidal: Preliminares

    Reynolds, J. M.; Lopez-Bruna, D.

    2009-12-11

    This report is the first of a series dedicated to the numerical calculation of the evolution of fusion plasmas in general toroidal geometry, including TJ-II plasmas. A kinetic treatment has been chosen: the evolution equation of the distribution function of one or several plasma species is solved in guiding center coordinates. The distribution function is written as a Maxwellian one modulated by polynomial series in the kinetic coordinates with no other approximations than those of the guiding center itself and the computation capabilities. The code allows also for the inclusion of the three-dimensional electrostatic potential in a self-consistent manner, but the initial objective has been set to solving only the neoclassical transport. A high order conservative method (Spectral Difference Method) has been chosen in order to discretized the equation for its numerical solution. In this first report, in addition to justifying the work, the evolution equation and its approximations are described, as well as the baseline of the numerical procedures. (Author) 28 refs.

  12. On a Non-Symmetric Eigenvalue Problem Governing Interior Structural–Acoustic Vibrations

    Heinrich Voss

    2016-06-01

    Full Text Available Small amplitude vibrations of a structure completely filled with a fluid are considered. Describing the structure by displacements and the fluid by its pressure field, the free vibrations are governed by a non-self-adjoint eigenvalue problem. This survey reports on a framework for taking advantage of the structure of the non-symmetric eigenvalue problem allowing for a variational characterization of its eigenvalues. Structure-preserving iterative projection methods of the the Arnoldi and of the Jacobi–Davidson type and an automated multi-level sub-structuring method are reviewed. The reliability and efficiency of the methods are demonstrated by a numerical example.

  13. Tearing modes in toroidal geometry

    Connor, J.W.; Cowley, S.C.; Hastie, R.J.; Hender, T.C.; Hood, A.; Martin, T.J.

    1988-01-01

    The separation of the cylindrical tearing mode stability problem into a resistive resonant layer calculation and an external marginal ideal magnetohydrodynamic (MHD) calculation (Δ' calculation) is generalized to axisymmetric toroidal geometry. The general structure of this separation is analyzed and the marginal ideal MHD information (the toroidal generalization of Δ') required to discuss stability is isolated. This can then, in principle, be combined with relevant resonant layer calculations to determine tearing mode growth rates in realistic situations. Two examples are given: the first is an analytic treatment of toroidally coupled (m = 1, n = 1) and (m = 2, n = 1) tearing modes in a large aspect ratio torus; the second, a numerical treatment of the toroidal coupling of three tearing modes through finite pressure effects in a large aspect ratio torus. In addition, the use of a coupling integral approach for determining the stability of coupled tearing modes is discussed. Finally, the possibility of using initial value resistive MHD codes in realistic toroidal geometry to determine the necessary information from the ideal MHD marginal solution is discussed

  14. MHD equilibrium with toroidal rotation

    Li, J.

    1987-03-01

    The present work attempts to formulate the equilibrium of axisymmetric plasma with purely toroidal flow within ideal MHD theory. In general, the inertial term Rho(v.Del)v caused by plasma flow is so complicated that the equilibrium equation is completely different from the Grad-Shafranov equation. However, in the case of purely toroidal flow the equilibrium equation can be simplified so that it resembles the Grad-Shafranov equation. Generally one arbitrary two-variable functions and two arbitrary single variable functions, instead of only four single-variable functions, are allowed in the new equilibrium equations. Also, the boundary conditions of the rotating (with purely toroidal fluid flow, static - without any fluid flow) equilibrium are the same as those of the static equilibrium. So numerically one can calculate the rotating equilibrium as a static equilibrium. (author)

  15. Toroidal Trivelpiece-Gould modes

    Stoessel, F.P.

    1979-01-01

    Electron plasma waves are treated in quasi-electrostatic approximation in a toroidal cavity of rectangular cross-section in an infinitely strong azimuthal magnetic field. The differential equation for the electrostatic potential, derived from fluid equations, can be separated using cylindrical coordinates. The eigenvalue problem for the radial dependence is solved numerically by a shooting method. Eigenvalues are given for different aspect ratios. Comparison with appropriate modes of the straight geometry shows that the toroidal frequencies generally lie some percent above those for the straight case. Plots of the eigenfunctions demonstrate clearly the influence of toroidicity. The deviation from symmetry (which should appear for straight geometry) depends not only on the aspect ratio but also strongly on the mode numbers. (author)

  16. Structure of the radial electric field and toroidal/poloidal flow in high temperature toroidal plasma

    Ida, Katsumi

    2001-01-01

    The structure of the radial electric field and toroidal/poloidal flow is discussed for the high temperature plasma in toroidal systems, tokamak and Heliotron type magnetic configurations. The spontaneous toroidal and poloidal flows are observed in the plasma with improved confinement. The radial electric field is mainly determined by the poloidal flow, because the contribution of toroidal flow to the radial electric field is small. The jump of radial electric field and poloidal flow are commonly observed near the plasma edge in the so-called high confinement mode (H-mode) plasmas in tokamaks and electron root plasma in stellarators including Heliotrons. In general the toroidal flow is driven by the momentum input from neutral beam injected toroidally. There is toroidal flow not driven by neutral beam in the plasma and it will be more significant in the plasma with large electric field. The direction of these spontaneous toroidal flows depends on the symmetry of magnetic field. The spontaneous toroidal flow driven by the ion temperature gradient is in the direction to increase the negative radial electric field in tokamak. The direction of spontaneous toroidal flow in Heliotron plasmas is opposite to that in tokamak plasma because of the helicity of symmetry of the magnetic field configuration. (author)

  17. Rodrigues formulas for the non-symmetric multivariable polynomials associated with the BCN-type root system

    Nishino, Akinori; Ujino, Hideaki; Komori, Yasushi; Wadati, Miki

    2000-01-01

    The non-symmetric Macdonald-Koornwinder polynomials are joint eigenfunctions of the commuting Cherednik operators which are constructed from the representation theory for the affine Hecke algebra corresponding to the BC N -type root system. We present the Rodrigues formula for the non-symmetric Macdonald-Koornwinder polynomials. The raising operators are derived from the realizations of the corresponding double affine Hecke algebra. In the quasi-classical limit, the above theory reduces to that of the BC N -type Sutherland model which describes many particles with inverse-square long-range interactions on a circle with one impurity. We also present the Rodrigues formula for the non-symmetric Jacobi polynomials of type BC N which are eigenstates of the BC N -type Sutherland model

  18. Numerical Calculation of Transport Based on the Drift-Kinetic Equation for Plasmas in General Toroidal Magnetic Geometry: Numerical Methods; Calculo Numerico de Transporte mediante la Ecuacion Cinetica de Deriva para Plasmas en Geometria Magnetica Toroidal: Metodos Numericos

    Reynolds, J. M.; Lopez-Bruna, D.

    2009-10-12

    In this report we continue with the description of a newly developed numerical method to solve the drift kinetic equation for ions and electrons in toroidal plasmas. Several numerical aspects, already outlined in a previous report [Informes Tecnicos Ciemat 1165, mayo 2009], will be treated now in more detail. Aside from discussing the method in the context of other existing codes, various aspects will be now explained from the viewpoint of numerical methods: the way to solve convection equations, the adopted boundary conditions, the real-space meshing procedures along with a new software developed to build them, and some additional questions related with the parallelization and the numerical integration. (Author) 16 refs.

  19. Non-symmetric bi-stable flow around the Ahmed body

    Meile, W.; Ladinek, T.; Brenn, G.; Reppenhagen, A.; Fuchs, A.

    2016-01-01

    Highlights: • The non-symmetric bi-stable flow around the Ahmed body is investigated experimentally. • Bi-stability, described for symmetric flow by Cadot and co-workers, was found in nonsymmetric flow also. • The flow field randomly switches between two states. • The flow is subject to a spanwise instability identified by Cadot and co-workers for symmetric flow. • Aerodynamic forces fluctuate strongly due to the bi-stability. - Abstract: The flow around the Ahmed body at varying Reynolds numbers under yawing conditions is investigated experimentally. The body geometry belongs to a regime subject to spanwise flow instability identified in symmetric flow by Cadot and co-workers (Grandemange et al., 2013b). Our experiments cover the two slant angles 25° and 35° and Reynolds numbers up to 2.784 × 10"6. Special emphasis lies on the aerodynamics under side wind influence. For the 35° slant angle, forces and moments change significantly with the yawing angle in the range 10° ≤ |β| ≤ 15°. The lift and the pitching moment exhibit strong fluctuations due to bi-stable flow around a critical angle β of ±12.5°, where the pitching moment changes sign. Time series of the forces and moments are studied and explained by PIV measurements in the flow field near the rear of the body.

  20. Magnetic diagnostics: General principles and the problem of reconstruction of plasma current and pressure profiles in toroidal systems

    Pustovitov, V.D.

    2001-01-01

    Restrictions on magnetic diagnostics are discussed. Being related to the integral nature of the measurable quantities, these follow from the fundamental laws of electromagnetism. A series of examples demonstrating the strength of these restrictions is analysed. The general rule is emphasized that information obtained from external magnetic measurements is insufficient for reliable evaluation of plasma current and pressure profiles in tokamaks and in stellarators. The underlying reason is that outside the plasma the self-field of the equilibrium plasma currents is determined by the boundary conditions on the plasma surface alone. (author)

  1. Magnetic diagnostics: general principles and the problem of reconstruction of plasma current and pressure profiles in toroidal systems

    Pustovitov, V.D.

    2000-04-01

    The restrictions of the magnetic diagnostics are discussed. Being related to the integral nature of the measurable quantities, they follow from the fundamental laws of electromagnetism. A series of particular examples demonstrating the strength of these restrictions is given and analyzed. A general rule is emphasized that the information obtained from external magnetic measurements is obviously insufficient for the reliable evaluation of plasma current and pressure profiles in tokamaks or in stellarators. The underlying reason is that outside the plasma the own field of the equilibrium plasma currents is determined by the boundary conditions on the plasma surface only. (author)

  2. Unified kinetic theory in toroidal systems

    Hitchcock, D.A.; Hazeltine, R.D.

    1980-12-01

    The kinetic theory of toroidal systems has been characterized by two approaches: neoclassical theory which ignores instabilities and quasilinear theory which ignores collisions. In this paper we construct a kinetic theory for toroidal systems which includes both effects. This yields a pair of evolution equations; one for the spectrum and one for the distribution function. In addition, this theory yields a toroidal generalization of the usual collision operator which is shown to have many similar properties - conservation laws, H theorem - to the usual collision operator

  3. Rotating bubble and toroidal nuclei and fragmentation

    Royer, G.; Haddad, F.; Jouault, B.

    1995-01-01

    The energy of rotating bubble and toroidal nuclei predicted to be formed in central heavy-ion collisions at intermediate energies is calculated within the generalized rotating liquid drop model. The potential barriers standing in these exotic deformation paths are compared with the three dimensional and plane fragmentation barriers. In the toroidal deformation path of the heaviest systems exists a large potential pocket localised below the plane fragmentation barriers. This might allow the temporary survival of heavy nuclear toroids before the final clusterization induced by the surface and proximity tension. (author)

  4. New Toroid shielding design

    Hedberg V

    On the 15th of June 2001 the EB approved a new conceptual design for the toroid shield. In the old design, shown in the left part of the figure above, the moderator part of the shielding (JTV) was situated both in the warm and cold areas of the forward toroid. It consisted both of rings of polyethylene and hundreds of blocks of polyethylene (or an epoxy resin) inside the toroid vacuum vessel. In the new design, shown to the right in the figure above, only the rings remain inside the toroid. To compensate for the loss of moderator in the toroid, the copper plug (JTT) has been reduced in radius so that a layer of borated polyethylene can be placed around it (see figure below). The new design gives significant cost-savings and is easier to produce in the tight time schedule of the forward toroid. Since the amount of copper is reduced the weight that has to be carried by the toroid is also reduced. Outgassing into the toroid vacuum was a potential problem in the old design and this is now avoided. The main ...

  5. Toroid magnet test facility

    2002-01-01

    Because of its exceptional size, it was not feasible to assemble and test the Barrel Toroid - made of eight coils - as an integrated toroid on the surface, prior to its final installation underground in LHC interaction point 1. It was therefore decided to test these eight coils individually in a dedicated test facility.

  6. Non-symmetric approach to single-screw expander and compressor modeling

    Ziviani, Davide; Groll, Eckhard A.; Braun, James E.; Horton, W. Travis; De Paepe, M.; van den Broek, M.

    2017-08-01

    Single-screw type volumetric machines are employed both as compressors in refrigeration systems and, more recently, as expanders in organic Rankine cycle (ORC) applications. The single-screw machine is characterized by having a central grooved rotor and two mating toothed starwheels that isolate the working chambers. One of the main features of such machine is related to the simultaneous occurrence of the compression or expansion processes on both sides of the main rotor which results in a more balanced loading on the main shaft bearings with respect to twin-screw machines. However, the meshing between starwheels and main rotor is a critical aspect as it heavily affects the volumetric performance of the machine. To allow flow interactions between the two sides of the rotor, a non-symmetric modelling approach has been established to obtain a more comprehensive model of the single-screw machine. The resulting mechanistic model includes in-chamber governing equations, leakage flow models, heat transfer mechanisms, viscous and mechanical losses. Forces and moments balances are used to estimate the loads on the main shaft bearings as well as on the starwheel bearings. An 11 kWe single-screw expander (SSE) adapted from an air compressor operating with R245fa as working fluid is used to validate the model. A total of 60 steady-steady points at four different rotational speeds have been collected to characterize the performance of the machine. The maximum electrical power output and overall isentropic efficiency measured were 7.31 kW and 51.91%, respectively.

  7. Numerical Calculation of Transport Based on the Drift-Kinetic Equation for Plasmas in General Toroidal Magnetic Geometry: Convergence and Testing; Calculo Numerico del Transporte mediante la Ecuacion Cinetica de Deriva para Plasmas en Geometria Magnetica Toroidal: Convergencia y Comprobaciones

    Reynolds, J. M.; Lopez-Bruna, D.

    2009-12-11

    This report is the third of a series [Informes Tecnicos Ciemat 1165 y 1172] devoted to the development of a new numerical code to solve the guiding center equation for electrons and ions in toroidal plasmas. Two calculation meshes corresponding to axisymmetric tokamaks are now prepared and the kinetic equation is expanded so the standard terms of neoclassical theory --fi rst order terms in the Larmor radius expansion-- can be identified, restricting the calculations correspondingly. Using model density and temperature profiles for the plasma, several convergence test are performed depending on the calculation meshes and the expansions of the distribution function; then the results are compared with the theory [Hinton and Hazeltine, Rev. Mod. Phys. (1976)]. (Author) 18 refs.

  8. Alfven continuum with toroidicity

    Riyopoulos, S.; Mahajan, S.M.

    1985-06-01

    The symmetry property of the MHD wave propagation operator is utilized to express the toroidal eigenmodes as a superposition of the mutually orthogonal cylindrical modes. Because of the degeneracy among cylindrical modes with the same frequency but resonant surfaces of different helicity the toroidal perturbation produces a zeroth order mixing of the above modes. The toroidal eigenmodes of frequency ω 0 2 have multiple resonant surfaces, with each surface shifted relative to its cylindrical position and carrying a multispectral content. Thus a single helicity toroidal antenna of frequency ω 0 couples strongly to all different helicity resonant surfaces with matching local Alfven frequency. Zeroth order coupling between modes in the continuum and global Alfven modes also results from toroidicity and degeneracy. Our perturbation technique is the MHD counterpart of the quantum mechanical methods and is applicable through the entire range of the MHD spectrum

  9. Moving toroidal limiter

    Ikuta, Kazunari; Miyahara, Akira.

    1983-06-01

    The concept of the limiter-divertor proposed by Mirnov is extended to a toroidal limiter-divertor (which we call moving toroidal limiter) using the stream of ferromagnetic balls coated with a low Z materials such as plastics, graphite and ceramics. An important advantage of the use of the ferromagnetic materials would be possible soft landing of the balls on a catcher, provided that the temperature of the balls is below Curie point. Moreover, moving toroidal limiter would work as a protector of the first wall not only against the vertical movement of plasma ring but also against the violent inward motion driven by major disruption because the orbit of the ball in the case of moving toroidal limiter distributes over the small major radius side of the toroidal plasma. (author)

  10. Samus Toroid Installation Fixture

    Stredde, H.; /Fermilab

    1990-06-27

    The SAMUS (Small Angle Muon System) toroids have been designed and fabricated in the USSR and delivered to D0 ready for installation into the D0 detector. These toroids will be installed into the aperture of the EF's (End Toroids). The aperture in the EF's is 72-inch vertically and 66-inch horizontally. The Samus toroid is 70-inch vertically by 64-inch horizontally by 66-inch long and weighs approximately 38 tons. The Samus toroid has a 20-inch by 20-inch aperture in the center and it is through this aperture that the lift fixture must fit. The toroid must be 'threaded' through the EF aperture. Further, the Samus toroid coils are wound about the vertical portion of the aperture and thus limit the area where a lift fixture can make contact and not damage the coils. The fixture is designed to lift along a surface adjacent to the coils, but with clearance to the coil and with contact to the upper steel block of the toroid. The lift and installation will be done with the 50 ton crane at DO. The fixture was tested by lifting the Samus Toroid 2-inch off the floor and holding the weight for 10 minutes. Deflection was as predicted by the design calculations. Enclosed are sketches of the fixture and it relation to both Toroids (Samus and EF), along with hand calculations and an Finite Element Analysis. The PEA work was done by Kay Weber of the Accelerator Engineering Department.

  11. Suppression of chaos by weak resonant excitations in a non-linear oscillator with a non-symmetric potential

    Litak, Grzegorz; Syta, Arkadiusz; Borowiec, Marek

    2007-01-01

    We examine the Melnikov criterion for transition to chaos in case of one degree of freedom non-linear oscillator with non-symmetric potential. This system, when subjected to an external periodic force, shows homoclinic transition from regular vibrations to chaos just before escape from a potential well. We focus especially on the effect of a second resonant excitation with a different phase on the system transition to chaos. We propose a way of its control

  12. Greedy algorithms for high-dimensional non-symmetric linear problems***

    Cancès E.

    2013-12-01

    Full Text Available In this article, we present a family of numerical approaches to solve high-dimensional linear non-symmetric problems. The principle of these methods is to approximate a function which depends on a large number of variates by a sum of tensor product functions, each term of which is iteratively computed via a greedy algorithm ? . There exists a good theoretical framework for these methods in the case of (linear and nonlinear symmetric elliptic problems. However, the convergence results are not valid any more as soon as the problems under consideration are not symmetric. We present here a review of the main algorithms proposed in the literature to circumvent this difficulty, together with some new approaches. The theoretical convergence results and the practical implementation of these algorithms are discussed. Their behaviors are illustrated through some numerical examples. Dans cet article, nous présentons une famille de méthodes numériques pour résoudre des problèmes linéaires non symétriques en grande dimension. Le principe de ces approches est de représenter une fonction dépendant d’un grand nombre de variables sous la forme d’une somme de fonctions produit tensoriel, dont chaque terme est calculé itérativement via un algorithme glouton ? . Ces méthodes possèdent de bonnes propriétés théoriques dans le cas de problèmes elliptiques symétriques (linéaires ou non linéaires, mais celles-ci ne sont plus valables dès lors que les problèmes considérés ne sont plus symétriques. Nous présentons une revue des principaux algorithmes proposés dans la littérature pour contourner cette difficulté ainsi que de nouvelles approches que nous proposons. Les résultats de convergence théoriques et la mise en oeuvre pratique de ces algorithmes sont détaillés et leur comportement est illustré au travers d’exemples numériques.

  13. Next generation toroidal devices

    Yoshikawa, Shoichi

    1998-10-01

    A general survey of the possible approach for the next generation toroidal devices was made. Either surprisingly or obviously (depending on one's view), the technical constraints along with the scientific considerations lead to a fairly limited set of systems for the most favorable approach for the next generation devices. Specifically if the magnetic field strength of 5 T or above is to be created by superconducting coils, it imposes minimum in the aspect ratio for the tokamak which is slightly higher than contemplated now for ITER design. The similar technical constraints make the minimum linear size of a stellarator large. Scientifically, it is indicated that a tokamak of 1.5 times in the linear dimension should be able to produce economically, especially if a hybrid reactor is allowed. For the next stellarator, it is strongly suggested that some kind of helical axis is necessary both for the (almost) absolute confinement of high energy particles and high stability and equilibrium beta limits. The author still favors a heliac most. Although it may not have been clearly stated in the main text, the stability afforded by the shearless layer may be exploited fully in a stellarator. (author)

  14. Next generation toroidal devices

    Yoshikawa, Shoichi [Princeton Plasma Physics Lab., Princeton Univ., NJ (United States)

    1998-10-01

    A general survey of the possible approach for the next generation toroidal devices was made. Either surprisingly or obviously (depending on one`s view), the technical constraints along with the scientific considerations lead to a fairly limited set of systems for the most favorable approach for the next generation devices. Specifically if the magnetic field strength of 5 T or above is to be created by superconducting coils, it imposes minimum in the aspect ratio for the tokamak which is slightly higher than contemplated now for ITER design. The similar technical constraints make the minimum linear size of a stellarator large. Scientifically, it is indicated that a tokamak of 1.5 times in the linear dimension should be able to produce economically, especially if a hybrid reactor is allowed. For the next stellarator, it is strongly suggested that some kind of helical axis is necessary both for the (almost) absolute confinement of high energy particles and high stability and equilibrium beta limits. The author still favors a heliac most. Although it may not have been clearly stated in the main text, the stability afforded by the shearless layer may be exploited fully in a stellarator. (author)

  15. A non-symmetric pillar[5]arene based on triazole-linked 8-oxyquinolines as a sequential sensor for thorium(IV) followed by fluoride ions.

    Fang, Yuyu; Li, Caixia; Wu, Lei; Bai, Bing; Li, Xing; Jia, Yiming; Feng, Wen; Yuan, Lihua

    2015-09-07

    A novel non-symmetric pillar[5]arene bearing triazole-linked 8-oxyquinolines at one rim was synthesized and demonstrated as a sequential fluorescence sensor for thorium(iv) followed by fluoride ions with high sensitivity and selectivity.

  16. Optimization of squeeze casting parameters for non symmetrical AC2A aluminium alloy castings through Taguchi method

    Senthil, P.; Amirthagadeswaran, K. S.

    2012-01-01

    This paper reports a research in which an attempt was made to prepare AC2A aluminium alloy castings of a non symmetrical component through squeeze casting process. The primary objective was to investigate the influence of process parameters on mechanical properties of the castings. Experiments were conducted based on orthogonal array suggested in Taguchi's offline quality control concept. The experimental results showed that squeeze pressure, die preheating temperature and compression holding time were the parameters making significant improvement in mechanical properties. The optimal squeeze casting condition was found and mathematical models were also developed for the process

  17. An iteration for indefinite and non-symmetric systems and its application to the Navier-Stokes equations

    Wathen, A. [Oxford Univ. (United Kingdom); Golub, G. [Stanford Univ., CA (United States)

    1996-12-31

    A simple fixed point linearisation of the Navier-Stokes equations leads to the Oseen problem which after appropriate discretisation yields large sparse linear systems with coefficient matrices of the form (A B{sup T} B -C). Here A is non-symmetric but its symmetric part is positive definite, and C is symmetric and positive semi-definite. Such systems arise in other situations. In this talk we will describe and present some analysis for an iteration based on an indefinite and symmetric preconditioner of the form (D B{sup T} B -C).

  18. Video Toroid Cavity Imager

    Gerald, Rex E. II; Sanchez, Jairo; Rathke, Jerome W.

    2004-08-10

    A video toroid cavity imager for in situ measurement of electrochemical properties of an electrolytic material sample includes a cylindrical toroid cavity resonator containing the sample and employs NMR and video imaging for providing high-resolution spectral and visual information of molecular characteristics of the sample on a real-time basis. A large magnetic field is applied to the sample under controlled temperature and pressure conditions to simultaneously provide NMR spectroscopy and video imaging capabilities for investigating electrochemical transformations of materials or the evolution of long-range molecular aggregation during cooling of hydrocarbon melts. The video toroid cavity imager includes a miniature commercial video camera with an adjustable lens, a modified compression coin cell imager with a fiat circular principal detector element, and a sample mounted on a transparent circular glass disk, and provides NMR information as well as a video image of a sample, such as a polymer film, with micrometer resolution.

  19. Toroidal nuclear fusion device

    Ito, Yutaka; Kasahara, Tatsuo; Takizawa, Teruhiro.

    1975-01-01

    Object: To design a device so as to be formed into a large-size and to arrange ports, through which neutral particles enter, in inclined fashion. Structure: Toroidal coils are wound about vacuum vessels which are divided into plural number. In the outer periphery of the vacuum vessels, ports are disposed inclined in the peripheral direction of the vacuum vessels and communicated with the vacuum vessels, and wall surfaces opposed to the ports of the toroidal coils adjacent at least the inclined sides of the ports are inclined substantially simularly to the port wall surfaces. (Kamimura, M.)

  20. Toroidal Extrap Equilibria

    Scheffel, J.

    1982-04-01

    Ideal MHD-equilibria for the toroidal EXTRAP configuration have been computed with an equilibrium code. The free-boundary prob- lem is solved by using the condition that the current density is proportional to r on a flux surface. It is found that the toroidal Z-pinch, initially induced in the central zero-field region of a transverse octupole field, drifts radially outwards producing an inverse -D shaped cross-section. The plasma current of this high- beta equilibrium may be increased if the plasma is pushed back by altering the external confining magnetic field as demonstrated. (Author)

  1. Reaction of Non-Symmetric Schiff Base Metallo-Ligand Complexes Possessing an Oxime Function with Ln Ions

    Jean-Pierre Costes

    2018-03-01

    Full Text Available The preparation of non-symmetric Schiff base ligands possessing one oxime function that is associated to a second function such as pyrrole or phenol function is first described. These ligands, which possess inner N4 or N3O coordination sites, allow formation of cationic or neutral non-symmetric CuII or NiII metallo-ligand complexes under their mono- or di-deprotonated forms. In presence of Lanthanide ions the neutral complexes do not coordinate to the LnIII ions, the oxygen atom of the oxime function being only hydrogen-bonded to a water molecule that is linked to the LnIII ion. This surprising behavior allows for the isolation of LnIII ions by non-interacting metal complexes. Reaction of cationic NiII complexes possessing a protonated oxime function with LnIII ions leads to the formation of original and dianionic (Gd(NO352− entities that are well separated from each other. This work highlights the preparation of well isolated mononuclear LnIII entities into a matrix of diamagnetic metal complexes. These new complexes complete our previous work dealing with the complexing ability of the oxime function toward Lanthanide ions. It could open the way to the synthesis of new entities with interesting properties, such as single-ion magnets for example.

  2. Fracture mechanics assessment of surface and sub-surface cracks in the RPV under non-symmetric PTS loading

    Keim, E; Shoepper, A; Fricke, S [Siemens AG Unternehmensbereich KWU, Erlangen (Germany)

    1997-09-01

    One of the most severe loading conditions of a reactor pressure vessel (rpv) under operation is the loss of coolant accident (LOCA) condition. Cold water is injected through nozzles in the downcomer of the rpv, while the internal pressure may remain at a high level. Complex thermal hydraulic situations occur and the fluid and downcomer temperatures as well as the fluid to wall heat transfer coefficient at the inner surface are highly non-linear. Due to this non-symmetric conditions, the problem is investigated by three-dimensional non-linear finite element analyses, which allow for an accurate assessment of the postulated flaws. Transient heat transfer analyses are carried out to analyze the effect of non-symmetrical cooling of the inner surface of the pressure vessel. In a following uncoupled stress analysis the thermal shock effects for different types of defects, surface flaws and sub-surface flaws are investigated for linear elastic and elastic-plastic material behaviour. The obtained fracture parameters are calculated along the crack fronts. By a fast fracture analysis the fracture parameters at different positions along the crack front are compared to the material resistance. Safety margins are pointed out in an assessment diagram of the fracture parameters and the fracture resistance versus the transient temperature at the crack tip position. (author). 4 refs, 10 figs.

  3. Toroidal drift magnetic pumping

    Canobbio, E.

    1977-01-01

    A set of azimuthal coils which carry properly dephased rf-currents in the KHz frequency range can be used to heat toroidal plasmas by perpendicular Landau damping of subsonic Alfven waves. The heating mechanism and the rf-field structure are discussed in some detail

  4. Guiding Center Equations in Toroidal Equilibria

    White, Roscoe; Zakharov, Leonid

    2002-01-01

    Guiding center equations for particle motion in a general toroidal magnetic equilibrium configuration are derived using magnetic coordinates. Previous derivations made use of Boozer coordinates, in which the poloidal and toroidal angle variables are chosen so that the Jacobian is inversely proportional to the square of the magnetic field. It is shown that the equations for guiding center motion in any equilibrium possessing nested flux surfaces have exactly the same simple form as those derived in this special case. This allows the use of more spatially uniform coordinates instead of the Boozer coordinates, greatly increasing the accuracy of calculations in large beta and strongly shaped equilibria

  5. Current control necessary for toroidal plasma equilibrium

    Nagao, S.

    1987-01-01

    It is shown that a significant amount of dipole current is necessary for the plasma equilibrium of toroidal configurations in general. Through the vector product with the poloidal field, this dipole current force has to balance with the hoop force of plasma pressure itself of the annular shape. The measurement of such a current of dipole type may be interesting for the confirmation of the plasma equilibrium in the toroidal system. Moreover it is certained that there is a new mode of a tokamak operation with such a dipole current component and with smaller vertical field than that based on the classical tokamak theory. (author) [pt

  6. Numerical Calculation of Transport Based on the Drift-Kinetic Equation for Plasmas in General Toroidal Magnetic Geometry: Convergence and Testing

    Reynolds, J. M.; Lopez-Bruna, D.

    2009-01-01

    This report is the third of a series [Informes Tecnicos Ciemat 1165 y 1172] devoted to the development of a new numerical code to solve the guiding center equation for electrons and ions in toroidal plasmas. Two calculation meshes corresponding to axisymmetric tokamaks are now prepared and the kinetic equation is expanded so the standard terms of neoclassical theory --fi rst order terms in the Larmor radius expansion-- can be identified, restricting the calculations correspondingly. Using model density and temperature profiles for the plasma, several convergence test are performed depending on the calculation meshes and the expansions of the distribution function; then the results are compared with the theory [Hinton and Hazeltine, Rev. Mod. Phys. (1976)]. (Author) 18 refs

  7. Toroidal Thermonuclear device

    Takizawa, Teruhiro; Shizuoka, Yoshihide.

    1982-01-01

    Purpose: To reduce the shielding capacity of a current breaker for a current transformer coil and to facilitate the manufacture and the assembly of the current transformer coil. Constitution: A first current transformer coil is provided between a vacuum container for enclosing a plasma and a toroidal magnetic field coil, and a secon current transformer coil is provided outside the toroidal magnetic field coil. The rise of the plasma current is performed by the variation in the current of the coil of the first transformer having high electromagnetic coupling with the plasma current, and the variation in the magnetic flux necessary for maintaining the plasma is performed by the variation in the current of the second transformer coil. In this manner, the current shielding capacity of the first transformer coil can be reduced to decrease the number of coil turns, thereby facilitating the manufacture and assembly. (Seki, T.)

  8. Heating in toroidal plasmas

    Knoepfel, H.; Mazzitelli, G.

    1984-01-01

    The article is a rather detailed report on the highlights in the area of the ''Heating in toroidal plasmas'', as derived from the presentations and discussions at the international symposium with the same name, held in Rome, March 1984. The symposium covered both the physics (experiments and theory) and technology of toroidal fusion plasma heating. Both large fusion devices (either already in operation or near completion) requiring auxiliary heating systems at the level of tens of megawatts, as well as physics of their heating processes and their induced side effects (as studied on smaller devices), received attention. Substantial progress was reported on the broad front of auxiliary plasma heating and Ohmic heating. The presentation of the main conclusions of the symposium is divided under the following topics: neutral-beam heating, Alfven wave heating, ion cyclotron heating, lower hybrid heating, RF current drive, electron cyclotron heating, Ohmic heating and special contributions

  9. Heating in toroidal plasmas

    Canobbio, E.

    1981-01-01

    This paper reports on the 2nd Joint Grenoble-Varenna International Symposium on Heating in Toroidal Plasmas, held at Como, Italy, from the 3-12 September 1980. Important problems in relation to the different existing processes of heating. The plasma were identified and discussed. Among others, the main processes discussed were: a) neutral beam heating, b) ion-(electron)-cyclotron resonance heating, c) hybrid resonance and low frequency heating

  10. Mechanical Commissioning of the ATLAS Barrel Toroid Magnet

    Foussat, A; Dudarev, A; Bajas, H; Védrine, P; Berriaud, C; Sun, Z; Sorbi, M

    2008-01-01

    ATLAS is a general-purpose detector designed to run at the highest luminosity at the CERN Large Hadron Collider. Its features include the 4 T Barrel Toroid magnet, the largest superconducting magnet (25 m long, 20 m diameter) that provides the magnetic field for the ATLAS muon spectrometer. The coils integrated at CERN, were tested individually at maximum current of 22 kA in 2005. Following the mechanical assembly of the Barrel Toroid in the ATLAS underground cavern, the test of the full Barrel Toroid was performed in October 2006. Further tests are foreseen at the end 2007 when the system will include the two End Cap Toroids (ECT). The paper gives an overview of the good mechanical test results achieved in comparison with model predictions and the experience gained in the mechanical behavior of the ATLAS Toroidal coils is discussed.

  11. Tokamak with liquid metal toroidal field coil

    Ohkawa, T.; Schaffer, M.J.

    1981-01-01

    Tokamak apparatus includes a pressure vessel for defining a reservoir and confining liquid therein. A toroidal liner disposed within the pressure vessel defines a toroidal space within the liner. Liquid metal fills the reservoir outside said liner. Electric current is passed through the liquid metal over a conductive path linking the toroidal space to produce a toroidal magnetic field within the toroidal space about the major axis thereof. Toroidal plasma is developed within the toroidal space about the major axis thereof

  12. Superconducting endcap toroid design report

    Walters, C.R.; Baynham, D.E.; Holtom, E.; Coombs, R.C.

    1992-10-01

    The Atlas Experiment proposed for the LHC machine will use toroidal magnet systems to achieve high muon momentum resolutions. One of the options under consideration is an air cored superconducting toroidal magnet system consisting of a long barrel toroid with small and cap toroids inserted in it to provide high resolution at high pseudorapidity. The design of the barrel toroid has been studied over the past two years and the design outline is given in a Saclay Report. More recently consideration has been given to an end cap toroid system which is based on air cored superconducting coils. This report presents the basic engineering design of such a system, the proposals for fabrication, assembly and installation, and an outline cost estimate for one end cap is presented in Appendix 1.

  13. Supporting device for Toroidal coils

    Araki, Takao.

    1985-01-01

    Purpose: To reduce the response of a toroidal coil supporting device upon earthquakes and improve the earthquake proofness in a tokamak type thermonuclear device. Constitution: Structural materials having large longitudinal modulus and enduring great stresses, for example, stainless steels are used as the toroidal coil supporting legs and heat insulating structural materials are embedded in a nuclear reactor base mats below the supporting legs. Furthermore, heat insulating concretes are spiked around the heat insulating structural materials to prevent the intrusion of heat to the toroidal coils. The toroidal coils are kept at cryogenic state and superconductive state for the conductors. In this way, the period of proper vibrations of the toroidal coils and the toroidal coil supporting structures can be shortened thereby decreasing the seismic response. Furthermore, since the strength of the supporting legs is increased, the earthquake proofness of the coils can be improved. (Kamimura, M.)

  14. Formation of Non-symmetric Fractals During the First Stage of Pre-planetesimal Dust Growth

    Kempf, S.; Blum, J.; Wurm, G.

    It is a generally accepted view that the genesis of a planetary system coincide s with the formation of sun-like young stellar objects surrounded by gaseous disc s. The building blocks of the planetesimals are micron-sized solid particles (the so-called dust) embedded in the gas of the disc. The relevant process for formi ng larger aggregates is the growth due to collisional sticking. For particles to c ollide and stick, a relative velocity component between the grains must be present. In the onset of dust growth, Brownian motion dominates other relative-velocity sources . However, numerically determined time scales of the pure Brownian dust growth are much too large for explaining the formation of planets within the lifetime of a proto-planetary di sc. In order to verify the validity of the theoretical models, the Cosmic Dust Aggr egation Experiment CODAG was developed. It allows to observe the growth of micron-sized dust analogs under astrophysical realistic conditions. Surprisingly, the experi ments showed that at least in the onset of the dust growth needle-like fractal aggreg ates rather than symmetric fractals are formed. Here we discuss the implication of this experimental finding for the pre-planetesimal growth models.

  15. Toroidal rotation studies in KSTAR

    Lee, S. G.; Lee, H. H.; Yoo, J. W.; Kim, Y. S.; Ko, W. H.; Terzolo, L.; Bitter, M.; Hill, K.; KSTAR Team

    2014-10-01

    Investigation of the toroidal rotation is one of the most important topics for the magnetically confined fusion plasma researches since it is essential for the stabilization of resistive wall modes and its shear plays an important role to improve plasma confinement by suppressing turbulent transport. The most advantage of KSTAR tokamak for toroidal rotation studies is that it equips two main diagnostics including the high-resolution X-ray imaging crystal spectrometer (XICS) and charge exchange spectroscopy (CES). Simultaneous core toroidal rotation and ion temperature measurements of different impurity species from the XICS and CES have shown in reasonable agreement with various plasma discharges in KSTAR. It has been observed that the toroidal rotation in KSTAR is faster than that of other tokamak devices with similar machine size and momentum input. This may due to an intrinsically low toroidal field ripple and error field of the KSTAR device. A strong braking of the toroidal rotation by the n = 1 non-resonant magnetic perturbations (NRMPs) also indicates these low toroidal field ripple and error field. Recently, it has been found that n = 2 NRMPs can also damp the toroidal rotation in KSTAR. The detail toroidal rotation studies will be presented. Work supported by the Korea Ministry of Science, ICT and Future Planning under the KSTAR project.

  16. Toroidal simulation magnet tests

    Walstrom, P.L.; Domm, T.C.

    1975-01-01

    A number of different schemes for testing superconducting coils in a simulated tokamak environment are analyzed for their merits relative to a set of test criteria. Two of the concepts are examined in more detail: the so-called cluster test scheme, which employs two large background field coils, one on either side of the test coil, and the compact torus, a low-aspect ratio toroidal array of a small number of coils in which all of the coils are essentially test coils. Simulation of the pulsed fields of the tokamak is discussed briefly

  17. Trapped ion mode in toroidally rotating plasmas

    Artun, M.; Tang, W.M.; Rewoldt, G.

    1995-04-01

    The influence of radially sheared toroidal flows on the Trapped Ion Mode (TIM) is investigated using a two-dimensional eigenmode code. These radially extended toroidal microinstabilities could significantly influence the interpretation of confinement scaling trends and associated fluctuation properties observed in recent tokamak experiments. In the present analysis, the electrostatic drift kinetic equation is obtained from the general nonlinear gyrokinetic equation in rotating plasmas. In the long perpendicular wavelength limit k τ ρ bi much-lt 1, where ρ bi is the average trapped-ion banana width, the resulting eigenmode equation becomes a coupled system of second order differential equations nmo for the poloidal harmonics. These equations are solved using finite element methods. Numerical results from the analysis of low and medium toroidal mode number instabilities are presented using representative TFTR L-mode input parameters. To illustrate the effects of mode coupling, a case is presented where the poloidal mode coupling is suppressed. The influence of toroidal rotation on a TFTR L-mode shot is also analyzed by including a beam species with considerable larger temperature. A discussion of the numerical results is presented

  18. Celebration for the ATLAS Barrel Toroid magnet

    2007-01-01

    Representatives from Funding Agencies and Barrel Toroid Magnet Laboratories during the ceremony. From left to right: Jean Zinn-Justin (Head of DAPNIA/CEA/Saclay), CERN Director-General Robert Aymar, and Roberto Petronzio (President INFN).Allan Clark (DPNC University Geneva) and Enrique Fernandez (IFAE Barcelona) were among the guests visiting the ATLAS cavern. The barrel toroid is visible in the background. A celebration took place at Point 1 on 13 December to toast the recent powering-up of the ATLAS barrel toroid magnet to full field (Bulletin No. 47-48/06). About 70 guests were invited to attend, mainly composed of representatives from funding partners and key members of the laboratory management teams of the barrel toroid magnet, representing CEA France, INFN Italy, BMBF Germany, Spain, Sweden, Switzerland, Russia, JINR Dubna and CERN. An introductory speech by ATLAS spokesperson Peter Jenni the scene for evening. This was followed by the ATLAS magnet system project leader Herman Ten Kate's account of the...

  19. Toroidal vortices in resistive magnetohydrodynamic equilibria

    Montgomery, D.; Bates, J.W.; Li, S.

    1997-01-01

    When a time-independent electric current flows toroidally in a uniform ring of electrically conducting fluid, a Lorentz force results, jxB, where j is the local electric current density, and B is the magnetic field it generates. Because of purely geometric effects, the curl of jxB is nonvanishing, and so jxB cannot be balanced by the gradient of any scalar pressure. Taking the curl of the fluid close-quote s equation of motion shows that the net effect of the jxB force is to generate toroidal vorticity. Allowed steady states necessarily contain toroidal vortices, with flows in the poloidal directions. The flow pattern is a characteristic open-quotes double smoke ringclose quotes configuration. The effect seems quite general, although it is analytically simple only in special limits. One limit described here is that of high viscosity (low Reynolds number), with stress-free wall boundary conditions on the velocity field, although it is apparent that similar mechanical motions will result for no-slip boundaries and higher Reynolds numbers. A rather ubiquitous connection between current-carrying toroids and vortex rings seems to be implied, one that disappears in the open-quotes straight cylinderclose quotes limit. copyright 1997 American Institute of Physics

  20. Neoclassical poloidal and toroidal rotation in tokamaks

    Kim, Y.B.; Diamond, P.H.; Groebner, R.J.

    1991-01-01

    Explicit expressions for the neoclassical poloidal and toroidal rotation speeds of primary ion and impurity species are derived via the Hirshman and Sigmar moment approach. The rotation speeds of the primary ion can be significantly different from those of impurities in various interesting cases. The rapid increase of impurity poloidal rotation in the edge region of H-mode discharges in tokamaks can be explained by a rapid steepening of the primary ion pressure gradient. Depending on ion collisionality, the poloidal rotation speed of the primary ions at the edge can be quite small and the flow direction may be opposite to that of the impurities. This may cast considerable doubts on current L to H bifurcation models based on primary ion poloidal rotation only. Also, the difference between the toroidal rotation velocities of primary ions and impurities is not negligible in various cases. In Ohmic plasmas, the parallel electric field induces a large impurity toroidal rotation close to the magnetic axis, which seems to agree with experimental observations. In the ion banana and plateau regime, there can be non-negligible disparities between primary ion and impurity toroidal rotation velocities due to the ion density and temperature gradients. Detailed analytic expressions for the primary ion and impurity rotation speeds are presented, and the methodology for generalization to the case of several impurity species is also presented for future numerical evaluation

  1. Poloidal variations in toroidal fusion reactor wall power loadings

    Carroll, M.C.; Miley, G.H.

    1985-01-01

    A geometric formulation is developed by the authors for determining poloidal variations in bremmstrahlung, cyclotron radiation, and neutron wall power loadings in toroidal fusion devices. Assuming toroidal symmetry and utilizing a numerical model which partitions the plasma into small cells, it was generally found that power loadings are highest on the outer surface of the torus, although variations are not as large as some have predicted. Results are presented for various plasma power generation configurations, plasma volume fractions, and toroidal aspect ratios, and include plasma and wall blockage effects

  2. Deformation energy of a toroidal nucleus and plane fragmentation barriers

    Fauchard, C.; Royer, G.

    1996-01-01

    The path leading to pumpkin-like configurations and toroidal shapes is investigated using a one-parameter shape sequence. The deformation energy is determined within the analytical expressions obtained for the various shape-dependent functions and the generalized rotating liquid drop model taking into account the proximity energy and the temperature. With increasing mass and angular momentum, a potential well appears in the toroidal shape path. For the heaviest systems, the pocket is large and locally favourable with respect to the plane fragmentation barriers which might allow the formation of evanescent toroidal systems which would rapidly decay in several fragments to minimize the surface tension. (orig.)

  3. Advanced Toroidal Facility

    Johnson, R.L.

    1985-01-01

    The Advanced Toroidal Facility (ATF) is a new magnetic confinement plasma device under construction at the Oak Ridge National Laboratory (ORNL) that will lead to improvements in toroidal magnetic fusion reactors. The ATF is a type of stellerator, known as a ''torsatron'' which theoretically has the capability to operate at greater than or equal to8% beta in steady state. The ATF plasma has a major radius of 2.1 m, an average minor radius of 0.3 m, and a field of 2 T for a 2 s duration or 1 T steady state. The ATF device consists of a helical field (HF) coil set, a set of poloidal field (PF) coils, an exterior shell structure to support the coils, and a thin, helically contoured vacuum vessel inside the coils. The ATF replaces the Impurities Studies Experiment (ISX-B) tokamak at ORNL and will use the ISX-B auxiliary systems including 4 MW of electron cyclotron heating. The ATF is scheduled to start operation in late 1986. An overview of the ATF device is presented, including details of the construction process envisioned. 9 refs., 7 figs., 3 tabs

  4. Advanced Toroidal Facility (ATF)

    Thompson, P.B.

    1985-01-01

    The Advanced Toroidal Facility (ATF) is a new magnetic plasma confinement device, under construction at Oak Ridge National Laboratory (ORNL), which will lead to improvements in toroidal magnetic fusion reactors. ATF is a type of stellarator known as a torsatron which theoretically has the capability at greater than or equal to8% beta in steady state. The ATF plasma has a major radius of 2.1 m, an average minor radius of 0.3 m, and a field of 2 T for a 5-s duration or 1 T steady state. The ATF device consists of a helical field (HF) coil set, a set of poloidal field (PF) coils, an exterior shell structure to support the coils, and a thin helically contoured vacuum vessel inside the coils. The ATF replaces the ISX-B tokamak at ORNL and will use the ISX-B auxiliary systems including 4 MW of neutral injection heating and 0.2 MW of electron cyclotron heating. ATF device is scheduled to start operation in the fall of 1986. An overview of the ATF device is presented including details of the construction process envisioned

  5. Quantum mechanics of toroidal anions

    Afanas'ev, G.N.

    1990-01-01

    We consider a toroidal solenoid with an electric charge attached to it. It turns out that statistical properties of the wave function describing interacting toroidal anions depend on both their relative position and orientation. The influence of the particular gauge choice on the exchange properties of the wave function is studied. 30 refs.; 6 figs

  6. Device for supporting a toroidal coil in a toroidal type nuclear fusion device

    Kitazawa, Hakaru; Sato, Hiroshi.

    1975-01-01

    Object: To easily manufacture a center block having a strength sufficient to withstand an electromagnetic force exerted on the center of toroidal of a toroidal coil and to increase its reliability. Structure: In a device for supporting toroidal coils wherein the electromagnetic force exerted on the center of toroidal of a plurality of toroidal coils arranged in toroidal fashion, the contact surface between the toroidal coil and the center block is arranged parallel to the center axis of toroidal so as to receive the electromagnetic force exerted on the center of toroidal of the toroidal coil as the component of force in a radial direction. (Taniai, N.)

  7. Transport in the high temperature core of toroidal confinement systems

    Weiland, J.

    1994-01-01

    Recent theoretical and experimental results on confinement of hot plasmas in toroidal devices, particularly tokamaks, are discussed from general principal points of view and related to predictions from a toroidal drift wave model using a full transport matrix including off diagonal terms. A reactive fluid model corresponding to a two pole approximation of the kinetic response is used. This model has the ability to reproduce both adiabatic and isothermal limits of the perpendicular dynamics. 106 refs, 8 figs, 1 tab

  8. Ferroelectric response in an achiral non-symmetric bent liquid crystal:C{sub 12}C{sub 10}

    Subrahmanyam, S.V.; Chalapathi, P.V. [Department of Physics, University College of Engineering, Jawaharlal Nehru Technological University Kakinada, Kakinada 533003 (India); Mahabaleshwara, S.; Srinivasulu, M. [Department of Chemistry, Manipal Institute of Technology, Manipal University, Manipal 576104 (India); George, A.K. [Department of Physics, College of Sciences, Sultan Qaboos University, PO Box-36, PC-123, Muscat (Oman); Potukuchi, D.M., E-mail: potukuchidm@yahoo.com [Department of Physics, University College of Engineering, Jawaharlal Nehru Technological University Kakinada, Kakinada 533003 (India)

    2014-10-01

    An achiral Non-Symmetric Bent Liquid Crystal (BLC) with a Oxadiazole based hetero cyclic central moiety, abbreviated as C{sub 12}C{sub 10} viz., dodecyl[4-{5-(4′-decyloxy)biphenyl-4-yl}-1,2,4-oxadiazol-3-yl]benzoate, exhibiting FerroElectric (FE) response is reported. Product is confirmed by {sup 1}H NMR, {sup 13}C NMR and elemental analysis. Characterization of BLC phases is carried out by Polarized Optical Microscopy (POM), Differential Scanning Calorimetry (DSC), Spontaneous Polarization (P{sub S}) and Low Frequency (10 Hz–10 MHz) Dielectric Relaxation studies. C{sub 12}C{sub 10} exhibits enantiotropic LC SmA, FE B{sub 2}, SmG, SmE phase variance. I–SmA, B{sub 2}–SmG and SmG–SmE transitions are of first order nature. FE B{sub 2} phases exhibits a moderate P{sub S} of ∼80 nC cm{sup −2}. B{sub 2} phase exhibits Curie–Weiss behavior to confirm FE nature. Off-centered low frequency (KHz) dispersion infers a scissor mode and a high frequency (MHz) mode to reflect the distinct time-scale response. Dielectric Dispersion is relatively susceptible in lower frequency KHz region. Arrhenius shift in Relaxation Frequency (f{sub R}) infers higher activation energy (E{sub a}) in non-FE phases for HF mode and lower value for KHz mode. Trends of f{sub R}, dielectric strength Δε, α-parameter and E{sub a} are discussed in view of the data reported in other LC compounds.

  9. Toroidal and rotating bubble nuclei and the nuclear fragmentation

    Royer, G.; Fauchard, C.; Haddad, F.; Jouault, B.

    1997-01-01

    The energy of rotating bubble and toroidal nuclei predicted to be formed in central heavy ion collisions at intermediate energies is calculated within the generalized rotating liquid drop model. Previously, a one-parameter shape sequence has been defined to describe the path leading to pumpkin-like configurations and toroidal shapes. New analytical expressions for the shape dependent functions have been obtained. The potential barriers standing in these exotic deformation paths are compared with the three-dimensional and plane-fragmentation barriers. Metastable bubble-like minima only appear at very high angular momentum and above the three dimensional fragmentation barriers. In the toroidal deformation path of the heaviest systems exists a large potential pocket localized below the plane-fragmentation barriers. This might allow the temporary survival of heavy nuclear toroids before the final clusterization induced by the surface and proximity tension

  10. Grinding Inside A Toroidal Cavity

    Mayer, Walter; Adams, James F.; Burley, Richard K.

    1987-01-01

    Weld lines ground smooth within about 0.001 in. Grinding tool for smoothing longitudinal weld lines inside toroidal cavity includes curved tunnel jig to guide grinding "mouse" along weld line. Curvature of tunnel jig matched to shape of toroid so grinding ball in mouse follows circular arc of correct radius as mouse is pushed along tunnel. Tool enables precise control of grindout shape, yet easy to use.

  11. Tunable plasmonic toroidal terahertz metamodulator

    Gerislioglu, Burak; Ahmadivand, Arash; Pala, Nezih

    2018-04-01

    Optical modulators are essential and strategic parts of micro- and nanophotonic circuits to encode electro-optical signals in the optical domain. Here, by using arrays of multipixel toroidal plasmonic terahertz (THz) metamolecules, we developed a functional plasmonic metamodulator with high efficiency and tunability. Technically, the dynamic toroidal dipole induces nonradiating charge-current arrangements leading to have an exquisite role in defining the inherent spectral features of various materials. By categorizing in a different family of multipoles far from the traditional electromagnetic multipoles, the toroidal dipole corresponds to poloidal currents flowing on the surface of a closed-loop torus. Utilizing the sensitivity of the optically driven toroidal momentum to the incident THz beam power and by employing both numerical tools and experimental analysis, we systematically studied the spectral response of the proposed THz plasmonic metadevice. In this Rapid Communication, we uncover a correlation between the existence and the excitation of the toroidal response and the incident beam power. This mechanism is employed to develop THz toroidal metamodulators with a strong potential to be employed for practical advanced and next-generation communication, filtering, and routing applications.

  12. Mirror theory applied to toroidal systems

    Cohen, R.H.

    1987-01-01

    Central features of a mirror plasma are strong departures from Maxwellian distribution functions, ambipolar potentials and densities which vary along a field line, and losses, and the mirror field itself. To examine these features, mirror theorists have developed analytical and numerical techniques to solve the Fokker-Planck equation, evaluate the potentials consistent with the resulting distribution functions, and assess the microstability of these distributions. Various combinations of mirror-plasma fetures are present and important in toroidal plasmas as well, particularly in the edge region and in plasmas with strong r.f. heating. In this paper we survey problems in toroidal plasmas where mirror theory and computational techniques are applicable, and discuss in more detail three specific examples: calculation of the toroidal generalization of the Spitzer-Haerm distribution function (from which trapped-particle effects on current drive can be calculated), evaluation of the nonuniform potential and density set up by pulsed electron-cyclotron heating, and calculation of steady-state distribution functions in the presence of strong r.f. heating and collisions. 37 refs., 3 figs

  13. Mirror theory applied to toroidal systems

    Cohen, R.H.

    1987-01-01

    Central features of a mirror plasma are strong departures from Maxwellian distribution functions, ambipolar potentials and densities which vary along a field line, end losses, and the mirror field itself. To examine these features, mirror theorists have developed analytical and numerical techniques to solve the Fokker-Planck equation, evaluate the potentials consistent with the resulting distribution functions, and assess the microstability of these distributions. Various combinations of mirror-plasma features are present and important in toroidal plasmas as well, particularly in the edge region and in plasmas with strong rf heating. In this paper we survey problems in toroidal plasmas where mirror theory and computational techniques are applicable, and discuss in more detail three specific examples: calculation of the toroidal generalization of the Spitzer-Haerm distribution function (from which trapped-particle effects on current drive can be calculated), evaluation of the nonuniform potential and density set up by pulsed electron-cyclotron heating, and calculation of steady-state distribution functions in the presence of strong rf heating and collisions. 37 refs

  14. Celebrating the Barrel Toroid commissioning

    Peter Jenni

    ATLAS invited Funding Agency representatives and Laboratory Heads directly related to the funding and construction of the Barrel Toroid for a small ceremony on 13th December 2006 at Point 1, in order to mark the successful first full excitation of the BT (see last eNews). On that date, which was during the December CERN Council week, several of the Funding Agency Heads or their representatives could be present, representing CEA France, INFN Italy, BMBF Germany, Spain, Sweden, Switzerland, Russia, JINR Dubna and CERN. Speeches were delivered by the ATLAS spokesperson Peter Jenni thanking the Funding Partners in the name of the Collaboration, by Magnet Project Leader Herman ten Kate tracing the BT construction history, and by the CERN Director-General Robert Aymar congratulating all those who have contributed to the successful project. Herman ten Kate addressing the delegates. The text of the introductory address by Peter Jenni is reproduced here. "It is a great pleasure for me to welcome you all here...

  15. Toroidal visco-resistive magnetohydrodynamic steady states contain vortices

    Bates, J.W.; Montgomery, D.C.

    1998-01-01

    Poloidal velocity fields seem to be a fundamental feature of resistive toroidal magnetohydrodynamic (MHD) steady states. They are a consequence of force balance in toroidal geometry, do not require any kind of instability, and disappear in the open-quotes straight cylinderclose quotes (infinite aspect ratio) limit. If a current density j results from an axisymmetric toroidal electric field that is irrotational inside a torus, it leads to a magnetic field B such that ∇x(jxB) is nonvanishing, so that the Lorentz force cannot be balanced by the gradient of any scalar pressure in the equation of motion. In a steady state, finite poloidal velocity fields and toroidal vorticity must exist. Their calculation is difficult, but explicit solutions can be found in the limit of low Reynolds number. Here, existing calculations are generalized to the more realistic case of no-slip boundary conditions on the velocity field and a circular toroidal cross section. The results of this paper strongly suggest that discussions of confined steady states in toroidal MHD must include flows from the outset. copyright 1998 American Institute of Physics

  16. High current density toroidal pinch discharges with weak toroidal fields

    Brunsell, P.; Brzozowski, J.; Drake, J.R.; Hellblom, G.; Kaellne, E.; Mazur, S.; Nordlund, P.

    1990-01-01

    Toroidal discharges in the ultralow q regime (ULQ) have been studied in the rebuilt Extrap TI device. ULQ discharges are sustained for pulse lengths exceeding 1 ms, which corresponds to more than 10 resistiv shell times. Values for the safety factor at the vacuum vessel wall are between rational values: 1/(n+1) -2 . The magnetic fluctuation level increases during the transition between rational values of q(a). For very low values of q(a), the loop voltage increases and the toroidal field development in the discharge exhibits the characteristic behaviour of the setting-up phase of a field reversed pinch. (author) 1 ref., 2 figs., 1 tab

  17. Toroidal helical quartz forming machine

    Hanks, K.W.; Cole, T.R.

    1977-01-01

    The Scyllac fusion experimental machine used 10 cm diameter smooth bore discharge tubes formed into a simple toroidal shape prior to 1974. At about that time, it was discovered that a discharge tube was required to follow the convoluted shape of the load coil. A machine was designed and built to form a fused quartz tube with a toroidal shape. The machine will accommodate quartz tubes from 5 cm to 20 cm diameter forming it into a 4 m toroidal radius with a 1 to 5 cm helical displacement. The machine will also generate a helical shape on a linear tube. Two sets of tubes with different helical radii and wavelengths have been successfully fabricated. The problems encountered with the design and fabrication of this machine are discussed

  18. Bifurcation theory for toroidal MHD instabilities

    Maschke, E.K.; Morros Tosas, J.; Urquijo, G.

    1992-01-01

    Using a general representation of magneto-hydrodynamics in terms of stream functions and potentials, proposed earlier, a set of reduced MHD equations for the case of toroidal geometry had been derived by an appropriate ordering with respect to the inverse aspect ratio. When all dissipative terms are neglected in this reduced system, it has the same linear stability limits as the full ideal MHD equations, to the order considered. When including resistivity, thermal conductivity and viscosity, we can apply bifurcation theory to investigate nonlinear stationary solution branches related to various instabilities. In particular, we show that a stationary solution of the internal kink type can be found

  19. Compact toroid refueling of reactors

    Gouge, M.J.; Hogan, J.T.; Milora, S.L.; Thomas, C.E.

    1988-04-01

    The feasibility of refueling fusion reactors and devices such as the International Thermonuclear Engineering Reactor (ITER) with high-velocity compact toroids is investigated. For reactors with reasonable limits on recirculating power, it is concluded that the concept is not economically feasible. For typical ITER designs, the compact toroid fueling requires about 15 MW of electrical power, with about 5 MW of thermal power deposited in the plasma. At these power levels, ideal ignition (Q = ∞) is not possible, even for short-pulse burns. The pulsed power requirements for this technology are substantial. 6 ref., 1 figs

  20. Prandtl number of toroidal plasmas

    Itoh, K.; Itoh, S.; Fukuyama, A.; Yagi, M.; Azumi, M.

    1993-06-01

    Theory of the L-mode confinement in toroidal plasmas is developed. The Prandtl number, the ratio between the ion viscosity and the thermal conductivity is obtained for the anomalous transport process which is caused by the self-sustained turbulence in the toroidal plasma. It is found that the Prandtl number is of order unity both for the ballooning mode turbulence in tokamaks and for the interchange mode turbulence in helical system. The influence on the anomalous transport and fluctuation level is evaluated. Hartmann number and magnetic Prandtl number are also discussed. (author)

  1. Toroidal current asymmetry in tokamak disruptions

    Strauss, H. R.

    2014-10-01

    It was discovered on JET that disruptions were accompanied by toroidal asymmetry of the toroidal plasma current I ϕ. It was found that the toroidal current asymmetry was proportional to the vertical current moment asymmetry with positive sign for an upward vertical displacement event (VDE) and negative sign for a downward VDE. It was observed that greater displacement leads to greater measured I ϕ asymmetry. Here, it is shown that this is essentially a kinematic effect produced by a VDE interacting with three dimensional MHD perturbations. The relation of toroidal current asymmetry and vertical current moment is calculated analytically and is verified by numerical simulations. It is shown analytically that the toroidal variation of the toroidal plasma current is accompanied by an equal and opposite variation of the toroidal current flowing in a thin wall surrounding the plasma. These currents are connected by 3D halo current, which is π/2 radians out of phase with the n = 1 toroidal current variations.

  2. The complex and unique ATLAS Toroid family

    2002-01-01

    Big parts for the toroid magnets that will be used in the ATLAS experiment have been continuously arriving at CERN since March. These structures will create the largest superconducting toroid magnet ever.

  3. Advanced toroidal theory

    Garabedian, P.R.

    1989-01-01

    This report briefly discusses the following topics: equilibrium and transport; including turbulent transport; stability; wave propagation; statistical data analysis; computational algorithms and computer simulations; and general plasma science

  4. Multi-catalysis cascade reactions based on the methoxycarbonylketene platform: diversity-oriented synthesis of functionalized non-symmetrical malonates for agrochemicals and pharmaceuticals.

    Ramachary, Dhevalapally B; Venkaiah, Chintalapudi; Reddy, Y Vijayendar; Kishor, Mamillapalli

    2009-05-21

    In this paper we describe new multi-catalysis cascade (MCC) reactions for the one-pot synthesis of highly functionalized non-symmetrical malonates. These metal-free reactions are either five-step (olefination/hydrogenation/alkylation/ketenization/esterification) or six-step (olefination/hydrogenation/alkylation/ketenization/esterification/alkylation), and employ aldehydes/ketones, Meldrum's acid, 1,4-dihydropyridine/o-phenylenediamine, diazomethane, alcohols and active ethylene/acetylenes, and involve iminium-, self-, self-, self- and base-catalysis, respectively. Many of the products have direct application in agricultural and pharmaceutical chemistry.

  5. X-ray imaging with toroidal mirror

    Aoki, Sadao; Sakayanagi, Yoshimi

    1978-01-01

    X-ray imaging is made with a single toroidal mirror or two successive toroidal mirrors. Geometrical images at the Gaussian image plane are described by the ray trace. Application of a single toroidal mirror to small-angle scattering is presented. (author)

  6. Onsager relaxation of toroidal plasmas

    Samain, A.; Nguyen, F.

    1997-01-01

    The slow relaxation of isolated toroidal plasmas towards their thermodynamical equilibrium is studied in an Onsager framework based on the entropy metric. The basic tool is a variational principle, equivalent to the kinetic equation, involving the profiles of density, temperature, electric potential, electric current. New minimization procedures are proposed to obtain entropy and entropy production rate functionals. (author)

  7. Particle simulations in toroidal geometry

    Aydemir, A.Y.

    1992-09-01

    A computational tool to be used in kinetic simulations of toroidal plasmas is being developed. The initial goal of the project is to develop an electrostatic gyrokinetic model for studying transport and stability problems in tokamaks. In this brief report, preliminary results from the early stages of this effort are presented

  8. Lowering the first ATLAS toroid

    Maximilien Brice

    2004-01-01

    The ATLAS detector on the LHC at CERN will consist of eight toroid magnets, the first of which was lowered into the cavern in these images on 26 October 2004. The coils are supported on platforms where they will be attached to form a giant torus. The platforms will hold about 300 tonnes of ATLAS' muon chambers and will envelop the inner detectors.

  9. Hybrid winding concept for toroids

    Schneider, Henrik; Andersen, Thomas; Knott, Arnold

    2013-01-01

    and placement machinery. This opens up the possibility for both an automated manufacturing process and an automated production process of toroidal magnetics such as power inductors, filtering inductors, air core inductors, transformers etc. Both the proposed hybrid and the common wire wound winding...

  10. Collapse analysis of toroidal shell

    Pomares, R.J.

    1990-01-01

    This paper describes a study performed to determine the collapse characteristics of a toroidal shell using finite element method (FEM) analysis. The study also included free drop testing of a quarter scale prototype to verify the analytical results. The full sized toroidal shell has a 24-inch toroidal diameter with a 24-inch tubal diameter. The shell material is type 304 strainless steel. The toroidal shell is part of the GE Model 2000 transportation packaging, and acts as an energy absorbing device. The analyses performed were on a full sized and quarter scaled models. The finite element program used in all analyses was the LIBRA code. The analytical procedure used both the elasto-plastic and large displacement options within the code. The loading applied in the analyses corresponded to an impact of an infinite rigid plane oriented normal to the drop direction vector. The application of the loading continued incrementally until the work performed by the deforming structure equalled the kinetic energy developed in the free fall. The comparison of analysis and test results showed a good correlation

  11. Non-symmetric forms of non-linear vibrations of flexible cylindrical panels and plates under longitudinal load and additive white noise

    Krysko, V. A.; Awrejcewicz, J.; Krylova, E. Yu; Papkova, I. V.; Krysko, A. V.

    2018-06-01

    Parametric non-linear vibrations of flexible cylindrical panels subjected to additive white noise are studied. The governing Marguerre equations are investigated using the finite difference method (FDM) of the second-order accuracy and the Runge-Kutta method. The considered mechanical structural member is treated as a system of many/infinite number of degrees of freedom (DoF). The dependence of chaotic vibrations on the number of DoFs is investigated. Reliability of results is guaranteed by comparing the results obtained using two qualitatively different methods to reduce the problem of PDEs (partial differential equations) to ODEs (ordinary differential equations), i.e. the Faedo-Galerkin method in higher approximations and the 4th and 6th order FDM. The Cauchy problem obtained by the FDM is eventually solved using the 4th-order Runge-Kutta methods. The numerical experiment yielded, for a certain set of parameters, the non-symmetric vibration modes/forms with and without white noise. In particular, it has been illustrated and discussed that action of white noise on chaotic vibrations implies quasi-periodicity, whereas the previously non-symmetric vibration modes are closer to symmetric ones.

  12. The Quasi-Toroidal Stellarator: An Innovative Confinement Experiment

    Knowlton, S. F.

    2001-01-01

    To develop a new class of stellarators that exhibit improved confinement compared to conventional stellarators. This approach generally makes use of a designed symmetry of the magnetic field strength along a particular coordinate axis in the toroidal geometry of the stellarator, and is referred to as quasi-symmetry

  13. Classification of symmetric toroidal orbifolds

    Fischer, Maximilian; Ratz, Michael; Torrado, Jesus [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-09-15

    We provide a complete classification of six-dimensional symmetric toroidal orbifolds which yield N{>=}1 supersymmetry in 4D for the heterotic string. Our strategy is based on a classification of crystallographic space groups in six dimensions. We find in total 520 inequivalent toroidal orbifolds, 162 of them with Abelian point groups such as Z{sub 3}, Z{sub 4}, Z{sub 6}-I etc. and 358 with non-Abelian point groups such as S{sub 3}, D{sub 4}, A{sub 4} etc. We also briefly explore the properties of some orbifolds with Abelian point groups and N=1, i.e. specify the Hodge numbers and comment on the possible mechanisms (local or non-local) of gauge symmetry breaking.

  14. Hollow nanotubular toroidal polymer microrings.

    Lee, Jiyeong; Baek, Kangkyun; Kim, Myungjin; Yun, Gyeongwon; Ko, Young Ho; Lee, Nam-Suk; Hwang, Ilha; Kim, Jeehong; Natarajan, Ramalingam; Park, Chan Gyung; Sung, Wokyung; Kim, Kimoon

    2014-02-01

    Despite the remarkable progress made in the self-assembly of nano- and microscale architectures with well-defined sizes and shapes, a self-organization-based synthesis of hollow toroids has, so far, proved to be elusive. Here, we report the synthesis of polymer microrings made from rectangular, flat and rigid-core monomers with anisotropically predisposed alkene groups, which are crosslinked with each other by dithiol linkers using thiol-ene photopolymerization. The resulting hollow toroidal structures are shape-persistent and mechanically robust in solution. In addition, their size can be tuned by controlling the initial monomer concentrations, an observation that is supported by a theoretical analysis. These hollow microrings can encapsulate guest molecules in the intratoroidal nanospace, and their peripheries can act as templates for circular arrays of metal nanoparticles.

  15. TFTR toroidal field coil design

    Smith, G.E.; Punchard, W.F.B.

    1977-01-01

    The design of the Tokamak Fusion Test Reactor (TFTR) Toroidal Field (TF) magnetic coils is described. The TF coil is a 44-turn, spiral-wound, two-pancake, water-cooled configuration which, at a coil current of 73.3 kiloamperes, produces a 5.2-Tesla field at a major radius of 2.48 meters. The magnetic coils are installed in titanium cases, which transmit the loads generated in the coils to the adjacent supporting structure. The TFTR utilizes 20 of these coils, positioned radially at 18 0 intervals, to provide the required toroidal field. Because it is very highly loaded and subject to tight volume constraints within the machine, the coil presents unique design problems. The TF coil requirements are summarized, the coil configuration is described, and the problems highlighted which have been encountered thus far in the coil design effort, together with the development tests which have been undertaken to verify the design

  16. Experimental studies of compact toroids

    1991-01-01

    The Berkeley Compact Toroid Experiment (BCTX) device is a plasma device with a Marshall-gun generated, low aspect ratio toroidal plasma. The device is capable of producing spheromak-type discharges and may, with some modification, produce low-aspect ratio tokamak configurations. A unique aspect of this experimenal devie is its large lower hybrid (LH) heating system, which consists of two 450MHz klystron tubes generating 20 megawatts each into a brambilla-type launching structure. Successful operation with one klystron at virtually full power (18 MW) has been accomplished with 110 μs pulse length. A second klystron is currently installed in its socket and magnet but has not been added to the RF drive system. This report describes current activities and accomplishments and describes the anticipated results of next year's activity

  17. Prospects for toroidal fusion reactors

    Sheffield, J.; Galambos, J.D.

    1994-01-01

    Work on the International Thermonuclear Experimental Reactor (ITER) tokamak has refined understanding of the realities of a deuterium-tritium (D-T) burning magnetic fusion reactor. An ITER-like tokamak reactor using ITER costs and performance would lead to a cost of electricity (COE) of about 130 mills/kWh. Advanced tokamak physics to be tested in the Toroidal Physics Experiment (TPX), coupled with moderate components in engineering, technology, and unit costs, should lead to a COE comparable with best existing fission systems around 60 mills/kWh. However, a larger unit size, ∼2000 MW(e), is favored for the fusion system. Alternative toroidal configurations to the conventional tokamak, such as the stellarator, reversed-field pinch, and field-reversed configuration, offer some potential advantage, but are less well developed, and have their own challenges

  18. Magnetohydrodynamic Stability of a Toroidal Plasma's Separatrix

    Webster, A. J.; Gimblett, C. G.

    2009-01-01

    Large tokamaks capable of fusion power production such as ITER, should avoid large edge localized modes (ELMs), thought to be triggered by an ideal magnetohydrodynamic instability due to current at the plasma's separatrix boundary. Unlike analytical work in a cylindrical approximation, numerical work finds the modes are stable. The plasma's separatrix might stabilize modes, but makes analytical and numerical work difficult. We generalize a cylindrical model to toroidal separatrix geometry, finding one parameter Δ ' determines stability. The conformal transformation method is generalized to allow nonzero derivatives of a function on a boundary, and calculation of the equilibrium vacuum field allows Δ ' to be found analytically. As a boundary more closely approximates a separatrix, we find the energy principle indicates instability, but the growth rate asymptotes to zero

  19. Compact toroids with Alfvenic flows

    Wang Zhehui; Tang, X.Z.

    2004-01-01

    The Chandrasekhar equilibria form a class of stationary ideal magnetohydrodynamics equilibria stabilized by magnetic-field-aligned Alfvenic flows. Analytic solutions of the Chandrasekhar equilibria are explicitly constructed for both field-reversed configurations and spheromaks. Favorable confinement property of nested closed flux surfaces and the ideal magnetohydrodynamic stability of the compact toroids are of interest for both magnetic trapping of high energy electrons in astrophysics and confinement of high temperature plasmas in laboratory

  20. Effects of 3D magnetic perturbations on toroidal plasmas

    Callen, J.D.

    2011-01-01

    Small three-dimensional (3D) magnetic field perturbations have many interesting and possibly useful effects on tokamak and quasi-symmetric stellarator plasmas. Plasma transport equations that include these effects, most notably on diamagnetic-level toroidal plasma flows, have recently been developed. The 3D field perturbations and their plasma effects can be classified according to their toroidal mode number n: low n (say 1-5) resonant (with field line pitch, q = m/n) and non-resonant fields, medium n (∼20, due to toroidal field ripple) and high n (due to microturbulence). Low n non-resonant fields induce a neoclassical toroidal viscosity (NTV) that damps toroidal rotation throughout the plasma towards an offset rotation in the counter-current direction. Recent tokamak experiments have generally confirmed and exploited these predictions by applying external low n non-resonant magnetic perturbations. Medium n toroidal field ripple produces similar effects plus possible ripple-trapping NTV effects and ion direct losses in the edge. A low n (e.g. n = 1) resonant field is mostly shielded by the toroidally rotating plasma at and inside the resonant (rational) surface. If it is large enough it can stop plasma rotation at the rational surface, facilitate magnetic reconnection there and lead to a growing stationary magnetic island (locked mode), which often causes a plasma disruption. Externally applied 3D magnetic perturbations usually have many components. In the plasma their lowest n (e.g. n = 1) externally resonant components can be amplified by kink-type plasma responses, particularly at high β. Low n plasma instabilities (e.g. resistive wall modes, neoclassical tearing modes) cause additional 3D magnetic perturbations in tokamak plasmas. Tearing modes in their nonlinear (Rutherford) regime bifurcate the topology and form magnetic islands. Finally, multiple resonant magnetic perturbations (RMPs) can, if not shielded by plasma rotation effects, cause local magnetic

  1. Effect of Molecular Flexibility on the Nematic-to-Isotropic Phase Transition for Highly Biaxial Molecular Non-Symmetric Liquid Crystal Dimers

    Sebastián, Nerea; López, David Orencio; Diez-Berart, Sergio; de la Fuente, María Rosario; Salud, Josep; Pérez-Jubindo, Miguel Angel; Ros, María Blanca

    2011-01-01

    In this work, a study of the nematic (N)–isotropic (I) phase transition has been made in a series of odd non-symmetric liquid crystal dimers, the α-(4-cyanobiphenyl-4’-yloxy)-ω-(1-pyrenimine-benzylidene-4’-oxy) alkanes, by means of accurate calorimetric and dielectric measurements. These materials are potential candidates to present the elusive biaxial nematic (NB) phase, as they exhibit both molecular biaxiality and flexibility. According to the theory, the uniaxial nematic (NU)–isotropic (I) phase transition is first-order in nature, whereas the NB–I phase transition is second-order. Thus, a fine analysis of the critical behavior of the N–I phase transition would allow us to determine the presence or not of the biaxial nematic phase and understand how the molecular biaxiality and flexibility of these compounds influences the critical behavior of the N–I phase transition. PMID:28824100

  2. Two Glass Transitions Associated to Different Dynamic Disorders in the Nematic Glassy State of a Non-Symmetric Liquid Crystal Dimer Dopped with γ-Alumina Nanoparticles

    Diez-Berart, Sergio; López, David O.; Salud, Josep; Diego, José Antonio; Sellarès, Jordi; Robles-Hernández, Beatriz; de la Fuente, María Rosario; Ros, María Blanca

    2015-01-01

    In the present work, the nematic glassy state of the non-symmetric LC dimer α-(4-cyanobiphenyl-4′-yloxy)-ω-(1-pyrenimine-benzylidene-4′-oxy) undecane is studied by means of calorimetric and dielectric measurements. The most striking result of the work is the presence of two different glass transition temperatures: one due to the freezing of the flip-flop motions of the bulkier unit of the dimer and the other, at a lower temperature, related to the freezing of the flip-flop and precessional motions of the cyanobiphenyl unit. This result shows the fact that glass transition is the consequence of the freezing of one or more coupled dynamic disorders and not of the disordered phase itself. In order to avoid crystallization when the bulk sample is cooled down, the LC dimer has been confined via the dispersion of γ-alumina nanoparticles, in several concentrations.

  3. Electrochemically Triggered Co-Conformational Switching in a [2]catenane Comprising a Non-Symmetric Calix[6]arene Wheel and a Two-Station Oriented Macrocycle

    Valeria Zanichelli

    2018-05-01

    Full Text Available Catenanes with desymmetrized ring components can undergo co-conformational rearrangements upon external stimulation and can form the basis for the development of molecular rotary motors. We describe the design, synthesis and properties of a [2]catenane consisting of a macrocycle—the ‘track’ ring—endowed with two distinct recognition sites (a bipyridinium and an ammonium for a calix[6]arene—the ‘shuttle’ ring. By exploiting the ability of the calixarene to thread appropriate non-symmetric axles with directional selectivity, we assembled an oriented pseudorotaxane and converted it into the corresponding oriented catenane by intramolecular ring closing metathesis. Cyclic voltammetric experiments indicate that the calixarene wheel initially surrounds the bipyridinium site, moves away from it when it is reduced, and returns in the original position upon reoxidation. A comparison with appropriate model compounds shows that the presence of the ammonium station is necessary for the calixarene to leave the reduced bipyridinium site.

  4. Transport and Dynamics in Toroidal Fusion Systems

    Schnack, Dalton D

    2006-05-16

    This document reports the successful completion of the OFES Theory Milestone for FY2005, namely, Perform parametric studies to better understand the edge physics regimes of laboratory experiments. Simulate at increased resolution (up to 20 toroidal modes), with density evolution, late into the nonlinear phase and compare results from different types of edge modes. Simulate a single case including a study of heat deposition on nearby material walls. The linear stability properties and nonlinear evolution of Edge Localized Modes (ELMs) in tokamak plasmas are investigated through numerical computation. Data from the DIII-D device at General Atomics (http://fusion.gat.com/diii-d/) is used for the magnetohydrodynamic (MHD) equilibria, but edge parameters are varied to reveal important physical effects. The equilibrium with very low magnetic shear produces an unstable spectrum that is somewhat insensitive to dissipation coefficient values. Here, linear growth rates from the non-ideal NIMROD code (http://nimrodteam.org) agree reasonably well with ideal, i.e. non-dissipative, results from the GATO global linear stability code at low toroidal mode number (n) and with ideal results from the ELITE edge linear stability code at moderate to high toroidal mode number. Linear studies with a more realistic sequence of MHD equilibria (based on DIII-D discharge 86166) produce more significant discrepancies between the ideal and non-ideal calculations. The maximum growth rate for the ideal computations occurs at toroidal mode index n=10, whereas growth rates in the non-ideal computations continue to increase with n unless strong anisotropic thermal conduction is included. Recent modeling advances allow drift effects associated with the Hall electric field and gyroviscosity to be considered. A stabilizing effect can be observed in the preliminary results, but while the distortion in mode structure is readily apparent at n=40, the growth rate is only 13% less than the non-ideal MHD

  5. Heating of toroidal plasmas by neutral injection

    Stix, T.H.

    1971-08-01

    This paper presents a brief review of the physics of ion acceleration, charge exchange and ionization, trajectories for fast ions in toroidal magnetic fields, and fast-ion thermalization. The injection of fast atoms is found to be a highly competitive method both for heating present-day experimental toroidal plasmas and for bringing full-scale toroidal CTR plasmas to low-density ignition. 13 refs., 9 figs

  6. ATF [Advanced Toroidal Facility] data management

    Kannan, K.L.; Baylor, L.R.

    1988-01-01

    Data management for the Advanced Toroidal Facility (ATF), a stellarator located at Oak Ridge National Laboratory (ORNL), is provided by DMG, a locally developed, VAX-based software system. DMG is a data storage and retrieval software system that provides the user interface to ATF raw and analyzed data. Data are described in terms of data models and data types and are organized as signals into files, which are internally documented. The system was designed with user accessibility, software maintainability, and extensibility as primary goals. Extensibility features include compatibility with ATF as it moves from pulsed to steady-state operation and capability for use of the DMG system with experiments other than ATF. DMG is implemented as a run-time library of routines available as a shareable image. General-purpose and specialized data acquisition and analysis applications have been developed using the DMG system. This paper describes the DMG system and the interfaces to it. 4 refs., 2 figs

  7. Calculation of a toroidal labyrinth shields

    Sul'kin, A.G.

    1979-01-01

    Calculation of protective case with a toroidal labyrinth channel, being one of the main design elements of hose gamma-devices, is presented. The case provides relative isotropic distribution of radiation outside protection limits. The main geometric parameters of the channel are determined: r-radius of the channel hole, rho-bend radius of the channel axis, β-angle of the channel bend. General exposure dose rate of γ-radiation in the detection point at l distance (usually l=100 m during calculations), is also calculated. Differential current dose albedo values have been found for certain combinations of parameters of the labyrinth channel. It is considered for simplification of labyrinth channel calculations, that backward radiation scattering passes, without energy change and isotropically, due to which differential current albedo values of γ-radiation for any incidence angle may be determined from integral albedo current values by the empirie formula

  8. Observation of plasma toroidal-momentum dissipation by neoclassical toroidal viscosity.

    Zhu, W; Sabbagh, S A; Bell, R E; Bialek, J M; Bell, M G; LeBlanc, B P; Kaye, S M; Levinton, F M; Menard, J E; Shaing, K C; Sontag, A C; Yuh, H

    2006-06-09

    Dissipation of plasma toroidal angular momentum is observed in the National Spherical Torus Experiment due to applied nonaxisymmetric magnetic fields and their plasma-induced increase by resonant field amplification and resistive wall mode destabilization. The measured decrease of the plasma toroidal angular momentum profile is compared to calculations of nonresonant drag torque based on the theory of neoclassical toroidal viscosity. Quantitative agreement between experiment and theory is found when the effect of toroidally trapped particles is included.

  9. Progress on large superconducting toroidal field coils

    Haubenreich, P.N.; Luton, J.N.; Thompson, P.B.; Beard, D.S.

    1979-01-01

    Large superconducting toroidal field coils of competing designs are being produced by six major industrial teams. In the US, teams headed by General Dynamics Convair, General Electric, and Westinghouse are under contract to design and fabricate one coil each to specifications established by the Large Coil Program. A facility for testing 6 coils in a toroidal array at fields to 8 to 12 tesla is under construction at Oak Ridge. Through an international agreement, EURATOM, Japan, and Switzerland will produce one coil each for testing with the US coils. Each test coil will have a 2.5 x 3.5 m D-shape winding bore and is designed to operate at a current of 10 to 18 kA at a peak field of 8T while subjected to pulsed fields of 0.14 T applied in 1.0 s. There are significant differences among the six coil designs: five use NbTi, one Nb 3 Sn; three are cooled by pool boiling helium, three by forced flow; five have welded or bolted stainless steel coil cases, one has aluminum plate structure. All are designed to be cryostable at 8T, with structural margin for extended operation. The three US coil teams are almost or completely finished with detailed design and are now procuring materials and setting up manufacturing equipment. The non-US teams are at various stages of verification testing and design. The GDC and GE coils are scheduled for delivery in the spring of 1981 and the others will be completed a year later. The 11-m diameter vessel at the test facility has been completed and major components of the test stand are being procured. Engineering and procurement to upgrade the helium liquifier-refrigerator system are under way

  10. Femtometer toroidal structures in nuclei

    Forest, J.L.; Pandharipande, V.R.; Pieper, S.C.; Wiringa, R.B.; Schiavilla, R.; Arriaga, A.

    1996-01-01

    The two-nucleon density distributions in states with isospin T=0, spin S=1, and projection M S =0 and ±1 are studied in 2 H, 3,4 He, 6,7 Li, and 16 O. The equidensity surfaces for M S =0 distributions are found to be toroidal in shape, while those of M S =±1 have dumbbell shapes at large density. The dumbbell shapes are generated by rotating tori. The toroidal shapes indicate that the tensor correlations have near maximal strength at r 3 He, 4 He, and 6 Li. The toroidal distribution has a maximum-density diameter of ∼1 fm and a half-maximum density thickness of ∼0.9 fm. Many realistic models of nuclear forces predict these values, which are supported by the observed electromagnetic form factors of the deuteron, and also predicted by classical Skyrme effective Lagrangians, related to QCD in the limit of infinite colors. Due to the rather small size of this structure, it could have a revealing relation to certain aspects of QCD. Experiments to probe this structure and its effects in nuclei are suggested. Pair distribution functions in other T,S channels are also discussed; those in T,S=1,1 have anisotropies expected from one-pion-exchange interactions. The tensor correlations in T,S=0,1 states are found to deplete the number of T,S=1,0 pairs in nuclei and cause a reduction in nuclear binding energies via many-body effects. copyright 1996 The American Physical Society

  11. Plasma Discharge in Toroidal System

    Usada, Widdi; Suryadi; Purwadi, Agus; Kasiyo

    1996-01-01

    A toroidal discharge apparatus has been made as an initial research in magnetic confinement system. This system consists of a capacitor, a RF source, an igniter system, a primary coil, a torus, and completed by Rogowski probe as a current detector. In this system, the discharge occurs when the minimum voltage is operated at 5 kV. The experiment result shows that the coupling factor is 0.35, it is proved that there is an equality between estimated and measurement results of the primary inductance i.e 8.5 μH

  12. Overview of toroidal momentum transport

    Peeters, A.G.; Hornsby, W.A.; Angioni, C.; Hein, T.; Kluy, N.; Strintzi, D.; Tardini, G.; Bortolon, A.; Camenen, Y.; Casson, F.J.; Snodin, A.P.; Szepesi, G.; Duval, B.; Fiederspiel, L.; Idomura, Y.; Mantica, P.; Parra, F.I.; Tala, T.; De Vries, P.; Weiland, J.

    2011-01-01

    Toroidal momentum transport mechanisms are reviewed and put in a broader perspective. The generation of a finite momentum flux is closely related to the breaking of symmetry (parity) along the field. The symmetry argument allows for the systematic identification of possible transport mechanisms. Those that appear to lowest order in the normalized Larmor radius (the diagonal part, Coriolis pinch, E x B shearing, particle flux, and up-down asymmetric equilibria) are reasonably well understood. At higher order, expected to be of importance in the plasma edge, the theory is still under development.

  13. Pellet injection and toroidal confinement

    1989-12-01

    The proceedings of a technical committee meeting on pellet injection and toroidal confinement, held in Gut Ising, Federal Republic of Germany, 24-26 October, 1988, are given in this report. Most of the major fusion experiments are using pellet injectors; these were reported at this meeting. Studies of confinement, which is favorably affected, impurity transport, radiative energy losses, and affects on the ion temperature gradient instability were given. Studies of pellet ablation and effects on plasma profiles were presented. Finally, several papers described present and proposed injection guns. Refs, figs and tabs

  14. Poloidal and toroidal plasmons and fields of multilayer nanorings

    Garapati, K. V.; Salhi, M.; Kouchekian, S.; Siopsis, G.

    2017-01-01

    Composite and janus type metallodielectric nanoparticles are increasingly considered as a means to control the spatial and temporal behavior of electromagnetic fields in diverse applications such as coupling to quantum emitters, achieving invisibility cloaks, and obtaining quantum correlations between qubits. We investigate the surface modes of a toroidal nanostructure and obtain the canonical plasmon dispersion relations and resonance modes for arbitrarily layered nanorings. Unlike particle plasmon eigenmodes in other geometries, the amplitudes of the eigenmodes of tori exhibit a distinct forward and backward coupling. We present the plasmon dispersion relations for several relevant toroidal configurations in the quasistatic limit and obtain the dominant retarded dispersion relations of a single ring for comparison, discuss mode complementarity and hybridization, and introduce two new types of toroidal particles in the form of janus nanorings. The resonance frequencies for the first few dominant modes of a ring composed of plasmon supporting materials such as gold, silver, and aluminum are provided and compared to those for a silicon ring. A generalized Green's function is obtained for multilayer tori allowing for calculation of the scattering response to interacting fields. Employing the Green's function, the scalar electric potential distribution corresponding to individual poloidal and toroidal modes in response to an arbitrarily polarized external field and the field of electrons is obtained. The results are applied to obtain the local density of states and decay rate of a dipole near the center of the torus.

  15. Poloidal and toroidal plasmons and fields of multilayer nanorings

    Garapati, K. V.; Salhi, M.; Kouchekian, S.; Siopsis, G.; Passian, A.

    2017-04-01

    Composite and janus type metallodielectric nanoparticles are increasingly considered as a means to control the spatial and temporal behavior of electromagnetic fields in diverse applications such as coupling to quantum emitters, achieving invisibility cloaks, and obtaining quantum correlations between qubits. We investigate the surface modes of a toroidal nanostructure and obtain the canonical plasmon dispersion relations and resonance modes for arbitrarily layered nanorings. Unlike particle plasmon eigenmodes in other geometries, the amplitudes of the eigenmodes of tori exhibit a distinct forward and backward coupling. We present the plasmon dispersion relations for several relevant toroidal configurations in the quasistatic limit and obtain the dominant retarded dispersion relations of a single ring for comparison, discuss mode complementarity and hybridization, and introduce two new types of toroidal particles in the form of janus nanorings. The resonance frequencies for the first few dominant modes of a ring composed of plasmon supporting materials such as gold, silver, and aluminum are provided and compared to those for a silicon ring. A generalized Green's function is obtained for multilayer tori allowing for calculation of the scattering response to interacting fields. Employing the Green's function, the scalar electric potential distribution corresponding to individual poloidal and toroidal modes in response to an arbitrarily polarized external field and the field of electrons is obtained. The results are applied to obtain the local density of states and decay rate of a dipole near the center of the torus.

  16. On the stability of motion of a gyrostat about a fixed point under the action of non symmetric fields: II

    Yehia, H.M.; Hassan. S.Z.

    2004-12-01

    The problem of motion under more general (not necessarily axisymmetric) fields was touched in a few occasions, mainly in the search of integrable cases. In we have studied the problem of motion of a heavy magnetized gyrostat carrying electric charges and acted upon by uniform electric and magnetic fields in addition to gravity. The equilibrium positions of the gyrostat have been found. The stability analysis was performed for some positions of equilibrium when the body is dynamically symmetric and the gyrostatic moment is directed along the axis of symmetry. In this work we study the stability for all the equilibrium positions under no restriction on the moments of inertia and the gyrostatic moment. (author)

  17. Dynamics of toroidal spiral strings around five-dimensional black holes

    Igata, Takahisa; Ishihara, Hideki

    2010-01-01

    We examine the separability of the Nambu-Goto equation for test strings in a shape of toroidal spiral in a five-dimensional Kerr-AdS black hole. In particular, for a 'Hopf loop' string which is a special class of the toroidal spiral strings, we show the complete separation of variables occurs in two cases, Kerr background and Kerr-AdS background with equal angular momenta. We also obtain the dynamical solution for the Hopf loop around a black hole and for the general toroidal spiral in Minkowski background.

  18. BPX toroidal field coil design

    Heitzenvoeder, D.J.

    1992-01-01

    This paper reports on the toroidal field (TF) coil system of the Burning Plasma Experiment (BPX) which consists of (18) beryllium copper magnets arrayed in a wedged configuration with a major radius of 2.6 meters and a field strength capability on axis of 9.0 Tesla. The toroidal array is constructed from six (3)-coil modules to facilitate remote recovery in the event of a magnet failure after nuclear activation precludes hands-on servicing. The magnets are of a modified Bitter plate design with partial cases of type 316-LN stainless steel welded with Inconel 182 weld wire. The coil turn plates are fabricated from CDA C17510 beryllium copper with optimized mechanical, thermal, and electrical characteristics. joints within the turns and between turns are made by welding with C17200 filler wire. Cryogenic cooling is employed to reduce power dissipation and to enhance performance. The magnets are cooled between experimental pulses by pressurized liquid nitrogen flowing through channels in the edges of the coil turns. This arrangement makes possible one full-power pulse per hour. Electrical insulation consists of polyimide-glass sheets bonded in place with vacuum-pressure impregnated epoxy/glass

  19. Electrostatics of a Family of Conducting Toroids

    Lekner, John

    2009-01-01

    An exact solution is found for the electrostatic potential of a family of conducting charged toroids. The toroids are characterized by two lengths "a" and "b", with "a" greater than or equal to "2b". They are closed, with no hole in the "doughnut". The results are obtained by considering the potential of two equal charges, displaced from the…

  20. Fast Dump of the ATLAS Toroids

    Dudarev, A; Volpini, Giovanni; Dudarev, Alexey; Kate, Herman Ten

    2010-01-01

    The toroidal magnet system of the ATLAS Detector at CERN consists of a Barrel Toroid (BT) and two End Cap Toroids (ECT-A and ECT-C). Each toroid is built up from eight racetrack coils wound with an aluminum stabilized NbTi conductor and indirectly cooled by forced flow liquid helium. The three toroids operate in series at 20.5 kA with a total stored energy of 1.5 GJ. In order to verify the reliability and effectiveness of the quench protection system, series of fast dump tests have been performed first of the single toroids and finally of the entire toroidal magnet system. In this paper a model to simulate the fast dump of the ATLAS toroids in single mode operation and in full system configuration is presented. The model is validated through comparison with measured data extracted from the ramp-and-quench runs. The calculated energy dissipation in the various coils is in very good agreement (within 1-2\\%) with the enthalpy changes estimated from the temperature measurements of the different parts of the cold ...

  1. Resonant MHD modes with toroidal coupling

    Connor, J.W.; Hastie, R.J.; Taylor, J.B.

    1990-07-01

    This is part 2 of a study of resonant perturbations, such as resistive tearing and ballooning modes, in a torus. These are described by marginal ideal mhd equations in the regions between resonant surfaces; matching across these surfaces provides the dispersion relation. In part 1 we described how all the necessary information from the ideal mhd calculations could be represented by a so-called E-matrix. We also described the calculation of this E-matrix for tearing modes (even parity in perturbed magnetic field) in a large aspect ratio torus. There the toroidal modes comprise coupled cylinder tearing modes and the E-matrix is a generalization of the familiar Δ' quantity in a cylinder. In the present paper we discuss resistive ballooning, or twisting-modes, which have odd-parity in perturbed magnetic field. We show that, unlike the tearing modes, these odd-parity modes are instrinsically toroidal and are not directly related to the odd-parity modes in a cylinder. This is evident from the analysis of the high-n limit in ballooning-space, where a transition from a stable Δ' to an unstable Δ' occurs for the twisting mode when the ballooning effect exceeds the interchange effect, which can occur even at large aspect ratio (as in a tokamak). Analysis of the high-n limit in coordinate space, rather than ballooning space, clarifies this singular behaviour and indicates how one may define twisting-mode Δ'. It also yields a prescription for treating low-n twisting modes and a method for calculating an E-matrix for resistive ballooning modes in a large aspect ratio tokamak. The elements of this matrix are given in terms of cylindrical tearing mode solutions

  2. OCLATOR (One Coil Low Aspect Toroidal Reactor)

    Yoshikawa, S.

    1980-02-01

    A new approach to construct a tokamak-type reactor(s) is presented. Basically the return conductors of toroidal field coils are eliminated and the toroidal field coil is replaced by one single large coil, around which there will be placed several tokamaks or other toroidal devices. The elimination of return conductors should, in addition to other advantages, improve the accessibility and maintainability of the tokamaks and offer a possible alternative to the search for special materials to withstand large neutron wall loading, as the frequency of changeover would be increased due to minimum downtime. It also makes it possible to have a low aspect ratio tokamak which should improve the ..beta.. limit, so that a low toroidal magnetic field strength might be acceptable, meaning that the NbTi superconducting wire could be used. This system is named OCLATOR (One Coil Low Aspect Toroidal Reactor).

  3. Toroidal effects on drift wave turbulence

    LeBrun, M.J.; Tajima, T.; Gray, M.G.; Furnish, G.; Horton, W.

    1992-09-23

    The universal drift instability and other drift instabilities driven by density and temperature gradients in a toroidal system are investigated in both linear and nonlinear regimes via particle simulation. Runs in toroidal and cylindrical geometry show dramatic differences in plasma behavior, primarily due to the toroidicity-induced coupling of rational surfaces through the poloidal mode number m. In the toroidal system studied, the eigenmodes are seen to possess (i) an elongated, nearly global radial extent (ii) a higher growth rate than in the corresponding cylindrical system, (iii) an eigenfrequency nearly constant with radius, (iv) a global temperature relaxation and enhancement of thermal heat conduction. Most importantly, the measured Xi shows an increase with radius and an absolute value on the order of that observed in experiment. On the basis of our observations, we argue that the increase in Xi with radius observed in experiment is caused by the global nature of heat convection in the presence of toroidicity-induced mode coupling.

  4. Toroidal effects on drift wave turbulence

    LeBrun, M.J.; Tajima, T.; Gray, M.G.; Furnish, G.; Horton, W.

    1992-01-01

    The universal drift instability and other drift instabilities driven by density and temperature gradients in a toroidal system are investigated in both linear and nonlinear regimes via particle simulation. Runs in toroidal and cylindrical geometry show dramatic differences in plasma behavior, primarily due to the toroidicity-induced coupling of rational surfaces through the poloidal mode number m. In the toroidal system studied, the eigenmodes are seen to possess (i) an elongated, nearly global radial extent (ii) a higher growth rate than in the corresponding cylindrical system, (iii) an eigenfrequency nearly constant with radius, (iv) a global temperature relaxation and enhancement of thermal heat conduction. Most importantly, the measured Xi shows an increase with radius and an absolute value on the order of that observed in experiment. On the basis of our observations, we argue that the increase in Xi with radius observed in experiment is caused by the global nature of heat convection in the presence of toroidicity-induced mode coupling

  5. Effects of toroidal coupling on the stability of tearing modes

    Carreras, B.; Hicks, H.R.; Lee, D.K.

    1980-06-01

    The time evolution of tearing modes in toroidal geometry is studied in the low-β and large aspect ratio limit. An initial value three-dimensional computer code, which numerically advances the reduced set of resistive magnetohydrodynamic equations is employed. Toroidicity has, in general, a destabilizing effect on tearing modes in this limit. A generalization of the Δ' formalism can be used to study the linear regime. The results obtained in this way are in very good agreement with the results from the initial value code. The nonlinear phase of the evolution is also followed numerically. In the case of strong interaction of different helicities, a larger region of stochastic magnetic field lines results than in the cylindrical geometry case

  6. Development of Toroidal Core Transformers

    de Leon, Francisco [New York Univ. (NYU), Brooklyn, NY (United States). Dept. of Electrical and Computer Engineering

    2014-08-01

    The original objective of this project was to design, build and test a few prototypes of single-phase dry-type distribution transformers of 25 kVA, 2.4 kV primary to 120 V transformers using cores made of a continuous steel strip shaped like a doughnut (toroid). At different points during the development of the project, the scope was enhanced to include the more practical case of a 25 kVA transformer for a 13.8 kV primary system voltage. Later, the scope was further expanded to design and build a 50 kVA unit to transformer voltage from 7.62 kV to 2x120 V. This is a common transformer used by Con Edison of New York and they are willing to test it in the field. The project officially started in September 2009 and ended in May 2014. The progress was reported periodically to DOE in eighteen quarterly reports. A Continuation Application was submitted to DOE in June 2010. In May 2011 we have requested a non-cost extension of the project. In December 2011, the Statement of Project Objectives (SOPO) was updated to reflect the real conditions and situation of the project as of 2011. A second Continuation Application was made and funding was approved in 2013 by DOE and the end date was extended to May 2014. The technical challenges that were overcome in this project include: the development of the technology to pass the impulse tests, derive a model for the thermal performance, produce a sound mechanical design, and estimate the inrush current. However, the greatest challenge that we faced during the development of the project was the complications of procuring the necessary parts and materials to build the transformers. The actual manufacturing process is relatively fast, but getting all parts together is a very lengthy process. The main products of this project are two prototypes of toroidal distribution transformers of 7.62 kV (to be used in a 13.8 kV system) to 2x120 V secondary (standard utilization voltage); one is rated at 25 kVA and the other at 50 kVA. The 25 k

  7. Closed expressions for the magnetic field of toroidal multipole configurations

    Sheffield, G.V.

    1983-04-01

    Closed analytic expressions for the vector potential and the magnetic field for the lower order toroidal multipoles are presented. These expressions can be applied in the study of tokamak plasma cross section shaping. An example of such an application is included. These expressions also allow the vacuum fields required for plasma equilibrium to be specified in a general form independent of a particular coil configuration

  8. NCSX Toroidal Field Coil Design

    Kalish M; Rushinski J; Myatt L; Brooks A; Dahlgren F; Chrzanowski J; Reiersen W; Freudenberg K.

    2005-01-01

    The National Compact Stellarator Experiment (NCSX) is an experimental device whose design and construction is underway at the Department of Energy's Princeton Plasma Physics Laboratory (PPPL). The primary coil systems for the NCSX device consist of the twisted plasma-shaping Modular Coils, the Poloidal Field Coils, and the Toroidal Field (TF) Coils. The TF Coils are D-shaped coils wound from hollow copper conductor, and vacuum impregnated with a glass-epoxy resin system. There are 18 identical, equally spaced TF coils providing 1/R field at the plasma. They operate within a cryostat, and are cooled by LN2, nominally, to 80K. Wedge shaped castings are assembled to the inboard face of these coils, so that inward radial loads are reacted via the nesting of each of the coils against their adjacent partners. This paper outlines the TF Coil design methodology, reviews the analysis results, and summarizes how the design and analysis support the design requirements

  9. Quasistatic evolution of compact toroids

    Sgro, A.G.; Spencer, R.L.; Lilliequist, C.

    1981-01-01

    Some results are presented of simulations of the post formation evolution of compact toroids. The simulations were performed with a 1-1/2 D transport code. Such a code makes explicit use of the fact that the shapes of the flux surfaces in the plasma change much more slowly than do the profiles of the physical variables across the flux surfaces. Consequently, assuming that the thermodynamic variables are always equilibrated on a flux surface, one may calculate the time evolution of these profiles as a function of a single variable that labels the flux surfaces. Occasionally, during the calculation these profiles are used to invert the equilibrium equation to update the shapes of the flux surfaces. In turn, these shapes imply certain geometric cofficients, such as A = 2 >, which contain the geometric information required by the 1-D equations

  10. Runaway electrons in toroidal discharges

    Knoepfel, H.

    1979-01-01

    Experimental and theoretical studies of runaway electrons in toroidal devices are reviewed here, with particular reference to tokamaks. The complex phenomenology of runaway effects, which have been the subject of research for the past twenty years, is organized within the framework of a number of physical models. The mechanisms and rates for runaway production are discussed first, followed by sections on runaway-driven kinetic relaxation processes and runaway orbit confinement. Next, the equilibrium and stability of runaway-dominated discharges are reviewed. Models for runaway production at early times in the discharge and the scaling of runaway phenomena to larger devices are also discussed. Finally, detection techniques and possible applications of runaways are mentioned. (author)

  11. Stationary shear flows in CGL anisotropic toroidal plasmas

    Pastukhov, V.P.; Ilgisonis, V.I.

    1996-01-01

    Recently a general structure of stationary shear flows in toroidal plasmas was obtained in the frame of ideal isotropic-pressure MHD model. The structure of the stationary plasma flows was shown to be determined by a hidden symmetry of MHD equations inherent in the toroidal systems with nested magnetic surfaces. However, the characteristic frequencies of the stationary plasma motion can considerably exceed the collisional frequencies in real plasma experiments. In this case the CGL collisionless MHD model seems to be more adequate than the simplified isotropic-pressure MHD model to describe the stationary plasma flows. In this paper we have generalized our approach to analyze the stationary plasma flows in the frame of the collisionless CGL model. We have found again that the hidden symmetry inherent in the toroidal topology results in two integral invariants which depend on two independent surface functions. The structure of stationary flows for CGL model is still the same as for isotropic MHD, however, the pressure tensor components satisfy a appreciably modifies the steady state force-balance equation. These results are applied to analyze the generalized equilibrium in axisymmetric (tokamak-like) magnetic confinement systems

  12. Compact toroid formation, compression, and acceleration

    Degnan, J.H.; Peterkin, R.E. Jr.; Baca, G.P.; Beason, J.D.; Bell, D.E.; Dearborn, M.E.; Dietz, D.; Douglas, M.R.; Englert, S.E.; Englert, T.J.; Hackett, K.E.; Holmes, J.H.; Hussey, T.W.; Kiuttu, G.F.; Lehr, F.M.; Marklin, G.J.; Mullins, B.W.; Price, D.W.; Roderick, N.F.; Ruden, E.L.; Sovinec, C.R.; Turchi, P.J.; Bird, G.; Coffey, S.K.; Seiler, S.W.; Chen, Y.G.; Gale, D.; Graham, J.D.; Scott, M.; Sommars, W.

    1993-01-01

    Research on forming, compressing, and accelerating milligram-range compact toroids using a meter diameter, two-stage, puffed gas, magnetic field embedded coaxial plasma gun is described. The compact toroids that are studied are similar to spheromaks, but they are threaded by an inner conductor. This research effort, named MARAUDER (Magnetically Accelerated Ring to Achieve Ultra-high Directed Energy and Radiation), is not a magnetic confinement fusion program like most spheromak efforts. Rather, the ultimate goal of the present program is to compress toroids to high mass density and magnetic field intensity, and to accelerate the toroids to high speed. There are a variety of applications for compressed, accelerated toroids including fast opening switches, x-radiation production, radio frequency (rf) compression, as well as charge-neutral ion beam and inertial confinement fusion studies. Experiments performed to date to form and accelerate toroids have been diagnosed with magnetic probe arrays, laser interferometry, time and space resolved optical spectroscopy, and fast photography. Parts of the experiment have been designed by, and experimental results are interpreted with, the help of two-dimensional (2-D), time-dependent magnetohydrodynamic (MHD) numerical simulations. When not driven by a second discharge, the toroids relax to a Woltjer--Taylor equilibrium state that compares favorably to the results of 2-D equilibrium calculations and to 2-D time-dependent MHD simulations. Current, voltage, and magnetic probe data from toroids that are driven by an acceleration discharge are compared to 2-D MHD and to circuit solver/slug model predictions. Results suggest that compact toroids are formed in 7--15 μsec, and can be accelerated intact with material species the same as injected gas species and entrained mass ≥1/2 the injected mass

  13. Numerical determination of axisymmetric toroidal magnetohydrodynamic equilibria

    Johnson, J.L.; Dalhed, H.E.; Greene, J.M.

    1978-07-01

    Numerical schemes for the determination of stationary axisymmetric toroidal equilibria appropriate for modeling real experimental devices are given. Iterative schemes are used to solve the elliptic nonlinear partial differential equation for the poloidal flux function psi. The principal emphasis is on solving the free boundary (plasma-vacuum interface) equilibrium problem where external current-carrying toroidal coils support the plasma column, but fixed boundary (e.g., conducting shell) cases are also included. The toroidal current distribution is given by specifying the pressure and either the poloidal current or the safety factor profiles as functions of psi. Examples of the application of the codes to tokamak design at PPPL are given

  14. Toroidal field ripple effects in large tokamaks

    Uckan, N.A.; Tsang, K.T.; Callen, J.D.

    1975-01-01

    In an experimental power reactor, the ripple produced by the finite number of toroidal field coils destroys the ideal axisymmetry of the configuration and is responsible for additional particle trapping, loss regions and plasma transport. The effects of toroidal field ripple on the plasma transport coefficient, the loss of alpha particles and energetic injection ions, and the relaxation of toroidal flows are investigated in a new and systematic way. The relevant results are applied to the ORNL-EPR reference design; the maximum ripple there of about 2.2 percent at the outer edge of the plasma column is found to be tolerable from plasma physics considerations

  15. Magnetohydrodynamic equilibrium of axisymmetric systems with toroidal rotation

    Mansur, N.L.P.

    1986-01-01

    A model for studying magnetohydrodynamic equilibrium of axisymetrically confined plasma with toroidal rotation, extended to the Grad. Shafranov equation is presented. The expression used for the scalar pressure is modifiec, and the influence of toroidal magnetic field is included, The equation for general motion of axisymetrically confined plasma, particularizing for rotation movements is described. Two cases are compared: one supposes the entropy as a function of poloidal magnetic flux and other supposes the temperature as a function of flux. The equations for these two cases obtaining a simplified expression by others approximations are established. The proposed model is compared with Shibata model, which uses density as function of flux, and with the ideal spheromak model. A set of cases taking in account experimental data is studied. (M.C.K.) [pt

  16. Stabilization of ballooning modes with sheared toroidal rotation

    Miller, R.L.; Waelbroeck, F.L.; Hassam, A.B.; Waltz, R.E.

    1995-01-01

    Stabilization of magnetohydrodynamic ballooning modes by sheared toroidal rotation is demonstrated using a shifted circle equilibrium model. A generalized ballooning mode representation is used to eliminate the fast Alfven wave, and an initial value code solves the resulting equations. The s-α diagram (magnetic shear versus pressure gradient) of ballooning mode theory is extended to include rotational shear. In the ballooning representation, the modes shift periodically along the field line to the next point of unfavorable curvature. The shift frequency (dΩ/dq, where Ω is the angular toroidal velocity and q is the safety factor) is proportional to the rotation shear and inversely proportional to the magnetic shear. Stability improves with increasing shift frequency and direct stable access to the second stability regime occurs when this frequency is approximately one-quarter to one-half the Alfven frequency, ω A =V A /qR. copyright 1995 American Institute of Physics

  17. ZONAL TOROIDAL HARMONIC EXPANSIONS OF EXTERNAL GRAVITATIONAL FIELDS FOR RING-LIKE OBJECTS

    Fukushima, Toshio, E-mail: Toshio.Fukushima@nao.ac.jp [National Astronomical Observatory, Ohsawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-08-01

    We present an expression of the external gravitational field of a general ring-like object with axial and plane symmetries such as oval toroids or annular disks with an arbitrary density distribution. The main term is the gravitational field of a uniform, infinitely thin ring representing the limit of zero radial width and zero vertical height of the object. The additional term is derived from a zonal toroidal harmonic expansion of a general solution of Laplace’s equation outside the Brillouin toroid of the object. The special functions required are the point value and the first-order derivative of the zonal toroidal harmonics of the first kind, namely, the Legendre function of the first kind of half integer degree and an argument that is not less than unity. We developed a recursive method to compute them from two pairs of seed values explicitly expressed by some complete elliptic integrals. Numerical experiments show that appropriately truncated expansions converge rapidly outside the Brillouin toroid. The truncated expansion can be evaluated so efficiently that, for an oval toroid with an exponentially damping density profile, it is 3000–10,000 times faster than the two-dimensional numerical quadrature. A group of the Fortran 90 programs required in the new method and their sample outputs are available electronically.

  18. OCLATOR (One Coil Low Aspect Toroidal Reactor)

    Yoshikawa, S.

    1980-02-01

    A new approach to construct a tokamak-type reactor(s) is presented. Basically the return conductors of toroidal field coils are eliminated and the toroidal field coil is replaced by one single large coil, around which there will be placed several tokamaks or other toroidal devices. The elimination of return conductors should, in addition to other advantages, improve the accessibility and maintainability of the tokamaks and offer a possible alternative to the search for special materials to withstand large neutron wall loading, as the frequency of changeover would be increased due to minimum downtime. It also makes it possible to have a low aspect ratio tokamak which should improve the β limit, so that a low toroidal magnetic field strength might be acceptable, meaning that the NbTi superconducting wire could be used. This system is named OCLATOR

  19. Steady state compact toroidal plasma production

    Turner, William C.

    1986-01-01

    Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.

  20. LASL toroidal reversed-field pinch programme

    Baker, D.A.; Buchenauer, C.J.; Burkhardt, L.C.

    1979-01-01

    The determination of the absolute energy loss due to radiation from impurities in the LASL toroidal reversed-field pinch experiment ZT-S is reported. The measurements show that over half the energy loss is accounted for by this mechanism. Thomson-scattering electron density measurements indicate only a gradual increase in temperature as the filling pressure is reduced, indicating an increased energy loss at lower pressures. Cylindrical and toroidal simulations of the experiment indicate either that a highly radiative pinch boundary or anomalous transport is needed to match the experimental results. New effects on the equilibrium due to plasma flows induced by the toroidal geometry are predicted by the toroidal simulations. The preliminary results on the low-temperature discharge cleaning of the ZT-S torus are reported. A description of the upgrade of the ZT-S experiment and the objectives, construction and theoretical predictions for the new ZT-40 experiment are given. (author)

  1. LASL toroidal reversed-field pinch program

    Baker, D.A.; Buchenauer, C.J.; Burkhardt, L.C.

    1978-01-01

    The determination of the absolute energy loss due to radiation from impurities in the LASL toroidal reversed-field pinch experiment ZT-S is reported. The measurements show over half of the energy loss is accounted for by this mechanism. Thomson scattering electron density measurements indicate only a gradual increase in temperature as the filling pressure is reduced indicating an increased energy loss at lower pressures. Cylindrical and toroidal simulations of the experiment indicate either that a highly radiative pinch boundary or anomalous transport are needed to match the experimental results. New effects on the equilibrium due to plasma flows induced by the toroidal geometry are predicted by the toroidal simulations. The preliminary results on the low temperature discharge cleaning of the ZT-S torus are reported. A description of the upgrade of the ZT-S experiment and the objectives, construction and theoretical predictions for the new ZT-40 experiment are given

  2. Influence of toroidal rotation on tearing modes

    Cai, Huishan; Cao, Jintao; Li, Ding

    2017-10-01

    Tearing modes stability analysis including toroidal rotation is studied. It is found that rotation affects the stability of tearing modes mainly through the interaction with resistive inner region of tearing mode. The coupling of magnetic curvature with centrifugal force and Coriolis force provides a perturbed perpendicular current, and a return parallel current is induced to affect the stability of tearing modes. Toroidal rotation plays a stable role, which depends on the magnitude of Mach number and adiabatic index Γ, and is independent on the direction of toroidal rotation. For Γ >1, the scaling of growth rate is changed for typical Mach number in present tokamaks. For Γ = 1 , the scaling keeps unchanged, and the effect of toroidal rotation is much less significant, compared with that for Γ >1. National Magnetic Confinement Fusion Science Program and National Science Foundation of China under Grants No. 2014GB106004, No. 2013GB111000, No. 11375189, No. 11075161 and No. 11275260, and Youth Innovation Promotion Association CAS.

  3. Bow-shaped toroidal field coils

    Bonanos, P.

    1981-05-01

    Design features of Bow-Shaped Toroidal Field Coils are described and compared with circular and D shaped coils. The results indicate that bow coils can produce higher field strengths, store more energy and be made demountable. The design offers the potential for the production of ultrahigh toroidal fields. Included are representative coil shapes and their engineering properties, a suggested structural design and an analysis of a specific case

  4. Unstable universal drift eigenmodes in toroidal plasmas

    Cheng, C.Z.; Chen, L.

    1979-08-01

    The eigenmode equation describing ballooning collisionless drift instabilities is analyzed both analytically and numerically. A new branch of eigenmodes, which corresponds to quasi-bound states due to the finite toroidicity, is shown to be destabilized by electron Landau damping for typical Tokamak parameters. This branch cannot be understood by the strong coupling approximation. However, the slab-like (Pearlstein-Berk type) branch is found to remain stable and experience enhanced shear damping due to finite toroidicity

  5. Spherical tokamak without external toroidal fields

    Kaw, P.K.; Avinash, K.; Srinivasan, R.

    2001-01-01

    A spherical tokamak design without external toroidal field coils is proposed. The tokamak is surrounded by a spheromak shell carrying requisite force free currents to produce the toroidal field in the core. Such equilibria are constructed and it is indicated that these equilibria are likely to have robust ideal and resistive stability. The advantage of this scheme in terms of a reduced ohmic dissipation is pointed out. (author)

  6. Perceived Emotional Intelligence and Learning Strategies in Spanish University Students: A New Perspective from a Canonical Non-symmetrical Correspondence Analysis

    María C. Vega-Hernández

    2017-10-01

    Full Text Available Recent studies have revealed that emotional competences are relevant to the student’s learning process and, more specifically, in the use of learning strategies (LSs. The aim of this study is twofold. First, we aim to analyze the relationship between perceived emotional intelligence (PEI and LSs applying the scales TMMS-24 and Abridged ACRA to a sample of 2334 Spanish university students, whilst also exploring possible gender differences. Second, we aim to propose a methodological alternative based on the Canonical non-symmetrical correspondence analysis (CNCA, as an alternative to the methods traditionally used in Psychology and Education. Our results show that PEI has an impact on the LS of the students. Male participants with high scores on learning support strategies are positively related to high attention, clarity, and emotional repair. However, the use of cognitive and control LS is related to low values on the PEI dimensions. For women, high scores on cognitive, control, and learning support LS are related to high emotional attention, whereas dimensions such as study habits and learning support are related to adequate emotional repair. Participants in the 18–19 and 22–23 years age groups showed similar behavior. High scores on learning support strategies are related to high values on three dimensions of the PEI, and high values of study habits show high values for clarity and low values for attention and repair. The 20–21 and older than 24 years age groups behaved similarly. High scores on learning support strategies are related to low values on clarity, and study habits show high values for clarity and repair. This article presents the relationship between PEI and LS in university students, the differences by gender and age, and CNCA as an alternative method to techniques used in this field to study this association.

  7. Perceived Emotional Intelligence and Learning Strategies in Spanish University Students: A New Perspective from a Canonical Non-symmetrical Correspondence Analysis.

    Vega-Hernández, María C; Patino-Alonso, María C; Cabello, Rosario; Galindo-Villardón, María P; Fernández-Berrocal, Pablo

    2017-01-01

    Recent studies have revealed that emotional competences are relevant to the student's learning process and, more specifically, in the use of learning strategies (LSs). The aim of this study is twofold. First, we aim to analyze the relationship between perceived emotional intelligence (PEI) and LSs applying the scales TMMS-24 and Abridged ACRA to a sample of 2334 Spanish university students, whilst also exploring possible gender differences. Second, we aim to propose a methodological alternative based on the Canonical non-symmetrical correspondence analysis (CNCA), as an alternative to the methods traditionally used in Psychology and Education. Our results show that PEI has an impact on the LS of the students. Male participants with high scores on learning support strategies are positively related to high attention, clarity, and emotional repair. However, the use of cognitive and control LS is related to low values on the PEI dimensions. For women, high scores on cognitive, control, and learning support LS are related to high emotional attention, whereas dimensions such as study habits and learning support are related to adequate emotional repair. Participants in the 18-19 and 22-23 years age groups showed similar behavior. High scores on learning support strategies are related to high values on three dimensions of the PEI, and high values of study habits show high values for clarity and low values for attention and repair. The 20-21 and older than 24 years age groups behaved similarly. High scores on learning support strategies are related to low values on clarity, and study habits show high values for clarity and repair. This article presents the relationship between PEI and LS in university students, the differences by gender and age, and CNCA as an alternative method to techniques used in this field to study this association.

  8. On-chip broadband ultra-compact optical couplers and polarization splitters based on off-centered and non-symmetric slotted Si-wire waveguides

    Haldar, Raktim; Mishra, V.; Dutt, Avik; Varshney, Shailendra K.

    2016-10-01

    In this work, we propose novel schemes to design on-chip ultra-compact optical directional couplers (DC) and broadband polarization beam splitters (PBS) based on off-centered and asymmetric dielectric slot waveguides, respectively. Slot dimensions and positions are optimized to achieve maximum coupling coefficients between two symmetric and non-symmetric slotted Si wire waveguides through overlap integral method. We observe >88% of enhancement in the coupling coefficients when the size-optimized slots are placed in optimal positions, with respect to the same waveguides with no slot. When the waveguides are parallel, in that case, a coupling length as short as 1.73 μm is accomplished for TM mode with the off-centered and optimized slots. This scheme enables us to design optical DC with very small footprint, L c ∼ 0.9 μm in the presence of S-bends. We also report a compact (L c ∼ 1.1 μm) on-chip broadband PBS with hybrid slots. Extinction ratios of 13 dB and 22.3 dB are realized with very low insertion loss (0.055 dB and 0.008 dB) for TM and TE modes at 1.55 μm, respectively. The designed PBS exhibits a bandwidth of 78 nm for the TM mode (C-and partial L-bands) and >100 nm for the TE mode (S + C + L wavelength bands). Such on-chip devices can be used to design compact photonic interconnects and quantum information processing units efficiently. We have also investigated the fabrication tolerances of the proposed devices and described the fabrication steps to realize such hybrid devices. Our results are in good agreement with 3D FDTD simulations.

  9. Low-n shear Alfven spectra in axisymmetric toroidal plasmas

    Cheng, C.Z.; Chance, M.S.

    1985-11-01

    In toroidal plasmas, the toroidal magnetic field is nonuniform over a magnetic surface and causes coupling of different poloidal harmonics. It is shown both analytically and numerically that the toroidicity not only breaks up the shear Alfven continuous spectrum, but also creates new, discrete, toroidicity-induced shear Alfven eigenmodes with frequencies inside the continuum gaps. Potential applications of the low-n toroidicity-induced shear Alfven eigenmodes on plasma heating and instabilities are addressed. 17 refs., 4 figs

  10. Anomalous transport in toroidal plasmas

    Punjabi, A.

    1989-12-01

    When the magnetic moment of particle is conserved, there are three mechanisms which cause anomalous transport. These are: variation of magnetic field strength in flux surface, variation of electrostatic potential in flux surface, and destruction of flux surface. The anomalous transport of different groups of particles resulting from each of these mechanisms is different. This fact can be exploited to determine the cause of transport operative in an experimental situation. This approach can give far more information on the transport than the standard confinement time measurements. To implement this approach, we have developed Monte Carlo codes for toroidal geometries. The equations of motion are developed in a set of non-canonical, practical Boozer co-ordinates by means of Jacobian transformations of the particle drift Hamiltonian equations of motion. Effects of collisions are included by appropriate stochastic changes in the constants of motion. Effects of the loop voltage on particle motions are also included. We plan to apply our method to study two problems: the problem of the hot electron tail observed in edge region of ZT-40, and the energy confinement time in TOKAPOLE II. For the ZT-40 problem three situations will be considered: a single mode in the core, a stochastic region that covers half the minor radius, a stochastic region that covers the entire plasma. A turbulent spectrum of perturbations based on the experimental data of TOKAPOLE II will be developed. This will be used to simulate electron transport resulting from ideal instabilities and resistive instabilities in TOKAPOLE II

  11. Anomalous transport in toroidal plasmas

    Punjabi, A.

    1991-01-01

    We have developed a Monte Carlo method to estimate the transport of different groups of particles for plasmas in toroidal geometries. This method can determine the important transport mechanisms driving the anomalous transport by comparing the numerical results with the experimental data. The important groups of particles whose transport can be estimated by this method include runaway electrons, thermal electrons, both passing and trapped diagnostic beam ions etc. The three basic mechanisms driving the anomalous transport are: spatial variation of magnetic field strength, spatial variation of electrostatic potential within the flux surfaces, and the loss of flux surfaces. The equation of motion are obtained from the drift hamiltonian. The equations of motion are developed in the canonical and in the non-canonical, practical co-ordinates as well. The effects of collisions are represented by appropriate stochastic changes in the constants of motion at each time-step. Here we present the results of application of this method to three cases: superathermal alphas in the rippled field of tokamaks, motion in the magnetic turbulence of takapole II, and transport in the stochastic fields of ZT40. This work is supported by DOE OFE and ORAU HBCU program

  12. International school of plasma physics course on instabilities and confinement in toroidal plasmas. Varenna (Italy), September 27-October 9, 1971

    1974-11-01

    The lectures of a Varenna Summer School about the theme Instabilities and Confinement in toroidal Plasmas are given. The topics included are: high-beta toroidal pinches, non-MHD instabilities and anomalous transport, analogy between turbulent transfer in velocity space and plasma collisioned transport in real space, the magnetohydrodynamic approach of plasma confinement in closed magnetic configurations, properties of isodynamical equilibrium configurations and their generalization, transport theory for toroidal plasmas, plasma physics, low-β toroidal machines, the neoclassical theory of transit time magnetic pumping, radio frequency heating of toroidal plasmas, plasma heating at lower hybrid frequency, RF-plasma heating with L-structures, numerical simulation, dynamical stabilization of low frequency waves in inhomogeneous plasmas, dynamic and feedback stabilization of plasmas and problems with nuclear fusion reactors

  13. Measurement of toroidal and poloidal plasma rotation in TCA

    Duval, B.P.; Joye, B.; Marchal, B.

    1991-01-01

    With optimal observation geometry we have measured both the toroidal and poloidal rotation velocities in the edge and in the bulk of the TCA plasma. Regular calibration and correction for variations in the spectrometer temperature permitted a measurement with an error of ∼0.5 km/s which is an order of magnitude smaller than the range of measured velocities. In general, changes in the velocities are observed to be stronger and faster in the plasma edge than in the plasma bulk. With increasing density, the toroidal velocity is observed to change sign and follow the plasma density, while the poloidal velocity increases. These two effects lead to an increase in the absolute value of the radial electric field. With very strong gas puffing, the toroidal velocity is observed to again reverse and tend to zero, an effect which is stronger as the gradient of the density ramp is increased. Comparison between gas puffing and high power AWH does not show a significant difference in the radial electric field that could be responsible for the large associated density rise, which still remains unexplained. (author) 4 figs., 2 refs

  14. Axisymmetric toroidal equilibrium with flow and anisotropic pressure

    Iacono, R.; Bondeson, A.; Troyon, F.; Gruber, R.

    1989-10-01

    Axisymmetric toroidal plasma equilibria with mass flows and anisotropic pressure are investigated. The equilibrium system is derived for a general functional form of the pressures, which includes both fluid models, such as the magnetohydrodynamic (MHD) and the double-adiabatic models, and Grad's guiding centre model. This allows for detailed comparisons between the models and clarifies how the 'first hyperbolic region', occurring in the fluid theory when the poloidal flow is of the order of the poloidal sound speed, can be eliminated in guiding centre theory. In the case of a pure toroidal rotation, macroscopic equations of state are derived from the guiding centre model, characterized by a parallel temperature that is constant on each magnetic surface and a perpendicular temperature that varies with the magnetic field. The outward centrifugal shifts of the magnetic axis and of the mass density profile, due to toroidal rotation, are increased by anisotropy. The guiding centre model shows that poloidal flow produces an inward shift of the density profile, in contrast with the MHD result. (author) 1 fig., 1 tab., 17 refs

  15. Toroidal plasmoid generation via extreme hydrodynamic shear.

    Gharib, Morteza; Mendoza, Sean; Rosenfeld, Moshe; Beizai, Masoud; Alves Pereira, Francisco J

    2017-11-28

    Saint Elmo's fire and lightning are two known forms of naturally occurring atmospheric pressure plasmas. As a technology, nonthermal plasmas are induced from artificially created electromagnetic or electrostatic fields. Here we report the observation of arguably a unique case of a naturally formed such plasma, created in air at room temperature without external electromagnetic action, by impinging a high-speed microjet of deionized water on a dielectric solid surface. We demonstrate that tribo-electrification from extreme and focused hydrodynamic shear is the driving mechanism for the generation of energetic free electrons. Air ionization results in a plasma that, unlike the general family, is topologically well defined in the form of a coherent toroidal structure. Possibly confined through its self-induced electromagnetic field, this plasmoid is shown to emit strong luminescence and discrete-frequency radio waves. Our experimental study suggests the discovery of a unique platform to support experimentation in low-temperature plasma science. Copyright © 2017 the Author(s). Published by PNAS.

  16. System design of toroidal field power supply of CDD tokamak

    Liu, Zheng Zhi

    1996-12-01

    This report deals with system design of Toroidal Field Power Supply of CDD tokamak (CDD-TFPS). The general design philosophy and design variations are introduced. After the outline of CDD-TFPS, the short-circuit calculation, the evaluation of converter parameters, the compatibility of converter and line are carried out. the specifications of major components, semi-conductor devices and accessories are given. High attention is paid to protection system. The design of sub-control and grounding system are described too. Some more general material for power supply design are attached in appendices for reference. (author). 30 tabs., 21 figs.

  17. System design of toroidal field power supply of CDD tokamak

    Liu, Zheng Zhi.

    1996-12-01

    This report deals with system design of Toroidal Field Power Supply of CDD tokamak (CDD-TFPS). The general design philosophy and design variations are introduced. After the outline of CDD-TFPS, the short-circuit calculation, the evaluation of converter parameters, the compatibility of converter and line are carried out. the specifications of major components, semi-conductor devices and accessories are given. High attention is paid to protection system. The design of sub-control and grounding system are described too. Some more general material for power supply design are attached in appendices for reference. (author). 30 tabs., 21 figs

  18. Long-wavelength microinstabilities in toroidal plasmas

    Tang, W.W.; Rewoldt, G.

    1993-01-01

    Realistic kinetic toroidal eigenmode calculations have been carried out to support a proper assessment of the influence of long-wavelength microturbulence on transport in tokamak plasmas. In order to efficiently evaluate large-scale kinetic behavior extending over many rational surfaces, significant improvements have been made to a toroidal finite element code used to analyze the fully two-dimensional (r,θ) mode structures of trapped-ion and toroidal ion temperature gradient (ITG) instabilities. It is found that even at very long wavelengths, these eigenmodes exhibit a strong ballooning character with the associated radial structure relatively insensitive to ion Landau damping at the rational surfaces. In contrast to the long-accepted picture that the radial extent of trapped-ion instabilities is characterized by the ion-gyroradius-scale associated with strong localization between adjacent rational surfaces, present results demonstrate that under realistic conditions, the actual scale is governed by the large-scale variations in the equilibrium gradients. Applications to recent measurements of fluctuation properties in TFTR L-mode plasmas indicate that the theoretical trends appear consistent with spectral characteristics as well as rough heuristic estimates of the transport level. Benchmarking calculations in support of the development of a three-dimensional toroidal gyrokinetic code indicate reasonable agreement with respect to both the properties of the eigenfunctions and the magnitude of the eigenvalues during the linear phase of the simulations of toroidal ITG instabilities

  19. Kinetic extensions of magnetohydrodynamic models for axisymmetric toroidal plasmas

    Cheng, C.Z.

    1989-04-01

    A nonvariational kinetic-MHD stability code (NOVA-K) has been developed to integrate a set of non-Hermitian integro-differential eigenmode equations due to energetic particles for axisymmetric toroidal plasmas in a general flux coordinate system with an arbitrary Jacobian. The NOVA-K code employs the Galerkin method involving Fourier expansions in the generalized poloidal angle θ and generalized toroidal angle /zeta/ directions, and cubic-B spline finite elements in the radial /Psi/ direction. Extensive comparisons with the existing variational ideal MHD codes show that the ideal MHD version of the NOVA-K code converges faster and gives more accurate results. The NOVA-K code is employed to study the effects of energetic particles on MHD-type modes: the stabilization of ideal MHD internal kink modes and the excitation of ''fishbone'' internal kink modes; and the alpha particle destabilization of toroidicity-induced Alfven eigenmodes (TAE) via transit resonances. Analytical theories are also presented to help explain the NOVA-K results. For energetic trapped particles generated by neutral beam injection (NBI) or ion cyclotron resonant heating (ICRH), a stability window for the n = 1 internal kink mode in the hot particle beta space exists even in the absence of the core ion finite Larmor radius effect. On the other hand, the trapped alpha particles are found to have negligible effects on the stability of the n = 1 internal kink mode, but the circulating alpha particles can strongly destabilize TAE modes via inverse Landau damping associated with the spatial gradient of the alpha particle pressure. 60 refs., 24 figs., 1 tab

  20. Effects of toroidicity on resistive tearing modes

    Izzo, R.; Monticello, D.A.; Manickam, J.; Strauss, H.R.; Grimm, R.; McGuire, K.

    1983-03-01

    A reduced set of resistive MHD equations is solved numerically in three dimensions to study the stability of tokamak plasmas. Toroidal effects are included self-consistently to leading and next order in inverse aspect ratio, epsilon. The equations satisfy an energy integral. In addition, the momentum equation yields the Grad-Shafranov equation correct to all orders in epsilon. Low beta plasma are studied using several different q-profiles. In all cases, the linear growth rates are reduced by finite toroidicity. Excellent agreement with resistive PEST is obtianed. In some cases, toroidal effects lead to complete stabilization of the mode. Nonlinear results show smaller saturated island widths for finite aspect ratio compared to the cylindrical limit. If the current channel is wide enough so as to produce steep gradients towards the outside of the plasma, both the finite aspect ratio cases and cylindrical cases disrupt

  1. PDX toroidal field coils stress analysis

    Nikodem, Z.D.; Smith, R.A.

    1975-01-01

    A method used in the stress analysis of the PDX toroidal field coil is developed. A multilayer coil design of arbitrary dimensions in the shape of either a circle or an oval is considered. The analytical model of the coil and the supporting coil case with connections to the main support structure is analyzed using the finite element technique. The three dimensional magnetic fields and the non-uniform body forces which are a loading condition on a coil due to toroidal and poloidal fields are calculated. The method of analysis permits rapid and economic evaluations of design changes in coil geometry as well as in coil support structures. Some results pertinent to the design evolution and their comparison are discussed. The results of the detailed stress analysis of the final coil design due to toroidal field, poloidal field and temperature loads are presented

  2. Toroidal mode-conversion in the ICRF

    Jaun, A.; Hellsten, T.; Chiu, S.C.

    1997-08-01

    Mode-conversion is studied in the ion-cyclotron range of frequencies (ICRF) taking into account the toroidal geometry relevant for tokamaks. The global wavefields obtained using the gyrokinetic toroidal PENN code illustrate how the fast wave propagates to the neighborhood of the ion-ion hybrid resonance, where it is converted to a slow wave which deposits the wave energy through resonant interactions with the particles. The power deposition profiles obtained are dramatically different from the toroidal resonance absorption, showing that Budden's model is not a good approximation in the torus. Radially and poloidally localized wavefield structures characteristic of slow wave eigenmodes are predicted and could in experiments be driven to large amplitudes so as to interact efficiently with fast particles. (author) 5 figs., 1 tab., 48 refs

  3. Acquisition system for the diagnostics data from a toroidal machine

    Moulin, B.

    1976-01-01

    The data acquisition system 'ARIANE' has been conceived by the SIG (Service d'Ionique Generale), for physical measurements on the toroidal machines PETULA and WEGA, which were designed to study the H.F. heating of pulsed plasmas. These systems are constitued of electronic modules which permit them to be adapted to different kinds of measurements, either by analogue channels or by pulse counting. The programmation of these systems, are achieved, either by multiswitches accessible manually on front panels, or by a computer which performs the numerical computations [fr

  4. Representation of magnetic fields with toroidal topology in terms of field-line invariants

    Lewis, H.R.

    1990-01-01

    Beginning with Boozer's representation of magnetic fields with toroidal topology [Phys. Fluids 26, 1288 (1983)], a general formalism is presented for the representation of any magnetic field with toroidal topology in terms of field-line invariants. The formalism is an application to the magnetic field case of results developed recently by Lewis et al. (submitted for publication to J. Phys. A) for arbitrary time-dependent Hamiltonian systems with one degree of freedom. Every magnetic field with toroidal topology can be associated with time-dependent Hamiltonian systems with one degree of freedom and every time-dependent Hamiltonian system with one degree of freedom can be associated with magnetic fields with toroidal topology. In the Hamiltonian context, given any particular function I(q,p,t), Lewis et al. derived those Hamiltonians for which I(q,p,t) is an invariant. In addition, for each of those Hamiltonians, they derived a function canonically conjugate to I(q,p,t) that is also an invariant. They applied this result to the case where I(q,p,t) is expressed as a function of two canonically conjugate functions. This general Hamiltonian formalism provides a basis for representing magnetic fields with toroidal topology in terms of field-line invariants. The magnetic fields usually contain plasma with flow and anisotropic pressure. A class of fields with or without rotational symmetry is identified for which there are magnetic surfaces. The formalism is developed for application to the case of vacuum magnetic fields

  5. Basic toroidal Effects on Alfven Wave Current in Small Aspect Ratio Tokamaks

    Burma, C.; Cuperman, S.; Komoshvili, K.

    1998-01-01

    The Alfven wave current drive (AWCD) in small aspect ratio Tokamaks is properly calculated, with consideration of the basic toroidicity effects present in (i) the dielectric tensor-operator (involving the strongly toroidal equilibrium profiles), (ii) the structure of the r.f. fields obtained as a solution of the wave equation (through Maxwell's equations' toroidal operators as well as the conversion rate and conversion layer location, depending also on the equilibrium profiles) and (iii) the formulation of the AWCD (which, besides its dependence on the r.f. fields - affected by toroidicity as mentioned at points (i) and (ii) - also requires the equilibrium-magnetic-surface averaging of non-resonant forces involved). Thus, we consider consistent equilibrium profiles with neo-classical conductivity corresponding to an ohmic START-like discharge; use a resistive (anisotropic) MHD dielectric tensor-operator Edith practically no limitations, adequate to describe the plasma response in the pre-heated stage ; solve numerically the 2(1/2)D full- wave equation by the aid of an advanced finite element code developed in; and evaluate the AWCD by the aid of the recently proposed, quite general formulation holding in the case of strongly toroidal fusion devices and including contributions due to helicity injection, momentum transfer and plasma Bow. A general discussion of the results obtained in this work is presented

  6. Models for large superconducting toroidal magnet systems

    Arendt, F.; Brechna, H.; Erb, J.; Komarek, P.; Krauth, H.; Maurer, W.

    1976-01-01

    Prior to the design of large GJ toroidal magnet systems it is appropriate to procure small scale models, which can simulate their pertinent properties and allow to investigate their relevant phenomena. The important feature of the model is to show under which circumstances the system performance can be extrapolated to large magnets. Based on parameters such as the maximum magnetic field and the current density, the maximum tolerable magneto-mechanical stresses, a simple method of designing model magnets is presented. It is shown how pertinent design parameters are changed when the toroidal dimensions are altered. In addition some conductor cost estimations are given based on reactor power output and wall loading

  7. Toroidal Precession as a Geometric Phase

    J.W. Burby and H. Qin

    2012-09-26

    Toroidal precession is commonly understood as the orbit-averaged toroidal drift of guiding centers in axisymmetric and quasisymmetric configurations. We give a new, more natural description of precession as a geometric phase effect. In particular, we show that the precession angle arises as the holonomy of a guiding center's poloidal trajectory relative to a principal connection. The fact that this description is physically appropriate is borne out with new, manifestly coordinate-independent expressions for the precession angle that apply to all types of orbits in tokamaks and quasisymmetric stellarators alike. We then describe how these expressions may be fruitfully employed in numerical calculations of precession.

  8. A model for the neoclassical toroidal viscosity effect on Edge plasma toroidal rotation

    Miron, I.G. [National Institute for Laser, Plasma and Radiation Physics, Euratom-MEdC Association, Bucharest (Romania)

    2013-11-15

    A semianalytic expression for the edge plasma angular toroidal rotation frequency that includes the neoclassical toroidal viscosity braking influence is obtained. Based on the model presented in a previous paper [I.G. Miron, Contrib. Plasma Phys. 53, 214 (2013)], the less destabilizing error field spectrum is found in order to minimize the nonlinear effect of the NTV on the toroidal rotation of the edge of the plasma. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. The effect of sheared toroidal rotation on pressure driven magnetic islands in toroidal plasmas

    Hegna, C. C. [Departments of Engineering Physics and Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2016-05-15

    The impact of sheared toroidal rotation on the evolution of pressure driven magnetic islands in tokamak plasmas is investigated using a resistive magnetohydrodynamics model augmented by a neoclassical Ohm's law. Particular attention is paid to the asymptotic matching data as the Mercier indices are altered in the presence of sheared flow. Analysis of the nonlinear island Grad-Shafranov equation shows that sheared flows tend to amplify the stabilizing pressure/curvature contribution to pressure driven islands in toroidal tokamaks relative to the island bootstrap current contribution. As such, sheared toroidal rotation tends to reduce saturated magnetic island widths.

  10. Quench propagation and protection analysis of the ATLAS Toroids

    Dudarev, A; Gavrilin, A V; ten Kate, H H J; Baynham, D Elwyn; Courthold, M J D; Lesmond, C

    2000-01-01

    The ATLAS superconducting magnet system consists of the Barrel Toroid, two End Cap Toroids and the Central Solenoid. However, the Toroids of eight coils each are magnetically separate systems to the Central Solenoid. The Toroids are electrically connected in series and energized by a single power supply. The quench protection system is based on the use of relatively small external dump resistances in combination with quench-heaters activated after a quench event detection to initiate the inte...

  11. New material equations for electromagnetism with toroid polarizations

    Dubovik, V.M.; Martsenyuk, M.A.; Saha, B.

    1999-09-01

    With regard to the toroid contributions, a modified system of equations of electrodynamics moving continuous media has been obtained. Alternative formalisms to introduce the toroid moment contributions in the equations of electromagnetism has been worked out. The two four-potential formalism has been developed. Lorentz transformation laws for the toroid polarizations has been given. Covariant form of equations of electrodynamics of continuous media with toroid polarizations has been written. (author)

  12. A novel approach to calculate inductance and analyze magnetic flux density of helical toroidal coil applicable to Superconducting Magnetic Energy Storage systems (SMES)

    Alizadeh Pahlavani, M.R.; Shoulaie, A.

    2010-01-01

    In this paper, formulas are proposed for the self and mutual inductance calculations of the helical toroidal coil (HTC) by the direct and indirect methods at superconductivity conditions. The direct method is based on the Neumann's equation and the indirect approach is based on the toroidal and the poloidal components of the magnetic flux density. Numerical calculations show that the direct method is more accurate than the indirect approach at the expense of its longer computational time. Implementation of some engineering assumptions in the indirect method is shown to reduce the computational time without loss of accuracy. Comparison between the experimental measurements and simulated results for inductance, using the direct and the indirect methods indicates that the proposed formulas have high reliability. It is also shown that the self inductance and the mutual inductance could be calculated in the same way, provided that the radius of curvature is >0.4 of the minor radius, and that the definition of the geometric mean radius in the superconductivity conditions is used. Plotting contours for the magnetic flux density and the inductance show that the inductance formulas of helical toroidal coil could be used as the basis for coil optimal design. Optimization target functions such as maximization of the ratio of stored magnetic energy with respect to the volume of the toroid or the conductor's mass, the elimination or the balance of stress in some coordinate directions, and the attenuation of leakage flux could be considered. The finite element (FE) approach is employed to present an algorithm to study the three-dimensional leakage flux distribution pattern of the coil and to draw the magnetic flux density lines of the HTC. The presented algorithm, due to its simplicity in analysis and ease of implementation of the non-symmetrical and three-dimensional objects, is advantageous to the commercial software such as ANSYS, MAXWELL, and FLUX. Finally, using the

  13. System for calibration of SPEAR transport line toroids

    Huang, T.V.; Smith, H.; Crook, K.

    1977-01-01

    A one nanosecond pulse generator was developed for calibration of the intensity monitors (toroids) in the SPEAR transport lines. The generator, located at the toroid, is simple, low cost and resistant to radiation. The generator and its connection to the standard SLAC toroid calibration system are described

  14. Toroidal groups line bundles, cohomology and quasi-Abelian varieties

    Kopfermann, Klaus

    2001-01-01

    Toroidal groups are the connecting link between torus groups and any complex Lie groups. Many properties of complex Lie groups such as the pseudoconvexity and cohomology are determined by their maximal toroidal subgroups. Quasi-Abelian varieties are meromorphically separable toroidal groups. They are the natural generalisation of the Abelian varieties. Nevertheless, their behavior can be completely different as the wild groups show.

  15. On the stabilization of toroidal pinches by finite larmor radius effects and toroidal magnetic field

    Singh, R.; Weiland, J.

    1989-01-01

    The radial eigenvalue problem for internal modes in a large aspect ratio toriodal pinch has been solved. A particularly stable regime for a weak but nonzero toroidal magnetic field has been found. (31 refs.)

  16. Anisotropic diffusion in a toroidal geometry

    Fischer, Paul F

    2005-01-01

    As part of the Department of Energy's applications oriented SciDAC project, three model problems have been proposed by the Center for Extended Magnetohydrodynamics Modeling to test the potential of numerical algorithms for challenging magnetohydrodynamics (MHD) problems that are required for future fusion development. The first of these, anisotropic diffusion in a toroidal geometry, is considered in this note

  17. A steady-state axisymmetric toroidal system

    Hirano, K.

    1984-01-01

    Conditions for achieving a steady state in an axisymmetric toroidal system are studied with emphasis on a very-high-beta field-reversed configuration. The analysis is carried out for the electromotive force produced by the Ohkawa current that is induced by neutral-beam injection. It turns out that, since the perpendicular component of the current j-vectorsub(perpendicular) to the magnetic field can be generated automatically by the diamagnetic effect, only the parallel component j-vectorsub(parallel) must be driven by the electromotive force. The drive of j-vectorsub(parallel) generates shear in the field line so that the pure toroidal field on the magnetic axis is rotated towards the plasma boundary and matched to the external field lines. This matching condition determines the necessary amount of injection beam current and power. It is demonstrated that a very-high-beta field-reversed configuration requires only a small amount of current-driving beam power because almost all the toroidal current except that close to the magnetic axis is carried by the diamagnetic current due to high beta. A low-beta tokamak, on the other hand, needs very high current-driving power since most of the toroidal current is composed of j-vectorsub(parallel) which must be driven by the beam. (author)

  18. Design of the TPX outboard toroidal limiters

    Schaubel, K.M.; Anderson, P.M.; Baxi, C.B.

    1995-01-01

    The Tokamak Physics Experiment outboard limiter system incorporates the passive stabilizer plates, the ripple armor, the toroidal break and the support structures. These components are designed to withstand substantial steady state heat loads and high mechanical forces caused by plasma disruptions. The design of these components has been developed to deal with the challenging thermal, structural and remote handling requirements

  19. Escape of magnetic toroids from the Sun

    Bieber, John W.; Rust, David M.

    1996-01-01

    Analysis of heliospheric magnetic fields at 1 AU shows that 10 24 Mx of net toroidal flux escapes from the Sun per solar cycle. This rate is compared with the apparent rate of flux emergence at the solar surface, and it is concluded that escaping toroids will remove at least 20% of the emerging flux, and may remove as much as 100% of emerging flux if multiple eruptions occur on the toroids. The data imply that flux escapes the Sun with an efficiency far exceeding Parker's upper limit estimate of 3%. Toroidal flux escape is almost certainly the source of the observed overwinding of the interplanetary magnetic field spiral. Two mechanisms to facilitate net flux escape are discussed: helicity charging to push open the fields and flux transport with reconnection to close them off. We estimate the Sun will shed ∼2x10 45 Mx 2 of magnetic helicity per solar cycle, leading to a mean helicity density of 100 Mx 2 cm -3 at 1 AU, which agrees well with observations

  20. Toroidal 12 cavity klystron : a novel approach

    Hazarika, A.B.R.

    2013-01-01

    A toroidal 12 cavity klystron is designed to provide with high energy power with the high frequency microwave RF- plasma generated from it. The cavities are positioned in clock hour positions. The theoretical modeling and designing is done to study the novel approach. (author)

  1. Curvature driven instabilities in toroidal plasmas

    Andersson, P.

    1986-11-01

    The electromagnetic ballooning mode, the curvature driven trapped electron mode and the toroidally induced ion temperature gradient mode have been studies. Eigenvalue equations have been derived and solved both numerically and analytically. For electromagnetic ballooning modes the effects of convective damping, finite Larmor radius, higher order curvature terms, and temperature gradients have been investigated. A fully toroidal fluid ion model has been developed. It is shown that a necessary and sufficient condition for an instability below the MHD limit is the presence of an ion temperature gradient. Analytical dispersion relations giving results in good agreement with numerical solutions are also presented. The curvature driven trapped electron modes are found to be unstable for virtually all parameters with growth rates of the order of the diamagnetic drift frequency. Studies have been made, using both a gyrokinetic ion description and the fully toroidal ion model. Both analytical and numerical results are presented and are found to be in good agreement. The toroidally induced ion temperature gradients modes are found to have a behavior similar to that of the curvature driven trapped electron modes and can in the electrostatic limit be described by a simple quadratic dispersion equation. (author)

  2. Discussion of discrete D shape toroidal coil

    Kaiho, Katsuyuki; Ohara, Takeshi; Agatsuma, Ko; Onishi, Toshitada

    1988-01-01

    A novel design for a toroidal coil, called the D shape coil, was reported by J. File. The coil conductors are in pure tension and then subject to no bending moment. This leads to a smaller number of emf supports in a simpler configuration than that with the conventional toroidal coil of circular cross-section. The contours of the D shape are given as solutions of a differential equation. This equation includes the function of the magnetic field distribution in the conductor region which is inversely proportional to the winding radius. It is therefore important to use the exact magnetic field distribution. However the magnetic field distribution becomes complicated when the D shape toroidal coil is comprised of discrete coils and also depends on the D shape configuration. A theory and a computer program for designing the practical pure-tension toroidal coil are developed. Using this computer code, D shape conductors are calculated for various numbers of discrete coils and the results are compared. Electromagnetic forces in the coils are also calculated. It is shown that the hoop stress in the conductors depends only on the total ampere-turns of the coil when the contours of the D shape are similar. (author)

  3. ATLAS Barrel Toroid magnet reached nominal field

    2006-01-01

     On 9 November the barrel toroid magnet reached its nominal field of 4 teslas, with an electrical current of 21 000 amperes (21 kA) passing through the eight superconducting coils as shown on this graph

  4. ATLAS: Full power for the toroid magnet

    2006-01-01

    The 9th of November was a memorable day for ATLAS. Just before midnight, the gigantic Barrel toroid magnet reached its nominal field of 4 teslas in the coil windings, with an electrical current of 21000 amperes (21 kA) passing through the eight superconducting coils (as seen on the graph). This achievement was obtained after several weeks of commissioning. The ATLAS Barrel Toroid was first cooled down for about six weeks in July-August to -269°C (4.8 K) and then powered up step-by-step in successive test sessions to 21 kA. This is 0.5 kA above the current required to produce the nominal magnetic field. Afterwards, the current was safely switched off and the stored magnetic energy of 1.1 gigajoules was dissipated in the cold mass, raising its temperature to a safe -218°C (55 K). 'We can now say that the ATLAS Barrel Toroid is ready for physics,' said Herman ten Kate, project leader for the ATLAS magnet system. The ATLAS barrel toroid magnet is the result of a close collaboration between the magnet la...

  5. Long-wavelength microinstabilities in toroidal plasmas

    Tang, W.M.; Rewoldt, G.

    1993-01-01

    Realistic kinetic toroidal eigenmode calculations have been carried out to support a proper assessment of the influence of long-wavelength microturbulence on transport in tokamak plasmas. In order to efficiently evaluate large-scale kinetic behavior extending over many rational surfaces, significant improvements have been made to a toroidal finite element code used to analyze the fully two-dimensional (r,θ) mode structures of trapped-ion and toroidal ion temperature gradient (ITG) instabilities. It is found that even at very long wavelengths, these eigenmodes exhibit a strong ballooning character with the associated radial structure relatively insensitive to ion Landau damping at the rational surfaces. In contrast to the long-accepted picture that the radial extent of trapped-ion instabilities is characterized by the ion-gyroradius-scale associated with strong localization between adjacent rational surfaces, present results demonstrate that under realistic conditions, the actual scale is governed by the large-scale variations in the equilibrium gradients. Applications to recent measurements of fluctuation properties in Tokamak Fusion Test Reactor (TFTR) [Plasma Phys. Controlled Nucl. Fusion Res. (International Atomic Energy Agency, Vienna, 1985), Vol. 1, p. 29] L-mode plasmas indicate that the theoretical trends appear consistent with spectral characteristics as well as rough heuristic estimates of the transport level. Benchmarking calculations in support of the development of a three-dimensional toroidal gyrokinetic code indicate reasonable agreement with respect to both the properties of the eigenfunctions and the magnitude of the eigenvalues during the linear phase of the simulations of toroidal ITG instabilities

  6. Relativistic stars with purely toroidal magnetic fields

    Kiuchi, Kenta; Yoshida, Shijun

    2008-01-01

    We investigate the effects of the purely toroidal magnetic field on the equilibrium structures of the relativistic stars. The basic equations for obtaining equilibrium solutions of relativistic rotating stars containing purely toroidal magnetic fields are derived for the first time. To solve these basic equations numerically, we extend the Cook-Shapiro-Teukolsky scheme for calculating relativistic rotating stars containing no magnetic field to incorporate the effects of the purely toroidal magnetic fields. By using the numerical scheme, we then calculate a large number of the equilibrium configurations for a particular distribution of the magnetic field in order to explore the equilibrium properties. We also construct the equilibrium sequences of the constant baryon mass and/or the constant magnetic flux, which model the evolution of an isolated neutron star as it loses angular momentum via the gravitational waves. Important properties of the equilibrium configurations of the magnetized stars obtained in this study are summarized as follows: (1) For the nonrotating stars, the matter distribution of the stars is prolately distorted due to the toroidal magnetic fields. (2) For the rapidly rotating stars, the shape of the stellar surface becomes oblate because of the centrifugal force. But, the matter distribution deep inside the star is sufficiently prolate for the mean matter distribution of the star to be prolate. (3) The stronger toroidal magnetic fields lead to the mass shedding of the stars at the lower angular velocity. (4) For some equilibrium sequences of the constant baryon mass and magnetic flux, the stars can spin up as they lose angular momentum.

  7. Shear-Alfven dynamics of toroidally confined plasmas. Part A

    Hazeltine, R.D.; Meiss, J.D.

    1984-08-01

    Recent developments in the stability theory of toroidally confined plasmas are reviewed, with the intention of providing a picture comprehensible to non-specialists. The review considers a class of low-frequency, electromagnetic disturbances that seem especially pertinent to modern high-temperature confinement experiments. It is shown that such disturbances are best unified and understood through consideration of a single, exact fluid moment: the shear-Alfven law. Appropriate versions of this law and its corresponding closure relations are derived - essentially from first principles - and applied in a variety of mostly, but not exclusively, linear contexts. Among the specific topics considered are: flux coordinates (including Hamada coordinates), the Newcomb solubility condition. Shafranov geometry, magnetic island evolution, reduced MHD and its generalizations, drift-kinetic electron response, classical tearing, twisting, and kink instabilities, pressure-modified tearing instability (Δ-critical), collisionless and semi-collisional tearing modes, the ballooning representation in general geometry, ideal ballooning instability, Mercier criterion, near-axis expansions, the second stability region, and resistive and kinetic ballooning modes. The fundamental importance of toroidal topology and curvature is stressed

  8. Hamiltonian description of toroidal magnetic fields in vacuum

    Lewis, H.R.; Bates, J.W.

    1996-01-01

    An investigation of vacuum magnetic fields in toroidal geometry has been initiated. Previously, the general form of the magnetic scalar potential for fields regular at the poloidal axis was given. Here, these results have been expanded to obtain the magnetic scalar potential in a vacuum region that may surround a toroidal current distribution. Using this generalized magnetic scalar potential in conjunction with Boozer's canonical representation of a magnetic field, a field-line Hamiltonian for nonaxisymmetric vacuum fields has been derived. These fields axe being examined using a novel, open-quotes time-dependentclose quotes perturbation theory, which permits the iterative construction of invariants associated with magnetic field-line Hamiltonians that consist of an axisymmetric zeroth-order term, plus a nonaxisymmetric perturbation. By choosing appropriate independent variables, an explicit constructive procedure is developed which involves only a single canonical transformation. Such invariants are of interest because they provide a means of investigating the topology of magnetic field lines. Our objective is to elucidate the existence of magnetic surfaces for nonaxisymmetric vacuum configurations, as well as to provide an approach for studying the onset of stochastic behavior

  9. MHD stability properties of a system of reduced toroidal MHD equations

    Maschke, E.K.; Morros Tosas, J.; Urquijo, G.

    1993-01-01

    A system of reduced toroidal magneto-hydrodynamic (MHD) equations is derived from a general scalar representation of the complete MHD system, using an ordering in terms of the inverse aspect ratio ε of a toroidal plasma. It is shown that the energy principle for the reduced equations is identical with the usual energy principle of the complete MHD system, to the appropriate order in ε. Thus, the reduced equations have the same ideal MHD stability limits as the full MHD equations. (authors). 6 refs

  10. Tokamak equilibria with non-parallel flow in a triangularity-deformed axisymmetric toroidal coordinate system

    Ap Kuiroukidis

    2018-01-01

    Full Text Available We consider a generalized Grad–Shafranov equation (GGSE in a triangularity-deformed axisymmetric toroidal coordinate system and solve it numerically for the generic case of ITER-like and JET-like equilibria with non-parallel flow. It turns out that increase of the triangularity improves confinement by leading to larger values of the toroidal beta and the safety factor. This result is supported by the application of a criterion for linear stability valid for equilibria with flow parallel to the magnetic field. Also, the parallel flow has a weaker stabilizing effect.

  11. Effect of toroidal plasma flow and flow shear on global MHD modes

    Chu, M.S.; Greene, J.M.; Jensen, T.H.; Miller, R.L.; Bondeson, A.; Johnson, R.W.; Mauel, M.E.

    1995-01-01

    The effect of a subsonic toroidal flow on the linear magnetohydrodynamic stability of a tokamak plasma surrounded by an external resistive wall is studied. A complex non-self-adjoint eigenvalue problem for the stability of general kink and tearing modes is formulated, solved numerically, and applied to high β tokamaks. Results indicate that toroidal plasma flow, in conjunction with dissipation in the plasma, can open a window of stability for the position of the external wall. In this window, stable plasma beta values can significantly exceed those predicted by the Troyon scaling law with no wall. Computations utilizing experimental data indicate good agreement with observations

  12. On steady poloidal and toroidal flows in tokamak plasmas

    McClements, K. G.; Hole, M. J.

    2010-01-01

    The effects of poloidal and toroidal flows on tokamak plasma equilibria are examined in the magnetohydrodynamic limit. ''Transonic'' poloidal flows of the order of the sound speed multiplied by the ratio of poloidal magnetic field to total field B θ /B can cause the (normally elliptic) Grad-Shafranov (GS) equation to become hyperbolic in part of the solution domain. It is pointed out that the range of poloidal flows for which the GS equation is hyperbolic increases with plasma beta and B θ /B, thereby complicating the problem of determining spherical tokamak plasma equilibria with transonic poloidal flows. It is demonstrated that the calculation of the hyperbolicity criterion can be easily modified when the assumption of isentropic flux surfaces is replaced with the more tokamak-relevant one of isothermal flux surfaces. On the basis of the latter assumption, a simple expression is obtained for the variation of density on a flux surface when poloidal and toroidal flows are simultaneously present. Combined with Thomson scattering measurements of density and temperature, this expression could be used to infer information on poloidal and toroidal flows on the high field side of a tokamak plasma, where direct measurements of flows are not generally possible. It is demonstrated that there are four possible solutions of the Bernoulli relation for the plasma density when the flux surfaces are assumed to be isothermal, corresponding to four distinct poloidal flow regimes. Finally, observations and first principles-based theoretical modeling of poloidal flows in tokamak plasmas are briefly reviewed and it is concluded that there is no clear evidence for the occurrence of supersonic poloidal flows.

  13. Neoclassical Drift of Circulating Orbits Due toToroidal Electric Field in Tokamaks

    Qin, Hong; Guan, Xiaoyin; Fisch, Nathaniel J.

    2011-01-01

    In tokamaks, Ware pinch is a well known neoclassical effect for trapped particles in response to a toroidal electric field. It is generally believed that there exists no similar neoclassical effect for circulating particles without collisions. However, this belief is erroneous, and misses an important effect. We show both analytically and numerically that under the influence of a toroidal electric field parallel to the current, the circulating orbits drift outward toward the outer wall with a characteristic velocity O ((var e psilon) -1 ) larger than the E x B velocity, where (var e psilon) is the inverse aspect-ratio of a tokamak. During a RF overdrive, the toroidal electric field is anti-parallel to the current. As a consequence, all charged particles, including backward runaway electrons, will drift inward towards the inner wall.

  14. Development of compact toroids injector for direct plasma controls

    Azuma, K. [Mitsubishi Heavy Industries Ltd., Takasago (Japan); Oda, Y. [Mitsubishi Heavy Industries Ltd., Takasago (Japan); Onozuka, M. [Mitsubishi Heavy Industries Ltd., Takasago (Japan); Uyama, T. [Himeji Inst. of Tech. (Japan); Nagata, M. [Himeji Inst. of Tech. (Japan); Fukumoto, N. [Himeji Inst. of Tech. (Japan)

    1995-12-31

    The application of the compact toroids injector for direct plasma controls has been investigated. The compact toroids injection can fuel particles directly into the core of the plasma and modify the plasma profiles at the desired locations. The acceleration tests of the compact toroids have been conducted at Himeji Institute of Technology. The tests showed that the hydrogen compact toroid was accelerated up to 80km/s and the plasma density of the compact toroid was compressed to 1.2 x 10{sup 21}m{sup -3}. (orig.).

  15. Development of compact toroids injector for direct plasma controls

    Azuma, K.; Oda, Y.; Onozuka, M.; Uyama, T.; Nagata, M.; Fukumoto, N.

    1995-01-01

    The application of the compact toroids injector for direct plasma controls has been investigated. The compact toroids injection can fuel particles directly into the core of the plasma and modify the plasma profiles at the desired locations. The acceleration tests of the compact toroids have been conducted at Himeji Institute of Technology. The tests showed that the hydrogen compact toroid was accelerated up to 80km/s and the plasma density of the compact toroid was compressed to 1.2 x 10 21 m -3 . (orig.)

  16. The linear stability analysis of MHD models in axisymmetric toroidal geometry

    Manickam, J.; Grimm, R.C.; Dewar, R.L.

    1981-01-01

    A computational model to analyze the linear stability properties of general toroidal systems in the ideal magnetohydrodynamic limits is presented. This model includes an explicit treatment of the asymptotic singular behaviour at rational surfaces. It is verified through applications to internal kink modes. (orig.)

  17. Formation of compact toroidal configurations for magnetic confinement of high temperature plasmas

    Fuentes, N.O.; Rodrigo, A.B.

    1986-01-01

    The formation stage of inverted magnetic field toroidal configurations (FRC) for hot plasmas confinement using a low energy linear theta pinch is studied. The diagnostic techniques used are based on optical spectroscopy, ultrarapid photography, magnetic probes and excluded flux compensated bonds. The generalities of the present research program, the used diagnostic techniques and the results obtained are discussed. (Author)

  18. Toroidal magnetic confinement of non-neutral plasmas

    Yoshida, Zensho; Ogawa, Yuichi; Morikawa, Junji; Himura, Haruhiko; Kondo, Shigeo; Nakashima, Chihiro; Kakuno, Shuichi; Iqbal, Muhamad; Volponi, Francesco; Shibayama, Norihisa; Tahara, Shigeru

    1999-01-01

    A new method of toroidal non-neutral plasma trap has been developed with applying the chaos-induced radial transport of particles near a magnetic null point. A pure electron plasma is produced by injecting an electron beam. The poloidal gyroradius of an electron at the energy of 1 keV is of order 10 mm, which determines the length scale of the chaotic region. Amongst various applications of toroidal non-neutral plasmas, a possibility of producing very high-β plasma, which is suitable for advanced fusion, has been examined. The self-electric field of a non-neutral plasma can generate a strong shear flow. When the flow velocity is comparable to the Alfven speed (which is smaller than the ion sound speed, if β>1), a high-β equilibrium can be produced in which the plasma pressure is primarily balanced by the dynamic pressure of the flow. This configuration is described by a generalized Bernoulli law

  19. Generation of toroidal pre-heat plasma

    Ikeda, Nagayasu; Tamaru, Ken; Nagata, Akiyoshi.

    1979-01-01

    The characteristics of toroidal plasma in the initial stage of electric discharge were investigated. A small toroidal-pinch system was used for the present work. A magnetic probe was used to measure the magnetic field. The time of beginning of discharge was determined by observing the variation of the magnetic field. The initial gas pressure dependence of the induced electric field regions, in which electric discharge can be caused, was studied. It is necessary to increase the initial induced electric field for starting discharge. The delay time of large current discharge was measured, and it was about 2 microsecond. Dependences of the electric fields at the beginning of discharge on the charging voltage of capacitors, on the initial gas pressure, and on the discharge frequency were studied. The formation mechanism of plasma column was analyzed. (Kato, T.)

  20. Toroidal charge exchange recombination spectroscopy on EAST

    Ye, Minyou, E-mail: yemy@ustc.edu.cn [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Li, Yingying [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Yu, Yi [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Shi, Yuejiang [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); WCI for Fusion Theory, National Fusion Research Institute, 52 Eoeun-Dong, Yusung-Gu, Daejeon 305-333 (Korea, Republic of); Lyu, Bo; Fu, Jia [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Du, Xuewei; Yin, Xianghui; Zhang, Yi; Wang, Qiuping [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wan, Baonian [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2015-10-15

    A toroidal charge exchange recombination spectroscopy (CXRS) diagnostic, on the basis of a heating neutral beam injector (NBI), is constructed on EAST tokamak. Simulation of Spectra (SOS) code is used to design and evaluate the diagnostic performance. 30 spatial channels work simultaneously in recent experiment, which covers a radial region from 1.55 m to 2.30 m in the cross section. The CXRS has a radial resolution of 1–3.5 cm from core to edge. The acquisition time is typically 10 ms, limited by the poor photon statistics. The diagnostic can observe not only the normal C{sup 5+} emission line at 529.1 nm but also any interested wavelength in the range of 400–700 nm. In this work, a brief overview on the R&D and the instrument performance for the toroidal CXRS diagnostic is described, together with first results.

  1. Form coefficient of helical toroidal solenoids

    Amelin, V.Z.; Kunchenko, V.B.

    1982-01-01

    For toroidal solenoids with continuous spiral coil, winded according to the laws of equiinclined and simple cylindrical spirals with homogeneous, linearly increasing to the coil periphery and ''Bitter'' distribution of current density, the analytical expressions for the dependence between capacity consumed and generated magnetic field, expressions for coefficients of form similar to Fabry coefficient for cylindrical solenoids are obtained and dependence of the form coefficient and relative volume of solenoid conductor on the number of revolutions of screw line per one circumvention over the large torus radius is also investigated. Analytical expressions of form coefficients and graphical material permit to select the optimum geometry as to capacity consumed both for spiral (including ''force-free'') and conventional toroidal solenoids of magnetic systems in thermonulear installations

  2. Reynolds stress of localized toroidal modes

    Zhang, Y.Z.; Mahajan, S.M.

    1995-02-01

    An investigation of the 2D toroidal eigenmode problem reveals the possibility of a new consistent 2D structure, the dissipative BM-II mode. In contrast to the conventional ballooning mode, the new mode is poloidally localized at π/2 (or -π/2), and possesses significant radial asymmetry. The radial asymmetry, in turn, allows the dissipative BM-II to generate considerably larger Reynolds stress as compared to the standard slab drift type modes. It is also shown that a wide class of localized dissipative toroidal modes are likely to be of the dissipative BM-II nature, suggesting that at the tokamak edge, the fluctuation generated Reynolds stress (a possible source of poloidal flow) can be significant

  3. Ballooning instabilities in toroidally linked mirror systems

    Hastie, R.J.; Watson, C.J.H.

    1977-01-01

    This paper examines the stability against ballooning modes of plasma equilibria in toroidally linked mirror configurations consisting of a number of quadrupole minimum-B mirrors linked toroidally. On the basis of the Kruskal-Oberman energy principle, a class of displacements is identified which are potentially unstable, and a necessary criterion for stability is derived. The criterion is obtained from the eigenvalues of an ordinary differential equation, which determines the variation of the displacement along a field line. The coefficients in the equation are determined by the configuration, and by inserting various model configurations, estimates are obtained of the maximum value of β consistent with stability. In cases of interest, quite high β-values are obtained. (author)

  4. Reynolds stress of localized toroidal modes

    Zhang, Y.Z.; Mahajan, S.M.

    1995-01-01

    An investigation of the 2D toroidal eigenmode problem reveals the possibility of a new consistent 2D structure, the dissipative BM-II mode. In contrast to the conventional ballooning mode, the new mode is poloidally localized at π/2 (or -π/2), and possesses significant radial asymmetry. The radial asymmetry, in turn, allows the dissipative BM-II to generate considerably larger Reynolds stress as compared to the standard slab drift type modes. It is also shown that a wide class of localized dissipative toroidal modes are likely to be of the dissipative BM-II nature, suggesting that at the tokamak edge, the fluctuation generated Reynolds stress (a possible source of poloidal flow) can be significant. (author). 15 refs

  5. Heterotic free fermionic and symmetric toroidal orbifold models

    Athanasopoulos, P.; Faraggi, A.E. [Department of Mathematical Sciences, University of Liverpool,Liverpool L69 7ZL (United Kingdom); Nibbelink, S. Groot [Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München,80333 München (Germany); Mehta, V.M. [Institute for Theoretical Physics, University of Heidelberg,69120 Heidelberg (Germany)

    2016-04-07

    Free fermionic models and symmetric heterotic toroidal orbifolds both constitute exact backgrounds that can be used effectively for phenomenological explorations within string theory. Even though it is widely believed that for ℤ{sub 2}×ℤ{sub 2} orbifolds the two descriptions should be equivalent, a detailed dictionary between both formulations is still lacking. This paper aims to fill this gap: we give a detailed account of how the input data of both descriptions can be related to each other. In particular, we show that the generalized GSO phases of the free fermionic model correspond to generalized torsion phases used in orbifold model building. We illustrate our translation methods by providing free fermionic realizations for all ℤ{sub 2}×ℤ{sub 2} orbifold geometries in six dimensions.

  6. TORFA - toroidal reactor for fusion applications

    Jassby, D.L.

    1980-09-01

    The near-term goal of the US controlled fusion program should be the development, for practical applications, of an intense, quasi-steady, reliable 14-MeV neutron source with an electrical utilization efficiency at least 10 times larger than the value characterizing beam/solid-target neutron generators. This report outlines a method for implementing that goal, based on tokamak fusion reactors featuring resistive toroidal-field coils designed for ease of demountability

  7. METHODS TO DEVELOP A TOROIDAL SURFACE

    DANAILA Ligia

    2017-05-01

    Full Text Available The paper work presents two practical methods to draw the development of a surface unable to be developed applying classical methods of Descriptive Geometry, the toroidal surface, frequently met in technical practice. The described methods are approximate ones; the development is obtained with the help of points. The accuracy of the methods is given by the number of points used when drawing. As for any other approximate method, when practically manufactured the development may need to be adjusted on site.

  8. Unstable universal drift eigenmodes in toroidal plasmas

    Cheng, C.Z.; Chen, L.

    1980-01-01

    The eigenmode equation describing ballooning collisionless drift instabilities is analyzed both analytically and numerically. A new branch of eigenmodes, which corresponds to quasi-bound states due to toroidal coupling effects such as ion delB drifts, is shown to be destabilized by electron Landau damping for typical tokamak parameters. This branch cannot be understood by the strong coupling approximation. However, the slab-like (Pearlstein--Berk-type) branch is found to remain stable and experience enhanced shear damping

  9. Stellarator approach to toroidal plasma confinement

    Johnson, J.L.

    1981-12-01

    An overview is presented of the development and current status of the stellarator approach to controlled thermonuclear confinement. Recent experimental, theoretical, and systems developments have made this concept a viable option for the evolution of the toroidal confinement program. Some experimental study of specific problems associated with departure from two-dimensional symmetry must be undertaken before the full advantages and opportunities of steady-state, net-current-free operation can be realized

  10. Finite toroidal flow generated by unstable tearing mode in a toroidal plasma

    Hao, G. Z., E-mail: haogz@swip.ac.cn; Wang, A. K.; Xu, Y. H.; He, H. D.; Xu, M.; Qu, H. P.; Peng, X. D.; Xu, J. Q.; Qiu, X. M. [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041 (China); Liu, Y. Q. [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Sun, Y. [Institute of Plasma Physics, Chinese Academic of Sciences, P.O. Box 1126, Hefei 230031 (China); Cui, S. Y. [School of Mathematics and Statistics Science, Ludong University, Yantai 264025 (China)

    2014-12-15

    The neoclassical toroidal plasma viscosity torque and electromagnetic torque, generated by tearing mode (TM) in a toroidal plasma, are numerically investigated using the MARS-Q code [Liu et al., Phys. Plasmas 20, 042503 (2013)]. It is found that an initially unstable tearing mode can intrinsically drive a toroidal plasma flow resulting in a steady state solution, in the absence of the external momentum input and external magnetic field perturbation. The saturated flow is in the order of 0.5%ω{sub A} at the q=2 rational surface in the considered case, with q and ω{sub A} being the safety factor and the Alfven frequency at the magnetic axis, respectively. The generation of the toroidal flow is robust, being insensitive to the given amplitude of the perturbation at initial state. On the other hand, the flow amplitude increases with increasing the plasma resistivity. Furthermore, the initially unstable tearing mode is fully stabilized by non-linear interaction with the self-generated toroidal flow.

  11. Superconducting magnets for toroidal fusion reactors

    Haubenreich, P.N.

    1980-01-01

    Fusion reactors will soon be employing superconducting magnets to confine plasma in which deuterium and tritium (D-T) are fused to produce usable energy. At present there is one small confinement experiment with superconducting toroidal field (TF) coils: Tokamak 7 (T-7), in the USSR, which operates at 4 T. By 1983, six different 2.5 x 3.5-m D-shaped coils from six manufacturers in four countries will be assembled in a toroidal array in the Large Coil Test Facility (LCTF) at Oak Ridge National Laboratory (ORNL) for testing at fields up to 8 T. Soon afterwards ELMO Bumpy Torus (EBT-P) will begin operation at Oak Ridge with superconducting TF coils. At the same time there will be tokamaks with superconducting TF coils 2 to 3 m in diameter in the USSR and France. Toroidal field strength in these machines will range from 6 to 9 T. NbTi and Nb 3 Sn, bath cooling and forced flow, cryostable and metastable - various designs are being tried in this period when this new application of superconductivity is growing and maturing

  12. Current disruption in toroidal devices

    1979-07-01

    Attempts at raising the density or the plasma current in a tokamak above certain critical values generally result in termination of the discharge by a disruption. This sudden end of the plasma current and plasma confinement is accompanied by large induced voltages and currents in the outer structures which, in large tokamaks, can only be handled with considerable effort, and which will probably only be tolerable in reactors as rare accidents. Because of its crucial importance for the construction and operation of tokamaks, this phenomenon and its theoretical interpretation were the subject of a three-day symposium organized by the International Atomic Energy Agency and Max-Planck-Institut fuer Plasmaphysik at Garching from February 14 to 16. (orig./HT)

  13. Motion of a compact toroid inside a cylindrical flux conserver

    Jarboe, T.R.; Henins, I.; Hoida, H.W.; Linford, R.K.; Marshall, J.; Platts, D.A.; Sherwood, A.R.

    1980-10-13

    Compact toroids have been generated in a cylindrical resistive flux conserver. They are observed to rotate so that their major axis is perpendicular to the axis of the flux conserver. Subsequently they remain stationary and their magnetic fields decay with a time constant of about 100 ..mu..s. This is the first observation of the predicted tipping mode and its saturation when no external fields are present. The compact toroids contain toroidal fields and are initially prolate in shape.

  14. Motion of a compact toroid inside a cylindrical flux conserver

    Jarboe, T.R.; Henins, I.; Hoida, H.W.; Linford, R.K.; Marshall, J.; Platts, D.A.; Sherwood, A.R.

    1980-01-01

    Compact toroids have been generated in a cylindrical resistive flux conserver. They are observed to rotate so that their major axis is perpendicular to the axis of the flux conserver. Subsequently they remain stationary and their magnetic fields decay with a time constant of about 100 μs. This is the first observation of the predicted tipping mode and its saturation when no external fields are present. The compact toroids contain toroidal fields and are initially prolate in shape

  15. Application of plasma focus device to compression of toroidal plasma

    Ikuta, Kazunari

    1980-01-01

    A new concept of compressing a toroidal plasma using a plasma focus device is considered. Maximum compression ratio of toroidal plasma is determined merely by the initial density ratio of the toroidal plasma to a sheet plasma in a focus device because of the Rayleigh-Taylor instability. An initiation senario of plasma-linear is also proposed with a possible application of this concepts to the creation of a burning plasma in reversed field configurations, i.e., burning plasma vortex. (author)

  16. Ballooning instabilities in tokamaks with sheared toroidal flows

    Waelbroeck, F.L.; Chen, L.

    1990-11-01

    The stability of ballooning modes in the presence of sheared toroidal flows is investigated. The eigenmodes are shown to be related by a Fourier transformation to the non-exponentially growing Floquet solutions found by Cooper. It is further shown that the problem cannot be reduced further than to a two dimensional partial differential equation. Next, the generalized ballooning equation is solved analytically for a circular tokamak equilibrium with sonic flows, but with a small rotation shear compared to the sound speed. With this ordering, the centrifugal forces are comparable to the pressure gradient forces driving the instability, but coupling of the mode with the sound wave is avoided. A new stability criterion is derived which explicitly demonstrates that flow shear is stabilizing at constant centrifugal force gradient. 34 refs

  17. Toroidal bubbles with circulation in ideal hydrodynamics: A variational approach

    Ruban, V.P.; Juul Rasmussen, J.

    2003-01-01

    Incompressible, inviscid, irrotational, unsteady flows with circulation Gamma around a distorted toroidal bubble are considered. A general variational principle that determines the evolution of the bubble shape is formulated. For a two-dimensional (2D) cavity with a constant area A, exact...... pseudodifferential equations of motion are derived, based on variables that determine a conformal mapping of the unit circle exterior into the region occupied by the fluid. A closed expression for the Hamiltonian of the 2D system in terms of canonical variables is obtained. Stability of a stationary drifting 2D...... hollow vortex is demonstrated, when the gravity is small, gA(3/2)/Gamma(2)circulation-dominated regime of three-dimensional flows a simplified Lagrangian is suggested, inasmuch as the bubble shape is well described by the center line R(xi,t) and by an approximately circular cross section...

  18. Structure of DNA toroids and electrostatic attraction of DNA duplexes

    Cherstvy, A G

    2005-01-01

    DNA-DNA electrostatic attraction is considered as the driving force for the formation of DNA toroids in the presence of DNA condensing cations. This attraction comes from the DNA helical charge distribution and favours hexagonal toroidal cross-sections. The latter is in agreement with recent cryo-electron microscopy studies on DNA condensed with cobalt hexammine. We treat the DNA-DNA interactions within the modern theory of electrostatic interaction between helical macromolecules. The size and thickness of the toroids is calculated within a simple model; other models of stability of DNA toroids are discussed and compared

  19. The SSC superconducting air core toroid design development

    Fields, T.; Carroll, A.; Chiang, I.H.; Frank, J.S.; Haggerty, J.; Littenberg, L.; Morse, W.; Strand, R.C.; Lau, K.; Weinstein, R.; McNeil, R.; Friedman, J.; Hafen, E.; Haridas, P.; Kendall, H.W.; Osborne, L.; Pless, I.; Rosenson, L.; Pope, B.; Jones, L.W.; Luton, J.N.; Bonanos, P.; Marx, M.; Pusateri, J.A.; Favale, A.; Gottesman, S.; Schneid, E.; Verdier, R.

    1990-01-01

    Superconducting air core toroids show great promise for use in a muon spectrometer for the SSC. Early studies by SUNY at Stony Brook funded by SSC Laboratory, have established the feasibility of building magnets of the required size. The toroid spectrometer consists of a central toroid with two end cap toroids. The configuration under development provides for muon trajectory measurement outside the magnetic volume. System level studies on support structure, assembly, cryogenic material selection, and power are performed. Resulting selected optimal design and assembly is described. 4 refs., 6 figs

  20. Form factor of some types of toroidal solenoids

    Koryavko, V.I.; Litvinenko, Yu.A.

    1979-01-01

    Obtained were the type of dependence between consumed power and formed field for toroidal helical-wound solenoids and the expression for the form factor analogous to the Fabry coefficient for cylindrical solenoids. Determined were optimum dimensions of the helical winding of ''forceless'' toroidal solenoids satisfying the condition of the formation of maximum field at minimum consumed power. Investigations also covered some types of conventional toroidal solenoids. Presented in the paper diagrams permitted to chose dimensions of the considered toroidal solenoids according to their consumed power and winding material volume

  1. Toroidal plasma enhanced CVD of diamond films

    Zvanya, John; Cullen, Christopher; Morris, Thomas; Krchnavek, Robert R.; Holber, William; Basnett, Andrew; Basnett, Robert; Hettinger, Jeffrey

    2014-01-01

    An inductively coupled toroidal plasma source is used as an alternative to microwave plasmas for chemical vapor deposition of diamond films. The source, operating at a frequency of 400 kHz, synthesizes diamond films from a mixture of argon, methane, and hydrogen. The toroidal design has been adapted to create a highly efficient environment for diamond film deposition: high gas temperature and a short distance from the sample to the plasma core. Using a toroidal plasma geometry operating in the medium frequency band allows for efficient (≈90%) coupling of AC line power to the plasma and a scalable path to high-power and large-area operation. In test runs, the source generates a high flux of atomic hydrogen over a large area, which is favorable for diamond film growth. Using a deposition temperature of 900–1050 °C and a source to sample distance of 0.1–2.0 cm, diamond films are deposited onto silicon substrates. The results showed that the deposition rate of the diamond films could be controlled using the sample temperature and source to sample spacing. The results also show the films exhibit good-quality polycrystalline diamond as verified by Raman spectroscopy, x-ray diffraction, and scanning electron microscopy. The scanning electron microscopy and x-ray diffraction results show that the samples exhibit diamond (111) and diamond (022) crystallites. The Raman results show that the sp 3 peak has a narrow spectral width (FWHM 12 ± 0.5 cm −1 ) and that negligible amounts of the sp 2 band are present, indicating good-quality diamond films

  2. Liquid toroidal drop under uniform electric field

    Zabarankin, Michael

    2017-06-01

    The problem of a stationary liquid toroidal drop freely suspended in another fluid and subjected to an electric field uniform at infinity is addressed analytically. Taylor's discriminating function implies that, when the phases have equal viscosities and are assumed to be slightly conducting (leaky dielectrics), a spherical drop is stationary when Q=(2R2+3R+2)/(7R2), where R and Q are ratios of the phases' electric conductivities and dielectric constants, respectively. This condition holds for any electric capillary number, CaE, that defines the ratio of electric stress to surface tension. Pairam and Fernández-Nieves showed experimentally that, in the absence of external forces (CaE=0), a toroidal drop shrinks towards its centre, and, consequently, the drop can be stationary only for some CaE>0. This work finds Q and CaE such that, under the presence of an electric field and with equal viscosities of the phases, a toroidal drop having major radius ρ and volume 4π/3 is qualitatively stationary-the normal velocity of the drop's interface is minute and the interface coincides visually with a streamline. The found Q and CaE depend on R and ρ, and for large ρ, e.g. ρ≥3, they have simple approximations: Q˜(R2+R+1)/(3R2) and CaE∼3 √{3 π ρ / 2 } (6 ln ⁡ρ +2 ln ⁡[96 π ]-9 )/ (12 ln ⁡ρ +4 ln ⁡[96 π ]-17 ) (R+1 ) 2/ (R-1 ) 2.

  3. Review of the Advanced Toroidal Facility program

    Lyon, J.F.; Murakami, M.

    1987-01-01

    This report summarizes the history and design goals of the Advanced Toroidal Facility (ATF). The ATF is nearing completion at ORNL with device completion expected in May 1987 and first useful plasma operation in June/July 1987. ATF is a moderate-aspect-ratio torsatron, the world's largest stellarator facility with R = 2.1 m, α bar = 0.3 m and B = 2 T (5-s pulse) or 1 T (steady-state capability). It has been specifically designed to support the US tokamak program by studying important toroidal confinement issues in a similar magnetic geometry that allows external control of the magnetic configuration properties and their radial profiles: transform, shear, well depth, shaping, axis topology, etc. ATF will operate in a current-free model which allows separation of current-driven and pressure-driven plasma behavior. It also complements the world stellarator program in its magnetic configuration (between Heliotron-E and W VII-AS) and its capabilities (large size, good access, steady state capability, second stability access, etc.). For both roles ATF will require high-power long-pulse heating to carry out its physics goals since the high power NBI pulse is limited to 0.3 s. The ATF program focuses on demonstrating the principles of high-beta, steady-state operation in toroidal geometry through its study of: (1) scaling of beta limits with magnetic configuration properties and the plasma behavior in the second stability regime; (2) transport scaling at low collisionality and the role/control of electric field; (3) control of plasma density and impurities using divertors; (4) plasma heating with NBI, ECH, ICH, and plasma fueling with gas puffing and pellet injection; and (5) optimization of the magnetic configuration

  4. Transport and Dynamics in Toroidal Fusion Systems

    Sovinec, Carl

    2016-01-01

    The study entitled, 'Transport and Dynamics in Toroidal Fusion Systems,' (TDTFS) applied analytical theory and numerical computation to investigate topics of importance to confining plasma, the fourth state of matter, with magnetic fields. A central focus of the work is how non-thermal components of the ion particle distribution affect the 'sawtooth' collective oscillation in the core of the tokamak magnetic configuration. Previous experimental and analytical research had shown and described how the oscillation frequency decreases and amplitude increases, leading to 'monster' or 'giant' sawteeth, when the non-thermal component is increased by injecting particle beams or by exciting ions with imposed electromagnetic waves. The TDTFS study applied numerical computation to self-consistently simulate the interaction between macroscopic collective plasma dynamics and the non-thermal particles. The modeling used the NIMROD code [Sovinec, Glasser, Gianakon, et al., J. Comput. Phys. 195, 355 (2004)] with the energetic component represented by simulation particles [Kim, Parker, Sovinec, and the NIMROD Team, Comput. Phys. Commun. 164, 448 (2004)]. The computations found decreasing growth rates for the instability that drives the oscillations, but they were ultimately limited from achieving experimentally relevant parameters due to computational practicalities. Nonetheless, this effort provided valuable lessons for integrated simulation of macroscopic plasma dynamics. It also motivated an investigation of the applicability of fluid-based modeling to the ion temperature gradient instability, leading to the journal publication [Schnack, Cheng, Barnes, and Parker, Phys. Plasmas 20, 062106 (2013)]. Apart from the tokamak-specific topics, the TDTFS study also addressed topics in the basic physics of magnetized plasma and in the dynamics of the reversed-field pinch (RFP) configuration. The basic physics work contributed to a study of two

  5. Transport and Dynamics in Toroidal Fusion Systems

    Sovinec, Carl [Univ. of Wisconsin, Madison, WI (United States)

    2016-09-07

    The study entitled, "Transport and Dynamics in Toroidal Fusion Systems," (TDTFS) applied analytical theory and numerical computation to investigate topics of importance to confining plasma, the fourth state of matter, with magnetic fields. A central focus of the work is how non-thermal components of the ion particle distribution affect the "sawtooth" collective oscillation in the core of the tokamak magnetic configuration. Previous experimental and analytical research had shown and described how the oscillation frequency decreases and amplitude increases, leading to "monster" or "giant" sawteeth, when the non-thermal component is increased by injecting particle beams or by exciting ions with imposed electromagnetic waves. The TDTFS study applied numerical computation to self-consistently simulate the interaction between macroscopic collective plasma dynamics and the non-thermal particles. The modeling used the NIMROD code [Sovinec, Glasser, Gianakon, et al., J. Comput. Phys. 195, 355 (2004)] with the energetic component represented by simulation particles [Kim, Parker, Sovinec, and the NIMROD Team, Comput. Phys. Commun. 164, 448 (2004)]. The computations found decreasing growth rates for the instability that drives the oscillations, but they were ultimately limited from achieving experimentally relevant parameters due to computational practicalities. Nonetheless, this effort provided valuable lessons for integrated simulation of macroscopic plasma dynamics. It also motivated an investigation of the applicability of fluid-based modeling to the ion temperature gradient instability, leading to the journal publication [Schnack, Cheng, Barnes, and Parker, Phys. Plasmas 20, 062106 (2013)]. Apart from the tokamak-specific topics, the TDTFS study also addressed topics in the basic physics of magnetized plasma and in the dynamics of the reversed-field pinch (RFP) configuration. The basic physics work contributed to a study of two-fluid effects on interchange dynamics, where

  6. Investigations of toroidal wave numbers of the kink instabilities in a toroidal pinch plasma

    Hamajima, Takataro; Irisawa, Juichi; Tsukada, Tokuaki; Sugito, Osamu; Maruyama, Hideaki

    1979-01-01

    The axial toroidal wave numbers of the kink instability of toroidal pinch plasma were measured and investigated with a specially designed coil, and the results were compared with the MHD theory. The schematic figure and the particulars of the experimental apparatus are briefly illustrated in the first part. The method of generating theta-Z pinch plasma, the wave form of the magnetic flux density in Z-direction and the plasma current are also explained. The 360 deg stereoscopic framing photographs were taken with an image converter camera at the intervals of 0.5 μs after the initiation of the main electric discharge in Z-circuit. From these photographs, the growth of the kink instability was observed. The measured magnetic field distribution at t = 2 μs is presented. In the second part, the radial displacement of plasma and toroidal wave number were measured from the above framing photographs. Then the spectra of plasma displacement were analyzed by the Fourier analysis. The measured results of toroidal wave number was analyzed by both the skin current model and the diffuse current model. Many new results obtained from the present study were mainly derived from the observation of the framing photographs, and they are summarized in the final part of this paper. (Aoki, K.)

  7. Toroidal equilibrium of a non-neutral plasma with toroidal current, inertia and pressure

    Bhattacharyya, S.N.; Avinash, K.

    1992-01-01

    Equilibrium of non-neutral clouds in a toroidal vessel with toroidal magnetic field is demonstrated in the presence of a toroidal current, finite mass and finite pressure. With a toroidal current, it is shown that in a large-aspect-ratio conducting torus the equilibrium is governed by competition between forces produced by image charges and image currents. When μ 0 ε 0 E r 2 >B θ 2 (whe re E r and B θ are the self electrostatic and self magnetic fields of the cloud), the confinement is electrostatic and plasma shifts inwards; when μ 0 ε 0 E r 2 θ 2 , the confinement is magnetic and plasma shifts outwards. For μ 0 ε 0 E r 2 = B θ 2 there is no equilibrium. With finite mass or finite pressure, it is shown, in a large-aspect-ratio approximation, that the fluid drift surfaces and equipotential surfaces are displaced with respect to each other. In both cases the fluid drift surfaces are shifted inwards from the equipotential surfaces. (author)

  8. 3D Printing the ATLAS' barrel toroid

    Goncalves, Tiago Barreiro

    2016-01-01

    The present report summarizes my work as part of the Summer Student Programme 2016 in the CERN IR-ECO-TSP department (International Relations – Education, Communication & Outreach – Teacher and Student Programmes). Particularly, I worked closely with the S’Cool LAB team on a science education project. This project included the 3D designing, 3D printing, and assembling of a model of the ATLAS’ barrel toroid. A detailed description of the project' development is presented and a short manual on how to use 3D printing software and hardware is attached.

  9. Linear mode conversion in a toroidal plasma

    Hellsten, T.

    1980-05-01

    Linear mode conversion at the perpendicular ion cyclotron resonance has been treated for an axially symmetric toroidal plasma. The mode conversion appears between a fast electromagnetic wave and a slow-quasi electrostatic wave, due to finite electron inertia. The problem reduces to the Orr-Sommerfeld equation where the coefficients determining the reflectron, transmission and conversion are functions of the arc length along a poloidal intersection of the resonance surface. These coefficients can be determined from eigenfunctions of an ordinary differential equation. (author)

  10. ICRH experiments in a toroidal octupole

    Barter, J.D.; Sprott, J.C.

    1974-01-01

    A 100 kW, 144 μsec pulse of 1.4 MHz rf is used to heat plasmas with densities less than or equal to 3 x 10 12 cm -3 at the ion cyclotron frequency in a toroidal octupole. The rf is coupled to the plasma by a single turn, electrostatically shielded hoop coaxial to the four main hoops and located near the wall. Absorbed power is inferred from plasma loading of the hoop and measured directly with an electrostatic ion energy analyzer and compared to single particle resonance heating theory

  11. Electrical disruption in toroidal plasma of hydrogen

    Roberto, M.; Silva, C.A.B.; Goes, L.C.S.; Sudano, J.P.

    1991-01-01

    The initial phase of ionization of a toroidal plasma produced in hydrogen was investigated using zero-dimensional model. The model describes the temporal evolution of plasma by spatial medium of particle density and temperature, on whole plasma volume. The energy and particle (electrons and ions) balance equations are considered. The electron loss is due to ambipolar diffusion in the presence of magnetic field. The electron energy loss involves ionization, Coulomb interaction and diffusion. The ohmic heating converter gives the initial voltage necessary to disruption. (M.C.K.)

  12. Impurity studies in the advanced toroidal facility

    Isler, R.C.; Horton, L.D.; Crume, E.C.; Howe, H.C.; Voronov, G.S.

    1989-01-01

    Impurities have played an important role in the initial stages of operation of the Advanced Toroidal Facility. Cleanup practices have been adequate enough that plasmas heated by ECH only can be operated in a quasi-steady state; however, neutral beam injected plasmas always collapse to a low temperature. It is not clear whether impurity radiation is actually responsible for initiating the collapse, but at the time the stored energy reaches a maximum, there are indications of poloidal asymmetries in radiation from low ionization stages, such as observed in marfes, which could play a dominant role in the plasma evolution. 3 refs., 5 figs

  13. Convective cells and transport in toroidal plasmas

    Hassam, A.B.; Kulsrud, R.M.

    1978-12-01

    The properties of convective cells and the diffusion resulting from such cells are significantly influenced by an inhomogeneity in the extermal confining magnetic field, such as that in toroidal plasmas. The convective diffusion in the presence of a field inhomogeneity is estimated. For a thermal background, this diffusion is shown to be substantially smaller than classical collisional diffusion. For a model nonthermal background, the diffusion is estimated, for typical parameters, to be at most of the order of collisional diffusion. The model background employed is based on spectra observed in numerical simulations of drift-wave-driven convective cells

  14. Self-consistent perturbed equilibrium with neoclassical toroidal torque in tokamaks

    Park, Jong-Kyu; Logan, Nikolas C.

    2017-01-01

    Toroidal torque is one of the most important consequences of non-axisymmetric fields in tokamaks. The well-known neoclassical toroidal viscosity (NTV) is due to the second-order toroidal force from anisotropic pressure tensor in the presence of these asymmetries. This work shows that the first-order toroidal force originating from the same anisotropic pressure tensor, despite having no flux surface average, can significantly modify the local perturbed force balance and thus must be included in perturbed equilibrium self-consistent with NTV. The force operator with an anisotropic pressure tensor is not self-adjoint when the NTV torque is finite and thus is solved directly for each component. This approach yields a modified, non-self-adjoint Euler-Lagrange equation that can be solved using a variety of common drift-kinetic models in generalized tokamak geometry. The resulting energy and torque integral provides a unique way to construct a torque response matrix, which contains all the information of self-consistent NTV torque profiles obtainable by applying non-axisymmetric fields to the plasma. This torque response matrix can then be used to systematically optimize non-axisymmetric field distributions for desired NTV profiles. Published by AIP Publishing.

  15. Modeling of Neoclassical Tearing Mode Stability for Generalized Toroidal Geometry

    A.L. Rosenberg; D.A. Gates; A. Pletzer; J.E. Menard; S.E. Kruger; C.C. Hegna; F. Paoletti; S. Sabbagh

    2002-01-01

    Neoclassical tearing modes (NTMs) can lead to disruption and loss of confinement. Previous analysis of these modes used large aspect ratio, low beta (plasma pressure/magnetic pressure) approximations to determine the effect of NTMs on tokamak plasmas. A more accurate tool is needed to predict the onset of these instabilities. As a follow-up to recent theoretical work, a code has been written which computes the tearing mode island growth rate for arbitrary tokamak geometry. It calls PEST-3 [A. Pletzer et al., J. Comput. Phys. 115, 530 (1994)] to compute delta prime, the resistive magnetohydrodynamic (MHD) matching parameter. The code also calls the FLUXGRID routines in NIMROD [A.H. Glasser et al., Plasma Phys. Controlled Fusion 41, A747 (1999)] for Dnc, DI and DR [C.C. Hegna, Phys. Plasmas 6, 3980 (1999); A.H. Glasser et al., Phys. Fluids 18, 875 (1975)], which are the bootstrap current driven term and the ideal and resistive interchange mode criterion, respectively. In addition to these components, the NIMROD routines calculate alphas-H, a new correction to the Pfirsch-Schlter term. Finite parallel transport effects were added and a National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)] equilibrium was analyzed. Another program takes the output of PEST-3 and allows the user to specify the rational surface, island width, and amount of detail near the perturbed surface to visualize the total helical flux. The results of this work will determine the stability of NTMs in an spherical torus (ST) [Y.-K.M. Peng et al., Nucl. Fusion 26, 769 (1986)] plasma with greater accuracy than previously achieved

  16. Propulsion using the electron spiral toroid

    Seward, Clint

    1998-01-01

    A new propulsion method is proposed which could potentially reduce propellant needed for space travel by three orders of magnitude. It uses the newly patented electron spiral toroid (EST), which stores energy as magnetic field energy. The EST is a hollow toroid of electrons, all spiraling in parallel paths in a thin outer shell. The electrons satisfy the coupling condition, forming an electron matrix. Stability is assured as long as the coupling condition is satisfied. The EST is held in place with a small external electric field; without an external magnetic field. The EST system is contained in a vacuum chamber. The EST can be thought of as an energetic entity, with electrons at 10,000 electron volts. Propulsion would not use combustion, but would heat propellant through elastic collisions with the EST surface and eject them for thrust. Chemical rocket combustion heats propellant to 4000 deg. C; an EST will potentially heat the propellant 29,000 times as much, reducing propellant needs accordingly. The thrust can be turned ON and OFF. The EST can be recharged as needed

  17. Compact toroid formation, compression, and acceleration

    Degnan, J.H.; Bell, D.E.; Baca, G.P.; Dearborn, M.E.; Douglas, M.R.; Englert, S.E.; Englert, T.J.; Holmes, J.H.; Hussey, T.W.; Kiuttu, G.F.; Lehr, F.M.; Marklin, G.J.; Mullins, B.W.; Peterkin, R.E.; Price, D.W.; Roderick, N.F.; Ruden, E.L.; Turchi, P.J.; Coffey, S.K.; Seiler, S.W.; Bird, G.

    1992-01-01

    Research on the formation, compression, and acceleration of milligram Compact Toroids (CTs) will be discussed. This includes experiments with 2-stage coaxial gun discharges and calculations including 2D- MHD. The CTs are formed by 110 μf, 70 KV, 2 MA, 3 μs rise time discharges into 2 mg gas puffs in a 90 cm inner diameter, 7.6 cm gap coaxial gun with approximately 0.15 Tesla of radial-axial initial magnetic field. Reconnection at the neck of the toroidal magnetized plasma bubble extracted from the first stage gun forms the CT. Trapping, relaxation to a minimum energy Taylor state is observed with magnetic probe arrays. Low energy (few hundred KJ, 2 MA) acceleration in straight coaxial geometry, and high energy acceleration using a conical compression stage are discussed. The Phillips Laboratory 1,300 μf, 120 KV, 9.4 MJ SHIVA STAR capacitor bank is used for the acceleration discharge. The charging and triggering of the 36-module bank has been modified to permit use of any multiple of three modules. Highlights of fast photography, current, voltage, magnetic probe array, optical spectroscopy, interferometry, VUV, and higher energy radiation data and 2D-MHD calculations will be presented. Considerably more detail is presented in companion papers

  18. Toroidal Simulations of Sawteeth with Diamagnetic Effects

    Beidler, Matthew; Cassak, Paul; Jardin, Stephen

    2014-10-01

    The sawtooth crash in tokamaks limits the core temperature, adversely impacts confinement, and seeds disruptions. Adequate knowledge of the physics governing the sawtooth crash and a predictive capability of its ramifications has been elusive, including an understanding of incomplete reconnection, i.e., why sawteeth often cease prematurely before processing all available magnetic flux. There is an indication that diamagnetic suppression could play an important role in this phenomenon. While computational tools to study toroidal plasmas have existed for some time, extended-MHD physics have only recently been integrated. Interestingly, incomplete reconnection has been observed in simulations when diamagnetic effects are present. In the current study, we employ the three-dimensional, extended-MHD code M3D-C1 to study the sawtooth crash in a toroidal geometry. In particular, we describe how magnetic reconnection at the q = 1 rational surface evolves when self-consistently increasing diamagnetic effects are present. We also explore how the termination of reconnection may lead to core-relaxing ideal-MHD instabilities.

  19. Microwave produced plasma in a Toroidal Device

    Singh, A. K.; Edwards, W. F.; Held, E. D.

    2010-11-01

    A currentless toroidal plasma device exhibits a large range of interesting basic plasma physics phenomena. Such a device is not in equilibrium in a strict magneto hydrodynamic sense. There are many sources of free energy in the form of gradients in plasma density, temperature, the background magnetic field and the curvature of the magnetic field. These free energy sources excite waves and instabilities which have been the focus of studies in several devices in last two decades. A full understanding of these simple plasmas is far from complete. At Utah State University we have recently designed and installed a microwave plasma generation system on a small tokamak borrowed from the University of Saskatchewan, Saskatoon, Canada. Microwaves are generated at 2.45 GHz in a pulsed dc mode using a magnetron from a commercial kitchen microwave oven. The device is equipped with horizontal and vertical magnetic fields and a transformer to impose a toroidal electric field for current drive. Plasmas can be obtained over a wide range of pressure with and without magnetic fields. We present some preliminary measurements of plasma density and potential profiles. Measurements of plasma temperature at different operating conditions are also presented.

  20. Low-frequency fluctuations in a pure toroidal magnetized plasma

    A magnetized, low- plasma in pure toroidal configuration is formed and extensively studied with ion mass as control parameter. Xenon, krypton and argon plasmas are formed at a fixed toroidal magnetic field of 0.024 T, with a peak density of ∼ 1011 cm-3, ∼ 4 × 1010 cm-3 and ∼ 2 × 1010 cm−3 respectively.

  1. Toroidal asymmetries in divertor impurity influxes in NSTX

    F. Scotti

    2017-08-01

    Full Text Available Toroidal asymmetries in divertor carbon and lithium influxes were observed in NSTX, due to toroidal differences in surface composition, tile leading edges, externally-applied three-dimensional (3D fields and toroidally-localized edge plasma modifications due to radio frequency heating. Understanding toroidal asymmetries in impurity influxes is critical for the evaluation of total impurity sources, often inferred from measurements with a limited toroidal coverage. The toroidally-asymmetric lithium deposition induced asymmetries in divertor lithium influxes. Enhanced impurity influxes at the leading edge of divertor tiles were the main cause of carbon toroidal asymmetries and were enhanced during edge localized modes. Externally-applied 3D fields led to strike point splitting and helical lobes observed in divertor impurity emission, but marginal changes to the toroidally-averaged impurity influxes. Power coupled to the scrape-off layer SOL plasma during radio frequency (RF heating of H-mode discharges enhanced impurity influxes along the non-axisymmetric divertor footprint of flux tubes connecting to plasma in front of the RF antenna.

  2. 2-D skin-current toroidal-MHD-equilibrium code

    Feinberg, B.; Niland, R.A.; Coonrod, J.; Levine, M.A.

    1982-09-01

    A two-dimensional, toroidal, ideal MHD skin-current equilibrium computer code is described. The code is suitable for interactive implementation on a minicomptuer. Some examples of the use of the code for design and interpretation of toroidal cusp experiments are presented

  3. Structure and damping of toroidal drift waves (and their implications for anomalous transport)

    Taylor, J.B.; Connor, J.; Wilson, H.R.

    1993-05-01

    The conventional theory of high-n toroidal drift waves, based on the ballooning representation, indicates that shear-damping is generally reduced in a torus compared to its plane-slab value. It therefore describes the most unstable class of toroidal drift waves. However, modes of this type occur only i f the diamagnetic frequency ω*(r) has a maximum in r, and they affect only a small fraction, Ο(1/n l/2 ), of the plasma radius around this maximum. Consequently they may produce little anomalous transport. In the present work we show that, within the ballooning description, there is another class of toroidal drift waves with very different properties to the conventional ones. The new modes have greater shear-damping (closer to that in a plane-slab) than the conventional ones and so have a higher instability threshold. However, they occur for any plasma profile and at all radii, and they have larger radial extent. Consequently they may produce much greater anomalous transport than the possibly benign conventional modes. This suggests a picture of anomalous transport in which the plasma profile is determined by marginal stability, but marginal to the new class of modes not to the conventional ones. This might explain why marginally stable profiles calculated for drift waves with plane-slab damping sometimes agree well with the profiles in toroidal experiments. It is also consistent with the fact that experimental profiles may exceed conventional toroidal instability thresholds. The new modes may also be related to the tong radial structures which appear in some plasma simulations and in experiments

  4. Formation of a compact torus using a toroidal plasma gun

    Levine, M.A.; Pincosy, P.A.

    1981-01-01

    Myers, Levine and Pincosy earlier reported results using a toroidal plasma gun. The device differs from the usual coaxial plasma gun in the use of a strong toroidal bias current for enhanced efficiency, a pair of disk-like accelerating electrodes for reduced viscosity and a fast pulsed toroidal gas valve for more effective use of the injected gas sample. In addition, a technique is used for generating a toroidal current in the plasma ring. The combination offers an opportunity to deliver a plasma with a large amount of energy and to vary the density and relative toroidal and poloidal magnetic field intensities over a range of values. It is the purpose of this paper to report further experimental results, to project the gun's applications to the formation of a compact torus, and to propose a simple modification of the present apparatus as a test

  5. Formation of a compact toroid for enhanced efficiency

    Mozgovoy, A. G. [P.N. Lebedev Physical Institute, Moscow 119991 (Russian Federation); Romadanov, I. V.; Ryzhkov, S. V., E-mail: ryzhkov@power.bmstu.ru [Bauman Moscow State Technical University, Moscow 105005 (Russian Federation)

    2014-02-15

    We report here our results on the formation of a plasma configuration with the generic name of compact toroid (CT). A method of compact toroid formation to confine, heat and compress a plasma is investigated. Formation of a compact torus using an additional toroidal magnetic field helps to increase the plasma current to a maintainable level of the original magnetic field. We design the Compact Toroid Challenge (CTC) experiment in order to improve the magnetic flux trapping during field reversal in the formation of a compact toroid. The level of the magnetic field immersed in the plasma about 70% of the primary field is achieved. The CTC device and scheme of high level capturing of magnetic flux are presented.

  6. Analysis of MHD equilibria by toroidal multipolar expansions

    Alladio, F.; Crisanti, F.

    1986-01-01

    The use of fully toroidal co-ordinates permits the two-dimensional problem of the axisymmetric plasma toroidal equilibrium to be reduced to the one-dimensional problem of determining a limited number of its toroidal multipolar moments. This has allowed the creation of a fast semi-analytic predictive equilibrium code that can be used in both free and fixed boundary conditions for plasmas with circular or mildly non-circular cross-section. The concept of toroidal multipoles is also particularly suitable for the analysis of experimental data from magnetic probe measurements and clarifies the conditions under which the plasma thermal and electrical self-inductances βsub(p) and lsub(i) can be estimated separately. Finally, the interpretation of the magnetic equilibrium measurements in terms of toroidal multipoles can directly provide the boundary conditions for a fast equilibrium reconstruction code. Examples of the application of such a code to the JET magnetic measurements are reported. (author)

  7. An integral equation-based numerical solver for Taylor states in toroidal geometries

    O'Neil, Michael; Cerfon, Antoine J.

    2018-04-01

    We present an algorithm for the numerical calculation of Taylor states in toroidal and toroidal-shell geometries using an analytical framework developed for the solution to the time-harmonic Maxwell equations. Taylor states are a special case of what are known as Beltrami fields, or linear force-free fields. The scheme of this work relies on the generalized Debye source representation of Maxwell fields and an integral representation of Beltrami fields which immediately yields a well-conditioned second-kind integral equation. This integral equation has a unique solution whenever the Beltrami parameter λ is not a member of a discrete, countable set of resonances which physically correspond to spontaneous symmetry breaking. Several numerical examples relevant to magnetohydrodynamic equilibria calculations are provided. Lastly, our approach easily generalizes to arbitrary geometries, both bounded and unbounded, and of varying genus.

  8. NOVA: a nonvariational code for solving MHD stability of axisymmetric toroidal plasmas

    Cheng, C.Z.; Chance, M.S.

    1986-04-01

    A nonvariational approach for determining the ideal MHD stability of axisymmetric toroidal confinement systems is presented. The code (NOVA) employs cubic B-spline finite elements and Fourier expansion in a general flux coordinate (psi, theta, zeta) system. Better accuracy and faster convergence were obtained in comparison with the variational PEST and ERATO codes. The nonvariational approach can be extended to problems having non-Hermitian eigenmode equations where variational energy principles cannot be obtained

  9. Nonideal magnetohydrodynamic instabilities and toroidal magnetic confinement

    Furth, H.P.

    1985-05-01

    The marked divergence of experimentally observed plasma instability phenomena from the predictions of ideal magnetohydrodynamics led in the early 1960s to the formulations of finite-resistivity stability theory. Beginning in the 1970s, advanced plasma diagnostics have served to establish a detailed correspondence between the predictions of the finite-resistivity theory and experimental plasma behavior - particularly in the case of the resistive kink mode and the tokamak plasma. Nonlinear resistive-kink phenomena have been found to govern the transport of magnetic flux and plasma energy in the reversed-field pinch. The other predicted finite-resistivity instability modes have been more difficult to identify directly and their implications for toroidal magnetic confinement are still unresolved

  10. Design considerations for ITER toroidal field coils

    Kalsi, S.S.; Lousteau, D.C.; Miller, J.R.

    1987-01-01

    The International Thermonuclear Experimental Reactor (ITER) is a new tokamak design project with joint participation from Europe, Japan, the Union of Soviet Socialist Republics (U.S.S.R.), and the United States. This paper describes a magnetic and mechanical design methodology for toroidal field (TF) coils that employs Nb 3 Sn superconductor technology. Coil winding is sized by using conductor concepts developed for the U.S. TIBER concept. Manifold concepts are presented for the complete cooling system. Also included are concepts for the coil structural arrangement. The effects of in-plane and out-of-plane loads are included in the design considerations for the windings and case. Concepts are presented for reacting these loads with a minimum amount of additional structural material. Concepts discussed in this paper could be considered for the ITER TF coils

  11. Three dimensional transport model for toroidal plasmas

    Copenhauer, C.

    1980-12-01

    A nonlinear MHD model, developed for three-dimensional toroidal geometries (asymmetric) and for high β (β approximately epsilon), is used as a basis for a three-dimensional transport model. Since inertia terms are needed in describing evolving magnetic islands, the model can calculate transport, both in the transient phase before nonlinear saturation of magnetic islands and afterwards on the resistive time scale. In the β approximately epsilon ordering, the plasma does not have sufficient energy to compress the parallel magnetic field, which allows the Alfven wave to be eliminated in the reduced nonlinear equations, and the model then follows the slower time scales. The resulting perpendicular and parallel plasma drift velocities can be identified with those of guiding center theory

  12. Advanced toroidal facility vaccuum vessel stress analyses

    Hammonds, C.J.; Mayhall, J.A.

    1987-01-01

    The complex geometry of the Advance Toroidal Facility (ATF) vacuum vessel required special analysis techniques in investigating the structural behavior of the design. The response of a large-scale finite element model was found for transportation and operational loading. Several computer codes and systems, including the National Magnetic Fusion Energy Computer Center Cray machines, were implemented in accomplishing these analyses. The work combined complex methods that taxed the limits of both the codes and the computer systems involved. Using MSC/NASTRAN cyclic-symmetry solutions permitted using only 1/12 of the vessel geometry to mathematically analyze the entire vessel. This allowed the greater detail and accuracy demanded by the complex geometry of the vessel. Critical buckling-pressure analyses were performed with the same model. The development, results, and problems encountered in performing these analyses are described. 5 refs., 3 figs

  13. The theory of toroidally confined plasmas

    White, Roscoe B

    2014-01-01

    This graduate level textbook develops the theory of magnetically confined plasma, with the aim of bringing the reader to the level of current research in the field of thermonuclear fusion. It begins with the basic concepts of magnetic field description, plasma equilibria and stability, and goes on to derive the equations for guiding center particle motion in an equilibrium field. Topics include linear and nonlinear ideal and resistive modes and particle transport. It is of use to workers in the field of fusion both for its wide-ranging account of tokamak physics and as a kind of handbook or formulary. This edition has been extended in a number of ways. The material on mode-particle interactions has been reformulated and much new information added, including methodology for Monte Carlo implementation of mode destabilization. These results give explicit means of carrying out mode destabilization analysis, in particular for the dangerous fishbone mode. A new chapter on cyclotron motion in toroidal geometry has ...

  14. Progress in toroidal confinement and fusion research

    Furth, H.P.

    1987-10-01

    During the past 30 years, the characteristic T/sub i/n tau/sub E/-value of toroidal-confinement experiments has advanced by more than seven orders of magnitude. Part of this advance has been due to an increase of gross machine parameters. Most of this advance has been due to an increase of gross machine parameters. Most of the advance is associated with improvements in the ''quality of plasma confinement.'' The combined evidence of spherator and tokamak research clarifies the role of magnetic-field geometry in determining confinement and points to the importance of shielding out plasma edge effects. A true physical understanding of anomalous transport remains to be achieved. 39 refs., 11 figs., 1 tab

  15. Toroidal microinstability studies of high temperature tokamaks

    Rewoldt, G.; Tang, W.M.

    1989-07-01

    Results from comprehensive kinetic microinstability calculations are presented showing the effects of toroidicity on the ion temperature gradient mode and its relationship to the trapped-electron mode in high-temperature tokamak plasmas. The corresponding particle and energy fluxes have also been computed. It is found that, although drift-type microinstabilities persist over a wide range of values of the ion temperature gradient parameter η i ≡ (dlnT i /dr)/(dlnn i /dr), the characteristic features of the dominant mode are those of the η i -type instability when η i > η ic ∼1.2 to 1.4 and of the trapped-electron mode when η i ic . 16 refs., 7 figs

  16. Commissioning Test of ATLAS End-Cap Toroidal Magnets

    Dudarev, A; Foussat, A; Benoit, P; Jeckel, M; Olyunin, A; Kopeykin, N; Stepanov, V; Deront, L; Olesen, G; Ponts, X; Ravat, S; Sbrissa, K; Barth, J; Bremer, J; Delruelle, J; Metselaar, J; Pengo, R; Pirotte, O; Buskop, J; Baynham, D E; Carr, F S; Holtom, E

    2009-01-01

    The system of superconducting toroids in the ATLAS experiment at CERN consists of three magnets. The Barrel Toroid was assembled and successfully tested in 2006. Next, two End-Cap Toroids have been tested on surface at 77 K and installed in the cavern, 100-m underground. The End Cap Toroids are based on Al stabilized Nb-Ti/Cu Rutherford cables, arranged in double pancake coils and conduction cooled at 4.6 K. The nominal current is 20.5 kA at 4.1 T peak field in the windings and the stored energy is 250 MJ per toroid. Prior to final testing of the entire ATLAS Toroidal system, each End Cap Toroid passed a commissioning test up to 21 kA to guarantee a reliable performance in the final assembly. In this paper the test results are described. It includes the stages of test preparation, isolation vacuum pumping and leak testing, cooling down, step-by-step charging to full current, training quenches and quench recovery. By fast discharges the quench detection and protection system was checked to demonstrate a safe e...

  17. Kinetic energy principle and neoclassical toroidal torque in tokamaks

    Park, Jong-Kyu

    2011-01-01

    It is shown that when tokamaks are perturbed, the kinetic energy principle is closely related to the neoclassical toroidal torque by the action invariance of particles. Especially when tokamaks are perturbed from scalar pressure equilibria, the imaginary part of the potential energy in the kinetic energy principle is equivalent to the toroidal torque by the neoclassical toroidal viscosity. A unified description therefore should be made for both physics. It is also shown in this case that the potential energy operator can be self-adjoint and thus the stability calculation can be simplified by minimizing the potential energy.

  18. Toroidal field effects on the stability of Heliotron E

    Carreras, B.A.; Garcia, L.; Lynch, V.E.

    1986-02-01

    The addition of a small toroidal field to the Heliotron E configuration improves the stability of the n = 1 mode and increases the value of the stability beta critical. Total stabilization of this mode can be achieved with added toroidal fields between 5 and 15% of the total field. In this situation, the plasma can have direct access to the second stability regime. For the Heliotron E configuration, the self-stabilization effect is due to the shear, not to the magnetic well. The toroidal field threshold value for stability depends strongly on the pressure profile and the plasma radius. 21 refs., 15 figs

  19. 1D equation for toroidal momentum transport in a tokamak

    Rozhansky, V A; Senichenkov, I Yu

    2010-01-01

    A 1D equation for toroidal momentum transport is derived for a given set of turbulent transport coefficients. The averaging is performed taking account of the poloidal variation of the toroidal fluxes and is based on the ambipolar condition of the zero net radial current through the flux surface. It is demonstrated that taking account of the Pfirsch-Schlueter fluxes leads to a torque in the toroidal direction which is proportional to the gradient of the ion temperature. This effect is new and has not been discussed before. The boundary condition at the separatrix, which is based on the results of the 2D simulations of the edge plasma, is formulated.

  20. Performance of a Folded-Strip Toroidally Wound Induction Machine

    Jensen, Bogi Bech; Jack, Alan G.; Atkinson, Glynn J.

    2011-01-01

    This paper presents the measured experimental results from a four-pole toroidally wound induction machine, where the stator is constructed as a pre-wound foldable strip. It shows that if the machine is axially restricted in length, the toroidally wound induction machine can have substantially...... shorter stator end-windings than conventionally wound induction machines, and hence that a toroidally wound induction machine can have lower losses and a higher efficiency. The paper also presents the employed construction method, which emphasizes manufacturability, and highlights the advantages...

  1. Progress in gyrokinetic simulations of toroidal ITG turbulence

    Nevins, W.M.; Dimits, A.M.; Cohen, B.I.; Shumaker, D.E.

    2001-01-01

    The 3-D nonlinear toroidal gyrokinetic simulation code PG3EQ is used to study toroidal ion temperature gradient (ITG) driven turbulence - a key cause of the anomalous transport that limits tokamak plasma performance. Systematic studies of the dependence of ion thermal transport on various parameters and effects are presented, including dependence on E-vectorxB-vector and toroidal velocity shear, sensitivity to the force balance in simulations with radial temperature gradient variation, and the dependences on magnetic shear and ion temperature gradient. (author)

  2. Laser-induced production of large carbon-based toroids

    Lyn, M. Elizabeth; He Jibao; Koplitz, Brent

    2005-01-01

    We report on the production of large carbon-based toroids (CBTs) from fullerenes. The process involves two-step laser irradiation of a mixed fullerene target (76% C 60 , 22% C 70 ). Transmission electron microscopy (TEM) clearly identifies toroidal-shaped structures as well as Q-shaped constructs. The typical diameters of the CBTs are ∼0.2-0.3 μm with tubular diameters of ∼50-100 nm, but toroids as wide as 0.5 μm are observed making them nanostructures on the verge of being microstructures

  3. Photoelastic and analytical investigation of stress in toroidal magnetic field coils

    Pih, H.; Gray, W.H.

    1975-01-01

    A series of two-dimensional photoelastic stress analyses on circular and oval toroidal magnetic field coils for fusion reactors were made. The circumferential variation of the coil's magnetic force was simulated by applying different pressures to sixteen segmented regions of the inner surface of the models. Isochromatics and isoclinics were measured at selected points on the loaded model in a transmission polariscope using a microphotometer. Separate principal stresses were obtained using the combination of photoelastic information and isopachic data measured from the solution of Laplace's equation by the electrical analog method. Analysis of the same coil geometries, loadings, and boundary conditions were made using the finite element method. General agreement between theory and experiment was realized. From this investigation several variations of coil geometry and methods of support were evaluated. Based upon this experiment, suggestions for optimum structural design of toroidal field coils are presented

  4. Succinic acid dihydrazide: a convenient N,N-double block for the synthesis of symmetrical and non-symmetrical succinyl-bis[5-trifluoro(chloro)methyl-1H-pyrazoles

    Bonacorso, Helio G.; Cechinel, Cleber A.; Pittaluga, Everton P.; Ferla, Adriana; Porte, Liliane M.F; Martins, Marcos A.P; Zanatta, Nilo

    2010-01-01

    This paper describes the conventional regioselective synthesis of a series of new succinyl spacer bis-(3,5-substituted 2-pyrazolines and 1H-pyrazoles), namely; 1,4-bis[5-(trifluoromethyl)-5- hydroxy-4,5-dihydro-1H-pyrazol-1-yl]butane-1,4-diones (46-88%) and the respective dehydrated system (60-78%), new 1-[5-(trifluoromethyl)-5-hydroxy-4,5-dihydro-1H-pyrazol-1-yl]-4- oxobutane hydrazides (52-81%) and the non-symmetrical 2-pyrazolines derivatives thereof as 1-[5-(trifluoromethyl)- 5-hydroxy-4,5-dihydro-1H-pyrazol-1-yl)-4-(5-(trichloromethyl)-5-hydroxy- 4,5-dihydro-1H-pyrazol-1-yl]butane-1,4-diones (75-91%). All succinyl substituted bispyrazoles were obtained from the cyclocondensation reactions of 4-substituted 4-alkoxy-1,1,1-trihaloalk-3- en-2-ones, where the 4-substituents are H, Me, Ph, 4-FC 6 H 4 , 4-ClC 6 H 4 , 4-OMeC 6 H 4 , 4-NO 2 C 6 H 4 , 1-naphthyl and 2-furyl, with succinic acid dihydrazide in ethanol as solvent under controlled reaction conditions. (author)

  5. Structural design of the superconducting toroidal field coils for ITER

    Wong, F.M.G.; Sborchia, C.; Thome, R.J.; Malkov, A.; Titus, P.H.

    1995-01-01

    Structural design issues and features of the superconducting toroidal field (TF) coils for the International Thermonuclear Experimental Reactor (ITER) will be discussed. Selected analyses of the structural and mechanical behavior of the ITER TF coils will also be presented. (orig.)

  6. System and method of operating toroidal magnetic confinement devices

    Chance, M.S.; Jardin, S.C.; Stix, T.H.; Grimm, R.C.; Manickam, J.; Okabayashi, M.

    1984-08-30

    This invention pertains to methods and arrangements for attaining high beta values in plasma confinement devices. More specifically, this invention pertains to methods for accessing the second stability region of operation in toroidal magnetic confinement devices.

  7. Influence of toroidal rotation on resistive tearing modes in tokamaks

    Wang, S.; Ma, Z. W.

    2015-01-01

    Influence of toroidal equilibrium plasma rotation on m/n = 2/1 resistive tearing modes is studied numerically using a 3D toroidal MHD code (CLT). It is found that the toroidal rotation with or without shear can suppress the tearing instability and the Coriolis effect in the toroidal geometry plays a dominant role on the rotation induced stabilization. For a high viscosity plasma (τ R /τ V  ≫ 1, where τ R and τ V represent resistive and viscous diffusion time, respectively), the effect of the rotation shear combined with the viscosity appears to be stabilizing. For a low viscosity plasmas (τ R /τ V  ≪ 1), the rotation shear shows a destabilizing effect when the rotation is large

  8. Influence of toroidal rotation on resistive tearing modes in tokamaks

    Wang, S.; Ma, Z. W., E-mail: zwma@zju.edu.cn [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China)

    2015-12-15

    Influence of toroidal equilibrium plasma rotation on m/n = 2/1 resistive tearing modes is studied numerically using a 3D toroidal MHD code (CLT). It is found that the toroidal rotation with or without shear can suppress the tearing instability and the Coriolis effect in the toroidal geometry plays a dominant role on the rotation induced stabilization. For a high viscosity plasma (τ{sub R}/τ{sub V} ≫ 1, where τ{sub R} and τ{sub V} represent resistive and viscous diffusion time, respectively), the effect of the rotation shear combined with the viscosity appears to be stabilizing. For a low viscosity plasmas (τ{sub R}/τ{sub V} ≪ 1), the rotation shear shows a destabilizing effect when the rotation is large.

  9. Confinement time exceeding one second for a toroidal electron plasma.

    Marler, J P; Stoneking, M R

    2008-04-18

    Nearly steady-state electron plasmas are trapped in a toroidal magnetic field for the first time. We report the first results from a new toroidal electron plasma experiment, the Lawrence Non-neutral Torus II, in which electron densities on the order of 10(7) cm(-3) are trapped in a 270-degree toroidal arc (670 G toroidal magnetic field) by application of trapping potentials to segments of a conducting shell. The total charge inferred from measurements of the frequency of the m=1 diocotron mode is observed to decay on a 3 s time scale, a time scale that approaches the predicted limit due to magnetic pumping transport. Three seconds represents approximately equal to 10(5) periods of the lowest frequency plasma mode, indicating that nearly steady-state conditions are achieved.

  10. Effect of toroidicity during lower hybrid mode conversion

    Riyopoulos, S.; Mahajan, S.

    1985-11-01

    The effect of toroidicity during lower hybrid mode conversion is examined by treating the wave propagation in an inhomogeneous medium as an eigenvalue problem for ω 2 (m,n),m,n poloidal and toroidal wave numbers. Since the frequency regime near ω 2 = ω/sub LH/ 2 is an accumulation point for the eigenvalue spectrum, the degenerate perturbation technique must be applied. The toroidal eigenmodes are constructed by a zeroth order superposition of monochromatic solutions with different poloidal dependence m, thus they generically exhibit a wide spectrum in k/sub parallel/ for given fixed ω 2 even for small inverse aspect ratio epsilon. In case that the average is in the neighborhood of k/sub min/, the minimum wave number for accessibility of the mode conversion regime, it is expected that excitation of toroidal modes rather than geometric optics will determine the wave coupling to the plasma

  11. Calculation of toroidal fusion reactor blankets by Monte Carlo

    Macdonald, J.L.; Cashwell, E.D.; Everett, C.J.

    1977-01-01

    A brief description of the calculational method is given. The code calculates energy deposition in toroidal geometry, but is a continuous energy Monte Carlo code, treating the reaction cross sections as well as the angular scattering distributions in great detail

  12. Turbulent and neoclassical toroidal momentum transport in tokamak plasmas

    Abiteboul, J.

    2012-10-01

    The goal of magnetic confinement devices such as tokamaks is to produce energy from nuclear fusion reactions in plasmas at low densities and high temperatures. Experimentally, toroidal flows have been found to significantly improve the energy confinement, and therefore the performance of the machine. As extrinsic momentum sources will be limited in future fusion devices such as ITER, an understanding of the physics of toroidal momentum transport and the generation of intrinsic toroidal rotation in tokamaks would be an important step in order to predict the rotation profile in experiments. Among the mechanisms expected to contribute to the generation of toroidal rotation is the transport of momentum by electrostatic turbulence, which governs heat transport in tokamaks. Due to the low collisionality of the plasma, kinetic modeling is mandatory for the study of tokamak turbulence. In principle, this implies the modeling of a six-dimensional distribution function representing the density of particles in position and velocity phase-space, which can be reduced to five dimensions when considering only frequencies below the particle cyclotron frequency. This approximation, relevant for the study of turbulence in tokamaks, leads to the so-called gyrokinetic model and brings the computational cost of the model within the presently available numerical resources. In this work, we study the transport of toroidal momentum in tokamaks in the framework of the gyrokinetic model. First, we show that this reduced model is indeed capable of accurately modeling momentum transport by deriving a local conservation equation of toroidal momentum, and verifying it numerically with the gyrokinetic code GYSELA. Secondly, we show how electrostatic turbulence can break the axisymmetry and generate toroidal rotation, while a strong link between turbulent heat and momentum transport is identified, as both exhibit the same large-scale avalanche-like events. The dynamics of turbulent transport are

  13. Toroidal high-spin isomers in the nucleus 304120

    Staszczak, A.; Wong, Cheuk-Yin; Kosior, A.

    2017-05-01

    Background: Strongly deformed oblate superheavy nuclei form an intriguing region where the toroidal nuclear structures may bifurcate from the oblate spheroidal shape. The bifurcation may be facilitated when the nucleus is endowed with a large angular moment about the symmetry axis with I =Iz . The toroidal high-K isomeric states at their local energy minima can be theoretically predicted using the cranked self-consistent Skyrme-Hartree-Fock method. Purpose: We use the cranked Skyrme-Hartree-Fock method to predict the properties of the toroidal high-spin isomers in the superheavy nucleus 120304184. Method: Our method consists of three steps: First, we use the deformation-constrained Skyrme-Hartree-Fock-Bogoliubov approach to search for the nuclear density distributions with toroidal shapes. Next, using these toroidal distributions as starting configurations, we apply an additional cranking constraint of a large angular momentum I =Iz about the symmetry z axis and search for the energy minima of the system as a function of the deformation. In the last step, if a local energy minimum with I =Iz is found, we perform at this point the cranked symmetry- and deformation-unconstrained Skyrme-Hartree-Fock calculations to locate a stable toroidal high-spin isomeric state in free convergence. Results: We have theoretically located two toroidal high-spin isomeric states of 120304184 with an angular momentum I =Iz=81 ℏ (proton 2p-2h, neutron 4p-4h excitation) and I =Iz=208 ℏ (proton 5p-5h, neutron 8p-8h) at the quadrupole moment deformations Q20=-297.7 b and Q20=-300.8 b with energies 79.2 and 101.6 MeV above the spherical ground state, respectively. The nuclear density distributions of the toroidal high-spin isomers 120304184(Iz=81 ℏ and 208 ℏ ) have the maximum density close to the nuclear matter density, 0.16 fm-3, and a torus major to minor radius aspect ratio R /d =3.25 . Conclusions: We demonstrate that aligned angular momenta of Iz=81 ℏ and 208 ℏ arising from

  14. Polymer- and salt-induced toroids of hexagonal DNA.

    Ubbink, J; Odijk, T

    1995-01-01

    A model is proposed for polymer- and salt-induced toroidal condensates of DNA, based on a recent theory of the undulation enhancement of the electrostatic interaction in the bulk hexagonal phase of semiflexible polyions. In a continuum approximation, the thermodynamic potential of a monomolecular toroid may be split up in bulk, surface, and curvature contributions. With the help of an approximate analytical minimization procedure, the optimal torus dimensions are calculated as a function of t...

  15. Confinement and heating of high beta plasma with emphasis on compact toroids. Compact toroid research

    Vlases, G.C.; Pietrzyk, Z.A.

    1984-11-01

    Two older projects associated with very high energy density plasmas, specifically the High Density Field Reversed Configuration and the Liner Plasma Compression Experiment, have been completed. Attention has been turned to compact toroid experiments of more conventional density, and three experiments have been initiated. These include the Coaxial Slow Source Experiment, the Variable Length FRC Experiment, and Variable Angle CthetaP Experiment. In each case, the project was begun in order to provide basic plasma physics information on specific unresolved issues of progammatic importance to the national CT Program

  16. Compact toroid injection into C-2U

    Roche, Thomas; Gota, H.; Garate, E.; Asai, T.; Matsumoto, T.; Sekiguchi, J.; Putvinski, S.; Allfrey, I.; Beall, M.; Cordero, M.; Granstedt, E.; Kinley, J.; Morehouse, M.; Sheftman, D.; Valentine, T.; Waggoner, W.; the TAE Team

    2015-11-01

    Sustainment of an advanced neutral beam-driven FRC for a period in excess of 5 ms is the primary goal of the C-2U machine at Tri Alpha Energy. In addition, a criteria for long-term global sustainment of any magnetically confined fusion reactor is particle refueling. To this end, a magnetized coaxial plasma-gun has been developed. Compact toroids (CT) are to be injected perpendicular to the axial magnetic field of C-2U. To simulate this environment, an experimental test-stand has been constructed. A transverse magnetic field of B ~ 1 kG is established (comparable to the C-2U axial field) and CTs are fired across it. As a minimal requirement, the CT must have energy density greater than that of the magnetic field it is to penetrate, i.e., 1/2 ρv2 >=B2 / 2μ0 . This criteria is easily met and indeed the CTs traverse the test-stand field. A preliminary experiment on C-2U shows the CT also capable of penetrating into FRC plasmas and refueling is observed resulting in a 20 - 30% increase in total particle number per single-pulsed CT injection. Results from test-stand and C-2U experiments will be presented.

  17. Chaotic magnetic field line in toroidal plasmas

    Hatori, Tadatsugu; Abe, Yoshihiko; Urata, Kazuhiro; Irie, Haruyuki.

    1989-05-01

    This is an introductory review of chaotic magnetic field line in plasmas, together with some new results, with emphasis on the long-time tail and the fractional Brownian motion of the magnetic field line. The chaotic magnetic field line in toroidal plasmas is a typical chaotic phenomena in the Hamiltonian dynamical systems. The onset of stochasticity induced by a major magnetic perturbation is thought to cause a macroscopic rapid phenomena called the current disruption in the tokamak discharges. Numerical simulations on the basis of magnetohydrodynamics reveal in fact the disruptive phenomena. Some dynamical models which include the area-preserving mapping such as the standard mapping, and the two-wave Hamiltonian system can model the stochastic magnetic field. Theoretical results with use of the functional integral representation are given regarding the long-time tail on the basis of the radial twist mapping. It is shown that application of renormalization group technique to chaotic orbit in the two-wave Hamiltonian system proves decay of the velocity autocorrelation function with the power law. Some new numerical results are presented which supports these theoretical results. (author)

  18. ''Turbulent Equipartition'' Theory of Toroidal Momentum Pinch

    Hahm, T.S.; Diamond, P.H.; Gurcan, O.D.; Rewaldt, G.

    2008-01-01

    The mode-independent part of magnetic curvature driven turbulent convective (TuroCo) pinch of the angular momentum density (Hahm et al., Phys. Plasmas 14,072302 (2007)) which was originally derived from the gyrokinetic equation, can be interpreted in terms of the turbulent equipartition (TEP) theory. It is shown that the previous results can be obtained from the local conservation of 'magnetically weighted angular momentum density', nm i U # parallel# R/B 2 , and its homogenization due to turbulent flows. It is also demonstrated that the magnetic curvature modification of the parallel acceleration in the nonlinear gyrokinetic equation in the laboratory frame, which was shown to be responsible for the TEP part of the TurCo pinch of angular momentum density in the previous work, is closely related to the Coriolis drift coupling to the perturbed electric field. In addition, the origin of the diffusive flux in the rotating frame is highlighted. Finally, it is illustrated that there should be a difference in scalings between the momentum pinch originated from inherently toroidal effects and that coming from other mechanisms which exist in a simpler geometry.

  19. Experimental study of high beta toroidal plasmas

    Kellman, A.G.

    1983-09-01

    Experiments on the Wisconsin Levitated Toroidal Octupole have produced a wide range of stable high β plasmas with β significantly above single fluid MHD theory predictions. A stable β approx. 8% plasma, twice the fluid limit, is obtained with 5 rho/sub i/ approx. L/sub n/ and tau/sub β/ approx. = 6000 tau/sub Alfven/ = 600 μsec. The enhanced stability is explained with a kinetic treatment that includes the effect of finite ion gyroradius which couples the ballooning mode to an ion drift wave. In a more collisional, large gyroradius (2 rho/sub i/ approx. L/sub n/) regime, a stable β approx. 35% plasma is obtained with a decay time of 1000 Alfven times. Measurement of the equilibrium magnetic field in this regime indicates that the diamagnetic current density is five times smaller than predicted by ideal MHD, probably due to ion gyroviscosity. Particle transport is anomalous and ranges from agreement with the classical diffusion rate at the highest beta, lowest field plasma (B/sub P/ = 200 G), to thirteen times the classical rate in a β=11%, high field plasma (B/sub P/ = 860 G) where the level of enhancement increase with magnetic field. Fluctuations in density, electrostatic potential, and magnetic field have been studied in plasmas with β from 0.1% to 40%

  20. The BNL toroidal volume H- source

    Alessi, J.G.; Prelec, K.

    1991-01-01

    The BNL toroidal volume H - ion source, in pulsed operation is now producing up to 35 mA with an electron to H - ratio of less than 5, and a ratio of less than 3 for currents up to 20 mA. This improvement came about by increasing the strength of the conical filter field. The source has also been operated steady state at low arc currents, where up to 6 mA of H - was extracted. The electron to H - ratio is 2--3 times larger for dc operation. For dc currents up to 5 mA, the arc power efficiency was 5 mA/kW. Pulsed performance with Ta and W filaments were very similar, except for the large gas pumping observed with the Ta filament. In dc operation, the Ta filament performed somewhat better than W. Extraction from 7 apertures having a total area of 1 cm 2 produced the same results as a single 1 cm 2 aperture. 5 refs., 4 figs

  1. An important step for the ATLAS toroid magnet

    2000-01-01

    The ATLAS experiment's prototype toroid coil arrives at CERN from the CEA laboratory in Saclay on 6 October. The world's largest superconducting toroid magnet is under construction for the ATLAS experiment. A nine-metre long fully functional prototype coil was delivered to CERN at the beginning of October and has since been undergoing tests in the West Area. Built mainly by companies in France and Italy under the supervision of engineers from the CEA-Saclay laboratory near Paris and Italy's INFN-LASA, the magnet is a crucial step forward in the construction of the ATLAS superconducting magnet system. Unlike any particle detector that has gone before, the ATLAS detector's magnet system consists of a large toroidal system enclosing a small central solenoid. The barrel part of the toroidal system will use eight toroid coils, each a massive 25 metres in length. These will dwarf the largest toroids in the world when ATLAS was designed, which measure about six metres. So the ATLAS collaboration decided to build a...

  2. Turbulent transport of toroidal angular momentum in low flow gyrokinetics

    Parra, Felix I; Catto, Peter J

    2010-01-01

    We derive a self-consistent equation for the turbulent transport of toroidal angular momentum in tokamaks in the low flow ordering that only requires solving gyrokinetic Fokker-Planck and quasineutrality equations correct to second order in an expansion on the gyroradius over scale length. We also show that according to our orderings the long wavelength toroidal rotation and the long wavelength radial electric field satisfy the neoclassical relation that gives the toroidal rotation as a function of the radial electric field and the radial gradients of pressure and temperature. Thus, the radial electric field can be solved for once the toroidal rotation is calculated from the transport of toroidal angular momentum. Unfortunately, even though this methodology only requires a gyrokinetic model correct to second order in gyroradius over scale length, current gyrokinetic simulations are only valid to first order. To overcome this difficulty, we exploit the smallish ratio B p /B, where B is the total magnetic field and B p is its poloidal component. When B p /B is small, the usual first order gyrokinetic equation provides solutions that are accurate enough to employ for our expression for the transport of toroidal angular momentum. We show that current δf and full f simulations only need small corrections to achieve this accuracy. Full f simulations, however, are still unable to determine the long wavelength, radial electric field from the quasineutrality equation.

  3. Investigation of intrinsic toroidal rotation scaling in KSTAR

    Yoo, J. W.; Lee, S. G.; Ko, S. H.; Seol, J.; Lee, H. H.; Kim, J. H.

    2017-07-01

    The behaviors of an intrinsic toroidal rotation without any external momentum sources are investigated in KSTAR. In these experiments, pure ohmic discharges with a wide range of plasma parameters are carefully selected and analyzed to speculate an unrevealed origin of toroidal rotation excluding any unnecessary heating sources, magnetic perturbations, and strong magneto-hydrodynamic activities. The measured core toroidal rotation in KSTAR is mostly in the counter-current direction and its magnitude strongly depends on the ion temperature divided by plasma current (Ti/IP). Especially the core toroidal rotation in the steady-state is well fitted by Ti/IP scaling with a slope of ˜-23, and the possible explanation of the scaling is compared with various candidates. As a result, the calculated offset rotation could not explain the measured core toroidal rotation since KSTAR has an extremely low intrinsic error field. For the stability conditions for ion and electron turbulences, it is hard to determine a dominant turbulence mode in this study. In addition, the intrinsic toroidal rotation level in ITER is estimated based on the KSTAR scaling since the intrinsic rotation plays an important role in stabilizing resistive wall modes for future reference.

  4. Experimental studies of plasma confinement in toroidal systems

    Bodin, H.A.B.; Keen, B.E.

    1977-01-01

    In this article the closed-line magnetic field approach to the plasma isolation and confinement problem in toroidal systems is reviewed. The theoretical aspects of closed-line magnetic field systems, indicating that topologically such systems are toroidal, are surveyed under the headings; topology of closed-line systems, equilibrium in different configurations and classification of toroidal devices, MHD stability, non-ideal effects in MHD stability, microscopic stability, and plasma energy loss. A section covering the experimental results of plasma confinement in toroidal geometry considers Stellerators, Tokamaks, toroidal pinch -the reversed-field pinch, screw pinches and high-β Tokamaks, Levitrons and multipoles (internal-ring devices), and miscellaneous toroidal containment devices. Recent achievements and the present position are discussed with reference to the status of Tokamak research, low-β stellerator research and high-β research. It is concluded from the continuing progress made in this research that the criteria for the magnetic containment of plasmas can be met. Further, it is concluded that the construction of a successful and economic fusion reactor is within the scope of advancing science and technology. 250 references. (U.K.)

  5. Experimental studies of plasma confinement in toroidal systems

    Bodin, H A.B.; Keen, B E [UKAEA, Abingdon. Culham Lab.

    1977-12-01

    In this article the closed-line magnetic field approach to the plasma isolation and confinement problem in toroidal systems is reviewed. The theoretical aspects of closed-line magnetic field systems, indicating that topologically such systems are toroidal, are surveyed under the headings; topology of closed-line systems, equilibrium in different configurations and classification of toroidal devices, MHD stability, non-ideal effects in MHD stability, microscopic stability, and plasma energy loss. A section covering the experimental results of plasma confinement in toroidal geometry considers Stellerators, Tokamaks, toroidal pinch -the reversed-field pinch, screw pinches and high-..beta.. Tokamaks, Levitrons and multipoles (internal-ring devices), and miscellaneous toroidal containment devices. Recent achievements and the present position are discussed with reference to the status of Tokamak research, low-..beta.. stellerator research and high-..beta.. research. It is concluded from the continuing progress made in this research that the criteria for the magnetic containment of plasmas can be met. Further, it is concluded that the construction of a successful and economic fusion reactor is within the scope of advancing science and technology. 250 references.

  6. One-dimensional MHD simulations of MTF systems with compact toroid targets and spherical liners

    Khalzov, Ivan; Zindler, Ryan; Barsky, Sandra; Delage, Michael; Laberge, Michel

    2017-10-01

    One-dimensional (1D) MHD code is developed in General Fusion (GF) for coupled plasma-liner simulations in magnetized target fusion (MTF) systems. The main goal of these simulations is to search for optimal parameters of MTF reactor, in which spherical liquid metal liner compresses compact toroid plasma. The code uses Lagrangian description for both liner and plasma. The liner is represented as a set of spherical shells with fixed masses while plasma is discretized as a set of nested tori with circular cross sections and fixed number of particles between them. All physical fields are 1D functions of either spherical (liner) or small toroidal (plasma) radius. Motion of liner and plasma shells is calculated self-consistently based on applied forces and equations of state. Magnetic field is determined by 1D profiles of poloidal and toroidal fluxes - they are advected with shells and diffuse according to local resistivity, this also accounts for flux leakage into the liner. Different plasma transport models are implemented, this allows for comparison with ongoing GF experiments. Fusion power calculation is included into the code. We performed a series of parameter scans in order to establish the underlying dependencies of the MTF system and find the optimal reactor design point.

  7. Formation of magnetic islands due to field perturbations in toroidal stellarator configurations

    Lee, D.K.; Harris, J.H.; Lee, G.S.

    1990-06-01

    An explicit formulation is developed to determine the width of a magnetic island separatrix generated by magnetic field perturbations in a general toroidal stellarator geometry. A conventional method is employed to recast the analysis in a magnetic flux coordinate system without using any simplifying approximations. The island width is seen to be proportional to the square root of the Fourier harmonic of B ρ /B ζ that is in resonance with the rational value of the rotational transform, where B ρ and B ζ are contravariant normal and toroidal components of the perturbed magnetic field, respectively. The procedure, which is based on a representation of three-dimensional flux surfaces by double Fourier series, allows rapid and fairly accurate calculation of the island widths in real vacuum field configurations, without the need to follow field lines through numerical integration of the field line equations. Numerical results of the island width obtained in the flux coordinate representation for the Advanced Toroidal Facility agree closely with those determined from Poincare puncture points obtained by following field lines. 22 refs., 5 tabs

  8. Linear theory of the tearing instability in axisymmetric toroidal devices

    Rogister, A.; Singh, R.

    1988-08-01

    We derive a very general kinetic equation describing the linear evolution of low m/l modes in axisymmetric toroidal plasmas with arbitrary cross sections. Included are: Ion sound, inertia, diamagnetic drifts, finite poloidal beta, and finite ion Larmor radius effects. Assuming the magnetic surfaces to form a set of nested tori with circular cross sections of shifted centers, and introducing adequate simplifications justified by our knowledge of experimental tokamak plasmas, we then obtain explicitely the sets of equations describing the coupling of the quasimodes 0/1, 1/1, 2/1, and, for m≥2, m/1, (m+1)/1. By keeping finite aspect ratio effects into account when calculating the jump of the derivative of the eigenfunction, it is shown that the theory can explain the rapid evolution, within one sawtooth period, of the growth rate of the sawteeth precursors from resistive values to magnetohydrodynamic ones. The characteristics thus theoretically required from current profiles in sawtoothing discharges have clearly been observed. Other aspects of the full theory could be relevant to the phenomenon of major disruptions. (orig.)

  9. Chaos in toroidal ion-temperature-gradient-driven modes in dust-contaminated magnetoplasma

    Qamar, Anisa; Atta-Ullah-Shah [Theoretical Plasma Physics Group, Institute of Physics and Electronics, University of Peshawar Khyber Pakhtunkhwa 25000 (Pakistan); Yaqub Khan, M; Ayub, M [Department of Mathematics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Mirza, Arshad M, E-mail: anisaqamar@gmail.com [Theoretical Plasma Physics Group, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2011-06-01

    A new set of nonlinear equations for toroidal ion-temperature-gradient-driven (ITGD) drift-dissipative waves is derived by using Braginskii's transport model of the ion dynamics and the Boltzmann distribution of electrons in the presence of negatively charged dust grains. The temporal behaviour of the nonlinear ITGD mode is found to be governed by three nonlinear equations for the amplitudes, which is a generalization of Lorenz- and Stenflo-type equations admitting chaotic trajectories. The linear stability analysis has been presented and stationary points for our generalized mode coupling equations are also derived.

  10. Influence of external toroidal flux on low-aspect-ratio toroidal plasma

    Ikuno, S.; Natori, M.; Kamitani, A.

    1999-01-01

    In the HIST device, the external flux is generated by two kinds of currents: the current I s flowing along the symmetry axis and the bias coil current I D . The influence of the external flux on the MHD equilibrium and stability of the low-aspect-ratio toroidal plasma in the HIST device is investigated numerically. Equilibrium configurations of the low-aspect-ratio toroidal plasma in the HIST device are numerically determined by means of the combination of FDM and BEM. The influence of I s and I D on their stability is also investigated by using the Mercier criterion. The results of computations show that the Mercier limit decreases to zero with increasing I s and with decreasing I D . Moreover, either a further increase in I s or a further decrease in I D raises the Mercier limit considerably. Besides, the equilibrium configuration in the HIST device changes its state from spheromak through ultra-low q to tokamak with increasing I s and with decreasing I D . (author)

  11. Formation of polymeric toroidal-spiral particles.

    Sharma, Vishal; Szymusiak, Magdalena; Shen, Hao; Nitsche, Ludwig C; Liu, Ying

    2012-01-10

    Compared to spherical matrices, particles with well-defined internal structure provide large surface to volume ratio and predictable release kinetics for the encapsulated payloads. We describe self-assembly of polymeric particles, whereby competitive kinetics of viscous sedimentation, diffusion, and cross-linking yield a controllable toroidal-spiral (T-S) structure. Precursor polymeric droplets are splashed through the surface of a less dense, miscible solution, after which viscous forces entrain the surrounding bulk solution into the sedimenting polymer drop to form T-S channels. The intricate structure forms because low interfacial tension between the two miscible solutions is dominated by viscous forces. The biocompatible polymer, poly(ethylene glycol) diacrylate (PEG-DA), is used to demonstrate the solidification of the T-S shapes at various configurational stages by UV-triggered cross-linking. The dimensions of the channels are controlled by Weber number during impact on the surface, and Reynolds number and viscosity ratio during subsequent sedimentation. We anticipate applications of the T-S particle in drug delivery, wherein diffusion through these T-S channels and the polymer matrix would offer parallel release pathways for molecules of different sizes. Polyphosphate, as a model macromolecule, is entrained in T-S particles during their formation. The in vitro release kinetics of polyphosphate from the T-S particles with various channel length and width is reported. In addition, self-assembly of T-S particles occurs in a single step under benign conditions for delicate macromolecules, and appears conducive to scaleup.

  12. Inductive Eigenmodes of a resistive toroidal surface in vacuum

    Lo Surdo, C.

    1999-01-01

    In this paper it has been studied the Electro-Magnetic (EM) Eigenmodes, sufficiently slow as to legitimate the pre-Maxwell approximation of Maxwell's system (or inductive Eigenmodes), of a given smooth, toroidal-unknotted, electrically resistive surface Τ with given smooth (surface) resistivity 0 d egree 3 . Within the above limitations (to be made more precise), the geometry of Τ is arbitrary. With the eigenvalue associated with the generic Eigenmode being defined as the opposite of its logarithmic time-derivative, one expects that the resulting spectrum be discrete and strictly positive. It shall be interested into the degenerate case where Τ be cut (i.e. electrically broken) along one or more of its irreducible cycles. This case will be analyzed autonomously, rather than as a limit (for ρ d egree → ∞ along the cuts) of the regular case. Without cuts, the Eigenproblem under consideration is nothing but the two-dimensional (2-dim) generalization of the classical case of a smooth, unknotted, electrically conductive, simple coil in infinite vacuum. Its analysis hinges on the classical potential theory, and turns out to be a special application of the linear, integrodifferential (elliptic) equation theory on a compact, multiply connected, 2-dim manifold. The attention and approach will be confined to strong (or classical) solutions, both in Τ and C Τ = R 3 / Τ. This study is divided in two parts: a General Part (Sects 1 divided 4) is devoted to the case of generic Τ and ρ d egree (within the convenient smoothness requirements), whereas a Special Part (Sects 5 divided 7) deals with the (more or less formal) discussion of a couple of particular cases (Τ ≡ a canonical torus), both of which with uniform ρ d egree. Some propaedeutical/supplementary information is provided in a number of Appendices [it

  13. Toroidal Plasma Thruster for Interplanetary and Interstellar Space Flights

    Gorelenkov, N.N.; Zakharov, L.E.; Gorelenkova, M.V.

    2001-01-01

    This work involves a conceptual assessment for using the toroidal fusion reactor for deep space interplanetary and interstellar missions. Toroidal thermonuclear fusion reactors, such as tokamaks and stellarators, are unique for space propulsion, allowing for a design with the magnetic configuration localized inside toroidal magnetic field coils. Plasma energetic ions, including charged fusion products, can escape such a closed configuration at certain conditions, a result of the vertical drift in toroidal rippled magnetic field. Escaping particles can be used for direct propulsion (since toroidal drift is directed one way vertically) or to create and heat externally confined plasma, so that the latter can be used for propulsion. Deuterium-tritium fusion neutrons with an energy of 14.1 MeV also can be used for direct propulsion. A special design allows neutrons to escape the shield and the blanket of the tokamak. This provides a direct (partial) conversion of the fusion energy into the directed motion of the propellant. In contrast to other fusion concepts proposed for space propulsion, this concept utilizes the natural drift motion of charged particles out of the closed magnetic field configuration

  14. Measurement of toroidal plasma current in RF heated helical plasmas

    Besshou, Sakae

    1993-01-01

    This report describes the measurement of toroidal plasma current by a semiflexible Rogowski coil in a helical vacuum chamber. A Rogowski coil measures the toroidal plasma current with a resolution of 0.1 kA, frequency range of up to 1 kHz and sensitivity of 6.5 x 10 -9 V · s/A. We measured the spontaneous toroidal plasma current (from -1.2 to +1.2 kA) under electron cyclotron resonance heating at 0.94 T toroidal field in the Heliotron-E device. We found that the measured direction of toroidal plasma current changes its sign as in the predicted behavior of a neoclassical diffusion-driven bootstrap current, depending on the horizontal position of the plasma column. We explain the observed plasma currents in terms of the compound phenomenon of an ohmic current and a neoclassical diffusion-driven current. The magnitude of the neoclassical current component is smaller than the value predicted by a collisionless neoclassical theory. (author)

  15. Computer simulations of compact toroid formation and acceleration

    Peterkin, R.E. Jr.; Sovinec, C.R.

    1990-01-01

    Experiments to form, accelerate, and focus compact toroid plasmas will be performed on the 9.4 MJ SHIVA STAR fast capacitor bank at the Air Force Weapons Laboratory during the 1990. The MARAUDER (magnetically accelerated rings to achieve ultrahigh directed energy and radiation) program is a research effort to accelerate magnetized plasma rings with the masses between 0.1 and 1.0 mg to velocities above 10 8 cm/sec and energies above 1 MJ. Research on these high-velocity compact toroids may lead to development of very fast opening switches, high-power microwave sources, and an alternative path to inertial confinement fusion. Design of a compact toroid accelerator experiment on the SHIVA STAR capacitor bank is underway, and computer simulations with the 2 1/2-dimensional magnetohydrodynamics code, MACH2, have been performed to guide this endeavor. The compact toroids are produced in a magnetized coaxial plasma gun, and the acceleration will occur in a configuration similar to a coaxial railgun. Detailed calculations of formation and equilibration of a low beta magnetic force-free configuration (curl B = kB) have been performed with MACH2. In this paper, the authors discuss computer simulations of the focusing and acceleration of the toroid

  16. Theory for neoclassical toroidal plasma viscosity in tokamaks

    Shaing, K C; Chu, M S; Hsu, C T; Sabbagh, S A; Seol, Jae Chun; Sun, Y

    2012-01-01

    Error fields and magnetohydrodynamic modes break toroidal symmetry in tokamaks. The broken symmetry enhances the toroidal plasma viscosity, which results in a steady-state toroidal plasma flow. A theory for neoclassical toroidal plasma viscosity in the low-collisionality regimes is developed. It extends stellarator transport theory to include multiple modes and to allow for |m − nq| ∼ 1. Here, m is the poloidal mode number, n is the toroidal mode number and q is the safety factor. The bounce averaged drift kinetic equation is solved in several asymptotic limits to obtain transport fluxes. These fluxes depend non-linearly on the radial electric field except for those in the 1/ν regime. Here, ν is the collision frequency. The theory is refined to include the effects of the superbanana plateau resonance at the phase space boundary and the finite ∇B drift on the collisional boundary layer fluxes. Analytical expressions that connect all asymptotic limits are constructed and are in good agreement with the numerical results. The flux–force relations that relate transport fluxes to forces are used to illustrate the roles of transport fluxes in the momentum equation. It is shown that the ambipolar state is reached when the momentum equation is relaxed. It is also shown that the origin of the momentum for plasma flow generated without momentum sources is the local unbalance of particles' momenta and is diamagnetic in nature regardless of the details of the theory. (paper)

  17. Calculations of toroidal EXTRAP equilibria for different toroidal ring current configurations

    Drake, J.R.; Scheffel, J.

    1985-12-01

    EXTRAP is a concept in which a pure Z-pinch is generated along the axis of an octupole field. Experiments in a linear as well as in a sector geometry have demonstrated that the pinch becomes stable against instabilities for many Alfven times. The octupole field in EXTRAP is produced by four, external, current-carrying rings. In the toroidal geometry these rings must be supplemented by additional rings to compensate for the plasma loop force and transformer core leakage flux. Equilibrium studies are carried out for two basically ring designs. The studies are based on numerical equilibrium copmputations using the GOYA code. Sensitivity of the equilibrium to technical imperfections is also analyzed. (author)

  18. Inductive Eigenmodes of a resistive toroidal surface in vacuum

    Lo Surdo, C. [ENEA, Centro Ricerche Frascati, Rome (Italy). Dipt. Innovazione

    1999-07-01

    In this paper it has been studied the Electro-Magnetic (EM) Eigenmodes, sufficiently slow as to legitimate the pre-Maxwell approximation of Maxwell's system (or inductive Eigenmodes), of a given smooth, toroidal-un knotted, electrically resistive surface {tau} with given smooth (surface) resistivity 0 < {rho}{sub d}egree < {infinity}, and lying in the (empty) R{sup 3}. Within the above limitations (to be made more precise), the geometry of {tau} is arbitrary. With the eigenvalue associated with the generic Eigenmode being defined as the opposite of its logarithmic time-derivative, one expects that the resulting spectrum be discrete and strictly positive. It shall be interested into the degenerate case where {tau} be cut (i.e. electrically broken) along one or more of its irreducible cycles. This case will be analyzed autonomously, rather than as a limit (for {rho}{sub d}egree {yields} {infinity} along the cuts) of the regular case. Without cuts, the Eigenproblem under consideration is nothing but the two-dimensional (2-dim) generalization of the classical case of a smooth, unknotted, electrically conductive, simple coil in infinite vacuum. Its analysis hinges on the classical potential theory, and turns out to be a special application of the linear, integrodifferential (elliptic) equation theory on a compact, multiply connected, 2-dim manifold. The attention and approach will be confined to strong (or classical) solutions, both in {tau} and C {tau} = R{sup 3} / {tau}. This study is divided in two parts: a General Part (Sects 1 divided 4) is devoted to the case of generic {tau} and {rho}{sub d}egree (within the convenient smoothness requirements), whereas a Special Part (Sects 5 divided 7) deals with the (more or less formal) discussion of a couple of particular cases ({tau} {identical_to} a canonical torus), both of which with uniform {rho}{sub d}egree. Some propaedeutical/supplementary information is provided in a number of Appendices. [Italian] Il presente

  19. Structural analysis of TFTR toroidal field coil conceptual design

    Smith, R.A.

    1975-10-01

    The conceptual design evaluation of the V-shaped toroidal field coils on the Tokamak Fusion Test Reactor has been performed by detailed structural analysis with the finite element method. The innovation provided by this design and verified in this work is the capability to support toroidal field loads while simultaneously performing the function of twist restraint against the device axial torques resulting from the vertical field loads. The evaluations made for the conceptual design provide predictions for coil deflections and stresses. The results are available for the separate effects from toroidal fields, poloidal fields, and the thermal expansion of the coils as well as for the superposition of the primary loads and the primary plus thermal loads

  20. Design features of HTMR-Hybrid Toroidal Magnet Tokamak Reactor

    Rosatelli, F.; Avanzini, P.G.; Brunelli, B.; Derchi, D.; Magnasco, M.; Grattarola, M.; Peluffo, M.; Raia, G.; Zampaglione, V.

    1985-01-01

    The HTMR (Hybrid Toroidal Magnet Tokamak Reactor) conceptual design is aimed to demonstrate the feasibility of a Tokamak reactor which could fulfill the scientific and technological objectives expected from next generation devices (e.g. INTOR-NET) with size and costs as small as possible. An hybrid toroidal field magnet, made up by copper and superconducting coils, seems to be a promising solution, allowing a considerable flexibility in machine performances, so as to gain useful margins in front of the uncertainties in confinement time scaling laws and beta and plasma density limits. In this paper the authors describe the optimization procedure for the hybrid magnet configuration, the main design features of HTMR and the preliminary mechanical calculations of the superconducting toroidal coils

  1. Design features of HTMR-hybrid toroidal magnet tokamak reactor

    Rosatelli, F.; Avanzini, P.G.; Derchi, D.; Magnasco, M.; Grattarola, M.; Peluffo, M.; Raia, G.; Brunelli, B.; Zampaglione, V.

    1984-01-01

    The HTMR (Hybrid Toroidal Magnet Tokamak Reactor) conceptual design is aimed to demonstrate the feasibility of a Tokamak reactor which could fulfil the scientific and technological objectives expected from next generation devices with size and costs as small as possible. A hybrid toroidal field magnet, made up by copper and superconducting coils, seems to be a promising solution, allowing a considerable flexibility in machine performances, so as to gain useful margins in front of the uncertainties in confinement time scaling laws and beta and plasma density limits. The optimization procedure for the hybrid magnet, configuration, the main design features of HTMR and the preliminary mechanical calculations of the superconducting toroidal coils are described. (author)

  2. Plasma flow in toroidal systems with a separatrix

    Gribkov, V.M.; Morozov, D.Kh.; Pogutse, O.P.

    1984-01-01

    A hydrodynamic plasma flow in toroidal systems is considered. Rlasma flow lines for various magnetic configurations are calculated. A particular attention is given to studying plasma flow in configurations with two magnetic a axes and a separatrix. The flow picture i the toroidal case is shown to qualita ity to penetrate through the separatrix - the latter becomes ''perforated''. Th he pictkre of these flows is calculated. The plasma diffusion coefficient with account for the separatrix is calculated and is shown not to turn into the infin nity in the toroidal case as well. The plasma flow is analytically considered in the model with distributed current as well as in the model with current conce entrated at the oroidal system axis. In the first case the existence of ''stagnant'' regions near the magnetic axis is established from which the plasma a does not flow out

  3. A method for external measurement of toroidal equilibrium parameters

    Brunsell, P.; Hellblom, G.; Brynolf, J.

    1992-01-01

    A method has been developed for determining from external magnetic field measurements the horizontal shift, the vertical shift and the poloidal field asymmetry parameter (Λ) of a toroidal plasma in force equilibrium. The magnetic measurements consist of two toroidal differential flux loops, giving the average vertical magnetic field and the average radial magnetic field respectively, together with cosine-coils for obtaining the m=1 cosine harmonic of the external poloidal magnetic field component. The method is used to analyse the evolution of the toroidal equilibrium during reversed-field pinch discharges in the Extrap T1-U device. We find that good equilibrium control is needed for long plasma pulses. For non-optimized externally applied vertical fields, the diagnostic clearly shows a horizontal drift motion of the pinch resulting in earlier discharge termination. (au)

  4. Bi-2223 HTS winding in toroidal configuration for SMES coil

    Kondratowicz-Kucewicz, B; Kozak, S; Kozak, J; Wojtasiewicz, G; Majka, M; Janowski, T

    2010-01-01

    Energy can be stored in the magnetic field of a coil. Superconducting Magnetic Energy Storage (SMES) is very promising as a power storage system for load levelling or power stabilizer. However, the strong electromagnetic force caused by high magnetic field and large coil current is a problem in SMES systems. A toroidal configuration would have a much less extensive external magnetic field and electromagnetic forces in winding. The paper describes the design of HTS winding for SMES coil in modular toroid configuration consist of seven Bi-2223 double-pancakes as well as numerical analysis of SMES magnet model using FLUX 3D package. As the results of analysis the paper presents the optimal coil configuration and the parameters such as radius of toroidal magnet, energy stored in magnet and magnetic field distribution.

  5. Modal analysis of a stiffened toroidal shell sector

    Cerreta, R.; Di Pietro, E.; Pizzuto, A.

    1987-01-01

    This paper presents the results of the modal analysis of a sector of the toroidal vacuum vessel of a new experimental machine for research in the field of controlled thermonuclear fusion (FTU - Frascati Tokamak Upgrade). The vacuum vessel, one of the most critical components of the experimental device, consist of 12 stainless steel toroidal sectors, and it is designed to withstand pulsed electromagnetic loads during operation. Results of the modal analysis of the stiffened toroidal shell sector are compared and discussed with regard to the experimental data. Theoretical eigenvalues and eigenvectors have been predicted by means of ABAQUS finite element code. Experimental analysis has been carried out on a full scale model and natural frequencies have been measured. Satisfactory agreement between experimental and theoretical eigenvalues has been found

  6. Structural analysis of the ITER Divertor toroidal rails

    Viganò, F., E-mail: Fabio.Vigano@LTCalcoli.it [L.T. Calcoli SaS, Piazza Prinetti 26/B, 23807 Merate (Italy); Escourbiac, F.; Gicquel, S.; Komarov, V. [ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul lez Durance (France); Lucca, F. [L.T. Calcoli SaS, Piazza Prinetti 26/B, 23807 Merate (Italy); Merola, M. [ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul lez Durance (France); Ngnitewe, R. [L.T. Calcoli SaS, Piazza Prinetti 26/B, 23807 Merate (Italy)

    2013-10-15

    The Divertor is one of the most technically challenging components of the ITER machine, which has the main function of extracting the power conducted in the scrape-off layer while maintaining the plasma purity. There are 54 Divertor cassettes installed in the vacuum vessel (VV). Each cassette body (CB) is fastened on the inner and outer concentric Divertor toroidal rails. The comprehensive assessment (in accordance with the Structural Design Criteria for ITER In-vessel Components: ITER SDC-IC) of the Divertor toroidal rails has been performed during design activity based on performing of thermal and stress analyses at operating conditions of neutron stage of ITER operation. This paper outlines the engineering aspects of the ITER Divertor toroidal rails and focuses on some critical regions of the present design highlighted by the performed structural assessment. The structural assessment has been performed with help of using Finite Element (FE) Abaqus code and based on criteria given by ITER SDC-IC.

  7. Toroidal Superheavy Nuclei in Skyrme-Hartree-Fock Approach

    Staszczak, A.; Wong, Cheuk-Yin

    2009-01-01

    Within the self-consistent constraint Skyrme-Hartree-Fock+BCS model (SHF+BCS), we found equilibrium toroidal nuclear density distributions in the region of superheavy elements. For nuclei with a sufficient oblate deformation (Q 20 < -200 b), it becomes energetically favorable to change the genus of nuclear surface from 0 to 1, i.e., to switch the shape from a biconcave disc to a torus. The energy of the toroidal (genus=1) SHF+BCS solution relative to the compact (genus=0) ground state energy is strongly dependent both on the atomic number Z and the mass number A. We discuss the region of Z and A where the toroidal SHF+BCS total energy begins to be a global minimum

  8. Efficiency of wave-driven rigid body rotation toroidal confinement

    Rax, J. M.; Gueroult, R.; Fisch, N. J.

    2017-03-01

    The compensation of vertical drifts in toroidal magnetic fields through a wave-driven poloidal rotation is compared with compensation through the wave driven toroidal current generation to support the classical magnetic rotational transform. The advantages and drawbacks associated with the sustainment of a radial electric field are compared with those associated with the sustainment of a poloidal magnetic field both in terms of energy content and power dissipation. The energy content of a radial electric field is found to be smaller than the energy content of a poloidal magnetic field for a similar set of orbits. The wave driven radial electric field generation efficiency is similarly shown, at least in the limit of large aspect ratio, to be larger than the efficiency of wave-driven toroidal current generation.

  9. Mechanical stress calculations for toroidal field coils by the finite element method

    Soell, M.; Jandl, O.; Gorenflo, H.

    1976-09-01

    After discussing fundamental relationships of the finite element method, this report describes the calculation steps worked out for mechanical stress calculations in the case of magnetic forces and forces produced by thermal expansion or compression of toroidal field coils using the SOLID SAP IV computer program. The displacement and stress analysis are based on the 20-node isoparametric solid element. The calculation of the nodal forces produced by magnetic body forces are discussed in detail. The computer programs, which can be used generally for mesh generation and determination of the nodal forces, are published elsewhere. (orig.) [de

  10. Progress in the construction of the B0 model of the ATLAS Barrel Toroid magnet

    Acerbi, E; Ambrosio, G; Baccaglioni, G; Broggi, F; Rossi, L; Sorbi, M; Volpini, G

    2000-01-01

    The ATLAS Barrel Toroid air-core magnet (BT) will be composed by 8 superconducting coils, each one 25 m long and 5 m wide. In order to validate the technologies and manufacturing processes, a smaller model (9 m long) of one BT coil, named B0, is now under construction. This paper presents a general overview of the B0 project status, with special regard to the components for which the LASA Lab. is responsible: (a) the aluminium-clad NbTi conductor; (b) the double coils winding and impregnation; (c) the components of the cryostat (vacuum chamber, thermal shield and suspension rod). (6 refs).

  11. FURNACE; a toroidal geometry neutronic program system method description and users manual

    Verschuur, K.A.

    1984-12-01

    The FURNACE program system performs neutronic and photonic calculations in 3D toroidal geometry for application to fusion reactors. The geometry description is quite general, allowing any torus cross section and any neutron source density distribution for the plasma, as well as simple parametric representations of circular, elliptic and D-shaped tori and plasmas. The numerical method is based on an approximate transport model that produces results with sufficient accuracy for reactor-design purposes, at acceptable calculational costs. A short description is given of the numerical method, and a user manual for the programs of the system: FURNACE, ANISN-PT, LIBRA, TAPEMA and DRAWER is presented

  12. Linear wave propagation in a hot axisymmetric toroidal plasma

    Jaun, A.

    1995-03-01

    Kinetic effects on the propagation of the Alfven wave are studied for the first time in a toroidal plasma relevant for experiments. This requires the resolution of a set of coupled partial differential equations whose coefficients depend locally on the plasma parameters. For this purpose, a numerical wave propagation code called PENN has been developed using either a bilinear or a bicubic Hermite finite element discretization. It solves Maxwell's equations in toroidal geometry, with a dielectric tensor operator that takes into account the linear response of the plasma. Two different models have been implemented and can be used comparatively to describe the same physical case: the first treats the plasma as resistive fluids and gives results which are in good agreement with toroidal fluid codes. The second is a kinetic model and takes into account the finite size of the Larmor radii; it has successfully been tested against a kinetic plasma model in cylindrical geometry. New results have been obtained when studying kinetic effects in toroidal geometry. Two different conversion mechanisms to the kinetic Alfven wave have been described: one occurs at toroidally coupled resonant surfaces and is the kinetic counterpart of the fluid models' resonance absorption. The other has no such correspondence and results directly from the toroidal coupling between the kinetic Alfven wave and the global wavefield. An analysis of a heating scenario suggests that it might be difficult to heat a plasma with Alfven waves up to temperatures that are relevant for a tokamak reactor. Kinetic effects are studied for three types of global Alfven modes (GAE, TAE, BAE) and a new class of kinetic eigenmodes is described which appear inside the fluid gap: it could be related to recent observations in the JET (Joint European Torus) tokamak. (author) 56 figs., 6 tabs., 58 refs

  13. Linear wave propagation in a hot axisymmetric toroidal plasma

    Jaun, A [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1995-03-01

    Kinetic effects on the propagation of the Alfven wave are studied for the first time in a toroidal plasma relevant for experiments. This requires the resolution of a set of coupled partial differential equations whose coefficients depend locally on the plasma parameters. For this purpose, a numerical wave propagation code called PENN has been developed using either a bilinear or a bicubic Hermite finite element discretization. It solves Maxwell`s equations in toroidal geometry, with a dielectric tensor operator that takes into account the linear response of the plasma. Two different models have been implemented and can be used comparatively to describe the same physical case: the first treats the plasma as resistive fluids and gives results which are in good agreement with toroidal fluid codes. The second is a kinetic model and takes into account the finite size of the Larmor radii; it has successfully been tested against a kinetic plasma model in cylindrical geometry. New results have been obtained when studying kinetic effects in toroidal geometry. Two different conversion mechanisms to the kinetic Alfven wave have been described: one occurs at toroidally coupled resonant surfaces and is the kinetic counterpart of the fluid models` resonance absorption. The other has no such correspondence and results directly from the toroidal coupling between the kinetic Alfven wave and the global wavefield. An analysis of a heating scenario suggests that it might be difficult to heat a plasma with Alfven waves up to temperatures that are relevant for a tokamak reactor. Kinetic effects are studied for three types of global Alfven modes (GAE, TAE, BAE) and a new class of kinetic eigenmodes is described which appear inside the fluid gap: it could be related to recent observations in the JET (Joint European Torus) tokamak. (author) 56 figs., 6 tabs., 58 refs.

  14. On the longitudinal coupling impedance of a toroidal beam tube

    Hahn, H.; Tepikian, S.

    1990-01-01

    In this paper, the longitudinal coupling impedance of a smooth toroidal beam tube is derived. By treating the torus as a slow-wave structure, the well-known method of describing the impedance in terms of cavity resonances can be used. A simple analytical expression for the coupling impedance of a toroidal beam tube with square cross section valid in the low-frequency limit is obtained. The results from the present study are compared with previously published solutions and qualitative differences are pointed out. 16 refs., 3 figs., 1 tab

  15. Current drive by asymmetrical heating in a toroidal plasma

    Gahl, J.M.

    1986-01-01

    This report describes the first experimental observation of current generation by asymmetrical heating of ions. A unidirectional fast Alfven wave launched by a slow-wave antenna inside the Texas Tech Tokamak, asymmetrically heated the ions. Measurements of the asymmetry of the toroidal plasma current with probes at the top and bottom of the toroidal plasma column confirmed the current generation indirectly. Current generation, obtained in a one-species, hydrogen plasma, is a phenomenon which had not been predicted previously. Calculations of the dispersion relation for the fast Alfven wave near the fundamental cyclotron resonance in a one-species, hydrogen plasma, using warm plasma theory, support the experimental results

  16. Ion temperature gradient modes in toroidal helical systems

    Kuroda, T. [Graduate University for Advanced Studies, Toki, Gifu (Japan); Sugama, H.; Kanno, R.; Okamoto, M.

    2000-04-01

    Linear properties of ion temperature gradient (ITG) modes in helical systems are studied. The real frequency, growth rate, and eigenfunction are obtained for both stable and unstable cases by solving a kinetic integral equation with proper analytic continuation performed in the complex frequency plane. Based on the model magnetic configuration for toroidal helical systems like the Large Helical Device (LHD), dependences of the ITG mode properties on various plasma equilibrium parameters are investigated. Particularly, relative effects of {nabla}B-curvature drifts driven by the toroidicity and by the helical ripples are examined in order to compare the ITG modes in helical systems with those in tokamaks. (author)

  17. Ion temperature gradient modes in toroidal helical systems

    Kuroda, T.; Sugama, H.; Kanno, R.; Okamoto, M.

    2000-04-01

    Linear properties of ion temperature gradient (ITG) modes in helical systems are studied. The real frequency, growth rate, and eigenfunction are obtained for both stable and unstable cases by solving a kinetic integral equation with proper analytic continuation performed in the complex frequency plane. Based on the model magnetic configuration for toroidal helical systems like the Large Helical Device (LHD), dependences of the ITG mode properties on various plasma equilibrium parameters are investigated. Particularly, relative effects of ∇B-curvature drifts driven by the toroidicity and by the helical ripples are examined in order to compare the ITG modes in helical systems with those in tokamaks. (author)

  18. Tokamak configuration analysis with the method of toroidal multipoles

    Micozzi, P.; Alladio, F.; Crisanti, F.; Marinucci, M.; Tanga, A.

    1989-01-01

    In the study of tokamak machines able to sustain plasmas of thermonuclear interest (JIT, IGNITOR, NET, CIT, ET), there is a strong quest for engineering optimization of the circuital components close to the plasma. We have developed a semianalytical axisymmetric MHD equilibrium code based on the technique of the poloidal ψ flux function expansion in toroidal harmonic series. This code is able to optimize the necessary currents in the poloidal circuits in order to sustain a plasma of fixed shape (also x-point configuration), toroidal current and poloidal β. (author) 4 refs., 4 figs

  19. Neoclassical diffusion in toroidal three-cut magnetic field

    Nemov, V.V.; Shishkin, A.A.

    1975-01-01

    Quasi-classical diffusion is investigated in the regime of toroidal drift of 'bananas' in a three cut magnetic field. Unlike previous papers, it is supposed that the inhomogeneity of a helical magnetic field epsilonsub(k) is of the same order or less than that of the toroidal inhomogeneity epsilonsub(t). The case is considered when the efficient frequency of particle collisions exceeds that of the 'banana' precession around the magnetic axis. Expressions for diffusion flows and coefficients are obtained that transform into available ones at epsilonsub(h) > > epsilonsub(t) [ru

  20. Compression of toroidal plasma by imploding plasma-liner

    Ikuta, Kazunari.

    1979-07-01

    A new concept of compressing a plasma in a closed magnetic configuration by a version of liner implosion flux compression technique is considered. The liner consists of a dense plasma cylinder, i.e. the plasma-liner. Maximum compression ratio of toroidal plasma is determined just by the initial density ratio of the toroidal plasma to the liner plasma because of the Rayleigh-Taylor instability. A start-up senario of plasma-liner is also proposed with a possible application of this concept to the creation of a burning plasma in reversed field configurations, i.e. burning plasma vortex. (author)

  1. Development and verification of printed circuit board toroidal transformer model

    Pejtersen, Jens; Mønster, Jakob Døllner; Knott, Arnold

    2013-01-01

    An analytical model of an air core printed circuit board embedded toroidal transformer configuration is presented. The transformer has been developed for galvanic isolation of very high frequency switch-mode dc-dc power converter applications. The theoretical model is developed and verified...... by comparing calculated parameters with 3D finite element simulations and experimental measurement results. The developed transformer model shows good agreement with the simulated and measured results. The model can be used to predict the parameters of printed circuit board toroidal transformer configurations...

  2. Compact toroid theory issues and approaches: a panel report

    1985-06-01

    In the six years since the initiation of the compact toroid program by the Office of Fusion Energy, remarkable scientific advances have occurred on both field-reversed configurations (FRC) and spheromaks. This progress has been stimulated by a diverse experimental program with facilities at six laboratories, and by a small but nevertheless broad theoretical research effort encompassing more than a dozen institutions. The close coupling between theoretical and experimental programs has contributed immeasurably to this progress. This document offers guidance for future compact toroid theory by identifying and discussing the key physics issues. In most cases promising approaches to these issues are offered

  3. Heat removal in INTOR via a toroidal limiter

    Mioduszewski, P.

    1981-01-01

    In the present paper the potential of removing about 100 MW of thermal plasma power via a toroidal limiter in INTOR is studied. The heat flux distributions on various limiter configurations are calculated and the thermal response of a graphite tile limiter is estimated on the base of a one-dimensional heat conduction approach. The evaporation rates which have to be expected for the given energy flux densities and radiation cooled graphite tiles are evaluated. According to the present understanding it should be possible to remove 100 MW power from the INTOR plasma via a radiation cooled toroidal limiter. (author)

  4. Induction Motor with Switchable Number of Poles and Toroidal Winding

    MUNTEANU, A.

    2011-05-01

    Full Text Available This paper presents a study of an induction motor provided with toroidal stator winding. The ring-type coils offer a higher versatility in obtaining a different number of pole pairs by means of delta/star and series/parallel connections respectively. As consequence, the developed torque can vary within large limits and the motor can be utilized for applications that require, for example, high load torque values for a short time. The study involves experimental tests and FEM simulation for an induction machine with three configurations of pole pairs. The conclusions attest the superiority of the toroidal winding for certain applications such as electric vehicles or lifting machines.

  5. ALT-II toroidal belt limiter biasing experiments on TEXTOR

    Doerner, R.; Boedo, J.A.; Gray, D.S.

    1991-01-01

    Edge electric fields have been related to H-mode-like behaviour. The experiments reported here are an attempt to control the SOL profiles by electrostatic biasing of the full toroidal-belt limiter ALT-II. The specific goals are: influencing the edge particle flows, particle removal, power deposition and the global confinement. The ALT-II pump limiter is a full toroidal belt located at 45 o below the outer midplane and consisting of eight graphite covered blades which can be independently biased. Particle scoops located behind the limiter neutralize and direct the incoming plasma into the pumping ducts. (author) 5 refs., 3 figs

  6. Electron diamagnetism and toroidal coupling of tearing modes

    Cowley, S.C.; Hastie, R.J.

    1987-10-01

    Using a simple model for the layer of the tearing mode, we demonstrate that toroidally coupled tearing modes with two rational surfaces are most unstable when the ω*'s of the electrons at the rational surfaces are equal. The onset of instability may then occur because of the tuning of ω* rather than the passage of Δ'-like quantities through zero. This mechanism for the onset of instability is sharp since the resonance is narrow. The effect of toroidal rotation is also discussed. 7 refs., 2 figs

  7. Effects of Toroidal Rotation Sshear on Toroidicity-induced Alfven Eigenmodes in the National Spherical Torus Experiment

    Podesta, M; Fredrickson, E D; Gorelenkov, N N; LeBlanc, B P; Heidbrink, W W; Crocker, N A; Kubota, S

    2010-08-19

    The effects of a sheared toroidal rotation on the dynamics of bursting Toroidicity-induced Alfven eigenmodes are investigated in neutral beam heated plasmas on the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40 557 (2000)]. The modes have a global character, extending over most of the minor radius. A toroidal rotation shear layer is measured at the location of maximum drive for the modes. Contrary to results from other devices, no clear evidence of increased damping is found. Instead, experiments with simultaneous neutral beam and radio-frequency auxiliary heating show a strong correlation between the dynamics of the modes and the instability drive. It is argued that kinetic effects involving changes in the mode drive and damping mechanisms other than rotation shear, such as continuum damping, are mostly responsible for the bursting dynamics of the modes.

  8. Effects of Toroidal Rotation Shear on Toroidicity-induced Alfven Eigenmodes in the National Spherical Torus Experiment

    Podesta, M.; Bell, R.E.; Fredrickson, E.D.; Gorelenkov, N.N.; LeBlanc, B.P.; Heidbrink, W.W.; Crocker, N.A.; Kubota, S.; Yuh, H.

    2010-01-01

    The effects of a sheared toroidal rotation on the dynamics of bursting Toroidicity-induced Alfven eigenmodes are investigated in neutral beam heated plasmas on the National Spherical Torus Experiment (NSTX) (M. Ono et al., Nucl. Fusion 40 557 (2000)). The modes have a global character, extending over most of the minor radius. A toroidal rotation shear layer is measured at the location of maximum drive for the modes. Contrary to results from other devices, no clear evidence of increased damping is found. Instead, experiments with simultaneous neutral beam and radio-frequency auxiliary heating show a strong correlation between the dynamics of the modes and the instability drive. It is argued that kinetic effects involving changes in the mode drive and damping mechanisms other than rotation shear, such as continuum damping, are mostly responsible for the bursting dynamics of the modes.

  9. Hamilton-Jacobi theory for continuation of magnetic field across a toroidal surface supporting a plasma pressure discontinuity

    McGann, M.; Hudson, S.R.; Dewar, R.L.; Nessi, G. von

    2010-01-01

    The vanishing of the divergence of the total stress tensor (magnetic plus kinetic) in a neighborhood of an equilibrium plasma containing a toroidal surface of discontinuity gives boundary and jump conditions that strongly constrain allowable continuations of the magnetic field across the surface. The boundary conditions allow the magnetic fields on either side of the discontinuity surface to be described by surface magnetic potentials, reducing the continuation problem to that of solving a Hamilton-Jacobi equation. The characteristics of this equation obey Hamiltonian equations of motion, and a necessary condition for the existence of a continued field across a general toroidal surface is that there exist invariant tori in the phase space of this Hamiltonian system. It is argued from the Birkhoff theorem that existence of such an invariant torus is also, in general, sufficient for continuation to be possible. An important corollary is that the rotational transform of the continued field on a surface of discontinuity must, generically, be irrational.

  10. Toroidal equilibrium in an iron-core reversed field pinch

    Miller, G.

    1984-04-01

    An analytical theory of toroidal equilibrium in the ZT-40M reversed field pinch is obtained, including effects of iron cores and resistive shell. The iron cores alter the form of the equilibrium condition and cause the equilibrium to be unstable on the shell resistive time scale

  11. The problem of evolution of toroidal plasma equilibrium

    Kostomarov, D.; Zaitsev, F.; Shishkin, A.

    1999-03-01

    This paper is devoted to an advanced mathematical model for a self-consistent description of the evolution of free boundary toroidal plasmas, with a description of numerical algorithms for the solution of the appropriate non-linear system of integro-differential equations, and discussion of some results from the model. (author)

  12. First ATLAS Barrel Toroid coil casing arrives at CERN

    2002-01-01

    The first of eight 25-metre long coil casings for the ATLAS experiment's barrel toroid magnet system arrived at CERN on Saturday 2 March by road from Heidelberg. This structure will be part of the largest superconducting toroid magnet ever made.   The first coil casing for the toroidal magnets of Atlas arrives at Building 180. This is the start of an enormous three-dimensional jigsaw puzzle. Each of the eight sets of double pancake coils will be housed inside aluminium coil casings, which in turn will be held inside a stainless steel vacuum vessel. A huge construction, the casing that arrived at CERN measures 25 metres in length and 5 metres in width. It weighs 20 tones. And this is just the beginning of the toroid jigsaw: by early April a batch of four double pancake coils, which altogether weighs 65 tones, will arrive from Ansaldo in Italy. The first vacuum vessel will also be arriving from Felguera in Spain this month. It will take about two years for all these 25 m long structures of casings, coils a...

  13. The ATF [Advanced Toroidal Facility] Status and Control System

    Baylor, L.R.; Devan, W.R.; Sumner, J.N.; Alban, A.M.

    1987-01-01

    The Advanced Toroidal Facility (ATF) Status and Control System (SCS) is a programmable controller-based state monitoring and supervisory control system. This paper describes the SCS implementation and its use of a host computer to run a commercially available software package that provides color graphic interactive displays, alarm logging, and archiving of state data

  14. Preparing an ATLAS toroid magnet end-cap for lowering

    Claudia Marcelloni

    2007-01-01

    One of the two 13-m high toroid magnet end-caps for the ATLAS experiment being transported from the construction hall to the experimental area. The end-cap will be lowered into the ATLAS cavern and attached to an end of the detector.

  15. On nonlinear MHD-stability of toroidal magnetized plasma

    Ilgisonis, V.I.; Pastukhov, V.P.

    1994-01-01

    The variational approach to analyze the nonlinear MHD stability of ideal plasma in toroidal magnetic field is proposed. The potential energy functional to be used is expressed in terms of complete set of independent Lagrangian invariants, that allows to take strictly into account all the restrictions inherent in the varied functions due to MHD dynamic equations. (author). 3 refs

  16. Feedback control of resistive wall modes in toroidal devices

    Liu, Y.Q.

    2002-01-01

    Active feedback of resistive wall modes is investigated using cylindrical theory and toroidal calculations. For tokamaks, good performance is obtained by using active coils with one set of coils in the poloidal direction and sensors detecting the poloidal field inside the first wall, located at the outboard mid-plane. With suitable width of the feedback coil such a system can give robust control with respect to variations in plasma current, pressure and rotation. Calculations are shown for ITER-like geometry with a double wall. The voltages and currents in the active coils are well within the design limits for ITER. Calculations for RFP's are presented for a finite number of coils both in the poloidal and toroidal directions. With 4 coils in the poloidal and 24 coils in the toroidal direction, all non-resonant modes can be stabilized both at high and low theta. Several types of sensors, including radial and internal poloidal or toroidal sensors, can stabilize the RWM, but poloidal sensors give the most robust performance. (author)

  17. The Superconducting Toroid for the New International AXion Observatory (IAXO)

    Shilon, I.; Silva, H.; Wagner, U.; ten Kate, H.H.J.

    2013-01-01

    IAXO, the new International AXion Observatory, will feature the most ambitious detector for solar axions to date. Axions are hypothetical particles which were postulated to solve one of the puzzles arising in the standard model of particle physics, namely the strong CP (Charge conjugation and Parity) problem. This detector aims at achieving a sensitivity to the coupling between axions and photons of one order of magnitude beyond the limits of the current detector, the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a high-magnetic field distributed over a very large volume to convert solar axions to detectable X-ray photons. Inspired by the ATLAS barrel and end-cap toroids, a large superconducting toroid is being designed. The toroid comprises eight, one meter wide and twenty one meters long racetrack coils. The assembled toroid is sized 5.2 m in diameter and 25 m in length and its mass is about 250 tons. The useful field in the bores is 2.5 T while the peak magnetic field in the windings is 5....

  18. Locked magnetic island chains in toroidally flow damped tokamak plasmas

    Fitzpatrick, R; Waelbroeck, F L

    2010-01-01

    The physics of a locked magnetic island chain maintained in the pedestal of an H-mode tokamak plasma by a static, externally generated, multi-harmonic, helical magnetic perturbation is investigated. The non-resonant harmonics of the external perturbation are assumed to give rise to significant toroidal flow damping in the pedestal, in addition to the naturally occurring poloidal flow damping. Furthermore, the flow damping is assumed to be sufficiently strong to relax the pedestal ion toroidal and poloidal fluid velocities to fixed values determined by neoclassical theory. The resulting neoclassical ion flow causes a helical phase-shift to develop between the locked island chain and the resonant harmonic of the external perturbation. Furthermore, when this phase-shift exceeds a critical value, the chain unlocks from the resonant harmonic and starts to rotate, after which it decays away and is replaced by a helical current sheet. The neoclassical flow also generates an ion polarization current in the vicinity of the island chain which either increases or decreases the chain's radial width, depending on the direction of the flow. If the polarization effect is stabilizing, and exceeds a critical amplitude, then the helical island equilibrium becomes unstable, and the chain again decays away. The critical amplitude of the resonant harmonic of the external perturbation at which the island chain either unlocks or becomes unstable is calculated as a function of the pedestal ion pressure, the neoclassical poloidal and toroidal ion velocities and the poloidal and toroidal flow damping rates.

  19. A toroidal inductor integrated in a standard CMOS process

    Vandi, Luca; Andreani, Pietro; Temporiti, Enrico

    2007-01-01

    This paper presents a toroidal inductor integrated in a standard 0.13 um CMOS process. Finite-elements preliminary simulations are provided to prove the validity of the concept. In order to extract fundamental parameters by means of direct calculations, two different and well-known approaches...

  20. Plasma Heating and Losses in Toroidal Multipole Fields

    Armentrout, C. J.; Barter, J. D.; Breun, R. A.; Cavallo, A. J.; Drake, J. R.; Etzweiler,; Greenwood, J. R.

    1974-01-01

    The heating and loss of plasmas have been studied in three pulsed, toroidal multipole devices: a large levitated octupole, a small supported octupole and a very small supported quadrupole. Plasmas are produced by gun injection and heated by electron and ion cyclotron resonance heating and ohmic heating. Electron cyclotron heating rates have been measured over a wide range of parameters, and the results are in quantitative agreement with stochastic heating theory. Electron cyclotron resonance heating produces ions with energies larger than predicted by theory. With the addition of a toroidal field, ohmic heating gives densities as high as 10 13 cm -3 in the toroidal quadrupole and 10 12 cm -3 in the small octupole. Plasma losses for n=5 x 10 9 cm -3 plasmas are inferred from Langmuir probe and Fabry-Perot interferometer measurements, and measured with special striped collectors on the wall and rings. The loss to a levitated ring is measured using a modulated light beam telemeter. The confinement is better than Bohm but considerably worse than classical. Low frequency convective cells which are fixed in space are observed. These cells around the ring are diminished when a weak toroidal field is added, and loss collectors show a vastly reduced flux to the rings. Analysis of the spatial density profile shows features of B-independent diffusion. The confinement is sensitive to some kinds of dc field errors, but surprisingly insensitive to perturbations of the ac confining field

  1. Neutron diffusion in spheroidal, bispherical, and toroidal systems

    Williams, M.M.R.

    1986-01-01

    The neutron flux has been studied around absorbing bodies of spheroidal, bispherical, and toroidal shapes in an infinite nonabsorbing medium. Exact solutions have been obtained by using effective boundary conditions at the surfaces of the absorbing bodies. The problems considered are as follows: 1. Neutron flux and current distributions around prolate and oblate spheroids. It is shown that an equivalent sphere approximation can lead to accurate values for the rate of absorption. 2. Neutron flux and current in a bispherical system of unequal spheres. Three separate situations arise here: (a) two absorbing spheres, (b) two spherical sources, and (c) one spherical source and one absorbing sphere. It is shown how the absorption rate in the two spheres depends on their separation. 3. Neutron flux and current in a toroidal system: (a) an absorbing toroid and (b) a toroidal source. The latter case simulates the flux distribution from a thermonuclear reactor vessel. Finally, a brief description of how these techniques can be extended to multiregion problems is given

  2. Stationary magnetohydrodynamic equilibrium of toroidal plasma in rotation

    Missiato, O.

    1986-01-01

    The stationary equations of classical magnetohydrodynamics are utilized to study the toroidal motion of a thermonuclear magnetically - confined plasma with toroidal symmetry (Tokamak). In the present work, we considered a purely toroidal stationary rotation and te problem is reduced to studing a second order partial differencial equation of eliptic type Maschke-Perrin. Assuming that the temperature remains constant on the magnetic surfaces, an analitic solution, valid for low Mach numbers (M ≤ 0 .4), was obtained for the above-mentioned equation by means of a technique developed by Pantuso Sudano. From the solution found, we traced graphs for the quantities which described the equilibrium state of the plasma, namely: mass density, pressure, temperature, electric current density and toroidal magnetic field. Finally we compare this analitical model with others works which utilized differents analitical models and numerical simulations. We conclude that the solutions obtained are in good agreement with the previos results. In addition, however, our model contains the results of Sudano-Goes with the additional advantage of employing much simple analitical expressions. (author) [pt

  3. Construction and initial operation of the Advanced Toroidal Facility

    Bell, G.L.; Bell, J.D.; Benson, R.D.

    1989-08-01

    The Advanced Toroidal Facility (ATF) torsatron was designed on a physics basis for access to the second stability regime and on an engineering basis for independent fabrication of high-accuracy components. The actual construction, assembly, and initial operation of ATF are compared with the characteristics expected during the design of ATF. 31 refs., 19 figs., 2 tabs

  4. Regularity conditions of the field on a toroidal magnetic surface

    Bouligand, M.

    1985-06-01

    We show that a field B vector which is derived from an analytic canonical potential on an ordinary toroidal surface is regular on this surface when the potential satisfies an elliptic equation (owing to the conservative field) subject to certain conditions of regularity of its coefficients [fr

  5. The ATF [Advanced Toroidal Facility] Data Management System: [Final report

    Kannan, K.L.; Baylor, L.R.

    1987-01-01

    The Advanced Toroidal Facility (ATF) Data Management System (DMG) is a VAX-based software system that provides unified data access for ATF data acquisition and analysis. The system was designed with user accessibility, software maintainability, and extensibility as primary goals. This paper describes the layered architecture of the system design, the system implementation, use, and the data file structure. 3 refs., 1 fig

  6. Barrel Toroid fully charged to nominal field, and it works!

    Herman ten Kate

    After a few weeks of testing up to intermediate currents, finally, on Thursday evening November 9, the current in the Barrel Toroid was pushed up to its nominal value of 20500 A and even 500 A beyond this value to prove that we have some margin. It went surprisingly well. Of course, the 8 coils forming the toroid were already tested individually at the surface but still, some surprise may have come from those parts added to the toroid in the cavern for the first time like the 8 cryoring sections linking the coils as well as the valve box at the bottom in sector 13 regulating the helium flow or the current lead cryostat on the top in sector 5. No training quenches, nothing to worry about, and the test was concluded with a fast dump triggered at 00:40 in the very early morning of November 10. (left) The toroid current during the evening and night of November 9. (right) The test crew oscillated between fear and hope while looking at the control panels as the current approached 21kA. Big relief was in the...

  7. Effects of 3D Magnetic Perturbations on Toroidal Plasmas

    Callen, J.D.

    2010-01-01

    Full text: To lowest order tokamaks are two-dimensional (2D) axisymmetric magnetic systems. But small 3D magnetic perturbations (both externally applied and from plasma instabilities) have many interesting and useful effects on tokamak (and quasi-symmetric stellarator) plasmas. Plasma transport equations that include these effects, especially on diamagnetic-level toroidal plasma rotation, have recently been developed. The 3D magnetic perturbations and their plasma effects can be classified according to their toroidal mode number n: low n (1 to 5) resonant (q = m/n in plasma) and non-resonant fields, medium n (due to toroidal field ripple), and high n (due to microturbulence). This paper concentrates on low and medium n perturbations. Low n non-resonant magnetic fields induce a neoclassical toroidal viscosity (NTV) that damps toroidal plasma rotation throughout the plasma toward an offset flow in the counter-I p direction; recent tokamak experiments have confirmed and exploited these predictions by applying external low n non-resonant magnetic perturbations. Medium n perturbations have similar effects plus possible ripple trapping and resultant edge ion losses. A low n resonant magnetic field induces a toroidal plasma torque in the vicinity of the rational surface; when large enough it can stop plasma rotation there and lead to a locked mode, which often causes a plasma disruption. Externally applied 3D magnetic perturbations usually have many components; in the plasma their lowest n components are amplified by plasma responses, particularly at high beta. Low n plasma instabilities (e.g., NTMs, RWMs) cause additional 3D magnetic perturbations in tokamak plasmas; tearing modes can bifurcate the topology and form magnetic islands. Finally, multiple resonant magnetic perturbations (RMPs) can cause local magnetic stochasticity and influence H-mode edge pedestal transport. These various effects of 3D magnetic perturbations can be used to control the toroidal plasma

  8. Toroidal fusion reactor design based on the reversed-field pinch

    Hagenson, R.L.

    1978-07-01

    The toroidal reversed-field pinch (RFP) achieves gross equilibrium and stability with a combination of high shear and wall stabilization, rather than the imposition of tokamak-like q-constraints. Consequently, confinement is provided primarily by poloidal magnetic fields, poloidal betas as large as approximately 0.58 are obtainable, the high ohmic-heating (toroidal) current densities promise a sole means of heating a D-T plasma to ignition, and the plasma aspect ratio is not limited by stability/equilibrium constraints. A reactor-like plasma model has been developed in order to quantify and to assess the general features of a power system based upon RFP confinement. An ''operating point'' has been generated on the basis of this plasma model and a relatively detailed engineering energy balance. These results are used to generate a conceptual engineering model of the reversed-field pinch reactor (RFPR) which includes a general description of a 750 MWe power plant and the preliminary consideration of vacuum/fueling, first wall, blanket, magnet coils, iron core, and the energy storage/transfer system

  9. Transport and dynamics in toroidal fusion systems. Report of second year progress, 1993--1994

    Schnack, D.D.

    1994-01-01

    In this document the author describes an extension of the spatial gridding techniques to an MHD model suitable for the description of the dynamics of toroidal fusion devices. Since the dominant MHD modes in these devices have relatively long toroidal wavelength, the toroidal coordinate is approximated with finite Fourier series. The unstructured, triangular mesh is used to describe the details of the poloidal geometry. With some exceptions, the hydrodynamic variables are treated in a manner analogous to that used in CFD. These quantities (mass, energy, and momentum) are volume based densities that satisfy scalar or vector conservation laws. The electromagnetic variables (the magnetic flux density B and the electric current density J) are area based densities that satisfy pseudo-vector conservation laws, and have no counterpart in fluid dynamics. These variables are also constrained to remain solenoidal. These quantities are represented on the triangular mesh in a new manner that is an extension of that used on rectangular, structured meshes. In this work the author has chosen to solve the primitive MHD equations in order to make the resulting codes and techniques more generally applicable to problems beyond the narrow scope of tokamak plasmas. The temporal stiffness problems inherent in this description of tokamak dynamics that motivate the reduced MHD model are addressed here with the semi-implicit method of time integration. Finally, the author remarks that, while the present work deals strictly with the MHD equations, other volume based fluid descriptions, such as diffusive transport could easily be adapted to these techniques and coupled with the description of the electromagnetic field presented here

  10. Effects of Resonant Helical Field on Toroidal Field Ripple in IR-T1 Tokamak

    Mahdavipour, B.; Salar Elahi, A.; Ghoranneviss, M.

    2018-02-01

    The toroidal magnetic field which is created by toroidal coils has the ripple in torus space. This magnetic field ripple has an importance in plasma equilibrium and stability studies in tokamak. In this paper, we present the investigation of the interaction between the toroidal magnetic field ripple and resonant helical field (RHF). We have estimated the amplitude of toroidal field ripples without and with RHF (with different q = m/n) ( m = 2, m = 3, m = 4, m = 5, m = 2 & 3, n = 1) using “Comsol Multiphysics” software. The simulations show that RHF has effects on the toroidal ripples.

  11. Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials

    Han, Song; Yang, Helin [College of Physical Science and Technology, Central China Normal University, Wuhan (China); Cong, Lonqing; Singh, Ranjan [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore); Centre for Disruptive Photonic Technologies, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore); Gao, Fei [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore)

    2016-05-15

    Toroidal multipoles have recently been explored in various scientific communities, ranging from atomic and molecular physics, electrodynamics, and solid-state physics to biology. Here we experimentally and numerically demonstrate a three-dimensional toroidal metamaterial where two different toroidal dipoles along orthogonal directions have been observed. The chosen toroidal metamaterial also simultaneously supports Fano resonance and the classical analog of electromagnetically induced transparency (EIT) phenomena in the transmission spectra that originate from the electric-toroidal dipole and electric-magnetic dipole destructive interference. The intriguing properties of the toroidal resonances may open up avenues for applications in toroidal moments generator, sensing and slow-light devices. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Progress in the design of a superconducting toroidal magnet for the ATLAS detector on LHC

    Baze, J.M.; Berriaud, C.; Cure, C.

    1996-01-01

    The toroidal system consists of three air core superconducting toroids. The barrel toroid covers the central region over a length of 26 m with an inner bore of 9.4 m and an outer diameter of 19.5 m. The two end cap toroids are inserted in the barrel at each end over a length of 5.6 m with an inner bore of 1.26 m. Each toroid consists of eight flat coils assembled around the beam axis and carrying 3 MAt each. The present paper describes the barrel toroid. Features of the design which are presented include the electromagnetic design, field and forces calculations, the basic concept of indirectly cooled aluminium conductor and monolithic fully impregnated winding, the description of the alu-alloy mechanical structure, the thermal analysis and the quench protection. Cryogenics principles, cryostat and toroid assembly procedures are summarized. Unsymmetric loadings, fault sensing and stability are discussed, in relation with the requirements of transparency

  13. Summary of US-Japan Exchange 2004 New Directions and Physics for Compact Toroids

    Intrator, T; Nagata, M; Hoffman, A; Guo, H; Steinhauer, L; Ryutov, D; Miller, R; Okada, S

    2005-08-15

    for transport and relaxation. A variety of key themes surrounding the physics of CT's were found to recur during this conference. These included questions and answers touching upon magnetic flux build up in CT's, generalized relaxation processes that extend beyond the Taylor picture, the importance of plasma flows, toroidal magnetic fields in FRC's, and CT power plant considerations. This document briefly outlines the tenor of these discussions.

  14. Finite element and node point generation computer programs used for the design of toroidal field coils in tokamak fusion devices

    Smith, R.A.

    1975-06-01

    The structural analysis of toroidal field coils in Tokamak fusion machines can be performed with the finite element method. This technique has been employed for design evaluations of toroidal field coils on the Princeton Large Torus (PLT), the Poloidal Diverter Experiment (PDX), and the Tokamak Fusion Test Reactor (TFTR). The application of the finite element method can be simplified with computer programs that are used to generate the input data for the finite element code. There are three areas of data input where significant automation can be provided by supplementary computer codes. These concern the definition of geometry by a node point mesh, the definition of the finite elements from the geometric node points, and the definition of the node point force/displacement boundary conditions. The node point forces in a model of a toroidal field coil are computed from the vector cross product of the coil current and the magnetic field. The computer programs named PDXNODE and ELEMENT are described. The program PDXNODE generates the geometric node points of a finite element model for a toroidal field coil. The program ELEMENT defines the finite elements of the model from the node points and from material property considerations. The program descriptions include input requirements, the output, the program logic, the methods of generating complex geometries with multiple runs, computational time and computer compatibility. The output format of PDXNODE and ELEMENT make them compatible with PDXFORC and two general purpose finite element computer codes: (ANSYS) the Engineering Analysis System written by the Swanson Analysis Systems, Inc., and (WECAN) the Westinghouse Electric Computer Analysis general purpose finite element program. The Fortran listings of PDXNODE and ELEMENT are provided

  15. Quantum field theory on toroidal topology: Algebraic structure and applications

    Khanna, F.C., E-mail: khannaf@uvic.ca [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2 (Canada); TRIUMF, Vancouver, BC, V6T 2A3 (Canada); Malbouisson, A.P.C., E-mail: adolfo@cbpf.br [Centro Brasileiro de Pesquisas Físicas/MCT, 22290-180, Rio de Janeiro, RJ (Brazil); Malbouisson, J.M.C., E-mail: jmalboui@ufba.br [Instituto de Física, Universidade Federal da Bahia, 40210-340, Salvador, BA (Brazil); Santana, A.E., E-mail: asantana@unb.br [International Center for Condensed Matter Physics, Instituto de Física, Universidade de Brasília, 70910-900, Brasília, DF (Brazil)

    2014-06-01

    The development of quantum theory on a torus has a long history, and can be traced back to the 1920s, with the attempts by Nordström, Kaluza and Klein to define a fourth spatial dimension with a finite size, being curved in the form of a torus, such that Einstein and Maxwell equations would be unified. Many developments were carried out considering cosmological problems in association with particle physics, leading to methods that are useful for areas of physics, in which size effects play an important role. This interest in finite size effect systems has been increasing rapidly over the last decades, due principally to experimental improvements. In this review, the foundations of compactified quantum field theory on a torus are presented in a unified way, in order to consider applications in particle and condensed matter physics. The theory on a torus Γ{sub D}{sup d}=(S{sup 1}){sup d}×R{sup D−d} is developed from a Lie-group representation and c{sup ∗}-algebra formalisms. As a first application, the quantum field theory at finite temperature, in its real- and imaginary-time versions, is addressed by focusing on its topological structure, the torus Γ{sub 4}{sup 1}. The toroidal quantum-field theory provides the basis for a consistent approach of spontaneous symmetry breaking driven by both temperature and spatial boundaries. Then the superconductivity in films, wires and grains are analyzed, leading to some results that are comparable with experiments. The Casimir effect is studied taking the electromagnetic and Dirac fields on a torus. In this case, the method of analysis is based on a generalized Bogoliubov transformation, that separates the Green function into two parts: one is associated with the empty space–time, while the other describes the impact of compactification. This provides a natural procedure for calculating the renormalized energy–momentum tensor. Self interacting four-fermion systems, described by the Gross–Neveu and Nambu

  16. Quantum field theory on toroidal topology: Algebraic structure and applications

    Khanna, F.C.; Malbouisson, A.P.C.; Malbouisson, J.M.C.; Santana, A.E.

    2014-01-01

    The development of quantum theory on a torus has a long history, and can be traced back to the 1920s, with the attempts by Nordström, Kaluza and Klein to define a fourth spatial dimension with a finite size, being curved in the form of a torus, such that Einstein and Maxwell equations would be unified. Many developments were carried out considering cosmological problems in association with particle physics, leading to methods that are useful for areas of physics, in which size effects play an important role. This interest in finite size effect systems has been increasing rapidly over the last decades, due principally to experimental improvements. In this review, the foundations of compactified quantum field theory on a torus are presented in a unified way, in order to consider applications in particle and condensed matter physics. The theory on a torus Γ D d =(S 1 ) d ×R D−d is developed from a Lie-group representation and c ∗ -algebra formalisms. As a first application, the quantum field theory at finite temperature, in its real- and imaginary-time versions, is addressed by focusing on its topological structure, the torus Γ 4 1 . The toroidal quantum-field theory provides the basis for a consistent approach of spontaneous symmetry breaking driven by both temperature and spatial boundaries. Then the superconductivity in films, wires and grains are analyzed, leading to some results that are comparable with experiments. The Casimir effect is studied taking the electromagnetic and Dirac fields on a torus. In this case, the method of analysis is based on a generalized Bogoliubov transformation, that separates the Green function into two parts: one is associated with the empty space–time, while the other describes the impact of compactification. This provides a natural procedure for calculating the renormalized energy–momentum tensor. Self interacting four-fermion systems, described by the Gross–Neveu and Nambu–Jona-Lasinio models, are considered. Then

  17. Analytical modelling of resistive wall mode stabilization by rotation in toroidal tokamak plasmas

    Ham, C J; Gimblett, C G; Hastie, R J

    2011-01-01

    Stabilization of the resitive wall mode (RWM) may allow fusion power to be doubled for a given magnetic field in advanced tokamak operation. Experimental evidence from DIII-D and other machines suggests that plasma rotation can stabilize the RWM. Several authors (Finn 1995 Phys. Plasmas 2 3782, Bondeson and Xie 1997 Phys. Plasmas 4 2081) have constructed analytical cylindrical models for the RWM, but these do not deal with toroidal effects. The framework of Connor et al (1988 Phys. Fluids 31 577) is used to develop ideal plasma analytic models with toroidicity included. Stepped pressure profiles and careful ordering of terms are used to simplify the analysis. First, a current driven kink mode model is developed and a dispersion relation for arbitrary current profile is calculated. Second, the external pressure driven kink mode is similarly investigated as the most important RWM arises from this mode. Using this latter model it is found that the RWM is stabilized by Alfven continuum damping with rotation levels similar to those seen in experiments. An expression for the stability of the external kink mode for more general current profiles and a resistive wall is derived in the appendix.

  18. SV40 late protein VP4 forms toroidal pores to disrupt membranes for viral release.

    Raghava, Smita; Giorda, Kristina M; Romano, Fabian B; Heuck, Alejandro P; Hebert, Daniel N

    2013-06-04

    Nonenveloped viruses are generally released from the cell by the timely lysis of host cell membranes. SV40 has been used as a model virus for the study of the lytic nonenveloped virus life cycle. The expression of SV40 VP4 at later times during infection is concomitant with cell lysis. To investigate the role of VP4 in viral release and its mechanism of action, VP4 was expressed and purified from bacteria as a fusion protein for use in membrane disruption assays. Purified VP4 perforated membranes as demonstrated by the release of fluorescent markers encapsulated within large unilamellar vesicles or liposomes. Dynamic light scattering results revealed that VP4 treatment did not cause membrane lysis or change the size of the liposomes. Liposomes encapsulated with 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-3-indacene-labeled streptavidin were used to show that VP4 formed stable pores in membranes. These VP4 pores had an inner diameter of 1-5 nm. Asymmetrical liposomes containing pyrene-labeled lipids in the outer monolayer were employed to monitor transbilayer lipid diffusion. Consistent with VP4 forming toroidal pore structures in membranes, VP4 induced transbilayer lipid diffusion or lipid flip-flop. Altogether, these studies support a central role for VP4 acting as a viroporin in the disruption of cellular membranes to trigger SV40 viral release by forming toroidal pores that unite the outer and inner leaflets of membrane bilayers.

  19. Numerical simulation of liquid-metal-flows in radial-toroidal-radial bends

    Molokov, S.; Buehler, L.

    1993-09-01

    Magnetohydrodynamic flows in a U-bend and right-angle bend are considered with reference to the radial-toroidal-radial concept of a self-cooled liquid-metal blanket. The ducts composing bends have rectangular cross-section. The applied magnetic field is aligned with the toroidal duct and perpendicular to the radial ones. At high Hartmann number the flow region is divided into cores and boundary layers of different types. The magnetohydrodynamic equations are reduced to a system of partial differential equations governing wall electric potentials and the core pressure. The system is solved numerically by two different methods. The first method is iterative with iteration between wall potential and the core pressure. The second method is a general one for the solution of the core flow equations in curvilinear coordinates generated by channel geometry and magnetic field orientation. Results obtained are in good agreement. They show, that the 3D-pressure drop of MHD flows in a U-bend is not a critical issue for blanket applications. (orig./HP) [de

  20. Design stresses in probabilistic form for ellipsoidal and toroidal pressure vessels

    Smith, C.O.

    1979-01-01

    Design has customarily been based on applied loading, geometry, and handbook values for strength to give a deterministic solution. The engineering profession, however, has become increasingly concerned with the adequacy of design calculations. This concern indicates a need for critical evaluation of designs based on arbitrary multipliers, such as factors of safety or worst-case treatment. Ellipsoids are frequently used for end closure of cylindrical pressure shells. Toroids of elliptic or circular cross-section, are widely used, e.g., for connecting two parallel legs in a U-shape. This paper gives equations for means and standard deviations of stresses developed in ellipsoids and toroids with internal pressure. Inherent are: (1) design variables are generally characterized by spectra of values (assumed to be normally distributed), rather than by unique values, and (2) a small, but finite, probability of failure must be recognized in any design. By coupling stresses due to applied loading as calculated by the given equations with strength available in a material, reliability (or the alternative probability of failure) can be calculated. Conversely, for a given reliability the appropriate size can be determined. (orig.)

  1. ATLAS barrel toroid integration and test area in building 180

    Maximilien Brice

    2003-01-01

    The ATLAS barrel toroid system consists of eight coils, each of axial length 25.3 m, assembled radially and symmetrically around the beam axis. The coils are of a flat racetrack type with two 'double-pancake' windings made of 20.5 kA aluminium-stabilized niobium-titanium superconductor. The barrel toroid is being assembled in building 180 on the Meyrin site. In the first phase of assembly, the coils are packed into their aluminium-alloy casing. These photos show the double-pancake coils from ANSALDO and the coil casings from ALSTOM. In the foreground is the tooling from COSMI used to turn over the coil casings during this first phase. In the right background is the yellow lifting gantry manufactured at JINR-Dubna, Russia which will transport the coil casings to a heating table for prestressing. Two test benches with magnetic mirror are also visible.

  2. A comparison between linear and toroidal Extrap systems

    Lehnert, B.

    1988-09-01

    The Extrap scheme consists of a Z-pinch immersed in an octupole field generated by currents in a set of external conductors. A comparison between linear and toroidal Extrap geometry is made in this paper. As compared to toroidal systems, linear geometry has the advantages of relative simplicity and of a current drive by means of electrodes. Linear devices are convenient for basic studies of Extrap, at moderately high pinch currents and plasma temperatures. Within the parameter ranges of experiments at high pinch currents and plasma temperatures, linear systems have on the other hand some substantial disadvantages, on account of the plasma interaction with the end regions. This results in a limitation of the energy confinement time, and leads in the case of an ohmically heated plasma to excessively high plasma densities and small pinch radii which also complicate the introduction of the external conductors. (author)

  3. Shock absorbing properties of toroidal shells under compression, 3

    Sugita, Yuji

    1985-01-01

    The author has previously presented the static load-deflection relations of a toroidal shell subjected to axisymmetric compression between rigid plates and those of its outer half when subjected to lateral compression. In both these cases, the analytical method was based on the incremental Rayleigh-Ritz method. In this paper, the effects of compression angle and strain rate on the load-deflection relations of the toroidal shell are investigated for its use as a shock absorber for the radioactive material shipping cask which must keep its structural integrity even after accidental falls at any angle. Static compression tests have been carried out at four angles of compression, 10 0 , 20 0 , 50 0 , 90 0 and the applications of the preceding analytical method have been discussed. Dynamic compression tests have also been performed using the free-falling drop hammer. The results are compared with those in the static compression tests. (author)

  4. Studies on limiter confined toroidal plasma in BETA

    Bera, D.; Reddy, C.; Jayakumar, R.; Kaw, P.K.

    1984-01-01

    Plasma equilibrium and stability in the presence of a toroidal magnetic field and a poloidal limiter is being studied experimentally in the BETA experiment. In a simple toroidal magnetic field, plasma cannot be in equilibrium because of the effect of the magnetic field curvature, which tends to expand the plasma. The electric field, which causes this expansion, is short circuited if a poloidal conducting limiter is placed and this brings about a quasi-equilibrium. In the model the charge separation current flows on the surface of the plasma and closes the path by flowing parallel to the magnetic field away from the limiter and transverse to the field at the limiter. For such an equilibrium, the vertical pressure profile is expected to be uniform, while the radial pressure profile is determined by transport. Such a profile is unstable to Rayleigh-Taylor instabilities, if the magnetic field gradient and the pressure gradient have the same sense

  5. Eddy current calculations for the Tore Supra toroidal field magnet

    Blum, J.

    1983-01-01

    An outline is given of the calculation of the eddy currents in the magnetic structures of a Tokamak, which can be assimilated to thin conductors, so that the three-dimensional problem can be reduced mathematically to a two-dimensional one, the variables being two orthogonal coordinates of the considered surface. A finite element method has been used in order to treat the complicated geometry of the set of the 18 toroidal field coil casings and mechanical structures of Tore Supra. This eddy current code has been coupled with an axisymmetric equilibrium code in order to simulate typical phases of a Tokamak discharge (plasma current rise, additional heating, disruption, cleaning discharge) and the losses in the toroidal field magnet have thus been calculated. (author)

  6. Compact toroid fueling of the TdeV tokamak

    Martin, F.; Raman, R.; Xiao, C.; Thomas, J.

    1993-01-01

    Compact toroids have been proposed as a means of centrally fueling tokamak reactors because of the high velocity to which they can be accelerated. These are cold (T e ∼ 10 eV), high density (n e > 10 20 m -3 ) spheromak plasmoids that are accelerated in a magnetized Marshall gun. As a proof of principle experiment, a compact toroid fueler (CTF) has been developed for injection into the TdeV tokamak. The engineering goals of the experiment are to measure and minimize the impurity content of the CT plasma and the neutral gas remaining after CT formation. Also of importance is the effect of CT central fueling on the tokamak density profile and bootstrap current, and the relaxation rate of the density profile providing information on the confinement time of the CT fuel

  7. Modelling of density limit phenomena in toroidal helical plasmas

    Itoh, Kimitaka; Itoh, Sanae-I.

    2001-01-01

    The physics of density limit phenomena in toroidal helical plasmas based on an analytic point model of toroidal plasmas is discussed. The combined mechanism of the transport and radiation loss of energy is analyzed, and the achievable density is derived. A scaling law of the density limit is discussed. The dependence of the critical density on the heating power, magnetic field, plasma size and safety factor in the case of L-mode energy confinement is explained. The dynamic evolution of the plasma energy and radiation loss is discussed. Assuming a simple model of density evolution, of a sudden loss of density if the temperature becomes lower than critical value, then a limit cycle oscillation is shown to occur. A condition that divides the limit cycle oscillation and the complete radiation collapse is discussed. This model seems to explain the density limit oscillation that has been observed on the Wendelstein 7-AS (W7-AS) stellarator. (author)

  8. Modelling of density limit phenomena in toroidal helical plasmas

    Itoh, K.; Itoh, S.-I.

    2000-03-01

    The physics of density limit phenomena in toroidal helical plasmas based on an analytic point model of toroidal plasmas is discussed. The combined mechanism of the transport and radiation loss of energy is analyzed, and the achievable density is derived. A scaling law of the density limit is discussed. The dependence of the critical density on the heating power, magnetic field, plasma size and safety factor in the case of L-mode energy confinement is explained. The dynamic evolution of the plasma energy and radiation loss is discussed. Assuming a simple model of density evolution, of a sudden loss of density if the temperature becomes lower than critical value, then a limit cycle oscillation is shown to occur. A condition that divides the limit cycle oscillation and the complete radiation collapse is discussed. This model seems to explain the density limit oscillation that has been observed on the W7-AS stellarator. (author)

  9. On the radiation of electric, magnetic and toroidal dipoles

    Afanas'ev, G.N.; Stepanovskij, Yu.P.

    2002-01-01

    We consider the radiation of electric, magnetic and toroidal dipoles uniformly moving in unbounded medium (this corresponds to the Tamm-Frank problem). The densities of these dipoles are obtained from the corresponding charge-current densities in an infinitesimal limit. The behaviour of radiation intensities in the neighbourhood of the Cherenkov threshold β = 1/n is investigated. The frequency and velocity regions are defined where radiation intensities are maximal. The comparison with previous attempts is given. We consider also the radiation of electric, magnetic and toroidal dipoles uniformly moving in medium, in a finite space interval (this corresponds to the Tamm problem). The properties of radiation arising from the precession of a magnetic dipole are studied

  10. Kinetic Modifications to MHD Phenomena in Toroidal Plasmas

    Cheng, C.Z.; Gorelenkov, N.N.; Kramer, G.J.; Fredrickson, E.

    2004-01-01

    Particle kinetic effects involving small spatial and fast temporal scales can strongly affect MHD phenomena and the long time behavior of plasmas. In particular, kinetic effects such as finite ion gyroradii, trapped particle dynamics, and wave-particle resonances have been shown to greatly modify the stability of MHD modes. Here, the kinetic effects of trapped electron dynamics and finite ion gyroradii are shown to have a large stabilizing effect on kinetic ballooning modes in low aspect ratio toroidal plasmas such as NSTX [National Spherical Torus Experiment]. We also present the analysis of Toroidicity-induced Alfven Eigenmodes (TAEs) destabilized by fast neutral-beam injected ions in NSTX experiments and TAE stability in ITER due to alpha-particles and MeV negatively charged neutral beam injected ions

  11. Kinetic global analysis of Alfven eigenmodes in toroidal plasmas

    Fukuyama, A.

    2002-01-01

    Systematic study on low to medium n (toroidal mode number) Alfven eigenmodes (AE) in tokamaks and helical systems is presented. Linear stability of AE in the presence of energetic ions was studied using the kinetic full-wave code TASK/WM.We have reproduced the destabilizing effect of toroidal co-rotation on TAE for JT-60U parameters. We have found the existence of reversed-shear-induced Alfven eigenmode (RSAE) which localizes near the q minimum in a reversed magnetic shear configuration. Two kinds of mode structures are identified for energetic particle mode (EPM) below the TAE frequency gap. The coupling to lower-frequency modes such as drift waves and MHD modes as well as the effect of trapped particles are also taken into account. For a helical plasma, the existence of GAE in the central region and TAE in the off-axis region was confirmed. (author)

  12. MHD equilibrium of toroidal fusion plasma with stationary flows

    Galkowski, A.

    1994-01-01

    Non-linear ideal MHD equilibria in axisymmetric system with flows are examined, both in 1st and 2nd ellipticity regions. Evidence of the bifurcation of solutions is provided and numerical solutions of several problems in a tokamak geometry are given, exhibiting bifurcation phenomena. Relaxation of plasma in the presence of zero-order flows is studied in a realistic toroidal geometry. The field aligned flow allows equilibria with finite pressure gradient but with homogeneous temperature distribution. Numerical calculations have been performed for the 1st and 2nd ellipticity regimes of the extended Grad-Shafranov-Schlueter equation. Numerical technique, alternative to the well-known Grad's ADM methods has been proposed to deal with slow adiabatic evolution of toroidal plasma with flows. The equilibrium problem with prescribed adiabatic constraints may be solved by simultaneous calculations of flux surface geometry and original profile functions. (author). 178 refs, 37 figs, 5 tabs

  13. Broadening of the lower hybrid kparallel spectrum by toroidal effects

    Barbato, E.; Romanelli, F.

    1990-01-01

    Toroidal geometry affects the evolution of k parallel (the component of the wave vector parallel to the magnetic field) along the lower hybrid, (LH) wave trajectories. In this paper such variations are investigated both analytically and numerically. The main parameters governing this phenomenon are found and how k parallel upshift can occur within this scheme is elucidated. As a figure of merit a k parallel - upshift factor is defined and discussed in a dimensionless parameter space in which all the LH experiments can be represented. Finally, a discussion of whether and when toroidal effects can fill the gap between the high phase velocity of the injected LH waves and the electron thermal velocity is presented by analyzing different experimental situations

  14. Stabilization of ballooning modes with sheared toroidal rotation

    Miller, R.L.; Waelbroeck, F.W.; Lao, L.L.; Taylor, T.S.

    1994-11-01

    A new code demonstrates the stabilization of MHD ballooning modes by sheared toroidal rotation. A shifted model is used to elucidate the physics and numerically reconstructed equilibria are used to analyze DIII-D discharges. In the ballooning representation, the modes shift periodically along the field line to the next point of unfavorable curvature. The shift frequency (dΩ/dq where Ω is the angular toroidal velocity and q is the safety factor) is proportional to the rotation shear and inversely proportional to the magnetic shear. Stability improves with increasing shift frequency and, in the shifted circle model, direct stable access to the second stability regime occurs when this frequency is a fraction of the Alfven frequency ω A = V A /qR. Shear stabilization is also demonstrated for an equilibrium reconstruction of a DIII-D VH-mode

  15. On the Radiation of Electric, Magnetic and Toroidal Dipoles

    Afanasiev, G N

    2002-01-01

    We consider the radiation of electric, magnetic and toroidal dipoles uniformly moving in unbounded medium (this corresponds to the Tamm-Frank problem). The densities of these dipoles are obtained from the corresponding charge-current densities in an infinitesimal limit. The behaviour of radiation intensities in the neighbourhood of the Cherenkov threshold beta=1/n is investigated. The frequency and velocity regions are defined where radiation intensities are maximal. The comparison with previous attempts is given. We consider also the radiation of electric, magnetic and toroidal dipoles uniformly moving in medium, in a finite space interval (this corresponds to the Tamm problem). The properties of radiation arising from the precession of a magnetic dipole are studied.

  16. Theory of the rippling instability in toroidal devices

    Rogister, A.

    1985-04-01

    The theory of the rippling instability is developed for axisymmetric toroidal plasmas including ion viscosity and parallel electron heat conduction, but assuming that the growth rate is small compared to the wave angular frequency. Parallel electron heat conduction is stabilizing but ion viscosity broadens the instability domain. Under certain conditions, an important top-bottom asymmetry of the density fluctuation spectrum may arise. (orig./GG)

  17. Goya - an MHD equilibrium code for toroidal plasmas

    Scheffel, J.

    1984-09-01

    A description of the GOYA free-boundary equilibrium code is given. The non-linear Grad-Shafranov equation of ideal MHD is solved in a toroidal geometry for plasmas with purely poloidal magnetic fields. The code is based on a field line-tracing procedure, making storage of a large amount of information on a grid unnecessary. Usage of the code is demonstrated by computations of equi/libria for the EXTRAP-T1 device. (Author)

  18. Toroidal coupling and frequency spectrum of tearing modes

    Edery, D.; Samain, A.

    1989-05-01

    The frequency spectrum of tearing modes is analyzed with the help of a mode coupling model including toroidal effects in the MHD regions and various non linear effects in the resonant layers. In particular it is shown that the sudden damping of the mode rotation and the simultaneous enhancement of the growth rate observed in tokamak, could be explained as a bifurcating solution of the dispersion equation

  19. The control system of the RFX toroidal power supply

    Toigo, V.; Piovan, R.; Zanotto, L.; Perna, M.; Coffetti, A.; Freghieri, M.; Povolero, M.

    2005-01-01

    This paper describes the control system of the toroidal power supply of the RFX experiment and outlines its specific hardware and software structure, which allowed to cope with the numerous requirements of the application with a compact hardware arrangement. The active fault protection strategies, implemented in the control system, are also discussed; finally, a special part of the control, which greatly simplified the long and complex commissioning of the power section of the system, is described

  20. Modular invariant partition functions for toroidally compactified bosonic string

    Ardalan, F.; Arfaei, H.

    1988-06-01

    We systematically find all the modular invariant partition functions for the toroidally compactified closed bosonic string defined on a subset of a simply laced simple Lie algebra lattice, or equivalently for the closed bosonic string moving on a group manifold with the WZW coefficient k=1. We examine the relation between modular invariance of partition function and the possibility of describing it by an even Lorentzian self dual lattice in our context. (author). 23 refs

  1. Waveguide and loop coupling to fast MHD toroidal eigenmodes

    Paoloni, F.J.

    1975-12-01

    Heating of plasmas by wave techniques requires an effective method of coupling rf energy to the plasma. In cavities the presence of weakly damped eigenmodes will enhance the loading of antennas when the wave frequency equals an eigenmode frequency. This report considers two methods of coupling to fast MHD eigenmodes in a toroidal cavity: one is by a waveguide mounted perpendicular to the vacuum vessel wall; and the other by a loop placed within the cavity

  2. Longitudinal permittivity of a toroidal plasma near rational surfaces

    Nekrasov, F.M.

    1990-01-01

    A quite simple analytical formula for longitudinal permittivity, suitable for numerical processing on a computer, is determined. On the basis of a Fourier representation a poloidal angle a compact expression for the imaginary part of longitudinal permittivity near rational surfaces (m+nq=0) at an arbitrary relation between the bounce frequency and excited wave frequency is determined. A strongly magnetized collisionless plasma in the weak toroidality approximation is considered

  3. The Electromagnetic Field of Elementary Time-Dependent Toroidal Sources

    Afanas'ev, G.N.; Stepanovskij, Yu.P.

    1994-01-01

    The radiation field of toroidal-like time-dependent current configurations is investigated. Time-dependent charge-current sources are found outside which the electromagnetic strengths disappear but the potentials survive. This can be used to carry out time-dependent Aharonov-Bohm-like experiments and the information transfer. Using the Neumann-Helmholtz parametrization of the current density we present the time-dependent electromagnetic field in a form convenient for applications. 17 refs

  4. Force-free field inside a toroidal magnetic cloud

    Romashets, E. P.; Vandas, Marek

    2003-01-01

    Roč. 30, č. 20 (2003), s. 2065, /SSC 8-1 - SSC 8-4/ ISSN 0094-8276 R&D Projects: GA AV ČR IBS1003006; GA ČR GA205/03/0953 Institutional research plan: CEZ:AV0Z1003909 Keywords : magnetic clouds * toroid al flux rope * analytical solution Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.422, year: 2003

  5. Operating tokamaks with steady-state toroidal current

    Fisch, N.J.

    1981-04-01

    Continuous operation of a tokamak requires, among other things, a means of continuously providing the toroidal current. Various methods have been proposed to provide this current including methods which utilize radio-frequency waves in any of several frequency regimes. Here we elaborate on the prospects of incorporating these current-drive techniques in tokamak reactors, concentrating on the theoretical minimization of the power requirements

  6. An Inexpensive Toroidal Solenoid for an Investigative Student Lab

    Ferstl, Andrew; Broberg, John

    2008-09-01

    Magnetism and Ampère's law is a common subject in most calculus-based introductory physics courses. Many textbooks offer examples to calculate the magnetic field produced by a symmetric current by using Ampère's law. These examples include the solenoid and the toroidal solenoid (sometimes called a torus; see Fig. 1), which are used in many applications, including the study of plasmas.

  7. Wave propagation near the lower hybrid resonance in toroidal plasmas

    Ohkubo, K.; Ohasa, K.; Matsuura, K.

    1975-10-01

    Dielectric tensor and equipotential curves (ray trajectories) of an electrostatic wave near the lower hybrid resonance are investigated for the toroidal plasma with a shear magnetic field. The ray trajectories start from the vicinity of the plasma surface, and rotate in a spiral form around the magnetic axis, and then reach the lower or upper parts of lower hybrid resonance layer. The numerical computations are performed on the parameters of JIPP T-II device with two dimensional inhomogeneity. (auth.)

  8. Ion cyclotron-resonance heating in a toroidal octupole

    Barter, J.D.; Sprott, J.C.

    1975-01-01

    rf power near the ion cyclotron-resonance frequency has been used to produce a hundredfold increase (from approximately-less-than1 to approx.100 eV) in the ion temperature in a toroidal octupole device. The heating produces no noticeable instabilities or other deleterious effects except for a high reflux of neutrals from the walls. The heating rate is consistent with theory and the limiting ion temperature is determined by charge-exchange losses

  9. Wave trajectory and electron cyclotron heating in toroidal plasmas

    Maekawa, T.; Tanaka, S.; Terumichi, Y.; Hamada, Y.

    1977-12-01

    Wave trajectories propagating obliquely to magnetic field in toroidal plasmas are studied theoretically. Results show that the ordinary wave at appropriate incident angle is mode-converted to the extraordinary wave at first turning point and is further converted to the electron Bernstein wave during passing a loop or a hooked nail curve near second turning point and is cyclotron-damped away, resulting in local electron heating, before arriving at cyclotron resonance layer. (auth.)

  10. Poloidal and toroidal plasmons and fields of multilayer nanorings

    Garapati, Kumar Vijay; Salhi, Marouane; Kouchekian, Sherwin; Siopsis, George; Passian, Ali

    2017-01-01

    Composite and janus type metallo-dielectric nanoparticles are increasingly considered as a means to control the spatial and temporal behavior of electromagnetic fields in diverse applications such as coupling to quantum emitters, achieve invisibility cloaks, and obtain quantum correlations between qubits. We investigate the surface modes of a toroidal nano-structure and obtain the canonical plasmon dispersion relations and resonance modes for arbitrarily layered nanorings. Unlike particle pla...

  11. A numerical solution for a toroidal plasma in equilibrium

    Hintz, E.; Sudano, J.P.

    1982-01-01

    The iterative techniques alternating direction implicit (ADI), sucessive ove-relaxation (SOR) and Gauss-Seidel are applied to a nonlinear elliptical second order differential equation (Grand-Shafranov). This equation was solve with the free boundary conditions plasma-vacuum interface over a rectangular section in cylindrical coordinates R and Z. The current density profile, plasma pressure profile, magnetic and isobaric surfaces are numerically determined for a toroidal plasma in equilibrium. (L.C.) [pt

  12. Mode converter for electron cyclotron resonance heating of toroidal plasmas

    Motley, R.W.; Hsuan, H.; Glanz, J.

    1980-09-01

    A method is proposed for improving the efficiency of cyclotron resonance heating of a toroidal plasma by ordinary mode radiation from the outside of the torus. Radiation not absorbed in the first pass is reflected from the inside of the torus by a corrugated surface which rotates the polarization by 90 0 , so that a secondary source of extraordinary waves is created in the high field, accessible region of the plasma

  13. Toroidal plasma reactor with low external magnetic field

    Beklemishev, A.D.; Khayrutdinov, R.R.; Petviashvili, V.I.; Tajima, T.; Gordin, V.A.; Tajima, T.

    1991-01-01

    A toroidal pinch configuration with safety factor q < 0.5 decreasing from the center to periphery without field reversal is proposed. This is capable of containing high pressure plasma with only small toroidal external magnetic field. Sufficient conditions for magnetohydrodynamic stability are fulfilled in this configuration. The stability is studied by constructing the Lyapunov functional and investigating its extrema both analytically and numerically. Comparison of the Lyapunov stability conditions with the conventional linear theory is carried out. Stable configurations are found with average β near 15%, with magnetic field associated mainly with plasma current. The β value calculated with the external magnetic field can be over 100%. Fast charged particles produced by fusion reactions are asymmetrically confined by the poloidal magnetic field (and due to the lack of strong toroidal field). They thus generate a current in the noncentral part of plasma to reinforce the poloidal field. This current drive can sustain the monotonic decrease of q with radius. 20 refs., 9 figs

  14. Neoclassical offset toroidal velocity and auxiliary ion heating in tokamaks

    Lazzaro, E., E-mail: lazzaro@ifp.cnr.it [Istituto di Fisica del Plasma CNR (Italy)

    2016-05-15

    In conditions of ideal axisymmetry, for a magnetized plasma in a generic bounded domain, necessarily toroidal, the uniform absorption of external energy (e.g., RF or any isotropic auxiliary heating) cannot give rise to net forces or torques. Experimental evidence on contemporary tokamaks shows that the near central absorption of RF heating power (ICH and ECH) and current drive in presence of MHD activity drives a bulk plasma rotation in the co-I{sub p} direction, opposite to the initial one. Also the appearance of classical or neoclassical tearing modes provides a nonlinear magnetic braking that tends to clamp the rotation profile at the q-rational surfaces. The physical origin of the torque associated with P{sub RF} absorption could be due the effects of asymmetry in the equilibrium configuration or in power deposition, but here we point out also an effect of the response of the so-called neoclassical offset velocity to the power dependent heat flow increment. The neoclassical toroidal viscosity due to internal magnetic kink or tearing modes tends to relax the plasma rotation to this asymptotic speed, which in absence of auxiliary heating is of the order of the ion diamagnetic velocity. It can be shown by kinetic and fluid calculations, that the absorption of auxiliary power by ions modifies this offset proportionally to the injected power thereby forcing the plasma rotation in a direction opposite to the initial, to large values. The problem is discussed in the frame of the theoretical models of neoclassical toroidal viscosity.

  15. Individual Low-Energy Toroidal Dipole State in Mg 24

    Nesterenko, V. O.; Repko, A.; Kvasil, J.; Reinhard, P.-G.

    2018-05-01

    The low-energy dipole excitations in Mg 24 are investigated within the Skyrme quasiparticle random phase approximation for axial nuclei. The calculations with the force SLy6 reveal a remarkable feature: the lowest IπK =1-1 excitation (E =7.92 MeV ) in Mg 24 is a vortical toroidal state (TS) representing a specific vortex-antivortex realization of the well-known spherical Hill's vortex in a strongly deformed axial confinement. This is a striking example of an individual TS which can be much more easily discriminated in experiment than the toroidal dipole resonance embracing many states. The TS acquires the lowest energy due to the huge prolate axial deformation in Mg 24 . The result persists for different Skyrme parametrizations (SLy6, SVbas, SkM*). We analyze spectroscopic properties of the TS and its relation with the cluster structure of Mg 24 . Similar TSs could exist in other highly prolate light nuclei. They could serve as promising tests for various reactions to probe a vortical (toroidal) nuclear flow.

  16. Curvature-induced electrostatic drift modes in a toroidal plasma

    Venema, M.

    1985-01-01

    This thesis deals with a number of problems in the theory of linear stability of a hot, fully ionized plasma immersed in a strong magnetic field. The most widely used system to magnetically confine a plasma is the tokamak. This is a toroidal, current carrying device with a strong, externally imposed, magnetic field. The author discusses the linear theory of unstable, low-frequency waves in the gradient region, restricted to electrostatic waves. In that case the resulting radial fluxes of particles and energy are due to electric cross-field drifts. In the presence of magnetic fluctuations and small-scale reconnection phenomena, radial transport could also be predominantly along field lines. At present, it is not clear which of the two mechanisms is the dominant feature of the observed anomalous transport. First, the author introduces the theory of drift waves in toroidal geometry. Next, the electrostratic drift modes in toroidal geometry (weakly collisional regime), the equations for low-frequency waves in the strongly collisional regime and the electrostatic drift modes (strongly collisional regime) are discussed. (Auth.)

  17. Poloidal and toroidal heat flux distribution in the CCT tokamak

    Brown, M.L.; Dhir, V.K.; Taylor, R.J.

    1990-01-01

    Plasma heat flux to the Faraday shield panels of the UCLA Continuous Current Tokamak (CCT) has been measured calorimetrically in order to identify the dominant parameters affecting the spatial distribution of heat deposition. Three heating methods were investigated: audio frequency discharge cleaning, RF heating, and AC ohmic. Significant poloidal asymmetry is present in the heat flux distribution. On the average, the outer panels received 25-30% greater heat flux than the inner ones, with the ratio of maximum to minimum values attaining a difference of more than a factor of 2. As a diagnostic experiment the current to a selected toroidal field coil was reduced in order to locally deflect the toroidal field lines outward in a ripple-like fashion. Greatly enhanced heat deposition (up to a factor of 4) was observed at this location on the outside Faraday panels. The enhancement was greatest for conditions of low toroidal field and low neutral pressure, leading to low plasma densities, for which Coulomb collisions are the smallest. An exponential model based on a heat flux e-folding length describes the experimentally found localization of thermal energy quite adequately. (orig.)

  18. Toroidal Continuously Variable Transmission Systems: Terminology and Present Studies

    Ahmet YILDIZ

    2014-04-01

    Full Text Available The use of continuously variable transmission systems in many different areas such as aerospace, robotics, machinery and automotive industries as an alternative to conventional speed changers with constant ratio becomes widely.Especially in the automotive industry, these systems have been used increasingly, since they enable that internal combustion engines in vehicles run at optimal speeds, and consequently provide considerable fuel savings and therefore lower emission values and also they provide powerful acceleration and quiet working. CVT systems have several constructive variants such as belted, chained, balled, toroidal etc. In this paper, toroidal CVT systems based on elastohydrodynamic principles are concerned with, and fundamental works of last two decades in this field are reviewed. However, the relevant terminology and dynamics along with the control of these systems are briefly treated for better understanding of the literature mentioned. Attention is drawn to the lack of some significant issues in present research works, and potential future works are pointed out. This paper, to the authors’ knowledge, will be the first review on toroidal CVT systems in Turkish literature

  19. Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li-O2 batteries

    Aetukuri, Nagaphani B.; McCloskey, Bryan D.; García, Jeannette M.; Krupp, Leslie E.; Viswanathan, Venkatasubramanian; Luntz, Alan C.

    2015-01-01

    Given their high theoretical specific energy, lithium-oxygen batteries have received enormous attention as possible alternatives to current state-of-the-art rechargeable Li-ion batteries. However, the maximum discharge capacity in non-aqueous lithium-oxygen batteries is limited to a small fraction of its theoretical value due to the build-up of insulating lithium peroxide (Li2O2), the battery’s primary discharge product. The discharge capacity can be increased if Li2O2 forms as large toroidal particles rather than as a thin conformal layer. Here, we show that trace amounts of electrolyte additives, such as H2O, enhance the formation of Li2O2 toroids and result in significant improvements in capacity. Our experimental observations and a growth model show that the solvating properties of the additives prompt a solution-based mechanism that is responsible for the growth of Li2O2 toroids. We present a general formalism describing an additive’s tendency to trigger the solution process, providing a rational design route for electrolytes that afford larger lithium-oxygen battery capacities.

  20. Numerical analyses of magnetic field and force in toroidal superconducting magnetic energy storage using unit coils (abstract)

    Kanamaru, Y.; Nakayama, T.; Amemiya, Y.

    1997-01-01

    Superconducting magnetic energy storage (SMES) is more useful than other systems of electric energy storage because of its larger amounts of stored energy and its higher efficiency. There are two types of SMES. One is the solenoid type and the other is the toroidal type. Some models of solenoid-type SMES are designed in the U.S. and in Japan. But the large scale SMES causes a high magnetic field in the living environment, and causes the erroneous operation of electronic equipment. The authors studied some suitable designs of magnetic shielding for the solenoidal-type SMES to reduce the magnetic field in the living environment. The toiroidal type SMES is studied in this article. The magnetic leakage flux of the toiroidal-type SMES is generally lower than that of the solenoid-type SMES. The toroidal-type SMES is constructed of unit coils, which are convenient for construction. The magnetic leakage flux occurs between unit coils. The electromagnetic force of the coils is very strong. Therefore analyses of the leakage flux and electromagnetic force are important to the design of SMES. The authors studied the number, radius, and length of unit coils. The storage energy is 5 G Wh. The numerical analyses of magnetic fields in the toroidal type SMES are obtained by analytical solutions. copyright 1997 American Institute of Physics

  1. Generalized impedances and wakes in asymmetric structures

    Heifets, S.; Wagner, A.; Zotter, B.

    1998-01-01

    In rotationally structures, the dominant m = 0 longitudinal impedance does not depend on the offsets of either the leading or the trailing particles, while the dominant m = 1 transverse impedance is proportional to the offset of the leading particles, while it is still independent of the offsets of the trailing ones. This behavior is no longer true in rotationally non-symmetric structures, where in general all impedances depend on the offsets of both the leading and the trailing particles. The same behavior is shown by wake functions and wake potentials. The concept of generalized impedances or generalized wake functions must be used to calculate the effect of leading particles on trailing ones with different offsets, each described by two transverse coordinates. This dependence of wake potentials on four additional parameters (two for each offset) would make their use very cumbersome. Fortunately, it was found that the transverse wake potentials can be separated into superpositions of dipolar components, which are proportional to the offset of the leading bunch, and quadrupolar components, which are proportional to the offset of the trailing particles. Higher multipole components are much smaller, and can be neglected for most structures without rotational symmetry. In this report, the authors derive analytical expressions for these multipolar components, which permits estimates of the size of the neglected terms. In particular, when structures have one or two transverse symmetry planes, the expressions simplify and explain the behavior of wake potentials which had been computed for rotationally non-symmetric structures

  2. FURNACE 2. Toroidal geometry neutronic program system method. Description and users manual

    Verschuur, K.A.

    1995-10-01

    FURNACE2 is a 3-dimensional neutron/photon-transport program system for toroidal geometries. It uses ray-tracing and double-differential reflection-and transmission-coefficients and flux-kernels to calculate the angular-flux spectra inside the torus of a fusion-reactor. FURNACE2 is an extended version of FURNACE, developed for application to the neutron-diagnostics at JET, which was supported financially by JET. It is used at JET to calculate the foil-activation for the KN2 diagnostics, the angular-fluxes on the lines of sight of the KN3 profile monitors, and general background fluxes and activation of the vessel. The program is used along with MCNP, combining the advantages of each of the programs and for mutual checks. (orig.).

  3. Collisionless two-fluid theory of toroidal ηi stability

    Mondt, J.; Weiland, J.

    1989-01-01

    A collisionless two-fluid theory based on a fourteen-moment generalization of the 'double-adiabatic' equations is developed to lowest order in the Larmor radius parameter, and applied to derive the toroidal η i stability boundary for all values of the ratio of the density gradient scale length divided by the field curvature length. The present model is an improvement over existing collisional two-fluid models in view of the collisionless nature of the η i instability, while retaining the advantage over kinetic theory of the practability of mode-coupling simulations. The linear stability boundary, linear growth rate and real frequency agree fairly accurately with draft-kinetic theory

  4. FURNACE 2. Toroidal geometry neutronic program system method. Description and users manual

    Verschuur, K.A.

    1995-10-01

    FURNACE2 is a 3-dimensional neutron/photon-transport program system for toroidal geometries. It uses ray-tracing and double-differential reflection-and transmission-coefficients and flux-kernels to calculate the angular-flux spectra inside the torus of a fusion-reactor. FURNACE2 is an extended version of FURNACE, developed for application to the neutron-diagnostics at JET, which was supported financially by JET. It is used at JET to calculate the foil-activation for the KN2 diagnostics, the angular-fluxes on the lines of sight of the KN3 profile monitors, and general background fluxes and activation of the vessel. The program is used along with MCNP, combining the advantages of each of the programs and for mutual checks. (orig.)

  5. The comparative analysis of the different mechanisms of toroidal rotation in tokamaks

    Sabot, R [Association Euratom-CEA, Centre d` Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Parail, V [Kurchatov Institute, Moscow (Russian Federation)

    1994-07-01

    The toroidal plasma rotation appears as one the possible mechanism for suppression of plasma turbulence. Several mechanisms are believed to contribute to the toroidal plasma rotation. The results of numerical simulation of the toroidal rotation on JET are presented, where are taken into consideration the following effects: the neoclassical viscosity due to banana and ripple trapped particles, the anomalous viscosity due to plasma turbulence, the momentum input by NBI (neutron beam injection) and ion momentum loss near the separatrix due to prompt ion losses. The NBI appeared to be the principal source of toroidal plasma rotation. 6 refs., 2 figs.

  6. Microscopic Description of Electric and Magnetic Toroidal Multipoles in Hybrid Orbitals

    Hayami, Satoru; Kusunose, Hiroaki

    2018-03-01

    We derive the quantum-mechanical operator expressions of multipoles under the space-time inversion group. We elucidate that electric and magnetic toroidal multipoles, in addition to ordinary non-toroidal ones, are fundamental pieces to express arbitrary electronic degrees of freedom. We show that electric (magnetic) toroidal multipoles higher than the dipole (monopole) can become active in a hybridized-orbital system. We also demonstrate emergent cross-correlated couplings between the electric, magnetic, and elastic degrees of freedom, such as magneto-electric and magneto(electro)-elastic coupling, under toroidal multipole orders.

  7. Analysis of toroidal rotation data for the DIII-D tokamak

    St John, H.; Stroth, U.; Burrell, K.H.; Groebner, R.J.; DeBoo, J.C.; Gohil, P.

    1989-01-01

    Both poloidal and toroidal rotation are observed during routine neutral beam heating operation of the DIII-D tokamak. Poloidal rotation results and the empirical techniques used to measure toroidal and poloidal rotation speeds are described by Groebner. Here we concentrate on the analysis of recent measurements of toroidal rotation made during diverted, H-mode operation of the DIII-D tokamak during co- and counter-neutral beam injection of hydrogen into deuterium plasmas. Our results are based on numerical inversions using the transport code ONETWO, modified to account for the radial diffusion of toroidal angular momentum. 13 refs., 4 figs

  8. PROGRESS IN THE PEELING-BALLOONING MODEL OF ELMS: TOROIDAL ROTATION AND 3D NONLINEAR DYNAMICS

    SNYDER, P.B.; WILSON, H.R.; XU, X.Q.; WEBSTER, A.J.

    2004-01-01

    Understanding the physics of the H-Mode pedestal and edge localized modes (ELMs) is very important to next-step fusion devices for two primary reasons: (1) The pressure at the top of the edge barrier (''pedestal height'') strongly impacts global confinement and fusion performance, and (2) large ELMs lead to localized transient heat loads on material surfaces that may constrain component lifetimes. The development of the peeling-ballooning model has shed light on these issues by positing a mechanism for ELM onset and constraints on the pedestal height. The mechanism involves instability of ideal coupled ''peeling-ballooning'' modes driven by the sharp pressure gradient and consequent large bootstrap current in the H-mode edge. It was first investigated in the local, high-n limit [1], and later quantified for non-local, finite-n modes in general toroidal geometry [2,3]. Important aspects are that a range of wavelengths may potentially be unstable, with intermediate n's (n ∼ 3-30) generally limiting in high performance regimes, and that stability bounds are strongly sensitive to shape [Fig l(a)], and to collisionality (i.e. temperature and density) [4] through the bootstrap current. The development of efficient MHD stability codes such as ELITE [3,2] and MISHKA [5] has allowed detailed quantification of peeling-ballooning stability bounds (e.g. [6]) and extensive and largely successful comparisons with observation (e.g. [2,6-9]). These previous calculations are ideal, static, and linear. Here we extend this work to incorporate the impact of sheared toroidal rotation, and the non-ideal, nonlinear dynamics which must be studied to quantify ELM size and heat deposition on material surfaces

  9. Experiments on toroidal inductively coupled alternating-current gas discharges

    Lok, J.

    1976-01-01

    This report is on an experimental study of a toroidal, inductively coupled a.c. gas discharge sustained at pressures roughly between one tenth of a Torr and some tens of Torrs. After breakdown is obtained at low pressure, additional gas is let in. The energy is inductively coupled into the electrodeless discharge by means of an iron core transformer of which the toroidal plasma column is the secondary winding. The power dissipated in the plasma is between 80 and 260 kW and is delivered by a motor-generator system at a frequency of 8 kHz for times up to 2 seconds. A toroidal magnetic field of 0.5 T maximum can be supplied in a short pulse. Five different gases (hydrogen, deuterium, helium, argon, and nitrogen) are used. The pressure range in which the discharges are sustained is specified, and the dynamic current-voltage characteristics are given for different pressures. Some typical streak pictures with simultaneously obtained recordings of the time behaviour of the discharge current and of the loop voltage are presented for the initial phase - at low pressure - of the discharge. The shape and the position of fully developed discharges at various pressures are discussed on the basis of photographic observations. The temperature of hydrogen plasmas is derived both from the electrical conductivity and from the emission of line radiation. The values of the temperature obtained in these ways differ in magnitude and in time behaviour. A possible explanation of the discrepancy can be obtained in terms of expansion and contraction of electron density and temperature profiles during a period of the discharge current, if it is taken into account that the main part of the light emission always originates from the outer colder regions of the plasma. In a somewhat different pressure regime, this picture is confirmed by microwave measurements

  10. Core and edge toroidal rotation study in JT-60U

    Yoshida, M.; Sakamoto, Y.; Honda, M.; Kamada, Y.; Takenaga, H.; Oyama, N.; Urano, H.

    2012-01-01

    The relation between toroidal rotation velocities (V t ) in the core and edge regions is investigated in H-mode plasmas with a small external torque input from the viewpoint of momentum transport. The toroidal rotation velocity in the core region (core-V t ) gradually varies on a timescale of ∼20 ms after a rapid change in the toroidal rotation velocity in the edge region (edge-V t ) at the L–H transition. This timescale of ∼20 ms is consistent with a transport timescale using the momentum diffusivity (χ φ ) and convection velocity (V conv ). In steady state, a linear correlation between the core- and edge-V t is observed in H-mode plasmas when the ion pressure gradient (∇P i ) is small. This relation between core- and edge-V t is also explained by momentum transport. The V t profiles with a large ∇P i are reproduced in the core region of r/a ∼ 0.2–0.7 by adopting a residual stress term 'Π res = α k χ φ ∇P i ' proposed in this paper. Here r/a is the normalized plasma radius and α k1 is a radial constant. Using this formula, V t profiles are reproduced over a wide range of plasma conditions. Parameter dependences of the edge-V t are investigated at a constant ripple loss power, ripple amplitude and plasma current. A reduction in the CTR-rotation is observed with decreasing ion temperature gradient (∇T i ). Here CTR refers to the counter-I P direction.

  11. Fabrication of toroidal composite pressure vessels. Final report

    Dodge, W.G.; Escalona, A.

    1996-01-01

    A method for fabricating composite pressure vessels having toroidal geometry was evaluated. Eight units were fabricated using fibrous graphite material wrapped over a thin-walled aluminum liner. The material was wrapped using a machine designed for wrapping, the graphite material was impregnated with an epoxy resin that was subsequently thermally cured. The units were fabricated using various winding patterns. They were hydrostatically tested to determine their performance. The method of fabrication was demonstrated. However, the improvement in performance to weight ratio over that obtainable by an all metal vessel probably does not justify the extra cost of fabrication

  12. Resistive demountable toroidal-field coils for tokamak reactors

    Jassby, D.L.; Jacobsen, R.A.; Kalnavarns, J.; Masson, L.S.; Sekot, J.P.

    1981-07-01

    Readily demountable TF (toroidal-field) coils allow complete access to the internal components of a tokamak reactor for maintenance of replacement. The requirement of readily demountable joints dictates the use of water-cooled resistive coils, which have a host of decisive advantages over superconducting coils. Previous papers have shown that resistive TF coils for tokamak reactors can operate in the steady state with acceptable power dissipation (typically, 175 to 300 MW). This paper summarizes results of parametric studies of size optimization of rectangular TF coils and of a finite-element stress analysis, and examines several candidate methods of implementing demountable joints for rectangular coils constructed of plate segments

  13. Analytical solution of the toroidal constant tension solenoid

    Gralnick, S.L.; Tenney, F.H.

    1975-01-01

    The coil shape is determined by requiring that the curvature of the flexible conductor be proportional to the distance from the toroidal axis. The resulting second order differential equation for the coil coordinates can be integrated once but for the second and final integration no closed form has been found and the integration has been done numerically. This solution of this differential equation is analytical in terms of an absolutely and uniformly convergent infinite series. The series converges quite rapidly and in practice ignoring all but the first five terms of the series introduces an error of less than 2 percent

  14. Components and system tests on the RFX toroidal power supply

    Toigo, V.; Zanotto, L.; Gaio, E.; Perna, M.; Bordignon, P.; Coffetti, A.; Novaro, R.; Bertolotto, P.; Rinaldi, E.; Villa, G.

    2005-01-01

    The paper deals with the component and system tests performed on the new toroidal power supply system of the RFX experiment. The high technological innovation of the system required a deep experimental characterization and validation campaign; special factory tests were performed on prototypes of single components aimed at verifying the most critical design aspects. Consequently an articulated series of tests were performed, based on a step-by-step approach to achieve the desired coordinate operation of the whole system. The test procedures and the most significant results are described in the paper

  15. Atomic physics effects on dissipative toroidal drift wave stability

    Beer, M.A.; Hahm, T.S.

    1992-02-01

    The effects of atomic physics processes such as ionization, charge exchange, and radiation on the linear stability of dissipative drift waves are investigated in toroidal geometry both numerically and analytically. For typical TFTR and TEXT edge parameters, overall linear stability is determined by the competition between the destabilizing influence of ionization and the stabilizing effect due to the electron temperature gradient. An analytical expression for the linear marginal stability condition, η e crit , is derived. The instability is most likely to occur at the extreme edge of tokamaks with a significant ionization source and a steep electron density gradient

  16. Toroidal mesoporous silica nanoparticles (TMSNPs) and related protocells

    Brinker, C. Jeffrey; Lin, Yu-Shen

    2018-01-02

    In one aspect, the invention provides novel monodisperse, colloidally-stable, toroidal mesoporous silica nanoparticles (TMSNPs) which are synthesized from ellipsoid-shaped mesoporous silica nanoparticles (MSNPs) which are prepared using an ammonia basecatalyzed method under a low surfactant conditions. Significantly, the TMSNPs can be loaded simultaneously with a small molecule active agent, a siRNA, a mRNA, a plasmid and other cargo and can be used in the diagnosis and/or treatment of a variety of disorders, including a cancer, a bacterial infection and/or a viral infection, among others. Related protocells, pharmaceutical compositions and therapeutic and diagnostic methods are also provided.

  17. Theory and application of maximum magnetic energy in toroidal plasmas

    Chu, T.K.

    1992-02-01

    The magnetic energy in an inductively driven steady-state toroidal plasma is a maximum for a given rate of dissipation of energy (Poynting flux). A purely resistive steady state of the piecewise force-free configuration, however, cannot exist, as the periodic removal of the excess poloidal flux and pressure, due to heating, ruptures the static equilibrium of the partitioning rational surfaces intermittently. The rupture necessitates a plasma with a negative q'/q (as in reverse field pinches and spheromaks) to have the same α in all its force-free regions and with a positive q'/q (as in tokamaks) to have centrally peaked α's

  18. Free-boundary toroidal Alfvén eigenmodes

    Chen, Eugene Y.; Berk, H. L.; Breizman, B.; Zheng, L. J.

    2011-05-01

    A numerical study is presented for the n = 1 free-boundary toroidal Alfvén eigenmodes (TAE) in tokamaks, which shows that there is considerable sensitivity of n = 1 modes to the position of the conducting wall. An additional branch of the TAE is shown to emerge from the upper continuum as the ratio of conducting wall radius to plasma radius increases. Such phenomena arise in plasma equilibria with both circular and shaped cross sections, where the shaped profile studied here is similar to that found in Alcator C-Mod.

  19. Effect of alpha particles on Toroidal Alfven Eigenmodes

    Berk, H.L.

    1992-11-01

    An overview is given of the analytic structure for the linear theory of the Toroidal Alfven Eigenmode (TAE), where multiple gap structures occur. A discussion is given of the alpha particle drive and the various dissipation mechanisms that can stabilize the system. A self-consistent calculation of the TAE mode, for a low-beta high-aspect-ratio plasma, indicates that though the alpha particle drive is comparable to the dissipation mechanisms, overall stability is still achieved for ignited ITER-like plasma. A brief discussion is given of the nonlinear theory for the TAE mode and how nonlinear alpha particle dynamics can be treated by mapping methods

  20. The residual zonal dynamics in a toroidally rotating tokamak

    Zhou Deng

    2015-01-01

    Zonal flows, initially driven by ion-temperature-gradient turbulence, may evolve due to the neoclassic polarization in a collisionless tokamak plasma. In this presentation, the form of the residual zonal flow is presented for tokamak plasmas rotating toroidally at arbitrary velocity. The gyro-kinetic equation is analytically solved to give the expression of residual zonal flows with arbitrary rotating velocity. The zonal flow level decreases as the rotating velocity increases. The numerical evaluation is in good agreement with the previous simulation result for high aspect ratio tokamaks. (author)

  1. Simulated and experimental compression of a compact toroid

    Johnson, J N; Hwang, D Q; Horton, R D; Evans, R W; Owen, J M

    2009-05-06

    We present simulation results and experimental data for the compression of a compact toroid by a conducting nozzle without a center electrode. In both simulation and experiment, the flow of the plasma is greatly obstructed by even modest magnetic fields. A simple mechanism for this obstruction is suggested by our simulations. In particular, the configuration of the plasmoid's magnetic field plays a significant role in the success of the experiment. We analyze two types of plasma configurations under compression and demonstrate that the results from the simulations matches those from the experiments, and that the mechanism predicts the different behaviors observed in the two cases.

  2. Transport mechanisms acting in toroidal devices: a theoretician's view

    Carreras, B.A.

    1992-01-01

    Understanding the basic mechanisms of transport in toroidal confinement devices remains one of the more challenging scientific issues in magnetic confinement. At the same time, it is a critical issue for the magnetic fusion program. Recent progress in understanding fluctuations and transport has been fostered by the development and use of new diagnostics, bringing new perspectives on these studies. This has stimulated new theoretical developments. A view of the most recent issues and progress in this area is given. The role of long wavelengths in core transport and the relation between shear flows and turbulence at the plasma edge are the primary topics considered. (Author)

  3. Formation of plasma and gaseous toroidal vortices in air

    Yusupaliev, U.; Yusupaliev, P. U.; Shuteev, S. A.

    2007-01-01

    The mechanism for the formation of high-temperature (plasma) vortices and low-temperature vortex rings produced by ejecting pulsed subsonic plasma/gas jets into air was investigated experimentally. A toroidal vortex forms due to the interaction between a pulsed jet with the flow induced by this jet in the ambient medium. By analyzing the experimental data and conservation laws, an equation is derived that allows one to determine the initial propagation velocity of the vortex as a function of the characteristics of the vortex generator and the ambient medium. The results obtained by solving this equation agree well with the experimental data

  4. Position indicating split toroid for the RACE experiment

    Hurst, B.; Folkman, K.

    2007-01-01

    Aspects of the recent reactor accelerator coupled experiments (RACE) carried out at University of Texas Nuclear Engineering Teaching Laboratory will be discussed. In particular, a compact instrument that allowed a continuous non-invasive means of determining the relative electron beam position was developed. The operation of the instrument is similar to an inductive current pick up toroid except that the core is sectioned radially, which allows spatial information to be derived from the induced voltages. Results of initial tests, both in beam and with a pulser, will be presented along with plans to optimize future designs

  5. Fluctuations and stability in the Advanced Toroidal Facility (ATF) torsatron

    Harris, J.H.; Charlton, L.A.; Bell, J.D.; Bigelow, T.S.; Carreras, B.A.; Colchin, R.J.; Crume, E.C.; Dominguez, N.; Dunlap, J.L.; Dyer, G.R.; England, A.C.; Glowienka, J.C.; Hillis, D.L.; Hiroe, S.; Horton, L.D.; Howe, H.C.; Isler, R.C.; Jernigan, T.C.; Leboeuf, J.N.; Lee, D.K.; Lynch, V.E.; Lyon, J.F.; Menon, M.M.; Murakami, M.; Rasmussen, D.A.; Uckan, T.; Wilgen, J.B.; Wing, W.R.; Bell, G.L.; Crocker, N.A.; Hanson, G.R.; Thomas, C.E.; Wade, M.R.; Ritz, C.P.

    1990-01-01

    We present the results of experimental and theoretical studies of fluctuations and instabilities in the ATF torsatron, a type of stellarator. Measurements of globally coherent magnetic fluctuations in high-β plasmas with narrow pressure profiles produced by a field error show evidence of self-stabilization ('second stability'); the trends are compatible with theoretical analysis of self-stabilization of resistive curvature-driven instabilities, but there are discrepancies between the absolute experimental and theoretical fluctuation amplitudes. Fluctuation measurements in plasma with broad pressure profiles reveal new phenomena--specifically, toroidally localized magnetic fluctuations, whose amplitudes increase with plasma pressure, and coherent density fluctuations with significant radial width

  6. Classical impurity ion confinement in a toroidal magnetized fusion plasma.

    Kumar, S T A; Den Hartog, D J; Caspary, K J; Magee, R M; Mirnov, V V; Chapman, B E; Craig, D; Fiksel, G; Sarff, J S

    2012-03-23

    High-resolution measurements of impurity ion dynamics provide first-time evidence of classical ion confinement in a toroidal, magnetically confined plasma. The density profile evolution of fully stripped carbon is measured in MST reversed-field pinch plasmas with reduced magnetic turbulence to assess Coulomb-collisional transport without the neoclassical enhancement from particle drift effects. The impurity density profile evolves to a hollow shape, consistent with the temperature screening mechanism of classical transport. Corroborating methane pellet injection experiments expose the sensitivity of the impurity particle confinement time to the residual magnetic fluctuation amplitude.

  7. Existence of core localized toroidicity-induced Alfven eigenmode

    Fu, G.Y.

    1995-02-01

    The core-localized toroidicity-induced Alfven eigenmode (TAE) is shown to exist at finite plasma pressure due to finite aspect ratio effects in tokamak plasma. The new critical beta for the existence of the TAE mode is given by α∼ 3ε + 2s 2 , where ε = r/R is the inverse aspect ratio, s is the magnetic shear and α = -Rq 2 dβ/dr is the normalized pressure gradient. In contrast, previous critical α is given by α ∼ s 2 . In the limit of s << √r/R, the new critical α is greatly enhanced by the finite aspect ratio effects

  8. Noninductively Driven Tokamak Plasmas at Near-Unity Toroidal Beta

    Schlossberg, David J.; Bodner, Grant M.; Bongard, Michael W.; Burke, Marcus G.; Fonck, Raymond J.

    2017-01-01

    Access to and characterization of sustained, toroidally confined plasmas with a very high plasma-to-magnetic pressure ratio (β t ), low internal inductance, high elongation, and nonsolenoidal current drive is a central goal of present tokamak plasma research. Stable access to this desirable parameter space is demonstrated in plasmas with ultralow aspect ratio and high elongation. Local helicity injection provides nonsolenoidal sustainment, low internal inductance, and ion heating. Equilibrium analyses indicate β t up to ~100% with a minimum |B| well spanning up to ~50% of the plasma volume.

  9. System and method of operating toroidal magnetic confinement devices

    Chance, Morrell S.; Jardin, Stephen C.; Stix, Thomas H.; Grimm, deceased, Ray C.; Manickam, Janardhan; Okabayashi, Michio

    1987-01-01

    For toroidal magnetic confinement devices the second region of stability against ballooning modes can be accessed with controlled operation. Under certain modes of operation, the first and second stability regions may be joined together. Accessing the second region of stability is accomplished by forming a bean-shaped plasma and increasing the indentation until a critical value of indentation is reached. A pusher coil, located at the inner-major-radius side of the device, is engaged to form a bean-shaped poloidal cross-section in the plasma.

  10. Optical design of grazing incidence toroidal grating monochromator

    Pouey, M.; Howells, M.R.; Takacs, P.Z.

    1982-01-01

    Design rules using geometrical optics and physical optics associated with the phase balancing method are discussed for stigmatic toroidal grazing incidence monochromators. To determine the optical performance of devices involving mirrirs and/or gratings, ray tracing programs using exact geometry are quite widely used. It is then desirable to have some way to infer the practical performance of an instrument from a spot diagram created by tracing a limited number of rays. We propose a first approach to this problem involving an estimation of the geometrical intensity distribution in the image plane and the corresponding line spread function. (orig.)

  11. Nonlinear hybrid simulation of toroidicity-induced alfven eigenmode

    Fu, G.Y.; Park, W.

    1994-11-01

    Gyrokinetic/Magnetohydrodynamics hybrid simulations have been carried out using MH3D-K code to study the nonlinear saturation of the toroidicity-induced Alfven eigenmode driven by energetic particles in a tokamak plasma. It is shown that the wave particle trapping is the nonlinear saturation mechanism for the parameters considered. The corresponding density profile flattening of hot particles is observed. The saturation amplitude is proportional to the square of linear growth rate. In addition to TAE modes, a new n = 1, m = 0 global Alfven eigenmode is shown to be excited by the energetic particles

  12. Coupling to fast MHD eigenmodes in a toroidal cavity

    Paoloni, F.J.

    1975-05-01

    The coupling to fast MHD waves in toroidal-like geometry is calculated when eigenmodes exist in the plasma. The torus is considered to be a resonant cavity into which energy is coupled by a half turn loop. The cavity Q is calculated for the minority heating process, for cyclotron harmonic damping, electron transit-time magnetic pumping, wall loading, and Coulomb collisional damping. The problem of sustaining the eigenmode as the plasma conditions change with time is also discussed. One method that seems to be practical is a feedback scheme that varies the plasma major radius by a small amount as the conditions change. (U.S.)

  13. Physics of electron internal transport barrier in toroidal helical plasmas

    Itoh, K.; Toda, S.; Fujisawa, A.; Ida, K.; Itoh, S.-I.; Yagi, M.; Fukuyama, A.; Diamond, P.H.

    2006-10-01

    The role of zonal flows in the formation of the transport barrier in the helical plasmas is analyzed using the transport code. A set of one-dimensional transport equations is analyzed, including the effect of zonal flows. The turbulent transport coefficient is shown to be suppressed when the plasma state changes from the weak negative radial electric field to the strong positive one. This bifurcation of the turbulent transport is newly caused by the change of the damping rate of zonal flows. It is theoretically demonstrated that the damping rate of zonal flows governs the global confinement in toroidal plasmas. (author)

  14. Evidence of Inward Toroidal Momentum Convection in the JET Tokamak

    Tala, T.; Zastrow, K.-D.; Ferreira, J.

    2009-01-01

    Experiments have been carried out on the Joint European Torus tokamak to determine the diffusive and convective momentum transport. Torque, injected by neutral beams, was modulated to create a periodic perturbation in the toroidal rotation velocity. Novel transport analysis shows the magnitude...... and profile shape of the momentum diffusivity are similar to those of the ion heat diffusivity. A significant inward momentum pinch, up to 20 m/s, has been found. Both results are consistent with gyrokinetic simulations. This evidence is complemented in plasmas with internal transport barriers....

  15. Results of the ITER toroidal field model coil project

    Salpietro, E.; Maix, R.

    2001-01-01

    In the scope of the ITER EDA one of the seven largest projects was devoted to the development, manufacture and testing of a Toroidal Field Model Coil (TFMC). The industry consortium AGAN manufactured the TFMC based on on a conceptual design developed by the ITER EDA EU Home Team. The TFMC was completed and assembled in the test facility TOSKA of the Forschungszentrum Karlsruhe in the first half of 2001. The first testing phase started in June 2001 and lasted till October 2001. The first results have shown that the main goals of the project have been achieved

  16. On the parametric cyclotron heating of a toroidal plasma

    Golovanivsky, K.C.; Punithavelu, A.M.

    1976-01-01

    The possibility of heating the ionic component of a dense plasma at the parametric cyclotron resonance, using a section of the conducting toroidal chamber of a large scale Tokamak as a resonance cavity, is considered. It is suggested to use the mode TE 011 to overcome the difficulties with the penetration of HF fields into such a dense plasma. The experimental investigation of parametric cyclotron heating of electrons in a overdense plasma (n/nsub(cut off)=10 2 ) on such a model has given hopeful results

  17. D{sup -} energy spectrum in toroidal quantum ring

    Gomez, C A; Gutierrez, W; Garcia, L F [Universidad Industrial de Santander, Bucaramanga (Colombia); Marin, J H, E-mail: jhmarin@unal.edu.c [Universidad Nacional-Colombia, Medellin-Colombia, AA3840 (Colombia)

    2009-05-01

    The structure of energy spectrum of the negative donor centre in a toroidal-shaped quantum ring with two different morphologies of the cross-section is analyzed. By using the adiabatic procedure we have deduced a one-dimensional wave equation with periodic conditions which describes the low-lying energy levels related to the electrons rotation around the symmetry axis. Our results are in good agreement with those previously obtained as the size of the ring cross-section tends to zero.

  18. Toroidal Dipole Moment of the Lightest Neutralino in the MSSM

    Cabral-Rosetti, L G; Mondragon, M; Perez, E Reyes

    2011-01-01

    In order to characterize one of the most favored candidates for dark matter, we calculate the anapole form factor of the lightest neutralino in the Minimal Supersymmetric Standard Model (MSSM) at the one-loop level. As a Majorana fermion, this particle only shows one electromagnetic property, the toroidal dipole moment, which is directly related to the anapole form factor. We obtain the result analitically in terms of two- and three-points Passarino-Veltman scalar functions and evaluate it for a given spectrum of supersymmetric masses and matrix elements. This work is part of a broader project still in progress.

  19. Theory of pressure-induced islands and self-healing in three-dimensional toroidal magnetohydrodynamic equilibria

    Bhattacharjee, A.; Hayashi, T.; Hegna, C.C.; Nakajima, N.; Sato, T.

    1994-11-01

    The role of singular currents in three-dimensional toroidal equilibria and their resolution by magnetic island formation is discussed from both analytical and computational points of view. Earlier analytical results are extended to include small vacuum islands which may, in general, have different phases with respect to pressure-induced islands. In currentless stellarators, the formation of islands is shown to depend on the resistive parameter D R as well as the integrated effect of global Pfirsch-Schlueter currents. It is demonstrated that the pressure-induced 'self-healing' effect, recently discovered computationally, is also predicted by analytical theory. (author)

  20. Four-dimensional anti-de Sitter toroidal black holes from a three-dimensional perspective: Full complexity

    Zanchin, Vilson T.; Kleber, Antares; Lemos, Jose P.S.

    2002-01-01

    The dimensional reduction of black hole solutions in four-dimensional (4D) general relativity is performed and new 3D black hole solutions are obtained. Considering a 4D spacetime with one spacelike Killing vector, it is possible to split the Einstein-Hilbert-Maxwell action with a cosmological term in terms of 3D quantities. Definitions of quasilocal mass and charges in 3D spacetimes are reviewed. The analysis is then particularized to the toroidal charged rotating anti-de Sitter black hole. The reinterpretation of the fields and charges in terms of a three-dimensional point of view is given in each case, and the causal structure analyzed

  1. Photoelastic analyses of stresses in toroidal magnetic field coils

    Pih, H.

    1977-02-01

    Several two-dimensional photoelastic stress analyses were made on models of circular and oval toroidal magnetic field coils for fusion reactors. The circumferential variation of each coil's in-plane magnetic force was simulated by applying different pressures to 16 segmented regions of the inner surface of the models. One special loading fixture was used for the model of each shape and size. Birefringence and isoclinic angles were measured in a transmission polariscope at selected points on the loaded model. Boundary stresses in the cases of known boundary conditions were determined directly from the isochromatics. Separate principal stresses were calculated using the combination of photoelastic information and isopachic data obtained by the electrical analogy method from the solution of Laplace's equation. Comparisons were made between experimental results and those computed using the finite element method. The stress distribution between theoretical and experimental agrees very well, although the finite element method yielded slightly higher stresses than the photoelastic method; further work is needed to resolve this difference. In this investigation several variations of coil geometry and methods of support were evaluated. Based on experimental results, optimum structural designs of toroidal field coils were recommended

  2. Pareto optimal design of sectored toroidal superconducting magnet for SMES

    Bhunia, Uttam, E-mail: ubhunia@vecc.gov.in; Saha, Subimal; Chakrabarti, Alok

    2014-10-15

    Highlights: • The optimization approach minimizes both the magnet size and necessary cable length of a sectored toroidal SMES unit. • Design approach is suitable for low temperature superconducting cable suitable for medium size SMES unit. • It investigates coil parameters with respect to practical engineering aspects. - Abstract: A novel multi-objective optimization design approach for sectored toroidal superconducting magnetic energy storage coil has been developed considering the practical engineering constraints. The objectives include the minimization of necessary superconductor length and torus overall size or volume, which determines a significant part of cost towards realization of SMES. The best trade-off between the necessary conductor length for winding and magnet overall size is achieved in the Pareto-optimal solutions, the compact magnet size leads to increase in required superconducting cable length or vice versa The final choice among Pareto optimal configurations can be done in relation to other issues such as AC loss during transient operation, stray magnetic field at outside the coil assembly, and available discharge period, which is not considered in the optimization process. The proposed design approach is adapted for a 4.5 MJ/1 MW SMES system using low temperature niobium–titanium based Rutherford type cable. Furthermore, the validity of the representative Pareto solutions is confirmed by finite-element analysis (FEA) with a reasonably acceptable accuracy.

  3. Protection of toroidal field coils using multiple circuits

    Thome, R.J.; Langton, W.G.; Mann, W.R.; Pillsbury, R.D.; Tarrh, J.M.

    1983-01-01

    The protection of toroidal field (TF) coils using multiple circuits is described. The discharge of a single-circuit TF system is given for purposes of definition. Two-circuit TF systems are analyzed and the results presented analytically and graphically. Induced currents, maximum discharge voltages, and discharge time constants are compared to the single-circuit system. Three-circuit TF systems are analyzed. In addition to induced currents, maximum discharge voltages, and time constants, several different discharge scenarios are included. The impacts of having discharge rates versus final maximum coil temperatures as requirements are examined. The out-of-plane forces which occur in the three-circuit system are analyzed using an approximate model. The analysis of multiplecircuit TF systems is briefly described and results for a Toroidal Fusion Core Experiment (TFCX) scale device are given based on computer analysis. The advantages and disadvantages of using multiple-circuit systems are summarized and discussed. The primary disadvantages of multiple circuits are the increased circuit complexity and potential for out-of-plane forces. These are offset by the substantial reduction in maximum discharge voltages, as well as other design options which become available when using multiple circuits

  4. Predictive Simulations of ITER Including Neutral Beam Driven Toroidal Rotation

    Halpern, Federico D.; Kritz, Arnold H.; Bateman, G.; Pankin, Alexei Y.; Budny, Robert V.; McCune, Douglas C.

    2008-01-01

    Predictive simulations of ITER [R. Aymar et al., Plasma Phys. Control. Fusion 44, 519 2002] discharges are carried out for the 15 MA high confinement mode (H-mode) scenario using PTRANSP, the predictive version of the TRANSP code. The thermal and toroidal momentum transport equations are evolved using turbulent and neoclassical transport models. A predictive model is used to compute the temperature and width of the H-mode pedestal. The ITER simulations are carried out for neutral beam injection (NBI) heated plasmas, for ion cyclotron resonant frequency (ICRF) heated plasmas, and for plasmas heated with a mix of NBI and ICRF. It is shown that neutral beam injection drives toroidal rotation that improves the confinement and fusion power production in ITER. The scaling of fusion power with respect to the input power and to the pedestal temperature is studied. It is observed that, in simulations carried out using the momentum transport diffusivity computed using the GLF23 model [R.Waltz et al., Phys. Plasmas 4, 2482 (1997)], the fusion power increases with increasing injected beam power and central rotation frequency. It is found that the ITER target fusion power of 500 MW is produced with 20 MW of NBI power when the pedesta temperature is 3.5 keV. 2008 American Institute of Physics. [DOI: 10.1063/1.2931037

  5. Toroidal deuteron accelerator for Mo-98 neutron activation

    Araujo, Wagner L.; Campos, Tarcisio P.R. Universidade Federal de Minas Gerais

    2017-01-01

    The radionuclide Tc- 99m is the most useful radioisotope in nuclear medicine. It can be produced by the Mo-99 beta minus decay. Mo-99 has often been produced in a high- flux nuclear reactor through radioactive neutron capture reactions on Mo-98. The present paper provides a preliminary design of a toroidal transmutation system (TTS) based on a toroidal compact deuteron accelerator, which can provide the Mo-98 transmutation into Mo-99. This system is essentially composed of a multi-aperture plasma electrode and a target, submitted to 180 kV, where a positive deuteron beam is accelerated toward a titanium-target loaded with deuterium in which nuclear d-d fusion reactions are induced. The Particle Studio package of the Computer Simulation Technology (CST) software was applied to design, simulate and optimize the deuteron beam on the target. MCNP code provided to neutronic analysis. Based on electromagnetic and neutronic simulations, the neutron yield and reaction rates were estimated. The simulated data allowed appraising the Mo-99 activity. A TTS, in a specific configuration, could produce a total deuterium current of 1.6 A at the target and a neutron yield of 10 13 n.s -1 . In a arrangement of 30 column samples, TTS provides 230 mCi s -1 Mo 99 in each column, which represents 80% of Tc-99m in secular equilibrium. As conclusion, the system holds potential for generating Mo-99 and Tc-99m in a suitable activity in secular equilibrium. (author)

  6. Compact toroid injection system for JFT-2M

    Fukumoto, N. [University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan)]. E-mail: fukumotn@eng.u-hyogo.ac.jp; Ogawa, H. [Japan Atomic Energy Agency (JAEA), 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Nagata, M. [University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Uyama, T. [University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Shibata, T. [Japan Atomic Energy Agency (JAEA), 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Kashiwa, Y. [Japan Atomic Energy Agency (JAEA), 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Suzuki, S. [Japan Atomic Energy Agency (JAEA), 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Kusama, Y. [Japan Atomic Energy Agency (JAEA), 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan)

    2006-11-15

    The compact toroid (CT) injection system for JFT-2M is composed of a CT injector, a gas delivery and vacuum system, a power supply system, and a diagnostics system. In particular, the power supply system delivers high performance for CT formation and acceleration. The CT formation capacitor bank unit achieved a formation current of 350 kA with a rise time less than 10 {mu}s. Although the CT acceleration bank units are equipped with 14 ignitron switches instead of gap switches to attenuate the discharge noise level, an acceleration current of 400 kA with a short rise time of 9 {mu}s is controlled within a jitter of much less than 1 {mu}s. The resulting CT velocity and mass density satisfy the requirements for CT penetration into the tokamak plasma core at a toroidal field of 1 T. This CT injection system is thus suitable for CT injection in a middle-sized tokamak plasma such as the JFT-2M tokamak.

  7. Toroidal current asymmetry and boundary conditions in disruptions

    Strauss, Henry

    2014-10-01

    It was discovered on JET that disruptions were accompanied by toroidal asymmetry of the plasma current. The toroidal current asymmetry ΔIϕ is proportional to the vertical current moment ΔMIZ , with positive sign for an upward vertical displacement event (VDE) and negative sign for a downward VDE. It was claimed that this could only be explained by Hiro current. It is shown that instead it is essentially a kinematic effect produced by the VDE displacement of a 3D magnetic perturbation. This is verified by M3D simulations. The simulation results do not require penetration of plasma into the boundary, as in the Hiro current model. It is shown that the normal velocity perpendicular to the magnetic field vanishes at the wall, in the small Larmor radius limit of electromagnetic sheath boundary conditions. Plasma is absorbed into the wall only via the parallel velocity, which is small, penetrates only an infinitesimal distance into the wall, and does not affect forces exerted by the plasma on the wall. Supported by USDOE and ITER.

  8. Last End Cap Toroid installation : The Pharaonic enterprise

    Arnaud Foussat

    After the successful and impressive transport feat from Building 191 to Point 1 was carried out by the Friderici crew on 28th June, the second and last Toroid End Cap, ECT-C, was transferred into the surface building, SX1, on 2nd July. The ECT-C was installed in the ATLAS cavern on the C-side on 12th July. As the person responsible for the project, in my opinion, one of the crucial points of this project was to design all the tooling and installation sequences taking into account the building infrastructure dimensional constraints. View of the ECT installation tooling and preparation for the ECT-C descent into the ATLAS 80m-shaft by the ATLAS magnet group and DBS teams. The movement of the 240-ton magnet and 12-m diameter toroid end-cap was achieved in collaboration with SCALES, a subcontractor company, using a hydraulic gantry able to lower the ECT inside the shaft by 5m below the floor level . This allowed the DBS team to attach the end-cap with the 2 x 140 tons overhead crane and lower it onto the c...

  9. Pareto optimal design of sectored toroidal superconducting magnet for SMES

    Bhunia, Uttam; Saha, Subimal; Chakrabarti, Alok

    2014-01-01

    Highlights: • The optimization approach minimizes both the magnet size and necessary cable length of a sectored toroidal SMES unit. • Design approach is suitable for low temperature superconducting cable suitable for medium size SMES unit. • It investigates coil parameters with respect to practical engineering aspects. - Abstract: A novel multi-objective optimization design approach for sectored toroidal superconducting magnetic energy storage coil has been developed considering the practical engineering constraints. The objectives include the minimization of necessary superconductor length and torus overall size or volume, which determines a significant part of cost towards realization of SMES. The best trade-off between the necessary conductor length for winding and magnet overall size is achieved in the Pareto-optimal solutions, the compact magnet size leads to increase in required superconducting cable length or vice versa The final choice among Pareto optimal configurations can be done in relation to other issues such as AC loss during transient operation, stray magnetic field at outside the coil assembly, and available discharge period, which is not considered in the optimization process. The proposed design approach is adapted for a 4.5 MJ/1 MW SMES system using low temperature niobium–titanium based Rutherford type cable. Furthermore, the validity of the representative Pareto solutions is confirmed by finite-element analysis (FEA) with a reasonably acceptable accuracy

  10. On toroidal Green close-quote s functions

    Bates, J.W.

    1997-01-01

    Green close-quote s functions are valuable analytical tools for solving a myriad of boundary-value problems in mathematical physics. Here, Green close-quote s functions of the Laplacian and biharmonic operators are derived for a three-dimensional toroidal domain. In some sense, the former result may be regarded as open-quotes standard,close quotes but the latter is most certainly not. It is shown that both functions can be constructed to have zero value on a specified toroidal surface with a circular cross section. Additionally, the Green close-quote s function of the biharmonic operator may be chosen to have the property that its normal derivative also vanishes there. A open-quotes torsionalclose quotes Green close-quote s function is derived for each operator which is useful in solving some boundary-value problems involving axisymmetric vector equations. Using this approach, the magnetic vector potential of a wire loop is computed as a simple example. copyright 1997 American Institute of Physics

  11. Dynamic processes in field-reversed-configuration compact toroids

    Rej, D.J.

    1987-01-01

    In this lecture, the dynamic processes involved in field-reversed configuration (FRC) formation, translation, and compression will be reviewed. Though the FRC is related to the field-reversed mirror concept, the formation method used in most experiments is a variant of the field-reversed Θ-pinch. Formation of the FRC eqilibrium occurs rapidly, usually in less than 20 μs. The formation sequence consists of several coupled processes: preionization; radial implosion and compression; magnetic field line closure; axial contraction; equilibrium formation. Recent experiments and theory have led to a significantly improved understanding of these processes; however, the experimental method still relies on a somewhat empirical approach which involves the optimization of initial preionization plasma parameters and symmetry. New improvements in FRC formation methods include the use of lower voltages which extrapolate better to larger devices. The axial translation of compact toroid plasmas offers an attractive engineering convenience in a fusion reactor. FRC translation has been demonstrated in several experiments worldwide, and these plasmas are found to be robust, moving at speeds up to the Alfven velocity over distances of up to 16 m, with no degradation in the confinement. Compact toroids are ideal for magnetic compression. Translated FRCs have been compressed and heated by imploding liners. Upcoming experiments will rely on external flux compression to heat a translater FRC at 1-GW power levels. 39 refs

  12. Cryogenic Characteristics of the ATLAS Barrel Toroid Superconducting Magnet

    Pengo, R; Delruelle, N; Pezzetti, M; Pirotte, O; Passardi, Giorgio; Dudarev, A; ten Kate, H

    2008-01-01

    ATLAS, one of the experiments of the LHC accelerator under commissioning at CERN, is equipped with a large superconducting magnet the Barrel Toroid (BT) that has been tested at nominal current (20500 A). The BT is composed of eight race-track superconducting coils (each one weights about 45 tons) forming the biggest air core toroidal magnet ever built. By means of a large throughput centrifugal pump, a forced flow (about 10 liter/second at 4.5 K) provides the indirect cooling of the coils in parallel. The paper describes the results of the measurements carried out on the complete cryogenic system assembled in the ATLAS cavern situated 100 m below the ground level. The measurements include, among other ones, the static heat loads, i.e., with no or constant current in the magnet, and the dynamic ones, since additional heat losses are produced, during the current ramp-up or slow dump, by eddy currents induced on the coil casing.

  13. Stress analyses of ITER toroidal field coils under fault conditions

    Jong, C.T.J.

    1990-02-01

    The International Thermonuclear Experimental Reactor (ITER) is intended as an experimental thermonuclear tokamak reactor for testing the basic physics, performance and technologies essential to future fusion reactors. The ITER design will be based on extensive new design work, supported by new physical and technological results, and on the great body of experience built up over several years from previous national and international reactor studies. Conversely, the ITER design process should provide the fusion community with valuable insights into what key areas need further development or clarification as we move forward towards practical fusion power. As part of the design process of the ITER toroidal field coils the mechanical behaviour of the magnetic system under fault conditions has to be analysed in more detail. This paper describes the work carried out to create a detailed finite element model of two toroidal field coils as well as some results of linear elastic analyses with fault conditions. The analyses have been performed with the finite element code ANSYS. (author). 5 refs.; 8 figs.; 2 tabs

  14. Advanced transport modeling of toroidal plasmas with transport barriers

    Fukuyama, A.; Murakami, S.; Honda, M.; Izumi, Y.; Yagi, M.; Nakajima, N.; Nakamura, Y.; Ozeki, T.

    2005-01-01

    Transport modeling of toroidal plasmas is one of the most important issue to predict time evolution of burning plasmas and to develop control schemes in reactor plasmas. In order to describe the plasma rotation and rapid transition self-consistently, we have developed an advanced scheme of transport modeling based on dynamical transport equation and applied it to the analysis of transport barrier formation. First we propose a new transport model and examine its behavior by the use of conventional diffusive transport equation. This model includes the electrostatic toroidal ITG mode and the electromagnetic ballooning mode and successfully describes the formation of internal transport barriers. Then the dynamical transport equation is introduced to describe the plasma rotation and the radial electric field self-consistently. The formation of edge transport barriers is systematically studied and compared with experimental observations. The possibility of kinetic transport modeling in velocity space is also examined. Finally the modular structure of integrated modeling code for tokamaks and helical systems is discussed. (author)

  15. Compact toroid injection system for JFT-2M

    Fukumoto, N.; Ogawa, H.; Nagata, M.; Uyama, T.; Shibata, T.; Kashiwa, Y.; Suzuki, S.; Kusama, Y.

    2006-01-01

    The compact toroid (CT) injection system for JFT-2M is composed of a CT injector, a gas delivery and vacuum system, a power supply system, and a diagnostics system. In particular, the power supply system delivers high performance for CT formation and acceleration. The CT formation capacitor bank unit achieved a formation current of 350 kA with a rise time less than 10 μs. Although the CT acceleration bank units are equipped with 14 ignitron switches instead of gap switches to attenuate the discharge noise level, an acceleration current of 400 kA with a short rise time of 9 μs is controlled within a jitter of much less than 1 μs. The resulting CT velocity and mass density satisfy the requirements for CT penetration into the tokamak plasma core at a toroidal field of 1 T. This CT injection system is thus suitable for CT injection in a middle-sized tokamak plasma such as the JFT-2M tokamak

  16. Saturation of single toroidal number Alfvén modes

    Wang, X; Briguglio, S

    2016-01-01

    The results of numerical simulations are presented to illustrate the saturation mechanism of a single toroidal number Alfvén mode, driven unstable, in a tokamak plasma, by the resonant interaction with energetic ions. The effects of equilibrium geometry non-uniformities and finite mode radial width on the wave-particle nonlinear dynamics are discussed. Saturation occurs as the fast-ion density flattening produced by the radial flux associated to the resonant particles captured in the potential well of the Alfvén wave extends over the whole region where mode-particle power exchange can take place. The occurrence of two different saturation regimes is shown. In the first regime, dubbed resonance detuning, that region is limited by the resonance radial width (that is, the width of the region where the fast-ion resonance frequency matches the mode frequency). In the second regime, called radial decoupling, the power exchange region is limited by the mode radial width. In the former regime, the mode saturation amplitude scales quadratically with the growth rate; in the latter, it scales linearly. The occurrence of one or the other regime can be predicted on the basis of linear dynamics: in particular, the radial profile of the fast-ion resonance frequency and the mode structure. Here, we discuss how such properties can depend on the considered toroidal number and compare simulation results with the predictions obtained from a simplified nonlinear pendulum model. (paper)

  17. Calculation of modification to the toroidal magnetic field of the Tokamak Novillo. Part II; Calculo de modificacion al campo magnetico toroidal del Tokamak nivillo. Parte II

    Melendez L, L.; Chavez A, E.; Colunga S, S.; Valencia A, R.; Lopez C, R.; Gaytan G, E

    1992-03-15

    In a cylindrical magnetic topology. the confined plasma experiences 'classic' collisional transport phenomena. When bending the cylinder with the purpose of forming a toro, the magnetic field that before was uniform now it has a radial gradient which produces an unbalance in the magnetic pressure that is exercised on the plasma in the transverse section of the toro. This gives place to transport phenomena call 'neo-classicist'. In this work the structure of the toroidal magnetic field produced by toroidal coils of triangular form, to which are added even of coils of compensation with form of half moon is analyzed. With this type of coils it is looked for to minimize the radial gradient of the toroidal magnetic field. The values and characteristics of B (magnetic field) in perpendicular planes to the toro in different angular positions in the toroidal direction, looking for to cover all the cases of importance are exhibited. (Author)

  18. Final report on cost estimate of forward superconducting air core toroid

    Fields, T.

    1992-12-01

    An independent cost-estimate for key components of the forward superconducting air core toroid (ACT) was obtained in May 1992 from an experienced manufacturer of large cryogenic vessels. This new cost estimate is summarized in this report. It implies that a suitably designed ACT may have a cost which is approximately equal to that of the presently designed SDC forward iron core toroid

  19. Search for hyperheavy toroidal nuclear structures formed in Au + Au collisions

    Sochocka, A.; Planeta, R.; Starypan, Z.; Benisz, A.; Hachaj, P.; Nicolis, N.G.

    2008-01-01

    We study the feasibility of an experimental observation of toroidal breakup configurations in Au+Au collisions using the CHIMERA multidetector system. BUU simulations indicate that the threshold energy for toroidal configuration is around 23 MeV/nucleon. The simulations of decay process using the ETNA code indicate the sensitivity of some observables to different studied break-up geometries. (author)

  20. Plasma edge physics in the TEXTOR tokamak with poloidal and toroidal limiters

    Samm, U.; Bogen, P.; Hartwig, H.; Hintz, E.; Hoethker, K.; Lie, Y.T.; Pospieszczyk, A.; Rusbueldt, D.; Schweer, B.; Yu, Y.J.

    1989-01-01

    Investigations of the plasma edge in TEXTOR are presented on the one hand by comparing results obtained with poloidal and toroidal limiters and on the other hand by discussing general problems of plasma edge physics which are independent of the limiter configuration. The characteristic properties of plasma flow to the different limiters are analyzed and show e.g. that the fraction of total ion flow to the limiter is much larger in the case of a toroidal limiter (80%). Density and heat flux profiles are presented which demonstrate that for both types of limiters a significant steepening of the scrape-off layer (SOL) occurs close to the limiter, leading to a small heat load e-folding length of 5-8 mm. The velocity distribution of recycled neutral hydrogen at a main limiter has been determined from the Doppler broadening of the H α line. The data clearly show that a large fraction of particles (30-50%) is reflected at the limiter surface having energies of about the sheath potential. Significant isotopic effects (H/D) concerning the plasma edge properties and the plasma core are presented and their relation to enhanced particle and energy transport in hydrogen compared to deuterium is discussed. A decrease of the cross field diffusion coefficient with increasing density can be deduced from density profile measurements in the SOL and a comparison with density fluctuations is given. The role of oxygen for impurity release is demonstrated. A new type of wall conditioning - boronization - is described, with two major improvements for quasi stationary conditions: reduction of oxygen and better density control. Best results with ICRH have been obtained under these conditions. (orig.)

  1. Measurements of poloidal and toroidal energy deposition asymmetries in the ASDEX divertors

    Evans, T.E.

    1991-03-01

    Energy deposition characteristics in the ASDEX divertors have been analyzed over a wide range of discharges and wall conditions during ohmically heated, additionally heated, or lower hybrid current drive experiments. Changes in discharge operating parameters with high power additional heating produce a diversity of effects on the magnitudes and distributions of the energy absorbed in the divertors. Poloidally and toroidally resolved energy deposition patterns are particularly sensitive to changes in the edge safety factor, the type and power level of additional heating used, and the vertical position of the plasma. In most additionally heated discharges, a large fraction of the incremental divertor loading is found on only one or two target rings. Poloidal in-out asymmetries, which typically favor the low-field side by a factor of 2.5 in ohmic discharges, commonly range between a factor of 2.5 and 4.5 in additionally heated experiments and in extreme cases can be as large as a factor of 5.6. At the same time, toroidal asymmetries on individual target rings are found to range between a factor of 1.4 and 3.8 in typical ICRH and NBI cases with extreme LHCD cases of 4.3. A model, proposed to explain the cause of discharge asymmetries, is compared with the experimental observations. Under some conditions, for example during LHCD experiments, the model is in good agreement with the data. A method is proposed for supressing discharge asymmetries which may generally improve the divertor performance as well. (orig./AH)

  2. Equilibrium and stability of high-beta toroidal plasmas with toroidal and poloidal flow in reduced magnetohydrodynamic models

    Ito, A.; Nakajima, N.

    2010-11-01

    Effects of flow, finite ion temperature and pressure anisotropy on equilibrium and stability of a high-beta toroidal plasma are studied in the framework of reduced magnetohydrodynamics (MHD). A set of reduced equilibrium equations for high-beta tokamaks with toroidal and poloidal flow comparable to the poloidal sound velocity is derived in a unified form of single-fluid and Hall MHD models and a two-fluid MHD model with ion finite Larmor radius (FLR) terms. Pressure anisotropy is introduced with equations for the parallel heat flux which are closed by a fluid closure model. It is solved analytically for the single-fluid model and the solutions shows complicated characteristics in the region around the poloidal sound velocity due to pressure anisotropy and the parallel heat flux. Numerical solutions are found by using the finite element method for the two-fluid model with FLR effects in the case of isotropic, adiabatic pressure and indicate the following features of two-fluid equilibria: the isosurfaces of the magnetic flux, the pressure and the ion stream function do not coincide with each other, and the solutions depend on the sign of the radial electric field. Reduced single-fluid MHD equations with time evolution that are consistent with the above equilibria are also derived in order to study their stability. They conserve the energy up to the order required by the equilibria. (author)

  3. Matter in the form of toroidal electromagnetic vortices

    Hagen, Wilhelm F.

    2015-09-01

    The creation of charged elementary particles from neutral photons is explained as a conversion process of electromagnetic (EM) energy from linear to circular motion at the speed of light into two localized, toroidal shaped vortices of trapped EM energy that resist change of motion, perceptible as particles with inertia and hence mass. The photon can be represented as a superposition of left and right circular polarized transverse electric fields of opposite polarity originating from a common zero potential axis, the optical axis of the photon. If these components are separated by interaction with a strong field (nucleon) they would curl up into two electromagnetic vortices (EMV) due to longitudinal magnetic field components forming toroids. These vortices are perceptible as opposite charged elementary particles e+/- . These spinning toroids generate extended oscillating fields that interact with stationary field oscillations. The velocity-dependent frequency differences cause beat signals equivalent to matter waves, leading to interference. The extended fields entangled with every particle explain wave particle duality issues. Spin and magnetic moment are the natural outcome of these gyrating particles. As the energy and hence mass of the electron increases with acceleration so does its size shrink proportional to its reduced wavelength. The artificial weak and strong nuclear forces can be easily explained as different manifestations of the intermediate EM forces. The unstable neutron consists of a proton surrounded by a contracted and captured electron. The associated radial EM forces represent the weak nuclear force. The deuteron consists of two axially separated protons held together by a centrally captured electron. The axial EM forces represent the strong nuclear force, providing stability for "neutrons" only within nucleons. The same principles were applied to determine the geometries of force-balanced nuclei. The alpha-particle emerges as a very compact

  4. Proceedings of the third symposium on the physics and technology of compact toroids in the magnetic fusion energy program

    Siemon, R.E.

    1981-03-01

    This document contains papers contributed by the participants of the Third Symposium on Physics and Technology of Compact Toroids in the Magnetic Fusion Energy Program. Subjects include reactor aspects of compact toroids, energetic particle rings, spheromak configurations (a mixture of toroidal and poloidal fields), and field-reversed configurations

  5. Superconducting wire for the T-15 toroidal magnet

    Klimenko, E.Yu.; Kruglov, V.S.; Martovetskij, N.N.

    1987-01-01

    Main characteristics of a wire designed for the T-15 toroidal superconducting magnet production are given. The wire with circulation cooling is a twist of 11 niobium-tin wires 1.5 mm in diameter, joined electrolytically by two copper tubes with 3 mm inside diameter. The wire is capable to carry 10 kA current in the 8.5 T induction field. Wire features and structures promote to receive high structural current density in winding: diffuseness of superconducting-to-normal transition increases wire stability, screw symmetry od a current-carrying core provides wire resistance to pulse longitudinal field effect at plasma current disruption, low bronze thermal conductivity in a twist increases stability to outside pulse perturbations

  6. EMPACT: Electrons Muons Partons with Air Core Toroids

    Marx, M.D.

    1990-01-01

    The EMPACT experiment utilizes a broad approach to maximize its discovery potential for new phenomena accessible at the SSC. The high resolution detector has a balances emphasis on, and large acceptance for, electrons, muons, jets, and noninteracting particles, and is capable of utilizing the ultimate luminosity of the SSC. The detector emphasizes excellent calorimetry augmented by TRD tracking, and employs an innovative system of superconducting air core toroids for muon measurements. Significant engineering effort has established the feasibility of a baseline detector concept and has addressed the related issues of support facilities, assembly, and detector integration. The design has been tested against the challenges of predicted phenomena, with the expectation that this will optimize the capacity for observing the unexpected. EMPACT's international collaboration has unprecedented support from major aerospace industries who are providing tools and expertise for project design and integration, which will assure that a detector optimized for performance and cost will be available for the first collisions at the new laboratory

  7. Toroidal electron beam energy storage for controlled fusion

    Clark, W.; Korn, P.; Mondelli, A.; Rostoker, N.

    1976-01-01

    In the presence of an external magnetic field stable equilibria exist for an unneutralized electron beam with ν/γ >1. As a result, it is in principle, possible to store very large quantities of energy in relatively small volumes by confining an unneutralized electron beam in a Tokamak-like device. The energy is stored principally in the electrostatic and self-magnetic fields associated with the beam and is available for rapid heating of pellets for controlled fusion. The large electrostatic potential well in such a device would be sufficient to contain energetic alpha particles, thereby reducing reactor wall bombardment. This approach also avoids plasma loss and wall bombardment by charge exchange neutrals. The conceptual design of an electrostatic Tokamak fusion reactor (ETFR) is discussed. A small toroidal device (the STP machine) has been constructed to test the principles involved. Preliminary experiments on this device have produced electron densities approximately 10% of those required in a reactor

  8. Density Measurement of Compact Toroid with Mach-Zehnder Interferometer

    Laufman-Wollitzer, Lauren; Endrizzi, Doug; Brookhart, Matt; Flanagan, Ken; Forest, Cary

    2016-10-01

    Utilizing a magnetized coaxial plasma gun (MCPG) built by Tri Alpha Energy, a dense compact toroid (CT) is created and injected at high speed into the Wisconsin Plasma Astrophysics Laboratory (WiPAL) vessel. A modified Mach-Zehnder interferometer from the Line-Tied Reconnection Experiment (LTRX) provides an absolute measurement of electron density. The interferometer is located such that the beam intersects the plasma across the diameter of the MCPG drift region before the CT enters the vessel. This placement ensures that the measurement is taken before the CT expand. Results presented will be used to further analyze characteristics of the CT. Funding provided by DoE, NSF, and WISE Summer Research.

  9. Commercial tokamak reactors with resistive toroidal field magnets

    Bombery, L.; Cohn, D.R.; Jassby, D.L.

    1984-01-01

    Scaling relations and design concepts are developed for commercial tokamak reactors that use watercooled copper toroidal field (TF) magnets. Illustrative parameters are developed for reactors that are scaled up in size from LITE test reactor designs, which use quasi-continuous copper plate magnets. Acceptably low magnet power requirements may be attainable in a moderate beta (β = 0.065) commercial reactor with a major radius of 6.2 m. The shielding thickness and magnet size are substantially reduced relative to values in commercial reactors with superconducting magnets. Operation at high beta (β = 0.14) leads to a reduction in reactor size, magnet-stored energy, and recirculating power. Reactors using resistive TF magnets could provide advantages of physically smaller devices, improved maintenance features, and increased ruggedness and reliability

  10. Fluid simulations of toroidal ion temperature gradient turbulence

    Sandberg, I.; Isliker, H.; Pavlenko, V.P.; Hizanidis, K.; Vlahos, L.

    2006-01-01

    The evolution of the toroidal ion temperature gradient mode instability is numerically studied by using the equations based on the standard reactive fluid model. The long-term dynamics of the instability are investigated using random-phase, small-amplitude fluctuations for initial conditions. The main events during the evolution of the instability that lead to the formation of large-scale coherent structures are described and the role of the dominant nonlinearities is clarified. The polarization drift nonlinearity leads to the inverse energy cascade while the convective ion heat nonlinearity is responsible for the saturation of the instability. Finally, the sensitivity of the saturated state to the initial plasma conditions is examined

  11. Fabrication of the KSTAR toroidal field coil structure

    Choi, C.H.; Sa, J.W.; Park, H.K.; Hong, K.H.; Shin, H.; Kim, H.T.; Bak, J.S.; Lee, G.S.; Kwak, J.H.; Moon, H.G.; Yoon, H.H.; Lee, J.W.; Lee, S.K.; Song, J.Y.; Nam, K.M.; Byun, S.E.; Kim, H.C.; Ha, E.T.; Ahn, H.J.; Kim, D.S.; Lee, J.S.; Park, K.H.; Hong, C.D.

    2005-01-01

    The KSTAR toroidal field (TF) coil structure is under fabrication upon completion of engineering design and prototype construction. The prototype TF coil structure has been fabricated within allowable tolerances. Encasing of the prototype TF coil (TF00) in the prototype structure has been carried out through major processes involving a coil encasing, an enclosing weld, a vacuum pressure impregnation, and an outer surface machining. During the enclosing weld of the TF00 coil structure, we have measured temperatures and stresses on the coil surface. Assembly test had been performed with the TF00 coil structure. We have chosen Type 316LN as material of the TF coil structure. We used the narrow-gap TIG welding method. Doosan Heavy Industries and Construction Company (DHI) will complete the fabrication of the TF coil structure in Feb. 2006. (author)

  12. Toroidal inhomogeneity of the vertical field in a tokamak apparatus

    Sometani, Taro; Takashima, Hidekazu

    1977-01-01

    An experiment with a model device has been made on the toroidal inhomogeneity of the vertical field in a Tokamak with an iron core. The D.C. vertical field is increased near the yokes of the iron core, while the gross plasma image field (consisting of the components due to the plasma current, the primary current, and its image) is reduced there. These two vertical fields, when superposed, exert force on the plasma as a less inhomogeneous external vertical field. The vertical field can be homogenized satisfactorily by using a compensation winding wound at a proper position on the iron core even if the shielding plates, which are mounted on some Tokamaks, are dispensed with. (auth.)

  13. Recent progress of nonlinear simulation on the toroidal Alfven eigenmode

    Todo, Yasushi; Sato, Tetsuya

    1998-01-01

    Linear and nonlinear particle-magnetohydrodynamic (MHD) simulation codes are developed to study interactions between energetic ions and MHD modes. Energetic alpha particles with a slowing-down distribution are considered and the behavior of n=2 toroidal Alfven eigenmodes (TAE modes) is investigated with the parameters pertinent to the present large tokamaks. The linear simulation reveals the resonance condition between alpha particles and TAE mode. In the nonlinear simulation two n=2 TAE modes are destabilized and alpha particle losses induced by these TAE modes take place. Counter-passing particles are lost when they cross the passing-trapped boundary as a result of the interaction with the TAE modes. They are the major part of lost particles, but trapped particles are also lost appreciably. (author)

  14. Structural responses to plasma disruptions in toroidal shells

    Tillack, M.S.; Kazimi, M.S.; Lidsky, L.M.

    1985-01-01

    The induced pressures, stresses and strains in unrestrained axisymmetric toroidal shells are studied to scope the behavior of tokamak first walls during plasma disruptions. The modeling includes a circuit analog representation of the shell to solve for induced currents and pressures, and a separate quasi-static 1-D finite element solution for the mechanical response. This work demonstrates that the stresses in tokamkak first walls due to plasma disruption may be large, but to first order will not cause failure in the bulk structure. However, stress concentrations at structural supports and discontinuities together with resonant effects can result in large enhancements of the stresses, which could contribute to plastic deformation or failure when added to the already large steady state thermal and pressure loading of the first wall

  15. Effect of loss cone on confinement in toroidal helical device

    Itoh, K.; Itoh, S.-I.; Fukuyama, A.; Hanatani, K.

    1988-12-01

    Analytical estimation is given on the loss cone in the toroidal helical devices in the presence of the radial electric field and the modulation of the helical ripple. The minimum energy of particles entering the loss cone is calculated. The modulation is not always effective in reducing the loss in the presence of the radial electric field. The plasma loss due to the loss cone is estimated in the collisionless limit. The radial electric field is estimated in the presence of the loss cone. It is found that the transition to the solution with positive radial electric field, which is necessary to achieve the high-ion-temperature mode, becomes difficult. This difficulty is large for the systems with the small helical ripple. (author)

  16. Manufacturing aspects of the ATLAS barrel toroid double pancakes

    Drago, G; Gagliardi, P; Laurenti, A; Marabotto, R; Penco, R

    2002-01-01

    In 1999 INFN (Istituto Nazionale di Fisica Nucleare) ordered to ANSALDO the manufacturing of 16 double pancakes for the ATLAS BARREL TOROID. In July 2001 four Double Pancakes have already been completed and shipped to the integration site. In this paper the main aspects of the manufacturing of the largest superconducting coils ever built (5*25 m) are described. The main phases of the manufacturing procedure are reviewed starting from the conductor preparation to the VPI impregnation, including references to the materials used as well as to the relevant customer's requirements. In particular the special winding form and the winding technique are treated. For each phase the most critical aspects and the relevant solutions are pointed out. Particular details about the technical solutions adopted for the impregnation and curing of the Double Pancake, which could not be performed inside an autoclave due to the huge dimension of the coil itself, are reported. Finally the methods used for the dimensional and electri...

  17. Overview of recent results from the Advanced Toroidal Facility

    Anabitarte, E.; Hidalgo-Vera, C.; Anderson, F.S.B.; Bell, G.L.; Gandy, R.F.; Bell, J.D.; Charlton, L.A.; Lee, D.K.; Lynch, V.E.; Morris, R.N.; Tolliver, J.S.; Hanson, G.R.; Kwon, M.; Rogers, P.S.; Shaw, P.L.; Wade, M.R.; Kaneko, H.; Sudo, S.; Yamada, H.; Zielinski, J.J.; Murakami, M.; Bigelow, T.S.; Carreras, B.A; Colchin, R.J.; Crume, E.C.; Dominguez, N.; Dunlap, J.L.; Dyer, G.R.; England, A.C.; Fisher, P.W.; Glowienka, J.C.; Goulding, R.H.; Harris, J.H.; Haste, G.R.; Hillis, D.L.; Hiroe, S.; Horton, L.D.; Howe, H.C.; Hutchinson, D.E.; Isler, R.C.; Jernigan, T.C.; Kannan, K.L.; Langley, R.A.; Leboeuf, J.G.; Lue, J.W.; Lyon, J.F.; Ma, C.H.; Menon, M.M.; Mioduszewski, P.K.; Neilson, G.H.; Rasmussen, D.A.; Schwenterly, S.W.; Shaing, K.C.; Shepard, T.D.; Simpkins, J.E.; Stewart, K.A.; Uckan, T.; Wilgen, J.B.; Wing, W.R.

    1989-01-01

    An overview of recent experimental results from the Advanced Toroidal Facility (ATF) is presented. Beam-heated plasmas with bar n e of 10 20 m -3 and τ E * of ∼20 ms have been achieved. Thermal collapse of the plasmas is mitigated by wall conditioning and particle fueling. Confinement time scales positively with density and magnetic field, offsetting deterioration with power. Results fit the LHD scaling and the drift wave turbulence scaling. Bootstrap currents observed during ECH agree with neoclassical theory in magnitude and parameter dependences. Fast reciprocating Langmuir probe measurements show that edge fluctuations in ATF have many similarities to those in the TEXT tokamak. The location of B instabilities has shifted outward in radius, consistent with the broader pressure profiles. 14 refs., 6 figs

  18. Overview of recent results from the Advanced Toroidal Facility

    Murakami, M.; Anabitarte, E.; Anderson, F.S.B.; Bell, G.L.; Bell, J.D.; Bigelow, T.S.; Carreras, B.A.; Charlton, L.A.; Clark, T.L.; Colchin, R.J.; Crume, E.C. Jr.; Dominguez, N.; Dunlap, J.L.; Dyer, G.R.; England, A.C.; Fisher, P.W.; Gandy, R.F.; Glowienka, J.C.; Goulding, R.H.; Hanson, G.R.; Harris, J.H.; Haste, G.R.; Hidalgo-Vera, C.; Hillis, D.L.; Hiroe, S.; Horton, L.D.; Howe, H.C.; Hutchinson, D.E.; Isler, R.C.; Jernigan, T.C.; Kannan, K.L.; Kaneko, H.; Kwon, M.; Langley, R.A.; Leboeuf, J.N.; Lee, D.K.; Lue, J.W.; Lynch, V.E.; Lyon, J.F.; Ma, C.H.; Menon, M.M.; Mioduszewski, P.K.; Morris, R.N.; Neilson, G.H.; Qualls, A.L.; Rasmussen, D.A.; Ritz, C.P.; Rogers, P.S.; Schwenterly, S.W.; Shaing, K.C.; Shaw, P.L.; Shepard, T.D.; Simpkins, J.E.; Stewart, K.A.; Sudo, S.; Thomas, C.E.; Tolliver, J.S.; Uckan, T.; Wade, M.R.; Wilgen, J.B.; Wing, W.R.; Yamada, H.; Zielinski, J.J.

    1990-02-01

    An overview of recent experimental results from the Advanced Toroidal Facility (ATF) is presented. Beam-heated plasmas with bar n e of 10 20 m -3 and τ E * of ∼ 20 ms have been achieved. Thermal collapse of the plasmas is mitigated by wall conditioning and particle fueling. Confinement time scales positively with density and magnetic field, offsetting deterioration with power. Results fit the Large Helical Device (LHD) scaling and the drift wave turbulence scaling. Bootstrap currents observed during electron cyclotron heating agree with neoclassical theory in magnitude and parameter dependences. Fast reciprocating Langmuir probe measurements show that edge fluctuations in ATF have many similarities to those in the Texas Experimental Tokamak (TEXT). The location of B instabilities has shifted outward in radius, consistent with the broader pressure profiles. 14 refs., 6 figs

  19. Recent results of studies of acceleration of compact toroids

    Hammer, J.H.; Hartman, C.W.; Eddleman, J.

    1984-01-01

    The observed gross stability and self-contained structure of compact toroids (CT's) give rise to the possibility, unique among magnetically confined plasmas, of translating CT's from their point of origin over distances many times their own length. This feature has led us to consider magnetic acceleration of CT's to directed kinetic energies much greater than their stored magnetic and thermal energies. A CT accelerator falls in the very broad gap between traditional particle accelerators at one extreme, which are limited in the number of particles per bunch by electrostatic repulsive forces, and mass accelerators such as rail guns at the other extreme, which accelerate many particles but are forced by the stress limitations of solids to far smaller accelerations. A typical CT has about a Coulomb of particles, weighs 10 micrograms and can be accelerated by magnetic forces of several tons, leading to an acceleration on the order of 10 11 gravities

  20. Seeking for toroidal event horizons from initially stationary BH configurations

    Ponce, Marcelo; Lousto, Carlos; Zlochower, Yosef

    2011-01-01

    We construct and evolve non-rotating vacuum initial data with a ring singularity, based on a simple extension of the standard Brill-Lindquist multiple BH initial data, and search for event horizons with spatial slices that are toroidal when the ring radius is sufficiently large. While evolutions of the ring singularity are not numerically feasible for large radii, we find some evidence, based on configurations of multiple BHs arranged in a ring, that this configuration leads to singular limit where the horizon width has zero size, possibly indicating the presence of a naked singularity, when the radius of the ring is sufficiently large. This is in agreement with previous studies that have found that there is no apparent horizon surrounding the ring singularity when the ring's radius is larger than about twice its mass.