Properties of quantum Markovian master equations
Gorini, V.; Frigerio, A.; Verri, M.; Kossakowski, A.; Sudarshan, E.C.G.
1976-11-01
An essentially self-contained account is given of some general structural properties of the dynamics of quantum open Markovian systems. Some recent results regarding the problem of the classification of quantum Markovian master equations and the limiting conditions under which the dynamical evolution of a quantum open system obeys an exact semigroup law (weak coupling limit and singular coupling limit are reviewed). A general form of quantum detailed balance and its relation to thermal relaxation and to microreversibility is discussed
Markovianity and non-Markovianity in quantum and classical systems
Vacchini, Bassano; Smirne, Andrea; Laine, Elsi-Mari; Piilo, Jyrki; Breuer, Heinz-Peter
2011-01-01
We discuss the conceptually different definitions used for the non-Markovianity of classical and quantum processes. The well-established definition of non-Markovianity of a classical stochastic process represents a condition on the Kolmogorov hierarchy of the n-point joint probability distributions. Since this definition cannot be transferred to the quantum regime, quantum non-Markovianity has recently been defined and quantified in terms of the underlying quantum dynamical map, using either its divisibility properties or the behavior of the trace distance between pairs of initial states. Here, we investigate and compare these definitions and their relations to the classical notion of non-Markovianity by employing a large class of non-Markovian processes, known as semi-Markov processes, which admit a natural extension to the quantum case. A number of specific physical examples are constructed that allow us to study the basic features of the classical and the quantum definitions and to evaluate explicitly the measures of quantum non-Markovianity. Our results clearly demonstrate several fundamental differences between the classical and the quantum notion of non-Markovianity, as well as between the various quantum measures of non-Markovianity. In particular, we show that the divisibility property in the classical case does not coincide with Markovianity and that the non-Markovianity measure based on divisibility assigns equal infinite values to different dynamics, which can be distinguished by exploiting the trace distance measure. A simple exact expression for the latter is also obtained in a special case.
Quantum non-Markovianity: characterization, quantification and detection
Rivas, Ángel; Huelga, Susana F; Plenio, Martin B
2014-01-01
We present a comprehensive and up-to-date review of the concept of quantum non-Markovianity, a central theme in the theory of open quantum systems. We introduce the concept of a quantum Markovian process as a generalization of the classical definition of Markovianity via the so-called divisibility property and relate this notion to the intuitive idea that links non-Markovianity with the persistence of memory effects. A detailed comparison with other definitions presented in the literature is provided. We then discuss several existing proposals to quantify the degree of non-Markovianity of quantum dynamics and to witness non-Markovian behavior, the latter providing sufficient conditions to detect deviations from strict Markovianity. Finally, we conclude by enumerating some timely open problems in the field and provide an outlook on possible research directions. (review article)
Quantum non-Markovianity: characterization, quantification and detection
Rivas, Ángel; Huelga, Susana F.; Plenio, Martin B.
2014-09-01
We present a comprehensive and up-to-date review of the concept of quantum non-Markovianity, a central theme in the theory of open quantum systems. We introduce the concept of a quantum Markovian process as a generalization of the classical definition of Markovianity via the so-called divisibility property and relate this notion to the intuitive idea that links non-Markovianity with the persistence of memory effects. A detailed comparison with other definitions presented in the literature is provided. We then discuss several existing proposals to quantify the degree of non-Markovianity of quantum dynamics and to witness non-Markovian behavior, the latter providing sufficient conditions to detect deviations from strict Markovianity. Finally, we conclude by enumerating some timely open problems in the field and provide an outlook on possible research directions.
Noise suppression via generalized-Markovian processes
Marshall, Jeffrey; Campos Venuti, Lorenzo; Zanardi, Paolo
2017-11-01
It is by now well established that noise itself can be useful for performing quantum information processing tasks. We present results which show how one can effectively reduce the error rate associated with a noisy quantum channel by counteracting its detrimental effects with another form of noise. In particular, we consider the effect of adding on top of a purely Markovian (Lindblad) dynamics, a more general form of dissipation, which we refer to as generalized-Markovian noise. This noise has an associated memory kernel and the resulting dynamics are described by an integrodifferential equation. The overall dynamics are characterized by decay rates which depend not only on the original dissipative time scales but also on the new integral kernel. We find that one can engineer this kernel such that the overall rate of decay is lowered by the addition of this noise term. We illustrate this technique for the case where the bare noise is described by a dephasing Pauli channel. We analytically solve this model and show that one can effectively double (or even triple) the length of the channel, while achieving the same fidelity, entanglement, and error threshold. We numerically verify this scheme can also be used to protect against thermal Markovian noise (at nonzero temperature), which models spontaneous emission and excitation processes. A physical interpretation of this scheme is discussed, whereby the added generalized-Markovian noise causes the system to become periodically decoupled from the background Markovian noise.
Investigating non-Markovian dynamics of quantum open systems
Chen, Yusui
Quantum open system coupled to a non-Markovian environment has recently attracted widespread interest for its important applications in quantum information processing and quantum dissipative systems. New phenomena induced by the non-Markovian environment have been discovered in variety of research areas ranging from quantum optics, quantum decoherence to condensed matter physics. However, the study of the non-Markovian quantum open system is known a difficult problem due to its technical complexity in deriving the fundamental equation of motion and elusive conceptual issues involving non-equilibrium dynamics for a strong coupled environment. The main purpose of this thesis is to introduce several new techniques of solving the quantum open systems including a systematic approach to dealing with non-Markovian master equations from a generic quantum-state diffusion (QSD) equation. In the first part of this thesis, we briefly introduce the non-Markovian quantum-state diffusion approach, and illustrate some pronounced non-Markovian quantum effects through numerical investigation on a cavity-QED model. Then we extend the non-Markovian QSD theory to an interesting model where the environment has a hierarchical structure, and find out the exact non-Markovian QSD equation of this model system. We observe the generation of quantum entanglement due to the interplay between the non-Markovian environment and the cavity. In the second part, we show an innovative method to obtain the exact non-Markovian master equations for a set of generic quantum open systems based on the corresponding non-Markovian QSD equations. Multiple-qubit systems and multilevel systems are discussed in details as two typical examples. Particularly, we derive the exact master equation for a model consisting of a three-level atom coupled to an optical cavity and controlled by an external laser field. Additionally, we discuss in more general context the mathematical similarity between the multiple
Jump probabilities in the non-Markovian quantum jump method
Haerkoenen, Kari
2010-01-01
The dynamics of a non-Markovian open quantum system described by a general time-local master equation is studied. The propagation of the density operator is constructed in terms of two processes: (i) deterministic evolution and (ii) evolution of a probability density functional in the projective Hilbert space. The analysis provides a derivation for the jump probabilities used in the recently developed non-Markovian quantum jump (NMQJ) method (Piilo et al 2008 Phys. Rev. Lett. 100 180402).
Gambetta, Jay; Wiseman, H.M.
2002-01-01
Do stochastic Schroedinger equations, also known as unravelings, have a physical interpretation? In the Markovian limit, where the system on average obeys a master equation, the answer is yes. Markovian stochastic Schroedinger equations generate quantum trajectories for the system state conditioned on continuously monitoring the bath. For a given master equation, there are many different unravelings, corresponding to different sorts of measurement on the bath. In this paper we address the non-Markovian case, and in particular the sort of stochastic Schroedinger equation introduced by Strunz, Diosi, and Gisin [Phys. Rev. Lett. 82, 1801 (1999)]. Using a quantum-measurement theory approach, we rederive their unraveling that involves complex-valued Gaussian noise. We also derive an unraveling involving real-valued Gaussian noise. We show that in the Markovian limit, these two unravelings correspond to heterodyne and homodyne detection, respectively. Although we use quantum-measurement theory to define these unravelings, we conclude that the stochastic evolution of the system state is not a true quantum trajectory, as the identity of the state through time is a fiction
Foundations and measures of quantum non-Markovianity
Breuer, Heinz-Peter
2012-01-01
The basic features of the dynamics of open quantum systems, such as the dissipation of energy, the decay of coherences, the relaxation to an equilibrium or non-equilibrium stationary state, and the transport of excitations in complex structures are of central importance in many applications of quantum mechanics. The theoretical description, analysis and control of non-Markovian quantum processes play an important role in this context. While in a Markovian process an open system irretrievably loses information to its surroundings, non-Markovian processes feature a flow of information from the environment back to the open system, which implies the presence of memory effects and represents the key property of non-Markovian quantum behaviour. Here, we review recent ideas developing a general mathematical definition for non-Markovianity in the quantum regime and a measure for the degree of memory effects in the dynamics of open systems, which are based on the exchange of information between system and environment. We further study the dynamical effects induced by the presence of system–environment correlations in the total initial state and design suitable methods to detect such correlations through local measurements on the open system. (topical review)
Non-Markovian decoherent quantum walks
Xue Peng; Zhang Yong-Sheng
2013-01-01
Quantum walks act in obviously different ways from their classical counterparts, but decoherence will lessen and close this gap between them. To understand this process, it is necessary to investigate the evolution of quantum walks under different decoherence situations. In this article, we study a non-Markovian decoherent quantum walk on a line. In a short time regime, the behavior of the walk deviates from both ideal quantum walks and classical random walks. The position variance as a measure of the quantum walk collapses and revives for a short time, and tends to have a linear relation with time. That is, the walker's behavior shows a diffusive spread over a long time limit, which is caused by non-Markovian dephasing affecting the quantum correlations between the quantum walker and his coin. We also study both quantum discord and measurement-induced disturbance as measures of the quantum correlations, and observe both collapse and revival in the short time regime, and the tendency to be zero in the long time limit. Therefore, quantum walks with non-Markovian decoherence tend to have diffusive spreading behavior over long time limits, while in the short time regime they oscillate between ballistic and diffusive spreading behavior, and the quantum correlation collapses and revives due to the memory effect
Colloquium: Non-Markovian dynamics in open quantum systems
Breuer, Heinz-Peter; Laine, Elsi-Mari; Piilo, Jyrki; Vacchini, Bassano
2016-04-01
The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry, and quantum information. In close analogy to a classical Markovian stochastic process, the interaction of an open quantum system with a noisy environment is often modeled phenomenologically by means of a dynamical semigroup with a corresponding time-independent generator in Lindblad form, which describes a memoryless dynamics of the open system typically leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence, correlations, and entanglement. Here recent theoretical results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of quantum memory effects. The general theory is illustrated by a series of physical examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely, to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This Colloquium further explores the various physical sources of non-Markovian quantum dynamics, such as structured environmental spectral densities, nonlocal correlations between environmental degrees of freedom, and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments addressing the detection, quantification, and control of
Selected Aspects of Markovian and Non-Markovian Quantum Master Equations
Lendi, K.
A few particular marked properties of quantum dynamical equations accounting for general relaxation and dissipation are selected and summarized in brief. Most results derive from the universal concept of complete positivity. The considerations mainly regard genuinely irreversible processes as characterized by a unique asymptotically stationary final state for arbitrary initial conditions. From ordinary Markovian master equations and associated quantum dynamical semigroup time-evolution, derivations of higher order Onsager coefficients and related entropy production are discussed. For general processes including non-faithful states a regularized version of quantum relative entropy is introduced. Further considerations extend to time-dependent infinitesimal generators of time-evolution and to a possible description of propagation of initial states entangled between open system and environment. In the coherence-vector representation of the full non-Markovian equations including entangled initial states, first results are outlined towards identifying mathematical properties of a restricted class of trial integral-kernel functions suited to phenomenological applications.
Counting statistics of non-markovian quantum stochastic processes
Flindt, Christian; Novotny, T.; Braggio, A.
2008-01-01
We derive a general expression for the cumulant generating function (CGF) of non-Markovian quantum stochastic transport processes. The long-time limit of the CGF is determined by a single dominating pole of the resolvent of the memory kernel from which we extract the zero-frequency cumulants...
Perturbative approach to Markovian open quantum systems.
Li, Andy C Y; Petruccione, F; Koch, Jens
2014-05-08
The exact treatment of Markovian open quantum systems, when based on numerical diagonalization of the Liouville super-operator or averaging over quantum trajectories, is severely limited by Hilbert space size. Perturbation theory, standard in the investigation of closed quantum systems, has remained much less developed for open quantum systems where a direct application to the Lindblad master equation is desirable. We present such a perturbative treatment which will be useful for an analytical understanding of open quantum systems and for numerical calculation of system observables which would otherwise be impractical.
Non-Markovianity hinders Quantum Darwinism
Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina
2016-01-01
We investigate Quantum Darwinism and the emergence of a classical world from the quantum one in connection with the spectral properties of the environment. We use a microscopic model of quantum environment in which, by changing a simple system parameter, we can modify the information back flow from environment into the system, and therefore its non-Markovian character. We show that the presence of memory effects hinders the emergence of classical objective reality, linking these two apparently unrelated concepts via a unique dynamical feature related to decoherence factors.
Adaptive resummation of Markovian quantum dynamics
Lucas, Felix
2014-01-01
In this thesis we derive a highly convergent, nonperturbative expansion of Markovian open quantum dynamics. It is based on a splitting of the incoherent dynamics into periods of continuous evolution and abrupt jumps and attains its favorable convergence properties from an adaptive resummation of this so-called jump expansion. By means of the long-standing problems of spatial particle detection and Landau-Zener tunneling in the presence of dephasing, we show that this adaptive resummation technique facilitates new highly accurate analytic approximations of Markovian open systems. The open Landau-Zener model leads us to propose an efficient and robust incoherent control technique for the isomerization reaction of the visual pigment protein rhodopsin. Besides leading to approximate analytic descriptions of Markovian open quantum dynamics, the adaptive resummation of the jump expansion implies an efficient numerical simulation method. We spell out the corresponding numerical algorithm by means of Monte Carlo integration of the relevant terms in the jump expansion and demonstrate it in a set of paradigmatic open quantum systems.
Quantum adiabatic Markovian master equations
Albash, Tameem; Zanardi, Paolo; Boixo, Sergio; Lidar, Daniel A
2012-01-01
We develop from first principles Markovian master equations suited for studying the time evolution of a system evolving adiabatically while coupled weakly to a thermal bath. We derive two sets of equations in the adiabatic limit, one using the rotating wave (secular) approximation that results in a master equation in Lindblad form, the other without the rotating wave approximation but not in Lindblad form. The two equations make markedly different predictions depending on whether or not the Lamb shift is included. Our analysis keeps track of the various time and energy scales associated with the various approximations we make, and thus allows for a systematic inclusion of higher order corrections, in particular beyond the adiabatic limit. We use our formalism to study the evolution of an Ising spin chain in a transverse field and coupled to a thermal bosonic bath, for which we identify four distinct evolution phases. While we do not expect this to be a generic feature, in one of these phases dissipation acts to increase the fidelity of the system state relative to the adiabatic ground state. (paper)
Exploiting Non-Markovianity for Quantum Control.
Reich, Daniel M; Katz, Nadav; Koch, Christiane P
2015-07-22
Quantum technology, exploiting entanglement and the wave nature of matter, relies on the ability to accurately control quantum systems. Quantum control is often compromised by the interaction of the system with its environment since this causes loss of amplitude and phase. However, when the dynamics of the open quantum system is non-Markovian, amplitude and phase flow not only from the system into the environment but also back. Interaction with the environment is then not necessarily detrimental. We show that the back-flow of amplitude and phase can be exploited to carry out quantum control tasks that could not be realized if the system was isolated. The control is facilitated by a few strongly coupled, sufficiently isolated environmental modes. Our paradigmatic example considers a weakly anharmonic ladder with resonant amplitude control only, restricting realizable operations to SO(N). The coupling to the environment, when harnessed with optimization techniques, allows for full SU(N) controllability.
Continuous quantum error correction for non-Markovian decoherence
Oreshkov, Ognyan; Brun, Todd A.
2007-01-01
We study the effect of continuous quantum error correction in the case where each qubit in a codeword is subject to a general Hamiltonian interaction with an independent bath. We first consider the scheme in the case of a trivial single-qubit code, which provides useful insights into the workings of continuous error correction and the difference between Markovian and non-Markovian decoherence. We then study the model of a bit-flip code with each qubit coupled to an independent bath qubit and subject to continuous correction, and find its solution. We show that for sufficiently large error-correction rates, the encoded state approximately follows an evolution of the type of a single decohering qubit, but with an effectively decreased coupling constant. The factor by which the coupling constant is decreased scales quadratically with the error-correction rate. This is compared to the case of Markovian noise, where the decoherence rate is effectively decreased by a factor which scales only linearly with the rate of error correction. The quadratic enhancement depends on the existence of a Zeno regime in the Hamiltonian evolution which is absent in purely Markovian dynamics. We analyze the range of validity of this result and identify two relevant time scales. Finally, we extend the result to more general codes and argue that the performance of continuous error correction will exhibit the same qualitative characteristics
Quantum Non-Markovian Langevin Equations and Transport Coefficients
Sargsyan, V.V.; Antonenko, N.V.; Kanokov, Z.; Adamian, G.G.
2005-01-01
Quantum diffusion equations featuring explicitly time-dependent transport coefficients are derived from generalized non-Markovian Langevin equations. Generalized fluctuation-dissipation relations and analytic expressions for calculating the friction and diffusion coefficients in nuclear processes are obtained. The asymptotic behavior of the transport coefficients and correlation functions for a damped harmonic oscillator that is linearly coupled in momentum to a heat bath is studied. The coupling to a heat bath in momentum is responsible for the appearance of the diffusion coefficient in coordinate. The problem of regression of correlations in quantum dissipative systems is analyzed
Mixing-induced quantum non-Markovianity and information flow
Breuer, Heinz-Peter; Amato, Giulio; Vacchini, Bassano
2018-04-01
Mixing dynamical maps describing open quantum systems can lead from Markovian to non-Markovian processes. Being surprising and counter-intuitive, this result has been used as argument against characterization of non-Markovianity in terms of information exchange. Here, we demonstrate that, quite the contrary, mixing can be understood in a natural way which is fully consistent with existing theories of memory effects. In particular, we show how mixing-induced non-Markovianity can be interpreted in terms of the distinguishability of quantum states, system-environment correlations and the information flow between system and environment.
Non-Markovian spontaneous emission from a single quantum dot
Madsen, Kristian Høeg; Ates, Serkan; Lund-Hansen, Toke
2011-01-01
We observe non-Markovian dynamics of a single quantum dot when tuned into resonance with a cavity mode. Excellent agreement between experiment and theory is observed providing the first quantitative description of such a system.......We observe non-Markovian dynamics of a single quantum dot when tuned into resonance with a cavity mode. Excellent agreement between experiment and theory is observed providing the first quantitative description of such a system....
Exact non-Markovian master equations for multiple qubit systems: Quantum-trajectory approach
Chen, Yusui; You, J. Q.; Yu, Ting
2014-11-01
A wide class of exact master equations for a multiple qubit system can be explicitly constructed by using the corresponding exact non-Markovian quantum-state diffusion equations. These exact master equations arise naturally from the quantum decoherence dynamics of qubit system as a quantum memory coupled to a collective colored noisy source. The exact master equations are also important in optimal quantum control, quantum dissipation, and quantum thermodynamics. In this paper, we show that the exact non-Markovian master equation for a dissipative N -qubit system can be derived explicitly from the statistical average of the corresponding non-Markovian quantum trajectories. We illustrated our general formulation by an explicit construction of a three-qubit system coupled to a non-Markovian bosonic environment. This multiple qubit master equation offers an accurate time evolution of quantum systems in various domains, and paves the way to investigate the memory effect of an open system in a non-Markovian regime without any approximation.
Non-Markovian dynamics of quantum systems: formalism, transport coefficients
Kanokov, Z.; Palchikov, Yu.V.; Antonenko, N.V.; Adamian, G.G.; Kanokov, Z.; Adamian, G.G.; Scheid, W.
2004-01-01
Full text: The generalized Linbland equations with non-stationary transport coefficients are derived from the Langevin equations for the case of nonlinear non-Markovian noise [1]. The equations of motion for the collective coordinates are consistent with the generalized quantum fluctuation dissipation relations. The microscopic justification of the Linbland axiomatic approach is performed. Explicit expressions for the time-dependent transport coefficients are presented for the case of FC- and RWA-oscillators and a general linear coupling in coordinate and in momentum between the collective subsystem and heat bath. The explicit equations for the correlation functions show that the Onsanger's regression hypothesis does not hold exactly for the non-Markovian equations of motion. However, under some conditions the regression of fluctuations goes to zero in the same manner as the average values. In the low and high temperature regimes we found that the dissipation leads to long-time tails in correlation functions in the RWA-oscillator. In the case of the FC-oscillator a non-exponential power-like decay of the correlation function in coordinate is only obtained only at the low temperature limit. The calculated results depend rather weakly on the memory time in many applications. The found transient times for diffusion coefficients D pp (t), D qp (t) and D qq (t) are quite short. The value of classical diffusion coefficients in momentum underestimates the asymptotic value of quantum one D pp (t), but the asymptotic values of classical σ qq c and quantum σ qq second moments are close due to the negativity of quantum mixed diffusion coefficient D qp (t)
A classical appraisal of quantum definitions of non-Markovian dynamics
Vacchini, Bassano
2012-01-01
We consider the issue of non-Markovianity of a quantum dynamics starting from a comparison with the classical definition of Markovian processes. We point to the fact that two sufficient but not necessary signatures of non-Markovianity of a classical process find their natural quantum counterpart in recently introduced measures of quantum non-Markovianity. This behaviour is analysed in detail for quantum dynamics which can be built taking as input a class of classical processes. (paper)
Non-Markovian Investigation of an Autonomous Quantum Heat Engine
Goyal, Ketan
A systematic study of a quantum heat engine is presented in this thesis. In particular, we study heat conduction through a two-two level composite system, which is then connected to a photon cavity to extract work, forming an autonomous quantum heat engine. The question as to what extent quantum effects such as quantum coherence and correlations impact thermodynamic properties of such a system is addressed. The investigated heat engine has been previously studied using the popular Born-Markovian quantum master equation under weak internal coupling approximation. However, we show that the used approach is quite limited in addressing such problems as it is incapable of correctly accounting for the quantum effects. By using a non-Markovian approach involving hierarchical equations of motion, we show that quantum coherence and correlations between system and environments play a significant role in energy transfer processes of heat conduction and work.
Hard decoding algorithm for optimizing thresholds under general Markovian noise
Chamberland, Christopher; Wallman, Joel; Beale, Stefanie; Laflamme, Raymond
2017-04-01
Quantum error correction is instrumental in protecting quantum systems from noise in quantum computing and communication settings. Pauli channels can be efficiently simulated and threshold values for Pauli error rates under a variety of error-correcting codes have been obtained. However, realistic quantum systems can undergo noise processes that differ significantly from Pauli noise. In this paper, we present an efficient hard decoding algorithm for optimizing thresholds and lowering failure rates of an error-correcting code under general completely positive and trace-preserving (i.e., Markovian) noise. We use our hard decoding algorithm to study the performance of several error-correcting codes under various non-Pauli noise models by computing threshold values and failure rates for these codes. We compare the performance of our hard decoding algorithm to decoders optimized for depolarizing noise and show improvements in thresholds and reductions in failure rates by several orders of magnitude. Our hard decoding algorithm can also be adapted to take advantage of a code's non-Pauli transversal gates to further suppress noise. For example, we show that using the transversal gates of the 5-qubit code allows arbitrary rotations around certain axes to be perfectly corrected. Furthermore, we show that Pauli twirling can increase or decrease the threshold depending upon the code properties. Lastly, we show that even if the physical noise model differs slightly from the hypothesized noise model used to determine an optimized decoder, failure rates can still be reduced by applying our hard decoding algorithm.
Non-equilibrium effects upon the non-Markovian Caldeira-Leggett quantum master equation
Bolivar, A.O.
2011-01-01
Highlights: → Classical Brownian motion described by a non-Markovian Fokker-Planck equation. → Quantization process. → Quantum Brownian motion described by a non-Markovian Caldeira-Leggett equation. → A non-equilibrium quantum thermal force is predicted. - Abstract: We obtain a non-Markovian quantum master equation directly from the quantization of a non-Markovian Fokker-Planck equation describing the Brownian motion of a particle immersed in a generic environment (e.g. a non-thermal fluid). As far as the especial case of a heat bath comprising of quantum harmonic oscillators is concerned, we derive a non-Markovian Caldeira-Leggett master equation on the basis of which we work out the concept of non-equilibrium quantum thermal force exerted by the harmonic heat bath upon the Brownian motion of a free particle. The classical limit (or dequantization process) of this sort of non-equilibrium quantum effect is scrutinized, as well.
Tightness Entropic Uncertainty Relation in Quantum Markovian-Davies Environment
Zhang, Jun; Liu, Liang; Han, Yan
2018-05-01
In this paper, we investigate the tightness of entropic uncertainty relation in the absence (presence) of the quantum memory which the memory particle being weakly coupled to a decohering Davies-type Markovian environment. The results show that the tightness of the quantum uncertainty relation can be controlled by the energy relaxation time F, the dephasing time G and the rescaled temperature p, the perfect tightness can be arrived by dephasing and energy relaxation satisfying F = 2G and p = 1/2. In addition, the tightness of the memory-assisted entropic uncertainty relation and the entropic uncertainty relation can be influenced mainly by the purity. While in memory-assisted model, the purity and quantum correlation can also influence the tightness actively while the quantum entanglement can influence the tightness slightly.
Noninvasive Quantum Measurement of Arbitrary Operator Order by Engineered Non-Markovian Detectors
Bülte, Johannes; Bednorz, Adam; Bruder, Christoph; Belzig, Wolfgang
2018-04-01
The development of solid-state quantum technologies requires the understanding of quantum measurements in interacting, nonisolated quantum systems. In general, a permanent coupling of detectors to a quantum system leads to memory effects that have to be taken into account in interpreting the measurement results. We analyze a generic setup of two detectors coupled to a quantum system and derive a compact formula in the weak-measurement limit that interpolates between an instantaneous (text-book type) and almost continuous—detector dynamics-dependent—measurement. A quantum memory effect that we term "system-mediated detector-detector interaction" is crucial to observe noncommuting observables simultaneously. Finally, we propose a mesoscopic double-dot detector setup in which the memory effect is tunable and that can be used to explore the transition to non-Markovian quantum measurements experimentally.
Non-Markovian quantum processes: Complete framework and efficient characterization
Pollock, Felix A.; Rodríguez-Rosario, César; Frauenheim, Thomas; Paternostro, Mauro; Modi, Kavan
2018-01-01
Currently, there is no systematic way to describe a quantum process with memory solely in terms of experimentally accessible quantities. However, recent technological advances mean we have control over systems at scales where memory effects are non-negligible. The lack of such an operational description has hindered advances in understanding physical, chemical, and biological processes, where often unjustified theoretical assumptions are made to render a dynamical description tractable. This has led to theories plagued with unphysical results and no consensus on what a quantum Markov (memoryless) process is. Here, we develop a universal framework to characterize arbitrary non-Markovian quantum processes. We show how a multitime non-Markovian process can be reconstructed experimentally, and that it has a natural representation as a many-body quantum state, where temporal correlations are mapped to spatial ones. Moreover, this state is expected to have an efficient matrix-product-operator form in many cases. Our framework constitutes a systematic tool for the effective description of memory-bearing open-system evolutions.
Closed hierarchy of correlations in Markovian open quantum systems
Žunkovič, Bojan
2014-01-01
We study the Lindblad master equation in the space of operators and provide simple criteria for closeness of the hierarchy of equations for correlations. We separately consider the time evolution of closed and open systems and show that open systems satisfying the closeness conditions are not necessarily of Gaussian type. In addition, we show that dissipation can induce the closeness of the hierarchy of correlations in interacting quantum systems. As an example we study an interacting optomechanical model, the Fermi–Hubbard model, and the Rabi model, all coupled to a fine-tuned Markovian environment and obtain exact analytic expressions for the time evolution of two-point correlations. (paper)
Non-Markovian effects on quantum-communication protocols
Yeo, Ye; Oh, C. H.; An, Jun-Hong
2010-01-01
We show how, under the influence of non-Markovian environments, two different maximally entangled Bell states give rise to states that have equal classical correlations and the same capacities to violate the Bell-Clauser-Horne-Shimony-Holt inequality, but intriguingly differing usefulness for teleportation and dense coding. We elucidate how different entanglement measures like negativity and concurrence, and two different measures of quantum discord, could account for these behaviors. In particular, we explicitly show how the Ollivier-Zurek measure of discord directly accounts for one state being a better resource for dense coding compared to another. Our study leads to several important issues about these measures of discord.
Non-Markovian dynamics of charge carriers in quantum dots
Vaz, E; Kyriakidis, J
2008-01-01
We have investigated the dynamics of bound particles in multilevel current-carrying quantum dots. We look specifically in the regime of resonant tunnelling transport, where several channels are available for transport. Through a non-Markovian formalism under the Born approximation, we investigate the real-time evolution of the confined particles including transport-induced decoherence and relaxation. In the case of a coherent superposition between states with different particle number, we find that a Fock-space coherence may be preserved even in the presence of tunneling into and out of the dot. Real-time results are presented for various asymmetries of tunneling rates into different orbitals
Deb, Prasenjit; Banik, Manik
2015-01-01
Quantum correlation lies at the very heart of almost all of the non-classical phenomena exhibited by quantum systems composed of two or more subsystems. In recent times it has been pointed out that there is a kind of quantum correlation, namely discord, which is more general than entanglement. Some authors have investigated the phenomenon that for certain initial states the quantum correlations as well as the classical correlations exhibit sudden change under simple Markovian noise. We show that this dynamical behavior of the correlations of both types can be explained using the idea of complementary correlations. We also show that though a certain class of mixed entangled states can resist the monotonic decay of quantum correlations, this is not true for all mixed states. Moreover, pure entangled states of two qubits will never exhibit such sudden change. (paper)
Connecting two jumplike unravelings for non-Markovian open quantum systems
Luoma, Kimmo; Suominen, Kalle-Antti; Piilo, Jyrki [Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turun Yliopisto (Finland)
2011-09-15
The development and use of Monte Carlo algorithms plays a visible role in the study of non-Markovian quantum dynamics due to the provided insight and powerful numerical methods for solving the system dynamics. In the Markovian case, the connections between the various types of methods are fairly well understood while, for the non-Markovian case, there has so far been only a few studies. We focus here on two jumplike unravelings of non-Markovian dynamics: the non-Markovian quantum jump (NMQJ) method and the property state method by Gambetta, Askerud, and Wiseman (GAW). The results for simple quantum optical systems illustrate the connections between the realizations of the two methods and also highlight how the probability currents between the system and environment, or between the property states of the total system, are associated with the decay rates of time-local master equations and, consequently, with the jump rates of the NMQJ method.
Connecting two jumplike unravelings for non-Markovian open quantum systems
Luoma, Kimmo; Suominen, Kalle-Antti; Piilo, Jyrki
2011-01-01
The development and use of Monte Carlo algorithms plays a visible role in the study of non-Markovian quantum dynamics due to the provided insight and powerful numerical methods for solving the system dynamics. In the Markovian case, the connections between the various types of methods are fairly well understood while, for the non-Markovian case, there has so far been only a few studies. We focus here on two jumplike unravelings of non-Markovian dynamics: the non-Markovian quantum jump (NMQJ) method and the property state method by Gambetta, Askerud, and Wiseman (GAW). The results for simple quantum optical systems illustrate the connections between the realizations of the two methods and also highlight how the probability currents between the system and environment, or between the property states of the total system, are associated with the decay rates of time-local master equations and, consequently, with the jump rates of the NMQJ method.
Thermodynamic description of non-Markovian information flux of nonequilibrium open quantum systems
Chen, Hong-Bin; Chen, Guang-Yin; Chen, Yueh-Nan
2017-12-01
One of the fundamental issues in the field of open quantum systems is the classification and quantification of non-Markovianity. In the contest of quantity-based measures of non-Markovianity, the intuition of non-Markovianity in terms of information backflow is widely discussed. However, it is not easy to characterize the information flux for a given system state and show its connection to non-Markovianity. Here, by using the concepts from thermodynamics and information theory, we discuss a potential definition of information flux of an open quantum system, valid for static environments. We present a simple protocol to show how a system attempts to share information with its environment and how it builds up system-environment correlations. We also show that the information returned from the correlations characterizes the non-Markovianity and a hierarchy of indivisibility of the system dynamics.
Fluctuation relation for heat exchange in Markovian open quantum systems
Ramezani, M.; Golshani, M.; Rezakhani, A. T.
2018-04-01
A fluctuation relation for the heat exchange of an open quantum system under a thermalizing Markovian dynamics is derived. We show that the probability that the system absorbs an amount of heat from its bath, at a given time interval, divided by the probability of the reverse process (releasing the same amount of heat to the bath) is given by an exponential factor which depends on the amount of heat and the difference between the temperatures of the system and the bath. Interestingly, this relation is akin to the standard form of the fluctuation relation (for forward-backward dynamics). We also argue that the probability of the violation of the second law of thermodynamics in the form of the Clausius statement (i.e., net heat transfer from a cold system to its hot bath) drops exponentially with both the amount of heat and the temperature differences of the baths.
Non-Markovian quantum Brownian motion in one dimension in electric fields
Shen, H. Z.; Su, S. L.; Zhou, Y. H.; Yi, X. X.
2018-04-01
Quantum Brownian motion is the random motion of quantum particles suspended in a field (or an effective field) resulting from their collision with fast-moving modes in the field. It provides us with a fundamental model to understand various physical features concerning open systems in chemistry, condensed-matter physics, biophysics, and optomechanics. In this paper, without either the Born-Markovian or rotating-wave approximation, we derive a master equation for a charged-Brownian particle in one dimension coupled with a thermal reservoir in electric fields. The effect of the reservoir and the electric fields is manifested as time-dependent coefficients and coherent terms, respectively, in the master equation. The two-photon correlation between the Brownian particle and the reservoir can induce nontrivial squeezing dynamics to the particle. We derive a current equation including the source from the driving fields, transient current from the system flowing into the environment, and the two-photon current caused by the non-rotating-wave term. The presented results then are compared with that given by the rotating-wave approximation in the weak-coupling limit, and these results are extended to a more general quantum network involving an arbitrary number of coupled-Brownian particles. The presented formalism might open a way to better understand exactly the non-Markovian quantum network.
Non-Markovian entanglement dynamics of noisy continuous-variable quantum channels
An, J.-H.; Zhang, W.-M.
2007-01-01
We investigate the entanglement dynamics of continuous-variable quantum channels in terms of an entangled squeezed state of two cavity fields in a general non-Markovian environment. Using the Feynman-Vernon influence functional theory in the coherent-state representation, we derive an exact master equation with time-dependent coefficients reflecting the non-Markovian influence of the environment. The influence of environments with different spectral densities, e.g., Ohmic, sub-Ohmic, and super-Ohmic, is numerically studied. The non-Markovian process shows its remarkable influence on the entanglement dynamics due to the sensitive time dependence of the dissipation and noise functions within the typical time scale of the environment. The Ohmic environment shows a weak dissipation-noise effect on the entanglement dynamics, while the sub-Ohmic and super-Ohmic environments induce much more severe noise. In particular, the memory of the system interacting with the environment contributes a strong decoherence effect to the entanglement dynamics in the super-Ohmic case
Quantum operation for a one-qubit system under a non-Markovian environment
Xue Shibei; Zhang Jing; Wu Rebing; Li Chunwen; Tarn, Tzyh-Jong
2011-01-01
This paper introduces a simple alternating-current (AC) control strategy to perform quantum state manipulations under non-Markovian noise. A genetic algorithm is adopted to optimize the parameters of the AC control, which can be further used to fulfil one-qubit quantum operations at a given final time. Theoretical analysis and simulations show that our method works almost equally well for 1/f noise, ohmic, sub-ohmic and super-ohmic noise, which demonstrates the robustness of our strategy for noise with various spectra. In comparison with the Markovian cases, our method is more suitable to be used to suppress non-Markovian noise.
Deterministic quantum controlled-PHASE gates based on non-Markovian environments
Zhang, Rui; Chen, Tian; Wang, Xiang-Bin
2017-12-01
We study the realization of the quantum controlled-PHASE gate in an atom-cavity system beyond the Markovian approximation. The general description of the dynamics for the atom-cavity system without any approximation is presented. When the spectral density of the reservoir has the Lorentz form, by making use of the memory backflow from the reservoir, we can always construct the deterministic quantum controlled-PHASE gate between a photon and an atom, no matter the atom-cavity coupling strength is weak or strong. While, the phase shift in the output pulse hinders the implementation of quantum controlled-PHASE gates in the sub-Ohmic, Ohmic or super-Ohmic reservoirs.
Study on the security of discrete-variable quantum key distribution over non-Markovian channels
Huang Peng; Zhu Jun; He Guangqiang; Zeng Guihua
2012-01-01
The dynamic of the secret key rate of the discrete-variable quantum key distribution (QKD) protocol over the non-Markovian quantum channel is investigated. In particular, we calculate the secret key rate for the six-state protocol over non-Markovian depolarizing channels with coloured noise and Markovian depolarizing channels with Gaussian white noise, respectively. We find that the secure secret key rate for the non-Markovian depolarizing channel will be larger than the Markovian one under the same conditions even when their upper bounds of tolerable quantum bit error rate are equal. This indicates that this coloured noise in the non-Markovian depolarizing channel can enhance the security of communication. Moreover, we show that the secret key rate fluctuates near the secure point when the coupling strength of the system with the environment is high. The results demonstrate that the non-Markovian effects of the transmission channel can have a positive impact on the security of discrete-variable QKD. (paper)
He, Zhi; Zhu, Lie-Qiang; Li, Li
2017-03-01
A non-Markovianity measure based on Brukner-Zeilinger invariant information to characterize non-Markovian effect of open systems undergoing unital dynamical maps is proposed. The method takes advantage of non-increasing property of the Brukner-Zeilinger invariant information under completely positive and trace-preserving unital maps. The simplicity of computing the Brukner-Zeilinger invariant information is the advantage of the proposed measure because of mainly depending on the purity of quantum state. The measure effectively captures the characteristics of non-Markovianity of unital dynamical maps. As some concrete application, we consider two typical non-Markovian noise channels, i.e., the phase damping channel and the random unitary channel to show the sensitivity of the proposed measure. By investigation, we find that the conditions of detecting the non-Markovianity for the phase damping channel are consistent with the results of existing measures for non-Markovianity, i.e., information flow, divisibility and quantum mutual information. However, for the random unitary channel non-Markovian conditions are same to that of the information flow, but is different from that of the divisibility and quantum mutual information. Supported by the National Natural Science Foundation of China under Grant No. 61505053, the Natural Science Foundation of Hunan Province under Grant No. 2015JJ3092, the Research Foundation of Education Bureau of Hunan Province, China under Grant No. 16B177, the School Foundation from the Hunan University of Arts and Science under Grant No. 14ZD01
He Zhi; Zhu Lie-Qiang; Li Li
2017-01-01
A non-Markovianity measure based on Brukner–Zeilinger invariant information to characterize non-Markovian effect of open systems undergoing unital dynamical maps is proposed. The method takes advantage of non-increasing property of the Brukner–Zeilinger invariant information under completely positive and trace-preserving unital maps. The simplicity of computing the Brukner–Zeilinger invariant information is the advantage of the proposed measure because of mainly depending on the purity of quantum state. The measure effectively captures the characteristics of non-Markovianity of unital dynamical maps. As some concrete application, we consider two typical non-Markovian noise channels, i.e., the phase damping channel and the random unitary channel to show the sensitivity of the proposed measure. By investigation, we find that the conditions of detecting the non-Markovianity for the phase damping channel are consistent with the results of existing measures for non-Markovianity, i.e., information flow, divisibility and quantum mutual information. However, for the random unitary channel non-Markovian conditions are same to that of the information flow, but is different from that of the divisibility and quantum mutual information. (paper)
Chakraborty, Sagnik
2018-03-01
We present a general framework for the information backflow (IB) approach of Markovianity that not only includes a large number, if not all, of IB prescriptions proposed so far but also is equivalent to completely positive divisibility for invertible evolutions. Following the common approach of IB, where monotonic decay of some physical property or some information quantifier is seen as the definition of Markovianity, we propose in our framework a general description of what should be called a proper "physicality quantifier" to define Markovianity. We elucidate different properties of our framework and use them to argue that an infinite family of non-Markovianity measures can be constructed, which would capture varied strengths of non-Markovianity in the dynamics. Moreover, we show that generalized trace-distance measure in two dimensions serve as a sufficient criteria for IB Markovianity for a number of prescriptions suggested earlier in the literature.
Delineating incoherent non-Markovian dynamics using quantum coherence
Chanda, Titas, E-mail: titaschanda@hri.res.in; Bhattacharya, Samyadeb, E-mail: samyadebbhattacharya@hri.res.in
2016-03-15
We introduce a method of characterization of non-Markovianity using coherence of a system interacting with the environment. We show that under the allowed incoherent operations, monotonicity of a valid coherence measure is affected due to non-Markovian features of the system–environment evolution. We also define a measure to quantify non-Markovianity of the underlying dynamics based on the non-monotonic behavior of the coherence measure. We investigate our proposed non-Markovianity marker in the behavior of dephasing and dissipative dynamics for one and two qubit cases. We also show that our proposed measure captures the back-flow of information from the environment to the system and compatible with well known distinguishability criteria of non-Markovianity.
Non-Markovian dissipative quantum mechanics with stochastic trajectories
Koch, Werner
2010-01-01
All fields of physics - be it nuclear, atomic and molecular, solid state, or optical - offer examples of systems which are strongly influenced by the environment of the actual system under investigation. The scope of what is called ''the environment'' may vary, i.e., how far from the system of interest an interaction between the two does persist. Typically, however, it is much larger than the open system itself. Hence, a fully quantum mechanical treatment of the combined system without approximations and without limitations of the type of system is currently out of reach. With the single assumption of the environment to consist of an internally thermalized set of infinitely many harmonic oscillators, the seminal work of Stockburger and Grabert [Chem. Phys., 268:249-256, 2001] introduced an open system description that captures the environmental influence by means of a stochastic driving of the reduced system. The resulting stochastic Liouville-von Neumann equation describes the full non-Markovian dynamics without explicit memory but instead accounts for it implicitly through the correlations of the complex-valued noise forces. The present thesis provides a first application of the Stockburger-Grabert stochastic Liouville-von Neumann equation to the computation of the dynamics of anharmonic, continuous open systems. In particular, it is demonstrated that trajectory based propagators allow for the construction of a numerically stable propagation scheme. With this approach it becomes possible to achieve the tremendous increase of the noise sample count necessary to stochastically converge the results when investigating such systems with continuous variables. After a test against available analytic results for the dissipative harmonic oscillator, the approach is subsequently applied to the analysis of two different realistic, physical systems. As a first example, the dynamics of a dissipative molecular oscillator is investigated. Long time propagation - until
Non-Markovian dissipative quantum mechanics with stochastic trajectories
Koch, Werner
2010-09-09
All fields of physics - be it nuclear, atomic and molecular, solid state, or optical - offer examples of systems which are strongly influenced by the environment of the actual system under investigation. The scope of what is called ''the environment'' may vary, i.e., how far from the system of interest an interaction between the two does persist. Typically, however, it is much larger than the open system itself. Hence, a fully quantum mechanical treatment of the combined system without approximations and without limitations of the type of system is currently out of reach. With the single assumption of the environment to consist of an internally thermalized set of infinitely many harmonic oscillators, the seminal work of Stockburger and Grabert [Chem. Phys., 268:249-256, 2001] introduced an open system description that captures the environmental influence by means of a stochastic driving of the reduced system. The resulting stochastic Liouville-von Neumann equation describes the full non-Markovian dynamics without explicit memory but instead accounts for it implicitly through the correlations of the complex-valued noise forces. The present thesis provides a first application of the Stockburger-Grabert stochastic Liouville-von Neumann equation to the computation of the dynamics of anharmonic, continuous open systems. In particular, it is demonstrated that trajectory based propagators allow for the construction of a numerically stable propagation scheme. With this approach it becomes possible to achieve the tremendous increase of the noise sample count necessary to stochastically converge the results when investigating such systems with continuous variables. After a test against available analytic results for the dissipative harmonic oscillator, the approach is subsequently applied to the analysis of two different realistic, physical systems. As a first example, the dynamics of a dissipative molecular oscillator is investigated. Long time
Quantum theory of multiple-input-multiple-output Markovian feedback with diffusive measurements
Chia, A.; Wiseman, H. M.
2011-01-01
Feedback control engineers have been interested in multiple-input-multiple-output (MIMO) extensions of single-input-single-output (SISO) results of various kinds due to its rich mathematical structure and practical applications. An outstanding problem in quantum feedback control is the extension of the SISO theory of Markovian feedback by Wiseman and Milburn [Phys. Rev. Lett. 70, 548 (1993)] to multiple inputs and multiple outputs. Here we generalize the SISO homodyne-mediated feedback theory to allow for multiple inputs, multiple outputs, and arbitrary diffusive quantum measurements. We thus obtain a MIMO framework which resembles the SISO theory and whose additional mathematical structure is highlighted by the extensive use of vector-operator algebra.
Enhancement of Quantum Correlations in Qubit-Qutrit Systems under the non-Markovian Environment
Abdul Basit; Hamad Ali; Fazal Badshah; Guo-Qin Ge
2017-01-01
We investigate the time evolution of quantum correlations of a hybrid qubit-qutrit system under the classical Ornstein-Uhlenbeck (OU) noise.Here we consider two different one-parameter families of qubit-qutrit states which independently interact with the non-Markovian reservoirs.A comparison with the Markovian dynamics reveals that for the same set of initial condition parameters,the non-Markovian behavior of the environment plays an important role in the enhancement of the survival time of quantum correlations.In addition,it is observed that the non-Markovian strength (γ/F) has a positive impact on the correlations time.For the initial separable states it is found that there is a finite time interval in which the geometric quantum discord is frozen despite the presence of a noisy environment and that interval can be further prolonged by using the non-Markovian property.Moreover,its decay can be significantly delayed.
Iotti, Rita Claudia; Rossi, Fausto
2017-12-01
Microscopic modeling of electronic phase coherence versus energy dissipation plays a crucial role in the design and optimization of new-generation electronic quantum nanodevices, like quantum-cascade light sources and quantum logic gates; in this context, non-Markovian density-matrix approaches are widely used simulation strategies. Here we show that such methods, along with valuable virtues, in some circumstances may exhibit potential limitations that need to be taken into account for a reliable description of quantum materials and related devices. More specifically, extending the analysis recently proposed in [EPL 112, 67005 (2015)] to high temperatures and degenerate conditions, we show that the usual mean-field treatment - employed to derive quantum-kinetic equations - in some cases may lead to anomalous results, characterized by decoherence suppression and positivity violations. By means of a simple two-level model, we show that such unexpected behaviors may affect zero-dimensional electronic systems coupled to dispersionless phonon modes, while such anomalies are expected to play a negligible role in nanosystems with higher dimensionality; these limitations are found to be significant in the low-density and low-temperature limit, while in the degenerate and/or finite-temperature regime - typical of many state-of-the-art quantum devices - their impact is strongly reduced.
Non-Markovian linear response theory for quantum open systems and its applications.
Shen, H Z; Li, D X; Yi, X X
2017-01-01
The Kubo formula is an equation that expresses the linear response of an observable due to a time-dependent perturbation. It has been extended from closed systems to open systems in recent years under the Markovian approximation, but is barely explored for open systems in non-Markovian regimes. In this paper, we derive a formula for the linear response of an open system to a time-independent external field. This response formula is available for both Markovian and non-Markovian dynamics depending on parameters in the spectral density of the environment. As an illustration of the theory, the Hall conductance of a two-band system subjected to environments is derived and discussed. With the tight-binding model, we point out the Hall conductance changes from Markovian to non-Markovian dynamics by modulating the spectral density of the environment. Our results suggest a way to the controlling of the system response, which has potential applications for quantum statistical mechanics and condensed matter physics.
Exact solution for a non-Markovian dissipative quantum dynamics.
Ferialdi, Luca; Bassi, Angelo
2012-04-27
We provide the exact analytic solution of the stochastic Schrödinger equation describing a harmonic oscillator interacting with a non-Markovian and dissipative environment. This result represents an arrival point in the study of non-Markovian dynamics via stochastic differential equations. It is also one of the few exactly solvable models for infinite-dimensional systems. We compute the Green's function; in the case of a free particle and with an exponentially correlated noise, we discuss the evolution of Gaussian wave functions.
Fault-tolerant quantum computation for local non-Markovian noise
Terhal, Barbara M.; Burkard, Guido
2005-01-01
We derive a threshold result for fault-tolerant quantum computation for local non-Markovian noise models. The role of error amplitude in our analysis is played by the product of the elementary gate time t 0 and the spectral width of the interaction Hamiltonian between system and bath. We discuss extensions of our model and the applicability of our analysis
Controlling quantum memory-assisted entropic uncertainty in non-Markovian environments
Zhang, Yanliang; Fang, Maofa; Kang, Guodong; Zhou, Qingping
2018-03-01
Quantum memory-assisted entropic uncertainty relation (QMA EUR) addresses that the lower bound of Maassen and Uffink's entropic uncertainty relation (without quantum memory) can be broken. In this paper, we investigated the dynamical features of QMA EUR in the Markovian and non-Markovian dissipative environments. It is found that dynamical process of QMA EUR is oscillation in non-Markovian environment, and the strong interaction is favorable for suppressing the amount of entropic uncertainty. Furthermore, we presented two schemes by means of prior weak measurement and posterior weak measurement reversal to control the amount of entropic uncertainty of Pauli observables in dissipative environments. The numerical results show that the prior weak measurement can effectively reduce the wave peak values of the QMA-EUA dynamic process in non-Markovian environment for long periods of time, but it is ineffectual on the wave minima of dynamic process. However, the posterior weak measurement reversal has an opposite effects on the dynamic process. Moreover, the success probability entirely depends on the quantum measurement strength. We hope that our proposal could be verified experimentally and might possibly have future applications in quantum information processing.
Optical signatures of non-Markovian behavior in open quantum systems
McCutcheon, Dara
2016-01-01
for the correlation functions, making only a second-order expansion in the system-environment coupling strength and invoking the Born approximation at a fixed initial time. The results are used to investigate a driven semiconductor quantum dot coupled to an acoustic phonon bath, where we find the non-Markovian nature...
Quantum measurements in spin-boson model under non-Markovian environment
Berrada, K.; Aldaghri, O.
2017-07-01
We propose a control approach of the parameter estimation for a two-level quantum system interacting with a bosonic reservoir considering non-Markovian open, dissipative quantum system. We show that the precision of the estimation significantly affected and behaves differently within the framework of the markovian and non-Markovian regimes. The influence of memory effects for an Ohmic reservoir with Lorentz-Drude regularization on the estimation-parameter precision are numerically demonstrated under the following three conditions: ω0 ≪ωc , ω0 ≈ωc or ω0 ≫ωc , where ω0 is the characteristic frequency of the two-level system, and ωc is the cut-off frequency of Ohmic reservoir. We investigate the precision rate in high temperature, intermediate temperature, and low temperature reservoirs for various values of the ratio r =ωc /ω0 considering manifold external fields. We reveal that the enhancement and preservation of the measurement precision, highly depend on the combination of the external control field, reservoir parameters, and non-Markovian effects.
Pengqin Shi
2016-09-01
Full Text Available Based on the time-nonlocal particle number-resolved master equation, we investigate the sequential electron transport through the interacting double quantum dots. Our calculations show that there exists the effect of energy renormalization in the dispersion of the bath interaction spectrum and it is sensitive to the the bandwidth of the bath. This effect would strongly affect the stationary current and its zero-frequency shot noise for weak inter-dot coherent coupling strength, but for strong inter-dot coupling regime, it is negligible due to the strong intrinsic Rabi coherent dynamics. Moreover, the possible observable effects of the energy renormalization in the noise spectrum are also investigated through the Rabi coherence signal. Finally, the non-Markovian effect is manifested in the finite-frequency noise spectrum with the appearance of quasisteps, and the magnitude of these quasisteps are modified by the dispersion function.
Uhrig dynamical control of a three-level system via non-Markovian quantum state diffusion
Shu, Wenchong; Zhao, Xinyu; Jing, Jun; Yu, Ting; Wu, Lian-Ao
2013-01-01
In this paper, we use the quantum state diffusion (QSD) equation to implement the Uhrig dynamical decoupling to a three-level quantum system coupled to a non-Markovian reservoir comprising of infinite numbers of degrees of freedom. For this purpose, we first reformulate the non-Markovian QSD to incorporate the effect of the external control fields. With this stochastic QSD approach, we demonstrate that an unknown state of the three-level quantum system can be universally protected against both coloured phase and amplitude noises when the control-pulse sequences and control operators are properly designed. The advantage of using non-Markovian QSD equations is that the control dynamics of open quantum systems can be treated exactly without using Trotter product formula and be efficiently simulated even when the environment is comprised of infinite numbers of degrees of freedom. We also show how the control efficacy depends on the environment memory time and the designed time points of applied control pulses. (paper)
Pseudothermalization in driven-dissipative non-Markovian open quantum systems
Lebreuilly, José; Chiocchetta, Alessio; Carusotto, Iacopo
2018-03-01
We investigate a pseudothermalization effect, where an open quantum system coupled to a nonequilibrated environment consisting of several non-Markovian reservoirs presents an emergent thermal behavior. This thermal behavior is visible at both static and dynamical levels and the system satisfies the fluctuation-dissipation theorem. Our analysis is focused on the exactly solvable model of a weakly interacting driven-dissipative Bose gas in presence of frequency-dependent particle pumping and losses, and is based on a quantum Langevin theory, which we derive starting from a microscopical quantum optics model. For generic non-Markovian reservoirs, we demonstrate that the emergence of thermal properties occurs in the range of frequencies corresponding to low-energy excitations. For the specific case of non-Markovian baths verifying the Kennard-Stepanov relation, we show that pseudothermalization can instead occur at all energy scales. The possible implications regarding the interpretation of thermal laws in low-temperature exciton-polariton experiments are discussed. We finally show that the presence of either a saturable pumping or a dispersive environment leads to a breakdown of the pseudothermalization effect.
Afsaneh, E.; Yavari, H.
2014-01-01
The superconducting reservoir effect on the current carrying transport of a double quantum dot in Markovian regime is investigated. For this purpose, a quantum master equation at finite temperature is derived for the many-body density matrix of an open quantum system. The dynamics and the steady-state properties of the double quantum dot system for arbitrary bias are studied. We will show that how the populations and coherencies of the system states are affected by superconducting leads. The energy parameter of system contains essentially four contributions due to dots system-electrodes coupling, intra dot coupling, two quantum dots inter coupling and superconducting gap. The coupling effect of each energy contribution is applied to currents and coherencies results. In addition, the effect of energy gap is studied by considering the amplitude and lifetime of coherencies to get more current through the system. (author)
Zhao Xinyu; Jing Jun; Corn, Brittany; Yu Ting
2011-01-01
Non-Markovian dynamics is studied for two interacting qubits strongly coupled to a dissipative bosonic environment. We derive a non-Markovian quantum-state-diffusion (QSD) equation for the coupled two-qubit system without any approximations, and in particular, without the Markov approximation. As an application and illustration of our derived time-local QSD equation, we investigate the temporal behavior of quantum coherence dynamics. In particular, we find a strongly non-Markovian regime where entanglement generation is significantly modulated by the environmental memory. Additionally, we study residual entanglement in the steady state by analyzing the steady-state solution of the QSD equation. Finally, we discuss an approximate QSD equation.
Quantum metrology subject to spatially correlated Markovian noise: restoring the Heisenberg limit
Jeske, Jan; Cole, Jared H; Huelga, Susana F
2014-01-01
Environmental noise can hinder the metrological capabilities of entangled states. While the use of entanglement allows for Heisenberg-limited resolution, the largest permitted by quantum mechanics, deviations from strictly unitary dynamics quickly restore the standard scaling dictated by the central limit theorem. Product and maximally entangled states become asymptotically equivalent when the noisy evolution is both local and strictly Markovian. However, temporal correlations in the noise have been shown to lift this equivalence while fully (spatially) correlated noise allows for the identification of decoherence-free subspaces. Here we analyze precision limits in the presence of noise with finite correlation length and show that there exist robust entangled state preparations which display persistent Heisenberg scaling despite the environmental decoherence, even for small correlation length. Our results emphasize the relevance of noise correlations in the study of quantum advantage and could be relevant beyond metrological applications. (paper)
Hoerhammer, C.
2007-01-01
In this thesis, non-Markovian dynamics, decoherence and entanglement in dissipative quantum systems are studied. In particular, applications to quantum information theory of continuous variable systems are considered. The non-Markovian dynamics are described by the Hu-Paz-Zhang master equation of quantum Brownian motion. In this context the focus is on non-Markovian effects on decoherence and separability time scales of various single- mode and two-mode continuous variable states. It is verified that moderate non-Markovian influences slow down the decay of interference fringes and quantum correlations, while strong non-Markovian effects resulting from an out-of-resonance bath can even accelerate the loss of coherence, compared to predictions of Markovian approximations. Qualitatively different scenarios including exponential, Gaussian or algebraic decay of the decoherence function are analyzed. It is shown that partial recurrence of coherence can occur in case of non-Lindblad-type dynamics. The time evolution of quantum correlations of entangled two-mode continuous variable states is examined in single-reservoir and two-reservoir models, representing noisy correlated or uncorrelated non-Markovian quantum channels. For this purpose the model of quantum Brownian motion is extended. Various separability criteria for Gaussian and non-Gaussian continuous variable systems are applied. In both types of reservoir models moderate non-Markovian effects prolong the separability time scales. However, in these models the properties of the stationary state may differ. In the two-reservoir model the initial entanglement is completely lost and both modes are finally uncorrelated. In a common reservoir both modes interact indirectly via the coupling to the same bath variables. Therefore, new quantum correlations may emerge between the two modes. Below a critical bath temperature entanglement is preserved even in the steady state. A separability criterion is derived, which depends
Giorgi, Gian Luca; Galve, Fernando; Zambrini, Roberta
2015-08-01
Quantum Darwinism explains the emergence of a classical description of objects in terms of the creation of many redundant registers in an environment containing their classical information. This amplification phenomenon, where only classical information reaches the macroscopic observer and through which different observers can agree on the objective existence of such object, has been revived lately for several types of situations, successfully explaining classicality. We explore quantum Darwinism in the setting of an environment made of two level systems which are initially prepared in the ground state of the XX model, which exhibits different phases; we find that the different phases have different abilities to redundantly acquire classical information about the system, the "ferromagnetic phase" being the only one able to complete quantum Darwinism. At the same time we relate this ability to how non-Markovian the system dynamics is, based on the interpretation that non-Markovian dynamics is associated with backflow of information from environment to system, thus spoiling the information transfer needed for Darwinism. Finally, we explore mixing of bath registers by allowing a small interaction among them, finding that this spoils the stored information as previously found in the literature.
Zou, Hong-Mei; Fang, Mao-Fa; Yang, Bai-Yuan; Guo, You-Neng; He, Wei; Zhang, Shi-Yang
2014-01-01
The quantum entropic uncertainty relation and entanglement witness in the two-atom system coupling with the non-Markovian environments are studied using the time-convolutionless master-equation approach. The influence of the non-Markovian effect and detuning on the lower bound of the quantum entropic uncertainty relation and entanglement witness is discussed in detail. The results show that, only if the two non-Markovian reservoirs are identical, increasing detuning and non-Markovian effect can reduce the lower bound of the entropic uncertainty relation, lengthen the time region during which the entanglement can be witnessed, and effectively protect the entanglement region witnessed by the lower bound of the entropic uncertainty relation. The results can be applied in quantum measurement, quantum cryptography tasks and quantum information processing. (paper)
Generalized semi-Markovian dividend discount model: risk and return
D'Amico, Guglielmo
2016-01-01
The article presents a general discrete time dividend valuation model when the dividend growth rate is a general continuous variable. The main assumption is that the dividend growth rate follows a discrete time semi-Markov chain with measurable space. The paper furnishes sufficient conditions that assure finiteness of fundamental prices and risks and new equations that describe the first and second order price-dividend ratios. Approximation methods to solve equations are provided and some new...
Generalized concatenated quantum codes
Grassl, Markus; Shor, Peter; Smith, Graeme; Smolin, John; Zeng Bei
2009-01-01
We discuss the concept of generalized concatenated quantum codes. This generalized concatenation method provides a systematical way for constructing good quantum codes, both stabilizer codes and nonadditive codes. Using this method, we construct families of single-error-correcting nonadditive quantum codes, in both binary and nonbinary cases, which not only outperform any stabilizer codes for finite block length but also asymptotically meet the quantum Hamming bound for large block length.
Generalized quantum statistics
Chou, C.
1992-01-01
In the paper, a non-anyonic generalization of quantum statistics is presented, in which Fermi-Dirac statistics (FDS) and Bose-Einstein statistics (BES) appear as two special cases. The new quantum statistics, which is characterized by the dimension of its single particle Fock space, contains three consistent parts, namely the generalized bilinear quantization, the generalized quantum mechanical description and the corresponding statistical mechanics
Polyakov, Evgeny A.; Rubtsov, Alexey N.
2018-02-01
When conducting the numerical simulation of quantum transport, the main obstacle is a rapid growth of the dimension of entangled Hilbert subspace. The Quantum Monte Carlo simulation techniques, while being capable of treating the problems of high dimension, are hindered by the so-called "sign problem". In the quantum transport, we have fundamental asymmetry between the processes of emission and absorption of environment excitations: the emitted excitations are rapidly and irreversibly scattered away. Whereas only a small part of these excitations is absorbed back by the open subsystem, thus exercising the non-Markovian self-action of the subsystem onto itself. We were able to devise a method for the exact simulation of the dominant quantum emission processes, while taking into account the small backaction effects in an approximate self-consistent way. Such an approach allows us to efficiently conduct simulations of real-time dynamics of small quantum subsystems immersed in non-Markovian bath for large times, reaching the quasistationary regime. As an example we calculate the spatial quench dynamics of Kondo cloud for a bozonized Kodno impurity model.
Leivo, H.P.
1992-01-01
The algebraic approach to quantum groups is generalized to include what may be called an anyonic symmetry, reflecting the appearance of phases more general than ±1 under transposition. (author). 6 refs
Non-Markovian dynamics of quantum systems: decay rate, capture and pure states
Kanokov, Z.; Palchikov, Yu.V.; Antonenko, N.V.; Adamian, G.G.; Kanokov, Z.; Adamian, G.G.; Scheid, W.
2004-01-01
Full text: With the exact numerical solution of the equation for the reduced density matrix we found a minor role of the time dependence of the friction and diffusion coefficients in the escape rate from a potential well [1]. Since the used friction and diffusion coefficients were self- consistently under certain approximations derived, they preserve the positivity of the density matrix at any time. The mixed diffusion coefficient leads to a decrease of the escape rate. Since the used value of quantum diffusion coefficient in momentum is larger than the one following from a 'classic' treatment, the obtained escape rate is close to the rate calculated with the 'classic' set of diffusion coefficients. If the regime of motion is close to the under damped case or the temperature is small, the quasi-stationary escape rate can increase with friction. This is explained by the larger role of the increasing diffusion in the decay process. The agreement of the escape rate obtained with the analytical expressions in comparison to numerically calculated data depends on the characteristics of the considered system. The agreement is better in the overdamped regime. However, for any regime the deviations are not larger than in the case of the classical Kramers formula. Therefore, the analytical expressions can be applied in a large range of parameters for the potential and diffusion coefficients. We demonstrated that the uncertainty function is related to the linear entropy. The diffusion coefficients supplying the purity of states were elaborated for the non-Markovian dynamics. The obtained dependences of the capture probability on the friction proves that the quantum nature of this process should be taken into consideration when one calculates the capture cross section in nucleus-nucleus collisions
Chakraborty, Ahana; Sensarma, Rajdeep
2018-03-01
The Born-Markov approximation is widely used to study the dynamics of open quantum systems coupled to external baths. Using Keldysh formalism, we show that the dynamics of a system of bosons (fermions) linearly coupled to a noninteracting bosonic (fermionic) bath falls outside this paradigm if the bath spectral function has nonanalyticities as a function of frequency. In this case, we show that the dissipative and noise kernels governing the dynamics have distinct power-law tails. The Green's functions show a short-time "quasi"-Markovian exponential decay before crossing over to a power-law tail governed by the nonanalyticity of the spectral function. We study a system of bosons (fermions) hopping on a one-dimensional lattice, where each site is coupled linearly to an independent bath of noninteracting bosons (fermions). We obtain exact expressions for the Green's functions of this system, which show power-law decay ˜|t - t'|-3 /2 . We use these to calculate the density and current profile, as well as unequal-time current-current correlators. While the density and current profiles show interesting quantitative deviations from Markovian results, the current-current correlators show qualitatively distinct long-time power-law tails |t - t'|-3 characteristic of non-Markovian dynamics. We show that the power-law decays survive in the presence of interparticle interaction in the system, but the crossover time scale is shifted to larger values with increasing interaction strength.
Generalized interpolative quantum statistics
Ramanathan, R.
1992-01-01
A generalized interpolative quantum statistics is presented by conjecturing a certain reordering of phase space due to the presence of possible exotic objects other than bosons and fermions. Such an interpolation achieved through a Bose-counting strategy predicts the existence of an infinite quantum Boltzmann-Gibbs statistics akin to the one discovered by Greenberg recently
The Generalized Quantum Statistics
Hwang, WonYoung; Ji, Jeong-Young; Hong, Jongbae
1999-01-01
The concept of wavefunction reduction should be introduced to standard quantum mechanics in any physical processes where effective reduction of wavefunction occurs, as well as in the measurement processes. When the overlap is negligible, each particle obey Maxwell-Boltzmann statistics even if the particles are in principle described by totally symmetrized wavefunction [P.R.Holland, The Quantum Theory of Motion, Cambridge Unversity Press, 1993, p293]. We generalize the conjecture. That is, par...
Yanbo Li
2014-01-01
Full Text Available This paper is devoted to the investigation of the design of robust guaranteed cost observer for a class of linear singular Markovian jump time-delay systems with generally incomplete transition probability. In this singular model, each transition rate can be completely unknown or only its estimate value is known. Based on stability theory of stochastic differential equations and linear matrix inequality (LMI technique, we design an observer to ensure that, for all uncertainties, the resulting augmented system is regular, impulse free, and robust stochastically stable with the proposed guaranteed cost performance. Finally, a convex optimization problem with LMI constraints is formulated to design the suboptimal guaranteed cost filters for linear singular Markovian jump time-delay systems with generally incomplete transition probability.
General quantum variational calculus
Artur M. C. Brito da Cruz
2018-02-01
Full Text Available We develop a new variational calculus based in the general quantum difference operator recently introduced by Hamza et al. In particular, we obtain optimality conditions for generalized variational problems where the Lagrangian may depend on the endpoints conditions and a real parameter, for the basic and isoperimetric problems, with and without fixed boundary conditions. Our results provide a generalization to previous results obtained for the $q$- and Hahn-calculus.
Hoerhammer, C.
2007-11-26
In this thesis, non-Markovian dynamics, decoherence and entanglement in dissipative quantum systems are studied. In particular, applications to quantum information theory of continuous variable systems are considered. The non-Markovian dynamics are described by the Hu-Paz-Zhang master equation of quantum Brownian motion. In this context the focus is on non-Markovian effects on decoherence and separability time scales of various single- mode and two-mode continuous variable states. It is verified that moderate non-Markovian influences slow down the decay of interference fringes and quantum correlations, while strong non-Markovian effects resulting from an out-of-resonance bath can even accelerate the loss of coherence, compared to predictions of Markovian approximations. Qualitatively different scenarios including exponential, Gaussian or algebraic decay of the decoherence function are analyzed. It is shown that partial recurrence of coherence can occur in case of non-Lindblad-type dynamics. The time evolution of quantum correlations of entangled two-mode continuous variable states is examined in single-reservoir and two-reservoir models, representing noisy correlated or uncorrelated non-Markovian quantum channels. For this purpose the model of quantum Brownian motion is extended. Various separability criteria for Gaussian and non-Gaussian continuous variable systems are applied. In both types of reservoir models moderate non-Markovian effects prolong the separability time scales. However, in these models the properties of the stationary state may differ. In the two-reservoir model the initial entanglement is completely lost and both modes are finally uncorrelated. In a common reservoir both modes interact indirectly via the coupling to the same bath variables. Therefore, new quantum correlations may emerge between the two modes. Below a critical bath temperature entanglement is preserved even in the steady state. A separability criterion is derived, which depends
Non-Markovianity of Gaussian Channels.
Torre, G; Roga, W; Illuminati, F
2015-08-14
We introduce a necessary and sufficient criterion for the non-Markovianity of Gaussian quantum dynamical maps based on the violation of divisibility. The criterion is derived by defining a general vectorial representation of the covariance matrix which is then exploited to determine the condition for the complete positivity of partial maps associated with arbitrary time intervals. Such construction does not rely on the Choi-Jamiolkowski representation and does not require optimization over states.
Generalized Multiphoton Quantum Interference
Max Tillmann
2015-10-01
Full Text Available Nonclassical interference of photons lies at the heart of optical quantum information processing. Here, we exploit tunable distinguishability to reveal the full spectrum of multiphoton nonclassical interference. We investigate this in theory and experiment by controlling the delay times of three photons injected into an integrated interferometric network. We derive the entire coincidence landscape and identify transition matrix immanants as ideally suited functions to describe the generalized case of input photons with arbitrary distinguishability. We introduce a compact description by utilizing a natural basis that decouples the input state from the interferometric network, thereby providing a useful tool for even larger photon numbers.
Quantum thermodynamics of general quantum processes.
Binder, Felix; Vinjanampathy, Sai; Modi, Kavan; Goold, John
2015-03-01
Accurately describing work extraction from a quantum system is a central objective for the extension of thermodynamics to individual quantum systems. The concepts of work and heat are surprisingly subtle when generalizations are made to arbitrary quantum states. We formulate an operational thermodynamics suitable for application to an open quantum system undergoing quantum evolution under a general quantum process by which we mean a completely positive and trace-preserving map. We derive an operational first law of thermodynamics for such processes and show consistency with the second law. We show that heat, from the first law, is positive when the input state of the map majorizes the output state. Moreover, the change in entropy is also positive for the same majorization condition. This makes a strong connection between the two operational laws of thermodynamics.
Shot-noise at a Fermi-edge singularity: Non-Markovian dynamics
Ubbelohde, N.; Maire, N.; Haug, R. J. [Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstraße 2, D-30167 Hannover (Germany); Roszak, K. [Institute of Physics, Wrocław University of Technology, PL-50370 Wrocław (Poland); Hohls, F. [Physikalisch-Technische Bundesanstalt, D-38116 Braunschweig (Germany); Novotný, T. [Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, CZ-12116 Prague (Czech Republic)
2013-12-04
For an InAs quantum dot we study the current shot noise at a Fermi-edge singularity in low temperature cross-correlation measurements. In the regime of the interaction effect the strong suppression of noise observed at zero magnetic field and the sequence of enhancement and suppression in magnetic field go beyond a Markovian master equation model. Qualitative and quantitative agreement can however be achieved by a generalized master equation model taking non-Markovian dynamics into account.
A Dynamical Theory of Markovian Diffusion
Davidson, Mark
2001-01-01
A dynamical treatment of Markovian diffusion is presented and several applications discussed. The stochastic interpretation of quantum mechanics is considered within this framework. A model for Brownian movement which includes second order quantum effects is derived.
Moix, Jeremy M.; Cao, Jianshu
2013-10-01
The hierarchical equations of motion technique has found widespread success as a tool to generate the numerically exact dynamics of non-Markovian open quantum systems. However, its application to low temperature environments remains a serious challenge due to the need for a deep hierarchy that arises from the Matsubara expansion of the bath correlation function. Here we present a hybrid stochastic hierarchical equation of motion (sHEOM) approach that alleviates this bottleneck and leads to a numerical cost that is nearly independent of temperature. Additionally, the sHEOM method generally converges with fewer hierarchy tiers allowing for the treatment of larger systems. Benchmark calculations are presented on the dynamics of two level systems at both high and low temperatures to demonstrate the efficacy of the approach. Then the hybrid method is used to generate the exact dynamics of systems that are nearly impossible to treat by the standard hierarchy. First, exact energy transfer rates are calculated across a broad range of temperatures revealing the deviations from the Förster rates. This is followed by computations of the entanglement dynamics in a system of two qubits at low temperature spanning the weak to strong system-bath coupling regimes.
Modern canonical quantum general relativity
Thiemann, Thomas
2007-01-01
This is an introduction to the by now fifteen years old research field of canonical quantum general relativity, sometimes called "loop quantum gravity". The term "modern" in the title refers to the fact that the quantum theory is based on formulating classical general relativity as a theory of connections rather than metrics as compared to in original version due to Arnowitt, Deser and Misner. Canonical quantum general relativity is an attempt to define a mathematically rigorous, non-perturbative, background independent theory of Lorentzian quantum gravity in four spacetime dimensions in the continuum. The approach is minimal in that one simply analyzes the logical consequences of combining the principles of general relativity with the principles of quantum mechanics. The requirement to preserve background independence has lead to new, fascinating mathematical structures which one does not see in perturbative approaches, e.g. a fundamental discreteness of spacetime seems to be a prediction of the theory provi...
Dan Ye
2013-01-01
Full Text Available This paper is concerned with delay-dependent stochastic stability for time-delay Markovian jump systems (MJSs with sector-bounded nonlinearities and more general transition probabilities. Different from the previous results where the transition probability matrix is completely known, a more general transition probability matrix is considered which includes completely known elements, boundary known elements, and completely unknown ones. In order to get less conservative criterion, the state and transition probability information is used as much as possible to construct the Lyapunov-Krasovskii functional and deal with stability analysis. The delay-dependent sufficient conditions are derived in terms of linear matrix inequalities to guarantee the stability of systems. Finally, numerical examples are exploited to demonstrate the effectiveness of the proposed method.
Ishizaki, Akihito; Tanimura, Yoshitaka
2008-05-01
Based on the influence functional formalism, we have derived a nonperturbative equation of motion for a reduced system coupled to a harmonic bath with colored noise in which the system-bath coupling operator does not necessarily commute with the system Hamiltonian. The resultant expression coincides with the time-convolutionless quantum master equation derived from the second-order perturbative approximation, which is also equivalent to a generalized Redfield equation. This agreement occurs because, in the nonperturbative case, the relaxation operators arise from the higher-order system-bath interaction that can be incorporated into the reduced density matrix as the influence operator; while the second-order interaction remains as a relaxation operator in the equation of motion. While the equation describes the exact dynamics of the density matrix beyond weak system-bath interactions, it does not have the capability to calculate nonlinear response functions appropriately. This is because the equation cannot describe memory effects which straddle the external system interactions due to the reduced description of the bath. To illustrate this point, we have calculated the third-order two-dimensional (2D) spectra for a two-level system from the present approach and the hierarchically coupled equations approach that can handle quantal system-bath coherence thanks to its hierarchical formalism. The numerical demonstration clearly indicates the lack of the system-bath correlation in the present formalism as fast dephasing profiles of the 2D spectra.
Generalized Geometric Quantum Speed Limits
Diego Paiva Pires
2016-06-01
Full Text Available The attempt to gain a theoretical understanding of the concept of time in quantum mechanics has triggered significant progress towards the search for faster and more efficient quantum technologies. One of such advances consists in the interpretation of the time-energy uncertainty relations as lower bounds for the minimal evolution time between two distinguishable states of a quantum system, also known as quantum speed limits. We investigate how the nonuniqueness of a bona fide measure of distinguishability defined on the quantum-state space affects the quantum speed limits and can be exploited in order to derive improved bounds. Specifically, we establish an infinite family of quantum speed limits valid for unitary and nonunitary evolutions, based on an elegant information geometric formalism. Our work unifies and generalizes existing results on quantum speed limits and provides instances of novel bounds that are tighter than any established one based on the conventional quantum Fisher information. We illustrate our findings with relevant examples, demonstrating the importance of choosing different information metrics for open system dynamics, as well as clarifying the roles of classical populations versus quantum coherences, in the determination and saturation of the speed limits. Our results can find applications in the optimization and control of quantum technologies such as quantum computation and metrology, and might provide new insights in fundamental investigations of quantum thermodynamics.
Jonsson, Thorsteinn H.; Manolescu, Andrei; Goan, Hsi-Sheng; Abdullah, Nzar Rauf; Sitek, Anna; Tang, Chi-Shung; Gudmundsson, Vidar
2017-11-01
Master equations are commonly used to describe time evolution of open systems. We introduce a general computationally efficient method for calculating a Markovian solution of the Nakajima-Zwanzig generalized master equation. We do so for a time-dependent transport of interacting electrons through a complex nano scale system in a photon cavity. The central system, described by 120 many-body states in a Fock space, is weakly coupled to the external leads. The efficiency of the approach allows us to place the bias window defined by the external leads high into the many-body spectrum of the cavity photon-dressed states of the central system revealing a cascade of intermediate transitions as the system relaxes to a steady state. The very diverse relaxation times present in the open system, reflecting radiative or non-radiative transitions, require information about the time evolution through many orders of magnitude. In our approach, the generalized master equation is mapped from a many-body Fock space of states to a Liouville space of transitions. We show that this results in a linear equation which is solved exactly through an eigenvalue analysis, which supplies information on the steady state and the time evolution of the system.
Kraus map for non-Markovian quantum dynamics driven by a thermal reservoir
van Wonderen, A.J.; Suttorp, L.G.
2013-01-01
Starting from unitary dynamics we study the evolution in time of a non-relativistic quantum system that exchanges energy with a thermal reservoir of harmonic oscillators. System and reservoir are assumed to be initially decorrelated. Reservoir correlation functions are factorized by means of a Kraus
V.V.Ignatyuk
2004-01-01
Full Text Available Non-Markovian kinetic equations in the second Born approximation are derived for a two-zone semiconductor excited by a short laser pulse. Both collision dynamics and running nonequilibrium correlations are taken into consideration. The energy balance and relaxation of the system to equilibrium are discussed. Results of numerical solution of the kinetic equations for carriers and phonons are presented.
Mappings of open quantum systems onto chain representations and Markovian embeddings
Woods, M. P., E-mail: mischa.woods05@imperial.ac.uk [QOLS, Blackett Laboratory, Imperial College London, London SW7 2BW (United Kingdom); Institute für Theoretische Physik, Universität Ulm, D-89069 Ulm (Germany); Groux, R. [Lycée Polyvalent Rouvière, Rue Sainte Claire Deville. BP 1205, 83070 Toulon (France); Chin, A. W.; Huelga, S. F.; Plenio, M. B. [Institute für Theoretische Physik, Universität Ulm, D-89069 Ulm (Germany)
2014-03-15
We study systems coupled linearly to a bath of oscillators. In an iterative process, the bath is transformed into a chain of oscillators with nearest neighbour interactions. A systematic procedure is provided to obtain the spectral density of the residual bath in each step, and it is shown that under general conditions these data converge. That is, the asymptotic part of the chain is universal, translation invariant with semicircular spectral density. The methods are based on orthogonal polynomials, in which we also solve the outstanding so-called “sequence of secondary measures problem” and give them a physical interpretation.
Modern Canonical Quantum General Relativity
Thiemann, Thomas
2008-11-01
Preface; Notation and conventions; Introduction; Part I. Classical Foundations, Interpretation and the Canonical Quantisation Programme: 1. Classical Hamiltonian formulation of general relativity; 2. The problem of time, locality and the interpretation of quantum mechanics; 3. The programme of canonical quantisation; 4. The new canonical variables of Ashtekar for general relativity; Part II. Foundations of Modern Canonical Quantum General Relativity: 5. Introduction; 6. Step I: the holonomy-flux algebra [P]; 7. Step II: quantum-algebra; 8. Step III: representation theory of [A]; 9. Step IV: 1. Implementation and solution of the kinematical constraints; 10. Step V: 2. Implementation and solution of the Hamiltonian constraint; 11. Step VI: semiclassical analysis; Part III. Physical Applications: 12. Extension to standard matter; 13. Kinematical geometrical operators; 14. Spin foam models; 15. Quantum black hole physics; 16. Applications to particle physics and quantum cosmology; 17. Loop quantum gravity phenomenology; Part IV. Mathematical Tools and their Connection to Physics: 18. Tools from general topology; 19. Differential, Riemannian, symplectic and complex geometry; 20. Semianalytical category; 21. Elements of fibre bundle theory; 22. Holonomies on non-trivial fibre bundles; 23. Geometric quantisation; 24. The Dirac algorithm for field theories with constraints; 25. Tools from measure theory; 26. Elementary introduction to Gel'fand theory for Abelean C* algebras; 27. Bohr compactification of the real line; 28. Operatir -algebras and spectral theorem; 29. Refined algebraic quantisation (RAQ) and direct integral decomposition (DID); 30. Basics of harmonic analysis on compact Lie groups; 31. Spin network functions for SU(2); 32. + Functional analytical description of classical connection dynamics; Bibliography; Index.
Evolution of entropy in different types of non-Markovian three-level ...
ference between Markovian and non-Markovian systems lies in the memory ... In recent years, research on quantum entanglement has attracted a lot of attention, which .... Hamiltonians for three types of atoms in the interaction picture are.
General covariance and quantum theory
Mashhoon, B.
1986-01-01
The extension of the principle of relativity to general coordinate systems is based on the hypothesis that an accelerated observer is locally equivalent to a hypothetical inertial observer with the same velocity as the noninertial observer. This hypothesis of locality is expected to be valid for classical particle phenomena as well as for classical wave phenomena but only in the short-wavelength approximation. The generally covariant theory is therefore expected to be in conflict with the quantum theory which is based on wave-particle duality. This is explicitly demonstrated for the frequency of electromagnetic radiation measured by a uniformly rotating observer. The standard Doppler formula is shown to be valid only in the geometric optics approximation. A new definition for the frequency is proposed, and the resulting formula for the frequency measured by the rotating observer is shown to be consistent with expectations based on the classical theory of electrons. A tentative quantum theory is developed on the basis of the generalization of the Bohr frequency condition to include accelerated observers. The description of the causal sequence of events is assumed to be independent of the motion of the observer. Furthermore, the quantum hypothesis is supposed to be valid for all observers. The implications of this theory are critically examined. The new formula for frequency, which is still based on the hypothesis of locality, leads to the observation of negative energy quanta by the rotating observer and is therefore in conflict with the quantum theory
Quantum mechanics from general relativity
Sachs, M.
1986-01-01
A generalization of quantum mechanics is demonstrated in the context of general relativity, following from a generally covariant field theory of inertia. Nonrelativistically, the formalism corresponds with linear quantum mechanics. In the limit of special relativity, nonlinearity remains and several new features are derived: (1) Particle-antiparticle pairs do not annihilate; an exact bound state solution is derived corresponding with all experimental facts about annihilation/creation - which, in approximation, gives the blackbody radiation spectrum for a sea of such pairs. (2) A result is proven, without approximation, that is physically equivalent to the Pauli exclusion principle - which, in linear approximation, gives the totally antisymmetrised many-body wave function and Fermi-Dirac statistics. (3) The hydrogen spectrum is derived, including the Lamb shifts, in agreement with experiment; new results are found for high energy electron-proton scattering. (4) Finally, several applications to the elementary particle domain are demonstrated, in agreement with results from experimental high energy physics. (Auth.)
Mangaud, E.; Puthumpally-Joseph, R.; Sugny, D.; Meier, C.; Atabek, O.; Desouter-Lecomte, M.
2018-04-01
Optimal control theory is implemented with fully converged hierarchical equations of motion (HEOM) describing the time evolution of an open system density matrix strongly coupled to the bath in a spin-boson model. The populations of the two-level sub-system are taken as control objectives; namely, their revivals or exchange when switching off the field. We, in parallel, analyze how the optimal electric field consequently modifies the information back flow from the environment through different non-Markovian witnesses. Although the control field has a dipole interaction with the central sub-system only, its indirect influence on the bath collective mode dynamics is probed through HEOM auxiliary matrices, revealing a strong correlation between control and dissipation during a non-Markovian process. A heterojunction is taken as an illustrative example for modeling in a realistic way the two-level sub-system parameters and its spectral density function leading to a non-perturbative strong coupling regime with the bath. Although, due to strong system-bath couplings, control performances remain rather modest, the most important result is a noticeable increase of the non-Markovian bath response induced by the optimally driven processes.
Fulinski, A.
1994-01-01
The properties of non-Markovian noises with exponentially correlated memory are discussed. Considered are dichotomic noise, white shot noise, Gaussian white noise, and Gaussian colored noise. The stationary correlation functions of the non-Markovian versions of these noises are given by linear combinations of two or three exponential functions (colored noises) or of the δ function and exponential function (white noises). The non-Markovian white noises are well defined only when the kernel of the non-Markovian master equation contains a nonzero admixture of a Markovian term. Approximate equations governing the probability densities for processes driven by such non-Markovian noises are derived, including non-Markovian versions of the Fokker-Planck equation and the telegrapher's equation. As an example, it is shown how the non-Markovian nature changes the behavior of the driven linear process
Modern Canonical Quantum General Relativity;
Kiefer, Claus
2008-01-01
The open problem of constructing a consistent and experimentally tested quantum theory of the gravitational field has its place at the heart of fundamental physics. The main approaches can be roughly divided into two classes: either one seeks a unified quantum framework of all interactions or one starts with a direct quantization of general relativity. In the first class, string theory (M-theory) is the only known example. In the second class, one can make an additional methodological distinction: while covariant approaches such as path-integral quantization use the four-dimensional metric as an essential ingredient of their formalism, canonical approaches start with a foliation of spacetime into spacelike hypersurfaces in order to arrive at a Hamiltonian formulation. The present book is devoted to one of the canonical approaches-loop quantum gravity. It is named modern canonical quantum general relativity by the author because it uses connections and holonomies as central variables, which are analogous to the variables used in Yang-Mills theories. In fact, the canonically conjugate variables are a holonomy of a connection and the flux of a non-Abelian electric field. This has to be contrasted with the older geometrodynamical approach in which the metric of three-dimensional space and the second fundamental form are the fundamental entities, an approach which is still actively being pursued. It is the author's ambition to present loop quantum gravity in a way in which every step is formulated in a mathematically rigorous form. The formal Leitmotiv of loop quantum gravity is background independence. Non-gravitational theories are usually quantized on a given non-dynamical background. In contrast, due to the geometrical nature of gravity, no such background exists in quantum gravity. Instead, the notion of a background is supposed to emerge a posteriori as an approximate notion from quantum states of geometry. As a consequence, the standard ultraviolet divergences of
Quantum information and general relativity
Peres, A.
2004-01-01
The Einstein-Podolsky-Rosen paradox (1935) is reexamined in the light of Shannon's information theory (1948). The EPR argument did not take into account that the observers' information was localized, like any other physical object. General relativity introduces new problems: there are horizons which act as on-way membranes for the propagation of quantum information, in particular black holes which act like sinks. (Abstract Copyright [2004], Wiley Periodicals, Inc.)
Quantum information and general relativity
Peres, A. [Technion, Israel Institute of Technology, Haifa (Israel)
2004-12-01
The Einstein-Podolsky-Rosen paradox (1935) is reexamined in the light of Shannon's information theory (1948). The EPR argument did not take into account that the observers' information was localized, like any other physical object. General relativity introduces new problems: there are horizons which act as on-way membranes for the propagation of quantum information, in particular black holes which act like sinks. (Abstract Copyright [2004], Wiley Periodicals, Inc.)
Quantum information and general relativity
Peres, Asher
2004-01-01
The Einstein-Podolsky-Rosen paradox (1935) is reexamined in the light of Shannon's information theory (1948). The EPR argument did not take into account that the observers' information was localized, like any other physical object. General relativity introduces new problems: there are horizons which act as one-way membranes for the propagation of quantum information, in particular black holes which act like sinks.
Quantum information and general relativity
Peres, A.
2004-11-01
The Einstein-Podolsky-Rosen paradox (1935) is reexamined in the light of Shannon's information theory (1948). The EPR argument did not take into account that the observers' information was localized, like any other physical object. General relativity introduces new problems: there are horizons which act as on-way membranes for the propagation of quantum information, in particular black holes which act like sinks.
Nonlocal non-Markovian effects in dephasing environments
Xie Dong; Wang An-Min
2014-01-01
We study the nonlocal non-Markovian effects through local interactions between two subsystems and the corresponding two environments. It has been found that the initial correlations between two environments can turn a Markovian to a non-Markovian regime with extra control on the local interaction time. We further research the nonlocal non-Markovian effects from two situations: without extra control, the nonlocal non-Markovian effects only appear under the condition that two local dynamics are non-Markovian–non-Markovian (both of the two local dynamics are non-Markovian) or Markovian–non-Markovian, but not under the condition of Markovian–Markovian; with extra control, the nonlocal non-Markovian effects can occur under the condition of Markovian–Markovian. It shows that the function of correlations between two environments has an upper bound, which makes a flow of information from the environment back to the global system beginning finitely earlier than that back to one of the two local systems, not infinitely. Then, we proposed two special ways to distribute classical correlations between two environments without initial correlations. Finally, from numerical solutions in the spin star configuration, we found that the self-correlation (internal correlation) of each environment promotes the nonlocal non-Markovian effects. (general)
A 'general boundary' formulation for quantum mechanics and quantum gravity
Oeckl, Robert
2003-01-01
I propose to formalize quantum theories as topological quantum field theories in a generalized sense, associating state spaces with boundaries of arbitrary (and possibly finite) regions of space-time. I further propose to obtain such 'general boundary' quantum theories through a generalized path integral quantization. I show how both, non-relativistic quantum mechanics and quantum field theory can be given a 'general boundary' formulation. Surprisingly, even in the non-relativistic case, features normally associated with quantum field theory emerge from consistency conditions. This includes states with arbitrary particle number and pair creation. I also note how three-dimensional quantum gravity is an example for a realization of both proposals and suggest to apply them to four-dimensional quantum gravity
Goan, Hsi-Sheng; Jian, Chung-Chin; Chen, Po-Wen
2010-01-01
We evaluate the non-Markovian finite-temperature two-time correlation functions (CF's) of system operators of a pure-dephasing spin-boson model in two different ways, one by the direct exact operator technique and the other by the recently derived evolution equations, valid to second order in the system-environment interaction Hamiltonian. This pure-dephasing spin-boson model that is exactly solvable has been extensively studied as a simple decoherence model. However, its exact non-Markovian finite-temperature two-time system operator CF's, to our knowledge, have not been presented in the literature. This may be mainly due to the fact, illustrated in this article, that in contrast to the Markovian case, the time evolution of the reduced density matrix of the system (or the reduced quantum master equation) alone is not sufficient to calculate the two-time system operator CF's of non-Markovian open systems. The two-time CF's obtained using the recently derived evolution equations in the weak system-environment coupling case for this non-Markovian pure-dephasing model happen to be the same as those obtained from the exact evaluation. However, these results significantly differ from the non-Markovian two-time CF's obtained by wrongly directly applying the quantum regression theorem (QRT), a useful procedure to calculate the two-time CF's for weak-coupling Markovian open systems. This demonstrates clearly that the recently derived evolution equations generalize correctly the QRT to non-Markovian finite-temperature cases. It is believed that these evolution equations will have applications in many different branches of physics.
General description of discriminating quantum operations
Zhang Ke-Jia; Gao Fei; Qin Su-Juan; Wen Qiao-Yan; Zhu Ping; Guo Fen-Zhuo
2011-01-01
The discrimination of quantum operations plays a key role in quantum information and computation. Unlike discriminating quantum states, it has some special properties which can be carried out in practice. In this paper, we provide a general description of discriminating quantum operations. Concretely speaking, we describe the distinguishability between quantum operations using a measure called operator fidelity. It is shown that, employing the theory of operator fidelity, we can not only verify some previous results to discriminate unitary operations, but also exhibit a more general discrimination condition. We further apply our results to analysing the security of some quantum cryptographic protocols and discuss the realization of our method using well-developed quantum algorithms. (general)
General Quantum Interference Principle and Duality Computer
Long Guilu
2006-01-01
In this article, we propose a general principle of quantum interference for quantum system, and based on this we propose a new type of computing machine, the duality computer, that may outperform in principle both classical computer and the quantum computer. According to the general principle of quantum interference, the very essence of quantum interference is the interference of the sub-waves of the quantum system itself. A quantum system considered here can be any quantum system: a single microscopic particle, a composite quantum system such as an atom or a molecule, or a loose collection of a few quantum objects such as two independent photons. In the duality computer, the wave of the duality computer is split into several sub-waves and they pass through different routes, where different computing gate operations are performed. These sub-waves are then re-combined to interfere to give the computational results. The quantum computer, however, has only used the particle nature of quantum object. In a duality computer, it may be possible to find a marked item from an unsorted database using only a single query, and all NP-complete problems may have polynomial algorithms. Two proof-of-the-principle designs of the duality computer are presented: the giant molecule scheme and the nonlinear quantum optics scheme. We also propose thought experiment to check the related fundamental issues, the measurement efficiency of a partial wave function.
Quantum Networks: General theory and applications
Bisio, A.; D'Ariano, G. M.; Perinotti, P.; Chiribella, G.
2011-01-01
In this work we present a general mathematical framework to deal with Quantum Networks, i.e. networks resulting from the interconnection of elementary quantum circuits. The cornerstone of our approach is a generalization of the Choi isomorphism that allows one to efficiently represent any given Quantum Network in terms of a single positive operator. Our formalism allows one to face and solve many quantum information processing problems that would be hardly manageable otherwise, the most relevant of which are reviewed in this work: quantum process tomography, quantum cloning and learning of transformations, inversion of a unitary gate, information-disturbance tradeoff in estimating a unitary transformation, cloning and learning of a measurement device (Authors)
Thermodynamic fingerprints of non-Markovianity in a system of coupled superconducting qubits
Hamedani Raja, Sina; Borrelli, Massimo; Schmidt, Rebecca; Pekola, Jukka P.; Maniscalco, Sabrina
2018-03-01
The exploitation and characterization of memory effects arising from the interaction between system and environment is a key prerequisite for quantum reservoir engineering beyond the standard Markovian limit. In this paper we investigate a prototype of non-Markovian dynamics experimentally implementable with superconducting qubits. We rigorously quantify non-Markovianity, highlighting the effects of the environmental temperature on the Markovian to non-Markovian crossover. We investigate how memory effects influence, and specifically suppress, the ability to perform work on the driven qubit. We show that the average work performed on the qubit can be used as a diagnostic tool to detect the presence or absence of memory effects.
Quantum trajectories: Memory and continuous observation
Barchielli, Alberto; Pellegrini, Clément; Petruccione, Francesco
2012-12-01
Starting from a generalization of the quantum trajectory theory [based on the stochastic Schrödinger equation (SSE)], non-Markovian models of quantum dynamics are derived. In order to describe non-Markovian effects, the approach used in this article is based on the introduction of random coefficients in the usual linear SSE. A major interest is that this allows a consistent theory of quantum measurement in continuous time to be developed for these non-Markovian quantum trajectory models. In this context, the notions of “instrument,” “a priori,” and “a posteriori” states can be introduced. The key point is that by starting from a stochastic equation on the Hilbert space of the system, we are able to respect the complete positivity of the mean dynamics for the statistical operator and the requirements of the axioms of quantum measurement theory. The flexibility of the theory is next illustrated by a concrete physical model of a noisy oscillator where non-Markovian effects come from the random environment, colored noises, randomness in the stimulating light, and delay effects. The statistics of the emitted photons and the heterodyne and homodyne spectra are studied, and we show how these quantities are sensitive to the non-Markovian features of the system dynamics, so that, in principle, the observation and analysis of the fluorescent light could reveal the presence of non-Markovian effects and allow for a measure of the spectra of the noises affecting the system dynamics.
General principles of quantum mechanics
Pauli, W.
1980-01-01
This book is a textbook for a course in quantum mechanics. Starting from the complementarity and the uncertainty principle Schroedingers equation is introduced together with the operator calculus. Then stationary states are treated as eigenvalue problems. Furthermore matrix mechanics are briefly discussed. Thereafter the theory of measurements is considered. Then as approximation methods perturbation theory and the WKB approximation are introduced. Then identical particles, spin, and the exclusion principle are discussed. There after the semiclassical theory of radiation and the relativistic one-particle problem are discussed. Finally an introduction is given into quantum electrodynamics. (HSI)
The entropic cost of quantum generalized measurements
Mancino, Luca; Sbroscia, Marco; Roccia, Emanuele; Gianani, Ilaria; Somma, Fabrizia; Mataloni, Paolo; Paternostro, Mauro; Barbieri, Marco
2018-03-01
Landauer's principle introduces a symmetry between computational and physical processes: erasure of information, a logically irreversible operation, must be underlain by an irreversible transformation dissipating energy. Monitoring micro- and nano-systems needs to enter into the energetic balance of their control; hence, finding the ultimate limits is instrumental to the development of future thermal machines operating at the quantum level. We report on the experimental investigation of a lower bound to the irreversible entropy associated to generalized quantum measurements on a quantum bit. We adopted a quantum photonics gate to implement a device interpolating from the weakly disturbing to the fully invasive and maximally informative regime. Our experiment prompted us to introduce a bound taking into account both the classical result of the measurement and the outcoming quantum state; unlike previous investigation, our entropic bound is based uniquely on measurable quantities. Our results highlight what insights the information-theoretic approach provides on building blocks of quantum information processors.
A general theory of quantum relativity
Minic, Djordje; Tze, C.-H.
2004-01-01
The geometric form of standard quantum mechanics is compatible with the two postulates: (1) the laws of physics are invariant under the choice of experimental setup and (2) every quantum observation or event is intrinsically statistical. These postulates remain compatible within a background independent extension of quantum theory with a local intrinsic time implying the relativity of the concept of a quantum event. In this extension the space of quantum events becomes dynamical and only individual quantum events make sense observationally. At the core of such a general theory of quantum relativity is the three-way interplay between the symplectic form, the dynamical metric and non-integrable almost complex structure of the space of quantum events. Such a formulation provides a missing conceptual ingredient in the search for a background independent quantum theory of gravity and matter. The crucial new technical element in our scheme derives from a set of recent mathematical results on certain infinite-dimensional almost Kahler manifolds which replace the complex projective spaces of standard quantum mechanics
Quantum theory and Einstein's general relativity
Borzeszkowski, H.H.v.; Treder, H.J.
1984-01-01
The paper concerns Einstein's general relativity, wave mechanics and the quantization of Einstein's gravitation equations. The principle of equivalence and its association with both wave mechanics and quantum gravity, is discussed. (U.K.)
Exponential complexity and ontological theories of quantum mechanics
Montina, A.
2008-01-01
Ontological theories of quantum mechanics describe a single system by means of well-defined classical variables and attribute the quantum uncertainties to our ignorance about the underlying reality represented by these variables. We consider the general class of ontological theories describing a quantum system by a set of variables with Markovian (either deterministic or stochastic) evolution. We provide proof that the number of continuous variables cannot be smaller than 2N-2, N being the Hilbert-space dimension. Thus, any ontological Markovian theory of quantum mechanics requires a number of variables which grows exponentially with the physical size. This result is relevant also in the framework of quantum Monte Carlo methods
Dynamics of Quantum Entanglement in Reservoir with Memory Effects
Hao Xiang; Sha Jinqiao; Sun Jian; Zhu Shiqun
2012-01-01
The non-Markovian dynamics of quantum entanglement is studied by the Shabani-Lidar master equation when one of entangled quantum systems is coupled to a local reservoir with memory effects. The completely positive reduced dynamical map can be constructed in the Kraus representation. Quantum entanglement decays more slowly in the non-Markovian environment. The decoherence time for quantum entanglement can be markedly increased with the change of the memory kernel. It is found out that the entanglement sudden death between quantum systems and entanglement sudden birth between the system and reservoir occur at different instants. (general)
Generalized Hofmann quantum process fidelity bounds for quantum filters
Sedlák, Michal; Fiurášek, Jaromír
2016-04-01
We propose and investigate bounds on the quantum process fidelity of quantum filters, i.e., probabilistic quantum operations represented by a single Kraus operator K . These bounds generalize the Hofmann bounds on the quantum process fidelity of unitary operations [H. F. Hofmann, Phys. Rev. Lett. 94, 160504 (2005), 10.1103/PhysRevLett.94.160504] and are based on probing the quantum filter with pure states forming two mutually unbiased bases. Determination of these bounds therefore requires far fewer measurements than full quantum process tomography. We find that it is particularly suitable to construct one of the probe bases from the right eigenstates of K , because in this case the bounds are tight in the sense that if the actual filter coincides with the ideal one, then both the lower and the upper bounds are equal to 1. We theoretically investigate the application of these bounds to a two-qubit optical quantum filter formed by the interference of two photons on a partially polarizing beam splitter. For an experimentally convenient choice of factorized input states and measurements we study the tightness of the bounds. We show that more stringent bounds can be obtained by more sophisticated processing of the data using convex optimization and we compare our methods for different choices of the input probe states.
Quantum Action Principle with Generalized Uncertainty Principle
Gu, Jie
2013-01-01
One of the common features in all promising candidates of quantum gravity is the existence of a minimal length scale, which naturally emerges with a generalized uncertainty principle, or equivalently a modified commutation relation. Schwinger's quantum action principle was modified to incorporate this modification, and was applied to the calculation of the kernel of a free particle, partly recovering the result previously studied using path integral.
Quantum wells and the generalized uncertainty principle
Blado, Gardo; Owens, Constance; Meyers, Vincent
2014-01-01
The finite and infinite square wells are potentials typically discussed in undergraduate quantum mechanics courses. In this paper, we discuss these potentials in the light of the recent studies of the modification of the Heisenberg uncertainty principle into a generalized uncertainty principle (GUP) as a consequence of attempts to formulate a quantum theory of gravity. The fundamental concepts of the minimal length scale and the GUP are discussed and the modified energy eigenvalues and transmission coefficient are derived. (paper)
Between general relativity and quantum theory
Rayski, J.
1982-01-01
Some possibilities of reconciling general relativity with quantum theory are discussed. The procedure of quantization is certainly not unique, but depends upon the choice of the coordinate conditions. Most versions of quantization predict the existence of gravitons, but it is also possible to formulate a quantum theory with a classical gravity whereby the expectation values of Tsub(μν) constitute the sources of the classical metric field. (author)
Time-dependent current-density functional theory for generalized open quantum systems.
Yuen-Zhou, Joel; Rodríguez-Rosario, César; Aspuru-Guzik, Alán
2009-06-14
In this article, we prove the one-to-one correspondence between vector potentials and particle and current densities in the context of master equations with arbitrary memory kernels, therefore extending time-dependent current-density functional theory (TD-CDFT) to the domain of generalized many-body open quantum systems (OQS). We also analyse the issue of A-representability for the Kohn-Sham (KS) scheme proposed by D'Agosta and Di Ventra for Markovian OQS [Phys. Rev. Lett. 2007, 98, 226403] and discuss its domain of validity. We suggest ways to expand their scheme, but also propose a novel KS scheme where the auxiliary system is both closed and non-interacting. This scheme is tested numerically with a model system, and several considerations for the future development of functionals are indicated. Our results formalize the possibility of practising TD-CDFT in OQS, hence expanding the applicability of the theory to non-Hamiltonian evolutions.
A Perron-Frobenius Type of Theorem for Quantum Operations
Lagro, Matthew; Yang, Wei-Shih; Xiong, Sheng
2017-10-01
We define a special class of quantum operations we call Markovian and show that it has the same spectral properties as a corresponding Markov chain. We then consider a convex combination of a quantum operation and a Markovian quantum operation and show that under a norm condition its spectrum has the same properties as in the conclusion of the Perron-Frobenius theorem if its Markovian part does. Moreover, under a compatibility condition of the two operations, we show that its limiting distribution is the same as the corresponding Markov chain. We apply our general results to partially decoherent quantum random walks with decoherence strength 0 ≤ p ≤ 1. We obtain a quantum ergodic theorem for partially decoherent processes. We show that for 0 < p ≤ 1, the limiting distribution of a partially decoherent quantum random walk is the same as the limiting distribution for the classical random walk.
Generalized uncertainty principle and quantum gravity phenomenology
Bosso, Pasquale
The fundamental physical description of Nature is based on two mutually incompatible theories: Quantum Mechanics and General Relativity. Their unification in a theory of Quantum Gravity (QG) remains one of the main challenges of theoretical physics. Quantum Gravity Phenomenology (QGP) studies QG effects in low-energy systems. The basis of one such phenomenological model is the Generalized Uncertainty Principle (GUP), which is a modified Heisenberg uncertainty relation and predicts a deformed canonical commutator. In this thesis, we compute Planck-scale corrections to angular momentum eigenvalues, the hydrogen atom spectrum, the Stern-Gerlach experiment, and the Clebsch-Gordan coefficients. We then rigorously analyze the GUP-perturbed harmonic oscillator and study new coherent and squeezed states. Furthermore, we introduce a scheme for increasing the sensitivity of optomechanical experiments for testing QG effects. Finally, we suggest future projects that may potentially test QG effects in the laboratory.
Non-Markovian dynamics of a qubit due to single-photon scattering in a waveguide
Fang, Yao-Lung L.; Ciccarello, Francesco; Baranger, Harold U.
2018-04-01
We investigate the open dynamics of a qubit due to scattering of a single photon in an infinite or semi-infinite waveguide. Through an exact solution of the time-dependent multi-photon scattering problem, we find the qubit's dynamical map. Tools of open quantum systems theory allow us then to show the general features of this map, find the corresponding non-Linbladian master equation, and assess in a rigorous way its non-Markovian nature. The qubit dynamics has distinctive features that, in particular, do not occur in emission processes. Two fundamental sources of non-Markovianity are present: the finite width of the photon wavepacket and the time delay for propagation between the qubit and the end of the semi-infinite waveguide.
Non-Markovian effect on the geometric phase of a dissipative qubit
Chen Juanjuan; Tong Qingjun; An Junhong; Luo Honggang; Oh, C. H.
2010-01-01
We studied the geometric phase of a two-level atom coupled to an environment with Lorentzian spectral density. The non-Markovian effect on the geometric phase is explored analytically and numerically. In the weak coupling limit, the lowest order correction to the geometric phase is derived analytically and the general case is calculated numerically. It was found that the correction to the geometric phase is significantly large if the spectral width is small, and in this case the non-Markovian dynamics has a significant impact on the geometric phase. When the spectral width increases, the correction to the geometric phase becomes negligible, which shows the robustness of the geometric phase to the environmental white noises. The result is significant to the quantum information processing based on the geometric phase.
Two point function for a simple general relativistic quantum model
Colosi, Daniele
2007-01-01
We study the quantum theory of a simple general relativistic quantum model of two coupled harmonic oscillators and compute the two-point function following a proposal first introduced in the context of loop quantum gravity.
Simple non-Markovian microscopic models for the depolarizing channel of a single qubit
Fonseca Romero, K M; Lo Franco, R
2012-01-01
The archetypal one-qubit noisy channels - depolarizing, phase-damping and amplitude-damping channels - describe both Markovian and non-Markovian evolution. Simple microscopic models for the depolarizing channel, both classical and quantum, are considered. Microscopic models that describe phase-damping and amplitude-damping channels are briefly reviewed.
A quantum causal discovery algorithm
Giarmatzi, Christina; Costa, Fabio
2018-03-01
Finding a causal model for a set of classical variables is now a well-established task—but what about the quantum equivalent? Even the notion of a quantum causal model is controversial. Here, we present a causal discovery algorithm for quantum systems. The input to the algorithm is a process matrix describing correlations between quantum events. Its output consists of different levels of information about the underlying causal model. Our algorithm determines whether the process is causally ordered by grouping the events into causally ordered non-signaling sets. It detects if all relevant common causes are included in the process, which we label Markovian, or alternatively if some causal relations are mediated through some external memory. For a Markovian process, it outputs a causal model, namely the causal relations and the corresponding mechanisms, represented as quantum states and channels. Our algorithm opens the route to more general quantum causal discovery methods.
Non-Markovian nuclear dynamics
Kolomietz, V.M.
2011-01-01
A prove of equations of motion for the nuclear shape variables which establish a direct connection of the memory effects with the dynamic distortion of the Fermi surface is suggested. The equations of motion for the nuclear Fermi liquid drop are derived from the collisional kinetic equation. In general, the corresponding equations are non-Markovian. The memory effects appear due to the Fermi surface distortions and depend on the relaxation time. The main purpose of the present work is to apply the non-Markovian dynamics to the description of the nuclear giant multipole resonances (GMR) and the large amplitude motion. We take also into consideration the random forces and concentrate on the formation of both the conservative and the friction forces to make more clear the memory effect on the nuclear dynamics. In this respect, the given approach represents an extension of the traditional liquid drop model (LDM) to the case of the nuclear Fermi liquid drop. In practical application, we pay close attention to the description of the descent of the nucleus from the fission barrier to the scission point.
Optimal management of non-Markovian biological populations
Williams, B.K.
2007-01-01
Wildlife populations typically are described by Markovian models, with population dynamics influenced at each point in time by current but not previous population levels. Considerable work has been done on identifying optimal management strategies under the Markovian assumption. In this paper we generalize this work to non-Markovian systems, for which population responses to management are influenced by lagged as well as current status and/or controls. We use the maximum principle of optimal control theory to derive conditions for the optimal management such a system, and illustrate the effects of lags on the structure of optimal habitat strategies for a predator-prey system.
Mean first-passage times in confined media: from Markovian to non-Markovian processes
Bénichou, O; Voituriez, R; Guérin, T
2015-01-01
We review recent theoretical works that enable the accurate evaluation of the mean first passage time (MFPT) of a random walker to a target in confinement for Markovian (memory-less) and non-Markovian walkers. For the Markovian problem, we present a general theory which allows one to accurately evaluate the MFPT and its extensions to related first-passage observables such as splitting probabilities and occupation times. We show that this analytical approach provides a universal scaling dependence of the MFPT on both the volume of the confining domain and the source–target distance in the case of general scale-invariant processes. This analysis is applicable to a broad range of stochastic processes characterized by length scale-invariant properties, and reveals the key role that can be played by the starting position of the random walker. We then present an extension to non-Markovian walks by taking the specific example of a tagged monomer of a polymer chain looking for a target in confinement. We show that the MFPT can be calculated accurately by computing the distribution of the positions of all the monomers in the chain at the instant of reaction. Such a theory can be used to derive asymptotic relations that generalize the scaling dependence with the volume and the initial distance to the target derived for Markovian walks. Finally, we present an application of this theory to the problem of the first contact time between the two ends of a polymer chain, and review the various theoretical approaches of this non- Markovian problem. (topical review)
Quantum physics reimagined for the general public
Bobroff, Julien
2015-03-01
Quantum Physics has always been a challenging issue for outreach. It is invisible, non-intuitive and written in sophisticated mathematics. In our ``Physics Reimagined'' research group, we explore new ways to present that field to the general public. Our approach is to develop close collaborations between physicists and designers or graphic artists. By developing this new kind of dialogue, we seek to find new ways to present complex phenomena and recent research topics to the public at large. For example, we created with web-illustrators a series of 3D animations about basic quantum laws and research topics (graphene, Bose-Einstein condensation, decoherence, pump-probe techniques, ARPES...). We collaborated with designers to develop original setups, from quantum wave animated models or foldings to a superconducting circus with levitating animals. With illustrators, we produced exhibits, comic strips or postcards displaying the physicists in their labs, either famous ones or even our own colleagues in their daily life as researchers. With artists, we recently made a stop-motion picture to explain in an esthetic way the process of discovery and scientific publication. We will discuss how these new types of outreach projects allowed us to engage the public with modern physics both on a scientific and cultural level and how the concepts and process can easily be replicated and expanded by other physicists. We are at the precise time when creative tools, interfaces, and ways of sharing and learning are rapidly evolving (wikipedia, MOOCs, smartphones...). If scientists don't step forward to employ these tools and develop new resources, other people will, and the integrity of the science and underlying character of research risks being compromised. All our productions are free to use and can be downloaded at www.PhysicsReimagined.com (for 3D quantum videos, specific link: www.QuantumMadeSimple.com) This work benefited from the support of the Chair ``Physics Reimagined
Generalized quantum interference of correlated photon pairs
Kim, Heonoh; Lee, Sang Min; Moon, Han Seb
2015-01-01
Superposition and indistinguishablility between probability amplitudes have played an essential role in observing quantum interference effects of correlated photons. The Hong-Ou-Mandel interference and interferences of the path-entangled photon number state are of special interest in the field of quantum information technologies. However, a fully generalized two-photon quantum interferometric scheme accounting for the Hong-Ou-Mandel scheme and path-entangled photon number states has not yet been proposed. Here we report the experimental demonstrations of the generalized two-photon interferometry with both the interferometric properties of the Hong-Ou-Mandel effect and the fully unfolded version of the path-entangled photon number state using photon-pair sources, which are independently generated by spontaneous parametric down-conversion. Our experimental scheme explains two-photon interference fringes revealing single- and two-photon coherence properties in a single interferometer setup. Using the proposed interferometric measurement, it is possible to directly estimate the joint spectral intensity of a photon pair source. PMID:25951143
Generalized Entanglement Entropies of Quantum Designs
Liu, Zi-Wen; Lloyd, Seth; Zhu, Elton Yechao; Zhu, Huangjun
2018-03-01
The entanglement properties of random quantum states or dynamics are important to the study of a broad spectrum of disciplines of physics, ranging from quantum information to high energy and many-body physics. This Letter investigates the interplay between the degrees of entanglement and randomness in pure states and unitary channels. We reveal strong connections between designs (distributions of states or unitaries that match certain moments of the uniform Haar measure) and generalized entropies (entropic functions that depend on certain powers of the density operator), by showing that Rényi entanglement entropies averaged over designs of the same order are almost maximal. This strengthens the celebrated Page's theorem. Moreover, we find that designs of an order that is logarithmic in the dimension maximize all Rényi entanglement entropies and so are completely random in terms of the entanglement spectrum. Our results relate the behaviors of Rényi entanglement entropies to the complexity of scrambling and quantum chaos in terms of the degree of randomness, and suggest a generalization of the fast scrambling conjecture.
Non-Markovianity in the collision model with environmental block
Jin, Jiasen; Yu, Chang-shui
2018-05-01
We present an extended collision model to simulate the dynamics of an open quantum system. In our model, the unit to represent the environment is, instead of a single particle, a block which consists of a number of environment particles. The introduced blocks enable us to study the effects of different strategies of system–environment interactions and states of the blocks on the non-Markovianities. We demonstrate our idea in the Gaussian channels of an all-optical system and derive a necessary and sufficient condition of non-Markovianity for such channels. Moreover, we show the equivalence of our criterion to the non-Markovian quantum jump in the simulation of the pure damping process of a single-mode field. We also show that the non-Markovianity of the channel working in the strategy that the system collides with environmental particles in each block in a certain order will be affected by the size of the block and the embedded entanglement and the effects of heating and squeezing the vacuum environmental state will quantitatively enhance the non-Markovianity.
Non-Markovianity-assisted high-fidelity Deutsch-Jozsa algorithm in diamond
Dong, Yang; Zheng, Yu; Li, Shen; Li, Cong-Cong; Chen, Xiang-Dong; Guo, Guang-Can; Sun, Fang-Wen
2018-01-01
The memory effects in non-Markovian quantum dynamics can induce the revival of quantum coherence, which is believed to provide important physical resources for quantum information processing (QIP). However, no real quantum algorithms have been demonstrated with the help of such memory effects. Here, we experimentally implemented a non-Markovianity-assisted high-fidelity refined Deutsch-Jozsa algorithm (RDJA) with a solid spin in diamond. The memory effects can induce pronounced non-monotonic variations in the RDJA results, which were confirmed to follow a non-Markovian quantum process by measuring the non-Markovianity of the spin system. By applying the memory effects as physical resources with the assistance of dynamical decoupling, the probability of success of RDJA was elevated above 97% in the open quantum system. This study not only demonstrates that the non-Markovianity is an important physical resource but also presents a feasible way to employ this physical resource. It will stimulate the application of the memory effects in non-Markovian quantum dynamics to improve the performance of practical QIP.
The Dynamical Invariant of Open Quantum System
Wu, S. L.; Zhang, X. Y.; Yi, X. X.
2015-01-01
The dynamical invariant, whose expectation value is constant, is generalized to open quantum system. The evolution equation of dynamical invariant (the dynamical invariant condition) is presented for Markovian dynamics. Different with the dynamical invariant for the closed quantum system, the evolution of the dynamical invariant for the open quantum system is no longer unitary, and the eigenvalues of it are time-dependent. Since any hermitian operator fulfilling dynamical invariant condition ...
Understanding quantum interference in general nonlocality
Wang Haijun
2011-01-01
In this paper we attempt to give a new understanding of quantum double-slit interference of fermions in the framework of general nonlocality (GN) [J. Math. Phys. 49, 033513 (2008)] by studying the self-(inter)action of matter wave. From the metric of the GN, we derive a special formalism to interpret the interference contrast when the self-action is perturbative. According to the formalism, the characteristic of interference pattern is in agreement with experiment qualitatively. As examples, we apply the formalism to the cases governed by Schroedinger current and Dirac current, respectively, both of which are relevant to topology. The gap between these two cases corresponds to the fermion magnetic moment, which is possible to test in the near future. In addition, a general interference formalism for both perturbative and nonperturbative self-actions is presented. By analyzing the general formalism we predict that in the nonperturbative limit there is no interference at all. And by comparison with the special formalism of Schroedinger current, the coupling strength of self-action in the limit is found to be ∞. In the perturbative case, the interference from self-action turns out to be the same as that from the standard approach of quantum theory. Then comparing the corresponding coefficients quantitatively we conclude that the coupling strength of self-action in this case falls in the interval [0, 1].
Markovian approach: From Ising model to stochastic radiative transfer
Kassianov, E.; Veron, D.
2009-01-01
The origin of the Markovian approach can be traced back to 1906; however, it gained explicit recognition in the last few decades. This overview outlines some important applications of the Markovian approach, which illustrate its immense prestige, respect, and success. These applications include examples in the statistical physics, astronomy, mathematics, computational science and the stochastic transport problem. In particular, the overview highlights important contributions made by Pomraning and Titov to the neutron and radiation transport theory in a stochastic medium with homogeneous statistics. Using simple probabilistic assumptions (Markovian approximation), they have introduced a simplified, but quite realistic, representation of the neutron/radiation transfer through a two-component discrete stochastic mixture. New concepts and methodologies introduced by these two distinguished scientists allow us to generalize the Markovian treatment to the stochastic medium with inhomogeneous statistics and demonstrate its improved predictive performance for the down-welling shortwave fluxes. (authors)
Quantum theory and Einstein's general relativity
Borzeszkowski, H. von; Treder, H.
1982-01-01
We dicusss the meaning and prove the accordance of general relativity, wave mechanics, and the quantization of Einstein's gravitation equations themselves. Firstly, we have the problem of the influence of gravitational fields on the de Broglie waves, which influence is in accordance with Einstein's weak principle of equivalence and the limitation of measurements given by Heisenberg's uncertainty relations. Secondly, the quantization of the gravitational fields is a ''quantization of geometry.'' However, classical and quantum gravitation have the same physical meaning according to limitations of measurements given by Einstein's strong principle of equivalence and the Heisenberg uncertainties for the mechanics of test bodies
Collision models in quantum optics
Ciccarello, Francesco
2017-12-01
Quantum collision models (CMs) provide advantageous case studies for investigating major issues in open quantum systems theory, and especially quantum non-Markovianity. After reviewing their general definition and distinctive features, we illustrate the emergence of a CM in a familiar quantum optics scenario. This task is carried out by highlighting the close connection between the well-known input-output formalism and CMs. Within this quantum optics framework, usual assumptions in the CMs' literature - such as considering a bath of noninteracting yet initially correlated ancillas - have a clear physical origin.
Non-Markovian reservoir-dependent squeezing
Paavola, J
2010-01-01
The squeezing dynamics of a damped harmonic oscillator are studied for different types of environment without making the Markovian approximation. The squeezing dynamics of a coherent state depend on the reservoir spectrum in a unique way that can, in the weak coupling approximation, be analysed analytically. Comparison of squeezing dynamics for ohmic, sub-ohmic and super-ohmic environments is done, showing a clear connection between the squeezing-non-squeezing oscillations and reservoir structure. Understanding the effects occurring due to structured reservoirs is important both from a purely theoretical point of view and in connection with evolving experimental techniques and future quantum computing applications.
Generalized quantum theory of recollapsing homogeneous cosmologies
Craig, David; Hartle, James B.
2004-01-01
A sum-over-histories generalized quantum theory is developed for homogeneous minisuperspace type A Bianchi cosmological models, focusing on the particular example of the classically recollapsing Bianchi type-IX universe. The decoherence functional for such universes is exhibited. We show how the probabilities of decoherent sets of alternative, coarse-grained histories of these model universes can be calculated. We consider in particular the probabilities for classical evolution defined by a suitable coarse graining. For a restricted class of initial conditions and coarse grainings we exhibit the approximate decoherence of alternative histories in which the universe behaves classically and those in which it does not. For these situations we show that the probability is near unity for the universe to recontract classically if it expands classically. We also determine the relative probabilities of quasiclassical trajectories for initial states of WKB form, recovering for such states a precise form of the familiar heuristic 'J·dΣ' rule of quantum cosmology, as well as a generalization of this rule to generic initial states
Mortezapour, Ali; Ahmadi Borji, Mahdi; Lo Franco, Rosario
2017-05-01
Efficient entanglement preservation in open quantum systems is a crucial scope towards a reliable exploitation of quantum resources. We address this issue by studying how two-qubit entanglement dynamically behaves when two atom qubits move inside two separated identical cavities. The moving qubits independently interact with their respective cavity. As a main general result, we find that under resonant qubit-cavity interaction the initial entanglement between two moving qubits remains closer to its initial value as time passes compared to the case of stationary qubits. In particular, we show that the initial entanglement can be strongly protected from decay by suitably adjusting the velocities of the qubits according to the non-Markovian features of the cavities. Our results supply a further way of preserving quantum correlations against noise with a natural implementation in cavity-QED scenarios and are straightforwardly extendable to many qubits for scalability.
Interpretation of non-Markovian stochastic Schroedinger equations as a hidden-variable theory
Gambetta, Jay; Wiseman, H.M.
2003-01-01
Do diffusive non-Markovian stochastic Schroedinger equations (SSEs) for open quantum systems have a physical interpretation? In a recent paper [Phys. Rev. A 66, 012108 (2002)] we investigated this question using the orthodox interpretation of quantum mechanics. We found that the solution of a non-Markovian SSE represents the state the system would be in at that time if a measurement was performed on the environment at that time, and yielded a particular result. However, the linking of solutions at different times to make a trajectory is, we concluded, a fiction. In this paper we investigate this question using the modal (hidden variable) interpretation of quantum mechanics. We find that the noise function z(t) appearing in the non-Markovian SSE can be interpreted as a hidden variable for the environment. That is, some chosen property (beable) of the environment has a definite value z(t) even in the absence of measurement on the environment. The non-Markovian SSE gives the evolution of the state of the system 'conditioned' on this environment hidden variable. We present the theory for diffusive non-Markovian SSEs that have as their Markovian limit SSEs corresponding to homodyne and heterodyne detection, as well as one which has no Markovian limit
The Generalized Quantum Episodic Memory Model.
Trueblood, Jennifer S; Hemmer, Pernille
2017-11-01
Recent evidence suggests that experienced events are often mapped to too many episodic states, including those that are logically or experimentally incompatible with one another. For example, episodic over-distribution patterns show that the probability of accepting an item under different mutually exclusive conditions violates the disjunction rule. A related example, called subadditivity, occurs when the probability of accepting an item under mutually exclusive and exhaustive instruction conditions sums to a number >1. Both the over-distribution effect and subadditivity have been widely observed in item and source-memory paradigms. These phenomena are difficult to explain using standard memory frameworks, such as signal-detection theory. A dual-trace model called the over-distribution (OD) model (Brainerd & Reyna, 2008) can explain the episodic over-distribution effect, but not subadditivity. Our goal is to develop a model that can explain both effects. In this paper, we propose the Generalized Quantum Episodic Memory (GQEM) model, which extends the Quantum Episodic Memory (QEM) model developed by Brainerd, Wang, and Reyna (2013). We test GQEM by comparing it to the OD model using data from a novel item-memory experiment and a previously published source-memory experiment (Kellen, Singmann, & Klauer, 2014) examining the over-distribution effect. Using the best-fit parameters from the over-distribution experiments, we conclude by showing that the GQEM model can also account for subadditivity. Overall these results add to a growing body of evidence suggesting that quantum probability theory is a valuable tool in modeling recognition memory. Copyright © 2016 Cognitive Science Society, Inc.
Nielsen, Per Kær; Lodahl, Peter; Jauho, Antti-Pekka
2013-01-01
We study the fundamental limit on single-photon indistinguishability imposed by decoherence due to phonon interactions in semiconductor quantum dot-cavity quantum electrodynamics systems. Employing an exact diagonalization approach we find large differences compared to standard methods...
Some remarks on general covariance of quantum theory
Schmutzer, E.
1977-01-01
If one accepts Einstein's general principle of relativity (covariance principle) also for the sphere of microphysics (quantum, mechanics, quantum field theory, theory of elemtary particles), one has to ask how far the fundamental laws of traditional quantum physics fulfil this principle. Attention is here drawn to a series of papers that have appeared during the last years, in which the author criticized the usual scheme of quantum theory (Heisenberg picture, Schroedinger picture etc.) and presented a new foundation of the basic laws of quantum physics, obeying the 'principle of fundamental covariance' (Einstein's covariance principle in space-time and covariance principle in Hilbert space of quantum operators and states). (author)
Mardare, Radu Iulian; Cardelli, Luca; Larsen, Kim Guldstrand
2012-01-01
Continuous Markovian Logic (CML) is a multimodal logic that expresses quantitative and qualitative properties of continuous-time labelled Markov processes with arbitrary (analytic) state-spaces, henceforth called continuous Markov processes (CMPs). The modalities of CML evaluate the rates...... of the exponentially distributed random variables that characterize the duration of the labeled transitions of a CMP. In this paper we present weak and strong complete axiomatizations for CML and prove a series of metaproperties, including the finite model property and the construction of canonical models. CML...... characterizes stochastic bisimilarity and it supports the definition of a quantified extension of the satisfiability relation that measures the "compatibility" between a model and a property. In this context, the metaproperties allows us to prove two robustness theorems for the logic stating that one can...
Markovian dynamics on complex reaction networks
Goutsias, J., E-mail: goutsias@jhu.edu; Jenkinson, G., E-mail: jenkinson@jhu.edu
2013-08-10
Complex networks, comprised of individual elements that interact with each other through reaction channels, are ubiquitous across many scientific and engineering disciplines. Examples include biochemical, pharmacokinetic, epidemiological, ecological, social, neural, and multi-agent networks. A common approach to modeling such networks is by a master equation that governs the dynamic evolution of the joint probability mass function of the underlying population process and naturally leads to Markovian dynamics for such process. Due however to the nonlinear nature of most reactions and the large size of the underlying state-spaces, computation and analysis of the resulting stochastic population dynamics is a difficult task. This review article provides a coherent and comprehensive coverage of recently developed approaches and methods to tackle this problem. After reviewing a general framework for modeling Markovian reaction networks and giving specific examples, the authors present numerical and computational techniques capable of evaluating or approximating the solution of the master equation, discuss a recently developed approach for studying the stationary behavior of Markovian reaction networks using a potential energy landscape perspective, and provide an introduction to the emerging theory of thermodynamic analysis of such networks. Three representative problems of opinion formation, transcription regulation, and neural network dynamics are used as illustrative examples.
Markovian dynamics on complex reaction networks
Goutsias, J.; Jenkinson, G.
2013-01-01
Complex networks, comprised of individual elements that interact with each other through reaction channels, are ubiquitous across many scientific and engineering disciplines. Examples include biochemical, pharmacokinetic, epidemiological, ecological, social, neural, and multi-agent networks. A common approach to modeling such networks is by a master equation that governs the dynamic evolution of the joint probability mass function of the underlying population process and naturally leads to Markovian dynamics for such process. Due however to the nonlinear nature of most reactions and the large size of the underlying state-spaces, computation and analysis of the resulting stochastic population dynamics is a difficult task. This review article provides a coherent and comprehensive coverage of recently developed approaches and methods to tackle this problem. After reviewing a general framework for modeling Markovian reaction networks and giving specific examples, the authors present numerical and computational techniques capable of evaluating or approximating the solution of the master equation, discuss a recently developed approach for studying the stationary behavior of Markovian reaction networks using a potential energy landscape perspective, and provide an introduction to the emerging theory of thermodynamic analysis of such networks. Three representative problems of opinion formation, transcription regulation, and neural network dynamics are used as illustrative examples
Non-Markovianity and memory of the initial state
Hinarejos, Margarida; Bañuls, Mari-Carmen; Pérez, Armando; de Vega, Inés
2017-08-01
We explore in a rigorous manner the intuitive connection between the non-Markovianity of the evolution of an open quantum system and the performance of the system as a quantum memory. Using the paradigmatic case of a two-level open quantum system coupled to a bosonic bath, we compute the recovery fidelity, which measures the best possible performance of the system to store a qubit of information. We deduce that this quantity is connected, but not uniquely determined, by the non-Markovianity, for which we adopt the Breuer-Laine-Piilo measure proposed in Breuer et al (2009 Phys. Rev. Lett. 103 210401). We illustrate our findings with explicit calculations for the case of a structured environment.
Stochastic quantization of a topological quantum mechanical model
Antunes, Sergio; Krein, Gastao; Menezes, Gabriel; Svaiter, Nami Fux
2011-01-01
Full text: Stochastic quantization of complex actions has been extensively studied in the literature. In these models, a Markovian Langevin equation is used in order to study the quantization of such systems. In such papers, the advantages of the Markovian stochastic quantization method were explored and exposed. However, many drawbacks of the method were also pointed out, such as instability of the simulations with absence of convergence and sometimes convergence to the wrong limit. Indeed, although several alternative methods have been proposed to deal with interesting physical systems where the action is complex, these approaches do not suggest any general way of solving the particular difficulties that arise in each situation. Here, we wish to make contributions to the program of stochastic quantization of theories with imaginary action by investigating the consequences of a non-Markovian stochastic quantization in a particular situation, namely a quantum mechanical topological action. We analyze the Markovian stochastic quantization for a topological quantum mechanical action which is analog to a Maxwell-Chern-Simons action in the Weyl gauge. Afterwards we consider a Langevin equation with memory kernel and Einstein's relations with colored noise. We show that convergence towards equilibrium is achieved in both regimes. We also sketch a simple numerical analysis to investigate the possible advantages of non-Markovian procedure over the usual Markovian quantization. Both retarded Green's function for the diffusion problem are considered in such analysis. We show that, although the results indicated that the effect of memory kernel, as usually expected, is to delay the convergence to equilibrium, non-Markovian systems imply a faster decay compared to Markovian ones as well as smoother convergence to equilibrium. (author)
General quantum polynomials: irreducible modules and Morita equivalence
Artamonov, V A
1999-01-01
In this paper we continue the investigation of the structure of finitely generated modules over rings of general quantum (Laurent) polynomials. We obtain a description of the lattice of submodules of periodic finitely generated modules and describe the irreducible modules. We investigate the problem of Morita equivalence of rings of general quantum polynomials, consider properties of division rings of fractions, and solve Zariski's problem for quantum polynomials
Nielsen, Per Kær; Nielsen, Torben Roland; Lodahl, Peter
2010-01-01
treatments. A pronounced consequence is the emergence of a phonon induced spectral asymmetry when detuning the cavity from the quantum-dot resonance. The asymmetry can only be explained when considering the polaritonic quasiparticle nature of the quantum-dot-cavity system. Furthermore, a temperature induced...
Quantum thetas on noncommutative Td with general embeddings
Chang-Young, Ee; Kim, Hoil
2008-01-01
In this paper, we construct quantum theta functions over noncommutative T d with general embeddings. Manin has constructed quantum theta functions from the lattice embedding into vector space x finite group. We extend Manin's construction of quantum thetas to the case of general embedding of vector space x lattice x torus. It turns out that only for the vector space part of the embedding there exists the holomorphic theta vector, while for the lattice part there does not. Furthermore, the so-called quantum translations from embedding into the lattice part become non-additive, while those from the vector space part are additive
Stochastic representation of a class of non-Markovian completely positive evolutions
Budini, Adrian A.
2004-01-01
By modeling the interaction of an open quantum system with its environment through a natural generalization of the classical concept of continuous time random walk, we derive and characterize a class of non-Markovian master equations whose solution is a completely positive map. The structure of these master equations is associated with a random renewal process where each event consist in the application of a superoperator over a density matrix. Strong nonexponential decay arise by choosing different statistics of the renewal process. As examples we analyze the stochastic and averaged dynamics of simple systems that admit an analytical solution. The problem of positivity in quantum master equations induced by memory effects [S. M. Barnett and S. Stenholm, Phys. Rev. A 64, 033808 (2001)] is clarified in this context
Quantum reading capacity: General definition and bounds
Das, Siddhartha; Wilde, Mark M.
2017-01-01
Quantum reading refers to the task of reading out classical information stored in a classical memory. In any such protocol, the transmitter and receiver are in the same physical location, and the goal of such a protocol is to use these devices, coupled with a quantum strategy, to read out as much information as possible from a classical memory, such as a CD or DVD. In this context, a memory cell is a collection of quantum channels that can be used to encode a classical message in a memory. Th...
The problem of time quantum mechanics versus general relativity
Anderson, Edward
2017-01-01
This book is a treatise on time and on background independence in physics. It first considers how time is conceived of in each accepted paradigm of physics: Newtonian, special relativity, quantum mechanics (QM) and general relativity (GR). Substantial differences are moreover uncovered between what is meant by time in QM and in GR. These differences jointly source the Problem of Time: Nine interlinked facets which arise upon attempting concurrent treatment of the QM and GR paradigms, as is required in particular for a background independent theory of quantum gravity. A sizeable proportion of current quantum gravity programs - e.g. geometrodynamical and loop quantum gravity approaches to quantum GR, quantum cosmology, supergravity and M-theory - are background independent in this sense. This book's foundational topic is thus furthermore of practical relevance in the ongoing development of quantum gravity programs. This book shows moreover that eight of the nine facets of the Problem of Time already occur upon ...
Fractional quantum integral operator with general kernels and applications
Babakhani, Azizollah; Neamaty, Abdolali; Yadollahzadeh, Milad; Agahi, Hamzeh
In this paper, we first introduce the concept of fractional quantum integral with general kernels, which generalizes several types of fractional integrals known from the literature. Then we give more general versions of some integral inequalities for this operator, thus generalizing some previous results obtained by many researchers.2,8,25,29,30,36
Generalized inequalities for quantum correlations with hidden variables
Vinduska, M.
1991-01-01
Renowned inequalities for quantum correlations are generalized for the case when quantum system cannot be described with an absolute independent measure of the probability. Such a formulation appears to be suitable for the formulation of the hidden variables theory in terms of non-Euclidean geometry. 10 refs
Generalizing Prototype Theory: A Formal Quantum Framework
Aerts, Diederik; Broekaert, Jan; Gabora, Liane; Sozzo, Sandro
2016-01-01
Theories of natural language and concepts have been unable to model the flexibility, creativity, context-dependence, and emergence, exhibited by words, concepts and their combinations. The mathematical formalism of quantum theory has instead been successful in capturing these phenomena such as graded membership, situational meaning, composition of categories, and also more complex decision making situations, which cannot be modeled in traditional probabilistic approaches. We show how a formal quantum approach to concepts and their combinations can provide a powerful extension of prototype theory. We explain how prototypes can interfere in conceptual combinations as a consequence of their contextual interactions, and provide an illustration of this using an intuitive wave-like diagram. This quantum-conceptual approach gives new life to original prototype theory, without however making it a privileged concept theory, as we explain at the end of our paper. PMID:27065436
Generalizing Prototype Theory: A Formal Quantum Framework
Diederik eAerts
2016-03-01
Full Text Available Theories of natural language and concepts have been unable to model the flexibility, creativity, context-dependence, and emergence, exhibited by words, concepts and their combinations. The mathematical formalism of quantum theory has instead been successful in capturing these phenomena such as graded membership, situational meaning, composition of categories, and also more complex decision making situations, which cannot be modeled in traditional probabilistic approaches. We show how a formal quantum approach to concepts and their combinations can provide a powerful extension of prototype theory. We explain how prototypes can interfere in conceptual combinations as a consequence of their contextual interactions, and provide an illustration of this using an intuitive wave-like diagram. This quantum-conceptual approach gives new life to original prototype theory, without however making it a privileged concept theory, as we explain at the end of our paper.
Markovian Building Blocks for Individual-Based Modelling
Nilsson, Lars Anders Fredrik
2007-01-01
previous exposure to Markov chains in continuous time (see e.g. Grimmett and Stirzaker, 2001)). Markovian arrival processes are very general point processes that are relatively easy to analyse. They have, so far, been largely unknown to the ecological modelling community. The article C deals...
Quantum solutions for Prisoner's Dilemma game with general parameters
Sun, Z.W.; Jin, H.; Zhao, H.
2008-01-01
The quantum game of the Prisoner's Dilemma with general payoff matrix was studied in L. Marinatto and T. Weber's scheme presented in [Phys. Lett. A 272 (2000) 291, so that the results of two schemes of the quantum game can be compared. The Nash equilibria and the solutions of the game are obtained. They are related to initial state, matrix parameters and the intervals among the parameters. It can be concluded from the results that the quantum PD game in Marinatto and Weber's scheme matches the one in Eisert et al.'s scheme, one with general unitary operations.
Quantum Thetas on Noncommutative T^d with General Embeddings
Chang-Young, Ee; Kim, Hoil
2007-01-01
In this paper we construct quantum theta functions over noncommutative T^d with general embeddings. Manin has constructed quantum theta functions from the lattice embedding into vector space x finite group. We extend Manin's construction of quantum thetas to the case of general embedding of vector space x lattice x torus. It turns out that only for the vector space part of the embedding there exists the holomorphic theta vector, while for the lattice part there does not. Furthermore, the so-c...
Semiclassical evolution of dissipative Markovian systems
Ozorio de Almeida, A M; Rios, P de M; Brodier, O
2009-01-01
A semiclassical approximation for an evolving density operator, driven by a 'closed' Hamiltonian operator and 'open' Markovian Lindblad operators, is obtained. The theory is based on the chord function, i.e. the Fourier transform of the Wigner function. It reduces to an exact solution of the Lindblad master equation if the Hamiltonian operator is a quadratic function and the Lindblad operators are linear functions of positions and momenta. Initially, the semiclassical formulae for the case of Hermitian Lindblad operators are reinterpreted in terms of a (real) double phase space, generated by an appropriate classical double Hamiltonian. An extra 'open' term is added to the double Hamiltonian by the non-Hermitian part of the Lindblad operators in the general case of dissipative Markovian evolution. The particular case of generic Hamiltonian operators, but linear dissipative Lindblad operators, is studied in more detail. A Liouville-type equivariance still holds for the corresponding classical evolution in double phase space, but the centre subspace, which supports the Wigner function, is compressed, along with expansion of its conjugate subspace, which supports the chord function. Decoherence narrows the relevant region of double phase space to the neighbourhood of a caustic for both the Wigner function and the chord function. This difficulty is avoided by a propagator in a mixed representation, so that a further 'small-chord' approximation leads to a simple generalization of the quadratic theory for evolving Wigner functions
On generally covariant quantum field theory and generalized causal and dynamical structures
Bannier, U.
1988-01-01
We give an example of a generally covariant quasilocal algebra associated with the massive free field. Maximal, two-sided ideals of this algebra are algebraic representatives of external metric fields. In some sense, this algebra may be regarded as a concrete realization of Ekstein's ideas of presymmetry in quantum field theory. Using ideas from our example and from usual algebraic quantum field theory, we discuss a generalized scheme, in which maximal ideals are viewed as algebraic representatives of dynamical equations or Lagrangians. The considered frame is no quantum gravity, but may lead to further insight into the relation between quantum theory and space-time geometry. (orig.)
Tanimura, Y; Steffen, T
2000-01-01
The relaxation processes in a quantum system nonlinearly coupled to a harmonic Gaussian-Markovian heat bath are investigated by the quantum Fokker-Planck equation in the hierarchy form. This model describes frequency fluctuations in the quantum system with an arbitrary correlation time and thus
General unifying features of controlled quantum phenomena
Pechen, Alexander; Brif, Constantin; Wu, Rebing; Chakrabarti, Raj; Rabitz, Herschel
2010-01-01
Many proposals have been put forth for controlling quantum phenomena, including open-loop, adaptive feedback, and real-time feedback control. Each of these approaches has been viewed as operationally, and even physically, distinct from the others. This work shows that all such scenarios inherently share the same fundamental control features residing in the topology of the landscape relating the target physical observable to the applied controls. This unified foundation may provide a basis for development of hybrid control schemes that would combine the advantages of the existing approaches to achieve the best overall performance.
Multiple-event probability in general-relativistic quantum mechanics
Hellmann, Frank; Mondragon, Mauricio; Perez, Alejandro; Rovelli, Carlo
2007-01-01
We discuss the definition of quantum probability in the context of 'timeless' general-relativistic quantum mechanics. In particular, we study the probability of sequences of events, or multievent probability. In conventional quantum mechanics this can be obtained by means of the 'wave function collapse' algorithm. We first point out certain difficulties of some natural definitions of multievent probability, including the conditional probability widely considered in the literature. We then observe that multievent probability can be reduced to single-event probability, by taking into account the quantum nature of the measuring apparatus. In fact, by exploiting the von-Neumann freedom of moving the quantum/classical boundary, one can always trade a sequence of noncommuting quantum measurements at different times, with an ensemble of simultaneous commuting measurements on the joint system+apparatus system. This observation permits a formulation of quantum theory based only on single-event probability, where the results of the wave function collapse algorithm can nevertheless be recovered. The discussion also bears on the nature of the quantum collapse
Entanglement, non-Markovianity, and causal non-separability
Milz, Simon; Pollock, Felix A.; Le, Thao P.; Chiribella, Giulio; Modi, Kavan
2018-03-01
Quantum mechanics, in principle, allows for processes with indefinite causal order. However, most of these causal anomalies have not yet been detected experimentally. We show that every such process can be simulated experimentally by means of non-Markovian dynamics with a measurement on additional degrees of freedom. In detail, we provide an explicit construction to implement arbitrary a causal processes. Furthermore, we give necessary and sufficient conditions for open system dynamics with measurement to yield processes that respect causality locally, and find that tripartite entanglement and nonlocal unitary transformations are crucial requirements for the simulation of causally indefinite processes. These results show a direct connection between three counter-intuitive concepts: entanglement, non-Markovianity, and causal non-separability.
Generalization of uncertainty relation for quantum and stochastic systems
Koide, T.; Kodama, T.
2018-06-01
The generalized uncertainty relation applicable to quantum and stochastic systems is derived within the stochastic variational method. This relation not only reproduces the well-known inequality in quantum mechanics but also is applicable to the Gross-Pitaevskii equation and the Navier-Stokes-Fourier equation, showing that the finite minimum uncertainty between the position and the momentum is not an inherent property of quantum mechanics but a common feature of stochastic systems. We further discuss the possible implication of the present study in discussing the application of the hydrodynamic picture to microscopic systems, like relativistic heavy-ion collisions.
Generalized uncertainty principle, quantum gravity and Horava-Lifshitz gravity
Myung, Yun Soo
2009-01-01
We investigate a close connection between generalized uncertainty principle (GUP) and deformed Horava-Lifshitz (HL) gravity. The GUP commutation relations correspond to the UV-quantum theory, while the canonical commutation relations represent the IR-quantum theory. Inspired by this UV/IR quantum mechanics, we obtain the GUP-corrected graviton propagator by introducing UV-momentum p i =p 0i (1+βp 0 2 ) and compare this with tensor propagators in the HL gravity. Two are the same up to p 0 4 -order.
Generalized Tavis-Cummings models and quantum networks
Gorokhov, A. V.
2018-04-01
The properties of quantum networks based on generalized Tavis-Cummings models are theoretically investigated. We have calculated the information transfer success rate from one node to another in a simple model of a quantum network realized with two-level atoms placed in the cavities and interacting with an external laser field and cavity photons. The method of dynamical group of the Hamiltonian and technique of corresponding coherent states were used for investigation of the temporal dynamics of the two nodes model.
From BBGKY hierarchy to non-Markovian evolution equations
Gerasimenko, V.I.; Shtyk, V.O.; Zagorodny, A.G.
2009-01-01
The problem of description of the evolution of the microscopic phase density and its generalizations is discussed. With this purpose, the sequence of marginal microscopic phase densities is introduced, and the appropriate BBGKY hierarchy for these microscopic distributions and their average values is formulated. The microscopic derivation of the generalized evolution equation for the average value of the microscopic phase density is given, and the non-Markovian generalization of the Fokker-Planck collision integral is proposed
Proof of Jacobi identity in generalized quantum dynamics
Adler, S.L.; Bhanot, G.V.; Weckel, J.D.
1994-01-01
It is proven that the Jacobi identity for the generalized Poisson bracket is satisfied in the generalization of Heisenberg picture quantum mechanics recently proposed by one of the authors. The identity holds for any combination of fermionic and bosonic fields, and requires no assumptions about their mutual commutativity
Quantum vacuum energy in general relativity
Henke, Christian [University of Technology at Clausthal, Department of Mathematics, Clausthal-Zellerfeld (Germany)
2018-02-15
The paper deals with the scale discrepancy between the observed vacuum energy in cosmology and the theoretical quantum vacuum energy (cosmological constant problem). Here, we demonstrate that Einstein's equation and an analogy to particle physics leads to the first physical justification of the so-called fine-tuning problem. This fine-tuning could be automatically satisfied with the variable cosmological term Λ(a) = Λ{sub 0} + Λ{sub 1}a{sup -(4-ε)}, 0 < ε << 1, where a is the scale factor. As a side effect of our solution of the cosmological constant problem, the dynamical part of the cosmological term generates an attractive force and solves the missing mass problem of dark matter. (orig.)
Achieving the Heisenberg limit in quantum metrology using quantum error correction.
Zhou, Sisi; Zhang, Mengzhen; Preskill, John; Jiang, Liang
2018-01-08
Quantum metrology has many important applications in science and technology, ranging from frequency spectroscopy to gravitational wave detection. Quantum mechanics imposes a fundamental limit on measurement precision, called the Heisenberg limit, which can be achieved for noiseless quantum systems, but is not achievable in general for systems subject to noise. Here we study how measurement precision can be enhanced through quantum error correction, a general method for protecting a quantum system from the damaging effects of noise. We find a necessary and sufficient condition for achieving the Heisenberg limit using quantum probes subject to Markovian noise, assuming that noiseless ancilla systems are available, and that fast, accurate quantum processing can be performed. When the sufficient condition is satisfied, a quantum error-correcting code can be constructed that suppresses the noise without obscuring the signal; the optimal code, achieving the best possible precision, can be found by solving a semidefinite program.
General-purpose parallel simulator for quantum computing
Niwa, Jumpei; Matsumoto, Keiji; Imai, Hiroshi
2002-01-01
With current technologies, it seems to be very difficult to implement quantum computers with many qubits. It is therefore of importance to simulate quantum algorithms and circuits on the existing computers. However, for a large-size problem, the simulation often requires more computational power than is available from sequential processing. Therefore, simulation methods for parallel processors are required. We have developed a general-purpose simulator for quantum algorithms/circuits on the parallel computer (Sun Enterprise4500). It can simulate algorithms/circuits with up to 30 qubits. In order to test efficiency of our proposed methods, we have simulated Shor's factorization algorithm and Grover's database search, and we have analyzed robustness of the corresponding quantum circuits in the presence of both decoherence and operational errors. The corresponding results, statistics, and analyses are presented in this paper
Unification of General Relativity with Quantum Field Theory
Ni Jun
2011-01-01
In the frame of quantum field theory, instead of using the action principle, we deduce the Einstein equation from purely the general covariant principle and the homogeneity of spacetime. The Einstein equation is shown to be the gauge equation to guarantee the local symmetry of spacetime translation. Gravity is an apparent force due to the curvature of spacetime resulted from the conservation of energy-momentum. In the action of quantum field theory, only electroweak-strong interactions should be considered with the curved spacetime metric determined by the Einstein equation. (general)
Sturmians and generalized sturmians in quantum theory
Avery, John Scales; Avery, James Emil
2012-01-01
The theory of Sturmians and generalized Sturmians is reviewed. It is shown that when generalized Sturmians are used as basis functions, calculations on the spectra and physical properties of few-electron atoms can be performed with great ease and good accuracy. The use of many-center Coulomb Stur...... Sturmians as basis functions in calculations on N-electron molecules is also discussed. Basis sets of this type are shown to have many advantages over other types of ETO’s, especially the property of automatic scaling....
Markovian Dynamics of Josephson Parametric Amplification
W. Kaiser
2017-09-01
Full Text Available In this work, we derive the dynamics of the lossy DC pumped non-degenerate Josephson parametric amplifier (DCPJPA. The main element in a DCPJPA is the superconducting Josephson junction. The DC bias generates the AC Josephson current varying the nonlinear inductance of the junction. By this way the Josephson junction acts as the pump oscillator as well as the time varying reactance of the parametric amplifier. In quantum-limited amplification, losses and noise have an increased impact on the characteristics of an amplifier. We outline the classical model of the lossy DCPJPA and derive the available noise power spectral densities. A classical treatment is not capable of including properties like spontaneous emission which is mandatory in case of amplification at the quantum limit. Thus, we derive a quantum mechanical model of the lossy DCPJPA. Thermal losses are modeled by the quantum Langevin approach, by coupling the quantized system to a photon heat bath in thermodynamic equilibrium. The mode occupation in the bath follows the Bose-Einstein statistics. Based on the second quantization formalism, we derive the Heisenberg equations of motion of both resonator modes. We assume the dynamics of the system to follow the Markovian approximation, i.e. the system only depends on its actual state and is memory-free. We explicitly compute the time evolution of the contributions to the signal mode energy and give numeric examples based on different damping and coupling constants. Our analytic results show, that this model is capable of including thermal noise into the description of the DC pumped non-degenerate Josephson parametric amplifier.
Markovian Dynamics of Josephson Parametric Amplification
Kaiser, Waldemar; Haider, Michael; Russer, Johannes A.; Russer, Peter; Jirauschek, Christian
2017-09-01
In this work, we derive the dynamics of the lossy DC pumped non-degenerate Josephson parametric amplifier (DCPJPA). The main element in a DCPJPA is the superconducting Josephson junction. The DC bias generates the AC Josephson current varying the nonlinear inductance of the junction. By this way the Josephson junction acts as the pump oscillator as well as the time varying reactance of the parametric amplifier. In quantum-limited amplification, losses and noise have an increased impact on the characteristics of an amplifier. We outline the classical model of the lossy DCPJPA and derive the available noise power spectral densities. A classical treatment is not capable of including properties like spontaneous emission which is mandatory in case of amplification at the quantum limit. Thus, we derive a quantum mechanical model of the lossy DCPJPA. Thermal losses are modeled by the quantum Langevin approach, by coupling the quantized system to a photon heat bath in thermodynamic equilibrium. The mode occupation in the bath follows the Bose-Einstein statistics. Based on the second quantization formalism, we derive the Heisenberg equations of motion of both resonator modes. We assume the dynamics of the system to follow the Markovian approximation, i.e. the system only depends on its actual state and is memory-free. We explicitly compute the time evolution of the contributions to the signal mode energy and give numeric examples based on different damping and coupling constants. Our analytic results show, that this model is capable of including thermal noise into the description of the DC pumped non-degenerate Josephson parametric amplifier.
Generalized thermalization for integrable system under quantum quench.
Muralidharan, Sushruth; Lochan, Kinjalk; Shankaranarayanan, S
2018-01-01
We investigate equilibration and generalized thermalization of the quantum Harmonic chain under local quantum quench. The quench action we consider is connecting two disjoint harmonic chains of different sizes and the system jumps between two integrable settings. We verify the validity of the generalized Gibbs ensemble description for this infinite-dimensional Hilbert space system and also identify equilibration between the subsystems as in classical systems. Using Bogoliubov transformations, we show that the eigenstates of the system prior to the quench evolve toward the Gibbs Generalized Ensemble description. Eigenstates that are more delocalized (in the sense of inverse participation ratio) prior to the quench, tend to equilibrate more rapidly. Further, through the phase space properties of a generalized Gibbs ensemble and the strength of stimulated emission, we identify the necessary criterion on the initial states for such relaxation at late times and also find out the states that would potentially not be described by the generalized Gibbs ensemble description.
A framework for the direct evaluation of large deviations in non-Markovian processes
Cavallaro, Massimo; Harris, Rosemary J
2016-01-01
We propose a general framework to simulate stochastic trajectories with arbitrarily long memory dependence and efficiently evaluate large deviation functions associated to time-extensive observables. This extends the ‘cloning’ procedure of Giardiná et al (2006 Phys. Rev. Lett. 96 120603) to non-Markovian systems. We demonstrate the validity of this method by testing non-Markovian variants of an ion-channel model and the totally asymmetric exclusion process, recovering results obtainable by other means. (letter)
Sewell, G.L.
1986-01-01
The author shows how the basic axioms of quantum field theory, general relativity and statistical thermodynamics lead, in a model-independent way, to a generalized Hawking-Unruh effect, whereby the gravitational fields carried by a class of space-time manifolds with event horizons thermalize ambient quantum fields. The author is concerned with a quantum field on a space-time x containing a submanifold X' bounded by event horizons. The objective is to show that, for a wide class of space-times, the global vacuum state of the field reduces, in X', to a thermal state, whose temperature depends on the geometry. The statistical thermodynaical, geometrical, and quantum field theoretical essential ingredients for the reduction of the vacuum state are discussed
Generalized quantum operators of creation and annihilation
Kuryshkin, Vassili
1980-01-01
Generalized permutation relation determined by a set of coefficients μ=(μ 1 ,...,μsub(k)) are under consideration for a pair of operators a and a + conjugated to each other. The totality of operator functions of a and a + (the μ-algebra) is investigated. It is shown that a and a + can be interpreted as the annihilation and creation operators of some 'particles'. Unlike the well known types of the quantization of Bose-Einstein and Fermi-Dirac the μ-quantization generally violates the proportionality between the energy of a state and its number of 'particles', a fact which is treated as a certain interaction between the 'particles'. All the particular cases of μ-quantization free from interaction are determined [fr
Whiteheadian approach to quantum theory and the generalized bell's theorem
Stapp, H.P.
1979-01-01
The model of the world proposed by Whitehead provides a natural theoretical framework in which to imbed quantum theory. This model accords with the ontological ideas of Heisenberg, and also with Einstein's view that physical theories should refer nominally to the objective physical situation, rather than our knowledge of that system. Whitehead imposed on his model the relativistic requirement that what happens in any given spacetime region be determined only by what has happened in its absolute past, i.e., in the backward light-cone drawn from that region. This requirement must be modified, for it is inconsistent with the implications of quantum theory expressed by a generalized version of Bell's theorem. Revamping the causal spacetime structure of the Whitehead-Heisenberg ontology to bring it into accord with the generalized Bell's theorem creates the possibility of a nonlocal causal covariant theory that accords with the statistical prediction of quantum theory
Towers of generalized divisible quantum codes
Haah, Jeongwan
2018-04-01
A divisible binary classical code is one in which every code word has weight divisible by a fixed integer. If the divisor is 2ν for a positive integer ν , then one can construct a Calderbank-Shor-Steane (CSS) code, where X -stabilizer space is the divisible classical code, that admits a transversal gate in the ν th level of Clifford hierarchy. We consider a generalization of the divisibility by allowing a coefficient vector of odd integers with which every code word has zero dot product modulo the divisor. In this generalized sense, we construct a CSS code with divisor 2ν +1 and code distance d from any CSS code of code distance d and divisor 2ν where the transversal X is a nontrivial logical operator. The encoding rate of the new code is approximately d times smaller than that of the old code. In particular, for large d and ν ≥2 , our construction yields a CSS code of parameters [[O (dν -1) ,Ω (d ) ,d ] ] admitting a transversal gate at the ν th level of Clifford hierarchy. For our construction we introduce a conversion from magic state distillation protocols based on Clifford measurements to those based on codes with transversal T gates. Our tower contains, as a subclass, generalized triply even CSS codes that have appeared in so-called gauge fixing or code switching methods.
Markovian description of unbiased polymer translocation
Mondaini, Felipe; Moriconi, L.
2012-01-01
We perform, with the help of cloud computing resources, extensive Langevin simulations which provide compelling evidence in favor of a general Markovian framework for unbiased three-dimensional polymer translocation. Our statistical analysis consists of careful evaluations of (i) two-point correlation functions of the translocation coordinate and (ii) the empirical probabilities of complete polymer translocation (taken as a function of the initial number of monomers on a given side of the membrane). We find good agreement with predictions derived from the Markov chain approach recently addressed in the literature by the present authors. -- Highlights: ► We investigate unbiased polymer translocation through membrane pores. ► Large statistical ensembles have been produced with the help of cloud computing resources. ► We evaluate the two-point correlation function of the translocation coordinate. ► We evaluate empirical probabilities for complete polymer translocation. ► Unbiased polymer translocation is described as a Markov stochastic process.
Markovian description of unbiased polymer translocation
Mondaini, Felipe [Instituto de Física, Universidade Federal do Rio de Janeiro, C.P. 68528, 21945-970 Rio de Janeiro, RJ (Brazil); Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, UnED Angra dos Reis, Angra dos Reis, 23953-030, RJ (Brazil); Moriconi, L., E-mail: moriconi@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, C.P. 68528, 21945-970 Rio de Janeiro, RJ (Brazil)
2012-10-01
We perform, with the help of cloud computing resources, extensive Langevin simulations which provide compelling evidence in favor of a general Markovian framework for unbiased three-dimensional polymer translocation. Our statistical analysis consists of careful evaluations of (i) two-point correlation functions of the translocation coordinate and (ii) the empirical probabilities of complete polymer translocation (taken as a function of the initial number of monomers on a given side of the membrane). We find good agreement with predictions derived from the Markov chain approach recently addressed in the literature by the present authors. -- Highlights: ► We investigate unbiased polymer translocation through membrane pores. ► Large statistical ensembles have been produced with the help of cloud computing resources. ► We evaluate the two-point correlation function of the translocation coordinate. ► We evaluate empirical probabilities for complete polymer translocation. ► Unbiased polymer translocation is described as a Markov stochastic process.
Markovian Processes for Quantitative Information Leakage
Biondi, Fabrizio
Quantification of information leakage is a successful approach for evaluating the security of a system. It models the system to be analyzed as a channel with the secret as the input and an output as observable by the attacker as the output, and applies information theory to quantify the amount...... and randomized processes with Markovian models and to compute their information leakage for a very general model of attacker. We present the QUAIL tool that automates such analysis and is able to compute the information leakage of an imperative WHILE language. Finally, we show how to use QUAIL to analyze some...... of information transmitted through such channel, thus effectively quantifying how many bits of the secret can be inferred by the attacker by analyzing the system’s output. Channels are usually encoded as matrices of conditional probabilities, known as channel matrices. Such matrices grow exponentially...
Open quantum dynamics via environmental monitoring
Hornberger, Klaus [Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universitaet Muenchen, Theresienstrasse 37, 80333 Munich (Germany)
2007-05-15
A general method is discussed to obtain Markovian master equations which describe the interaction with the environment in a microscopic and non-perturbative fashion. It is based on combining time-dependent scattering theory with the concept of continuous quantum measurements. The applications to the case of a Brownian point particle and to the case of a complex molecule, both in the presence of a gaseous environment, are outlined.
Indefinite-metric quantum field theory of general relativity, 2
Nakanishi, Noboru
1978-01-01
The canonical commutation relations are analyzed in detail in the manifestly covariant quantum field theory of general relativity proposed previously. It is explicitly proved that the BRS charge is indeed the generator of the BRS transformation both in the Landau gauge and in the non-Landau one. The equivalence between the field equations and the Heisenberg equations is confirmed. (author)
Noncommutative unification of general relativity and quantum mechanics
Heller, Michael; Pysiak, Leszek; Sasin, Wieslaw
2005-01-01
We present a model unifying general relativity and quantum mechanics based on a noncommutative geometry. This geometry is developed in terms of a noncommutative algebra A which is defined on a transformation groupoid Γ given by the action of a noncompact group G on the total space E of a principal fiber bundle over space-time M. The case is important since to obtain physical effects predicted by the model we should assume that G is a Lorentz group or some of its representations. We show that the generalized Einstein equation of the model has the form of the eigenvalue equation for the generalized Ricci operator, and all relevant operators in the quantum sector of the model are random operators; we study their dynamics. We also show that the model correctly reproduces general relativity and the usual quantum mechanics. It is interesting that the latter is recovered by performing the measurement of any observable. In the act of such a measurement the model 'collapses' to the usual quantum mechanics
A general framework for unambiguous detection of quantum states
Eldar, Y.
2004-01-01
Full Text:The problem of detecting information stored in the state of a quantum system is a fundamental problem in quantum information theory. Several approaches have emerged to distinguishing between a collection of non-orthogonal quantum states. We consider the problem of unambiguous detection where we seek a measurement that with a certain probability returns an inconclusive result, but such that if the measurement returns an answer, then the answer is correct with probability 1. We begin by considering unambiguous discrimination between a set of linearly independent pure quantum states. We show that the design of the optimal measurement that minimizes the probability of an inconclusive result can be formulated as a semidefinite programming problem. Based on this formulation, we develop a set of necessary and sufficient conditions for an optimal quantum measurement. We show that the optimal measurement can be computed very efficiently in polynomial time by exploiting the many well-known algorithms for solving semidefinite programs, which are guaranteed to converge to the global optimum. Using the general conditions for optimality, we derive necessary and sufficient conditions so that the measurement that results in an equal probability of an inconclusive result for each one of the quantum states is optimal. We refer to this measurement as the equal-probability measurement (EPM). We then show that for any state set, the prior probabilities of the states can be chosen such that the EPM is optimal. Finally, we consider state sets with strong symmetry properties and equal prior probabilities for which the EPM is optimal. We next develop a general framework for unambiguous state discrimination between a collection of mixed quantum states, which can be applied to any number of states with arbitrary prior probabilities. In particular, we derive a set of necessary and sufficient conditions for an optimal measurement that minimizes the probability of an inconclusive
Operational Markov Condition for Quantum Processes
Pollock, Felix A.; Rodríguez-Rosario, César; Frauenheim, Thomas; Paternostro, Mauro; Modi, Kavan
2018-01-01
We derive a necessary and sufficient condition for a quantum process to be Markovian which coincides with the classical one in the relevant limit. Our condition unifies all previously known definitions for quantum Markov processes by accounting for all potentially detectable memory effects. We then derive a family of measures of non-Markovianity with clear operational interpretations, such as the size of the memory required to simulate a process or the experimental falsifiability of a Markovian hypothesis.
Generalized multistability and chaos in quantum optics
Arecchi, F T
1984-12-18
Three experimental situations for CO2 lasers (a laser with modulated losses, a ring laser with competition between forward and backward waves, and a laser with injected signal) are analysed as examples of the onset of chaos in systems with a homogeneous gain line and with a particular timescale imposed by the values of the relaxation constants. The coexistence of several basins of attraction (generalized multistability) and their coupling by external noise is stressed. This coupling induces a low-frequency branch in the power spectrum. Comparison is made between the spectra of noise-induced jumps over independent attractors and the spectrum of deterministic diffusion within subregions of the same attractor. At the borderline between the two classes of phenomena a scaling law holds, relating the control parameter and the external noise in their effect on the mean escape time from a given stability region. 10 references.
Generalized contexts and consistent histories in quantum mechanics
Losada, Marcelo; Laura, Roberto
2014-01-01
We analyze a restriction of the theory of consistent histories by imposing that a valid description of a physical system must include quantum histories which satisfy the consistency conditions for all states. We prove that these conditions are equivalent to imposing the compatibility conditions of our formalism of generalized contexts. Moreover, we show that the theory of consistent histories with the consistency conditions for all states and the formalism of generalized context are equally useful representing expressions which involve properties at different times
Generalized Jaynes-Cummings model as a quantum search algorithm
Romanelli, A.
2009-01-01
We propose a continuous time quantum search algorithm using a generalization of the Jaynes-Cummings model. In this model the states of the atom are the elements among which the algorithm realizes the search, exciting resonances between the initial and the searched states. This algorithm behaves like Grover's algorithm; the optimal search time is proportional to the square root of the size of the search set and the probability to find the searched state oscillates periodically in time. In this frame, it is possible to reinterpret the usual Jaynes-Cummings model as a trivial case of the quantum search algorithm.
Quantum incompatibility of channels with general outcome operator algebras
Kuramochi, Yui
2018-04-01
A pair of quantum channels is said to be incompatible if they cannot be realized as marginals of a single channel. This paper addresses the general structure of the incompatibility of completely positive channels with a fixed quantum input space and with general outcome operator algebras. We define a compatibility relation for such channels by identifying the composite outcome space as the maximal (projective) C*-tensor product of outcome algebras. We show theorems that characterize this compatibility relation in terms of the concatenation and conjugation of channels, generalizing the recent result for channels with quantum outcome spaces. These results are applied to the positive operator valued measures (POVMs) by identifying each of them with the corresponding quantum-classical (QC) channel. We also give a characterization of the maximality of a POVM with respect to the post-processing preorder in terms of the conjugate channel of the QC channel. We consider another definition of compatibility of normal channels by identifying the composite outcome space with the normal tensor product of the outcome von Neumann algebras. We prove that for a given normal channel, the class of normally compatible channels is upper bounded by a special class of channels called tensor conjugate channels. We show the inequivalence of the C*- and normal compatibility relations for QC channels, which originates from the possibility and impossibility of copying operations for commutative von Neumann algebras in C*- and normal compatibility relations, respectively.
Quantum dice rolling: a multi-outcome generalization of quantum coin flipping
Aharon, N; Silman, J
2010-01-01
The problem of quantum dice rolling (DR)-a generalization of the problem of quantum coin flipping (CF) to more than two outcomes and parties-is studied in both its weak and strong variants. We prove by construction that quantum mechanics allows for (i) weak N-sided DR admitting arbitrarily small bias for any N and (ii) two-party strong N-sided DR saturating Kitaev's bound for any N. To derive (ii) we also prove by construction that quantum mechanics allows for (iii) strong imbalanced CF saturating Kitaev's bound for any degree of imbalance. Furthermore, as a corollary of (ii) we introduce a family of optimal 2m-party strong n m -sided DR protocols for any pair m and n.
Generalized infimum and sequential product of quantum effects
Li Yuan; Sun Xiuhong; Chen Zhengli
2007-01-01
The quantum effects for a physical system can be described by the set E(H) of positive operators on a complex Hilbert space H that are bounded above by the identity operator I. For A, B(set-membership sign)E(H), the operation of sequential product A(convolution sign)B=A 1/2 BA 1/2 was proposed as a model for sequential quantum measurements. A nice investigation of properties of the sequential product has been carried over [Gudder, S. and Nagy, G., 'Sequential quantum measurements', J. Math. Phys. 42, 5212 (2001)]. In this note, we extend some results of this reference. In particular, a gap in the proof of Theorem 3.2 in this reference is overcome. In addition, some properties of generalized infimum A sqcap B are studied
A generalization of Fermat's principle for classical and quantum systems
Elsayed, Tarek A.
2014-09-01
The analogy between dynamics and optics had a great influence on the development of the foundations of classical and quantum mechanics. We take this analogy one step further and investigate the validity of Fermat's principle in many-dimensional spaces describing dynamical systems (i.e., the quantum Hilbert space and the classical phase and configuration space). We propose that if the notion of a metric distance is well defined in that space and the velocity of the representative point of the system is an invariant of motion, then a generalized version of Fermat's principle will hold. We substantiate this conjecture for time-independent quantum systems and for a classical system consisting of coupled harmonic oscillators. An exception to this principle is the configuration space of a charged particle in a constant magnetic field; in this case the principle is valid in a frame rotating by half the Larmor frequency, not the stationary lab frame.
Quantum mechanics in general relativity and its special - relativistic limit
Tagirov, Eh.A.
1998-01-01
Quantum mechanics of a neutral point-like particle in the general Riemannian space-time is constructed starting with the general Fock representation of the quantum scalar field. The known ambiguity of the representation is removed by the requirement that the quasi-one-particle wave functions in configurational space should admit the Born probabilistic interpretation after a transformation, generally nonlocal, and therefore may be considered as the one-particle wave functions. Operators of momentum and spatial position of a particle acting in the space of these transformed wave functions are deduced consecutively from basic naturally defined operators of the observables in the Fock space. They coincide with the canonical ones only in the case of the infinite velocity of light. In particular, even in the Minkowski space-time and inertial frames of reference , the operators of curvilinear coordinates do not commute
Non-markovian boltzmann equation
Kremp, D.; Bonitz, M.; Kraeft, W.D.; Schlanges, M.
1997-01-01
A quantum kinetic equation for strongly interacting particles (generalized binary collision approximation, ladder or T-matrix approximation) is derived in the framework of the density operator technique. In contrast to conventional kinetic theory, which is valid on large time scales as compared to the collision (correlation) time only, our approach retains the full time dependencies, especially also on short time scales. This means retardation and memory effects resulting from the dynamics of binary correlations and initial correlations are included. Furthermore, the resulting kinetic equation conserves total energy (the sum of kinetic and potential energy). The second aspect of generalization is the inclusion of many-body effects, such as self-energy, i.e., renormalization of single-particle energies and damping. To this end we introduce an improved closure relation to the Bogolyubov endash Born endash Green endash Kirkwood endash Yvon hierarchy. Furthermore, in order to express the collision integrals in terms of familiar scattering quantities (Mo/ller operator, T-matrix), we generalize the methods of quantum scattering theory by the inclusion of medium effects. To illustrate the effects of memory and damping, the results of numerical simulations are presented. copyright 1997 Academic Press, Inc
System–environment correlations and non-Markovian dynamics
Pernice, A; Helm, J; Strunz, W T
2012-01-01
We determine the total state dynamics of a dephasing open quantum system using the standard environment of harmonic oscillators. Of particular interest are random unitary approaches to the same reduced dynamics and system–environment correlations in the full model. Concentrating on a model with an at times negative dephasing rate, the issue of ‘non-Markovianity’ will also be addressed. Crucially, given the quantum environment, the appearance of non-Markovian dynamics turns out to be accompanied by a loss of system–environment correlations. Depending on the initial purity of the qubit state, these system–environment correlations may be purely classical over the whole relevant time scale, or there may be intervals of genuine system–environment entanglement. In the latter case, we see no obvious relation between the build-up or decay of these quantum correlations and ‘non-Markovianity’. (paper)
Basic mechanisms in the laser control of non-Markovian dynamics
Puthumpally-Joseph, R.; Mangaud, E.; Chevet, V.; Desouter-Lecomte, M.; Sugny, D.; Atabek, O.
2018-03-01
Referring to a Fano-type model qualitative analogy we develop a comprehensive basic mechanism for the laser control of the non-Markovian bath response and fully implement it in a realistic control scheme, in strongly coupled open quantum systems. Converged hierarchical equations of motion are worked out to numerically solve the master equation of a spin-boson Hamiltonian to reach the reduced electronic density matrix of a heterojunction in the presence of strong terahertz laser pulses. Robust and efficient control is achieved increasing by a factor of 2 the non-Markovianity measured by the time evolution of the volume of accessible states. The consequences of such fields on the central system populations and coherence are examined, putting the emphasis on the relation between the increase of non-Markovianity and the slowing down of decoherence processes.
Quantum mechanics as a natural generalization of classical statistical mechanics
Xu Laizi; Qian Shangwu
1994-01-01
By comparison between equations of motion of geometrical optics (GO) and that of classical statistical mechanics (CSM), it is found that there should be an analogy between GO and CSM instead of GO and classical mechanics (CM). Furthermore, by comparison between the classical limit (CL) of quantum mechanics (QM) and CSM, the authors find that CL of QM is CSM not CM, hence they demonstrated that QM is a natural generalization of CSM instead of CM
Generalized Poisson processes in quantum mechanics and field theory
Combe, P.; Rodriguez, R.; Centre National de la Recherche Scientifique, 13 - Marseille; Hoegh-Krohn, R.; Centre National de la Recherche Scientifique, 13 - Marseille; Sirugue, M.; Sirugue-Collin, M.; Centre National de la Recherche Scientifique, 13 - Marseille
1981-01-01
In section 2 we describe more carefully the generalized Poisson processes, giving a realization of the underlying probability space, and we characterize these processes by their characteristic functionals. Section 3 is devoted to the proof of the previous formula for quantum mechanical systems, with possibly velocity dependent potentials and in section 4 we give an application of the previous theory to some relativistic Bose field models. (orig.)
Quantum mechanics vs. general covariance in gravity and string models
Martinec, E.J.
1984-01-01
Quantization of simple low-dimensional systems embodying general covariance is studied. Functional methods are employed in the calculation of effective actions for fermionic strings and 1 + 1 dimensional gravity. The author finds that regularization breaks apparent symmetries of the theory, providing new dynamics for the string and non-trivial dynamics for 1 + 1 gravity. The author moves on to consider the quantization of some generally covariant systems with a finite number of physical degrees of freedom, assuming the existence of an invariant cutoff. The author finds that the wavefunction of the universe in these cases is given by the solution to simple quantum mechanics problems
Extent of the Immirzi ambiguity in quantum general relativity
Marugan, Guillermo A Mena
2002-01-01
The Ashtekar-Barbero formulation of general relativity admits a one-parameter family of canonical transformations that preserves the expressions of the Gauss and diffeomorphism constraints. The loop quantization of the connection formalism based on each of these canonical sets leads to different predictions. This phenomenon is called the Immirzi ambiguity. It has been recently argued that this ambiguity could be generalized to the extent of a spatially dependent function instead of a parameter. This would ruin the predictability of loop quantum gravity. We prove that such expectations are not realized, so that the Immirzi ambiguity introduces exclusively a freedom in the choice of a real number. (letter to the editor)
Quantum description of light propagation in generalized media
Häyrynen, Teppo; Oksanen, Jani
2016-01-01
(TW) approach, we generalize the linear material model to simultaneously account for both the emission and absorption processes and to have point-wise defined noise field statistics and intensity dependent interaction strengths. Thus, our approach describes the quantum input-output relations of linear...... the approach to investigate media in nonuniform states which can be e.g. consequences of a temperature gradient over the medium or a position dependent inversion of the amplifier. Furthermore, by using the generalized model we investigate devices with intensity dependent interactions and show how an initial...
Rényi generalizations of the conditional quantum mutual information
Berta, Mario; Seshadreesan, Kaushik P.; Wilde, Mark M.
2015-01-01
The conditional quantum mutual information I(A; B|C) of a tripartite state ρ ABC is an information quantity which lies at the center of many problems in quantum information theory. Three of its main properties are that it is non-negative for any tripartite state, that it decreases under local operations applied to systems A and B, and that it obeys the duality relation I(A; B|C) = I(A; B|D) for a four-party pure state on systems ABCD. The conditional mutual information also underlies the squashed entanglement, an entanglement measure that satisfies all of the axioms desired for an entanglement measure. As such, it has been an open question to find Rényi generalizations of the conditional mutual information, that would allow for a deeper understanding of the original quantity and find applications beyond the traditional memoryless setting of quantum information theory. The present paper addresses this question, by defining different α-Rényi generalizations I α (A; B|C) of the conditional mutual information, some of which we can prove converge to the conditional mutual information in the limit α → 1. Furthermore, we prove that many of these generalizations satisfy non-negativity, duality, and monotonicity with respect to local operations on one of the systems A or B (with it being left as an open question to prove that monotonicity holds with respect to local operations on both systems). The quantities defined here should find applications in quantum information theory and perhaps even in other areas of physics, but we leave this for future work. We also state a conjecture regarding the monotonicity of the Rényi conditional mutual informations defined here with respect to the Rényi parameter α. We prove that this conjecture is true in some special cases and when α is in a neighborhood of one
Quantum-mechanical generalization of the Biot-Savart law
Fassio-Canuto, L.
1978-01-01
The complex geometrical considerations involved in deriving the magnetic field due to a current of assigned geometry can be considerably simplified and, therefore, generalized if one employs the field-theoretical relation between the field Asub(μ) and the current jsub(μ). In the general case of a current with helicoidal structure, the magnetic field can be found for any point of space. The particular cases of the loop, the solenoid and the straight wire are then easily derived. The rationale for wanting to generalize the classical Biot-Savart law to include quantum-mechanical effects is discussed in the light of a more general program intended to study the origin of magnetic fields in collapsed objects. (author)
Markov Chain-Like Quantum Biological Modeling of Mutations, Aging, and Evolution
Ivan B. Djordjevic
2015-08-01
Full Text Available Recent evidence suggests that quantum mechanics is relevant in photosynthesis, magnetoreception, enzymatic catalytic reactions, olfactory reception, photoreception, genetics, electron-transfer in proteins, and evolution; to mention few. In our recent paper published in Life, we have derived the operator-sum representation of a biological channel based on codon basekets, and determined the quantum channel model suitable for study of the quantum biological channel capacity. However, this model is essentially memoryless and it is not able to properly model the propagation of mutation errors in time, the process of aging, and evolution of genetic information through generations. To solve for these problems, we propose novel quantum mechanical models to accurately describe the process of creation spontaneous, induced, and adaptive mutations and their propagation in time. Different biological channel models with memory, proposed in this paper, include: (i Markovian classical model, (ii Markovian-like quantum model, and (iii hybrid quantum-classical model. We then apply these models in a study of aging and evolution of quantum biological channel capacity through generations. We also discuss key differences of these models with respect to a multilevel symmetric channel-based Markovian model and a Kimura model-based Markovian process. These models are quite general and applicable to many open problems in biology, not only biological channel capacity, which is the main focus of the paper. We will show that the famous quantum Master equation approach, commonly used to describe different biological processes, is just the first-order approximation of the proposed quantum Markov chain-like model, when the observation interval tends to zero. One of the important implications of this model is that the aging phenotype becomes determined by different underlying transition probabilities in both programmed and random (damage Markov chain-like models of aging, which
Inhomogeneous electrochemiluminescence. II Markovian encounter theory of the phenomenon
Gladkikh, V.; Burshtein, A.I.
2005-01-01
The free energy dependence of the electro-chemiluminescence quantum yield is specified, with the Markovian encounter theory accounting for the reversibility of triplet production competing with the irreversible recombination to the ground state. It is shown that diffusional ion recombination is highly inhomogeneous in space. It proceeds at either large positive ionization free energy (mainly to the triplet product) or at large negative free energy when recombination to the ground state dominates. On the contrary at medium free energies, the quasi-resonant generation of triplets is under kinetic control and therefore much more homogeneous. In this case, both recombination products are generated in comparable amounts. The multiple reversible ionization is shown to act as an independent quenching mechanism previously unknown. The role of the triplet quenching at the electrode is also specified. These effects reduce noticeably the luminescence quantum yield but only at larger triplet life times and in different free energy regions
Dynamics of non-Markovian exclusion processes
Khoromskaia, Diana; Grosskinsky, Stefan; Harris, Rosemary J
2014-01-01
Driven diffusive systems are often used as simple discrete models of collective transport phenomena in physics, biology or social sciences. Restricting attention to one-dimensional geometries, the asymmetric simple exclusion process (ASEP) plays a paradigmatic role to describe noise-activated driven motion of entities subject to an excluded volume interaction and many variants have been studied in recent years. While in the standard ASEP the noise is Poissonian and the process is therefore Markovian, in many applications the statistics of the activating noise has a non-standard distribution with possible memory effects resulting from internal degrees of freedom or external sources. This leads to temporal correlations and can significantly affect the shape of the current-density relation as has been studied recently for a number of scenarios. In this paper we report a general framework to derive the fundamental diagram of ASEPs driven by non-Poissonian noise by using effectively only two simple quantities, viz., the mean residual lifetime of the jump distribution and a suitably defined temporal correlation length. We corroborate our results by detailed numerical studies for various noise statistics under periodic boundary conditions and discuss how our approach can be applied to more general driven diffusive systems. (paper)
Dynamics of non-Markovian exclusion processes
Khoromskaia, Diana; Harris, Rosemary J.; Grosskinsky, Stefan
2014-12-01
Driven diffusive systems are often used as simple discrete models of collective transport phenomena in physics, biology or social sciences. Restricting attention to one-dimensional geometries, the asymmetric simple exclusion process (ASEP) plays a paradigmatic role to describe noise-activated driven motion of entities subject to an excluded volume interaction and many variants have been studied in recent years. While in the standard ASEP the noise is Poissonian and the process is therefore Markovian, in many applications the statistics of the activating noise has a non-standard distribution with possible memory effects resulting from internal degrees of freedom or external sources. This leads to temporal correlations and can significantly affect the shape of the current-density relation as has been studied recently for a number of scenarios. In this paper we report a general framework to derive the fundamental diagram of ASEPs driven by non-Poissonian noise by using effectively only two simple quantities, viz., the mean residual lifetime of the jump distribution and a suitably defined temporal correlation length. We corroborate our results by detailed numerical studies for various noise statistics under periodic boundary conditions and discuss how our approach can be applied to more general driven diffusive systems.
Time-dependent generalized Gibbs ensembles in open quantum systems
Lange, Florian; Lenarčič, Zala; Rosch, Achim
2018-04-01
Generalized Gibbs ensembles have been used as powerful tools to describe the steady state of integrable many-particle quantum systems after a sudden change of the Hamiltonian. Here, we demonstrate numerically that they can be used for a much broader class of problems. We consider integrable systems in the presence of weak perturbations which break both integrability and drive the system to a state far from equilibrium. Under these conditions, we show that the steady state and the time evolution on long timescales can be accurately described by a (truncated) generalized Gibbs ensemble with time-dependent Lagrange parameters, determined from simple rate equations. We compare the numerically exact time evolutions of density matrices for small systems with a theory based on block-diagonal density matrices (diagonal ensemble) and a time-dependent generalized Gibbs ensemble containing only a small number of approximately conserved quantities, using the one-dimensional Heisenberg model with perturbations described by Lindblad operators as an example.
Indefinite-metric quantum field theory of general relativity
Nakanishi, Noboru
1978-01-01
Quantum field theory of Einstein's general relativity is formulated in the indefinitemetric Hilbert space in such a way that asymptotic fields are manifestly Lorentz covariant and the physical S-matrix is unitary. The general coordinate transformation is transcribed into a q-number transformation, called the BRS transformation. Its abstract definition is presented on the basis of the BRS transformation for the Yang-Mills theory. The BRS transformation for general relativity is then explicitly constructed. The gauge-fixing Lagrangian density and the Faddeev-Popov one are introduced in such a way that their sum behaves like a scalar density under the BRS transformation. One can then proceed in the same way as in the Kugo-Ojima formalism of the Yang-Mills theory to establish the unitarity of the physical S-matrix. (author)
Analog quantum simulation of generalized Dicke models in trapped ions
Aedo, Ibai; Lamata, Lucas
2018-04-01
We propose the analog quantum simulation of generalized Dicke models in trapped ions. By combining bicromatic laser interactions on multiple ions we can generate all regimes of light-matter coupling in these models, where here the light mode is mimicked by a motional mode. We present numerical simulations of the three-qubit Dicke model both in the weak field (WF) regime, where the Jaynes-Cummings behavior arises, and the ultrastrong coupling (USC) regime, where a rotating-wave approximation cannot be considered. We also simulate the two-qubit biased Dicke model in the WF and USC regimes and the two-qubit anisotropic Dicke model in the USC regime and the deep-strong coupling regime. The agreement between the mathematical models and the ion system convinces us that these quantum simulations can be implemented in the laboratory with current or near-future technology. This formalism establishes an avenue for the quantum simulation of many-spin Dicke models in trapped ions.
Analysis of a convenient information bound for general quantum channels
O'Loan, C J
2007-01-01
Open questions from Sarovar and Milburn (2006 J. Phys. A: Math. Gen. 39 8487) are answered. Sarovar and Milburn derived a convenient upper bound for the Fisher information of a one-parameter quantum channel. They showed that for quasi-classical models their bound is achievable and they gave a necessary and sufficient condition for positive operator-valued measures (POVMs) attaining this bound. They asked (i) whether their bound is attainable more generally (ii) whether explicit expressions for optimal POVMs can be derived from the attainability condition. We show that the symmetric logarithmic derivative (SLD) quantum information is less than or equal to the SM bound, i.e., H(θ) ≤ C Y (θ) and we find conditions for equality. As the Fisher information is less than or equal to the SLD quantum information, i.e., F M (θ) ≤ H(θ), we can deduce when equality holds in F M (θ) ≤ C Y (θ). Equality does not hold for all channels. As a consequence, the attainability condition cannot be used to test for optimal POVMs for all channels. These results are extended to multi-parameter channels
Generalized flow and determinism in measurement-based quantum computation
Browne, Daniel E [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Kashefi, Elham [Computing Laboratory and Christ Church College, University of Oxford, Parks Road, Oxford OX1 3QD (United Kingdom); Mhalla, Mehdi [Laboratoire d' Informatique de Grenoble, CNRS - Centre national de la recherche scientifique, Universite de Grenoble (France); Perdrix, Simon [Preuves, Programmes et Systemes (PPS), Universite Paris Diderot, Paris (France)
2007-08-15
We extend the notion of quantum information flow defined by Danos and Kashefi (2006 Phys. Rev. A 74 052310) for the one-way model (Raussendorf and Briegel 2001 Phys. Rev. Lett. 86 910) and present a necessary and sufficient condition for the stepwise uniformly deterministic computation in this model. The generalized flow also applied in the extended model with measurements in the (X, Y), (X, Z) and (Y, Z) planes. We apply both measurement calculus and the stabiliser formalism to derive our main theorem which for the first time gives a full characterization of the stepwise uniformly deterministic computation in the one-way model. We present several examples to show how our result improves over the traditional notion of flow, such as geometries (entanglement graph with input and output) with no flow but having generalized flow and we discuss how they lead to an optimal implementation of the unitaries. More importantly one can also obtain a better quantum computation depth with the generalized flow rather than with flow. We believe our characterization result is particularly valuable for the study of the algorithms and complexity in the one-way model.
Generalized flow and determinism in measurement-based quantum computation
Browne, Daniel E; Kashefi, Elham; Mhalla, Mehdi; Perdrix, Simon
2007-01-01
We extend the notion of quantum information flow defined by Danos and Kashefi (2006 Phys. Rev. A 74 052310) for the one-way model (Raussendorf and Briegel 2001 Phys. Rev. Lett. 86 910) and present a necessary and sufficient condition for the stepwise uniformly deterministic computation in this model. The generalized flow also applied in the extended model with measurements in the (X, Y), (X, Z) and (Y, Z) planes. We apply both measurement calculus and the stabiliser formalism to derive our main theorem which for the first time gives a full characterization of the stepwise uniformly deterministic computation in the one-way model. We present several examples to show how our result improves over the traditional notion of flow, such as geometries (entanglement graph with input and output) with no flow but having generalized flow and we discuss how they lead to an optimal implementation of the unitaries. More importantly one can also obtain a better quantum computation depth with the generalized flow rather than with flow. We believe our characterization result is particularly valuable for the study of the algorithms and complexity in the one-way model
Entanglement measure for general pure multipartite quantum states
Heydari, Hoshang; Bjoerk, Gunnar
2004-01-01
We propose an explicit formula for a measure of entanglement of pure multipartite quantum states. We discuss the mathematical structure of the measure and give a brief explanation of its physical motivation. We apply the measure on some pure, tripartite, qubit states and demonstrate that, in general, the entanglement can depend on what actions are performed on the various subsystems, and specifically if the parties in possession of the subsystems cooperate or not. We also give some simple but illustrative examples of the entanglement of four-qubit and m-qubit states
Generalized Choi states and 2-distillability of quantum states
Chen, Lin; Tang, Wai-Shing; Yang, Yu
2018-05-01
We investigate the distillability of bipartite quantum states in terms of positive and completely positive maps. We construct the so-called generalized Choi states and show that it is distillable when it has negative partial transpose. We convert the distillability problem of 2-copy n× n Werner states into the determination of the positivity of an Hermitian matrix. We obtain several sufficient conditions by which the positivity holds. Further, we investigate the case n=3 by the classification of 2× 3× 3 pure states.
Indefinite-metric quantum field theory of general relativity, 5
Nakanishi, Noboru
1979-01-01
The indefinite-metric quantum field theory of general relativity is extended to the coupled system of the gravitational field and a Dirac field on the basis of the vierbein formalism. The six extra degrees of freedom involved in vierbein are made unobservable by introducing an extra subsidiary condition Q sub(s) + phys> = 0, where Q sub(s) denotes a new BRS charge corresponding to the local Lorentz invariance. It is shown that a manifestly covariant, unitary, canonical theory can be constructed consistently on the basis of the vierbein formalism. (author)
Description of quantum-mechanical motion by using the formalism of non-Markov stochastic process
Skorobogatov, G.A.; Svertilov, S.I.
1999-01-01
The principle possibilities of mathematical modeling of quantum mechanical motion by the theory of a real stochastic processes is considered. The set of equations corresponding to the simplest case of a two-level system undergoing transitions under the influence of electromagnetic field are obtained. It is shown that quantum-mechanical processes are purely discrete processes of non-Markovian type. They are continuous processes in the space of probability amplitudes and posses the properties of quantum Markovity. The formulation of quantum mechanics in terms of the theory of stochastic processes is necessary for its generalization on small space-time intervals [ru
Quantum description of light propagation in generalized media
Häyrynen, Teppo; Oksanen, Jani
2016-01-01
Linear quantum input–output relation based models are widely applied to describe the light propagation in a lossy medium. The details of the interaction and the associated added noise depend on whether the device is configured to operate as an amplifier or an attenuator. Using the traveling wave (TW) approach, we generalize the linear material model to simultaneously account for both the emission and absorption processes and to have point-wise defined noise field statistics and intensity dependent interaction strengths. Thus, our approach describes the quantum input–output relations of linear media with net attenuation, amplification or transparency without pre-selection of the operation point. The TW approach is then applied to investigate materials at thermal equilibrium, inverted materials, the transparency limit where losses are compensated, and the saturating amplifiers. We also apply the approach to investigate media in nonuniform states which can be e.g. consequences of a temperature gradient over the medium or a position dependent inversion of the amplifier. Furthermore, by using the generalized model we investigate devices with intensity dependent interactions and show how an initial thermal field transforms to a field having coherent statistics due to gain saturation. (paper)
Liu, Qiang; Van Mieghem, Piet
2018-02-01
Since a real epidemic process is not necessarily Markovian, the epidemic threshold obtained under the Markovian assumption may be not realistic. To understand general non-Markovian epidemic processes on networks, we study the Weibullian susceptible-infected-susceptible (SIS) process in which the infection process is a renewal process with a Weibull time distribution. We find that, if the infection rate exceeds 1 /ln(λ1+1 ) , where λ1 is the largest eigenvalue of the network's adjacency matrix, then the infection will persist on the network under the mean-field approximation. Thus, 1 /ln(λ1+1 ) is possibly the largest epidemic threshold for a general non-Markovian SIS process with a Poisson curing process under the mean-field approximation. Furthermore, non-Markovian SIS processes may result in a multimodal prevalence. As a byproduct, we show that a limiting Weibullian SIS process has the potential to model bursts of a synchronized infection.
Direct computation of scattering matrices for general quantum graphs
Caudrelier, V.; Ragoucy, E.
2010-01-01
We present a direct and simple method for the computation of the total scattering matrix of an arbitrary finite noncompact connected quantum graph given its metric structure and local scattering data at each vertex. The method is inspired by the formalism of Reflection-Transmission algebras and quantum field theory on graphs though the results hold independently of this formalism. It yields a simple and direct algebraic derivation of the formula for the total scattering and has a number of advantages compared to existing recursive methods. The case of loops (or tadpoles) is easily incorporated in our method. This provides an extension of recent similar results obtained in a completely different way in the context of abstract graph theory. It also allows us to discuss briefly the inverse scattering problem in the presence of loops using an explicit example to show that the solution is not unique in general. On top of being conceptually very easy, the computational advantage of the method is illustrated on two examples of 'three-dimensional' graphs (tetrahedron and cube) for which other methods are rather heavy or even impractical.
Analysis and design of singular Markovian jump systems
Wang, Guoliang; Yan, Xinggang
2014-01-01
This monograph is an up-to-date presentation of the analysis and design of singular Markovian jump systems (SMJSs) in which the transition rate matrix of the underlying systems is generally uncertain, partially unknown and designed. The problems addressed include stability, stabilization, H∞ control and filtering, observer design, and adaptive control. applications of Markov process are investigated by using Lyapunov theory, linear matrix inequalities (LMIs), S-procedure and the stochastic Barbalat's Lemma, among other techniques.Features of the book include:·???????? study of the stability pr
Joint probability distributions for a class of non-Markovian processes.
Baule, A; Friedrich, R
2005-02-01
We consider joint probability distributions for the class of coupled Langevin equations introduced by Fogedby [H. C. Fogedby, Phys. Rev. E 50, 1657 (1994)]. We generalize well-known results for the single-time probability distributions to the case of N -time joint probability distributions. It is shown that these probability distribution functions can be obtained by an integral transform from distributions of a Markovian process. The integral kernel obeys a partial differential equation with fractional time derivatives reflecting the non-Markovian character of the process.
Yeon, Kyu Hwang; Hong, Suc Kyoung; Um, Chung In; George, Thomas F.
2006-01-01
With quantum operators corresponding to functions of the canonical variables, Schroedinger equations are constructed for systems corresponding to classical systems connected by a general point canonical transformation. Using the operator connecting quantum states between systems before and after the transformation, the quantum correction term and ordering parameter are obtained
Daoud, M.; Ahl Laamara, R.
2012-01-01
We give the explicit expressions of the pairwise quantum correlations present in superpositions of multipartite coherent states. A special attention is devoted to the evaluation of the geometric quantum discord. The dynamics of quantum correlations under a dephasing channel is analyzed. A comparison of geometric measure of quantum discord with that of concurrence shows that quantum discord in multipartite coherent states is more resilient to dissipative environments than is quantum entanglement. To illustrate our results, we consider some special superpositions of Weyl–Heisenberg, SU(2) and SU(1,1) coherent states which interpolate between Werner and Greenberger–Horne–Zeilinger states. -- Highlights: ► Pairwise quantum correlations multipartite coherent states. ► Explicit expression of geometric quantum discord. ► Entanglement sudden death and quantum discord robustness. ► Generalized coherent states interpolating between Werner and Greenberger–Horne–Zeilinger states
Daoud, M., E-mail: m_daoud@hotmail.com [Department of Physics, Faculty of Sciences, University Ibnou Zohr, Agadir (Morocco); Ahl Laamara, R., E-mail: ahllaamara@gmail.com [LPHE-Modeling and Simulation, Faculty of Sciences, University Mohammed V, Rabat (Morocco); Centre of Physics and Mathematics, CPM, CNESTEN, Rabat (Morocco)
2012-07-16
We give the explicit expressions of the pairwise quantum correlations present in superpositions of multipartite coherent states. A special attention is devoted to the evaluation of the geometric quantum discord. The dynamics of quantum correlations under a dephasing channel is analyzed. A comparison of geometric measure of quantum discord with that of concurrence shows that quantum discord in multipartite coherent states is more resilient to dissipative environments than is quantum entanglement. To illustrate our results, we consider some special superpositions of Weyl–Heisenberg, SU(2) and SU(1,1) coherent states which interpolate between Werner and Greenberger–Horne–Zeilinger states. -- Highlights: ► Pairwise quantum correlations multipartite coherent states. ► Explicit expression of geometric quantum discord. ► Entanglement sudden death and quantum discord robustness. ► Generalized coherent states interpolating between Werner and Greenberger–Horne–Zeilinger states.
Bulk-mediated surface diffusion: non-Markovian desorption dynamics
Revelli, Jorge A; Budde, Carlos E; Prato, Domingo; Wio, Horacio S
2005-01-01
Here we analyse the dynamics of adsorbed molecules within the bulk-mediated surface diffusion framework, when the particle's desorption mechanism is characterized by a non-Markovian process, while the particle's adsorption as well as its motion in the bulk is governed by Markovian dynamics. We study the diffusion of particles in both semi-infinite and finite cubic lattices, analysing the conditional probability to find the system on the reference absorptive plane as well as the surface dispersion as functions of time. The results are compared with known Markovian cases showing the differences that can be exploited to distinguish between Markovian and non-Markovian desorption mechanisms in experimental situations
Delgado, Francisco
2017-12-01
Quantum information processing should be generated through control of quantum evolution for physical systems being used as resources, such as superconducting circuits, spinspin couplings in ions and artificial anyons in electronic gases. They have a quantum dynamics which should be translated into more natural languages for quantum information processing. On this terrain, this language should let to establish manipulation operations on the associated quantum information states as classical information processing does. This work shows how a kind of processing operations can be settled and implemented for quantum states design and quantum processing for systems fulfilling a SU(2) reduction in their dynamics.
Composite quantum collision models
Lorenzo, Salvatore; Ciccarello, Francesco; Palma, G. Massimo
2017-09-01
A collision model (CM) is a framework to describe open quantum dynamics. In its memoryless version, it models the reservoir R as consisting of a large collection of elementary ancillas: the dynamics of the open system S results from successive collisions of S with the ancillas of R . Here, we present a general formulation of memoryless composite CMs, where S is partitioned into the very open system under study S coupled to one or more auxiliary systems {Si} . Their composite dynamics occurs through internal S -{Si} collisions interspersed with external ones involving {Si} and the reservoir R . We show that important known instances of quantum non-Markovian dynamics of S —such as the emission of an atom into a reservoir featuring a Lorentzian, or multi-Lorentzian, spectral density or a qubit subject to random telegraph noise—can be mapped on to such memoryless composite CMs.
Takeoka, Masahiro; Fujiwara, Mikio; Mizuno, Jun; Sasaki, Masahide
2004-01-01
Quantum-information theory predicts that when the transmission resource is doubled in quantum channels, the amount of information transmitted can be increased more than twice by quantum-channel coding technique, whereas the increase is at most twice in classical information theory. This remarkable feature, the superadditive quantum-coding gain, can be implemented by appropriate choices of code words and corresponding quantum decoding which requires a collective quantum measurement. Recently, an experimental demonstration was reported [M. Fujiwara et al., Phys. Rev. Lett. 90, 167906 (2003)]. The purpose of this paper is to describe our experiment in detail. Particularly, a design strategy of quantum-collective decoding in physical quantum circuits is emphasized. We also address the practical implication of the gain on communication performance by introducing the quantum-classical hybrid coding scheme. We show how the superadditive quantum-coding gain, even in a small code length, can boost the communication performance of conventional coding techniques
Optimized auxiliary representation of non-Markovian impurity problems by a Lindblad equation
Dorda, A; Sorantin, M; Linden, W von der; Arrigoni, E
2017-01-01
We present a general scheme to address correlated nonequilibrium quantum impurity problems based on a mapping onto an auxiliary open quantum system of small size. The infinite fermionic reservoirs of the original system are thereby replaced by a small number N B of noninteracting auxiliary bath sites whose dynamics are described by a Lindblad equation, which can then be exactly solved by numerical methods such as Lanczos or matrix-product states. The mapping becomes exponentially exact with increasing N B , and is already quite accurate for small N B . Due to the presence of the intermediate bath sites, the overall dynamics acting on the impurity site is non-Markovian. While in previous work we put the focus on the manybody solution of the associated Lindblad problem, here we discuss the mapping scheme itself, which is an essential part of the overall approach. On the one hand, we provide technical details together with an in-depth discussion of the employed algorithms, and on the other hand, we present a detailed convergence study. The latter clearly demonstrates the above-mentioned exponential convergence of the procedure with increasing N B . Furthermore, the influence of temperature and an external bias voltage on the reservoirs is investigated. The knowledge of the particular convergence behavior is of great value to assess the applicability of the scheme to certain physical situations. Moreover, we study different geometries for the auxiliary system. On the one hand, this is of importance for advanced manybody solution techniques such as matrix product states which work well for short-ranged couplings, and on the other hand, it allows us to gain more insights into the underlying mechanisms when mapping non-Markovian reservoirs onto Lindblad-type impurity problems. Finally, we present results for the spectral function of the Anderson impurity model in and out of equilibrium and discuss the accuracy obtained with the different geometries of the auxiliary system
Stability of the Markov operator and synchronization of Markovian random products
Díaz, Lorenzo J.; Matias, Edgar
2018-05-01
We study Markovian random products on a large class of ‘m-dimensional’ connected compact metric spaces (including products of closed intervals and trees). We introduce a splitting condition, generalizing the classical one by Dubins and Freedman, and prove that this condition implies the asymptotic stability of the corresponding Markov operator and (exponentially fast) synchronization.
Etingof, P.; Massachusetts Inst. of Tech., Cambridge, MA; Schiffmann, O.
2001-01-01
We consider weighted traces of products of intertwining operators for quantum groups U q (g), suitably twisted by a ''generalized Belavin-Drinfeld triple''. We derive two commuting sets of difference equations - the (twisted) Macdonald-Ruijsenaars system and the (twisted) quantum Knizhnik-Zamolodchikov-Bernard (qKZB) system. These systems involve the nonstandard quantum R-matrices defined in a previous joint work with T. Schedler (2000). When the generalized Belavin-Drinfeld triple comes from an automorphism of the Lie algebra g, we also derive two additional sets of difference equations, the dual Macdonald-Ruijsenaars system and the dual qKZB equations. (orig.)
Farouk, Ahmed; Batle, J.; Elhoseny, M.; Naseri, Mosayeb; Lone, Muzaffar; Fedorov, Alex; Alkhambashi, Majid; Ahmed, Syed Hassan; Abdel-Aty, M.
2018-04-01
Quantum communication provides an enormous advantage over its classical counterpart: security of communications based on the very principles of quantum mechanics. Researchers have proposed several approaches for user identity authentication via entanglement. Unfortunately, these protocols fail because an attacker can capture some of the particles in a transmitted sequence and send what is left to the receiver through a quantum channel. Subsequently, the attacker can restore some of the confidential messages, giving rise to the possibility of information leakage. Here we present a new robust General N user authentication protocol based on N-particle Greenberger-Horne-Zeilinger (GHZ) states, which makes eavesdropping detection more effective and secure, as compared to some current authentication protocols. The security analysis of our protocol for various kinds of attacks verifies that it is unconditionally secure, and that an attacker will not obtain any information about the transmitted key. Moreover, as the number of transferred key bits N becomes larger, while the number of users for transmitting the information is increased, the probability of effectively obtaining the transmitted authentication keys is reduced to zero.
General time-dependent formulation of quantum scattering theory
Althorpe, Stuart C.
2004-01-01
We derive and explain the key ideas behind a time-dependent formulation of quantum scattering theory, applicable generally to systems with a finite-range scattering potential. The scattering is initiated and probed by plane wave packets, which are localized just outside the range of the potential. The asymptotic limits of conventional scattering theory (initiation in the remote past; detection in the remote future) are not taken. Instead, the differential cross section (DCS) is obtained by projecting the scattered wave packet onto the probe plane wave packets. The projection also yields a time-dependent version of the DCS. Cuts through the wave packet, just as it exits the scattering potential, yield time-dependent and time-independent angular distributions that give a close-up picture of the scattering which complements the DCS. We have previously applied the theory to interpret experimental cross sections of chemical reactions [e.g., S. C. Althorpe, F. Fernandez-Alonso, B. D. Bean, J. D. Ayers, A. E. Pomerantz, R. N. Zare, and E. Wrede, Nature (London) 416, 67 (2002)]. This paper gives the derivation of the theory, and explains its relation to conventional scattering theory. For clarity, the derivation is restricted to spherical-particle scattering, though it may readily be extended to general multichannel systems. We illustrate the theory using a simple application to hard-sphere scattering
General Galilei Covariant Gaussian Maps
Gasbarri, Giulio; Toroš, Marko; Bassi, Angelo
2017-09-01
We characterize general non-Markovian Gaussian maps which are covariant under Galilean transformations. In particular, we consider translational and Galilean covariant maps and show that they reduce to the known Holevo result in the Markovian limit. We apply the results to discuss measures of macroscopicity based on classicalization maps, specifically addressing dissipation, Galilean covariance and non-Markovianity. We further suggest a possible generalization of the macroscopicity measure defined by Nimmrichter and Hornberger [Phys. Rev. Lett. 110, 16 (2013)].
Origin of chaos near three-dimensional quantum vortices: A general Bohmian theory
Tzemos, Athanasios C.; Efthymiopoulos, Christos; Contopoulos, George
2018-04-01
We provide a general theory for the structure of the quantum flow near three-dimensional (3D) nodal lines, i.e., one-dimensional loci where the 3D wave function becomes equal to zero. In suitably defined coordinates (comoving with the nodal line) the generic structure of the flow implies the formation of 3D quantum vortices. We show that such vortices are accompanied by nearby invariant lines of the comoving quantum flow, called X lines, which are normally hyperbolic. Furthermore, the stable and unstable manifolds of the X lines produce chaotic scatterings of nearby quantum (Bohmian) trajectories, thus inducing an intricate form of the quantum current in the neighborhood of each 3D quantum vortex. Generic formulas describing the structure around 3D quantum vortices are provided, applicable to an arbitrary choice of 3D wave function. We also give specific numerical examples as well as a discussion of the physical consequences of chaos near 3D quantum vortices.
Lectures on general quantum correlations and their applications
Pinto, Diogo; Adesso, Gerardo
2017-01-01
This book presents a distinctive way of understanding quantum correlations beyond entanglement, introducing readers to this less explored yet very fundamental aspect of quantum theory. It takes into account most of the new ideas involving quantum phenomena, resources, and applications without entanglement, both from a theoretical and an experimental point of view. This book serves as a reference for both beginner students and experienced researchers in physics and applied mathematics, with an interest in joining this novel venture towards understanding the quantum nature of the world.
High resolution kinetic beam schemes in generalized coordinates for ideal quantum gas dynamics
Shi, Yu-Hsin; Huang, J.C.; Yang, J.Y.
2007-01-01
A class of high resolution kinetic beam schemes in multiple space dimensions in general coordinates system for the ideal quantum gas is presented for the computation of quantum gas dynamical flows. The kinetic Boltzmann equation approach is adopted and the local equilibrium quantum statistics distribution is assumed. High-order accurate methods using essentially non-oscillatory interpolation concept are constructed. Computations of shock wave diffraction by a circular cylinder in an ideal quantum gas are conducted to illustrate the present method. The present method provides a viable means to explore various practical ideal quantum gas flows
Davidson's generalization of the Fenyes-Nelson stochastic model of quantum mechanics
Shucker, D.S.
1980-01-01
Davidson's generalization of the Fenyes-Nelson stochastic model of quantum mechanics is discussed. It is shown that this author's previous results concerning the Fenyes-Nelson process extend to the more general theory of Davidson. (orig.)
A general field-covariant formulation of quantum field theory
Anselmi, Damiano
2013-01-01
In all nontrivial cases renormalization, as it is usually formulated, is not a change of integration variables in the functional integral, plus parameter redefinitions, but a set of replacements, of actions and/or field variables and parameters. Because of this, we cannot write simple identities relating bare and renormalized generating functionals, or generating functionals before and after nonlinear changes of field variables. In this paper we investigate this issue and work out a general field-covariant approach to quantum field theory, which allows us to treat all perturbative changes of field variables, including the relation between bare and renormalized fields, as true changes of variables in the functional integral, under which the functionals Z and W=lnZ behave as scalars. We investigate the relation between composite fields and changes of field variables, and we show that, if J are the sources coupled to the elementary fields, all changes of field variables can be expressed as J-dependent redefinitions of the sources L coupled to the composite fields. We also work out the relation between the renormalization of variable-changes and the renormalization of composite fields. Using our transformation rules it is possible to derive the renormalization of a theory in a new variable frame from the renormalization in the old variable frame, without having to calculate it anew. We define several approaches, useful for different purposes, in particular a linear approach where all variable changes are described as linear source redefinitions. We include a number of explicit examples. (orig.)
One interpretation for both Quantum Mechanics and General Relativity
Halewijn, Ewoud
2014-07-01
In reconciling General Relativity with Quantum Mechanics, it is challenging to resolve the combined mathematical equations and to find an interpretation that makes sense ontologically. Such an interpretation has been developed by quantizing descriptive components in both the theories and other views. The resulting micro-components have been re-integrated within the scope of known gaps between science and 'the real world'. The odd peculiarities in these theories have been made look 'normal' by fully untraditionally answering fundamental questions. The interpretation is suggesting that we define time as a discrete operator and its eigenvalues as constraints on space-time manifolds, in order to reconcile the mathematical equations. Outside the mathematical arena we suggest reconsidering the concepts of Black Holes, the Big Bang, the epistemological problem of perception in philosophy and the supposed clash between scientific and the spiritual worldviews. It is concluded that developing one consistent ontological interpretation for both theorie is possible. It is a weird story, but it is making powerful suggestions for reviewing some of our fundamental convictions.
Two-way quantum communication: Generalization of secure ...
states among the n nodes of a quantum network, with the aid of a special kind of ... replica of the information state, i.e., this process has one-way quantum ... with respect to increase in the number of qubits going towards the controller Charlie.
Bayesian feedback versus Markovian feedback in a two-level atom
Wiseman, H.M.; Mancini, Stefano; Wang Jin
2002-01-01
We compare two different approaches to the control of the dynamics of a continuously monitored open quantum system. The first is Markovian feedback, as introduced in quantum optics by Wiseman and Milburn [Phys. Rev. Lett. 70, 548 (1993)]. The second is feedback based on an estimate of the system state, developed recently by Doherty and Jacobs [Phys. Rev. A 60, 2700 (1999)]. Here we choose to call it, for brevity, Bayesian feedback. For systems with nonlinear dynamics, we expect these two methods of feedback control to give markedly different results. The simplest possible nonlinear system is a driven and damped two-level atom, so we choose this as our model system. The monitoring is taken to be homodyne detection of the atomic fluorescence, and the control is by modulating the driving. The aim of the feedback in both cases is to stabilize the internal state of the atom as close as possible to an arbitrarily chosen pure state, in the presence of inefficient detection and other forms of decoherence. Our results (obtained without recourse to stochastic simulations) prove that Bayesian feedback is never inferior, and is usually superior, to Markovian feedback. However, it would be far more difficult to implement than Markovian feedback and it loses its superiority when obvious simplifying approximations are made. It is thus not clear which form of feedback would be better in the face of inevitable experimental imperfections
Loop space representation of quantum general relativity and the group of loops
Gambini, R.
1991-01-01
The action of the constraints of quantum general relativity on a general state in the loop representation is coded in terms of loop derivatives. These differential operators are related to the infinitesimal generators of the group of loops and generalize the area derivative first considered by Mandelstam. A new sector of solutions of the physical states space of nonperturbative quantum general relativity is found. (orig.)
Quantum image encryption based on generalized affine transform and logistic map
Liang, Hao-Ran; Tao, Xiang-Yang; Zhou, Nan-Run
2016-07-01
Quantum circuits of the generalized affine transform are devised based on the novel enhanced quantum representation of digital images. A novel quantum image encryption algorithm combining the generalized affine transform with logistic map is suggested. The gray-level information of the quantum image is encrypted by the XOR operation with a key generator controlled by the logistic map, while the position information of the quantum image is encoded by the generalized affine transform. The encryption keys include the independent control parameters used in the generalized affine transform and the logistic map. Thus, the key space is large enough to frustrate the possible brute-force attack. Numerical simulations and analyses indicate that the proposed algorithm is realizable, robust and has a better performance than its classical counterpart in terms of computational complexity.
Three-dimensional simplicial quantum gravity and generalized matrix models
Ambjoern, J.; Durhuus, B.; Jonsson, T.
1990-11-01
We consider a discrete model of Euclidean quantum gravity in three dimensions based on a summation over random simplicial manifolds. We derive some elementary properties of the model and discuss possible 'matrix' models for 3d gravity. (orig.)
General many-body formalism for composite quantum particles.
Combescot, M; Betbeder-Matibet, O
2010-05-21
This Letter provides a formalism capable of exactly treating Pauli blocking between n-fermion particles. This formalism is based on an operator algebra made of commutators and anticommutators which contrasts with the usual scalar formalism of Green functions developed half a century ago for elementary quantum particles. We also provide the diagrams which visualize the very specific many-body physics induced by fermion exchanges between composite quantum particles.
Fully Quantum Fluctuation Theorems
Åberg, Johan
2018-02-01
Systems that are driven out of thermal equilibrium typically dissipate random quantities of energy on microscopic scales. Crooks fluctuation theorem relates the distribution of these random work costs to the corresponding distribution for the reverse process. By an analysis that explicitly incorporates the energy reservoir that donates the energy and the control system that implements the dynamic, we obtain a quantum generalization of Crooks theorem that not only includes the energy changes in the reservoir but also the full description of its evolution, including coherences. Moreover, this approach opens up the possibility for generalizations of the concept of fluctuation relations. Here, we introduce "conditional" fluctuation relations that are applicable to nonequilibrium systems, as well as approximate fluctuation relations that allow for the analysis of autonomous evolution generated by global time-independent Hamiltonians. We furthermore extend these notions to Markovian master equations, implicitly modeling the influence of the heat bath.
Quantum dynamics of quantum bits
Nguyen, Bich Ha
2011-01-01
The theory of coherent oscillations of the matrix elements of the density matrix of the two-state system as a quantum bit is presented. Different calculation methods are elaborated in the case of a free quantum bit. Then the most appropriate methods are applied to the study of the density matrices of the quantum bits interacting with a classical pumping radiation field as well as with the quantum electromagnetic field in a single-mode microcavity. The theory of decoherence of a quantum bit in Markovian approximation is presented. The decoherence of a quantum bit interacting with monoenergetic photons in a microcavity is also discussed. The content of the present work can be considered as an introduction to the study of the quantum dynamics of quantum bits. (review)
Tolhoek, H.A.; Groot, S.R. de
1949-01-01
In the general case of a quantum mechanical system with a Hamiltonian that is invariant for rotations spatial degeneracy will exist. So the initial state must be characterized except by the energy also by e.g. the magnetic quantum number. Both for emission of light and electrons plus neutrinos
Conversion of a general quantum stabilizer code to an entanglement distillation protocol
Matsumoto, Ryutaroh [Department of Communications and Integrated Systems, Tokyo Institute of Technology, Tokyo 152-8552 (Japan)
2003-07-25
We show how to convert a quantum stabilizer code to a one- or two-way entanglement distillation protocol. The proposed conversion method is a generalization of those of Shor-Preskill and Nielsen-Chuang. The recurrence protocol and the quantum privacy amplification protocol are equivalent to the protocols converted from [[2, 1
Implementation of generalized measurements with minimal disturbance on a quantum computer
Decker, T.; Grassl, M.
2006-01-01
We consider the problem of efficiently implementing a generalized measurement on a quantum computer. Using methods from representation theory, we exploit symmetries of the states we want to identify respectively symmetries of the measurement operators. In order to allow the information to be extracted sequentially, the disturbance of the quantum state due to the measurement should be minimal. (Abstract Copyright [2006], Wiley Periodicals, Inc.)
Conversion of a general quantum stabilizer code to an entanglement distillation protocol
Matsumoto, Ryutaroh
2003-01-01
We show how to convert a quantum stabilizer code to a one- or two-way entanglement distillation protocol. The proposed conversion method is a generalization of those of Shor-Preskill and Nielsen-Chuang. The recurrence protocol and the quantum privacy amplification protocol are equivalent to the protocols converted from [[2, 1
Li, Zhen; Lee, Hee Sun; Darve, Eric; Karniadakis, George Em
2017-01-01
Memory effects are often introduced during coarse-graining of a complex dynamical system. In particular, a generalized Langevin equation (GLE) for the coarse-grained (CG) system arises in the context of Mori-Zwanzig formalism. Upon a pairwise decomposition, GLE can be reformulated into its pairwise version, i.e., non-Markovian dissipative particle dynamics (DPD). GLE models the dynamics of a single coarse particle, while DPD considers the dynamics of many interacting CG particles, with both CG systems governed by non-Markovian interactions. We compare two different methods for the practical implementation of the non-Markovian interactions in GLE and DPD systems. More specifically, a direct evaluation of the non-Markovian (NM) terms is performed in LE-NM and DPD-NM models, which requires the storage of historical information that significantly increases computational complexity. Alternatively, we use a few auxiliary variables in LE-AUX and DPD-AUX models to replace the non-Markovian dynamics with a Markovian dynamics in a higher dimensional space, leading to a much reduced memory footprint and computational cost. In our numerical benchmarks, the GLE and non-Markovian DPD models are constructed from molecular dynamics (MD) simulations of star-polymer melts. Results show that a Markovian dynamics with auxiliary variables successfully generates equivalent non-Markovian dynamics consistent with the reference MD system, while maintaining a tractable computational cost. Also, transient subdiffusion of the star-polymers observed in the MD system can be reproduced by the coarse-grained models. The non-interacting particle models, LE-NM/AUX, are computationally much cheaper than the interacting particle models, DPD-NM/AUX. However, the pairwise models with momentum conservation are more appropriate for correctly reproducing the long-time hydrodynamics characterised by an algebraic decay in the velocity autocorrelation function.
Generalized Gelfand-Naimark-Segal construction for supersymmetric quantum mechanics
Fryderyszak, A.; Jakobczyk, L.
1988-01-01
The consistent treatment of anticommuting parameters in quantum theories requires the introduction of the Hilbert Q module with a Q scalar product (where Q is infinite-dimensional Grassman-Banach algebra). The extended GNS construction for representations of Q algebras on such Q modules is given. (orig.)
Quantum information and information loss in general relativity
Hooft, G. 't
1996-01-01
When it comes to performing thought experiments with black holes, Einstein-Bohr like discussions have to be re-opened. For instance one can ask what happens to the quantum state of a black hole when the wave function of a single ingoing particle is replaced by an other one that is orthogonal to the
Cross-conjugation and quantum interference: a general correlation?
Valkenier, Hennie; Guedon, Constant M.; Markussen, Troels
2014-01-01
We discuss the relationship between the pi-conjugation pattern, molecular length, and charge transport properties of molecular wires, both from an experimental and a theoretical viewpoint. Specifically, we focus on the role of quantum interference in the conductance properties of cross-conjugated...
Indefinite-metric quantum field theory of general relativity, 6
Nakanishi, Noboru
1979-01-01
The canonical commutation relations are analyzed in detail in the indefinite-metric quantum field theory of gravity based on the vierbein formalism. It is explicitly verified that the BRS charge, the local-Lorentz-BRS charge and the Poincare generators satisfy the expected commutation relations. (author)
Quantum optics, molecular spectroscopy and low-temperaturespectroscopy: general discussion
Orrit, M.; Evans, G.; Cordes, T.; Kratochvílová, Irena
2015-01-01
Roč. 184, Sep (2015), 275-303 ISSN 1359-6640 R&D Projects: GA TA ČR TA04020156 Institutional support: RVO:68378271 Keywords : quantum optics * molecular spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.544, year: 2015
Coherent states, quantum gravity, and the Born-Oppenheimer approximation. I. General considerations
Stottmeister, Alexander; Thiemann, Thomas
2016-01-01
This article, as the first of three, aims at establishing the (time-dependent) Born-Oppenheimer approximation, in the sense of space adiabatic perturbation theory, for quantum systems constructed by techniques of the loop quantum gravity framework, especially the canonical formulation of the latter. The analysis presented here fits into a rather general framework and offers a solution to the problem of applying the usual Born-Oppenheimer ansatz for molecular (or structurally analogous) systems to more general quantum systems (e.g., spin-orbit models) by means of space adiabatic perturbation theory. The proposed solution is applied to a simple, finite dimensional model of interacting spin systems, which serves as a non-trivial, minimal model of the aforesaid problem. Furthermore, it is explained how the content of this article and its companion affect the possible extraction of quantum field theory on curved spacetime from loop quantum gravity (including matter fields).
An introduction to the general boundary formulation of quantum field theory
Colosi, Daniele
2015-01-01
We give a brief introduction to the so-called general boundary formulation (GBF) of quantum theory. This new axiomatic formulation provides a description of the quantum dynamics which is manifestly local and does not rely on a metric background structure for its definition. We present the basic ingredients of the GBF, in particular we review the core axioms that assign algebraic structures to geometric ones, the two quantisation schemes so far developed for the GBF and the probability interpretation which generalizes the standard Born rule. Finally we briefly discuss some of the results obtained studying specific quantum field theories within the GBF. (paper)
Multiple-event probability in general-relativistic quantum mechanics. II. A discrete model
Mondragon, Mauricio; Perez, Alejandro; Rovelli, Carlo
2007-01-01
We introduce a simple quantum mechanical model in which time and space are discrete and periodic. These features avoid the complications related to continuous-spectrum operators and infinite-norm states. The model provides a tool for discussing the probabilistic interpretation of generally covariant quantum systems, without the confusion generated by spurious infinities. We use the model to illustrate the formalism of general-relativistic quantum mechanics, and to test the definition of multiple-event probability introduced in a companion paper [Phys. Rev. D 75, 084033 (2007)]. We consider a version of the model with unitary time evolution and a version without unitary time evolution
Markovian representations of current algebras
Streater, R.F.
1977-01-01
Hegerfeldt's concept (Commun. Math. Phys.; 35:155 (1974)) of T-positivity in Euclidean random fields is generalized to non-commutative probability theory, that is, to Euclidean Fermi fields and to current algebra with possible Schwinger terms. The axioms used imply the Wightman axioms. A non-Abelian form of Markovicity is introduced, and is shown to imply T-positivity if a reflection property holds. The investigation suggests a generalization of Nelson-Symanzik positivity, which might be valid in cases when the extension of the Schwinger functions to coinciding arguments is not expected to maintain both commutativity and positivity (or anti-commutativity and positivity). (author)
Open quantum systems and error correction
Shabani Barzegar, Alireza
Quantum effects can be harnessed to manipulate information in a desired way. Quantum systems which are designed for this purpose are suffering from harming interaction with their surrounding environment or inaccuracy in control forces. Engineering different methods to combat errors in quantum devices are highly demanding. In this thesis, I focus on realistic formulations of quantum error correction methods. A realistic formulation is the one that incorporates experimental challenges. This thesis is presented in two sections of open quantum system and quantum error correction. Chapters 2 and 3 cover the material on open quantum system theory. It is essential to first study a noise process then to contemplate methods to cancel its effect. In the second chapter, I present the non-completely positive formulation of quantum maps. Most of these results are published in [Shabani and Lidar, 2009b,a], except a subsection on geometric characterization of positivity domain of a quantum map. The real-time formulation of the dynamics is the topic of the third chapter. After introducing the concept of Markovian regime, A new post-Markovian quantum master equation is derived, published in [Shabani and Lidar, 2005a]. The section of quantum error correction is presented in three chapters of 4, 5, 6 and 7. In chapter 4, we introduce a generalized theory of decoherence-free subspaces and subsystems (DFSs), which do not require accurate initialization (published in [Shabani and Lidar, 2005b]). In Chapter 5, we present a semidefinite program optimization approach to quantum error correction that yields codes and recovery procedures that are robust against significant variations in the noise channel. Our approach allows us to optimize the encoding, recovery, or both, and is amenable to approximations that significantly improve computational cost while retaining fidelity (see [Kosut et al., 2008] for a published version). Chapter 6 is devoted to a theory of quantum error correction (QEC
Linear entropy in quantum phase space
Rosales-Zarate, Laura E. C.; Drummond, P. D.
2011-01-01
We calculate the quantum Renyi entropy in a phase-space representation for either fermions or bosons. This can also be used to calculate purity and fidelity, or the entanglement between two systems. We show that it is possible to calculate the entropy from sampled phase-space distributions in normally ordered representations, although this is not possible for all quantum states. We give an example of the use of this method in an exactly soluble thermal case. The quantum entropy cannot be calculated at all using sampling methods in classical symmetric (Wigner) or antinormally ordered (Husimi) phase spaces, due to inner-product divergences. The preferred method is to use generalized Gaussian phase-space methods, which utilize a distribution over stochastic Green's functions. We illustrate this approach by calculating the reduced entropy and entanglement of bosonic or fermionic modes coupled to a time-evolving, non-Markovian reservoir.
Strong Coupling Corrections in Quantum Thermodynamics
Perarnau-Llobet, M.; Wilming, H.; Riera, A.; Gallego, R.; Eisert, J.
2018-03-01
Quantum systems strongly coupled to many-body systems equilibrate to the reduced state of a global thermal state, deviating from the local thermal state of the system as it occurs in the weak-coupling limit. Taking this insight as a starting point, we study the thermodynamics of systems strongly coupled to thermal baths. First, we provide strong-coupling corrections to the second law applicable to general systems in three of its different readings: As a statement of maximal extractable work, on heat dissipation, and bound to the Carnot efficiency. These corrections become relevant for small quantum systems and vanish in first order in the interaction strength. We then move to the question of power of heat engines, obtaining a bound on the power enhancement due to strong coupling. Our results are exemplified on the paradigmatic non-Markovian quantum Brownian motion.
Linear entropy in quantum phase space
Rosales-Zarate, Laura E. C.; Drummond, P. D. [Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne 3122 (Australia)
2011-10-15
We calculate the quantum Renyi entropy in a phase-space representation for either fermions or bosons. This can also be used to calculate purity and fidelity, or the entanglement between two systems. We show that it is possible to calculate the entropy from sampled phase-space distributions in normally ordered representations, although this is not possible for all quantum states. We give an example of the use of this method in an exactly soluble thermal case. The quantum entropy cannot be calculated at all using sampling methods in classical symmetric (Wigner) or antinormally ordered (Husimi) phase spaces, due to inner-product divergences. The preferred method is to use generalized Gaussian phase-space methods, which utilize a distribution over stochastic Green's functions. We illustrate this approach by calculating the reduced entropy and entanglement of bosonic or fermionic modes coupled to a time-evolving, non-Markovian reservoir.
Dynamics of density fluctuations in a non-Markovian Boltzmann- Langevin model
Ayik, S.
1996-01-01
In the course of the past few years, the nuclear Boltzmann-Langevin (BL)model has emerged as a promising microscopic model for nuclear dynamics at intermediate energies. The BL model goes beyond the much employed Boltzmann-Uehling-Uhlenbeck (BUU) model, and hence it provides a basis for describing dynamics of density fluctuations and addressing processes exhibiting spontaneous symmetry breaking and catastrophic transformations in nuclear collisions, such as induced fission and multifragmentation. In these standard models, the collision term is treated in a Markovian approximation by assuming that two-body collisions are local in both space and time, in accordance with Boltzmann's original treatment. This simplification is usually justified by the fact that the duration of a two-body collision is short on the time scale characteristic of the macroscopic evolution of the system. As a result, transport properties of the collective motion has then a classical character. However, when the system possesses fast collective modes with characteristic energies that are not small in comparision with the temperature, then the quantum-statistical effects are important and the standard Markovian treatment is inadequate. In this case, it is necessary to improve the one-body transport model by including the memory effect due to the finite duration of two-body collisions. First we briefly describe the non-Markovian extension of the BL model by including the finite memory time associated with two-body collisions. Then, using this non-Markovian model in a linear response framework, we investigate the effect of the memory time on the agitation of unstable modes in nuclear matter in the spinodal zone, and calculate the collisional relaxation rates of nuclear collective vibrations
Is there a relativistic nonlinear generalization of quantum mechanics?
Elze, Hans-Thomas [Dipartimento di Fisica ' Enrico Fermi' , Largo Pontecorvo 3, I-56127 Pisa (Italy)
2007-05-15
Yes, there is. - A new kind of gauge theory is introduced, where the minimal coupling and corresponding covariant derivatives are defined in the space of functions pertaining to the functional Schroedinger picture of a given field theory. While, for simplicity, we study the example of a U(1) symmetry, this kind of gauge theory can accommodate other symmetries as well. We consider the resulting relativistic nonlinear extension of quantum mechanics and show that it incorporates gravity in the (0+1)-dimensional limit, where it leads to the Schroedinger-Newton equations. Gravity is encoded here into a universal nonlinear extension of quantum theory. The probabilistic interpretation, i.e. Born's rule, holds provided the underlying model has only dimensionless parameters.
Indefinite-metric quantum field theory of general relativity, 15
Nakanishi, Noboru
1982-01-01
In the manifestly covariant canonical formalism of quantum gravity, it is known that the equal-time commutator between a tensor field and the B field b sub(rho) is consistent with the rules of tensor analysis. Another tensorlike commutation relation is shown to exist for the equal-time commutator between a tensor and b sub(rho), but at the same time its limitation is clarified. The quantum-gravity extension of the invariant D function is defined and provied to be affine-invariant. The four-dimensional commutation relation between a tensor and b sub(rho) is investigated, and it is shown that the commutator consists of a completely tensorlike, manifestly affine-covariant part and a remainder, which is clearly distinguishable from the former. (author)
A general action for topological quantum field theories
Dayi, O.F.
1989-03-01
Topological field theories can be formulated by beginning from a higher dimensional action. The additional dimension is an unphysical time parameter and the action is the derivative of a functional W with respect to this variable. In the d = 4 case, it produces actions which are shown to give topological quantum field theory after gauge fixing. In d = 3 this action leads to the Hamiltonian, which yields the Floer groups if the additional parameter is treated as physical when W is the pure Chern-Simons action. This W can be used to define a topological quantum field theory in d = 3 by treating the additional parameter as unphysical. The BFV-BRST operator quantization of this theory yields to an enlarged system which has only first class constraints. This is not identical to the previously introduced d = 3 topological quantum field theory, even if it is shown that the latter theory also gives the theory which we began with, after a partial gauge fixing. (author). 18 refs
On quantum Rényi entropies: A new generalization and some properties
Müller-Lennert, Martin [Department of Mathematics, ETH Zurich, 8092 Zürich (Switzerland); Dupuis, Frédéric [Department of Computer Science, Aarhus University, 8200 Aarhus (Denmark); Szehr, Oleg [Department of Mathematics, Technische Universität München, 85748 Garching (Germany); Fehr, Serge [CWI (Centrum Wiskunde and Informatica), 1090 Amsterdam (Netherlands); Tomamichel, Marco [Centre for Quantum Technologies, National University of Singapore, Singapore 117543 (Singapore)
2013-12-15
The Rényi entropies constitute a family of information measures that generalizes the well-known Shannon entropy, inheriting many of its properties. They appear in the form of unconditional and conditional entropies, relative entropies, or mutual information, and have found many applications in information theory and beyond. Various generalizations of Rényi entropies to the quantum setting have been proposed, most prominently Petz's quasi-entropies and Renner's conditional min-, max-, and collision entropy. However, these quantum extensions are incompatible and thus unsatisfactory. We propose a new quantum generalization of the family of Rényi entropies that contains the von Neumann entropy, min-entropy, collision entropy, and the max-entropy as special cases, thus encompassing most quantum entropies in use today. We show several natural properties for this definition, including data-processing inequalities, a duality relation, and an entropic uncertainty relation.
On quantum Rényi entropies: A new generalization and some properties
Müller-Lennert, Martin; Dupuis, Frédéric; Szehr, Oleg; Fehr, Serge; Tomamichel, Marco
2013-01-01
The Rényi entropies constitute a family of information measures that generalizes the well-known Shannon entropy, inheriting many of its properties. They appear in the form of unconditional and conditional entropies, relative entropies, or mutual information, and have found many applications in information theory and beyond. Various generalizations of Rényi entropies to the quantum setting have been proposed, most prominently Petz's quasi-entropies and Renner's conditional min-, max-, and collision entropy. However, these quantum extensions are incompatible and thus unsatisfactory. We propose a new quantum generalization of the family of Rényi entropies that contains the von Neumann entropy, min-entropy, collision entropy, and the max-entropy as special cases, thus encompassing most quantum entropies in use today. We show several natural properties for this definition, including data-processing inequalities, a duality relation, and an entropic uncertainty relation
Thermodynamic stability criteria for a quantum memory based on stabilizer and subsystem codes
Chesi, Stefano; Loss, Daniel; Bravyi, Sergey; Terhal, Barbara M
2010-01-01
We discuss several thermodynamic criteria that have been introduced to characterize the thermal stability of a self-correcting quantum memory. We first examine the use of symmetry-breaking fields in analyzing the properties of self-correcting quantum memories in the thermodynamic limit; we show that the thermal expectation values of all logical operators vanish for any stabilizer and any subsystem code in any spatial dimension. On the positive side, we generalize the results of Alicki et al to obtain a general upper bound on the relaxation rate of a quantum memory at nonzero temperature, assuming that the quantum memory interacts via a Markovian master equation with a thermal bath. This upper bound is applicable to quantum memories based on either stabilizer or subsystem codes.
Decoherence in open quantum systems
Isar, A.
2005-01-01
In the framework of the Lindblad theory for open quantum systems we determine the degree of quantum decoherence of a harmonic oscillator interacting with a thermal bath. In the present paper we have studied QD with the Markovian equation of Lindblad in order to understand the quantum to classical transition for a system consisting of an one-dimensional harmonic oscillator in interaction with a thermal bath in the framework of the theory of open quantum systems based on quantum dynamical semigroups. The role of QD became relevant in many interesting physical problems from field theory, atomic physics, quantum optics and quantum information processing, to which we can add material science, heavy ion collisions, quantum gravity and cosmology, condensed matter physics. Just to mention only a few of them: to understand the way in which QD enhances the quantum to classical transition of density fluctuations; to study systems of trapped and cold atoms (or ions) which may offer the possibility of engineering the environment, like trapped atoms inside cavities, relation between decoherence and other cavity QED effects (such as Casimir effect); on mesoscopic scale, decoherence in the context of Bose-Einstein condensation. In many cases physicists are interested in understanding the specific causes of QD just because they want to prevent decoherence from damaging quantum states and to protect the information stored in quantum states from the degrading effect of the interaction with the environment. Thus, decoherence is responsible for washing out the quantum interference effects which are desirable to be seen as signals in some experiments. QD has a negative influence on many areas relying upon quantum coherence effects, such as quantum computation and quantum control of atomic and molecular processes. The physics of information and computation is such a case, where decoherence is an obvious major obstacle in the implementation of information-processing hardware that takes
Sufficient conditions for positivity of non-Markovian master equations with Hermitian generators
Wilkie, Joshua; Wong Yinmei
2009-01-01
We use basic physical motivations to develop sufficient conditions for positive semidefiniteness of the reduced density matrix for generalized non-Markovian integrodifferential Lindblad-Kossakowski master equations with Hermitian generators. We show that it is sufficient for the memory function to be the Fourier transform of a real positive symmetric frequency density function with certain properties. These requirements are physically motivated, and are more general and more easily checked than previously stated sufficient conditions. We also explore the decoherence dynamics numerically for some simple models using the Hadamard representation of the propagator. We show that the sufficient conditions are not necessary conditions. We also show that models exist in which the long time limit is in part determined by non-Markovian effects
Ding, Zhi-yong [School of Physics & Material Science, Anhui University, Hefei 230039 (China); School of Physics & Electronic Engineering, Fuyang Normal University, Fuyang 236037 (China); He, Juan, E-mail: juanhe78@163.com [School of Physics & Electronic Engineering, Fuyang Normal University, Fuyang 236037 (China); Ye, Liu, E-mail: yeliu@ahu.edu.cn [School of Physics & Material Science, Anhui University, Hefei 230039 (China)
2017-02-15
A feasible scheme for protecting the Greenberger–Horne–Zeilinger (GHZ) entanglement state in non-Markovian environments is proposed. It consists of prior weak measurement on each qubit before the interaction with decoherence environments followed by post quantum measurement reversals. It is shown that both the fidelity and concurrence of the GHZ state can be effectively improved. Meanwhile, we also verified that our scenario can enhance tripartite nonlocality remarkably. In addition, the result indicates that the larger the weak measurement strength, the better the effectiveness of the scheme with the lower success probability.
Siudzińska, Katarzyna; Chruściński, Dariusz
2018-03-01
In matrix algebras, we introduce a class of linear maps that are irreducibly covariant with respect to the finite group generated by the Weyl operators. In particular, we analyze the irreducibly covariant quantum channels, that is, the completely positive and trace-preserving linear maps. Interestingly, imposing additional symmetries leads to the so-called generalized Pauli channels, which were recently considered in the context of the non-Markovian quantum evolution. Finally, we provide examples of irreducibly covariant positive but not necessarily completely positive maps.
Joint Probability Distributions for a Class of Non-Markovian Processes
Baule, A.; Friedrich, R.
2004-01-01
We consider joint probability distributions for the class of coupled Langevin equations introduced by Fogedby [H.C. Fogedby, Phys. Rev. E 50, 1657 (1994)]. We generalize well-known results for the single time probability distributions to the case of N-time joint probability distributions. It is shown that these probability distribution functions can be obtained by an integral transform from distributions of a Markovian process. The integral kernel obeys a partial differential equation with fr...
Li, Jin Jin
2013-01-01
A mechanical oscillator coupled to the optical field in a cavity is a typical cavity optomechanical system. In our textbook, we prepare to introduce the quantum optical properties of optomechanical system, i.e. linear and nonlinear effects. Some quantum optical devices based on optomechanical system are also presented in the monograph, such as the Kerr modulator, quantum optical transistor, optomechanical mass sensor, and so on. But most importantly, we extend the idea of typical optomechanical system to coupled mechanical resonator system and demonstrate that the combined two-level structure
Comment on 'Immirzi parameter in quantum general relativity'
Samuel, Joseph
2001-01-01
The Immirzi parameter is a free parameter which appears in the physical predictions of loop quantum gravity and is sometimes viewed as a quantization ambiguity. Interpretations have been offered for the Immirzi ambiguity, but there does not appear to be a clear understanding or even a consensus about its origin and significance. We show that a previously discussed example containing a 'finite dimensional analogue' of the Immirzi ambiguity is fallacious, in the sense that the ambiguity in this example is not intrinsic to the system, but introduced artificially by compactifying the configuration space
Renyi generalizations of the conditional quantum mutual information
2015-02-23
Physical Review Letters, 100(23):230501, June 2008. [20] Frederic Dupuis , Lea Kramer, Philippe Faist, Joseph M. Renes, and Renato Renner. Pro- ceedings...relative Rényi entropy. Journal of Mathematical Physics, 54(12):122201, December 2013. arXiv:1306.5358. 49 [25] Christopher A. Fuchs and Jeroen van de...Lennert, Frédéric Dupuis , Oleg Szehr, Serge Fehr, and Marco Tomamichel. On quantum Rényi entropies: a new definition and some properties. Journal
On the relation of the theoretical foundations of quantum theory and general relativity theory
Kober, Martin
2010-01-01
The specific content of the present thesis is presented in the following way. First the most important contents of quantum theory and general relativity theory are presented. In connection with the general relativity theory the mathematical property of the diffeomorphism invariance plays the deciding role, while concerning the quantum theory starting from the Copenhagen interpretation first the measurement problem is treated, before basing on the analysis of concrete phenomena and the mathematical apparatus of quantum theory the nonlocality is brought into focus as an important property. This means that both theories suggest a relationalistic view of the nature of the space. This analysis of the theoretical foundations of quantum theory and general relativity theory in relation to the nature of the space obtains only under inclusion of Kant's philosophy and his analysis of the terms space and time as fundamental forms of perception its full persuasive power. Then von Weizsaeckers quantum theory of the ur-alternatives is presented. Finally attempts are made to apply the obtained knowledge to the question of the quantum-theoretical formulation of general relativity theory.
Walach, H
2003-08-01
Homeopathy is scientifically banned, both for lack of consistent empirical findings, but more so for lack of a sound theoretical model to explain its purported effects. This paper makes an attempt to introduce an explanatory idea based on a generalized version of quantum mechanics (QM), the weak quantum theory (WQT). WQT uses the algebraic formalism of QM proper, but drops some restrictions and definitions typical for QM. This results in a general axiomatic framework similar to QM, but more generalized and applicable to all possible systems. Most notably, WQT predicts entanglement, which in QM is known as Einstein-Podolsky-Rosen (EPR) correlatedness within quantum systems. According to WQT, this entanglement is not only tied to quantum systems, but is to be expected whenever a global and a local variable describing a system are complementary. This idea is used here to reconstruct homeopathy as an exemplification of generalized entanglement as predicted by WQT. It transpires that homeopathy uses two instances of generalized entanglement: one between the remedy and the original substance (potentiation principle) and one between the individual symptoms of a patient and the general symptoms of a remedy picture (similarity principle). By bringing these two elements together, double entanglement ensues, which is reminiscent of cryptographic and teleportation applications of entanglement in QM proper. Homeopathy could be a macroscopic analogue to quantum teleportation. This model is exemplified and some predictions are derived, which make it possible to test the model. Copyright 2003 S. Karger GmbH, Freiburg
General Linearized Theory of Quantum Fluctuations around Arbitrary Limit Cycles.
Navarrete-Benlloch, Carlos; Weiss, Talitha; Walter, Stefan; de Valcárcel, Germán J
2017-09-29
The theory of Gaussian quantum fluctuations around classical steady states in nonlinear quantum-optical systems (also known as standard linearization) is a cornerstone for the analysis of such systems. Its simplicity, together with its accuracy far from critical points or situations where the nonlinearity reaches the strong coupling regime, has turned it into a widespread technique, being the first method of choice in most works on the subject. However, such a technique finds strong practical and conceptual complications when one tries to apply it to situations in which the classical long-time solution is time dependent, a most prominent example being spontaneous limit-cycle formation. Here, we introduce a linearization scheme adapted to such situations, using the driven Van der Pol oscillator as a test bed for the method, which allows us to compare it with full numerical simulations. On a conceptual level, the scheme relies on the connection between the emergence of limit cycles and the spontaneous breaking of the symmetry under temporal translations. On the practical side, the method keeps the simplicity and linear scaling with the size of the problem (number of modes) characteristic of standard linearization, making it applicable to large (many-body) systems.
Non-Markovian modification of the golden rule rate expression
Basilevsky, M. V.; Davidovich, G. V.; Titov, S. V.; Voronin, A. I.
2006-01-01
The reformulation of the standard golden rule approach considered in this paper for treating reactive tunneling reduces the computation of the reaction rate to a derivation of band shapes for energy levels of reactant and product states. This treatment is based on the assumption that the medium environment is actively involved as a partner in the energy exchange with the reactive subsystem but its reorganization effect is negligible. Starting from the quantum relaxation equation for the density matrix, the required band shapes are represented in terms of the spectral density function, exhibiting the continuum spectrum inherent to the interaction between the reactants and the medium in the total reactive system. The simplest Lorentzian spectral bands, obtained under Redfield approximation, proved to be unsatisfactory because they produced a divergent rate expression at low temperature. The problem is resolved by invoking a refined spectral band shape, which behaves as Lorentzian one at the band center but decays exponentially at its tails. The corresponding closed non-Markovian rate expression is derived and investigated taking as an example the photochemical H-transfer reaction between fluorene and acridine proceeding in the fluorene molecular crystal. The kinetics in this reactive system was thoroughly studied experimentally in a wide temperature range [B. Prass et al., Ber. Bunsenges. Phys. Chem. 102, 498 (1998)
Nash equilibria in quantum games with generalized two-parameter strategies
Flitney, Adrian P.; Hollenberg, Lloyd C.L.
2007-01-01
In the Eisert protocol for 2x2 quantum games [J. Eisert, et al., Phys. Rev. Lett. 83 (1999) 3077], a number of authors have investigated the features arising from making the strategic space a two-parameter subset of single qubit unitary operators. We argue that the new Nash equilibria and the classical-quantum transitions that occur are simply an artifact of the particular strategy space chosen. By choosing a different, but equally plausible, two-parameter strategic space we show that different Nash equilibria with different classical-quantum transitions can arise. We generalize the two-parameter strategies and also consider these strategies in a multiplayer setting
General tradeoff relations of quantum nonlocality in the Clauser–Horne–Shimony–Holt scenario
Su, Hong-Yi, E-mail: hongyisu@chonnam.ac.kr [Department of Physics Education, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Chen, Jing-Ling [Theoretical Physics Division, Chern Institute of Mathematics, Nankai University, Tianjin 300071 (China); Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore); Hwang, Won-Young, E-mail: wyhwang@jnu.ac.kr [Department of Physics Education, Chonnam National University, Gwangju 500-757 (Korea, Republic of)
2017-02-15
General tradeoff relations present in nonlocal correlations of bipartite systems are studied, regardless of any specific quantum states and measuring directions. Extensions to multipartite scenarios are possible and very promising. Tsirelson’s bound can be derived out in particular. The close connection with uncertainty relations is also presented and discussed. - Highlights: • Quantum violation of CHSH inequalities is found to satisfy tradeoff relations. • Tsirelson’s bound for quantum mechanics can be directly implied from these tradeoffs. • Tradeoff relations shed new light on uncertainty relations in summation forms.
Operator algebras for general one-dimensional quantum mechanical potentials with discrete spectrum
Wuensche, Alfred
2002-01-01
We define general lowering and raising operators of the eigenstates for one-dimensional quantum mechanical potential problems leading to discrete energy spectra and investigate their associative algebra. The Hamilton operator is quadratic in these lowering and raising operators and corresponding representations of operators for action and angle are found. The normally ordered representation of general operators using combinatorial elements such as partitions is derived. The introduction of generalized coherent states is discussed. Linear laws for the spacing of the energy eigenvalues lead to the Heisenberg-Weyl group and general quadratic laws of level spacing to unitary irreducible representations of the Lie group SU(1, 1) that is considered in detail together with a limiting transition from this group to the Heisenberg-Weyl group. The relation of the approach to quantum deformations is discussed. In two appendices, the classical and quantum mechanical treatment of the squared tangent potential is presented as a special case of a system with quadratic level spacing
Anti-hydrogen: The cusp between quantum mechanics and general relativity
Noyes, H.P.
1992-09-01
We argue that the crossing (CPT) symmetry of relativistic quantum mechanics requires that both the coulombic and the Newtonian force between pairs of particles will reverse when one is replaced by its anti-particle. For consistency, this requires a theory in which both the equivalence principles and gauge invariance are abandoned. thus whether anti-hydrogen ''falls'' up or down will provide an experiment crusis separating general relativity and gauge invariance from this version of quantum mechanics
Wu, S. Q.; Cai, X.
2000-01-01
Four classical laws of black hole thermodynamics are extended from exterior (event) horizon to interior (Cauchy) horizon. Especially, the first law of classical thermodynamics for Kerr-Newman black hole (KNBH) is generalized to those in quantum form. Then five quantum conservation laws on the KNBH evaporation effect are derived in virtue of thermodynamical equilibrium conditions. As a by-product, Bekenstein-Hawking's relation $ S=A/4 $ is exactly recovered.
Wu, S.Q.; Cai, X.
2000-01-01
Four classical laws of black-hole thermodynamics are extended from exterior (event) horizon to interior (Cauchy) horizon. Especially, the first law of classical thermodynamics for Kerr-Newman black hole (KNBH) is generalized to those in quantum form. Then five quantum conservation laws on the KNBH evaporation effect are derived in virtue of thermodynamical equilibrium conditions. As a by-product, Bekenstein-Haw king's relation S=A/4 is exactly recovered
Quantumness-generating capability of quantum dynamics
Li, Nan; Luo, Shunlong; Mao, Yuanyuan
2018-04-01
We study quantumness-generating capability of quantum dynamics, where quantumness refers to the noncommutativity between the initial state and the evolving state. In terms of the commutator of the square roots of the initial state and the evolving state, we define a measure to quantify the quantumness-generating capability of quantum dynamics with respect to initial states. Quantumness-generating capability is absent in classical dynamics and hence is a fundamental characteristic of quantum dynamics. For qubit systems, we present an analytical form for this measure, by virtue of which we analyze several prototypical dynamics such as unitary dynamics, phase damping dynamics, amplitude damping dynamics, and random unitary dynamics (Pauli channels). Necessary and sufficient conditions for the monotonicity of quantumness-generating capability are also identified. Finally, we compare these conditions for the monotonicity of quantumness-generating capability with those for various Markovianities and illustrate that quantumness-generating capability and quantum Markovianity are closely related, although they capture different aspects of quantum dynamics.
Skagerstam, B.K.
1976-01-01
We discuss a generalization of the conventional sine-Gordon quantum field theory by using methods recently developed by Coleman. As a result we can argue that the equivalence between the sine-Gordon theory and the massive Thirring model is unaffected if we perturb the sine-Gordon Hamiltonian by a bounded perturbation consisting of a continuous sum of sine-Gordon type interactions
Distribution of tunnelling times for quantum electron transport
Rudge, Samuel L.; Kosov, Daniel S.
2016-01-01
In electron transport, the tunnelling time is the time taken for an electron to tunnel out of a system after it has tunnelled in. We define the tunnelling time distribution for quantum processes in a dissipative environment and develop a practical approach for calculating it, where the environment is described by the general Markovian master equation. We illustrate the theory by using the rate equation to compute the tunnelling time distribution for electron transport through a molecular junction. The tunnelling time distribution is exponential, which indicates that Markovian quantum tunnelling is a Poissonian statistical process. The tunnelling time distribution is used not only to study the quantum statistics of tunnelling along the average electric current but also to analyse extreme quantum events where an electron jumps against the applied voltage bias. The average tunnelling time shows distinctly different temperature dependence for p- and n-type molecular junctions and therefore provides a sensitive tool to probe the alignment of molecular orbitals relative to the electrode Fermi energy.
General entanglement-assisted transformation for bipartite pure quantum states
Song, Wei; Huang, Yan; Nai-LeLiu; Chen, Zeng-Bing
2007-01-01
We introduce the general catalysts for pure entanglement transformations under local operations and classical communications in such a way that we disregard the profit and loss of entanglement of the catalysts per se. As such, the possibilities of pure entanglement transformations are greatly expanded. We also design an efficient algorithm to detect whether a k × k general catalyst exists for a given entanglement transformation. This algorithm can also be exploited to witness the existence of standard catalysts.
Quantum tomography, phase-space observables and generalized Markov kernels
Pellonpaeae, Juha-Pekka
2009-01-01
We construct a generalized Markov kernel which transforms the observable associated with the homodyne tomography into a covariant phase-space observable with a regular kernel state. Illustrative examples are given in the cases of a 'Schroedinger cat' kernel state and the Cahill-Glauber s-parametrized distributions. Also we consider an example of a kernel state when the generalized Markov kernel cannot be constructed.
General structure of quantum mechanics. The objections raised by Einstein, Podolsky and Rosen
Laloe, F.
1981-01-01
First, the general formulation of quantum mechanics is briefly presented, with the so called 'Copenhagen interpretation', and a few very simple examples are given. Then, the general experimental scheme imagined by Einstein, Podolsky and Rosen is discussed in detail, for two correlated spin 1/2 particules, in terms of the elements of physical reality which can be attached to the system. A macroscopic analogue is given, in order to emphasize how strange the language of quantum mechanics may become when applied to every day life phenomena, where all correlation phenomena are explained in terms of a common cause in the past. Finally, the notions of separability, locality and determinism are introduced [fr
The generally covariant locality principle - a new paradigm for local quantum field theory
Brunetti, R.; Fredenhagen, K.; Verch, R.
2002-05-01
A new approach to the model-independent description of quantum field theories will be introduced in the present work. The main feature of this new approach is to incorporate in a local sense the principle of general covariance of general relativity, thus giving rise to the concept of a locally covariant quantum field theory. Such locally covariant quantum field theories will be described mathematically in terms of covariant functors between the categories, on one side, of globally hyperbolic spacetimes with isometric embeddings as morphisms and, on the other side, of *-algebras with unital injective *-endomorphisms as morphisms. Moreover, locally covariant quantum fields can be described in this framework as natural transformations between certain functors. The usual Haag-Kastler framework of nets of operator-algebras over a fixed spacetime background-manifold, together with covariant automorphic actions of the isometry-group of the background spacetime, can be re-gained from this new approach as a special case. Examples of this new approach are also outlined. In case that a locally covariant quantum field theory obeys the time-slice axiom, one can naturally associate to it certain automorphic actions, called ''relative Cauchy-evolutions'', which describe the dynamical reaction of the quantum field theory to a local change of spacetime background metrics. The functional derivative of a relative Cauchy-evolution with respect to the spacetime metric is found to be a divergence-free quantity which has, as will be demonstrated in an example, the significance of an energy-momentum tensor for the locally covariant quantum field theory. Furthermore, we discuss the functorial properties of state spaces of locally covariant quantum field theories that entail the validity of the principle of local definiteness. (orig.)
Quantum anomalies for generalized Euclidean Taub-NUT metrics
Cotaescu, Ion I; Moroianu, Sergiu; Visinescu, Mihai
2005-01-01
The generalized Taub-NUT metrics exhibit in general gravitational anomalies. This is in contrast with the fact that the original Taub-NUT metric does not exhibit gravitational anomalies, which is a consequence of the fact that it admits Killing-Yano tensors forming Staeckel-Killing tensors as products. We have found that for axial anomalies, interpreted as the index of the Dirac operator, the presence of Killing-Yano tensors is irrelevant. In order to evaluate the axial anomalies, we compute the index of the Dirac operator with the APS boundary condition on balls and on annular domains. The result is an explicit number-theoretic quantity depending on the radii of the domain. This quantity is 0 for metrics close to the original Taub-NUT metric but it does not vanish in general
General form of genuine multipartite entanglement quantum channels for teleportation
Chen Pingxing; Zhu Shiyao; Guo, Guangcan
2006-01-01
Recently Yeo and Chua [Phys. Rev. Lett. 96, 060502 (2006)] presented an explicit protocol for faithfully teleporting an arbitrary two-qubit state via a genuine four-qubit entanglement channel. Here we generalize completely their results to teleporting an arbitrary N-qubit state via genuine N-qubit entanglement channels. And we present the general form of the genuine multipartite entanglement channels, namely, the sufficient and necessary condition the genuine N-qubit entanglement channels must satisfy to teleport an arbitrary N-qubit state
TIPPtool: Compositional Specification and Analysis of Markovian Performance Models
Hermanns, H.; Halbwachs, N.; Peled, D.; Mertsiotakis, V.; Siegle, M.
1999-01-01
In this short paper we briefly describe a tool which is based on a Markovian stochastic process algebra. The tool offers both model specification and quantitative model analysis in a compositional fashion, wrapped in a userfriendly graphical front-end.
a markovian study of manpow an study of manpower planning
eobe
The Markovian method of manpower planning foretell the future. ... ive years from a soft drink manufacturing company based in Lagos, Nigeria company based ... ces management approach. ... handbook have also used Markov processes for.
Non-Markovian features of deeply inelastic collisions
Pal, D.; Chattopadhyay, S.; Kar, K.
1988-01-01
To study the effect of memory in the diffusion processes (of charge, mass etc) observed in deeply inelastic heavy-ion reactions, we derive non-Markovian transport equations for the exponential and Gaussian memory kernels. The centroid and the variance of the distribution are expressed in terms of the memory time, drift and diffusion coefficients. The predictions based on this theory show better agreement with the experimental data than the Markovian results. (author)
Sensitivity Analysis Based on Markovian Integration by Parts Formula
Yongsheng Hang
2017-10-01
Full Text Available Sensitivity analysis is widely applied in financial risk management and engineering; it describes the variations brought by the changes of parameters. Since the integration by parts technique for Markov chains is well developed in recent years, in this paper we apply it for computation of sensitivity and show the closed-form expressions for two commonly-used time-continuous Markovian models. By comparison, we conclude that our approach outperforms the existing technique of computing sensitivity on Markovian models.
Fitting Markovian binary trees using global and individual demographic data
Hautphenne, Sophie; Massaro, Melanie; Turner, Katharine
2017-01-01
We consider a class of branching processes called Markovian binary trees, in which the individuals lifetime and reproduction epochs are modeled using a transient Markovian arrival process (TMAP). We estimate the parameters of the TMAP based on population data containing information on age-specific fertility and mortality rates. Depending on the degree of detail of the available data, a weighted non-linear regression method or a maximum likelihood method is applied. We discuss the optimal choi...
Generalized mirror symmetry and quantum black hole entropy
Ferrara, Sergio; Marrani, Alessio
2012-01-01
We find general relations between the on-shell gravitational trace anomaly A N , and the logarithmic correction ΔS N to the entropy of “large” BPS extremal black holes in N⩾2 supergravity theories in D=4 space-time dimensions (recently computed by Sen, 2011 ). For (generalized) self-mirror theories (all having A N =0), we obtain the result ΔS N =-ΔS 8-N =2-N/2, whereas for generic theories the trace anomaly A-tilde N of the fully dualized theory turns out to coincide with 2ΔS N , up to a model-independent shift: A-tilde N =2ΔS N −1. We also speculate on N=1 theories displaying “large” extremal black hole solutions.
Generalized space and linear momentum operators in quantum mechanics
Costa, Bruno G. da; Borges, Ernesto P.
2014-01-01
We propose a modification of a recently introduced generalized translation operator, by including a q-exponential factor, which implies in the definition of a Hermitian deformed linear momentum operator p ^ q , and its canonically conjugate deformed position operator x ^ q . A canonical transformation leads the Hamiltonian of a position-dependent mass particle to another Hamiltonian of a particle with constant mass in a conservative force field of a deformed phase space. The equation of motion for the classical phase space may be expressed in terms of the generalized dual q-derivative. A position-dependent mass confined in an infinite square potential well is shown as an instance. Uncertainty and correspondence principles are analyzed
Zhang Sheng; Wang Jian; Tang Chao-Jing
2012-01-01
Counterfactual quantum cryptography, recently proposed by Noh, is featured with no transmission of signal particles. This exhibits evident security advantages, such as its immunity to the well-known photon-number-splitting attack. In this paper, the theoretical security of counterfactual quantum cryptography protocol against the general intercept-resend attacks is proved by bounding the information of an eavesdropper Eve more tightly than in Yin's proposal [Phys. Rev. A 82 042335 (2010)]. It is also shown that practical counterfactual quantum cryptography implementations may be vulnerable when equipped with imperfect apparatuses, by proving that a negative key rate can be achieved when Eve launches a time-shift attack based on imperfect detector efficiency. (general)
Controlled teleportation of high-dimension quantum-states with generalized Bell-state measurement
Zhan You-Bang
2007-01-01
In this paper a scheme for controlled teleportation of arbitrary high-dimensional unknown quantum states is proposed by using the generalized Bell-basis measurement and the generalized Hadamard transformation. As two special cases, two schemes of controlled teleportation of an unknown single-qutrit state and an unknown two-qutrit state are investigated in detail. In the first scheme, a maximally entangled three-qutrit state is used as the quantum channel, while in the second scheme, an entangled two-qutrit state and an entangled three-qutrit state are employed as the quantum channels. In these schemes, an unknown qutrit state can be teleported to either one of two receivers, but only one of them can reconstruct the qutrit state with the help of the other. Based on the case of qutrits, a scheme of controlled teleportation of an unknown qudit state is presented.
Minimal-memory realization of pearl-necklace encoders of general quantum convolutional codes
Houshmand, Monireh; Hosseini-Khayat, Saied
2011-01-01
Quantum convolutional codes, like their classical counterparts, promise to offer higher error correction performance than block codes of equivalent encoding complexity, and are expected to find important applications in reliable quantum communication where a continuous stream of qubits is transmitted. Grassl and Roetteler devised an algorithm to encode a quantum convolutional code with a ''pearl-necklace'' encoder. Despite their algorithm's theoretical significance as a neat way of representing quantum convolutional codes, it is not well suited to practical realization. In fact, there is no straightforward way to implement any given pearl-necklace structure. This paper closes the gap between theoretical representation and practical implementation. In our previous work, we presented an efficient algorithm to find a minimal-memory realization of a pearl-necklace encoder for Calderbank-Shor-Steane (CSS) convolutional codes. This work is an extension of our previous work and presents an algorithm for turning a pearl-necklace encoder for a general (non-CSS) quantum convolutional code into a realizable quantum convolutional encoder. We show that a minimal-memory realization depends on the commutativity relations between the gate strings in the pearl-necklace encoder. We find a realization by means of a weighted graph which details the noncommutative paths through the pearl necklace. The weight of the longest path in this graph is equal to the minimal amount of memory needed to implement the encoder. The algorithm has a polynomial-time complexity in the number of gate strings in the pearl-necklace encoder.
Generalized state spaces and nonlocality in fault-tolerant quantum-computing schemes
Ratanje, N.; Virmani, S.
2011-01-01
We develop connections between generalized notions of entanglement and quantum computational devices where the measurements available are restricted, either because they are noisy and/or because by design they are only along Pauli directions. By considering restricted measurements one can (by considering the dual positive operators) construct single-particle-state spaces that are different to the usual quantum-state space. This leads to a modified notion of entanglement that can be very different to the quantum version (for example, Bell states can become separable). We use this approach to develop alternative methods of classical simulation that have strong connections to the study of nonlocal correlations: we construct noisy quantum computers that admit operations outside the Clifford set and can generate some forms of multiparty quantum entanglement, but are otherwise classical in that they can be efficiently simulated classically and cannot generate nonlocal statistics. Although the approach provides new regimes of noisy quantum evolution that can be efficiently simulated classically, it does not appear to lead to significant reductions of existing upper bounds to fault tolerance thresholds for common noise models.
Current Noise Spectrum of a Quantum Shuttle
Flindt, Christian; Novotny, T.; Jauho, Antti-Pekka
2005-01-01
We present a method for calculating the full current noise spectrum S(omega) for the class of nano-electromechanical systems (NEMS) that can be described by a Markovian generalized master equation. As a specific example we apply the method to a quantum shuttle. The noise spectrum of the shuttle has...... peaks at integer multiples of the mechanical frequency, which is slightly renormalized. The renormalization explains a previously observed small deviation of the shuttle Current compared to the expected value given by the product of the natural mechanical frequency and the electron charge. For a certain...... parameter range the quantum shuttle exhibits a coexistence regime, where the charges are transported by two different mechanisms: Shuttling and sequential tunneling. In our previous studies we showed that characteristic features in the zero-frequency noise could be quantitatively understood as a slow...
Lectures on General Relativity, Cosmology and Quantum Black Holes
Ydri, Badis
2017-07-01
This book is a rigorous text for students in physics and mathematics requiring an introduction to the implications and interpretation of general relativity in areas of cosmology. Readers of this text will be well prepared to follow the theoretical developments in the field and undertake research projects as part of an MSc or PhD programme. This ebook contains interactive Q&A technology, allowing the reader to interact with the text and reveal answers to selected exercises posed by the author within the book. This feature may not function in all formats and on reading devices.
The two-loop renormalization of general quantum field theories
Damme, R.M.J. van.
1984-01-01
This thesis provides a general method to compute all first order corrections to the renormalization group equations. This requires the computation of the first perturbative corrections to the renormalization group β-functions. These corrections are described by Feynman diagrams with two loops. The two-loop renormalization is treated for an arbitrary renormalization field theory. Two cases are considered: 1. the Yukawa sector; 2. the gauge coupling and the scalar potential. In a final section, the breakdown of unitarity in the dimensional reduction scheme is discussed. (Auth.)
Decaying states as complex energy eigenvectors in generalized quantum mechanics
Sudarshan, E.C.G.; Chiu, C.B.; Gorini, V.
1977-04-01
The problem of particle decay is reexamined within the Hamiltonian formalism. By deforming contours of integration, the survival amplitude is expressed as a sum of purely exponential contributions arising from the simple poles of the resolvent on the second sheet plus a background integral along a complex contour GAMMA running below the location of the poles. One observes that the time dependence of the survival amplitude in the small time region is strongly correlated to the asymptotic behaviour of the energy spectrum of the system; one computes the small time behavior of the survival amplitude for a wide variety of asymptotic behaviors. In the special case of the Lee model, using a formal procedure of analytic continuation, it is shown that a complete set of complex energy eigenvectors of the Hamiltonian can be associated with the poles of the resolvent of the background contour GAMMA. These poles and points along GAMMA correspond to the discrete and the continuum states respectively. In this context, each unstable particle is associated with a well defined object, which is a discrete generalized eigenstate of the Hamiltonian having a complex eigenvalue, with its real and negative imaginary parts being the mass and half width of the particle respectively. Finally, one briefly discusses the analytic continuation of the scattering amplitude within this generalized scheme, and notes the appearance of ''redundant poles'' which do not correspond to discrete solutions of the modified eigenvalue problem
A generalization of Fenyes-Nelson stochastic model of quantum mechanics
Davidson, M.
1979-01-01
It is shown that the stochastic model of Fenyes and Nelson can be generalized in such a way that the diffusion constant of the Markov theory becomes a free parameter. This extra freedom allows one to identify quantum mechanics with a class of Markov processes with diffusion constants varying from 0 to infinity. (Auth.)
Soldatov, A.V.
2000-01-01
The Peierls-Bogolyubov inequality was generalized and a set of inequalities was derived instead, so that every subsequent inequality in this set approximates the quality in question with better precision than the preceding one. These inequalities lead to a sequence of improving upper bounds to the free energy of a quantum system if this system allows representation in terms of coherent states [ru
Generalized Lagrangian Path Approach to Manifestly-Covariant Quantum Gravity Theory
Massimo Tessarotto
2018-03-01
Full Text Available A trajectory-based representation for the quantum theory of the gravitational field is formulated. This is achieved in terms of a covariant Generalized Lagrangian-Path (GLP approach which relies on a suitable statistical representation of Bohmian Lagrangian trajectories, referred to here as GLP-representation. The result is established in the framework of the manifestly-covariant quantum gravity theory (CQG-theory proposed recently and the related CQG-wave equation advancing in proper-time the quantum state associated with massive gravitons. Generally non-stationary analytical solutions for the CQG-wave equation with non-vanishing cosmological constant are determined in such a framework, which exhibit Gaussian-like probability densities that are non-dispersive in proper-time. As a remarkable outcome of the theory achieved by implementing these analytical solutions, the existence of an emergent gravity phenomenon is proven to hold. Accordingly, it is shown that a mean-field background space-time metric tensor can be expressed in terms of a suitable statistical average of stochastic fluctuations of the quantum gravitational field whose quantum-wave dynamics is described by GLP trajectories.
General-Covariant Quantum Mechanics of Dirac Particle in Curved Space-Times
Tagirov, Eh.A.
1994-01-01
A general covariant analog of the standard non-relativistic Quantum Mechanics with relativistic corrections in normal geodesic frames in the general Riemannian space-time is constructed for the Dirac particle. Not only the Pauli equation with hermitian Hamiltonian and the pre-Hilbert structure of space of its solutions but also the matrix elements of hermitian operators of momentum, (curvilinear) spatial coordinates and spin of the particle are deduced as general-covariant asymptotic approximation in c -2 , c being the velocity of light, to their naturally determined general-relativistic pre images. It is shown that the Hamiltonian in the Pauli equation originated by the Dirac equation is unitary equivalent to the operator of energy, originated by the metric energy-momentum tensor of the spinor field. Commutation and other properties of the observables connected with the considered change of geometrical background of Quantum Mechanics are briefly discussed. 7 refs
A Quantum-Like View to a Generalized Two Players Game
Bagarello, F.
2015-10-01
This paper consider the possibility of using some quantum tools in decision making strategies. In particular, we consider here a dynamical open quantum system helping two players, and , to take their decisions in a specific context. We see that, within our approach, the final choices of the players do not depend in general on their initial mental states, but they are driven essentially by the environment which interacts with them. The model proposed here also considers interactions of different nature between the two players, and it is simple enough to allow for an analytical solution of the equations of motion.
A generalization of the quantum Rabi model: exact solution and spectral structure
Eckle, Hans-Peter; Johannesson, Henrik
2017-01-01
We consider a generalization of the quantum Rabi model where the two-level system and the single-mode cavity oscillator are coupled by an additional Stark-like term. By adapting a method recently introduced by Braak (2011 Phys. Rev. Lett . 107 100401), we solve the model exactly. The low-lying spectrum in the experimentally relevant ultrastrong and deep strong regimes of the Rabi coupling is found to exhibit two striking features absent from the original quantum Rabi model: avoided level crossings for states of the same parity and an anomalously rapid onset of two-fold near-degenerate levels as the Rabi coupling increases. (paper)
How do quantum numbers generally vary in the adiabatic transformation of an ideal gas?
Yarman, T.; Kholmetskii, A. L.
2011-01-01
We continue to analyse the known law of adiabatic transformation for an ideal gas PV 5/3 = Constant, where P is the pressure and V is the volume, and following the approach of non-relativistic quantum mechanics which we suggested in a previous work (Yarman et al. 2010 Int. J. Phys. Sci. 5 1524). We explicitly determine the constant for the general parallelepiped geometry of a container. We also disclose how the quantum numbers associated with molecules of an ideal gas vary through an arbitrary adiabatic transformation. Physical implications of the results obtained are discussed. (physics of gases, plasmas, and electric discharges)
Cluster-state quantum computing enhanced by high-fidelity generalized measurements.
Biggerstaff, D N; Kaltenbaek, R; Hamel, D R; Weihs, G; Rudolph, T; Resch, K J
2009-12-11
We introduce and implement a technique to extend the quantum computational power of cluster states by replacing some projective measurements with generalized quantum measurements (POVMs). As an experimental demonstration we fully realize an arbitrary three-qubit cluster computation by implementing a tunable linear-optical POVM, as well as fast active feedforward, on a two-qubit photonic cluster state. Over 206 different computations, the average output fidelity is 0.9832+/-0.0002; furthermore the error contribution from our POVM device and feedforward is only of O(10(-3)), less than some recent thresholds for fault-tolerant cluster computing.
Reactive power and voltage control based on general quantum genetic algorithms
Vlachogiannis, Ioannis (John); Østergaard, Jacob
2009-01-01
This paper presents an improved evolutionary algorithm based on quantum computing for optima l steady-state performance of power systems. However, the proposed general quantum genetic algorithm (GQ-GA) can be applied in various combinatorial optimization problems. In this study the GQ-GA determines...... techniques such as enhanced GA, multi-objective evolutionary algorithm and particle swarm optimization algorithms, as well as the classical primal-dual interior-point optimal power flow algorithm. The comparison demonstrates the ability of the GQ-GA in reaching more optimal solutions....
General treatment of quantum and classical spinning particles in external fields
Obukhov, Yuri N.; Silenko, Alexander J.; Teryaev, Oleg V.
2017-11-01
We develop the general theory of spinning particles with electric and magnetic dipole moments moving in arbitrary electromagnetic, inertial, and gravitational fields. Both the quantum-mechanical and classical dynamics is investigated. We start from the covariant Dirac equation extended to a spin-1/2 fermion with anomalous magnetic and electric dipole moments and then perform the relativistic Foldy-Wouthuysen transformation. This transformation allows us to obtain the quantum-mechanical equations of motion for the physical operators in the Schrödinger form and to establish the classical limit of relativistic quantum mechanics. The results obtained are then compared to the general classical description of the spinning particle interacting with electromagnetic, inertial and gravitational fields. The complete agreement between the quantum mechanics and the classical theory is proven in the general case. As an application of the results obtained, we consider the dynamics of a spinning particle in a gravitational wave and analyze the prospects of using the magnetic resonance setup to find possible manifestations of the gravitational wave on spin.
Wang, Xiao-Jun; An, Long-Xi; Yu, Xu-Tao; Zhang, Zai-Chen
2017-10-01
A multilayer quantum secret sharing protocol based on GHZ state is proposed. Alice has the secret carried by quantum state and wants to distribute this secret to multiple agent nodes in the network. In this protocol, the secret is transmitted and shared layer by layer from root Alice to layered agents. The number of agents in each layer is a geometric sequence with a specific common ratio. By sharing GHZ maximally entangled states and making generalized Bell basis measurement, one qubit state can be distributed to multiparty agents and the secret is shared. Only when all agents at the last layer cooperate together, the secret can be recovered. Compared with other protocols based on the entangled state, this protocol adopts layered construction so that secret can be distributed to more agents with fewer particles GHZ state. This quantum secret sharing protocol can be used in wireless network to ensure the security of information delivery.
Quantum harmonic Brownian motion in a general environment: A modified phase-space approach
Yeh, L.
1993-01-01
After extensive investigations over three decades, the linear-coupling model and its equivalents have become the standard microscopic models for quantum harmonic Brownian motion, in which a harmonically bound Brownian particle is coupled to a quantum dissipative heat bath of general type modeled by infinitely many harmonic oscillators. The dynamics of these models have been studied by many authors using the quantum Langevin equation, the path-integral approach, quasi-probability distribution functions (e.g., the Wigner function), etc. However, the quantum Langevin equation is only applicable to some special problems, while other approaches all involve complicated calculations due to the inevitable reduction (i.e., contraction) operation for ignoring/eliminating the degrees of freedom of the heat bath. In this dissertation, the author proposes an improved methodology via a modified phase-space approach which employs the characteristic function (the symplectic Fourier transform of the Wigner function) as the representative of the density operator. This representative is claimed to be the most natural one for performing the reduction, not only because of its simplicity but also because of its manifestation of geometric meaning. Accordingly, it is particularly convenient for studying the time evolution of the Brownian particle with an arbitrary initial state. The power of this characteristic function is illuminated through a detailed study of several physically interesting problems, including the environment-induced damping of quantum interference, the exact quantum Fokker-Planck equations, and the relaxation of non-factorizable initial states. All derivations and calculations axe shown to be much simplified in comparison with other approaches. In addition to dynamical problems, a novel derivation of the fluctuation-dissipation theorem which is valid for all quantum linear systems is presented
Extension of Loop Quantum Gravity to Metric Theories beyond General Relativity
Ma Yongge
2012-01-01
The successful background-independent quantization of Loop Quantum Gravity relies on the key observation that classical General Relativity can be cast into the connection-dynamical formalism with the structure group of SU(2). Due to this particular formalism, Loop Quantum Gravity was generally considered as a quantization scheme that applies only to General Relativity. However, we will show that the nonperturbative quantization procedure of Loop Quantum Gravity can be extended to a rather general class of metric theories of gravity, which have received increased attention recently due to motivations coming form cosmology and astrophysics. In particular, we will first introduce how to reformulate the 4-dimensional metric f(R) theories of gravity, as well as Brans-Dicke theory, into connection-dynamical formalism with real SU(2) connections as configuration variables. Through these formalisms, we then outline the nonpertubative canonical quantization of the f(R) theories and Brans-Dicke theory by extending the loop quantization scheme of General Relativity.
Towards Implementation of a Generalized Architecture for High-Level Quantum Programming Language
Ameen, El-Mahdy M.; Ali, Hesham A.; Salem, Mofreh M.; Badawy, Mahmoud
2017-08-01
This paper investigates a novel architecture to the problem of quantum computer programming. A generalized architecture for a high-level quantum programming language has been proposed. Therefore, the programming evolution from the complicated quantum-based programming to the high-level quantum independent programming will be achieved. The proposed architecture receives the high-level source code and, automatically transforms it into the equivalent quantum representation. This architecture involves two layers which are the programmer layer and the compilation layer. These layers have been implemented in the state of the art of three main stages; pre-classification, classification, and post-classification stages respectively. The basic building block of each stage has been divided into subsequent phases. Each phase has been implemented to perform the required transformations from one representation to another. A verification process was exposed using a case study to investigate the ability of the compiler to perform all transformation processes. Experimental results showed that the efficacy of the proposed compiler achieves a correspondence correlation coefficient about R ≈ 1 between outputs and the targets. Also, an obvious achievement has been utilized with respect to the consumed time in the optimization process compared to other techniques. In the online optimization process, the consumed time has increased exponentially against the amount of accuracy needed. However, in the proposed offline optimization process has increased gradually.
Markovian Interpretations of Dual Retrieval Processes
Gomes, C. F. A.; Nakamura, K.; Reyna, V. F.
2013-01-01
A half-century ago, at the dawn of the all-or-none learning era, Estes showed that finite Markov chains supply a tractable, comprehensive framework for discrete-change data of the sort that he envisioned for shifts in conditioning states in stimulus sampling theory. Shortly thereafter, such data rapidly accumulated in many spheres of human learning and animal conditioning, and Estes’ work stimulated vigorous development of Markov models to handle them. A key outcome was that the data of the workhorse paradigms of episodic memory, recognition and recall, proved to be one- and two-stage Markovian, respectively, to close approximations. Subsequently, Markov modeling of recognition and recall all but disappeared from the literature, but it is now reemerging in the wake of dual-process conceptions of episodic memory. In recall, in particular, Markov models are being used to measure two retrieval operations (direct access and reconstruction) and a slave familiarity operation. In the present paper, we develop this family of models and present the requisite machinery for fit evaluation and significance testing. Results are reviewed from selected experiments in which the recall models were used to understand dual memory processes. PMID:24948840
Markovian Interpretations of Dual Retrieval Processes.
Gomes, C F A; Brainerd, C J; Nakamura, K; Reyna, V F
2014-04-01
A half-century ago, at the dawn of the all-or-none learning era, Estes showed that finite Markov chains supply a tractable, comprehensive framework for discrete-change data of the sort that he envisioned for shifts in conditioning states in stimulus sampling theory. Shortly thereafter, such data rapidly accumulated in many spheres of human learning and animal conditioning, and Estes' work stimulated vigorous development of Markov models to handle them. A key outcome was that the data of the workhorse paradigms of episodic memory, recognition and recall, proved to be one- and two-stage Markovian, respectively, to close approximations. Subsequently, Markov modeling of recognition and recall all but disappeared from the literature, but it is now reemerging in the wake of dual-process conceptions of episodic memory. In recall, in particular, Markov models are being used to measure two retrieval operations (direct access and reconstruction) and a slave familiarity operation. In the present paper, we develop this family of models and present the requisite machinery for fit evaluation and significance testing. Results are reviewed from selected experiments in which the recall models were used to understand dual memory processes.
'quantumness' measures in the decohering harmonic oscillator
We studied the behaviour under decoherence of four different measures of the distance between quantum states and classical states for the harmonic oscillator coupled to a linear Markovian bath. Three of these are relative measures, using different definitions of the distance between the given quantum states and the set of ...
Non-Markovian near-infrared Q branch of HCl diluted in liquid Ar.
Padilla, Antonio; Pérez, Justo
2013-08-28
By using a non-Markovian spectral theory based in the Kubo cumulant expansion technique, we have qualitatively studied the infrared Q branch observed in the fundamental absorption band of HCl diluted in liquid Ar. The statistical parameters of the anisotropic interaction present in this spectral theory were calculated by means of molecular dynamics techniques, and found that the values of the anisotropic correlation times are significantly greater (by a factor of two) than those previously obtained by fitting procedures or microscopic cell models. This fact is decisive for the observation in the theoretical spectral band of a central Q resonance which is absent in the abundant previous researches carried out with the usual theories based in Kubo cumulant expansion techniques. Although the theory used in this work only allows a qualitative study of the Q branch, we can employ it to study the unknown characteristics of the Q resonance which are difficult to obtain with the quantum simulation techniques recently developed. For example, in this study we have found that the Q branch is basically a non-Markovian (or memory) effect produced by the spectral line interferences, where the PR interferential profile basically determines the Q branch spectral shape. Furthermore, we have found that the Q resonance is principally generated by the first rotational states of the first two vibrational levels, those more affected by the action of the dissolvent.
Non-Markovian electron dynamics in nanostructures coupled to dissipative contacts
Novakovic, B.; Knezevic, I.
2013-02-01
In quasiballistic semiconductor nanostructures, carrier exchange between the active region and dissipative contacts is the mechanism that governs relaxation. In this paper, we present a theoretical treatment of transient quantum transport in quasiballistic semiconductor nanostructures, which is based on the open system theory and valid on timescales much longer than the characteristic relaxation time in the contacts. The approach relies on a model interaction between the current-limiting active region and the contacts, given in the scattering-state basis. We derive a non-Markovian master equation for the irreversible evolution of the active region's many-body statistical operator by coarse-graining the exact dynamical map over the contact relaxation time. In order to obtain the response quantities of a nanostructure under bias, such as the potential and the charge and current densities, the non-Markovian master equation must be solved numerically together with the Schr\\"{o}dinger, Poisson, and continuity equations. We discuss how to numerically solve this coupled system of equations and illustrate the approach on the example of a silicon nin diode.
Johnson, David T.
Quantum mechanics is an extremely successful and accurate physical theory, yet since its inception, it has been afflicted with numerous conceptual difficulties. The primary subject of this thesis is the theory of entropic quantum dynamics (EQD), which seeks to avoid these conceptual problems by interpreting quantum theory from an informational perspective. We begin by reviewing Cox's work in describing probability theory as a means of rationally and consistently quantifying uncertainties. We then discuss how probabilities can be updated according to either Bayes' theorem or the extended method of maximum entropy (ME). After that discussion, we review the work of Caticha and Giffin that shows that Bayes' theorem is a special case of ME. This important result demonstrates that the ME method is the general method for updating probabilities. We then review some motivating difficulties in quantum mechanics before discussing Caticha's work in deriving quantum theory from the approach of entropic dynamics, which concludes our review. After entropic dynamics is introduced, we develop the concepts of symmetries and transformations from an informational perspective. The primary result is the formulation of a symmetry condition that any transformation must satisfy in order to qualify as a symmetry in EQD. We then proceed to apply this condition to the extended Galilean transformation. This transformation is of interest as it exhibits features of both special and general relativity. The transformation yields a gravitational potential that arises from an equivalence of information. We conclude the thesis with a discussion of the measurement problem in quantum mechanics. We discuss the difficulties that arise in the standard quantum mechanical approach to measurement before developing our theory of entropic measurement. In entropic dynamics, position is the only observable. We show how a theory built on this one observable can account for the multitude of measurements present in
Chung, N. N.; Chew, L. Y.
2007-01-01
We have generalized the two-step approach to the solution of systems of N coupled quantum anharmonic oscillators. By using the squeezed vacuum state of each individual oscillator, we construct the tensor product state, and obtain the optimal squeezed vacuum product state through energy minimization. We then employ this optimal state and its associated bosonic operators to define a basis set to construct the Heisenberg matrix. The diagonalization of the matrix enables us to obtain the energy eigenvalues of the coupled oscillators. In particular, we have applied our formalism to determine the eigenenergies of systems of two coupled quantum anharmonic oscillators perturbed by a general polynomial potential, as well as three and four coupled systems. Furthermore, by performing a first-order perturbation analysis about the optimal squeezed vacuum product state, we have also examined into the squeezing properties of two coupled oscillator systems
Non-Weyl asymptotics for quantum graphs with general coupling conditions
Davies, E Brian; Exner, Pavel; Lipovsky, JirI
2010-01-01
Inspired by a recent result of Davies and Pushnitski, we study resonance asymptotics of quantum graphs with general coupling conditions at the vertices. We derive a criterion for the asymptotics to be of a non-Weyl character. We show that for balanced vertices with permutation-invariant couplings the asymptotics is non-Weyl only in the case of Kirchhoff or anti-Kirchhoff conditions. While for graphs without permutation symmetry numerous examples of non-Weyl behaviour can be constructed. Furthermore, we present an insight into what makes the Kirchhoff/anti-Kirchhoff coupling particular from the resonance point of view. Finally, we demonstrate a generalization to quantum graphs with unequal edge weights.
Pure states of general quantum-mechanical systems as Kaehler bundles
Abbati, M.C.; Cirelli, R.; Lanzavecchia, P.; Mania, A.
1984-01-01
Pure states of general quantum systems in the Csup(*)-algebraic approach are endowed with a structure both of Kaehler manifold and of projective bundle with uniformity on the total space. The former structure gives a geometric interpretation of transition probabilities and Wigner theorem. The latter is a finer structure which determines Csup(*)-algebras up to sup(*)-isomorphisms. Pure states of Csup(*)-algebras with continuous trace among projective bundles with uniformity are characterized
General topological features and instanton vacuum in quantum Hall and spin liquids
Pruisken, A.M.M.; Shankar, R.; Surendran, Naveen
2005-01-01
We introduce the concept of superuniversality in quantum Hall liquids and spin liquids. This concept has emerged from previous studies of the quantum Hall effect and states that all the fundamental features of the quantum Hall effect are generically displayed as general topological features of the θ parameter in nonlinear σ models in two dimensions. To establish superuniversality in spin liquids we revisit the mapping by Haldane who argued that the antiferromagnetic Heisenberg spin-s chain in 1+1 space-time dimensions is effectively described by the O(3) nonlinear σ model with a θ term. By combining the path integral representation for the dimerized spin s=1/2 chain with renormalization-group decimation techniques we generalize the Haldane approach to include a more complicated theory, the fermionic rotor chain, involving four different renormalization-group parameters. We show how the renormalization-group calculation technique can be used to build a bridge between the fermionic rotor chain and the O(3) nonlinear σ model with the θ term. As an integral and fundamental aspect of the mapping we establish the topological significance of the dangling spin at the edge of the chain. The edge spin in spin liquids is in all respects identical to the massless chiral edge excitations in quantum Hall liquids. We consider various different geometries of the spin chain such as open and closed chains, chains with an even and odd number of sides. We show that for each of the different geometries the θ term has a distinctly different physical meaning. We compare each case with a topologically equivalent quantum Hall liquid
Replacement policy in a system under shocks following a Markovian arrival process
Montoro-Cazorla, Delia; Perez-Ocon, Rafael; Carmen Segovia, Maria del
2009-01-01
We present a system subject to shocks that arrive following a Markovian arrival process. The system is minimally repaired. It is replaced when a certain number of shocks arrive. A general model where the replacements are governed by a discrete phase-type distribution is studied. For this system, the Markov process governing the system is constructed, and the interarrival times between replacements and the number of replacements are calculated. A special case of this system is when it can stand a prefixed number of shocks. For this new system, the same performance measures are calculated. The systems are considered in transient and stationary regime
Replacement policy in a system under shocks following a Markovian arrival process
Montoro-Cazorla, Delia [Department of Statistics and Operational Research, University of Jaen (Spain); Perez-Ocon, Rafael [Department of Statistics and Operational Research, University of Granada, Granada (Spain)], E-mail: rperezo@ugr.es; Carmen Segovia, Maria del [Departamento de Estadistica e I.O., University of Granada, Granada (Spain)
2009-02-15
We present a system subject to shocks that arrive following a Markovian arrival process. The system is minimally repaired. It is replaced when a certain number of shocks arrive. A general model where the replacements are governed by a discrete phase-type distribution is studied. For this system, the Markov process governing the system is constructed, and the interarrival times between replacements and the number of replacements are calculated. A special case of this system is when it can stand a prefixed number of shocks. For this new system, the same performance measures are calculated. The systems are considered in transient and stationary regime.
Yajun Li
2015-01-01
Full Text Available This paper deals with the robust H∞ filter design problem for a class of uncertain neutral stochastic systems with Markovian jumping parameters and time delay. Based on the Lyapunov-Krasovskii theory and generalized Finsler Lemma, a delay-dependent stability condition is proposed to ensure not only that the filter error system is robustly stochastically stable but also that a prescribed H∞ performance level is satisfied for all admissible uncertainties. All obtained results are expressed in terms of linear matrix inequalities which can be easily solved by MATLAB LMI toolbox. Numerical examples are given to show that the results obtained are both less conservative and less complicated in computation.
General immunity and superadditivity of two-way Gaussian quantum cryptography.
Ottaviani, Carlo; Pirandola, Stefano
2016-03-01
We consider two-way continuous-variable quantum key distribution, studying its security against general eavesdropping strategies. Assuming the asymptotic limit of many signals exchanged, we prove that two-way Gaussian protocols are immune to coherent attacks. More precisely we show the general superadditivity of the two-way security thresholds, which are proven to be higher than the corresponding one-way counterparts in all cases. We perform the security analysis first reducing the general eavesdropping to a two-mode coherent Gaussian attack, and then showing that the superadditivity is achieved by exploiting the random on/off switching of the two-way quantum communication. This allows the parties to choose the appropriate communication instances to prepare the key, accordingly to the tomography of the quantum channel. The random opening and closing of the circuit represents, in fact, an additional degree of freedom allowing the parties to convert, a posteriori, the two-mode correlations of the eavesdropping into noise. The eavesdropper is assumed to have no access to the on/off switching and, indeed, cannot adapt her attack. We explicitly prove that this mechanism enhances the security performance, no matter if the eavesdropper performs collective or coherent attacks.
Farouk, Ahmed; Zakaria, Magdy; Megahed, Adel; Omara, Fatma A.
2015-11-01
In this paper, we generalize a secured direct communication process between N users with partial and full cooperation of quantum server. So, N - 1 disjointed users u1, u2, …, uN-1 can transmit a secret message of classical bits to a remote user uN by utilizing the property of dense coding and Pauli unitary transformations. The authentication process between the quantum server and the users are validated by EPR entangled pair and CNOT gate. Afterwards, the remained EPR will generate shared GHZ states which are used for directly transmitting the secret message. The partial cooperation process indicates that N - 1 users can transmit a secret message directly to a remote user uN through a quantum channel. Furthermore, N - 1 users and a remote user uN can communicate without an established quantum channel among them by a full cooperation process. The security analysis of authentication and communication processes against many types of attacks proved that the attacker cannot gain any information during intercepting either authentication or communication processes. Hence, the security of transmitted message among N users is ensured as the attacker introduces an error probability irrespective of the sequence of measurement.
General response formula and application to topological insulator in quantum open system.
Shen, H Z; Qin, M; Shao, X Q; Yi, X X
2015-11-01
It is well-known that the quantum linear response theory is based on the first-order perturbation theory for a system in thermal equilibrium. Hence, this theory breaks down when the system is in a steady state far from thermal equilibrium and the response up to higher order in perturbation is not negligible. In this paper, we develop a nonlinear response theory for such quantum open system. We first formulate this theory in terms of general susceptibility, after which we apply it to the derivation of Hall conductance for open system at finite temperature. As an example, the Hall conductance of the two-band model is derived. Then we calculate the Hall conductance for a two-dimensional ferromagnetic electron gas and a two-dimensional lattice model. The calculations show that the transition points of topological phase are robust against the environment. Our results provide a promising platform for the coherent manipulation of the nonlinear response in quantum open system, which has potential applications for quantum information processing and statistical physics.
A quantum generalization of intrinsic reaction coordinate using path integral centroid coordinates
Shiga, Motoyuki; Fujisaki, Hiroshi
2012-01-01
We propose a generalization of the intrinsic reaction coordinate (IRC) for quantum many-body systems described in terms of the mass-weighted ring polymer centroids in the imaginary-time path integral theory. This novel kind of reaction coordinate, which may be called the ''centroid IRC,'' corresponds to the minimum free energy path connecting reactant and product states with a least amount of reversible work applied to the center of masses of the quantum nuclei, i.e., the centroids. We provide a numerical procedure to obtain the centroid IRC based on first principles by combining ab initio path integral simulation with the string method. This approach is applied to NH 3 molecule and N 2 H 5 - ion as well as their deuterated isotopomers to study the importance of nuclear quantum effects in the intramolecular and intermolecular proton transfer reactions. We find that, in the intramolecular proton transfer (inversion) of NH 3 , the free energy barrier for the centroid variables decreases with an amount of about 20% compared to the classical one at the room temperature. In the intermolecular proton transfer of N 2 H 5 - , the centroid IRC is largely deviated from the ''classical'' IRC, and the free energy barrier is reduced by the quantum effects even more drastically.
Monte Carlo simulation of fully Markovian stochastic geometries
Lepage, Thibaut; Delaby, Lucie; Malvagi, Fausto; Mazzolo, Alain
2010-01-01
The interest in resolving the equation of transport in stochastic media has continued to increase these last years. For binary stochastic media it is often assumed that the geometry is Markovian, which is never the case in usual environments. In the present paper, based on rigorous mathematical theorems, we construct fully two-dimensional Markovian stochastic geometries and we study their main properties. In particular, we determine a percolation threshold p c , equal to 0.586 ± 0.0015 for such geometries. Finally, Monte Carlo simulations are performed through these geometries and the results compared to homogeneous geometries. (author)
Continuous-variable quantum teleportation in bosonic structured environments
He Guangqiang; Zhang Jingtao; Zhu Jun; Zeng Guihua [State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiaotong University, Shanghai 200240 (China)
2011-09-15
The effects of dynamics of continuous-variable entanglement under the various kinds of environments on quantum teleportation are quantitatively investigated. Only under assumption of the weak system-reservoir interaction, the evolution of teleportation fidelity is analytically derived and is numerically plotted in terms of environment parameters including reservoir temperature and its spectral density, without Markovian and rotating wave approximations. We find that the fidelity of teleportation is a monotonically decreasing function for Markovian interaction in Ohmic-like environments, while it oscillates for non-Markovian ones. According to the dynamical laws of teleportation, teleportation with better performances can be implemented by selecting the appropriate time.
Flindt, Christian; Novotny, Tomás; Braggio, Alessandro
2010-01-01
Recent experimental progress has made it possible to detect in real-time single electrons tunneling through Coulomb blockade nanostructures, thereby allowing for precise measurements of the statistical distribution of the number of transferred charges, the so-called full counting statistics...... interactions. Our recursive method can treat systems with many states as well as non-Markovian dynamics. We illustrate our approach with three examples of current experimental relevance: bunching transport through a two-level quantum dot, transport through a nanoelectromechanical system with dynamical Franck...
Smirne, Andrea; Vacchini, Bassano
2010-01-01
We address the microscopic derivation of a quantum master equation in Lindblad form for the dynamics of a massive test particle with internal degrees of freedom, interacting through collisions with a background ideal gas. When either internal or center-of-mass degrees of freedom can be treated classically, previously established equations are obtained as special cases. If in an interferometric setup the internal degrees of freedom are not detected at the output, the equation can be recast in the form of a generalized Lindblad structure, which describes non-Markovian effects. The effect of internal degrees of freedom on center-of-mass decoherence is considered in this framework.
Time-dependent density functional theory for open quantum systems with unitary propagation.
Yuen-Zhou, Joel; Tempel, David G; Rodríguez-Rosario, César A; Aspuru-Guzik, Alán
2010-01-29
We extend the Runge-Gross theorem for a very general class of open quantum systems under weak assumptions about the nature of the bath and its coupling to the system. We show that for Kohn-Sham (KS) time-dependent density functional theory, it is possible to rigorously include the effects of the environment within a bath functional in the KS potential. A Markovian bath functional inspired by the theory of nonlinear Schrödinger equations is suggested, which can be readily implemented in currently existing real-time codes. Finally, calculations on a helium model system are presented.
Spaans, M.
General Relativity is extended into the quantum domain. A thought experiment is explored to derive a specific topological build-up for Planckian spacetime. The presented arguments are inspired by Feynman's path integral for superposition and Wheeler's quantum foam of Planck mass mini black holes
Quantum theory of two-dimensional generalized Toda lattice on bounded spatial interval
Leznov, A.N.
1982-01-01
The quantization method of exactly solvable dynamical systems worked out in another paper is applied to a two-dimensional model described by the equations of generalized Toda lattice with a periodicity condition over spatial variable. The Heisenberg operators of the model are finite polynomials over the coupling constant g 2 , whose coefficients functionally depend on operators of noninteracting fields. The model has a direct relation with the string theories and reduces formally when L→infinity to two-dimensional quantum field theory described by the equations of generalized Toda lattice the formal solution of which has been found in Refs
Yan, Ji; Bao-Tong, Cui
2010-01-01
In this paper, we have improved delay-dependent stability criteria for recurrent neural networks with a delay varying over a range and Markovian jumping parameters. The criteria improve over some previous ones in that they have fewer matrix variables yet less conservatism. In addition, a numerical example is provided to illustrate the applicability of the result using the linear matrix inequality toolbox in MATLAB. (general)
Exact master equations for the non-Markovian decay of a qubit
Vacchini, Bassano; Breuer, Heinz-Peter
2010-01-01
Exact master equations describing the decay of a two-state system into a structured reservoir are constructed. By employing the exact solution for the model, analytical expressions are determined for the memory kernel of the Nakajima-Zwanzig master equation and for the generator of the corresponding time-convolutionless master equation. This approach allows an explicit comparison of the convergence behavior of the corresponding perturbation expansions. Moreover, the structure of widely used phenomenological master equations with a memory kernel may be incompatible with a nonperturbative treatment of the underlying microscopic model. Several physical implications of the results on the microscopic analysis and the phenomenological modeling of non-Markovian quantum dynamics of open systems are discussed.
A generalization of Fermat's principle for classical and quantum systems
Elsayed, Tarek A., E-mail: T.Elsayed@thphys.uni-heidelberg.de
2014-09-12
Highlights: • Introduces a generalized Fermat principle for many-dimensional dynamical systems. • Deals with the time taken by the system between given initial and final states. • Proposes that if the speed of the system point is constant, the time is an extremum. • Justified for the phase space of harmonic oscillators and the projective Hilbert space. • A counterexample for the motion of a charge in a magnetic field is discussed. - Abstract: The analogy between dynamics and optics had a great influence on the development of the foundations of classical and quantum mechanics. We take this analogy one step further and investigate the validity of Fermat's principle in many-dimensional spaces describing dynamical systems (i.e., the quantum Hilbert space and the classical phase and configuration space). We propose that if the notion of a metric distance is well defined in that space and the velocity of the representative point of the system is an invariant of motion, then a generalized version of Fermat's principle will hold. We substantiate this conjecture for time-independent quantum systems and for a classical system consisting of coupled harmonic oscillators. An exception to this principle is the configuration space of a charged particle in a constant magnetic field; in this case the principle is valid in a frame rotating by half the Larmor frequency, not the stationary lab frame.
A generalization of Fermat's principle for classical and quantum systems
Elsayed, Tarek A.
2014-01-01
Highlights: • Introduces a generalized Fermat principle for many-dimensional dynamical systems. • Deals with the time taken by the system between given initial and final states. • Proposes that if the speed of the system point is constant, the time is an extremum. • Justified for the phase space of harmonic oscillators and the projective Hilbert space. • A counterexample for the motion of a charge in a magnetic field is discussed. - Abstract: The analogy between dynamics and optics had a great influence on the development of the foundations of classical and quantum mechanics. We take this analogy one step further and investigate the validity of Fermat's principle in many-dimensional spaces describing dynamical systems (i.e., the quantum Hilbert space and the classical phase and configuration space). We propose that if the notion of a metric distance is well defined in that space and the velocity of the representative point of the system is an invariant of motion, then a generalized version of Fermat's principle will hold. We substantiate this conjecture for time-independent quantum systems and for a classical system consisting of coupled harmonic oscillators. An exception to this principle is the configuration space of a charged particle in a constant magnetic field; in this case the principle is valid in a frame rotating by half the Larmor frequency, not the stationary lab frame
Generalized quantum mean-field systems and their application to ultracold atoms
Trimborn-Witthaut, Friederike Annemarie
2011-01-01
Strongly interacting many-body systems consisting of a large number of indistinguishable particles play an important role in many areas of physics. Though such systems are hard to deal with theoretically since the dimension of the respective Hilbert space increases exponentially both in the particle number and in the number of system modes. Therefore, approximations are of considerable interest. The mean-field approximation describes the behaviour in the macroscopic limit N→∞, which leads to an effective nonlinear single-particle problem. Although this approximation is widely used, rigorous results on the applicability and especially on finite size corrections are extremely rare. One prominent example of strongly interacting many-body systems are ultracold atoms in optical lattices, which are a major subject of this thesis. Typically these systems consist of a large but well-defined number of particles, such that corrections to the mean-field limit can be systematically studied. This thesis is divided into two parts: In the first part we study generalized quantum mean-field systems in a C * -algebraic framework. These systems are characterized by their intrinsic permutation symmetry. In the limit of infinite system size, N→∞, the intensive observables converge to the commutative algebra of weak * -continuous functions on the single particle state space. To quantify the deviations from the meanfield prediction for large but finite N, we establish a differential calculus for state space functions and provide a generalized Taylor expansion around the mean-field limit. Furthermore, we introduce the algebra of macroscopic fluctuations around the mean-field limit and prove a quantum version of the central limit theorem. On the basis of these results, we give a detailed study of the finite size corrections to the ground state energy and establish bounds, for both the quantum and the classical case. Finally, we restrict ourselves to the subspace of Bose
Conditional expectations associated with quantum states
Niestegge, Gerd
2005-01-01
An extension of the conditional expectations (those under a given subalgebra of events and not the simple ones under a single event) from the classical to the quantum case is presented. In the classical case, the conditional expectations always exist; in the quantum case, however, they exist only if a certain weak compatibility criterion is satisfied. This compatibility criterion was introduced among others in a recent paper by the author. Then, state-independent conditional expectations and quantum Markov processes are studied. A classical Markov process is a probability measure, together with a system of random variables, satisfying the Markov property and can equivalently be described by a system of Markovian kernels (often forming a semigroup). This equivalence is partly extended to quantum probabilities. It is shown that a dynamical (semi)group can be derived from a given system of quantum observables satisfying the Markov property, and the group generators are studied. The results are presented in the framework of Jordan operator algebras, and a very general type of observables (including the usual real-valued observables or self-adjoint operators) is considered
Baumann, Gerd
2005-01-01
Mathematica for Theoretical Physics: Electrodynamics, Quantum Mechanics, General Relativity, and Fractals This second edition of Baumann's Mathematica® in Theoretical Physics shows readers how to solve physical problems and deal with their underlying theoretical concepts while using Mathematica® to derive numeric and symbolic solutions. Each example and calculation can be evaluated by the reader, and the reader can change the example calculations and adopt the given code to related or similar problems. The second edition has been completely revised and expanded into two volumes: The first volume covers classical mechanics and nonlinear dynamics. Both topics are the basis of a regular mechanics course. The second volume covers electrodynamics, quantum mechanics, relativity, and fractals and fractional calculus. New examples have been added and the representation has been reworked to provide a more interactive problem-solving presentation. This book can be used as a textbook or as a reference work, by student...
Zhang, Xiaoguang; Varga, Kalman; Pantelides, Sokrates T
2007-01-01
Band-theoretic methods with periodically repeated supercells have been a powerful approach for ground-state electronic structure calculations, but have not so far been adapted for quantum transport problems with open boundary conditions. Here we introduce a generalized Bloch theorem for complex periodic potentials and use a transfer-matrix formulation to cast the transmission probability in a scattering problem with open boundary conditions in terms of the complex wave vectors of a periodic system with absorbing layers, allowing a band technique for quantum transport calculations. The accuracy and utility of the method is demonstrated by the model problems of the transmission of an electron over a square barrier and the scattering of a phonon in an inhomogeneous nanowire. Application to the resistance of a twin boundary in nanocrystalline copper yields excellent agreement with recent experimental data
Microcanonical ensemble and algebra of conserved generators for generalized quantum dynamics
Adler, S.L.; Horwitz, L.P.
1996-01-01
It has recently been shown, by application of statistical mechanical methods to determine the canonical ensemble governing the equilibrium distribution of operator initial values, that complex quantum field theory can emerge as a statistical approximation to an underlying generalized quantum dynamics. This result was obtained by an argument based on a Ward identity analogous to the equipartition theorem of classical statistical mechanics. We construct here a microcanonical ensemble which forms the basis of this canonical ensemble. This construction enables us to define the microcanonical entropy and free energy of the field configuration of the equilibrium distribution and to study the stability of the canonical ensemble. We also study the algebraic structure of the conserved generators from which the microcanonical and canonical ensembles are constructed, and the flows they induce on the phase space. copyright 1996 American Institute of Physics
Sukhanov, A.D.
2004-01-01
Generalized correlations of the Schroedinger indefinitenesses are shown to have the meaning of the fundamental restrictions as to characteristics of space of states in any probability-like theory. Quantum mechanics, as well as, theory of the brownian movement at arbitrary space of time fall in the category of the mentioned theories. One compared correlations of coordinates-pulse indefinitenesses within the mentioned theory with the similar correlation of indefinitenesses for microparticle under the Gaussian wave packet state. One determined that in case of profound distinction in mathematical tools of two theories one observes their conceptual resemblance. It manifests itself under the alternative conditions - short times in one theory correspond to long ones in another theory and vice versa, while in any of the mentioned theories uncontrollable effect of either quantum or thermal type is of crucial importance [ru
A General Theory of Markovian Time Inconsistent Stochastic Control Problems
Björk, Tomas; Murgochi, Agatha
We develop a theory for stochastic control problems which, in various ways, are time inconsistent in the sense that they do not admit a Bellman optimality principle. We attach these problems by viewing them within a game theoretic framework, and we look for Nash subgame perfect equilibrium points...... examples of time inconsistency in the literature are easily seen to be special cases of the present theory. We also prove that for every time inconsistent problem, there exists an associated time consistent problem such that the optimal control and the optimal value function for the consistent problem...
Bonitz, Michael
2016-01-01
This book presents quantum kinetic theory in a comprehensive way. The focus is on density operator methods and on non-equilibrium Green functions. The theory allows to rigorously treat nonequilibrium dynamics in quantum many-body systems. Of particular interest are ultrafast processes in plasmas, condensed matter and trapped atoms that are stimulated by rapidly developing experiments with short pulse lasers and free electron lasers. To describe these experiments theoretically, the most powerful approach is given by non-Markovian quantum kinetic equations that are discussed in detail, including computational aspects.
Femtosecond Non-Markovian Optical Dynamics in Solution
Nibbering, Erik T.J.; Wiersma, Douwe A.; Duppen, Koos
1991-01-01
Femtosecond photon-echo experiments on sodium resorufin in dimethylsulfoxide at room temperature show that optical dephasing in solution is of non-Markovian character. A single Gauss-Markov stochastic modulation process is used to interpret both the femtosecond light-scattering results and the
Solutions for a non-Markovian diffusion equation
Lenzi, E.K.; Evangelista, L.R.; Lenzi, M.K.; Ribeiro, H.V.; Oliveira, E.C. de
2010-01-01
Solutions for a non-Markovian diffusion equation are investigated. For this equation, we consider a spatial and time dependent diffusion coefficient and the presence of an absorbent term. The solutions exhibit an anomalous behavior which may be related to the solutions of fractional diffusion equations and anomalous diffusion.
Application of Markovian model to school enrolment projection ...
Application of Markovian model to school enrolment projection process. VU Ekhosuehi, AA Osagiede. Abstract. No Abstract. Global Journal of Mathematical Sciences Vol. 5(1) 2006: 9-16. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.
A note on Markovian manpower models | Osagiede | Journal of the ...
In modelling manpower systems, most authors rely on Markov-based theoretic methodology as an analytic tool to unify the states of the system with the axiomatic foundation that there is a one-stage dependence of events. In this study, Markovian manpower models are surveyed. Specific areas are highlighted as future ...
Transport benchmarks for one-dimensional binary Markovian mixtures revisited
Malvagi, F.
2013-01-01
The classic benchmarks for transport through a binary Markovian mixture are revisited to look at the probability distribution function of the chosen 'results': reflection, transmission and scalar flux. We argue that the knowledge of the ensemble averaged results is not sufficient for reliable predictions: a measure of the dispersion must also be obtained. An algorithm to estimate this dispersion is tested. (author)
Huiying Sun
2014-01-01
Full Text Available We mainly consider the stability of discrete-time Markovian jump linear systems with state-dependent noise as well as its linear quadratic (LQ differential games. A necessary and sufficient condition involved with the connection between stochastic Tn-stability of Markovian jump linear systems with state-dependent noise and Lyapunov equation is proposed. And using the theory of stochastic Tn-stability, we give the optimal strategies and the optimal cost values for infinite horizon LQ stochastic differential games. It is demonstrated that the solutions of infinite horizon LQ stochastic differential games are concerned with four coupled generalized algebraic Riccati equations (GAREs. Finally, an iterative algorithm is presented to solve the four coupled GAREs and a simulation example is given to illustrate the effectiveness of it.
Maggiore, Michele; Riotto, Antonio
2010-01-01
A classic method for computing the mass function of dark matter halos is provided by excursion set theory, where density perturbations evolve stochastically with the smoothing scale, and the problem of computing the probability of halo formation is mapped into the so-called first-passage time problem in the presence of a barrier. While the full dynamical complexity of halo formation can only be revealed through N-body simulations, excursion set theory provides a simple analytic framework for understanding various aspects of this complex process. In this series of papers we propose improvements of both technical and conceptual aspects of excursion set theory, and we explore up to which point the method can reproduce quantitatively the data from N-body simulations. In Paper I of the series, we show how to derive excursion set theory from a path integral formulation. This allows us both to derive rigorously the absorbing barrier boundary condition, that in the usual formulation is just postulated, and to deal analytically with the non-Markovian nature of the random walk. Such a non-Markovian dynamics inevitably enters when either the density is smoothed with filters such as the top-hat filter in coordinate space (which is the only filter associated with a well-defined halo mass) or when one considers non-Gaussian fluctuations. In these cases, beside 'Markovian' terms, we find 'memory' terms that reflect the non-Markovianity of the evolution with the smoothing scale. We develop a general formalism for evaluating perturbatively these non-Markovian corrections, and in this paper we perform explicitly the computation of the halo mass function for Gaussian fluctuations, to first order in the non-Markovian corrections due to the use of a top-hat filter in coordinate space. In Paper II of this series we propose to extend excursion set theory by treating the critical threshold for collapse as a stochastic variable, which better captures some of the dynamical complexity of the
Generalized quantum master equations in and out of equilibrium: When can one win?
Kelly, Aaron; Markland, Thomas E.; Montoya-Castillo, Andrés; Wang, Lu
2016-01-01
Generalized quantum master equations (GQMEs) are an important tool in modeling chemical and physical processes. For a large number of problems, it has been shown that exact and approximate quantum dynamics methods can be made dramatically more efficient, and in the latter case more accurate, by proceeding via the GQME formalism. However, there are many situations where utilizing the GQME approach with an approximate method has been observed to return the same dynamics as using that method directly. Here, for systems both in and out of equilibrium, we provide a more detailed understanding of the conditions under which using an approximate method can yield benefits when combined with the GQME formalism. In particular, we demonstrate the necessary manipulations, which are satisfied by exact quantum dynamics, that are required to recast the memory kernel in a form that can be analytically shown to yield the same result as a direct application of the dynamics regardless of the approximation used. By considering the connections between these forms of the kernel, we derive the conditions that approximate methods must satisfy if they are to offer different results when used in conjunction with the GQME formalism. These analytical results thus provide new insights as to when proceeding via the GQME approach can be used to improve the accuracy of simulations.
Kwon, Young-Sam; Li, Fucai
2018-03-01
In this paper we study the incompressible limit of the degenerate quantum compressible Navier-Stokes equations in a periodic domain T3 and the whole space R3 with general initial data. In the periodic case, by applying the refined relative entropy method and carrying out the detailed analysis on the oscillations of velocity, we prove rigorously that the gradient part of the weak solutions (velocity) of the degenerate quantum compressible Navier-Stokes equations converge to the strong solution of the incompressible Navier-Stokes equations. Our results improve considerably the ones obtained by Yang, Ju and Yang [25] where only the well-prepared initial data case is considered. While for the whole space case, thanks to the Strichartz's estimates of linear wave equations, we can obtain the convergence of the weak solutions of the degenerate quantum compressible Navier-Stokes equations to the strong solution of the incompressible Navier-Stokes/Euler equations with a linear damping term. Moreover, the convergence rates are also given.
Relation of a unified quantum field theory of spinors to the structure of general relativity
Kober, Martin
2009-01-01
Based on a unified quantum field theory of spinors assumed to describe all matter fields and their interactions we construct the space-time structure of general relativity according to a general connection within the corresponding spinor space. The tetrad field and the corresponding metric field are composed from a space-time dependent basis of spinors within the internal space of the fundamental matter field. Similar to twistor theory the Minkowski signature of the space-time metric is related to this spinor nature of elementary matter, if we assume the spinor space to be endowed with a symplectic structure. The equivalence principle and the property of background independence arise from the fact that all elementary fields are composed from the fundamental spinor field. This means that the structure of space-time according to general relativity seems to be a consequence of a fundamental theory of matter fields and not a presupposition as in the usual setting of relativistic quantum field theories.
The Generalized Coherent State ansatz: Application to quantum electron-vibrational dynamics
Borrelli, Raffaele, E-mail: raffaele.borrelli@unito.it [DISAFA, Università di Torino, I-10095 Grugliasco (Italy); Gelin, Maxim F. [Departement of Chemistry, Technische Universität München, D-85747 Garching (Germany)
2016-12-20
A new ansatz for molecular vibronic wave functions based on a superposition of time-dependent Generalized Coherent States is developed and analysed. The methodology is specifically tailored to describe the time evolution of the wave function of a system in which several interacting electronic states are coupled to a bath of harmonic oscillators. The equations of motion for the wave packet parameters are obtained by using the Dirac–Frenkel time-dependent variational principle. The methodology is used to describe the quantum dynamical behavior of a model polaron system and its scaling and convergence properties are discussed and compared with numerically exact results.
Vol. 1: Physics of Elementary Particles and Quantum Field Theory. General Problems
Sitenko, A.
1993-01-01
Problems of modern physics and the situation with physical research in Ukraine are considered. Programme of the conference includes scientific and general problems. Its proceedings are published in 6 volumes. The papers presented in this volume refer to elementary particle physics and quantum field theory. The main attention is paid to the following problems: - development of science in Ukraine and its role in the state structures; - modern state of scientific research in Ukraine; - education and training of specialists; - history of Ukrainian physics and contribution of Ukrainian scientists in the world science; - problems of the Ukrainian scientific terminology
A Theory of Gravity and General Relativity based on Quantum Electromagnetism
Zheng-Johansson, J. X.
2018-02-01
Based on first principles solutions in a unified framework of quantum mechanics and electromagnetism we predict the presence of a universal attractive depolarisation radiation (DR) Lorentz force (F) between quantum entities, each being either an IED matter particle or light quantum, in a polarisable dielectric vacuum. Given two quantum entities i = 1, 2 of either kind, of characteristic frequencies ν _i^0, masses m_i0 = hν _i^0/{c^2} and separated at a distance r 0, the solution for F is F = - G}m_1^0m_2^0/{≤ft( {{r^2}} \\right)^2}, where G} = χ _0^2{e^4}/12{π ^2} \\in _0^2{ρ _λ };{χ _0} is the susceptibility and π λ is the reduced linear mass density of the vacuum. This force F resembles in all respects Newton’s gravity and is accurate at the weak F limit; hence ℊ equals the gravitational constant G. The DR wave fields and hence the gravity are each propagated in the dielectric vacuum at the speed of light c; these can not be shielded by matter. A test particle µ of mass m 0 therefore interacts gravitationally with all of the building particles of a given large mass M at r 0 apart, by a total gravitational force F = -GMm 0/(r 0)2 and potential V = -∂F/∂r 0. For a finite V and hence a total Hamiltonian H = m 0 c 2 + V, solution for the eigenvalue equation of µ presents a red-shift in the eigen frequency ν = ν 0(1 - GM/r 0 c 2) and hence in other wave variables. The quantum solutions combined with the wave nature of the gravity further lead to dilated gravito optical distance r = r 0/(1 - GM/r 0 c 2) and time t = t 0/(1 - GM/r 0 c 2), and modified Newton’s gravity and Einstein’s mass energy relation. Applications of these give predictions of the general relativistic effects manifested in the four classical test experiments of Einstein’s general relativity (GR), in direct agreement with the experiments and the predictions given based on GR.
Putz, Mihai V
2009-11-10
The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr's quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions - all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems.
Mihai V. Putz
2009-11-01
Full Text Available The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr’s quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions – all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving many-electronic systems.
A characterization of Markovian homogeneous multicomponent Gaussian fields
Ekhaguere, G.O.S.
1980-01-01
Necessary and sufficient conditions are given for a certain class of homogeneous multicomponent Gaussian generalized stochastic fields to possess a Markov property equivalent to Nelson's. The class of Markov fields so characterized has a as a cubclass the class of Markov fields which lead by Nelson's Reconstruction Theorem to some covariant (free) quantum fields. (orig.)
Hughes, Keith H., E-mail: keith.hughes@bangor.ac.uk [School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom); Cahier, Benjamin [School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom); Martinazzo, Rocco [Dipartimento di Chimica Università degli Studi di Milano, v. Golgi 19, 20133 Milano (Italy); Tamura, Hiroyuki [WPI-Advanced Institute for Material Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Burghardt, Irene [Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main (Germany)
2014-10-17
Highlights: • Quantum dynamical study of exciton dissociation at a heterojunction interface. • The non-Markovian quantum dynamics involves a highly structured spectral density. • Spectral density is reconstructed from an effective mode transformation of the Hamiltonian. • The dynamics is studied using the hierarchical equations of motion approach. • It was found that the temperature has little effect on the charge transfer. - Abstract: We extend our recent quantum dynamical study of the exciton dissociation and charge transfer at an oligothiophene–fullerene heterojunction interface (Tamura et al., 2012) [6] by investigating the process using the non-perturbative hierarchical equations of motion (HEOM) approach. Based upon an effective mode reconstruction of the spectral density the effect of temperature on the charge transfer is studied using reduced density matrices. It was found that the temperature had little effect on the charge transfer and a coherent dynamics persists over the first few tens of femtoseconds, indicating that the primary charge transfer step proceeds by an activationless pathway.
Al-Khalili, Jim
2003-01-01
In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.
Stefan Hollands
2009-09-01
Full Text Available In this paper, we propose a new framework for quantum field theory in terms of consistency conditions. The consistency conditions that we consider are ''associativity'' or ''factorization'' conditions on the operator product expansion (OPE of the theory, and are proposed to be the defining property of any quantum field theory. Our framework is presented in the Euclidean setting, and is applicable in principle to any quantum field theory, including non-conformal ones. In our framework, we obtain a characterization of perturbations of a given quantum field theory in terms of a certain cohomology ring of Hochschild-type. We illustrate our framework by the free field, but our constructions are general and apply also to interacting quantum field theories. For such theories, we propose a new scheme to construct the OPE which is based on the use of non-linear quantized field equations.
Data-based Non-Markovian Model Inference
Ghil, Michael
2015-04-01
This talk concentrates on obtaining stable and efficient data-based models for simulation and prediction in the geosciences and life sciences. The proposed model derivation relies on using a multivariate time series of partial observations from a large-dimensional system, and the resulting low-order models are compared with the optimal closures predicted by the non-Markovian Mori-Zwanzig formalism of statistical physics. Multilayer stochastic models (MSMs) are introduced as both a very broad generalization and a time-continuous limit of existing multilevel, regression-based approaches to data-based closure, in particular of empirical model reduction (EMR). We show that the multilayer structure of MSMs can provide a natural Markov approximation to the generalized Langevin equation (GLE) of the Mori-Zwanzig formalism. A simple correlation-based stopping criterion for an EMR-MSM model is derived to assess how well it approximates the GLE solution. Sufficient conditions are given for the nonlinear cross-interactions between the constitutive layers of a given MSM to guarantee the existence of a global random attractor. This existence ensures that no blow-up can occur for a very broad class of MSM applications. The EMR-MSM methodology is first applied to a conceptual, nonlinear, stochastic climate model of coupled slow and fast variables, in which only slow variables are observed. The resulting reduced model with energy-conserving nonlinearities captures the main statistical features of the slow variables, even when there is no formal scale separation and the fast variables are quite energetic. Second, an MSM is shown to successfully reproduce the statistics of a partially observed, generalized Lokta-Volterra model of population dynamics in its chaotic regime. The positivity constraint on the solutions' components replaces here the quadratic-energy-preserving constraint of fluid-flow problems and it successfully prevents blow-up. This work is based on a close
The theory of a general quantum system interacting with a linear dissipative system
Feynman, R.P.; Vernon, F.L.
2000-01-01
A formalism has been developed, using Feynman's space-time formulation of nonrelativistic quantum mechanics whereby the behavior of a system of interest, which is coupled to other external quantum systems, may be calculated in terms of its own variables only. It is shown that the effect of the external systems in such a formalism can always be included in a general class of functionals (influence functionals) of the coordinates of the system only. The properties of influence functionals for general systems are examined. Then, specific forms of influence functionals representing the effect of definite and random classical forces, linear dissipative systems at finite temperatures, and combinations of these are analyzed in detail. The linear system analysis is first done for perfectly linear systems composed of combinations of harmonic oscillators, loss being introduced by continuous distributions of oscillators. Then approximately linear systems and restrictions necessary for the linear behavior are considered. Influence functionals for all linear systems are shown to have the same form in terms of their classical response functions. In addition, a fluctuation-dissipation theorem is derived relating temperature and dissipation of the linear system to a fluctuating classical potential acting on the system of interest which reduces to the Nyquist-Johnson relation for noise in the case of electric circuits. Sample calculations of transition probabilities for the spontaneous emission of an atom in free space and in a cavity are made. Finally, a theorem is proved showing that within the requirements of linearity all sources of noise or quantum fluctuation introduced by maser-type amplification devices are accounted for by a classical calculation of the characteristics of the maser
Khrennikova, Polina; Haven, Emmanuel
2017-10-01
Politics is regarded as a vital area of public choice theory, and it is strongly relying on the assumptions of voters' rationality and as such, stability of preferences. However, recent opinion polls and real election outcomes in the USA have shown that voters often engage in `ticket splitting', by exhibiting contrasting party support in Congressional and Presidential elections (cf. Khrennikova 2014 Phys. Scripta T163, 014010 (doi:10.1088/0031-8949/2014/T163/014010); Khrennikova & Haven 2016 Phil. Trans. R. Soc. A 374, 20150106 (doi:10.1098/rsta.2015.0106); Smith et al. 1999 Am. J. Polit. Sci. 43, 737-764 (doi:10.2307/2991833)). Such types of preference reversals cannot be mathematically captured via the formula of total probability, thus showing that voters' decision making is at variance with the classical probabilistic information processing framework. In recent work, we have shown that quantum probability describes well the violation of Bayesian rationality in statistical data of voting in US elections, through the so-called interference effects of probability amplitudes. This paper is proposing a novel generalized observables framework of voting behaviour, by using the statistical data collected and analysed in previous studies by Khrennikova (Khrennikova 2015 Lect. Notes Comput. Sci. 8951, 196-209) and Khrennikova & Haven (Khrennikova & Haven 2016 Phil. Trans. R. Soc. A 374, 20150106 (doi:10.1098/rsta.2015.0106)). This framework aims to overcome the main problems associated with the quantum probabilistic representation of psychological data, namely the non-double stochasticity of transition probability matrices. We develop a simplified construction of generalized positive operator valued measures by formulating special non-orthonormal bases with respect to these operators. This article is part of the themed issue `Second quantum revolution: foundational questions'.
Quantum Radiation Properties of Dirac Particles in General Nonstationary Black Holes
Jia-Chen Hua
2014-01-01
Full Text Available Quantum radiation properties of Dirac particles in general nonstationary black holes in the general case are investigated by both using the method of generalized tortoise coordinate transformation and considering simultaneously the asymptotic behaviors of the first-order and second-order forms of Dirac equation near the event horizon. It is generally shown that the temperature and the shape of the event horizon of this kind of black holes depend on both the time and different angles. Further, we give a general expression of the new extra coupling effect in thermal radiation spectrum of Dirac particles which is absent from the thermal radiation spectrum of scalar particles. Also, we reveal a relationship that is ignored before between thermal radiation and nonthermal radiation in the case of scalar particles, which is that the chemical potential in thermal radiation spectrum is equal to the highest energy of the negative energy state of scalar particles in nonthermal radiation for general nonstationary black holes.
Bays, Harold
2005-05-01
Excessive fat (adiposity) and dysfunctional fat (adiposopathy) constitute the most common worldwide epidemics of our time -- and perhaps of all time. Ongoing efforts to explain how the micro (adipocyte) and macro (body organ) biologic systems interact through function and dysfunction in promoting Type 2 diabetes mellitus, hypertension and dyslipidemia are not unlike the mechanistic and philosophical thinking processes involved in reconciling the micro (quantum physics) and macro (general relativity) theories in physics. Currently, the term metabolic syndrome refers to a constellation of consequences often associated with excess body fat and is an attempt to unify the associations known to exist between the four fundamental metabolic diseases of obesity, hyperglycemia (including Type 2 diabetes mellitus), hypertension and dyslipidemia. However, the association of adiposity with these metabolic disorders is not absolute and the metabolic syndrome does not describe underlying causality, nor does the metabolic syndrome necessarily reflect any reasonably related pathophysiologic process. Just as with quantum physics, general relativity and the four fundamental forces of the universe, the lack of an adequate unifying theory of micro causality and macro consequence is unsatisfying, and in medicine, impairs the development of agents that may globally improve both obesity and obesity-related metabolic disease. Emerging scientific and clinical evidence strongly supports the novel concept that it is not adiposity alone, but rather it is adiposopathy that is the underlying cause of most cases of Type 2 diabetes mellitus, hypertension and dyslipidemia. Adiposopathy is a plausible Theory of Everything for mankind's greatest metabolic epidemics.
Yahiaoui, S A; Bentaiba, M
2012-01-01
In the context of the factorization method, we investigate the pseudo-Hermitian coherent states and their Hermitian counterpart coherent states under the generalized quantum condition in the framework of a position-dependent mass. By considering a specific modification in the superpotential, suitable annihilation and creation operators are constructed in order to reproduce the Hermitian counterpart Hamiltonian in the factorized form. We show that by means of these ladder operators, we can construct a wide range of exactly solvable potentials as well as their accompanying coherent states. Alternatively, we explore the relationship between the pseudo-Hermitian Hamiltonian and its Hermitian counterparts, obtained from a similarity transformation, to construct the associated pseudo-Hermitian coherent states. These latter preserve the structure of Perelomov’s states and minimize the generalized position–momentum uncertainty principle. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)
Cui, Ping
The thesis comprises two major themes of quantum statistical dynamics. One is the development of quantum dissipation theory (QDT). It covers the establishment of some basic relations of quantum statistical dynamics, the construction of several nonequivalent complete second-order formulations, and the development of exact QDT. Another is related to the applications of quantum statistical dynamics to a variety of research fields. In particular, unconventional but novel theories of the electron transfer in Debye solvents, quantum transport, and quantum measurement are developed on the basis of QDT formulations. The thesis is organized as follows. In Chapter 1, we present some background knowledge in relation to the aforementioned two themes of this thesis. The key quantity in QDT is the reduced density operator rho(t) ≡ trBrho T(t); i.e., the partial trace of the total system and bath composite rhoT(t) over the bath degrees of freedom. QDT governs the evolution of reduced density operator, where the effects of bath are treated in a quantum statistical manner. In principle, the reduced density operator contains all dynamics information of interest. However, the conventional quantum transport theory is formulated in terms of nonequilibrium Green's function. The newly emerging field of quantum measurement in relation to quantum information and quantum computing does exploit a sort of QDT formalism. Besides the background of the relevant theoretical development, some representative experiments on molecular nanojunctions are also briefly discussed. In chapter 2, we outline some basic (including new) relations that highlight several important issues on QDT. The content includes the background of nonequilibrium quantum statistical mechanics, the general description of the total composite Hamiltonian with stochastic system-bath interaction, a novel parameterization scheme for bath correlation functions, a newly developed exact theory of driven Brownian oscillator (DBO
Superdiffusion in a non-Markovian random walk model with a Gaussian memory profile
Borges, G. M.; Ferreira, A. S.; da Silva, M. A. A.; Cressoni, J. C.; Viswanathan, G. M.; Mariz, A. M.
2012-09-01
Most superdiffusive Non-Markovian random walk models assume that correlations are maintained at all time scales, e.g., fractional Brownian motion, Lévy walks, the Elephant walk and Alzheimer walk models. In the latter two models the random walker can always "remember" the initial times near t = 0. Assuming jump size distributions with finite variance, the question naturally arises: is superdiffusion possible if the walker is unable to recall the initial times? We give a conclusive answer to this general question, by studying a non-Markovian model in which the walker's memory of the past is weighted by a Gaussian centered at time t/2, at which time the walker had one half the present age, and with a standard deviation σt which grows linearly as the walker ages. For large widths we find that the model behaves similarly to the Elephant model, but for small widths this Gaussian memory profile model behaves like the Alzheimer walk model. We also report that the phenomenon of amnestically induced persistence, known to occur in the Alzheimer walk model, arises in the Gaussian memory profile model. We conclude that memory of the initial times is not a necessary condition for generating (log-periodic) superdiffusion. We show that the phenomenon of amnestically induced persistence extends to the case of a Gaussian memory profile.
Hwang, Jai-chan; Noh, Hyerim
2005-01-01
We present cosmological perturbation theory based on generalized gravity theories including string theory correction terms and a tachyonic complication. The classical evolution as well as the quantum generation processes in these varieties of gravity theories are presented in unified forms. These apply both to the scalar- and tensor-type perturbations. Analyses are made based on the curvature variable in two different gauge conditions often used in the literature in Einstein's gravity; these are the curvature variables in the comoving (or uniform-field) gauge and the zero-shear gauge. Applications to generalized slow-roll inflation and its consequent power spectra are derived in unified forms which include a wide range of inflationary scenarios based on Einstein's gravity and others
The general dispersion relation of induced streaming instabilities in quantum outflow systems
Mehdian, H., E-mail: mehdian@khu.ac.ir; Hajisharifi, K.; Hasanbeigi, A. [Department of Physics and Institute for Plasma Research, Kharazmi University, 49 Dr Mofatteh Avenue, Tehran 15614 (Iran, Islamic Republic of)
2015-11-15
In this manuscript the dispersion relations of streaming instabilities, by using the unique property (neutralized in charge and current by default) of plasma shells colliding, have been generalized and studied. This interesting property for interpenetrating beams enables one to find the general dispersion relations without any restrictions used in the previous works in this area. In our previous work [H. Mehdian et al., ApJ. 801, 89 (2015)], employing the plasma shell concept and boost frame method, the general dispersion relation for filamentation instability has been derived in the relativistic classical regime. But in this paper, using the above mentioned concepts, the general dispersion relations (for each of streaming instabilities, filamentation, two-stream and multi-stream) in the non-relativistic quantum regime have been derived by employing the quantum fluid equations together with Maxwell equations. The derived dispersion relations enable to describe any arbitrary system of interacting two and three beams, justified neutralization condition, by choosing the inertial reference frame embedded on the one of the beams. Furthermore, by the numerical and analytical study of these dispersion relations, many new features of streaming instabilities (E.g. their cut-off wave numbers and growth rates) in terms of all involved parameters have been illustrated. The obtained results in this paper can be used to describe many astrophysical systems and laboratory astrophysics setting, such as collision of non-parallel plasma shells over a background plasma or the collision of three neutralized plasma slabs, and justifying the many plasma phenomena such as particle accelerations and induced fields.
Yin, Yong; Chen, Lingen; Wu, Feng
2018-03-01
A generalized irreversible quantum Stirling refrigeration cycle (GIQSRC) is proposed. The working substance of the GIQSRC is a particle confined in a general 1D potential which energy spectrum can be expressed as εn = ℏωnσ . Heat leakage and non-ideal regeneration loss are taken into account. The expressions of coefficient of performance (COP) and dimensionless cooling load are obtained. The different practical cases of the energy spectrum are analyzed. The results of this paper are meaningful to understand the quantum thermodynamics cycles with a particle confined in different potential as working substance.
A relativistic theory for continuous measurement of quantum fields
Diosi, L.
1990-04-01
A formal theory for the continuous measurement of relativistic quantum fields is proposed. The corresponding scattering equations were derived. The proposed formalism reduces to known equations in the Markovian case. Two recent models for spontaneous quantum state reduction have been recovered in the framework of this theory. A possible example of the relativistic continuous measurement has been outlined in standard Quantum Electrodynamics. The continuous measurement theory possesses an alternative formulation in terms of interacting quantum and stochastic fields. (author) 23 refs
Control and filtering for semi-Markovian jump systems
Li, Fanbiao; Wu, Ligang
2017-01-01
This book presents up-to-date research developments and novel methodologies on semi-Markovian jump systems (S-MJS). It presents solutions to a series of problems with new approaches for the control and filtering of S-MJS, including stability analysis, sliding mode control, dynamic output feedback control, robust filter design, and fault detection. A set of newly developed techniques such as piecewise analysis method, positively invariant set approach, event-triggered method, and cone complementary linearization approaches are presented. Control and Filtering for Semi-Markovian Jump Systems is a comprehensive reference for researcher and practitioners working in control engineering, system sciences and applied mathematics, and is also a useful source of information for senior undergraduates and graduates in these areas. The readers will benefit from some new concepts, new models and new methodologies with practical significance in control engineering and signal processing.
Markovian Limit of a Spatio-Temporal Correlated Open Systems
Monnai, T.
Large fluctuation of Brownian particles is affected by the finiteness of the correlation length of the background noise field. Indeed a Fokker—Planck equation is derived in a Markovian limit of a spatio-temporal short correlated noise. Corresponding kinetic quantities are renormalized due to the spatio-temporal memory. We also investigate the case of open system by connecting a thermostat to the system.
Error Distributions on Large Entangled States with Non-Markovian Dynamics
McCutcheon, Dara; Lindner, Netanel H.; Rudolph, Terry
2014-01-01
We investigate the distribution of errors on a computationally useful entangled state generated via the repeated emission from an emitter undergoing strongly non-Markovian evolution. For emitter-environment coupling of pure-dephasing form, we show that the probability that a particular patten...... of errors occurs has a bound of Markovian form, and thus, accuracy threshold theorems based on Markovian models should be just as effective. Beyond the pure-dephasing assumption, though complicated error structures can arise, they can still be qualitatively bounded by a Markovian error model....
Supersymmetry, quantum gauge anomalies and generalized Chern-Simons terms in chiral gauge theory
Schmidt, Torsten
2009-01-01
The purpose of this thesis is to investigate the interplay of anomaly cancellation and generalized Chern-Simons terms in four-dimensional chiral gauge theory. We start with a detailed discussion of generalized Chern-Simons terms with the canellation of anomalies via the Green-Schwarz mechanism. With this at hand, we investigate the situation in general N=1 supersymmetric field theories with generalized Chern-Simons terms. Two simple consistency conditions are shown to encode strong constraints on the allowed anomalies for different types of gauge groups. In one major part of this thesis we are going to display to what extent one has to modify the existing formalism in order to allow for the cancellation of quantum gauge anomalies via the Green-Schwarz mechanism. At the end of this thesis we comment on a puzzle in the literature on supersymmetric field theories with massive tensor fields. The potential contains a term that does not arise from eliminating an auxiliary field. We clarify the origin of this term and display the relation to standard D-term potential. In an appendix it is explicitly shown how these low energy effective actions might be connected to the formulation of four-dimensional gauge theories discussed at earlier stages of this thesis. (orig.)
Fine tuning classical and quantum molecular dynamics using a generalized Langevin equation
Rossi, Mariana; Kapil, Venkat; Ceriotti, Michele
2018-03-01
Generalized Langevin Equation (GLE) thermostats have been used very effectively as a tool to manipulate and optimize the sampling of thermodynamic ensembles and the associated static properties. Here we show that a similar, exquisite level of control can be achieved for the dynamical properties computed from thermostatted trajectories. We develop quantitative measures of the disturbance induced by the GLE to the Hamiltonian dynamics of a harmonic oscillator, and show that these analytical results accurately predict the behavior of strongly anharmonic systems. We also show that it is possible to correct, to a significant extent, the effects of the GLE term onto the corresponding microcanonical dynamics, which puts on more solid grounds the use of non-equilibrium Langevin dynamics to approximate quantum nuclear effects and could help improve the prediction of dynamical quantities from techniques that use a Langevin term to stabilize dynamics. Finally we address the use of thermostats in the context of approximate path-integral-based models of quantum nuclear dynamics. We demonstrate that a custom-tailored GLE can alleviate some of the artifacts associated with these techniques, improving the quality of results for the modeling of vibrational dynamics of molecules, liquids, and solids.
Sparaciari, Carlo; Paris, Matteo G. A.
2013-01-01
We address measurement schemes where certain observables Xk are chosen at random within a set of nondegenerate isospectral observables and then measured on repeated preparations of a physical system. Each observable has a probability zk to be measured, with ∑kzk=1, and the statistics of this generalized measurement is described by a positive operator-valued measure. This kind of scheme is referred to as quantum roulettes, since each observable Xk is chosen at random, e.g., according to the fluctuating value of an external parameter. Here we focus on quantum roulettes for qubits involving the measurements of Pauli matrices, and we explicitly evaluate their canonical Naimark extensions, i.e., their implementation as indirect measurements involving an interaction scheme with a probe system. We thus provide a concrete model to realize the roulette without destroying the signal state, which can be measured again after the measurement or can be transmitted. Finally, we apply our results to the description of Stern-Gerlach-like experiments on a two-level system.
Bounds on quantum collapse models from matter-wave interferometry: calculational details
Toroš, Marko; Bassi, Angelo
2018-03-01
We present a simple derivation of the interference pattern in matter-wave interferometry predicted by a class of quantum master equations. We apply the obtained formulae to the following collapse models: the Ghirardi-Rimini-Weber (GRW) model, the continuous spontaneous localization (CSL) model together with its dissipative (dCSL) and non-Markovian generalizations (cCSL), the quantum mechanics with universal position localization (QMUPL), and the Diósi-Penrose (DP) model. We discuss the separability of the dynamics of the collapse models along the three spatial directions, the validity of the paraxial approximation, and the amplification mechanism. We obtain analytical expressions both in the far field and near field limits. These results agree with those already derived in the Wigner function formalism. We compare the theoretical predictions with the experimental data from two recent matter-wave experiments: the 2012 far-field experiment of Juffmann T et al (2012 Nat. Nanotechnol. 7 297-300) and the 2013 Kapitza-Dirac-Talbot-Lau (KDTL) near-field experiment of Eibenberger et al (2013 Phys. Chem. Chem. Phys. 15 14696-700). We show the region of the parameter space for each collapse model that is excluded by these experiments. We show that matter-wave experiments provide model-insensitive bounds that are valid for a wide family of dissipative and non-Markovian generalizations.
Moments of generalized Husimi distributions and complexity of many-body quantum states
Sugita, Ayumu
2003-01-01
We consider generalized Husimi distributions for many-body systems, and show that their moments are good measures of complexity of many-body quantum states. Our construction of the Husimi distribution is based on the coherent state of the single-particle transformation group. Then the coherent states are independent-particle states, and, at the same time, the most localized states in the Husimi representation. Therefore delocalization of the Husimi distribution, which can be measured by the moments, is a sign of many-body correlation (entanglement). Since the delocalization of the Husimi distribution is also related to chaoticity of the dynamics, it suggests a relation between entanglement and chaos. Our definition of the Husimi distribution can be applied not only to systems of distinguishable particles, but also to those of identical particles, i.e., fermions and bosons. We derive an algebraic formula to evaluate the moments of the Husimi distribution
General equilibrium second-order hydrodynamic coefficients for free quantum fields
Buzzegoli, M.; Grossi, E.; Becattini, F.
2017-10-01
We present a systematic calculation of the corrections of the stress-energy tensor and currents of the free boson and Dirac fields up to second order in thermal vorticity, which is relevant for relativistic hydrodynamics. These corrections are non-dissipative because they survive at general thermodynamic equilibrium with non vanishing mean values of the conserved generators of the Lorentz group, i.e. angular momenta and boosts. Their equilibrium nature makes it possible to express the relevant coefficients by means of correlators of the angular-momentum and boost operators with stress-energy tensor and current, thus making simpler to determine their so-called "Kubo formulae". We show that, at least for free fields, the corrections are of quantum origin and we study several limiting cases and compare our results with previous calculations. We find that the axial current of the free Dirac field receives corrections proportional to the vorticity independently of the anomalous term.
Garcia-Ravelo, J.; Trujillo, A. L. [Escuela Superior de Fisica y Matematicas, Instituto Politecnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Zacatenco, 07738 Mexico D.F. (Mexico); Schulze-Halberg, A. [Department of Mathematics and Actuarial Science, Indiana University Northwest, 3400 Broadway, Gary, Indiana 46408 (United States)
2012-10-15
We obtain explicit formulas for perturbative corrections of the infinite quantum well model. The formulas we obtain are based on a class of matrix elements that we construct by means of two-parameter ladder operators associated with the infinite quantum well system. Our approach can be used to construct solutions to Schroedinger-type equations that involve generalized harmonic perturbations of their potentials, such as cosine powers, Fourier series, and more general functions. As a particular case, we obtain characteristic values for odd periodic solutions of the Mathieu equation.
García-Ravelo, J.; Trujillo, A. L.; Schulze-Halberg, A.
2012-01-01
We obtain explicit formulas for perturbative corrections of the infinite quantum well model. The formulas we obtain are based on a class of matrix elements that we construct by means of two-parameter ladder operators associated with the infinite quantum well system. Our approach can be used to construct solutions to Schrödinger-type equations that involve generalized harmonic perturbations of their potentials, such as cosine powers, Fourier series, and more general functions. As a particular case, we obtain characteristic values for odd periodic solutions of the Mathieu equation.
Conformal generally covariant quantum field theory. The scalar field and its Wick products
Pinamonti, N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2008-06-15
In this paper we generalize the construction of generally covariant quantum theories given in [R. Brunetti, K. Fredenhagen, R. Verch, Commun. Math. Phys. 237, 31 (2003)] to encompass the conformal covariant case. After introducing the abstract framework, we discuss the massless conformally coupled Klein Gordon field theory, showing that its quantization corresponds to a functor between two certain categories. At the abstract level, the ordinary fields, could be thought as natural transformations in the sense of category theory. We show that, the Wick monomials without derivatives (Wick powers), can be interpreted as fields in this generalized sense, provided a non trivial choice of the renormalization constants is given. A careful analysis shows that the transformation law of Wick powers is characterized by a weight, and it turns out that the sum of fields with different weights breaks the conformal covariance. At this point there is a difference between the previously given picture due to the presence of a bigger group of covariance. It is furthermore shown that the construction does not depend upon the scale {mu} appearing in the Hadamard parametrix, used to regularize the fields. Finally, we briefly discuss some further examples of more involved fields. (orig.)
Conformal generally covariant quantum field theory. The scalar field and its Wick products
Pinamonti, N.
2008-06-01
In this paper we generalize the construction of generally covariant quantum theories given in [R. Brunetti, K. Fredenhagen, R. Verch, Commun. Math. Phys. 237, 31 (2003)] to encompass the conformal covariant case. After introducing the abstract framework, we discuss the massless conformally coupled Klein Gordon field theory, showing that its quantization corresponds to a functor between two certain categories. At the abstract level, the ordinary fields, could be thought as natural transformations in the sense of category theory. We show that, the Wick monomials without derivatives (Wick powers), can be interpreted as fields in this generalized sense, provided a non trivial choice of the renormalization constants is given. A careful analysis shows that the transformation law of Wick powers is characterized by a weight, and it turns out that the sum of fields with different weights breaks the conformal covariance. At this point there is a difference between the previously given picture due to the presence of a bigger group of covariance. It is furthermore shown that the construction does not depend upon the scale μ appearing in the Hadamard parametrix, used to regularize the fields. Finally, we briefly discuss some further examples of more involved fields. (orig.)
Recent advances toward a general purpose linear-scaling quantum force field.
Giese, Timothy J; Huang, Ming; Chen, Haoyuan; York, Darrin M
2014-09-16
Conspectus There is need in the molecular simulation community to develop new quantum mechanical (QM) methods that can be routinely applied to the simulation of large molecular systems in complex, heterogeneous condensed phase environments. Although conventional methods, such as the hybrid quantum mechanical/molecular mechanical (QM/MM) method, are adequate for many problems, there remain other applications that demand a fully quantum mechanical approach. QM methods are generally required in applications that involve changes in electronic structure, such as when chemical bond formation or cleavage occurs, when molecules respond to one another through polarization or charge transfer, or when matter interacts with electromagnetic fields. A full QM treatment, rather than QM/MM, is necessary when these features present themselves over a wide spatial range that, in some cases, may span the entire system. Specific examples include the study of catalytic events that involve delocalized changes in chemical bonds, charge transfer, or extensive polarization of the macromolecular environment; drug discovery applications, where the wide range of nonstandard residues and protonation states are challenging to model with purely empirical MM force fields; and the interpretation of spectroscopic observables. Unfortunately, the enormous computational cost of conventional QM methods limit their practical application to small systems. Linear-scaling electronic structure methods (LSQMs) make possible the calculation of large systems but are still too computationally intensive to be applied with the degree of configurational sampling often required to make meaningful comparison with experiment. In this work, we present advances in the development of a quantum mechanical force field (QMFF) suitable for application to biological macromolecules and condensed phase simulations. QMFFs leverage the benefits provided by the LSQM and QM/MM approaches to produce a fully QM method that is able to
Recursive approach for non-Markovian time-convolutionless master equations
Gasbarri, G.; Ferialdi, L.
2018-02-01
We consider a general open system dynamics and we provide a recursive method to derive the associated non-Markovian master equation in a perturbative series. The approach relies on a momenta expansion of the open system evolution. Unlike previous perturbative approaches of this kind, the method presented in this paper provides a recursive definition of each perturbative term. Furthermore, we give an intuitive diagrammatic description of each term of the series, which provides a useful analytical tool to build them and to derive their structure in terms of commutators and anticommutators. We eventually apply our formalism to the evolution of the observables of the reduced system, by showing how the method can be applied to the adjoint master equation, and by developing a diagrammatic description of the associated series.
Reliability importance analysis of Markovian systems at steady state using perturbation analysis
Phuc Do Van [Institut Charles Delaunay - FRE CNRS 2848, Systems Modeling and Dependability Group, Universite de technologie de Troyes, 12, rue Marie Curie, BP 2060-10010 Troyes cedex (France); Barros, Anne [Institut Charles Delaunay - FRE CNRS 2848, Systems Modeling and Dependability Group, Universite de technologie de Troyes, 12, rue Marie Curie, BP 2060-10010 Troyes cedex (France)], E-mail: anne.barros@utt.fr; Berenguer, Christophe [Institut Charles Delaunay - FRE CNRS 2848, Systems Modeling and Dependability Group, Universite de technologie de Troyes, 12, rue Marie Curie, BP 2060-10010 Troyes cedex (France)
2008-11-15
Sensitivity analysis has been primarily defined for static systems, i.e. systems described by combinatorial reliability models (fault or event trees). Several structural and probabilistic measures have been proposed to assess the components importance. For dynamic systems including inter-component and functional dependencies (cold spare, shared load, shared resources, etc.), and described by Markov models or, more generally, by discrete events dynamic systems models, the problem of sensitivity analysis remains widely open. In this paper, the perturbation method is used to estimate an importance factor, called multi-directional sensitivity measure, in the framework of Markovian systems. Some numerical examples are introduced to show why this method offers a promising tool for steady-state sensitivity analysis of Markov processes in reliability studies.
Reliability importance analysis of Markovian systems at steady state using perturbation analysis
Phuc Do Van; Barros, Anne; Berenguer, Christophe
2008-01-01
Sensitivity analysis has been primarily defined for static systems, i.e. systems described by combinatorial reliability models (fault or event trees). Several structural and probabilistic measures have been proposed to assess the components importance. For dynamic systems including inter-component and functional dependencies (cold spare, shared load, shared resources, etc.), and described by Markov models or, more generally, by discrete events dynamic systems models, the problem of sensitivity analysis remains widely open. In this paper, the perturbation method is used to estimate an importance factor, called multi-directional sensitivity measure, in the framework of Markovian systems. Some numerical examples are introduced to show why this method offers a promising tool for steady-state sensitivity analysis of Markov processes in reliability studies
Li, Li-Wei; Yang, Guang-Hong
2017-07-01
The problem of decentralised output feedback control is addressed for Markovian jump interconnected systems with unknown interconnections and general transition rates (TRs) allowed to be unknown or known with uncertainties. A class of decentralised dynamic output feedback controllers are constructed, and a cyclic-small-gain condition is exploited to dispose the unknown interconnections so that the resultant closed-loop system is stochastically stable and satisfies an H∞ performance. With slack matrices to cope with the nonlinearities incurred by unknown and uncertain TRs in control synthesis, a novel controller design condition is developed in linear matrix inequality formalism. Compared with the existing works, the proposed approach leads to less conservatism. Finally, two examples are used to illustrate the effectiveness of the new results.
On a testable unification of electromagnetics, general relativity, and quantum mechanics
Bearden, T.E.; Rosenthal, W.
1991-01-01
Unrecognized for what it was, in 1903-1904 E.T. Whittaker (W) published a fundamental, engineerable theory of electogravitation (EG) in two profound papers. The first (W-1903) demonstrated a hidden bidirectional EM wave structure in the scalar potential of vacuum, and showed how to produce a standing scalar EM potential wave -- the same wave discovered experimentally four years earlier by Nikola Tesla. W-1903 is a hidden variable theory that shows how to determinsitically curve the local and/or distant spacetime using EM. W-1904 shows that all force field EM can be replaced by interferometry of two scalar potentials, anticipating the Aharonov-Bohm effect by 55 years and extending it to the engineerable macroscopic world. W-1903 shows how to turn EM into G-potential, curve local and/or distant spacetime, and directly engineer the virtual particle flux of vacuum. W-1904 shows how to turn G-potential and curvature of spacetime back into force-field EM, even at a distance. The papers implement Sahkarov's 1968 statement that gravitation is not a fundamental field of nature, gut a conglomerate of other fields. Separately applied to electromagnetic (EM), quantum mechanics (QM), and general relativity (GR), an extended superset of each results. The three supersets are Whittaker-unified, so that a testable, engineerable, unified field theory is generated. EM, QM, and GR each contained a fundamental error that blocked unification, and these three errors are explain. The Schroedinger potential can also be structured and altered, indicating the direct engineering of physical quantum change. Recently Ignatovich has pointed out this hidden bidirectional EM wave structure in the Schroedinger potential, without referencing Whittaker's 1903 discovery of the basic effect
Physical state condition in quantum general relativity as a consequence of BRST symmetry
Castellana, Michele; Montani, Giovanni
2008-01-01
Quantization of systems with constraints can be carried out with several methods. In the Dirac formulation the classical generators of gauge transformations are required to annihilate physical quantum states to ensure their gauge invariance. Carrying on BRST symmetry it is possible to get a condition on physical states which, different from the Dirac method, requires them to be invariant under the BRST transformation. Employing this method for the action of general relativity expressed in terms of the spin connection and tetrad fields with path integral methods, we construct the generator of the BRST transformation associated with the underlying local Lorentz symmetry of the theory and write a physical state condition following from BRST invariance. This derivation is based on the general results on the dependence of the effective action used in path integrals and consequently of Green's functions on the gauge-fixing functionals used in the DeWitt-Faddeev-Popov method. The condition we gain differs from the one obtained within Ashtekar's canonical formulation, showing how we recover the latter only by a suitable choice of the gauge-fixing functionals. Finally we discuss how it should be possible to obtain all of the requested physical state conditions associated with all the underlying gauge symmetries of the classical theory using our approach
Nonlinear q-Generalizations of Quantum Equations: Homogeneous and Nonhomogeneous Cases—An Overview
Fernando D. Nobre
2017-01-01
Full Text Available Recent developments on the generalizations of two important equations of quantum physics, namely the Schroedinger and Klein–Gordon equations, are reviewed. These generalizations present nonlinear terms, characterized by exponents depending on an index q, in such a way that the standard linear equations are recovered in the limit q → 1 . Interestingly, these equations present a common, soliton-like, traveling solution, which is written in terms of the q-exponential function that naturally emerges within nonextensive statistical mechanics. In both cases, the corresponding well-known Einstein energy-momentum relations, as well as the Planck and the de Broglie ones, are preserved for arbitrary values of q. In order to deal appropriately with the continuity equation, a classical field theory has been developed, where besides the usual Ψ ( x → , t , a new field Φ ( x → , t must be introduced; this latter field becomes Ψ * ( x → , t only when q → 1 . A class of linear nonhomogeneous Schroedinger equations, characterized by position-dependent masses, for which the extra field Φ ( x → , t becomes necessary, is also investigated. In this case, an appropriate transformation connecting Ψ ( x → , t and Φ ( x → , t is proposed, opening the possibility for finding a connection between these fields in the nonlinear cases. The solutions presented herein are potential candidates for applications to nonlinear excitations in plasma physics, nonlinear optics, in structures, such as those of graphene, as well as in shallow and deep water waves.
Non-Markovian dynamics in the theory of full counting statistics
Flindt, Christian; Braggio, A.; Novotny, Tomas
2007-01-01
generating function corresponding to the resulting non-Markovian rate equation and find that the measured current cumulants behave significantly differently compared to those of a Markovian transport process. Our findings provide a novel interpretation of noise suppression found in a number of systems....
Ma, Chong-Bo
2015-05-05
Graphene quantum dots (GQDs) have attracted increasing interest because of their excellent properties such as strong photoluminescence, excellent biocompatibility and low cost. Herein, we develop a general method for the synthesis of doped and undoped GQDs, which relies on direct carbonization of organic precursors at solid state.
Spaans, M.
2013-01-01
General Relativity is extended into the quantum domain. A thought experiment is ex- plored to derive a specific topological build-up for Planckian space-time. The presented arguments are inspired by Feynman’s path integral for superposition andWheeler’s quan- tum foam of Planck mass mini black
Ma, Chong-Bo; Zhu, Zhentong; Wang, Hang-Xing; Huang, Xiao; Zhang, Xiao; Qi, Xiaoying; Zhang, Haoli; Zhu, Yihan; Deng, Xia; Peng, Yong; Han, Yu; Zhang, Hua
2015-01-01
Graphene quantum dots (GQDs) have attracted increasing interest because of their excellent properties such as strong photoluminescence, excellent biocompatibility and low cost. Herein, we develop a general method for the synthesis of doped and undoped GQDs, which relies on direct carbonization of organic precursors at solid state.
Malossi, Nicola; Bason, Mark George; Viteau, Matthieu
2013-01-01
We present experimental results on the preparation of a desired quantum state in a two-level system with the maximum possible fidelity using driving protocols ranging from generalizations of the linear Landau-Zener protocol to transitionless driving protocols that ensure perfect following of the ...
Multilevel Approximations of Markovian Jump Processes with Applications in Communication Networks
Vilanova, Pedro
2015-05-04
This thesis focuses on the development and analysis of efficient simulation and inference techniques for Markovian pure jump processes with a view towards applications in dense communication networks. These techniques are especially relevant for modeling networks of smart devices —tiny, abundant microprocessors with integrated sensors and wireless communication abilities— that form highly complex and diverse communication networks. During 2010, the number of devices connected to the Internet exceeded the number of people on Earth: over 12.5 billion devices. By 2015, Cisco’s Internet Business Solutions Group predicts that this number will exceed 25 billion. The first part of this work proposes novel numerical methods to estimate, in an efficient and accurate way, observables from realizations of Markovian jump processes. In particular, hybrid Monte Carlo type methods are developed that combine the exact and approximate simulation algorithms to exploit their respective advantages. These methods are tailored to keep a global computational error below a prescribed global error tolerance and within a given statistical confidence level. Indeed, the computational work of these methods is similar to the one of an exact method, but with a smaller constant. Finally, the methods are extended to systems with a disparity of time scales. The second part develops novel inference methods to estimate the parameters of Markovian pure jump process. First, an indirect inference approach is presented, which is based on upscaled representations and does not require sampling. This method is simpler than dealing directly with the likelihood of the process, which, in general, cannot be expressed in closed form and whose maximization requires computationally intensive sampling techniques. Second, a forward-reverse Monte Carlo Expectation-Maximization algorithm is provided to approximate a local maximum or saddle point of the likelihood function of the parameters given a set of
Process, System, Causality, and Quantum Mechanics: A Psychoanalysis of Animal Faith
Etter, Tom; Noyes, H. Pierre
We shall argue in this paper that a central piece of modern physics does not really belong to physics at all but to elementary probability theory. Given a joint probability distribution J on a set of random variables containing x and y, define a link between x and y to be the condition x=y on J. Define the {\\it state} D of a link x=y as the joint probability distribution matrix on x and y without the link. The two core laws of quantum mechanics are the Born probability rule, and the unitary dynamical law whose best known form is the Schrodinger's equation. Von Neumann formulated these two laws in the language of Hilbert space as prob(P) = trace(PD) and D'T = TD respectively, where P is a projection, D and D' are (von Neumann) density matrices, and T is a unitary transformation. We'll see that if we regard link states as density matrices, the algebraic forms of these two core laws occur as completely general theorems about links. When we extend probability theory by allowing cases to count negatively, we find that the Hilbert space framework of quantum mechanics proper emerges from the assumption that all D's are symmetrical in rows and columns. On the other hand, Markovian systems emerge when we assume that one of every linked variable pair has a uniform probability distribution. By representing quantum and Markovian structure in this way, we see clearly both how they differ, and also how they can coexist in natural harmony with each other, as they must in quantum measurement, which we'll examine in some detail. Looking beyond quantum mechanics, we see how both structures have their special places in a much larger continuum of formal systems that we have yet to look for in nature.
Dimakis, N.; Terzis, Petros A.; Zampeli, Adamantia; Christodoulakis, T.
2016-09-01
The high degree of symmetry renders the dynamics of cosmological as well as some black hole spacetimes describable by a system of finite degrees of freedom. These systems are generally known as minisuperspace models. One of their important key features is the invariance of the corresponding reduced actions under reparametrizations of the independent variable, a fact that can be seen as the remnant of the general covariance of the full theory. In the case of a system of n degrees of freedom, described by a Lagrangian quadratic in velocities, one can use the lapse by either gauge fixing it or letting it be defined by the constraint and subsequently substitute into the rest of the equations. In the first case, the system of the second-order equations of motion is solvable for all n accelerations and the constraint becomes a restriction among constants of integration. In the second case, the system can be solved for only n -1 accelerations and the "gauge" freedom is transferred to the choice of one of the scalar degrees of freedom. In this paper, we take the second path and express all n -1 scalar degrees of freedom in terms of the remaining one, say q . By considering these n -1 degrees of freedom as arbitrary but given functions of q , we manage to extract a two-dimensional pure gauge system consisting of the lapse N and the arbitrary q : in a way, we decouple the reparametrization invariance from the rest of the equations of motion, which are thus describing the "true" dynamics. The solution of the corresponding quantum two-dimensional system is used for the definition of a generalized probability for every configuration fi(q ), be it classical or not. The main result is that, interestingly enough, this probability attains its extrema on the classical solution of the initial n -dimensional system.
Heusler, Stefan
2006-01-01
The main focus of the second, enlarged edition of the book Mathematica for Theoretical Physics is on computational examples using the computer program Mathematica in various areas in physics. It is a notebook rather than a textbook. Indeed, the book is just a printout of the Mathematica notebooks included on the CD. The second edition is divided into two volumes, the first covering classical mechanics and nonlinear dynamics, the second dealing with examples in electrodynamics, quantum mechanics, general relativity and fractal geometry. The second volume is not suited for newcomers because basic and simple physical ideas which lead to complex formulas are not explained in detail. Instead, the computer technology makes it possible to write down and manipulate formulas of practically any length. For researchers with experience in computing, the book contains a lot of interesting and non-trivial examples. Most of the examples discussed are standard textbook problems, but the power of Mathematica opens the path to more sophisticated solutions. For example, the exact solution for the perihelion shift of Mercury within general relativity is worked out in detail using elliptic functions. The virial equation of state for molecules' interaction with Lennard-Jones-like potentials is discussed, including both classical and quantum corrections to the second virial coefficient. Interestingly, closed solutions become available using sophisticated computing methods within Mathematica. In my opinion, the textbook should not show formulas in detail which cover three or more pages-these technical data should just be contained on the CD. Instead, the textbook should focus on more detailed explanation of the physical concepts behind the technicalities. The discussion of the virial equation would benefit much from replacing 15 pages of Mathematica output with 15 pages of further explanation and motivation. In this combination, the power of computing merged with physical intuition would
Perturbative approach to non-Markovian stochastic Schroedinger equations
Gambetta, Jay; Wiseman, H.M.
2002-01-01
In this paper we present a perturbative procedure that allows one to numerically solve diffusive non-Markovian stochastic Schroedinger equations, for a wide range of memory functions. To illustrate this procedure numerical results are presented for a classically driven two-level atom immersed in an environment with a simple memory function. It is observed that as the order of the perturbation is increased the numerical results for the ensemble average state ρ red (t) approach the exact reduced state found via Imamog-barlu ' s enlarged system method [Phys. Rev. A 50, 3650 (1994)
Gaussian Error Correction of Quantum States in a Correlated Noisy Channel
Lassen, Mikael Østergaard; Berni, Adriano; Madsen, Lars Skovgaard
2013-01-01
Noise is the main obstacle for the realization of fault-tolerant quantum information processing and secure communication over long distances. In this work, we propose a communication protocol relying on simple linear optics that optimally protects quantum states from non-Markovian or correlated...... noise. We implement the protocol experimentally and demonstrate the near-ideal protection of coherent and entangled states in an extremely noisy channel. Since all real-life channels are exhibiting pronounced non-Markovian behavior, the proposed protocol will have immediate implications in improving...... the performance of various quantum information protocols....
Quantum theory of anharmonic oscillators - a variational and systematic general approximation method
Yamazaki, K.; Kyoto Univ.
1984-01-01
The paper investigates the energy levels and wavefunctions of an anharmonic oscillator characterised by the potential 1/2ω 2 q 2 +lambdaq 4 . As a lowest-order approximation an extremely simple formula for energy levels, Esub(i)sup(0) = (i+1/2)1/4(3/αsub(i)+αsub(i)), is derived (i being the quantum number of the energy level). This formula reproduces the exact energy levels within an error of about 1%. Systematically higher orders of the present perturbation theory are developed. The present second-order perturbation theory reduces the errors of the lowest-order results by a factor of about 1/5 in general. Various ranges (large, intermediate, small) of (i, lambda) are investigated and compared with the exact values obtained by other workers. For i = 0, 1, even the fourth-order perturbation calculation can be elaborated explicitly, which reduces the error to about 0.01% for any lambda. For small lambda it gives correct numerical coefficients up to lambda 4 terms, as it should. (author)
Adiabatically steered open quantum systems: Master equation and optimal phase
Salmilehto, J.; Solinas, P.; Ankerhold, J.; Moettoenen, M.
2010-01-01
We introduce an alternative way to derive the generalized form of the master equation recently presented by J. P. Pekola et al. [Phys. Rev. Lett. 105, 030401 (2010)] for an adiabatically steered two-level quantum system interacting with a Markovian environment. The original derivation employed the effective Hamiltonian in the adiabatic basis with the standard interaction picture approach but without the usual secular approximation. Our approach is based on utilizing a master equation for a nonsteered system in the first superadiabatic basis. It is potentially efficient in obtaining higher-order equations. Furthermore, we show how to select the phases of the adiabatic eigenstates to minimize the local adiabatic parameter and how this selection leads to states which are invariant under a local gauge change. We also discuss the effects of the adiabatic noncyclic geometric phase on the master equation.
Quantum theory of nonrelativistic particles interacting with gravity
Anastopoulos, C.
1996-01-01
We investigate the effects of the gravitational field on the quantum dynamics of nonrelativistic particles. We consider N nonrelativistic particles, interacting with the linearized gravitational field. Using the Feynman-Vernon influence functional technique, we trace out the graviton field to obtain a master equation for the system of particles to first order in G. The effective interaction between the particles as well as the self-interaction is in general non-Markovian. We show that the gravitational self-interaction cannot be held responsible for decoherence of microscopic particles due to the fast vanishing of the diffusion function. For macroscopic particles though, it leads to diagonalization to the energy eigenstate basis, a desirable feature in gravity-induced collapse models. We finally comment on possible applications. copyright 1996 The American Physical Society
Quantum baker maps with controlled-not coupling
Vallejos, Raul O; Santoro, Pedro R del; Almeida, Alfredo M Ozorio de
2006-01-01
The characteristic stretching and squeezing of chaotic motion is linearized within the finite number of phase space domains which subdivide a classical baker map. Tensor products of such maps are also chaotic, but a more interesting generalized baker map arises if the stacking orders for the factor maps are allowed to interact. These maps are readily quantized, in such a way that the stacking interaction is entirely attributed to primary qubits in each map, if each jth subsystem has Hilbert space dimension D j 2 n j . We here study the particular example of two baker maps that interact via a controlled-not interaction, which is a universal gate for quantum computation. Numerical evidence indicates that the control subspace becomes an ideal Markovian environment for the target map in the limit of large Hilbert space dimension
Nonlinear Quantum Metrology of Many-Body Open Systems
Beau, M.; del Campo, A.
2017-07-01
We introduce general bounds for the parameter estimation error in nonlinear quantum metrology of many-body open systems in the Markovian limit. Given a k -body Hamiltonian and p -body Lindblad operators, the estimation error of a Hamiltonian parameter using a Greenberger-Horne-Zeilinger state as a probe is shown to scale as N-[k -(p /2 )], surpassing the shot-noise limit for 2 k >p +1 . Metrology equivalence between initial product states and maximally entangled states is established for p ≥1 . We further show that one can estimate the system-environment coupling parameter with precision N-(p /2 ), while many-body decoherence enhances the precision to N-k in the noise-amplitude estimation of a fluctuating k -body Hamiltonian. For the long-range Ising model, we show that the precision of this parameter beats the shot-noise limit when the range of interactions is below a threshold value.
STABILITY OF LINEAR SYSTEMS WITH MARKOVIAN JUMPS
Jorge Enrique Mayta Guillermo
2016-12-01
Full Text Available In this work we will analyze the stability of linear systems governed by a Markov chain, this family is known in the specialized literature as linear systems with Markov jumps or by its acronyms in English MJLS as it is denoted in [1]. Linear systems governed by a Markov chain are dynamic systems with abrupt changes. We give some denitions of stability for the MJLS system, where these types of stability are equivalent as long as the state space of the Markov chain is nite. Finally we present a theorem that characterizes the stochastic stability by means of an equation of the Lyapunov type. The result is a generalization of a theorem in classical theory.
Rufeil-Fiori, E.; Pastawski, H.M.
2009-01-01
The decay dynamics of a local excitation interacting with a non-Markovian environment, modeled by a semi-infinite tight-binding chain, is exactly evaluated. We identify distinctive regimes for the dynamics. Sequentially: (i) early quadratic decay of the initial-state survival probability, up to a spreading time t S , (ii) exponential decay described by a self-consistent Fermi Golden Rule, and (iii) asymptotic behavior governed by quantum diffusion through the return processes, leading to an inverse power law decay. At this last cross-over time t R a survival collapse becomes possible. This could reduce the survival probability by several orders of magnitude. The cross-over times t S and t R allow to assess the range of applicability of the Fermi Golden Rule and give the conditions for the observation of the Zeno and anti-Zeno effect.
Melas, Evangelos
2011-01-01
The Bondi-Metzner-Sachs group B is the common asymptotic group of all asymptotically flat (lorentzian) space-times, and is the best candidate for the universal symmetry group of General Relativity. However, in quantum gravity, complexified or euclidean versions of General Relativity are frequently considered. McCarthy has shown that there are forty-two generalizations of B for these versions of the theory and a variety of further ones, either real in any signature, or complex. A firm foundation for quantum gravity can be laid by following through the analogue of Wigner's programme for special relativity with B replacing the Poincare group P. Here the main results which have been obtained so far in this research programme are reported and the more important open problems are stated.
Rate processes with non-Markovian dynamical disorder
Goychuk, Igor
2005-01-01
Rate processes with dynamical disorder are investigated within a simple framework provided by unidirectional electron transfer (ET) with fluctuating transfer rate. The rate fluctuations are assumed to be described by a non-Markovian stochastic jump process which reflects conformational dynamics of an electron transferring donor-acceptor molecular complex. A tractable analytical expression is obtained for the relaxation of the donor population (in the Laplace-transformed time domain) averaged over the stationary conformational fluctuations. The corresponding mean transfer time is also obtained in an analytical form. The case of two-state fluctuations is studied in detail for a model incorporating substate diffusion within one of the conformations. It is shown that an increase of the conformational diffusion time results in a gradual transition from the regime of fast modulation characterized by the averaged ET rate to the regime of quasistatic disorder. This transition occurs at the conformational mean residence time intervals fixed much less than the inverse of the corresponding ET rates. An explanation of this paradoxical effect is provided. Moreover, its presence is also manifested for the simplest, exactly solvable non-Markovian model with a biexponential distribution of the residence times in one of the conformations. The nontrivial conditions for this phenomenon to occur are found
Continued-fraction representation of the Kraus map for non-Markovian reservoir damping
van Wonderen, A. J.; Suttorp, L. G.
2018-04-01
Quantum dissipation is studied for a discrete system that linearly interacts with a reservoir of harmonic oscillators at thermal equilibrium. Initial correlations between system and reservoir are assumed to be absent. The dissipative dynamics as determined by the unitary evolution of system and reservoir is described by a Kraus map consisting of an infinite number of matrices. For all Laplace-transformed Kraus matrices exact solutions are constructed in terms of continued fractions that depend on the pair correlation functions of the reservoir. By performing factorizations in the Kraus map a perturbation theory is set up that conserves in arbitrary perturbative order both positivity and probability of the density matrix. The latter is determined by an integral equation for a bitemporal matrix and a finite hierarchy for Kraus matrices. In the lowest perturbative order this hierarchy reduces to one equation for one Kraus matrix. Its solution is given by a continued fraction of a much simpler structure as compared to the non-perturbative case. In the lowest perturbative order our non-Markovian evolution equations are applied to the damped Jaynes–Cummings model. From the solution for the atomic density matrix it is found that the atom may remain in the state of maximum entropy for a significant time span that depends on the initial energy of the radiation field.
Nonadiabatic effect on the quantum heat flux control.
Uchiyama, Chikako
2014-05-01
We provide a general formula of quantum transfer that includes the nonadiabatic effect under periodic environmental modulation by using full counting statistics in Hilbert-Schmidt space. Applying the formula to an anharmonic junction model that interacts with two bosonic environments within the Markovian approximation, we find that the quantum transfer is divided into the adiabatic (dynamical and geometrical phases) and nonadiabatic contributions. This extension shows the dependence of quantum transfer on the initial condition of the anharmonic junction just before the modulation, as well as the characteristic environmental parameters such as interaction strength and cut-off frequency of spectral density. We show that the nonadiabatic contribution represents the reminiscent effect of past modulation including the transition from the initial condition of the anharmonic junction to a steady state determined by the very beginning of the modulation. This enables us to tune the frequency range of modulation, whereby we can obtain the quantum flux corresponding to the geometrical phase by setting the initial condition of the anharmonic junction.
Information-preserving structures: A general framework for quantum zero-error information
Blume-Kohout, Robin; Ng, Hui Khoon; Poulin, David; Viola, Lorenza
2010-01-01
Quantum systems carry information. Quantum theory supports at least two distinct kinds of information (classical and quantum), and a variety of different ways to encode and preserve information in physical systems. A system's ability to carry information is constrained and defined by the noise in its dynamics. This paper introduces an operational framework, using information-preserving structures, to classify all the kinds of information that can be perfectly (i.e., with zero error) preserved by quantum dynamics. We prove that every perfectly preserved code has the same structure as a matrix algebra, and that preserved information can always be corrected. We also classify distinct operational criteria for preservation (e.g., 'noiseless','unitarily correctible', etc.) and introduce two natural criteria for measurement-stabilized and unconditionally preserved codes. Finally, for several of these operational criteria, we present efficient (polynomial in the state-space dimension) algorithms to find all of a channel's information-preserving structures.
VanMeter, N. M.; Lougovski, P.; Dowling, Jonathan P.; Uskov, D. B.; Kieling, K.; Eisert, J.
2007-01-01
We introduce schemes for linear-optical quantum state generation. A quantum state generator is a device that prepares a desired quantum state using product inputs from photon sources, linear-optical networks, and postselection using photon counters. We show that this device can be concisely described in terms of polynomial equations and unitary constraints. We illustrate the power of this language by applying the Groebner-basis technique along with the notion of vacuum extensions to solve the problem of how to construct a quantum state generator analytically for any desired state, and use methods of convex optimization to identify bounds to success probabilities. In particular, we disprove a conjecture concerning the preparation of the maximally path-entangled |n,0>+|0,n> (NOON) state by providing a counterexample using these methods, and we derive a new upper bound on the resources required for NOON-state generation
From single-shot towards general work extraction in a quantum thermodynamic framework
Gemmer, Jochen; Anders, Janet
2015-01-01
This paper considers work extraction from a quantum system to a work storage system (or weight) following Horodecki and Oppenheim (2013 Nat. Commun. 4 2059). An alternative approach is here developed that relies on the comparison of subspace dimensions without a need to introduce thermo-majorization used previously. Optimal single shot work for processes where a weight transfers from (a) a single energy level to another single energy level is then re-derived. In addition we discuss the final state of the system after work extraction and show that the system typically ends in its thermal state, while there are cases where the system is only close to it. The work of formation in the single level transfer setting is also re-derived. The approach presented now allows the extension of the single shot work concept to work extraction (b) involving multiple final levels of the weight. A key conclusion here is that the single shot work for case (a) is appropriate only when a resonance of a particular energy is required. When wishing to identify ‘work extraction’ with finding the weight in a specific available energy or any higher energy a broadening of the single shot work concept is required. As a final contribution we consider transformations of the system that (c) result in general weight state transfers. Introducing a transfer-quantity allows us to formulate minimum requirements for transformations to be at all possible in a thermodynamic framework. We show that choosing the free energy difference of the weight as the transfer-quantity one recovers various single shot results including single level transitions (a), multiple final level transitions (b), and recent results on restricted sets of multi-level to multi-level weight transfers. (paper)
Delgado, Francisco
2017-12-01
Quantum information is an emergent area merging physics, mathematics, computer science and engineering. To reach its technological goals, it is requiring adequate approaches to understand how to combine physical restrictions, computational approaches and technological requirements to get functional universal quantum information processing. This work presents the modeling and the analysis of certain general type of Hamiltonian representing several physical systems used in quantum information and establishing a dynamics reduction in a natural grammar for bipartite processing based on entangled states.
Kelly, Aaron; Brackbill, Nora; Markland, Thomas E
2015-03-07
In this article, we show how Ehrenfest mean field theory can be made both a more accurate and efficient method to treat nonadiabatic quantum dynamics by combining it with the generalized quantum master equation framework. The resulting mean field generalized quantum master equation (MF-GQME) approach is a non-perturbative and non-Markovian theory to treat open quantum systems without any restrictions on the form of the Hamiltonian that it can be applied to. By studying relaxation dynamics in a wide range of dynamical regimes, typical of charge and energy transfer, we show that MF-GQME provides a much higher accuracy than a direct application of mean field theory. In addition, these increases in accuracy are accompanied by computational speed-ups of between one and two orders of magnitude that become larger as the system becomes more nonadiabatic. This combination of quantum-classical theory and master equation techniques thus makes it possible to obtain the accuracy of much more computationally expensive approaches at a cost lower than even mean field dynamics, providing the ability to treat the quantum dynamics of atomistic condensed phase systems for long times.
Kelly, Aaron; Markland, Thomas E., E-mail: tmarkland@stanford.edu [Department of Chemistry, Stanford University, Stanford, California 94305 (United States); Brackbill, Nora [Department of Physics, Stanford University, Stanford, California 94305 (United States)
2015-03-07
In this article, we show how Ehrenfest mean field theory can be made both a more accurate and efficient method to treat nonadiabatic quantum dynamics by combining it with the generalized quantum master equation framework. The resulting mean field generalized quantum master equation (MF-GQME) approach is a non-perturbative and non-Markovian theory to treat open quantum systems without any restrictions on the form of the Hamiltonian that it can be applied to. By studying relaxation dynamics in a wide range of dynamical regimes, typical of charge and energy transfer, we show that MF-GQME provides a much higher accuracy than a direct application of mean field theory. In addition, these increases in accuracy are accompanied by computational speed-ups of between one and two orders of magnitude that become larger as the system becomes more nonadiabatic. This combination of quantum-classical theory and master equation techniques thus makes it possible to obtain the accuracy of much more computationally expensive approaches at a cost lower than even mean field dynamics, providing the ability to treat the quantum dynamics of atomistic condensed phase systems for long times.
Basharov, A. M., E-mail: basharov@gmail.com [National Research Centre ' Kurchatov Institute,' (Russian Federation)
2012-09-15
It is shown that the effective Hamiltonian representation, as it is formulated in author's papers, serves as a basis for distinguishing, in a broadband environment of an open quantum system, independent noise sources that determine, in terms of the stationary quantum Wiener and Poisson processes in the Markov approximation, the effective Hamiltonian and the equation for the evolution operator of the open system and its environment. General stochastic differential equations of generalized Langevin (non-Wiener) type for the evolution operator and the kinetic equation for the density matrix of an open system are obtained, which allow one to analyze the dynamics of a wide class of localized open systems in the Markov approximation. The main distinctive features of the dynamics of open quantum systems described in this way are the stabilization of excited states with respect to collective processes and an additional frequency shift of the spectrum of the open system. As an illustration of the general approach developed, the photon dynamics in a single-mode cavity without losses on the mirrors is considered, which contains identical intracavity atoms coupled to the external vacuum electromagnetic field. For some atomic densities, the photons of the cavity mode are 'locked' inside the cavity, thus exhibiting a new phenomenon of radiation trapping and non-Wiener dynamics.
Basharov, A. M.
2012-01-01
It is shown that the effective Hamiltonian representation, as it is formulated in author’s papers, serves as a basis for distinguishing, in a broadband environment of an open quantum system, independent noise sources that determine, in terms of the stationary quantum Wiener and Poisson processes in the Markov approximation, the effective Hamiltonian and the equation for the evolution operator of the open system and its environment. General stochastic differential equations of generalized Langevin (non-Wiener) type for the evolution operator and the kinetic equation for the density matrix of an open system are obtained, which allow one to analyze the dynamics of a wide class of localized open systems in the Markov approximation. The main distinctive features of the dynamics of open quantum systems described in this way are the stabilization of excited states with respect to collective processes and an additional frequency shift of the spectrum of the open system. As an illustration of the general approach developed, the photon dynamics in a single-mode cavity without losses on the mirrors is considered, which contains identical intracavity atoms coupled to the external vacuum electromagnetic field. For some atomic densities, the photons of the cavity mode are “locked” inside the cavity, thus exhibiting a new phenomenon of radiation trapping and non-Wiener dynamics.
Weber, Carsten
2008-07-01
This work is focused on the optical dynamics of mesoscopic semiconductor heterostructures, using as prototypes zero-dimensional quantum dots and quantum cascade lasers which consist of quasitwo- dimensional quantum wells. Within a density matrix theory, a microscopic many-particle theory is applied to study scattering effects in these structures: the coupling to external as well as local fields, electron-phonon coupling, coupling to impurities, and Coulomb coupling. For both systems, the investigated effects are compared to experimentally observed results obtained during the past years. In quantum dots, the three-dimensional spatial confinement leads to the necessity to consider a quantum kinetic description of the dynamics, resulting in non-Markovian electron-phonon effects. This can be seen in the spectral phonon sidebands due to interaction with acoustic phonons as well as a damping of nonlinear Rabi oscillations which shows a nonmonotonous intensity and pulse duration dependence. An analysis of the inclusion of the self-interaction of the quantum dot shows that no dynamical local field terms appear for the simple two-level model. Considering local fields which have their origin in many quantum dots, consequences for a two-level quantum dot such as a zero-phonon line broadening and an increasing signal in photon echo experiments are found. For the use of quantum dots in an optical spin control scheme, it is found that the dephasing due to the electron-phonon interaction can be dominant in certain regimes. Furthermore, soliton and breather solutions are studied analytically in nonlinear quantum dot ensembles. Generalizing to quasi-two-dimensional structures, the intersubband dynamics of quantum cascade laser structures is investigated. A dynamical theory is considered in which the temporal evolution of the subband populations and the current density as well as the influence of scattering effects is studied. In the nonlinear regime, the scattering dependence and
Quantum Bio-Informatics II From Quantum Information to Bio-Informatics
Accardi, L.; Freudenberg, Wolfgang; Ohya, Masanori
2009-02-01
The problem of quantum-like representation in economy cognitive science, and genetics / L. Accardi, A. Khrennikov and M. Ohya -- Chaotic behavior observed in linea dynamics / M. Asano, T. Yamamoto and Y. Togawa -- Complete m-level quantum teleportation based on Kossakowski-Ohya scheme / M. Asano, M. Ohya and Y. Tanaka -- Towards quantum cybernetics: optimal feedback control in quantum bio informatics / V. P. Belavkin -- Quantum entanglement and circulant states / D. Chruściński -- The compound Fock space and its application in brain models / K. -H. Fichtner and W. Freudenberg -- Characterisation of beam splitters / L. Fichtner and M. Gäbler -- Application of entropic chaos degree to a combined quantum baker's map / K. Inoue, M. Ohya and I. V. Volovich -- On quantum algorithm for multiple alignment of amino acid sequences / S. Iriyama and M. Ohya --Quantum-like models for decision making in psychology and cognitive science / A. Khrennikov -- On completely positive non-Markovian evolution of a d-level system / A. Kossakowski and R. Rebolledo -- Measures of entanglement - a Hilbert space approach / W. A. Majewski -- Some characterizations of PPT states and their relation / T. Matsuoka -- On the dynamics of entanglement and characterization ofentangling properties of quantum evolutions / M. Michalski -- Perspective from micro-macro duality - towards non-perturbative renormalization scheme / I. Ojima -- A simple symmetric algorithm using a likeness with Introns behavior in RNA sequences / M. Regoli -- Some aspects of quadratic generalized white noise functionals / Si Si and T. Hida -- Analysis of several social mobility data using measure of departure from symmetry / K. Tahata ... [et al.] -- Time in physics and life science / I. V. Volovich -- Note on entropies in quantum processes / N. Watanabe -- Basics of molecular simulation and its application to biomolecules / T. Ando and I. Yamato -- Theory of proton-induced superionic conduction in hydrogen-bonded systems
Zero-crossing statistics for non-Markovian time series.
Nyberg, Markus; Lizana, Ludvig; Ambjörnsson, Tobias
2018-03-01
In applications spanning from image analysis and speech recognition to energy dissipation in turbulence and time-to failure of fatigued materials, researchers and engineers want to calculate how often a stochastic observable crosses a specific level, such as zero. At first glance this problem looks simple, but it is in fact theoretically very challenging, and therefore few exact results exist. One exception is the celebrated Rice formula that gives the mean number of zero crossings in a fixed time interval of a zero-mean Gaussian stationary process. In this study we use the so-called independent interval approximation to go beyond Rice's result and derive analytic expressions for all higher-order zero-crossing cumulants and moments. Our results agree well with simulations for the non-Markovian autoregressive model.
Zero-crossing statistics for non-Markovian time series
Nyberg, Markus; Lizana, Ludvig; Ambjörnsson, Tobias
2018-03-01
In applications spanning from image analysis and speech recognition to energy dissipation in turbulence and time-to failure of fatigued materials, researchers and engineers want to calculate how often a stochastic observable crosses a specific level, such as zero. At first glance this problem looks simple, but it is in fact theoretically very challenging, and therefore few exact results exist. One exception is the celebrated Rice formula that gives the mean number of zero crossings in a fixed time interval of a zero-mean Gaussian stationary process. In this study we use the so-called independent interval approximation to go beyond Rice's result and derive analytic expressions for all higher-order zero-crossing cumulants and moments. Our results agree well with simulations for the non-Markovian autoregressive model.
Sample efficient multiagent learning in the presence of Markovian agents
Chakraborty, Doran
2014-01-01
The problem of Multiagent Learning (or MAL) is concerned with the study of how intelligent entities can learn and adapt in the presence of other such entities that are simultaneously adapting. The problem is often studied in the stylized settings provided by repeated matrix games (a.k.a. normal form games). The goal of this book is to develop MAL algorithms for such a setting that achieve a new set of objectives which have not been previously achieved. In particular this book deals with learning in the presence of a new class of agent behavior that has not been studied or modeled before in a MAL context: Markovian agent behavior. Several new challenges arise when interacting with this particular class of agents. The book takes a series of steps towards building completely autonomous learning algorithms that maximize utility while interacting with such agents. Each algorithm is meticulously specified with a thorough formal treatment that elucidates its key theoretical properties.
Reliability Analysis of Wireless Sensor Networks Using Markovian Model
Jin Zhu
2012-01-01
Full Text Available This paper investigates reliability analysis of wireless sensor networks whose topology is switching among possible connections which are governed by a Markovian chain. We give the quantized relations between network topology, data acquisition rate, nodes' calculation ability, and network reliability. By applying Lyapunov method, sufficient conditions of network reliability are proposed for such topology switching networks with constant or varying data acquisition rate. With the conditions satisfied, the quantity of data transported over wireless network node will not exceed node capacity such that reliability is ensured. Our theoretical work helps to provide a deeper understanding of real-world wireless sensor networks, which may find its application in the fields of network design and topology control.
Ingraham, R.L.
1985-01-01
The well-known relativistic transformation law of quantum fields satisfies the relativity principle, which asserts the complete equivalence of all Lorentz (inertial) frames as far as physical measurements go. We point out a slight generalization which is allowed by the relativity principle, but violates a further, tacit assumption usually made in connection with it but which is actually logically independent of it and subject to a feasible experimental test. The interest of the generalization is that it permits the incorporation of an ultraviolet cutoff in a simple, direct way which avoids the usual difficulties
Maris, Th.A.J.
1976-01-01
The renormalization group theory has a natural place in a general framework of symmetries in quantum field theories. Seen in this way, a 'renormalization group' is a one-parametric subset of the direct product of dilatation and renormalization groups. This subset of spontaneously broken symmetry transformations connects the inequivalent solutions generated by a parameter-dependent regularization procedure, as occurs in renormalized perturbation theory. By considering the global, rather than the infinitesimal, transformations, an expression for general vertices is directly obtained, which is the formal solution of exact renormalization group equations [pt
Jang, Seogjoo; Voth, Gregory A
2017-05-07
Despite the fact that quantum mechanical principles do not allow the establishment of an exact quantum analogue of the classical transition state theory (TST), the development of a quantum TST (QTST) with a proper dynamical justification, while recovering the TST in the classical limit, has been a long standing theoretical challenge in chemical physics. One of the most recent efforts of this kind was put forth by Hele and Althorpe (HA) [J. Chem. Phys. 138, 084108 (2013)], which can be specified for any cyclically invariant dividing surface defined in the space of the imaginary time path integral. The present work revisits the issue of the non-uniqueness of QTST and provides a detailed theoretical analysis of HA-QTST for a general class of such path integral dividing surfaces. While we confirm that HA-QTST reproduces the result based on the ring polymer molecular dynamics (RPMD) rate theory for dividing surfaces containing only a quadratic form of low frequency Fourier modes, we find that it produces different results for those containing higher frequency imaginary time paths which accommodate greater quantum fluctuations. This result confirms the assessment made in our previous work [Jang and Voth, J. Chem. Phys. 144, 084110 (2016)] that HA-QTST does not provide a derivation of RPMD-TST in general and points to a new ambiguity of HA-QTST with respect to its justification for general cyclically invariant dividing surfaces defined in the space of imaginary time path integrals. Our analysis also offers new insights into similar path integral based QTST approaches.
Pallister, Sam [University of Bristol, School of Mathematics, Bristol (United Kingdom); Coop, Simon [The Barcelona Institute of Science and Technology, ICFO-Institut de Ciencies Fotoniques, Barcelona (Spain); Formichella, Valerio [Politecnico di Torino, Torino (Italy); Istituto Nazionale di Ricerca Metrologica (INRiM), Torino (Italy); Gampierakis, Nicolas [University of East Anglia, School of Natural Sciences, Norwich (United Kingdom); Notaro, Virginia [Sapienza University of Rome, Department of Mechanical and Aerospace Engineering, Rome (Italy); Knott, Paul [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom); Azevedo, Rui [Faculdade de Ciencias da Universidade do Porto, Porto (Portugal); Buchheim, Nikolaus [Max Planck Institute of Quantum Optics, Garching (Germany); De Carvalho, Silvio [University of Applied Sciences Wiener Neustadt, Aerospace Engineering Department, Wiener Neustadt (Austria); Jaervelae, Emilia [Aalto University Metsaehovi Radio Observatory, Kylmaelae (Finland); Aalto University Department of Radio Science and Engineering, Aalto (Finland); Laporte, Matthieu [Universite Paris Diderot, APC (AstroParticule et Cosmologie), Paris (France); Kaikkonen, Jukka-Pekka [Aalto University, Low Temperature Laboratory, Department of Applied Physics, Aalto (Finland); Meshksar, Neda [Leibniz University Hanover, Albert Einstein Institute, Hanover (Germany); Nikkanen, Timo [Aalto University Department of Radio Science and Engineering, Aalto (Finland); Finnish Meteorological Institute, Radar and Space Technology Research Group, Helsinki (Finland); Yttergren, Madeleine [Chalmers University of Technology, Physics and Astronomy, Goeteborg (Sweden)
2017-12-15
In this paper we propose an experiment designed to observe a general-relativistic effect on single photon interference. The experiment consists of a folded Mach-Zehnder interferometer, with the arms distributed between a single Earth orbiter and a ground station. By compensating for other degrees of freedom and the motion of the orbiter, this setup aims to detect the influence of general relativistic time dilation on a spatially superposed single photon. The proposal details a payload to measure the required effect, along with an extensive feasibility analysis given current technological capabilities. (orig.)
Implied Stopping Rules for American Basket Options from Markovian Projection
Bayer, Christian; Hä ppö lä , Juho; Tempone, Raul
2017-01-01
This work addresses the problem of pricing American basket options in a multivariate setting, which includes among others, the Bachelier and the Black-Scholes models. In high dimensions, nonlinear partial differential equation methods for solving the problem become prohibitively costly due to the curse of dimensionality. Instead, this work proposes to use a stopping rule that depends on the dynamics of a low-dimensional Markovian projection of the given basket of assets. It is shown that the ability to approximate the original value function by a lower-dimensional approximation is a feature of the dynamics of the system and is unaffected by the path-dependent nature of the American basket option. Assuming that we know the density of the forward process and using the Laplace approximation, we first efficiently evaluate the diffusion coefficient corresponding to the low-dimensional Markovian projection of the basket. Then, we approximate the optimal early-exercise boundary of the option by solving a Hamilton-Jacobi-Bellman partial differential equation in the projected, low-dimensional space. The resulting near-optimal early-exercise boundary is used to produce an exercise strategy for the high-dimensional option, thereby providing a lower bound for the price of the American basket option. A corresponding upper bound is also provided. These bounds allow to assess the accuracy of the proposed pricing method. Indeed, our approximate early-exercise strategy provides a straightforward lower bound for the American basket option price. Following a duality argument due to Rogers, we derive a corresponding upper bound solving only the low-dimensional optimal control problem. Numerically, we show the feasibility of the method using baskets with dimensions up to fifty. In these examples, the resulting option price relative errors are only of the order of few percent.
Implied Stopping Rules for American Basket Options from Markovian Projection
Bayer, Christian
2017-05-01
This work addresses the problem of pricing American basket options in a multivariate setting, which includes among others, the Bachelier and the Black-Scholes models. In high dimensions, nonlinear partial differential equation methods for solving the problem become prohibitively costly due to the curse of dimensionality. Instead, this work proposes to use a stopping rule that depends on the dynamics of a low-dimensional Markovian projection of the given basket of assets. It is shown that the ability to approximate the original value function by a lower-dimensional approximation is a feature of the dynamics of the system and is unaffected by the path-dependent nature of the American basket option. Assuming that we know the density of the forward process and using the Laplace approximation, we first efficiently evaluate the diffusion coefficient corresponding to the low-dimensional Markovian projection of the basket. Then, we approximate the optimal early-exercise boundary of the option by solving a Hamilton-Jacobi-Bellman partial differential equation in the projected, low-dimensional space. The resulting near-optimal early-exercise boundary is used to produce an exercise strategy for the high-dimensional option, thereby providing a lower bound for the price of the American basket option. A corresponding upper bound is also provided. These bounds allow to assess the accuracy of the proposed pricing method. Indeed, our approximate early-exercise strategy provides a straightforward lower bound for the American basket option price. Following a duality argument due to Rogers, we derive a corresponding upper bound solving only the low-dimensional optimal control problem. Numerically, we show the feasibility of the method using baskets with dimensions up to fifty. In these examples, the resulting option price relative errors are only of the order of few percent.
Semigroup evolution in the Wigner-Weisskopf pole approximation with Markovian spectral coupling
Shikerman, F.; Peer, A.; Horwitz, L. P.
2011-01-01
We establish the relation between the Wigner-Weisskopf theory for the description of an unstable system and the theory of coupling to an environment. According to the Wigner-Weisskopf general approach, even within the pole approximation, the evolution of a total system subspace is not an exact semigroup for multichannel decay unless the projectors into eigenstates of the reduced evolution generator W(z) are orthogonal. With multichannel decay, the projectors must be evaluated at different pole locations z α ≠z β , and since the orthogonality relation does not generally hold at different values of z, the semigroup evolution is a poor approximation for the multichannel decay, even for very weak coupling. Nevertheless, if the theory is generalized to take into account interactions with an environment, one can ensure orthogonality of the W(z) projectors regardless of the number of poles. Such a possibility occurs when W(z), and hence its eigenvectors, is independent of z, which corresponds to the Markovian limit of the coupling to the continuum spectrum.
Semigroup evolution in the Wigner-Weisskopf pole approximation with Markovian spectral coupling
Shikerman, F.; Peer, A. [Physics department and BINA center for nano-technology, Bar Ilan University, Ramat Gan 52900 (Israel); Horwitz, L. P. [Physics department and BINA center for nano-technology, Bar Ilan University, Ramat Gan 52900 (Israel); School of Physics, Tel-Aviv University, Ramat-Aviv 69978 (Israel); Department of Physics, Ariel University Center of Samaria, Ariel 40700 (Israel)
2011-07-15
We establish the relation between the Wigner-Weisskopf theory for the description of an unstable system and the theory of coupling to an environment. According to the Wigner-Weisskopf general approach, even within the pole approximation, the evolution of a total system subspace is not an exact semigroup for multichannel decay unless the projectors into eigenstates of the reduced evolution generator W(z) are orthogonal. With multichannel decay, the projectors must be evaluated at different pole locations z{sub {alpha}}{ne}z{sub {beta}}, and since the orthogonality relation does not generally hold at different values of z, the semigroup evolution is a poor approximation for the multichannel decay, even for very weak coupling. Nevertheless, if the theory is generalized to take into account interactions with an environment, one can ensure orthogonality of the W(z) projectors regardless of the number of poles. Such a possibility occurs when W(z), and hence its eigenvectors, is independent of z, which corresponds to the Markovian limit of the coupling to the continuum spectrum.
Non-Markovian Effects on the Brownian Motion of a Free Particle
Bolivar, A. O.
2010-01-01
Non-Markovian effects upon the Brownian movement of a free particle in the presence as well as in the absence of inertial force are investigated within the framework of Fokker-Planck equations (Rayleigh and Smoluchowski equations). More specifically, it is predicted that non-Markovian features can enhance the values of the mean square displacement and momentum, thereby assuring the mathematical property of differentiability of the these physically observable quantities.
Some performance measures for vacation models with a batch Markovian arrival process
Sadrac K. Matendo
1994-01-01
Full Text Available We consider a single server infinite capacity queueing system, where the arrival process is a batch Markovian arrival process (BMAP. Particular BMAPs are the batch Poisson arrival process, the Markovian arrival process (MAP, many batch arrival processes with correlated interarrival times and batch sizes, and superpositions of these processes. We note that the MAP includes phase-type (PH renewal processes and non-renewal processes such as the Markov modulated Poisson process (MMPP.
Arndt, M.; Aspelmeyer, M.; Brukner, C.; Weihs, G.; Jennewein, T.; Schmiedmayer, J.; Weinfurter, H.; Zukowski, M.
2005-01-01
Quantum information processing and communication is one of the of the key research areas within the European community. Therefore these two events were dedicated to present the advances in this area. Papers dealing with topics such as atom-photon entanglement, matter waves and quantum gases, decoherence, photonic entanglement, solid state quantum physics, cooling and trapping of atoms and molecules, quantum communication, quantum computation, quantum information and quantum cryptography were addressed. (nevyjel)
Entanglement in open quantum systems
Isar, A.
2007-01-01
In the framework of the theory of open systems based on quantum dynamical semigroups, we solve the master equation for two independent bosonic oscillators interacting with an environment in the asymptotic long-time regime. We give a description of the continuous-variable entanglement in terms of the covariance matrix of the quantum states of the considered system for an arbitrary Gaussian input state. Using the Peres-Simon necessary and sufficient condition for separability of two-mode Gaussian states, we show that the two non-interacting systems immersed in a common environment and evolving under a Markovian, completely positive dynamics become asymptotically entangled for certain environments, so that their non-local quantum correlations exist in the long-time regime. (author) Key words: quantum information theory, open systems, quantum entanglement, inseparable states
Lipparini, Filippo; Scalmani, Giovanni; Frisch, Michael J.; Lagardère, Louis; Stamm, Benjamin; Cancès, Eric; Maday, Yvon; Piquemal, Jean-Philip; Mennucci, Benedetta
2014-01-01
We present the general theory and implementation of the Conductor-like Screening Model according to the recently developed ddCOSMO paradigm. The various quantities needed to apply ddCOSMO at different levels of theory, including quantum mechanical descriptions, are discussed in detail, with a particular focus on how to compute the integrals needed to evaluate the ddCOSMO solvation energy and its derivatives. The overall computational cost of a ddCOSMO computation is then analyzed and decomposed in the various steps: the different relative weights of such contributions are then discussed for both ddCOSMO and the fastest available alternative discretization to the COSMO equations. Finally, the scaling of the cost of the various steps with respect to the size of the solute is analyzed and discussed, showing how ddCOSMO opens significantly new possibilities when cheap or hybrid molecular mechanics/quantum mechanics methods are used to describe the solute
Lipparini, Filippo, E-mail: flippari@uni-mainz.de [Sorbonne Universités, UPMC Univ. Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005 Paris (France); Sorbonne Universités, UPMC Univ. Paris 06, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris (France); Sorbonne Universités, UPMC Univ. Paris 06, Institut du Calcul et de la Simulation, F-75005 Paris (France); Scalmani, Giovanni; Frisch, Michael J. [Gaussian, Inc., 340 Quinnipiac St. Bldg. 40, Wallingford, Connecticut 06492 (United States); Lagardère, Louis [Sorbonne Universités, UPMC Univ. Paris 06, Institut du Calcul et de la Simulation, F-75005 Paris (France); Stamm, Benjamin [Sorbonne Universités, UPMC Univ. Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005 Paris (France); CNRS, UMR 7598 and 7616, F-75005 Paris (France); Cancès, Eric [Université Paris-Est, CERMICS, Ecole des Ponts and INRIA, 6 and 8 avenue Blaise Pascal, 77455 Marne-la-Vallée Cedex 2 (France); Maday, Yvon [Sorbonne Universités, UPMC Univ. Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005 Paris (France); Institut Universitaire de France, Paris, France and Division of Applied Maths, Brown University, Providence, Rhode Island 02912 (United States); Piquemal, Jean-Philip [Sorbonne Universités, UPMC Univ. Paris 06, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris (France); CNRS, UMR 7598 and 7616, F-75005 Paris (France); Mennucci, Benedetta [Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Risorgimento 35, 56126 Pisa (Italy)
2014-11-14
We present the general theory and implementation of the Conductor-like Screening Model according to the recently developed ddCOSMO paradigm. The various quantities needed to apply ddCOSMO at different levels of theory, including quantum mechanical descriptions, are discussed in detail, with a particular focus on how to compute the integrals needed to evaluate the ddCOSMO solvation energy and its derivatives. The overall computational cost of a ddCOSMO computation is then analyzed and decomposed in the various steps: the different relative weights of such contributions are then discussed for both ddCOSMO and the fastest available alternative discretization to the COSMO equations. Finally, the scaling of the cost of the various steps with respect to the size of the solute is analyzed and discussed, showing how ddCOSMO opens significantly new possibilities when cheap or hybrid molecular mechanics/quantum mechanics methods are used to describe the solute.
A generalized Wigner function for quantum systems with the SU(2) dynamical symmetry group
Klimov, A B; Romero, J L
2008-01-01
We introduce a Wigner-like quasidistribution function to describe quantum systems with the SU(2) dynamic symmetry group. This function is defined in a three-dimensional group manifold and can be used to represent the states defined in several SU(2) invariant subspaces. The explicit differential Moyal-like form of the star product is found and analyzed in the semiclassical limit
Non-Markovian dynamics of dust charge fluctuations in dusty plasmas
Asgari, H.; Muniandy, S. V.; Ghalee, Amir; Ghalee
2014-06-01
Dust charge fluctuates even in steady-state uniform plasma due to the discrete nature of the charge carriers and can be described using standard Langevin equation. In this work, two possible approaches in order to introduce the memory effect in dust charging dynamics are proposed. The first part of the paper provides the generalization form of the fluctuation-dissipation relation for non-Markovian systems based on generalized Langevin equations to determine the amplitudes of the dust charge fluctuations for two different kinds of colored noises under the assumption that the fluctuation-dissipation relation is valid. In the second part of the paper, aiming for dusty plasma system out of equilibrium, the fractionalized Langevin equation is used to derive the temporal two-point correlation function of grain charge fluctuations which is shown to be non-stationary due to the dependence on both times and not the time difference. The correlation function is used to derive the amplitude of fluctuations for early transient time.
Trautmann, N.; Hauke, P.
2018-02-01
The transport of excitations governs fundamental properties of matter. Particularly rich physics emerges in the interplay between disorder and environmental noise, even in small systems such as photosynthetic biomolecules. Counterintuitively, noise can enhance coherent quantum transport, which has been proposed as a mechanism behind the high transport efficiencies observed in photosynthetic complexes. This effect has been called "environment-assisted quantum transport". Here, we propose a quantum simulation of the excitation transport in an open quantum network, taking advantage of the high controllability of current trapped-ion experiments. Our scheme allows for the controlled study of various different aspects of the excitation transfer, ranging from the influence of static disorder and interaction range, over the effect of Markovian and non-Markovian dephasing, to the impact of a continuous insertion of excitations. Our paper discusses experimental error sources and realistic parameters, showing that it can be implemented in state-of-the-art ion-chain experiments.
A Quantum Mermin-Wagner Theorem for a Generalized Hubbard Model
Mark Kelbert
2013-01-01
Full Text Available This paper is the second in a series of papers considering symmetry properties of bosonic quantum systems over 2D graphs, with continuous spins, in the spirit of the Mermin-Wagner theorem. In the model considered here the phase space of a single spin is ℋ1=L2(M, where M is a d-dimensional unit torus M=ℝd/ℤd with a flat metric. The phase space of k spins is ℋk=L2sym(Mk, the subspace of L2(Mk formed by functions symmetric under the permutations of the arguments. The Fock space H=⊕k=0,1,…ℋk yields the phase space of a system of a varying (but finite number of particles. We associate a space H≃H(i with each vertex i∈Γ of a graph (Γ,ℰ satisfying a special bidimensionality property. (Physically, vertex i represents a heavy “atom” or “ion” that does not move but attracts a number of “light” particles. The kinetic energy part of the Hamiltonian includes (i -Δ/2, the minus a half of the Laplace operator on M, responsible for the motion of a particle while “trapped” by a given atom, and (ii an integral term describing possible “jumps” where a particle may join another atom. The potential part is an operator of multiplication by a function (the potential energy of a classical configuration which is a sum of (a one-body potentials U(1(x, x∈M, describing a field generated by a heavy atom, (b two-body potentials U(2(x,y, x,y∈M, showing the interaction between pairs of particles belonging to the same atom, and (c two-body potentials V(x,y, x,y∈M, scaled along the graph distance d(i,j between vertices i,j∈Γ, which gives the interaction between particles belonging to different atoms. The system under consideration can be considered as a generalized (bosonic Hubbard model. We assume that a connected Lie group G acts on M, represented by a Euclidean space or torus of dimension d'≤d, preserving the metric and the volume in M. Furthermore, we suppose that the potentials U(1, U(2, and V are G-invariant. The result
Exact, E = 0, classical and quantum solutions for general power-law oscillators
Nieto, M.M.; Daboul, J.
1994-01-01
For zero energy, E = 0, we derive exact, classical and quantum solutions for all power-law oscillators with potentials V(r) = -γ/r ν , γ > 0 and -∞ 0 (t))] 1/μ , with μ = ν/2 - 1 ≠ 0. For ν > 2, the orbits are bound and go through the origin. We calculate the periods and precessions of these bound orbits, and graph a number of specific examples. The unbound orbits are also discussed in detail. Quantum mechanically, this system is also exactly solvable. We find that when ν > 2 the solutions are normalizable (bound), as in the classical case. Also, there are normalizable discrete, yet unbound, state which correspond to unbound classical particles which reach infinity in a finite time. These and other interesting comparisons to the classical system will be discussed
Wubs, Martijn; Yan, Wei; Amooghorban, Ehsan
2013-01-01
A well-known challenge for fabricating metamaterials is to make unit cells significantly smaller than the operating wavelength of light, so one can be sure that effective-medium theories apply. But do they apply? Here we show that nonlocal response in the metal constituents of the metamaterial...... leads to modified effective parameters for strongly subwavelength unit cells. For infinite hyperbolic metamaterials, nonlocal response gives a very large finite upper bound to the optical density of states that otherwise would diverge. Moreover, for finite hyperbolic metamaterials we show that nonlocal...... response affects their operation as superlenses, and interestingly that sometimes nonlocal theory predicts the better imaging. Finally, we discuss how to describe metamaterials effectively in quantum optics. Media with loss or gain have associated quantum noise, and the question is whether the effective...
Quantum capacity of Pauli channels with memory
Huang Peng; He Guangqiang; Lu Yuan; Zeng Guihua
2011-01-01
The amount of coherent quantum information that can be reliably transmitted down the memory Pauli channels with Markovian correlated noise is investigated. Two methods for evaluating the quantum capacity of the memory Pauli channels are proposed to try to trace the memory effect on the transmissions of quantum information. We show that the evaluation of quantum capacity can be reduced to the calculation of the initial memory state of each successive transmission. Furthermore, we derive quantum capacities of the memory phase flip channel, bit flip channel and bit-phase flip channel. Also, a lower bound of the quantum capacity of the memory depolarizing channel is obtained. An increase of the degree of memory of the channels has a positive effect on the increase of their quantum capacities.
Zhang, Shao-Jun; Miao, Yan-Gang; Zhao, Ying-Jie
2015-01-01
As a generalized uncertainty principle (GUP) leads to the effects of the minimal length of the order of the Planck scale and UV/IR mixing, some significant physical concepts and quantities are modified or corrected correspondingly. On the one hand, we derive the maximally localized states—the physical states displaying the minimal length uncertainty associated with a new GUP proposed in our previous work. On the other hand, in the framework of this new GUP we calculate quantum corrections to the thermodynamic quantities of the Schwardzschild black hole, such as the Hawking temperature, the entropy, and the heat capacity, and give a remnant mass of the black hole at the end of the evaporation process. Moreover, we compare our results with that obtained in the frameworks of several other GUPs. In particular, we observe a significant difference between the situations with and without the consideration of the UV/IR mixing effect in the quantum corrections to the evaporation rate and the decay time. That is, the decay time can greatly be prolonged in the former case, which implies that the quantum correction from the UV/IR mixing effect may give rise to a radical rather than a tiny influence to the Hawking radiation.
Tanaka, Toshiaki
2007-01-01
We propose an elegant formulation of parafermionic algebra and parasupersymmetry of arbitrary order in quantum many-body systems without recourse to any specific matrix representation of parafermionic operators and any kind of deformed algebra. Within our formulation, we show generically that every parasupersymmetric quantum system of order p consists of N-fold supersymmetric pairs with N≤p and thus has weak quasi-solvability and isospectral property. We also propose a new type of non-linear supersymmetries, called quasi-parasupersymmetry, which is less restrictive than parasupersymmetry and is different from N-fold supersymmetry even in one-body systems though the conserved charges are represented by higher-order linear differential operators. To illustrate how our formulation works, we construct second-order parafermionic algebra and three simple examples of parasupersymmetric quantum systems of order 2, one is essentially equivalent to the one-body Rubakov-Spiridonov type and the others are two-body systems in which two supersymmetries are folded. In particular, we show that the first model admits a generalized 2-fold superalgebra
Larocque, Hugo; Gagnon-Bischoff, Jérémie; Mortimer, Dominic; Zhang, Yingwen; Bouchard, Frédéric; Upham, Jeremy; Grillo, Vincenzo; Boyd, Robert W; Karimi, Ebrahim
2017-08-21
The orbital angular momentum (OAM) carried by optical beams is a useful quantity for encoding information. This form of encoding has been incorporated into various works ranging from telecommunications to quantum cryptography, most of which require methods that can rapidly process the OAM content of a beam. Among current state-of-the-art schemes that can readily acquire this information are so-called OAM sorters, which consist of devices that spatially separate the OAM components of a beam. Such devices have found numerous applications in optical communications, a field that is in constant demand for additional degrees of freedom, such as polarization and wavelength, into which information can also be encoded. Here, we report the implementation of a device capable of sorting a beam based on its OAM and polarization content, which could be of use in works employing both of these degrees of freedom as information channels. After characterizing our fabricated device, we demonstrate how it can be used for quantum communications via a quantum key distribution protocol.
Silenko, Alexander J. [Belarusian State University, Research Institute for Nuclear Problems, Minsk (Belarus); Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation)
2017-05-15
A general theoretical description of a magnetic resonance is presented. This description is necessary for a detailed analysis of spin dynamics in electric-dipole-moment experiments in storage rings. General formulas describing a behavior of all components of the polarization vector at the magnetic resonance are obtained for an arbitrary initial polarization. These formulas are exact on condition that the nonresonance rotating field is neglected. The spin dynamics is also calculated at frequencies far from resonance with allowance for both rotating fields. A general quantum-mechanical analysis of the spin evolution at the magnetic resonance is fulfilled and the full agreement between the classical and quantum-mechanical approaches is shown. Quasimagnetic resonances for particles and nuclei moving in noncontinuous perturbing fields of accelerators and storage rings are considered. Distinguishing features of quasimagnetic resonances in storage ring electric-dipole-moment experiments are investigated in detail. The exact formulas for the effect caused by the electric dipole moment are derived. The difference between the resonance effects conditioned by the rf electric-field flipper and the rf Wien filter is found and is calculated for the first time. The existence of this difference is crucial for the establishment of a consent between analytical derivations and computer simulations and for checking spin tracking programs. The main systematical errors are considered. (orig.)
Head-Marsden, Kade; Mazziotti, David A
2015-02-07
For an open, time-dependent quantum system, Lindblad derived the most general modification of the quantum Liouville equation in the Markovian approximation that models environmental effects while preserving the non-negativity of the system's density matrix. While Lindblad's modification is correct for N-electron density matrices, solution of the Liouville equation with a Lindblad operator causes the one-electron reduced density matrix (1-RDM) to violate the Pauli exclusion principle. Consequently, after a short time, the 1-RDM is not representable by an ensemble N-electron density matrix (not ensemble N-representable). In this communication, we derive the necessary and sufficient constraints on the Lindbladian matrix within the Lindblad operator to ensure that the 1-RDM remains N-representable for all time. The theory is illustrated by considering the relaxation of an excitation in several molecules F2, N2, CO, and BeH2 subject to environmental noise.
Teeny, Nicolas; Fähnle, Manfred
2013-01-01
In the density-matrix formalism of electron–phonon quantum kinetics, the hierarchy of infinitely many coupled equations of motion for the expectation values of products of electron and phonon creation and annihilation operators of arbitrary order is usually terminated on the level of the equations of motion for the expectation values of three-operator products by using decoupling procedures for the four-operator products occurring in these equations. In the literature, decoupling procedures are discussed for special types of electron and phonon states. In the present paper, generalized decoupling procedures are derived for arbitrary electron and phonon states. (paper)
Amini, Nina H. [Stanford University, Edward L. Ginzton Laboratory, Stanford, CA (United States); CNRS, Laboratoire des Signaux et Systemes (L2S) CentraleSupelec, Gif-sur-Yvette (France); Miao, Zibo; Pan, Yu; James, Matthew R. [Australian National University, ARC Centre for Quantum Computation and Communication Technology, Research School of Engineering, Canberra, ACT (Australia); Mabuchi, Hideo [Stanford University, Edward L. Ginzton Laboratory, Stanford, CA (United States)
2015-12-15
The purpose of this paper is to study the problem of generalizing the Belavkin-Kalman filter to the case where the classical measurement signal is replaced by a fully quantum non-commutative output signal. We formulate a least mean squares estimation problem that involves a non-commutative system as the filter processing the non-commutative output signal. We solve this estimation problem within the framework of non-commutative probability. Also, we find the necessary and sufficient conditions which make these non-commutative estimators physically realizable. These conditions are restrictive in practice. (orig.)
Non-Markovian decay of a three-level cascade atom in a structured reservoir
Dalton, B.J.; Garraway, B.M.
2003-01-01
The dynamics of a three-level atom in a cascade (or ladder) configuration with both transitions coupled to a single structured reservoir of quantized electromagnetic field modes is treated using Laplace transform methods applied to the coupled amplitude equations. In this system two-photon excitation of the reservoir occurs, and both sequences for emitting the two photons are allowed and included in the theory. An integral equation is found to govern the complex amplitudes of interest. It is shown that the dynamics of the atomic system is completely determined in terms of reservoir structure functions, which are products of the mode density with the coupling constant squared. This dependence on reservoir structure functions rather than on the mode density or coupling constants alone, shows that it may be possible to extend pseudomode theory to treat multiphoton excitation of a structured reservoir--pseudomodes being introduced in one-one correspondence with the poles of reservoir structure functions in the complex frequency plane. A general numerical method for solving the integral equations based on discretizing frequency space, and applicable to different structured reservoirs such as high-Q cavities and photonic band-gap systems, is presented. An application to a high-Q-cavity case with identical Lorentzian reservoir structure functions is made, and the non-Markovian decay of the excited state shown. A formal solution to the integral equations in terms of right and left eigenfunctions of a non-Hermitian kernel is also given. The dynamics of the cascade atom, with the two transitions coupled to two separate structured reservoirs of quantized electromagnetic field modes, is treated similarly to the single structured reservoir situation. Again the dynamics only depends on reservoir structure functions. As only one sequence of emitting the two photons now occurs, the integral equation for the amplitudes can be solved analytically. The non-Markovian decay of the
Drummond, P D [University of Queensland, St. Lucia, QLD (Australia).Physics Department
1999-07-01
Full text: Quantum optics in Australia has been an active research field for some years. I shall focus on recent developments in quantum and atom optics. Generally, the field as a whole is becoming more and more diverse, as technological developments drive experiments into new areas, and theorists either attempt to explain the new features, or else develop models for even more exotic ideas. The recent developments include quantum solitons, quantum computing, Bose-Einstein condensation, atom lasers, quantum cryptography, and novel tests of quantum mechanics. The talk will briefly cover current progress and outstanding problems in each of these areas. Copyright (1999) Australian Optical Society.