Generalized metric formulation of double field theory on group manifolds
International Nuclear Information System (INIS)
Blumenhagen, Ralph; Bosque, Pascal du; Hassler, Falk; Lüst, Dieter
2015-01-01
We rewrite the recently derived cubic action of Double Field Theory on group manifolds http://dx.doi.org/10.1007/JHEP02(2015)001 in terms of a generalized metric and extrapolate it to all orders in the fields. For the resulting action, we derive the field equations and state them in terms of a generalized curvature scalar and a generalized Ricci tensor. Compared to the generalized metric formulation of DFT derived from tori, all these quantities receive additional contributions related to the non-trivial background. It is shown that the action is invariant under its generalized diffeomorphisms and 2D-diffeomorphisms. Imposing additional constraints relating the background and fluctuations around it, the precise relation between the proposed generalized metric formulation of DFT WZW and of original DFT from tori is clarified. Furthermore, we show how to relate DFT WZW of the WZW background with the flux formulation of original DFT.
Generalized Metric Formulation of Double Field Theory on Group Manifolds
Blumenhagen, Ralph; Hassler, Falk; Lust, Dieter
2015-01-01
We rewrite the recently derived cubic action of Double Field Theory on group manifolds [arXiv:1410.6374] in terms of a generalized metric and extrapolate it to all orders in the fields. For the resulting action, we derive the field equations and state them in terms of a generalized curvature scalar and a generalized Ricci tensor. Compared to the generalized metric formulation of DFT derived from tori, all these quantities receive additional contributions related to the non-trivial background. It is shown that the action is invariant under its generalized diffeomorphisms and 2D-diffeomorphisms. Imposing additional constraints relating the background and fluctuations around it, the precise relation between the proposed generalized metric formulation of DFT${}_\\mathrm{WZW}$ and of original DFT from tori is clarified. Furthermore we show how to relate DFT${}_\\mathrm{WZW}$ of the WZW background with the flux formulation of original DFT.
Indefinite-metric quantum field theory of general relativity
International Nuclear Information System (INIS)
Nakanishi, Noboru
1978-01-01
Quantum field theory of Einstein's general relativity is formulated in the indefinitemetric Hilbert space in such a way that asymptotic fields are manifestly Lorentz covariant and the physical S-matrix is unitary. The general coordinate transformation is transcribed into a q-number transformation, called the BRS transformation. Its abstract definition is presented on the basis of the BRS transformation for the Yang-Mills theory. The BRS transformation for general relativity is then explicitly constructed. The gauge-fixing Lagrangian density and the Faddeev-Popov one are introduced in such a way that their sum behaves like a scalar density under the BRS transformation. One can then proceed in the same way as in the Kugo-Ojima formalism of the Yang-Mills theory to establish the unitarity of the physical S-matrix. (author)
Indefinite-metric quantum field theory of general relativity, 2
International Nuclear Information System (INIS)
Nakanishi, Noboru
1978-01-01
The canonical commutation relations are analyzed in detail in the manifestly covariant quantum field theory of general relativity proposed previously. It is explicitly proved that the BRS charge is indeed the generator of the BRS transformation both in the Landau gauge and in the non-Landau one. The equivalence between the field equations and the Heisenberg equations is confirmed. (author)
Strategic Human Resource Metrics: A Perspective of the General Systems Theory
Directory of Open Access Journals (Sweden)
Chux Gervase Iwu
2016-04-01
Full Text Available Measuring and quantifying strategic human resource outcomes in relation to key performance criteria is essential to developing value-adding metrics. Objectives This paper posits (using a general systems lens that strategic human resource metrics should interpret the relationship between attitudinal human resource outcomes and performance criteria such as profitability, quality or customer service. Approach Using the general systems model as underpinning theory, the study assesses the variation in response to a Likert type questionnaire with twenty-four (24 items measuring the major attitudinal dispositions of HRM outcomes (employee commitment, satisfaction, engagement and embeddedness. Results A Chi-square test (Chi-square test statistic = 54.898, p=0.173 showed that variation in responses to the attitudinal statements occurred due to chance. This was interpreted to mean that attitudinal human resource outcomes influence performance as a unit of system components. The neutral response was found to be associated with the ‘reject’ response than the ‘acceptance’ response. Value The study offers suggestion on the determination of strategic HR metrics and recommends the use of systems theory in HRM related studies. Implications This study provides another dimension to human resource metrics by arguing that strategic human resource metrics should measure the relationship between attitudinal human resource outcomes and performance using a systems perspective.
Extension of Loop Quantum Gravity to Metric Theories beyond General Relativity
International Nuclear Information System (INIS)
Ma Yongge
2012-01-01
The successful background-independent quantization of Loop Quantum Gravity relies on the key observation that classical General Relativity can be cast into the connection-dynamical formalism with the structure group of SU(2). Due to this particular formalism, Loop Quantum Gravity was generally considered as a quantization scheme that applies only to General Relativity. However, we will show that the nonperturbative quantization procedure of Loop Quantum Gravity can be extended to a rather general class of metric theories of gravity, which have received increased attention recently due to motivations coming form cosmology and astrophysics. In particular, we will first introduce how to reformulate the 4-dimensional metric f(R) theories of gravity, as well as Brans-Dicke theory, into connection-dynamical formalism with real SU(2) connections as configuration variables. Through these formalisms, we then outline the nonpertubative canonical quantization of the f(R) theories and Brans-Dicke theory by extending the loop quantization scheme of General Relativity.
-Metric Space: A Generalization
Directory of Open Access Journals (Sweden)
Farshid Khojasteh
2013-01-01
Full Text Available We introduce the notion of -metric as a generalization of a metric by replacing the triangle inequality with a more generalized inequality. We investigate the topology of the spaces induced by a -metric and present some essential properties of it. Further, we give characterization of well-known fixed point theorems, such as the Banach and Caristi types in the context of such spaces.
Group covariance and metrical theory
International Nuclear Information System (INIS)
Halpern, L.
1983-01-01
The a priori introduction of a Lie group of transformations into a physical theory has often proved to be useful; it usually serves to describe special simplified conditions before a general theory can be worked out. Newton's assumptions of absolute space and time are examples where the Euclidian group and translation group have been introduced. These groups were extended to the Galilei group and modified in the special theory of relativity to the Poincare group to describe physics under the given conditions covariantly in the simplest way. The criticism of the a priori character leads to the formulation of the general theory of relativity. The general metric theory does not really give preference to a particular invariance group - even the principle of equivalence can be adapted to a whole family of groups. The physical laws covariantly inserted into the metric space are however adapted to the Poincare group. 8 references
National Research Council Canada - National Science Library
Johnson, Joseph E; Gudkov, Vladimir
2005-01-01
... as continuous group theory and Markov processes. Based upon this research he has proposed that entropy metrics, and the associated cluster analysis of the network so measured by these metrics, can be useful indicators of aberrant processes and behavior. Other team members have obtained important connections using higher order Renyi entropy metrics, and complexity theory to both monitor real networks and to study networks by simulation.
Monochromatic metrics are generalized Berwald
Bartelmeß, Nina; Matveev, Vladimir S.
2017-01-01
We show that monochromatic Finsler metrics, i.e., Finsler metrics such that each two tangent spaces are isomorphic as normed spaces, are generalized Berwald metrics, i.e., there exists an affine connection, possibly with torsion, that preserves the Finsler function
General perceptual contrast metric
Liberg, Anna; Hasler, David
2003-06-01
A combined achromatic and chromatic contrast metric for digital images and video is presented in this paper. Our work is aimed at tuning any parametric rendering algorithm in an automated way by computing how much details an observer perceives in a rendered scene. The contrast metric is based on contrast analysis in spatial domain of image sub-bands constructed by pyramidal decomposition of the image. The proposed contrast metric is the sum of the perceptual contrast of every pixel in the image at different detail levels corresponding to different viewing distances. The novel metric shows high correlation with subjective experiments. Important applications involve optimal parameter set of any image rendering and contrast enhancement technique or auto exposure of an image capturing device.
Fixed point theory in metric type spaces
Agarwal, Ravi P; O’Regan, Donal; Roldán-López-de-Hierro, Antonio Francisco
2015-01-01
Written by a team of leading experts in the field, this volume presents a self-contained account of the theory, techniques and results in metric type spaces (in particular in G-metric spaces); that is, the text approaches this important area of fixed point analysis beginning from the basic ideas of metric space topology. The text is structured so that it leads the reader from preliminaries and historical notes on metric spaces (in particular G-metric spaces) and on mappings, to Banach type contraction theorems in metric type spaces, fixed point theory in partially ordered G-metric spaces, fixed point theory for expansive mappings in metric type spaces, generalizations, present results and techniques in a very general abstract setting and framework. Fixed point theory is one of the major research areas in nonlinear analysis. This is partly due to the fact that in many real world problems fixed point theory is the basic mathematical tool used to establish the existence of solutions to problems which arise natur...
A bi-metric theory of gravitation
International Nuclear Information System (INIS)
Rosen, N.
1975-01-01
The bi-metric theory of gravitation proposed previously is simplified in that the auxiliary conditions are discarded, the two metric tensors being tied together only by means of the boundary conditions. Some of the properties of the field of a particle are investigated; there is no black hole, and it appears that no gravitational collapse can take place. Although the proposed theory and general relativity are at present observationally indistinguishable, some differences are pointed out which may some day be susceptible of observation. An alternative bi-metric theory is considered which gives for the precession of the perihelion 5/6 of the value given by general relativity; it seems less satisfactory than the present theory from the aesthetic point of view. (author)
A generalization of Vaidya's radiation metric
International Nuclear Information System (INIS)
Gleiser, R.J.; Kozameh, C.N.
1981-01-01
In this paper it is shown that if Vaidya's radiation metric is considered from the point of view of kinetic theory in general relativity, the corresponding phase space distribution function can be generalized in a particular way. The new family of spherically symmetric radiation metrics obtained contains Vaidya's as a limiting situation. The Einstein field equations are solved in a ''comoving'' coordinate system. Two arbitrary functions of a single variable are introduced in the process of solving these equations. Particular examples considered are a stationary solution, a nonvacuum solution depending on a single parameter, and several limiting situations. (author)
The metric-affine gravitational theory as the gauge theory of the affine group
International Nuclear Information System (INIS)
Lord, E.A.
1978-01-01
The metric-affine gravitational theory is shown to be the gauge theory of the affine group, or equivalently, the gauge theory of the group GL(4,R) of tetrad deformations in a space-time with a locally Minkowskian metric. The identities of the metric-affine theory, and the relationship between them and those of general relativity and Sciama-Kibble theory, are derived. (Auth.)
Quantitative metric theory of continued fractions
Indian Academy of Sciences (India)
2 (log log n). 1. 2 +ǫ) almost everywhere with respect to the Lebesgue measure. Keywords. Continued fractions; ergodic averages; metric theory of numbers. Mathematics Subject Classification. Primary: 11K50; Secondary: 28D99. 1. Introduction. In this paper, we use a quantitative L2-ergodic theorem to study the metrical ...
The Equivalence of Precession Phenomena in Metric Theories of Gravity
Krisher, Timothy P.
1997-01-01
The requirement of general covariance imparts to metric theories of gravity, such as general relavity, important structural features. A precise mathematical form results, ensuring that computation of observable physical effects in the theory gives the same answers independently of the chosen system of coordinates.
Effective dimension in some general metric spaces
Directory of Open Access Journals (Sweden)
Elvira Mayordomo
2014-03-01
Full Text Available We introduce the concept of effective dimension for a general metric space. Effective dimension was defined by Lutz in (Lutz 2003 for Cantor space and has also been extended to Euclidean space. Our extension to other metric spaces is based on a supergale characterization of Hausdorff dimension. We present here the concept of constructive dimension and its characterization in terms of Kolmogorov complexity. Further research directions are indicated.
Quantitative metric theory of continued fractions
Indian Academy of Sciences (India)
Quantitative versions of the central results of the metric theory of continued fractions were given primarily by C. De Vroedt. In this paper we give improvements of the bounds involved . For a real number , let. x = c 0 + 1 c 1 + 1 c 2 + 1 c 3 + 1 c 4 + ⋱ . A sample result we prove is that given ϵ > 0 ,. ( c 1 ( x ) ⋯ c n ( x ) ) 1 n ...
Gravitational Lensing in the metric theory proposed by Sobouti
Bernal, Tula; Mendoza, Sergio
2008-12-01
Recently, Y. Sobouti (2007) has provided a metric theory f(R) that can account for certain dynamical anomalies observed in spiral galaxies. Mendoza & Rosas-Guevara (2007) have shown that in this theory there is an extra-bending as compared to standard general relativity. In the present work we have developed in more specific detail this additional lensing effect and we have made evaluations of the α parameter used in the model adjusting the theory to observations in X-rays of 13 clusters of galaxies with gravitational lensing ([6]).
Codes in W*-Metric Spaces: Theory and Examples
Bumgardner, Christopher J.
2011-01-01
We introduce a "W*"-metric space, which is a particular approach to non-commutative metric spaces where a "quantum metric" is defined on a von Neumann algebra. We generalize the notion of a quantum code and quantum error correction to the setting of finite dimensional "W*"-metric spaces, which includes codes and error correction for classical…
On the Plane Geometry with Generalized Absolute Value Metric
Directory of Open Access Journals (Sweden)
A. Bayar
2008-01-01
Full Text Available Metric spaces are among the most important widely studied topics in mathematics. In recent years, Mathematicians began to investigate using other metrics different from Euclidean metric. These metrics also find their place computer age in addition to their importance in geometry. In this paper, we consider the plane geometry with the generalized absolute value metric and define trigonometric functions and norm and then give a plane tiling example for engineers underlying Schwarz's inequality in this plane.
A convergence theory for probabilistic metric spaces | Jäger ...
African Journals Online (AJOL)
We develop a theory of probabilistic convergence spaces based on Tardiff's neighbourhood systems for probabilistic metric spaces. We show that the resulting category is a topological universe and we characterize a subcategory that is isomorphic to the category of probabilistic metric spaces. Keywords: Probabilistic metric ...
On the relation of the generalized Schwarzschild metric and Tallman metric
International Nuclear Information System (INIS)
Sharshekeev, O.Sh.
1977-01-01
Relation of the Schwarzschild generalized metric (the Schwarzschild metric with regard for the four-dimension tensor of curvation) with the Tollman metric is considered. It is shown, that the Schwarzschild problem solution in the Tollman metric is quite correct as well. The obtained solutions meet the following requirements: conformity principle is carried out, transformation functional determinant is final everywhere, excluding the centre, where a singular point is to be
About the possibility of a generalized metric
International Nuclear Information System (INIS)
Lukacs, B.; Ladik, J.
1991-10-01
The metric (the structure of the space-time) may be dependent on the properties of the object measuring it. The case of size dependence of the metric was examined. For this dependence the simplest possible form of the metric tensor has been constructed which fulfils the following requirements: there be two extremal characteristic scales; the metric be unique and the usual between them; the change be sudden in the neighbourhood of these scales; the size of the human body appear as a parameter (postulated on the basis of some philosophical arguments). Estimates have been made for the two extremal length scales according to existing observations. (author) 19 refs
On Monotone Generalized Quasi contraction mappings in modular metric spaces with a graph
Directory of Open Access Journals (Sweden)
Habtu Zegeye
2017-12-01
Full Text Available One of the most popular result in Mathematics is the Banach Contraction principle in a complete metric space. Due to its wide range of applications, many mathematicians generalized the Banach contraction principle in different directions. One of the generalizations is due to Jachymski [Proc.Am. Math. Soc. 1(136,1359-1373], in which he considered a complete metric space with a graph structure. Alfraidan [Fixed Point Theory and Applications (2015 2015:93. doi 10.1186/s13663-015-0341-2] generalized the work of Jachymski for quasi-contraction mappings in both metric and modular metric spaces with a graph structure. Modular metric spaces are more general than the usual metric spaces. In this paper, we extend Alfraidan's result to a generalized quasi contraction mappings.
Discrete causal theory emergent spacetime and the causal metric hypothesis
Dribus, Benjamin F
2017-01-01
This book evaluates and suggests potentially critical improvements to causal set theory, one of the best-motivated approaches to the outstanding problems of fundamental physics. Spacetime structure is of central importance to physics beyond general relativity and the standard model. The causal metric hypothesis treats causal relations as the basis of this structure. The book develops the consequences of this hypothesis under the assumption of a fundamental scale, with smooth spacetime geometry viewed as emergent. This approach resembles causal set theory, but differs in important ways; for example, the relative viewpoint, emphasizing relations between pairs of events, and relationships between pairs of histories, is central. The book culminates in a dynamical law for quantum spacetime, derived via generalized path summation.
A note on generalized metrics on complex manifolds
International Nuclear Information System (INIS)
Rastogi, S.C.
1986-08-01
In 1981, Hojo introduced a generalized metric function Φ (P) , p(≠1) is a real number in a Finsler space and studied some beautiful consequences of such a metric function. The aim of this paper is to investigate the possibility of introducing a similar metric function on a complex manifold studied by Rund. It is interesting to note that such an introduction is unnatural for values of p other than 2, which corresponds to the metric function introduced by Rund. (author)
Accelerating particles in general relativity (stationary C-metric)
International Nuclear Information System (INIS)
Farhoosh, H.
1979-01-01
The purpose of this thesis is to study the physical and geometrical properties of uniformly accelerating particles in the general theory of relativity and it consists of four main parts. In the first part the structure of the Killing horizons in the static vacuum C-metric which represents the gravitational field of a uniformly accelerating Schwarzschild like particle (non-rotating and spherically symmetric) is studied. In the second part these results are generalized to include the effects of the rotation of the source. For small acceleration and small rotation this solution reveals the existance of three Killing horizons. Two the these horizons are the Schwarzschild and the Rindler surfaces which are mainly due to the mass and the acceleration of the particle, respectively. In part three the radial geodesic and non-geodesic motions in the static vacuum C-metric (non-rotating case) are investigated. The effect of the dragging of the inertial frame is also shown in this part. In part four the radiative behavior of the stationary charged C-metric representing the electro-gravitational field of a uniformly accelerating and rotating charged particle with magnetic monopole and the NUT-parameter are investigated. The physical quantities - the news function, mass loss, mass, charge and the multipole moments - are calculated. It is also shown in this part that the magnetic monopole in the presence of rotation and acceleration affects the electric charge
Extended DBI massive gravity with generalized fiducial metric
Energy Technology Data Exchange (ETDEWEB)
Chullaphan, Tossaporn [The Institute for Fundamental Study, Naresuan University,Phitsanulok 65000 (Thailand); Department of Physics, Faculty of Science, Udon Thani Rajabhat University,Udon Thani 41000 (Thailand); Tannukij, Lunchakorn [Department of Physics, Faculty of Science, Mahidol University,Bangkok 10400 (Thailand); Wongjun, Pitayuth [The Institute for Fundamental Study, Naresuan University,Phitsanulok 65000 (Thailand); Thailand Center of Excellence in Physics, Ministry of Education,Bangkok 10400 (Thailand)
2015-06-05
We consider an extended model of DBI massive gravity by generalizing the fiducial metric to be an induced metric on the brane corresponding to a domain wall moving in five-dimensional Schwarzschild-Anti-de Sitter spacetime. The model admits all solutions of FLRW metric including flat, closed and open geometries while the original one does not. The background solutions can be divided into two branches namely self-accelerating branch and normal branch. For the self-accelerating branch, the graviton mass plays the role of cosmological constant to drive the late-time acceleration of the universe. It is found that the number degrees of freedom of gravitational sector is not correct similar to the original DBI massive gravity. There are only two propagating degrees of freedom from tensor modes. For normal branch, we restrict our attention to a particular class of the solutions which provides an accelerated expansion of the universe. It is found that the number of degrees of freedom in the model is correct. However, at least one of them is ghost degree of freedom which always present at small scale implying that the theory is not stable.
Some Generalized Fixed Point Results on Compact Metric Spaces ...
African Journals Online (AJOL)
The goal of this research is to study some generalized fixed point results in compact metric space. It mainly focuses on the existence and unique fixed point of a selfmap on a compact metric space and its generalizations. In this study iterative techniques due to Edelstein, Bhardwaj et al. and Sastry et al. are used to show ...
Generalized etale cohomology theories
Jardine, John F
1997-01-01
A generalized etale cohomology theory is a theory which is represented by a presheaf of spectra on an etale site for an algebraic variety, in analogy with the way an ordinary spectrum represents a cohomology theory for spaces. Examples include etale cohomology and etale K-theory. This book gives new and complete proofs of both Thomason's descent theorem for Bott periodic K-theory and the Nisnevich descent theorem. In doing so, it exposes most of the major ideas of the homotopy theory of presheaves of spectra, and generalized etale homology theories in particular. The treatment includes, for the purpose of adequately dealing with cup product structures, a development of stable homotopy theory for n-fold spectra, which is then promoted to the level of presheaves of n-fold spectra. This book should be of interest to all researchers working in fields related to algebraic K-theory. The techniques presented here are essentially combinatorial, and hence algebraic. An extensive background in traditional stable hom...
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 4. General Theory of Relativity – The Power of Speculative Thought. Asit Banerjee. General Article Volume 11 Issue 4 April 2006 pp 45-55. Fulltext. Click here to view fulltext PDF. Permanent link:
Geraghty Type Generalized F-Contractions and Related Applications in Partial b-Metric Spaces
Directory of Open Access Journals (Sweden)
Deepak Singh
2017-01-01
Full Text Available The purpose of this paper is to introduce new concepts of (α,β-admissible Geraghty type generalized F-contraction and to prove that some fixed point results for such mappings are in the perspective of partial b-metric space. As an application, we inaugurate new fixed point results for Geraghty type generalized graphic F-contraction defined on partial metric space endowed with a directed graph. On the other hand, one more application to the existence and uniqueness of a solution for the first-order periodic boundary value problem is also provided. Our findings encompass various generalizations of the Banach contraction principle on metric space, partial metric space, and partial b-metric space. Moreover, some examples are presented to illustrate the usability of the new theory.
Rainbows without unicorns: metric structures in theories with modified dispersion relations
Lobo, Iarley P.; Loret, Niccoló; Nettel, Francisco
2017-07-01
Rainbow metrics are a widely used approach to the metric formalism for theories with modified dispersion relations. They have had a huge success in the quantum gravity phenomenology literature, since they allow one to introduce momentum-dependent space-time metrics into the description of systems with a modified dispersion relation. In this paper, we introduce the reader to some realizations of this general idea: the original rainbow metrics proposal, the momentum-space-inspired metric and a Finsler geometry approach. As the main result of this work we also present an alternative definition of a four-velocity dependent metric which allows one to handle the massless limit. This paper aims to highlight some of their properties and how to properly describe their relativistic realizations.
Rainbows without unicorns: metric structures in theories with modified dispersion relations
International Nuclear Information System (INIS)
Lobo, Iarley P.; Loret, Niccolo; Nettel, Francisco
2017-01-01
Rainbow metrics are a widely used approach to the metric formalism for theories with modified dispersion relations. They have had a huge success in the quantum gravity phenomenology literature, since they allow one to introduce momentum-dependent space-time metrics into the description of systems with a modified dispersion relation. In this paper, we introduce the reader to some realizations of this general idea: the original rainbow metrics proposal, the momentum-space-inspired metric and a Finsler geometry approach. As the main result of this work we also present an alternative definition of a four-velocity dependent metric which allows one to handle the massless limit. This paper aims to highlight some of their properties and how to properly describe their relativistic realizations. (orig.)
Rainbows without unicorns: metric structures in theories with modified dispersion relations
Energy Technology Data Exchange (ETDEWEB)
Lobo, Iarley P. [Universita ' ' La Sapienza' ' , Dipartimento di Fisica, Rome (Italy); ICRANet, Pescara (Italy); CAPES Foundation, Ministry of Education of Brazil, Brasilia (Brazil); Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); INFN Sezione Roma 1 (Italy); Loret, Niccolo [Ruder Boskovic Institute, Division of Theoretical Physics, Zagreb (Croatia); Nettel, Francisco [Universita ' ' La Sapienza' ' , Dipartimento di Fisica, Rome (Italy); Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares, Mexico (Mexico); INFN Sezione Roma 1 (Italy)
2017-07-15
Rainbow metrics are a widely used approach to the metric formalism for theories with modified dispersion relations. They have had a huge success in the quantum gravity phenomenology literature, since they allow one to introduce momentum-dependent space-time metrics into the description of systems with a modified dispersion relation. In this paper, we introduce the reader to some realizations of this general idea: the original rainbow metrics proposal, the momentum-space-inspired metric and a Finsler geometry approach. As the main result of this work we also present an alternative definition of a four-velocity dependent metric which allows one to handle the massless limit. This paper aims to highlight some of their properties and how to properly describe their relativistic realizations. (orig.)
Metric quantum field theory: A preliminary look
International Nuclear Information System (INIS)
Watson, W.N.
1988-01-01
Spacetime coordinates are involved in uncertainty relations; spacetime itself appears to exhibit curvature. Could the continua associated with field variables exhibit curvature? This question, as well as the ideas that (a) difficulties with quantum theories of gravitation may be due to their formulation in an incorrect analogy with other quantum field theories, (b) spacetime variables should not be any more basic than others for describing physical phenomena, and (c) if field continua do not exhibit curvature, the reasons would be of interest, motivated the formulation of a theory of variable curvature and torsion in the electromagnetic four-potential's reciprocal space. Curvature and torsion equation completely analogous to those for a gauge theory of gravitation (the Einstein-Cartan-Sciama-Kibble theory) are assumed for this continuum. The interaction-Hamiltonian density of this theory, to a first approximation, implies that in addition to the Maxwell-Dirac field interaction of ordinary quantum electrodynamics, there should also be an interaction between Dirac-field vector and pseudovector currents unmediated by photons, as well as other interactions involving two or three Dirac-field currents interacting with the Maxwell field at single spacetime events. Calculations expressing Bhabha-scattering cross sections for incident beams with parallel spins differ from those of unmodified quantum electrodynamics by terms of first order in the gravitational constant of the theory, but the corresponding cross section for unpolarized incident beams differs from that of the unmodified theory only by terms of higher order in that constant. Undesirable features of the present theory include its nonrenormalizability, the obscurity of the meaning of its inverse field operator, and its being based on electrodynamics rather than electroweak dynamics
International Nuclear Information System (INIS)
Sladkowski, J.
1991-01-01
Various attempts to formulate the fundamental physical interactions in the framework of unified geometric theories have recently gained considerable success (Kaluza, 1921; Klein, 1926; Trautmann, 1970; Cho, 1975). Symmetries of the spacetime and so-called internal spaces seem to play a key role in investigating both the fundamental interactions and the abundance of elementary particles. The author presents a category-theoretic description of a generalization of the G-theory concept and its application to geometric compactification and dimensional reduction. The main reasons for using categories and functors as tools are the clearness and the level of generalization one can obtain
On a Theorem of Khan in a Generalized Metric Space
Directory of Open Access Journals (Sweden)
Jamshaid Ahmad
2013-01-01
Full Text Available Existence and uniqueness of fixed points are established for a mapping satisfying a contractive condition involving a rational expression on a generalized metric space. Several particular cases and applications as well as some illustrative examples are given.
Csányi, V
1980-01-01
The biological, neural, cultural and technical evolutions and their phenomena have been explored, and on the basis of our findings the formation of a general theory of evolution has been undertaken. In each of the systems studied, the presence of structural building units, excitable structures and an energy-flow going through the system can be observed. Under the organizing effect of this energy-flow, the spontaneous generation of the replicative information begins and the structures of the system establish functional relations with each other. It can be demonstrated that the evolution of structures has a replicative character. The evolution goes through a phase of non-identical replication, and reaches the phase of identical replication. The parts of the system become separated, that is, compartments develop within it. The replicative information becomes compartmentalized and it converges. As a consequence of the convergence, the compartments compose new structural units which is tantamount to the development of new evolutional levels. The direction of evolution is determined by the growth of replicative information, and this process is concluded when the total system becomes one replicative unit. In the last part of the paper a few of the basic principles of evolution concerning matter, energy and information are drawn up.
Existence Theorems for Generalized Distance on Complete Metric Spaces
Directory of Open Access Journals (Sweden)
Ume JeongSheok
2010-01-01
Full Text Available We first introduce the new concept of a distance called -distance, which generalizes -distance, Tataru's distance, and -distance. Then we prove a new minimization theorem and a new fixed point theorem by using a -distance on a complete metric space. Our results extend and unify many known results due to Caristi, Ćirić, Ekeland, Kada-Suzuki-Takahashi, Kannan, Ume, and others.
Restrictive metric regularity and generalized differential calculus in Banach spaces
Directory of Open Access Journals (Sweden)
Bingwu Wang
2004-10-01
Full Text Available We consider nonlinear mappings f:XÃ¢Â†Â’Y between Banach spaces and study the notion of restrictive metric regularity of f around some point xÃ‚Â¯, that is, metric regularity of f from X into the metric space E=f(X. Some sufficient as well as necessary and sufficient conditions for restrictive metric regularity are obtained, which particularly include an extension of the classical Lyusternik-Graves theorem in the case when f is strictly differentiable at xÃ‚Â¯ but its strict derivative Ã¢ÂˆÂ‡f(xÃ‚Â¯ is not surjective. We develop applications of the results obtained and some other techniques in variational analysis to generalized differential calculus involving normal cones to nonsmooth and nonconvex sets, coderivatives of set-valued mappings, as well as first-order and second-order subdifferentials of extended real-valued functions.
A general theory of multimetric indices and their properties
Schoolmaster, Donald R.; Grace, James B.; Schweiger, E. William
2012-01-01
1. Stewardship of biological and ecological resources requires the ability to make integrative assessments of ecological integrity. One of the emerging methods for making such integrative assessments is multimetric indices (MMIs). These indices synthesize data, often from multiple levels of biological organization, with the goal of deriving a single index that reflects the overall effects of human disturbance. Despite the widespread use of MMIs, there is uncertainty about why this approach can be effective. An understanding of MMIs requires a quantitative theory that illustrates how the properties of candidate metrics relates to MMIs generated from those metrics. 2. We present the initial basis for such a theory by deriving the general mathematical characteristics of MMIs assembled from metrics. We then use the theory to derive quantitative answers to the following questions: Is there an optimal number of metrics to comprise an index? How does covariance among metrics affect the performance of the index derived from those metrics? And what are the criteria to decide whether a given metric will improve the performance of an index? 3. We find that the optimal number of metrics to be included in an index depends on the theoretical distribution of signal of the disturbance gradient contained in each metric. For example, if the rank-ordered parameters of a metric-disturbance regression can be described by a monotonically decreasing function, then an optimum number of metrics exists and can often be derived analytically. We derive the conditions by which adding a given metric can be expected to improve an index. 4. We find that the criterion defining such conditions depends nonlinearly of the signal of the disturbance gradient, the noise (error) of the metric and the correlation of the metric errors. Importantly, we find that correlation among metric errors increases the signal required for the metric to improve the index. 5. The theoretical framework presented in this
Generalized field theory of gravitation
International Nuclear Information System (INIS)
Yilmaz, H.
1976-01-01
It is shown that if, on empirical grounds, one rules out the existence of cosmic fields of Dicke-Brans (scalar) and Will Nordvedt (vector, tensor) type, then the most general experimentally viable and theoretically reasonable theory of gravitation seems to be a LAMBDA-dependent generalization of Einstein and Yilmez theories, which reduces to the former for LAMBDA=0 and to the latter for LAMBDA=1
GENERAL THEORY OF THE UNIVERSE
Directory of Open Access Journals (Sweden)
B. A. Astafyev
2012-01-01
Full Text Available The World Creation and World genetic, energy and information Unity Theory is created. Created on its basis is a theory of the Creator’s Self-creation and of the Creation by Him of the World Basic Genome as basis for World evolution and his General Laws. Conclusion is made that in order to provide for its life and evolution, mankind community is toorganize own vital activities so as to follow the General World Laws.
Latif, Abdul; Mongkolkeha, Chirasak; Sintunavarat, Wutiphol
2014-01-01
We extend the notion of generalized weakly contraction mappings due to Choudhury et al. (2011) to generalized α-β-weakly contraction mappings. We show with examples that our new class of mappings is a real generalization of several known classes of mappings. We also establish fixed point results for such mappings in metric spaces. Applying our new results, we obtain fixed point results on ordinary metric spaces, metric spaces endowed with an arbitrary binary relation, and metric spaces endowed with graph.
Metric-independent measures for supersymmetric extended object theories on curved backgrounds
International Nuclear Information System (INIS)
Nishino, Hitoshi; Rajpoot, Subhash
2014-01-01
For Green–Schwarz superstring σ-model on curved backgrounds, we introduce a non-metric measure Φ≡ϵ ij ϵ IJ (∂ i φ I )(∂ j φ J ) with two scalars φ I (I=1,2) used in ‘Two-Measure Theory’ (TMT). As in the flat-background case, the string tension T=(2πα ′ ) −1 emerges as an integration constant for the A i -field equation. This mechanism is further generalized to supermembrane theory, and to super-p-brane theory, both on general curved backgrounds. This shows the universal applications of dynamical measure of TMT to general supersymmetric extended objects on general curved backgrounds
Essays in general equilibrium theory
Konovalov, A.
2001-01-01
The thesis focuses on various issues of general equilibrium theory and can approximately be divided into three parts. The first part of the thesis studies generalized equilibria in the Arrow-Debreu model in the situation where the strong survival assumption is not satisfied. Chapter four deals with
Cosmology in general massive gravity theories
International Nuclear Information System (INIS)
Comelli, D.; Nesti, F.; Pilo, L.
2014-01-01
We study the cosmological FRW flat solutions generated in general massive gravity theories. Such a model are obtained adding to the Einstein General Relativity action a peculiar non derivative potentials, function of the metric components, that induce the propagation of five gravitational degrees of freedom. This large class of theories includes both the case with a residual Lorentz invariance as well as the case with rotational invariance only. It turns out that the Lorentz-breaking case is selected as the only possibility. Moreover it turns out that that perturbations around strict Minkowski or dS space are strongly coupled. The upshot is that even though dark energy can be simply accounted by massive gravity modifications, its equation of state w eff has to deviate from -1. Indeed, there is an explicit relation between the strong coupling scale of perturbations and the deviation of w eff from -1. Taking into account current limits on w eff and submillimiter tests of the Newton's law as a limit on the possible strong coupling scale, we find that it is still possible to have a weakly coupled theory in a quasi dS background. Future experimental improvements on short distance tests of the Newton's law may be used to tighten the deviation of w eff form -1 in a weakly coupled massive gravity theory
Ni, W.-T.
1972-01-01
Metric theories of gravity are compiled and classified according to the types of gravitational fields they contain, and the modes of interaction among those fields. The gravitation theories considered are classified as (1) general relativity, (2) scalar-tensor theories, (3) conformally flat theories, and (4) stratified theories with conformally flat space slices. The post-Newtonian limit of each theory is constructed and its Parametrized Post-Newtonian (PPN) values are obtained by comparing it with Will's version of the formalism. Results obtained here, when combined with experimental data and with recent work by Nordtvedt and Will and by Ni, show that, of all theories thus far examined by our group, the only currently viable ones are general relativity, the Bergmann-Wagoner scalar-tensor theory and its special cases (Nordtvedt; Brans-Dicke-Jordan), and a recent, new vector-tensor theory by Nordtvedt, Hellings, and Will.
Generalized Lorenz-Mie Theories
Gouesbet, Gérard
2011-01-01
The Lorenz-Mie theory, describing the interaction between a homogeneous sphere and an electromagnetic plane wave, is likely to be one of the most famous theories in light scattering. But, with the advent of lasers and their increasing development in various fields, it has become too old-fashioned to meet most of the modern requisites. The book deals with generalized Lorenz-Mie theories when the illuminating beam is an electromagnetic arbitrary shaped beam, relying on the method of separation of variables. A particular emphasis is stressed on the case of the homogeneous sphere but other regular particles are considered too. An extensive discussion of the methods available to the evaluation of beam shape coefficients describing the illuminating beam is provided, and several methods are discussed. Applications concern many fields such as optical particle sizing and, more generally, optical particle characterization, morphology-dependent resonances, or mechanical effects of light for optical trapping, optical twe...
d-Neighborhood system and generalized F-contraction in dislocated metric space.
Kumari, P Sumati; Zoto, Kastriot; Panthi, Dinesh
2015-01-01
This paper, gives an answer for the Question 1.1 posed by Hitzler (Generalized metrics and topology in logic programming semantics, 2001) by means of "Topological aspects of d-metric space with d-neighborhood system". We have investigated the topological aspects of a d-neighborhood system obtained from dislocated metric space (simply d-metric space) which has got useful applications in the semantic analysis of logic programming. Further more we have generalized the notion of F-contraction in the view of d-metric spaces and investigated the uniqueness of fixed point and coincidence point of such mappings.
A General Waveguide Circuit Theory.
Marks, Roger B; Williams, Dylan F
1992-01-01
This work generalizes and extends the classical circuit theory of electromagnetic waveguides. Unlike the conventional theory, the present formulation applies to all waveguides composed of linear, isotropic material, even those involving lossy conductors and hybrid mode fields, in a fully rigorous way. Special attention is given to distinguishing the traveling waves, constructed with respect to a well-defined characteristic impedance, from a set of pseudo-waves, defined with respect to an arbitrary reference impedance. Matrices characterizing a linear circuit are defined, and relationships among them, some newly discovered, are derived. New ramifications of reciprocity are developed. Measurement of various network parameters is given extensive treatment.
A generalization of the Newton-Cartan theory of gravitation
International Nuclear Information System (INIS)
Nitsure, Nitin
1980-01-01
It is shown that even in the absence of the equivalence principle, the Newtonian theory of gravitation can be given a geometric form in a five-dimensional manifold. The fifth dimension is taken as the ratio of gravitational and inertial mass, which is allowed to be different for different particles. The resulting pondoromotive and field equations in this 5-dimensional space (which are generalizations of Cartan's formulation of Newtonian gravitation) are formulated and their consequences are discussed. It is argued that as general relativity is a 'metric' theory, a similar generalization of general relativity is not possible. (author)
Directory of Open Access Journals (Sweden)
Abdul Latif
2014-01-01
Full Text Available We extend the notion of generalized weakly contraction mappings due to Choudhury et al. (2011 to generalized α-β-weakly contraction mappings. We show with examples that our new class of mappings is a real generalization of several known classes of mappings. We also establish fixed point results for such mappings in metric spaces. Applying our new results, we obtain fixed point results on ordinary metric spaces, metric spaces endowed with an arbitrary binary relation, and metric spaces endowed with graph.
Metric and connections in theories of gravity. The role of equivalence principle
Capozziello, Salvatore; de Laurentis, Mariafelicia
2016-07-01
Fundamental issues underlying gravitational physics and some of the shortcomings of Einstein’s general relativity (GR) are discussed. In particular, after taking into account the role of the two main objects of relativistic theories of gravity, i.e. the metric and the connection fields, we consider the possibility that they are not trivially related so that the geodesic structure and the causal structure of the spacetime could be disentangled, as supposed in the Palatini formulation of gravity. In this perspective, the equivalence principle (EP), in its weak and strong formulations, can play a fundamental role in discriminating among competing theories. The possibility of its violation at quantum level could open new perspectives in gravitational physics and in unification with other interactions. We shortly debate the possibility of EP measurements by ground-based and space experiments.
The metric theory of tensor products (grthendieck's résumé revisited ...
African Journals Online (AJOL)
The metric theory of tensor products (grthendieck's résumé revisited) part 2: Bilinear forms and linear operators of type α. ... Mathematics Subject Classification (2000): 46B28, 46B07, 46B10. Key words: α-forms;α-integral operators; (metric) accessibility; α-nuclear forms (operators). Quaestiones Mathematicae 25 (2002), 73- ...
CSIR Research Space (South Africa)
Makitla, I
2015-12-01
Full Text Available In this paper, we describe the development of a generalized metric for computing response time of a web service. Such a generalized metric would help to develop consensus with regards to the meanings of contracted Quality of Service (QoS) parameters...
Generalized structural theory of freezing
International Nuclear Information System (INIS)
Yussouff, M.
1980-10-01
The first-principles order parameter theory of freezing, proposed in an earlier work, has been successful in yielding quantitative agreement with known freezing parameters for monoatomic liquids forming solids with one atom per unit cell. A generalization of this theory is presented here to include the effects of a basis set of many atoms per unit cell. The basic equations get modified by the 'density structure factors' fsub(i) which arise from the density variations within the unit cell. Calculations are presented for the important case of monoatomic liquids freezing into hexagonal close packed solids. It is concluded that all freezing transitions can be described by using structural correlations in the liquid instead of the pair potential; and that the three body correlations are important in deciding the type of solid formed after freezing. (author)
A natural Galois connection between generalized norms and metrics
Directory of Open Access Journals (Sweden)
Száz Árpád
2017-12-01
Full Text Available Having in mind a well-known connection between norms and metrics on vector spaces, for an additively written group X, we establish a natural Galois connection between functions of X to ℝ and X2 to ℝ.
Gestalt Therapy and General System Theory.
Whitner, Phillip A.
While General Systems Theory (GST) concepts appear to be applicable in explaining some of the phenomena that occur in a Gestalt Therapy group, research is needed to support this assumption. General Systems Theory may not be a group theory per se. Instead, GST may be a theory about groups. A meta-theory exists where its value and usefulness is…
Generalized Lorenz-Mie theories
Gouesbet, Gérard
2017-01-01
This book explores generalized Lorenz–Mie theories when the illuminating beam is an electromagnetic arbitrary shaped beam relying on the method of separation of variables. The new edition includes an additional chapter covering the latest advances in both research and applications, which are highly relevant for readers. Although it particularly focuses on the homogeneous sphere, the book also considers other regular particles. It discusses in detail the methods available for evaluating beam shape coefficients describing the illuminating beam. In addition it features applications used in many fields such as optical particle sizing and, more generally, optical particle characterization, morphology-dependent resonances and the mechanical effects of light for optical trapping, optical tweezers and optical stretchers. Furthermore, it provides various computer programs relevant to the content.
Koga, Jun-ichirou; Maeda, Kei-ichi
1998-01-01
We analyze black hole thermodynamics in a generalized theory of gravity whose Lagrangian is an arbitrary function of the metric, the Ricci tensor and a scalar field. We can convert the theory into the Einstein frame via a "Legendre" transformation or a conformal transformation. We calculate thermodynamical variables both in the original frame and in the Einstein frame, following the Iyer--Wald definition which satisfies the first law of thermodynamics. We show that all thermodynamical variabl...
Some Results of Fixed Points in Generalized Metric Space by Methods of Suzuki and Samet
Directory of Open Access Journals (Sweden)
Hojjat Afshari
2015-08-01
Full Text Available In 1992 Dhage introduced the notion of generalized metric or D-metric spaces and claimed that D-metric convergence define a Hausdorff topology and that $D$-metric is sequentially continuous in all the three variables. Many authors have taken these claims for granted and used them in proving fixed point theorems in $D$-metric spaces. In 1996 Rhoades generalized Dhages contractive condition by increasing the number of factors and proved the existence of unique fixed point of a self map in $D$-metric space. Recently motivated by the concept of compatibility for metric space. In 2002 Sing and Sharma introduced the concept of $D$-compatibility of maps in $D$-metric space and proved some fixed point theorems using a contractive condition. In this paper ,we prove some fixed point theorems and common fixed point theorems in $D^*$-complete metric spaces under particular conditions among weak compatibility. Also by Using method of Suzuki and Samet we prove some theorems in generalised metric spaces.
Theory of generalized Bessel functions
International Nuclear Information System (INIS)
Dattoli, G.; Giannessi, L.; Mezi, L.; Torre, A.
1990-01-01
In this paper it is discussed the theory of generalized Bessel functions which are of noticeable importance in the analysis of scattering processes for which the dipole approximation cannot be used. These functions have been introduced in their standard form and their modified version. The relevant generating functions and Graf-type addition theorems have been stated. The usefulness of the results to construct a fast algorithm for their quantitative computation is also devised. It is commented on the possibility of getting two-index generalized Bessel functions in e.g. the study of sum rules of the type Σ n=-∞ ∞ t n J n 3 (x), where J n is the cylindrical Bessel function of the first kind. The usefulness of the results for problems of practical interest is finally commented on. It is shown that a modified Anger function can be advantageously introduced to get an almost straightforward computation of the Bernstein sum rule in the theory of ion waves
Why are predictions of general relativity theory for gravitational effects non-unique?
International Nuclear Information System (INIS)
Loskutov, Yu.M.
1990-01-01
Reasons of non-uniqueness of predictions of the general relativity theory (GRT) for gravitational effects are analyzed in detail. To authors' opinion, the absence of comparison mechanism of curved and plane metrics is the reason of non-uniqueness
On generally covariant quantum field theory and generalized causal and dynamical structures
International Nuclear Information System (INIS)
Bannier, U.
1988-01-01
We give an example of a generally covariant quasilocal algebra associated with the massive free field. Maximal, two-sided ideals of this algebra are algebraic representatives of external metric fields. In some sense, this algebra may be regarded as a concrete realization of Ekstein's ideas of presymmetry in quantum field theory. Using ideas from our example and from usual algebraic quantum field theory, we discuss a generalized scheme, in which maximal ideals are viewed as algebraic representatives of dynamical equations or Lagrangians. The considered frame is no quantum gravity, but may lead to further insight into the relation between quantum theory and space-time geometry. (orig.)
More about wormholes in generalized Galileon theories
Rubakov, V. A.
2016-08-01
We consider a class of generalized Galileon theories within general relativity in space-times with more than two spatial dimensions. We show that these theories do not admit stable, static, spherically symmetric, asymptotically flat Lorentzian wormholes.
Generalized fixed point theorems for compatible mappings with some types in fuzzy metric spaces
International Nuclear Information System (INIS)
Cho, Yeol Je; Sedghi, Shaban; Shobe, Nabi
2009-01-01
In this paper, we give some new definitions of compatible mappings of types (I) and (II) in fuzzy metric spaces and prove some common fixed point theorems for four mappings under the condition of compatible mappings of types (I) and (II) in complete fuzzy metric spaces. Our results extend, generalize and improve the corresponding results given by many authors.
Generalized fixed point theorems for compatible mappings with some types in fuzzy metric spaces
Energy Technology Data Exchange (ETDEWEB)
Cho, Yeol Je [Department of Mathematics Education and the RINS, College of Education, Gyeongsang National University, Chinju 660-701 (Korea, Republic of)], E-mail: yjcho@gsnu.ac.kr; Sedghi, Shaban [Department of Mathematics, Islamic Azad University, Ghaemshahr Branch Ghaemshahr P.O. Box 163 (Iran, Islamic Republic of)], E-mail: sedghi_gh@yahoo.com; Shobe, Nabi [Department of Mathematics, Islamic Azad University, Babol Branch (Iran, Islamic Republic of)], E-mail: nabi_shobe@yahoo.com
2009-03-15
In this paper, we give some new definitions of compatible mappings of types (I) and (II) in fuzzy metric spaces and prove some common fixed point theorems for four mappings under the condition of compatible mappings of types (I) and (II) in complete fuzzy metric spaces. Our results extend, generalize and improve the corresponding results given by many authors.
A Generalized Field Theory: Charged Spherical Symmetric Solution
Wanas, M. I.
1985-06-01
Three solutions with spherical symmetry are obtained for the field equations of the generalized field theory established recently by Mikhail and Wanas. The solutions found are in agreement with classical known results. The solution representing a generalized field, outside a spherical symmetric charged body, is found to have an extra term compared with the Reissner-Nordström metric. The space used for application is of type FIGI, so the solutions obtained correspond to a field in a matter-free space. A brief comparison between the solutions obtained and those given by other field theories is given. Two methods have been used to get physical results: the first is the type analysis, and the second is the comparison with classical known results by writing down the metric of the associated Riemannian space.
The metric theory of tensor products (grthendieck's résumé revisited ...
African Journals Online (AJOL)
This paper presents the first of a multi-part series of papers on the metric theory of tensor products according to Grothendieck's “Résumé de la theorie metrique des produits tensoriels topologiques” It contains the basics on tensor norms: a discussion of the special character of the injective and the projective norms, ...
The Validation by Measurement Theory of Proposed Object-Oriented Software Metrics
Neal, Ralph D.
1996-01-01
Moving software development into the engineering arena requires controllability, and to control a process, it must be measurable. Measuring the process does no good if the product is not also measured, i.e., being the best at producing an inferior product does not define a quality process. Also, not every number extracted from software development is a valid measurement. A valid measurement only results when we are able to verify that the number is representative of the attribute that we wish to measure. Many proposed software metrics are used by practitioners without these metrics ever having been validated, leading to costly but often useless calculations. Several researchers have bemoaned the lack of scientific precision in much of the published software measurement work and have called for validation of software metrics by measurement theory. This dissertation applies measurement theory to validate fifty proposed object-oriented software metrics.
General Rotational Surfaces in Pseudo-Euclidean 4-Space with Neutral Metric
Aleksieva, Yana; Milousheva, Velichka; Turgay, Nurettin Cenk
2016-01-01
We define general rotational surfaces of elliptic and hyperbolic type in the pseudo-Euclidean 4-space with neutral metric which are analogous to the general rotational surfaces of C. Moore in the Euclidean 4-space. We study Lorentz general rotational surfaces with plane meridian curves and give the complete classification of minimal general rotational surfaces of elliptic and hyperbolic type, general rotational surfaces with parallel normalized mean curvature vector field, flat general rotati...
Directory of Open Access Journals (Sweden)
Maryam A. Alghamdi
2014-01-01
Full Text Available We introduce the notion of generalized weaker (α-ϕ-φ-contractive mappings in the context of generalized metric space. We investigate the existence and uniqueness of fixed point of such mappings. Some consequences on existing fixed point theorems are also derived. The presented results generalize, unify, and improve several results in the literature.
Algebraic K-theory of generalized schemes
DEFF Research Database (Denmark)
Anevski, Stella Victoria Desiree
Nikolai Durov has developed a generalization of conventional scheme theory in which commutative algebraic monads replace commutative unital rings as the basic algebraic objects. The resulting geometry is expressive enough to encompass conventional scheme theory, tropical algebraic geometry and ge...
Algebraic K-theory of generalized schemes
DEFF Research Database (Denmark)
Anevski, Stella Victoria Desiree
Nikolai Durov has developed a generalization of conventional scheme theory in which commutative algebraic monads replace commutative unital rings as the basic algebraic objects. The resulting geometry is expressive enough to encompass conventional scheme theory, tropical algebraic geometry...
The metric theory of tensor products Grothendieck's resume revisited
Diestel, Joe; Swart, Johan; Swarte, Johannes Laurentius; Diestel, Joseph
2008-01-01
Grothendieck's Resumé is a landmark in functional analysis. Despite having appeared more than a half century ago, its techniques and results are still not widely known nor appreciated. This is due, no doubt, to the fact that Grothendieck included practically no proofs, and the presentation is based on the theory of the very abstract notion of tensor products. This book aims at providing the details of Grothendieck's constructions and laying bare how the important classes of operators are a consequence of the abstract operations on tensor norms. Particular attention is paid to how the classical
On Topological Properties of Metrics Defined via Generalized “Linking Construction”
Directory of Open Access Journals (Sweden)
Marcin Borkowski
2017-01-01
Full Text Available We analyze topological properties of metric spaces obtained by using Száz’s construction, which we used to call generalized “linking construction.” In particular, we provide necessary and sufficient conditions for completeness of metric spaces obtained in this way. Moreover, we examine the relation between Száz’s construction and the “linking construction.” A particular attention is drawn to the “floor” metric, the analysis of which provides some interesting observations.
Metric theories of gravity perturbation and conservation laws
Petrov, Alexander N; Lompay, Robert R; Tekin, Bayram
2017-01-01
By focusing on the most popular pertubation methods this monograph aspires to give a unified overview and comparison of ways to construct conserved quantities and study symmetries in general relativity. The main emphasis lies on the field-theoretical formulation of pertubations, the canonical Noether approach and the Belinfante procedure of symmetrisation.
GENERAL: Metric Expansion from Microscopic Dynamics in an Inhomogeneous Universe
Vongehr, Sascha
2010-09-01
Theories with ingredients like the Higgs mechanism, gravitons, and inflaton fields rejuvenate the idea that relativistic kinematics is dynamically emergent. Eternal infiation treats the Hubble constant H as depending on location. Microscopic dynamics implies that H is over much smaller lengths than pocket universes to be understood as a local space reproduction rate. We illustrate this via discussing that even exponential inflation in TeV-gravity is slow on the relevant time scale. In our on small scales inhomogeneous cosmos, a reproduction rate H depends on position. We therefore discuss Einstein-Strauss vacuoles and a Lindquist-Wheeler like lattice to connect the local rate properly with the scaling of an expanding cosmos. Consistency allows H to locally depend on Weyl curvature similar to vacuum polarization. We derive a proportionality constant known from Kepler's third law and discuss the implications for the finiteness of the cosmological constant.
Gauge-invariant metric fluctuations from NKK theory of gravity: de Sitter expansion
International Nuclear Information System (INIS)
Aguilar, Jose Edgar Madriz; Anabitarte, Mariano; Bellini, Mauricio
2006-01-01
In this Letter we study gauge-invariant metric fluctuations from a noncompact Kaluza-Klein (NKK) theory of gravity in de Sitter expansion. We recover the well-known result δρ/ρ∼2Φ, obtained from the standard 4D semiclassical approach to inflation. The spectrum for these fluctuations should be dependent of the fifth (spatial-like) coordinate
Cosmology in beyond-generalized Proca theories
Nakamura, Shintaro; Kase, Ryotaro; Tsujikawa, Shinji
2017-05-01
The beyond-generalized Proca theories are the extension of second-order massive vector-tensor theories (dubbed generalized Proca theories) with two transverse vector modes and one longitudinal scalar besides two tensor polarizations. Even with this extension, the propagating degrees of freedom remain unchanged on the isotropic cosmological background without an Ostrogradski instability. We study the cosmology in beyond-generalized Proca theories by paying particular attention to the dynamics of late-time cosmic acceleration and resulting observational consequences. We derive conditions for avoiding ghosts and instabilities of tensor, vector, and scalar perturbations and discuss viable parameter spaces in concrete models allowing the dark energy equation of state smaller than -1 . The propagation speeds of those perturbations are subject to modifications beyond the domain of generalized Proca theories. There is a mixing between scalar and matter sound speeds, but such a mixing is suppressed during most of the cosmic expansion history without causing a new instability. On the other hand, we find that derivative interactions arising in beyond-generalized Proca theories give rise to important modifications to the cosmic growth history. The growth rate of matter perturbations can be compatible with the redshift-space distortion data due to the realization of gravitational interaction weaker than that in generalized Proca theories. Thus, it is possible to distinguish the dark energy model in beyond-generalized Proca theories from the counterpart in generalized Proca theories as well as from the Λ CDM model.
Common Fixed Points of Generalized Cocyclic Mappings in Complex Valued Metric Spaces
Directory of Open Access Journals (Sweden)
Mujahid Abbas
2015-01-01
Full Text Available We present fixed point results of mappings satisfying generalized contractive conditions in complex valued metric spaces. As an application, we obtain a common fixed point of a pair of weakly compatible mappings. Some common fixed point results of generalized contractive-type mappings involved in cocyclic representation of a nonempty subset of a complex valued metric space are also obtained. Some examples are also presented to support the results proved herein. These results extend and generalize many results in the existing literature.
Theory of Nonlocal Point Transformations in General Relativity
Directory of Open Access Journals (Sweden)
Massimo Tessarotto
2016-01-01
Full Text Available A discussion of the functional setting customarily adopted in General Relativity (GR is proposed. This is based on the introduction of the notion of nonlocal point transformations (NLPTs. While allowing the extension of the traditional concept of GR-reference frame, NLPTs are important because they permit the explicit determination of the map between intrinsically different and generally curved space-times expressed in arbitrary coordinate systems. For this purpose in the paper the mathematical foundations of NLPT-theory are laid down and basic physical implications are considered. In particular, explicit applications of the theory are proposed, which concern (1 a solution to the so-called Einstein teleparallel problem in the framework of NLPT-theory; (2 the determination of the tensor transformation laws holding for the acceleration 4-tensor with respect to the group of NLPTs and the identification of NLPT-acceleration effects, namely, the relationship established via general NLPT between particle 4-acceleration tensors existing in different curved space-times; (3 the construction of the nonlocal transformation law connecting different diagonal metric tensors solution to the Einstein field equations; and (4 the diagonalization of nondiagonal metric tensors.
General Systems Theory and Instructional Design.
Salisbury, David F.
The use of general systems theory in the field of instructional systems design (ISD) is explored in this paper. Drawing on work by Young, the writings of 12 representative ISD writers and researchers were surveyed to determine the use of 60 general systems theory concepts by the individual authors. The average number of concepts used by these…
Common Fixed Points of Generalized Rational Type Cocyclic Mappings in Multiplicative Metric Spaces
Directory of Open Access Journals (Sweden)
Mujahid Abbas
2015-01-01
Full Text Available The aim of this paper is to present fixed point result of mappings satisfying a generalized rational contractive condition in the setup of multiplicative metric spaces. As an application, we obtain a common fixed point of a pair of weakly compatible mappings. Some common fixed point results of pair of rational contractive types mappings involved in cocyclic representation of a nonempty subset of a multiplicative metric space are also obtained. Some examples are presented to support the results proved herein. Our results generalize and extend various results in the existing literature.
General properties of nonsignaling theories
International Nuclear Information System (INIS)
Masanes, Ll.; Acin, A.; Gisin, N.
2006-01-01
This article identifies a series of properties common to all theories that do not allow for superluminal signaling and predict the violation of Bell inequalities. Intrinsic randomness, uncertainty due to the incompatibility of two observables, monogamy of correlations, impossibility of perfect cloning, privacy of correlations, bounds in the shareability of some states; all these phenomena are solely a consequence of the no-signaling principle and nonlocality. In particular, it is shown that for any distribution, the properties of (i) nonlocal (ii) no arbitrarily shareable, and (iii) positive secrecy content are equivalent
a tensor theory of gravitation in a curved metric on a flat background
International Nuclear Information System (INIS)
Drummond, J.E.
1979-01-01
A theory of gravity is proposed using a tensor potential for the field on a flat metric. This potential cannot be isolated by local observations, but some details can be deduced from measurements at a distance. The requirement that the field equations for the tensor potential shall be deducible from an action integral, that the action and field equations are gauge invariant, and, conversely, that the Lagrangian in the action integral can be integrated from the field equations leads to Einstein's field equations. The requirement that the field energy-momentum tensor exists leads to a constraint on the tensor potential. If the constraint is a differential gauge condition, then it can only be the Hilbert condition giving a unique background tensor, metric tensor and tensor potential. For a continuous field inside a solid sphere the metric must be homogeneous in the spatial coordinates, and the associated field energy-momentum tensor has properties consistent with Newtonian dynamics. (author)
International Nuclear Information System (INIS)
Denisov, V.I.; Logunov, A.A.; Mestvirishvili, M.A.; Chugreev, Yu.V.
1985-01-01
It is shown that in any metric theory of gravitation passessing conservation laws for energy-momentum of the substance and gravitational field taken together, the motion of centre of extended body mass occurs not according to the geodesic Riemann space-time. The centre of mass of the extended body during its motion about the orbit makes a vibrational movement in relation to supporting geodesic. Application of obtained general formulas to the Sun-Earth system and the use of experimental results on the Moon location with the regard of other experiments has shown with high accuracy of 10 -10 that the relation of gravitational passive Earth mass to its inert mass does not equal to 1 differing from it about 10 -8 . The Earth at its orbital motion makes a vibrational movement in relation to supporting geodesic with a period of 1 hour and amplitude not less than 10 -2 sm. the deviation of the Earth mass center motion from geodesic movement can be found in a corresponding experiment having a postnewton accuracy degree
Victimization and the general theory of crime.
Nofziger, Stacey
2009-01-01
Theories of victimization developed independently of theories of offending, in spite of consistent findings of similarities between offenders and victims of crime. This study examines whether Gottfredson and Hirschi's (1990) general theory of crime, typically used to predict offending, also has relevance in understanding juvenile victimization. The data for this project are drawn from a sample of over 1,200 middle and high school students. Using structural equation models, the findings suggest that higher self-control does directly decrease victimization and that self-control also affects victimization indirectly though opportunities (peer deviance). Implications for the studies of victimization as well as the general theory of crime are discussed.
Nordtvedt, K L
1972-12-15
I have reviewed the historical and contemporary experiments that guide us in choosing a post-Newtonian, relativistic gravitational theory. The foundation experiments essentially constrain gravitation theory to be a metric theory in which matter couples solely to one gravitational field, the metric field, although other cosmological gravitational fields may exist. The metric field for any metric theory can be specified (for the solar system, for our present purposes) by a series of potential terms with several parameters. A variety of experiments specify (or put limits on) the numerical values of the seven parameters in the post-Newtonian metric field, and other such experiments have been planned. The empirical results, to date, yield values of the parameters that are consistent with the predictions of Einstein's general relativity.
Generally covariant Hamilton-Jacobi equation and rotated liquid sphere metrics
International Nuclear Information System (INIS)
Abdil'din, M.M.; Abdulgafarov, M.K.; Abishev, M.E.
2005-01-01
In the work Lense-Thirring problem on corrected Fock's first approximation metrics by Hamilton-Jacobi method considered. Generally covariant Hamilton-Jacobi equation had been sold by separation of variable method. Path equation of probe particle motion in rotated liquid sphere field is obtained. (author)
Some Almost Generalized (ψ,ϕ-Contractions in G-Metric Spaces
Directory of Open Access Journals (Sweden)
Hassen Aydi
2013-01-01
Full Text Available In this paper, we introduce some almost generalized (ψ,ϕ-contractions in the setting of G-metric spaces. We prove some fixed points results for such contractions. The presented theorems improve and extend some known results in the literature. An example is also presented.
Vossos, Spyridon; Vossos, Elias
2016-08-01
closed LSTT is reduced, if one RIO has small velocity wrt another RIO. Thus, we have infinite number of closed LSTTs, each one with the corresponding SR theory. In case that we relate accelerated observers with variable metric of spacetime, we have the case of General Relativity (GR). For being that clear, we produce a generalized Schwarzschild metric, which is in accordance with any SR based on this closed complex LSTT and Einstein equations. The application of this kind of transformations to the SR and GR is obvious. But, the results may be applied to any linear space of dimension four endowed with steady or variable metric, whose elements (four- vectors) have spatial part (vector) with Euclidean metric.
International Nuclear Information System (INIS)
Vossos, Spyridon; Vossos, Elias
2016-01-01
any other closed LSTT is reduced, if one RIO has small velocity wrt another RIO. Thus, we have infinite number of closed LSTTs, each one with the corresponding SR theory. In case that we relate accelerated observers with variable metric of spacetime, we have the case of General Relativity (GR). For being that clear, we produce a generalized Schwarzschild metric, which is in accordance with any SR based on this closed complex LSTT and Einstein equations. The application of this kind of transformations to the SR and GR is obvious. But, the results may be applied to any linear space of dimension four endowed with steady or variable metric, whose elements (four- vectors) have spatial part (vector) with Euclidean metric. (paper)
Grounded Theory as a General Research Methodology
Judith A. Holton, Ph.D.
2008-01-01
Since its inception over forty years ago, grounded theory has achieved canonical status in the research world (Locke, 2001, p.1). Qualitative researchers, in particular, have embraced grounded theory although often without sufficient scholarship in the methodology (Partington, 2000, p.93; 2002, p.136). The embrace renders many researchers unable to perceive grounded theory as a general methodology and an alternative to the dominant qualitative and quantitative research paradigms. The result i...
A theory of generalized Bloch oscillations
DEFF Research Database (Denmark)
Duggen, Lars; Lew Yan Voon, L. C.; Lassen, Benny
2016-01-01
Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact...... oscillations. We stipulate that the presented theory of generalized Bloch oscillations can be extended to other systems such as acoustics and photonics....
Towards metric-like higher spin gauge theories in three dimensions
Campoleoni, A.; Fredenhagen, S.; Pfenninger, S.; Theisen, S.
2013-05-01
We consider the coupling of a symmetric spin-3 gauge field φμνρ to three-dimensional gravity in a second-order metric-like formulation. The action that corresponds to an SL(3, {R})\\times SL(3, {R}) Chern-Simons theory in the frame-like formulation is identified to quadratic order in the spin-3 field. We apply our result to compute corrections to the area law for higher spin black holes using Wald’s entropy formula. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Higher spin theories and holography’.
On the energy-momentum tensors for field theories in spaces with affine connection and metric
International Nuclear Information System (INIS)
Manoff, S.
1991-01-01
Generalized covariant Bianchi type identities are obtained and investigated for Lagrangian densities, depending on co- and contravariant tensor fields and their first and second covariant derivatives in spaces with affine connection and metric (L n -space). The notions of canonical, generalized canonical, symmetric and variational energy-momentum tensor are introduced and necessary and sufficient conditions for the existence of the symmetric energy-momentum tensor as a local conserved quantity are obtained. 19 refs.; 1 tab
Generalized extended Navier-Stokes theory
DEFF Research Database (Denmark)
Hansen, J. S.; Daivis, Peter J.; Dyre, Jeppe C.
2013-01-01
The extended Navier-Stokes theory accounts for the coupling between the translational and rotational molecular degrees of freedom. In this paper, we generalize this theory to non-zero frequencies and wavevectors, which enables a new study of spatio-temporal correlation phenomena present...... in molecular fluids. To discuss these phenomena in detail, molecular dynamics simulations of molecular chlorine are performed for three different state points. In general, the theory captures the behavior for small wavevector and frequencies as expected. For example, in the hydrodynamic regime...... and for molecular fluids with small moment of inertia like chlorine, the theory predicts that the longitudinal and transverse intrinsic angular velocity correlation functions are almost identical, which is also seen in the molecular dynamics simulations. However, the theory fails at large wavevector and frequencies...
Simple recursion relations for general field theories
International Nuclear Information System (INIS)
Cheung, Clifford; Shen, Chia-Hsien; Trnka, Jaroslav
2015-01-01
On-shell methods offer an alternative definition of quantum field theory at tree-level, replacing Feynman diagrams with recursion relations and interaction vertices with a handful of seed scattering amplitudes. In this paper we determine the simplest recursion relations needed to construct a general four-dimensional quantum field theory of massless particles. For this purpose we define a covering space of recursion relations which naturally generalizes all existing constructions, including those of BCFW and Risager. The validity of each recursion relation hinges on the large momentum behavior of an n-point scattering amplitude under an m-line momentum shift, which we determine solely from dimensional analysis, Lorentz invariance, and locality. We show that all amplitudes in a renormalizable theory are 5-line constructible. Amplitudes are 3-line constructible if an external particle carries spin or if the scalars in the theory carry equal charge under a global or gauge symmetry. Remarkably, this implies the 3-line constructibility of all gauge theories with fermions and complex scalars in arbitrary representations, all supersymmetric theories, and the standard model. Moreover, all amplitudes in non-renormalizable theories without derivative interactions are constructible; with derivative interactions, a subset of amplitudes is constructible. We illustrate our results with examples from both renormalizable and non-renormalizable theories. Our study demonstrates both the power and limitations of recursion relations as a self-contained formulation of quantum field theory.
General relativity invariance and string field theory
International Nuclear Information System (INIS)
Aref'eva, I.Ya.; Volovich, I.V.
1987-04-01
The general covariance principle in the string field theory is considered. The algebraic properties of the string Lie derivative are discussed. The string vielbein and spin connection are introduced and an action invariant under general co-ordinate transformation is proposed. (author). 18 refs
Sturmians and generalized sturmians in quantum theory
DEFF Research Database (Denmark)
Avery, John Scales; Avery, James Emil
2012-01-01
The theory of Sturmians and generalized Sturmians is reviewed. It is shown that when generalized Sturmians are used as basis functions, calculations on the spectra and physical properties of few-electron atoms can be performed with great ease and good accuracy. The use of many-center Coulomb...
Directory of Open Access Journals (Sweden)
Tomar Anita
2017-11-01
Full Text Available The aim of this paper is to introduce generalized condition (B in a quasi-partial metric space acknowledging the notion of Künzi et al. [Künzi H.-P. A., Pajoohesh H., Schellekens M. P., Partial quasi-metrics, Theoret. Comput. Sci., 2006, 365, 237-246] and Karapinar et al. [Karapinar E., Erhan M.,Öztürk A., Fixed point theorems on quasi-partial metric spaces, Math. Comput.Modelling, 2013, 57, 2442-2448] and to establish coincidence and common fixed point theorems for twoweakly compatible pairs of self mappings. In the sequelwe also answer affirmatively two open problems posed by Abbas, Babu and Alemayehu [Abbas M., Babu G. V. R., Alemayehu G. N., On common fixed points of weakly compatible mappings satisfying generalized condition (B, Filomat, 2011, 25(2, 9-19]. Further in the setting of a quasi-partial metric space, the results obtained are utilized to establish the existence and uniqueness of a solution of the integral equation and the functional equation arising in dynamic programming. Our results are also justified by explanatory examples supported with pictographic validations to demonstrate the authenticity of the postulates.
Victories and defeats in general relativity theory
International Nuclear Information System (INIS)
Moeller, C.
1977-01-01
Only within the last 20 years has it been possible to conduct far-reaching experimental tests of the validity of Einstein's General Relativity Theory. Experimental confirmation in some fields is embarrassed by considerable difficulties in applying the theory to cosmic systems, which indicate that such major systems lie at the limit of the theory's applicability. The lecture here reproduced discusses both the successes and the limitations of the theory, starting with its replacement of the absolute space-time theory of Newton and its historical replacement by the relativistic gravitational postulates of Einstein which, in spite of its more complicated postulates, nevertheless introduced a great simplicity and comprehensiveness into the overall conception of nature. This theoretical 'beauty', however, can only be trusted if vindicated experimentally, which has to a considerable extent proved to be the case. For weak fields Newtonian and Einsteinian concepts coincide, while for stronger fields, and velocities not far from that of light, Einstein's theory is superior, giving,for example, an excellent correspondence with the precession of the perehelion of Mercury. On a larger scale, however, the theory appears to lead to conclusions which would invalidate the very concepts of space and time, even within a finite time-interval. A more generalized theory seems to be required. (A.D.N.)
Lalli, Marek; Ruysen, Harriet; Blencowe, Hannah; Yee, Kristen; Clune, Karen; DeSilva, Mary; Leffler, Marissa; Hillman, Emily; El-Noush, Haitham; Mulligan, Jo; Murray, Jeffrey C; Silver, Karlee; Lawn, Joy E
2018-01-29
Grand Challenges for international health and development initiatives have received substantial funding to tackle unsolved problems; however, evidence of their effectiveness in achieving change is lacking. A theory of change may provide a useful tool to track progress towards desired outcomes. The Saving Lives at Birth partnership aims to address inequities in maternal-newborn survival through the provision of strategic investments for the development, testing and transition-to-scale of ground-breaking prevention and treatment approaches with the potential to leapfrog conventional healthcare approaches in low resource settings. We aimed to develop a theory of change and impact framework with prioritised metrics to map the initiative's contribution towards overall goals, and to measure progress towards improved outcomes around the time of birth. A theory of change and impact framework was developed retrospectively, drawing on expertise across the partnership and stakeholders. This included a document and literature review, and wide consultation, with feedback from stakeholders at all stages. Possible indicators were reviewed from global maternal-newborn health-related partner initiatives, priority indicator lists, and project indicators from current innovators. These indicators were scored across five domains to prioritise those most relevant and feasible for Saving Lives at Birth. These results informed the identification of the prioritised metrics for the initiative. The pathway to scale through Saving Lives at Birth is articulated through a theory of change and impact framework, which also highlight the roles of different actors involved in the programme. A prioritised metrics toolkit, including ten core impact indicators and five additional process indicators, complement the theory of change. The retrospective nature of this development enabled structured reflection of the program mechanics, allowing for inclusion of learning from the first four rounds of the
Canonical perturbation theory in linearized general relativity theory
International Nuclear Information System (INIS)
Gonzales, R.; Pavlenko, Yu.G.
1986-01-01
Canonical perturbation theory in linearized general relativity theory is developed. It is shown that the evolution of arbitrary dynamic value, conditioned by the interaction of particles, gravitation and electromagnetic fields, can be presented in the form of a series, each member of it corresponding to the contribution of certain spontaneous or induced process. The main concepts of the approach are presented in the approximation of a weak gravitational field
General Theory of Absorption in Porous Materials: Restricted Multilayer Theory.
Aduenko, Alexander A; Murray, Andy; Mendoza-Cortes, Jose L
2018-04-18
In this article, we present an approach for the generalization of adsorption of light gases in porous materials. This new theory goes beyond Langmuir and Brunauer-Emmett-Teller theories, which are the standard approaches that have a limited application to crystalline porous materials by their unphysical assumptions on the amount of possible adsorption layers. The derivation of a more general equation for any crystalline porous framework is presented, restricted multilayer theory. Our approach allows the determination of gas uptake considering only geometrical constraints of the porous framework and the interaction energy of the guest molecule with the framework. On the basis of this theory, we calculated optimal values for the adsorption enthalpy at different temperatures and pressures. We also present the use of this theory to determine the optimal linker length for a topologically equivalent framework series. We validate this theoretical approach by applying it to metal-organic frameworks (MOFs) and show that it reproduces the experimental results for seven different reported materials. We obtained the universal equation for the optimal linker length, given the topology of a porous framework. This work applied the general equation to MOFs and H 2 to create energy-storage materials; however, this theory can be applied to other crystalline porous materials and light gases, which opens the possibility of designing the next generations of energy-storage materials by first considering only the geometrical constraints of the porous materials.
Transition operators in electromagnetic-wave diffraction theory - General theory
Hahne, G. E.
1992-01-01
A formal theory is developed for the scattering of time-harmonic electromagnetic waves from impenetrable immobile obstacles with given linear, homogeneous, and generally nonlocal boundary conditions of Leontovich (impedance) type for the wave of the obstacle's surface. The theory is modeled on the complete Green's function and the transition (T) operator in time-independent formal scattering theory of nonrelativistic quantum mechanics. An expression for the differential scattering cross section for plane electromagnetic waves is derived in terms of certain matrix elements of the T operator for the obstacle.
A fixed point of generalized T F -contraction mappings in cone metric spaces
Directory of Open Access Journals (Sweden)
Moradi Sirous
2011-01-01
Full Text Available Abstract In this paper, the existence of a fixed point for TF -contractive mappings on complete metric spaces and cone metric spaces is proved, where T : X → X is a one to one and closed graph function and F : P → P is non-decreasing and right continuous, with F -1(0 = -0} and F(tn → 0 implies tn → 0. Our results, extend previous results given by Meir and Keeler (J. Math. Anal. Appl. 28, 326-329, 1969, Branciari (Int. J. Math. sci. 29, 531-536, 2002, Suzuki (J. Math. Math. Sci. 2007, Rezapour et al. (J. Math. Anal. Appl. 345, 719-724, 2010, Moradi et al. (Iran. J. Math. Sci. Inf. 5, 25-32, 2010 and Khojasteh et al. (Fixed Point Theory Appl. 2010. MSC(2000: 47H10; 54H25; 28B05.
Conformal changes of metrics and the initial-value problem of general relativity
International Nuclear Information System (INIS)
Mielke, E.W.
1977-01-01
Conformal techniques are reviewed with respect to applications to the initial-value problem of general relativity. Invariant transverse traceless decompositions of tensors, one of its main tools, are related to representations of the group of 'conformeomorphisms' acting on the space of all Riemannian metrics on M. Conformal vector fields, a kernel in the decomposition, are analyzed on compact manifolds with constant scalar curvature. The realization of arbitrary functions as scalar curvature of conformally equivalent metrics, a generalization of Yamabe's (Osaka Math. J.; 12:12 (1960)) conjecture, is applied to the Hamiltonian constraint and to the issue of positive energy of gravitational fields. Various approaches to the solution of the initial-value equations produced by altering the scaling behaviour of the second fundamental form are compared. (author)
Generalized continued fractions and ergodic theory
International Nuclear Information System (INIS)
Pustyl'nikov, L D
2003-01-01
In this paper a new theory of generalized continued fractions is constructed and applied to numbers, multidimensional vectors belonging to a real space, and infinite-dimensional vectors with integral coordinates. The theory is based on a concept generalizing the procedure for constructing the classical continued fractions and substantially using ergodic theory. One of the versions of the theory is related to differential equations. In the finite-dimensional case the constructions thus introduced are used to solve problems posed by Weyl in analysis and number theory concerning estimates of trigonometric sums and of the remainder in the distribution law for the fractional parts of the values of a polynomial, and also the problem of characterizing algebraic and transcendental numbers with the use of generalized continued fractions. Infinite-dimensional generalized continued fractions are applied to estimate sums of Legendre symbols and to obtain new results in the classical problem of the distribution of quadratic residues and non-residues modulo a prime. In the course of constructing these continued fractions, an investigation is carried out of the ergodic properties of a class of infinite-dimensional dynamical systems which are also of independent interest
The Faraday effect revisited: General theory
DEFF Research Database (Denmark)
Cornean, Horia Decebal; Nenciu, Gheorghe; Pedersen, Thomas Garm
2006-01-01
This paper is the first in a series revisiting the Faraday effect, or more generally, the theory of electronic quantum transport/optical response in bulk media in the presence of a constant magnetic field. The independent electron approximation is assumed. At zero temperature and zero frequency......, if the Fermi energy lies in a spectral gap, we rigorously prove theWidom-Streda formula. For free electrons, the transverse conductivity can be explicitly computed and coincides with the classical result. In the general case, using magnetic perturbation theory, the conductivity tensor is expanded in powers...
Generalized locally Toeplitz sequences theory and applications
Garoni, Carlo
2017-01-01
Based on their research experience, the authors propose a reference textbook in two volumes on the theory of generalized locally Toeplitz sequences and their applications. This first volume focuses on the univariate version of the theory and the related applications in the unidimensional setting, while the second volume, which addresses the multivariate case, is mainly devoted to concrete PDE applications. This book systematically develops the theory of generalized locally Toeplitz (GLT) sequences and presents some of its main applications, with a particular focus on the numerical discretization of differential equations (DEs). It is the first book to address the relatively new field of GLT sequences, which occur in numerous scientific applications and are especially dominant in the context of DE discretizations. Written for applied mathematicians, engineers, physicists, and scientists who (perhaps unknowingly) encounter GLT sequences in their research, it is also of interest to those working in the fields of...
Performativity: The Special and the General Theory
Directory of Open Access Journals (Sweden)
Sonia Reverter-Bañón
2017-07-01
Full Text Available If in Gender Trouble (1990 Butler presented a proposal of the theory of performativity of speech acts applied to the construction of gender, in her last book, Notes towards a Performative Theory of Assembly (2015, she articulates a theory of performativity applied to collective and concerted action of minorities or populations that are estimated to be “disposable”. The interest of the proposal that we present in this paper is to analyze how the theory of performativity of gender is now extended to the forms of democratic action; going from being a structure that explains the possibilities of gender to explain the possibilities for a livable life. It is what we call here the extension of performativity, from the special case of gender to the general case of a livable life.
Generalized density-functional theory: Conquering the ...
Indian Academy of Sciences (India)
Home; Journals; Journal of Chemical Sciences; Volume 117; Issue 5. Generalized density-functional theory: Conquering the -representability problem with exact functionals for the electron pair density and the second-order reduced density matrix. Paul W Ayers Mel Levy. Volume 117 Issue 5 September 2005 pp 507-514 ...
Schumpeter's general theory of social evolution
DEFF Research Database (Denmark)
Andersen, Esben Sloth
The recent neo-Schumpeterian and evolutionary economics appears to cover a much smaller range of topics than Joseph Schumpeter confronted. Thus, it has hardly been recognised that Schumpeter wanted to develop a general theory that served the analysis of evolution in any sector of social life...
General Systems Theory and Instructional Systems Design.
Salisbury, David F.
1990-01-01
Describes basic concepts in the field of general systems theory (GST) and identifies commonalities that exist between GST and instructional systems design (ISD). Models and diagrams that depict system elements in ISD are presented, and two matrices that show how GST has been used in ISD literature are included. (11 references) (LRW)
General Systems Theory and Counterplan Competition.
Madsen, Arnie
1989-01-01
Discusses the trend in academic debate on policy questions toward a wide acceptance of counterplans, encouraging combinations of proposals which appear at face value able to coexist but upon deeper analysis are incompatible. Argues in opposition to this trend by applying concepts from general systems theory to competition. (KEH)
Educational Interpretations of General Systems Theory.
Hug, William E.; King, James E.
This chapter discusses General Systems Theory as it applies to education, classrooms, innovations, and instructional design. The principles of equifinality, open and closed systems, the individual as the key system, hierarchical structures, optimization, stability, cooperation, and competition are discussed, and their relationship to instructional…
The Faraday effect revisited: General theory
DEFF Research Database (Denmark)
Cornean, Horia Decebal; Nenciu, Gheorghe; Pedersen, Thomas Garm
This paper is the first in a series revisiting the Faraday effect, or more generally, the theory of electronic quantum transport/optical response in bulk media in the presence of a constant magnetic field. The independent electron approximation is assumed. For free electrons, the transverse...
Directory of Open Access Journals (Sweden)
Xiaofan Yang
Full Text Available There are quite a number of different metrics of network robustness. This paper addresses the rationality of four metrics of network robustness (the algebraic connectivity, the effective resistance, the average edge betweenness, and the efficiency by investigating the robust growth of generalized meshes (GMs. First, a heuristic growth algorithm (the Proximity-Growth algorithm is proposed. The resulting proximity-optimal GMs are intuitively robust and hence are adopted as the benchmark. Then, a generalized mesh (GM is grown up by stepwise optimizing a given measure of network robustness. The following findings are presented: (1 The algebraic connectivity-optimal GMs deviate quickly from the proximity-optimal GMs, yielding a number of less robust GMs. This hints that the rationality of the algebraic connectivity as a measure of network robustness is still in doubt. (2 The effective resistace-optimal GMs and the average edge betweenness-optimal GMs are in line with the proximity-optimal GMs. This partly justifies the two quantities as metrics of network robustness. (3 The efficiency-optimal GMs deviate gradually from the proximity-optimal GMs, yielding some less robust GMs. This suggests the limited utility of the efficiency as a measure of network robustness.
REQUIREMENTS FOR A GENERAL INTERPRETATION THEORY
Directory of Open Access Journals (Sweden)
Anda Laura Lungu Petruescu
2013-06-01
Full Text Available Time has proved that Economic Analysis is not enough as to ensure all the needs of the economic field. The present study wishes to propose a new approach method of the economic phenomena and processes based on the researches made outside the economic space- a new general interpretation theory- which is centered on the human being as the basic actor of economy. A general interpretation theory must assure the interpretation of the causalities among the economic phenomena and processes- causal interpretation; the interpretation of the correlations and dependencies among indicators- normative interpretation; the interpretation of social and communicational processes in economic organizations- social and communicational interpretation; the interpretation of the community status of companies- transsocial interpretation; the interpretation of the purposes of human activities and their coherency – teleological interpretation; the interpretation of equilibrium/ disequilibrium from inside the economic systems- optimality interpretation. In order to respond to such demands, rigor, pragmatism, praxiology and contextual connectors are required. In order to progress, the economic science must improve its language, both its syntax and its semantics. The clarity of exposure requires a language clarity and the scientific theory progress asks for the need of hypotheses in the building of the theories. The switch from the common language to the symbolic one means the switch from ambiguity to rigor and rationality, that is order in thinking. But order implies structure, which implies formalization. Our paper should be a plea for these requirements, requirements which should be fulfilled by a modern interpretation theory.
Relativity the special and the general theory
Einstein, Albert
2015-01-01
After completing the final version of his general theory of relativity in November 1915, Albert Einstein wrote a book about relativity for a popular audience. His intention was "to give an exact insight into the theory of relativity to those readers who, from a general scientific and philosophical point of view, are interested in the theory, but who are not conversant with the mathematical apparatus of theoretical physics." The book remains one of the most lucid explanations of the special and general theories ever written. In the early 1920s alone, it was translated into ten languages, and fifteen editions in the original German appeared over the course of Einstein's lifetime. This new edition of Einstein's celebrated book features an authoritative English translation of the text along with an introduction and a reading companion by Hanoch Gutfreund and Jürgen Renn that examines the evolution of Einstein's thinking and casts his ideas in a broader present-day context. A special chapter explores the history...
Toward a general evolutionary theory of oncogenesis.
Ewald, Paul W; Swain Ewald, Holly A
2013-01-01
We propose an evolutionary framework, the barrier theory of cancer, which is based on the distinction between barriers to oncogenesis and restraints. Barriers are defined as mechanisms that prevent oncogenesis. Restraints, which are more numerous, inhibit but do not prevent oncogenesis. Processes that compromise barriers are essential causes of cancer; those that interfere with restraints are exacerbating causes. The barrier theory is built upon the three evolutionary processes involved in oncogenesis: natural selection acting on multicellular organisms to mold barriers and restraints, natural selection acting on infectious organisms to abrogate these protective mechanisms, and oncogenic selection which is responsible for the evolution of normal cells into cancerous cells. The barrier theory is presented as a first step toward the development of a general evolutionary theory of cancer. Its attributes and implications for intervention are compared with those of other major conceptual frameworks for understanding cancer: the clonal diversification model, the stem cell theory and the hallmarks of cancer. The barrier theory emphasizes the practical value of distinguishing between essential and exacerbating causes. It also stresses the importance of determining the scope of infectious causation of cancer, because individual pathogens can be responsible for multiple essential causes in infected cells.
A generalized theory of thin film growth
Du, Feng; Huang, Hanchen
2018-03-01
This paper reports a theory of thin film growth that is generalized for arbitrary incidence angle during physical vapor deposition in two dimensions. The accompanying kinetic Monte Carlo simulations serve as verification. A special theory already exists for thin film growth with zero incidence angle, and another theory also exists for nanorod growth with a glancing angle. The theory in this report serves as a bridge to describe the transition from thin film growth to nanorod growth. In particular, this theory gives two critical conditions in analytical form of critical coverage, ΘI and ΘII. The first critical condition defines the onset when crystal growth or step dynamics stops following the wedding cake model for thin film growth. The second critical condition defines the onset when multiple-layer surface steps form to enable nanorod growth. Further, this theory also reveals a critical incidence angle, below which nanorod growth is impossible. The critical coverages, together with the critical incidence angle, defines a phase diagram of thin growth versus nanorod growth.
A general theory for the Uranian satellites
Laskar, J.
1986-01-01
A general analytical theory of the five main satellites of Uranus, including the secular and short period terms hereafter denoted by GUST, is presented. A comparison is made with an internal numerical integration with nominal masses of Veillet (1983). The precision of the theory goes from about 10 km for Miranda to 100 km for Oberon. The short period terms in the motions of Titania and Oberon are larger than 500 km. They should make possible the determination of the masses of the outer satellites through the optical data of Voyager encounter.
The general principles of quantum theory
Temple, George
2014-01-01
Published in 1934, this monograph was one of the first introductory accounts of the principles which form the physical basis of the Quantum Theory, considered as a branch of mathematics. The exposition is restricted to a discussion of general principles and does not attempt detailed application to the wide domain of atomic physics, although a number of special problems are considered in elucidation of the principles. The necessary fundamental mathematical methods - the theory of linear operators and of matrics - are developed in the first chapter so this could introduce anyone to the new theor
LIGO GW150914 and GW151226 gravitational wave detection and generalized gravitation theory (MOG
Directory of Open Access Journals (Sweden)
J.W. Moffat
2016-12-01
Full Text Available The nature of gravitational waves in a generalized gravitation theory is investigated. The linearized field equations and the metric tensor quadrupole moment power and the decrease in radius of an inspiralling binary system of two compact objects are derived. The generalized Kerr metric describing a spinning black hole is determined by its mass M and the spin parameter a=cS/GM2. The LIGO-Virgo collaboration data is fitted with smaller binary black hole masses in agreement with the current electromagnetic, observed X-ray binary upper bound for a black hole mass, M≲10M⊙.
Towards a general theory of implementation
2013-01-01
Understanding and evaluating the implementation of complex interventions in practice is an important problem for healthcare managers and policy makers, and for patients and others who must operationalize them beyond formal clinical settings. It has been argued that this work should be founded on theory that provides a foundation for understanding, designing, predicting, and evaluating dynamic implementation processes. This paper sets out core constituents of a general theory of implementation, building on Normalization Process Theory and linking it to key constructs from recent work in sociology and psychology. These are informed by ideas about agency and its expression within social systems and fields, social and cognitive mechanisms, and collective action. This approach unites a number of contending perspectives in a way that makes possible a more comprehensive explanation of the implementation and embedding of new ways of thinking, enacting and organizing practice. PMID:23406398
On the general theory of quantized fields
International Nuclear Information System (INIS)
Fredenhagen, K.
1991-10-01
In my lecture I describe the present stage of the general theory of quantized fields on the example of 5 subjects. They are ordered in the direction from large to small distances. The first one is the by now classical problem of the structure of superselection sectors. It involves the behavior of the theory at spacelike infinity and is directly connected with particle statistics and internal symmetries. It has become popular in recent years by the discovery of a lot of nontrivial models in 2d conformal-field theory, by connections to integrable models and critical behavior in statistical mechanics and by the relations to the Jones' theory of subfactors in von Neumann algebras and to the corresponding geometrical objects (braids, knots, 3d manifolds, ...). At large timelike distances the by far most important feature of quantum field theory is the particle structure. This will be the second subject of my lecture. It follows the technically most involved part which is concerned with the behavior at finite distances. Two aspets, nuclearity which emphasizes the finite density of states in phase space, and the modular structure which relies on the infinite number of degrees of freedom present even locally, and their mutual relations will be treated. The next point, involving the structure at infinitesimal distances, is the connection between the Haag-Kastler framework of algebras of local and the framework of Wightman fields. Finally, problems in approaches to quantum gravity will be discussed, as far as they are accessible by the methods of the general theory of quantized fields. (orig.)
The Faraday effect revisited General theory
Cornean, H D; Pedersen, T G
2005-01-01
This paper is the first in a series revisiting the Faraday effect, or more generally, the theory of electronic quantum transport/optical response in bulk media in the presence of a constant magnetic field. The independent electron approximation is assumed. For free electrons, the transverse conductivity can be explicitly computed and coincides with the classical result. In the general case, using magnetic perturbation theory, the conductivity tensor is expanded in powers of the strength of the magnetic field $B$. Then the linear term in $B$ of this expansion is written down in terms of the zero magnetic field Green function and the zero field current operator. In the periodic case, the linear term in $B$ of the conductivity tensor is expressed in terms of zero magnetic field Bloch functions and energies. No derivatives with respect to the quasimomentum appear and thereby all ambiguities are removed, in contrast to earlier work.
TOPICS IN THEORY OF GENERALIZED PARTON DISTRIBUTIONS
Energy Technology Data Exchange (ETDEWEB)
Radyushkin, Anatoly V. [JLAB, Old Dominion U.
2013-05-01
Several topics in the theory of generalized parton distributions (GPDs) are reviewed. First, we give a brief overview of the basics of the theory of generalized parton distributions and their relationship with simpler phenomenological functions, viz. form factors, parton densities and distribution amplitudes. Then, we discuss recent developments in building models for GPDs that are based on the formalism of double distributions (DDs). A special attention is given to a careful analysis of the singularity structure of DDs. The DD formalism is applied to construction of a model GPDs with a singular Regge behavior. Within the developed DD-based approach, we discuss the structure of GPD sum rules. It is shown that separation of DDs into the so-called ``plus'' part and the $D$-term part may be treated as a renormalization procedure for the GPD sum rules. This approach is compared with an alternative prescription based on analytic regularization.
Freud's superpotential in general relativity and in Einstein-Cartan theory
Böhmer, Christian G.; Hehl, Friedrich W.
2018-02-01
The identification of a suitable gravitational energy in theories of gravity has a long history, and it is well known that a unique answer cannot be given. In the first part of this paper we present a streamlined version of the derivation of Freud's superpotential in general relativity. It is found if we once integrate the gravitational field equation by parts. This allows us to extend these results directly to the Einstein-Cartan theory. Interestingly, Freud's original expression, first stated in 1939, remains valid even when considering gravitational theories in Riemann-Cartan or, more generally, in metric-affine spacetimes.
Generalized plane waves in Poincaré gauge theory of gravity
Blagojević, Milutin; Cvetković, Branislav; Obukhov, Yuri N.
2017-09-01
A family of exact vacuum solutions, representing generalized plane waves propagating on the (anti-)de Sitter background, is constructed in the framework of Poincaré gauge theory. The wave dynamics is defined by the general Lagrangian that includes all parity even and parity odd invariants up to the second order in the gauge field strength. The structure of the solution shows that the wave metric significantly depends on the spacetime torsion.
Conamhna, Oisín A. P. Mac
2008-12-01
The supergravity description of various configurations of supersymmetric M-fivebranes wrapped on calibrated cycles of special holonomy manifolds is studied. The description is provided by solutions of eleven-dimensional supergravity which interpolate smoothly between a special holonomy manifold and an event horizon with Anti-de Sitter geometry. For known examples of Anti-de Sitter solutions, the associated special holonomy metric is derived. One explicit Anti-de Sitter solution of M-theory is so treated for fivebranes wrapping each of the following cycles: Kähler cycles in Calabi-Yau two, three- and four-folds; special lagrangian cycles in three- and four-folds; associative three- and co-associative four-cycles in G 2 manifolds; complex lagrangian four-cycles in Sp(2) manifolds; and Cayley four-cycles in Spin(7) manifolds. In each case, the associated special holonomy metric is singular, and is a hyperbolic analogue of a known metric. The analogous known metrics are respectively: Eguchi-Hanson, the resolved conifold and the four-fold resolved conifold; the deformed conifold, and the Stenzel four-fold metric; the Bryant-Salamon-Gibbons-Page-Pope G 2 metrics on an {mathbb{R}^4} bundle over S 3, and an {mathbb{R}^3} bundle over S 4 or {mathbb{CP}^2} ; the Calabi hyper-Kähler metric on {T^*mathbb{CP}^2} ; and the Bryant-Salamon-Gibbons-Page-Pope Spin(7) metric on an {mathbb{R}^4} bundle over S 4. By the AdS/CFT correspondence, a conformal field theory is associated to each of the new singular special holonomy metrics, and defines the quantum gravitational physics of the resolution of their singularities.
Possibilistic systems within a general information theory
Energy Technology Data Exchange (ETDEWEB)
Joslyn, C.
1999-06-01
The author surveys possibilistic systems theory and place it in the context of Imprecise Probabilities and General Information Theory (GIT). In particular, he argues that possibilistic systems hold a distinct position within a broadly conceived, synthetic GIT. The focus is on systems and applications which are semantically grounded by empirical measurement methods (statistical counting), rather than epistemic or subjective knowledge elicitation or assessment methods. Regarding fuzzy measures as special provisions, and evidence measures (belief and plausibility measures) as special fuzzy measures, thereby he can measure imprecise probabilities directly and empirically from set-valued frequencies (random set measurement). More specifically, measurements of random intervals yield empirical fuzzy intervals. In the random set (Dempster-Shafer) context, probability and possibility measures stand as special plausibility measures in that their distributionality (decomposability) maps directly to an aggregable structure of the focal classes of their random sets. Further, possibility measures share with imprecise probabilities the ability to better handle open world problems where the universe of discourse is not specified in advance. In addition to empirically grounded measurement methods, possibility theory also provides another crucial component of a full systems theory, namely prediction methods in the form of finite (Markov) processes which are also strictly analogous to the probabilistic forms.
Vossos, Spyridon; Vossos, Elias
2017-12-01
Schwarzschild Metric is the first and the most important solution of Einstein vacuum field equations. This is associated with Lorentz metric of flat spacetime and produces the relativistic potential (Φ) and the field strength (g) outside a spherically symmetric mass or a non-rotating black hole. It has many applications such as gravitational red shift, the precession of Mercury’s orbit, Shapiro time delay etc. However, it is inefficient to explain the rotation curves in large galaxies and clusters of them, causing the necessity for dark matter. On the other hand, Modified Newtonian Dynamics (MOND) has already explained these rotation curves in many cases, using suitable interpolating function (μ) in Milgrom’s Law. In this presentation, we initially produce a Generalized Schwarzschild potential and the corresponding Metric of spacetime, in order to be in accordance with any isotropic metric of flat spacetime (including Galilean Metric of spacetime which is associated with Galilean Transformation of spacetime). From this Generalized Schwarzschild potential (Φ), we calculate the corresponding field strength (g), which is associated with the interpolating function (μ). In this way, a new relativistic potential is obtained (let us call 2nd Generalized Schwarzschild potential) which describes the gravitational interaction at any distance and for any metric of flat spacetime. Thus, not only the necessity for Dark Matter is eliminated, but also MOND becomes a pure Relativistic Theory of Gravitational Interaction. Then, we pass to the case of flat spacetime with Lorentz metric (Minkowski space), because the experimental data have been extracted using the Relativistic Doppler Shift and the gravitational red shift of Classic Relativity (CR). Thus, we Explain the Rotation Curves in Galaxies (e.g. NGC 3198) and Clusters of them as well as the Solar system, eliminating Dark Matter. This relativistic potential and the corresponding metric of spacetime have been obtained
A generalized Yang-Mills Theory I: general aspects of the classical theory
International Nuclear Information System (INIS)
Galvao, C.A.P.
1987-01-01
A generalized Yang-Mills theory which is the non-Abelian version of the generalized eletrodinamics proposed by Podolsky is analysed both in the Lagrangian an Hamiltonian formulation. A simple class of solutions to the Euler-Lagrange equations is presented and the structure of the Hamiltonian constraints is studied in details. (Author) [pt
Generalization of the Yang-Mills theory
Savvidy, G.
2016-01-01
We suggest an extension of the gauge principle which includes tensor gauge fields. In this extension of the Yang-Mills theory the vector gauge boson becomes a member of a bigger family of gauge bosons of arbitrary large integer spins. The proposed extension is essentially based on the extension of the Poincaré algebra and the existence of an appropriate transversal representations. The invariant Lagrangian is expressed in terms of new higher-rank field strength tensors. It does not contain higher derivatives of tensor gauge fields and all interactions take place through three- and four-particle exchanges with a dimensionless coupling constant. We calculated the scattering amplitudes of non-Abelian tensor gauge bosons at tree level, as well as their one-loop contribution into the Callan-Symanzik beta function. This contribution is negative and corresponds to the asymptotically free theory. Considering the contribution of tensorgluons of all spins into the beta function we found that it is leading to the theory which is conformally invariant at very high energies. The proposed extension may lead to a natural inclusion of the standard theory of fundamental forces into a larger theory in which vector gauge bosons, leptons and quarks represent a low-spin subgroup. We consider a possibility that inside the proton and, more generally, inside hadrons there are additional partons — tensorgluons, which can carry a part of the proton momentum. The extension of QCD influences the unification scale at which the coupling constants of the Standard Model merge, shifting its value to lower energies.
Supersymmetric field theories and generalized cohomology
Teichner, Peter; Stolz, Stephan
2011-01-01
This survey discusses our results and conjectures concerning supersymmetric field theories and their relationship to cohomology theories. A careful definition of supersymmetric Euclidean field theories is given, refining Segal's axioms for conformal field theories. We state and give an outline of the proof of various results relating field theories to cohomology theories.
Groen, Bianca A.C.; Wouters, Marc J.F.; Wilderom, Celeste P.M.
Suitable and valid operational performance metrics are important means to translate an organization’s strategy into action. However, developing high-quality operational metrics is challenging because such metrics need the right degree of context specificity to be meaningful to the managers and
Groen, B.A.C.; Wouters, M.J.F.; Wilderom, C.P.M.
2017-01-01
Suitable and valid operational performance metrics are important means to translate an organization’s strategy into action. However, developing high-quality operational metrics is challenging because such metrics need the right degree of context specificity to be meaningful to the managers and
Generalized contractions with triangular α-orbital admissible mapping on Branciari metric spaces
Directory of Open Access Journals (Sweden)
Muhammad Arshad
2016-02-01
Full Text Available Abstract The purpose of this paper is to generalize fixed point theorems introduced by Jleli et al. (J. Inequal. Appl. 2014:38, 2014 by using the concept of triangular α-orbital admissible mappings established in Popescu (Fixed Point Theory Appl. 2014:190, 2014. Some examples are given here to illustrate the usability of the obtained results.
Generalized theory of diffusion based on kinetic theory
Schäfer, T.
2016-10-01
We propose to use spin hydrodynamics, a two-fluid model of spin propagation, as a generalization of the diffusion equation. We show that in the dense limit spin hydrodynamics reduces to Fick's law and the diffusion equation. In the opposite limit spin hydrodynamics is equivalent to a collisionless Boltzmann treatment of spin propagation. Spin hydrodynamics avoids unphysical effects that arise when the diffusion equation is used to describe to a strongly interacting gas with a dilute corona. We apply spin hydrodynamics to the problem of spin diffusion in a trapped atomic gas. We find that the observed spin relaxation rate in the high-temperature limit [Sommer et al., Nature (London) 472, 201 (2011), 10.1038/nature09989] is consistent with the diffusion constant predicted by kinetic theory.
A general theory of sexual differentiation.
Arnold, Arthur P
2017-01-02
A general theory of mammalian sexual differentiation is proposed. All biological sex differences are the result of the inequality in effects of the sex chromosomes, which are the only factors that differ in XX vs. XY zygotes. This inequality leads to male-specific effects of the Y chromosome, including expression of the testis-determining gene Sry that causes differentiation of testes. Thus, Sry sets up lifelong sex differences in effects of gonadal hormones. Y genes also act outside of the gonads to cause male-specific effects. Differences in the number of X chromosomes between XX and XY cells cause sex differences in expression (1) of Xist, (2) of X genes that escape inactivation, and (3) of parentally imprinted X genes. Sex differences in phenotype are ultimately the result of multiple, independent sex-biasing factors, hormonal and sex chromosomal. These factors act in parallel and in combination to induce sex differences. They also can offset each other to reduce sex differences. Other mechanisms, operating at the level of populations, cause groups of males to differ on average from groups of females. The theory frames questions for further study, and directs attention to inherent sex-biasing factors that operate in many tissues to cause sex differences, and to cause sex-biased protection from disease. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Rosenkrantz, Andrew B; Ayoola, Abimbola; Singh, Kush; Duszak, Richard
2017-07-01
Emerging alternative metrics leverage social media and other online platforms to provide immediate measures of biomedical articles' reach among diverse public audiences. We aimed to compare traditional citation and alternative impact metrics for articles in popular general radiology journals. All 892 original investigations published in 2013 issues of Academic Radiology, American Journal of Roentgenology, Journal of the American College of Radiology, and Radiology were included. Each article's content was classified as imaging vs nonimaging. Traditional journal citations to articles were obtained from Web of Science. Each article's Altmetric Attention Score (Altmetric), representing weighted mentions across a variety of online platforms, was obtained from Altmetric.com. Statistical assessment included the McNemar test, the Mann-Whitney test, and the Pearson correlation. Mean and median traditional citation counts were 10.7 ± 15.4 and 5 vs 3.3 ± 13.3 and 0 for Altmetric. Among all articles, 96.4% had ≥1 traditional citation vs 41.8% for Altmetric (P Facebook (10.7%), and news outlets (8.4%). Citations and Altmetric were weakly correlated (r = 0.20), with only a 25.0% overlap in terms of articles within their top 10th percentiles. Traditional citations were higher for articles with imaging vs nonimaging content (11.5 ± 16.2 vs 6.9 ± 9.8, P impact compared to traditional citation counts. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Generalized quantum theory of recollapsing homogeneous cosmologies
International Nuclear Information System (INIS)
Craig, David; Hartle, James B.
2004-01-01
A sum-over-histories generalized quantum theory is developed for homogeneous minisuperspace type A Bianchi cosmological models, focusing on the particular example of the classically recollapsing Bianchi type-IX universe. The decoherence functional for such universes is exhibited. We show how the probabilities of decoherent sets of alternative, coarse-grained histories of these model universes can be calculated. We consider in particular the probabilities for classical evolution defined by a suitable coarse graining. For a restricted class of initial conditions and coarse grainings we exhibit the approximate decoherence of alternative histories in which the universe behaves classically and those in which it does not. For these situations we show that the probability is near unity for the universe to recontract classically if it expands classically. We also determine the relative probabilities of quasiclassical trajectories for initial states of WKB form, recovering for such states a precise form of the familiar heuristic 'J·dΣ' rule of quantum cosmology, as well as a generalization of this rule to generic initial states
Dynamical Correspondence in a Generalized Quantum Theory
Niestegge, Gerd
2015-05-01
In order to figure out why quantum physics needs the complex Hilbert space, many attempts have been made to distinguish the C*-algebras and von Neumann algebras in more general classes of abstractly defined Jordan algebras (JB- and JBW-algebras). One particularly important distinguishing property was identified by Alfsen and Shultz and is the existence of a dynamical correspondence. It reproduces the dual role of the selfadjoint operators as observables and generators of dynamical groups in quantum mechanics. In the paper, this concept is extended to another class of nonassociative algebras, arising from recent studies of the quantum logics with a conditional probability calculus and particularly of those that rule out third-order interference. The conditional probability calculus is a mathematical model of the Lüders-von Neumann quantum measurement process, and third-order interference is a property of the conditional probabilities which was discovered by Sorkin (Mod Phys Lett A 9:3119-3127, 1994) and which is ruled out by quantum mechanics. It is shown then that the postulates that a dynamical correspondence exists and that the square of any algebra element is positive still characterize, in the class considered, those algebras that emerge from the selfadjoint parts of C*-algebras equipped with the Jordan product. Within this class, the two postulates thus result in ordinary quantum mechanics using the complex Hilbert space or, vice versa, a genuine generalization of quantum theory must omit at least one of them.
Does general relativity theory have the classical Newtonian limit limit
International Nuclear Information System (INIS)
Denisov, V.I.; Logunov, A.A.
1980-01-01
Newton gravitation theory and Newtonian approximation of the general relativity theory are considered. By the method of successive approximations Einstein equations have been solved and Newtonian approximation of the Einstein theory is obtained. It is shown that in general relativity theory there is no Newtonian limit for the integrals of the motion of matter and gravitational field, as the integrals of the motion of the Newton gravitation theory and Newtonian approximation of Einstein theory do not coincide. The Einstein general relativity theory is constructed at the cost of refusal of the conservation laws for energy-momentum of matter and gravitational field taken together
Daianu, Madelaine; Mezher, Adam; Jahanshad, Neda; Hibar, Derrek P; Nir, Talia M; Jack, Clifford R; Weiner, Michael W; Bernstein, Matt A; Thompson, Paul M
2015-04-01
Our understanding of network breakdown in Alzheimer's disease (AD) is likely to be enhanced through advanced mathematical descriptors. Here, we applied spectral graph theory to provide novel metrics of structural connectivity based on 3-Tesla diffusion weighted images in 42 AD patients and 50 healthy controls. We reconstructed connectivity networks using whole-brain tractography and examined, for the first time here, cortical disconnection based on the graph energy and spectrum. We further assessed supporting metrics - link density and nodal strength - to better interpret our results. Metrics were analyzed in relation to the well-known APOE -4 genetic risk factor for late-onset AD. The number of disconnected cortical regions increased with the number of copies of the APOE -4 risk gene in people with AD. Each additional copy of the APOE -4 risk gene may lead to more dysfunctional networks with weakened or abnormal connections, providing evidence for the previously hypothesized "disconnection syndrome".
Anisotropic cosmological models and generalized scalar tensor theory
Indian Academy of Sciences (India)
physics pp. 669–673. Anisotropic cosmological models and generalized scalar tensor theory. SUBENOY CHAKRABORTY1,*, BATUL CHANDRA SANTRA2 and ... Anisotropic cosmological models; general scalar tensor theory; inflation. PACS Nos 98.80.Hw; 04.50.+h; 98.80.Cq. 1. Introduction. Brans–Dicke theory [1] (BD ...
Alabiso, Carlo
2015-01-01
This book is an introduction to the theory of Hilbert space, a fundamental tool for non-relativistic quantum mechanics. Linear, topological, metric, and normed spaces are all addressed in detail, in a rigorous but reader-friendly fashion. The rationale for an introduction to the theory of Hilbert space, rather than a detailed study of Hilbert space theory itself, resides in the very high mathematical difficulty of even the simplest physical case. Within an ordinary graduate course in physics there is insufficient time to cover the theory of Hilbert spaces and operators, as well as distribution theory, with sufficient mathematical rigor. Compromises must be found between full rigor and practical use of the instruments. The book is based on the author's lessons on functional analysis for graduate students in physics. It will equip the reader to approach Hilbert space and, subsequently, rigged Hilbert space, with a more practical attitude. With respect to the original lectures, the mathematical flavor in all sub...
International Nuclear Information System (INIS)
Pons, Josep M
2003-01-01
Relying on known results of the Noether theory of symmetries extended to constrained systems, it is shown that there exists an obstruction that prevents certain tangent-space diffeomorphisms being projectable to phase space, for generally covariant theories. This main result throws new light on the old fact that the algebra of gauge generators in the phase space of general relativity, or other generally covariant theories, only closes as a soft algebra and not as a Lie algebra. The deep relationship between these two issues is clarified. In particular, we see that the second one may be understood as a side effect of the procedure to solve the first. It is explicitly shown how the adoption of specific metric-dependent diffeomorphisms, as a way to achieve projectability, causes the algebra of gauge generators (constraints) in phase space not to be a Lie algebra -with structure constants - but a soft algebra - with structure functions
Observational constraints on generalized Proca theories
De Felice, Antonio; Heisenberg, Lavinia; Tsujikawa, Shinji
2017-06-01
In a model of the late-time cosmic acceleration within the framework of generalized Proca theories, there exists a de Sitter attractor preceded by the dark energy equation of state wDE=-1 -s , where s is a positive constant. We run the Markov-chain-Monte Carlo code to confront the model with the observational data of the cosmic microwave background (CMB), baryon acoustic oscillations, supernovae type Ia, and local measurements of the Hubble expansion rate for the background cosmological solutions and obtain the bound s =0.254-0.097+0.118 at 95% confidence level (C.L.). Existence of the additional parameter s to those in the Λ -cold-dark-matter (Λ CDM ) model allows to reduce tensions of the Hubble constant H0 between the CMB and the low-redshift measurements. Including the cosmic growth data of redshift-space distortions in the galaxy power spectrum and taking into account no-ghost and stability conditions of cosmological perturbations, we find that the bound on s is shifted to s =0.1 6-0.08+0.08 (95% C.L.) and hence the model with s >0 is still favored over the Λ CDM model. Apart from the quantities s ,H0 and the today's matter density parameter Ωm 0, the constraints on other model parameters associated with perturbations are less stringent, reflecting the fact that there are different sets of parameters that give rise to a similar cosmic expansion and growth history.
Can one tell Einstein's unimodular theory from Einstein's general relativity?
Alvarez, Enrique
2005-01-01
The so called unimodular theory of gravitation is compared with general relativity in the quadratic (Fierz-Pauli) regime, using a quite broad framework, and it is argued that quantum effects allow in principle to discriminate between both theories.
A general theory of comic entertainment
DEFF Research Database (Denmark)
Grodal, Torben Kragh
2014-01-01
the input as 'not real but playful', 5. this leads to a change in hedonic tone, and arousal is combined with the release of endorphins (a morphine-based neurotransmitter) that makes the arousal pleasant. The theory of comic entertainment accords with the PECMA flow theory proposed in Grodal: Embodied...
Generalized classical mechanics and field theory
International Nuclear Information System (INIS)
De Leon, M.; Rodrigues, P.R.
1985-01-01
The aim of this book is to build up a large panel of the present situation of Lagrangian and Hamiltonian formalisms involving higher order derivatives. The achievements of differential geometry in formulating a more modern and powerful treatment of these theories are developed. An extensive review of the development of these theories in classical language is also given. (Auth.)
Generalizing Prototype Theory: A Formal Quantum Framework
Aerts, Diederik; Broekaert, Jan; Gabora, Liane; Sozzo, Sandro
2016-01-01
Theories of natural language and concepts have been unable to model the flexibility, creativity, context-dependence, and emergence, exhibited by words, concepts and their combinations. The mathematical formalism of quantum theory has instead been successful in capturing these phenomena such as graded membership, situational meaning, composition of categories, and also more complex decision making situations, which cannot be modeled in traditional probabilistic approaches. We show how a formal quantum approach to concepts and their combinations can provide a powerful extension of prototype theory. We explain how prototypes can interfere in conceptual combinations as a consequence of their contextual interactions, and provide an illustration of this using an intuitive wave-like diagram. This quantum-conceptual approach gives new life to original prototype theory, without however making it a privileged concept theory, as we explain at the end of our paper. PMID:27065436
Generalizing Prototype Theory: A Formal Quantum Framework
Directory of Open Access Journals (Sweden)
Diederik eAerts
2016-03-01
Full Text Available Theories of natural language and concepts have been unable to model the flexibility, creativity, context-dependence, and emergence, exhibited by words, concepts and their combinations. The mathematical formalism of quantum theory has instead been successful in capturing these phenomena such as graded membership, situational meaning, composition of categories, and also more complex decision making situations, which cannot be modeled in traditional probabilistic approaches. We show how a formal quantum approach to concepts and their combinations can provide a powerful extension of prototype theory. We explain how prototypes can interfere in conceptual combinations as a consequence of their contextual interactions, and provide an illustration of this using an intuitive wave-like diagram. This quantum-conceptual approach gives new life to original prototype theory, without however making it a privileged concept theory, as we explain at the end of our paper.
70 years of the general theory of relativity
International Nuclear Information System (INIS)
Castro Diaz-Balart, F.; Cabezas Solorzano, R.
1986-06-01
In view of the 70th anniversary of the discovery of the General Theory of Relativity, an analysis was made of the special and general theories. The basic postulates, their consequences in the formulation of the theories, the main results, some aspects related to the experimental verification and its applications are presented, as are some elements of the mathematical formalism of the theories, to facilitate the logical interrelationships between its results and consequences. (author)
Towards a General Theory of Immunity?
Eberl, Gérard; Pradeu, Thomas
2018-04-01
Theories are indispensable to organize immunological data into coherent, explanatory, and predictive frameworks. We propose to combine different models to develop a unifying theory of immunity which situates immunology in the wider context of physiology. We believe that the immune system will be increasingly understood as a central component of a network of partner physiological systems that interconnect to maintain homeostasis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jaeger, Johannes; Irons, David; Monk, Nick
2008-10-01
Positional specification by morphogen gradients is traditionally viewed as a two-step process. A gradient is formed and then interpreted, providing a spatial metric independent of the target tissue, similar to the concept of space in classical mechanics. However, the formation and interpretation of gradients are coupled, dynamic processes. We introduce a conceptual framework for positional specification in which cellular activity feeds back on positional information encoded by gradients, analogous to the feedback between mass-energy distribution and the geometry of space-time in Einstein's general theory of relativity. We discuss how such general relativistic positional information (GRPI) can guide systems-level approaches to pattern formation.
Probability measures on metric spaces
Parthasarathy, K R
2005-01-01
In this book, the author gives a cohesive account of the theory of probability measures on complete metric spaces (which is viewed as an alternative approach to the general theory of stochastic processes). After a general description of the basics of topology on the set of measures, the author discusses regularity, tightness, and perfectness of measures, properties of sampling distributions, and metrizability and compactness theorems. Next, he describes arithmetic properties of probability measures on metric groups and locally compact abelian groups. Covered in detail are notions such as decom
MACCIA, ELIZABETH S.; AND OTHERS
AN ANNOTATED BIBLIOGRAPHY OF 20 ITEMS AND A DISCUSSION OF ITS SIGNIFICANCE WAS PRESENTED TO DESCRIBE CURRENT UTILIZATION OF SUBJECT THEORIES IN THE CONSTRUCTION OF AN EDUCATIONAL THEORY. ALSO, A THEORY MODEL WAS USED TO DEMONSTRATE CONSTRUCTION OF A SCIENTIFIC EDUCATIONAL THEORY. THE THEORY MODEL INCORPORATED SET THEORY (S), INFORMATION THEORY…
Magnetized cosmological models in bimetric theory of gravitation
Indian Academy of Sciences (India)
Introduction. A new theory of gravitation, called the bimetric theory of gravitation, was proposed by Rosen [1] to modify the Einstein's general theory of relativity by assuming two metric tensors, viz., a Riemannian metric tensor gij and a background metric tensor fij. The metric tensor gij determines the Riemannian geometry of ...
The general theory of convolutional codes
Mceliece, R. J.; Stanley, R. P.
1993-01-01
This article presents a self-contained introduction to the algebraic theory of convolutional codes. This introduction is partly a tutorial, but at the same time contains a number of new results which will prove useful for designers of advanced telecommunication systems. Among the new concepts introduced here are the Hilbert series for a convolutional code and the class of compact codes.
General Theory versus ENA Theory: Comparing Their Predictive Accuracy and Scope.
Ellis, Lee; Hoskin, Anthony; Hartley, Richard; Walsh, Anthony; Widmayer, Alan; Ratnasingam, Malini
2015-12-01
General theory attributes criminal behavior primarily to low self-control, whereas evolutionary neuroandrogenic (ENA) theory envisions criminality as being a crude form of status-striving promoted by high brain exposure to androgens. General theory predicts that self-control will be negatively correlated with risk-taking, while ENA theory implies that these two variables should actually be positively correlated. According to ENA theory, traits such as pain tolerance and muscularity will be positively associated with risk-taking and criminality while general theory makes no predictions concerning these relationships. Data from Malaysia and the United States are used to test 10 hypotheses derived from one or both of these theories. As predicted by both theories, risk-taking was positively correlated with criminality in both countries. However, contrary to general theory and consistent with ENA theory, the correlation between self-control and risk-taking was positive in both countries. General theory's prediction of an inverse correlation between low self-control and criminality was largely supported by the U.S. data but only weakly supported by the Malaysian data. ENA theory's predictions of positive correlations between pain tolerance, muscularity, and offending were largely confirmed. For the 10 hypotheses tested, ENA theory surpassed general theory in predictive scope and accuracy. © The Author(s) 2014.
A Metrical Theory of Stress and Destressing in English and Dutch
Kager, R.W.J.
1989-01-01
The topic of this study is word stress, more specifically the relation between rules of stress and destressing within the framework of metrical phonology. Our claims will be largely based on in-depth analyses of two word stress systems: those of English and Dutch. We intend to offer a
Client-Controlled Case Information: A General System Theory Perspective
Fitch, Dale
2004-01-01
The author proposes a model for client control of case information via the World Wide Web built on principles of general system theory. It incorporates the client into the design, resulting in an information structure that differs from traditional human services information-sharing practices. Referencing general system theory, the concepts of…
General Open Systems Theory and the Substrata-Factor Theory of Reading.
Kling, Martin
This study was designed to extend the generality of the Substrata-Factor Theory by two methods of investigation: (1) theoretically, to est"blish the validity of the hypothesis that an isomorphic relationship exists between the Substrata-Factor Theory and the General Open Systems Theory, and (2) experimentally, to disc"ver through a…
Energy Technology Data Exchange (ETDEWEB)
Ferrari, Frank, E-mail: frank.ferrari@ulb.ac.be [Service de Physique Theorique et Mathematique, Universite Libre de Bruxelles and International Solvay Institutes, Campus de la Plaine, CP 231, 1050 Bruxelles (Belgium); Klevtsov, Semyon, E-mail: semyon.klevtsov@ulb.ac.be [Service de Physique Theorique et Mathematique, Universite Libre de Bruxelles and International Solvay Institutes, Campus de la Plaine, CP 231, 1050 Bruxelles (Belgium); ITEP, B. Cheremushkinskaya 25, Moscow 117218 (Russian Federation); Zelditch, Steve, E-mail: zelditch@math.northwestern.edu [Department of Mathematics, Northwestern University, Evanston, IL 60208 (United States)
2013-04-01
The purpose of this article is to propose a new method to define and calculate path integrals over metrics on a Kaehler manifold. The main idea is to use finite dimensional spaces of Bergman metrics, as an approximation to the full space of Kaehler metrics. We use the theory of large deviations to decide when a sequence of probability measures on the spaces of Bergman metrics tends to a limit measure on the space of all Kaehler metrics. Several examples are considered.
International Nuclear Information System (INIS)
Adler, S.L.; Lieberman, J.
1978-01-01
We reanalyze the problem of regularization of the stress-energy tensor for massless vector particles propating in a general background metric, using covariant point separation techniques applied to the Hadamard elementary solution. We correct an error, point out by Wald, in the earlier formulation of Adler, Lieberman, and Ng, and find a stress-energy tensor trace anomaly agreeing with that found by other regularization methods
The space-time of the bimetric general relativity theory
International Nuclear Information System (INIS)
Rosen, N.
1986-01-01
Previously, the author presented a report on the bimetric general relativity theory. Here he describes recent developments in this theory and discusses the space-time of the theory. The purpose of developing the bimetric general relativity theory is to try to remove some of the singularities that are present in the usual general relativity theory, such as those in cosmological models and in Schwarzschild solution. This is done by incorporating into the foundations of the theory the existence of a fundamental rest-frame in the universe. The author investigates the case of a completely collapsed star by considering the simplest equation of state which corresponds to Schwarzschild's interior solution of Einstein's equations
A framework for phase and interference in generalized probabilistic theories
International Nuclear Information System (INIS)
Garner, Andrew J P; Dahlsten, Oscar C O; Vedral, Vlatko; Nakata, Yoshifumi; Murao, Mio
2013-01-01
Phase plays a crucial role in many quantum effects including interference. Here we lay the foundations for the study of phase in probabilistic theories more generally. Phase is normally defined in terms of complex numbers that appear when representing quantum states as complex vectors. Here we give an operational definition whereby phase is instead defined in terms of measurement statistics. Our definition is phrased in terms of the operational framework known as generalized probabilistic theories or the convex framework. The definition makes it possible to ask whether other theories in this framework can also have phase. We apply our definition to investigate phase and interference in several example theories: classical probability theory, a version of Spekkens' toy model, quantum theory and box-world. We find that phase is ubiquitous; any non-classical theory can be said to have non-trivial phase dynamics. (paper)
Bagger-Lambert Theory for General Lie Algebras
Gomis, Jaume; Milanesi, Giuseppe; Russo, Jorge G.
2008-01-01
We construct the totally antisymmetric structure constants f^{ABCD} of a 3-algebra with a Lorentzian bi-invariant metric starting from an arbitrary semi-simple Lie algebra. The structure constants f^{ABCD} can be used to write down a maximally superconformal 3d theory that incorporates the expected degrees of freedom of multiple M2 branes, including the "center-of-mass" mode described by free scalar and fermion fields. The gauge field sector reduces to a three dimensional BF term, which under...
General relativity theory and relativistic astrophysics
International Nuclear Information System (INIS)
Straumann, N.
1981-01-01
The topics of the monograph are: differential geometry in general relativity, the equivalence principle, the Einstein field equations, the Schwarzschild solution and classical tests, weak fields, the post-newtonian approximation, neutron stars and rotating black holes and binary X-ray sources. (WL)
Candelas, Philip; de la Ossa, Xenia; McOrist, Jock
2017-12-01
Heterotic vacua of string theory are realised, at large radius, by a compact threefold with vanishing first Chern class together with a choice of stable holomorphic vector bundle. These form a wide class of potentially realistic four-dimensional vacua of string theory. Despite all their phenomenological promise, there is little understanding of the metric on the moduli space of these. What is sought is the analogue of special geometry for these vacua. The metric on the moduli space is important in phenomenology as it normalises D-terms and Yukawa couplings. It is also of interest in mathematics, since it generalises the metric, first found by Kobayashi, on the space of gauge field connections, to a more general context. Here we construct this metric, correct to first order in {α^{\\backprime}}, in two ways: first by postulating a metric that is invariant under background gauge transformations of the gauge field, and also by dimensionally reducing heterotic supergravity. These methods agree and the resulting metric is Kähler, as is required by supersymmetry. Checking the metric is Kähler is intricate and the anomaly cancellation equation for the H field plays an essential role. The Kähler potential nevertheless takes a remarkably simple form: it is the Kähler potential of special geometry with the Kähler form replaced by the {α^{\\backprime}}-corrected hermitian form.
The general theory of quantized fields in the 1950s
International Nuclear Information System (INIS)
Wightman, A.S.
1989-01-01
This review describes developments in theoretical particle physics in the 1950s which were important in the race to develop a putative general theory of quantized fields, especially ideas that offered a mathematically rigorous theory. Basic theoretical concepts then available included the Hamiltonian formulation of quantum dynamics, canonical quantization, perturbative renormalization theory and the theory of distributions. Following a description of various important theoretical contributions of this era, the review ends with a summary of the most important contributions of axiomatic field theory to concrete physics applications. (UK)
Flexible and generalized uncertainty optimization theory and methods
Lodwick, Weldon A
2017-01-01
This book presents the theory and methods of flexible and generalized uncertainty optimization. Particularly, it describes the theory of generalized uncertainty in the context of optimization modeling. The book starts with an overview of flexible and generalized uncertainty optimization. It covers uncertainties that are both associated with lack of information and that more general than stochastic theory, where well-defined distributions are assumed. Starting from families of distributions that are enclosed by upper and lower functions, the book presents construction methods for obtaining flexible and generalized uncertainty input data that can be used in a flexible and generalized uncertainty optimization model. It then describes the development of such a model in detail. All in all, the book provides the readers with the necessary background to understand flexible and generalized uncertainty optimization and develop their own optimization model. .
A general sensitivity theory for simulations of nonlinear systems
International Nuclear Information System (INIS)
Kenton, M.A.
1981-01-01
A general sensitivity theory is developed for nonlinear lumped-parameter system simulations. The point-of-departure is general perturbation theory, which has long been used for linear systems in nuclear engineering and reactor physics. The theory allows the sensitivity of particular figures-of-merit of the system behavior to be calculated with respect to any parameter.An explicit procedure is derived for applying the theory to physical systems undergoing sudden events (e.g., reactor scrams, tank ruptures). A related problem, treating figures-of-merit defined as functions of extremal values of system variables occurring at sudden events, is handled by the same procedure. The general calculational scheme for applying the theory to numerical codes is discussed. It is shown that codes which use pre-packaged implicit integration subroutines can be augmented to include sensitivity theory: a companion set of subroutines to solve the sensitivity problem is listed. This combined system analysis code is applied to a simple model for loss of post-accident heat removal in a liquid metal-cooled fast breeder reactor. The uses of the theory for answering more general sensitivity questions are discussed. One application of the theory is to systematically determine whether specific physical processes in a model contribute significantly to the figures-of-merit. Another application of the theory is for selecting parameter values which enable a model to match experimentally observed behavior
Lederman, Linda Costigan; Rogers, Don
The two papers in this document focus on general systems theory. In her paper, Linda Lederman discusses the emergence and evolution of general systems theory, defines its central concepts, and draws some conclusions regarding the nature of the theory and its value as an epistemology. Don Rogers, in his paper, relates some of the important features…
The mathematical theory of general relativity
Katkar, L N
2014-01-01
This book is prepared for M. Sc. Students of Mathematics and Physics. The aim of writing this book is to give the reader a feeling for the necessity and beauty of the laws of general relativity. The contents of the book will attract both mathematicians and physicists which provides motivation and applications of many ideas and powerful mathematical methods of modern analysis and differential geometry. An attempt has been made to make the presentation comprehensive, rigorous and yet simple. Most calculations and transformations have been carried out in great detail. KEY FEATURE: Numerous solved examples using the well known mathematical techniques viz., the tensors and the differential forms in each chapter.
Theory of generalized Bessel functions: Pt. 2
International Nuclear Information System (INIS)
Dattoli, G.; Torre, A.; Chiccoli, C.
1991-01-01
In this paper the systematic study of the generalized Bessel functions (GBF), recently introduced and often encountered in problems of scattering for which the dipole approximation is inadequate, is continuated. The relations among different GBF are analysed and their importance for the solution of differential finite-difference equation of the Raman-Nath type is discussed. Numerical results for the first-kind cylinder GBF in the preasymptotic region and also a preliminary analysis of the asymptotic properties of the modified GBF are presented
The general theory of relativity a mathematical exposition
Das, Anadijiban
2012-01-01
The General Theory of Relativity: A Mathematical Exposition will serve readers as a modern mathematical introduction to the general theory of relativity. Throughout the book, examples, worked-out problems, and exercises (with hints and solutions) are furnished. Topics in this book include, but are not limited to: • tensor analysis • the special theory of relativity • the general theory of relativity and Einstein’s field equations • spherically symmetric solutions and experimental confirmations • static and stationary space-time domains • black holes • cosmological models • algebraic classifications and the Newman-Penrose equations • the coupled Einstein-Maxwell-Klein-Gordon equations • appendices covering mathematical supplements and special topics Mathematical rigor, yet very clear presentation of the topics make this book a unique text for both university students and research scholars. Anadijiban Das has taught courses on Relativity Theory at The University College of Dublin, Irelan...
General algebraic theory of identical particle scattering
International Nuclear Information System (INIS)
Bencze, G.; Redish, E.F.
1978-01-01
We consider the nonrelativistic N-body scattering problem for a system of particles in which some subsets of the particles are identical. We demonstrate how the particle identity can be included in a general class of linear integral equations for scattering operators or components of scattering operators. The Yakubovskii, Yakubovskii--Narodestkii, Rosenberg, and Bencze--Redish--Sloan equations are included in this class. Algebraic methods are used which rely on the properties of the symmetry group of the system. Operators depending only on physically distinguishable labels are introduced and linear integral equations for them are derived. This procedure maximally reduces the number of coupled equations while retaining the connectivity properties of the original equations
Massless and massive quanta resulting from a mediumlike metric tensor
International Nuclear Information System (INIS)
Soln, J.
1985-01-01
A simple model of the ''primordial'' scalar field theory is presented in which the metric tensor is a generalization of the metric tensor from electrodynamics in a medium. The radiation signal corresponding to the scalar field propagates with a velocity that is generally less than c. This signal can be associated simultaneously with imaginary and real effective (momentum-dependent) masses. The requirement that the imaginary effective mass vanishes, which we take to be the prerequisite for the vacuumlike signal propagation, leads to the ''spontaneous'' splitting of the metric tensor into two distinct metric tensors: one metric tensor gives rise to masslesslike radiation and the other to a massive particle. (author)
General Strain Theory, Peer Rejection, and Delinquency/Crime
Higgins, George E.; Piquero, Nicole L.; Piquero, Alex R.
2011-01-01
The development of general strain theory (GST) has led to a renewed focus on the influence of negative life experiences on antisocial behavior. Although a number of studies have generated an impressive array of support for the theory, several avenues remain open for research. In this article, we examine how a specific noxious stimuli, peer…
General Systems Theory Approaches to Organizations: Some Problems in Application
Peery, Newman S., Jr.
1975-01-01
Considers the limitations of General Systems Theory (GST) as a major paradigm within administrative theory and concludes that most systems formulations overemphasize growth and show little appreciation for intraorganizational conflict, diversity of values, and political action within organizations. Suggests that these limitations are mainly due to…
Get with the System: General Systems Theory for Business Officials.
Graczyk, Sandra L.
1993-01-01
An introduction to general systems theory and an overview of vocabulary and concepts are presented to introduce school business officials to systems thinking and to foster its use as an analytical tool. The theory is then used to analyze a sample problem: planning changes to a district's administrative computer system. (eight references) (MLF)
Gravitational duality in General Relativity and Supergravity theories
Energy Technology Data Exchange (ETDEWEB)
Dehouck, F. [Service de physique mathematique et interactions fondamentales. Universite Libre de Bruxelles, Campus Plaine CP-231, 1050 Bruxelles (Belgium)
2011-07-15
We quickly review the current status of gravitational duality in General Relativity. We summarize and comment some recent work on constructing dual (topological) charges and understanding how this duality acts in supergravity theories.
DSR Theories, Conformal Group and Generalized Commutation Relation
International Nuclear Information System (INIS)
Leiva, Carlos
2006-01-01
In this paper the relationship of DSR theories and Conformal Group is reviewed. On the other hand, the relation between DSR Magueijo Smolin generators and generalized commutation relations is also shown
Gauge theories under incorporation of a generalized uncertainty principle
International Nuclear Information System (INIS)
Kober, Martin
2010-01-01
There is considered an extension of gauge theories according to the assumption of a generalized uncertainty principle which implies a minimal length scale. A modification of the usual uncertainty principle implies an extended shape of matter field equations like the Dirac equation. If there is postulated invariance of such a generalized field equation under local gauge transformations, the usual covariant derivative containing the gauge potential has to be replaced by a generalized covariant derivative. This leads to a generalized interaction between the matter field and the gauge field as well as to an additional self-interaction of the gauge field. Since the existence of a minimal length scale seems to be a necessary assumption of any consistent quantum theory of gravity, the gauge principle is a constitutive ingredient of the standard model, and even gravity can be described as gauge theory of local translations or Lorentz transformations, the presented extension of gauge theories appears as a very important consideration.
Generalized probabilistic theories without the no-restriction hypothesis
Janotta, Peter; Lal, Raymond
2013-05-01
The framework of generalized probabilistic theories is a popular approach for studying the physical foundations of quantum theory. The standard framework assumes the no-restriction hypothesis, in which the state space of a physical theory determines the set of measurements. However, this assumption is not physically motivated. We generalize the framework to account for systems that do not obey the no-restriction hypothesis. We then show how our framework can be used to describe certain classes of probabilistic theories, for example, those which include intrinsic noise. Relaxing the restriction hypothesis also allows us to introduce a “self-dualization” procedure, which yields a class of theories that share many features of quantum theory. We then characterize joint states, generalizing the maximal tensor product. We show how this tensor product can be used to describe the convex closure of the Spekkens toy theory, and in doing so we obtain an analysis of why it is local in terms of the geometry of its state space. We show that the unrestricted version of the Spekkens toy theory is the theory known as “boxworld” that allows maximal nonlocal correlations.
Energy Technology Data Exchange (ETDEWEB)
Lian, Jianming [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sun, Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kalsi, Karanjit [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Widergren, Steven E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wu, Di [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ren, Huiying [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2018-01-24
This document is the second of a two-part report. Part 1 reviewed several demonstrations of transactive control and compared them in terms of their payoff functions, control decisions, information privacy, and mathematical solution concepts. It was suggested in Part 1 that these four listed components should be adopted for meaningful comparison and design of future transactive systems. Part 2 proposes qualitative and quantitative metrics that will be needed to compare alternative transactive systems. It then uses the analysis and design principles from Part 1 while conducting more in-depth analysis of two transactive demonstrations: the American Electric Power (AEP) gridSMART Demonstration, which used a double –auction market mechanism, and a consensus method like that used in the Pacific Northwest Smart Grid Demonstration. Ultimately, metrics must be devised and used to meaningfully compare alternative transactive systems. One significant contribution of this report is an observation that the decision function used for thermostat control in the AEP gridSMART Demonstration has superior performance if its decision function is recast to more accurately reflect the power that will be used under for thermostatic control under alternative market outcomes.
Generalized Parton Distributions in chiral perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Kivel, Nikolai; Polyakov, Maxim; Vladimirov, Aleksey [Ruhr Universitaet, Bochum (Germany)
2009-07-01
We used {chi}PT approach to study the small-t behavior of the Generalized Parton Distributions (GPDs). We demonstrate that in the region of Bjorken x{sub Bj}{proportional_to}m{sub {pi}}{sup 2}/(4{pi}F{sub {pi}}){sup 2} and/or x{sub Bj}{proportional_to} vertical stroke t vertical stroke /(4{pi}F{sub {pi}}){sup 2} the standard {chi}PT for the pion GPDs is not sufficient and one must perform all order resummation of {chi}PT. We develop the technique in order to sum the problematic contributions with the leading logarithmic accuracy. We apply this approach for the pion GPDs and compute their behavior at the region of small-x{sub Bj}. Explicit resummation allows us to reveal novel phenomena - the form of the leading chiral correction to pion PDFs and GPDs depends on the small x asymptotic of the pion PDFs. In particular, if the pion PDF in the chiral limit has the Regge-like small x behaviour q(x){proportional_to}1/x{sup {omega}}, the leading large impact parameter (b {sub perpendicular} {sub to} {yields}{infinity}) asymptotics of the quark distribution in the transverse plane has the form (m{sub {pi}}=0) q(x,b {sub perpendicular} {sub to}){proportional_to}1/x{sup {omega}} ln{sup {omega}}(b {sub perpendicular} {sub to} {sup 2})/b {sub perpendicular} {sub to} {sup 2(1+{omega})}. This result is model independent and it is controlled completely by the all order resummed {chi}PT.
Do People Use Their Implicit Theories of Creativity as General Theories?
Lee, Hong; Kim, Jungsik; Ryu, Yeonjae; Song, Seokjong
2015-01-01
This study examines whether people use the general implicit theories of creativity or not when applying them to themselves and others. On the basis of the actor-observer asymmetry theory, the authors propose that conception of creativity would be differently constructed depending on the targets of attention: general, self, and other. Three studies…
On the mathematical theory of classical fields and general relativity
Klainerman, S
1993-01-01
From the perspective of an analyst, like myself, the General Theory of Relativity provides an extrordinary rich and vastly virgin territory. It is the aim of my lecture to provide, ﬁrst, an account of those aspects of the theory which attract me most and second a perspective of what has been accomplished so far in that respect. In trying to state our main objectives it helps to view General Relativity in the broader context of Classical Field Theory. EinsteiniVacuum equations, or shortly E—V, is already sufﬁciently complicated. I will thus restrict my attention to them.
Implementation of static generalized perturbation theory for LWR design applications
International Nuclear Information System (INIS)
Byron, R.F.; White, J.R.
1987-01-01
A generalized perturbation theory (GPT) formulation is developed for application to light water reactor (LWR) design. The extensions made to standard generalized perturbation theory are the treatment of thermal-hydraulic and fission product poisoning feedbacks, and criticality reset. This formulation has been implemented into a standard LWR design code. The method is verified by comparing direct calculations with GPT calculations. Data are presented showing that feedback effects need to be considered when using GPT for LWR problems. Some specific potential applications of this theory to the field of LWR design are discussed
Quantising general relativity using QED theory, an overview and extension
Bell, Sarah B. M.
2004-01-01
We summarise and discuss some of our previous results, which show that Bohr's theory of the one-electron atom may be derived from the theory underpinning Quantum ElectroDynamics (QED) or vice versa, and that General Relativity may also be derived from QED theory in the classical limit, if we use Newtonian mechanics in the right frame and self-similar tesseral hierarchies. We circumvent Newton's arguments against Descartes' vortex theory to show that the inverse square law for a force combined...
Bitopological spaces theory, relations with generalized algebraic structures and applications
Dvalishvili, Badri
2005-01-01
This monograph is the first and an initial introduction to the theory of bitopological spaces and its applications. In particular, different families of subsets of bitopological spaces are introduced and various relations between two topologies are analyzed on one and the same set; the theory of dimension of bitopological spaces and the theory of Baire bitopological spaces are constructed, and various classes of mappings of bitopological spaces are studied. The previously known results as well the results obtained in this monograph are applied in analysis, potential theory, general topology, a
Sp(2) covariant quantisation of general gauge theories
International Nuclear Information System (INIS)
Vazquez-Bello, J.L.
1994-11-01
The Sp(2) covariant quantization of gauge theories is studied. The geometrical interpretation of gauge theories in terms of quasi principal fibre bundles Q(M s , G s ) is reviewed. It is then described the Sp(2) algebra of ordinary Yang-Mills theory. A consistent formulation of covariant Lagrangian quantisation for general gauge theories based on Sp(2) BRST symmetry is established. The original N = 1, ten dimensional superparticle is considered as an example of infinitely reducible gauge algebras, and given explicitly its Sp(2) BRST invariant action. (author). 18 refs
Whiteheadian approach to quantum theory and the generalized bell's theorem
International Nuclear Information System (INIS)
Stapp, H.P.
1979-01-01
The model of the world proposed by Whitehead provides a natural theoretical framework in which to imbed quantum theory. This model accords with the ontological ideas of Heisenberg, and also with Einstein's view that physical theories should refer nominally to the objective physical situation, rather than our knowledge of that system. Whitehead imposed on his model the relativistic requirement that what happens in any given spacetime region be determined only by what has happened in its absolute past, i.e., in the backward light-cone drawn from that region. This requirement must be modified, for it is inconsistent with the implications of quantum theory expressed by a generalized version of Bell's theorem. Revamping the causal spacetime structure of the Whitehead-Heisenberg ontology to bring it into accord with the generalized Bell's theorem creates the possibility of a nonlocal causal covariant theory that accords with the statistical prediction of quantum theory
Daenzer, Calder
2013-08-01
We incorporate metric data into the framework of Tannaka-Krein duality. Thus, for any group with left invariant metric, we produce a dual metric on its category of unitary representations. We characterize the conditions under which a "double-dual" metric on the group may be recovered from the metric on representations, and provide conditions under which a metric agrees with its double-dual. We also explore a diverse class of possible applications of the theory, including applications to T-duality and to quantum Gromov-Hausdorff distance.
General Theory of Relativity-The Power of Speculative Thought
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 4. General Theory of Relativity – The Power of Speculative Thought. Asit Banerjee. General Article Volume 11 Issue 4 April 2006 pp 45-55. Fulltext. Click here to view fulltext PDF. Permanent link:
Theory of mind: A foundational component of human general intelligence.
Estes, David; Bartsch, Karen
2017-01-01
To understand the evolution of general intelligence, Burkart et al. endorse a "cultural intelligence approach," which emphasizes the critical importance of social interaction. We argue that theory of mind provides an essential foundation and shared perspective for the efficient ontogenetic transmission of crucial knowledge and skills during human development and, together with language, can account for superior human general intelligence.
On the relation of the theoretical foundations of quantum theory and general relativity theory
International Nuclear Information System (INIS)
Kober, Martin
2010-01-01
The specific content of the present thesis is presented in the following way. First the most important contents of quantum theory and general relativity theory are presented. In connection with the general relativity theory the mathematical property of the diffeomorphism invariance plays the deciding role, while concerning the quantum theory starting from the Copenhagen interpretation first the measurement problem is treated, before basing on the analysis of concrete phenomena and the mathematical apparatus of quantum theory the nonlocality is brought into focus as an important property. This means that both theories suggest a relationalistic view of the nature of the space. This analysis of the theoretical foundations of quantum theory and general relativity theory in relation to the nature of the space obtains only under inclusion of Kant's philosophy and his analysis of the terms space and time as fundamental forms of perception its full persuasive power. Then von Weizsaeckers quantum theory of the ur-alternatives is presented. Finally attempts are made to apply the obtained knowledge to the question of the quantum-theoretical formulation of general relativity theory.
Directory of Open Access Journals (Sweden)
Madjid Mirzavaziri
2010-11-01
Full Text Available In this paper we introduce the notion of an ℱ-metric, as a function valued distance mapping, on a set X and we investigate the theory of ℱ-metrics paces. We show that every metric space may be viewed as an F-metric space and every ℱ-metric space (X,δ can be regarded as a topological space (X,τδ. In addition, we prove that the category of the so-called extended F-metric spaces properly contains the category of metric spaces. We also introduce the concept of an `ℱ-metric space as a completion of an ℱ-metric space and, as an application to topology, we prove that each normal topological space is `ℱ-metrizable.
The formalism of the general theory of relativity as a theory of interaction
International Nuclear Information System (INIS)
Gottlieb, I.
1980-01-01
It is postulated that the formalism of the general theory of relativity can be used as a theory of interaction starting from Hamilton's principle with Lagrange's function. In the case of the pure gravitational field we meet again a theory of gravitation which gives all the basic tests of the general theory of relativity. In the case of the pure electromagnetic field, the basic equations are given. The motion of a ''free'' electron in the space curved by the electrostatic field of the nucleus is given as an application, employing Dirac's equation and Tetrode-Fock formalism. (author)
Bagger-Lambert theory for general Lie algebras
International Nuclear Information System (INIS)
Gomis, Jaume; Milanesi, Giuseppe; Russo, Jorge G.
2008-01-01
We construct the totally antisymmetric structure constants f ABCD of a 3-algebra with a Lorentzian bi-invariant metric starting from an arbitrary semi-simple Lie algebra. The structure constants f ABCD can be used to write down a maximally superconformal 3d theory that incorporates the expected degrees of freedom of multiple M2 branes, including the 'center-of-mass' mode described by free scalar and fermion fields. The gauge field sector reduces to a three dimensional BF term, which underlies the gauge symmetry of the theory. We comment on the issue of unitarity of the quantum theory, which is problematic, despite the fact that the specific form of the interactions prevent the ghost fields from running in the internal lines of any Feynman diagram. Giving an expectation value to one of the scalar fields leads to the maximally supersymmetric 3d Yang-Mills Lagrangian with the addition of two U(1) multiplets, one of them ghost-like, which is decoupled at large g YM .
Analysis of General Power Counting Rules in Effective Field Theory
Gavela, B M; Manohar, A V; Merlo, L
2016-01-01
We derive the general counting rules for a quantum effective field theory (EFT) in $\\mathsf{d}$ dimensions. The rules are valid for strongly and weakly coupled theories, and predict that all kinetic energy terms are canonically normalized. They determine the energy dependence of scattering cross sections in the range of validity of the EFT expansion. The size of cross sections is controlled by the $\\Lambda$ power counting of EFT, not by chiral counting, even for chiral perturbation theory ($\\chi$PT). The relation between $\\Lambda$ and $f$ is generalized to $\\mathsf{d}$ dimensions. We show that the naive dimensional analysis $4\\pi$ counting is related to $\\hbar$ counting. The EFT counting rules are applied to $\\chi$PT, to Standard Model EFT and to the non-trivial case of Higgs EFT, which combines the $\\Lambda$ and chiral counting rules within a single theory.
General theory of light propagation and imaging through the atmosphere
McKechnie, T Stewart
2016-01-01
This book lays out a new, general theory of light propagation and imaging through Earth’s turbulent atmosphere. Current theory is based on the – now widely doubted – assumption of Kolmogorov turbulence. The new theory is based on a generalized atmosphere, the turbulence characteristics of which can be established, as needed, from readily measurable properties of point-object, or star, images. The pessimistic resolution predictions of Kolmogorov theory led to lax optical tolerance prescriptions for large ground-based astronomical telescopes which were widely adhered to in the 1970s and 1980s. Around 1990, however, it became clear that much better resolution was actually possible, and Kolmogorov tolerance prescriptions were promptly abandoned. Most large telescopes built before 1990 have had their optics upgraded (e.g., the UKIRT instrument) and now achieve, without adaptive optics (AO), almost an order of magnitude better resolution than before. As well as providing a more comprehensive and precise under...
Classical Belief Conditioning and its Generalization to DSm Theory
Czech Academy of Sciences Publication Activity Database
Daniel, Milan
2008-01-01
Roč. 2, č. 4 (2008), s. 267-279 ISSN 1752-8917 R&D Projects: GA AV ČR 1ET100300419 Institutional research plan: CEZ:AV0Z10300504 Keywords : belief functions * Dempster-Shafer theory * belief conditioning * DSm theory * overlapping elements * hyper-power set * DSm model Subject RIV: BA - General Mathematics http://www.worldacademicunion.com/journal/jus/jusVol02No4paper04.pdf
Chiral perturbation theory for nucleon generalized parton distributions
Energy Technology Data Exchange (ETDEWEB)
Diehl, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Manashov, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik]|[Sankt-Petersburg State Univ. (Russian Federation). Dept. of Theoretical Physics; Schaefer, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik
2006-08-15
We analyze the moments of the isosinglet generalized parton distributions H, E, H, E of the nucleon in one-loop order of heavy-baryon chiral perturbation theory. We discuss in detail the construction of the operators in the effective theory that are required to obtain all corrections to a given order in the chiral power counting. The results will serve to improve the extrapolation of lattice results to the chiral limit. (orig.)
Chiral perturbation theory for nucleon generalized parton distributions
Energy Technology Data Exchange (ETDEWEB)
Diehl, M. [Deutsches Elektronen-Synchroton DESY, Theory Group, Hamburg (Germany); Manashov, A. [Universitaet Regensburg, Institut fuer Theoretische Physik, Regensburg (Germany); Schaefer, A. [Sankt-Petersburg State University, Department of Theoretical Physics, St.-Petersburg (Russian Federation)
2006-09-15
We analyze the moments of the isosinglet generalized parton distributions H, E, H, E of the nucleon in one-loop order of heavy-baryon chiral perturbation theory. We discuss in detail the construction of the operators in the effective theory that are required to obtain all corrections to a given order in the chiral power counting. The results will serve to improve the extrapolation of lattice results to the chiral limit. (orig.)
General coupled mode theory in non-Hermitian waveguides.
Xu, Jing; Chen, Yuntian
2015-08-24
In the presence of loss and gain, the coupled mode equation on describing the mode hybridization of various waveguides or cavities, or cavities coupled to waveguides becomes intrinsically non-Hermitian. In such non-Hermitian waveguides, the standard coupled mode theory fails. We generalize the coupled mode theory with a properly defined inner product based on reaction conservation. We apply our theory to the non-Hermitian parity-time symmetric waveguides, and obtain excellent agreement with results obtained by finite element fullwave simulations. The theory presented here is typically formulated in space to study coupling between waveguides, which can be transformed into time domain by proper reformulation to study coupling between non-Hermitian resonators. Our theory has the strength of studying non-Hermitian optical systems with inclusion of the full vector fields, thus is useful to study and design non-Hermitian devices that support asymmetric and even nonreciprocal light propagations.
The Nature of the General Theory of Law
Directory of Open Access Journals (Sweden)
Trandafirescu Bogdan Cristian
2017-01-01
Full Text Available The present paper is intended to ascertain the problem of the nature of the general theory of law, is it an emanation of the philosophy of law or is it just one of the legal sciences with the only difference that it does not study a branch of the law, but the law in its entirety? It is our opinion that the general theory of law is a positivist science which has objective law as exclusive object of study and that it is part of the category of legal sciences (in opposition with the auxiliary sciences studied in law school – legal sociology, legal philosophy, criminology, criminalistics, forensic medicine, etc.. Nevertheless, the total elimination of contributions from other sciences (sociology, politology, economy, philosophy, etc. would only unjustifiably emasculate the explanations of the general theory of law.
On the relativistic generalization of Newton's gravitation theory. Part 2
International Nuclear Information System (INIS)
Donev, S.
1985-01-01
It is shown that a generalization of Newton's gravitation theory to time-dependent gravitational fields by analogy with relativistic electrodynamics leads to negative density of the gravitational field energy. A new system of nonlinear field equations is proposed and briefly discussed. Newton's theory is obtained as a linear static approximation. The density of the field energy is kept positive and well defined. Linear and nonlinear waves out of field sources are admitted. The theory thus obtained is not considered to be satisfactory since it does not describe in a natural way the light ray's deflection in an external gravitational field
Theory of functional systems and human general pathology.
Khitrov, N K; Saltykov, A B
2003-07-01
We analyze the role of the theory of functional systems for human general pathology and the necessity of integration of this theory with the concepts of pathological and ambivalent systems. Multiple (qualitatively heterogeneous) nature of system-forming factors and principle possibility of the formation of physiological, pathological, and ambivalent systems by the same factors are discussed. These theses broaden the application of the theory of functional systems as the fundamental basis for studies of informational mechanisms of vital activity under normal and pathological conditions.
On the general theory of thin airfoils for nonuniform motion
Reissner, Eric
1944-01-01
General thin-airfoil theory for a compressible fluid is formulated as boundary problem for the velocity potential, without recourse to the theory of vortex motion. On the basis of this formulation the integral equation of lifting-surface theory for an incompressible fluid is derived with the chordwise component of the fluid velocity at the airfoil as the function to be determined. It is shown how by integration by parts this integral equation can be transformed into the Biot-Savart theorem. A clarification is gained regarding the use of principal value definitions for the integral which occur. The integral equation of lifting-surface theory is used a s the starting point for the establishment of a theory for the nonstationary airfoil which is a generalization of lifting-line theory for the stationary airfoil and which might be called "lifting-strip" theory. Explicit expressions are given for section lift and section moment in terms of the circulation function, which for any given wing deflection is to be determined from an integral equation which is of the type of the equation of lifting-line theory. The results obtained are for airfoils of uniform chord. They can be extended to tapered airfoils. One of the main uses of the results should be that they furnish a practical means for the analysis of the aerodynamic span effect in the problem of wing flutter. The range of applicability of "lifting-strip" theory is the same as that of lifting-line theory so that its results may be applied to airfoils with aspect ratios as low as three.
String theory compactifications with fluxes, and generalized geometry
International Nuclear Information System (INIS)
Cassani, D.
2009-06-01
The topic of this thesis is compactifications in string theory and supergravity. We study dimensional reductions of type II theories on backgrounds with fluxes, using the techniques of Hitchin's generalized geometry. We start with an introduction of the needed mathematical tools, focusing on SU(3)xSU(3) structures on the generalized tangent bundle T+T * , and analyzing their deformations. Next we study the four dimensional N equals 2 gauged supergravity which can be defined reducing type II theories on SU(3)*SU(3) structure backgrounds with general NSNS and RR fluxes: we establish the complete bosonic action, and we show how its data are related to the generalized geometry formalism on T+T * . In particular, we derive a geometric expression for the full N = 2 scalar potential. Then we focus on the relations between the 10d and 4d descriptions of supersymmetric flux backgrounds: we spell out the N = 1 vacuum conditions within the 4d N = 2 theory, as well as from its N = 1 truncation, and we establish a precise matching with the equations characterizing the N = 1 backgrounds at the ten dimensional level. We conclude by presenting some concrete examples, based on coset spaces with SU(3) structure. We establish for these spaces the consistency of the truncation based on left-invariance, and we explore the landscape of vacua of the corresponding theory, taking string loop corrections into account. (author)
On Fixed Point Theorems in Probabilistic Metric Spaces and Applications
GoleÅ£, Ioan; GoleÅ£, IonuÅ£
2008-09-01
In [4] S. Gähler formulated an appropriate system of axioms for a distance between three points and developed a theory of 2-metric spaces. A slight enlargement of the concept of 2-metric space was given in [3], where B. C. Dhage studied so called generalized metric spaces. In the present paper we have studied contraction conditions for mappings defined on a class of probabilistic metric space and fixed point theorems for such mappings. As a particular cases we have obtain fixed point theorems for random operator and for mappings defined on deterministic metric spaces.
Keynes's theories of money and banking in the Treatise and The General Theory
John Smithin
2013-01-01
This paper identifies what seem to have been the five main issues in contention in monetary theory, both historically and in the current era, and discusses the view that J.M. Keynes took on each of them in the Treatise on Money and The General Theory. The key issues in monetary theory are the ontology of money, endogenous versus exogenous money, interest-rate determination, the choice of the monetary policy instrument, and the neutrality versus non-neutrality of money.
The Eclipse to Confirm the General Theory of Relativity
Beléndez Vázquez, Augusto
2015-01-01
One of the milestones of the science of light commemorated during this International Year of Light and Light-based Technologies is “the embedding of light in cosmology through general relativity in 1915,” that is, the celebration of the centenary of Albert Einstein’s general theory of relativity. As Adolfo de Azcárraga, president of the Spanish Royal Physics Society (RSEF), points out in his book titled Albert Einstein, His Science and His Time, Einstein’s theory contained a spectacular predi...
Distinguishing f(R) theories from general relativity by gravitational lensing effect
Energy Technology Data Exchange (ETDEWEB)
Liu, Hongguang [Beijing Normal University, Department of Physics, Beijing (China); Aix Marseille Universite et Universite de Toulon, Centre de Physique Theorique (UMR 7332), Marseille (France); Wang, Xin; Li, Haida; Ma, Yongge [Beijing Normal University, Department of Physics, Beijing (China)
2017-11-15
The post-Newtonian formulation of a general class of f(R) theories is set up in a third-order approximation. It turns out that the information of a specific form of f(R) gravity is encoded in the Yukawa potential, which is contained in the perturbative expansion of the metric components. Although the Yukawa potential is canceled in the second-order expression of the effective refraction index of light, detailed analysis shows that the difference of the lensing effect between the f(R) gravity and general relativity does appear at the third order when √(f''(0)/f{sup '}(0)) is larger than the distance d{sub 0} to the gravitational source. However, the difference between these two kinds of theories will disappear in the axially symmetric spacetime region. Therefore only in very rare case the f(R) theories are distinguishable from general relativity by gravitational lensing effect in a third-order post-Newtonian approximation. (orig.)
General Relativistic Mean Field Theory for rotating nuclei
Energy Technology Data Exchange (ETDEWEB)
Madokoro, Hideki [Kyushu Univ., Fukuoka (Japan). Dept. of Physics; Matsuzaki, Masayuki
1998-03-01
The {sigma}-{omega} model Lagrangian is generalized to an accelerated frame by using the technique of general relativity which is known as tetrad formalism. We apply this model to the description of rotating nuclei within the mean field approximation, which we call General Relativistic Mean Field Theory (GRMFT) for rotating nuclei. The resulting equations of motion coincide with those of Munich group whose formulation was not based on the general relativistic transformation property of the spinor fields. Some numerical results are shown for the yrast states of the Mg isotopes and the superdeformed rotational bands in the A {approx} 60 mass region. (author)
Reshetnyak, A. A.
2003-01-01
In the framework of started in Ref.[1] construction procedure of the general superfield quantization method for gauge theories in Lagrangian formalism the rules for Hamiltonian formulation of general superfield theory of fields (GSTF) are introduced and are on the whole considered. Mathematical means developed in [1] for Lagrangian formulation of GSTF are extended to use in Hamiltonian one. Hamiltonization for Lagrangian formulation of GSTF via Legendre transform of superfunction $S_{L}\\bigl(...
The dynamics of metric-affine gravity
International Nuclear Information System (INIS)
Vitagliano, Vincenzo; Sotiriou, Thomas P.; Liberati, Stefano
2011-01-01
Highlights: → The role and the dynamics of the connection in metric-affine theories is explored. → The most general second order action does not lead to a dynamical connection. → Including higher order invariants excites new degrees of freedom in the connection. → f(R) actions are also discussed and shown to be a non- representative class. - Abstract: Metric-affine theories of gravity provide an interesting alternative to general relativity: in such an approach, the metric and the affine (not necessarily symmetric) connection are independent quantities. Furthermore, the action should include covariant derivatives of the matter fields, with the covariant derivative naturally defined using the independent connection. As a result, in metric-affine theories a direct coupling involving matter and connection is also present. The role and the dynamics of the connection in such theories is explored. We employ power counting in order to construct the action and search for the minimal requirements it should satisfy for the connection to be dynamical. We find that for the most general action containing lower order invariants of the curvature and the torsion the independent connection does not carry any dynamics. It actually reduces to the role of an auxiliary field and can be completely eliminated algebraically in favour of the metric and the matter field, introducing extra interactions with respect to general relativity. However, we also show that including higher order terms in the action radically changes this picture and excites new degrees of freedom in the connection, making it (or parts of it) dynamical. Constructing actions that constitute exceptions to this rule requires significant fine tuned and/or extra a priori constraints on the connection. We also consider f(R) actions as a particular example in order to show that they constitute a distinct class of metric-affine theories with special properties, and as such they cannot be used as representative toy
Report on the second SEMAT workshop on general theory of software engineering (GTSE 2013)
Johnson, Pontus; Ralph, Paul; Goedicke, Michael; Ng, Pan-Wei; Stol, Klaas-Jan; Smolander, Kari; Exman, Iaakov; Perry, Dewayne E
2013-01-01
peer-reviewed Software engineering needs a general theory, i.e., a theory that applies across the field and unifies existing empirical and theoretical work. General theories are common in other domains, such as physics. While many software engineering theories exist, no general theory of software engineering is evident. Consequently, this report reviews the emerging consensus on a general theory in software engineering from the Second SEMAT General Theory of Software E...
Emmy Noether on Conservation of Energy in the General Theory
Byers, Nina
2005-03-01
Emmy Noether proved two deep theorems, and their converses, on the connection between symmetries and conservation laws. The work was done following Hilbert's discovery of the Hilbert-Einstein lagrangian and his derivation of the general theory from Hamilton's principle .The failure of local energy conservation in the general theory was a problem that concerned many at that time. Noether proved theorems which solved the problem. With her characteristically deep insight and thorough analysis, she proved very general theorems that have profoundly influenced modern physics. Einstein wrote to Hilbert ``Yesterday I received from Miss Noether a very interesting paper on invariant forms. I am impressed that one can comprehend these matters from so general a viewpoint. It would not have done the old guard at Göttingen any harm had they picked up a thing or two from her..."
General time-dependent formulation of quantum scattering theory
International Nuclear Information System (INIS)
Althorpe, Stuart C.
2004-01-01
We derive and explain the key ideas behind a time-dependent formulation of quantum scattering theory, applicable generally to systems with a finite-range scattering potential. The scattering is initiated and probed by plane wave packets, which are localized just outside the range of the potential. The asymptotic limits of conventional scattering theory (initiation in the remote past; detection in the remote future) are not taken. Instead, the differential cross section (DCS) is obtained by projecting the scattered wave packet onto the probe plane wave packets. The projection also yields a time-dependent version of the DCS. Cuts through the wave packet, just as it exits the scattering potential, yield time-dependent and time-independent angular distributions that give a close-up picture of the scattering which complements the DCS. We have previously applied the theory to interpret experimental cross sections of chemical reactions [e.g., S. C. Althorpe, F. Fernandez-Alonso, B. D. Bean, J. D. Ayers, A. E. Pomerantz, R. N. Zare, and E. Wrede, Nature (London) 416, 67 (2002)]. This paper gives the derivation of the theory, and explains its relation to conventional scattering theory. For clarity, the derivation is restricted to spherical-particle scattering, though it may readily be extended to general multichannel systems. We illustrate the theory using a simple application to hard-sphere scattering
Generalized parton distributions for the nucleon in chiral perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Diehl, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Manashov, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik]|[Sankt-Petersburg State Univ. (Russian Federation). Dept. of Theoretical Physics; Schaefer, A. [Sankt-Petersburg State Univ. (Russian Federation). Dept. of Theoretical Physics
2006-11-15
We complete the analysis of twist-two generalized parton distributions of the nucleon in one-loop order of heavy-baryon chiral perturbation theory. Extending our previous study of the chiral-even isosinglet sector, we give results for chiral-even isotriplet distributions and for the chiral-odd sector. We also calculate the one-loop corrections for the chiral-odd generalized parton distributions of the pion. (orig.)
Generalized parton distributions for the nucleon in chiral perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Diehl, M. [Deutsches Elektronen-Synchroton DESY, Theory Group, Hamburg (Germany); Manashov, A. [Universitaet Regensburg, Institut fuer Theoretische Physik, Regensburg (Germany); Sankt-Petersburg State University, Department of Theoretical Physics, St.-Petersburg (Russian Federation); Schaefer, A. [Universitaet Regensburg, Institut fuer Theoretische Physik, Regensburg (Germany)
2007-03-15
We complete the analysis of twist-two generalized parton distributions of the nucleon in one-loop order of heavy-baryon chiral perturbation theory. Extending our previous study of the chiral-even isosinglet sector, we give results for chiral-even isotriplet distributions and for the chiral-odd sector. We also calculate the one-loop corrections for the chiral-odd generalized parton distributions of the pion. (orig.)
A generalization of the Ross-Thomas slope theory
Odaka, Yuji
2013-01-01
We give a formula for the Donaldson--Futaki invariants of certain type of semi test configurations, which essentially generalizes the Ross--Thomas slope theory [28]. The positivity (resp. non-negativity) of those ``a priori special'' Donaldson--Futaki invariants implies K-stability (resp. K-semistability). As an application, we prove the K-(semi)stability of certain polarized varieties with semi-log-canonical singularities, which generalizes some results of [28].
A generalization of Ross-Thomas' slope theory
Odaka, Yuji
2009-01-01
We give a formula of the Donaldson-Futaki invariants for certain type of semi test configurations, which essentially generalizes Ross-Thomas' slope theory. The positivity (resp. non-negativity) of those "a priori special" Donaldson-Futaki invariants implies K-stability (resp. K-semistability). We show its applicability by proving K-(semi)stability of certain polarized varieties with semi-log-canonical singularities, generalizing some results by Ross-Thomas.
Generalized perturbation theory using two-dimensional, discrete ordinates transport theory
International Nuclear Information System (INIS)
Childs, R.L.
1979-01-01
Perturbation theory for changes in linear and bilinear functionals of the forward and adjoint fluxes in a critical reactor has been implemented using two-dimensional discrete ordinates transport theory. The computer program DOT IV was modified to calculate the generalized functions Λ and Λ*. Demonstration calculations were performed for changes in a reaction-rate ratio and a reactivity worth caused by system perturbations. The perturbation theory predictions agreed with direct calculations to within about 2%. A method has been developed for calculating higher lambda eigenvalues and eigenfunctions using techniques similar to those developed for generalized functions. Demonstration calculations have been performed to obtain these eigenfunctions
On general-relativistic and gauge field theories
Energy Technology Data Exchange (ETDEWEB)
Treder, H.; Yourgrau, W.
1978-09-01
The fundamental open questions of general relativity theory are the unification of the gravitational field with other fields, aiming at a unifield geometrization of physics, as well as the renormalization of relativistic gravitational theory in order to obtain their self-consistent solutions. These solutions are to furnish field-theoretic particle models: a problem first discussed by Einstein. In addition, we are confronted with the issue of a coupling between gravitational and matter fields determined (not only) by Einstein's principle of equivalence, and also with the question of the geometric meaning of a gravitational quantum theory. In our view, all these problems are so closely related that they warrant a general solution. We treat mainly the concepts suggested by Einstein and Weyl.
Generalized ensemble theory with non-extensive statistics
Shen, Ke-Ming; Zhang, Ben-Wei; Wang, En-Ke
2017-12-01
The non-extensive canonical ensemble theory is reconsidered with the method of Lagrange multipliers by maximizing Tsallis entropy, with the constraint that the normalized term of Tsallis' q -average of physical quantities, the sum ∑ pjq, is independent of the probability pi for Tsallis parameter q. The self-referential problem in the deduced probability and thermal quantities in non-extensive statistics is thus avoided, and thermodynamical relationships are obtained in a consistent and natural way. We also extend the study to the non-extensive grand canonical ensemble theory and obtain the q-deformed Bose-Einstein distribution as well as the q-deformed Fermi-Dirac distribution. The theory is further applied to the generalized Planck law to demonstrate the distinct behaviors of the various generalized q-distribution functions discussed in literature.
General theory of spontaneous emission near exceptional points.
Pick, Adi; Zhen, Bo; Miller, Owen D; Hsu, Chia W; Hernandez, Felipe; Rodriguez, Alejandro W; Soljačić, Marin; Johnson, Steven G
2017-05-29
We present a general theory of spontaneous emission at exceptional points (EPs)-exotic degeneracies in non-Hermitian systems. Our theory extends beyond spontaneous emission to any light-matter interaction described by the local density of states (e.g., absorption, thermal emission, and nonlinear frequency conversion). Whereas traditional spontaneous-emission theories imply infinite enhancement factors at EPs, we derive finite bounds on the enhancement, proving maximum enhancement of 4 in passive systems with second-order EPs and significantly larger enhancements (exceeding 400×) in gain-aided and higher-order EP systems. In contrast to non-degenerate resonances, which are typically associated with Lorentzian emission curves in systems with low losses, EPs are associated with non-Lorentzian lineshapes, leading to enhancements that scale nonlinearly with the resonance quality factor. Our theory can be applied to dispersive media, with proper normalization of the resonant modes.
Eu, Byung Chan
2016-01-01
This book presents the fundamentals of irreversible thermodynamics for nonlinear transport processes in gases and liquids, as well as for generalized hydrodynamics extending the classical hydrodynamics of Navier, Stokes, Fourier, and Fick. Together with its companion volume on relativistic theories, it provides a comprehensive picture of the kinetic theory formulated from the viewpoint of nonequilibrium ensembles in both nonrelativistic and, in Vol. 2, relativistic contexts. Theories of macroscopic irreversible processes must strictly conform to the thermodynamic laws at every step and in all approximations that enter their derivation from the mechanical principles. Upholding this as the inviolable tenet, the author develops theories of irreversible transport processes in fluids (gases or liquids) on the basis of irreversible kinetic equations satisfying the H theorem. They apply regardless of whether the processes are near to or far removed from equilibrium, or whether they are linear or nonlinear with respe...
Variational analysis and generalized differentiation I basic theory
Mordukhovich, Boris S
2006-01-01
Contains a study of the basic concepts and principles of variational analysis and generalized differentiation in both finite-dimensional and infinite-dimensional spaces. This title presents many applications to problems in optimization, equilibria, stability and sensitivity, control theory, economics, mechanics, and more.
Anisotropic cosmological models and generalized scalar tensor theory
Indian Academy of Sciences (India)
Abstract. In this paper generalized scalar tensor theory has been considered in the background of anisotropic cosmological models, namely, axially symmetric Bianchi-I, Bianchi-III and Kortowski–. Sachs space-time. For bulk viscous fluid, both exponential and power-law solutions have been stud- ied and some assumptions ...
Anisotropic cosmological models and generalized scalar tensor theory
Indian Academy of Sciences (India)
In this paper generalized scalar tensor theory has been considered in the background of anisotropic cosmological models, namely, axially symmetric Bianchi-I, Bianchi-III and Kortowski–Sachs space-time. For bulk viscous ﬂuid, both exponential and power-law solutions have been studied and some assumptions among the ...
Application of generalized perturbation theory to flux disadvantage factor calculations
International Nuclear Information System (INIS)
Sallam, O.H.; Akimov, I.S.; Naguib, K.; Hamouda, I.
1979-01-01
The possibility of using the generalized perturbation theory to calculate the perturbation of the flux disadvantage factors of reactor cell, resulting from the variation of the cell parameters, is studied. For simplicity the one-group diffusion approximation is considered. All necessary equations are derived for variations both of the cell dimensions. Numerical results are presented in the paper
Anmeldelse: Whitney Davis A General Theory of Visual Culture
DEFF Research Database (Denmark)
Michelsen, Anders Ib
2012-01-01
Whitney Davis bog A General Theory of Visual Culture vil utvivlsomt blive opfattet som en provokation af mange deltagere i forskningsdebatterne om visuel kultur. At basere en »generel« teori om visuel kultur – dvs. en teori, som benytter sig af termer som »visualitet« – på et kerneargument de facto...
Gender, General Strain Theory, Negative Emotions, and Disordered Eating
Piquero, Nicole Leeper; Fox, Kristan; Piquero, Alex R.; Capowich, George; Mazerolle, Paul
2010-01-01
Much of the prior work on General Strain Theory (GST) has focused on how strain and negative emotions interrelate to produce criminal--especially violent--activity. Very little research has extended GST to examine other types of non-criminal, negative behavior, such as self-harming behaviors associated with disordered eating, a traditionally…
Towards a General Theory of Bilingual Legal Lexicography
DEFF Research Database (Denmark)
Nielsen, Sandro
2003-01-01
As the need for intercultural communication in the field of law has increased, the foundation of a general theory of bilingual legal lexicography must be given priority. This paper introduces, describes and explains the elements necessary for compiling the optimal bilingual law dictionary...
What Should Instructional Designers Know about General Systems Theory?
Salisbury, David F.
1989-01-01
Describes basic concepts in the field of general systems theory (GST) and explains the relationship between instructional systems design (ISD) and GST. Benefits of integrating GST into the curriculum of ISD graduate programs are discussed, and a short bibliography on GST is included. (LRW)
An Application of General System Theory (GST) to Group Therapy.
Matthews, Charles O.
1992-01-01
Demonstrates the compatibility of General System Theory (GST) with the traditional counseling literature in explicating a therapy group's progression through Tuckman's (1965, 1977) developmental stages (forming, storming, norming, performing, and adjourning). Description uses both traditional group literature and GST concepts. (Author/NB)
Generalized information theory: aims, results, and open problems
International Nuclear Information System (INIS)
Klir, George J.
2004-01-01
The principal purpose of this paper is to present a comprehensive overview of generalized information theory (GIT): a research program whose objective is to develop a broad treatment of uncertainty-based information, not restricted to classical notions of uncertainty. After a brief overview of classical information theories, a broad framework for formalizing uncertainty and the associated uncertainty-based information of a great spectrum of conceivable types is sketched. The various theories of imprecise probabilities that have already been developed within this framework are then surveyed, focusing primarily on some important unifying principles applying to all these theories. This is followed by introducing two higher levels of the theories of imprecise probabilities: (i) the level of measuring the amount of relevant uncertainty (predictive, retrodictive, prescriptive, diagnostic, etc.) in any situation formalizable in each given theory, and (ii) the level of some methodological principles of uncertainty, which are contingent upon the capability to measure uncertainty and the associated uncertainty-based information. Various issues regarding both the measurement of uncertainty and the uncertainty principles are discussed. Again, the focus is on unifying principles applicable to all the theories. Finally, the current status of GIT is assessed and future research in the area is discussed
Directory of Open Access Journals (Sweden)
Qian Hong
2008-05-01
Full Text Available Abstract Background: Several approaches, including metabolic control analysis (MCA, flux balance analysis (FBA, correlation metric construction (CMC, and biochemical circuit theory (BCT, have been developed for the quantitative analysis of complex biochemical networks. Here, we present a comprehensive theory of linear analysis for nonequilibrium steady-state (NESS biochemical reaction networks that unites these disparate approaches in a common mathematical framework and thermodynamic basis. Results: In this theory a number of relationships between key matrices are introduced: the matrix A obtained in the standard, linear-dynamic-stability analysis of the steady-state can be decomposed as A = SRT where R and S are directly related to the elasticity-coefficient matrix for the fluxes and chemical potentials in MCA, respectively; the control-coefficients for the fluxes and chemical potentials can be written in terms of RT BS and ST BS respectively where matrix B is the inverse of A; the matrix S is precisely the stoichiometric matrix in FBA; and the matrix eAt plays a central role in CMC. Conclusion: One key finding that emerges from this analysis is that the well-known summation theorems in MCA take different forms depending on whether metabolic steady-state is maintained by flux injection or concentration clamping. We demonstrate that if rate-limiting steps exist in a biochemical pathway, they are the steps with smallest biochemical conductances and largest flux control-coefficients. We hypothesize that biochemical networks for cellular signaling have a different strategy for minimizing energy waste and being efficient than do biochemical networks for biosynthesis. We also discuss the intimate relationship between MCA and biochemical systems analysis (BSA.
Intuitionistic fuzzy metric spaces
International Nuclear Information System (INIS)
Park, Jin Han
2004-01-01
Using the idea of intuitionistic fuzzy set due to Atanassov [Intuitionistic fuzzy sets. in: V. Sgurev (Ed.), VII ITKR's Session, Sofia June, 1983; Fuzzy Sets Syst. 20 (1986) 87], we define the notion of intuitionistic fuzzy metric spaces as a natural generalization of fuzzy metric spaces due to George and Veeramani [Fuzzy Sets Syst. 64 (1994) 395] and prove some known results of metric spaces including Baire's theorem and the Uniform limit theorem for intuitionistic fuzzy metric spaces
The general class of the vacuum spherically symmetric equations of the general relativity theory
Energy Technology Data Exchange (ETDEWEB)
Karbanovski, V. V., E-mail: Karbanovski_V_V@mail.ru; Sorokin, O. M.; Nesterova, M. I.; Bolotnyaya, V. A.; Markov, V. N., E-mail: Markov_Victor@mail.ru; Kairov, T. V.; Lyash, A. A.; Tarasyuk, O. R. [Murmansk State Pedagogical University (Russian Federation)
2012-08-15
The system of the spherical-symmetric vacuum equations of the General Relativity Theory is considered. The general solution to a problem representing two classes of line elements with arbitrary functions g{sub 00} and g{sub 22} is obtained. The properties of the found solutions are analyzed.
Theory and interpretation in qualitative studies from general practice
DEFF Research Database (Denmark)
Malterud, Kirsti
2016-01-01
of the interpretative paradigm. Associations between paradigms, philosophies, methodologies and methods are examined and different strategies for theoretical commitment presented. Finally, I discuss the impact of theory for interpretation and the development of general practice knowledge. Main points: A scientific...... in qualitative analysis are presented, emphasizing substantive theories to sharpen the interpretative focus. Such approaches are clearly within reach for a general practice researcher contributing to clinical practice by doing more than summarizing what the participants talked about, without trying to become......Objective: In this article, I want to promote theoretical awareness and commitment among qualitative researchers in general practice and suggest adequate and feasible theoretical approaches. Approach: I discuss different theoretical aspects of qualitative research and present the basic foundations...
Generalized diffusion theory for calculating the neutron transport scalar flux
International Nuclear Information System (INIS)
Alcouffe, R.E.
1975-01-01
A generalization of the neutron diffusion equation is introduced, the solution of which is an accurate approximation to the transport scalar flux. In this generalization the auxiliary transport calculations of the system of interest are utilized to compute an accurate, pointwise diffusion coefficient. A procedure is specified to generate and improve this auxiliary information in a systematic way, leading to improvement in the calculated diffusion scalar flux. This improvement is shown to be contingent upon satisfying the condition of positive calculated-diffusion coefficients, and an algorithm that ensures this positivity is presented. The generalized diffusion theory is also shown to be compatible with conventional diffusion theory in the sense that the same methods and codes can be used to calculate a solution for both. The accuracy of the method compared to reference S/sub N/ transport calculations is demonstrated for a wide variety of examples. (U.S.)
Entropy and information causality in general probabilistic theories
International Nuclear Information System (INIS)
Barnum, Howard; Leifer, Matthew; Spekkens, Robert; Barrett, Jonathan; Clark, Lisa Orloff; Stepanik, Nicholas; Wilce, Alex; Wilke, Robin
2010-01-01
We investigate the concept of entropy in probabilistic theories more general than quantum mechanics, with particular reference to the notion of information causality (IC) recently proposed by Pawlowski et al (2009 arXiv:0905.2292). We consider two entropic quantities, which we term measurement and mixing entropy. In the context of classical and quantum theory, these coincide, being given by the Shannon and von Neumann entropies, respectively; in general, however, they are very different. In particular, while measurement entropy is easily seen to be concave, mixing entropy need not be. In fact, as we show, mixing entropy is not concave whenever the state space is a non-simplicial polytope. Thus, the condition that measurement and mixing entropies coincide is a strong constraint on possible theories. We call theories with this property monoentropic. Measurement entropy is subadditive, but not in general strongly subadditive. Equivalently, if we define the mutual information between two systems A and B by the usual formula I(A: B)=H(A)+H(B)-H(AB), where H denotes the measurement entropy and AB is a non-signaling composite of A and B, then it can happen that I(A:BC)< I(A:B). This is relevant to IC in the sense of Pawlowski et al: we show that any monoentropic non-signaling theory in which measurement entropy is strongly subadditive, and also satisfies a version of the Holevo bound, is informationally causal, and on the other hand we observe that Popescu-Rohrlich boxes, which violate IC, also violate strong subadditivity. We also explore the interplay between measurement and mixing entropy and various natural conditions on theories that arise in quantum axiomatics.
Gravitation experiments at Stanford. [using general relativity theory
Lipa, J. A.
1980-01-01
The experimental situation in post-Newtonian gravitation is briefly reviewed in order to reexamine the extent to which experiment supports or refutes general relativity. A description is given of the equivalence principle project, the gyroscope experiment, and the search for gravity waves. It is noted that even though some doubt has been cast on the value of the perihelion advance and the gravitational redshift as precise tests of general relativity in the past few years, many competing theories have been ruled out; in particular, the results from the Viking mission significantly reduce the credibility of the Brans-Dicke theory (Brans and Dicke, 1961). The dimensionless constant omega in this theory is now forced to exceed 50, while the value originally proposed was 6 (omega being infinity in general relativity). It is noted that the gyro experiment described is capable of putting much tighter limits on this parameter, and together with the other experiments in progress will help place gravitational theory on a firmer experimental footing.
International Nuclear Information System (INIS)
Johnson, C.R.
1985-01-01
We develop a method for finding the exact equations of structure and motion of multipole test particles in Einstein's unified field theory: the theory of the nonsymmetric field. The method is also applicable to Einstein's gravitational theory. Particles are represented by singularities in the field. The method is covariant at each step of the analysis. We also apply the method and find both in Einstein's unified field theory and in Einstein's gravitational theory the equations of structure and motion of neutral pole-dipole test particles possessing no electromagnetic multipole moments. In the case of Einstein's gravitational theory the results are the well-known equations of structure and motion of a neutral pole-dipole test particle in a given background gravitational field. In the case of Einstein's unified field theory the results are the same, providing we identify a certain symmetric second-rank tensor field appearing in Einstein's theory with the metric and gravitational field. We therefore discover not only the equations of structure and motion of a neutral test particle in Einstein's unified field theory, but we also discover what field in Einstein's theory plays the role of metric and gravitational field
Stationary waves on nonlinear quantum graphs: General framework and canonical perturbation theory
Gnutzmann, Sven; Waltner, Daniel
2016-03-01
In this paper we present a general framework for solving the stationary nonlinear Schrödinger equation (NLSE) on a network of one-dimensional wires modeled by a metric graph with suitable matching conditions at the vertices. A formal solution is given that expresses the wave function and its derivative at one end of an edge (wire) nonlinearly in terms of the values at the other end. For the cubic NLSE this nonlinear transfer operation can be expressed explicitly in terms of Jacobi elliptic functions. Its application reduces the problem of solving the corresponding set of coupled ordinary nonlinear differential equations to a finite set of nonlinear algebraic equations. For sufficiently small amplitudes we use canonical perturbation theory, which makes it possible to extract the leading nonlinear corrections over large distances.
Metric diffusion along foliations
Walczak, Szymon M
2017-01-01
Up-to-date research in metric diffusion along compact foliations is presented in this book. Beginning with fundamentals from the optimal transportation theory and the theory of foliations; this book moves on to cover Wasserstein distance, Kantorovich Duality Theorem, and the metrization of the weak topology by the Wasserstein distance. Metric diffusion is defined, the topology of the metric space is studied and the limits of diffused metrics along compact foliations are discussed. Essentials on foliations, holonomy, heat diffusion, and compact foliations are detailed and vital technical lemmas are proved to aide understanding. Graduate students and researchers in geometry, topology and dynamics of foliations and laminations will find this supplement useful as it presents facts about the metric diffusion along non-compact foliation and provides a full description of the limit for metrics diffused along foliation with at least one compact leaf on the two dimensions.
Generalized second law of thermodynamic in modified teleparallel theory
Energy Technology Data Exchange (ETDEWEB)
Zubair, M. [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); Bahamonde, Sebastian [University College London, Department of Mathematics, London (United Kingdom); Jamil, Mubasher [National University of Sciences and Technology (NUST), Department of Mathematics, School of Natural Sciences (SNS), Islamabad (Pakistan)
2017-07-15
This study is conducted to examine the validity of the generalized second law of thermodynamics (GSLT) in flat FRW for modified teleparallel gravity involving coupling between a scalar field with the torsion scalar T and the boundary term B = 2∇{sub μ}T{sup μ}. This theory is very useful, since it can reproduce other important well-known scalar field theories in suitable limits. The validity of the first and second law of thermodynamics at the apparent horizon is discussed for any coupling. As examples, we have also explored the validity of those thermodynamics laws in some new cosmological solutions under the theory. Additionally, we have also considered the logarithmic entropy corrected relation and discuss the GSLT at the apparent horizon. (orig.)
Smalley, L. L.
1983-01-01
The proper framework for testing Rastall's theory and its generalizations is in the case of non-negligible (i.e. discernible) gravitational effects such as gravity gradients. These theories have conserved integral four-momentum and angular momentum. The Nordtvedt effect then provides limits on the parameters which arise as the result of the non-zero divergence of the energy-momentum tensor.
Relativistic theory of gravitation and nonuniqueness of the predictions of general relativity theory
International Nuclear Information System (INIS)
Logunov, A.A.; Loskutov, Yu.M.
1986-01-01
It is shown that while the predictions of relativistic theory of gravitation (RTG) for the gravitational effects are unique and consistent with the experimental data available, the relevant predictions of general relativity theory are not unique. Therewith the above nonuniqueness manifests itself in some effects in the first order in the gravitational interaction constant in others in the second one. The absence in GRT of the energy-momentum and angular momentum conservation laws for the matter and gravitational field taken together and its inapplicability to give uniquely determined predictions for the gravitational phenomena compel to reject GRT as a physical theory
Beyond heat baths II: framework for generalized thermodynamic resource theories
Yunger Halpern, Nicole
2018-03-01
Thermodynamics, which describes vast systems, has been reconciled with small scales, relevant to single-molecule experiments, in resource theories. Resource theories have been used to model exchanges of energy and information. Recently, particle exchanges were modeled; and an umbrella family of thermodynamic resource theories was proposed to model diverse baths, interactions, and free energies. This paper motivates and details the family’s structure and prospective applications. How to model electrochemical, gravitational, magnetic, and other thermodynamic systems is explained. Szilárd’s engine and Landauer’s Principle are generalized, as resourcefulness is shown to be convertible not only between information and gravitational energy, but also among diverse degrees of freedom. Extensive variables are associated with quantum operators that might fail to commute, introducing extra nonclassicality into thermodynamic resource theories. An early version of this paper partially motivated the later development of noncommutative thermalization. This generalization expands the theories’ potential for modeling realistic systems with which small-scale statistical mechanics might be tested experimentally.
A General Theory of Markovian Time Inconsistent Stochastic Control Problems
DEFF Research Database (Denmark)
Björk, Tomas; Murgochi, Agatha
We develop a theory for stochastic control problems which, in various ways, are time inconsistent in the sense that they do not admit a Bellman optimality principle. We attach these problems by viewing them within a game theoretic framework, and we look for Nash subgame perfect equilibrium points....... For a general controlled Markov process and a fairly general objective functional we derive an extension of the standard Hamilton-Jacobi-Bellman equation, in the form of a system of on-linear equations, for the determination for the equilibrium strategy as well as the equilibrium value function. All known...... examples of time inconsistency in the literature are easily seen to be special cases of the present theory. We also prove that for every time inconsistent problem, there exists an associated time consistent problem such that the optimal control and the optimal value function for the consistent problem...
Relativistic thermodynamics, a Lagrangian field theory for general flows including rotation
Frønsdal, Christian
Any theory that is based on an action principle has a much greater predictive power than one that does not have such a formulation. The formulation of a dynamical theory of General Relativity, including matter, is here viewed as a problem of coupling Einstein’s theory of pure gravity to an independently chosen and well-defined field theory of matter. It is well known that this is accomplished in a most natural way when both theories are formulated as relativistic, Lagrangian field theories, as is the case with Einstein-Maxwell theory. Special matter models of this type have been available; here a more general thermodynamical model that allows for vortex flows is presented. In a wider context, the problem of subjecting hydrodynamics and thermodynamics to an action principle is one that has been pursued for at least 150 years. A solution to this problem has been known for some time, but only under the strong restriction to potential flows. A variational principle for general flows has become available. It represents a development of the Navier-Stokes-Fourier approach to fluid dynamics. The principal innovation is the recognition that two kinds of flow velocity fields are needed, one the gradient of a scalar field and the other the time derivative of a vector field, the latter closely associated with vorticity. In the relativistic theory that is presented here, the latter is the Hodge dual of an exact 3-form, well known as the notoph field of Ogievetskij and Palubarinov, the B-field of Kalb and Ramond and the vorticity field of Lund and Regge. The total number of degrees of freedom of a unary system, including the density and the two velocity fields is 4, as expected — as in classical hydrodynamics. In this paper, we do not reduce Einstein’s dynamical equation for the metric to phenomenology, which would have denied the relevance of any intrinsic dynamics for the matter sector, nor do we abandon the equation of continuity - the very soul of hydrodynamics.
Moon, Byongook; Hwang, Hye-Won; McCluskey, John D.
2011-01-01
A growing number of studies indicate the ubiquity of school bullying: It is a global concern, regardless of cultural differences. Little previous research has examined whether leading criminological theories can explain bullying, despite the commonality between bullying and delinquency. The current investigation uses longitudinal data on 655…
Magnetotail equilibrium theory - The general three-dimensional solution
Birn, J.
1987-01-01
The general magnetostatic equilibrium problem for the geomagnetic tail is reduced to the solution of ordinary differential equations and ordinary integrals. The theory allows the integration of the self-consistent magnetotail equilibrium field from the knowledge of four functions of two space variables: the neutral sheet location, the total pressure, the magnetic field strength, and the z component of the magnetic field at the neutral sheet.
Renormalization in general theories with inter-generation mixing
International Nuclear Information System (INIS)
Kniehl, Bernd A.; Sirlin, Alberto
2011-11-01
We derive general and explicit expressions for the unrenormalized and renormalized dressed propagators of fermions in parity-nonconserving theories with inter-generation mixing. The mass eigenvalues, the corresponding mass counterterms, and the effect of inter-generation mixing on their determination are discussed. Invoking the Aoki-Hioki-Kawabe-Konuma-Muta renormalization conditions and employing a number of very useful relations from Matrix Algebra, we show explicitly that the renormalized dressed propagators satisfy important physical properties. (orig.)
Stringy horizons and generalized FZZ duality in perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Giribet, Gaston [Martin Fisher School of Physics, Brandeis University,Waltham, Massachusetts 02453 (United States); Departamento de Física, Universidad de Buenos Aires FCEN-UBA and IFIBA-CONICET,Ciudad Universitaria, Pabellón I, 1428, Buenos Aires (Argentina)
2017-02-14
We study scattering amplitudes in two-dimensional string theory on a black hole bakground. We start with a simple derivation of the Fateev-Zamolodchikov-Zamolodchikov (FZZ) duality, which associates correlation functions of the sine-Liouville integrable model on the Riemann sphere to tree-level string amplitudes on the Euclidean two-dimensional black hole. This derivation of FZZ duality is based on perturbation theory, and it relies on a trick originally due to Fateev, which involves duality relations between different Selberg type integrals. This enables us to rewrite the correlation functions of sine-Liouville theory in terms of a special set of correlators in the gauged Wess-Zumino-Witten (WZW) theory, and use this to perform further consistency checks of the recently conjectured Generalized FZZ (GFZZ) duality. In particular, we prove that n-point correlation functions in sine-Liouville theory involving n−2 winding modes actually coincide with the correlation functions in the SL(2,ℝ)/U(1) gauged WZW model that include n−2 oscillator operators of the type described by Giveon, Itzhaki and Kutasov in reference https://www.doi.org/10.1007/JHEP10(2016)157. This proves the GFZZ duality for the case of tree level maximally winding violating n-point amplitudes with arbitrary n. We also comment on the connection between GFZZ and other marginal deformations previously considered in the literature.
Fuel management optimization based on generalized perturbation theory
International Nuclear Information System (INIS)
White, J.R.; Chapman, D.M.; Biswas, D.
1986-01-01
A general methodology for optimization of assembly shuffling and burnable poison (BP) loadings for LWR reload design has been developed. The uniqueness of this approach lies in the coupling of Generalized Perturbation Theory (GPT) methods and standard Integer Programming (IP) techniques. An IP algorithm can simulate the discrete nature of the fuel shuffling and BP loading problems, and the use of GPT sensitivity data provides an efficient means for modeling the behavior of the important core performance parameters. The method is extremely flexible since the choice of objective function and the number and mix of constraints depend only on the ability of GPT to determine the appropriate sensitivity functions
Generalized parton distributions for the pion in chiral perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Diehl, M.; Manashov, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik]|[Sankt-Peterburgskij Univ., St. Petersburg (Russian Federation). Kafedra Teoreticheskoj Fiziki; Schaefer, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik
2005-05-01
Generalized parton distributions provide a unified parameterization of hadron structure and allow one to combine information from many different observables. Lattice QCD calculations already provide important input to determine these distributions and hold the promise to become even more important in the future. To this end, a reliable extrapolation of lattice calculations to the physical quark and pion masses is needed. We present an analysis for the moments of generalized parton distributions of the pion in one-loop order of chiral perturbation theory. (orig.)
Generalized parton distributions for the pion in chiral perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Diehl, M. [Deutsches Elektronen-Synchroton DESY, D-22603 Hamburg (Germany); Manashov, A. [Institut fuer Theoretische Physik, Universitaet Regensburg, D-93040 Regensburg (Germany) and Department of Theoretical Physics, Sankt-Petersburg State University, St. Petersburg (Russian Federation)]. E-mail: alexander.manashov@physik.uni-regensburg.de; Schaefer, A. [Institut fuer Theoretische Physik, Universitaet Regensburg, D-93040 Regensburg (Germany)
2005-08-25
Generalized parton distributions provide a unified parameterization of hadron structure and allow one to combine information from many different observables. Lattice QCD calculations already provide important input to determine these distributions and hold the promise to become even more important in the future. To this end, a reliable extrapolation of lattice calculations to the physical quark and pion masses is needed. We present an analysis for the moments of generalized parton distributions of the pion in one-loop order of chiral perturbation theory.
Solitons and action propagation according to general relativity theory (Part two)
International Nuclear Information System (INIS)
Stavroulakis, N.
1988-01-01
The principle that actions are transmitted step by step is applied to the determination of the non-stationary external field of a pulsating spherical source. In order to carry out this plan, we need to introduce two fundamental notions, namely the gravitational disturbance and the propagation function of it, relative to the Θ(4)-invariant space-time metric. The propagation function occurs as an arbitrary function in the solution of the Einstein equations, and this enables us to define a global diffeomorphism preserving the initial and boundary conditions of the problem and transforming the space-time metric into a form, called canonical, such that, with respect to it, the propagation function reduces to the time coordinate. The solutions of the Einstein equations associated to the canonical form, which constitutes the most convenient framework for the posed problem, define in general gravitational fields with diffusion of gravitational waves. In order to obtain solutions without diffusion of gravitational waves, we have to introduce a principle taken from the theory of the classical retarded potentials [fr
Chistyakov, Vyacheslav
2015-01-01
Aimed toward researchers and graduate students familiar with elements of functional analysis, linear algebra, and general topology; this book contains a general study of modulars, modular spaces, and metric modular spaces. Modulars may be thought of as generalized velocity fields and serve two important purposes: generate metric spaces in a unified manner and provide a weaker convergence, the modular convergence, whose topology is non-metrizable in general. Metric modular spaces are extensions of metric spaces, metric linear spaces, and classical modular linear spaces. The topics covered include the classification of modulars, metrizability of modular spaces, modular transforms and duality between modular spaces, metric and modular topologies. Applications illustrated in this book include: the description of superposition operators acting in modular spaces, the existence of regular selections of set-valued mappings, new interpretations of spaces of Lipschitzian and absolutely continuous mappings, the existe...
Adaptive Metric Dimensionality Reduction
Gottlieb, Lee-Ad; Kontorovich, Aryeh; Krauthgamer, Robert
2013-01-01
We study adaptive data-dependent dimensionality reduction in the context of supervised learning in general metric spaces. Our main statistical contribution is a generalization bound for Lipschitz functions in metric spaces that are doubling, or nearly doubling. On the algorithmic front, we describe an analogue of PCA for metric spaces: namely an efficient procedure that approximates the data's intrinsic dimension, which is often much lower than the ambient dimension. Our approach thus leverag...
Arbitrary Metrics in Psychology
Blanton, Hart; Jaccard, James
2006-01-01
Many psychological tests have arbitrary metrics but are appropriate for testing psychological theories. Metric arbitrariness is a concern, however, when researchers wish to draw inferences about the true, absolute standing of a group or individual on the latent psychological dimension being measured. The authors illustrate this in the context of 2…
Generalized perturbation theory in DRAGON: application to CANDU cell calculations
International Nuclear Information System (INIS)
Courau, T.; Marleau, G.
2001-01-01
Generalized perturbation theory (GPT) in neutron transport is a means to evaluate eigenvalue and reaction rate variations due to small changes in the reactor properties (macroscopic cross sections). These variations can be decomposed in two terms: a direct term corresponding to the changes in the cross section themselves and an indirect term that takes into account the perturbations in the neutron flux. As we will show, taking into account the indirect term using a GPT method is generally straight forward since this term is the scalar product of the unperturbed generalized adjoint with the product of the variation of the transport operator and the unperturbed flux. In the case where the collision probability (CP) method is used to solve the transport equation, evaluating the perturbed transport operator involves calculating the variations in the CP matrix for each change in the reactor properties. Because most of the computational effort is dedicated to the CP matrix calculation the gains expected form the GPT method would therefore be annihilated. Here we will present a technique to approximate the variations in the CP matrices thereby replacing the variations in the transport operator with source term variations. We will show that this approximation yields errors fully compatible with the standard generalized perturbation theory errors. Results for 2D CANDU cell calculations will be presented. (author)
On the role of the equivalence principle in the general relativity theory
International Nuclear Information System (INIS)
Gertsenshtein, M.E.; Stanyukovich, K.P.; Pogosyan, V.A.
1977-01-01
The conditions under which the solutions of the general relativity theory equations satisfy the correspondence principle are considered. It is shown that in general relativity theory, as in a plane space any systems of coordinates satisfying the topological requirements of continuity and uniqueness are admissible. The coordinate transformations must be mutually unique, and the following requirements must be met: the transformations of the coordinates xsup(i)=xsup(i)(anti xsup(k)) must preserve the class of the function, while the transformation jacobian must be finite and nonzero. The admissible metrics in the Tolmen problem for a vacuum are considered. A prohibition of the vacuum solution of the Tolmen problem is obtained from the correspondence principle. The correspondence principle is applied to the solution of the Friedmann problem by constructing a spherical symmetric self-similar solution, in which replacement of compression by expansion occurs at a finite density. The examples adduced convince that the application of the correspondence principle makes it possible to discard physically inadmissible solutions and obtained new physical results
Potential Performance Theory (PPT): A General Theory of Task Performance Applied to Morality
Trafimow, David; Rice, Stephen
2008-01-01
People can use a variety of different strategies to perform tasks and these strategies all have two characteristics in common. First, they can be evaluated in comparison with either an absolute or a relative standard. Second, they can be used at varying levels of consistency. In the present article, the authors develop a general theory of task…
A multistep general theory of transition to addiction.
Piazza, Pier Vincenzo; Deroche-Gamonet, Véronique
2013-10-01
Several theories propose alternative explanations for drug addiction. We propose a general theory of transition to addiction that synthesizes knowledge generated in the field of addiction into a unitary explanatory frame. Transition to addiction results from a sequential three-step interaction between: (1) individual vulnerability; (2) degree/amount of drug exposure. The first step, sporadic recreational drug use is a learning process mediated by overactivation of neurobiological substrates of natural rewards that allows most individuals to perceive drugs as highly rewarding stimuli. The second, intensified, sustained, escalated drug use occurs in some vulnerable individuals who have a hyperactive dopaminergic system and impaired prefrontal cortex function. Sustained and prolonged drug use induces incentive sensitization and an allostatic state that makes drugs strongly wanted and needed. Habit formation can also contribute to stabilizing sustained drug use. The last step, loss of control of drug intake and full addiction, is due to a second vulnerable phenotype. This loss-of-control-prone phenotype is triggered by long-term drug exposure and characterized by long-lasting loss of synaptic plasticity in reward areas in the brain that induce a form of behavioral crystallization resulting in loss of control of drug intake. Because of behavioral crystallization, drugs are now not only wanted and needed but also pathologically mourned when absent. This general theory demonstrates that drug addiction is a true psychiatric disease caused by a three-step interaction between vulnerable individuals and amount/duration of drug exposure.
Generalized Effective Medium Theory for Particulate Nanocomposite Materials
Siddiqui, Muhammad Usama; Arif, Abul Fazal M.
2016-01-01
The thermal conductivity of particulate nanocomposites is strongly dependent on the size, shape, orientation and dispersion uniformity of the inclusions. To correctly estimate the effective thermal conductivity of the nanocomposite, all these factors should be included in the prediction model. In this paper, the formulation of a generalized effective medium theory for the determination of the effective thermal conductivity of particulate nanocomposites with multiple inclusions is presented. The formulated methodology takes into account all the factors mentioned above and can be used to model nanocomposites with multiple inclusions that are randomly oriented or aligned in a particular direction. The effect of inclusion dispersion non-uniformity is modeled using a two-scale approach. The applications of the formulated effective medium theory are demonstrated using previously published experimental and numerical results for several particulate nanocomposites. PMID:28773817
Generalized Effective Medium Theory for Particulate Nanocomposite Materials
Directory of Open Access Journals (Sweden)
Muhammad Usama Siddiqui
2016-08-01
Full Text Available The thermal conductivity of particulate nanocomposites is strongly dependent on the size, shape, orientation and dispersion uniformity of the inclusions. To correctly estimate the effective thermal conductivity of the nanocomposite, all these factors should be included in the prediction model. In this paper, the formulation of a generalized effective medium theory for the determination of the effective thermal conductivity of particulate nanocomposites with multiple inclusions is presented. The formulated methodology takes into account all the factors mentioned above and can be used to model nanocomposites with multiple inclusions that are randomly oriented or aligned in a particular direction. The effect of inclusion dispersion non-uniformity is modeled using a two-scale approach. The applications of the formulated effective medium theory are demonstrated using previously published experimental and numerical results for several particulate nanocomposites.
Generalized Effective Medium Theory for Particulate Nanocomposite Materials.
Siddiqui, Muhammad Usama; Arif, Abul Fazal M
2016-08-13
The thermal conductivity of particulate nanocomposites is strongly dependent on the size, shape, orientation and dispersion uniformity of the inclusions. To correctly estimate the effective thermal conductivity of the nanocomposite, all these factors should be included in the prediction model. In this paper, the formulation of a generalized effective medium theory for the determination of the effective thermal conductivity of particulate nanocomposites with multiple inclusions is presented. The formulated methodology takes into account all the factors mentioned above and can be used to model nanocomposites with multiple inclusions that are randomly oriented or aligned in a particular direction. The effect of inclusion dispersion non-uniformity is modeled using a two-scale approach. The applications of the formulated effective medium theory are demonstrated using previously published experimental and numerical results for several particulate nanocomposites.
A general theory for ball lightning structure and light output
Morrow, R.
2018-03-01
A general theory for free-floating ball lightning is presented which unifies the phantom plasma ball theory involving the production of very little light, with theories for ball lightning involving light output produced by burning particles from the soil. The mechanism for the formation of plasma balls is shown to be quite general, producing very similar plasma balls independent of initial ion densities over four orders of magnitude. All that is required is an excess of positive ions in the initial ball of ions. The central plasma density after 1 s is shown to be the reciprocal of the ion neutralization coefficient for all cases, both analytically and computationally. Further, the plasma region has zero electric field in all cases. Surrounding the plasma ball is a sphere of positive ions moving away from the centre via their own space-charge field; this space-charge field, which is the same in all cases near the plasma ball, drives negative ions and negative particles towards the plasma centre. The connection with burning particle theories is the proposition that the burning particles are highly-charged which is very likely after a lightning strike. Burning negatively charged particles would be driven into the plasma ball region and trapped while any positively charged particles would be driven away. The plasma ball structure is shown to last more than 10 s and the ‘burnout time’ for a typical coal particle (as an example) has been measured at 5–10 s this is comparable with the lifetimes observed for ball lightning. The light output from a few hundred particles is estimated to be ~1 W, a typical output for ball lightning. Finally, suggestions are made for the generation of ball lightning in the laboratory.
Duality transformations for generalized WDVV in Seiberg-Witten theory
International Nuclear Information System (INIS)
Hoevenaars, L.K.
2004-01-01
In Seiberg-Witten theory the solutions to these equations come in certain classes according to the gauge group. We show that the duality transformations transform solutions within a class to another solution within the same class, by using a subset of the Picard-Fuchs equations on the Seiberg-Witten family of Riemann surfaces. The electric-magnetic duality transformations can be thought of as changes of a canonical homology basis on the surfaces which in our derivation is clearly responsible for the covariance of the generalized WDVV system
Canonical transformations and the gauge dependence in general gauge theories
International Nuclear Information System (INIS)
Voronov, B.L.; Tyutin, I.V.
1982-01-01
Gauge-invariant renormalizability is proven for a general gauge theory with an arbitrary gauge condition. It is shown that a canonical change of the variables in the initial effective action generates just a canonical change of the variables in the renormalized action and in the vertex generating functional. It is noted that the gauge condition enters the effective action as a canonical transformation. As a consequence, a change of the gauge condition is equivalent to the canonical transformation of the renormalized action and the vertex generating functional and this fact, in turn, leads to the gauge invariance of the renormalized S matrix
Nonextensive kinetic theory and H-theorem in general relativity
Santos, A. P.; Silva, R.; Alcaniz, J. S.; Lima, J. A. S.
2017-11-01
The nonextensive kinetic theory for degenerate quantum gases is discussed in the general relativistic framework. By incorporating nonadditive modifications in the collisional term of the relativistic Boltzmann equation and entropy current, it is shown that Tsallis entropic framework satisfies a H-theorem in the presence of gravitational fields. Consistency with the 2nd law of thermodynamics is obtained only whether the entropic q-parameter lies in the interval q ∈ [ 0 , 2 ] . As occurs in the absence of gravitational fields, it is also proved that the local collisional equilibrium is described by the extended Bose-Einstein (Fermi-Dirac) q-distributions.
General theory of intensity correlation on light scattering
International Nuclear Information System (INIS)
Villaeys, A.A.
1978-01-01
A general theory for spatio-temporal intensity correlations measurements for a scattered beam is developed. A completely quantum mechanical description for both excitation and detection set up is used. This description is essentially valid for weak incident light beams and single photon absorption processes. From a unified point of view both, stationary as well as, time resolved experiments are described. The interest for such experiments in the study of processes like resonance raman scattering and resonance fluorescence is emphasized. Also an observable coherent contribution associated to different final levels of the target-atoms or molecules is obtained a result which cannot be reached by intensity measurements
C-spaces, generalized geometry and double field theory
International Nuclear Information System (INIS)
Papadopoulos, G.
2015-01-01
We construct a C-space associated with every closed 3-form on a spacetime M and show that it depends on the class of the form in H 3 (M,ℤ). We also demonstrate that C-spaces have a relation to generalized geometry and to gerbes. C-spaces are constructed after introducing additional coordinates at the open sets and at their double overlaps of a spacetime generalizing the standard construction of Kaluza-Klein spaces for 2-forms. C-spaces may not be manifolds and satisfy the topological geometrization condition. Double spaces arise as local subspaces of C-spaces that cannot be globally extended. This indicates that for the global definition of double field theories additional coordinates are needed. We explore several other aspect of C-spaces like their topology and relation to Whitehead towers, and also describe the construction of C-spaces for closed k-forms.
C-spaces, generalized geometry and double field theory
Energy Technology Data Exchange (ETDEWEB)
Papadopoulos, G. [Department of Mathematics, King’s College London,Strand, London WC2R 2LS (United Kingdom)
2015-09-07
We construct a C-space associated with every closed 3-form on a spacetime M and show that it depends on the class of the form in H{sup 3}(M,ℤ). We also demonstrate that C-spaces have a relation to generalized geometry and to gerbes. C-spaces are constructed after introducing additional coordinates at the open sets and at their double overlaps of a spacetime generalizing the standard construction of Kaluza-Klein spaces for 2-forms. C-spaces may not be manifolds and satisfy the topological geometrization condition. Double spaces arise as local subspaces of C-spaces that cannot be globally extended. This indicates that for the global definition of double field theories additional coordinates are needed. We explore several other aspect of C-spaces like their topology and relation to Whitehead towers, and also describe the construction of C-spaces for closed k-forms.
General Theory of Relativity: Will It Survive the Next Decade?
Bertolami, Orfeu; Paramos, Jorge; Turyshev, Slava G.
2006-01-01
The nature of gravity is fundamental to our understanding of our own solar system, the galaxy and the structure and evolution of the Universe. Einstein's general theory of relativity is the standard model that is used for almost ninety years to describe gravitational phenomena on these various scales. We review the foundations of general relativity, discuss the recent progress in the tests of relativistic gravity, and present motivations for high-accuracy gravitational experiments in space. We also summarize the science objectives and technology needs for the laboratory experiments in space with laboratory being the entire solar system. We discuss the advances in our understanding of fundamental physics anticipated in the near future and evaluate discovery potential for the recently proposed gravitational experiments.
A Theory of the Perturbed Consumer with General Budgets
DEFF Research Database (Denmark)
McFadden, Daniel L; Fosgerau, Mogens
We consider demand systems for utility-maximizing consumers facing general budget constraints whose utilities are perturbed by additive linear shifts in marginal utilities. Budgets are required to be compact but are not required to be convex. We define demand generating functions (DGF) whose...... subgradients with respect to these perturbations are convex hulls of the utility-maximizing demands. We give necessary as well as sufficient conditions for DGF to be consistent with utility maximization, and establish under quite general conditions that utility-maximizing demands are almost everywhere single......-valued and smooth in their arguments. We also give sufficient conditions for integrability of perturbed demand. Our analysis provides a foundation for applications of consumer theory to problems with nonlinear budget constraints....
Application of Neutrosophic Set Theory in Generalized Assignment Problem
Directory of Open Access Journals (Sweden)
Supriya Kar
2015-09-01
Full Text Available This paper presents the application of Neutrosophic Set Theory (NST in solving Generalized Assignment Problem (GAP. GAP has been solved earlier under fuzzy environment. NST is a generalization of the concept of classical set, fuzzy set, interval-valued fuzzy set, intuitionistic fuzzy set. Elements of Neutrosophic set are characterized by a truth-membership function, falsity and also indeterminacy which is a more realistic way of expressing the parameters in real life problem. Here the elements of the cost matrix for the GAP are considered as neutrosophic elements which have not been considered earlier by any other author. The problem has been solved by evaluating score function matrix and then solving it by Extremum Difference Method (EDM [1] to get the optimal assignment. The method has been demonstrated by a suitable numerical example.
Einstein's general theory of relativity with modern applications in cosmology
Grøn, Øyvind
2007-01-01
Many of us have experienced the same; fallen and broken something. Yet supposedly, gravity is the weakest of the fundamental forces; it is claimed to be 10-15 times weaker than electromagnetism. Still, every one of us has more or less had a personal relationship with gravity. Einstein’s General Theory of Relativity: With Modern Applications in Cosmology by Oyvind Gron and Sigbjorn Hervik is about gravity and the concept of gravity as Albert Einstein saw it- curved spaces, four-dimensional manifolds and geodesics. The book starts with the 1st principals of relativity and an introduction to Einstein’s field equations. Next up are the three classical tests of the relativity theory and an introduction to black holes. The book contains several topics not found in other textbooks, such as Kaluza-Klein theory, anisotropic models of the universe, and new developments involving brane cosmology. Gron and Hervik have included a part in the book called "Advanced Topics." These topics range from the very edge of resea...
Efficient molecular density functional theory using generalized spherical harmonics expansions.
Ding, Lu; Levesque, Maximilien; Borgis, Daniel; Belloni, Luc
2017-09-07
We show that generalized spherical harmonics are well suited for representing the space and orientation molecular density in the resolution of the molecular density functional theory. We consider the common system made of a rigid solute of arbitrary complexity immersed in a molecular solvent, both represented by molecules with interacting atomic sites and classical force fields. The molecular solvent density ρ(r,Ω) around the solute is a function of the position r≡(x,y,z) and of the three Euler angles Ω≡(θ,ϕ,ψ) describing the solvent orientation. The standard density functional, equivalent to the hypernetted-chain closure for the solute-solvent correlations in the liquid theory, is minimized with respect to ρ(r,Ω). The up-to-now very expensive angular convolution products are advantageously replaced by simple products between projections onto generalized spherical harmonics. The dramatic gain in speed of resolution enables to explore in a systematic way molecular solutes of up to nanometric sizes in arbitrary solvents and to calculate their solvation free energy and associated microscopic solvent structure in at most a few minutes. We finally illustrate the formalism by tackling the solvation of molecules of various complexities in water.
Post-Newtonian (and higher order) observational constraints on gravitation field theories
International Nuclear Information System (INIS)
Nordtvedt, K.
1982-01-01
The empirically confirmed premise that gravity is a metric theory is accepted. The general class of all Lagrangian-based metric field theories of gravity is considered. A collection of observational tests of gravitational phenomena which points to a specific metric theory of gravity and rules out alternatives is created
General Systems Theory: Application To The Design Of Speech Communication Courses
Tucker, Raymond K.
1971-01-01
General systems theory can be applied to problems in the teaching of speech communication courses. The author describes general systems theory as it is applied to the designing, conducting and evaluation of speech communication courses. (Author/MS)
A general field-covariant formulation of quantum field theory
International Nuclear Information System (INIS)
Anselmi, Damiano
2013-01-01
In all nontrivial cases renormalization, as it is usually formulated, is not a change of integration variables in the functional integral, plus parameter redefinitions, but a set of replacements, of actions and/or field variables and parameters. Because of this, we cannot write simple identities relating bare and renormalized generating functionals, or generating functionals before and after nonlinear changes of field variables. In this paper we investigate this issue and work out a general field-covariant approach to quantum field theory, which allows us to treat all perturbative changes of field variables, including the relation between bare and renormalized fields, as true changes of variables in the functional integral, under which the functionals Z and W=lnZ behave as scalars. We investigate the relation between composite fields and changes of field variables, and we show that, if J are the sources coupled to the elementary fields, all changes of field variables can be expressed as J-dependent redefinitions of the sources L coupled to the composite fields. We also work out the relation between the renormalization of variable-changes and the renormalization of composite fields. Using our transformation rules it is possible to derive the renormalization of a theory in a new variable frame from the renormalization in the old variable frame, without having to calculate it anew. We define several approaches, useful for different purposes, in particular a linear approach where all variable changes are described as linear source redefinitions. We include a number of explicit examples. (orig.)
General theory for environmental effects on (vertical) electronic excitation energies.
Schwabe, Tobias
2016-10-21
Almost 70 years ago, the first theoretical model for environmental effects on electronic excitation energies has been derived. Since then, several different interpretations and refined models have been proposed for the perichromic shift of a chromophore due to its surrounding medium. Some of these models are contradictory. Here, the contributing terms are derived within the framework of long-range perturbation theory with the least approximations so far. The derivation is based on a state-specific interpretation of the interaction energies and all terms can be identified with individual properties of either the chromophore or the surroundings, respectively. Further, the much debated contribution due to transition moments coupled to the environment can be verified in the form of a non-resonant excitonic coupling to the dynamic polarizabilities in the environment. These general insights should clarify discussions and interpretations of environmental effects on electronic excitations and should foster the development of new models for the computation of these effects.
The linear model and hypothesis a general unifying theory
Seber, George
2015-01-01
This book provides a concise and integrated overview of hypothesis testing in four important subject areas, namely linear and nonlinear models, multivariate analysis, and large sample theory. The approach used is a geometrical one based on the concept of projections and their associated idempotent matrices, thus largely avoiding the need to involve matrix ranks. It is shown that all the hypotheses encountered are either linear or asymptotically linear, and that all the underlying models used are either exactly or asymptotically linear normal models. This equivalence can be used, for example, to extend the concept of orthogonality in the analysis of variance to other models, and to show that the asymptotic equivalence of the likelihood ratio, Wald, and Score (Lagrange Multiplier) hypothesis tests generally applies.
Huang, Yun-An; Jastorff, Jan; Van den Stock, Jan; Van de Vliet, Laura; Dupont, Patrick; Vandenbulcke, Mathieu
2018-05-15
Psychological construction models of emotion state that emotions are variable concepts constructed by fundamental psychological processes, whereas according to basic emotion theory, emotions cannot be divided into more fundamental units and each basic emotion is represented by a unique and innate neural circuitry. In a previous study, we found evidence for the psychological construction account by showing that several brain regions were commonly activated when perceiving different emotions (i.e. a general emotion network). Moreover, this set of brain regions included areas associated with core affect, conceptualization and executive control, as predicted by psychological construction models. Here we investigate directed functional brain connectivity in the same dataset to address two questions: 1) is there a common pathway within the general emotion network for the perception of different emotions and 2) if so, does this common pathway contain information to distinguish between different emotions? We used generalized psychophysiological interactions and information flow indices to examine the connectivity within the general emotion network. The results revealed a general emotion pathway that connects neural nodes involved in core affect, conceptualization, language and executive control. Perception of different emotions could not be accurately classified based on the connectivity patterns from the nodes of the general emotion pathway. Successful classification was achieved when connections outside the general emotion pathway were included. We propose that the general emotion pathway functions as a common pathway within the general emotion network and is involved in shared basic psychological processes across emotions. However, additional connections within the general emotion network are required to classify different emotions, consistent with a constructionist account. Copyright © 2018 Elsevier Inc. All rights reserved.
Slob, Wout
2017-04-01
A general theory on effect size for continuous data predicts a relationship between maximum response and within-group variation of biological parameters, which is empirically confirmed by results from dose-response analyses of 27 different biological parameters. The theory shows how effect sizes observed in distinct biological parameters can be compared and provides a basis for a generic definition of small, intermediate and large effects. While the theory is useful for experimental science in general, it has specific consequences for risk assessment: it solves the current debate on the appropriate metric for the Benchmark response in continuous data. The theory shows that scaling the BMR expressed as a percent change in means to the maximum response (in the way specified) automatically takes "natural variability" into account. Thus, the theory supports the underlying rationale of the BMR 1 SD. For various reasons, it is, however, recommended to use a BMR in terms of a percent change that is scaled to maximum response and/or within group variation (averaged over studies), as a single harmonized approach.
Directory of Open Access Journals (Sweden)
Ishak Altun
2016-01-01
Full Text Available We provide sufficient conditions for the existence of a unique common fixed point for a pair of mappings T,S:X→X, where X is a nonempty set endowed with a certain metric. Moreover, a numerical algorithm is presented in order to approximate such solution. Our approach is different to the usual used methods in the literature.
On the de Sitter and Nariai spacetimes in a generalized theory of gravitation
International Nuclear Information System (INIS)
Nariai, Hidekazu.
1985-07-01
A possibility of obtaining the de Sitter and Nariai spacetimes in a generalized theory of gravitation (which was in succession proposed by Utiyama-DeWitt, Parker-Fulling-Hu and Gurovich-Starobinski) is examined. It is shown that the generalized theory with a suitable fixation of three parameters admit both spacetimes, just like the general theory of relativity. (author)
General Theory of Relativity - The Power of Speculative Thought
Indian Academy of Sciences (India)
The only way to visualize an inertial frame is to imagine it far away from any gravitating matter. But in presence of gravitation we can make it locally inertial. That is in a very small region. We now introduce a rotating frame to show how the metric tensor changes character in a non-inertial frame around z axis (see Figure 6).
Symmetries in tetrad theories. [of gravitational fields and general relativity
Chinea, F. J.
1988-01-01
The isometry conditions for gravitational fields are given directly at the tetrad level, rather than in terms of the metric. As an illustration, an analysis of the curvature collineations and Killing fields for a twisting type-N vacuum gravitational field is made.
A general theory for radioactive processes in rare earth compounds
International Nuclear Information System (INIS)
Acevedo, R.; Meruane, T.
1998-01-01
The formal theory of radiative processes in centrosymmetric coordination compounds of the Ln X 3+ is a trivalent lanthanide ion and X -1 =Cl -1 , Br -1 ) is put forward based on a symmetry vibronic crystal field-ligand polarisation model. This research considers a truncated basis set for the intermediate states of the central metal ion and have derived general master equations to account for both the overall observed spectral intensities and the measured relative vibronic intensity distributions for parity forbidden but vibronically allowed electronic transitions. In addition, a procedure which includes the closure approximation over the intermediate electronic states is included in order to estimate quantitative crystal field contribution to the total transition dipole moments of various and selected electronic transitions. This formalism is both general and flexible and it may be employed in any electronic excitations involving f N type configurations for the rare earths in centrosymmetric co-ordination compounds in cubic environments and also in doped host crystals belonging to the space group Fm 3m. (author)
Metric Tensor Vs. Metric Extensor
Fernández, V. V.; Moya, A. M.; Rodrigues Jr, Waldyr A.
2002-01-01
In this paper we give a comparison between the formulation of the concept of metric for a real vector space of finite dimension in terms of \\emph{tensors} and \\emph{extensors}. A nice property of metric extensors is that they have inverses which are also themselves metric extensors. This property is not shared by metric tensors because tensors do \\emph{not} have inverses. We relate the definition of determinant of a metric extensor with the classical determinant of the corresponding matrix as...
Collins, William
1989-01-01
The magnetohydrodynamic wave emission from several localized, periodic, kinematically specified fluid velocity fields are calculated using Lighthill's method for finding the far-field wave forms. The waves propagate through an isothermal and uniform plasma with a constant B field. General properties of the energy flux are illustrated with models of pulsating flux tubes and convective rolls. Interference theory from geometrical optics is used to find the direction of minimum fast-wave emission from multipole sources and slow-wave emission from discontinuous sources. The distribution of total flux in fast and slow waves varies with the ratios of the source dimensions l to the acoustic and Alfven wavelengths.
Generalized fluid theory including non-Maxwellian kinetic effects
Izacard, Olivier
2017-04-01
The results obtained by the plasma physics community for the validation and the prediction of turbulence and transport in magnetized plasmas come mainly from the use of very central processing unit (CPU)-consuming particle-in-cell or (gyro)kinetic codes which naturally include non-Maxwellian kinetic effects. To date, fluid codes are not considered to be relevant for the description of these kinetic effects. Here, after revisiting the limitations of the current fluid theory developed in the 19th century, we generalize the fluid theory including kinetic effects such as non-Maxwellian super-thermal tails with as few fluid equations as possible. The collisionless and collisional fluid closures from the nonlinear Landau Fokker-Planck collision operator are shown for an arbitrary collisionality. Indeed, the first fluid models associated with two examples of collisionless fluid closures are obtained by assuming an analytic non-Maxwellian distribution function (e.g. the INMDF (Izacard, O. 2016b Kinetic corrections from analytic non-Maxwellian distribution functions in magnetized plasmas. Phys. Plasmas 23, 082504) that stands for interpreted non-Maxwellian distribution function). One of the main differences with the literature is our analytic representation of the distribution function in the velocity phase space with as few hidden variables as possible thanks to the use of non-orthogonal basis sets. These new non-Maxwellian fluid equations could initiate the next generation of fluid codes including kinetic effects and can be expanded to other scientific disciplines such as astrophysics, condensed matter or hydrodynamics. As a validation test, we perform a numerical simulation based on a minimal reduced INMDF fluid model. The result of this test is the discovery of the origin of particle and heat diffusion. The diffusion is due to the competition between a growing INMDF on short time scales due to spatial gradients and the thermalization on longer time scales. The results
On the general theory of the origins of retroviruses
Directory of Open Access Journals (Sweden)
Wayengera Misaki
2010-02-01
Full Text Available Abstract Background The order retroviridae comprises viruses based on ribonucleic acids (RNA. Some, such as HIV and HTLV, are human pathogens. Newly emerged human retroviruses have zoonotic origins. As far as has been established, both repeated infections (themselves possibly responsible for the evolution of viral mutations (Vm and host adaptability (Ha; along with interplay between inhibitors and promoters of cell tropism, are needed to effect retroviral cross-species transmissions. However, the exact modus operadi of intertwine between these factors at molecular level remains to be established. Knowledge of such intertwine could lead to a better understanding of retrovirology and possibly other infectious processes. This study was conducted to derive the mathematical equation of a general theory of the origins of retroviruses. Methods and results On the basis of an arbitrarily non-Euclidian geometrical "thought experiment" involving the cross-species transmission of simian foamy virus (sfv from a non-primate species Xy to Homo sapiens (Hs, initially excluding all social factors, the following was derived. At the port of exit from Xy (where the species barrier, SB, is defined by the Index of Origin, IO, sfv shedding is (1 enhanced by two transmitting tensors (Tt, (i virus-specific immunity (VSI and (ii evolutionary defenses such as APOBEC, RNA interference pathways, and (when present expedited therapeutics (denoted e2D; and (2 opposed by the five accepting scalars (At: (a genomic integration hot spots, gIHS, (b nuclear envelope transit (NMt vectors, (c virus-specific cellular biochemistry, VSCB, (d virus-specific cellular receptor repertoire, VSCR, and (e pH-mediated cell membrane transit, (↓pH CMat. Assuming As and Tt to be independent variables, IO = Tt/As. The same forces acting in an opposing manner determine SB at the port of sfv entry (defined here by the Index of Entry, IE = As/Tt. Overall, If sfv encounters no unforeseen effects on
General Theory of Relativity - The Power of Speculative Thought
Indian Academy of Sciences (India)
As readers would be aware,· Einstein presented his Special Theory of Relativity in 1905. It soon became clear that while this theory could en- compass mechanics and electromagnetism, grav- ity lay beyond its reach. The effort to recon- cile special relativity with Newtonian gravitation theory turned out to be exceptionally ...
Information theory as a general language for functional systems
Collier, John
2000-05-01
Function refers to a broad family of concepts of varying abstractness and range of application, from a many-one mathematical relation of great generality to, for example, highly specialized roles of designed elements in complex machines such as degaussing in a television set, or contributory processes to control mechanisms in complex metabolic pathways, such as the inhibitory function of the appropriate part of the lac-operon on the production of lactase through its action on the genome in the absence of lactose. We would like a language broad enough, neutral enough, but yet powerful enough to cover all such cases, and at the same time to give a framework form explanation both of the family resemblances and differences. General logic and mathematics are too abstract, but more importantly, too broad, whereas other discourses of function, such as the biological and teleological contexts, are too narrow. Information is especially suited since it is mathematically grounded, but also has a well-known physical interpretation through the Schrodinger/Brillouin Negentropy. Principle of Information, and an engineering or design interpretation through Shannon's communication theory. My main focus will be on the functions of autonomous anticipatory systems, but I will try to demonstrate both the connections between this notion of function and the others, especially to dynamical systems with a physical interpretation on the one side and intentional systems on the other. The former are based in concepts like force, energy and work, while the latter involve notions like representation, control and purpose, traditionally, at least in Modern times, on opposite sides of the Cartesian divide. In principle, information can be reduced to energy, but it has the advantage of being more flexible, and easier to apply to higher level phenomena.
A generalization to the Rastall theory and cosmic eras
Energy Technology Data Exchange (ETDEWEB)
Moradpour, H. [Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Heydarzade, Y.; Darabi, F. [Azarbaijan Shahid Madani University, Department of Physics, Tabriz (Iran, Islamic Republic of); Salako, Ines G. [Universite de Porto-Novo, Institut de Mathematiques et de Sciences Physiques (IMSP), 01 BP 613, Porto-Novo (Benin); Universite d' Agriculture de Ketou, Departement de Physique, BP 13, Ketou (Benin); African Institute for Mathematical Sciences(AIMS), Muizenberg (South Africa)
2017-04-15
A generalized version for the Rastall theory is proposed showing the agreement with the cosmic accelerating expansion. In this regard, a coupling between geometry and the pressureless matter fields is derived which may play the role of dark energy, responsible for the current accelerating expansion phase. Moreover, our study also shows that the radiation field may not be coupled to the geometry in a non-minimal way which represents that the ordinary energy-momentum conservation law is respected by the radiation source. It is also shown that the primary inflationary era may be justified by the ability of the geometry to couple to the energy-momentum source in an empty flat FRW universe. In fact, this ability is independent of the existence of the energy-momentum source and may compel the empty flat FRW universe to expand exponentially. Finally, we consider a flat FRW universe field by a spatially homogeneous scalar field evolving in potential V(φ), and study the results of applying the slow-roll approximation to the system which may lead to an inflationary phase for the universe expansion. (orig.)
Theory of mind and hypomanic traits in general population.
Terrien, Sarah; Stefaniak, Nicolas; Blondel, Marine; Mouras, Harold; Morvan, Yannick; Besche-Richard, Chrystel
2014-03-30
Theory of Mind (ToM) is the ability to assign a set of mental states to yourself and others. In bipolar disorders, alteration of social relationship can be explained by the impairment of the functioning of ToM. Deficit in ToM could be a trait marker of bipolar disorder and people in the general population with high hypomanic personality scores would be more likely to develop bipolar disorders. This study examined 298 participants. Measures of hypomanic personality were evaluated using the Hypomanic Personality Scale. ToM was explored using the Yoni task. Participants also completed the BDI-II. Forward multiple regressions were performed to examine the effect of components of the HPS on the total score in the ToM task. In the women's group, no subscales of the HPS were included in the model. Conversely, the analyses performed on men revealed that the mood vitality and excitement subscale was a significant predictor of ToM abilities. Our study is the first to show the impact of certain dimensions of hypomanic personality on performance in ToM in a male sample. This result supports the idea that deficits in ToM can be a trait marker of bipolar disorder in a healthy male population. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Does the General Strain Theory Explain Gambling and Substance Use?
Greco, Romy; Curci, Antonietta
2017-09-01
General Strain Theory (GST: Agnew Criminology 30:47-87, 1992) posits that deviant behaviour results from adaptation to strain and the consequent negative emotions. Empirical research on GST has mainly focused on aggressive behaviours, while only few research studies have considered alternative manifestations of deviance, like substance use and gambling. The aim of the present study is to test the ability of GST to explain gambling behaviours and substance use. Also, the role of family in promoting the adoption of gambling and substance use as coping strategies was verified. Data from 266 families with in mean 8 observations for each group were collected. The multilevel nature of the data was verified before appropriate model construction. The clustered nature of gambling data was analysed by a two-level Hierarchical Linear Model while substance use was analysed by Multivariate Linear Model. Results confirmed the effect of strain on gambling and substance use while the positive effect of depressive emotions on these behaviours was not supported. Also, the impact of family on the individual tendency to engage in addictive behaviours was confirmed only for gambling.
Cognitive performance modeling based on general systems performance theory.
Kondraske, George V
2010-01-01
General Systems Performance Theory (GSPT) was initially motivated by problems associated with quantifying different aspects of human performance. It has proved to be invaluable for measurement development and understanding quantitative relationships between human subsystem capacities and performance in complex tasks. It is now desired to bring focus to the application of GSPT to modeling of cognitive system performance. Previous studies involving two complex tasks (i.e., driving and performing laparoscopic surgery) and incorporating measures that are clearly related to cognitive performance (information processing speed and short-term memory capacity) were revisited. A GSPT-derived method of task analysis and performance prediction termed Nonlinear Causal Resource Analysis (NCRA) was employed to determine the demand on basic cognitive performance resources required to support different levels of complex task performance. This approach is presented as a means to determine a cognitive workload profile and the subsequent computation of a single number measure of cognitive workload (CW). Computation of CW may be a viable alternative to measuring it. Various possible "more basic" performance resources that contribute to cognitive system performance are discussed. It is concluded from this preliminary exploration that a GSPT-based approach can contribute to defining cognitive performance models that are useful for both individual subjects and specific groups (e.g., military pilots).
Raising Keynes: A General Theory for the 21st century
Directory of Open Access Journals (Sweden)
Stephen A. Marglin
2018-01-01
Full Text Available Keynes’s General Theory argues there is no self-regulating mechanism that guarantees full employment. Keynes’s vision has been distorted by mainstream Keynesians to mean that it is the warts on the body of capitalism, not capitalism itself, that are the problem: frictions and imperfections and rigidities may interfere with the mechanism for self-regulation that inheres in the perfectly competitive model. This distortion has two supposed corollaries, first, that the more the economy resembles the textbook model of perfect competition, the less likely are lapses from full employment; second, that since imperfections are limited to the short run, so are lapses from full employment.Keynes was unable to convince the economics profession that the problem is capitalism; that the warts, real though they are, obscure a more fundamental problem. The reason is that Keynes lacked the mathematical tools to substantiate his vision. This paper deploys tools that were unavailable to Keynes, in order to lay the foundations of a Keynesian macroeconomics for the 21st century. Keywords: Keynes, Dynamic vs static models, Flexprice adjustment, Fixprice adjustment, JEL codes: B22, B41, E12
A von Neumann algebra approach to quantum metrics
Kuperberg, Greg; Weaver, Nik
2010-01-01
We propose a new definition of quantum metric spaces, or W*-metric spaces, in the setting of von Neumann algebras. Our definition effectively reduces to the classical notion in the atomic abelian case, has both concrete and intrinsic characterizations, and admits a wide variety of tractable examples. A natural application and motivation of our theory is a mutual generalization of the standard models of classical and quantum error correction.
Toward a General Research Process for Using Dubin's Theory Building Model
Holton, Elwood F.; Lowe, Janis S.
2007-01-01
Dubin developed a widely used methodology for theory building, which describes the components of the theory building process. Unfortunately, he does not define a research process for implementing his theory building model. This article proposes a seven-step general research process for implementing Dubin's theory building model. An example of a…
International Nuclear Information System (INIS)
Ferrari, Frank; Klevtsov, Semyon; Zelditch, Steve
2013-01-01
The purpose of this article is to propose a new method to define and calculate path integrals over metrics on a Kähler manifold. The main idea is to use finite dimensional spaces of Bergman metrics, as an approximation to the full space of Kähler metrics. We use the theory of large deviations to decide when a sequence of probability measures on the spaces of Bergman metrics tends to a limit measure on the space of all Kähler metrics. Several examples are considered.
Directory of Open Access Journals (Sweden)
De Gregori M
2016-06-01
Full Text Available Manuela De Gregori,1-3,* Valeria Scotti,4,* Annalisa De Silvestri,4 Moreno Curti,4 Guido Fanelli,2,5,6 Massimo Allegri,2,5,6 Michael E Schatman,2,7 1Pain Therapy Service, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; 2Study In Multidisciplinary PAin Research Group, Parma, Italy; 3Young Against Pain Group, Parma, Italy; 4Center for Scientific Documentation and Biometry Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; 5Anesthesia, Critical Care, and Pain Medicine, Department of Surgical Sciences, University of Parma, Italy; 6Anesthesia, Intensive Care and Pain Therapy Service, Azienda Ospedaliero, Universitaria di Parma, Parma, Italy; 7US Pain Foundation, Bellevue, WA, USA *These authors contributed equally to this work. Abstract: In this study, we investigated the impact of scientific publications of the Italian SIMPAR (Study In Multidisciplinary PAin Research group by using altmetrics, defined as nontraditional metrics constituting an alternative to more traditional citation-impact metrics, such as impact factor and H-index. By correlating traditional and alternative metrics, we attempted to verify whether publications by the SIMPAR group collectively had more impact than those performed by its individual members, either in solo publications or in publications coauthored by non-SIMPAR group investigators (which for the purpose of this study we will refer to as “individual publications”. For all the 12 members of the group analyzed (pain therapists, biologists, and pharmacologists, we created Open Researcher and Contributor ID and Impact Story accounts, and synchronized these data. Manually, we calculated the level metrics for each article by dividing the data obtained from the research community by those obtained from the public community. We analyzed 759 articles, 18 of which were published by the SIMPAR group. Altmetrics demonstrated that SIMPAR group publications were more likely to be saved (77.8% vs 45.9%, discussed
Generalized BRST symmetry for arbitrary spin conformal field theory
Energy Technology Data Exchange (ETDEWEB)
Upadhyay, Sudhaker, E-mail: sudhakerupadhyay@gmail.com [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Mandal, Bhabani Prasad, E-mail: bhabani.mandal@gmail.com [Department of Physics, Banaras Hindu University, Varanasi 221005 (India)
2015-05-11
We develop the finite field-dependent BRST (FFBRST) transformation for arbitrary spin-s conformal field theories. We discuss the novel features of the FFBRST transformation in these systems. To illustrate the results we consider the spin-1 and spin-2 conformal field theories in two examples. Within the formalism we found that FFBRST transformation connects the generating functionals of spin-1 and spin-2 conformal field theories in linear and non-linear gauges. Further, the conformal field theories in the framework of FFBRST transformation are also analyzed in Batalin–Vilkovisky (BV) formulation to establish the results.
Symmetries of the dual metrics
International Nuclear Information System (INIS)
Baleanu, D.
1998-01-01
The geometric duality between the metric g μν and a Killing tensor K μν is studied. The conditions were found when the symmetries of the metric g μν and the dual metric K μν are the same. Dual spinning space was constructed without introduction of torsion. The general results are applied to the case of Kerr-Newmann metric
A Unification of G-Metric, Partial Metric, and b-Metric Spaces
Directory of Open Access Journals (Sweden)
Nawab Hussain
2014-01-01
Full Text Available Using the concepts of G-metric, partial metric, and b-metric spaces, we define a new concept of generalized partial b-metric space. Topological and structural properties of the new space are investigated and certain fixed point theorems for contractive mappings in such spaces are obtained. Some examples are provided here to illustrate the usability of the obtained results.
Exact marginality in open string field theory. A general framework
International Nuclear Information System (INIS)
Kiermaier, M.
2007-07-01
We construct analytic solutions of open bosonic string field theory for any exactly marginal deformation in any boundary conformal field theory when properly renormalized operator products of the marginal operator are given. We explicitly provide such renormalized operator products for a class of marginal deformations which include the deformations of flat D-branes in flat backgrounds by constant massless modes of the gauge field and of the scalar fields on the D-branes, the cosine potential for a space-like coordinate, and the hyperbolic cosine potential for the time-like coordinate. In our construction we use integrated vertex operators, which are closely related to finite deformations in boundary conformal field theory, while previous analytic solutions were based on unintegrated vertex operators. We also introduce a modified star product to formulate string field theory around the deformed background. (orig.)
Topics in the Foundations of General Relativity and Newtonian Gravitation Theory
Malament, David B
2012-01-01
In Topics in the Foundations of General Relativity and Newtonian Gravitation Theory, David B. Malament presents the basic logical-mathematical structure of general relativity and considers a number of special topics concerning the foundations of general relativity and its relation to Newtonian gravitation theory. These special topics include the geometrized formulation of Newtonian theory (also known as Newton-Cartan theory), the concept of rotation in general relativity, and Gödel spacetime. One of the highlights of the book is a no-go theorem that can be understood to show that there is
Generalized uncertainty principle as a consequence of the effective field theory
Energy Technology Data Exchange (ETDEWEB)
Faizal, Mir, E-mail: mirfaizalmir@gmail.com [Irving K. Barber School of Arts and Sciences, University of British Columbia – Okanagan, Kelowna, British Columbia V1V 1V7 (Canada); Department of Physics and Astronomy, University of Lethbridge, Lethbridge, Alberta T1K 3M4 (Canada); Ali, Ahmed Farag, E-mail: ahmed.ali@fsc.bu.edu.eg [Department of Physics, Faculty of Science, Benha University, Benha, 13518 (Egypt); Netherlands Institute for Advanced Study, Korte Spinhuissteeg 3, 1012 CG Amsterdam (Netherlands); Nassar, Ali, E-mail: anassar@zewailcity.edu.eg [Department of Physics, Zewail City of Science and Technology, 12588, Giza (Egypt)
2017-02-10
We will demonstrate that the generalized uncertainty principle exists because of the derivative expansion in the effective field theories. This is because in the framework of the effective field theories, the minimum measurable length scale has to be integrated away to obtain the low energy effective action. We will analyze the deformation of a massive free scalar field theory by the generalized uncertainty principle, and demonstrate that the minimum measurable length scale corresponds to a second more massive scale in the theory, which has been integrated away. We will also analyze CFT operators dual to this deformed scalar field theory, and observe that scaling of the new CFT operators indicates that they are dual to this more massive scale in the theory. We will use holographic renormalization to explicitly calculate the renormalized boundary action with counter terms for this scalar field theory deformed by generalized uncertainty principle, and show that the generalized uncertainty principle contributes to the matter conformal anomaly.
Generalized uncertainty principle as a consequence of the effective field theory
Directory of Open Access Journals (Sweden)
Mir Faizal
2017-02-01
Full Text Available We will demonstrate that the generalized uncertainty principle exists because of the derivative expansion in the effective field theories. This is because in the framework of the effective field theories, the minimum measurable length scale has to be integrated away to obtain the low energy effective action. We will analyze the deformation of a massive free scalar field theory by the generalized uncertainty principle, and demonstrate that the minimum measurable length scale corresponds to a second more massive scale in the theory, which has been integrated away. We will also analyze CFT operators dual to this deformed scalar field theory, and observe that scaling of the new CFT operators indicates that they are dual to this more massive scale in the theory. We will use holographic renormalization to explicitly calculate the renormalized boundary action with counter terms for this scalar field theory deformed by generalized uncertainty principle, and show that the generalized uncertainty principle contributes to the matter conformal anomaly.
On the relative energy associated with space-times of diagonal metrics
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 68; Issue 5 ... model of generalized diagonal metric, we consider the Einstein, Bergmann–Thomson and Landau–Lifshitz energy and/or momentum deﬁnitions both in Einstein's theory of general relativity and the teleparallel gravity (the tetrad theory of gravitation).
A general theory of macrofinance: Towards a new paradigm
Directory of Open Access Journals (Sweden)
Chen Yulu
2017-01-01
Full Text Available The 2008 international financial crisis triggered retrospection on both theory and policy, reaching a macroeconomic consensus that the financial system plays an important role in the macro economy and macroeconomic theory must be restructured to incorporate endogenous financial factors. Reflecting on the inherent flaws of traditional mainstream economics, this paper puts forward a “macrofinance” proposition as a new paradigm for macro financial analysis. As a scientific methodology based on systematic logic, the major feature of the macrofinance framework is that we must analyze the financial system as a core part of a complete and endogenous analytical framework, instead of only focusing on the money or credit. The goal of “macrofinance” is to return to scientific economic methodologies by analyzing the inherent laws of modern financial systems to set up a comprehensive theoretical framework that unifies the financial sector with the real economy and combines theory and policy practice.
Towards a General Theory of Financial Control for Organisations
Östman, Lars
2009-01-01
In this paper, a theory of accounting, control and accounting-related areas is outlined.It is based on a number of previous research-oriented books published over several decades and the author´s specific own experiences from internal and external processes with organisations in focus.Consistency and integrative power of the ideas have been tested in relation to certain books in various fields outside the core of the subject:theatre,sociology, applied systems theory,economic history, institut...
Directory of Open Access Journals (Sweden)
Borissova L.
2005-07-01
Full Text Available This research shows that gravitational waves and gravitational inertial waves are linked to a special structure of the Riemann-Christoffel curvature tensor. Proceeding from this a classification of the waves is given, according to Petrov’s classification of Einstein spaces and gravitational fields located therein. The world-lines deviation equation for two free particles (the Synge equation is deduced and that for two force- interacting particles (the Synge-Weber equation in the terms of chronometric invariants - physical observable quantities in the General Theory of Relativity. The main result drawn from the deduced equations is that in the field of a falling gravitational wave there are not only spatial deviations between the particles but also deviations in the time flow. Therefore an effect from a falling gravitational wave can manifest only if the particles located on the neighbouring world-lines (both geodesics and non- geodesics are in motion at the initial moment of time: gravitational waves can act only on moving neighbouring particles. This effect is purely parametric, not of a resonance kind. Neither free-mass detectors nor solid-body detectors (the Weber pigs used in current experiments can register gravitational waves, because the experimental statement (freezing the pigs etc. forces the particles of which they consist to be at rest. In aiming to detect gravitational waves other devices should be employed, where neighbouring particles are in relative motion at high speeds. Such a device could, for instance, consist of two parallel laser beams.
Duality transformations for generalized WDVV in Seiberg-Witten theory
Hoevenaars, L.K.
2004-01-01
In Seiberg–Witten theory the solutions to these equations come in certain classes according to the gauge group. We show that the duality transformations transform solutions within a class to another solution within the same class, by using a subset of the Picard–Fuchs equations on the Seiberg–Witten
The Impact of Labov's Contribution to general Linguistic Theory
DEFF Research Database (Denmark)
Gregersen, Frans; Cornips, Leonie
2016-01-01
evidence that empirical results stemming from variationist sociolinguistics cannot be ignored. However, the treatment has not led to an integration of variation into Chomskyan theory, nor could it. In the final section we outline what a Labovian materialist alternative to Chomskyan idealism could be. We...
Cyberbullying among Adolescents: A General Strain Theory Perspective
Paez, Gabriel R.
2018-01-01
Cyber bullying has become more pervasive as a result of advances in communication technology such as email, text messaging, chat rooms, and social media sites. Despite the growth in research on correlates associated with engagement in cyber bullying, few studies test the applicability of criminological theories to explain engagement in cyber…
Numerial calculations in the general dynamical theory of gravitional ...
African Journals Online (AJOL)
It is well known that, Einsten's Geometrical Principles and Laws of Gravitation may be used to construct a corresponding theory of Gravitational Time Dilation. In (Howusu, 1991) paper, it was shown how to extend Newton's Dynamical Principles and Laws based upon the experimental facts of inertia, active and passive ...
f(R) gravity, torsion and non-metricity
International Nuclear Information System (INIS)
Sotiriou, Thomas P
2009-01-01
For both f(R) theories of gravity with an independent symmetric connection (no torsion), usually referred to as Palatini f(R) gravity theories, and for f(R) theories of gravity with torsion but no non-metricity, called U4 theories, it has been shown that the independent connection can actually be eliminated algebraically, as long as this connection does not couple to matter. Remarkably, the outcome in both cases is the same theory, which is dynamically equivalent with an ω 0 = -3/2 Brans-Dicke theory. It is shown here that even for the most general case of an independent connection with both non-metricity and torsion, one arrives at exactly the same theory as in the more restricted cases. This generalizes the previous results and explains why assuming that either the torsion or the non-metricity vanishing ultimately leads to the same theory. It also demonstrates that f(R) actions cannot support an independent connection which carries dynamical degrees of freedom, irrespective of how general this connection is, at least as long as there is no connection-matter coupling. (fast track communication)
Directory of Open Access Journals (Sweden)
Bessem Samet
2013-01-01
Full Text Available In 2005, Mustafa and Sims (2006 introduced and studied a new class of generalized metric spaces, which are called G-metric spaces, as a generalization of metric spaces. We establish some useful propositions to show that many fixed point theorems on (nonsymmetric G-metric spaces given recently by many authors follow directly from well-known theorems on metric spaces. Our technique can be easily extended to other results as shown in application.
Directory of Open Access Journals (Sweden)
Hong Qin
2009-06-01
Full Text Available The Courant-Snyder theory gives a complete description of the uncoupled transverse dynamics of charged particles in electromagnetic focusing lattices. In this paper, the Courant-Snyder theory is generalized to the case of coupled transverse dynamics with two degrees of freedom. The generalized theory has the same structure as the original Courant-Snyder theory for one degree of freedom. The four basic components of the original Courant-Snyder theory, i.e., the envelope equation, phase advance, transfer matrix, and the Courant-Snyder invariant, all have their counterparts, with remarkably similar expressions, in the generalized theory presented here. In the generalized theory, the envelope function is generalized into an envelope matrix, and the envelope equation becomes a matrix envelope equation with matrix operations that are noncommutative. The generalized theory gives a new parametrization of the 4D symplectic transfer matrix that has the same structure as the parametrization of the 2D symplectic transfer matrix in the original Courant-Snyder theory. All of the parameters used in the generalized Courant-Snyder theory correspond to physical quantities of importance, and this parametrization can provide a valuable framework for accelerator design and particle simulation studies. A time-dependent canonical transformation is used to develop the generalized Courant-Snyder theory. Applications of the new theory to strongly and weakly coupled dynamics are given. It is shown that the stability of coupled dynamics can be determined by the generalized phase advance developed. Two stability criteria are given, which recover the known results about sum and difference resonances in the weakly coupled limit.
Principles of general relativity theory in terms of the present day physics
International Nuclear Information System (INIS)
Pervushin, V.N.
1986-01-01
A hystory of gradual unification of general relativity theory and quantum field theory on the basis of unified geometrical principles is detected. The gauge invariance principles became universal for construction of all physical theories. Quantum mechanics, electrodynamics and Einstein gravitation theory were used to form geometrical principles. Identity of inertial and gravitational masses is an experimental basis of the general relativity theory (GRT). It is shown that correct understanding of GRT bases is a developing process related to the development of the present physics and stimulating this development
International Nuclear Information System (INIS)
Dadashyan, K.Yu.; Khoruzhii, S.S.
1987-01-01
The construction of a modular theory for weakly closed J-involutive algebras of bounded operators on Pontryagin spaces is continued. The spectrum of the modular operator Δ of such an algebra is investigated, the existence of a strongly continuous J-unitary group is established and, under the condition that the spectrum lies in the right half-plane, Tomita's fundamental theorem is proved
A general theory for dynamic instability of tube arrays in crossflow
Chen, S. S.
1987-01-01
A general theory of fluidelastic instability for a tube array in crossflow is presented. Various techniques to obtain the motion-dependent fluid-force coefficients are discussed and the general instability characteristics are summarized. The theory is also used to evaluate the results of other mathematical models for crossflow-induced instability.
The Nature of Living Systems: An Exposition of the Basic Concepts in General Systems Theory.
Miller, James G.
General systems theory is a set of related definitions, assumptions, and propositions which deal with reality as an integrated hierarchy of organizations of matter and energy. In this paper, the author defines the concepts of space, time, matter, energy, and information in terms of their meaning in general systems theory. He defines a system as a…
Topological Vector Space-Valued Cone Metric Spaces and Fixed Point Theorems
Directory of Open Access Journals (Sweden)
Radenović Stojan
2010-01-01
Full Text Available We develop the theory of topological vector space valued cone metric spaces with nonnormal cones. We prove three general fixed point results in these spaces and deduce as corollaries several extensions of theorems about fixed points and common fixed points, known from the theory of (normed-valued cone metric spaces. Examples are given to distinguish our results from the known ones.
Generalization of trinification to theories with 3N SU(3) gauge groups
International Nuclear Information System (INIS)
Carone, Christopher D.
2005-01-01
We consider a natural generalization of trinification to theories with 3N SU(3) gauge groups. These theories have a simple moose representation and a gauge boson spectrum that can be interpreted via the deconstruction of a 5D theory with unified symmetry broken on a boundary. Although the matter and Higgs sectors of the theory have no simple extra-dimensional analog, gauge unification retains features characteristic of the 5D theory. We determine possible assignments of the matter and Higgs fields to unified multiplets and present theories that are viable alternatives to minimal trinified GUTs
Matrix theory from generalized inverses to Jordan form
Piziak, Robert
2007-01-01
Each chapter ends with a list of references for further reading. Undoubtedly, these will be useful for anyone who wishes to pursue the topics deeper. … the book has many MATLAB examples and problems presented at appropriate places. … the book will become a widely used classroom text for a second course on linear algebra. It can be used profitably by graduate and advanced level undergraduate students. It can also serve as an intermediate course for more advanced texts in matrix theory. This is a lucidly written book by two authors who have made many contributions to linear and multilinear algebra.-K.C. Sivakumar, IMAGE, No. 47, Fall 2011Always mathematically constructive, this book helps readers delve into elementary linear algebra ideas at a deeper level and prepare for further study in matrix theory and abstract algebra.-L'enseignement Mathématique, January-June 2007, Vol. 53, No. 1-2.
A General Outlook to the Endogenous Money Theory
ÖZGÜR, Gökçer
2008-01-01
The purpose of this study is to shed light on theorigins of the endogenous money theory and analyze the currentdebates on this topic. Endogenous money approach depends on a fundamental postulate: As banks meet the credit needs ofnon-financial businesses, new deposits emerge in the banking sector. Similarly,as the necessary reserves found for these new deposits the broad money expandsas well. Even though the central bank can intervene into this process it cannotfully control it. There...
General topology meets model theory, on p and t.
Malliaris, Maryanthe; Shelah, Saharon
2013-08-13
Cantor proved in 1874 [Cantor G (1874) J Reine Angew Math 77:258-262] that the continuum is uncountable, and Hilbert's first problem asks whether it is the smallest uncountable cardinal. A program arose to study cardinal invariants of the continuum, which measure the size of the continuum in various ways. By Gödel [Gödel K (1939) Proc Natl Acad Sci USA 25(4):220-224] and Cohen [Cohen P (1963) Proc Natl Acad Sci USA 50(6):1143-1148], Hilbert's first problem is independent of ZFC (Zermelo-Fraenkel set theory with the axiom of choice). Much work both before and since has been done on inequalities between these cardinal invariants, but some basic questions have remained open despite Cohen's introduction of forcing. The oldest and perhaps most famous of these is whether " p = t," which was proved in a special case by Rothberger [Rothberger F (1948) Fund Math 35:29-46], building on Hausdorff [Hausdorff (1936) Fund Math 26:241-255]. In this paper we explain how our work on the structure of Keisler's order, a large-scale classification problem in model theory, led to the solution of this problem in ZFC as well as of an a priori unrelated open question in model theory.
A New Look at Generalized Rewriting in Type Theory
Directory of Open Access Journals (Sweden)
Matthieu Sozeau
2009-01-01
Full Text Available Rewriting is an essential tool for computer-based reasoning, both automated and assisted. This is because rewriting is a general notion that permits modeling a wide range of problems and provides a means to effectively solve them. In a proof assistant, rewriting can be used to replace terms in arbitrary contexts, generalizing the usual equational reasoning to reasoning modulo arbitrary relations. This can be done provided the necessary proofs that functions appearing in goals are congruent with respect to specific relations. We present a new implementation of generalized rewriting in the Coq proof assistant, making essential use of the expressive power of dependent types and the recently implemented type class mechanism. The new rewrite tactic improves on and generalizes previous versions by natively supporting higher-order functions, polymorphism and subrelations. The type class system inspired by Haskell provides a perfect interface between the user and the tactic, making it easily extensible.
Kaluza-Klein-Carmeli Metric from Quaternion-Clifford Space, Lorentz' Force, and Some Observables
Directory of Open Access Journals (Sweden)
Christianto V.
2008-04-01
Full Text Available It was known for quite long time that a quaternion space can be generalized to a Clifford space, and vice versa; but how to find its neat link with more convenient metric form in the General Relativity theory, has not been explored extensively. We begin with a representation of group with non-zero quaternions to derive closed FLRW metric [1], and from there obtains Carmeli metric, which can be extended further to become 5D and 6D metric (which we propose to call Kaluza-Klein-Carmeli metric. Thereafter we discuss some plausible implications of this metric, beyond describing a galaxy’s spiraling motion and redshift data as these have been done by Carmeli and Hartnett [4, 5, 6]. In subsequent section we explain Podkletnov’s rotating disc experiment. We also note possible implications to quantum gravity. Further observations are of course recommended in order to refute or verify this proposition.
Kaluza-Klein-Carmeli Metric from Quaternion-Clifford Space, Lorentz' Force, and Some Observables
Directory of Open Access Journals (Sweden)
Christianto V.
2008-04-01
Full Text Available It was known for quite long time that {a} quaternion space can be generalized to {a} Clifford space, and vice versa; but how to find its neat link with more convenient metric form in {the} General Relativity theory, has not been explored extensively. We begin with a representation of group with non-zero quaternions to derive closed FLRW metric, and from there obtains Carmeli metric, which can be extended further to become 5D and 6D metric (which we propose to call Kaluza-Klein-Carmeli metric. Thereafter we discuss some plausible implications of this metric, beyond describing a galaxy's spiraling motion and redshift data as these have been done by Carmeli and Hartnett. In subsequent section we explain Podkletnov's rotating disc experiment. We also note possible implications to quantum gravity. Further observations are of course recommended in order to refute or verify this proposition.
Bellet, Aurelien; Sebban, Marc
2015-01-01
Similarity between objects plays an important role in both human cognitive processes and artificial systems for recognition and categorization. How to appropriately measure such similarities for a given task is crucial to the performance of many machine learning, pattern recognition and data mining methods. This book is devoted to metric learning, a set of techniques to automatically learn similarity and distance functions from data that has attracted a lot of interest in machine learning and related fields in the past ten years. In this book, we provide a thorough review of the metric learnin
Generalized topological spaces in evolutionary theory and combinatorial chemistry.
Stadler, Bärbel M R; Stadler, Peter F
2002-01-01
The search spaces in combinatorial chemistry as well as the sequence spaces underlying (molecular) evolution are conventionally thought of as graphs. Recombination, however, implies a nongraphical structure of the combinatorial search spaces. These structures, and their implications for search process itself, are heretofore not well understood in general. In this contribution we review a very general formalism from point set topology and discuss its application to combinatorial search spaces, fitness landscapes, evolutionary trajectories, and artificial chemistries.
Metrics of a 'mole hole' against the Lobachevsky space background
International Nuclear Information System (INIS)
Tentyukov, M.N.
1994-01-01
'Classical' mole hole are the Euclidean metrics consisting of two large space regions connected by a throat. They are the instanton solutions of the Einstein equations. It is shown that for existence of mole holes in the general relativity theory it is required the energy-momentum tensor breaking energetic conditions. 9 refs., 7 figs
2014-01-01
Background Verbal Autopsy (VA) is widely viewed as the only immediate strategy for registering cause of death in much of Africa and Asia, where routine physician certification of deaths is not widely practiced. VA involves a lay interview with family or friends after a death, to record essential details of the circumstances. These data can then be processed automatically to arrive at standardized cause of death information. Methods The Population Health Metrics Research Consortium (PHMRC) undertook a study at six tertiary hospitals in low- and middle-income countries which documented over 12,000 deaths clinically and subsequently undertook VA interviews. This dataset, now in the public domain, was compared with the WHO 2012 VA standard and the InterVA-4 interpretative model. Results The PHMRC data covered 70% of the WHO 2012 VA input indicators, and categorized cause of death according to PHMRC definitions. After eliminating some problematic or incomplete records, 11,984 VAs were compared. Some of the PHMRC cause definitions, such as ‘preterm delivery’, differed substantially from the International Classification of Diseases, version 10 equivalent. There were some appreciable inconsistencies between the hospital and VA data, including 20% of the hospital maternal deaths being described as non-pregnant in the VA data. A high proportion of VA cases (66%) reported respiratory symptoms, but only 18% of assigned hospital causes were respiratory-related. Despite these issues, the concordance correlation coefficient between hospital and InterVA-4 cause of death categories was 0.61. Conclusions The PHMRC dataset is a valuable reference source for VA methods, but has to be interpreted with care. Inherently inconsistent cases should not be included when using these data to build other VA models. Conversely, models built from these data should be independently evaluated. It is important to distinguish between the internal and external validity of VA models. The effects of
Byass, Peter
2014-02-04
Verbal Autopsy (VA) is widely viewed as the only immediate strategy for registering cause of death in much of Africa and Asia, where routine physician certification of deaths is not widely practiced. VA involves a lay interview with family or friends after a death, to record essential details of the circumstances. These data can then be processed automatically to arrive at standardized cause of death information. The Population Health Metrics Research Consortium (PHMRC) undertook a study at six tertiary hospitals in low- and middle-income countries which documented over 12,000 deaths clinically and subsequently undertook VA interviews. This dataset, now in the public domain, was compared with the WHO 2012 VA standard and the InterVA-4 interpretative model. The PHMRC data covered 70% of the WHO 2012 VA input indicators, and categorized cause of death according to PHMRC definitions. After eliminating some problematic or incomplete records, 11,984 VAs were compared. Some of the PHMRC cause definitions, such as 'preterm delivery', differed substantially from the International Classification of Diseases, version 10 equivalent. There were some appreciable inconsistencies between the hospital and VA data, including 20% of the hospital maternal deaths being described as non-pregnant in the VA data. A high proportion of VA cases (66%) reported respiratory symptoms, but only 18% of assigned hospital causes were respiratory-related. Despite these issues, the concordance correlation coefficient between hospital and InterVA-4 cause of death categories was 0.61. The PHMRC dataset is a valuable reference source for VA methods, but has to be interpreted with care. Inherently inconsistent cases should not be included when using these data to build other VA models. Conversely, models built from these data should be independently evaluated. It is important to distinguish between the internal and external validity of VA models. The effects of using tertiary hospital data, rather than
International Nuclear Information System (INIS)
Kalligiannaki, Evangelia; Harmandaris, Vagelis; Katsoulakis, Markos A.; Plecháč, Petr
2015-01-01
Using the probabilistic language of conditional expectations, we reformulate the force matching method for coarse-graining of molecular systems as a projection onto spaces of coarse observables. A practical outcome of this probabilistic description is the link of the force matching method with thermodynamic integration. This connection provides a way to systematically construct a local mean force and to optimally approximate the potential of mean force through force matching. We introduce a generalized force matching condition for the local mean force in the sense that allows the approximation of the potential of mean force under both linear and non-linear coarse graining mappings (e.g., reaction coordinates, end-to-end length of chains). Furthermore, we study the equivalence of force matching with relative entropy minimization which we derive for general non-linear coarse graining maps. We present in detail the generalized force matching condition through applications to specific examples in molecular systems
Energy Technology Data Exchange (ETDEWEB)
Kalligiannaki, Evangelia, E-mail: ekalligian@tem.uoc.gr [Department of Mathematics and Applied Mathematics, University of Crete, 70013 Heraklion (Greece); Harmandaris, Vagelis, E-mail: harman@uoc.gr [Department of Mathematics and Applied Mathematics, University of Crete, 70013 Heraklion (Greece); Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), IACM/FORTH, GR-71110 Heraklion (Greece); Katsoulakis, Markos A., E-mail: markos@math.umass.edu [Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003 (United States); Plecháč, Petr, E-mail: plechac@math.udel.edu [Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716 (United States)
2015-08-28
Using the probabilistic language of conditional expectations, we reformulate the force matching method for coarse-graining of molecular systems as a projection onto spaces of coarse observables. A practical outcome of this probabilistic description is the link of the force matching method with thermodynamic integration. This connection provides a way to systematically construct a local mean force and to optimally approximate the potential of mean force through force matching. We introduce a generalized force matching condition for the local mean force in the sense that allows the approximation of the potential of mean force under both linear and non-linear coarse graining mappings (e.g., reaction coordinates, end-to-end length of chains). Furthermore, we study the equivalence of force matching with relative entropy minimization which we derive for general non-linear coarse graining maps. We present in detail the generalized force matching condition through applications to specific examples in molecular systems.
Kalligiannaki, Evangelia; Harmandaris, Vagelis; Katsoulakis, Markos A; Plecháč, Petr
2015-08-28
Using the probabilistic language of conditional expectations, we reformulate the force matching method for coarse-graining of molecular systems as a projection onto spaces of coarse observables. A practical outcome of this probabilistic description is the link of the force matching method with thermodynamic integration. This connection provides a way to systematically construct a local mean force and to optimally approximate the potential of mean force through force matching. We introduce a generalized force matching condition for the local mean force in the sense that allows the approximation of the potential of mean force under both linear and non-linear coarse graining mappings (e.g., reaction coordinates, end-to-end length of chains). Furthermore, we study the equivalence of force matching with relative entropy minimization which we derive for general non-linear coarse graining maps. We present in detail the generalized force matching condition through applications to specific examples in molecular systems.
Bose-Einstein condensation of light: general theory.
Sob'yanin, Denis Nikolaevich
2013-08-01
A theory of Bose-Einstein condensation of light in a dye-filled optical microcavity is presented. The theory is based on the hierarchical maximum entropy principle and allows one to investigate the fluctuating behavior of the photon gas in the microcavity for all numbers of photons, dye molecules, and excitations at all temperatures, including the whole critical region. The master equation describing the interaction between photons and dye molecules in the microcavity is derived and the equivalence between the hierarchical maximum entropy principle and the master equation approach is shown. The cases of a fixed mean total photon number and a fixed total excitation number are considered, and a much sharper, nonparabolic onset of a macroscopic Bose-Einstein condensation of light in the latter case is demonstrated. The theory does not use the grand canonical approximation, takes into account the photon polarization degeneracy, and exactly describes the microscopic, mesoscopic, and macroscopic Bose-Einstein condensation of light. Under certain conditions, it predicts sub-Poissonian statistics of the photon condensate and the polarized photon condensate, and a universal relation takes place between the degrees of second-order coherence for these condensates. In the macroscopic case, there appear a sharp jump in the degrees of second-order coherence, a sharp jump and kink in the reduced standard deviations of the fluctuating numbers of photons in the polarized and whole condensates, and a sharp peak, a cusp, of the Mandel parameter for the whole condensate in the critical region. The possibility of nonclassical light generation in the microcavity with the photon Bose-Einstein condensate is predicted.
International Nuclear Information System (INIS)
Kenyon, I.R.
1990-01-01
General relativity is discussed in this book at a level appropriate to undergraduate students of physics and astronomy. It describes concepts and experimental results, and provides a succinct account of the formalism. A brief review of special relativity is followed by a discussion of the equivalence principle and its implications. Other topics covered include the concepts of curvature and the Schwarzschild metric, test of the general theory, black holes and their properties, gravitational radiation and methods for its detection, the impact of general relativity on cosmology, and the continuing search for a quantum theory of gravity. (author)
Metric-adjusted skew information
DEFF Research Database (Denmark)
Liang, Cai; Hansen, Frank
2010-01-01
We give a truly elementary proof of the convexity of metric-adjusted skew information following an idea of Effros. We extend earlier results of weak forms of superadditivity to general metric-adjusted skew information. Recently, Luo and Zhang introduced the notion of semi-quantum states...... on a bipartite system and proved superadditivity of the Wigner-Yanase-Dyson skew informations for such states. We extend this result to the general metric-adjusted skew information. We finally show that a recently introduced extension to parameter values 1 information is a special case...... of (unbounded) metric-adjusted skew information....
Metric regularity and subdifferential calculus
International Nuclear Information System (INIS)
Ioffe, A D
2000-01-01
The theory of metric regularity is an extension of two classical results: the Lyusternik tangent space theorem and the Graves surjection theorem. Developments in non-smooth analysis in the 1980s and 1990s paved the way for a number of far-reaching extensions of these results. It was also well understood that the phenomena behind the results are of metric origin, not connected with any linear structure. At the same time it became clear that some basic hypotheses of the subdifferential calculus are closely connected with the metric regularity of certain set-valued maps. The survey is devoted to the metric theory of metric regularity and its connection with subdifferential calculus in Banach spaces
4-Dimensional General Relativity from the instrinsic spatial geometry of SO(3) Yang--Mills theory
Ita III, Eyo Eyo
2007-01-01
In this paper we derive 4-dimensional General Relativity from three dimensions, using the intrinsic spatial geometry inherent in Yang--Mills theory which has been exposed by previous authors as well as as some properties of the Ashtekar variables. We provide various interesting relations, including the fact that General Relativity can be written as a Yang--Mills theory where the antiself-dual Weyl curvature replaces the Yang--Mills coupling constant. We have generalized the results of some pr...
Generalizations of the Nash Equilibrium Theorem in the KKM Theory
Directory of Open Access Journals (Sweden)
Sehie Park
2010-01-01
Full Text Available The partial KKM principle for an abstract convex space is an abstract form of the classical KKM theorem. In this paper, we derive generalized forms of the Ky Fan minimax inequality, the von Neumann-Sion minimax theorem, the von Neumann-Fan intersection theorem, the Fan-type analytic alternative, and the Nash equilibrium theorem for abstract convex spaces satisfying the partial KKM principle. These results are compared with previously known cases for G-convex spaces. Consequently, our results unify and generalize most of previously known particular cases of the same nature. Finally, we add some detailed historical remarks on related topics.
Belenchia, Alessio; Letizia, Marco; Liberati, Stefano; Di Casola, Eolo
2018-03-01
Modifications of Einstein's theory of gravitation have been extensively considered in the past years, in connection to both cosmology and quantum gravity. Higher-curvature and higher-derivative gravity theories constitute the main examples of such modifications. These theories exhibit, in general, more degrees of freedom than those found in standard general relativity; counting, identifying, and retrieving the description/representation of such dynamical variables is currently an open problem, and a decidedly nontrivial one. In this work we review, via both formal arguments and custom-made examples, the most relevant methods to unveil the gravitational degrees of freedom of a given model, discussing the merits, subtleties and pitfalls of the various approaches.
Belenchia, Alessio; Letizia, Marco; Liberati, Stefano; Di Casola, Eolo
2018-03-01
Modifications of Einstein’s theory of gravitation have been extensively considered in the past years, in connection to both cosmology and quantum gravity. Higher-curvature and higher-derivative gravity theories constitute the main examples of such modifications. These theories exhibit, in general, more degrees of freedom than those found in standard general relativity; counting, identifying, and retrieving the description/representation of such dynamical variables is currently an open problem, and a decidedly nontrivial one. In this work we review, via both formal arguments and custom-made examples, the most relevant methods to unveil the gravitational degrees of freedom of a given model, discussing the merits, subtleties and pitfalls of the various approaches.
Gravitation theory - Empirical status from solar system experiments.
Nordtvedt, K. L., Jr.
1972-01-01
Review of historical and recent experiments which speak in favor of a post-Newtonian relativistic gravitational theory. The topics include the foundational experiments, metric theories of gravity, experiments designed to differentiate among the metric theories, and tests of Machian concepts of gravity. It is shown that the metric field for any metric theory can be specified by a series of potential terms with several parameters. It is pointed out that empirical results available up to date yield values of the parameters which are consistent with the prediction of Einstein's general relativity.
Generalizations of Karp's theorem to elastic scattering theory
Tuong, Ha-Duong
Karp's theorem states that if the far field pattern corresponding to the scattering of a time-harmonic acoustic plane wave by a sound-soft obstacle in R2 is invariant under the group of rotations, then the scatterer is a circle. The theorem is generalized to the elastic scattering problems and the axisymmetric scatterers in R3.
Multiphonon theory: generalized Wick's theorem and recursion formulas
International Nuclear Information System (INIS)
Silvestre-Brac, B.; Piepenbring, R.
1982-04-01
Overlaps and matrix elements of one and two-body operators are calculated in a space spanned by multiphonons of different types taking properly the Pauli principle into account. Two methods are developped: a generalized Wick's theorem dealing with new contractions and recursion formulas well suited for numerical applications
Towards a General Theory of Stochastic Hybrid Systems
Bujorianu, L.M.; Lygeros, J.; Bujorianu, M.C.
2008-01-01
In this paper we set up a mathematical structure, called Markov string, to obtaining a very general class of models for stochastic hybrid systems. Markov Strings are, in fact, a class of Markov processes, obtained by a mixing mechanism of stochastic processes, introduced by Meyer. We prove that
Mathematical developments regarding the general theory of the Earth magnetism
Schmidt, A.
1983-01-01
A literature survey on the Earth's magnetic field, citing the works of Gauss, Erman-Petersen, Quintus Icilius and Neumayer is presented. The general formulas for the representation of the potential and components of the Earth's magnetic force are presented. An analytical representation of magnetic condition of the Earth based on observations is also made.
Learning Theory Estimates with Observations from General Stationary Stochastic Processes.
Hang, Hanyuan; Feng, Yunlong; Steinwart, Ingo; Suykens, Johan A K
2016-12-01
This letter investigates the supervised learning problem with observations drawn from certain general stationary stochastic processes. Here by general, we mean that many stationary stochastic processes can be included. We show that when the stochastic processes satisfy a generalized Bernstein-type inequality, a unified treatment on analyzing the learning schemes with various mixing processes can be conducted and a sharp oracle inequality for generic regularized empirical risk minimization schemes can be established. The obtained oracle inequality is then applied to derive convergence rates for several learning schemes such as empirical risk minimization (ERM), least squares support vector machines (LS-SVMs) using given generic kernels, and SVMs using gaussian kernels for both least squares and quantile regression. It turns out that for independent and identically distributed (i.i.d.) processes, our learning rates for ERM recover the optimal rates. For non-i.i.d. processes, including geometrically [Formula: see text]-mixing Markov processes, geometrically [Formula: see text]-mixing processes with restricted decay, [Formula: see text]-mixing processes, and (time-reversed) geometrically [Formula: see text]-mixing processes, our learning rates for SVMs with gaussian kernels match, up to some arbitrarily small extra term in the exponent, the optimal rates. For the remaining cases, our rates are at least close to the optimal rates. As a by-product, the assumed generalized Bernstein-type inequality also provides an interpretation of the so-called effective number of observations for various mixing processes.
Survey on Dirac equation in general relativity theory
International Nuclear Information System (INIS)
Paillere, P.
1984-10-01
Starting from an infinitesimal transformation expressed with a Killing vector and using systematically the formalism of the local tetrades, we show that, in the area of the general relativity, the Dirac equation may be formulated only versus the four local vectors which determine the gravitational potentials, their gradients and the 4-vector potential of the electromagnetic field [fr
Generalized virial relations and the theory of subdynamics
International Nuclear Information System (INIS)
Obcemea, Ch.; Froelich, P.; Braandas, E.J.
1981-05-01
In this paper, we discuss the implication of the generalized virial relations in the spectral analysis of Liouville operators. In particular, we refer to the existence problem of the analytic continuation of these super-operators and their resolvents occurring in the reduced dynamics description of open systems. For completeness, we outline the main ideas of the subdynamics approach. (author)
Extension of Einstein's Planetary Theory Based on Generalized ...
African Journals Online (AJOL)
In this article, the generalized Einstein's radial equation of motion in the equatorial plane of the Sun is transformed to obtain additional correction terms to all order of C2 to Einstein's planetary equation of motion and hence to the planetary parameters. Keywords: Radial Equation; Planetary Equation; Planetary parameters ...
Toward a General Theory of Stochastic Hybrid Systems
Bujorianu, L.M.; Lygeros, J.; Blom, H.A.P.; Lygeros, J.
In this chapter we set up a mathematical structure, called Markov string, to obtaining a very general class of models for stochastic hybrid systems. Markov Strings are, in fact, a class of Markov processes, obtained by a mixing mechanism of stochastic processes, introduced by Meyer. We prove that
The general theory of relativity: the first thirty years
International Nuclear Information System (INIS)
Chandrasekhar, S.
1980-01-01
The principal landmarks in the development of general relativity (exclusive of cosmology) during the first 30 years after its founding are presented. The emergence of the new gravitational laws, their experimental consequences and the consequent growth of the present concern with gravitational collapse and black holes are traced. (U.K.)
International Nuclear Information System (INIS)
Kulyabov, D.S.
2010-01-01
Full text: (author)In the construction of physical theories are several paradigms (according to Vladimirov Yu. S.). Depending on the number of entities are used paradigms include trialist (3 entities), dualist (2 entities) and monistic (1 entity). In trialist paradigm uses the following entities: geometry (G), particle (P) and field (F). Go to the dualist paradigms performed in the following ways: two entities take over the functions of the third, two entities merged into a single synthesis. Is also possible to limit the dualistic theory, which summarized the essence in addition assume the functions of a third. In turn, by way of grouping the entities dualistic theory can be divided into geometric (unification of geometry and field), relational (unification of geometry and particles) and field (unification of fields and particles). For the connection of the two theories should be to go to the common denominator: to trialist or monistic theories. Since the monistic theory at the moment completely unknown, may be used only trialist theory. General relativity is a typical representative of the geometric dualistic paradigm. However geometrized only gravity. Other fields non-geometrized. In turn, the relativistic theory of gravitation is a typical trialist theory. To establish a correspondence between theories should to geometrize material field in the general theory of relativity. It is proposed to implement this on the basis of a multi-dimensional Kaluza-Klein theory
A general theory of two-wave mixing in nonlinear media
DEFF Research Database (Denmark)
Chi, Mingjun; Huignard, Jean-Pierre; Petersen, Paul Michael
2009-01-01
A general theory of two-wave mixing in nonlinear media is presented. Assuming a gain (or absorption) grating and a refractive index grating are generated because of the nonlinear process in a nonlinear medium, the coupled-wave equations of two-wave mixing are derived based on the Maxwell’s wave...... to the previous theory of two-wave mixing, the theory presented here is more general and the application of the theory to the photorefractive materials, Kerr media and semiconductor broad-area amplifiers are described....
Algebric generalization of symmetry Dirac bracket. Application to field theory
International Nuclear Information System (INIS)
Rocha Filho, T.M. da.
1987-01-01
The A set of observable of a physical system with finite e infinite number of degrees of freedom and submitted to certain constraint conditions, is considered. Using jordan algebra structure on A in relation to bymmetric Poisson bracket obtained by Droz-Vincent, a jordan product is obtained on the A/I quocient set with regard to I ideal generated by constraints of second class. It is shown that this product on A/I corresponds to symmetric Dirac bracket. The developed formulation is applied to a system corresponding to harmonic oscillators, non relativistic field, Rarita-Schwinger field and the possibility of its utilization in fermionic string theories is discussed. (M.C.K.)
Multi-attribute utility theory. Toward a more general framework
International Nuclear Information System (INIS)
Beaudoin, F.; Munier, B.; Serquin, Y.; Ecole Normale Superieure, 94 - Cachan
1997-12-01
Optimizing maintenance programs for nuclear power plants is a difficult task. Beyond the reliability of the systems at hand, one has to consider several conflicting objectives such as safety, availability, maintenance costs, personal exposure to radiations, all under risk. Multi-Attributed Utility Theory is a widely used framework to cope with such problems. This procedure is, however, based on a set of axioms which imply an expected utility treatment of risk. It has been shown elsewhere that the risk structure to be considered in such cases does not correspond to behavior consistent with such a treatment of risk, but would rather correspond to a rank dependent evaluation type of model. The question raised is then how to use a multi-attributed scheme of preferences under such conditions. (author)
[Nursing managerial approach: a study based on general management theories].
Fernandes, Marcia Simoni; Spagnol, Carla Aparecida; Trevizan, Maria Auxiliadora; Hayashida, Miyeko
2003-01-01
The purpose of this study was to identify nurses managerial conduct in a private maternity hospital located in the interior of the São Paulo state, Brazil. In order to collect data, authors used a questionnaire with 20 propositions related to the work of nurses in the different units of the hospital. Following, authors performed a descriptive statistical analysis of the data. Results showed a tendency toward democratization in the conduct of the nurses investigated as the majority of the responses privileged questions on team work, workers' participation and group development. Also, authors evidenced that great part of the responses did not agree with the propositions about the principles of the Classical Administration Theory.
A General Sparse Tensor Framework for Electronic Structure Theory.
Manzer, Samuel; Epifanovsky, Evgeny; Krylov, Anna I; Head-Gordon, Martin
2017-03-14
Linear-scaling algorithms must be developed in order to extend the domain of applicability of electronic structure theory to molecules of any desired size. However, the increasing complexity of modern linear-scaling methods makes code development and maintenance a significant challenge. A major contributor to this difficulty is the lack of robust software abstractions for handling block-sparse tensor operations. We therefore report the development of a highly efficient symbolic block-sparse tensor library in order to provide access to high-level software constructs to treat such problems. Our implementation supports arbitrary multi-dimensional sparsity in all input and output tensors. We avoid cumbersome machine-generated code by implementing all functionality as a high-level symbolic C++ language library and demonstrate that our implementation attains very high performance for linear-scaling sparse tensor contractions.
General framework for fluctuating dynamic density functional theory
Durán-Olivencia, Miguel A.; Yatsyshin, Peter; Goddard, Benjamin D.; Kalliadasis, Serafim
2017-12-01
We introduce a versatile bottom-up derivation of a formal theoretical framework to describe (passive) soft-matter systems out of equilibrium subject to fluctuations. We provide a unique connection between the constituent-particle dynamics of real systems and the time evolution equation of their measurable (coarse-grained) quantities, such as local density and velocity. The starting point is the full Hamiltonian description of a system of colloidal particles immersed in a fluid of identical bath particles. Then, we average out the bath via Zwanzig’s projection-operator techniques and obtain the stochastic Langevin equations governing the colloidal-particle dynamics. Introducing the appropriate definition of the local number and momentum density fields yields a generalisation of the Dean-Kawasaki (DK) model, which resembles the stochastic Navier-Stokes description of a fluid. Nevertheless, the DK equation still contains all the microscopic information and, for that reason, does not represent the dynamical law of observable quantities. We address this controversial feature of the DK description by carrying out a nonequilibrium ensemble average. Adopting a natural decomposition into local-equilibrium and nonequilibrium contribution, where the former is related to a generalised version of the canonical distribution, we finally obtain the fluctuating-hydrodynamic equation governing the time-evolution of the mesoscopic density and momentum fields. Along the way, we outline the connection between the ad hoc energy functional introduced in previous DK derivations and the free-energy functional from classical density-functional theory. The resultant equation has the structure of a dynamical density-functional theory (DDFT) with an additional fluctuating force coming from the random interactions with the bath. We show that our fluctuating DDFT formalism corresponds to a particular version of the fluctuating Navier-Stokes equations, originally derived by Landau and Lifshitz
Einstein Gravity, Lagrange-Finsler Geometry, and Nonsymmetric Metrics
Directory of Open Access Journals (Sweden)
Sergiu I. Vacaru
2008-10-01
Full Text Available We formulate an approach to the geometry of Riemann-Cartan spaces provided with nonholonomic distributions defined by generic off-diagonal and nonsymmetric metrics inducing effective nonlinear and affine connections. Such geometries can be modelled by moving nonholonomic frames on (pseudo Riemannian manifolds and describe various types of nonholonomic Einstein, Eisenhart-Moffat and Finsler-Lagrange spaces with connections compatible to a general nonsymmetric metric structure. Elaborating a metrization procedure for arbitrary distinguished connections, we define the class of distinguished linear connections which are compatible with the nonlinear connection and general nonsymmetric metric structures. The nonsymmetric gravity theory is formulated in terms of metric compatible connections. Finally, there are constructed such nonholonomic deformations of geometric structures when the Einstein and/or Lagrange-Finsler manifolds are transformed equivalently into spaces with generic local anisotropy induced by nonsymmetric metrics and generalized connections. We speculate on possible applications of such geometric methods in Einstein and generalized theories of gravity, analogous gravity and geometric mechanics.
Johnson, Stephen B.; Ghoshal, Sudipto; Haste, Deepak; Moore, Craig
2017-01-01
This paper describes the theory and considerations in the application of metrics to measure the effectiveness of fault management. Fault management refers here to the operational aspect of system health management, and as such is considered as a meta-control loop that operates to preserve or maximize the system's ability to achieve its goals in the face of current or prospective failure. As a suite of control loops, the metrics to estimate and measure the effectiveness of fault management are similar to those of classical control loops in being divided into two major classes: state estimation, and state control. State estimation metrics can be classified into lower-level subdivisions for detection coverage, detection effectiveness, fault isolation and fault identification (diagnostics), and failure prognosis. State control metrics can be classified into response determination effectiveness and response effectiveness. These metrics are applied to each and every fault management control loop in the system, for each failure to which they apply, and probabilistically summed to determine the effectiveness of these fault management control loops to preserve the relevant system goals that they are intended to protect.
The origin of continental crust: Outlines of a general theory
Lowman, P. D., Jr.
1985-01-01
The lower continental crust, formerly very poorly understood, has recently been investigated by various geological and geophysical techniques that are beginning to yield a generally agreed on though still vague model (Lowman, 1984). As typified by at least some exposed high grade terranes, such as the Scottish Scourian complex, the lower crust in areas not affected by Phanerozoic orogeny or crustal extension appears to consist of gently dipping granulite gneisses of intermediate bulk composition, formed from partly or largely supracrustal precursors. This model, to the degree that it is correct, has important implications for early crustal genesis and the origin of continental crust in general. Most important, it implies that except for areas of major overthrusting (which may of course be considerable) normal superposition relations prevail, and that since even the oldest exposed rocks are underlain by tens of kilometers of sial, true primordial crust may still survive in the lower crustal levels (of. Phinney, 1981).
International Nuclear Information System (INIS)
Peng Huanwu
2005-01-01
Taking Dirac's large number hypothesis as true, we have shown [Commun. Theor. Phys. (Beijing, China) 42 (2004) 703] the inconsistency of applying Einstein's theory of general relativity with fixed gravitation constant G to cosmology, and a modified theory for varying G is found, which reduces to Einstein's theory outside the gravitating body for phenomena of short duration in small distances, thereby agrees with all the crucial tests formerly supporting Einstein's theory. The modified theory, when applied to the usual homogeneous cosmological model, gives rise to a variable cosmological tensor term determined by the derivatives of G, in place of the cosmological constant term usually introduced ad hoc. Without any free parameter the theoretical Hubble's relation obtained from the modified theory seems not in contradiction to observations, as Dr. Wang's preliminary analysis of the recent data indicates [Commun. Theor. Phys. (Beijing, China) 42 (2004) 703]. As a complement to Commun. Theor. Phys. (Beijing, China) 42 (2004) 703 we shall study in this paper the modification of electromagnetism due to Dirac's large number hypothesis in more detail to show that the approximation of geometric optics still leads to null geodesics for the path of light, and that the general relation between the luminosity distance and the proper geometric distance is still valid in our theory as in Einstein's theory, and give the equations for homogeneous cosmological model involving matter plus electromagnetic radiation. Finally we consider the impact of the modification to quantum mechanics and statistical mechanics, and arrive at a systematic theory of evolving natural constants including Planck's h-bar as well as Boltzmann's k B by finding out their cosmologically combined counterparts with factors of appropriate powers of G that may remain truly constant to cosmologically long time.
General theory of frictional heating with application to rubber friction
Fortunato, G.; Ciaravola, V.; Furno, A.; Lorenz, B.; Persson, B. N. J.
2015-05-01
The energy dissipation in the contact regions between solids in sliding contact can result in high local temperatures which may strongly effect friction and wear. This is the case for rubber sliding on road surfaces at speeds above 1 mm s-1. We derive equations which describe the frictional heating for solids with arbitrary thermal properties. The theory is applied to rubber friction on road surfaces and we take into account that the frictional energy is partly produced inside the rubber due to the internal friction of rubber and in a thin (nanometer) interfacial layer at the rubber-road contact region. The heat transfer between the rubber and the road surface is described by a heat transfer coefficient which depends on the sliding speed. Numerical results are presented and compared to experimental data. We find that frictional heating results in a kinetic friction force which depends on the orientation of the sliding block, thus violating one of the two basic Leonardo da Vinci ‘laws’ of friction.
General Linearized Theory of Quantum Fluctuations around Arbitrary Limit Cycles.
Navarrete-Benlloch, Carlos; Weiss, Talitha; Walter, Stefan; de Valcárcel, Germán J
2017-09-29
The theory of Gaussian quantum fluctuations around classical steady states in nonlinear quantum-optical systems (also known as standard linearization) is a cornerstone for the analysis of such systems. Its simplicity, together with its accuracy far from critical points or situations where the nonlinearity reaches the strong coupling regime, has turned it into a widespread technique, being the first method of choice in most works on the subject. However, such a technique finds strong practical and conceptual complications when one tries to apply it to situations in which the classical long-time solution is time dependent, a most prominent example being spontaneous limit-cycle formation. Here, we introduce a linearization scheme adapted to such situations, using the driven Van der Pol oscillator as a test bed for the method, which allows us to compare it with full numerical simulations. On a conceptual level, the scheme relies on the connection between the emergence of limit cycles and the spontaneous breaking of the symmetry under temporal translations. On the practical side, the method keeps the simplicity and linear scaling with the size of the problem (number of modes) characteristic of standard linearization, making it applicable to large (many-body) systems.
Toward a general theory of momentum-like effects.
Hubbard, Timothy L
2017-08-01
The future actions, behaviors, and outcomes of objects, individuals, and processes can often be anticipated, and some of these anticipations have been hypothesized to result from momentum-like effects. Five types of momentum-like effects (representational momentum, operational momentum, attentional momentum, behavioral momentum, psychological momentum) are briefly described. Potential similarities involving properties of momentum-like effects (continuation, coherence, role of chance or guessing, role of sensory processing, imperviousness to practice or error feedback, shifts in memory for position, effects of changes in velocity, rapid occurrence, effects of retention interval, attachment to an object rather than an abstract frame of reference, nonrigid transformation) are described, and potential constraints on a future theory of momentum-like effects (dynamic representation, nature of extrapolation, sensitivity to environmental contingencies, bridging gaps between stimulus and response, increasing adaptiveness to the environment, serving as a heuristic for perception and action, insensitivity to stimulus format, importance of subjective consequences, role of knowledge and belief, automaticity of occurrence, properties of functional architecture) are discussed. The similarity and ubiquity of momentum-like effects suggests such effects might result from a single or small number of mechanisms that operate over different dimensions, modalities, and time-scales and provide a fundamental adaptation for perception and action. Copyright © 2017. Published by Elsevier B.V.
Validation in the Software Metric Development Process
van den Berg, Klaas; van den Broek, P.M.
In this paper the validation of software metrics will be examined. Two approaches will be combined: representational measurement theory and a validation network scheme. The development process of a software metric will be described, together with validities for the three phases of the metric
A superconducting gyroscope to test Einstein's general theory of relativity
Everitt, C. W. F.
1978-01-01
Schiff (1960) proposed a new test of general relativity based on measuring the precessions of the spin axes of gyroscopes in earth orbit. Since 1963 a Stanford research team has been developing an experiment to measure the two effects calculated by Schiff. The gyroscope consists of a uniform sphere of fused quartz 38 mm in diameter, coated with superconductor, electrically suspended and spinning at about 170 Hz in vacuum. The paper describes the proposed flight apparatus and the current state of development of the gyroscope, including techniques for manufacturing and measuring the gyro rotor and housing, generating ultralow magnetic fields, and mechanizing the readout.
General Rotorcraft Aeromechanical Stability Program (GRASP) - Theory Manual
1990-10-01
A 3 X 3 identity matrix 6 ij Kronecker delta 6RBA Virtual displacement of B relative to A in 1 6W virtual work S1 ).BI Virtual rotation of B in I f...additional, non-nodal generalized coordinates. Computationally, the elements are the primary source of virtual work in the structure. For steady-state...then becomes scBA -BACBA B =-_CBA (5.3-2) The corresponding virtual rotation vector SOBA is used in determining the virtual work due to applied
Directory of Open Access Journals (Sweden)
Vasil Sutula
2018-02-01
Full Text Available Purpose: to reveal modern ideas about the essence of the concept of "sport" and determine its role in the development of the general theory of physical culture and sports theory. Material & Methods: analysis of specialized literature, which highlights various aspects of the development of the field of people's activities related to the use of physical exercises. Results: in today's society there is an objective sphere of human activity related to the use of physical exercises, for which the name in domestic and foreign scientific and social practice is most often used the term "physical culture". Conclusion: the constitutive conditions of the process of developing a general theory of physical culture are singled out, it is shown that sport, as a special socio-cultural phenomenon, is a historically conditioned activity of people associated with the use of physical exercises, aimed at preparing and participating in competitions, as well as individual and socially significant results of such activity.
The Spectral Web of stationary plasma equilibria. I. General theory
Goedbloed, J. P.
2018-03-01
A new approach to computing the complex spectrum of magnetohydrodynamic waves and instabilities of moving plasmas is presented. It is based on the concept of the Spectral Web, exploiting the self-adjointness of the generalized Frieman-Rotenberg force operator, G, and the Doppler-Coriolis gradient operator parallel to the velocity, U. The problem is solved with an open boundary, where the complementary energy Wcom represents the amount of energy to be delivered to or extracted from the system to maintain a harmonic time-dependence. The eigenvalues are connected by a system of curves in the complex ω-plane, the solution path and the conjugate path (where Wcom is real or imaginary) which together constitute the Spectral Web, having a characteristic geometry that has to be clarified yet, but that has a deep physical significance. It is obtained by straightforward contour plotting of the two paths. The complex eigenvalues, within a specified rectangle of the complex ω-plane, are found by fast, reliable, and accurate iterations. Real and complex oscillation theorems, replacing the familiar tool of counting nodes of eigenfunctions, provide an associated mechanism of mode tracking along the two paths. The Spectral Web method is generalized to toroidal systems and extended to include a resistive wall by accounting for the dissipation in such a wall. It is applied in an accompanying Paper II [J. P. Goedbloed, Phys. Plasmas 25, 032110 (2018).] to a multitude of the basic fundamental instabilities operating in cylindrical plasmas.
Generalized Sagdeev potential theory for shock waves modeling
Akbari-Moghanjoughi, M.
2017-05-01
In this paper, we develop an innovative approach to study the shock wave propagation using the Sagdeev potential method. We also present an analytical solution for Korteweg de Vries Burgers (KdVB) and modified KdVB equation families with a generalized form of the nonlinearity term which agrees well with the numerical one. The novelty of the current approach is that it is based on a simple analogy of the particle in a classical potential with the variable particle energy providing one with a deeper physical insight into the problem and can easily be extended to more complex physical situations. We find that the current method well describes both monotonic and oscillatory natures of the dispersive-diffusive shock structures in different viscous fluid configurations. It is particularly important that all essential parameters of the shock structure can be deduced directly from the Sagdeev potential in small and large potential approximation regimes. Using the new method, we find that supercnoidal waves can decay into either compressive or rarefactive shock waves depending on the initial wave amplitude. Current investigation provides a general platform to study a wide range of phenomena related to nonlinear wave damping and interactions in diverse fluids including plasmas.
International Nuclear Information System (INIS)
Harper, A.F.A.; Digby, R.B.; Thong, S.P.; Lacey, F.
1978-04-01
In April 1978 a meeting of senior metrication officers convened by the Commonwealth Science Council of the Commonwealth Secretariat, was held in London. The participants were drawn from Australia, Bangladesh, Britain, Canada, Ghana, Guyana, India, Jamaica, Papua New Guinea, Solomon Islands and Trinidad and Tobago. Among other things, the meeting resolved to develop a set of guidelines to assist countries to change to SI and to compile such guidelines in the form of a working manual
Is a new and general theory of molecular systematics emerging?
Edwards, Scott V
2009-01-01
The advent and maturation of algorithms for estimating species trees-phylogenetic trees that allow gene tree heterogeneity and whose tips represent lineages, populations and species, as opposed to genes-represent an exciting confluence of phylogenetics, phylogeography, and population genetics, and ushers in a new generation of concepts and challenges for the molecular systematist. In this essay I argue that to better deal with the large multilocus datasets brought on by phylogenomics, and to better align the fields of phylogeography and phylogenetics, we should embrace the primacy of species trees, not only as a new and useful practical tool for systematics, but also as a long-standing conceptual goal of systematics that, largely due to the lack of appropriate computational tools, has been eclipsed in the past few decades. I suggest that phylogenies as gene trees are a "local optimum" for systematics, and review recent advances that will bring us to the broader optimum inherent in species trees. In addition to adopting new methods of phylogenetic analysis (and ideally reserving the term "phylogeny" for species trees rather than gene trees), the new paradigm suggests shifts in a number of practices, such as sampling data to maximize not only the number of accumulated sites but also the number of independently segregating genes; routinely using coalescent or other models in computer simulations to allow gene tree heterogeneity; and understanding better the role of concatenation in influencing topologies and confidence in phylogenies. By building on the foundation laid by concepts of gene trees and coalescent theory, and by taking cues from recent trends in multilocus phylogeography, molecular systematics stands to be enriched. Many of the challenges and lessons learned for estimating gene trees will carry over to the challenge of estimating species trees, although adopting the species tree paradigm will clarify many issues (such as the nature of polytomies and the
2014-10-06
Manuscript, 1977. [4] I. V. Pavlov . Sequential procedure of testing composite hypotheses with applications to the Kiefer-Weiss problem. Theory of...SECURITY CLASSIFICATION OF: The objective was to develop general theories of sequential hypothesis testing and quickest change detection for complex...multi-population stochastic models, as well as to apply these theories to automatic threat detection and classification with low false alarm and miss
Asymptotic boundary conditions for dissipative waves: General theory
Hagstrom, Thomas
1990-01-01
An outstanding issue in the computational analysis of time dependent problems is the imposition of appropriate radiation boundary conditions at artificial boundaries. Accurate conditions are developed which are based on the asymptotic analysis of wave propagation over long ranges. Employing the method of steepest descents, dominant wave groups are identified and simple approximations to the dispersion relation are considered in order to derive local boundary operators. The existence of a small number of dominant wave groups may be expected for systems with dissipation. Estimates of the error as a function of domain size are derived under general hypotheses, leading to convergence results. Some practical aspects of the numerical construction of the asymptotic boundary operators are also discussed.
Asymptotic boundary conditions for dissipative waves - General theory
Hagstrom, Thomas
1991-01-01
An outstanding issue in computational analysis of time dependent problems is the imposition of appropriate radiation boundary conditions at artificial boundaries. Accurate conditions are developed which are based on the asymptotic analysis of wave propagation over long ranges. Employing the method of steepest descents, dominant wave groups are identified and simple approximations to the dispersion relation are considered in order to derive local boundary operators. The existence of a small number of dominant wave groups may be expected for systems with dissipation. Estimates of the error as a function of domain size are derived under general hypotheses, leading to convergence results. Some practical aspects of the numerical construction of the asymptotic boundary operators are also discussed.
Quantum theory and Einstein's general relativity
Energy Technology Data Exchange (ETDEWEB)
v. Borzeszkowski, H.; Treder, H.
1982-11-01
We dicusss the meaning and prove the accordance of general relativity, wave mechanics, and the quantization of Einstein's gravitation equations themselves. Firstly, we have the problem of the influence of gravitational fields on the de Broglie waves, which influence is in accordance with Einstein's weak principle of equivalence and the limitation of measurements given by Heisenberg's uncertainty relations. Secondly, the quantization of the gravitational fields is a ''quantization of geometry.'' However, classical and quantum gravitation have the same physical meaning according to limitations of measurements given by Einstein's strong principle of equivalence and the Heisenberg uncertainties for the mechanics of test bodies.
A general theory for bandgap estimation in locally resonant metastructures
Sugino, C.; Xia, Y.; Leadenham, S.; Ruzzene, M.; Erturk, A.
2017-10-01
Locally resonant metamaterials are characterized by bandgaps at wavelengths that are much larger than the lattice size, enabling low-frequency vibration attenuation. Typically, bandgap analyses and predictions rely on the assumption of traveling waves in an infinite medium, and do not take advantage of modal representations typically used for the analysis of the dynamic behavior of finite structures. Recently, we developed a method for understanding the locally resonant bandgap in uniform finite metamaterial beams using modal analysis. Here we extend that framework to general locally resonant 1D and 2D metastructures (i.e. locally resonant metamaterial-based finite structures) with specified boundary conditions using a general operator formulation. Using this approach, along with the assumption of an infinite number of resonators tuned to the same frequency, the frequency range of the locally resonant bandgap is easily derived in closed form. Furthermore, the bandgap expression is shown to be the same regardless of the type of vibration problem under consideration, depending only on the added mass ratio and target frequency. For practical designs with a finite number of resonators, it is shown that the number of resonators required for the bandgap to appear increases with increased target frequency, i.e. more resonators are required for higher vibration modes. Additionally, it is observed that there is an optimal, finite number of resonators which gives a bandgap that is wider than the infinite-resonator bandgap, and that the optimal number of resonators increases with target frequency and added mass ratio. As the number of resonators becomes sufficiently large, the bandgap converges to the derived infinite-resonator bandgap. Furthermore, the derived bandgap edge frequencies are shown to agree with results from dispersion analysis using the plane wave expansion method. The model is validated experimentally for a locally resonant cantilever beam under base
Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory.
Burgess, Cliff P
2004-01-01
This article is meant as a summary and introduction to the ideas of effective field theory as applied to gravitational systems, ideas which provide the theoretical foundations for the modern use of general relativity as a theory from which precise predictions are possible.
Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory
Directory of Open Access Journals (Sweden)
Burgess Cliff P.
2004-01-01
Full Text Available This article is meant as a summary and introduction to the ideas of effective field theory as applied to gravitational systems, ideas which provide the theoretical foundations for the modern use of general relativity as a theory from which precise predictions are possible.
A Partial Test of Agnew's General Theory of Crime and Delinquency
Zhang, Yan; Day, George; Cao, Liqun
2012-01-01
In 2005, Agnew introduced a new integrated theory, which he labels a general theory of crime and delinquency. He proposes that delinquency is more likely to occur when constraints against delinquency are low and motivations for delinquency are high. In addition, he argues that constraints and motivations are influenced by variables in five life…
Physical meaning of gauge and super-gauge in general-relativistic field theories
Energy Technology Data Exchange (ETDEWEB)
Treder, H.
1985-05-01
The physical meaning of gauge groups in bimetrical, Riemannian, and Hermitian theories of gravitation is discussed. In Hermitian relativity, Einstein's A-invariance means a super-gauge group which characterizes the Einstein-Schroedinger equations as the only nondegenerate general-relativistic field theory.
International Nuclear Information System (INIS)
Shrock, R.E.
1982-01-01
We discuss the electromagnetic properties and decays of Dirac and Majorana neutrinos in a general class of gauge theories. Specific results for the standard SU(2)sub(L) x U(1) and a (not necessarily left-right symmetric) SU(2)sub(L) x SU(2)sub(R) x U(1) theory are analyzed. (orig.)
General System Theory: Toward a Conceptual Framework for Science and Technology Education for All.
Chen, David; Stroup, Walter
1993-01-01
Suggests using general system theory as a unifying theoretical framework for science and technology education for all. Five reasons are articulated: the multidisciplinary nature of systems theory, the ability to engage complexity, the capacity to describe system dynamics, the ability to represent the relationship between microlevel and…
Principles of General Systems Theory: Some Implications for Higher Education Administration
Gilliland, Martha W.; Gilliland, J. Richard
1978-01-01
Three principles of general systems theory are presented and systems theory is distinguished from systems analysis. The principles state that all systems tend to become more disorderly, that they must be diverse in order to be stable, and that only those maximizing their resource utilization for doing useful work will survive. (Author/LBH)
Directory of Open Access Journals (Sweden)
Kyril Tintarev
2007-05-01
Full Text Available The paper studies energy functionals on quasimetric spaces, defined by quadratic measure-valued Lagrangeans. This general model of medium, known as metric fractals, includes nested fractals and sub-Riemannian manifolds. In particular, the quadratic form of the Lagrangean satisfies Sobolev inequalities with the critical exponent determined by the (quasimetric homogeneous dimension, which is also involved in the asymptotic distribution of the form's eigenvalues. This paper verifies that the axioms of the metric fractal are preserved by space products, leading thus to examples of non-differentiable media of arbitrary intrinsic dimension.
THE GENERAL ATOMICS FUSION THEORY PROGRAM ANNUAL REPORT FOR FISCAL YEAR 2002
Energy Technology Data Exchange (ETDEWEB)
PROJECT STAFF
2002-12-01
OAK B202 THE GENERAL ATOMICS FUSION THEORY PROGRAM ANNUAL REPORT FOR FISCAL YEAR 2002. The dual objective of the fusion theory program at General Atomics (GA) is to significantly advance the scientific understanding of the physics of fusion plasmas and to support the DIII-D and other tokamak experiments. The program plan is aimed at contributing significantly to the Fusion Energy Science and the Tokamak Concept Improvement goals of the Office of Fusion Energy Sciences (OFES).
THE GENERAL ATOMICS FUSION THEORY PROGRAM ANNUAL REPORT FOR FISCAL YEAR 2002
International Nuclear Information System (INIS)
PROJECT STAFF
2002-01-01
OAK B202 THE GENERAL ATOMICS FUSION THEORY PROGRAM ANNUAL REPORT FOR FISCAL YEAR 2002. The dual objective of the fusion theory program at General Atomics (GA) is to significantly advance the scientific understanding of the physics of fusion plasmas and to support the DIII-D and other tokamak experiments. The program plan is aimed at contributing significantly to the Fusion Energy Science and the Tokamak Concept Improvement goals of the Office of Fusion Energy Sciences (OFES)
General Slit Stochastic L\\"owner Evolution and Conformal Field Theory
Tochin, Alexey
2015-01-01
This monograph is dedicated to a generalization of the L\\"owner equation in its stochastic form known as SLE and to its coupling with the Gaussian free field, ultimately aiming at the construction of a boundary conformal field theory with one free scalar bosonic field. This study is presented in line with a systematic, and hopefully concise, presentation and generalization of known elements of the theory of L\\"owner evolution. We also study the relation to singular representations of the Vira...
A generalized non-local optical response theory for plasmonic nanostructures
DEFF Research Database (Denmark)
Mortensen, N. Asger; Raza, Søren; Wubs, Martijn
2014-01-01
Metallic nanostructures exhibit a multitude of optical resonances associated with localized surface plasmon excitations. Recent observations of plasmonic phenomena at the sub-nanometre to atomic scale have stimulated the development of various sophisticated theoretical approaches...... for their description. Here instead we present a comparatively simple semiclassical generalized non-local optical response theory that unifies quantum pressure convection effects and induced charge diffusion kinetics, with a concomitant complex-valued generalized non-local optical response parameter. Our theory...
4-dimensional General Relativity from the instrinsic spatial geometry of SO(3) Yang-Mills theory
International Nuclear Information System (INIS)
Ita, Eyo Eyo
2011-01-01
In this paper we derive 4-dimensional General Relativity from three dimensions, using the intrinsic spatial geometry inherent in Yang-Mills theory which has been exposed by previous authors as well as some properties of the Ashtekar variables. We provide various interesting relations, including the fact that General Relativity can be written as a Yang-Mills theory where the antiself-dual Weyl curvature replaces the Yang-Mills coupling constant. We have generalized the results of some previous authors, covering Einstein's spaces, to include more general spacetime geometries.
Directory of Open Access Journals (Sweden)
Alba Lucero López Díaz
2006-09-01
Full Text Available Objetivos: caracterizar y analizar artículos que utilizan la Teoría General de Enfermería de Orem en el período de 1992 a 2001. Diseño y metodología: estudio documental sobre 108 artículos encontrados en las bases de datos: MEDLINE, OVID, PROQUEST y el Catálogo Colectivo Nacional de Publicaciones Seriadas- Hemeroteca Nacional (Colombia. Fueron seleccionados 74 artículos que utilizaron alguna de las teorías de Orem o conceptos de la Teoría General de Orem. Resultados: la Teoría General de Orem ha sido utilizada en cuatro continentes; 38 (51,3% estudios la aplican en el ámbito institucional y 21 (28,4% en la comunidad. Los adultos y ancianos son los grupos de edad con mayor reporte en los estudios (47,3%. Los métodos cuantitativos de investigación son los más utilizados (69 estudios, 93,2%. Conclusión: los estudios exploran o correlacionan conceptos de la Teoría General de Orem, el desarrollo de instrumentos y la validación de constructos teóricos. La evidencia empírica sobre la aplicación de la Teoría General de Orem muestra su importancia en el desarrollo del conocimiento en enfermería e indica su gran utilidad para la investigación y práctica de enfermería.Objective: analysis and characterization of articles about Orem General Theory used between 1992 to 2001. Methodology and Materials: documental study about 108 articles recorded in Medline, Ovid, Proquest databases and in the National Colective Catalogue of Periodicals Colombian newspapers library. Seventy four articles using some Orem’s General Theory were selected. Results: Orem’s General Theory has been applied in four continents. Thirty eight studies (51.3% use it in the institutional environment and 21 (28.4% in the community. Adults and senior citizens are the age groups more reported (47.3%. Quantitative research methods are the most common. Conclusions: sixty nine studies explore or correlate concepts from Orem’s General Theory, the development of
General Rotorcraft Aeromechanical Stability Program (GRASP): Theory manual
Hodges, Dewey H.; Hopkins, A. Stewart; Kunz, Donald L.; Hinnant, Howard E.
1990-01-01
The general rotorcraft aeromechanical stability program (GRASP) was developed to calculate aeroelastic stability for rotorcraft in hovering flight, vertical flight, and ground contact conditions. GRASP is described in terms of its capabilities and its philosophy of modeling. The equations of motion that govern the physical system are described, as well as the analytical approximations used to derive them. The equations include the kinematical equation, the element equations, and the constraint equations. In addition, the solution procedures used by GRASP are described. GRASP is capable of treating the nonlinear static and linearized dynamic behavior of structures represented by arbitrary collections of rigid-body and beam elements. These elements may be connected in an arbitrary fashion, and are permitted to have large relative motions. The main limitation of this analysis is that periodic coefficient effects are not treated, restricting rotorcraft flight conditions to hover, axial flight, and ground contact. Instead of following the methods employed in other rotorcraft programs. GRASP is designed to be a hybrid of the finite-element method and the multibody methods used in spacecraft analysis. GRASP differs from traditional finite-element programs by allowing multiple levels of substructure in which the substructures can move and/or rotate relative to others with no small-angle approximations. This capability facilitates the modeling of rotorcraft structures, including the rotating/nonrotating interface and the details of the blade/root kinematics for various types. GRASP differs from traditional multibody programs by considering aeroelastic effects, including inflow dynamics (simple unsteady aerodynamics) and nonlinear aerodynamic coefficients.
Energy Technology Data Exchange (ETDEWEB)
Frye, Jason Neal; Veitch, Cynthia K.; Mateski, Mark Elliot; Michalski, John T.; Harris, James Mark; Trevino, Cassandra M.; Maruoka, Scott
2012-03-01
Threats are generally much easier to list than to describe, and much easier to describe than to measure. As a result, many organizations list threats. Fewer describe them in useful terms, and still fewer measure them in meaningful ways. This is particularly true in the dynamic and nebulous domain of cyber threats - a domain that tends to resist easy measurement and, in some cases, appears to defy any measurement. We believe the problem is tractable. In this report we describe threat metrics and models for characterizing threats consistently and unambiguously. The purpose of this report is to support the Operational Threat Assessment (OTA) phase of risk and vulnerability assessment. To this end, we focus on the task of characterizing cyber threats using consistent threat metrics and models. In particular, we address threat metrics and models for describing malicious cyber threats to US FCEB agencies and systems.
National Research Council Canada - National Science Library
Johnson, Joseph E; Gudkov, Vladimir
2005-01-01
.... The PI, under the funding of this grant, has discovered a strong connection between the topological specification of a network in the form of a connection matrix and the branches of mathematics known...
Plane symmetric cosmological micro model in modified theory of Einstein’s general relativity
Directory of Open Access Journals (Sweden)
Panigrahi U.K.
2003-01-01
Full Text Available In this paper, we have investigated an anisotropic homogeneous plane symmetric cosmological micro-model in the presence of massless scalar field in modified theory of Einstein's general relativity. Some interesting physical and geometrical aspects of the model together with singularity in the model are discussed. Further, it is shown that this theory is valid and leads to Einstein's theory as the coupling parameter λ →>• 0 in micro (i.e. quantum level in general.
Formal framework for a nonlocal generalization of Einstein's theory of gravitation
International Nuclear Information System (INIS)
Hehl, Friedrich W.; Mashhoon, Bahram
2009-01-01
The analogy between electrodynamics and the translational gauge theory of gravity is employed in this paper to develop an ansatz for a nonlocal generalization of Einstein's theory of gravitation. Working in the linear approximation, we show that the resulting nonlocal theory is equivalent to general relativity with 'dark matter'. The nature of the predicted dark matter, which is the manifestation of the nonlocal character of gravity in our model, is briefly discussed. It is demonstrated that this approach can provide a basis for the Tohline-Kuhn treatment of the astrophysical evidence for dark matter.
Generalized Poincaré algebras and Lovelock–Cartan gravity theory
Directory of Open Access Journals (Sweden)
P.K. Concha
2015-03-01
Full Text Available We show that the Lagrangian for Lovelock–Cartan gravity theory can be reformulated as an action which leads to General Relativity in a certain limit. In odd dimensions the Lagrangian leads to a Chern–Simons theory invariant under the generalized Poincaré algebra B2n+1, while in even dimensions the Lagrangian leads to a Born–Infeld theory invariant under a subalgebra of the B2n+1 algebra. It is also shown that torsion may occur explicitly in the Lagrangian leading to new torsional Lagrangians, which are related to the Chern–Pontryagin character for the B2n+1 group.
M. Deza; M. Laurent (Monique)
1997-01-01
htmlabstractCuts and metrics are well-known objects that arise - independently, but with many deep and fascinating connections - in diverse fields: in graph theory, combinatorial optimization, geometry of numbers, combinatorial matrix theory, statistical physics, VLSI design etc. This book offers a
Palatini versus metric formulation in higher-curvature gravity
International Nuclear Information System (INIS)
Borunda, Mónica; Janssen, Bert; Bastero-Gil, Mar
2008-01-01
We compare the metric and the Palatini formalism to obtain the Einstein equations in the presence of higher-order curvature corrections that consist of contractions of the Riemann tensor, but not of its derivatives. We find that there is a class of theories for which the two formalisms are equivalent. This class contains the Palatini version of Lovelock theory, but also more Lagrangians that are not Lovelock, but respect certain symmetries. For the general case, we find that imposing the Levi-Civita connection as an ansatz, the Palatini formalism is contained within the metric formalism, in the sense that any solution of the former also appears as a solution of the latter, but not necessarily the other way around. Finally we give the conditions the solutions of the metric equations should satisfy in order to solve the Palatini equations
Tensor hierarchy and generalized Cartan calculus in SL(3)×SL(2) exceptional field theory
Energy Technology Data Exchange (ETDEWEB)
Hohm, Olaf; Wang, Yi-Nan [Center for Theoretical Physics, Massachusetts Institute of Technology,77 Massachusetts Avenue, Cambridge, MA 02139 (United States)
2015-04-10
We construct exceptional field theory for the duality group SL(3)×SL(2). The theory is defined on a space with 8 ‘external’ coordinates and 6 ‘internal’ coordinates in the (3,2) fundamental representation, leading to a 14-dimensional generalized spacetime. The bosonic theory is uniquely determined by gauge invariance under generalized external and internal diffeomorphisms. The latter invariance can be made manifest by introducing higher form gauge fields and a so-called tensor hierarchy, which we systematically develop to much higher degree than in previous studies. To this end we introduce a novel Cartan-like tensor calculus based on a covariant nil-potent differential, generalizing the exterior derivative of conventional differential geometry. The theory encodes the full D=11 or type IIB supergravity, respectively.
Cheung, Nicole W. T.; Cheung, Yuet W.
2008-01-01
The objectives of this study were to test the predictive power of self-control theory for delinquency in a Chinese context, and to explore if social factors as predicted in social bonding theory, differential association theory, general strain theory, and labeling theory have effects on delinquency in the presence of self-control. Self-report data…
Universal hypermultiplet metrics
International Nuclear Information System (INIS)
Ketov, Sergei V.
2001-01-01
Some instanton corrections to the universal hypermultiplet moduli space metric of the type IIA string theory compactified on a Calabi-Yau threefold arise due to multiple wrapping of BPS membranes and five-branes around certain cycles of Calabi-Yau. The classical universal hypermultipet metric is locally equivalent to the Bergmann metric of the symmetric quaternionic space SU(2,1)/U(2), whereas its generic quaternionic deformations are governed by the integrable SU(∞) Toda equation. We calculate the exact (non-perturbative) UH metrics in the special cases of (i) the D-instantons (the wrapped D2-branes) in the absence of five-branes, and (ii) the five-brane instantons with vanishing charges, in the absence of D-instantons. The solutions of the first type preserve the U(1)xU(1) classical symmetry, while they can be interpreted as the gravitational dressing of the hyper-Kaehler D-instanton solutions. The solutions of the second type preserve the non-abelian SU(2) classical symmetry, while they can be interpreted as the gradient flows in the universal hypermultiplet moduli space
International Nuclear Information System (INIS)
Denisov, V.I.; Eliseev, V.A.
1986-01-01
This paper studies the interaction of a weak gravitational wave and the electromagnetic field of a neutron star from the point of view of two theories: the linear variant of the field theory of gravitation and the general theory of relativity. The obtained solutions are used to analyze the possibilities of establishing experimentally which of the two theories describes reality adequately
General relativity the most beautiful of theories : applications and trends after 100 years
2015-01-01
Generalising Newton's law of gravitation, general relativity is one of the pillars of modern physics. On the occasion of general relativity's centennial, leading scientists in the different branches of gravitational research review the history and recent advances in the main fields of applications of the theory, which was referred to by Lev Landau as “the most beautiful of the existing physical theories”.
Phantom metrics with Killing spinors
Directory of Open Access Journals (Sweden)
W.A. Sabra
2015-11-01
Full Text Available We study metric solutions of Einstein–anti-Maxwell theory admitting Killing spinors. The analogue of the IWP metric which admits a space-like Killing vector is found and is expressed in terms of a complex function satisfying the wave equation in flat (2+1-dimensional space–time. As examples, electric and magnetic Kasner spaces are constructed by allowing the solution to depend only on the time coordinate. Euclidean solutions are also presented.
Directory of Open Access Journals (Sweden)
Florentina Xhelili Krasniqi
2016-12-01
Full Text Available Nobel Laureates with their contributions to the development of the theory of general equilibrium have enabled this theory to be one of the most important for theoretical and practical analysis of the overall economy and the efficient use of economic resources. Results of the research showing that contributions of Nobel Laureates in the economy belong to two main frameworks of development of the general equilibrium theory: one was the mathematical model of general equilibrium developed by John R. Hicks (1939, Kenneth J.Arrow (1951 and Gerard Debreu (1954 and second frames of general equilibrium belongs to Paul A. Samuelson (1958. To highlight the contributions of these Nobel laureates in the development of the theory of general equilibrium have been selected and are presented in the paper some views, estimates and assumptions that have contributed not only in solving concrete problems, but also to the development of economic science in general. Their works represent a synthesis of theoretical and practical aspects of treatment of general equilibrium which are the starting point for further research in this field.
A general theory of non-equilibrium dynamics of lipid-protein fluid membranes
DEFF Research Database (Denmark)
Lomholt, Michael Andersen; Hansen, Per Lyngs; Miao, L.
2005-01-01
We present a general and systematic theory of non-equilibrium dynamics of multi-component fluid membranes, in general, and membranes containing transmembrane proteins, in particular. Developed based on a minimal number of principles of statistical physics and designed to be a meso....../macroscopic-scale effective description, the theory is formulated in terms of a set of equations of hydrodynamics and linear constitutive relations. As a particular emphasis of the theory, the equations and the constitutive relations address both the thermodynamic and the hydrodynamic consequences of the unconventional...... material characteristics of lipid-protein membranes and contain proposals as well as predictions which have not yet been made in already existing work on membrane hydrodynamics and which may have experimental relevance. The framework structure of the theory makes possible its applications to a range of non...
International Nuclear Information System (INIS)
Hwang, Jai-chan; Noh, Hyerim
2005-01-01
We present cosmological perturbation theory based on generalized gravity theories including string theory correction terms and a tachyonic complication. The classical evolution as well as the quantum generation processes in these varieties of gravity theories are presented in unified forms. These apply both to the scalar- and tensor-type perturbations. Analyses are made based on the curvature variable in two different gauge conditions often used in the literature in Einstein's gravity; these are the curvature variables in the comoving (or uniform-field) gauge and the zero-shear gauge. Applications to generalized slow-roll inflation and its consequent power spectra are derived in unified forms which include a wide range of inflationary scenarios based on Einstein's gravity and others
Lee-Wick indefinite metric quantization: A functional integral approach
International Nuclear Information System (INIS)
Boulware, D.G.; Gross, D.J.
1984-01-01
In an attempt to study the stability of the Lee-Wick indefinite metric theory, the functional integral for indefinite metric quantum field theories is derived. Theories with an indefinite classical energy may be quantized with either a normal metric and an indefinite energy in Minkowski space or an indefinite metric and a positive energy in euclidean space. However, the functional integral in the latter formulation does not incorporate the Lee-Wick prescription for assuring the unitarity of the positive energy positive metric sector of the theory, hence the stability of the theory cannot be studied non-perturbatively. (orig.)
General contact mechanics theory for randomly rough surfaces with application to rubber friction
Scaraggi, Michele; Persson, Bo N. J.
2015-01-01
We generalize the Persson contact mechanics and rubber friction theory to the case where both surfaces have surface roughness. The solids can be rigid, elastic or viscoelastic, and can be homogeneous or layered. We calculate the contact area, the viscoelastic contribution to the friction force, and the average interfacial separation as a function of the sliding speed and the nominal contact pressure. We illustrate the theory with numerical results for a rubber block sliding on a road surface....
A scientific story of generalized Lorenz-Mie theories with epistemological remarks
Gouesbet, G.
2013-09-01
This paper is concerned with a scientific story of the development of generalized Lorenz-Mie theories, in short GLMTs (such as motivations, precursors, difficulties and solutions to difficulties). A strong emphasis is however devoted to aspects which rather pertain to epistemological issues, GLMTs then forming a pretext for expositions which are matching some of the current interests of the author, in particular the issue of contingency in the development of theories.
On the covariant description of spontaneously broken symmetry in general field theory
Joos, H
1976-01-01
Reducible fields A(x) with degenerate vacuum which allow the unitary- symmetry transformation U/sup -1/(c)A(x)U(c)=A(x)+c are analysed. The mathematical properties of the 'charge integral' related to the conserved current of this spontaneously broken symmetry are described. The structure of the S-matrix theory is discussed in such a generalized field theory as a guide-line for the treatment of more complex examples of spontaneously broken symmetries. (42 refs).
General laser interaction theory in atom-diatom systems for both adiabatic and nonadiabatic cases.
Li, Xuan; Brue, Daniel A; Parker, Gregory A; Chang, Sin-Tarng
2006-04-27
This paper develops the general theory for laser fields interacting with bimolecular systems. In this study, we choose to use the multipolar gauge on the basis of gauge invariance. We consider both the adiabatic and nonadiabatic cases and find they produce similar interaction pictures. As an application of this theory, we present the study of rovibrational energy transfer in Ar + CO collisions in the presence of an intense laser field.
Convergence of scalar-tensor theories towards general relativity and primordial nucleosynthesis
International Nuclear Information System (INIS)
Serna, A; Alimi, J-M; Navarro, A
2002-01-01
In this paper, we analyse the conditions for convergence towards general relativity of scalar-tensor gravity theories defined by an arbitrary coupling function α (in the Einstein frame). We show that, in general, the evolution of the scalar field (φ) is governed by two opposite mechanisms: an attraction mechanism which tends to drive scalar-tensor models towards Einstein's theory, and a repulsion mechanism which has the contrary effect. The attraction mechanism dominates the recent epochs of the universe evolution if, and only if, the scalar field and its derivative satisfy certain boundary conditions. Since these conditions for convergence towards general relativity depend on the particular scalar-tensor theory used to describe the universe evolution, the nucleosynthesis bounds on the present value of the coupling function, α 0 , strongly differ from some theories to others. For example, in theories defined by α ∝ |φ| analytical estimates lead to very stringent nucleosynthesis bounds on α 0 (∼ -19 ). By contrast, in scalar-tensor theories defined by α ∝ φ much larger limits on α 0 (∼ -7 ) are found
Criticism of generally accepted fundamentals and methodologies of traffic and transportation theory
Energy Technology Data Exchange (ETDEWEB)
Kerner, Boris S. [Physics of Transportation and Traffic, University Duisburg-Essen, 47048 Duisburg (Germany)
2015-03-10
It is explained why the set of the fundamental empirical features of traffic breakdown (a transition from free flow to congested traffic) should be the empirical basis for any traffic and transportation theory that can be reliable used for control and optimization in traffic networks. It is shown that generally accepted fundamentals and methodologies of traffic and transportation theory are not consistent with the set of the fundamental empirical features of traffic breakdown at a highway bottleneck. To these fundamentals and methodologies of traffic and transportation theory belong (i) Lighthill-Whitham-Richards (LWR) theory, (ii) the General Motors (GM) model class (for example, Herman, Gazis et al. GM model, Gipps’s model, Payne’s model, Newell’s optimal velocity (OV) model, Wiedemann’s model, Bando et al. OV model, Treiber’s IDM, Krauß’s model), (iii) the understanding of highway capacity as a particular stochastic value, and (iv) principles for traffic and transportation network optimization and control (for example, Wardrop’s user equilibrium (UE) and system optimum (SO) principles). Alternatively to these generally accepted fundamentals and methodologies of traffic and transportation theory, we discuss three-phase traffic theory as the basis for traffic flow modeling as well as briefly consider the network breakdown minimization (BM) principle for the optimization of traffic and transportation networks with road bottlenecks.
Open Wilson lines and generalized star product in noncommutative scalar field theories
International Nuclear Information System (INIS)
Kiem, Youngjai; Sato, Haru-Tada; Rey, Soo-Jong; Yee, Jung-Tay
2002-01-01
Open Wilson line operators and a generalized star product have been studied extensively in noncommutative gauge theories. We show that they also show up in noncommutative scalar field theories as universal structures. We first point out that the dipole picture of noncommutative geometry provides an intuitive argument for the robustness of the open Wilson lines and generalized star products therein. We calculate the one-loop effective action of noncommutative scalar field theory with a cubic self-interaction and show explicitly that the generalized star products arise in the nonplanar part. It is shown that, at the low-energy, large noncommutativity limit, the nonplanar part is expressible solely in terms of the scalar open Wilson line operator and descendants
Gurbatov, S N; Saichev, A I
2012-01-01
"Waves and Structures in Nonlinear Nondispersive Media: General Theory and Applications to Nonlinear Acoustics” is devoted completely to nonlinear structures. The general theory is given here in parallel with mathematical models. Many concrete examples illustrate the general analysis of Part I. Part II is devoted to applications to nonlinear acoustics, including specific nonlinear models and exact solutions, physical mechanisms of nonlinearity, sawtooth-shaped wave propagation, self-action phenomena, nonlinear resonances and engineering application (medicine, nondestructive testing, geophysics, etc.). This book is designed for graduate and postgraduate students studying the theory of nonlinear waves of various physical nature. It may also be useful as a handbook for engineers and researchers who encounter the necessity of taking nonlinear wave effects into account of their work. Dr. Gurbatov S.N. is the head of Department, and Vice Rector for Research of Nizhny Novgorod State University. Dr. Rudenko O.V. is...
TWO GENERALIZATIONS OF AGGREGATED UNCERTAINTY MEASURE FOR EVALUATION OF DEZERT–SMARANDACHE THEORY
MAHDI KHODABANDEH; ALIREZA MOHAMMAD-SHAHRI
2012-01-01
Generality of the model which is used in Dezert–Smarandache Theory (DSmT) rather than other fusion algorithms such as Dempster–Shafer theory and capability of DSmT for dealing with highly conflict problems are two main reasons to prefer DSmT for decision-making systems. Aggregated uncertainty measure, which is called AU measure, has been introduced for Dempster–Shafer theory as one of the best presented ways to quantify the total uncertainty or the ambiguity of a belief function. Since AU can...
Traversa, Fabio L; Di Ventra, Massimiliano; Bonani, Fabrizio
2013-04-26
Floquet theory is a powerful tool in the analysis of many physical phenomena, and extended to spatial coordinates provides the basis for Bloch's theorem. However, in its original formulation it is limited to linear systems with periodic coefficients. Here, we extend the theory by proving a theorem for the general class of systems including linear operators commuting with the period-shift operator. The present theorem greatly expands the range of applicability of Floquet theory to a multitude of phenomena that were previously inaccessible with this type of analysis, such as dynamical systems with memory. As an important extension, we also prove Bloch's theorem for nonlocal potentials.
Physics of aerosols - first part: general properties-kinetics theory-mechanics-diffusion-coagulation
International Nuclear Information System (INIS)
Bricard, Jean
1977-01-01
This report is made of two volumes. Volume 1 includes the general properties of aerosols, the fundamentals of the theory of gases and mechanics are related to particle suspensions, ant the theories of diffusion and coagulation with their applications to atmospheric aerosols. Volume 2 begins with a chapter on nucleation (gas-particle conversion) in the case of one vapor, then two vapors, followed by the theory of aerosol evaporation. The following two chapters are devoted to the study of ions and their attachment to aerosol particles. Finally their optical properties are stated in the last chapter
On Convergence of Fixed Points in Fuzzy Metric Spaces
Directory of Open Access Journals (Sweden)
Yonghong Shen
2013-01-01
Full Text Available We mainly focus on the convergence of the sequence of fixed points for some different sequences of contraction mappings or fuzzy metrics in fuzzy metric spaces. Our results provide a novel research direction for fixed point theory in fuzzy metric spaces as well as a substantial extension of several important results from classical metric spaces.
Nureev Rustem, M.
2016-01-01
The paper was prepared for the 80-th anniversary of publishing of John Maynard Keynes’ “General Theory of Employment, Interest and Money”. It discusses the stages of the economist’s life, the main books written prior to "The General Theory ...". Particular attention is devoted to the development issues of the monetary policy in the works of "Indian Currency and Finance", ”A Tract on Monetary Reform” and "A Treatise on Money". A special section is dedicated to the analysis of Keynes’ methodolo...
Fréchet Metric for Space of Binary Coded Software
Directory of Open Access Journals (Sweden)
Masárová Renáta
2014-12-01
Full Text Available As stated in (7, binary coded computer programs can be shown as a metric space. Therefore, they can be measured by metric in a sense of metric space theory. This paper presents the proof that Fréchet metric is a metric on the space of all sequences of elements M={0,1t} Therefore, it is usable to build a system of software metrics based on the metric space theory
Magnetized cosmological models in bimetric theory of gravitation
Indian Academy of Sciences (India)
Bimetric theory; perfect fluid; cosmic string; magnetic field; Bianchi type-III. PACS Nos 04.20.-q; 04.20.Cv; 04.20.Ex; 98.90. 1. Introduction. A new theory of gravitation, called the bimetric theory of gravitation, was proposed by Rosen [1] to modify the Einstein's general theory of relativity by assuming two metric tensors, viz., a ...
Generalized molecular orbital theory: a limited multiconfiguration self-consistent-field-theory
International Nuclear Information System (INIS)
Hall, M.B.
1981-01-01
The generalized molecular orbital (GMO) approach is a limited type of multiconfiguration self-consistent-field (MCSCF) calculation which divides the orbitals of a closed shell molecule into four shells: doubly occupied, strongly occupied, weakly occupied, and unoccupied. The orbitals within each shell have the same occupation number and are associated with the same Fock operator. Thus, the orbital optimization is ideally suited to solution via a coupling operator. The determination of the orbitals is followed by a configuration interaction (CI) calculation within the strongly and weakly occupied shells. Results for BH 3 show a striking similarity between the GMO's and the natural orbitals (NO's) from an all singles and doubles CI calculation. Although the GMO approach would not be accurate for an entire potential surface, results for spectroscopic constants of N 2 show that it is suitable near the equilibrium geometry. This paper describes the use of the GMO technique to determine the primary orbital space, but a potentially important application may be in the determination of a secondary orbital space following a more accurate MCSCF determination of the primary space
Sikora, Jamie; Selby, John
2018-04-01
Bit commitment is a fundamental cryptographic task, in which Alice commits a bit to Bob such that she cannot later change the value of the bit, while, simultaneously, the bit is hidden from Bob. It is known that ideal bit commitment is impossible within quantum theory. In this work, we show that it is also impossible in generalized probabilistic theories (under a small set of assumptions) by presenting a quantitative trade-off between Alice's and Bob's cheating probabilities. Our proof relies crucially on a formulation of cheating strategies as cone programs, a natural generalization of semidefinite programs. In fact, using the generality of this technique, we prove that this result holds for the more general task of integer commitment.
The Finsler spacetime framework. Backgrounds for physics beyond metric geometry
Energy Technology Data Exchange (ETDEWEB)
Pfeifer, Christian
2013-11-15
The fundamental structure on which physics is described is the geometric spacetime background provided by a four dimensional manifold equipped with a Lorentzian metric. Most importantly the spacetime manifold does not only provide the stage for physical field theories but its geometry encodes causality, observers and their measurements and gravity simultaneously. This threefold role of the Lorentzian metric geometry of spacetime is one of the key insides of general relativity. During this thesis we extend the background geometry for physics from the metric framework of general relativity to our Finsler spacetime framework and ensure that the threefold role of the geometry of spacetime in physics is not changed. The geometry of Finsler spacetimes is determined by a function on the tangent bundle and includes metric geometry. In contrast to the standard formulation of Finsler geometry our Finsler spacetime framework overcomes the differentiability and existence problems of the geometric objects in earlier attempts to use Finsler geometry as an extension of Lorentzian metric geometry. The development of our nonmetric geometric framework which encodes causality is one central achievement of this thesis. On the basis of our well-defined Finsler spacetime geometry we are able to derive dynamics for the non-metric Finslerian geometry of spacetime from an action principle, obtained from the Einstein-Hilbert action, for the first time. We can complete the dynamics to a non-metric description of gravity by coupling matter fields, also formulated via an action principle, to the geometry of our Finsler spacetimes. We prove that the combined dynamics of the fields and the geometry are consistent with general relativity. Furthermore we demonstrate how to define observers and their measurements solely through the non-metric spacetime geometry. Physical consequence derived on the basis of our Finsler spacetime are: a possible solution to the fly-by anomaly in the solar system; the
Beyond heat baths: Generalized resource theories for small-scale thermodynamics.
Yunger Halpern, Nicole; Renes, Joseph M
2016-02-01
Thermodynamics has recently been extended to small scales with resource theories that model heat exchanges. Real physical systems exchange diverse quantities: heat, particles, angular momentum, etc. We generalize thermodynamic resource theories to exchanges of observables other than heat, to baths other than heat baths, and to free energies other than the Helmholtz free energy. These generalizations are illustrated with "grand-potential" theories that model movements of heat and particles. Free operations include unitaries that conserve energy and particle number. From this conservation law and from resource-theory principles, the grand-canonical form of the free states is derived. States are shown to form a quasiorder characterized by free operations, d majorization, the hypothesis-testing entropy, and rescaled Lorenz curves. We calculate the work distillable from-and we bound the work cost of creating-a state. These work quantities can differ but converge to the grand potential in the thermodynamic limit. Extending thermodynamic resource theories beyond heat baths, we open diverse realistic systems to modeling with one-shot statistical mechanics. Prospective applications such as electrochemical batteries are hoped to bridge one-shot theory to experiments.
Generalized Langevin Theory Of The Brownian Motion And The Dynamics Of Polymers In Solution
International Nuclear Information System (INIS)
Tothova, J.; Lisy, V.
2015-01-01
The review deals with a generalization of the Rouse and Zimm bead-spring models of the dynamics of flexible polymers in dilute solutions. As distinct from these popular theories, the memory in the polymer motion is taken into account. The memory naturally arises as a consequence of the fluid and bead inertia within the linearized Navier-Stokes hydrodynamics. We begin with a generalization of the classical theory of the Brownian motion, which forms the basis of any theory of the polymer dynamics. The random force driving the Brownian particles is not the white one as in the Langevin theory, but “colored”, i.e., statistically correlated in time, and the friction force on the particles depends on the history of their motion. An efficient method of solving the resulting generalized Langevin equations is presented and applied to the solution of the equations of motion of polymer beads. The memory effects lead to several peculiarities in the time correlation functions used to describe the dynamics of polymer chains. So, the mean square displacement of the polymer coils contains algebraic long-time tails and at short times it is ballistic. It is shown how these features reveal in the experimentally observable quantities, such as the dynamic structure factors of the scattering or the viscosity of polymer solutions. A phenomenological theory is also presented that describes the dependence of these quantities on the polymer concentration in solution. (author)
Sensitivity theory for general non-linear algebraic equations with constraints
International Nuclear Information System (INIS)
Oblow, E.M.
1977-04-01
Sensitivity theory has been developed to a high state of sophistication for applications involving solutions of the linear Boltzmann equation or approximations to it. The success of this theory in the field of radiation transport has prompted study of possible extensions of the method to more general systems of non-linear equations. Initial work in the U.S. and in Europe on the reactor fuel cycle shows that the sensitivity methodology works equally well for those non-linear problems studied to date. The general non-linear theory for algebraic equations is summarized and applied to a class of problems whose solutions are characterized by constrained extrema. Such equations form the basis of much work on energy systems modelling and the econometrics of power production and distribution. It is valuable to have a sensitivity theory available for these problem areas since it is difficult to repeatedly solve complex non-linear equations to find out the effects of alternative input assumptions or the uncertainties associated with predictions of system behavior. The sensitivity theory for a linear system of algebraic equations with constraints which can be solved using linear programming techniques is discussed. The role of the constraints in simplifying the problem so that sensitivity methodology can be applied is highlighted. The general non-linear method is summarized and applied to a non-linear programming problem in particular. Conclusions are drawn in about the applicability of the method for practical problems
A New Conformal Theory of Semi-Classical Quantum General Relativity
Directory of Open Access Journals (Sweden)
Suhendro I.
2007-10-01
Full Text Available We consider a new four-dimensional formulation of semi-classical quantum general relativity in which the classical space-time manifold, whose intrinsic geometric properties give rise to the effects of gravitation, is allowed to evolve microscopically by means of a conformal function which is assumed to depend on some quantum mechanical wave function. As a result, the theory presented here produces a unified field theory of gravitation and (microscopic electromagnetism in a somewhat simple, effective manner. In the process, it is seen that electromagnetism is actually an emergent quantum field originating in some kind of stochastic smooth extension (evolution of the gravitational field in the general theory of relativity.
The perfect theory a century of geniuses and the battle over general relativity
Ferreira, Pedro G
2014-01-01
Physicists have been exploring, debating, and questioning the general theory of relativity ever since Albert Einstein first presented it in 1915. Their work has uncovered a number of the universe’s more surprising secrets, and many believe further wonders remain hidden within the theory’s tangle of equations, waiting to be exposed. In this sweeping narrative of science and culture, astrophysicist Pedro Ferreira brings general relativity to life through the story of the brilliant physicists, mathematicians, and astronomers who have taken up its challenge. For these scientists, the theory has been both a treasure trove and an enigma, fueling a century of intellectual struggle and triumph.. Einstein’s theory, which explains the relationships among gravity, space, and time, is possibly the most perfect intellectual achievement of modern physics, yet studying it has always been a controversial endeavor. Relativists were the target of persecution in Hitler’s Germany, hounded in Stalin’s Russia, and disdai...
A modified generalized equivalence theory for homogenization of the assembly and baffle/reflector
International Nuclear Information System (INIS)
Cheng, Hongwu; Cho, Nam-Zin
1996-01-01
Based on detailed investigations into the generalized equivalence theory (GET), a more generalized equivalence theory (MGET) has been put forward. In this theory, usual nodal surface flux discontinuity factors are replaced by nodal outgoing or incoming partial current discontinuity factors, which leads to a new interface condition in nodal diffusion methods, while nodal equivalent cross sections still take on the flux-volume-weighted constants (FVWs). It is shown from the numerical experiments that for the heterogeneous problems with the explicit baffle, the equivalent parameters defined by MGET are nearly of the same order as those defined by GET. However, if the core burnup state is considered, it turns out that the outgoing partial current discontinuity factors are much more insensitive to the core state than the flux discontinuity factors and the incoming partial current discontinuity factors. (author)
Semicompatibility and fixed point theorems in an unbounded D-metric space
Directory of Open Access Journals (Sweden)
Bijendra Singh
2005-01-01
Full Text Available Rhoades (1996 proved a fixed point theorem in a bounded D-metric space for a contractive self-map with applications. Here we establish a more general fixed point theorem in an unbounded D-metric space, for two self-maps satisfying a general contractive condition with a restricted domain of x and y. This has been done by using the notion of semicompatible maps in D-metric space. These results generalize and improve the results of Rhoades (1996, Dhage et al. (2000, and Veerapandi and Rao (1996. These results also underline the necessity and importance of semicompatibility in fixed point theory of D-metric spaces. All the results of this paper are new.
International Nuclear Information System (INIS)
Anon.
1981-01-01
This standard gives guidance for application of the modernized metric system in the United States. The International System of Units, developed and maintained by the General Conference on Weights and Measures (abbreviated CGPM from the official French name Conference Generale des Poids et Measures) is intended as a basis for worldwide standardization of measurement units. The name International System of Units and the international abbreviation SI 2 were adopted by the 11th CGPM in 1960. SI is a complete, coherent system that is being universally adopted
Developmental Predictors of Violent Extremist Attitudes : A Test of General Strain Theory
Nivette, Amy; Eisner, Manuel; Ribeaud, Denis
2017-01-01
Objectives: This study examines the influence of collective strain on support for violent extremism among an ethnically diverse sample of Swiss adolescents. This study explores two claims derived from general strain theory: (1) Exposure to collective strain is associated with higher support for
Supersymmetry, quantum gauge anomalies and generalized Chern-Simons terms in chiral gauge theory
International Nuclear Information System (INIS)
Schmidt, Torsten
2009-01-01
The purpose of this thesis is to investigate the interplay of anomaly cancellation and generalized Chern-Simons terms in four-dimensional chiral gauge theory. We start with a detailed discussion of generalized Chern-Simons terms with the canellation of anomalies via the Green-Schwarz mechanism. With this at hand, we investigate the situation in general N=1 supersymmetric field theories with generalized Chern-Simons terms. Two simple consistency conditions are shown to encode strong constraints on the allowed anomalies for different types of gauge groups. In one major part of this thesis we are going to display to what extent one has to modify the existing formalism in order to allow for the cancellation of quantum gauge anomalies via the Green-Schwarz mechanism. At the end of this thesis we comment on a puzzle in the literature on supersymmetric field theories with massive tensor fields. The potential contains a term that does not arise from eliminating an auxiliary field. We clarify the origin of this term and display the relation to standard D-term potential. In an appendix it is explicitly shown how these low energy effective actions might be connected to the formulation of four-dimensional gauge theories discussed at earlier stages of this thesis. (orig.)
THE GENERAL ATOMICS FUSION THEORY PROGRAM ANNUAL REPORT FOR GRANT YEAR 2004
International Nuclear Information System (INIS)
PROJECT STAFF
2004-01-01
The dual objective of the fusion theory program at General Atomics (GA) is to significantly advance our scientific understanding of the physics of fusion plasmas and to support the DIII-D and other tokamak experiments. The program plan is aimed at contributing significantly to the Fusion Energy Science and the Tokamak Concept Improvement goals of the Office of Fusion Energy Sciences (OFES)
Generalization of the Activated Complex Theory of Reaction Rates. II. Classical Mechanical Treatment
Marcus, R. A.
1964-01-01
In its usual classical form activated complex theory assumes a particular expression for the kinetic energy of the reacting system -- one associated with a rectilinear motion along the reaction coordinate. The derivation of the rate expression given in the present paper is based on the general kinetic energy expression.
General Strain Theory and Delinquency: Extending a Popular Explanation to American Indian Youth
Eitle, David; Eitle, Tamela McNulty
2016-01-01
Despite evidence that American Indian (AI) adolescents are disproportionately involved in crime and delinquent behavior, there exists scant research exploring the correlates of crime among this group. We posit that Agnew's General Strain Theory (GST) is well suited to explain AI delinquent activity. Using the National Longitudinal Study of…
General Strain Theory as a Basis for the Design of School Interventions
Moon, Byongook; Morash, Merry
2013-01-01
The research described in this article applies general strain theory to identify possible points of intervention for reducing delinquency of students in two middle schools. Data were collected from 296 youths, and separate negative binomial regression analyses were used to identify predictors of violent, property, and status delinquency. Emotional…
General theory of three-dimensional radiance measurements with optical microprobes RID A-1977-2009
DEFF Research Database (Denmark)
FukshanskyKazarinova, N.; Fukshansky, L.; Kuhl, M.
1997-01-01
Measurements of the radiance distribution and fluence rate within turbid samples with fiber-optic radiance microprobes contain a large variable instrumental error caused by the nonuniform directional sensitivity of the microprobes. A general theory of three-dimensional radiance measurements...
Generalized WDVV equations for F4 pure N=2 Super-Yang-Mills theory
Hoevenaars, L.K.; Kersten, P.H.M.; Martini, Ruud
2001-01-01
An associative algebra of holomorphic differential forms is constructed associated with pure N=2 super-Yang–Mills theory for the Lie algebra F4. Existence and associativity of this algebra, combined with the general arguments in the work of Marshakov, Mironov and Morozov, proves that the
Generalized WDVV equations for F4 pure N=2 Super-Yang-Mills theory
Hoevenaars, L.K.; Kersten, P.H.M.; Martini, Ruud
2000-01-01
An associative algebra of holomorphic differential forms is constructed associated with pure N=2 Super-Yang-Mills theory for the Lie algebra $F_4$ . Existence and associativity of this algebra, combined with the general arguments in the work of Marshakov, Mironov and Morozov, proves that the
Generalized extended Navier-Stokes theory: Multiscale spin relaxation in molecular fluids
DEFF Research Database (Denmark)
Hansen, Jesper Schmidt
2013-01-01
This paper studies the relaxation of the molecular spin angular velocity in the framework of generalized extended Navier-Stokes theory. Using molecular dynamics simulations, it is shown that for uncharged diatomic molecules the relaxation time decreases with increasing molecular moment of inertia...
Quaternion based generalization of Chern–Simons theories in arbitrary dimensions
Directory of Open Access Journals (Sweden)
Alessandro D'Adda
2017-08-01
Full Text Available A generalization of Chern–Simons gauge theory is formulated in any dimension and arbitrary gauge group where gauge fields and gauge parameters are differential forms of any degree. The quaternion algebra structure of this formulation is shown to be equivalent to a three Z2-gradings structure, thus clarifying the quaternion role in the previous formulation.
THE GENERAL ATOMICS FUSION THEORY PROGRAM ANNUAL REPORT FOR GRANT YEAR 2004
Energy Technology Data Exchange (ETDEWEB)
PROJECT STAFF
2004-12-01
The dual objective of the fusion theory program at General Atomics (GA) is to significantly advance our scientific understanding of the physics of fusion plasmas and to support the DIII-D and other tokamak experiments. The program plan is aimed at contributing significantly to the Fusion Energy Science and the Tokamak Concept Improvement goals of the Office of Fusion Energy Sciences (OFES).
Zemanian, AH
2010-01-01
This well-known text provides a relatively elementary introduction to distribution theory and describes generalized Fourier and Laplace transformations and their applications to integrodifferential equations, difference equations, and passive systems. Suitable for a graduate course for engineering and science students or for an advanced undergraduate course for mathematics majors. 1965 edition.
Chaos and Crisis: Propositions for a General Theory of Crisis Communication.
Seeger, Matthew W.
2002-01-01
Presents key concepts of chaos theory (CT) as a general framework for describing organizational crisis and crisis communication. Discusses principles of predictability, sensitive dependence on initial conditions, bifurcation as system breakdown, emergent self-organization, and fractals and strange attractors as principles of organization. Explores…
Vos, Hans J.
1994-01-01
Describes the construction of a model of computer-assisted instruction using a qualitative block diagram based on general systems theory (GST) as a framework. Subject matter representation is discussed, and appendices include system variables and system equations of the GST model, as well as an example of developing flexible courseware. (Contains…
Gulyaev, Sergei A.; Stonyer, Heather R.
2002-01-01
Develops an integrated approach based on the use of general systems theory (GST) and the concept of 'mapping' scientific knowledge to provide students with tools for a more holistic understanding of science. Uses GST as the core methodology for understanding science and its complexity. Discusses the role of scientific community in producing…
Communication: The simplified generalized entropy theory of glass-formation in polymer melts.
Freed, Karl F
2015-08-07
While a wide range of non-trivial predictions of the generalized entropy theory (GET) of glass-formation in polymer melts agree with a large number of observed universal and non-universal properties of these glass-formers and even for the dependence of these properties on monomer molecular structure, the huge mathematical complexity of the theory precludes its extension to describe, for instance, the perplexing, complex behavior observed for technologically important polymer films with thickness below ∼100 nm and for which a fundamental molecular theory is lacking for the structural relaxation. The present communication describes a hugely simplified version of the theory, called the simplified generalized entropy theory (SGET) that provides one component necessary for devising a theory for the structural relaxation of thin polymer films and thereby supplements the first required ingredient, the recently developed Flory-Huggins level theory for the thermodynamic properties of thin polymer films, before the concluding third step of combining all the components into the SGET for thin polymer films. Comparisons between the predictions of the SGET and the full GET for the four characteristic temperatures of glass-formation provide good agreement for a highly non-trivial model system of polymer melts with chains of the structure of poly(n-α olefins) systems where the GET has produced good agreement with experiment. The comparisons consider values of the relative backbone and side group stiffnesses such that the glass transition temperature decreases as the amount of excess free volume diminishes, contrary to general expectations but in accord with observations for poly(n-alkyl methacrylates). Moreover, the SGET is sufficiently concise to enable its discussion in a standard course on statistical mechanics or polymer physics.
Communication: The simplified generalized entropy theory of glass-formation in polymer melts
Freed, Karl F.
2015-08-01
While a wide range of non-trivial predictions of the generalized entropy theory (GET) of glass-formation in polymer melts agree with a large number of observed universal and non-universal properties of these glass-formers and even for the dependence of these properties on monomer molecular structure, the huge mathematical complexity of the theory precludes its extension to describe, for instance, the perplexing, complex behavior observed for technologically important polymer films with thickness below ˜100 nm and for which a fundamental molecular theory is lacking for the structural relaxation. The present communication describes a hugely simplified version of the theory, called the simplified generalized entropy theory (SGET) that provides one component necessary for devising a theory for the structural relaxation of thin polymer films and thereby supplements the first required ingredient, the recently developed Flory-Huggins level theory for the thermodynamic properties of thin polymer films, before the concluding third step of combining all the components into the SGET for thin polymer films. Comparisons between the predictions of the SGET and the full GET for the four characteristic temperatures of glass-formation provide good agreement for a highly non-trivial model system of polymer melts with chains of the structure of poly(n-α olefins) systems where the GET has produced good agreement with experiment. The comparisons consider values of the relative backbone and side group stiffnesses such that the glass transition temperature decreases as the amount of excess free volume diminishes, contrary to general expectations but in accord with observations for poly(n-alkyl methacrylates). Moreover, the SGET is sufficiently concise to enable its discussion in a standard course on statistical mechanics or polymer physics.
A generalized DEMATEL theory with a shrinkage coefficient for an indirect relation matrix
Directory of Open Access Journals (Sweden)
Liu Hsiang-Chuan
2017-01-01
Full Text Available In this paper, a novel decision-making trial and evaluation laboratory (DEMATEL theory with a shrinkage coefficient of indirect relation matrix is proposed, and a useful validity index, called Liu’s validity index, is also proposed for evaluating the performance of any DEMATEL model. If the shrinkage coefficient of an indirect relation matrix is equal to 1, then this new theory is identical to the traditional theory; in other words, it is a generalization of the traditional theory. Furthermore, the indirect relation is always considerably greater than the direct one in traditional DEMATEL theory, which is unreasonable and unfair because it overemphasizes the influence of the indirect relation. We prove in this paper that if the shrinkage coefficient is equal to 0.5, then the indirect relation is less than its direct relation. Because the shrinkage coefficient belongs to [0.5, 1], according to Liu’s validity index, we can find a more appropriate shrinkage coefficient to obtain a more efficient DEMATEL method. Some crucial properties of this new theory are discussed, and a simple example is provided to illustrate the advantages of the proposed theory.
Non-supersymmetric matrix strings from generalized Yang-Mills theory on arbitrary Riemann surfaces
Billó, M.; D'Adda, A.; Provero, P.
2000-06-01
We quantize pure 2d Yang-Mills theory on an arbitrary Riemann surface in the gauge where the field strength is diagonal. Twisted sectors originate, as in Matrix string theory, from permutations of the eigenvalues around homotopically non-trivial loops. These sectors, that must be discarded in the usual quantization due to divergences occurring when two eigenvalues coincide, can be consistently kept if one modifies the action by introducing a coupling of the field strength to the space-time curvature. This leads to a generalized Yang-Mills theory whose action reduces to the usual one in the limit of zero curvature. After integrating over the non-diagonal components of the gauge fields, the theory becomes a free string theory (sum over unbranched coverings) with a U (1) gauge theory on the world-sheet. This is shown to be equivalent to a lattice theory with a gauge group which is the semi-direct product of S N and U (1) N. By using well known results on the statistics of coverings, the partition function on arbitrary Riemann surfaces and the kernel functions on surfaces with boundaries are calculated. Extensions to include branch points and non-abelian groups on the world-sheet are briefly commented upon.
Gender, general theory of crime and computer crime: an empirical test.
Moon, Byongook; McCluskey, John D; McCluskey, Cynthia P; Lee, Sangwon
2013-04-01
Regarding the gender gap in computer crime, studies consistently indicate that boys are more likely than girls to engage in various types of computer crime; however, few studies have examined the extent to which traditional criminology theories account for gender differences in computer crime and the applicability of these theories in explaining computer crime across gender. Using a panel of 2,751 Korean youths, the current study tests the applicability of the general theory of crime in explaining the gender gap in computer crime and assesses the theory's utility in explaining computer crime across gender. Analyses show that self-control theory performs well in predicting illegal use of others' resident registration number (RRN) online for both boys and girls, as predicted by the theory. However, low self-control, a dominant criminogenic factor in the theory, fails to mediate the relationship between gender and computer crime and is inadequate in explaining illegal downloading of software in both boy and girl models. Theoretical implication of the findings and the directions for future research are discussed.
Construction of self-dual codes in the Rosenbloom-Tsfasman metric
Krisnawati, Vira Hari; Nisa, Anzi Lina Ukhtin
2017-12-01
Linear code is a very basic code and very useful in coding theory. Generally, linear code is a code over finite field in Hamming metric. Among the most interesting families of codes, the family of self-dual code is a very important one, because it is the best known error-correcting code. The concept of Hamming metric is develop into Rosenbloom-Tsfasman metric (RT-metric). The inner product in RT-metric is different from Euclid inner product that is used to define duality in Hamming metric. Most of the codes which are self-dual in Hamming metric are not so in RT-metric. And, generator matrix is very important to construct a code because it contains basis of the code. Therefore in this paper, we give some theorems and methods to construct self-dual codes in RT-metric by considering properties of the inner product and generator matrix. Also, we illustrate some examples for every kind of the construction.
Applications of a general random-walk theory for confined diffusion.
Calvo-Muñoz, Elisa M; Selvan, Myvizhi Esai; Xiong, Ruichang; Ojha, Madhusudan; Keffer, David J; Nicholson, Donald M; Egami, Takeshi
2011-01-01
A general random walk theory for diffusion in the presence of nanoscale confinement is developed and applied. The random-walk theory contains two parameters describing confinement: a cage size and a cage-to-cage hopping probability. The theory captures the correct nonlinear dependence of the mean square displacement (MSD) on observation time for intermediate times. Because of its simplicity, the theory also requires modest computational requirements and is thus able to simulate systems with very low diffusivities for sufficiently long time to reach the infinite-time-limit regime where the Einstein relation can be used to extract the self-diffusivity. The theory is applied to three practical cases in which the degree of order in confinement varies. The three systems include diffusion of (i) polyatomic molecules in metal organic frameworks, (ii) water in proton exchange membranes, and (iii) liquid and glassy iron. For all three cases, the comparison between theory and the results of molecular dynamics (MD) simulations indicates that the theory can describe the observed diffusion behavior with a small fraction of the computational expense. The confined-random-walk theory fit to the MSDs of very short MD simulations is capable of accurately reproducing the MSDs of much longer MD simulations. Furthermore, the values of the parameter for cage size correspond to the physical dimensions of the systems and the cage-to-cage hopping probability corresponds to the activation barrier for diffusion, indicating that the two parameters in the theory are not simply fitted values but correspond to real properties of the physical system.
Energy Technology Data Exchange (ETDEWEB)
Ludyk, Guenter [Bremen Univ. (Germany). Physics and Electrical Engineering
2013-11-01
Derives the fundamental equations of Einstein's theory of special and general relativity using matrix calculus, without the help of tensors. Provides necessary mathematical tools in a user-friendly way, either directly in the text or in the appendices. Appendices contain an introduction to classical dynamics as a refresher of known fundamental physics. Rehearses vector and matrix calculus, differential geometry, and some special solutions of general relativity in the appendices. This book is an introduction to the theories of Special and General Relativity. The target audience are physicists, engineers and applied scientists who are looking for an understandable introduction to the topic - without too much new mathematics. The fundamental equations of Einsteins theory of Special and General Relativity are derived using matrix calculus, without the help of tensors. This feature makes the book special and a valuable tool for scientists and engineers with no experience in the field of tensor calculus. In part I the foundations of Special Relativity are developed, part II describes the structure and principle of General Relativity. Part III explains the Schwarzschild solution of spherical body gravity and examines the ''Black Hole'' phenomenon. Any necessary mathematical tools are user friendly provided, either directly in the text or in the appendices.
International Nuclear Information System (INIS)
Ludyk, Guenter
2013-01-01
Derives the fundamental equations of Einstein's theory of special and general relativity using matrix calculus, without the help of tensors. Provides necessary mathematical tools in a user-friendly way, either directly in the text or in the appendices. Appendices contain an introduction to classical dynamics as a refresher of known fundamental physics. Rehearses vector and matrix calculus, differential geometry, and some special solutions of general relativity in the appendices. This book is an introduction to the theories of Special and General Relativity. The target audience are physicists, engineers and applied scientists who are looking for an understandable introduction to the topic - without too much new mathematics. The fundamental equations of Einsteins theory of Special and General Relativity are derived using matrix calculus, without the help of tensors. This feature makes the book special and a valuable tool for scientists and engineers with no experience in the field of tensor calculus. In part I the foundations of Special Relativity are developed, part II describes the structure and principle of General Relativity. Part III explains the Schwarzschild solution of spherical body gravity and examines the ''Black Hole'' phenomenon. Any necessary mathematical tools are user friendly provided, either directly in the text or in the appendices.
Ludyk, Günter
2013-01-01
This book is an introduction to the theories of Special and General Relativity. The target audience are physicists, engineers and applied scientists who are looking for an understandable introduction to the topic - without too much new mathematics. The fundamental equations of Einsteins theory of Special and General Relativity are derived using matrix calculus, without the help of tensors. This feature makes the book special and a valuable tool for scientists and engineers with no experience in the field of tensor calculus. In part I the foundations of Special Relativity are developed, part II describes the structure and principle of General Relativity. Part III explains the Schwarzschild solution of spherical body gravity and examines the "Black Hole" phenomenon. Any necessary mathematical tools are user friendly provided, either directly in the text or in the appendices.
Daenzer, Calder
2011-01-01
We incorporate metric data into the framework of Tannaka-Krein duality. Thus, for any group with left invariant metric, we produce a dual metric on its category of unitary representations. We characterize the conditions under which a "double-dual" metric on the group may be recovered from the metric on representations, and provide conditions under which a metric agrees with its double-dual. We also consider some applications to T-duality and quantum Gromov-Hausdorff distance.
International Nuclear Information System (INIS)
Solontsov, A.
2015-01-01
The paper critically overviews the recent developments of the theory of spatially dispersive spin fluctuations (SF) in itinerant electron magnetism with particular emphasis on spin-fluctuation coupling or spin anharmonicity. It is argued that the conventional self-consistent renormalized (SCR) theory of spin fluctuations is usually used aside of the range of its applicability actually defined by the constraint of weak spin anharmonicity based on the random phase approximation (RPA) arguments. An essential step in understanding SF in itinerant magnets beyond RPA-like arguments was made recently within the soft-mode theory of SF accounting for strong spin anharmonicity caused by zero-point SF. In the present paper we generalize it to apply for a wider range of temperatures and regimes of SF and show it to lead to qualitatively new results caused by zero-point effects. - Highlights: • We review the spin-fluctuation theory of itinerant electron magnets with account of zero-point effects. • We generalize the existing theory to account for different regimes of spin fluctuations. • We show that zero-point spin fluctuations play a crucial role in both low- and high-temperature properties of metallic magnets. • We argue that a new scheme of calculation of ground state properties of magnets is needed including zero-point effects
On multifield Born and Born-Infeld theories and their non-Abelian generalizations
Energy Technology Data Exchange (ETDEWEB)
Cerchiai, Bianca L. [Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi,P.zza del Viminale 1, I-00184 Roma (Italy); DISAT, Politecnico di Torino,Corso Duca degli Abruzzi 24, I-10129 Torino (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino,via P. Giuria, 1, 20125 Torino (Italy); Trigiante, Mario [DISAT, Politecnico di Torino,Corso Duca degli Abruzzi 24, I-10129 Torino (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino,via P. Giuria, 1, 20125 Torino (Italy)
2016-10-28
Starting from a recently proposed linear formulation in terms of auxiliary fields, we study n-field generalizations of Born and Born-Infeld theories. In this description the Lagrangian is quadratic in the vector field strengths and the symmetry properties (including the characteristic self-duality) of the corresponding non-linear theory are manifest as on-shell duality symmetries and depend on the choice of the (homogeneous) manifold spanned by the auxiliary scalar fields and the symplectic frame. By suitably choosing these defining properties of the quadratic Lagrangian, we are able to reproduce some known multi-field Born-Infeld theories and to derive new non-linear models, such as the n-field Born theory. We also discuss non-Abelian generalizations of these theories obtained by choosing the vector fields in the adjoint representation of an off-shell compact global symmetry group K and replacing them by non-Abelian, K-covariant field strengths, thus promoting K to a gauge group.
Hansen, J S; Daivis, Peter J; Dyre, Jeppe C; Todd, B D; Bruus, Henrik
2013-01-21
The extended Navier-Stokes theory accounts for the coupling between the translational and rotational molecular degrees of freedom. In this paper, we generalize this theory to non-zero frequencies and wavevectors, which enables a new study of spatio-temporal correlation phenomena present in molecular fluids. To discuss these phenomena in detail, molecular dynamics simulations of molecular chlorine are performed for three different state points. In general, the theory captures the behavior for small wavevector and frequencies as expected. For example, in the hydrodynamic regime and for molecular fluids with small moment of inertia like chlorine, the theory predicts that the longitudinal and transverse intrinsic angular velocity correlation functions are almost identical, which is also seen in the molecular dynamics simulations. However, the theory fails at large wavevector and frequencies. To account for the correlations at these scales, we derive a phenomenological expression for the frequency dependent rotational viscosity and wavevector and frequency dependent longitudinal spin viscosity. From this we observe a significant coupling enhancement between the molecular angular velocity and translational velocity for large frequencies in the gas phase; this is not observed for the supercritical fluid and liquid state points.
Axiomatic Testing of Structure Metrics
van den Berg, Klaas; van den Broek, P.M.
1994-01-01
In this paper, axiomatic testing of software metrics is described. The testing is based on representation axioms from the measurement theory. In a case study, the axioms are given for the formal relational structure and the empirical relational structure. Two approaches of axiomatic testing are
Axiomatic Testing of Structure Metrics
van den Berg, Klaas; van den Broek, P.M.
In this paper, axiomatic testing of software metrics will be described. The testing is based on representation axioms from the measurement theory. In a case study, the axioms are given for the formal relational structure and the empirical relational structure. Two approaches of axiomatic testing are
International Nuclear Information System (INIS)
Leihkauf, H.
1989-01-01
With respect to the incompatibility of the existence of Newton's gravitational potential together with the introduction of Newtonian time in the framework of Einsteins General Relativity Theory (GRT), the possibility of the derivation of a 'metric' approach to Newton-Cartan-Theory is investigated. The 'metric' approach based on the statement, that a four-dimensional formulation of Newton's theory of gravitation can be presented as a special degeneration of GRT, is compared with the 'quasi affine' approach and its physical relevance is discussed