WorldWideScience

Sample records for general exponential models

  1. A generalized exponential time series regression model for electricity prices

    DEFF Research Database (Denmark)

    Haldrup, Niels; Knapik, Oskar; Proietti, Tomasso

    on the estimated model, the best linear predictor is constructed. Our modeling approach provides good fit within sample and outperforms competing benchmark predictors in terms of forecasting accuracy. We also find that building separate models for each hour of the day and averaging the forecasts is a better...

  2. Rényi statistics for testing composite hypotheses in general exponential models

    Czech Academy of Sciences Publication Activity Database

    Morales, D.; Pardo, L.; Pardo, M. C.; Vajda, Igor

    2004-01-01

    Roč. 38, č. 2 (2004), s. 133-147 ISSN 0233-1888 R&D Projects: GA ČR GA201/02/1391 Grant - others:BMF(ES) 2003-00892; BMF(ES) 2003-04820 Institutional research plan: CEZ:AV0Z1075907 Keywords : natural exponential models * Levy processes * generalized Wald statistics Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.323, year: 2004

  3. The exponentiated generalized Pareto distribution | Adeyemi | Ife ...

    African Journals Online (AJOL)

    Recently Gupta et al. (1998) introduced the exponentiated exponential distribution as a generalization of the standard exponential distribution. In this paper, we introduce a three-parameter generalized Pareto distribution, the exponentiated generalized Pareto distribution (EGP). We present a comprehensive treatment of the ...

  4. Turning Simulation into Estimation: Generalized Exchange Algorithms for Exponential Family Models.

    Directory of Open Access Journals (Sweden)

    Maarten Marsman

    Full Text Available The Single Variable Exchange algorithm is based on a simple idea; any model that can be simulated can be estimated by producing draws from the posterior distribution. We build on this simple idea by framing the Exchange algorithm as a mixture of Metropolis transition kernels and propose strategies that automatically select the more efficient transition kernels. In this manner we achieve significant improvements in convergence rate and autocorrelation of the Markov chain without relying on more than being able to simulate from the model. Our focus will be on statistical models in the Exponential Family and use two simple models from educational measurement to illustrate the contribution.

  5. Generalization of exponential based hyperelastic to hyper-viscoelastic model for investigation of mechanical behavior of rate dependent materials.

    Science.gov (United States)

    Narooei, K; Arman, M

    2018-03-01

    In this research, the exponential stretched based hyperelastic strain energy was generalized to the hyper-viscoelastic model using the heredity integral of deformation history to take into account the strain rate effects on the mechanical behavior of materials. The heredity integral was approximated by the approach of Goh et al. to determine the model parameters and the same estimation was used for constitutive modeling. To present the ability of the proposed hyper-viscoelastic model, the stress-strain response of the thermoplastic elastomer gel tissue at different strain rates from 0.001 to 100/s was studied. In addition to better agreement between the current model and experimental data in comparison to the extended Mooney-Rivlin hyper-viscoelastic model, a stable material behavior was predicted for pure shear and balance biaxial deformation modes. To present the engineering application of current model, the Kolsky bars impact test of gel tissue was simulated and the effects of specimen size and inertia on the uniform deformation were investigated. As the mechanical response of polyurea was provided over wide strain rates of 0.0016-6500/s, the current model was applied to fit the experimental data. The results were shown more accuracy could be expected from the current research than the extended Ogden hyper-viscoelastic model. In the final verification example, the pig skin experimental data was used to determine parameters of the hyper-viscoelastic model. Subsequently, a specimen of pig skin at different strain rates was loaded to a fixed strain and the change of stress with time (stress relaxation) was obtained. The stress relaxation results were revealed the peak stress increases by applied strain rate until the saturated loading rate and the equilibrium stress with magnitude of 0.281MPa could be reached. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Generalized approach to non-exponential relaxation

    Indian Academy of Sciences (India)

    Non-exponential relaxation is a universal feature of systems as diverse as glasses, spin ... which changes from a simple exponential to a stretched exponential and a power law by increasing the constraints in the system. ... Current Issue

  7. TRANSMUTED EXPONENTIATED EXPONENTIAL DISTRIBUTION

    OpenAIRE

    MEROVCI, FATON

    2013-01-01

    In this article, we generalize the exponentiated exponential distribution using the quadratic rank transmutation map studied by Shaw etal. [6] to develop a transmuted exponentiated exponential distribution. Theproperties of this distribution are derived and the estimation of the model parameters is discussed. An application to real data set are finally presented forillustration

  8. The generalized exponential function and fractional trigonometric identities

    KAUST Repository

    Radwan, Ahmed G.

    2011-08-01

    In this work, we recall the generalized exponential function in the fractional-order domain which enables defining generalized cosine and sine functions. We then re-visit some important trigonometric identities and generalize them from the narrow integer-order subset to the more general fractional-order domain. Generalized hyperbolic function relations are also given. © 2011 IEEE.

  9. The generalized exponential function and fractional trigonometric identities

    KAUST Repository

    Radwan, Ahmed G.; Elwakil, Ahmed S.

    2011-01-01

    In this work, we recall the generalized exponential function in the fractional-order domain which enables defining generalized cosine and sine functions. We then re-visit some important trigonometric identities and generalize them from the narrow integer-order subset to the more general fractional-order domain. Generalized hyperbolic function relations are also given. © 2011 IEEE.

  10. An exponential observer for the generalized Rossler chaotic system

    International Nuclear Information System (INIS)

    Sun, Y.-J.

    2009-01-01

    In this paper, the generalized Rossler chaotic system is considered and the state observation problem of such a system is investigated. Based on the time-domain approach, a state observer for the generalized Rossler chaotic system is developed to guarantee the global exponential stability of the resulting error system. Moreover, the guaranteed exponential convergence rate can be arbitrarily pre-specified. Finally, a numerical example is provided to illustrate the feasibility and effectiveness of the obtained result.

  11. Liver fibrosis: stretched exponential model outperforms mono-exponential and bi-exponential models of diffusion-weighted MRI.

    Science.gov (United States)

    Seo, Nieun; Chung, Yong Eun; Park, Yung Nyun; Kim, Eunju; Hwang, Jinwoo; Kim, Myeong-Jin

    2018-07-01

    To compare the ability of diffusion-weighted imaging (DWI) parameters acquired from three different models for the diagnosis of hepatic fibrosis (HF). Ninety-five patients underwent DWI using nine b values at 3 T magnetic resonance. The hepatic apparent diffusion coefficient (ADC) from a mono-exponential model, the true diffusion coefficient (D t ), pseudo-diffusion coefficient (D p ) and perfusion fraction (f) from a biexponential model, and the distributed diffusion coefficient (DDC) and intravoxel heterogeneity index (α) from a stretched exponential model were compared with the pathological HF stage. For the stretched exponential model, parameters were also obtained using a dataset of six b values (DDC # , α # ). The diagnostic performances of the parameters for HF staging were evaluated with Obuchowski measures and receiver operating characteristics (ROC) analysis. The measurement variability of DWI parameters was evaluated using the coefficient of variation (CoV). Diagnostic accuracy for HF staging was highest for DDC # (Obuchowski measures, 0.770 ± 0.03), and it was significantly higher than that of ADC (0.597 ± 0.05, p bi-exponential DWI model • Acquisition of six b values is sufficient to obtain accurate DDC and α.

  12. Generalization of the normal-exponential model: exploration of a more accurate parametrisation for the signal distribution on Illumina BeadArrays.

    Science.gov (United States)

    Plancade, Sandra; Rozenholc, Yves; Lund, Eiliv

    2012-12-11

    Illumina BeadArray technology includes non specific negative control features that allow a precise estimation of the background noise. As an alternative to the background subtraction proposed in BeadStudio which leads to an important loss of information by generating negative values, a background correction method modeling the observed intensities as the sum of the exponentially distributed signal and normally distributed noise has been developed. Nevertheless, Wang and Ye (2012) display a kernel-based estimator of the signal distribution on Illumina BeadArrays and suggest that a gamma distribution would represent a better modeling of the signal density. Hence, the normal-exponential modeling may not be appropriate for Illumina data and background corrections derived from this model may lead to wrong estimation. We propose a more flexible modeling based on a gamma distributed signal and a normal distributed background noise and develop the associated background correction, implemented in the R-package NormalGamma. Our model proves to be markedly more accurate to model Illumina BeadArrays: on the one hand, it is shown on two types of Illumina BeadChips that this model offers a more correct fit of the observed intensities. On the other hand, the comparison of the operating characteristics of several background correction procedures on spike-in and on normal-gamma simulated data shows high similarities, reinforcing the validation of the normal-gamma modeling. The performance of the background corrections based on the normal-gamma and normal-exponential models are compared on two dilution data sets, through testing procedures which represent various experimental designs. Surprisingly, we observe that the implementation of a more accurate parametrisation in the model-based background correction does not increase the sensitivity. These results may be explained by the operating characteristics of the estimators: the normal-gamma background correction offers an improvement

  13. Finite difference computing with exponential decay models

    CERN Document Server

    Langtangen, Hans Petter

    2016-01-01

    This text provides a very simple, initial introduction to the complete scientific computing pipeline: models, discretization, algorithms, programming, verification, and visualization. The pedagogical strategy is to use one case study – an ordinary differential equation describing exponential decay processes – to illustrate fundamental concepts in mathematics and computer science. The book is easy to read and only requires a command of one-variable calculus and some very basic knowledge about computer programming. Contrary to similar texts on numerical methods and programming, this text has a much stronger focus on implementation and teaches testing and software engineering in particular. .

  14. Transient accelerating scalar models with exponential potentials

    International Nuclear Information System (INIS)

    Cui Wen-Ping; Zhang Yang; Fu Zheng-Wen

    2013-01-01

    We study a known class of scalar dark energy models in which the potential has an exponential term and the current accelerating era is transient. We find that, although a decelerating era will return in the future, when extrapolating the model back to earlier stages (z ≳ 4), scalar dark energy becomes dominant over matter. So these models do not have the desired tracking behavior, and the predicted transient period of acceleration cannot be adopted into the standard scenario of the Big Bang cosmology. When couplings between the scalar field and matter are introduced, the models still have the same problem; only the time when deceleration returns will be varied. To achieve re-deceleration, one has to turn to alternative models that are consistent with the standard Big Bang scenario.

  15. ESTIMATION OF PARAMETERS AND RELIABILITY FUNCTION OF EXPONENTIATED EXPONENTIAL DISTRIBUTION: BAYESIAN APPROACH UNDER GENERAL ENTROPY LOSS FUNCTION

    Directory of Open Access Journals (Sweden)

    Sanjay Kumar Singh

    2011-06-01

    Full Text Available In this Paper we propose Bayes estimators of the parameters of Exponentiated Exponential distribution and Reliability functions under General Entropy loss function for Type II censored sample. The proposed estimators have been compared with the corresponding Bayes estimators obtained under Squared Error loss function and maximum likelihood estimators for their simulated risks (average loss over sample space.

  16. CMB constraints on β-exponential inflationary models

    Science.gov (United States)

    Santos, M. A.; Benetti, M.; Alcaniz, J. S.; Brito, F. A.; Silva, R.

    2018-03-01

    We analyze a class of generalized inflationary models proposed in ref. [1], known as β-exponential inflation. We show that this kind of potential can arise in the context of brane cosmology, where the field describing the size of the extra-dimension is interpreted as the inflaton. We discuss the observational viability of this class of model in light of the latest Cosmic Microwave Background (CMB) data from the Planck Collaboration through a Bayesian analysis, and impose tight constraints on the model parameters. We find that the CMB data alone prefer weakly the minimal standard model (ΛCDM) over the β-exponential inflation. However, when current local measurements of the Hubble parameter, H0, are considered, the β-inflation model is moderately preferred over the ΛCDM cosmology, making the study of this class of inflationary models interesting in the context of the current H0 tension.

  17. An exponential decay model for mediation.

    Science.gov (United States)

    Fritz, Matthew S

    2014-10-01

    Mediation analysis is often used to investigate mechanisms of change in prevention research. Results finding mediation are strengthened when longitudinal data are used because of the need for temporal precedence. Current longitudinal mediation models have focused mainly on linear change, but many variables in prevention change nonlinearly across time. The most common solution to nonlinearity is to add a quadratic term to the linear model, but this can lead to the use of the quadratic function to explain all nonlinearity, regardless of theory and the characteristics of the variables in the model. The current study describes the problems that arise when quadratic functions are used to describe all nonlinearity and how the use of nonlinear functions, such as exponential decay, address many of these problems. In addition, nonlinear models provide several advantages over polynomial models including usefulness of parameters, parsimony, and generalizability. The effects of using nonlinear functions for mediation analysis are then discussed and a nonlinear growth curve model for mediation is presented. An empirical example using data from a randomized intervention study is then provided to illustrate the estimation and interpretation of the model. Implications, limitations, and future directions are also discussed.

  18. Non-exponential extinction of radiation by fractional calculus modelling

    International Nuclear Information System (INIS)

    Casasanta, G.; Ciani, D.; Garra, R.

    2012-01-01

    Possible deviations from exponential attenuation of radiation in a random medium have been recently studied in several works. These deviations from the classical Beer-Lambert law were justified from a stochastic point of view by Kostinski (2001) . In his model he introduced the spatial correlation among the random variables, i.e. a space memory. In this note we introduce a different approach, including a memory formalism in the classical Beer-Lambert law through fractional calculus modelling. We find a generalized Beer-Lambert law in which the exponential memoryless extinction is only a special case of non-exponential extinction solutions described by Mittag-Leffler functions. We also justify this result from a stochastic point of view, using the space fractional Poisson process. Moreover, we discuss some concrete advantages of this approach from an experimental point of view, giving an estimate of the deviation from exponential extinction law, varying the optical depth. This is also an interesting model to understand the meaning of fractional derivative as an instrument to transmit randomness of microscopic dynamics to the macroscopic scale.

  19. Dark energy exponential potential models as curvature quintessence

    International Nuclear Information System (INIS)

    Capozziello, S; Cardone, V F; Piedipalumbo, E; Rubano, C

    2006-01-01

    It has been recently shown that, under some general conditions, it is always possible to find a fourth-order gravity theory capable of reproducing the same dynamics as a given dark energy model. Here, we discuss this approach for a dark energy model with a scalar field evolving under the action of an exponential potential. In the absence of matter, such a potential can be recovered from a fourth-order theory via a conformal transformation. Including the matter term, the function f(R) entering the generalized gravity Lagrangian can be reconstructed according to the dark energy model

  20. Generalized variational formulations for extended exponentially fractional integral

    Directory of Open Access Journals (Sweden)

    Zuo-Jun Wang

    2016-01-01

    Full Text Available Recently, the fractional variational principles as well as their applications yield a special attention. For a fractional variational problem based on different types of fractional integral and derivatives operators, corresponding fractional Lagrangian and Hamiltonian formulation and relevant Euler–Lagrange type equations are already presented by scholars. The formulations of fractional variational principles still can be developed more. We make an attempt to generalize the formulations for fractional variational principles. As a result we obtain generalized and complementary fractional variational formulations for extended exponentially fractional integral for example and corresponding Euler–Lagrange equations. Two illustrative examples are presented. It is observed that the formulations are in exact agreement with the Euler–Lagrange equations.

  1. Zero inflated negative binomial-generalized exponential distributionand its applications

    Directory of Open Access Journals (Sweden)

    Sirinapa Aryuyuen

    2014-08-01

    Full Text Available In this paper, we propose a new zero inflated distribution, namely, the zero inflated negative binomial-generalized exponential (ZINB-GE distribution. The new distribution is used for count data with extra zeros and is an alternative for data analysis with over-dispersed count data. Some characteristics of the distribution are given, such as mean, variance, skewness, and kurtosis. Parameter estimation of the ZINB-GE distribution uses maximum likelihood estimation (MLE method. Simulated and observed data are employed to examine this distribution. The results show that the MLE method seems to have high efficiency for large sample sizes. Moreover, the mean square error of parameter estimation is increased when the zero proportion is higher. For the real data sets, this new zero inflated distribution provides a better fit than the zero inflated Poisson and zero inflated negative binomial distributions.

  2. Pre-exponential factor in general order kinetics of thermoluminescence and its influence on glow curves

    International Nuclear Information System (INIS)

    Sunta, C.M.; Ayta, W.E.F.; Chen, R.; Watanabe, S.

    1997-01-01

    A model of thermoluminescence kinetics based on a physically meaningful approach shows that the glow curve shapes undergo systematic changes with the change of trap occupancy (dose). In terms of the general order kinetics model it means that the kinetic order changes with sample dose. In parallel to the kinetic order, the pre-exponential factor also changes. In contrast to these results the glow curves calculated from the general order kinetics model show that the peak shape remains nearly constant when the trap occupancy is changed. When appropriately defined, the pre-exponential factor also has a fixed value independent of trap occupancy. In these respects the general order kinetics model, though empirical, seems to describe the glow peak behaviour quite successfully. However, regarding the peak temperature the theoretical results both from the physical as well as the empirical model seem to diverge from the experimental observations when the experimentally determined kinetics is non-first order. (author)

  3. CONSISTENCY UNDER SAMPLING OF EXPONENTIAL RANDOM GRAPH MODELS.

    Science.gov (United States)

    Shalizi, Cosma Rohilla; Rinaldo, Alessandro

    2013-04-01

    The growing availability of network data and of scientific interest in distributed systems has led to the rapid development of statistical models of network structure. Typically, however, these are models for the entire network, while the data consists only of a sampled sub-network. Parameters for the whole network, which is what is of interest, are estimated by applying the model to the sub-network. This assumes that the model is consistent under sampling , or, in terms of the theory of stochastic processes, that it defines a projective family. Focusing on the popular class of exponential random graph models (ERGMs), we show that this apparently trivial condition is in fact violated by many popular and scientifically appealing models, and that satisfying it drastically limits ERGM's expressive power. These results are actually special cases of more general results about exponential families of dependent random variables, which we also prove. Using such results, we offer easily checked conditions for the consistency of maximum likelihood estimation in ERGMs, and discuss some possible constructive responses.

  4. Arithmetical and geometrical means of generalized logarithmic and exponential functions: Generalized sum and product operators

    International Nuclear Information System (INIS)

    Arruda, Tiago Jose; Silva Gonzalez, Rodrigo; Sangaletti Tercariol, Cesar Augusto; Souto Martinez, Alexandre

    2008-01-01

    One-parameter generalizations of the logarithmic and exponential functions have been obtained as well as algebraic operators to retrieve extensivity. Analytical expressions for the successive applications of the sum or product operators on several values of a variable are obtained here. Applications of the above formalism are considered

  5. Construction of extended exponential general linear methods 524 ...

    African Journals Online (AJOL)

    This paper introduces a new approach for constructing higher order of EEGLM which have become very popular and novel due to its enviable stability properties. This paper also shows that methods 524 is stable with its characteristics root lies in a unit circle. Numerical experiments indicate that Extended Exponential ...

  6. Inference for exponentiated general class of distributions based on record values

    Directory of Open Access Journals (Sweden)

    Samah N. Sindi

    2017-09-01

    Full Text Available The main objective of this paper is to suggest and study a new exponentiated general class (EGC of distributions. Maximum likelihood, Bayesian and empirical Bayesian estimators of the parameter of the EGC of distributions based on lower record values are obtained. Furthermore, Bayesian prediction of future records is considered. Based on lower record values, the exponentiated Weibull distribution, its special cases of distributions and exponentiated Gompertz distribution are applied to the EGC of distributions.  

  7. On Extended Exponential General Linear Methods PSQ with S>Q ...

    African Journals Online (AJOL)

    This paper is concerned with the construction and Numerical Analysis of Extended Exponential General Linear Methods. These methods, in contrast to other methods in literatures, consider methods with the step greater than the stage order (S>Q).Numerical experiments in this study, indicate that Extended Exponential ...

  8. EXCHANGE-RATES FORECASTING: EXPONENTIAL SMOOTHING TECHNIQUES AND ARIMA MODELS

    Directory of Open Access Journals (Sweden)

    Dezsi Eva

    2011-07-01

    Full Text Available Exchange rates forecasting is, and has been a challenging task in finance. Statistical and econometrical models are widely used in analysis and forecasting of foreign exchange rates. This paper investigates the behavior of daily exchange rates of the Romanian Leu against the Euro, United States Dollar, British Pound, Japanese Yen, Chinese Renminbi and the Russian Ruble. Smoothing techniques are generated and compared with each other. These models include the Simple Exponential Smoothing technique, as the Double Exponential Smoothing technique, the Simple Holt-Winters, the Additive Holt-Winters, namely the Autoregressive Integrated Moving Average model.

  9. A cluster expansion approach to exponential random graph models

    International Nuclear Information System (INIS)

    Yin, Mei

    2012-01-01

    The exponential family of random graphs are among the most widely studied network models. We show that any exponential random graph model may alternatively be viewed as a lattice gas model with a finite Banach space norm. The system may then be treated using cluster expansion methods from statistical mechanics. In particular, we derive a convergent power series expansion for the limiting free energy in the case of small parameters. Since the free energy is the generating function for the expectations of other random variables, this characterizes the structure and behavior of the limiting network in this parameter region

  10. Exponential models applied to automated processing of radioimmunoassay standard curves

    International Nuclear Information System (INIS)

    Morin, J.F.; Savina, A.; Caroff, J.; Miossec, J.; Legendre, J.M.; Jacolot, G.; Morin, P.P.

    1979-01-01

    An improved computer processing is described for fitting of radio-immunological standard curves by means of an exponential model on a desk-top calculator. This method has been applied to a variety of radioassays and the results are in accordance with those obtained by more sophisticated models [fr

  11. Exponential critical-state model for magnetization of hard superconductors

    International Nuclear Information System (INIS)

    Chen, D.; Sanchez, A.; Munoz, J.S.

    1990-01-01

    We have calculated the initial magnetization curves and hysteresis loops for hard type-II superconductors based on the exponential-law model, J c (H i ) =k exp(-|H i |/H 0 ), where k and H 0 are constants. After discussing the general behavior of penetrated supercurrents in an infinitely long column specimen, we define a general cross-sectional shape based on two equal circles of radius a, which can be rendered into a circle, a rectangle, or many other shapes. With increasing parameter p (=ka/H 0 ), the computed M-H curves show obvious differences with those computed from Kim's model and approach the results of a simple infinitely narrow square pulse J c (H i ). For high-T c superconductors, our results can be applied to the study of the magnetic properties and the critical-current density of single crystals, as well as to the determination of the intergranular critical-current density from magnetic measurements

  12. Exploring parameter constraints on quintessential dark energy: The exponential model

    International Nuclear Information System (INIS)

    Bozek, Brandon; Abrahamse, Augusta; Albrecht, Andreas; Barnard, Michael

    2008-01-01

    We present an analysis of a scalar field model of dark energy with an exponential potential using the Dark Energy Task Force (DETF) simulated data models. Using Markov Chain Monte Carlo sampling techniques we examine the ability of each simulated data set to constrain the parameter space of the exponential potential for data sets based on a cosmological constant and a specific exponential scalar field model. We compare our results with the constraining power calculated by the DETF using their 'w 0 -w a ' parametrization of the dark energy. We find that respective increases in constraining power from one stage to the next produced by our analysis give results consistent with DETF results. To further investigate the potential impact of future experiments, we also generate simulated data for an exponential model background cosmology which cannot be distinguished from a cosmological constant at DETF 'Stage 2', and show that for this cosmology good DETF Stage 4 data would exclude a cosmological constant by better than 3σ

  13. Parameter Estimation and Model Selection for Mixtures of Truncated Exponentials

    DEFF Research Database (Denmark)

    Langseth, Helge; Nielsen, Thomas Dyhre; Rumí, Rafael

    2010-01-01

    Bayesian networks with mixtures of truncated exponentials (MTEs) support efficient inference algorithms and provide a flexible way of modeling hybrid domains (domains containing both discrete and continuous variables). On the other hand, estimating an MTE from data has turned out to be a difficul...

  14. Multinomial-exponential reliability function: a software reliability model

    International Nuclear Information System (INIS)

    Saiz de Bustamante, Amalio; Saiz de Bustamante, Barbara

    2003-01-01

    The multinomial-exponential reliability function (MERF) was developed during a detailed study of the software failure/correction processes. Later on MERF was approximated by a much simpler exponential reliability function (EARF), which keeps most of MERF mathematical properties, so the two functions together makes up a single reliability model. The reliability model MERF/EARF considers the software failure process as a non-homogeneous Poisson process (NHPP), and the repair (correction) process, a multinomial distribution. The model supposes that both processes are statistically independent. The paper discusses the model's theoretical basis, its mathematical properties and its application to software reliability. Nevertheless it is foreseen model applications to inspection and maintenance of physical systems. The paper includes a complete numerical example of the model application to a software reliability analysis

  15. Exponential GARCH Modeling with Realized Measures of Volatility

    DEFF Research Database (Denmark)

    Hansen, Peter Reinhard; Huang, Zhuo

    returns and volatility. We apply the model to DJIA stocks and an exchange traded fund that tracks the S&P 500 index and find that specifications with multiple realized measures dominate those that rely on a single realized measure. The empirical analysis suggests some convenient simplifications......We introduce the Realized Exponential GARCH model that can utilize multiple realized volatility measures for the modeling of a return series. The model specifies the dynamic properties of both returns and realized measures, and is characterized by a flexible modeling of the dependence between...

  16. The Use of Modeling Approach for Teaching Exponential Functions

    Science.gov (United States)

    Nunes, L. F.; Prates, D. B.; da Silva, J. M.

    2017-12-01

    This work presents a discussion related to the teaching and learning of mathematical contents related to the study of exponential functions in a freshman students group enrolled in the first semester of the Science and Technology Bachelor’s (STB of the Federal University of Jequitinhonha and Mucuri Valleys (UFVJM). As a contextualization tool strongly mentioned in the literature, the modelling approach was used as an educational teaching tool to produce contextualization in the teaching-learning process of exponential functions to these students. In this sense, were used some simple models elaborated with the GeoGebra software and, to have a qualitative evaluation of the investigation and the results, was used Didactic Engineering as a methodology research. As a consequence of this detailed research, some interesting details about the teaching and learning process were observed, discussed and described.

  17. Exact series expansions, recurrence relations, properties and integrals of the generalized exponential integral functions

    International Nuclear Information System (INIS)

    Altac, Zekeriya

    2007-01-01

    Generalized exponential integral functions (GEIF) are encountered in multi-dimensional thermal radiative transfer problems in the integral equation kernels. Several series expansions for the first-order generalized exponential integral function, along with a series expansion for the general nth order GEIF, are derived. The convergence issues of these series expansions are investigated numerically as well as theoretically, and a recurrence relation which does not require derivatives of the GEIF is developed. The exact series expansions of the two dimensional cylindrical and/or two-dimensional planar integral kernels as well as their spatial moments have been explicitly derived and compared with numerical values

  18. Central Limit Theorem for Exponentially Quasi-local Statistics of Spin Models on Cayley Graphs

    Science.gov (United States)

    Reddy, Tulasi Ram; Vadlamani, Sreekar; Yogeshwaran, D.

    2018-04-01

    Central limit theorems for linear statistics of lattice random fields (including spin models) are usually proven under suitable mixing conditions or quasi-associativity. Many interesting examples of spin models do not satisfy mixing conditions, and on the other hand, it does not seem easy to show central limit theorem for local statistics via quasi-associativity. In this work, we prove general central limit theorems for local statistics and exponentially quasi-local statistics of spin models on discrete Cayley graphs with polynomial growth. Further, we supplement these results by proving similar central limit theorems for random fields on discrete Cayley graphs taking values in a countable space, but under the stronger assumptions of α -mixing (for local statistics) and exponential α -mixing (for exponentially quasi-local statistics). All our central limit theorems assume a suitable variance lower bound like many others in the literature. We illustrate our general central limit theorem with specific examples of lattice spin models and statistics arising in computational topology, statistical physics and random networks. Examples of clustering spin models include quasi-associated spin models with fast decaying covariances like the off-critical Ising model, level sets of Gaussian random fields with fast decaying covariances like the massive Gaussian free field and determinantal point processes with fast decaying kernels. Examples of local statistics include intrinsic volumes, face counts, component counts of random cubical complexes while exponentially quasi-local statistics include nearest neighbour distances in spin models and Betti numbers of sub-critical random cubical complexes.

  19. Galilean invariance in the exponential model of atomic collisions

    International Nuclear Information System (INIS)

    del Pozo, A.; Riera, A.; Yaez, M.

    1986-01-01

    Using the X/sup n/ + (1s 2 )+He/sup 2+/ colliding systems as specific examples, we study the origin dependence of results in the application of the two-state exponential model, and we show the relevance of polarization effects in that study. Our analysis shows that polarization effects of the He + (1s) orbital due to interaction with X/sup (//sup n//sup +1)+/ ion in the exit channel yield a very small contribution to the energy difference and render the dynamical coupling so strongly origin dependent that it invalidates the basic premises of the model. Further study, incorporating translation factors in the formalism, is needed

  20. Arima model and exponential smoothing method: A comparison

    Science.gov (United States)

    Wan Ahmad, Wan Kamarul Ariffin; Ahmad, Sabri

    2013-04-01

    This study shows the comparison between Autoregressive Moving Average (ARIMA) model and Exponential Smoothing Method in making a prediction. The comparison is focused on the ability of both methods in making the forecasts with the different number of data sources and the different length of forecasting period. For this purpose, the data from The Price of Crude Palm Oil (RM/tonne), Exchange Rates of Ringgit Malaysia (RM) in comparison to Great Britain Pound (GBP) and also The Price of SMR 20 Rubber Type (cents/kg) with three different time series are used in the comparison process. Then, forecasting accuracy of each model is measured by examinethe prediction error that producedby using Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE), and Mean Absolute deviation (MAD). The study shows that the ARIMA model can produce a better prediction for the long-term forecasting with limited data sources, butcannot produce a better prediction for time series with a narrow range of one point to another as in the time series for Exchange Rates. On the contrary, Exponential Smoothing Method can produce a better forecasting for Exchange Rates that has a narrow range of one point to another for its time series, while itcannot produce a better prediction for a longer forecasting period.

  1. Exponential random graph models for networks with community structure.

    Science.gov (United States)

    Fronczak, Piotr; Fronczak, Agata; Bujok, Maksymilian

    2013-09-01

    Although the community structure organization is an important characteristic of real-world networks, most of the traditional network models fail to reproduce the feature. Therefore, the models are useless as benchmark graphs for testing community detection algorithms. They are also inadequate to predict various properties of real networks. With this paper we intend to fill the gap. We develop an exponential random graph approach to networks with community structure. To this end we mainly built upon the idea of blockmodels. We consider both the classical blockmodel and its degree-corrected counterpart and study many of their properties analytically. We show that in the degree-corrected blockmodel, node degrees display an interesting scaling property, which is reminiscent of what is observed in real-world fractal networks. A short description of Monte Carlo simulations of the models is also given in the hope of being useful to others working in the field.

  2. Contribution of mono-exponential, bi-exponential and stretched exponential model-based diffusion-weighted MR imaging in the diagnosis and differentiation of uterine cervical carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Meng; Yu, Xiaoduo; Chen, Yan; Ouyang, Han; Zhou, Chunwu [Chinese Academy of Medical Sciences, Department of Diagnostic Radiology, Cancer Institute and Hospital, Peking Union Medical College, Beijing (China); Wu, Bing; Zheng, Dandan [GE MR Research China, Beijing (China)

    2017-06-15

    To investigate the potential of various metrics derived from mono-exponential model (MEM), bi-exponential model (BEM) and stretched exponential model (SEM)-based diffusion-weighted imaging (DWI) in diagnosing and differentiating the pathological subtypes and grades of uterine cervical carcinoma. 71 newly diagnosed patients with cervical carcinoma (50 cases of squamous cell carcinoma [SCC] and 21 cases of adenocarcinoma [AC]) and 32 healthy volunteers received DWI with multiple b values. The apparent diffusion coefficient (ADC), pure molecular diffusion (D), pseudo-diffusion coefficient (D*), perfusion fraction (f), water molecular diffusion heterogeneity index (alpha), and distributed diffusion coefficient (DDC) were calculated and compared between tumour and normal cervix, among different pathological subtypes and grades. All of the parameters were significantly lower in cervical carcinoma than normal cervical stroma except alpha. SCC showed lower ADC, D, f and DDC values and higher D* value than AC; D and DDC values of SCC and ADC and D values of AC were lower in the poorly differentiated group than those in the well-moderately differentiated group. Compared with MEM, diffusion parameters from BEM and SEM may offer additional information in cervical carcinoma diagnosis, predicting pathological tumour subtypes and grades, while f and D showed promising significance. (orig.)

  3. Exponential stability of Cohen-Grossberg neural networks with a general class of activation functions

    International Nuclear Information System (INIS)

    Wan Anhua; Wang Miansen; Peng Jigen; Qiao Hong

    2006-01-01

    In this Letter, the dynamics of Cohen-Grossberg neural networks model are investigated. The activation functions are only assumed to be Lipschitz continuous, which provide a much wider application domain for neural networks than the previous results. By means of the extended nonlinear measure approach, new and relaxed sufficient conditions for the existence, uniqueness and global exponential stability of equilibrium of the neural networks are obtained. Moreover, an estimate for the exponential convergence rate of the neural networks is precisely characterized. Our results improve those existing ones

  4. Galilean invariance in the exponential model of atomic collisions

    Energy Technology Data Exchange (ETDEWEB)

    del Pozo, A.; Riera, A.; Yaez, M.

    1986-11-01

    Using the X/sup n//sup +/(1s/sup 2/)+He/sup 2+/ colliding systems as specific examples, we study the origin dependence of results in the application of the two-state exponential model, and we show the relevance of polarization effects in that study. Our analysis shows that polarization effects of the He/sup +/(1s) orbital due to interaction with X/sup (//sup n//sup +1)+/ ion in the exit channel yield a very small contribution to the energy difference and render the dynamical coupling so strongly origin dependent that it invalidates the basic premises of the model. Further study, incorporating translation factors in the formalism, is needed.

  5. Introduction to generalized linear models

    CERN Document Server

    Dobson, Annette J

    2008-01-01

    Introduction Background Scope Notation Distributions Related to the Normal Distribution Quadratic Forms Estimation Model Fitting Introduction Examples Some Principles of Statistical Modeling Notation and Coding for Explanatory Variables Exponential Family and Generalized Linear Models Introduction Exponential Family of Distributions Properties of Distributions in the Exponential Family Generalized Linear Models Examples Estimation Introduction Example: Failure Times for Pressure Vessels Maximum Likelihood Estimation Poisson Regression Example Inference Introduction Sampling Distribution for Score Statistics Taylor Series Approximations Sampling Distribution for MLEs Log-Likelihood Ratio Statistic Sampling Distribution for the Deviance Hypothesis Testing Normal Linear Models Introduction Basic Results Multiple Linear Regression Analysis of Variance Analysis of Covariance General Linear Models Binary Variables and Logistic Regression Probability Distributions ...

  6. Markov chains with exponentially small transition probabilities: First exit problem from a general domain. II. The general case

    International Nuclear Information System (INIS)

    Olivieri, E.; Scoppola, E.

    1996-01-01

    In this paper we consider aperiodic ergodic Markov chains with transition probabilities exponentially small in a large parameter β. We extend to the general, not necessarily reversible case the analysis, started in part I of this work, of the first exit problem from a general domain Q containing many stable equilibria (attracting equilibrium points for the β = ∞ dynamics). In particular we describe the tube of typical trajectories during the first excursion outside Q

  7. Exponential model normalization for electrical capacitance tomography with external electrodes under gap permittivity conditions

    International Nuclear Information System (INIS)

    Baidillah, Marlin R; Takei, Masahiro

    2017-01-01

    A nonlinear normalization model which is called exponential model for electrical capacitance tomography (ECT) with external electrodes under gap permittivity conditions has been developed. The exponential model normalization is proposed based on the inherently nonlinear relationship characteristic between the mixture permittivity and the measured capacitance due to the gap permittivity of inner wall. The parameters of exponential equation are derived by using an exponential fitting curve based on the simulation and a scaling function is added to adjust the experiment system condition. The exponential model normalization was applied to two dimensional low and high contrast dielectric distribution phantoms by using simulation and experimental studies. The proposed normalization model has been compared with other normalization models i.e. Parallel, Series, Maxwell and Böttcher models. Based on the comparison of image reconstruction results, the exponential model is reliable to predict the nonlinear normalization of measured capacitance in term of low and high contrast dielectric distribution. (paper)

  8. Exponential stabilization and synchronization for fuzzy model of memristive neural networks by periodically intermittent control.

    Science.gov (United States)

    Yang, Shiju; Li, Chuandong; Huang, Tingwen

    2016-03-01

    The problem of exponential stabilization and synchronization for fuzzy model of memristive neural networks (MNNs) is investigated by using periodically intermittent control in this paper. Based on the knowledge of memristor and recurrent neural network, the model of MNNs is formulated. Some novel and useful stabilization criteria and synchronization conditions are then derived by using the Lyapunov functional and differential inequality techniques. It is worth noting that the methods used in this paper are also applied to fuzzy model for complex networks and general neural networks. Numerical simulations are also provided to verify the effectiveness of theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The Exponential Distribution and the Application to Markov Models ...

    African Journals Online (AJOL)

    ... are close to zero, and very long times are increasingly unlikely. That is, the most likely values are considered to be clustered about the mean, and large deviations from the mean are viewed as increasingly unlike. If this characteristic of the negative exponential distribution seems incompatible with the application one has ...

  10. From Classical to Discrete Gravity through Exponential Non-Standard Lagrangians in General Relativity

    Directory of Open Access Journals (Sweden)

    Rami Ahmad El-Nabulsi

    2015-08-01

    Full Text Available Recently, non-standard Lagrangians have gained a growing importance in theoretical physics and in the theory of non-linear differential equations. However, their formulations and implications in general relativity are still in their infancies despite some advances in contemporary cosmology. The main aim of this paper is to fill the gap. Though non-standard Lagrangians may be defined by a multitude form, in this paper, we considered the exponential type. One basic feature of exponential non-standard Lagrangians concerns the modified Euler-Lagrange equation obtained from the standard variational analysis. Accordingly, when applied to spacetime geometries, one unsurprisingly expects modified geodesic equations. However, when taking into account the time-like paths parameterization constraint, remarkably, it was observed that mutually discrete gravity and discrete spacetime emerge in the theory. Two different independent cases were obtained: A geometrical manifold with new spacetime coordinates augmented by a metric signature change and a geometrical manifold characterized by a discretized spacetime metric. Both cases give raise to Einstein’s field equations yet the gravity is discretized and originated from “spacetime discreteness”. A number of mathematical and physical implications of these results were discussed though this paper and perspectives are given accordingly.

  11. Recent developments in exponential random graph (p*) models for social networks

    NARCIS (Netherlands)

    Robins, Garry; Snijders, Tom; Wang, Peng; Handcock, Mark; Pattison, Philippa

    This article reviews new specifications for exponential random graph models proposed by Snijders et al. [Snijders, T.A.B., Pattison, P., Robins, G.L., Handcock, M., 2006. New specifications for exponential random graph models. Sociological Methodology] and demonstrates their improvement over

  12. Exponential attractors for a Cahn-Hilliard model in bounded domains with permeable walls

    Directory of Open Access Journals (Sweden)

    Ciprian G. Gal

    2006-11-01

    Full Text Available In a previous article [7], we proposed a model of phase separation in a binary mixture confined to a bounded region which may be contained within porous walls. The boundary conditions were derived from a mass conservation law and variational methods. In the present paper, we study the problem further. Using a Faedo-Galerkin method, we obtain the existence and uniqueness of a global solution to our problem, under more general assumptions than those in [7]. We then study its asymptotic behavior and prove the existence of an exponential attractor (and thus of a global attractor with finite dimension.

  13. Esscher transforms and the minimal entropy martingale measure for exponential Lévy models

    DEFF Research Database (Denmark)

    Hubalek, Friedrich; Sgarra, C.

    In this paper we offer a systematic survey and comparison of the Esscher martingale transform for linear processes, the Esscher martingale transform for exponential processes, and the minimal entropy martingale measure for exponential lévy models and present some new results in order to give...

  14. Bayesian analysis for exponential random graph models using the adaptive exchange sampler

    KAUST Repository

    Jin, Ick Hoon; Liang, Faming; Yuan, Ying

    2013-01-01

    Exponential random graph models have been widely used in social network analysis. However, these models are extremely difficult to handle from a statistical viewpoint, because of the existence of intractable normalizing constants. In this paper, we

  15. Continuous multivariate exponential extension

    International Nuclear Information System (INIS)

    Block, H.W.

    1975-01-01

    The Freund-Weinman multivariate exponential extension is generalized to the case of nonidentically distributed marginal distributions. A fatal shock model is given for the resulting distribution. Results in the bivariate case and the concept of constant multivariate hazard rate lead to a continuous distribution related to the multivariate exponential distribution (MVE) of Marshall and Olkin. This distribution is shown to be a special case of the extended Freund-Weinman distribution. A generalization of the bivariate model of Proschan and Sullo leads to a distribution which contains both the extended Freund-Weinman distribution and the MVE

  16. Dynamics of quintessence models of dark energy with exponential coupling to dark matter

    International Nuclear Information System (INIS)

    Gonzalez, Tame; Leon, Genly; Quiros, Israel

    2006-01-01

    We explore quintessence models of dark energy which exhibit non-minimal coupling between the dark matter and dark energy components of the cosmic fluid. The kind of coupling chosen is inspired by scalar-tensor theories of gravity. We impose a suitable dynamics of the expansion allowing us to derive exact Friedmann-Robertson-Walker solutions once the coupling function is given as input. Self-interaction potentials of single and double exponential types emerge as a result of our choice of the coupling function. The stability and existence of the solutions are discussed in some detail. Although, in general, models with appropriate interaction between the components of the cosmic mixture are useful for handling the coincidence problem, in the present study this problem cannot be avoided due to the choice of solution generating ansatz

  17. An exponential model equation for thiamin loss in irradiated ground pork as a function of dose and temperature of irradiation

    Science.gov (United States)

    Fox, J. B.; Thayer, D. W.; Phillips, J. G.

    The effect of low dose γ-irradiation on the thiamin content of ground pork was studied in the range of 0-14 kGy at 2°C and at radiation doses from 0.5 to 7 kGy at temperatures -20, 10, 0, 10 and 20°C. The detailed study at 2°C showed that loss of thiamin was exponential down to 0kGy. An exponential expression was derived for the effect of radiation dose and temperature of irradiation on thiamin loss, and compared with a previously derived general linear expression. Both models were accurate depictions of the data, but the exponential expression showed a significant decrease in the rate of loss between 0 and -10°C. This is the range over which water in meat freezes, the decrease being due to the immobolization of reactive radiolytic products of water in ice crystals.

  18. Separation of type and grade in cervical tumours using non-mono-exponential models of diffusion-weighted MRI

    International Nuclear Information System (INIS)

    Winfield, Jessica M.; Collins, David J.; Morgan, Veronica A.; DeSouza, Nandita M.; Orton, Matthew R.; Ind, Thomas E.J.; Attygalle, Ayoma; Hazell, Steve

    2017-01-01

    Assessment of empirical diffusion-weighted MRI (DW-MRI) models in cervical tumours to investigate whether fitted parameters distinguish between types and grades of tumours. Forty-two patients (24 squamous cell carcinomas, 14 well/moderately differentiated, 10 poorly differentiated; 15 adenocarcinomas, 13 well/moderately differentiated, two poorly differentiated; three rare types) were imaged at 3 T using nine b-values (0 to 800 s mm -2 ). Mono-exponential, stretched exponential, kurtosis, statistical, and bi-exponential models were fitted. Model preference was assessed using Bayesian Information Criterion analysis. Differences in fitted parameters between tumour types/grades and correlation between fitted parameters were assessed using two-way analysis of variance and Pearson's linear correlation coefficient, respectively. Non-mono-exponential models were preferred by 83 % of tumours with bi-exponential and stretched exponential models preferred by the largest numbers of tumours. Apparent diffusion coefficient (ADC) and diffusion coefficients from non-mono-exponential models were significantly lower in poorly differentiated tumours than well/moderately differentiated tumours. α (stretched exponential), K (kurtosis), f and D* (bi-exponential) were significantly different between tumour types. Strong correlation was observed between ADC and diffusion coefficients from other models. Non-mono-exponential models were preferred to the mono-exponential model in DW-MRI data from cervical tumours. Parameters of non-mono-exponential models showed significant differences between types and grades of tumours. (orig.)

  19. Separation of type and grade in cervical tumours using non-mono-exponential models of diffusion-weighted MRI

    Energy Technology Data Exchange (ETDEWEB)

    Winfield, Jessica M.; Collins, David J.; Morgan, Veronica A.; DeSouza, Nandita M. [The Royal Marsden NHS Foundation Trust, MRI Unit, Sutton, Surrey (United Kingdom); The Institute of Cancer Research, Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, London (United Kingdom); Orton, Matthew R. [The Institute of Cancer Research, Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, London (United Kingdom); Ind, Thomas E.J. [The Royal Marsden NHS Foundation Trust, Gynaecology Unit, London (United Kingdom); Attygalle, Ayoma; Hazell, Steve [The Royal Marsden NHS Foundation Trust, Department of Histopathology, London (United Kingdom)

    2017-02-15

    Assessment of empirical diffusion-weighted MRI (DW-MRI) models in cervical tumours to investigate whether fitted parameters distinguish between types and grades of tumours. Forty-two patients (24 squamous cell carcinomas, 14 well/moderately differentiated, 10 poorly differentiated; 15 adenocarcinomas, 13 well/moderately differentiated, two poorly differentiated; three rare types) were imaged at 3 T using nine b-values (0 to 800 s mm{sup -2}). Mono-exponential, stretched exponential, kurtosis, statistical, and bi-exponential models were fitted. Model preference was assessed using Bayesian Information Criterion analysis. Differences in fitted parameters between tumour types/grades and correlation between fitted parameters were assessed using two-way analysis of variance and Pearson's linear correlation coefficient, respectively. Non-mono-exponential models were preferred by 83 % of tumours with bi-exponential and stretched exponential models preferred by the largest numbers of tumours. Apparent diffusion coefficient (ADC) and diffusion coefficients from non-mono-exponential models were significantly lower in poorly differentiated tumours than well/moderately differentiated tumours. α (stretched exponential), K (kurtosis), f and D* (bi-exponential) were significantly different between tumour types. Strong correlation was observed between ADC and diffusion coefficients from other models. Non-mono-exponential models were preferred to the mono-exponential model in DW-MRI data from cervical tumours. Parameters of non-mono-exponential models showed significant differences between types and grades of tumours. (orig.)

  20. Orphan Drug Pricing: An Original Exponential Model Relating Price to the Number of Patients

    Directory of Open Access Journals (Sweden)

    Andrea Messori

    2016-10-01

    Full Text Available In managing drug prices at the national level, orphan drugs represent a special case because the price of these agents is higher than that determined according to value-based principles. A common practice is to set the orphan drug price in an inverse relationship with the number of patients, so that the price increases as the number of patients decreases. Determination of prices in this context generally has a purely empirical nature, but a theoretical basis would be needed. The present paper describes an original exponential model that manages the relationship between price and number of patients for orphan drugs. Three real examples are analysed in detail (eculizumab, bosentan, and a data set of 17 orphan drugs published in 2010. These analyses have been aimed at identifying some objective criteria to rationally inform this relationship between prices and patients and at converting these criteria into explicit quantitative rules.

  1. The randomly renewed general item and the randomly inspected item with exponential life distribution

    International Nuclear Information System (INIS)

    Schneeweiss, W.G.

    1979-01-01

    For a randomly renewed item the probability distributions of the time to failure and of the duration of down time and the expectations of these random variables are determined. Moreover, it is shown that the same theory applies to randomly checked items with exponential probability distribution of life such as electronic items. The case of periodic renewals is treated as an example. (orig.) [de

  2. Modeling volatile organic compounds sorption on dry building materials using double-exponential model

    International Nuclear Information System (INIS)

    Deng, Baoqing; Ge, Di; Li, Jiajia; Guo, Yuan; Kim, Chang Nyung

    2013-01-01

    A double-exponential surface sink model for VOCs sorption on building materials is presented. Here, the diffusion of VOCs in the material is neglected and the material is viewed as a surface sink. The VOCs concentration in the air adjacent to the material surface is introduced and assumed to always maintain equilibrium with the material-phase concentration. It is assumed that the sorption can be described by mass transfer between the room air and the air adjacent to the material surface. The mass transfer coefficient is evaluated from the empirical correlation, and the equilibrium constant can be obtained by linear fitting to the experimental data. The present model is validated through experiments in small and large test chambers. The predicted results accord well with the experimental data in both the adsorption stage and desorption stage. The model avoids the ambiguity of model constants found in other surface sink models and is easy to scale up

  3. Stretched-exponential decay functions from a self-consistent model of dielectric relaxation

    International Nuclear Information System (INIS)

    Milovanov, A.V.; Rasmussen, J.J.; Rypdal, K.

    2008-01-01

    There are many materials whose dielectric properties are described by a stretched exponential, the so-called Kohlrausch-Williams-Watts (KWW) relaxation function. Its physical origin and statistical-mechanical foundation have been a matter of debate in the literature. In this Letter we suggest a model of dielectric relaxation, which naturally leads to a stretched exponential decay function. Some essential characteristics of the underlying charge conduction mechanisms are considered. A kinetic description of the relaxation and charge transport processes is proposed in terms of equations with time-fractional derivatives

  4. The Exponential Model for the Spectrum of a Time Series: Extensions and Applications

    DEFF Research Database (Denmark)

    Proietti, Tommaso; Luati, Alessandra

    The exponential model for the spectrum of a time series and its fractional extensions are based on the Fourier series expansion of the logarithm of the spectral density. The coefficients of the expansion form the cepstrum of the time series. After deriving the cepstrum of important classes of time...

  5. Solar system tests of scalar field models with an exponential potential

    International Nuclear Information System (INIS)

    Paramos, J.; Bertolami, O.

    2008-01-01

    We consider a scenario where the dynamics of a scalar field is ruled by an exponential potential, such as those arising from some quintessence-type models, and aim at obtaining phenomenological manifestations of this entity within our Solar System. To do so, we assume a perturbative regime, derive the perturbed Schwarzschild metric, and extract the relevant post-Newtonian parameters.

  6. Asymptotic Estimates of Gerber-Shiu Functions in the Renewal Risk Model with Exponential Claims

    Institute of Scientific and Technical Information of China (English)

    Li WEI

    2012-01-01

    This paper continues to study the asymptotic behavior of Gerber-Shiu expected discounted penalty functions in the renewal risk model as the initial capital becomes large.Under the assumption that the claim-size distribution is exponential,we establish an explicit asymptotic formula.Some straightforward consequences of this formula match existing results in the field.

  7. Exponential law as a more compatible model to describe orbits of planetary systems

    Directory of Open Access Journals (Sweden)

    M Saeedi

    2012-12-01

    Full Text Available   According to the Titus-Bode law, orbits of planets in the solar system obey a geometric progression. Many investigations have been launched to improve this law. In this paper, we apply square and exponential models to planets of solar system, moons of planets, and some extra solar systems, and compare them with each other.

  8. Firing patterns in the adaptive exponential integrate-and-fire model.

    Science.gov (United States)

    Naud, Richard; Marcille, Nicolas; Clopath, Claudia; Gerstner, Wulfram

    2008-11-01

    For simulations of large spiking neuron networks, an accurate, simple and versatile single-neuron modeling framework is required. Here we explore the versatility of a simple two-equation model: the adaptive exponential integrate-and-fire neuron. We show that this model generates multiple firing patterns depending on the choice of parameter values, and present a phase diagram describing the transition from one firing type to another. We give an analytical criterion to distinguish between continuous adaption, initial bursting, regular bursting and two types of tonic spiking. Also, we report that the deterministic model is capable of producing irregular spiking when stimulated with constant current, indicating low-dimensional chaos. Lastly, the simple model is fitted to real experiments of cortical neurons under step current stimulation. The results provide support for the suitability of simple models such as the adaptive exponential integrate-and-fire neuron for large network simulations.

  9. Policy Effects in Hyperbolic vs. Exponential Models of Consumption and Retirement.

    Science.gov (United States)

    Gustman, Alan L; Steinmeier, Thomas L

    2012-06-01

    This paper constructs a structural retirement model with hyperbolic preferences and uses it to estimate the effect of several potential Social Security policy changes. Estimated effects of policies are compared using two models, one with hyperbolic preferences and one with standard exponential preferences. Sophisticated hyperbolic discounters may accumulate substantial amounts of wealth for retirement. We find it is frequently difficult to distinguish empirically between models with the two types of preferences on the basis of asset accumulation paths or consumption paths around the period of retirement. Simulations suggest that, despite the much higher initial time preference rate, individuals with hyperbolic preferences may actually value a real annuity more than individuals with exponential preferences who have accumulated roughly equal amounts of assets. This appears to be especially true for individuals with relatively high time preference rates or who have low assets for whatever reason. This affects the tradeoff between current benefits and future benefits on which many of the retirement incentives of the Social Security system rest.Simulations involving increasing the early entitlement age and increasing the delayed retirement credit do not show a great deal of difference whether exponential or hyperbolic preferences are used, but simulations for eliminating the earnings test show a non-trivially greater effect when exponential preferences are used.

  10. Modeling of the pyrolysis of biomass under parabolic and exponential temperature increases using the Distributed Activation Energy Model

    International Nuclear Information System (INIS)

    Soria-Verdugo, Antonio; Goos, Elke; Arrieta-Sanagustín, Jorge; García-Hernando, Nestor

    2016-01-01

    Highlights: • Pyrolysis of biomass under parabolic and exponential temperature profiles is modeled. • The model is based on a simplified Distributed Activation Energy Model. • 4 biomasses are analyzed in TGA with parabolic and exponential temperature increases. • Deviations between the model prediction and TGA measurements are under 5 °C. - Abstract: A modification of the simplified Distributed Activation Energy Model is proposed to simulate the pyrolysis of biomass under parabolic and exponential temperature increases. The pyrolysis of pine wood, olive kernel, thistle flower and corncob was experimentally studied in a TGA Q500 thermogravimetric analyzer. The results of the measurements of nine different parabolic and exponential temperature increases for each sample were employed to validate the models proposed. The deviation between the experimental TGA measurements and the estimation of the reacted fraction during the pyrolysis of the four samples under parabolic and exponential temperature increases was lower than 5 °C for all the cases studied. The models derived in this work to describe the pyrolysis of biomass with parabolic and exponential temperature increases were found to be in good agreement with the experiments conducted in a thermogravimetric analyzer.

  11. Transport methods: general. 2. Monte Carlo Particle Transport in Media with Exponentially Varying Time-Dependent Cross Sections

    International Nuclear Information System (INIS)

    Brown, Forrest B.; Martin, William R.

    2001-01-01

    exponential variation in cross section was described in a stepwise approximation using 250 separate regions of constant cross section. For each calculation, transmission through the outer boundary of the slab was tallied. The results show nearly perfect agreement in transmission over the range of exponential parameters for the varying cross section, verifying that the PDF and random-sampling procedure described earlier are correct. A PDF and random-sampling procedure for the distance to collision were derived for the case of exponentially varying cross sections. Numerical testing indicates that both are correct. This new sampling procedure has direct application in a new method for Monte Carlo radiation transport and may be generally useful for analyzing physical problems where the material cross sections change very rapidly in an exponential manner

  12. Is a matrix exponential specification suitable for the modeling of spatial correlation structures?

    Science.gov (United States)

    Strauß, Magdalena E; Mezzetti, Maura; Leorato, Samantha

    2017-05-01

    This paper investigates the adequacy of the matrix exponential spatial specifications (MESS) as an alternative to the widely used spatial autoregressive models (SAR). To provide as complete a picture as possible, we extend the analysis to all the main spatial models governed by matrix exponentials comparing them with their spatial autoregressive counterparts. We propose a new implementation of Bayesian parameter estimation for the MESS model with vague prior distributions, which is shown to be precise and computationally efficient. Our implementations also account for spatially lagged regressors. We further allow for location-specific heterogeneity, which we model by including spatial splines. We conclude by comparing the performances of the different model specifications in applications to a real data set and by running simulations. Both the applications and the simulations suggest that the spatial splines are a flexible and efficient way to account for spatial heterogeneities governed by unknown mechanisms.

  13. Bayesian analysis for exponential random graph models using the adaptive exchange sampler

    KAUST Repository

    Jin, Ick Hoon

    2013-01-01

    Exponential random graph models have been widely used in social network analysis. However, these models are extremely difficult to handle from a statistical viewpoint, because of the existence of intractable normalizing constants. In this paper, we consider a fully Bayesian analysis for exponential random graph models using the adaptive exchange sampler, which solves the issue of intractable normalizing constants encountered in Markov chain Monte Carlo (MCMC) simulations. The adaptive exchange sampler can be viewed as a MCMC extension of the exchange algorithm, and it generates auxiliary networks via an importance sampling procedure from an auxiliary Markov chain running in parallel. The convergence of this algorithm is established under mild conditions. The adaptive exchange sampler is illustrated using a few social networks, including the Florentine business network, molecule synthetic network, and dolphins network. The results indicate that the adaptive exchange algorithm can produce more accurate estimates than approximate exchange algorithms, while maintaining the same computational efficiency.

  14. Terahertz double-exponential model for adsorption of volatile organic compounds in active carbon

    International Nuclear Information System (INIS)

    Zhu, Jing; Zhan, Honglei; Miao, Xinyang; Zhao, Kun; Zhou, Qiong

    2017-01-01

    In terms of the evaluation of the diffusion-controlled adsorption and diffused rate, a mathematical model was built on the basis of the double-exponential kinetics model and terahertz amplitude in this letter. The double-exponential-THz model described the two-step mechanism controlled by diffusion. A rapid step involves external and internal diffusion, followed by a slow step controlled by intraparticle diffusion. The concentration gradient of the molecules promoted the organic molecules rapidly diffusing to the external surface of adsorbent. The solute molecules then transferred across the liquid film. Intraparticle diffusion began and was determined by the molecular sizes, as well as affinities between organics and activated carbon. (paper)

  15. Exponential H(infinity) synchronization of general discrete-time chaotic neural networks with or without time delays.

    Science.gov (United States)

    Qi, Donglian; Liu, Meiqin; Qiu, Meikang; Zhang, Senlin

    2010-08-01

    This brief studies exponential H(infinity) synchronization of a class of general discrete-time chaotic neural networks with external disturbance. On the basis of the drive-response concept and H(infinity) control theory, and using Lyapunov-Krasovskii (or Lyapunov) functional, state feedback controllers are established to not only guarantee exponential stable synchronization between two general chaotic neural networks with or without time delays, but also reduce the effect of external disturbance on the synchronization error to a minimal H(infinity) norm constraint. The proposed controllers can be obtained by solving the convex optimization problems represented by linear matrix inequalities. Most discrete-time chaotic systems with or without time delays, such as Hopfield neural networks, cellular neural networks, bidirectional associative memory networks, recurrent multilayer perceptrons, Cohen-Grossberg neural networks, Chua's circuits, etc., can be transformed into this general chaotic neural network to be H(infinity) synchronization controller designed in a unified way. Finally, some illustrated examples with their simulations have been utilized to demonstrate the effectiveness of the proposed methods.

  16. A new cellular automata model of traffic flow with negative exponential weighted look-ahead potential

    Science.gov (United States)

    Ma, Xiao; Zheng, Wei-Fan; Jiang, Bao-Shan; Zhang, Ji-Ye

    2016-10-01

    With the development of traffic systems, some issues such as traffic jams become more and more serious. Efficient traffic flow theory is needed to guide the overall controlling, organizing and management of traffic systems. On the basis of the cellular automata model and the traffic flow model with look-ahead potential, a new cellular automata traffic flow model with negative exponential weighted look-ahead potential is presented in this paper. By introducing the negative exponential weighting coefficient into the look-ahead potential and endowing the potential of vehicles closer to the driver with a greater coefficient, the modeling process is more suitable for the driver’s random decision-making process which is based on the traffic environment that the driver is facing. The fundamental diagrams for different weighting parameters are obtained by using numerical simulations which show that the negative exponential weighting coefficient has an obvious effect on high density traffic flux. The complex high density non-linear traffic behavior is also reproduced by numerical simulations. Project supported by the National Natural Science Foundation of China (Grant Nos. 11572264, 11172247, 11402214, and 61373009).

  17. Are infant mortality rate declines exponential? The general pattern of 20th century infant mortality rate decline

    Directory of Open Access Journals (Sweden)

    Opuni Marjorie

    2009-08-01

    Full Text Available Abstract Background Time trends in infant mortality for the 20th century show a curvilinear pattern that most demographers have assumed to be approximately exponential. Virtually all cross-country comparisons and time series analyses of infant mortality have studied the logarithm of infant mortality to account for the curvilinear time trend. However, there is no evidence that the log transform is the best fit for infant mortality time trends. Methods We use maximum likelihood methods to determine the best transformation to fit time trends in infant mortality reduction in the 20th century and to assess the importance of the proper transformation in identifying the relationship between infant mortality and gross domestic product (GDP per capita. We apply the Box Cox transform to infant mortality rate (IMR time series from 18 countries to identify the best fitting value of lambda for each country and for the pooled sample. For each country, we test the value of λ against the null that λ = 0 (logarithmic model and against the null that λ = 1 (linear model. We then demonstrate the importance of selecting the proper transformation by comparing regressions of ln(IMR on same year GDP per capita against Box Cox transformed models. Results Based on chi-squared test statistics, infant mortality decline is best described as an exponential decline only for the United States. For the remaining 17 countries we study, IMR decline is neither best modelled as logarithmic nor as a linear process. Imposing a logarithmic transform on IMR can lead to bias in fitting the relationship between IMR and GDP per capita. Conclusion The assumption that IMR declines are exponential is enshrined in the Preston curve and in nearly all cross-country as well as time series analyses of IMR data since Preston's 1975 paper, but this assumption is seldom correct. Statistical analyses of IMR trends should assess the robustness of findings to transformations other than the log

  18. The Poisson-exponential regression model under different latent activation schemes

    OpenAIRE

    Louzada, Francisco; Cancho, Vicente G; Barriga, Gladys D.C

    2012-01-01

    In this paper, a new family of survival distributions is presented. It is derived by considering that the latent number of failure causes follows a Poisson distribution and the time for these causes to be activated follows an exponential distribution. Three different activationschemes are also considered. Moreover, we propose the inclusion of covariates in the model formulation in order to study their effect on the expected value of the number of causes and on the failure rate function. Infer...

  19. Adjusting for overdispersion in piecewise exponential regression models to estimate excess mortality rate in population-based research.

    Science.gov (United States)

    Luque-Fernandez, Miguel Angel; Belot, Aurélien; Quaresma, Manuela; Maringe, Camille; Coleman, Michel P; Rachet, Bernard

    2016-10-01

    In population-based cancer research, piecewise exponential regression models are used to derive adjusted estimates of excess mortality due to cancer using the Poisson generalized linear modelling framework. However, the assumption that the conditional mean and variance of the rate parameter given the set of covariates x i are equal is strong and may fail to account for overdispersion given the variability of the rate parameter (the variance exceeds the mean). Using an empirical example, we aimed to describe simple methods to test and correct for overdispersion. We used a regression-based score test for overdispersion under the relative survival framework and proposed different approaches to correct for overdispersion including a quasi-likelihood, robust standard errors estimation, negative binomial regression and flexible piecewise modelling. All piecewise exponential regression models showed the presence of significant inherent overdispersion (p-value regression modelling, with either a quasi-likelihood or robust standard errors, was the best approach as it deals with both, overdispersion due to model misspecification and true or inherent overdispersion.

  20. Exponential stability for formation control systems with generalized controllers: A unified approach

    NARCIS (Netherlands)

    Sun, Zhiyong; Mou, Shaoshuai; Anderson, Brian D.O.; Cao, Ming

    2016-01-01

    This paper discusses generalized controllers for distance-based rigid formation shape stabilization and aims to provide a unified approach for the convergence analysis. We consider two types of formation control systems according to different characterizations of target formations: minimally rigid

  1. A new approach to the extraction of single exponential diode model parameters

    Science.gov (United States)

    Ortiz-Conde, Adelmo; García-Sánchez, Francisco J.

    2018-06-01

    A new integration method is presented for the extraction of the parameters of a single exponential diode model with series resistance from the measured forward I-V characteristics. The extraction is performed using auxiliary functions based on the integration of the data which allow to isolate the effects of each of the model parameters. A differentiation method is also presented for data with low level of experimental noise. Measured and simulated data are used to verify the applicability of both proposed method. Physical insight about the validity of the model is also obtained by using the proposed graphical determinations of the parameters.

  2. Two warehouse inventory model for deteriorating item with exponential demand rate and permissible delay in payment

    Directory of Open Access Journals (Sweden)

    Kaliraman Naresh Kumar

    2017-01-01

    Full Text Available A two warehouse inventory model for deteriorating items is considered with exponential demand rate and permissible delay in payment. Shortage is not allowed and deterioration rate is constant. In the model, one warehouse is rented and the other is owned. The rented warehouse is provided with better facility for the stock than the owned warehouse, but is charged more. The objective of this model is to find the best replenishment policies for minimizing the total appropriate inventory cost. A numerical illustration and sensitivity analysis is provided.

  3. Method for nonlinear exponential regression analysis

    Science.gov (United States)

    Junkin, B. G.

    1972-01-01

    Two computer programs developed according to two general types of exponential models for conducting nonlinear exponential regression analysis are described. Least squares procedure is used in which the nonlinear problem is linearized by expanding in a Taylor series. Program is written in FORTRAN 5 for the Univac 1108 computer.

  4. Granular compaction and stretched exponentials - Experiments and a numerical stochastic model

    Directory of Open Access Journals (Sweden)

    Nicolas Maxime

    2017-01-01

    Full Text Available We present a stochastic model to investigate the compaction kinetics of a granular material submitted to vibration. The model is compared to experimental results obtained with glass beads and with a cohesive powder. We also propose a physical interpretation of the characteristic time τ and the exponent β of the stretched exponential function widely used to represent the granular compaction kinetics, and we show that the characteristic time is proportional to the number of grains to move. The exponent β is expressed as a logarithmic compaction rate.

  5. Yield shear stress model of magnetorheological fluids based on exponential distribution

    International Nuclear Information System (INIS)

    Guo, Chu-wen; Chen, Fei; Meng, Qing-rui; Dong, Zi-xin

    2014-01-01

    The magnetic chain model that considers the interaction between particles and the external magnetic field in a magnetorheological fluid has been widely accepted. Based on the chain model, a yield shear stress model of magnetorheological fluids was proposed by introducing the exponential distribution to describe the distribution of angles between the direction of magnetic field and the chain formed by magnetic particles. The main influencing factors were considered in the model, such as magnetic flux density, intensity of magnetic field, particle size, volume fraction of particles, the angle of magnetic chain, and so on. The effect of magnetic flux density on the yield shear stress was discussed. The yield stress of aqueous Fe 3 O 4 magnetreological fluids with volume fraction of 7.6% and 16.2% were measured by a device designed by ourselves. The results indicate that the proposed model can be used for calculation of yield shear stress with acceptable errors. - Highlights: • A yield shear stress model of magnetorheological fluids was proposed. • Use exponential distribution to describe the distribution of magnetic chain angles. • Experimental and predicted results were in good agreement for 2 types of MR

  6. The distance-decay function of geographical gravity model: Power law or exponential law?

    International Nuclear Information System (INIS)

    Chen, Yanguang

    2015-01-01

    Highlights: •The distance-decay exponent of the gravity model is a fractal dimension. •Entropy maximization accounts for the gravity model based on power law decay. •Allometric scaling relations relate gravity models with spatial interaction models. •The four-parameter gravity models have dual mathematical expressions. •The inverse power law is the most probable distance-decay function. -- Abstract: The distance-decay function of the geographical gravity model is originally an inverse power law, which suggests a scaling process in spatial interaction. However, the distance exponent of the model cannot be reasonably explained with the ideas from Euclidean geometry. This results in a dimension dilemma in geographical analysis. Consequently, a negative exponential function was used to replace the inverse power function to serve for a distance-decay function. But a new puzzle arose that the exponential-based gravity model goes against the first law of geography. This paper is devoted for solving these kinds of problems by mathematical reasoning and empirical analysis. New findings are as follows. First, the distance exponent of the gravity model is demonstrated to be a fractal dimension using the geometric measure relation. Second, the similarities and differences between the gravity models and spatial interaction models are revealed using allometric relations. Third, a four-parameter gravity model possesses a symmetrical expression, and we need dual gravity models to describe spatial flows. The observational data of China's cities and regions (29 elements indicative of 841 data points) in 2010 are employed to verify the theoretical inferences. A conclusion can be reached that the geographical gravity model based on power-law decay is more suitable for analyzing large, complex, and scale-free regional and urban systems. This study lends further support to the suggestion that the underlying rationale of fractal structure is entropy maximization. Moreover

  7. Open-System Quantum Annealing in Mean-Field Models with Exponential Degeneracy*

    Directory of Open Access Journals (Sweden)

    Kostyantyn Kechedzhi

    2016-05-01

    Full Text Available Real-life quantum computers are inevitably affected by intrinsic noise resulting in dissipative nonunitary dynamics realized by these devices. We consider an open-system quantum annealing algorithm optimized for such a realistic analog quantum device which takes advantage of noise-induced thermalization and relies on incoherent quantum tunneling at finite temperature. We theoretically analyze the performance of this algorithm considering a p-spin model that allows for a mean-field quasiclassical solution and, at the same time, demonstrates the first-order phase transition and exponential degeneracy of states, typical characteristics of spin glasses. We demonstrate that finite-temperature effects introduced by the noise are particularly important for the dynamics in the presence of the exponential degeneracy of metastable states. We determine the optimal regime of the open-system quantum annealing algorithm for this model and find that it can outperform simulated annealing in a range of parameters. Large-scale multiqubit quantum tunneling is instrumental for the quantum speedup in this model, which is possible because of the unusual nonmonotonous temperature dependence of the quantum-tunneling action in this model, where the most efficient transition rate corresponds to zero temperature. This model calculation is the first analytically tractable example where open-system quantum annealing algorithm outperforms simulated annealing, which can, in principle, be realized using an analog quantum computer.

  8. Fracture analysis of a central crack in a long cylindrical superconductor with exponential model

    Science.gov (United States)

    Zhao, Yu Feng; Xu, Chi

    2018-05-01

    The fracture behavior of a long cylindrical superconductor is investigated by modeling a central crack that is induced by electromagnetic force. Based on the exponential model, the stress intensity factors (SIFs) with the dimensionless parameter p and the length of the crack a/R for the zero-field cooling (ZFC) and field-cooling (FC) processes are numerically simulated using the finite element method (FEM) and assuming a persistent current flow. As the applied field Ba decreases, the dependence of p and a/R on the SIFs in the ZFC process is exactly opposite to that observed in the FC process. Numerical results indicate that the exponential model exhibits different characteristics for the trend of the SIFs from the results obtained using the Bean and Kim models. This implies that the crack length and the trapped field have significant effects on the fracture behavior of bulk superconductors. The obtained results are useful for understanding the critical-state model of high-temperature superconductors in crack problem.

  9. A novel approach to modelling non-exponential spin glass relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Pickup, R.M. [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom)]. E-mail: r.cywinski@leeds.ac.uk; Cywinski, R. [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Pappas, C. [Hahn-Meitner Institut, Glienicker Strasse 100, 14109 Berlin (Germany)

    2007-07-15

    A probabilistic cluster model, originally proposed by Weron to explain the universal power law of dielectric relaxation, is shown to account for the non-exponential relaxation in spin glasses above T {sub g}. Neutron spin echo spectra measured for the cluster glass compound Co{sub 55}Ga{sub 45} are well described by the Weron relaxation function, {phi}(t)={phi} {sub o}(1+k(t/{tau}) {sup {beta}}){sup -1/k}, with the interaction parameter k scaling linearly with the non-Curie-Weiss susceptibility.

  10. Diffusion-weighted MR imaging of pancreatic cancer: A comparison of mono-exponential, bi-exponential and non-Gaussian kurtosis models.

    Science.gov (United States)

    Kartalis, Nikolaos; Manikis, Georgios C; Loizou, Louiza; Albiin, Nils; Zöllner, Frank G; Del Chiaro, Marco; Marias, Kostas; Papanikolaou, Nikolaos

    2016-01-01

    To compare two Gaussian diffusion-weighted MRI (DWI) models including mono-exponential and bi-exponential, with the non-Gaussian kurtosis model in patients with pancreatic ductal adenocarcinoma. After written informed consent, 15 consecutive patients with pancreatic ductal adenocarcinoma underwent free-breathing DWI (1.5T, b-values: 0, 50, 150, 200, 300, 600 and 1000 s/mm 2 ). Mean values of DWI-derived metrics ADC, D, D*, f, K and D K were calculated from multiple regions of interest in all tumours and non-tumorous parenchyma and compared. Area under the curve was determined for all metrics. Mean ADC and D K showed significant differences between tumours and non-tumorous parenchyma (both P  < 0.001). Area under the curve for ADC, D, D*, f, K, and D K were 0.77, 0.52, 0.53, 0.62, 0.42, and 0.84, respectively. ADC and D K could differentiate tumours from non-tumorous parenchyma with the latter showing a higher diagnostic accuracy. Correction for kurtosis effects has the potential to increase the diagnostic accuracy of DWI in patients with pancreatic ductal adenocarcinoma.

  11. A production inventory model with exponential demand rate and reverse logistics

    Directory of Open Access Journals (Sweden)

    Ritu Raj

    2014-08-01

    Full Text Available The objective of this paper is to develop an integrated production inventory model for reworkable items with exponential demand rate. This is a three-layer supply chain model with perspectives of supplier, producer and retailer. Supplier delivers raw material to the producer and finished goods to the retailer. We consider perfect and imperfect quality products, product reliability and reworking of imperfect items. After screening, defective items reworked at a cost just after the regular manufacturing schedule. At the beginning, the manufacturing system starts produce perfect items, after some time the manufacturing system can undergo into “out-of-control” situation from “in-control” situation, which is controlled by reverse logistic technique. This paper deliberates the effects of business strategies like optimum order size of raw material, exponential demand rate, production rate is demand dependent, idle times and reverse logistics for an integrated marketing system. Mathematica is used to develop the optimal solution of production rate and raw material order for maximum expected average profit. A numerical example and sensitivity analysis is illustrated to validate the model.

  12. Exponential Family Functional data analysis via a low-rank model.

    Science.gov (United States)

    Li, Gen; Huang, Jianhua Z; Shen, Haipeng

    2018-05-08

    In many applications, non-Gaussian data such as binary or count are observed over a continuous domain and there exists a smooth underlying structure for describing such data. We develop a new functional data method to deal with this kind of data when the data are regularly spaced on the continuous domain. Our method, referred to as Exponential Family Functional Principal Component Analysis (EFPCA), assumes the data are generated from an exponential family distribution, and the matrix of the canonical parameters has a low-rank structure. The proposed method flexibly accommodates not only the standard one-way functional data, but also two-way (or bivariate) functional data. In addition, we introduce a new cross validation method for estimating the latent rank of a generalized data matrix. We demonstrate the efficacy of the proposed methods using a comprehensive simulation study. The proposed method is also applied to a real application of the UK mortality study, where data are binomially distributed and two-way functional across age groups and calendar years. The results offer novel insights into the underlying mortality pattern. © 2018, The International Biometric Society.

  13. Research and realization of ultrasonic gas flow rate measurement based on ultrasonic exponential model.

    Science.gov (United States)

    Zheng, Dandan; Hou, Huirang; Zhang, Tao

    2016-04-01

    For ultrasonic gas flow rate measurement based on ultrasonic exponential model, when the noise frequency is close to that of the desired signals (called similar-frequency noise) or the received signal amplitude is small and unstable at big flow rate, local convergence of the algorithm genetic-ant colony optimization-3cycles may appear, and measurement accuracy may be affected. Therefore, an improved method energy genetic-ant colony optimization-3cycles (EGACO-3cycles) is proposed to solve this problem. By judging the maximum energy position of signal, the initial parameter range of exponential model can be narrowed and then the local convergence can be avoided. Moreover, a DN100 flow rate measurement system with EGACO-3cycles method is established based on NI PCI-6110 and personal computer. A series of experiments are carried out for testing the new method and the measurement system. It is shown that local convergence doesn't appear with EGACO-3cycles method when similar-frequency noises exist and flow rate is big. Then correct time of flight can be obtained. Furthermore, through flow calibration on this system, the measurement range ratio is achieved 500:1, and the measurement accuracy is 0.5% with a low transition velocity 0.3 m/s. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. A FAST SEGMENTATION ALGORITHM FOR C-V MODEL BASED ON EXPONENTIAL IMAGE SEQUENCE GENERATION

    Directory of Open Access Journals (Sweden)

    J. Hu

    2017-09-01

    Full Text Available For the island coastline segmentation, a fast segmentation algorithm for C-V model method based on exponential image sequence generation is proposed in this paper. The exponential multi-scale C-V model with level set inheritance and boundary inheritance is developed. The main research contributions are as follows: 1 the problems of the "holes" and "gaps" are solved when extraction coastline through the small scale shrinkage, low-pass filtering and area sorting of region. 2 the initial value of SDF (Signal Distance Function and the level set are given by Otsu segmentation based on the difference of reflection SAR on land and sea, which are finely close to the coastline. 3 the computational complexity of continuous transition are successfully reduced between the different scales by the SDF and of level set inheritance. Experiment results show that the method accelerates the acquisition of initial level set formation, shortens the time of the extraction of coastline, at the same time, removes the non-coastline body part and improves the identification precision of the main body coastline, which automates the process of coastline segmentation.

  15. a Fast Segmentation Algorithm for C-V Model Based on Exponential Image Sequence Generation

    Science.gov (United States)

    Hu, J.; Lu, L.; Xu, J.; Zhang, J.

    2017-09-01

    For the island coastline segmentation, a fast segmentation algorithm for C-V model method based on exponential image sequence generation is proposed in this paper. The exponential multi-scale C-V model with level set inheritance and boundary inheritance is developed. The main research contributions are as follows: 1) the problems of the "holes" and "gaps" are solved when extraction coastline through the small scale shrinkage, low-pass filtering and area sorting of region. 2) the initial value of SDF (Signal Distance Function) and the level set are given by Otsu segmentation based on the difference of reflection SAR on land and sea, which are finely close to the coastline. 3) the computational complexity of continuous transition are successfully reduced between the different scales by the SDF and of level set inheritance. Experiment results show that the method accelerates the acquisition of initial level set formation, shortens the time of the extraction of coastline, at the same time, removes the non-coastline body part and improves the identification precision of the main body coastline, which automates the process of coastline segmentation.

  16. Bayesian Exponential Smoothing.

    OpenAIRE

    Forbes, C.S.; Snyder, R.D.; Shami, R.S.

    2000-01-01

    In this paper, a Bayesian version of the exponential smoothing method of forecasting is proposed. The approach is based on a state space model containing only a single source of error for each time interval. This model allows us to improve current practices surrounding exponential smoothing by providing both point predictions and measures of the uncertainty surrounding them.

  17. Periodicity and global exponential stability of generalized Cohen-Grossberg neural networks with discontinuous activations and mixed delays.

    Science.gov (United States)

    Wang, Dongshu; Huang, Lihong

    2014-03-01

    In this paper, we investigate the periodic dynamical behaviors for a class of general Cohen-Grossberg neural networks with discontinuous right-hand sides, time-varying and distributed delays. By means of retarded differential inclusions theory and the fixed point theorem of multi-valued maps, the existence of periodic solutions for the neural networks is obtained. After that, we derive some sufficient conditions for the global exponential stability and convergence of the neural networks, in terms of nonsmooth analysis theory with generalized Lyapunov approach. Without assuming the boundedness (or the growth condition) and monotonicity of the discontinuous neuron activation functions, our results will also be valid. Moreover, our results extend previous works not only on discrete time-varying and distributed delayed neural networks with continuous or even Lipschitz continuous activations, but also on discrete time-varying and distributed delayed neural networks with discontinuous activations. We give some numerical examples to show the applicability and effectiveness of our main results. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Phenomenology of stochastic exponential growth

    Science.gov (United States)

    Pirjol, Dan; Jafarpour, Farshid; Iyer-Biswas, Srividya

    2017-06-01

    Stochastic exponential growth is observed in a variety of contexts, including molecular autocatalysis, nuclear fission, population growth, inflation of the universe, viral social media posts, and financial markets. Yet literature on modeling the phenomenology of these stochastic dynamics has predominantly focused on one model, geometric Brownian motion (GBM), which can be described as the solution of a Langevin equation with linear drift and linear multiplicative noise. Using recent experimental results on stochastic exponential growth of individual bacterial cell sizes, we motivate the need for a more general class of phenomenological models of stochastic exponential growth, which are consistent with the observation that the mean-rescaled distributions are approximately stationary at long times. We show that this behavior is not consistent with GBM, instead it is consistent with power-law multiplicative noise with positive fractional powers. Therefore, we consider this general class of phenomenological models for stochastic exponential growth, provide analytical solutions, and identify the important dimensionless combination of model parameters, which determines the shape of the mean-rescaled distribution. We also provide a prescription for robustly inferring model parameters from experimentally observed stochastic growth trajectories.

  19. Option pricing under stochastic volatility: the exponential Ornstein–Uhlenbeck model

    International Nuclear Information System (INIS)

    Perelló, Josep; Masoliver, Jaume; Sircar, Ronnie

    2008-01-01

    We study the pricing problem for a European call option when the volatility of the underlying asset is random and follows the exponential Ornstein–Uhlenbeck model. The random diffusion model proposed is a two-dimensional market process that takes a log-Brownian motion to describe price dynamics and an Ornstein–Uhlenbeck subordinated process describing the randomness of the log-volatility. We derive an approximate option price that is valid when (i) the fluctuations of the volatility are larger than its normal level, (ii) the volatility presents a slow driving force, toward its normal level and, finally, (iii) the market price of risk is a linear function of the log-volatility. We study the resulting European call price and its implied volatility for a range of parameters consistent with daily Dow Jones index data

  20. Breast lesion characterization using whole-lesion histogram analysis with stretched-exponential diffusion model.

    Science.gov (United States)

    Liu, Chunling; Wang, Kun; Li, Xiaodan; Zhang, Jine; Ding, Jie; Spuhler, Karl; Duong, Timothy; Liang, Changhong; Huang, Chuan

    2018-06-01

    Diffusion-weighted imaging (DWI) has been studied in breast imaging and can provide more information about diffusion, perfusion and other physiological interests than standard pulse sequences. The stretched-exponential model has previously been shown to be more reliable than conventional DWI techniques, but different diagnostic sensitivities were found from study to study. This work investigated the characteristics of whole-lesion histogram parameters derived from the stretched-exponential diffusion model for benign and malignant breast lesions, compared them with conventional apparent diffusion coefficient (ADC), and further determined which histogram metrics can be best used to differentiate malignant from benign lesions. This was a prospective study. Seventy females were included in the study. Multi-b value DWI was performed on a 1.5T scanner. Histogram parameters of whole lesions for distributed diffusion coefficient (DDC), heterogeneity index (α), and ADC were calculated by two radiologists and compared among benign lesions, ductal carcinoma in situ (DCIS), and invasive carcinoma confirmed by pathology. Nonparametric tests were performed for comparisons among invasive carcinoma, DCIS, and benign lesions. Comparisons of receiver operating characteristic (ROC) curves were performed to show the ability to discriminate malignant from benign lesions. The majority of histogram parameters (mean/min/max, skewness/kurtosis, 10-90 th percentile values) from DDC, α, and ADC were significantly different among invasive carcinoma, DCIS, and benign lesions. DDC 10% (area under curve [AUC] = 0.931), ADC 10% (AUC = 0.893), and α mean (AUC = 0.787) were found to be the best metrics in differentiating benign from malignant tumors among all histogram parameters derived from ADC and α, respectively. The combination of DDC 10% and α mean , using logistic regression, yielded the highest sensitivity (90.2%) and specificity (95.5%). DDC 10% and α mean derived from

  1. Modeling the pre-industrial roots of modern super-exponential population growth.

    Science.gov (United States)

    Stutz, Aaron Jonas

    2014-01-01

    To Malthus, rapid human population growth-so evident in 18th Century Europe-was obviously unsustainable. In his Essay on the Principle of Population, Malthus cogently argued that environmental and socioeconomic constraints on population rise were inevitable. Yet, he penned his essay on the eve of the global census size reaching one billion, as nearly two centuries of super-exponential increase were taking off. Introducing a novel extension of J. E. Cohen's hallmark coupled difference equation model of human population dynamics and carrying capacity, this article examines just how elastic population growth limits may be in response to demographic change. The revised model involves a simple formalization of how consumption costs influence carrying capacity elasticity over time. Recognizing that complex social resource-extraction networks support ongoing consumption-based investment in family formation and intergenerational resource transfers, it is important to consider how consumption has impacted the human environment and demography--especially as global population has become very large. Sensitivity analysis of the consumption-cost model's fit to historical population estimates, modern census data, and 21st Century demographic projections supports a critical conclusion. The recent population explosion was systemically determined by long-term, distinctly pre-industrial cultural evolution. It is suggested that modern globalizing transitions in technology, susceptibility to infectious disease, information flows and accumulation, and economic complexity were endogenous products of much earlier biocultural evolution of family formation's embeddedness in larger, hierarchically self-organizing cultural systems, which could potentially support high population elasticity of carrying capacity. Modern super-exponential population growth cannot be considered separately from long-term change in the multi-scalar political economy that connects family formation and

  2. Personalized prediction of chronic wound healing: an exponential mixed effects model using stereophotogrammetric measurement.

    Science.gov (United States)

    Xu, Yifan; Sun, Jiayang; Carter, Rebecca R; Bogie, Kath M

    2014-05-01

    Stereophotogrammetric digital imaging enables rapid and accurate detailed 3D wound monitoring. This rich data source was used to develop a statistically validated model to provide personalized predictive healing information for chronic wounds. 147 valid wound images were obtained from a sample of 13 category III/IV pressure ulcers from 10 individuals with spinal cord injury. Statistical comparison of several models indicated the best fit for the clinical data was a personalized mixed-effects exponential model (pMEE), with initial wound size and time as predictors and observed wound size as the response variable. Random effects capture personalized differences. Other models are only valid when wound size constantly decreases. This is often not achieved for clinical wounds. Our model accommodates this reality. Two criteria to determine effective healing time outcomes are proposed: r-fold wound size reduction time, t(r-fold), is defined as the time when wound size reduces to 1/r of initial size. t(δ) is defined as the time when the rate of the wound healing/size change reduces to a predetermined threshold δ current model improves with each additional evaluation. Routine assessment of wounds using detailed stereophotogrammetric imaging can provide personalized predictions of wound healing time. Application of a valid model will help the clinical team to determine wound management care pathways. Published by Elsevier Ltd.

  3. A partial exponential lumped parameter model to evaluate groundwater age distributions and nitrate trends in long-screened wells

    Science.gov (United States)

    Jurgens, Bryant; Böhlke, John Karl; Kauffman, Leon J.; Belitz, Kenneth; Esser, Bradley K.

    2016-01-01

    A partial exponential lumped parameter model (PEM) was derived to determine age distributions and nitrate trends in long-screened production wells. The PEM can simulate age distributions for wells screened over any finite interval of an aquifer that has an exponential distribution of age with depth. The PEM has 3 parameters – the ratio of saturated thickness to the top and bottom of the screen and mean age, but these can be reduced to 1 parameter (mean age) by using well construction information and estimates of the saturated thickness. The PEM was tested with data from 30 production wells in a heterogeneous alluvial fan aquifer in California, USA. Well construction data were used to guide parameterization of a PEM for each well and mean age was calibrated to measured environmental tracer data (3H, 3He, CFC-113, and 14C). Results were compared to age distributions generated for individual wells using advective particle tracking models (PTMs). Age distributions from PTMs were more complex than PEM distributions, but PEMs provided better fits to tracer data, partly because the PTMs did not simulate 14C accurately in wells that captured varying amounts of old groundwater recharged at lower rates prior to groundwater development and irrigation. Nitrate trends were simulated independently of the calibration process and the PEM provided good fits for at least 11 of 24 wells. This work shows that the PEM, and lumped parameter models (LPMs) in general, can often identify critical features of the age distributions in wells that are needed to explain observed tracer data and nonpoint source contaminant trends, even in systems where aquifer heterogeneity and water-use complicate distributions of age. While accurate PTMs are preferable for understanding and predicting aquifer-scale responses to water use and contaminant transport, LPMs can be sensitive to local conditions near individual wells that may be inaccurately represented or missing in an aquifer-scale flow model.

  4. Exponential Cardassian universe

    International Nuclear Information System (INIS)

    Liu Daojun; Sun Changbo; Li Xinzhou

    2006-01-01

    The expectation of explaining cosmological observations without requiring new energy sources is forsooth worthy of investigation. In this Letter, a new kind of Cardassian models, called exponential Cardassian models, for the late-time universe are investigated in the context of the spatially flat FRW universe scenario. We fit the exponential Cardassian models to current type Ia supernovae data and find they are consistent with the observations. Furthermore, we point out that the equation-of-state parameter for the effective dark fluid component in exponential Cardassian models can naturally cross the cosmological constant divide w=-1 that observations favor mildly without introducing exotic material that destroy the weak energy condition

  5. Boundary curves of individual items in the distribution of total depressive symptom scores approximate an exponential pattern in a general population.

    Science.gov (United States)

    Tomitaka, Shinichiro; Kawasaki, Yohei; Ide, Kazuki; Akutagawa, Maiko; Yamada, Hiroshi; Furukawa, Toshiaki A; Ono, Yutaka

    2016-01-01

    Previously, we proposed a model for ordinal scale scoring in which individual thresholds for each item constitute a distribution by each item. This lead us to hypothesize that the boundary curves of each depressive symptom score in the distribution of total depressive symptom scores follow a common mathematical model, which is expressed as the product of the frequency of the total depressive symptom scores and the probability of the cumulative distribution function of each item threshold. To verify this hypothesis, we investigated the boundary curves of the distribution of total depressive symptom scores in a general population. Data collected from 21,040 subjects who had completed the Center for Epidemiologic Studies Depression Scale (CES-D) questionnaire as part of a national Japanese survey were analyzed. The CES-D consists of 20 items (16 negative items and four positive items). The boundary curves of adjacent item scores in the distribution of total depressive symptom scores for the 16 negative items were analyzed using log-normal scales and curve fitting. The boundary curves of adjacent item scores for a given symptom approximated a common linear pattern on a log normal scale. Curve fitting showed that an exponential fit had a markedly higher coefficient of determination than either linear or quadratic fits. With negative affect items, the gap between the total score curve and boundary curve continuously increased with increasing total depressive symptom scores on a log-normal scale, whereas the boundary curves of positive affect items, which are not considered manifest variables of the latent trait, did not exhibit such increases in this gap. The results of the present study support the hypothesis that the boundary curves of each depressive symptom score in the distribution of total depressive symptom scores commonly follow the predicted mathematical model, which was verified to approximate an exponential mathematical pattern.

  6. Boundary curves of individual items in the distribution of total depressive symptom scores approximate an exponential pattern in a general population

    Directory of Open Access Journals (Sweden)

    Shinichiro Tomitaka

    2016-10-01

    Full Text Available Background Previously, we proposed a model for ordinal scale scoring in which individual thresholds for each item constitute a distribution by each item. This lead us to hypothesize that the boundary curves of each depressive symptom score in the distribution of total depressive symptom scores follow a common mathematical model, which is expressed as the product of the frequency of the total depressive symptom scores and the probability of the cumulative distribution function of each item threshold. To verify this hypothesis, we investigated the boundary curves of the distribution of total depressive symptom scores in a general population. Methods Data collected from 21,040 subjects who had completed the Center for Epidemiologic Studies Depression Scale (CES-D questionnaire as part of a national Japanese survey were analyzed. The CES-D consists of 20 items (16 negative items and four positive items. The boundary curves of adjacent item scores in the distribution of total depressive symptom scores for the 16 negative items were analyzed using log-normal scales and curve fitting. Results The boundary curves of adjacent item scores for a given symptom approximated a common linear pattern on a log normal scale. Curve fitting showed that an exponential fit had a markedly higher coefficient of determination than either linear or quadratic fits. With negative affect items, the gap between the total score curve and boundary curve continuously increased with increasing total depressive symptom scores on a log-normal scale, whereas the boundary curves of positive affect items, which are not considered manifest variables of the latent trait, did not exhibit such increases in this gap. Discussion The results of the present study support the hypothesis that the boundary curves of each depressive symptom score in the distribution of total depressive symptom scores commonly follow the predicted mathematical model, which was verified to approximate an

  7. pETM: a penalized Exponential Tilt Model for analysis of correlated high-dimensional DNA methylation data.

    Science.gov (United States)

    Sun, Hokeun; Wang, Ya; Chen, Yong; Li, Yun; Wang, Shuang

    2017-06-15

    DNA methylation plays an important role in many biological processes and cancer progression. Recent studies have found that there are also differences in methylation variations in different groups other than differences in methylation means. Several methods have been developed that consider both mean and variance signals in order to improve statistical power of detecting differentially methylated loci. Moreover, as methylation levels of neighboring CpG sites are known to be strongly correlated, methods that incorporate correlations have also been developed. We previously developed a network-based penalized logistic regression for correlated methylation data, but only focusing on mean signals. We have also developed a generalized exponential tilt model that captures both mean and variance signals but only examining one CpG site at a time. In this article, we proposed a penalized Exponential Tilt Model (pETM) using network-based regularization that captures both mean and variance signals in DNA methylation data and takes into account the correlations among nearby CpG sites. By combining the strength of the two models we previously developed, we demonstrated the superior power and better performance of the pETM method through simulations and the applications to the 450K DNA methylation array data of the four breast invasive carcinoma cancer subtypes from The Cancer Genome Atlas (TCGA) project. The developed pETM method identifies many cancer-related methylation loci that were missed by our previously developed method that considers correlations among nearby methylation loci but not variance signals. The R package 'pETM' is publicly available through CRAN: http://cran.r-project.org . sw2206@columbia.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  8. Intravoxel water diffusion heterogeneity MR imaging of nasopharyngeal carcinoma using stretched exponential diffusion model

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Vincent; Khong, Pek Lan [University of Hong Kong, Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, Pok Fu Lam (China); Lee, Victor Ho Fun; Lam, Ka On; Sze, Henry Chun Kin [University of Hong Kong, Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, Pok Fu Lam (China); Chan, Queenie [Philips Healthcare, Hong Kong, Shatin, New Territories (China)

    2015-06-01

    To determine the utility of stretched exponential diffusion model in characterisation of the water diffusion heterogeneity in different tumour stages of nasopharyngeal carcinoma (NPC). Fifty patients with newly diagnosed NPC were prospectively recruited. Diffusion-weighted MR imaging was performed using five b values (0-2,500 s/mm{sup 2}). Respective stretched exponential parameters (DDC, distributed diffusion coefficient; and alpha (α), water heterogeneity) were calculated. Patients were stratified into low and high tumour stage groups based on the American Joint Committee on Cancer (AJCC) staging for determination of the predictive powers of DDC and α using t test and ROC curve analyses. The mean ± standard deviation values were DDC = 0.692 ± 0.199 (x 10{sup -3} mm{sup 2}/s) for low stage group vs 0.794 ± 0.253 (x 10{sup -3} mm{sup 2}/s) for high stage group; α = 0.792 ± 0.145 for low stage group vs 0.698 ± 0.155 for high stage group. α was significantly lower in the high stage group while DDC was negatively correlated. DDC and α were both reliable independent predictors (p < 0.001), with α being more powerful. Optimal cut-off values were (sensitivity, specificity, positive likelihood ratio, negative likelihood ratio) DDC = 0.692 x 10{sup -3} mm{sup 2}/s (94.4 %, 64.3 %, 2.64, 0.09), α = 0.720 (72.2 %, 100 %, -, 0.28). The heterogeneity index α is robust and can potentially help in staging and grading prediction in NPC. (orig.)

  9. Intravoxel water diffusion heterogeneity MR imaging of nasopharyngeal carcinoma using stretched exponential diffusion model

    International Nuclear Information System (INIS)

    Lai, Vincent; Khong, Pek Lan; Lee, Victor Ho Fun; Lam, Ka On; Sze, Henry Chun Kin; Chan, Queenie

    2015-01-01

    To determine the utility of stretched exponential diffusion model in characterisation of the water diffusion heterogeneity in different tumour stages of nasopharyngeal carcinoma (NPC). Fifty patients with newly diagnosed NPC were prospectively recruited. Diffusion-weighted MR imaging was performed using five b values (0-2,500 s/mm 2 ). Respective stretched exponential parameters (DDC, distributed diffusion coefficient; and alpha (α), water heterogeneity) were calculated. Patients were stratified into low and high tumour stage groups based on the American Joint Committee on Cancer (AJCC) staging for determination of the predictive powers of DDC and α using t test and ROC curve analyses. The mean ± standard deviation values were DDC = 0.692 ± 0.199 (x 10 -3 mm 2 /s) for low stage group vs 0.794 ± 0.253 (x 10 -3 mm 2 /s) for high stage group; α = 0.792 ± 0.145 for low stage group vs 0.698 ± 0.155 for high stage group. α was significantly lower in the high stage group while DDC was negatively correlated. DDC and α were both reliable independent predictors (p < 0.001), with α being more powerful. Optimal cut-off values were (sensitivity, specificity, positive likelihood ratio, negative likelihood ratio) DDC = 0.692 x 10 -3 mm 2 /s (94.4 %, 64.3 %, 2.64, 0.09), α = 0.720 (72.2 %, 100 %, -, 0.28). The heterogeneity index α is robust and can potentially help in staging and grading prediction in NPC. (orig.)

  10. Dynamics of the exponential integrate-and-fire model with slow currents and adaptation.

    Science.gov (United States)

    Barranca, Victor J; Johnson, Daniel C; Moyher, Jennifer L; Sauppe, Joshua P; Shkarayev, Maxim S; Kovačič, Gregor; Cai, David

    2014-08-01

    In order to properly capture spike-frequency adaptation with a simplified point-neuron model, we study approximations of Hodgkin-Huxley (HH) models including slow currents by exponential integrate-and-fire (EIF) models that incorporate the same types of currents. We optimize the parameters of the EIF models under the external drive consisting of AMPA-type conductance pulses using the current-voltage curves and the van Rossum metric to best capture the subthreshold membrane potential, firing rate, and jump size of the slow current at the neuron's spike times. Our numerical simulations demonstrate that, in addition to these quantities, the approximate EIF-type models faithfully reproduce bifurcation properties of the HH neurons with slow currents, which include spike-frequency adaptation, phase-response curves, critical exponents at the transition between a finite and infinite number of spikes with increasing constant external drive, and bifurcation diagrams of interspike intervals in time-periodically forced models. Dynamics of networks of HH neurons with slow currents can also be approximated by corresponding EIF-type networks, with the approximation being at least statistically accurate over a broad range of Poisson rates of the external drive. For the form of external drive resembling realistic, AMPA-like synaptic conductance response to incoming action potentials, the EIF model affords great savings of computation time as compared with the corresponding HH-type model. Our work shows that the EIF model with additional slow currents is well suited for use in large-scale, point-neuron models in which spike-frequency adaptation is important.

  11. Modeling of Single Event Transients With Dual Double-Exponential Current Sources: Implications for Logic Cell Characterization

    Science.gov (United States)

    Black, Dolores A.; Robinson, William H.; Wilcox, Ian Z.; Limbrick, Daniel B.; Black, Jeffrey D.

    2015-08-01

    Single event effects (SEE) are a reliability concern for modern microelectronics. Bit corruptions can be caused by single event upsets (SEUs) in the storage cells or by sampling single event transients (SETs) from a logic path. An accurate prediction of soft error susceptibility from SETs requires good models to convert collected charge into compact descriptions of the current injection process. This paper describes a simple, yet effective, method to model the current waveform resulting from a charge collection event for SET circuit simulations. The model uses two double-exponential current sources in parallel, and the results illustrate why a conventional model based on one double-exponential source can be incomplete. A small set of logic cells with varying input conditions, drive strength, and output loading are simulated to extract the parameters for the dual double-exponential current sources. The parameters are based upon both the node capacitance and the restoring current (i.e., drive strength) of the logic cell.

  12. The General Aggression Model

    NARCIS (Netherlands)

    Allen, Johnie J.; Anderson, Craig A.; Bushman, Brad J.

    The General Aggression Model (GAM) is a comprehensive, integrative, framework for understanding aggression. It considers the role of social, cognitive, personality, developmental, and biological factors on aggression. Proximate processes of GAM detail how person and situation factors influence

  13. Comparison of bi-exponential and mono-exponential models of diffusion-weighted imaging for detecting active sacroiliitis in ankylosing spondylitis.

    Science.gov (United States)

    Sun, Haitao; Liu, Kai; Liu, Hao; Ji, Zongfei; Yan, Yan; Jiang, Lindi; Zhou, Jianjun

    2018-04-01

    Background There has been a growing need for a sensitive and effective imaging method for the differentiation of the activity of ankylosing spondylitis (AS). Purpose To compare the performances of intravoxel incoherent motion (IVIM)-derived parameters and the apparent diffusion coefficient (ADC) for distinguishing AS-activity. Material and Methods One hundred patients with AS were divided into active (n = 51) and non-active groups (n = 49) and 21 healthy volunteers were included as control. The ADC, diffusion coefficient ( D), pseudodiffusion coefficient ( D*), and perfusion fraction ( f) were calculated for all groups. Kruskal-Wallis tests and receiver operator characteristic (ROC) curve analysis were performed for all parameters. Results There was good reproducibility of ADC /D and relatively poor reproducibility of D*/f. ADC, D, and f were significantly higher in the active group than in the non-active and control groups (all P  0.050). In the ROC analysis, ADC had the largest AUC for distinguishing between the active group and the non-active group (0.988) and between the active and control groups (0.990). Multivariate logistic regression analysis models showed no diagnostic improvement. Conclusion ADC provided better diagnostic performance than IVIM-derived parameters in differentiating AS activity. Therefore, a straightforward and effective mono-exponential model of diffusion-weighted imaging may be sufficient for differentiating AS activity in the clinic.

  14. The modelled raindrop size distribution of Skudai, Peninsular Malaysia, using exponential and lognormal distributions.

    Science.gov (United States)

    Yakubu, Mahadi Lawan; Yusop, Zulkifli; Yusof, Fadhilah

    2014-01-01

    This paper presents the modelled raindrop size parameters in Skudai region of the Johor Bahru, western Malaysia. Presently, there is no model to forecast the characteristics of DSD in Malaysia, and this has an underpinning implication on wet weather pollution predictions. The climate of Skudai exhibits local variability in regional scale. This study established five different parametric expressions describing the rain rate of Skudai; these models are idiosyncratic to the climate of the region. Sophisticated equipment that converts sound to a relevant raindrop diameter is often too expensive and its cost sometimes overrides its attractiveness. In this study, a physical low-cost method was used to record the DSD of the study area. The Kaplan-Meier method was used to test the aptness of the data to exponential and lognormal distributions, which were subsequently used to formulate the parameterisation of the distributions. This research abrogates the concept of exclusive occurrence of convective storm in tropical regions and presented a new insight into their concurrence appearance.

  15. Stochastic Threshold Exponential (TE) Model for Hematopoietic Tissue Reconstitution Deficit after Radiation Damage.

    Science.gov (United States)

    Scott, B R; Potter, C A

    2014-07-01

    Whole-body exposure to large radiation doses can cause severe loss of hematopoietic tissue cells and threaten life if the lost cells are not replaced in a timely manner through natural repopulation (a homeostatic mechanism). Repopulation to the baseline level N 0 is called reconstitution and a reconstitution deficit (repopulation shortfall) can occur in a dose-related and organ-specific manner. Scott et al. (2013) previously introduced a deterministic version of a threshold exponential (TE) model of tissue-reconstitution deficit at a given follow-up time that was applied to bone marrow and spleen cellularity (number of constituent cells) data obtained 6 weeks after whole-body gamma-ray exposure of female C.B-17 mice. In this paper a more realistic, stochastic version of the TE model is provided that allows radiation response to vary between different individuals. The Stochastic TE model is applied to post gamma-ray-exposure cellularity data previously reported and also to more limited X-ray cellularity data for whole-body irradiated female C.B-17 mice. Results indicate that the population average threshold for a tissue reconstitution deficit appears to be similar for bone marrow and spleen and for 320-kV-spectrum X-rays and Cs-137 gamma rays. This means that 320-kV spectrum X-rays could successfully be used in conducting such studies.

  16. The Modelled Raindrop Size Distribution of Skudai, Peninsular Malaysia, Using Exponential and Lognormal Distributions

    Science.gov (United States)

    Yakubu, Mahadi Lawan; Yusop, Zulkifli; Yusof, Fadhilah

    2014-01-01

    This paper presents the modelled raindrop size parameters in Skudai region of the Johor Bahru, western Malaysia. Presently, there is no model to forecast the characteristics of DSD in Malaysia, and this has an underpinning implication on wet weather pollution predictions. The climate of Skudai exhibits local variability in regional scale. This study established five different parametric expressions describing the rain rate of Skudai; these models are idiosyncratic to the climate of the region. Sophisticated equipment that converts sound to a relevant raindrop diameter is often too expensive and its cost sometimes overrides its attractiveness. In this study, a physical low-cost method was used to record the DSD of the study area. The Kaplan-Meier method was used to test the aptness of the data to exponential and lognormal distributions, which were subsequently used to formulate the parameterisation of the distributions. This research abrogates the concept of exclusive occurrence of convective storm in tropical regions and presented a new insight into their concurrence appearance. PMID:25126597

  17. Continuous exponential martingales and BMO

    CERN Document Server

    Kazamaki, Norihiko

    1994-01-01

    In three chapters on Exponential Martingales, BMO-martingales, and Exponential of BMO, this book explains in detail the beautiful properties of continuous exponential martingales that play an essential role in various questions concerning the absolute continuity of probability laws of stochastic processes. The second and principal aim is to provide a full report on the exciting results on BMO in the theory of exponential martingales. The reader is assumed to be familiar with the general theory of continuous martingales.

  18. The generalized circular model

    NARCIS (Netherlands)

    Webers, H.M.

    1995-01-01

    In this paper we present a generalization of the circular model. In this model there are two concentric circular markets, which enables us to study two types of markets simultaneously. There are switching costs involved for moving from one circle to the other circle, which can also be thought of as

  19. Global Exponential Stability of Positive Almost Periodic Solutions for a Fishing Model with a Time-Varying Delay

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2014-01-01

    Full Text Available This paper is concerned with a nonautonomous fishing model with a time-varying delay. Under proper conditions, we employ a novel argument to establish a criterion on the global exponential stability of positive almost periodic solutions of the model with almost periodic coefficients and delays. Moreover, an example and its numerical simulation are given to illustrate the main results.

  20. Short term load forecasting technique based on the seasonal exponential adjustment method and the regression model

    International Nuclear Information System (INIS)

    Wu, Jie; Wang, Jianzhou; Lu, Haiyan; Dong, Yao; Lu, Xiaoxiao

    2013-01-01

    Highlights: ► The seasonal and trend items of the data series are forecasted separately. ► Seasonal item in the data series is verified by the Kendall τ correlation testing. ► Different regression models are applied to the trend item forecasting. ► We examine the superiority of the combined models by the quartile value comparison. ► Paired-sample T test is utilized to confirm the superiority of the combined models. - Abstract: For an energy-limited economy system, it is crucial to forecast load demand accurately. This paper devotes to 1-week-ahead daily load forecasting approach in which load demand series are predicted by employing the information of days before being similar to that of the forecast day. As well as in many nonlinear systems, seasonal item and trend item are coexisting in load demand datasets. In this paper, the existing of the seasonal item in the load demand data series is firstly verified according to the Kendall τ correlation testing method. Then in the belief of the separate forecasting to the seasonal item and the trend item would improve the forecasting accuracy, hybrid models by combining seasonal exponential adjustment method (SEAM) with the regression methods are proposed in this paper, where SEAM and the regression models are employed to seasonal and trend items forecasting respectively. Comparisons of the quartile values as well as the mean absolute percentage error values demonstrate this forecasting technique can significantly improve the accuracy though models applied to the trend item forecasting are eleven different ones. This superior performance of this separate forecasting technique is further confirmed by the paired-sample T tests

  1. Generalized Nonlinear Yule Models

    OpenAIRE

    Lansky, Petr; Polito, Federico; Sacerdote, Laura

    2016-01-01

    With the aim of considering models with persistent memory we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macrovolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth...

  2. Truncated exponential-rigid-rotor model for strong electron and ion rings

    International Nuclear Information System (INIS)

    Larrabee, D.A.; Lovelace, R.V.; Fleischmann, H.H.

    1979-01-01

    A comprehensive study of exponential-rigid-rotor equilibria for strong electron and ion rings indicates the presence of a sizeable percentage of untrapped particles in all equilibria with aspect-ratios R/a approximately <4. Such aspect-ratios are required in fusion-relevant rings. Significant changes in the equilibria are observed when untrapped particles are excluded by the use of a truncated exponential-rigid-rotor distribution function. (author)

  3. An approximation to the adaptive exponential integrate-and-fire neuron model allows fast and predictive fitting to physiological data

    Directory of Open Access Journals (Sweden)

    Loreen eHertäg

    2012-09-01

    Full Text Available For large-scale network simulations, it is often desirable to have computationally tractable, yet in a defined sense still physiologically valid neuron models. In particular, these models should be able to reproduce physiological measurements, ideally in a predictive sense, and under different input regimes in which neurons may operate in vivo. Here we present an approach to parameter estimation for a simple spiking neuron model mainly based on standard f-I curves obtained from in vitro recordings. Such recordings are routinely obtained in standard protocols and assess a neuron's response under a wide range of mean input currents. Our fitting procedure makes use of closed-form expressions for the firing rate derived from an approximation to the adaptive exponential integrate-and-fire (AdEx model. The resulting fitting process is simple and about two orders of magnitude faster compared to methods based on numerical integration of the differential equations. We probe this method on different cell types recorded from rodent prefrontal cortex. After fitting to the f-I current-clamp data, the model cells are tested on completely different sets of recordings obtained by fluctuating ('in-vivo-like' input currents. For a wide range of different input regimes, cell types, and cortical layers, the model could predict spike times on these test traces quite accurately within the bounds of physiological reliability, although no information from these distinct test sets was used for model fitting. Further analyses delineated some of the empirical factors constraining model fitting and the model's generalization performance. An even simpler adaptive LIF neuron was also examined in this context. Hence, we have developed a 'high-throughput' model fitting procedure which is simple and fast, with good prediction performance, and which relies only on firing rate information and standard physiological data widely and easily available.

  4. ψ-Epistemic Models are Exponentially Bad at Explaining the Distinguishability of Quantum States

    Science.gov (United States)

    Leifer, M. S.

    2014-04-01

    The status of the quantum state is perhaps the most controversial issue in the foundations of quantum theory. Is it an epistemic state (state of knowledge) or an ontic state (state of reality)? In realist models of quantum theory, the epistemic view asserts that nonorthogonal quantum states correspond to overlapping probability measures over the true ontic states. This naturally accounts for a large number of otherwise puzzling quantum phenomena. For example, the indistinguishability of nonorthogonal states is explained by the fact that the ontic state sometimes lies in the overlap region, in which case there is nothing in reality that could distinguish the two states. For this to work, the amount of overlap of the probability measures should be comparable to the indistinguishability of the quantum states. In this Letter, I exhibit a family of states for which the ratio of these two quantities must be ≤2de-cd in Hilbert spaces of dimension d that are divisible by 4. This implies that, for large Hilbert space dimension, the epistemic explanation of indistinguishability becomes implausible at an exponential rate as the Hilbert space dimension increases.

  5. Comparison of least squares and exponential sine sweep methods for Parallel Hammerstein Models estimation

    Science.gov (United States)

    Rebillat, Marc; Schoukens, Maarten

    2018-05-01

    Linearity is a common assumption for many real-life systems, but in many cases the nonlinear behavior of systems cannot be ignored and must be modeled and estimated. Among the various existing classes of nonlinear models, Parallel Hammerstein Models (PHM) are interesting as they are at the same time easy to interpret as well as to estimate. One way to estimate PHM relies on the fact that the estimation problem is linear in the parameters and thus that classical least squares (LS) estimation algorithms can be used. In that area, this article introduces a regularized LS estimation algorithm inspired on some of the recently developed regularized impulse response estimation techniques. Another mean to estimate PHM consists in using parametric or non-parametric exponential sine sweeps (ESS) based methods. These methods (LS and ESS) are founded on radically different mathematical backgrounds but are expected to tackle the same issue. A methodology is proposed here to compare them with respect to (i) their accuracy, (ii) their computational cost, and (iii) their robustness to noise. Tests are performed on simulated systems for several values of methods respective parameters and of signal to noise ratio. Results show that, for a given set of data points, the ESS method is less demanding in computational resources than the LS method but that it is also less accurate. Furthermore, the LS method needs parameters to be set in advance whereas the ESS method is not subject to conditioning issues and can be fully non-parametric. In summary, for a given set of data points, ESS method can provide a first, automatic, and quick overview of a nonlinear system than can guide more computationally demanding and precise methods, such as the regularized LS one proposed here.

  6. On exponential cosmological type solutions in the model with Gauss-Bonnet term and variation of gravitational constant

    International Nuclear Information System (INIS)

    Ivashchuk, V.D.; Kobtsev, A.A.

    2015-01-01

    A D-dimensional gravitational model with Gauss.Bonnet term is considered. When an ansatz with diagonal cosmological type metrics is adopted, we find solutions with an exponential dependence of the scale factors (with respect to a @gsynchronous-like@h variable) which describe an exponential expansion of @gour@h 3-dimensional factor space and obey the observational constraints on the temporal variation of effective gravitational constant G. Among them there are two exact solutions in dimensions D = 22, 28 with constant G and also an infinite series of solutions in dimensions D ≥ 2690 with the variation of G obeying the observational data. (orig.)

  7. On exponential cosmological type solutions in the model with Gauss-Bonnet term and variation of gravitational constant

    Energy Technology Data Exchange (ETDEWEB)

    Ivashchuk, V.D. [VNIIMS, Center for Gravitation and Fundamental Metrology, Moscow (Russian Federation); Peoples' Friendship University of Russia, Institute of Gravitation and Cosmology, Moscow (Russian Federation); Kobtsev, A.A. [Peoples' Friendship University of Russia, Institute of Gravitation and Cosmology, Moscow (Russian Federation)

    2015-05-15

    A D-dimensional gravitational model with Gauss.Bonnet term is considered. When an ansatz with diagonal cosmological type metrics is adopted, we find solutions with an exponential dependence of the scale factors (with respect to a @gsynchronous-like@h variable) which describe an exponential expansion of @gour@h 3-dimensional factor space and obey the observational constraints on the temporal variation of effective gravitational constant G. Among them there are two exact solutions in dimensions D = 22, 28 with constant G and also an infinite series of solutions in dimensions D ≥ 2690 with the variation of G obeying the observational data. (orig.)

  8. Nature of dynamical suppressions in the generalized Veneziano model

    International Nuclear Information System (INIS)

    Odorico, R.

    1976-05-01

    It is shown by explicit numerical calculations that of a class of coupling suppressions existing in the generalized Veneziano model, which have been recently used to interpret the psi data and other related phenomena, only a part can be attributed to the exponential growth with energy of the number of levels in the model. The remaining suppressions have a more direct dual origin

  9. Prediction of Pig Trade Movements in Different European Production Systems Using Exponential Random Graph Models.

    Science.gov (United States)

    Relun, Anne; Grosbois, Vladimir; Alexandrov, Tsviatko; Sánchez-Vizcaíno, Jose M; Waret-Szkuta, Agnes; Molia, Sophie; Etter, Eric Marcel Charles; Martínez-López, Beatriz

    2017-01-01

    In most European countries, data regarding movements of live animals are routinely collected and can greatly aid predictive epidemic modeling. However, the use of complete movements' dataset to conduct policy-relevant predictions has been so far limited by the massive amount of data that have to be processed (e.g., in intensive commercial systems) or the restricted availability of timely and updated records on animal movements (e.g., in areas where small-scale or extensive production is predominant). The aim of this study was to use exponential random graph models (ERGMs) to reproduce, understand, and predict pig trade networks in different European production systems. Three trade networks were built by aggregating movements of pig batches among premises (farms and trade operators) over 2011 in Bulgaria, Extremadura (Spain), and Côtes-d'Armor (France), where small-scale, extensive, and intensive pig production are predominant, respectively. Three ERGMs were fitted to each network with various demographic and geographic attributes of the nodes as well as six internal network configurations. Several statistical and graphical diagnostic methods were applied to assess the goodness of fit of the models. For all systems, both exogenous (attribute-based) and endogenous (network-based) processes appeared to govern the structure of pig trade network, and neither alone were capable of capturing all aspects of the network structure. Geographic mixing patterns strongly structured pig trade organization in the small-scale production system, whereas belonging to the same company or keeping pigs in the same housing system appeared to be key drivers of pig trade, in intensive and extensive production systems, respectively. Heterogeneous mixing between types of production also explained a part of network structure, whichever production system considered. Limited information is thus needed to capture most of the global structure of pig trade networks. Such findings will be useful

  10. Modelling of Creep and Stress Relaxation Test of a Polypropylene Microfibre by Using Fraction-Exponential Kernel

    Directory of Open Access Journals (Sweden)

    Andrea Sorzia

    2016-01-01

    Full Text Available A tensile test until breakage and a creep and relaxation test on a polypropylene fibre are carried out and the resulting creep and stress relaxation curves are fit by a model adopting a fraction-exponential kernel in the viscoelastic operator. The models using fraction-exponential functions are simpler than the complex ones obtained from combination of dashpots and springs and, furthermore, are suitable for fitting experimental data with good approximation allowing, at the same time, obtaining inverse Laplace transform in closed form. Therefore, the viscoelastic response of polypropylene fibres can be modelled straightforwardly through analytical methods. Addition of polypropylene fibres greatly improves the tensile strength of composite materials with concrete matrix. The proposed analytical model can be employed for simulating the mechanical behaviour of composite materials with embedded viscoelastic fibres.

  11. Non centered minor hysteresis loops evaluation based on exponential parameters transforms of the modified inverse Jiles–Atherton model

    International Nuclear Information System (INIS)

    Hamimid, M.; Mimoune, S.M.; Feliachi, M.; Atallah, K.

    2014-01-01

    In this present work, a non centered minor hysteresis loops evaluation is performed using the exponential transforms (ET) of the modified inverse Jiles–Atherton model parameters. This model improves the non centered minor hysteresis loops representation. The parameters of the non centered minor hysteresis loops are obtained from exponential expressions related to the major ones. The parameters of minor loops are obtained by identification using the stochastic optimization method “simulated annealing”. The four parameters of JA model (a,α, k and c) obtained by this transformation are applied only in both ascending and descending branches of the non centered minor hysteresis loops while the major ones are applied to the rest of the cycle. This proposal greatly improves both branches and consequently the minor loops. To validate this model, calculated non-centered minor hysteresis loops are compared with measured ones and good agreements are obtained

  12. A modified exponential behavioral economic demand model to better describe consumption data.

    Science.gov (United States)

    Koffarnus, Mikhail N; Franck, Christopher T; Stein, Jeffrey S; Bickel, Warren K

    2015-12-01

    Behavioral economic demand analyses that quantify the relationship between the consumption of a commodity and its price have proven useful in studying the reinforcing efficacy of many commodities, including drugs of abuse. An exponential equation proposed by Hursh and Silberberg (2008) has proven useful in quantifying the dissociable components of demand intensity and demand elasticity, but is limited as an analysis technique by the inability to correctly analyze consumption values of zero. We examined an exponentiated version of this equation that retains all the beneficial features of the original Hursh and Silberberg equation, but can accommodate consumption values of zero and improves its fit to the data. In Experiment 1, we compared the modified equation with the unmodified equation under different treatments of zero values in cigarette consumption data collected online from 272 participants. We found that the unmodified equation produces different results depending on how zeros are treated, while the exponentiated version incorporates zeros into the analysis, accounts for more variance, and is better able to estimate actual unconstrained consumption as reported by participants. In Experiment 2, we simulated 1,000 datasets with demand parameters known a priori and compared the equation fits. Results indicated that the exponentiated equation was better able to replicate the true values from which the test data were simulated. We conclude that an exponentiated version of the Hursh and Silberberg equation provides better fits to the data, is able to fit all consumption values including zero, and more accurately produces true parameter values. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  13. Generalized Nonlinear Yule Models

    Science.gov (United States)

    Lansky, Petr; Polito, Federico; Sacerdote, Laura

    2016-11-01

    With the aim of considering models related to random graphs growth exhibiting persistent memory, we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macroevolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth rates. Among the main results we derive the explicit distribution of the number of in-links of a webpage chosen uniformly at random recognizing the contribution to the asymptotics and the finite time correction. The mean value of the latter distribution is also calculated explicitly in the most general case. Furthermore, in order to show the usefulness of our results, we particularize them in the case of specific birth rates giving rise to a saturating behaviour, a property that is often observed in nature. The further specialization to the non-fractional case allows us to extend the Yule model accounting for a nonlinear growth.

  14. The general dynamic model

    DEFF Research Database (Denmark)

    Borregaard, Michael K.; Matthews, Thomas J.; Whittaker, Robert James

    2016-01-01

    Aim: Island biogeography focuses on understanding the processes that underlie a set of well-described patterns on islands, but it lacks a unified theoretical framework for integrating these processes. The recently proposed general dynamic model (GDM) of oceanic island biogeography offers a step...... towards this goal. Here, we present an analysis of causality within the GDM and investigate its potential for the further development of island biogeographical theory. Further, we extend the GDM to include subduction-based island arcs and continental fragment islands. Location: A conceptual analysis...... of evolutionary processes in simulations derived from the mechanistic assumptions of the GDM corresponded broadly to those initially suggested, with the exception of trends in extinction rates. Expanding the model to incorporate different scenarios of island ontogeny and isolation revealed a sensitivity...

  15. An improved parameter estimation and comparison for soft tissue constitutive models containing an exponential function.

    Science.gov (United States)

    Aggarwal, Ankush

    2017-08-01

    Motivated by the well-known result that stiffness of soft tissue is proportional to the stress, many of the constitutive laws for soft tissues contain an exponential function. In this work, we analyze properties of the exponential function and how it affects the estimation and comparison of elastic parameters for soft tissues. In particular, we find that as a consequence of the exponential function there are lines of high covariance in the elastic parameter space. As a result, one can have widely varying mechanical parameters defining the tissue stiffness but similar effective stress-strain responses. Drawing from elementary algebra, we propose simple changes in the norm and the parameter space, which significantly improve the convergence of parameter estimation and robustness in the presence of noise. More importantly, we demonstrate that these changes improve the conditioning of the problem and provide a more robust solution in the case of heterogeneous material by reducing the chances of getting trapped in a local minima. Based upon the new insight, we also propose a transformed parameter space which will allow for rational parameter comparison and avoid misleading conclusions regarding soft tissue mechanics.

  16. An exponential material model for prediction of the flow curves of several AZ series magnesium alloys in tension and compression

    International Nuclear Information System (INIS)

    Fereshteh-Saniee, F.; Barati, F.; Badnava, H.; Fallah Nejad, Kh.

    2012-01-01

    Highlights: ► The exponential model can represent flow behaviors of AZ series Mg alloys very well. ► Strain rate sensitivities of AZ series Mg alloys in compression are nearly the same. ► Effect of zinc element on tensile activation energy is higher than on compressive one. ► Activation energies of AZ80 and AZ81 in tension were greater than in compression. ► Tensile and compressive rate sensitivities of AZ80 are not close to each other. -- Abstract: This paper is concerned with flow behaviors of several magnesium alloys, such as AZ31, AZ80 and AZ81, in tension and compression. The experiments were performed at elevated temperatures and for various strain rates. In order to eliminate the effect of inhomogeneous deformation in tensile and compression tests, the Bridgeman’s and numerical correction factors were respectively employed. A two-section exponential mathematical model was also utilized for prediction of flow stresses of different magnesium alloys in tension and compression. Moreover, based on the compressive flow model proposed, the peak stress and the relevant true strain could be estimated. The true stress and strain of the necking point can also be predicted using the corresponding relations. It was found that the flow behaviors estimated by the exponential flow model were encouragingly in very good agreement with experimental findings.

  17. Approximate models for the study of exponential changed quantities: Application on the plasma waves growth rate or damping

    International Nuclear Information System (INIS)

    Xaplanteris, C. L.; Xaplanteris, L. C.; Leousis, D. P.

    2014-01-01

    Many physical phenomena that concern the research these days are basically complicated because of being multi-parametric. Thus, their study and understanding meets with big if not unsolved obstacles. Such complicated and multi-parametric is the plasmatic state as well, where the plasma and the physical quantities that appear along with it have chaotic behavior. Many of those physical quantities change exponentially and at most times they are stabilized by presenting wavy behavior. Mostly in the transitive state rather than the steady state, the exponentially changing quantities (Growth, Damping etc) depend on each other in most cases. Thus, it is difficult to distinguish the cause from the result. The present paper attempts to help this difficult study and understanding by proposing mathematical exponential models that could relate with the study and understanding of the plasmatic wavy instability behavior. Such instabilities are already detected, understood and presented in previous publications of our laboratory. In other words, our new contribution is the study of the already known plasmatic quantities by using mathematical models (modeling and simulation). These methods are both useful and applicable in the chaotic theory. In addition, our ambition is to also conduct a list of models useful for the study of chaotic problems, such as those that appear into the plasma, starting with this paper's examples

  18. Approximate models for the study of exponential changed quantities: Application on the plasma waves growth rate or damping

    Energy Technology Data Exchange (ETDEWEB)

    Xaplanteris, C. L., E-mail: cxaplanteris@yahoo.com [Plasma Physics Laboratory, IMS, NCSR “Demokritos”, Athens, Greece and Hellenic Army Academy, Vari Attica (Greece); Xaplanteris, L. C. [School of Physics, National and Kapodistrian University of Athens, Athens (Greece); Leousis, D. P. [Technical High School of Athens, Athens (Greece)

    2014-03-15

    Many physical phenomena that concern the research these days are basically complicated because of being multi-parametric. Thus, their study and understanding meets with big if not unsolved obstacles. Such complicated and multi-parametric is the plasmatic state as well, where the plasma and the physical quantities that appear along with it have chaotic behavior. Many of those physical quantities change exponentially and at most times they are stabilized by presenting wavy behavior. Mostly in the transitive state rather than the steady state, the exponentially changing quantities (Growth, Damping etc) depend on each other in most cases. Thus, it is difficult to distinguish the cause from the result. The present paper attempts to help this difficult study and understanding by proposing mathematical exponential models that could relate with the study and understanding of the plasmatic wavy instability behavior. Such instabilities are already detected, understood and presented in previous publications of our laboratory. In other words, our new contribution is the study of the already known plasmatic quantities by using mathematical models (modeling and simulation). These methods are both useful and applicable in the chaotic theory. In addition, our ambition is to also conduct a list of models useful for the study of chaotic problems, such as those that appear into the plasma, starting with this paper's examples.

  19. Perturbation theory in angular quantization approach and the expectation values of exponential fields in sine-Gordon model

    International Nuclear Information System (INIS)

    Poghossian, R.H.

    2000-01-01

    In an angular quantization approach a perturbation theory for the Massive Thirring Model (MTM) is developed, which allows us to calculate vacuum expectation values of exponential fields in sine-Gordon theory near the free fermion point in first order of the MTM coupling constant g. The Hankel transforms play an important role when carrying out these calculations. The expression we have found coincides with that of the direct expansion over g of the exact formula conjectured by Lukyanov and Zamolodchikov

  20. Enhancement of Markov chain model by integrating exponential smoothing: A case study on Muslims marriage and divorce

    Science.gov (United States)

    Jamaluddin, Fadhilah; Rahim, Rahela Abdul

    2015-12-01

    Markov Chain has been introduced since the 1913 for the purpose of studying the flow of data for a consecutive number of years of the data and also forecasting. The important feature in Markov Chain is obtaining the accurate Transition Probability Matrix (TPM). However to obtain the suitable TPM is hard especially in involving long-term modeling due to unavailability of data. This paper aims to enhance the classical Markov Chain by introducing Exponential Smoothing technique in developing the appropriate TPM.

  1. Modeling the lag period and exponential growth of Listeria monocytogenes under conditions of fluctuating temperature and water activity values.

    Science.gov (United States)

    Muñoz-Cuevas, Marina; Fernández, Pablo S; George, Susan; Pin, Carmen

    2010-05-01

    The dynamic model for the growth of a bacterial population described by Baranyi and Roberts (J. Baranyi and T. A. Roberts, Int. J. Food Microbiol. 23:277-294, 1994) was applied to model the lag period and exponential growth of Listeria monocytogenes under conditions of fluctuating temperature and water activity (a(w)) values. To model the duration of the lag phase, the dependence of the parameter h(0), which quantifies the amount of work done during the lag period, on the previous and current environmental conditions was determined experimentally. This parameter depended not only on the magnitude of the change between the previous and current environmental conditions but also on the current growth conditions. In an exponentially growing population, any change in the environment requiring a certain amount of work to adapt to the new conditions initiated a lag period that lasted until that work was finished. Observations for several scenarios in which exponential growth was halted by a sudden change in the temperature and/or a(w) were in good agreement with predictions. When a population already in a lag period was subjected to environmental fluctuations, the system was reset with a new lag phase. The work to be done during the new lag phase was estimated to be the workload due to the environmental change plus the unfinished workload from the uncompleted previous lag phase.

  2. Modeling the Lag Period and Exponential Growth of Listeria monocytogenes under Conditions of Fluctuating Temperature and Water Activity Values▿

    Science.gov (United States)

    Muñoz-Cuevas, Marina; Fernández, Pablo S.; George, Susan; Pin, Carmen

    2010-01-01

    The dynamic model for the growth of a bacterial population described by Baranyi and Roberts (J. Baranyi and T. A. Roberts, Int. J. Food Microbiol. 23:277-294, 1994) was applied to model the lag period and exponential growth of Listeria monocytogenes under conditions of fluctuating temperature and water activity (aw) values. To model the duration of the lag phase, the dependence of the parameter h0, which quantifies the amount of work done during the lag period, on the previous and current environmental conditions was determined experimentally. This parameter depended not only on the magnitude of the change between the previous and current environmental conditions but also on the current growth conditions. In an exponentially growing population, any change in the environment requiring a certain amount of work to adapt to the new conditions initiated a lag period that lasted until that work was finished. Observations for several scenarios in which exponential growth was halted by a sudden change in the temperature and/or aw were in good agreement with predictions. When a population already in a lag period was subjected to environmental fluctuations, the system was reset with a new lag phase. The work to be done during the new lag phase was estimated to be the workload due to the environmental change plus the unfinished workload from the uncompleted previous lag phase. PMID:20208022

  3. Anisotropic cosmological models and generalized scalar tensor theory

    Indian Academy of Sciences (India)

    Abstract. In this paper generalized scalar tensor theory has been considered in the background of anisotropic cosmological models, namely, axially symmetric Bianchi-I, Bianchi-III and Kortowski–. Sachs space-time. For bulk viscous fluid, both exponential and power-law solutions have been stud- ied and some assumptions ...

  4. Anisotropic cosmological models and generalized scalar tensor theory

    Indian Academy of Sciences (India)

    In this paper generalized scalar tensor theory has been considered in the background of anisotropic cosmological models, namely, axially symmetric Bianchi-I, Bianchi-III and Kortowski–Sachs space-time. For bulk viscous fluid, both exponential and power-law solutions have been studied and some assumptions among the ...

  5. Modified Exponential (MOE) Models: statistical Models for Risk Estimation of Low dose Rate Radiation

    International Nuclear Information System (INIS)

    Ogata, H.; Furukawa, C.; Kawakami, Y.; Magae, J.

    2004-01-01

    Simultaneous inclusion of dose and dose-rate is required to evaluate the risk of long term irradiation at low dose-rates, since biological responses to radiation are complex processes that depend both on irradiation time and total dose. Consequently, it is necessary to consider a model including cumulative dose,dose-rate and irradiation time to estimate quantitative dose-response relationship on the biological response to radiation. In this study, we measured micronucleus formation and (3H) thymidine uptake in U2OS, human osteosarcoma cell line, as indicators of biological response to gamma radiation. Cells were exposed to gamma ray in irradiation room bearing 50,000 Ci 60Co. After irradiation, they were cultured for 24h in the presence of cytochalasin B to block cytokinesis, and cytoplasm and nucleus were stained with DAPI and propidium iodide. The number of binuclear cells bearing a micronucleus was counted under a florescence microscope. For proliferation inhibition, cells were cultured for 48 h after the irradiation and (3h) thymidine was pulsed for 4h before harvesting. We statistically analyzed the data for quantitative evaluation of radiation risk at low dose/dose-rate. (Author)

  6. Anomaly General Circulation Models.

    Science.gov (United States)

    Navarra, Antonio

    The feasibility of the anomaly model is assessed using barotropic and baroclinic models. In the barotropic case, both a stationary and a time-dependent model has been formulated and constructed, whereas only the stationary, linear case is considered in the baroclinic case. Results from the barotropic model indicate that a relation between the stationary solution and the time-averaged non-linear solution exists. The stationary linear baroclinic solution can therefore be considered with some confidence. The linear baroclinic anomaly model poses a formidable mathematical problem because it is necessary to solve a gigantic linear system to obtain the solution. A new method to find solution of large linear system, based on a projection on the Krylov subspace is shown to be successful when applied to the linearized baroclinic anomaly model. The scheme consists of projecting the original linear system on the Krylov subspace, thereby reducing the dimensionality of the matrix to be inverted to obtain the solution. With an appropriate setting of the damping parameters, the iterative Krylov method reaches a solution even using a Krylov subspace ten times smaller than the original space of the problem. This generality allows the treatment of the important problem of linear waves in the atmosphere. A larger class (nonzonally symmetric) of basic states can now be treated for the baroclinic primitive equations. These problem leads to large unsymmetrical linear systems of order 10000 and more which can now be successfully tackled by the Krylov method. The (R7) linear anomaly model is used to investigate extensively the linear response to equatorial and mid-latitude prescribed heating. The results indicate that the solution is deeply affected by the presence of the stationary waves in the basic state. The instability of the asymmetric flows, first pointed out by Simmons et al. (1983), is active also in the baroclinic case. However, the presence of baroclinic processes modifies the

  7. Mechanistic formulation of a lineal-quadratic-linear (LQL) model: Split-dose experiments and exponentially decaying sources

    International Nuclear Information System (INIS)

    Guerrero, Mariana; Carlone, Marco

    2010-01-01

    Purpose: In recent years, several models were proposed that modify the standard linear-quadratic (LQ) model to make the predicted survival curve linear at high doses. Most of these models are purely phenomenological and can only be applied in the particular case of acute doses per fraction. The authors consider a mechanistic formulation of a linear-quadratic-linear (LQL) model in the case of split-dose experiments and exponentially decaying sources. This model provides a comprehensive description of radiation response for arbitrary dose rate and fractionation with only one additional parameter. Methods: The authors use a compartmental formulation of the LQL model from the literature. They analytically solve the model's differential equations for the case of a split-dose experiment and for an exponentially decaying source. They compare the solutions of the survival fraction with the standard LQ equations and with the lethal-potentially lethal (LPL) model. Results: In the case of the split-dose experiment, the LQL model predicts a recovery ratio as a function of dose per fraction that deviates from the square law of the standard LQ. The survival fraction as a function of time between fractions follows a similar exponential law as the LQ but adds a multiplicative factor to the LQ parameter β. The LQL solution for the split-dose experiment is very close to the LPL prediction. For the decaying source, the differences between the LQL and the LQ solutions are negligible when the half-life of the source is much larger than the characteristic repair time, which is the clinically relevant case. Conclusions: The compartmental formulation of the LQL model can be used for arbitrary dose rates and provides a comprehensive description of dose response. When the survival fraction for acute doses is linear for high dose, a deviation of the square law formula of the recovery ratio for split doses is also predicted.

  8. The General Aggression Model.

    Science.gov (United States)

    Allen, Johnie J; Anderson, Craig A; Bushman, Brad J

    2018-02-01

    The General Aggression Model (GAM) is a comprehensive, integrative, framework for understanding aggression. It considers the role of social, cognitive, personality, developmental, and biological factors on aggression. Proximate processes of GAM detail how person and situation factors influence cognitions, feelings, and arousal, which in turn affect appraisal and decision processes, which in turn influence aggressive or nonaggressive behavioral outcomes. Each cycle of the proximate processes serves as a learning trial that affects the development and accessibility of aggressive knowledge structures. Distal processes of GAM detail how biological and persistent environmental factors can influence personality through changes in knowledge structures. GAM has been applied to understand aggression in many contexts including media violence effects, domestic violence, intergroup violence, temperature effects, pain effects, and the effects of global climate change. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Assessment of Ex-Vitro Anaerobic Digestion Kinetics of Crop Residues Through First Order Exponential Models: Effect of LAG Phase Period and Curve Factor

    Directory of Open Access Journals (Sweden)

    Abdul Razaque Sahito

    2013-04-01

    Full Text Available Kinetic studies of AD (Anaerobic Digestion process are useful to predict the performance of digesters and design appropriate digesters and also helpful in understanding inhibitory mechanisms of biodegradation. The aim of this study was to assess the anaerobic kinetics of crop residues digestion with buffalo dung. Seven crop residues namely, bagasse, banana plant waste, canola straw, cotton stalks, rice straw, sugarcane trash and wheat straw were selected from the field and were analyzed on MC (Moisture Contents, TS (Total Solids and VS (Volatile Solids with standard methods. In present study, three first order exponential models namely exponential model, exponential lag phase model and exponential curve factor model were used to assess the kinetics of the AD process of crop residues and the effect of lag phase and curve factor was analyzed based on statistical hypothesis testing and on information theory. Assessment of kinetics of the AD of crop residues and buffalo dung follows the first order kinetics. Out of the three models, the simple exponential model was the poorest model, while the first order exponential curve factor model is the best fit model. In addition to statistical hypothesis testing, the exponential curve factor model has least value of AIC (Akaike's Information Criterion and can generate methane production data more accurately. Furthermore, there is an inverse linear relationship between the lag phase period and the curve factor.

  10. Assessment of ex-vitro anaerobic digestion kinetics of crop residues through first order exponential models: effect of lag phase period and curve factor

    International Nuclear Information System (INIS)

    Sahito, A.R.; Brohi, K.M.

    2013-01-01

    Kinetic studies of AD (Anaerobic Digestion) process are useful to predict the performance of digesters and design appropriate digesters and also helpful in understanding inhibitory mechanisms of biodegradation. The aim of this study was to assess the anaerobic kinetics of crop residues digestion with buffalo dung. Seven crop residues namely, bagasse, banana plant waste, canola straw, cotton stalks, rice straw, sugarcane trash and wheat straw were selected from the field and were analyzed on MC (Moisture Contents), TS (Total Solids) and VS (Volatile Solids) with standard methods. In present study, three first order exponential models namely exponential model, exponential lag phase model and exponential curve factor model were used to assess the kinetics of the AD process of crop residues and the effect of lag phase and curve factor was analyzed based on statistical hypothesis testing and on information theory. Assessment of kinetics of the AD of crop residues and buffalo dung follows the first order kinetics. Out of the three models, the simple exponential model was the poorest model, while the first order exponential curve factor model is the best fit model. In addition to statistical hypothesis testing, the exponential curve factor model has least value of AIC (Akaike's Information Criterion) and can generate methane production data more accurately. Furthermore, there is an inverse linear relationship between the lag phase period and the curve factor. (author)

  11. The generalized collective model

    International Nuclear Information System (INIS)

    Troltenier, D.

    1992-07-01

    In this thesis a new way of proceeding, basing on the method of the finite elements, for the solution of the collective Schroedinger equation in the framework of the Generalized Collective Model was presented. The numerically reachable accuracy was illustrated by the comparison to analytically known solutions by means of numerous examples. Furthermore the potential-energy surfaces of the 182-196 Hg, 242-248 Cm, and 242-246 Pu isotopes were determined by the fitting of the parameters of the Gneuss-Greiner potential to the experimental data. In the Hg isotopes a shape consistency of nearly spherical and oblate deformations is shown, while the Cm and Pu isotopes possess an essentially equal remaining prolate deformation. By means of the pseudo-symplectic model the potential-energy surfaces of 24 Mg, 190 Pt, and 238 U were microscopically calculated. Using a deformation-independent kinetic energy so the collective excitation spectra and the electrical properties (B(E2), B(E4) values, quadrupole moments) of these nuclei were calculated and compared with the experiment. Finally an analytic relation between the (g R -Z/A) value and the quadrupole moment was derived. The study of the experimental data of the 166-170 Er isotopes shows an in the framework of the measurement accuracy a sufficient agreement with this relation. Furthermore it is by this relation possible to determine the effective magnetic dipole moment parameter-freely. (orig./HSI) [de

  12. A new generalized exponential rational function method to find exact special solutions for the resonance nonlinear Schrödinger equation

    Science.gov (United States)

    Ghanbari, Behzad; Inc, Mustafa

    2018-04-01

    The present paper suggests a novel technique to acquire exact solutions of nonlinear partial differential equations. The main idea of the method is to generalize the exponential rational function method. In order to examine the ability of the method, we consider the resonant nonlinear Schrödinger equation (R-NLSE). Many variants of exact soliton solutions for the equation are derived by the proposed method. Physical interpretations of some obtained solutions is also included. One can easily conclude that the new proposed method is very efficient and finds the exact solutions of the equation in a relatively easy way.

  13. Forecasting Inflow and Outflow of Money Currency in East Java Using a Hybrid Exponential Smoothing and Calendar Variation Model

    Science.gov (United States)

    Susanti, Ana; Suhartono; Jati Setyadi, Hario; Taruk, Medi; Haviluddin; Pamilih Widagdo, Putut

    2018-03-01

    Money currency availability in Bank Indonesia can be examined by inflow and outflow of money currency. The objective of this research is to forecast the inflow and outflow of money currency in each Representative Office (RO) of BI in East Java by using a hybrid exponential smoothing based on state space approach and calendar variation model. Hybrid model is expected to generate more accurate forecast. There are two studies that will be discussed in this research. The first studies about hybrid model using simulation data that contain pattern of trends, seasonal and calendar variation. The second studies about the application of a hybrid model for forecasting the inflow and outflow of money currency in each RO of BI in East Java. The first of results indicate that exponential smoothing model can not capture the pattern calendar variation. It results RMSE values 10 times standard deviation of error. The second of results indicate that hybrid model can capture the pattern of trends, seasonal and calendar variation. It results RMSE values approaching the standard deviation of error. In the applied study, the hybrid model give more accurate forecast for five variables : the inflow of money currency in Surabaya, Malang, Jember and outflow of money currency in Surabaya and Kediri. Otherwise, the time series regression model yields better for three variables : outflow of money currency in Malang, Jember and inflow of money currency in Kediri.

  14. Research on the Compression Algorithm of the Infrared Thermal Image Sequence Based on Differential Evolution and Double Exponential Decay Model

    Science.gov (United States)

    Zhang, Jin-Yu; Meng, Xiang-Bing; Xu, Wei; Zhang, Wei; Zhang, Yong

    2014-01-01

    This paper has proposed a new thermal wave image sequence compression algorithm by combining double exponential decay fitting model and differential evolution algorithm. This study benchmarked fitting compression results and precision of the proposed method was benchmarked to that of the traditional methods via experiment; it investigated the fitting compression performance under the long time series and improved model and validated the algorithm by practical thermal image sequence compression and reconstruction. The results show that the proposed algorithm is a fast and highly precise infrared image data processing method. PMID:24696649

  15. Research on the Compression Algorithm of the Infrared Thermal Image Sequence Based on Differential Evolution and Double Exponential Decay Model

    Directory of Open Access Journals (Sweden)

    Jin-Yu Zhang

    2014-01-01

    Full Text Available This paper has proposed a new thermal wave image sequence compression algorithm by combining double exponential decay fitting model and differential evolution algorithm. This study benchmarked fitting compression results and precision of the proposed method was benchmarked to that of the traditional methods via experiment; it investigated the fitting compression performance under the long time series and improved model and validated the algorithm by practical thermal image sequence compression and reconstruction. The results show that the proposed algorithm is a fast and highly precise infrared image data processing method.

  16. Comparison of the predictions of the LQ and CRE models for normal tissue damage due to biologically targeted radiotherapy with exponentially decaying dose rates

    International Nuclear Information System (INIS)

    O'Donoghue, J.A.; West of Schotland Health Boards, Glasgow

    1989-01-01

    For biologically targeted radiotherapy organ dose rates may be complex functions of time, related to the biodistribution kinetics of the delivery vehicle and radiolabel. The simples situation is where dose rates are exponentially decaying functions of time. Two normal tissue isoeffect models enable the effects of exponentially decaying dose rates to be addressed. These are the extension of the linear-quadratic model and the cumulative radiation effect model. This communication will compare the predictions of these models. (author). 14 refs.; 1 fig

  17. EOQ Model for Deteriorating Items with exponential time dependent Demand Rate under inflation when Supplier Credit Linked to Order Quantity

    Directory of Open Access Journals (Sweden)

    Rakesh Prakash Tripathi

    2014-05-01

    Full Text Available In paper (2004 Chang studied an inventory model under a situation in which the supplier provides the purchaser with a permissible delay of payments if the purchaser orders a large quantity. Tripathi (2011 also studied an inventory model with time dependent demand rate under which the supplier provides the purchaser with a permissible delay in payments. This paper is motivated by Chang (2004 and Tripathi (2011 paper extending their model for exponential time dependent demand rate. This study develops an inventory model under which the vendor provides the purchaser with a credit period; if the purchaser orders large quantity. In this chapter, demand rate is taken as exponential time dependent. Shortages are not allowed and effect of the inflation rate has been discussed. We establish an inventory model for deteriorating items if the order quantity is greater than or equal to a predetermined quantity. We then obtain optimal solution for finding optimal order quantity, optimal cycle time and optimal total relevant cost. Numerical examples are given for all different cases. Sensitivity of the variation of different parameters on the optimal solution is also discussed. Mathematica 7 software is used for finding numerical examples.

  18. From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and model simulations

    Directory of Open Access Journals (Sweden)

    C. Albergel

    2008-12-01

    Full Text Available A long term data acquisition effort of profile soil moisture is under way in southwestern France at 13 automated weather stations. This ground network was developed in order to validate remote sensing and model soil moisture estimates. In this paper, both those in situ observations and a synthetic data set covering continental France are used to test a simple method to retrieve root zone soil moisture from a time series of surface soil moisture information. A recursive exponential filter equation using a time constant, T, is used to compute a soil water index. The Nash and Sutcliff coefficient is used as a criterion to optimise the T parameter for each ground station and for each model pixel of the synthetic data set. In general, the soil water indices derived from the surface soil moisture observations and simulations agree well with the reference root-zone soil moisture. Overall, the results show the potential of the exponential filter equation and of its recursive formulation to derive a soil water index from surface soil moisture estimates. This paper further investigates the correlation of the time scale parameter T with soil properties and climate conditions. While no significant relationship could be determined between T and the main soil properties (clay and sand fractions, bulk density and organic matter content, the modelled spatial variability and the observed inter-annual variability of T suggest that a weak climate effect may exist.

  19. Exponential vanishing of the ground-state gap of the quantum random energy model via adiabatic quantum computing

    Science.gov (United States)

    Adame, J.; Warzel, S.

    2015-11-01

    In this note, we use ideas of Farhi et al. [Int. J. Quantum. Inf. 6, 503 (2008) and Quantum Inf. Comput. 11, 840 (2011)] who link a lower bound on the run time of their quantum adiabatic search algorithm to an upper bound on the energy gap above the ground-state of the generators of this algorithm. We apply these ideas to the quantum random energy model (QREM). Our main result is a simple proof of the conjectured exponential vanishing of the energy gap of the QREM.

  20. Exponential vanishing of the ground-state gap of the quantum random energy model via adiabatic quantum computing

    International Nuclear Information System (INIS)

    Adame, J.; Warzel, S.

    2015-01-01

    In this note, we use ideas of Farhi et al. [Int. J. Quantum. Inf. 6, 503 (2008) and Quantum Inf. Comput. 11, 840 (2011)] who link a lower bound on the run time of their quantum adiabatic search algorithm to an upper bound on the energy gap above the ground-state of the generators of this algorithm. We apply these ideas to the quantum random energy model (QREM). Our main result is a simple proof of the conjectured exponential vanishing of the energy gap of the QREM

  1. A comparative study of mixed exponential and Weibull distributions in a stochastic model replicating a tropical rainfall process

    Science.gov (United States)

    Abas, Norzaida; Daud, Zalina M.; Yusof, Fadhilah

    2014-11-01

    A stochastic rainfall model is presented for the generation of hourly rainfall data in an urban area in Malaysia. In view of the high temporal and spatial variability of rainfall within the tropical rain belt, the Spatial-Temporal Neyman-Scott Rectangular Pulse model was used. The model, which is governed by the Neyman-Scott process, employs a reasonable number of parameters to represent the physical attributes of rainfall. A common approach is to attach each attribute to a mathematical distribution. With respect to rain cell intensity, this study proposes the use of a mixed exponential distribution. The performance of the proposed model was compared to a model that employs the Weibull distribution. Hourly and daily rainfall data from four stations in the Damansara River basin in Malaysia were used as input to the models, and simulations of hourly series were performed for an independent site within the basin. The performance of the models was assessed based on how closely the statistical characteristics of the simulated series resembled the statistics of the observed series. The findings obtained based on graphical representation revealed that the statistical characteristics of the simulated series for both models compared reasonably well with the observed series. However, a further assessment using the AIC, BIC and RMSE showed that the proposed model yields better results. The results of this study indicate that for tropical climates, the proposed model, using a mixed exponential distribution, is the best choice for generation of synthetic data for ungauged sites or for sites with insufficient data within the limit of the fitted region.

  2. Exponential Operators, Dobinski Relations and Summability

    International Nuclear Information System (INIS)

    Blasiak, P; Gawron, A; Horzela, A; Penson, K A; Solomon, A I

    2006-01-01

    We investigate properties of exponential operators preserving the particle number using combinatorial methods developed in order to solve the boson normal ordering problem. In particular, we apply generalized Dobinski relations and methods of multivariate Bell polynomials which enable us to understand the meaning of perturbation-like expansions of exponential operators. Such expansions, obtained as formal power series, are everywhere divergent but the Pade summation method is shown to give results which very well agree with exact solutions got for simplified quantum models of the one mode bosonic systems

  3. Modeling steady-state dynamics of macromolecules in exponential-stretching flow using multiscale molecular-dynamics-multiparticle-collision simulations.

    Science.gov (United States)

    Ghatage, Dhairyasheel; Chatterji, Apratim

    2013-10-01

    We introduce a method to obtain steady-state uniaxial exponential-stretching flow of a fluid (akin to extensional flow) in the incompressible limit, which enables us to study the response of suspended macromolecules to the flow by computer simulations. The flow field in this flow is defined by v(x) = εx, where v(x) is the velocity of the fluid and ε is the stretch flow gradient. To eliminate the effect of confining boundaries, we produce the flow in a channel of uniform square cross section with periodic boundary conditions in directions perpendicular to the flow, but simultaneously maintain uniform density of fluid along the length of the tube. In experiments a perfect elongational flow is obtained only along the axis of symmetry in a four-roll geometry or a filament-stretching rheometer. We can reproduce flow conditions very similar to extensional flow near the axis of symmetry by exponential-stretching flow; we do this by adding the right amounts of fluid along the length of the flow in our simulations. The fluid particles added along the length of the tube are the same fluid particles which exit the channel due to the flow; thus mass conservation is maintained in our model by default. We also suggest a scheme for possible realization of exponential-stretching flow in experiments. To establish our method as a useful tool to study various soft matter systems in extensional flow, we embed (i) spherical colloids with excluded volume interactions (modeled by the Weeks-Chandler potential) as well as (ii) a bead-spring model of star polymers in the fluid to study their responses to the exponential-stretched flow and show that the responses of macromolecules in the two flows are very similar. We demonstrate that the variation of number density of the suspended colloids along the direction of flow is in tune with our expectations. We also conclude from our study of the deformation of star polymers with different numbers of arms f that the critical flow gradient ε

  4. Glauber model and its generalizations

    International Nuclear Information System (INIS)

    Bialkowski, G.

    The physical aspects of the Glauber model problems are studied: potential model, profile function and Feynman diagrams approaches. Different generalizations of the Glauber model are discussed: particularly higher and lower energy processes and large angles [fr

  5. Additivity of statistical moments in the exponentially modified Gaussian model of chromatography

    International Nuclear Information System (INIS)

    Howerton, Samuel B.; Lee Chomin; McGuffin, Victoria L.

    2002-01-01

    A homologous series of saturated fatty acids ranging from C 10 to C 22 was separated by reversed-phase capillary liquid chromatography. The resultant zone profiles were found to be fit best by an exponentially modified Gaussian (EMG) function. To compare the EMG function and statistical moments for the analysis of the experimental zone profiles, a series of simulated profiles was generated by using fixed values for retention time and different values for the symmetrical (σ) and asymmetrical (τ) contributions to the variance. The simulated profiles were modified with respect to the integration limits, the number of points, and the signal-to-noise ratio. After modification, each profile was analyzed by using statistical moments and an iteratively fit EMG equation. These data indicate that the statistical moment method is much more susceptible to error when the degree of asymmetry is large, when the integration limits are inappropriately chosen, when the number of points is small, and when the signal-to-noise ratio is small. The experimental zone profiles were then analyzed by using the statistical moment and EMG methods. Although care was taken to minimize the sources of error discussed above, significant differences were found between the two methods. The differences in the second moment suggest that the symmetrical and asymmetrical contributions to broadening in the experimental zone profiles are not independent. As a consequence, the second moment is not equal to the sum of σ 2 and τ 2 , as is commonly assumed. This observation has important implications for the elucidation of thermodynamic and kinetic information from chromatographic zone profiles

  6. Deformed exponentials and portfolio selection

    Science.gov (United States)

    Rodrigues, Ana Flávia P.; Guerreiro, Igor M.; Cavalcante, Charles Casimiro

    In this paper, we present a method for portfolio selection based on the consideration on deformed exponentials in order to generalize the methods based on the gaussianity of the returns in portfolio, such as the Markowitz model. The proposed method generalizes the idea of optimizing mean-variance and mean-divergence models and allows a more accurate behavior for situations where heavy-tails distributions are necessary to describe the returns in a given time instant, such as those observed in economic crises. Numerical results show the proposed method outperforms the Markowitz portfolio for the cumulated returns with a good convergence rate of the weights for the assets which are searched by means of a natural gradient algorithm.

  7. An Exponential Tilt Mixture Model for Time-to-Event Data to Evaluate Treatment Effect Heterogeneity in Randomized Clinical Trials.

    Science.gov (United States)

    Wang, Chi; Tan, Zhiqiang; Louis, Thomas A

    2014-01-01

    Evaluating the effect of a treatment on a time-to-event outcome is the focus of many randomized clinical trials. It is often observed that the treatment effect is heterogeneous, where only a subgroup of the patients may respond to the treatment due to some unknown mechanism such as genetic polymorphism. In this paper, we propose a semiparametric exponential tilt mixture model to estimate the proportion of patients who respond to the treatment and to assess the treatment effect. Our model is a natural extension of parametric mixture models to a semiparametric setting with a time-to-event outcome. We propose a nonparametric maximum likelihood estimation approach for inference and establish related asymptotic properties. Our method is illustrated by a randomized clinical trial on biodegradable polymer-delivered chemotherapy for malignant gliomas patients.

  8. Rational Functions with a General Distribution of Poles on the Real Line Orthogonal with Respect to Varying Exponential Weights: I

    International Nuclear Information System (INIS)

    McLaughlin, K. T.-R.; Vartanian, A. H.; Zhou, X.

    2008-01-01

    Orthogonal rational functions are characterized in terms of a family of matrix Riemann-Hilbert problems on R, and a related family of energy minimisation problems is presented. Existence, uniqueness, and regularity properties of the equilibrium measures which solve the energy minimisation problems are established. These measures are used to derive a family of 'model' matrix Riemann-Hilbert problems which are amenable to asymptotic analysis via the Deift-Zhou non-linear steepest-descent method

  9. Boundary layer flow of MHD generalized Maxwell fluid over an exponentially accelerated infinite vertical surface with slip and Newtonian heating at the boundary

    Directory of Open Access Journals (Sweden)

    M.A. Imran

    2018-03-01

    Full Text Available The aim of this article is to investigate the unsteady natural convection flow of Maxwell fluid with fractional derivative over an exponentially accelerated infinite vertical plate. Moreover, slip condition, radiation, MHD and Newtonian heating effects are also considered. A modern definition of fractional derivative operator recently introduced by Caputo and Fabrizio has been used to formulate the fractional model. Semi analytical solutions of the dimensionless problem are obtained by employing Stehfest’s and Tzou’s algorithms in order to find the inverse Laplace transforms for temperature and velocity fields. Temperature and rate of heat transfer for non-integer and integer order derivatives are computed and reduced to some known solutions from the literature. Finally, in order to get insight of the physical significance of the considered problem regarding velocity and Nusselt number, some graphical illustrations are made using Mathcad software. As a result, in comparison between Maxwell and viscous fluid (fractional and ordinary we found that viscous (fractional and ordinary fluids are swiftest than Maxwell (fractional and ordinary fluids. Keywords: Free convection, Slip, Maxwell fluid, Newtonian heating, Exponentially accelerated plate, Caputo-Fabrizio fractional derivatives, Stehfest’s and Tzou’s algorithms

  10. Wegner estimate and localization for alloy-type models with sign-changing exponentially decaying single-site potentials

    Science.gov (United States)

    Leonhardt, Karsten; Peyerimhoff, Norbert; Tautenhahn, Martin; Veselić, Ivan

    2015-05-01

    We study Schrödinger operators on L2(ℝd) and ℓ2(ℤd) with a random potential of alloy-type. The single-site potential is assumed to be exponentially decaying but not necessarily of fixed sign. In the continuum setting, we require a generalized step-function shape. Wegner estimates are bounds on the average number of eigenvalues in an energy interval of finite box restrictions of these types of operators. In the described situation, a Wegner estimate, which is polynomial in the volume of the box and linear in the size of the energy interval, holds. We apply the established Wegner estimate as an ingredient for a localization proof via multiscale analysis.

  11. Computable error estimates of a finite difference scheme for option pricing in exponential Lévy models

    KAUST Repository

    Kiessling, Jonas

    2014-05-06

    Option prices in exponential Lévy models solve certain partial integro-differential equations. This work focuses on developing novel, computable error approximations for a finite difference scheme that is suitable for solving such PIDEs. The scheme was introduced in (Cont and Voltchkova, SIAM J. Numer. Anal. 43(4):1596-1626, 2005). The main results of this work are new estimates of the dominating error terms, namely the time and space discretisation errors. In addition, the leading order terms of the error estimates are determined in a form that is more amenable to computations. The payoff is only assumed to satisfy an exponential growth condition, it is not assumed to be Lipschitz continuous as in previous works. If the underlying Lévy process has infinite jump activity, then the jumps smaller than some (Formula presented.) are approximated by diffusion. The resulting diffusion approximation error is also estimated, with leading order term in computable form, as well as the dependence of the time and space discretisation errors on this approximation. Consequently, it is possible to determine how to jointly choose the space and time grid sizes and the cut off parameter (Formula presented.). © 2014 Springer Science+Business Media Dordrecht.

  12. Improvement of mobility edge model by using new density of states with exponential tail for organic diode

    International Nuclear Information System (INIS)

    Muhammad Ammar Khan; Sun Jiu-Xun

    2015-01-01

    The mobility edge (ME) model with single Gaussian density of states (DOS) is simplified based on the recent experimental results about the Einstein relationship. The free holes are treated as being non-degenerate, and the trapped holes are dealt with as being degenerate. This enables the integral for the trapped holes to be easily realized in a program. The J–V curves are obtained through solving drift-diffusion equations. When this model is applied to four organic diodes, an obvious deviation between theoretical curves and experimental data is observed. In order to solve this problem, a new DOS with exponential tail is proposed. The results show that the consistence between J–V curves and experimental data based on a new DOS is far better than that based on the Gaussian DOS. The variation of extracted mobility with temperature can be well described by the Arrhenius relationship. (paper)

  13. A Computer-Assisted Learning Model Based on the Digital Game Exponential Reward System

    Science.gov (United States)

    Moon, Man-Ki; Jahng, Surng-Gahb; Kim, Tae-Yong

    2011-01-01

    The aim of this research was to construct a motivational model which would stimulate voluntary and proactive learning using digital game methods offering players more freedom and control. The theoretical framework of this research lays the foundation for a pedagogical learning model based on digital games. We analyzed the game reward system, which…

  14. Wealth distribution, Pareto law, and stretched exponential decay of money: Computer simulations analysis of agent-based models

    Science.gov (United States)

    Aydiner, Ekrem; Cherstvy, Andrey G.; Metzler, Ralf

    2018-01-01

    We study by Monte Carlo simulations a kinetic exchange trading model for both fixed and distributed saving propensities of the agents and rationalize the person and wealth distributions. We show that the newly introduced wealth distribution - that may be more amenable in certain situations - features a different power-law exponent, particularly for distributed saving propensities of the agents. For open agent-based systems, we analyze the person and wealth distributions and find that the presence of trap agents alters their amplitude, leaving however the scaling exponents nearly unaffected. For an open system, we show that the total wealth - for different trap agent densities and saving propensities of the agents - decreases in time according to the classical Kohlrausch-Williams-Watts stretched exponential law. Interestingly, this decay does not depend on the trap agent density, but rather on saving propensities. The system relaxation for fixed and distributed saving schemes are found to be different.

  15. On stability of exponential cosmological solutions with non-static volume factor in the Einstein-Gauss-Bonnet model

    Energy Technology Data Exchange (ETDEWEB)

    Ivashchuk, V.D. [VNIIMS, Center for Gravitation and Fundamental Metrology, Moscow (Russian Federation); Peoples' Friendship University of Russia (RUDN University), Institute of Gravitation and Cosmology, Moscow (Russian Federation)

    2016-08-15

    A (n + 1)-dimensional gravitational model with Gauss-Bonnet term and a cosmological constant term is considered. When ansatz with diagonal cosmological metrics is adopted, the solutions with an exponential dependence of the scale factors, a{sub i} ∝ exp(v{sup i}t), i = 1,.., n, are analyzed for n > 3. We study the stability of the solutions with non-static volume factor, i.e. K(v) = sum {sub k=1}{sup n} v{sup k} ≠ 0. We prove that under a certain restriction R imposed solutions with K(v) > 0 are stable, while solutions with K(v) < 0 are unstable. Certain examples of stable solutions are presented. We show that the solutions with v{sup 1} = v{sup 2} = v{sup 3} = H > 0 and zero variation of the effective gravitational constant are stable if the restriction R is obeyed. (orig.)

  16. Quantitative Analysis of Memristance Defined Exponential Model for Multi-bits Titanium Dioxide Memristor Memory Cell

    Directory of Open Access Journals (Sweden)

    DAOUD, A. A. D.

    2016-05-01

    Full Text Available The ability to store multiple bits in a single memristor based memory cell is a key feature for high-capacity memory packages. Studying multi-bit memristor circuits requires high accuracy in modelling the memristance change. A memristor model based on a novel definition of memristance is proposed. A design of a single memristor memory cell using the proposed model for the platinum electrodes titanium dioxide memristor is illustrated. A specific voltage pulse is used with varying its parameters (amplitude or pulse width to store different number of states in a single memristor. New state variation parameters associated with the utilized model are provided and their effects on write and read processes of memristive multi-states are analysed. PSPICE simulations are also held, and they show a good agreement with the data obtained from the analysis.

  17. Exponential sinusoidal model for predicting temperature inside underground wine cellars from a Spanish region

    Energy Technology Data Exchange (ETDEWEB)

    Mazarron, Fernando R.; Canas, Ignacio [Departamento de Construccion y Vias Rurales, Escuela Tecnica Superior de Ingenieros Agronomos, Universidad Politecnica de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain)

    2008-07-01

    This article develops a mathematical model for determining the annual cycle of air temperature inside traditional underground wine cellars in the Spanish region of ''Ribera del Duero'', known because of the quality of its wines. It modifies the sinusoidal analytical model for soil temperature calculation. Results obtained when contrasting the proposed model with experimental data of three subterranean wine cellars for 2 years are satisfactory. The RMSE is below 1 C and the index of agreement is above 0.96 for the three cellars. When using the average of experimental data corresponding to the 2 years' time, results improve noticeably: the RMSE decreases by more than 30% and the mean d reaches 0.99. This model should be a useful tool for designing underground wine cellars making the most of soil energy advantages. (author)

  18. Generalized, Linear, and Mixed Models

    CERN Document Server

    McCulloch, Charles E; Neuhaus, John M

    2011-01-01

    An accessible and self-contained introduction to statistical models-now in a modernized new editionGeneralized, Linear, and Mixed Models, Second Edition provides an up-to-date treatment of the essential techniques for developing and applying a wide variety of statistical models. The book presents thorough and unified coverage of the theory behind generalized, linear, and mixed models and highlights their similarities and differences in various construction, application, and computational aspects.A clear introduction to the basic ideas of fixed effects models, random effects models, and mixed m

  19. Conditional estimation of exponential random graph models from snowball sampling designs

    NARCIS (Netherlands)

    Pattison, Philippa E.; Robins, Garry L.; Snijders, Tom A. B.; Wang, Peng

    2013-01-01

    A complete survey of a network in a large population may be prohibitively difficult and costly. So it is important to estimate models for networks using data from various network sampling designs, such as link-tracing designs. We focus here on snowball sampling designs, designs in which the members

  20. A note on exponential dispersion models which are invariant under length-biased sampling

    NARCIS (Netherlands)

    Bar-Lev, S.K.; van der Duyn Schouten, F.A.

    2003-01-01

    Length-biased sampling situations may occur in clinical trials, reliability, queueing models, survival analysis and population studies where a proper sampling frame is absent.In such situations items are sampled at rate proportional to their length so that larger values of the quantity being

  1. Inventory Model for Deteriorating Items Involving Fuzzy with Shortages and Exponential Demand

    Directory of Open Access Journals (Sweden)

    Sharmila Vijai Stanly

    2015-11-01

    Full Text Available This paper considers the fuzzy inventory model for deteriorating items for power demand under fully backlogged conditions. We define various factors which are affecting the inventory cost by using the shortage costs. An intention of this paper is to study the inventory modelling through fuzzy environment. Inventory parameters, such as holding cost, shortage cost, purchasing cost and deterioration cost are assumed to be the trapezoidal fuzzy numbers. In addition, an efficient algorithm is developed to determine the optimal policy, and the computational effort and time are small for the proposed algorithm. It is simple to implement, and our approach is illustrated through some numerical examples to demonstrate the application and the performance of the proposed methodology.

  2. Bayesian exponential random graph modeling of whole-brain structural networks across lifespan

    OpenAIRE

    Sinke, Michel R T; Dijkhuizen, Rick M; Caimo, Alberto; Stam, Cornelis J; Otte, Wim

    2016-01-01

    Descriptive neural network analyses have provided important insights into the organization of structural and functional networks in the human brain. However, these analyses have limitations for inter-subject or between-group comparisons in which network sizes and edge densities may differ, such as in studies on neurodevelopment or brain diseases. Furthermore, descriptive neural network analyses lack an appropriate generic null model and a unifying framework. These issues may be solved with an...

  3. Neurophysiological bases of exponential sensory decay and top-down memory retrieval: a model.

    Science.gov (United States)

    Zylberberg, Ariel; Dehaene, Stanislas; Mindlin, Gabriel B; Sigman, Mariano

    2009-01-01

    Behavioral observations suggest that multiple sensory elements can be maintained for a short time, forming a perceptual buffer which fades after a few hundred milliseconds. Only a subset of this perceptual buffer can be accessed under top-down control and broadcasted to working memory and consciousness. In turn, single-cell studies in awake-behaving monkeys have identified two distinct waves of response to a sensory stimulus: a first transient response largely determined by stimulus properties and a second wave dependent on behavioral relevance, context and learning. Here we propose a simple biophysical scheme which bridges these observations and establishes concrete predictions for neurophsyiological experiments in which the temporal interval between stimulus presentation and top-down allocation is controlled experimentally. Inspired in single-cell observations, the model involves a first transient response and a second stage of amplification and retrieval, which are implemented biophysically by distinct operational modes of the same circuit, regulated by external currents. We explicitly investigated the neuronal dynamics, the memory trace of a presented stimulus and the probability of correct retrieval, when these two stages were bracketed by a temporal gap. The model predicts correctly the dependence of performance with response times in interference experiments suggesting that sensory buffering does not require a specific dedicated mechanism and establishing a direct link between biophysical manipulations and behavioral observations leading to concrete predictions.

  4. Neurophysiological bases of exponential sensory decay and top-down memory retrieval: a model

    Directory of Open Access Journals (Sweden)

    Ariel Zylberberg

    2009-03-01

    Full Text Available Behavioral observations suggest that multiple sensory elements can be maintained for a short time, forming a perceptual buffer which fades after a few hundred milliseconds. Only a subset of this perceptual buffer can be accessed under top-down control and broadcasted to working memory and consciousness. In turn, single-cell studies in awake-behaving monkeys have identified two distinct waves of response to a sensory stimulus: a first transient response largely determined by stimulus properties and a second wave dependent on behavioral relevance, context and learning. Here we propose a simple biophysical scheme which bridges these observations and establishes concrete predictions for neurophsyiological experiments in which the temporal interval between stimulus presentation and top-down allocation is controlled experimentally. Inspired in single-cell observations, the model involves a first transient response and a second stage of amplification and retrieval, which are implemented biophysically by distinct operational modes of the same circuit, regulated by external currents. We explicitly investigated the neuronal dynamics, the memory trace of a presented stimulus and the probability of correct retrieval, when these two stages were bracketed by a temporal gap. The model predicts correctly the dependence of performance with response times in interference experiments suggesting that sensory buffering does not require a specific dedicated mechanism and establishing a direct link between biophysical manipulations and behavioral observations leading to concrete predictions.

  5. Lake Area Analysis Using Exponential Smoothing Model and Long Time-Series Landsat Images in Wuhan, China

    Directory of Open Access Journals (Sweden)

    Gonghao Duan

    2018-01-01

    Full Text Available The loss of lake area significantly influences the climate change in a region, and this loss represents a serious and unavoidable challenge to maintaining ecological sustainability under the circumstances of lakes that are being filled. Therefore, mapping and forecasting changes in the lake is critical for protecting the environment and mitigating ecological problems in the urban district. We created an accessible map displaying area changes for 82 lakes in the Wuhan city using remote sensing data in conjunction with visual interpretation by combining field data with Landsat 2/5/7/8 Thematic Mapper (TM time-series images for the period 1987–2013. In addition, we applied a quadratic exponential smoothing model to forecast lake area changes in Wuhan city. The map provides, for the first time, estimates of lake development in Wuhan using data required for local-scale studies. The model predicted a lake area reduction of 18.494 km2 in 2015. The average error reached 0.23 with a correlation coefficient of 0.98, indicating that the model is reliable. The paper provided a numerical analysis and forecasting method to provide a better understanding of lake area changes. The modeling and mapping results can help assess aquatic habitat suitability and property planning for Wuhan lakes.

  6. An exponential strain dependent Rusinek–Klepaczko model for flow stress prediction in austenitic stainless steel 304 at elevated temperatures

    Directory of Open Access Journals (Sweden)

    Amit Kumar Gupta

    2014-10-01

    Full Text Available In this paper, to predict flow stress of Austenitic Stainless Steel (ASS 304 at elevated temperatures the extended Rusinek–Klepaczko (RK model has been modified using an exponential strain dependent term for dynamic strain aging (DSA region. Isothermal tensile tests are conducted on ASS 304 for a temperature range of 323–923 K with an interval of 50 K and at strain rates of 0.0001 s−1, 0.001 s−1, 0.01 s−1 and 0.1 s−1. DSA phenomenon is observed from 623 to 923 K at 0.0001 s−1, 0.001 s−1 and 0.01 s−1. Material constants are calculated using data obtained from these tensile tests for non-DSA and DSA region separately. The predicted results from the RK model are compared with the experimental data to check the accuracy of the constitutive relation. It is observed that to find out the constants of this model, some initial assumptions are required, and these initial values affect the predicted values. Hence, Genetic Algorithm (GA is used to optimize the constants for RK model. Statistical measures such as the correlation coefficient, the average absolute error and standard deviation are used to measure the accuracy of the model. The resulting values of the correlation coefficient for ASS 304 for non-DSA and DSA region using modified extended RK model are 0.9828 and 0.9701. This modified, extended RK model is compared with Johnson–Cook (JC, Zerilli–Armstrong (ZA and Arrhenius models and it is observed that specifically in DSA region, the modified extended RK model gives highly accurate predictions.

  7. A Nonlinear Super-Exponential Rational Model of Speculative Financial Bubbles

    Science.gov (United States)

    Sornette, D.; Andersen, J. V.

    Keeping a basic tenet of economic theory, rational expectations, we model the nonlinear positive feedback between agents in the stock market as an interplay between nonlinearity and multiplicative noise. The derived hyperbolic stochastic finite-time singularity formula transforms a Gaussian white noise into a rich time series possessing all the stylized facts of empirical prices, as well as accelerated speculative bubbles preceding crashes. We use the formula to invert the two years of price history prior to the recent crash on the Nasdaq (April 2000) and prior to the crash in the Hong Kong market associated with the Asian crisis in early 1994. These complex price dynamics are captured using only one exponent controlling the explosion, the variance and mean of the underlying random walk. This offers a new and powerful detection tool of speculative bubbles and herding behavior.

  8. Modified stretched exponential model of computer system resources management limitations-The case of cache memory

    Science.gov (United States)

    Strzałka, Dominik; Dymora, Paweł; Mazurek, Mirosław

    2018-02-01

    In this paper we present some preliminary results in the field of computer systems management with relation to Tsallis thermostatistics and the ubiquitous problem of hardware limited resources. In the case of systems with non-deterministic behaviour, management of their resources is a key point that guarantees theirs acceptable performance and proper working. This is very wide problem that stands for many challenges in financial, transport, water and food, health, etc. areas. We focus on computer systems with attention paid to cache memory and propose to use an analytical model that is able to connect non-extensive entropy formalism, long-range dependencies, management of system resources and queuing theory. Obtained analytical results are related to the practical experiment showing interesting and valuable results.

  9. Moment formalisms applied to a solvable model with a quantum phase transition (I). Exponential moment methods

    International Nuclear Information System (INIS)

    Witte, N.S.; Shankar, R.

    1999-01-01

    We examine the Ising chain in a transverse field at zero temperature from the point of view of a family of moment formalisms based upon the cumulant generating function, where we find exact solutions for the generating functions and cumulants at arbitrary couplings and hence for both the ordered and disordered phases of the model. In a t-expansion analysis, the exact Horn-Weinstein function E(t) has cuts along an infinite set of curves in the complex Jt-plane which are confined to the left-hand half-plane ImJt < -((1)/(4)) for the phase containing the trial state (disordered), but are not so for the other phase (ordered). For finite couplings the expansion has a finite radius of convergence. Asymptotic forms for this function exhibit a crossover at the critical point, giving the excited state gap in the ground state sector for the disordered phase, and the first excited state gap in the ordered phase. Convergence of the t-expansion with respect to truncation order is found in the disordered phase right up to the critical point, for both the ground state energy and the excited state gap. However, convergence is found in only one of the connected moments expansions (CMX), the CMX-LT, and the ground state energy shows convergence right to the criticalpoint again, although to a limited accuracy

  10. Artificial intelligence and exponential technologies business models evolution and new investment opportunities

    CERN Document Server

    Corea, Francesco

    2017-01-01

    Artificial Intelligence is a huge breakthrough technology that is changing our world. It requires some degrees of technical skills to be developed and understood, so in this book we are going to first of all define AI and categorize it with a non-technical language. We will explain how we reached this phase and what historically happened to artificial intelligence in the last century. Recent advancements in machine learning, neuroscience, and artificial intelligence technology will be addressed, and new business models introduced for and by artificial intelligence research will be analyzed. Finally, we will describe the investment landscape, through the quite comprehensive study of almost 14,000 AI companies and we will discuss important features and characteristics of both AI investors as well as investments. This is the “Internet of Thinks” era. AI is revolutionizing the world we live in. It is augmenting the human experiences, and it targets to amplify human intelligence in a future not so distant from...

  11. ARRHENIUS MODEL FOR HIGH-TEMPERATURE GLASS VISCOSITY WITH A CONSTANT PRE-EXPONENTIAL FACTOR

    International Nuclear Information System (INIS)

    Hrma, Pavel R.

    2008-01-01

    A simplified form of the Arrhenius equation, ln η = A + B(x)/T, where η is the viscosity, T the temperature, x the composition vector, and A and B the Arrhenius coefficients, was fitted to glass-viscosity data for the processing temperature range (the range at which the viscosity is within 1 to 103 Pa.s) while setting A = constant and treating B(x) as a linear function of mass fractions of major components. Fitting the Arrhenius equation to over 550 viscosity data of commercial glasses and approximately 1000 viscosity data of glasses for nuclear-waste glasses resulted in the A values of -11.35 and -11.48, respectively. The R2 value ranged from 0.92 to 0.99 for commercial glasses and was 0.98 for waste glasses. The Arrhenius models estimate viscosities for melts of commercial glasses containing 42 to 84 mass% SiO2 within the temperature range of 1100 to 1550 C and viscosity range of 5 to 400 Pa.s and for waste glasses containing 32 to 60 mass% SiO2 within the temperature range of 850 to 1450 C and viscosity range of 0.4 to 250 Pa.s

  12. An exponential distribution

    International Nuclear Information System (INIS)

    Anon

    2009-01-01

    In this presentation author deals with the probabilistic evaluation of product life on the example of the exponential distribution. The exponential distribution is special one-parametric case of the weibull distribution.

  13. Analysis and Modeling for Short- to Medium-Term Load Forecasting Using a Hybrid Manifold Learning Principal Component Model and Comparison with Classical Statistical Models (SARIMAX, Exponential Smoothing and Artificial Intelligence Models (ANN, SVM: The Case of Greek Electricity Market

    Directory of Open Access Journals (Sweden)

    George P. Papaioannou

    2016-08-01

    Full Text Available In this work we propose a new hybrid model, a combination of the manifold learning Principal Components (PC technique and the traditional multiple regression (PC-regression, for short and medium-term forecasting of daily, aggregated, day-ahead, electricity system-wide load in the Greek Electricity Market for the period 2004–2014. PC-regression is shown to effectively capture the intraday, intraweek and annual patterns of load. We compare our model with a number of classical statistical approaches (Holt-Winters exponential smoothing of its generalizations Error-Trend-Seasonal, ETS models, the Seasonal Autoregressive Moving Average with exogenous variables, Seasonal Autoregressive Integrated Moving Average with eXogenous (SARIMAX model as well as with the more sophisticated artificial intelligence models, Artificial Neural Networks (ANN and Support Vector Machines (SVM. Using a number of criteria for measuring the quality of the generated in-and out-of-sample forecasts, we have concluded that the forecasts of our hybrid model outperforms the ones generated by the other model, with the SARMAX model being the next best performing approach, giving comparable results. Our approach contributes to studies aimed at providing more accurate and reliable load forecasting, prerequisites for an efficient management of modern power systems.

  14. An exponential growth model with decreasing r captures bottom-up effects on the population growth of Aphis glycines Matsumura (Hemiptera: Aphididae)

    NARCIS (Netherlands)

    Costamagna, A.C.; Werf, van der W.; Bianchi, F.J.J.A.; Landis, D.A.

    2007-01-01

    1 There is ample evidence that the life history and population dynamics of aphids are closely linked to plant phenology. Based on life table studies, it has been proposed that the growth of aphid populations could be modeled with an exponential growth model, with r decreasing linearly with time.

  15. Hyperbolic Cosine–Exponentiated Exponential Lifetime Distribution and its Application in Reliability

    Directory of Open Access Journals (Sweden)

    Omid Kharazmi

    2017-02-01

    Full Text Available Recently, Kharazmi and Saadatinik (2016 introduced a new family of lifetime distributions called hyperbolic cosine – F (HCF distribution. In the present paper, it is focused on a special case of HCF family with exponentiated exponential distribution as a baseline distribution (HCEE. Various properties of the proposed distribution including explicit expressions for the moments, quantiles, mode, moment generating function, failure rate function, mean residual lifetime, order statistics and expression of the entropy are derived. Estimating parameters of HCEE distribution are obtained by eight estimation methods: maximum likelihood, Bayesian, maximum product of spacings, parametric bootstrap, non-parametric bootstrap, percentile, least-squares and weighted least-squares. A simulation study is conducted to examine the bias, mean square error of the maximum likelihood estimators. Finally, one real data set has been analyzed for illustrative purposes and it is observed that the proposed model fits better than Weibull, gamma and generalized exponential distributions.

  16. Estimating the decline in excess risk of chronic obstructive pulmonary disease following quitting smoking - a systematic review based on the negative exponential model.

    Science.gov (United States)

    Lee, Peter N; Fry, John S; Forey, Barbara A

    2014-03-01

    We quantified the decline in COPD risk following quitting using the negative exponential model, as previously carried out for other smoking-related diseases. We identified 14 blocks of RRs (from 11 studies) comparing current smokers, former smokers (by time quit) and never smokers, some studies providing sex-specific blocks. Corresponding pseudo-numbers of cases and controls/at risk formed the data for model-fitting. We estimated the half-life (H, time since quit when the excess risk becomes half that for a continuing smoker) for each block, except for one where no decline with quitting was evident, and H was not estimable. For the remaining 13 blocks, goodness-of-fit to the model was generally adequate, the combined estimate of H being 13.32 (95% CI 11.86-14.96) years. There was no heterogeneity in H, overall or by various studied sources. Sensitivity analyses allowing for reverse causation or different assumed times for the final quitting period little affected the results. The model summarizes quitting data well. The estimate of 13.32years is substantially larger than recent estimates of 4.40years for ischaemic heart disease and 4.78years for stroke, and also larger than the 9.93years for lung cancer. Heterogeneity was unimportant for COPD, unlike for the other three diseases. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Modeling Exponential Population Growth

    Science.gov (United States)

    McCormick, Bonnie

    2009-01-01

    The concept of population growth patterns is a key component of understanding evolution by natural selection and population dynamics in ecosystems. The National Science Education Standards (NSES) include standards related to population growth in sections on biological evolution, interdependence of organisms, and science in personal and social…

  18. Ammonium removal from aqueous solutions by clinoptilolite: determination of isotherm and thermodynamic parameters and comparison of kinetics by the double exponential model and conventional kinetic models.

    Science.gov (United States)

    Tosun, Ismail

    2012-03-01

    The adsorption isotherm, the adsorption kinetics, and the thermodynamic parameters of ammonium removal from aqueous solution by using clinoptilolite in aqueous solution was investigated in this study. Experimental data obtained from batch equilibrium tests have been analyzed by four two-parameter (Freundlich, Langmuir, Tempkin and Dubinin-Radushkevich (D-R)) and four three-parameter (Redlich-Peterson (R-P), Sips, Toth and Khan) isotherm models. D-R and R-P isotherms were the models that best fitted to experimental data over the other two- and three-parameter models applied. The adsorption energy (E) from the D-R isotherm was found to be approximately 7 kJ/mol for the ammonium-clinoptilolite system, thereby indicating that ammonium is adsorbed on clinoptilolite by physisorption. Kinetic parameters were determined by analyzing the nth-order kinetic model, the modified second-order model and the double exponential model, and each model resulted in a coefficient of determination (R(2)) of above 0.989 with an average relative error lower than 5%. A Double Exponential Model (DEM) showed that the adsorption process develops in two stages as rapid and slow phase. Changes in standard free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) of ammonium-clinoptilolite system were estimated by using the thermodynamic equilibrium coefficients.

  19. Ammonium Removal from Aqueous Solutions by Clinoptilolite: Determination of Isotherm and Thermodynamic Parameters and Comparison of Kinetics by the Double Exponential Model and Conventional Kinetic Models

    Directory of Open Access Journals (Sweden)

    İsmail Tosun

    2012-03-01

    Full Text Available The adsorption isotherm, the adsorption kinetics, and the thermodynamic parameters of ammonium removal from aqueous solution by using clinoptilolite in aqueous solution was investigated in this study. Experimental data obtained from batch equilibrium tests have been analyzed by four two-parameter (Freundlich, Langmuir, Tempkin and Dubinin-Radushkevich (D-R and four three-parameter (Redlich-Peterson (R-P, Sips, Toth and Khan isotherm models. D-R and R-P isotherms were the models that best fitted to experimental data over the other two- and three-parameter models applied. The adsorption energy (E from the D-R isotherm was found to be approximately 7 kJ/mol for the ammonium-clinoptilolite system, thereby indicating that ammonium is adsorbed on clinoptilolite by physisorption. Kinetic parameters were determined by analyzing the nth-order kinetic model, the modified second-order model and the double exponential model, and each model resulted in a coefficient of determination (R2 of above 0.989 with an average relative error lower than 5%. A Double Exponential Model (DEM showed that the adsorption process develops in two stages as rapid and slow phase. Changes in standard free energy (∆G°, enthalpy (∆H° and entropy (∆S° of ammonium-clinoptilolite system were estimated by using the thermodynamic equilibrium coefficients.

  20. Boundary layer flow of MHD generalized Maxwell fluid over an exponentially accelerated infinite vertical surface with slip and Newtonian heating at the boundary

    Science.gov (United States)

    Imran, M. A.; Riaz, M. B.; Shah, N. A.; Zafar, A. A.

    2018-03-01

    The aim of this article is to investigate the unsteady natural convection flow of Maxwell fluid with fractional derivative over an exponentially accelerated infinite vertical plate. Moreover, slip condition, radiation, MHD and Newtonian heating effects are also considered. A modern definition of fractional derivative operator recently introduced by Caputo and Fabrizio has been used to formulate the fractional model. Semi analytical solutions of the dimensionless problem are obtained by employing Stehfest's and Tzou's algorithms in order to find the inverse Laplace transforms for temperature and velocity fields. Temperature and rate of heat transfer for non-integer and integer order derivatives are computed and reduced to some known solutions from the literature. Finally, in order to get insight of the physical significance of the considered problem regarding velocity and Nusselt number, some graphical illustrations are made using Mathcad software. As a result, in comparison between Maxwell and viscous fluid (fractional and ordinary) we found that viscous (fractional and ordinary) fluids are swiftest than Maxwell (fractional and ordinary) fluids.

  1. An Exponential Regression Model Reveals the Continuous Development of B Cell Subpopulations Used as Reference Values in Children

    Directory of Open Access Journals (Sweden)

    Christoph Königs

    2018-05-01

    Full Text Available B lymphocytes are key players in humoral immunity, expressing diverse surface immunoglobulin receptors directed against specific antigenic epitopes. The development and profile of distinct subpopulations have gained awareness in the setting of primary immunodeficiency disorders, primary or secondary autoimmunity and as therapeutic targets of specific antibodies in various diseases. The major B cell subpopulations in peripheral blood include naïve (CD19+ or CD20+IgD+CD27−, non-switched memory (CD19+ or CD20+IgD+CD27+ and switched memory B cells (CD19+ or CD20+IgD−CD27+. Furthermore, less common B cell subpopulations have also been described as having a role in the suppressive capacity of B cells to maintain self-tolerance. Data on reference values for B cell subpopulations are limited and only available for older age groups, neglecting the continuous process of human B cell development in children and adolescents. This study was designed to establish an exponential regression model to produce continuous reference values for main B cell subpopulations to reflect the dynamic maturation of the human immune system in healthy children.

  2. Interspike interval correlation in a stochastic exponential integrate-and-fire model with subthreshold and spike-triggered adaptation.

    Science.gov (United States)

    Shiau, LieJune; Schwalger, Tilo; Lindner, Benjamin

    2015-06-01

    We study the spike statistics of an adaptive exponential integrate-and-fire neuron stimulated by white Gaussian current noise. We derive analytical approximations for the coefficient of variation and the serial correlation coefficient of the interspike interval assuming that the neuron operates in the mean-driven tonic firing regime and that the stochastic input is weak. Our result for the serial correlation coefficient has the form of a geometric sequence and is confirmed by the comparison to numerical simulations. The theory predicts various patterns of interval correlations (positive or negative at lag one, monotonically decreasing or oscillating) depending on the strength of the spike-triggered and subthreshold components of the adaptation current. In particular, for pure subthreshold adaptation we find strong positive ISI correlations that are usually ascribed to positive correlations in the input current. Our results i) provide an alternative explanation for interspike-interval correlations observed in vivo, ii) may be useful in fitting point neuron models to experimental data, and iii) may be instrumental in exploring the role of adaptation currents for signal detection and signal transmission in single neurons.

  3. Intravoxel incoherent motion diffusion-weighted imaging in the liver: comparison of mono-, bi- and tri-exponential modelling at 3.0-T

    International Nuclear Information System (INIS)

    Cercueil, Jean-Pierre; Petit, Jean-Michel; Nougaret, Stephanie; Pierredon-Foulongne, Marie-Ange; Schembri, Valentina; Delhom, Elisabeth; Guiu, Boris; Soyer, Philippe; Fohlen, Audrey; Schmidt, Sabine; Denys, Alban; Aho, Serge

    2015-01-01

    To determine whether a mono-, bi- or tri-exponential model best fits the intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) signal of normal livers. The pilot and validation studies were conducted in 38 and 36 patients with normal livers, respectively. The DWI sequence was performed using single-shot echoplanar imaging with 11 (pilot study) and 16 (validation study) b values. In each study, data from all patients were used to model the IVIM signal of normal liver. Diffusion coefficients (D i ± standard deviations) and their fractions (f i ± standard deviations) were determined from each model. The models were compared using the extra sum-of-squares test and information criteria. The tri-exponential model provided a better fit than both the bi- and mono-exponential models. The tri-exponential IVIM model determined three diffusion compartments: a slow (D 1 = 1.35 ± 0.03 x 10 -3 mm 2 /s; f 1 = 72.7 ± 0.9 %), a fast (D 2 = 26.50 ± 2.49 x 10 -3 mm 2 /s; f 2 = 13.7 ± 0.6 %) and a very fast (D 3 = 404.00 ± 43.7 x 10 -3 mm 2 /s; f 3 = 13.5 ± 0.8 %) diffusion compartment [results from the validation study]. The very fast compartment contributed to the IVIM signal only for b values ≤15 s/mm 2 The tri-exponential model provided the best fit for IVIM signal decay in the liver over the 0-800 s/mm 2 range. In IVIM analysis of normal liver, a third very fast (pseudo)diffusion component might be relevant. (orig.)

  4. Exponential Expansion in Evolutionary Economics

    DEFF Research Database (Denmark)

    Frederiksen, Peter; Jagtfelt, Tue

    2013-01-01

    This article attempts to solve current problems of conceptual fragmentation within the field of evolutionary economics. One of the problems, as noted by a number of observers, is that the field suffers from an assemblage of fragmented and scattered concepts (Boschma and Martin 2010). A solution...... to this problem is proposed in the form of a model of exponential expansion. The model outlines the overall structure and function of the economy as exponential expansion. The pictographic model describes four axiomatic concepts and their exponential nature. The interactive, directional, emerging and expanding...... concepts are described in detail. Taken together it provides the rudimentary aspects of an economic system within an analytical perspective. It is argued that the main dynamic processes of the evolutionary perspective can be reduced to these four concepts. The model and concepts are evaluated in the light...

  5. Generalized Ordinary Differential Equation Models.

    Science.gov (United States)

    Miao, Hongyu; Wu, Hulin; Xue, Hongqi

    2014-10-01

    Existing estimation methods for ordinary differential equation (ODE) models are not applicable to discrete data. The generalized ODE (GODE) model is therefore proposed and investigated for the first time. We develop the likelihood-based parameter estimation and inference methods for GODE models. We propose robust computing algorithms and rigorously investigate the asymptotic properties of the proposed estimator by considering both measurement errors and numerical errors in solving ODEs. The simulation study and application of our methods to an influenza viral dynamics study suggest that the proposed methods have a superior performance in terms of accuracy over the existing ODE model estimation approach and the extended smoothing-based (ESB) method.

  6. Estimating exponential scheduling preferences

    DEFF Research Database (Denmark)

    Hjorth, Katrine; Börjesson, Maria; Engelson, Leonid

    2015-01-01

    of car drivers' route and mode choice under uncertain travel times. Our analysis exposes some important methodological issues related to complex non-linear scheduling models: One issue is identifying the point in time where the marginal utility of being at the destination becomes larger than the marginal......Different assumptions about travelers' scheduling preferences yield different measures of the cost of travel time variability. Only few forms of scheduling preferences provide non-trivial measures which are additive over links in transport networks where link travel times are arbitrarily...... utility of being at the origin. Another issue is that models with the exponential marginal utility formulation suffer from empirical identification problems. Though our results are not decisive, they partly support the constant-affine specification, in which the value of travel time variability...

  7. An explicit asymptotic model for the surface wave in a viscoelastic half-space based on applying Rabotnov's fractional exponential integral operators

    Science.gov (United States)

    Wilde, M. V.; Sergeeva, N. V.

    2018-05-01

    An explicit asymptotic model extracting the contribution of a surface wave to the dynamic response of a viscoelastic half-space is derived. Fractional exponential Rabotnov's integral operators are used for describing of material properties. The model is derived by extracting the principal part of the poles corresponding to the surface waves after applying Laplace and Fourier transforms. The simplified equations for the originals are written by using power series expansions. Padè approximation is constructed to unite short-time and long-time models. The form of this approximation allows to formulate the explicit model using a fractional exponential Rabotnov's integral operator with parameters depending on the properties of surface wave. The applicability of derived models is studied by comparing with the exact solutions of a model problem. It is revealed that the model based on Padè approximation is highly effective for all the possible time domains.

  8. Universality in stochastic exponential growth.

    Science.gov (United States)

    Iyer-Biswas, Srividya; Crooks, Gavin E; Scherer, Norbert F; Dinner, Aaron R

    2014-07-11

    Recent imaging data for single bacterial cells reveal that their mean sizes grow exponentially in time and that their size distributions collapse to a single curve when rescaled by their means. An analogous result holds for the division-time distributions. A model is needed to delineate the minimal requirements for these scaling behaviors. We formulate a microscopic theory of stochastic exponential growth as a Master Equation that accounts for these observations, in contrast to existing quantitative models of stochastic exponential growth (e.g., the Black-Scholes equation or geometric Brownian motion). Our model, the stochastic Hinshelwood cycle (SHC), is an autocatalytic reaction cycle in which each molecular species catalyzes the production of the next. By finding exact analytical solutions to the SHC and the corresponding first passage time problem, we uncover universal signatures of fluctuations in exponential growth and division. The model makes minimal assumptions, and we describe how more complex reaction networks can reduce to such a cycle. We thus expect similar scalings to be discovered in stochastic processes resulting in exponential growth that appear in diverse contexts such as cosmology, finance, technology, and population growth.

  9. Cosmological models in general relativity

    Indian Academy of Sciences (India)

    Cosmological models in general relativity. B B PAUL. Department of Physics, Nowgong College, Nagaon, Assam, India. MS received 4 October 2002; revised 6 March 2003; accepted 21 May 2003. Abstract. LRS Bianchi type-I space-time filled with perfect fluid is considered here with deceler- ation parameter as variable.

  10. Extended Poisson Exponential Distribution

    Directory of Open Access Journals (Sweden)

    Anum Fatima

    2015-09-01

    Full Text Available A new mixture of Modified Exponential (ME and Poisson distribution has been introduced in this paper. Taking the Maximum of Modified Exponential random variable when the sample size follows a zero truncated Poisson distribution we have derived the new distribution, named as Extended Poisson Exponential distribution. This distribution possesses increasing and decreasing failure rates. The Poisson-Exponential, Modified Exponential and Exponential distributions are special cases of this distribution. We have also investigated some mathematical properties of the distribution along with Information entropies and Order statistics of the distribution. The estimation of parameters has been obtained using the Maximum Likelihood Estimation procedure. Finally we have illustrated a real data application of our distribution.

  11. Dynamics of exponential maps

    OpenAIRE

    Rempe, Lasse

    2003-01-01

    This thesis contains several new results about the dynamics of exponential maps $z\\mapsto \\exp(z)+\\kappa$. In particular, we prove that periodic external rays of exponential maps with nonescaping singular value always land. This is an analog of a theorem of Douady and Hubbard for polynomials. We also answer a question of Herman, Baker and Rippon by showing that the boundary of an unbounded exponential Siegel disk always contains the singular value. In addition to the presentation of new resul...

  12. Exponential Synchronization of Uncertain Complex Dynamical Networks with Delay Coupling

    International Nuclear Information System (INIS)

    Wang Lifu; Kong Zhi; Jing Yuanwei

    2010-01-01

    This paper studies the global exponential synchronization of uncertain complex delayed dynamical networks. The network model considered is general dynamical delay networks with unknown network structure and unknown coupling functions but bounded. Novel delay-dependent linear controllers are designed via the Lyapunov stability theory. Especially, it is shown that the controlled networks are globally exponentially synchronized with a given convergence rate. An example of typical dynamical network of this class, having the Lorenz system at each node, has been used to demonstrate and verify the novel design proposed. And, the numerical simulation results show the effectiveness of proposed synchronization approaches. (general)

  13. Cosmology with exponential potentials

    International Nuclear Information System (INIS)

    Kehagias, Alex; Kofinas, Georgios

    2004-01-01

    We examine in the context of general relativity the dynamics of a spatially flat Robertson-Walker universe filled with a classical minimally coupled scalar field φ of exponential potential V(φ) ∼ exp(-μφ) plus pressureless baryonic matter. This system is reduced to a first-order ordinary differential equation for Ω φ (w φ ) or q(w φ ), providing direct evidence on the acceleration/deceleration properties of the system. As a consequence, for positive potentials, passage into acceleration not at late times is generically a feature of the system for any value of μ, even when the late-times attractors are decelerating. Furthermore, the structure formation bound, together with the constraints Ω m0 ∼ 0.25 - 0.3, -1 ≤ w φ0 ≤ -0.6, provides, independently of initial conditions and other parameters, the necessary condition 0 N , while the less conservative constraint -1 ≤ w φ ≤ -0.93 gives 0 N . Special solutions are found to possess intervals of acceleration. For the almost cosmological constant case w φ ∼ -1, the general relation Ω φ (w φ ) is obtained. The generic (nonlinearized) late-times solution of the system in the plane (w φ , Ω φ ) or (w φ , q) is also derived

  14. Advantage of make-to-stock strategy based on linear mixed-effect model: a comparison with regression, autoregressive, times series, and exponential smoothing models

    Directory of Open Access Journals (Sweden)

    Yu-Pin Liao

    2017-11-01

    Full Text Available In the past few decades, demand forecasting has become relatively difficult due to rapid changes in the global environment. This research illustrates the use of the make-to-stock (MTS production strategy in order to explain how forecasting plays an essential role in business management. The linear mixed-effect (LME model has been extensively developed and is widely applied in various fields. However, no study has used the LME model for business forecasting. We suggest that the LME model be used as a tool for prediction and to overcome environment complexity. The data analysis is based on real data in an international display company, where the company needs accurate demand forecasting before adopting a MTS strategy. The forecasting result from the LME model is compared to the commonly used approaches, including the regression model, autoregressive model, times series model, and exponential smoothing model, with the results revealing that prediction performance provided by the LME model is more stable than using the other methods. Furthermore, product types in the data are regarded as a random effect in the LME model, hence demands of all types can be predicted simultaneously using a single LME model. However, some approaches require splitting the data into different type categories, and then predicting the type demand by establishing a model for each type. This feature also demonstrates the practicability of the LME model in real business operations.

  15. An exponential chemorheological model for viscosity dependence on degree-of-cure of a polyfurfuryl alcohol resin during the post-gel curing stage

    DEFF Research Database (Denmark)

    Dominguez, J.C.; Oliet, M.; Alonso, María Virginia

    2016-01-01

    of modeling the evolution of the complex viscosity using a widely used chemorheological model such as the Arrhenius model for each tested temperature, the change of the complex viscosity as a function of the degree-of-cure was predicted using a new exponential type model. In this model, the logarithm...... of the normalized degree-of-cure is used to predict the behavior of the logarithm of the normalized complex viscosity. The model shows good quality of fitting with the experimental data for 4 and 6 wt % amounts of catalyst. For the 2 wt % amount of catalyst, scattered data leads to a slightly lower quality...

  16. Generalized waste package containment model

    International Nuclear Information System (INIS)

    Liebetrau, A.M.; Apted, M.J.

    1985-02-01

    The US Department of Energy (DOE) is developing a performance assessment strategy to demonstrate compliance with standards and technical requirements of the Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC) for the permanent disposal of high-level nuclear wastes in geologic repositories. One aspect of this strategy is the development of a unified performance model of the entire geologic repository system. Details of a generalized waste package containment (WPC) model and its relationship with other components of an overall repository model are presented in this paper. The WPC model provides stochastically determined estimates of the distributions of times-to-failure of the barriers of a waste package by various corrosion mechanisms and degradation processes. The model consists of a series of modules which employ various combinations of stochastic (probabilistic) and mechanistic process models, and which are individually designed to reflect the current state of knowledge. The WPC model is designed not only to take account of various site-specific conditions and processes, but also to deal with a wide range of site, repository, and waste package configurations. 11 refs., 3 figs., 2 tabs

  17. Optimization of the output of a solar cell per theoretical and experimental study of the models to one and two exponential

    Directory of Open Access Journals (Sweden)

    Benyoucef B.

    2012-06-01

    Full Text Available The production of electricity based on the conversion of the sunlight by photovoltaic cells containing crystalline silicon is the way most used on the technological and industrial level Consequently, the development of the terrestrial applications for the energy production requires high-output cells and low cost.The aim of our work is to present a comparative study between both theoretical and experimental models of a solar cell based silicon type PHYWE (connecting four cells in series of 80 mm diameter to improve photovoltaic performance.This study led to the determination of the parameters of the cell starting from the current-voltage characteristic, the influence of luminous flow on this characteristic as well as the effect of the incidental photons on the solar cell. We justify the interest to use the model with two exponential for the optimization of the output by underlining the insufficiency of the model to one exponential.

  18. Multivariate covariance generalized linear models

    DEFF Research Database (Denmark)

    Bonat, W. H.; Jørgensen, Bent

    2016-01-01

    are fitted by using an efficient Newton scoring algorithm based on quasi-likelihood and Pearson estimating functions, using only second-moment assumptions. This provides a unified approach to a wide variety of types of response variables and covariance structures, including multivariate extensions......We propose a general framework for non-normal multivariate data analysis called multivariate covariance generalized linear models, designed to handle multivariate response variables, along with a wide range of temporal and spatial correlation structures defined in terms of a covariance link...... function combined with a matrix linear predictor involving known matrices. The method is motivated by three data examples that are not easily handled by existing methods. The first example concerns multivariate count data, the second involves response variables of mixed types, combined with repeated...

  19. On Uniform Exponential Trichotomy in Banach Spaces

    Directory of Open Access Journals (Sweden)

    Kovacs Monteola Ilona

    2014-06-01

    Full Text Available In this paper we consider three concepts of uniform exponential trichotomy on the half-line in the general framework of evolution operators in Banach spaces. We obtain a systematic classification of uniform exponential trichotomy concepts and the connections between them.

  20. Exponential Potential versus Dark Matter

    Science.gov (United States)

    1993-10-15

    scale of the solar system. Galaxy, Dark matter , Galaxy cluster, Gravitation, Quantum gravity...A two parameter exponential potential explains the anomalous kinematics of galaxies and galaxy clusters without need for the myriad ad hoc dark ... matter models currently in vogue. It also explains much about the scales and structures of galaxies and galaxy clusters while being quite negligible on the

  1. Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models

    DEFF Research Database (Denmark)

    Van Driel, A.F.; Nikolaev, I.S.; Vergeer, P.

    2007-01-01

    We present a statistical analysis of time-resolved spontaneous emission decay curves from ensembles of emitters, such as semiconductor quantum dots, with the aim of interpreting ubiquitous non-single-exponential decay. Contrary to what is widely assumed, the density of excited emitters...... and the intensity in an emission decay curve are not proportional, but the density is a time integral of the intensity. The integral relation is crucial to correctly interpret non-single-exponential decay. We derive the proper normalization for both a discrete and a continuous distribution of rates, where every...... decay component is multiplied by its radiative decay rate. A central result of our paper is the derivation of the emission decay curve when both radiative and nonradiative decays are independently distributed. In this case, the well-known emission quantum efficiency can no longer be expressed...

  2. Fermions as generalized Ising models

    Directory of Open Access Journals (Sweden)

    C. Wetterich

    2017-04-01

    Full Text Available We establish a general map between Grassmann functionals for fermions and probability or weight distributions for Ising spins. The equivalence between the two formulations is based on identical transfer matrices and expectation values of products of observables. The map preserves locality properties and can be realized for arbitrary dimensions. We present a simple example where a quantum field theory for free massless Dirac fermions in two-dimensional Minkowski space is represented by an asymmetric Ising model on a euclidean square lattice.

  3. Anisotropic charged generalized polytropic models

    Science.gov (United States)

    Nasim, A.; Azam, M.

    2018-06-01

    In this paper, we found some new anisotropic charged models admitting generalized polytropic equation of state with spherically symmetry. An analytic solution of the Einstein-Maxwell field equations is obtained through the transformation introduced by Durgapal and Banerji (Phys. Rev. D 27:328, 1983). The physical viability of solutions corresponding to polytropic index η =1/2, 2/3, 1, 2 is analyzed graphically. For this, we plot physical quantities such as radial and tangential pressure, anisotropy, speed of sound which demonstrated that these models achieve all the considerable physical conditions required for a relativistic star. Further, it is mentioned here that previous results for anisotropic charged matter with linear, quadratic and polytropic equation of state can be retrieved.

  4. Test Exponential Pile

    Science.gov (United States)

    Fermi, Enrico

    The Patent contains an extremely detailed description of an atomic pile employing natural uranium as fissile material and graphite as moderator. It starts with the discussion of the theory of the intervening phenomena, in particular the evaluation of the reproduction or multiplication factor, K, that is the ratio of the number of fast neutrons produced in one generation by the fissions to the original number of fast neutrons, in a system of infinite size. The possibility of having a self-maintaining chain reaction in a system of finite size depends both on the facts that K is greater than unity and the overall size of the system is sufficiently large to minimize the percentage of neutrons escaping from the system. After the description of a possible realization of such a pile (with many detailed drawings), the various kinds of neutron losses in a pile are depicted. Particularly relevant is the reported "invention" of the exponential experiment: since theoretical calculations can determine whether or not a chain reaction will occur in a give system, but can be invalidated by uncertainties in the parameters of the problem, an experimental test of the pile is proposed, aimed at ascertaining if the pile under construction would be divergent (i.e. with a neutron multiplication factor K greater than 1) by making measurements on a smaller pile. The idea is to measure, by a detector containing an indium foil, the exponential decrease of the neutron density along the length of a column of uranium-graphite lattice, where a neutron source is placed near its base. Such an exponential decrease is greater or less than that expected due to leakage, according to whether the K factor is less or greater than 1, so that this experiment is able to test the criticality of the pile, its accuracy increasing with the size of the column. In order to perform this measure a mathematical description of the effect of neutron production, diffusion, and absorption on the neutron density in the

  5. Exponentially Convergent Algorithms for Abstract Differential Equations

    CERN Document Server

    Gavrilyuk, Ivan; Vasylyk, Vitalii

    2011-01-01

    This book presents new accurate and efficient exponentially convergent methods for abstract differential equations with unbounded operator coefficients in Banach space. These methods are highly relevant for the practical scientific computing since the equations under consideration can be seen as the meta-models of systems of ordinary differential equations (ODE) as well as the partial differential equations (PDEs) describing various applied problems. The framework of functional analysis allows one to obtain very general but at the same time transparent algorithms and mathematical results which

  6. An Unusual Exponential Graph

    Science.gov (United States)

    Syed, M. Qasim; Lovatt, Ian

    2014-01-01

    This paper is an addition to the series of papers on the exponential function begun by Albert Bartlett. In particular, we ask how the graph of the exponential function y = e[superscript -t/t] would appear if y were plotted versus ln t rather than the normal practice of plotting ln y versus t. In answering this question, we find a new way to…

  7. Exponential and Logarithmic Functions

    OpenAIRE

    Todorova, Tamara

    2010-01-01

    Exponential functions find applications in economics in relation to growth and economic dynamics. In these fields, quite often the choice variable is time and economists are trying to determine the best timing for certain economic activities to take place. An exponential function is one in which the independent variable appears in the exponent. Very often that exponent is time. In highly mathematical courses, it is a truism that students learn by doing, not by reading. Tamara Todorova’s Pr...

  8. Exponential inflation with F (R ) gravity

    Science.gov (United States)

    Oikonomou, V. K.

    2018-03-01

    In this paper, we shall consider an exponential inflationary model in the context of vacuum F (R ) gravity. By using well-known reconstruction techniques, we shall investigate which F (R ) gravity can realize the exponential inflation scenario at leading order in terms of the scalar curvature, and we shall calculate the slow-roll indices and the corresponding observational indices, in the context of slow-roll inflation. We also provide some general formulas of the slow-roll and the corresponding observational indices in terms of the e -foldings number. In addition, for the calculation of the slow-roll and of the observational indices, we shall consider quite general formulas, for which it is not necessary for the assumption that all the slow-roll indices are much smaller than unity to hold true. Finally, we investigate the phenomenological viability of the model by comparing it with the latest Planck and BICEP2/Keck-Array observational data. As we demonstrate, the model is compatible with the current observational data for a wide range of the free parameters of the model.

  9. Stable exponential cosmological solutions with zero variation of G and three different Hubble-like parameters in the Einstein-Gauss-Bonnet model with a Λ-term

    Energy Technology Data Exchange (ETDEWEB)

    Ernazarov, K.K. [RUDN University, Institute of Gravitation and Cosmology, Moscow (Russian Federation); Ivashchuk, V.D. [RUDN University, Institute of Gravitation and Cosmology, Moscow (Russian Federation); VNIIMS, Center for Gravitation and Fundamental Metrology, Moscow (Russian Federation)

    2017-06-15

    We consider a D-dimensional gravitational model with a Gauss-Bonnet term and the cosmological term Λ. We restrict the metrics to diagonal cosmological ones and find for certain Λ a class of solutions with exponential time dependence of three scale factors, governed by three non-coinciding Hubble-like parameters H > 0, h{sub 1} and h{sub 2}, corresponding to factor spaces of dimensions m > 2, k{sub 1} > 1 and k{sub 2} > 1, respectively, with k{sub 1} ≠ k{sub 2} and D = 1 + m + k{sub 1} + k{sub 2}. Any of these solutions describes an exponential expansion of 3d subspace with Hubble parameter H and zero variation of the effective gravitational constant G. We prove the stability of these solutions in a class of cosmological solutions with diagonal metrics. (orig.)

  10. Stable exponential cosmological solutions with zero variation of G in the Einstein-Gauss-Bonnet model with a Λ-term

    Energy Technology Data Exchange (ETDEWEB)

    Ernazarov, K.K. [RUDN University, Institute of Gravitation and Cosmology, Moscow (Russian Federation); Ivashchuk, V.D. [RUDN University, Institute of Gravitation and Cosmology, Moscow (Russian Federation); Center for Gravitation and Fundamental Metrology, VNIIMS, Moscow (Russian Federation)

    2017-02-15

    A D-dimensional gravitational model with a Gauss-Bonnet term and the cosmological term Λ is considered. By assuming diagonal cosmological metrics, we find, for a certain fine-tuned Λ, a class of solutions with exponential time dependence of two scale factors, governed by two Hubble-like parameters H > 0 and h < 0, corresponding to factor spaces of dimensions m > 3 and l > 1, respectively, with (m,l) ≠ (6,6), (7,4), (9,3) and D = 1+m+l. Any of these solutions describes an exponential expansion of three-dimensional subspace with Hubble parameter H and zero variation of the effective gravitational constant G. We prove the stability of these solutions in a class of cosmological solutions with diagonal metrics. (orig.)

  11. Estimation of the systemic burden of plutonium from urinary excretion data and a multi-exponential model for excretion in comparison with autopsy data

    International Nuclear Information System (INIS)

    Bernard, S.R.; Nestor, C.W.

    1985-01-01

    The authors have adapted other's method for computing the systemic burden from urinary excretion data to use a multi-exponential model (2) for excretion, rather than Langham's power function. The mathematical basis of Synder's method is the representation of the systemic burden as the convolution integral of the observed urinary excretion data with the inverse Laplace transform of the excretion function; in the case of urinary excretion of plutonium, the power function has a Laplace transform, but for other elements (notably uranium) it does not. If the method is to be used for other radioisotopes, the excretion function must have a Laplace transform, and for this reason we have used a multi-exponential form of the excretion function. They have written a computer program to calculate estimates of the systemic burden and the integrated intake from urinary excretion data, and have compared the results with two cases for which autopsy data are available, as presented in this paper

  12. The Exponentiated Gumbel Type-2 Distribution: Properties and Application

    Directory of Open Access Journals (Sweden)

    I. E. Okorie

    2016-01-01

    Full Text Available We introduce a generalized version of the standard Gumble type-2 distribution. The new lifetime distribution is called the Exponentiated Gumbel (EG type-2 distribution. The EG type-2 distribution has three nested submodels, namely, the Gumbel type-2 distribution, the Exponentiated Fréchet (EF distribution, and the Fréchet distribution. Some statistical and reliability properties of the new distribution were given and the method of maximum likelihood estimates was proposed for estimating the model parameters. The usefulness and flexibility of the Exponentiated Gumbel (EG type-2 distribution were illustrated with a real lifetime data set. Results based on the log-likelihood and information statistics values showed that the EG type-2 distribution provides a better fit to the data than the other competing distributions. Also, the consistency of the parameters of the new distribution was demonstrated through a simulation study. The EG type-2 distribution is therefore recommended for effective modelling of lifetime data.

  13. Generalized model of island biodiversity

    Science.gov (United States)

    Kessler, David A.; Shnerb, Nadav M.

    2015-04-01

    The dynamics of a local community of competing species with weak immigration from a static regional pool is studied. Implementing the generalized competitive Lotka-Volterra model with demographic noise, a rich dynamics with four qualitatively distinct phases is unfolded. When the overall interspecies competition is weak, the island species recapitulate the mainland species. For higher values of the competition parameter, the system still admits an equilibrium community, but now some of the mainland species are absent on the island. Further increase in competition leads to an intermittent "disordered" phase, where the dynamics is controlled by invadable combinations of species and the turnover rate is governed by the migration. Finally, the strong competition phase is glasslike, dominated by uninvadable states and noise-induced transitions. Our model contains, as a special case, the celebrated neutral island theories of Wilson-MacArthur and Hubbell. Moreover, we show that slight deviations from perfect neutrality may lead to each of the phases, as the Hubbell point appears to be quadracritical.

  14. Does proton decay follow the exponential law

    International Nuclear Information System (INIS)

    Sanchez-Gomez, J.L.; Alvarez-Estrada, R.F.; Fernandez, L.A.

    1984-01-01

    In this paper, we discuss the exponential law for proton decay. By using a simple model based upon SU(5)GUT and the current theories of hadron structure, we explicitely show that the corrections to the Wigner-Weisskopf approximation are quite negligible for present day protons, so that their eventual decay should follow the exponential law. Previous works are critically analyzed. (orig.)

  15. Dimensional Reduction for the General Markov Model on Phylogenetic Trees.

    Science.gov (United States)

    Sumner, Jeremy G

    2017-03-01

    We present a method of dimensional reduction for the general Markov model of sequence evolution on a phylogenetic tree. We show that taking certain linear combinations of the associated random variables (site pattern counts) reduces the dimensionality of the model from exponential in the number of extant taxa, to quadratic in the number of taxa, while retaining the ability to statistically identify phylogenetic divergence events. A key feature is the identification of an invariant subspace which depends only bilinearly on the model parameters, in contrast to the usual multi-linear dependence in the full space. We discuss potential applications including the computation of split (edge) weights on phylogenetic trees from observed sequence data.

  16. Fast quantum modular exponentiation

    International Nuclear Information System (INIS)

    Meter, Rodney van; Itoh, Kohei M.

    2005-01-01

    We present a detailed analysis of the impact on quantum modular exponentiation of architectural features and possible concurrent gate execution. Various arithmetic algorithms are evaluated for execution time, potential concurrency, and space trade-offs. We find that to exponentiate an n-bit number, for storage space 100n (20 times the minimum 5n), we can execute modular exponentiation 200-700 times faster than optimized versions of the basic algorithms, depending on architecture, for n=128. Addition on a neighbor-only architecture is limited to O(n) time, whereas non-neighbor architectures can reach O(log n), demonstrating that physical characteristics of a computing device have an important impact on both real-world running time and asymptotic behavior. Our results will help guide experimental implementations of quantum algorithms and devices

  17. Exponential potentials, scaling solutions and inflation

    International Nuclear Information System (INIS)

    Wands, D.; Copeland, E.J.; Liddle, A.R.

    1993-01-01

    The goal of driving a period of rapid inflation in the early universe in a model motivated by grand unified theories has been given new life in recent years in the context of extended gravity theories. Extended inflation is one model based on a Brans-Dicke type gravity which can allow a very general first-order phase transition to complete by changing the expansion of the false vacuum dominated universe from an exponential to a power law expansion. This inflation is conformally equivalent to general relativity where the vacuum energy density is exponentially dependent upon a dilaton field. With this in mind, the authors consider in this paper the evolution of a scalar field σ with a potential V(σ) = V 0 exp(-λκ 1/2 σ) in a spatially flat (κ = 0) Friedmann-Robertson-Walker metric in the presence of a barotropic (P = (γ - 1)ρ) fluid. Here κ = 8πG, and λ is a dimensionless constant describing the steepness of the potential. It is well known that if the potential is sufficiently flat (λ small), the energy density of the scalar field dominated and the universe undergoes power law inflation. The behavior of fields with a steep potential seems to be less well known, although the results the authors present here are not new. 11 refs., 2 figs

  18. Minimal variance hedging of natural gas derivatives in exponential Lévy models: Theory and empirical performance

    International Nuclear Information System (INIS)

    Ewald, Christian-Oliver; Nawar, Roy; Siu, Tak Kuen

    2013-01-01

    We consider the problem of hedging European options written on natural gas futures, in a market where prices of traded assets exhibit jumps, by trading in the underlying asset. We provide a general expression for the hedging strategy which minimizes the variance of the terminal hedging error, in terms of stochastic integral representations of the payoffs of the options involved. This formula is then applied to compute hedge ratios for common options in various models with jumps, leading to easily computable expressions. As a benchmark we take the standard Black–Scholes and Merton delta hedges. We show that in natural gas option markets minimal variance hedging with underlying consistently outperform the benchmarks by quite a margin. - Highlights: ► We derive hedging strategies for European type options written on natural gas futures. ► These are tested empirically using Henry Hub natural gas futures and options data. ► We find that our hedges systematically outperform classical benchmarks

  19. A quantification of the hazards of fitting sums of exponentials to noisy data

    International Nuclear Information System (INIS)

    Bromage, G.E.

    1983-06-01

    The ill-conditioned nature of sums-of-exponentials analyses is confirmed and quantified, using synthetic noisy data. In particular, the magnification of errors is plotted for various two-exponential models, to illustrate its dependence on the ratio of decay constants, and on the ratios of amplitudes of the contributing terms. On moving from two- to three-exponential models, the condition deteriorates badly. It is also shown that the use of 'direct' Prony-type analyses (rather than general iterative nonlinear optimisation) merely aggravates the condition. (author)

  20. Generalized complex geometry, generalized branes and the Hitchin sigma model

    International Nuclear Information System (INIS)

    Zucchini, Roberto

    2005-01-01

    Hitchin's generalized complex geometry has been shown to be relevant in compactifications of superstring theory with fluxes and is expected to lead to a deeper understanding of mirror symmetry. Gualtieri's notion of generalized complex submanifold seems to be a natural candidate for the description of branes in this context. Recently, we introduced a Batalin-Vilkovisky field theoretic realization of generalized complex geometry, the Hitchin sigma model, extending the well known Poisson sigma model. In this paper, exploiting Gualtieri's formalism, we incorporate branes into the model. A detailed study of the boundary conditions obeyed by the world sheet fields is provided. Finally, it is found that, when branes are present, the classical Batalin-Vilkovisky cohomology contains an extra sector that is related non trivially to a novel cohomology associated with the branes as generalized complex submanifolds. (author)

  1. A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks

    DEFF Research Database (Denmark)

    Viboud, Cecile; Simonsen, Lone; Chowell, Gerardo

    2016-01-01

    the importance of sub-exponential growth for forecasting purposes.Results: We applied the generalized-growth model to 20 infectious disease outbreaks representing a range of transmission routes. We uncovered epidemic profiles ranging from very slow growth (p = 0.14 for the Ebola outbreak in Bomi, Liberia (2014...... African Ebola epidemic provided a unique opportunity to explore how growth profiles vary by geography; analysis of the largest district-level outbreaks revealed substantial growth variations (mean p = 0.59, range: 0.14–0.97). The districts of Margibi in Liberia and Bombali and Bo in Sierra Leone had near......-exponential growth, while the districts of Bomi in Liberia and Kenema in Sierra Leone displayed near constant incidences.Conclusions: Our findings reveal significant variation in epidemic growth patterns across different infectious disease outbreaks and highlights that sub-exponential growth is a common phenomenon...

  2. PerMallows: An R Package for Mallows and Generalized Mallows Models

    Directory of Open Access Journals (Sweden)

    Ekhine Irurozki

    2016-08-01

    Full Text Available In this paper we present the R package PerMallows, which is a complete toolbox to work with permutations, distances and some of the most popular probability models for permutations: Mallows and the Generalized Mallows models. The Mallows model is an exponential location model, considered as analogous to the Gaussian distribution. It is based on the definition of a distance between permutations. The Generalized Mallows model is its best-known extension. The package includes functions for making inference, sampling and learning such distributions. The distances considered in PerMallows are Kendall's τ , Cayley, Hamming and Ulam.

  3. Is Radioactive Decay Really Exponential?

    OpenAIRE

    Aston, Philip J.

    2012-01-01

    Radioactive decay of an unstable isotope is widely believed to be exponential. This view is supported by experiments on rapidly decaying isotopes but is more difficult to verify for slowly decaying isotopes. The decay of 14C can be calibrated over a period of 12,550 years by comparing radiocarbon dates with dates obtained from dendrochronology. It is well known that this approach shows that radiocarbon dates of over 3,000 years are in error, which is generally attributed to past variation in ...

  4. General introduction to simulation models

    DEFF Research Database (Denmark)

    Hisham Beshara Halasa, Tariq; Boklund, Anette

    2012-01-01

    trials. However, if simulation models would be used, good quality input data must be available. To model FMD, several disease spread models are available. For this project, we chose three simulation model; Davis Animal Disease Spread (DADS), that has been upgraded to DTU-DADS, InterSpread Plus (ISP......Monte Carlo simulation can be defined as a representation of real life systems to gain insight into their functions and to investigate the effects of alternative conditions or actions on the modeled system. Models are a simplification of a system. Most often, it is best to use experiments and field...... trials to investigate the effect of alternative conditions or actions on a specific system. Nonetheless, field trials are expensive and sometimes not possible to conduct, as in case of foot-and-mouth disease (FMD). Instead, simulation models can be a good and cheap substitute for experiments and field...

  5. It's a dark, dark world: background evolution of interacting φCDM models beyond simple exponential potentials

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Suprit; Singh, Parminder, E-mail: ssingh2@physics.du.ac.in, E-mail: psingh@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, University Road, University Enclave, New Delhi 110 007 (India)

    2016-05-01

    We study the background cosmological dynamics with a three component source content: a radiation fluid, a barotropic fluid to mimic the matter sector and a single scalar field which can act as dark energy giving rise to the late-time accelerated phase. Using the well-known dimensionless variables, we cast the dynamical equations into an autonomous system of ordinary differential equations (ASODE), which are studied by computing the fixed points and the conditions for their stability. The matter fluid and the scalar field are taken to be uncoupled at first and later, we consider a coupling between the two of the form Q = √(2/3)κβρ{sub m} φ̇ where ρ{sub m} is the barotropic fluid density. The key point of our analysis is that for the closure of ASODE, we only demand that the jerk, Γ = V V ''/ V '{sup 2} is a function of acceleration, z = −M{sub p}V'/V, that is, Γ = 1+ f ( z ). In this way, we are able to accommodate a large class of potentials that goes beyond the simple exponential potentials. The analysis is completely generic and independent of the form of the potential for the scalar field. As an illustration and confirmation of the analysis, we consider f ( z ) of the forms μ/ z {sup 2}, μ/ z , (μ− z )/ z {sup 2} and (μ− z ) to numerically compute the evolution of cosmological parameters with and without coupling. Implications of the approach and the results are discussed.

  6. Using Exponential Random Graph Models to Analyze the Character of Peer Relationship Networks and Their Effects on the Subjective Well-being of Adolescents.

    Science.gov (United States)

    Jiao, Can; Wang, Ting; Liu, Jianxin; Wu, Huanjie; Cui, Fang; Peng, Xiaozhe

    2017-01-01

    The influences of peer relationships on adolescent subjective well-being were investigated within the framework of social network analysis, using exponential random graph models as a methodological tool. The participants in the study were 1,279 students (678 boys and 601 girls) from nine junior middle schools in Shenzhen, China. The initial stage of the research used a peer nomination questionnaire and a subjective well-being scale (used in previous studies) to collect data on the peer relationship networks and the subjective well-being of the students. Exponential random graph models were then used to explore the relationships between students with the aim of clarifying the character of the peer relationship networks and the influence of peer relationships on subjective well being. The results showed that all the adolescent peer relationship networks in our investigation had positive reciprocal effects, positive transitivity effects and negative expansiveness effects. However, none of the relationship networks had obvious receiver effects or leaders. The adolescents in partial peer relationship networks presented similar levels of subjective well-being on three dimensions (satisfaction with life, positive affects and negative affects) though not all network friends presented these similarities. The study shows that peer networks can affect an individual's subjective well-being. However, whether similarities among adolescents are the result of social influences or social choices needs further exploration, including longitudinal studies that investigate the potential processes of subjective well-being similarities among adolescents.

  7. Generalized Additive Models for Location Scale and Shape (GAMLSS) in R

    OpenAIRE

    D. Mikis Stasinopoulos; Robert A. Rigby

    2007-01-01

    GAMLSS is a general framework for fitting regression type models where the distribution of the response variable does not have to belong to the exponential family and includes highly skew and kurtotic continuous and discrete distribution. GAMLSS allows all the parameters of the distribution of the response variable to be modelled as linear/non-linear or smooth functions of the explanatory variables. This paper starts by defining the statistical framework of GAMLSS, then describes the curren...

  8. Multivariate generalized linear mixed models using R

    CERN Document Server

    Berridge, Damon Mark

    2011-01-01

    Multivariate Generalized Linear Mixed Models Using R presents robust and methodologically sound models for analyzing large and complex data sets, enabling readers to answer increasingly complex research questions. The book applies the principles of modeling to longitudinal data from panel and related studies via the Sabre software package in R. A Unified Framework for a Broad Class of Models The authors first discuss members of the family of generalized linear models, gradually adding complexity to the modeling framework by incorporating random effects. After reviewing the generalized linear model notation, they illustrate a range of random effects models, including three-level, multivariate, endpoint, event history, and state dependence models. They estimate the multivariate generalized linear mixed models (MGLMMs) using either standard or adaptive Gaussian quadrature. The authors also compare two-level fixed and random effects linear models. The appendices contain additional information on quadrature, model...

  9. Generalized latent variable modeling multilevel, longitudinal, and structural equation models

    CERN Document Server

    Skrondal, Anders; Rabe-Hesketh, Sophia

    2004-01-01

    This book unifies and extends latent variable models, including multilevel or generalized linear mixed models, longitudinal or panel models, item response or factor models, latent class or finite mixture models, and structural equation models.

  10. General Pressurization Model in Simscape

    Science.gov (United States)

    Servin, Mario; Garcia, Vicky

    2010-01-01

    System integration is an essential part of the engineering design process. The Ares I Upper Stage (US) is a complex system which is made up of thousands of components assembled into subsystems including a J2-X engine, liquid hydrogen (LH2) and liquid oxygen (LO2) tanks, avionics, thrust vector control, motors, etc. System integration is the task of connecting together all of the subsystems into one large system. To ensure that all the components will "fit together" as well as safety and, quality, integration analysis is required. Integration analysis verifies that, as an integrated system, the system will behave as designed. Models that represent the actual subsystems are built for more comprehensive analysis. Matlab has been an instrument widely use by engineers to construct mathematical models of systems. Simulink, one of the tools offered by Matlab, provides multi-domain graphical environment to simulate and design time-varying systems. Simulink is a powerful tool to analyze the dynamic behavior of systems over time. Furthermore, Simscape, a tool provided by Simulink, allows users to model physical (such as mechanical, thermal and hydraulic) systems using physical networks. Using Simscape, a model representing an inflow of gas to a pressurized tank was created where the temperature and pressure of the tank are measured over time to show the behavior of the gas. By further incorporation of Simscape into model building, the full potential of this software can be discovered and it hopefully can become a more utilized tool.

  11. Process generalization in conceptual models

    NARCIS (Netherlands)

    Wieringa, Roelf J.

    In conceptual modeling, the universe of discourse (UoD) is divided into classes which have a taxonomic structure. The classes are usually defined in terms of attributes (all objects in a class share attribute names) and possibly of events. For enmple, the class of employees is the set of objects to

  12. On the Dividend Strategies with Non-Exponential Discounting

    OpenAIRE

    Zhao, Qian; Wei, Jiaqin; Wang, Rongming

    2013-01-01

    In this paper, we study the dividend strategies for a shareholder with non-constant discount rate in a diffusion risk model. We assume that the dividends can only be paid at a bounded rate and restrict ourselves to the Markov strategies. This is a time inconsistent control problem. The extended HJB equation is given and the verification theorem is proved for a general discount function. Considering the pseudo-exponential discount functions (Type I and Type II), we get the equilibrium dividend...

  13. Vector models and generalized SYK models

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Cheng [Department of Physics, Brown University,Providence RI 02912 (United States)

    2017-05-23

    We consider the relation between SYK-like models and vector models by studying a toy model where a tensor field is coupled with a vector field. By integrating out the tensor field, the toy model reduces to the Gross-Neveu model in 1 dimension. On the other hand, a certain perturbation can be turned on and the toy model flows to an SYK-like model at low energy. A chaotic-nonchaotic phase transition occurs as the sign of the perturbation is altered. We further study similar models that possess chaos and enhanced reparameterization symmetries.

  14. Testing the generalized partial credit model

    OpenAIRE

    Glas, Cornelis A.W.

    1996-01-01

    The partial credit model (PCM) (G.N. Masters, 1982) can be viewed as a generalization of the Rasch model for dichotomous items to the case of polytomous items. In many cases, the PCM is too restrictive to fit the data. Several generalizations of the PCM have been proposed. In this paper, a generalization of the PCM (GPCM), a further generalization of the one-parameter logistic model, is discussed. The model is defined and the conditional maximum likelihood procedure for the method is describe...

  15. On Geodesic Exponential Kernels

    DEFF Research Database (Denmark)

    Feragen, Aasa; Lauze, François; Hauberg, Søren

    2015-01-01

    This extended abstract summarizes work presented at CVPR 2015 [1]. Standard statistics and machine learning tools require input data residing in a Euclidean space. However, many types of data are more faithfully represented in general nonlinear metric spaces or Riemannian manifolds, e.g. shapes, ......, symmetric positive definite matrices, human poses or graphs. The underlying metric space captures domain specific knowledge, e.g. non-linear constraints, which is available a priori. The intrinsic geodesic metric encodes this knowledge, often leading to improved statistical models....

  16. Assessment of early treatment response to neoadjuvant chemotherapy in breast cancer using non-mono-exponential diffusion models: a feasibility study comparing the baseline and mid-treatment MRI examinations

    Energy Technology Data Exchange (ETDEWEB)

    Bedair, Reem; Manavaki, Roido; Gill, Andrew B.; Abeyakoon, Oshaani; Gilbert, Fiona J. [University of Cambridge, Department of Radiology, School of Clinical Medicine, Cambridge (United Kingdom); Priest, Andrew N.; Patterson, Andrew J. [Cambridge University Hospitals NHS Foundation Trust, Department of Radiology, Addenbrookes Hospital, Cambridge (United Kingdom); McLean, Mary A. [Cambridge University Hospitals NHS Foundation Trust, Department of Radiology, Addenbrookes Hospital, Cambridge (United Kingdom); University of Cambridge, Li Ka Shing Centre, Cancer Research UK Cambridge Institute, Cambridge (United Kingdom); Graves, Martin J. [University of Cambridge, Department of Radiology, School of Clinical Medicine, Cambridge (United Kingdom); Cambridge University Hospitals NHS Foundation Trust, Department of Radiology, Addenbrookes Hospital, Cambridge (United Kingdom); Griffiths, John R. [University of Cambridge, Li Ka Shing Centre, Cancer Research UK Cambridge Institute, Cambridge (United Kingdom)

    2017-07-15

    To assess the feasibility of the mono-exponential, bi-exponential and stretched-exponential models in evaluating response of breast tumours to neoadjuvant chemotherapy (NACT) at 3 T. Thirty-six female patients (median age 53, range 32-75 years) with invasive breast cancer undergoing NACT were enrolled for diffusion-weighted MRI (DW-MRI) prior to the start of treatment. For assessment of early response, changes in parameters were evaluated on mid-treatment MRI in 22 patients. DW-MRI was performed using eight b values (0, 30, 60, 90, 120, 300, 600, 900 s/mm{sup 2}). Apparent diffusion coefficient (ADC), tissue diffusion coefficient (D{sub t}), vascular fraction (Florin), distributed diffusion coefficient (DDC) and alpha (α) parameters were derived. Then t tests compared the baseline and changes in parameters between response groups. Repeatability was assessed at inter- and intraobserver levels. All patients underwent baseline MRI whereas 22 lesions were available at mid-treatment. At pretreatment, mean diffusion coefficients demonstrated significant differences between groups (p < 0.05). At mid-treatment, percentage increase in ADC and DDC showed significant differences between responders (49 % and 43 %) and non-responders (21 % and 32 %) (p = 0.03, p = 0.04). Overall, stretched-exponential parameters showed excellent repeatability. DW-MRI is sensitive to baseline and early treatment changes in breast cancer using non-mono-exponential models, and the stretched-exponential model can potentially monitor such changes. (orig.)

  17. Assessment of early treatment response to neoadjuvant chemotherapy in breast cancer using non-mono-exponential diffusion models: a feasibility study comparing the baseline and mid-treatment MRI examinations

    International Nuclear Information System (INIS)

    Bedair, Reem; Manavaki, Roido; Gill, Andrew B.; Abeyakoon, Oshaani; Gilbert, Fiona J.; Priest, Andrew N.; Patterson, Andrew J.; McLean, Mary A.; Graves, Martin J.; Griffiths, John R.

    2017-01-01

    To assess the feasibility of the mono-exponential, bi-exponential and stretched-exponential models in evaluating response of breast tumours to neoadjuvant chemotherapy (NACT) at 3 T. Thirty-six female patients (median age 53, range 32-75 years) with invasive breast cancer undergoing NACT were enrolled for diffusion-weighted MRI (DW-MRI) prior to the start of treatment. For assessment of early response, changes in parameters were evaluated on mid-treatment MRI in 22 patients. DW-MRI was performed using eight b values (0, 30, 60, 90, 120, 300, 600, 900 s/mm"2). Apparent diffusion coefficient (ADC), tissue diffusion coefficient (D_t), vascular fraction (Florin), distributed diffusion coefficient (DDC) and alpha (α) parameters were derived. Then t tests compared the baseline and changes in parameters between response groups. Repeatability was assessed at inter- and intraobserver levels. All patients underwent baseline MRI whereas 22 lesions were available at mid-treatment. At pretreatment, mean diffusion coefficients demonstrated significant differences between groups (p < 0.05). At mid-treatment, percentage increase in ADC and DDC showed significant differences between responders (49 % and 43 %) and non-responders (21 % and 32 %) (p = 0.03, p = 0.04). Overall, stretched-exponential parameters showed excellent repeatability. DW-MRI is sensitive to baseline and early treatment changes in breast cancer using non-mono-exponential models, and the stretched-exponential model can potentially monitor such changes. (orig.)

  18. Exponential smoothing weighted correlations

    Science.gov (United States)

    Pozzi, F.; Di Matteo, T.; Aste, T.

    2012-06-01

    In many practical applications, correlation matrices might be affected by the "curse of dimensionality" and by an excessive sensitiveness to outliers and remote observations. These shortcomings can cause problems of statistical robustness especially accentuated when a system of dynamic correlations over a running window is concerned. These drawbacks can be partially mitigated by assigning a structure of weights to observational events. In this paper, we discuss Pearson's ρ and Kendall's τ correlation matrices, weighted with an exponential smoothing, computed on moving windows using a data-set of daily returns for 300 NYSE highly capitalized companies in the period between 2001 and 2003. Criteria for jointly determining optimal weights together with the optimal length of the running window are proposed. We find that the exponential smoothing can provide more robust and reliable dynamic measures and we discuss that a careful choice of the parameters can reduce the autocorrelation of dynamic correlations whilst keeping significance and robustness of the measure. Weighted correlations are found to be smoother and recovering faster from market turbulence than their unweighted counterparts, helping also to discriminate more effectively genuine from spurious correlations.

  19. Boundary curves of individual items in the distribution of total depressive symptom scores approximate an exponential pattern in a general population

    OpenAIRE

    Tomitaka, Shinichiro; Kawasaki, Yohei; Ide, Kazuki; Akutagawa, Maiko; Yamada, Hiroshi; Furukawa, Toshiaki A.; Ono, Yutaka

    2016-01-01

    [Background]Previously, we proposed a model for ordinal scale scoring in which individual thresholds for each item constitute a distribution by each item. This lead us to hypothesize that the boundary curves of each depressive symptom score in the distribution of total depressive symptom scores follow a common mathematical model, which is expressed as the product of the frequency of the total depressive symptom scores and the probability of the cumulative distribution function of each item th...

  20. Actuarial statistics with generalized linear mixed models

    NARCIS (Netherlands)

    Antonio, K.; Beirlant, J.

    2007-01-01

    Over the last decade the use of generalized linear models (GLMs) in actuarial statistics has received a lot of attention, starting from the actuarial illustrations in the standard text by McCullagh and Nelder [McCullagh, P., Nelder, J.A., 1989. Generalized linear models. In: Monographs on Statistics

  1. Testing the generalized partial credit model

    NARCIS (Netherlands)

    Glas, Cornelis A.W.

    1996-01-01

    The partial credit model (PCM) (G.N. Masters, 1982) can be viewed as a generalization of the Rasch model for dichotomous items to the case of polytomous items. In many cases, the PCM is too restrictive to fit the data. Several generalizations of the PCM have been proposed. In this paper, a

  2. Network clustering analysis using mixture exponential-family random graph models and its application in genetic interaction data.

    Science.gov (United States)

    Wang, Yishu; Zhao, Hongyu; Deng, Minghua; Fang, Huaying; Yang, Dejie

    2017-08-24

    Epistatic miniarrary profile (EMAP) studies have enabled the mapping of large-scale genetic interaction networks and generated large amounts of data in model organisms. It provides an incredible set of molecular tools and advanced technologies that should be efficiently understanding the relationship between the genotypes and phenotypes of individuals. However, the network information gained from EMAP cannot be fully exploited using the traditional statistical network models. Because the genetic network is always heterogeneous, for example, the network structure features for one subset of nodes are different from those of the left nodes. Exponentialfamily random graph models (ERGMs) are a family of statistical models, which provide a principled and flexible way to describe the structural features (e.g. the density, centrality and assortativity) of an observed network. However, the single ERGM is not enough to capture this heterogeneity of networks. In this paper, we consider a mixture ERGM (MixtureEGRM) networks, which model a network with several communities, where each community is described by a single EGRM.

  3. Micro Data and General Equilibrium Models

    DEFF Research Database (Denmark)

    Browning, Martin; Hansen, Lars Peter; Heckman, James J.

    1999-01-01

    Dynamic general equilibrium models are required to evaluate policies applied at the national level. To use these models to make quantitative forecasts requires knowledge of an extensive array of parameter values for the economy at large. This essay describes the parameters required for different...... economic models, assesses the discordance between the macromodels used in policy evaluation and the microeconomic models used to generate the empirical evidence. For concreteness, we focus on two general equilibrium models: the stochastic growth model extended to include some forms of heterogeneity...

  4. Two sample Bayesian prediction intervals for order statistics based on the inverse exponential-type distributions using right censored sample

    Directory of Open Access Journals (Sweden)

    M.M. Mohie El-Din

    2011-10-01

    Full Text Available In this paper, two sample Bayesian prediction intervals for order statistics (OS are obtained. This prediction is based on a certain class of the inverse exponential-type distributions using a right censored sample. A general class of prior density functions is used and the predictive cumulative function is obtained in the two samples case. The class of the inverse exponential-type distributions includes several important distributions such the inverse Weibull distribution, the inverse Burr distribution, the loglogistic distribution, the inverse Pareto distribution and the inverse paralogistic distribution. Special cases of the inverse Weibull model such as the inverse exponential model and the inverse Rayleigh model are considered.

  5. How rapidly does the excess risk of lung cancer decline following quitting smoking? A quantitative review using the negative exponential model.

    Science.gov (United States)

    Fry, John S; Lee, Peter N; Forey, Barbara A; Coombs, Katharine J

    2013-10-01

    The excess lung cancer risk from smoking declines with time quit, but the shape of the decline has never been precisely modelled, or meta-analyzed. From a database of studies of at least 100 cases, we extracted 106 blocks of RRs (from 85 studies) comparing current smokers, former smokers (by time quit) and never smokers. Corresponding pseudo-numbers of cases and controls (or at-risk) formed the data for fitting the negative exponential model. We estimated the half-life (H, time in years when the excess risk becomes half that for a continuing smoker) for each block, investigated model fit, and studied heterogeneity in H. We also conducted sensitivity analyses allowing for reverse causation, either ignoring short-term quitters (S1) or considering them smokers (S2). Model fit was poor ignoring reverse causation, but much improved for both sensitivity analyses. Estimates of H were similar for all three analyses. For the best-fitting analysis (S1), H was 9.93 (95% CI 9.31-10.60), but varied by sex (females 7.92, males 10.71), and age (<50years 6.98, 70+years 12.99). Given that reverse causation is taken account of, the model adequately describes the decline in excess risk. However, estimates of H may be biased by factors including misclassification of smoking status. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Predictive Abuse Detection for a PLC Smart Lighting Network Based on Automatically Created Models of Exponential Smoothing

    Directory of Open Access Journals (Sweden)

    Tomasz Andrysiak

    2017-01-01

    Full Text Available One of the basic elements of a Smart City is the urban infrastructure management system, in particular, systems of intelligent street lighting control. However, for their reliable operation, they require special care for the safety of their critical communication infrastructure. This article presents solutions for the detection of different kinds of abuses in network traffic of Smart Lighting infrastructure, realized by Power Line Communication technology. Both the structure of the examined Smart Lighting network and its elements are described. The article discusses the key security problems which have a direct impact on the correct performance of the Smart Lighting critical infrastructure. In order to detect an anomaly/attack, we proposed the usage of a statistical model to obtain forecasting intervals. Then, we calculated the value of the differences between the forecast in the estimated traffic model and its real variability so as to detect abnormal behavior (which may be symptomatic of an abuse attempt. Due to the possibility of appearance of significant fluctuations in the real network traffic, we proposed a procedure of statistical models update which is based on the criterion of interquartile spacing. The results obtained during the experiments confirmed the effectiveness of the presented misuse detection method.

  7. Harnessing the theoretical foundations of the exponential and beta-Poisson dose-response models to quantify parameter uncertainty using Markov Chain Monte Carlo.

    Science.gov (United States)

    Schmidt, Philip J; Pintar, Katarina D M; Fazil, Aamir M; Topp, Edward

    2013-09-01

    Dose-response models are the essential link between exposure assessment and computed risk values in quantitative microbial risk assessment, yet the uncertainty that is inherent to computed risks because the dose-response model parameters are estimated using limited epidemiological data is rarely quantified. Second-order risk characterization approaches incorporating uncertainty in dose-response model parameters can provide more complete information to decisionmakers by separating variability and uncertainty to quantify the uncertainty in computed risks. Therefore, the objective of this work is to develop procedures to sample from posterior distributions describing uncertainty in the parameters of exponential and beta-Poisson dose-response models using Bayes's theorem and Markov Chain Monte Carlo (in OpenBUGS). The theoretical origins of the beta-Poisson dose-response model are used to identify a decomposed version of the model that enables Bayesian analysis without the need to evaluate Kummer confluent hypergeometric functions. Herein, it is also established that the beta distribution in the beta-Poisson dose-response model cannot address variation among individual pathogens, criteria to validate use of the conventional approximation to the beta-Poisson model are proposed, and simple algorithms to evaluate actual beta-Poisson probabilities of infection are investigated. The developed MCMC procedures are applied to analysis of a case study data set, and it is demonstrated that an important region of the posterior distribution of the beta-Poisson dose-response model parameters is attributable to the absence of low-dose data. This region includes beta-Poisson models for which the conventional approximation is especially invalid and in which many beta distributions have an extreme shape with questionable plausibility. © Her Majesty the Queen in Right of Canada 2013. Reproduced with the permission of the Minister of the Public Health Agency of Canada.

  8. Direction-dependent exponential biassing

    International Nuclear Information System (INIS)

    Bending, R.C.

    1974-01-01

    When Monte Carlo methods are applied to penetration problems, the use of variance reduction techniques is essential if realistic computing times are to be achieved. A technique known as direction-dependent exponential biassing is described which is simple to apply and therefore suitable for problems with difficult geometry. The material cross section in any region is multiplied by a factor which depends on the particle direction, so that particles travelling in a preferred direction ''see'' a smaller cross section than those travelling in the opposite direction. A theoretical study shows that substantial gains may be obtained, and that the choice of biassing parameter is not critical. The method has been implemented alongside other importance sampling techniques in the general Monte Carlo code SPARTAN, and results obtained for simple problems using this code are included. 4 references. (U.S.)

  9. A general consumer-resource population model

    Science.gov (United States)

    Lafferty, Kevin D.; DeLeo, Giulio; Briggs, Cheryl J.; Dobson, Andrew P.; Gross, Thilo; Kuris, Armand M.

    2015-01-01

    Food-web dynamics arise from predator-prey, parasite-host, and herbivore-plant interactions. Models for such interactions include up to three consumer activity states (questing, attacking, consuming) and up to four resource response states (susceptible, exposed, ingested, resistant). Articulating these states into a general model allows for dissecting, comparing, and deriving consumer-resource models. We specify this general model for 11 generic consumer strategies that group mathematically into predators, parasites, and micropredators and then derive conditions for consumer success, including a universal saturating functional response. We further show how to use this framework to create simple models with a common mathematical lineage and transparent assumptions. Underlying assumptions, missing elements, and composite parameters are revealed when classic consumer-resource models are derived from the general model.

  10. Estimating the decline in excess risk of cerebrovascular disease following quitting smoking--a systematic review based on the negative exponential model.

    Science.gov (United States)

    Lee, Peter N; Fry, John S; Thornton, Alison J

    2014-02-01

    We attempted to quantify the decline in stroke risk following quitting using the negative exponential model, with methodology previously employed for IHD. We identified 22 blocks of RRs (from 13 studies) comparing current smokers, former smokers (by time quit) and never smokers. Corresponding pseudo-numbers of cases and controls/at risk formed the data for model-fitting. We tried to estimate the half-life (H, time since quit when the excess risk becomes half that for a continuing smoker) for each block. The method failed to converge or produced very variable estimates of H in nine blocks with a current smoker RR <1.40. Rejecting these, and combining blocks by amount smoked in one study where problems arose in model-fitting, the final analyses used 11 blocks. Goodness-of-fit was adequate for each block, the combined estimate of H being 4.78(95%CI 2.17-10.50) years. However, considerable heterogeneity existed, unexplained by any factor studied, with the random-effects estimate 3.08(1.32-7.16). Sensitivity analyses allowing for reverse causation or differing assumed times for the final quitting period gave similar results. The estimates of H are similar for stroke and IHD, and the individual estimates similarly heterogeneous. Fitting the model is harder for stroke, due to its weaker association with smoking. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  11. A Generalized Random Regret Minimization Model

    NARCIS (Netherlands)

    Chorus, C.G.

    2013-01-01

    This paper presents, discusses and tests a generalized Random Regret Minimization (G-RRM) model. The G-RRM model is created by replacing a fixed constant in the attribute-specific regret functions of the RRM model, by a regret-weight variable. Depending on the value of the regret-weights, the G-RRM

  12. Coarse Grained Exponential Variational Autoencoders

    KAUST Repository

    Sun, Ke

    2017-02-25

    Variational autoencoders (VAE) often use Gaussian or category distribution to model the inference process. This puts a limit on variational learning because this simplified assumption does not match the true posterior distribution, which is usually much more sophisticated. To break this limitation and apply arbitrary parametric distribution during inference, this paper derives a \\\\emph{semi-continuous} latent representation, which approximates a continuous density up to a prescribed precision, and is much easier to analyze than its continuous counterpart because it is fundamentally discrete. We showcase the proposition by applying polynomial exponential family distributions as the posterior, which are universal probability density function generators. Our experimental results show consistent improvements over commonly used VAE models.

  13. EOP MIT General Circulation Model (MITgcm)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data contains a regional implementation of the Massachusetts Institute of Technology general circulation model (MITgcm) at a 1-km spatial resolution for the...

  14. Generalized Reduced Order Model Generation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — M4 Engineering proposes to develop a generalized reduced order model generation method. This method will allow for creation of reduced order aeroservoelastic state...

  15. Evaluation of Inhaled Versus Deposited Dose Using the Exponential Dose-Response Model for Inhalational Anthrax in Nonhuman Primate, Rabbit, and Guinea Pig.

    Science.gov (United States)

    Gutting, Bradford W; Rukhin, Andrey; Mackie, Ryan S; Marchette, David; Thran, Brandolyn

    2015-05-01

    The application of the exponential model is extended by the inclusion of new nonhuman primate (NHP), rabbit, and guinea pig dose-lethality data for inhalation anthrax. Because deposition is a critical step in the initiation of inhalation anthrax, inhaled doses may not provide the most accurate cross-species comparison. For this reason, species-specific deposition factors were derived to translate inhaled dose to deposited dose. Four NHP, three rabbit, and two guinea pig data sets were utilized. Results from species-specific pooling analysis suggested all four NHP data sets could be pooled into a single NHP data set, which was also true for the rabbit and guinea pig data sets. The three species-specific pooled data sets could not be combined into a single generic mammalian data set. For inhaled dose, NHPs were the most sensitive (relative lowest LD50) species and rabbits the least. Improved inhaled LD50 s proposed for use in risk assessment are 50,600, 102,600, and 70,800 inhaled spores for NHP, rabbit, and guinea pig, respectively. Lung deposition factors were estimated for each species using published deposition data from Bacillus spore exposures, particle deposition studies, and computer modeling. Deposition was estimated at 22%, 9%, and 30% of the inhaled dose for NHP, rabbit, and guinea pig, respectively. When the inhaled dose was adjusted to reflect deposited dose, the rabbit animal model appears the most sensitive with the guinea pig the least sensitive species. © 2014 Society for Risk Analysis.

  16. Two-stage unified stretched-exponential model for time-dependence of threshold voltage shift under positive-bias-stresses in amorphous indium-gallium-zinc oxide thin-film transistors

    Science.gov (United States)

    Jeong, Chan-Yong; Kim, Hee-Joong; Hong, Sae-Young; Song, Sang-Hun; Kwon, Hyuck-In

    2017-08-01

    In this study, we show that the two-stage unified stretched-exponential model can more exactly describe the time-dependence of threshold voltage shift (ΔV TH) under long-term positive-bias-stresses compared to the traditional stretched-exponential model in amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). ΔV TH is mainly dominated by electron trapping at short stress times, and the contribution of trap state generation becomes significant with an increase in the stress time. The two-stage unified stretched-exponential model can provide useful information not only for evaluating the long-term electrical stability and lifetime of the a-IGZO TFT but also for understanding the stress-induced degradation mechanism in a-IGZO TFTs.

  17. When economic growth is less than exponential

    DEFF Research Database (Denmark)

    Groth, Christian; Koch, Karl-Josef; Steger, Thomas

    2010-01-01

    This paper argues that growth theory needs a more general notion of "regularity" than that of exponential growth. We suggest that paths along which the rate of decline of the growth rate is proportional to the growth rate itself deserve attention. This opens up for considering a richer set...

  18. When Economic Growth is Less than Exponential

    DEFF Research Database (Denmark)

    Groth, Christian; Koch, Karl-Josef; Steger, Thomas M.

    This paper argues that growth theory needs a more general notion of "regularity" than that of exponential growth. We suggest that paths along which the rate of decline of the growth rate is proportional to the growth rate itself deserve attention. This opens up for considering a richer set...

  19. Foundations of linear and generalized linear models

    CERN Document Server

    Agresti, Alan

    2015-01-01

    A valuable overview of the most important ideas and results in statistical analysis Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linear statistical models. The book presents a broad, in-depth overview of the most commonly used statistical models by discussing the theory underlying the models, R software applications, and examples with crafted models to elucidate key ideas and promote practical model building. The book begins by illustrating the fundamentals of linear models,

  20. OPINION: Safe exponential manufacturing

    Science.gov (United States)

    Phoenix, Chris; Drexler, Eric

    2004-08-01

    In 1959, Richard Feynman pointed out that nanometre-scale machines could be built and operated, and that the precision inherent in molecular construction would make it easy to build multiple identical copies. This raised the possibility of exponential manufacturing, in which production systems could rapidly and cheaply increase their productive capacity, which in turn suggested the possibility of destructive runaway self-replication. Early proposals for artificial nanomachinery focused on small self-replicating machines, discussing their potential productivity and their potential destructiveness if abused. In the light of controversy regarding scenarios based on runaway replication (so-called 'grey goo'), a review of current thinking regarding nanotechnology-based manufacturing is in order. Nanotechnology-based fabrication can be thoroughly non-biological and inherently safe: such systems need have no ability to move about, use natural resources, or undergo incremental mutation. Moreover, self-replication is unnecessary: the development and use of highly productive systems of nanomachinery (nanofactories) need not involve the construction of autonomous self-replicating nanomachines. Accordingly, the construction of anything resembling a dangerous self-replicating nanomachine can and should be prohibited. Although advanced nanotechnologies could (with great difficulty and little incentive) be used to build such devices, other concerns present greater problems. Since weapon systems will be both easier to build and more likely to draw investment, the potential for dangerous systems is best considered in the context of military competition and arms control.

  1. Multivariate Matrix-Exponential Distributions

    DEFF Research Database (Denmark)

    Bladt, Mogens; Nielsen, Bo Friis

    2010-01-01

    be written as linear combinations of the elements in the exponential of a matrix. For this reason we shall refer to multivariate distributions with rational Laplace transform as multivariate matrix-exponential distributions (MVME). The marginal distributions of an MVME are univariate matrix......-exponential distributions. We prove a characterization that states that a distribution is an MVME distribution if and only if all non-negative, non-null linear combinations of the coordinates have a univariate matrix-exponential distribution. This theorem is analog to a well-known characterization theorem...

  2. Simple implementation of general dark energy models

    International Nuclear Information System (INIS)

    Bloomfield, Jolyon K.; Pearson, Jonathan A.

    2014-01-01

    We present a formalism for the numerical implementation of general theories of dark energy, combining the computational simplicity of the equation of state for perturbations approach with the generality of the effective field theory approach. An effective fluid description is employed, based on a general action describing single-scalar field models. The formalism is developed from first principles, and constructed keeping the goal of a simple implementation into CAMB in mind. Benefits of this approach include its straightforward implementation, the generality of the underlying theory, the fact that the evolved variables are physical quantities, and that model-independent phenomenological descriptions may be straightforwardly investigated. We hope this formulation will provide a powerful tool for the comparison of theoretical models of dark energy with observational data

  3. Comparison between types I and II epithelial ovarian cancer using histogram analysis of monoexponential, biexponential, and stretched-exponential diffusion models.

    Science.gov (United States)

    Wang, Feng; Wang, Yuxiang; Zhou, Yan; Liu, Congrong; Xie, Lizhi; Zhou, Zhenyu; Liang, Dong; Shen, Yang; Yao, Zhihang; Liu, Jianyu

    2017-12-01

    To evaluate the utility of histogram analysis of monoexponential, biexponential, and stretched-exponential models to a dualistic model of epithelial ovarian cancer (EOC). Fifty-two patients with histopathologically proven EOC underwent preoperative magnetic resonance imaging (MRI) (including diffusion-weighted imaging [DWI] with 11 b-values) using a 3.0T system and were divided into two groups: types I and II. Apparent diffusion coefficient (ADC), true diffusion coefficient (D), pseudodiffusion coefficient (D*), perfusion fraction (f), distributed diffusion coefficient (DDC), and intravoxel water diffusion heterogeneity (α) histograms were obtained based on solid components of the entire tumor. The following metrics of each histogram were compared between two types: 1) mean; 2) median; 3) 10th percentile and 90th percentile. Conventional MRI morphological features were also recorded. Significant morphological features for predicting EOC type were maximum diameter (P = 0.007), texture of lesion (P = 0.001), and peritoneal implants (P = 0.001). For ADC, D, f, DDC, and α, all metrics were significantly lower in type II than type I (P histogram metrics of ADC, D, and DDC had significantly higher area under the receiver operating characteristic curve values than those of f and α (P histogram analysis. ADC, D, and DDC have better performance than f and α; f and α may provide additional information. 4 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1797-1809. © 2017 International Society for Magnetic Resonance in Medicine.

  4. Stable exponential cosmological solutions with 3- and l-dimensional factor spaces in the Einstein-Gauss-Bonnet model with a Λ-term

    Energy Technology Data Exchange (ETDEWEB)

    Ivashchuk, V.D. [Peoples' Friendship University of Russia (RUDN University), Institute of Gravitation and Cosmology, Moscow (Russian Federation); Center for Gravitation and Fundamental Metrology, VNIIMS, Moscow (Russian Federation); Kobtsev, A.A. [Institute for Nuclear Research, RAS, Moscow (Russian Federation)

    2018-02-15

    A D-dimensional gravitational model with a Gauss-Bonnet term and the cosmological term Λ is studied. We assume the metrics to be diagonal cosmological ones. For certain fine-tuned Λ, we find a class of solutions with exponential time dependence of two scale factors, governed by two Hubble-like parameters H > 0 and h, corresponding to factor spaces of dimensions 3 and l > 2, respectively and D = 1 + 3 + l. The fine-tuned Λ = Λ(x, l, α) depends upon the ratio h/H = x, l and the ratio α = α{sub 2}/α{sub 1} of two constants (α{sub 2} and α{sub 1}) of the model. For fixed Λ, α and l > 2 the equation Λ(x, l, α) = Λ is equivalent to a polynomial equation of either fourth or third order and may be solved in radicals (the example l = 3 is presented). For certain restrictions on x we prove the stability of the solutions in a class of cosmological solutions with diagonal metrics. A subclass of solutions with small enough variation of the effective gravitational constant G is considered. It is shown that all solutions from this subclass are stable. (orig.)

  5. The evolution of stellar exponential discs

    NARCIS (Netherlands)

    Ferguson, AMN; Clarke, CJ

    2001-01-01

    Models of disc galaxies which invoke viscosity-driven radial flows have long been known to provide a natural explanation for the origin of stellar exponential discs, under the assumption that the star formation and viscous time-scales are comparable. We present models which invoke simultaneous star

  6. A method for nonlinear exponential regression analysis

    Science.gov (United States)

    Junkin, B. G.

    1971-01-01

    A computer-oriented technique is presented for performing a nonlinear exponential regression analysis on decay-type experimental data. The technique involves the least squares procedure wherein the nonlinear problem is linearized by expansion in a Taylor series. A linear curve fitting procedure for determining the initial nominal estimates for the unknown exponential model parameters is included as an integral part of the technique. A correction matrix was derived and then applied to the nominal estimate to produce an improved set of model parameters. The solution cycle is repeated until some predetermined criterion is satisfied.

  7. Handbook of exponential and related distributions for engineers and scientists

    CERN Document Server

    Pal, Nabendu; Lim, Wooi K

    2005-01-01

    The normal distribution is widely known and used by scientists and engineers. However, there are many cases when the normal distribution is not appropriate, due to the data being skewed. Rather than leaving you to search through journal articles, advanced theoretical monographs, or introductory texts for alternative distributions, the Handbook of Exponential and Related Distributions for Engineers and Scientists provides a concise, carefully selected presentation of the properties and principles of selected distributions that are most useful for application in the sciences and engineering.The book begins with all the basic mathematical and statistical background necessary to select the correct distribution to model real-world data sets. This includes inference, decision theory, and computational aspects including the popular Bootstrap method. The authors then examine four skewed distributions in detail: exponential, gamma, Weibull, and extreme value. For each one, they discuss general properties and applicabi...

  8. Generalization of the quark rearrangement model

    International Nuclear Information System (INIS)

    Fields, T.; Chen, C.K.

    1976-01-01

    An extension and generalization of the quark rearrangement model of baryon annihilation is described which can be applied to all annihilation reactions and which incorporates some of the features of the highly successful quark parton model. Some p anti-p interactions are discussed

  9. Geometrical efficiency in computerized tomography: generalized model

    International Nuclear Information System (INIS)

    Costa, P.R.; Robilotta, C.C.

    1992-01-01

    A simplified model for producing sensitivity and exposure profiles in computerized tomographic system was recently developed allowing the forecast of profiles behaviour in the rotation center of the system. The generalization of this model for some point of the image plane was described, and the geometrical efficiency could be evaluated. (C.G.C.)

  10. ESTIMATION ACCURACY OF EXPONENTIAL DISTRIBUTION PARAMETERS

    Directory of Open Access Journals (Sweden)

    muhammad zahid rashid

    2011-04-01

    Full Text Available The exponential distribution is commonly used to model the behavior of units that have a constant failure rate. The two-parameter exponential distribution provides a simple but nevertheless useful model for the analysis of lifetimes, especially when investigating reliability of technical equipment.This paper is concerned with estimation of parameters of the two parameter (location and scale exponential distribution. We used the least squares method (LSM, relative least squares method (RELS, ridge regression method (RR,  moment estimators (ME, modified moment estimators (MME, maximum likelihood estimators (MLE and modified maximum likelihood estimators (MMLE. We used the mean square error MSE, and total deviation TD, as measurement for the comparison between these methods. We determined the best method for estimation using different values for the parameters and different sample sizes

  11. Generalized Additive Models for Location Scale and Shape (GAMLSS in R

    Directory of Open Access Journals (Sweden)

    D. Mikis Stasinopoulos

    2007-11-01

    Full Text Available GAMLSS is a general framework for fitting regression type models where the distribution of the response variable does not have to belong to the exponential family and includes highly skew and kurtotic continuous and discrete distribution. GAMLSS allows all the parameters of the distribution of the response variable to be modelled as linear/non-linear or smooth functions of the explanatory variables. This paper starts by defining the statistical framework of GAMLSS, then describes the current implementation of GAMLSS in R and finally gives four different data examples to demonstrate how GAMLSS can be used for statistical modelling.

  12. Transverse exponential stability and applications

    NARCIS (Netherlands)

    Andrieu, Vincent; Jayawardhana, Bayu; Praly, Laurent

    2016-01-01

    We investigate how the following properties are related to each other: i) A manifold is “transversally” exponentially stable; ii) The “transverse” linearization along any solution in the manifold is exponentially stable; iii) There exists a field of positive definite quadratic forms whose

  13. Topics in the generalized vector dominance model

    International Nuclear Information System (INIS)

    Chavin, S.

    1976-01-01

    Two topics are covered in the generalized vector dominance model. In the first topic a model is constructed for dilepton production in hadron-hadron interactions based on the idea of generalized vector-dominance. It is argued that in the high mass region the generalized vector-dominance model and the Drell-Yan parton model are alternative descriptions of the same underlying physics. In the low mass regions the models differ; the vector-dominance approach predicts a greater production of dileptons. It is found that the high mass vector mesons which are the hallmark of the generalized vector-dominance model make little contribution to the large yield of leptons observed in the transverse-momentum range 1 less than p/sub perpendicular/ less than 6 GeV. The recently measured hadronic parameters lead one to believe that detailed fits to the data are possible under the model. The possibility was expected, and illustrated with a simple model the extreme sensitivity of the large-p/sub perpendicular/ lepton yield to the large-transverse-momentum tail of vector-meson production. The second topic is an attempt to explain the mysterious phenomenon of photon shadowing in nuclei utilizing the contribution of the longitudinally polarized photon. It is argued that if the scalar photon anti-shadows, it could compensate for the transverse photon, which is presumed to shadow. It is found in a very simple model that the scalar photon could indeed anti-shadow. The principal feature of the model is a cancellation of amplitudes. The scheme is consistent with scalar photon-nucleon data as well. The idea is tested with two simple GVDM models and finds that the anti-shadowing contribution of the scalar photon is not sufficient to compensate for the contribution of the transverse photon. It is found doubtful that the scalar photon makes a significant contribution to the total photon-nuclear cross section

  14. Possible stretched exponential parametrization for humidity absorption in polymers.

    Science.gov (United States)

    Hacinliyan, A; Skarlatos, Y; Sahin, G; Atak, K; Aybar, O O

    2009-04-01

    Polymer thin films have irregular transient current characteristics under constant voltage. In hydrophilic and hydrophobic polymers, the irregularity is also known to depend on the humidity absorbed by the polymer sample. Different stretched exponential models are studied and it is shown that the absorption of humidity as a function of time can be adequately modelled by a class of these stretched exponential absorption models.

  15. Generalized Born Models of Macromolecular Solvation Effects

    Science.gov (United States)

    Bashford, Donald; Case, David A.

    2000-10-01

    It would often be useful in computer simulations to use a simple description of solvation effects, instead of explicitly representing the individual solvent molecules. Continuum dielectric models often work well in describing the thermodynamic aspects of aqueous solvation, and approximations to such models that avoid the need to solve the Poisson equation are attractive because of their computational efficiency. Here we give an overview of one such approximation, the generalized Born model, which is simple and fast enough to be used for molecular dynamics simulations of proteins and nucleic acids. We discuss its strengths and weaknesses, both for its fidelity to the underlying continuum model and for its ability to replace explicit consideration of solvent molecules in macromolecular simulations. We focus particularly on versions of the generalized Born model that have a pair-wise analytical form, and therefore fit most naturally into conventional molecular mechanics calculations.

  16. The Matrix exponential, Dynamic Systems and Control

    DEFF Research Database (Denmark)

    Poulsen, Niels Kjølstad

    The matrix exponential can be found in various connections in analysis and control of dynamic systems. In this short note we are going to list a few examples. The matrix exponential usably pops up in connection to the sampling process, whatever it is in a deterministic or a stochastic setting...... or it is a tool for determining a Gramian matrix. This note is intended to be used in connection to the teaching post the course in Stochastic Adaptive Control (02421) given at Informatics and Mathematical Modelling (IMM), The Technical University of Denmark. This work is a result of a study of the litterature....

  17. Crash data modeling with a generalized estimator.

    Science.gov (United States)

    Ye, Zhirui; Xu, Yueru; Lord, Dominique

    2018-05-11

    The investigation of relationships between traffic crashes and relevant factors is important in traffic safety management. Various methods have been developed for modeling crash data. In real world scenarios, crash data often display the characteristics of over-dispersion. However, on occasions, some crash datasets have exhibited under-dispersion, especially in cases where the data are conditioned upon the mean. The commonly used models (such as the Poisson and the NB regression models) have associated limitations to cope with various degrees of dispersion. In light of this, a generalized event count (GEC) model, which can be generally used to handle over-, equi-, and under-dispersed data, is proposed in this study. This model was first applied to case studies using data from Toronto, characterized by over-dispersion, and then to crash data from railway-highway crossings in Korea, characterized with under-dispersion. The results from the GEC model were compared with those from the Negative binomial and the hyper-Poisson models. The cases studies show that the proposed model provides good performance for crash data characterized with over- and under-dispersion. Moreover, the proposed model simplifies the modeling process and the prediction of crash data. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Modelling the interactions between Pseudomonas putida and Escherichia coli O157:H7 in fish-burgers: use of the lag-exponential model and of a combined interaction index.

    Science.gov (United States)

    Speranza, B; Bevilacqua, A; Mastromatteo, M; Sinigaglia, M; Corbo, M R

    2010-08-01

    The objective of the current study was to examine the interactions between Pseudomonas putida and Escherichia coli O157:H7 in coculture studies on fish-burgers packed in air and under different modified atmospheres (30 : 40 : 30 O(2) : CO(2) : N(2), 5 : 95 O(2) : CO(2) and 50 : 50 O(2) : CO(2)), throughout the storage at 8 degrees C. The lag-exponential model was applied to describe the microbial growth. To give a quantitative measure of the occurring microbial interactions, two simple parameters were developed: the combined interaction index (CII) and the partial interaction index (PII). Under air, the interaction was significant (P exponential growth phase (CII, 1.72), whereas under the modified atmospheres, the interactions were highly significant (P exponential and in the stationary phase (CII ranged from 0.33 to 1.18). PII values for E. coli O157:H7 were lower than those calculated for Ps. putida. The interactions occurring into the system affected both E. coli O157:H7 and pseudomonads subpopulations. The packaging atmosphere resulted in a key element. The article provides some useful information on the interactions occurring between E. coli O157:H7 and Ps. putida on fish-burgers. The proposed index describes successfully the competitive growth of both micro-organisms, giving also a quantitative measure of a qualitative phenomenon.

  19. Exponential rate of convergence in current reservoirs

    OpenAIRE

    De Masi, Anna; Presutti, Errico; Tsagkarogiannis, Dimitrios; Vares, Maria Eulalia

    2015-01-01

    In this paper, we consider a family of interacting particle systems on $[-N,N]$ that arises as a natural model for current reservoirs and Fick's law. We study the exponential rate of convergence to the stationary measure, which we prove to be of the order $N^{-2}$.

  20. Generalized formal model of Big Data

    OpenAIRE

    Shakhovska, N.; Veres, O.; Hirnyak, M.

    2016-01-01

    This article dwells on the basic characteristic features of the Big Data technologies. It is analyzed the existing definition of the “big data” term. The article proposes and describes the elements of the generalized formal model of big data. It is analyzed the peculiarities of the application of the proposed model components. It is described the fundamental differences between Big Data technology and business analytics. Big Data is supported by the distributed file system Google File System ...

  1. A new General Lorentz Transformation model

    International Nuclear Information System (INIS)

    Novakovic, Branko; Novakovic, Alen; Novakovic, Dario

    2000-01-01

    A new general structure of Lorentz Transformations, in the form of General Lorentz Transformation model (GLT-model), has been derived. This structure includes both Lorentz-Einstein and Galilean Transformations as its particular (special) realizations. Since the free parameters of GLT-model have been identified in a gravitational field, GLT-model can be employed both in Special and General Relativity. Consequently, the possibilities of an unification of Einstein's Special and General Theories of Relativity, as well as an unification of electromagnetic and gravitational fields are opened. If GLT-model is correct then there exist four new observation phenomena (a length and time neutrality, and a length dilation and a time contraction). Besides, the well-known phenomena (a length contraction, and a time dilation) are also the constituents of GLT-model. It means that there is a symmetry in GLT-model, where the center of this symmetry is represented by a length and a time neutrality. A time and a length neutrality in a gravitational field can be realized if the velocity of a moving system is equal to the free fall velocity. A time and a length neutrality include an observation of a particle mass neutrality. A special consideration has been devoted to a correlation between GLT-model and a limitation on particle velocities in order to investigate the possibility of a travel time reduction. It is found out that an observation of a particle speed faster then c=299 792 458 m/s, is possible in a gravitational field, if certain conditions are fulfilled

  2. Generalizations of the noisy-or model

    Czech Academy of Sciences Publication Activity Database

    Vomlel, Jiří

    2015-01-01

    Roč. 51, č. 3 (2015), s. 508-524 ISSN 0023-5954 R&D Projects: GA ČR GA13-20012S Institutional support: RVO:67985556 Keywords : Bayesian networks * noisy-or model * classification * generalized linear models Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.628, year: 2015 http://library.utia.cas.cz/separaty/2015/MTR/vomlel-0447357.pdf

  3. Adaptive Inference on General Graphical Models

    OpenAIRE

    Acar, Umut A.; Ihler, Alexander T.; Mettu, Ramgopal; Sumer, Ozgur

    2012-01-01

    Many algorithms and applications involve repeatedly solving variations of the same inference problem; for example we may want to introduce new evidence to the model or perform updates to conditional dependencies. The goal of adaptive inference is to take advantage of what is preserved in the model and perform inference more rapidly than from scratch. In this paper, we describe techniques for adaptive inference on general graphs that support marginal computation and updates to the conditional ...

  4. Vector generalized linear and additive models with an implementation in R

    CERN Document Server

    Yee, Thomas W

    2015-01-01

    This book presents a statistical framework that expands generalized linear models (GLMs) for regression modelling. The framework shared in this book allows analyses based on many semi-traditional applied statistics models to be performed as a coherent whole. This is possible through the approximately half-a-dozen major classes of statistical models included in the book and the software infrastructure component, which makes the models easily operable.    The book’s methodology and accompanying software (the extensive VGAM R package) are directed at these limitations, and this is the first time the methodology and software are covered comprehensively in one volume. Since their advent in 1972, GLMs have unified important distributions under a single umbrella with enormous implications. The demands of practical data analysis, however, require a flexibility that GLMs do not have. Data-driven GLMs, in the form of generalized additive models (GAMs), are also largely confined to the exponential family. This book ...

  5. The General Education Collaboration Model: A Model for Successful Mainstreaming.

    Science.gov (United States)

    Simpson, Richard L.; Myles, Brenda Smith

    1990-01-01

    The General Education Collaboration Model is designed to support general educators teaching mainstreamed disabled students, through collaboration with special educators. The model is based on flexible departmentalization, program ownership, identification and development of supportive attitudes, student assessment as a measure of program…

  6. General Equilibrium Models: Improving the Microeconomics Classroom

    Science.gov (United States)

    Nicholson, Walter; Westhoff, Frank

    2009-01-01

    General equilibrium models now play important roles in many fields of economics including tax policy, environmental regulation, international trade, and economic development. The intermediate microeconomics classroom has not kept pace with these trends, however. Microeconomics textbooks primarily focus on the insights that can be drawn from the…

  7. Exponentiated Lomax Geometric Distribution: Properties and Applications

    Directory of Open Access Journals (Sweden)

    Amal Soliman Hassan

    2017-09-01

    Full Text Available In this paper, a new four-parameter lifetime distribution, called the exponentiated Lomax geometric (ELG is introduced. The new lifetime distribution contains the Lomax geometric and exponentiated Pareto geometric as new sub-models. Explicit algebraic formulas of probability density function, survival and hazard functions are derived. Various structural properties of the new model are derived including; quantile function, Re'nyi entropy, moments, probability weighted moments, order statistic, Lorenz and Bonferroni curves. The estimation of the model parameters is performed by maximum likelihood method and inference for a large sample is discussed. The flexibility and potentiality of the new model in comparison with some other distributions are shown via an application to a real data set. We hope that the new model will be an adequate model for applications in various studies.

  8. The generalized spherical model of ferromagnetic films

    International Nuclear Information System (INIS)

    Costache, G.

    1977-12-01

    The D→ infinity of the D-vectorial model of a ferromagnetic film with free surfaces is exactly solved. The mathematical mechanism responsible for the onset of a phase transition in the system is a generalized sticking phenomenon. It is shown that the temperature at which the sticking appears, the transition temperature of the model is monotonously increasing with increasing the number of layers of the film, contrary to what happens in the spherical model with overall constraint. Certain correlation inequalities of Griffiths type are shown to hold. (author)

  9. Exponential stability of delayed fuzzy cellular neural networks with diffusion

    International Nuclear Information System (INIS)

    Huang Tingwen

    2007-01-01

    The exponential stability of delayed fuzzy cellular neural networks (FCNN) with diffusion is investigated. Exponential stability, significant for applications of neural networks, is obtained under conditions that are easily verified by a new approach. Earlier results on the exponential stability of FCNN with time-dependent delay, a special case of the model studied in this paper, are improved without using the time-varying term condition: dτ(t)/dt < μ

  10. A Bayesian, generalized frailty model for comet assays.

    Science.gov (United States)

    Ghebretinsae, Aklilu Habteab; Faes, Christel; Molenberghs, Geert; De Boeck, Marlies; Geys, Helena

    2013-05-01

    This paper proposes a flexible modeling approach for so-called comet assay data regularly encountered in preclinical research. While such data consist of non-Gaussian outcomes in a multilevel hierarchical structure, traditional analyses typically completely or partly ignore this hierarchical nature by summarizing measurements within a cluster. Non-Gaussian outcomes are often modeled using exponential family models. This is true not only for binary and count data, but also for, example, time-to-event outcomes. Two important reasons for extending this family are for (1) the possible occurrence of overdispersion, meaning that the variability in the data may not be adequately described by the models, which often exhibit a prescribed mean-variance link, and (2) the accommodation of a hierarchical structure in the data, owing to clustering in the data. The first issue is dealt with through so-called overdispersion models. Clustering is often accommodated through the inclusion of random subject-specific effects. Though not always, one conventionally assumes such random effects to be normally distributed. In the case of time-to-event data, one encounters, for example, the gamma frailty model (Duchateau and Janssen, 2007 ). While both of these issues may occur simultaneously, models combining both are uncommon. Molenberghs et al. ( 2010 ) proposed a broad class of generalized linear models accommodating overdispersion and clustering through two separate sets of random effects. Here, we use this method to model data from a comet assay with a three-level hierarchical structure. Although a conjugate gamma random effect is used for the overdispersion random effect, both gamma and normal random effects are considered for the hierarchical random effect. Apart from model formulation, we place emphasis on Bayesian estimation. Our proposed method has an upper hand over the traditional analysis in that it (1) uses the appropriate distribution stipulated in the literature; (2) deals

  11. Neural pulse frequency modulation of an exponentially correlated Gaussian process

    Science.gov (United States)

    Hutchinson, C. E.; Chon, Y.-T.

    1976-01-01

    The effect of NPFM (Neural Pulse Frequency Modulation) on a stationary Gaussian input, namely an exponentially correlated Gaussian input, is investigated with special emphasis on the determination of the average number of pulses in unit time, known also as the average frequency of pulse occurrence. For some classes of stationary input processes where the formulation of the appropriate multidimensional Markov diffusion model of the input-plus-NPFM system is possible, the average impulse frequency may be obtained by a generalization of the approach adopted. The results are approximate and numerical, but are in close agreement with Monte Carlo computer simulation results.

  12. A General Model for Estimating Macroevolutionary Landscapes.

    Science.gov (United States)

    Boucher, Florian C; Démery, Vincent; Conti, Elena; Harmon, Luke J; Uyeda, Josef

    2018-03-01

    The evolution of quantitative characters over long timescales is often studied using stochastic diffusion models. The current toolbox available to students of macroevolution is however limited to two main models: Brownian motion and the Ornstein-Uhlenbeck process, plus some of their extensions. Here, we present a very general model for inferring the dynamics of quantitative characters evolving under both random diffusion and deterministic forces of any possible shape and strength, which can accommodate interesting evolutionary scenarios like directional trends, disruptive selection, or macroevolutionary landscapes with multiple peaks. This model is based on a general partial differential equation widely used in statistical mechanics: the Fokker-Planck equation, also known in population genetics as the Kolmogorov forward equation. We thus call the model FPK, for Fokker-Planck-Kolmogorov. We first explain how this model can be used to describe macroevolutionary landscapes over which quantitative traits evolve and, more importantly, we detail how it can be fitted to empirical data. Using simulations, we show that the model has good behavior both in terms of discrimination from alternative models and in terms of parameter inference. We provide R code to fit the model to empirical data using either maximum-likelihood or Bayesian estimation, and illustrate the use of this code with two empirical examples of body mass evolution in mammals. FPK should greatly expand the set of macroevolutionary scenarios that can be studied since it opens the way to estimating macroevolutionary landscapes of any conceivable shape. [Adaptation; bounds; diffusion; FPK model; macroevolution; maximum-likelihood estimation; MCMC methods; phylogenetic comparative data; selection.].

  13. Symmetrized exponential oscillator

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2016-01-01

    Roč. 31, č. 34 (2016), č. článku 1650195. ISSN 0217-7323 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : quantum bound states * exactly solvable models * Bessel special funciton transcendental secular equation * numerical precision Subject RIV: BE - Theoretical Physics Impact factor: 1.165, year: 2016

  14. General regression and representation model for classification.

    Directory of Open Access Journals (Sweden)

    Jianjun Qian

    Full Text Available Recently, the regularized coding-based classification methods (e.g. SRC and CRC show a great potential for pattern classification. However, most existing coding methods assume that the representation residuals are uncorrelated. In real-world applications, this assumption does not hold. In this paper, we take account of the correlations of the representation residuals and develop a general regression and representation model (GRR for classification. GRR not only has advantages of CRC, but also takes full use of the prior information (e.g. the correlations between representation residuals and representation coefficients and the specific information (weight matrix of image pixels to enhance the classification performance. GRR uses the generalized Tikhonov regularization and K Nearest Neighbors to learn the prior information from the training data. Meanwhile, the specific information is obtained by using an iterative algorithm to update the feature (or image pixel weights of the test sample. With the proposed model as a platform, we design two classifiers: basic general regression and representation classifier (B-GRR and robust general regression and representation classifier (R-GRR. The experimental results demonstrate the performance advantages of proposed methods over state-of-the-art algorithms.

  15. Higher dimensional generalizations of the SYK model

    Energy Technology Data Exchange (ETDEWEB)

    Berkooz, Micha [Department of Particle Physics and Astrophysics, Weizmann Institute of Science,Rehovot 7610001 (Israel); Narayan, Prithvi [International Centre for Theoretical Sciences, Hesaraghatta,Bengaluru North, 560 089 (India); Rozali, Moshe [Department of Physics and Astronomy, University of British Columbia,Vancouver, BC V6T 1Z1 (Canada); Simón, Joan [School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh,King’s Buildings, Edinburgh EH9 3FD (United Kingdom)

    2017-01-31

    We discuss a 1+1 dimensional generalization of the Sachdev-Ye-Kitaev model. The model contains N Majorana fermions at each lattice site with a nearest-neighbour hopping term. The SYK random interaction is restricted to low momentum fermions of definite chirality within each lattice site. This gives rise to an ordinary 1+1 field theory above some energy scale and a low energy SYK-like behavior. We exhibit a class of low-pass filters which give rise to a rich variety of hyperscaling behaviour in the IR. We also discuss another set of generalizations which describes probing an SYK system with an external fermion, together with the new scaling behavior they exhibit in the IR.

  16. Current definition and a generalized federbush model

    International Nuclear Information System (INIS)

    Singh, L.P.S.; Hagen, C.R.

    1978-01-01

    The Federbush model is studied, with particular attention being given to the definition of currents. Inasmuch as there is no a priori restriction of local gauge invariance, the currents in the interacting case can be defined more generally than in Q.E.D. It is found that two arbitrary parameters are thereby introduced into the theory. Lowest order perturbation calculations for the current correlation functions and the Fermion propagators indicate that the theory admits a whole class of solutions dependent upon these parameters with the closed solution of Federbush emerging as a special case. The theory is shown to be locally covariant, and a conserved energy--momentum tensor is displayed. One finds in addition that the generators of gauge transformations for the fields are conserved. Finally it is shown that the general theory yields the Federbush solution if suitable Thirring model type counterterms are added

  17. Generalized Additive Models for Nowcasting Cloud Shading

    Czech Academy of Sciences Publication Activity Database

    Brabec, Marek; Paulescu, M.; Badescu, V.

    2014-01-01

    Roč. 101, March (2014), s. 272-282 ISSN 0038-092X R&D Projects: GA MŠk LD12009 Grant - others:European Cooperation in Science and Technology(XE) COST ES1002 Institutional support: RVO:67985807 Keywords : sunshine number * nowcasting * generalized additive model * Markov chain Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 3.469, year: 2014

  18. A General Business Model for Marine Reserves

    Science.gov (United States)

    Sala, Enric; Costello, Christopher; Dougherty, Dawn; Heal, Geoffrey; Kelleher, Kieran; Murray, Jason H.; Rosenberg, Andrew A.; Sumaila, Rashid

    2013-01-01

    Marine reserves are an effective tool for protecting biodiversity locally, with potential economic benefits including enhancement of local fisheries, increased tourism, and maintenance of ecosystem services. However, fishing communities often fear short-term income losses associated with closures, and thus may oppose marine reserves. Here we review empirical data and develop bioeconomic models to show that the value of marine reserves (enhanced adjacent fishing + tourism) may often exceed the pre-reserve value, and that economic benefits can offset the costs in as little as five years. These results suggest the need for a new business model for creating and managing reserves, which could pay for themselves and turn a profit for stakeholder groups. Our model could be expanded to include ecosystem services and other benefits, and it provides a general framework to estimate costs and benefits of reserves and to develop such business models. PMID:23573192

  19. Exponential Stabilization of Underactuated Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, K.Y.

    1996-12-31

    Underactuated vehicles are vehicles with fewer independent control actuators than degrees of freedom to be controlled. Such vehicles may be used in inspection of sub-sea cables, inspection and maintenance of offshore oil drilling platforms, and similar. This doctoral thesis discusses feedback stabilization of underactuated vehicles. The main objective has been to further develop methods from stabilization of nonholonomic systems to arrive at methods that are applicable to underactuated vehicles. A nonlinear model including both dynamics and kinematics is used to describe the vehicles, which may be surface vessels, spacecraft or autonomous underwater vehicles (AUVs). It is shown that for a certain class of underactuated vehicles the stabilization problem is not solvable by linear control theory. A new stability result for a class of homogeneous time-varying systems is derived and shown to be an important tool for developing continuous periodic time-varying feedback laws that stabilize underactuated vehicles without involving cancellation of dynamics. For position and orientation control of a surface vessel without side thruster a new continuous periodic feedback law is proposed that does not cancel any dynamics, and that exponentially stabilizes the origin of the underactuated surface vessel. A further issue considered is the stabilization of the attitude of an AUV. Finally, the thesis discusses stabilization of both position and attitude of an underactuated AUV. 55 refs., 28 figs.

  20. Exponential growth and atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    Laurmann, J.A.; Rotty, R.M.

    1983-01-01

    The adequacy of assumptions required to project atmospheric CO 2 concentrations in time frames of practical importance is reviewed. Relevant issues concern the form assumed for future fossil fuel release, carbon cycle approximations, and the implications of revisions in fossil fuel patterns required to maintain atmospheric CO 2 levels below a chosen threshold. In general, we find that with a judiciously selected exponential fossil fuel release rate, and with a constant airborn fraction, we can estimate atmospheric CO 2 growth over the next 50 years based on essentially surprise free scenarios. Resource depletion effects must be included for projections beyond about 50 years, and on this time frame the constant airborne fraction approximation has to be questioned as well (especially in later years when the fossil fuel use begins to taper off). For projections for over 100 years, both energy demand scenarios and currently available carbon cycle models have sufficient uncertainties that atmospheric CO 2 levels derived from them are not much better than guesses

  1. A proposed general model of information behaviour.

    Directory of Open Access Journals (Sweden)

    2003-01-01

    Full Text Available Presents a critical description of Wilson's (1996 global model of information behaviour and proposes major modification on the basis of research into information behaviour of managers, conducted in Poland. The theoretical analysis and research results suggest that Wilson's model has certain imperfections, both in its conceptual content, and in graphical presentation. The model, for example, cannot be used to describe managers' information behaviour, since managers basically are not the end users of external from organization or computerized information services, and they acquire information mainly through various intermediaries. Therefore, the model cannot be considered as a general model, applicable to every category of information users. The proposed new model encompasses the main concepts of Wilson's model, such as: person-in-context, three categories of intervening variables (individual, social and environmental, activating mechanisms, cyclic character of information behaviours, and the adoption of a multidisciplinary approach to explain them. However, the new model introduces several changes. They include: 1. identification of 'context' with the intervening variables; 2. immersion of the chain of information behaviour in the 'context', to indicate that the context variables influence behaviour at all stages of the process (identification of needs, looking for information, processing and using it; 3. stress is put on the fact that the activating mechanisms also can occur at all stages of the information acquisition process; 4. introduction of two basic strategies of looking for information: personally and/or using various intermediaries.

  2. Review of "Going Exponential: Growing the Charter School Sector's Best"

    Science.gov (United States)

    Garcia, David

    2011-01-01

    This Progressive Policy Institute report argues that charter schools should be expanded rapidly and exponentially. Citing exponential growth organizations, such as Starbucks and Apple, as well as the rapid growth of molds, viruses and cancers, the report advocates for similar growth models for charter schools. However, there is no explanation of…

  3. A generalized additive regression model for survival times

    DEFF Research Database (Denmark)

    Scheike, Thomas H.

    2001-01-01

    Additive Aalen model; counting process; disability model; illness-death model; generalized additive models; multiple time-scales; non-parametric estimation; survival data; varying-coefficient models......Additive Aalen model; counting process; disability model; illness-death model; generalized additive models; multiple time-scales; non-parametric estimation; survival data; varying-coefficient models...

  4. Generalized model of the microwave auditory effect

    International Nuclear Information System (INIS)

    Yitzhak, N M; Ruppin, R; Hareuveny, R

    2009-01-01

    A generalized theoretical model for evaluating the amplitudes of the sound waves generated in a spherical head model, which is irradiated by microwave pulses, is developed. The thermoelastic equation of motion is solved for a spherically symmetric heating pattern of arbitrary form. For previously treated heating patterns that are peaked at the sphere centre, the results reduce to those presented before. The generalized model is applied to the case in which the microwave absorption is concentrated near the sphere surface. It is found that, for equal average specific absorption rates, the sound intensity generated by a surface localized heating pattern is comparable to that generated by a heating pattern that is peaked at the centre. The dependence of the induced sound pressure on the shape of the microwave pulse is explored. Another theoretical extension, to the case of repeated pulses, is developed and applied to the interpretation of existing experimental data on the dependence of the human hearing effect threshold on the pulse repetition frequency.

  5. Modelling debris flows down general channels

    Directory of Open Access Journals (Sweden)

    S. P. Pudasaini

    2005-01-01

    Full Text Available This paper is an extension of the single-phase cohesionless dry granular avalanche model over curved and twisted channels proposed by Pudasaini and Hutter (2003. It is a generalisation of the Savage and Hutter (1989, 1991 equations based on simple channel topography to a two-phase fluid-solid mixture of debris material. Important terms emerging from the correct treatment of the kinematic and dynamic boundary condition, and the variable basal topography are systematically taken into account. For vanishing fluid contribution and torsion-free channel topography our new model equations exactly degenerate to the previous Savage-Hutter model equations while such a degeneration was not possible by the Iverson and Denlinger (2001 model, which, in fact, also aimed to extend the Savage and Hutter model. The model equations of this paper have been rigorously derived; they include the effects of the curvature and torsion of the topography, generally for arbitrarily curved and twisted channels of variable channel width. The equations are put into a standard conservative form of partial differential equations. From these one can easily infer the importance and influence of the pore-fluid-pressure distribution in debris flow dynamics. The solid-phase is modelled by applying a Coulomb dry friction law whereas the fluid phase is assumed to be an incompressible Newtonian fluid. Input parameters of the equations are the internal and bed friction angles of the solid particles, the viscosity and volume fraction of the fluid, the total mixture density and the pore pressure distribution of the fluid at the bed. Given the bed topography and initial geometry and the initial velocity profile of the debris mixture, the model equations are able to describe the dynamics of the depth profile and bed parallel depth-averaged velocity distribution from the initial position to the final deposit. A shock capturing, total variation diminishing numerical scheme is implemented to

  6. Exponential x-ray transform

    International Nuclear Information System (INIS)

    Hazou, I.A.

    1986-01-01

    In emission computed tomography one wants to determine the location and intensity of radiation emitted by sources in the presence of an attenuating medium. If the attenuation is known everywhere and equals a constant α in a convex neighborhood of the support of f, then the problem reduces to that of inverting the exponential x-ray transform P/sub α/. The exponential x-ray transform P/sub μ/ with the attenuation μ variable, is of interest mathematically. For the exponential x-ray transform in two dimensions, it is shown that for a large class of approximate δ functions E, convolution kernels K exist for use in the convolution backprojection algorithm. For the case where the attenuation is constant, exact formulas are derived for calculating the convolution kernels from radial point spread functions. From these an exact inversion formula for the constantly attenuated transform is obtained

  7. A generalized model for compact stars

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Abdul [Bodai High School (H.S.), Department of Physics, Kolkata, West Bengal (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India); Rahaman, Farook [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India)

    2016-05-15

    By virtue of the maximum entropy principle, we get an Euler-Lagrange equation which is a highly nonlinear differential equation containing the mass function and its derivatives. Solving the equation by a homotopy perturbation method we derive a generalized expression for the mass which is a polynomial function of the radial distance. Using the mass function we find a partially stable configuration and its characteristics. We show that different physical features of the known compact stars, viz. Her X-1, RX J 1856-37, SAX J (SS1), SAX J (SS2), and PSR J 1614-2230, can be explained by the present model. (orig.)

  8. Testing Parametric versus Semiparametric Modelling in Generalized Linear Models

    NARCIS (Netherlands)

    Härdle, W.K.; Mammen, E.; Müller, M.D.

    1996-01-01

    We consider a generalized partially linear model E(Y|X,T) = G{X'b + m(T)} where G is a known function, b is an unknown parameter vector, and m is an unknown function.The paper introduces a test statistic which allows to decide between a parametric and a semiparametric model: (i) m is linear, i.e.

  9. A Model Fit Statistic for Generalized Partial Credit Model

    Science.gov (United States)

    Liang, Tie; Wells, Craig S.

    2009-01-01

    Investigating the fit of a parametric model is an important part of the measurement process when implementing item response theory (IRT), but research examining it is limited. A general nonparametric approach for detecting model misfit, introduced by J. Douglas and A. S. Cohen (2001), has exhibited promising results for the two-parameter logistic…

  10. The Generalized Quantum Episodic Memory Model.

    Science.gov (United States)

    Trueblood, Jennifer S; Hemmer, Pernille

    2017-11-01

    Recent evidence suggests that experienced events are often mapped to too many episodic states, including those that are logically or experimentally incompatible with one another. For example, episodic over-distribution patterns show that the probability of accepting an item under different mutually exclusive conditions violates the disjunction rule. A related example, called subadditivity, occurs when the probability of accepting an item under mutually exclusive and exhaustive instruction conditions sums to a number >1. Both the over-distribution effect and subadditivity have been widely observed in item and source-memory paradigms. These phenomena are difficult to explain using standard memory frameworks, such as signal-detection theory. A dual-trace model called the over-distribution (OD) model (Brainerd & Reyna, 2008) can explain the episodic over-distribution effect, but not subadditivity. Our goal is to develop a model that can explain both effects. In this paper, we propose the Generalized Quantum Episodic Memory (GQEM) model, which extends the Quantum Episodic Memory (QEM) model developed by Brainerd, Wang, and Reyna (2013). We test GQEM by comparing it to the OD model using data from a novel item-memory experiment and a previously published source-memory experiment (Kellen, Singmann, & Klauer, 2014) examining the over-distribution effect. Using the best-fit parameters from the over-distribution experiments, we conclude by showing that the GQEM model can also account for subadditivity. Overall these results add to a growing body of evidence suggesting that quantum probability theory is a valuable tool in modeling recognition memory. Copyright © 2016 Cognitive Science Society, Inc.

  11. The epistemological status of general circulation models

    Science.gov (United States)

    Loehle, Craig

    2018-03-01

    Forecasts of both likely anthropogenic effects on climate and consequent effects on nature and society are based on large, complex software tools called general circulation models (GCMs). Forecasts generated by GCMs have been used extensively in policy decisions related to climate change. However, the relation between underlying physical theories and results produced by GCMs is unclear. In the case of GCMs, many discretizations and approximations are made, and simulating Earth system processes is far from simple and currently leads to some results with unknown energy balance implications. Statistical testing of GCM forecasts for degree of agreement with data would facilitate assessment of fitness for use. If model results need to be put on an anomaly basis due to model bias, then both visual and quantitative measures of model fit depend strongly on the reference period used for normalization, making testing problematic. Epistemology is here applied to problems of statistical inference during testing, the relationship between the underlying physics and the models, the epistemic meaning of ensemble statistics, problems of spatial and temporal scale, the existence or not of an unforced null for climate fluctuations, the meaning of existing uncertainty estimates, and other issues. Rigorous reasoning entails carefully quantifying levels of uncertainty.

  12. Unwrapped phase inversion with an exponential damping

    KAUST Repository

    Choi, Yun Seok

    2015-07-28

    Full-waveform inversion (FWI) suffers from the phase wrapping (cycle skipping) problem when the frequency of data is not low enough. Unless we obtain a good initial velocity model, the phase wrapping problem in FWI causes a result corresponding to a local minimum, usually far away from the true solution, especially at depth. Thus, we have developed an inversion algorithm based on a space-domain unwrapped phase, and we also used exponential damping to mitigate the nonlinearity associated with the reflections. We construct the 2D phase residual map, which usually contains the wrapping discontinuities, especially if the model is complex and the frequency is high. We then unwrap the phase map and remove these cycle-based jumps. However, if the phase map has several residues, the unwrapping process becomes very complicated. We apply a strong exponential damping to the wavefield to eliminate much of the residues in the phase map, thus making the unwrapping process simple. We finally invert the unwrapped phases using the back-propagation algorithm to calculate the gradient. We progressively reduce the damping factor to obtain a high-resolution image. Numerical examples determined that the unwrapped phase inversion with a strong exponential damping generated convergent long-wavelength updates without low-frequency information. This model can be used as a good starting model for a subsequent inversion with a reduced damping, eventually leading to conventional waveform inversion.

  13. Generalized Penner models and multicritical behavior

    International Nuclear Information System (INIS)

    Tan, C.

    1992-01-01

    In this paper, we are interested in the critical behavior of generalized Penner models at t∼-1+μ/N where the topological expansion for the free energy develops logarithmic singularities: Γ∼-(χ 0 μ 2 lnμ+χ 1 lnμ+...). We demonstrate that these criticalities can best be characterized by the fact that the large-N generating function becomes meromorphic with a single pole term of unit residue, F(z)→1/(z-a), where a is the location of the ''sink.'' For a one-band eigenvalue distribution, we identify multicritical potentials; we find that none of these can be associated with the c=1 string compactified at an integral multiple of the self-dual radius. We also give an exact solution to the Gaussian Penner model and explicitly demonstrate that, at criticality, this solution does not correspond to a c=1 string compactified at twice the self-dual radius

  14. Aspects of general linear modelling of migration.

    Science.gov (United States)

    Congdon, P

    1992-01-01

    "This paper investigates the application of general linear modelling principles to analysing migration flows between areas. Particular attention is paid to specifying the form of the regression and error components, and the nature of departures from Poisson randomness. Extensions to take account of spatial and temporal correlation are discussed as well as constrained estimation. The issue of specification bears on the testing of migration theories, and assessing the role migration plays in job and housing markets: the direction and significance of the effects of economic variates on migration depends on the specification of the statistical model. The application is in the context of migration in London and South East England in the 1970s and 1980s." excerpt

  15. Analysis of dental caries using generalized linear and count regression models

    Directory of Open Access Journals (Sweden)

    Javali M. Phil

    2013-11-01

    Full Text Available Generalized linear models (GLM are generalization of linear regression models, which allow fitting regression models to response data in all the sciences especially medical and dental sciences that follow a general exponential family. These are flexible and widely used class of such models that can accommodate response variables. Count data are frequently characterized by overdispersion and excess zeros. Zero-inflated count models provide a parsimonious yet powerful way to model this type of situation. Such models assume that the data are a mixture of two separate data generation processes: one generates only zeros, and the other is either a Poisson or a negative binomial data-generating process. Zero inflated count regression models such as the zero-inflated Poisson (ZIP, zero-inflated negative binomial (ZINB regression models have been used to handle dental caries count data with many zeros. We present an evaluation framework to the suitability of applying the GLM, Poisson, NB, ZIP and ZINB to dental caries data set where the count data may exhibit evidence of many zeros and over-dispersion. Estimation of the model parameters using the method of maximum likelihood is provided. Based on the Vuong test statistic and the goodness of fit measure for dental caries data, the NB and ZINB regression models perform better than other count regression models.

  16. Geometry of the q-exponential distribution with dependent competing risks and accelerated life testing

    Science.gov (United States)

    Zhang, Fode; Shi, Yimin; Wang, Ruibing

    2017-02-01

    In the information geometry suggested by Amari (1985) and Amari et al. (1987), a parametric statistical model can be regarded as a differentiable manifold with the parameter space as a coordinate system. Note that the q-exponential distribution plays an important role in Tsallis statistics (see Tsallis, 2009), this paper investigates the geometry of the q-exponential distribution with dependent competing risks and accelerated life testing (ALT). A copula function based on the q-exponential function, which can be considered as the generalized Gumbel copula, is discussed to illustrate the structure of the dependent random variable. Employing two iterative algorithms, simulation results are given to compare the performance of estimations and levels of association under different hybrid progressively censoring schemes (HPCSs).

  17. Generalized Linear Models in Vehicle Insurance

    Directory of Open Access Journals (Sweden)

    Silvie Kafková

    2014-01-01

    Full Text Available Actuaries in insurance companies try to find the best model for an estimation of insurance premium. It depends on many risk factors, e.g. the car characteristics and the profile of the driver. In this paper, an analysis of the portfolio of vehicle insurance data using a generalized linear model (GLM is performed. The main advantage of the approach presented in this article is that the GLMs are not limited by inflexible preconditions. Our aim is to predict the relation of annual claim frequency on given risk factors. Based on a large real-world sample of data from 57 410 vehicles, the present study proposed a classification analysis approach that addresses the selection of predictor variables. The models with different predictor variables are compared by analysis of deviance and Akaike information criterion (AIC. Based on this comparison, the model for the best estimate of annual claim frequency is chosen. All statistical calculations are computed in R environment, which contains stats package with the function for the estimation of parameters of GLM and the function for analysis of deviation.

  18. The gravitational polarization in general relativity: solution to Szekeres' model of quadrupole polarization

    International Nuclear Information System (INIS)

    Montani, Giovanni; Ruffini, Remo; Zalaletdinov, Roustam

    2003-01-01

    A model for the static weak-field macroscopic medium is analysed and the equation for the macroscopic gravitational potential is derived. This is a biharmonic equation which is a non-trivial generalization of the Poisson equation of Newtonian gravity. In the case of strong gravitational quadrupole polarization, it essentially holds inside a macroscopic matter source. Outside the source the gravitational potential fades away exponentially. The equation is equivalent to a system of the Poisson equation and the non-homogeneous modified Helmholtz equations. The general solution to this system is obtained by using the Green function method and it is not limited to Newtonian gravity. In the case of insignificant gravitational quadrupole polarization, the equation for macroscopic gravitational potential becomes the Poisson equation with the matter density renormalized by a factor including the value of the quadrupole gravitational polarization of the source. The general solution to this equation obtained by using the Green function method is limited to Newtonian gravity

  19. A generalized linear-quadratic model incorporating reciprocal time pattern of radiation damage repair

    International Nuclear Information System (INIS)

    Huang, Zhibin; Mayr, Nina A.; Lo, Simon S.; Wang, Jian Z.; Jia Guang; Yuh, William T. C.; Johnke, Roberta

    2012-01-01

    Purpose: It has been conventionally assumed that the repair rate for sublethal damage (SLD) remains constant during the entire radiation course. However, increasing evidence from animal studies suggest that this may not the case. Rather, it appears that the repair rate for radiation-induced SLD slows down with increasing time. Such a slowdown in repair would suggest that the exponential repair pattern would not necessarily accurately predict repair process. As a result, the purpose of this study was to investigate a new generalized linear-quadratic (LQ) model incorporating a repair pattern with reciprocal time. The new formulas were tested with published experimental data. Methods: The LQ model has been widely used in radiation therapy, and the parameter G in the surviving fraction represents the repair process of sublethal damage with T r as the repair half-time. When a reciprocal pattern of repair process was adopted, a closed form of G was derived analytically for arbitrary radiation schemes. The published animal data adopted to test the reciprocal formulas. Results: A generalized LQ model to describe the repair process in a reciprocal pattern was obtained. Subsequently, formulas for special cases were derived from this general form. The reciprocal model showed a better fit to the animal data than the exponential model, particularly for the ED50 data (reduced χ 2 min of 2.0 vs 4.3, p = 0.11 vs 0.006), with the following gLQ parameters: α/β = 2.6-4.8 Gy, T r = 3.2-3.9 h for rat feet skin, and α/β = 0.9 Gy, T r = 1.1 h for rat spinal cord. Conclusions: These results of repair process following a reciprocal time suggest that the generalized LQ model incorporating the reciprocal time of sublethal damage repair shows a better fit than the exponential repair model. These formulas can be used to analyze the experimental and clinical data, where a slowing-down repair process appears during the course of radiation therapy.

  20. A general phenomenological model for work function

    Science.gov (United States)

    Brodie, I.; Chou, S. H.; Yuan, H.

    2014-07-01

    A general phenomenological model is presented for obtaining the zero Kelvin work function of any crystal facet of metals and semiconductors, both clean and covered with a monolayer of electropositive atoms. It utilizes the known physical structure of the crystal and the Fermi energy of the two-dimensional electron gas assumed to form on the surface. A key parameter is the number of electrons donated to the surface electron gas per surface lattice site or adsorbed atom, which is taken to be an integer. Initially this is found by trial and later justified by examining the state of the valence electrons of the relevant atoms. In the case of adsorbed monolayers of electropositive atoms a satisfactory justification could not always be found, particularly for cesium, but a trial value always predicted work functions close to the experimental values. The model can also predict the variation of work function with temperature for clean crystal facets. The model is applied to various crystal faces of tungsten, aluminium, silver, and select metal oxides, and most demonstrate good fits compared to available experimental values.

  1. Matrix-exponential distributions in applied probability

    CERN Document Server

    Bladt, Mogens

    2017-01-01

    This book contains an in-depth treatment of matrix-exponential (ME) distributions and their sub-class of phase-type (PH) distributions. Loosely speaking, an ME distribution is obtained through replacing the intensity parameter in an exponential distribution by a matrix. The ME distributions can also be identified as the class of non-negative distributions with rational Laplace transforms. If the matrix has the structure of a sub-intensity matrix for a Markov jump process we obtain a PH distribution which allows for nice probabilistic interpretations facilitating the derivation of exact solutions and closed form formulas. The full potential of ME and PH unfolds in their use in stochastic modelling. Several chapters on generic applications, like renewal theory, random walks and regenerative processes, are included together with some specific examples from queueing theory and insurance risk. We emphasize our intention towards applications by including an extensive treatment on statistical methods for PH distribu...

  2. Symplectic models for general insertion devices

    International Nuclear Information System (INIS)

    Wu, Y.; Forest, E.; Robin, D. S.; Nishimura, H.; Wolski, A.; Litvinenko, V. N.

    2001-01-01

    A variety of insertion devices (IDs), wigglers and undulators, linearly or elliptically polarized,are widely used as high brightness radiation sources at the modern light source rings. Long and high-field wigglers have also been proposed as the main source of radiation damping at next generation damping rings. As a result, it becomes increasingly important to understand the impact of IDs on the charged particle dynamics in the storage ring. In this paper, we report our recent development of a general explicit symplectic model for IDs with the paraxial ray approximation. High-order explicit symplectic integrators are developed to study real-world insertion devices with a number of wiggler harmonics and arbitrary polarizations

  3. A generalized model for coincidence counting

    International Nuclear Information System (INIS)

    Lu, Ming-Shih; Teichmann, T.

    1992-01-01

    The aim of this paper is to provide a description of the multiplicative processes associated with coincidence counting techniques, for example in the NDA of plutonium bearing materials. The model elucidates both the physical processes and the underlying mathematical formalism in a relatively simple but comprehensive way. In particular, it includes the effect of absorption by impurities or poisons, as well as that of neutron leakage on a parallel basis to the treatment of induced fission itself. The work thus parallels and generalizes the methods of Boehnel of Hage and Cifarelli, and more recently of Yanjushkin. This paper introduces the concept of a dual probability generating function to account for both the basic physical multiplication phenomena, as well as the detection phenomena. The underlying approach extends the idea of a simple probability generating function, due to De Moivre. The basic mathematical background may be found, for example, in Feller 1966

  4. Exponential Shear Flow of Linear, Entangled Polymeric Liquids

    DEFF Research Database (Denmark)

    Neergaard, Jesper; Park, Kyungho; Venerus, David C.

    2000-01-01

    A previously proposed reptation model is used to interpret exponential shear flow data taken on an entangled polystyrenesolution. Both shear and normal stress measurements are made during exponential shear using mechanical means. The model iscapable of explaining all trends seen in the data......, and suggests a novel analysis of the data. This analysis demonstrates thatexponential shearing flow is no more capable of stretching polymer chains than is inception of steady shear at comparableinstantaneous shear rates. In fact, all exponential shear flow stresses measured are bounded quantitatively...

  5. Dynamical reduction models with general gaussian noises

    International Nuclear Information System (INIS)

    Bassi, Angelo; Ghirardi, GianCarlo

    2002-02-01

    We consider the effect of replacing in stochastic differential equations leading to the dynamical collapse of the statevector, white noise stochastic processes with non white ones. We prove that such a modification can be consistently performed without altering the most interesting features of the previous models. One of the reasons to discuss this matter derives from the desire of being allowed to deal with physical stochastic fields, such as the gravitational one, which cannot give rise to white noises. From our point of view the most relevant motivation for the approach we propose here derives from the fact that in relativistic models the occurrence of white noises is the main responsible for the appearance of untractable divergences. Therefore, one can hope that resorting to non white noises one can overcome such a difficulty. We investigate stochastic equations with non white noises, we discuss their reduction properties and their physical implications. Our analysis has a precise interest not only for the above mentioned subject but also for the general study of dissipative systems and decoherence. (author)

  6. Dynamical reduction models with general Gaussian noises

    International Nuclear Information System (INIS)

    Bassi, Angelo; Ghirardi, GianCarlo

    2002-01-01

    We consider the effect of replacing in stochastic differential equations leading to the dynamical collapse of the state vector, white-noise stochastic processes with nonwhite ones. We prove that such a modification can be consistently performed without altering the most interesting features of the previous models. One of the reasons to discuss this matter derives from the desire of being allowed to deal with physical stochastic fields, such as the gravitational one, which cannot give rise to white noises. From our point of view, the most relevant motivation for the approach we propose here derives from the fact that in relativistic models intractable divergences appear as a consequence of the white nature of the noises. Therefore, one can hope that resorting to nonwhite noises, one can overcome such a difficulty. We investigate stochastic equations with nonwhite noises, we discuss their reduction properties and their physical implications. Our analysis has a precise interest not only for the above-mentioned subject but also for the general study of dissipative systems and decoherence

  7. MODEL OF BRAZILIAN URBANIZATION: GENERAL NOTES

    Directory of Open Access Journals (Sweden)

    Leandro da Silva Guimarães

    2016-07-01

    Full Text Available The full text format seeks to analyze the social inequality in Brazil through the spatial process of that inequality in this sense it analyzes, scratching the edges of what is known of the Brazilian urbanization model and how this same model produced gentrification cities and exclusive. So search the text discuss the country’s urban exclusion through consolidation of what is conventionally called peripheral areas, or more generally, of peripheries. The text on screen is the result of research carried out at the Federal Fluminense University in Masters level. In this study, we tried to understand the genesis of an urban housing development located in São Gonçalo, Rio de Janeiro called Jardim Catarina. Understand what the problem space partner who originated it. In this sense, his analysis becomes consubstantial to understand the social and spatial inequalities in Brazil, as well as the role of the state as planning manager socio-spatial planning and principal agent in the solution of such problems. It is expected that with the realization of a study of greater amounts, from which this article is just a micro work can contribute subsidies that contribute to the arrangement and crystallization of public policies that give account of social inequalities and serve to leverage a country more fair and equitable cities.

  8. Evaluating the double Poisson generalized linear model.

    Science.gov (United States)

    Zou, Yaotian; Geedipally, Srinivas Reddy; Lord, Dominique

    2013-10-01

    The objectives of this study are to: (1) examine the applicability of the double Poisson (DP) generalized linear model (GLM) for analyzing motor vehicle crash data characterized by over- and under-dispersion and (2) compare the performance of the DP GLM with the Conway-Maxwell-Poisson (COM-Poisson) GLM in terms of goodness-of-fit and theoretical soundness. The DP distribution has seldom been investigated and applied since its first introduction two decades ago. The hurdle for applying the DP is related to its normalizing constant (or multiplicative constant) which is not available in closed form. This study proposed a new method to approximate the normalizing constant of the DP with high accuracy and reliability. The DP GLM and COM-Poisson GLM were developed using two observed over-dispersed datasets and one observed under-dispersed dataset. The modeling results indicate that the DP GLM with its normalizing constant approximated by the new method can handle crash data characterized by over- and under-dispersion. Its performance is comparable to the COM-Poisson GLM in terms of goodness-of-fit (GOF), although COM-Poisson GLM provides a slightly better fit. For the over-dispersed data, the DP GLM performs similar to the NB GLM. Considering the fact that the DP GLM can be easily estimated with inexpensive computation and that it is simpler to interpret coefficients, it offers a flexible and efficient alternative for researchers to model count data. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Generalized Reduced Order Modeling of Aeroservoelastic Systems

    Science.gov (United States)

    Gariffo, James Michael

    Transonic aeroelastic and aeroservoelastic (ASE) modeling presents a significant technical and computational challenge. Flow fields with a mixture of subsonic and supersonic flow, as well as moving shock waves, can only be captured through high-fidelity CFD analysis. With modern computing power, it is realtively straightforward to determine the flutter boundary for a single structural configuration at a single flight condition, but problems of larger scope remain quite costly. Some such problems include characterizing a vehicle's flutter boundary over its full flight envelope, optimizing its structural weight subject to aeroelastic constraints, and designing control laws for flutter suppression. For all of these applications, reduced-order models (ROMs) offer substantial computational savings. ROM techniques in general have existed for decades, and the methodology presented in this dissertation builds on successful previous techniques to create a powerful new scheme for modeling aeroelastic systems, and predicting and interpolating their transonic flutter boundaries. In this method, linear ASE state-space models are constructed from modal structural and actuator models coupled to state-space models of the linearized aerodynamic forces through feedback loops. Flutter predictions can be made from these models through simple eigenvalue analysis of their state-transition matrices for an appropriate set of dynamic pressures. Moreover, this analysis returns the frequency and damping trend of every aeroelastic branch. In contrast, determining the critical dynamic pressure by direct time-marching CFD requires a separate run for every dynamic pressure being analyzed simply to obtain the trend for the critical branch. The present ROM methodology also includes a new model interpolation technique that greatly enhances the benefits of these ROMs. This enables predictions of the dynamic behavior of the system for flight conditions where CFD analysis has not been explicitly

  10. A Note on the Identifiability of Generalized Linear Mixed Models

    DEFF Research Database (Denmark)

    Labouriau, Rodrigo

    2014-01-01

    I present here a simple proof that, under general regularity conditions, the standard parametrization of generalized linear mixed model is identifiable. The proof is based on the assumptions of generalized linear mixed models on the first and second order moments and some general mild regularity...... conditions, and, therefore, is extensible to quasi-likelihood based generalized linear models. In particular, binomial and Poisson mixed models with dispersion parameter are identifiable when equipped with the standard parametrization...

  11. Accelerating cosmologies from exponential potentials

    International Nuclear Information System (INIS)

    Neupane, Ishwaree P.

    2003-11-01

    It is learnt that exponential potentials of the form V ∼ exp(-2cφ/M p ) arising from the hyperbolic or flux compactification of higher-dimensional theories are of interest for getting short periods of accelerated cosmological expansions. Using a similar potential but derived for the combined case of hyperbolic-flux compactification, we study a four-dimensional flat (or open) FRW cosmologies and give analytic (and numerical) solutions with exponential behavior of scale factors. We show that, for the M-theory motivated potentials, the cosmic acceleration of the universe can be eternal if the spatial curvature of the 4d spacetime is negative, while the acceleration is only transient for a spatially flat universe. We also briefly discuss about the mass of massive Kaluza-Klein modes and the dynamical stabilization of the compact hyperbolic extra dimensions. (author)

  12. Science in an Exponential World

    Science.gov (United States)

    Szalay, Alexander

    The amount of scientific information is doubling every year. This exponential growth is fundamentally changing every aspect of the scientific process - the collection, analysis and dissemination of scientific information. Our traditional paradigm for scientific publishing assumes a linear world, where the number of journals and articles remains approximately constant. The talk presents the challenges of this new paradigm and shows examples of how some disciplines are trying to cope with the data avalanche. In astronomy, the Virtual Observatory is emerging as a way to do astronomy in the 21st century. Other disciplines are also in the process of creating their own Virtual Observatories, on every imaginable scale of the physical world. We will discuss how long this exponential growth can continue.

  13. Exponential asymptotics of homoclinic snaking

    International Nuclear Information System (INIS)

    Dean, A D; Matthews, P C; Cox, S M; King, J R

    2011-01-01

    We study homoclinic snaking in the cubic-quintic Swift–Hohenberg equation (SHE) close to the onset of a subcritical pattern-forming instability. Application of the usual multiple-scales method produces a leading-order stationary front solution, connecting the trivial solution to the patterned state. A localized pattern may therefore be constructed by matching between two distant fronts placed back-to-back. However, the asymptotic expansion of the front is divergent, and hence should be truncated. By truncating optimally, such that the resultant remainder is exponentially small, an exponentially small parameter range is derived within which stationary fronts exist. This is shown to be a direct result of the 'locking' between the phase of the underlying pattern and its slowly varying envelope. The locking mechanism remains unobservable at any algebraic order, and can only be derived by explicitly considering beyond-all-orders effects in the tail of the asymptotic expansion, following the method of Kozyreff and Chapman as applied to the quadratic-cubic SHE (Chapman and Kozyreff 2009 Physica D 238 319–54, Kozyreff and Chapman 2006 Phys. Rev. Lett. 97 44502). Exponentially small, but exponentially growing, contributions appear in the tail of the expansion, which must be included when constructing localized patterns in order to reproduce the full snaking diagram. Implicit within the bifurcation equations is an analytical formula for the width of the snaking region. Due to the linear nature of the beyond-all-orders calculation, the bifurcation equations contain an analytically indeterminable constant, estimated in the previous work by Chapman and Kozyreff using a best fit approximation. A more accurate estimate of the equivalent constant in the cubic-quintic case is calculated from the iteration of a recurrence relation, and the subsequent analytical bifurcation diagram compared with numerical simulations, with good agreement

  14. Limit laws for exponential families

    OpenAIRE

    Balkema, August A.; Klüppelberg, Claudia; Resnick, Sidney I.

    1999-01-01

    For a real random variable [math] with distribution function [math] , define ¶ [math] ¶ The distribution [math] generates a natural exponential family of distribution functions [math] , where ¶ [math] ¶ We study the asymptotic behaviour of the distribution functions [math] as [math] increases to [math] . If [math] then [math] pointwise on [math] . It may still be possible to obtain a non-degenerate weak limit law [math] by choosing suitable scaling and centring constants [math] an...

  15. Testable Implications of Quasi-Hyperbolic and Exponential Time Discounting

    OpenAIRE

    Echenique, Federico; Imai, Taisuke; Saito, Kota

    2014-01-01

    We present the first revealed-preference characterizations of the models of exponential time discounting, quasi-hyperbolic time discounting, and other time-separable models of consumers’ intertemporal decisions. The characterizations provide non-parametric revealed-preference tests, which we take to data using the results of a recent experiment conducted by Andreoni and Sprenger (2012). For such data, we find that less than half the subjects are consistent with exponential discounting, and on...

  16. The McDonald exponentiated gamma distribution and its statistical properties

    OpenAIRE

    Al-Babtain, Abdulhakim A; Merovci, Faton; Elbatal, Ibrahim

    2015-01-01

    Abstract In this paper, we propose a five-parameter lifetime model called the McDonald exponentiated gamma distribution to extend beta exponentiated gamma, Kumaraswamy exponentiated gamma and exponentiated gamma, among several other models. We provide a comprehensive mathematical treatment of this distribution. We derive the moment generating function and the rth moment. We discuss estimation of the parameters by maximum likelihood and provide the information matrix. AMS Subject Classificatio...

  17. Bayesian Subset Modeling for High-Dimensional Generalized Linear Models

    KAUST Repository

    Liang, Faming

    2013-06-01

    This article presents a new prior setting for high-dimensional generalized linear models, which leads to a Bayesian subset regression (BSR) with the maximum a posteriori model approximately equivalent to the minimum extended Bayesian information criterion model. The consistency of the resulting posterior is established under mild conditions. Further, a variable screening procedure is proposed based on the marginal inclusion probability, which shares the same properties of sure screening and consistency with the existing sure independence screening (SIS) and iterative sure independence screening (ISIS) procedures. However, since the proposed procedure makes use of joint information from all predictors, it generally outperforms SIS and ISIS in real applications. This article also makes extensive comparisons of BSR with the popular penalized likelihood methods, including Lasso, elastic net, SIS, and ISIS. The numerical results indicate that BSR can generally outperform the penalized likelihood methods. The models selected by BSR tend to be sparser and, more importantly, of higher prediction ability. In addition, the performance of the penalized likelihood methods tends to deteriorate as the number of predictors increases, while this is not significant for BSR. Supplementary materials for this article are available online. © 2013 American Statistical Association.

  18. Cosmological models in the generalized Einstein action

    International Nuclear Information System (INIS)

    Arbab, A.I.

    2007-12-01

    We have studied the evolution of the Universe in the generalized Einstein action of the form R + β R 2 , where R is the scalar curvature and β = const. We have found exact cosmological solutions that predict the present cosmic acceleration. These models predict an inflationary de-Sitter era occurring in the early Universe. The cosmological constant (Λ) is found to decay with the Hubble constant (H) as, Λ ∝ H 4 . In this scenario the cosmological constant varies quadratically with the energy density (ρ), i.e., Λ ∝ ρ 2 . Such a variation is found to describe a two-component cosmic fluid in the Universe. One of the components accelerated the Universe in the early era, and the other in the present era. The scale factor of the Universe varies as a ∼ t n = 1/2 in the radiation era. The cosmological constant vanishes when n = 4/3 and n =1/2. We have found that the inclusion of the term R 2 mimics a cosmic matter that could substitute the ordinary matter. (author)

  19. A generalized model for homogenized reflectors

    International Nuclear Information System (INIS)

    Pogosbekyan, Leonid; Kim, Yeong Il; Kim, Young Jin; Joo, Hyung Kook

    1996-01-01

    A new concept of equivalent homogenization is proposed. The concept employs new set of homogenized parameters: homogenized cross sections (XS) and interface matrix (IM), which relates partial currents at the cell interfaces. The idea of interface matrix generalizes the idea of discontinuity factors (DFs), proposed and developed by K. Koebke and K. Smith. The method of K. Smith can be simulated within framework of new method, while the new method approximates hetero-geneous cell better in case of the steep flux gradients at the cell interfaces. The attractive shapes of new concept are:improved accuracy, simplicity of incorporation in the existing codes, equal numerical expenses in comparison to the K. Smith's approach. The new concept is useful for: (a) explicit reflector/baffle simulation; (b)control blades simulation; (c) mixed UO 2 /MOX core simulation. The offered model has been incorporated in the finite difference code and in the nodal code PANBOX. The numerical results show good accuracy of core calculations and insensitivity of homogenized parameters with respect to in-core conditions

  20. Climatology of the HOPE-G global ocean general circulation model - Sea ice general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Legutke, S. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Maier-Reimer, E. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1999-12-01

    The HOPE-G global ocean general circulation model (OGCM) climatology, obtained in a long-term forced integration is described. HOPE-G is a primitive-equation z-level ocean model which contains a dynamic-thermodynamic sea-ice model. It is formulated on a 2.8 grid with increased resolution in low latitudes in order to better resolve equatorial dynamics. The vertical resolution is 20 layers. The purpose of the integration was both to investigate the models ability to reproduce the observed general circulation of the world ocean and to obtain an initial state for coupled atmosphere - ocean - sea-ice climate simulations. The model was driven with daily mean data of a 15-year integration of the atmosphere general circulation model ECHAM4, the atmospheric component in later coupled runs. Thereby, a maximum of the flux variability that is expected to appear in coupled simulations is included already in the ocean spin-up experiment described here. The model was run for more than 2000 years until a quasi-steady state was achieved. It reproduces the major current systems and the main features of the so-called conveyor belt circulation. The observed distribution of water masses is reproduced reasonably well, although with a saline bias in the intermediate water masses and a warm bias in the deep and bottom water of the Atlantic and Indian Oceans. The model underestimates the meridional transport of heat in the Atlantic Ocean. The simulated heat transport in the other basins, though, is in good agreement with observations. (orig.)

  1. Application of Improved Radiation Modeling to General Circulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Michael J Iacono

    2011-04-07

    This research has accomplished its primary objectives of developing accurate and efficient radiation codes, validating them with measurements and higher resolution models, and providing these advancements to the global modeling community to enhance the treatment of cloud and radiative processes in weather and climate prediction models. A critical component of this research has been the development of the longwave and shortwave broadband radiative transfer code for general circulation model (GCM) applications, RRTMG, which is based on the single-column reference code, RRTM, also developed at AER. RRTMG is a rigorously tested radiation model that retains a considerable level of accuracy relative to higher resolution models and measurements despite the performance enhancements that have made it possible to apply this radiation code successfully to global dynamical models. This model includes the radiative effects of all significant atmospheric gases, and it treats the absorption and scattering from liquid and ice clouds and aerosols. RRTMG also includes a statistical technique for representing small-scale cloud variability, such as cloud fraction and the vertical overlap of clouds, which has been shown to improve cloud radiative forcing in global models. This development approach has provided a direct link from observations to the enhanced radiative transfer provided by RRTMG for application to GCMs. Recent comparison of existing climate model radiation codes with high resolution models has documented the improved radiative forcing capability provided by RRTMG, especially at the surface, relative to other GCM radiation models. Due to its high accuracy, its connection to observations, and its computational efficiency, RRTMG has been implemented operationally in many national and international dynamical models to provide validated radiative transfer for improving weather forecasts and enhancing the prediction of global climate change.

  2. Thurstonian models for sensory discrimination tests as generalized linear models

    DEFF Research Database (Denmark)

    Brockhoff, Per B.; Christensen, Rune Haubo Bojesen

    2010-01-01

    as a so-called generalized linear model. The underlying sensory difference 6 becomes directly a parameter of the statistical model and the estimate d' and it's standard error becomes the "usual" output of the statistical analysis. The d' for the monadic A-NOT A method is shown to appear as a standard......Sensory discrimination tests such as the triangle, duo-trio, 2-AFC and 3-AFC tests produce binary data and the Thurstonian decision rule links the underlying sensory difference 6 to the observed number of correct responses. In this paper it is shown how each of these four situations can be viewed...

  3. Multivariate statistical modelling based on generalized linear models

    CERN Document Server

    Fahrmeir, Ludwig

    1994-01-01

    This book is concerned with the use of generalized linear models for univariate and multivariate regression analysis. Its emphasis is to provide a detailed introductory survey of the subject based on the analysis of real data drawn from a variety of subjects including the biological sciences, economics, and the social sciences. Where possible, technical details and proofs are deferred to an appendix in order to provide an accessible account for non-experts. Topics covered include: models for multi-categorical responses, model checking, time series and longitudinal data, random effects models, and state-space models. Throughout, the authors have taken great pains to discuss the underlying theoretical ideas in ways that relate well to the data at hand. As a result, numerous researchers whose work relies on the use of these models will find this an invaluable account to have on their desks. "The basic aim of the authors is to bring together and review a large part of recent advances in statistical modelling of m...

  4. A generalized multivariate regression model for modelling ocean wave heights

    Science.gov (United States)

    Wang, X. L.; Feng, Y.; Swail, V. R.

    2012-04-01

    In this study, a generalized multivariate linear regression model is developed to represent the relationship between 6-hourly ocean significant wave heights (Hs) and the corresponding 6-hourly mean sea level pressure (MSLP) fields. The model is calibrated using the ERA-Interim reanalysis of Hs and MSLP fields for 1981-2000, and is validated using the ERA-Interim reanalysis for 2001-2010 and ERA40 reanalysis of Hs and MSLP for 1958-2001. The performance of the fitted model is evaluated in terms of Pierce skill score, frequency bias index, and correlation skill score. Being not normally distributed, wave heights are subjected to a data adaptive Box-Cox transformation before being used in the model fitting. Also, since 6-hourly data are being modelled, lag-1 autocorrelation must be and is accounted for. The models with and without Box-Cox transformation, and with and without accounting for autocorrelation, are inter-compared in terms of their prediction skills. The fitted MSLP-Hs relationship is then used to reconstruct historical wave height climate from the 6-hourly MSLP fields taken from the Twentieth Century Reanalysis (20CR, Compo et al. 2011), and to project possible future wave height climates using CMIP5 model simulations of MSLP fields. The reconstructed and projected wave heights, both seasonal means and maxima, are subject to a trend analysis that allows for non-linear (polynomial) trends.

  5. The ECHAM3 atmospheric general circulation model

    International Nuclear Information System (INIS)

    1993-09-01

    The ECHAM model has been developed from the ECMWF model (cycle 31, November 1988). It contains several changes, mostly in the parameterization, in order to adjust the model for climate simulations. The technical details of the ECHAM operational model are described. (orig./KW)

  6. An experimental investigation on the effects of exponential window and impact force level on harmonic reduction in impact-synchronous model analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Ong Zhi; Cheet, Lim Hong; Yee, Khoo Shin [Mechanical Engineering Department, Faculty of EngineeringUniversity of Malaya, Kuala Lumpur (Malaysia); Rahman, Abdul Ghaffar Abdul [Faculty of Mechanical Engineering, University Malaysia Pahang, Pekan (Malaysia); Ismail, Zubaidah [Civil Engineering Department, Faculty of Engineering, University of Malaya, Kuala Lumpur (Malaysia)

    2016-08-15

    A novel method called Impact-synchronous modal analysis (ISMA) was proposed previously which allows modal testing to be performed during operation. This technique focuses on signal processing of the upstream data to provide cleaner Frequency response function (FRF) estimation prior to modal extraction. Two important parameters, i.e., windowing function and impact force level were identified and their effect on the effectiveness of this technique were experimentally investigated. When performing modal testing during running condition, the cyclic loads signals are dominant in the measured response for the entire time history. Exponential window is effectively in minimizing leakage and attenuating signals of non-synchronous running speed, its harmonics and noises to zero at the end of each time record window block. Besides, with the information of the calculated cyclic force, suitable amount of impact force to be applied on the system could be decided prior to performing ISMA. Maximum allowable impact force could be determined from nonlinearity test using coherence function. By applying higher impact forces than the cyclic loads along with an ideal decay rate in ISMA, harmonic reduction is significantly achieved in FRF estimation. Subsequently, the dynamic characteristics of the system are successfully extracted from a cleaner FRF and the results obtained are comparable with Experimental modal analysis (EMA)

  7. An experimental investigation on the effects of exponential window and impact force level on harmonic reduction in impact-synchronous model analysis

    International Nuclear Information System (INIS)

    Chao, Ong Zhi; Cheet, Lim Hong; Yee, Khoo Shin; Rahman, Abdul Ghaffar Abdul; Ismail, Zubaidah

    2016-01-01

    A novel method called Impact-synchronous modal analysis (ISMA) was proposed previously which allows modal testing to be performed during operation. This technique focuses on signal processing of the upstream data to provide cleaner Frequency response function (FRF) estimation prior to modal extraction. Two important parameters, i.e., windowing function and impact force level were identified and their effect on the effectiveness of this technique were experimentally investigated. When performing modal testing during running condition, the cyclic loads signals are dominant in the measured response for the entire time history. Exponential window is effectively in minimizing leakage and attenuating signals of non-synchronous running speed, its harmonics and noises to zero at the end of each time record window block. Besides, with the information of the calculated cyclic force, suitable amount of impact force to be applied on the system could be decided prior to performing ISMA. Maximum allowable impact force could be determined from nonlinearity test using coherence function. By applying higher impact forces than the cyclic loads along with an ideal decay rate in ISMA, harmonic reduction is significantly achieved in FRF estimation. Subsequently, the dynamic characteristics of the system are successfully extracted from a cleaner FRF and the results obtained are comparable with Experimental modal analysis (EMA)

  8. Demonstration of the exponential decay law using beer froth

    International Nuclear Information System (INIS)

    Leike, A.

    2002-01-01

    The volume of beer froth decays exponentially with time. This property is used to demonstrate the exponential decay law in the classroom. The decay constant depends on the type of beer and can be used to differentiate between different beers. The analysis shows in a transparent way the techniques of data analysis commonly used in science - consistency checks of theoretical models with the data, parameter estimation and determination of confidence intervals. (author)

  9. Confronting quasi-exponential inflation with WMAP seven

    International Nuclear Information System (INIS)

    Pal, Barun Kumar; Pal, Supratik; Basu, B.

    2012-01-01

    We confront quasi-exponential models of inflation with WMAP seven years dataset using Hamilton Jacobi formalism. With a phenomenological Hubble parameter, representing quasi exponential inflation, we develop the formalism and subject the analysis to confrontation with WMAP seven using the publicly available code CAMB. The observable parameters are found to fair extremely well with WMAP seven. We also obtain a ratio of tensor to scalar amplitudes which may be detectable in PLANCK

  10. Exponential Models of Legislative Turnover. [and] The Dynamics of Political Mobilization, I: A Model of the Mobilization Process, II: Deductive Consequences and Empirical Application of the Model. Applications of Calculus to American Politics. [and] Public Support for Presidents. Applications of Algebra to American Politics. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Units 296-300.

    Science.gov (United States)

    Casstevens, Thomas W.; And Others

    This document consists of five units which all view applications of mathematics to American politics. The first three view calculus applications, the last two deal with applications of algebra. The first module is geared to teach a student how to: 1) compute estimates of the value of the parameters in negative exponential models; and draw…

  11. Is exponential gravity a viable description for the whole cosmological history?

    Energy Technology Data Exchange (ETDEWEB)

    Odintsov, Sergei D. [Institut de Ciencies de l' Espai, ICE/CSIC-IEEC, Barcelona (Spain); Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain); National Research Tomsk State University, Tomsk (Russian Federation); Tomsk State Pedagogical University, Tomsk (Russian Federation); Saez-Chillon Gomez, Diego [Institut de Ciencies de l' Espai, ICE/CSIC-IEEC, Barcelona (Spain); Sharov, German S. [Tver State University, Tver (Russian Federation)

    2017-12-15

    Here we analyse a particular type of F(R) gravity, the so-called exponential gravity which includes an exponential function of the Ricci scalar in the action. Such a term represents a correction to the usual Hilbert-Einstein action. By using Supernovae Ia, Barionic Acoustic Oscillations, Cosmic Microwave Background and H(z) data, the free parameters of the model are well constrained. The results show that such corrections to General Relativity become important at cosmological scales and at late times, providing an alternative to the dark energy problem. In addition, the fits do not determine any significant difference statistically with respect to the ΛCDM model. Finally, such model is extended to include the inflationary epoch in the same gravitational Lagrangian. As shown in the paper, the additional terms can reproduce the inflationary epoch and satisfy the constraints from Planck data. (orig.)

  12. INFORMATION MODEL OF A GENERAL PRACTITIONER

    Directory of Open Access Journals (Sweden)

    S. M. Zlepko

    2016-06-01

    Full Text Available In the paper the authors developed information model family doctor shows its innovation and functionality. The proposed model meets the requirements of the current job description and criteria World Organization of Family Doctors.

  13. Generalization of Random Intercept Multilevel Models

    Directory of Open Access Journals (Sweden)

    Rehan Ahmad Khan

    2013-10-01

    Full Text Available The concept of random intercept models in a multilevel model developed by Goldstein (1986 has been extended for k-levels. The random variation in intercepts at individual level is marginally split into components by incorporating higher levels of hierarchy in the single level model. So, one can control the random variation in intercepts by incorporating the higher levels in the model.

  14. generalized constitutive model for stabilized quick clay

    African Journals Online (AJOL)

    QUICK CLAY. PANCRAS MUGISHAGWE BUJULU AND GUSTAV GRIMSTAD. ABSTRACT. An experimentally-based two yield surface constitutive model for cemented quick clay has been ... Clay Model, the Koiter Rule and two Mapping Rules. .... models, where a mobilization formulation is used, this is independent of q.

  15. Emergent behaviour of a generalized Viscek-type flocking model

    International Nuclear Information System (INIS)

    Ha, Seung-Yeal; Jeong, Eunhee; Kang, Moon-Jin

    2010-01-01

    We present a planar agent-based flocking model with a distance-dependent communication weight. We derive a sufficient condition for the asymptotic flocking in terms of the initial spatial and heading-angle diameters and a communication weight. For this, we employ differential inequalities for the spatial and phase diameters together with the Lyapunov functional approach. When the diameter of the agent's initial heading-angles is sufficiently small, we show that the diameter of the heading-angles converges to the average value of the initial heading-angles exponentially fast. As an application of flocking estimates, we also show that the Kuramoto model with a connected communication topology on the regular lattice Z d for identical oscillators exhibits a complete-phase-frequency synchronization, when coupled oscillators are initially distributed on the half circle

  16. Real-Time Exponential Curve Fits Using Discrete Calculus

    Science.gov (United States)

    Rowe, Geoffrey

    2010-01-01

    An improved solution for curve fitting data to an exponential equation (y = Ae(exp Bt) + C) has been developed. This improvement is in four areas -- speed, stability, determinant processing time, and the removal of limits. The solution presented avoids iterative techniques and their stability errors by using three mathematical ideas: discrete calculus, a special relationship (be tween exponential curves and the Mean Value Theorem for Derivatives), and a simple linear curve fit algorithm. This method can also be applied to fitting data to the general power law equation y = Ax(exp B) + C and the general geometric growth equation y = Ak(exp Bt) + C.

  17. Black carbon ageing in the Canadian Centre for Climate modelling and analysis atmospheric general circulation model

    Directory of Open Access Journals (Sweden)

    B. Croft

    2005-01-01

    Full Text Available Black carbon (BC particles in the atmosphere have important impacts on climate. The amount of BC in the atmosphere must be carefully quantified to allow evaluation of the climate effects of this type of aerosol. In this study, we present the treatment of BC aerosol in the developmental version of the 4th generation Canadian Centre for Climate modelling and analysis (CCCma atmospheric general circulation model (AGCM. The focus of this work is on the conversion of insoluble BC to soluble/mixed BC by physical and chemical ageing. Physical processes include the condensation of sulphuric and nitric acid onto the BC aerosol, and coagulation with more soluble aerosols such as sulphates and nitrates. Chemical processes that may age the BC aerosol include the oxidation of organic coatings by ozone. Four separate parameterizations of the ageing process are compared to a control simulation that assumes no ageing occurs. These simulations use 1 an exponential decay with a fixed 24h half-life, 2 a condensation and coagulation scheme, 3 an oxidative scheme, and 4 a linear combination of the latter two ageing treatments. Global BC burdens are 2.15, 0.15, 0.11, 0.21, and 0.11TgC for the control run, and four ageing schemes, respectively. The BC lifetimes are 98.1, 6.6, 5.0, 9.5, and 4.9 days, respectively. The sensitivity of modelled BC burdens, and concentrations to the factor of two uncertainty in the emissions inventory is shown to be greater than the sensitivity to the parameterization used to represent the BC ageing, except for the oxidation based parameterization. A computationally efficient parameterization that represents the processes of condensation, coagulation, and oxidation is shown to simulate BC ageing well in the CCCma AGCM. As opposed to the globally fixed ageing time scale, this treatment of BC ageing is responsive to varying atmospheric composition.

  18. Fully exponentially correlated wavefunctions for small atoms

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Frank E. [Department of Physics, University of Utah, Salt Lake City, UT 84112 and Quantum Theory Project, University of Florida, P.O. Box 118435, Gainesville, FL 32611 (United States)

    2015-01-22

    Fully exponentially correlated atomic wavefunctions are constructed from exponentials in all the interparticle coordinates, in contrast to correlated wavefunctions of the Hylleraas form, in which only the electron-nuclear distances occur exponentially, with electron-electron distances entering only as integer powers. The full exponential correlation causes many-configuration wavefunctions to converge with expansion length more rapidly than either orbital formulations or correlated wavefunctions of the Hylleraas type. The present contribution surveys the effectiveness of fully exponentially correlated functions for the three-body system (the He isoelectronic series) and reports their application to a four-body system (the Li atom)

  19. Does a General Temperature-Dependent Q10 Model of Soil Respiration Exist at Biome and Global Scale?

    Institute of Scientific and Technical Information of China (English)

    Hua CHEN; Han-Qin TIAN

    2005-01-01

    Soil respiration (SR) is commonly modeled by a Q10 (an indicator of temperature sensitivity)function in ecosystem models. Q10is usually treated as a constant of 2 in these models, although Q10 value of SR often decreases with increasing temperatures. It remains unclear whether a general temperaturedependent Q10 model of SR exists at biome and global scale. In this paper, we have compiled the long-term Q10 data of 38 SR studies ranging from the Boreal, Temperate, to Tropical/Subtropical biome on four continents.Our analysis indicated that the general temperature-dependent biome Q10 models of SR existed, especially in the Boreal and Temperate biomes. A single-exponential model was better than a simple linear model in fitting the average Q10 values at the biome scale. Average soil temperature is a better predictor of Q10 value than average air temperature in these models, especially in the Boreal biome. Soil temperature alone could explain about 50% of the Q10 variations in both the Boreal and Temperate biome single-exponential Q10 model. Q10 value of SR decreased with increasing soil temperature but at quite different rates among the three biome Q10 models. The k values (Q10 decay rate constants) were 0.09, 0.07, and 0.02/℃ in the Boreal, Temperate, and Tropical/Subtropical biome, respectively, suggesting that Q10 value is the most sensitive to soil temperature change in the Boreal biome, the second in the Temperate biome, and the least sensitive in the Tropical/Subtropical biome. This also indirectly confirms that acclimation of SR in many soil warming experiments probably occurs. The k value in the "global" single-exponential Q10 model which combined both the Boreal and Temperate biome data set was 0.08/℃. However, the global general temperature-dependent Q10model developed using the data sets of the three biomes is not adequate for predicting Q10 values of SR globally.The existence of the general temperature-dependent Q10 models of SR in the Boreal and

  20. A Generalized Deduction of the Ideal-Solution Model

    Science.gov (United States)

    Leo, Teresa J.; Perez-del-Notario, Pedro; Raso, Miguel A.

    2006-01-01

    A new general procedure for deriving the Gibbs energy of mixing is developed through general thermodynamic considerations, and the ideal-solution model is obtained as a special particular case of the general one. The deduction of the Gibbs energy of mixing for the ideal-solution model is a rational one and viewed suitable for advanced students who…

  1. Stratospheric General Circulation with Chemistry Model (SGCCM)

    Science.gov (United States)

    Rood, Richard B.; Douglass, Anne R.; Geller, Marvin A.; Kaye, Jack A.; Nielsen, J. Eric; Rosenfield, Joan E.; Stolarski, Richard S.

    1990-01-01

    In the past two years constituent transport and chemistry experiments have been performed using both simple single constituent models and more complex reservoir species models. Winds for these experiments have been taken from the data assimilation effort, Stratospheric Data Analysis System (STRATAN).

  2. Development of a generalized integral jet model

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan; Kessler, A.; Markert, Frank

    2017-01-01

    Integral type models to describe stationary plumes and jets in cross-flows (wind) have been developed since about 1970. These models are widely used for risk analysis, to describe the consequences of many different scenarios. Alternatively, CFD codes are being applied, but computational requireme......Integral type models to describe stationary plumes and jets in cross-flows (wind) have been developed since about 1970. These models are widely used for risk analysis, to describe the consequences of many different scenarios. Alternatively, CFD codes are being applied, but computational...... requirements still limit the number of scenarios that can be dealt with using CFD only. The integral models, however, are not suited to handle transient releases, such as releases from pressurized equipment, where the initially high release rate decreases rapidly with time. Further, on gas ignition, a second...... model is needed to describe the rapid combustion of the flammable part of the plume (flash fire) and a third model has to be applied for the remaining jet fire. The objective of this paper is to describe the first steps of the development of an integral-type model describing the transient development...

  3. Generalized coupling in the Kuramoto model

    DEFF Research Database (Denmark)

    Filatrella, G.; Pedersen, Niels Falsig; Wiesenfeld, K.

    2007-01-01

    We propose a modification of the Kuramoto model to account for the effective change in the coupling constant among the oscillators, as suggested by some experiments on Josephson junction, laser arrays, and mechanical systems, where the active elements are turned on one by one. The resulting model...... with the behavior of Josephson junctions coupled via a cavity....

  4. A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks

    Directory of Open Access Journals (Sweden)

    Cécile Viboud

    2016-06-01

    Conclusions: Our findings reveal significant variation in epidemic growth patterns across different infectious disease outbreaks and highlights that sub-exponential growth is a common phenomenon, especially for pathogens that are not airborne. Sub-exponential growth profiles may result from heterogeneity in contact structures or risk groups, reactive behavior changes, or the early onset of interventions strategies, and consideration of “deceleration parameters” may be useful to refine existing mathematical transmission models and improve disease forecasts.

  5. Smooth generalized linear models for aggregated data

    OpenAIRE

    Ayma Anza, Diego Armando

    2016-01-01

    Mención Internacional en el título de doctor Aggregated data commonly appear in areas such as epidemiology, demography, and public health. Generally, the aggregation process is done to protect the privacy of patients, to facilitate compact presentation, or to make it comparable with other coarser datasets. However, this process may hinder the visualization of the underlying distribution that follows the data. Also, it prohibits the direct analysis of relationships between ag...

  6. Universality in generalized models of inflation

    Energy Technology Data Exchange (ETDEWEB)

    Binétruy, P.; Pieroni, M. [AstroParticule et Cosmologie, Université Paris Diderot, CNRS, CEA, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, F-75205 Paris Cedex 13 (France); Mabillard, J., E-mail: pierre.binetruy@apc.univ-paris7.fr, E-mail: joel.mabillard@ed.ac.uk, E-mail: mauro.pieroni@apc.in2p3.fr [School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3JZ (United Kingdom)

    2017-03-01

    We discuss the cosmological evolution of a scalar field with non standard kinetic term in terms of a Renormalization Group Equation (RGE). In this framework inflation corresponds to the slow evolution in a neighborhood of a fixed point and universality classes for inflationary models naturally arise. Using some examples we show the application of the formalism. The predicted values for the speed of sound c {sub s} {sup 2} and for the amount of non-Gaussianities produced in these models are discussed. In particular, we show that it is possible to introduce models with c {sub s} {sup 2} ≠ 1 that can be in agreement with present cosmological observations.

  7. Self-dual configurations in Abelian Higgs models with k-generalized gauge field dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Casana, R.; Cavalcante, A. [Departamento de Física, Universidade Federal do Maranhão,65080-805, São Luís, Maranhão (Brazil); Hora, E. da [Departamento de Física, Universidade Federal do Maranhão,65080-805, São Luís, Maranhão (Brazil); Coordenadoria Interdisciplinar de Ciência e Tecnologia, Universidade Federal do Maranhão,65080-805, São Luís, Maranhão (Brazil)

    2016-12-14

    We have shown the existence of self-dual solutions in new Maxwell-Higgs scenarios where the gauge field possesses a k-generalized dynamic, i.e., the kinetic term of gauge field is a highly nonlinear function of F{sub μν}F{sup μν}. We have implemented our proposal by means of a k-generalized model displaying the spontaneous symmetry breaking phenomenon. We implement consistently the Bogomol’nyi-Prasad-Sommerfield formalism providing highly nonlinear self-dual equations whose solutions are electrically neutral possessing total energy proportional to the magnetic flux. Among the infinite set of possible configurations, we have found families of k-generalized models whose self-dual equations have a form mathematically similar to the ones arising in the Maxwell-Higgs or Chern-Simons-Higgs models. Furthermore, we have verified that our proposal also supports infinite twinlike models with |ϕ|{sup 4}-potential or |ϕ|{sup 6}-potential. With the aim to show explicitly that the BPS equations are able to provide well-behaved configurations, we have considered a test model in order to study axially symmetric vortices. By depending of the self-dual potential, we have shown that the k-generalized model is able to produce solutions that for long distances have a exponential decay (as Abrikosov-Nielsen-Olesen vortices) or have a power-law decay (characterizing delocalized vortices). In all cases, we observe that the generalization modifies the vortex core size, the magnetic field amplitude and the bosonic masses but the total energy remains proportional to the quantized magnetic flux.

  8. Global exponential stability of bidirectional associative memory neural networks with distributed delays

    Science.gov (United States)

    Song, Qiankun; Cao, Jinde

    2007-05-01

    A bidirectional associative memory neural network model with distributed delays is considered. By constructing a new Lyapunov functional, employing the homeomorphism theory, M-matrix theory and the inequality (a[greater-or-equal, slanted]0,bk[greater-or-equal, slanted]0,qk>0 with , and r>1), a sufficient condition is obtained to ensure the existence, uniqueness and global exponential stability of the equilibrium point for the model. Moreover, the exponential converging velocity index is estimated, which depends on the delay kernel functions and the system parameters. The results generalize and improve the earlier publications, and remove the usual assumption that the activation functions are bounded . Two numerical examples are given to show the effectiveness of the obtained results.

  9. Generalized Path Analysis and Generalized Simultaneous Equations Model for Recursive Systems with Responses of Mixed Types

    Science.gov (United States)

    Tsai, Tien-Lung; Shau, Wen-Yi; Hu, Fu-Chang

    2006-01-01

    This article generalizes linear path analysis (PA) and simultaneous equations models (SiEM) to deal with mixed responses of different types in a recursive or triangular system. An efficient instrumental variable (IV) method for estimating the structural coefficients of a 2-equation partially recursive generalized path analysis (GPA) model and…

  10. Double generalized linear compound poisson models to insurance claims data

    DEFF Research Database (Denmark)

    Andersen, Daniel Arnfeldt; Bonat, Wagner Hugo

    2017-01-01

    This paper describes the specification, estimation and comparison of double generalized linear compound Poisson models based on the likelihood paradigm. The models are motivated by insurance applications, where the distribution of the response variable is composed by a degenerate distribution...... implementation and illustrate the application of double generalized linear compound Poisson models using a data set about car insurances....

  11. Kullback-Leibler divergence and the Pareto-Exponential approximation.

    Science.gov (United States)

    Weinberg, G V

    2016-01-01

    Recent radar research interests in the Pareto distribution as a model for X-band maritime surveillance radar clutter returns have resulted in analysis of the asymptotic behaviour of this clutter model. In particular, it is of interest to understand when the Pareto distribution is well approximated by an Exponential distribution. The justification for this is that under the latter clutter model assumption, simpler radar detection schemes can be applied. An information theory approach is introduced to investigate the Pareto-Exponential approximation. By analysing the Kullback-Leibler divergence between the two distributions it is possible to not only assess when the approximation is valid, but to determine, for a given Pareto model, the optimal Exponential approximation.

  12. The Five-Factor Model: General Overview

    Directory of Open Access Journals (Sweden)

    A A Vorobyeva

    2011-12-01

    Full Text Available The article describes the five-factor model (FFM, giving an overview of its history, basic dimensions, cross-cultural research conducted on the model and highlights some practical studies based on the FFM, including the studies on job performance, leader performance and daily social interactions. An overview of the recent five-factor theory is also provided. According to the theory, the five factors are encoded in human genes, therefore it is almost impossible to change the basic factors themselves, but a person's behavior might be changed due to characteristic adaptations which do not alter personality dimensions, only a person's behavior.

  13. Esperanto: A Unique Model for General Linguistics.

    Science.gov (United States)

    Dulichenko, Aleksandr D.

    1988-01-01

    Esperanto presents a unique model for linguistic research by allowing the study of language development from project to fully functioning language. Esperanto provides insight into the growth of polysemy and redundancy, as well as into language universals and the phenomenon of social control. (Author/CB)

  14. Histogram analysis of stretched-exponential and monoexponential diffusion-weighted imaging models for distinguishing low and intermediate/high gleason scores in prostate carcinoma.

    Science.gov (United States)

    Liu, Wei; Liu, Xiao H; Tang, Wei; Gao, Hong B; Zhou, Bing N; Zhou, Liang P

    2018-02-07

    Noninvasive measures to evaluate the aggressiveness of prostate carcinoma (PCa) may benefit patients. To assess the value of stretched-exponential and monoexponential diffusion-weighted imaging (DWI) for predicting the aggressiveness of PCa. Retrospective study. Seventy-five patients with PCa. 3T DWI examinations were performed using b-values of 0, 500, 1000, and 2000 s/mm 2 . The research were based on entire-tumor histogram analysis and the reference standard was radical prostectomy. The correlation analysis was programmed with Spearman's rank-order analysis between the histogram variables and Gleason grade group (GG). Receiver operating characteristic (ROC) regression was used to analyze the ability of these histogram variables to differentiate low-grade (LG) from intermediate/high-grade (HG) PCa. The percentiles and mean of apparent diffusion coefficient (ADC) and distributed diffusion coefficient (DDC) were correlated with GG (ρ: 0.414-0.593), while there was no significant relation among α value, skewnesses, and kurtosises with GG (ρ:0.034-0.323). HG tumors (ADC:484 ± 136, 592 ± 139, 670 ± 144, 788 ± 146, 895 ± 141 mm 2 /s; DDC: 410 ± 142, 532 ± 172, 666 ± 193, 786 ± 196, 914 ± 181 mm 2 /s) had lower values in the 10 th , 25 th , 50 th , 75 th percentiles and means than LG tumors (ADC: 644 ± 779, 737 ± 84, 836 ± 83, 919 ± 82, 997 ± 107 mm 2 /s; DDC: 552 ± 82, 680 ± 94, 829 ± 112, 931 ± 106, 1045 ± 100 mm 2 /s). However, there was no difference between LG and HG tumors in α value (0.671 ± 0.041 vs. 0.633 ± 0.114), kurtosises (ADC 0.09 vs. 0.086; DDC -0.033 vs. -0.317), or skewnesses (ADC -0.036 vs. 0.073; DDC -0.063 vs. 0.136). The above statistics were P Histogram variables of DDC and ADC may predict the aggressiveness of PCa, while α value does not. The abilities of ADC10 and DDC10 to discriminate LG from HG tumors were similar, and

  15. Multiple phase transitions in the generalized Curie-Weiss model

    International Nuclear Information System (INIS)

    Eisele, T.; Ellis, R.S.

    1988-01-01

    The generalized Curie-Weiss model is an extension of the classical Curie-Weiss model in which the quadratic interaction function of the mean spin value is replaced by a more general interaction function. It is shown that the generalized Curie-Weiss model can have a sequence of phase transitions at different critical temperatures. Both first-order and second-order phase transitions can occur, and explicit criteria for the two types are given. Three examples of generalized Curie-Weiss models are worked out in detail, including one example with infinitely many phase transitions. A number of results are derived using large-deviation techniques

  16. Lagrange α-exponential stability and α-exponential convergence for fractional-order complex-valued neural networks.

    Science.gov (United States)

    Jian, Jigui; Wan, Peng

    2017-07-01

    This paper deals with the problem on Lagrange α-exponential stability and α-exponential convergence for a class of fractional-order complex-valued neural networks. To this end, some new fractional-order differential inequalities are established, which improve and generalize previously known criteria. By using the new inequalities and coupling with the Lyapunov method, some effective criteria are derived to guarantee Lagrange α-exponential stability and α-exponential convergence of the addressed network. Moreover, the framework of the α-exponential convergence ball is also given, where the convergence rate is related to the parameters and the order of differential of the system. These results here, which the existence and uniqueness of the equilibrium points need not to be considered, generalize and improve the earlier publications and can be applied to monostable and multistable fractional-order complex-valued neural networks. Finally, one example with numerical simulations is given to show the effectiveness of the obtained results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. On A General Frame For Macroeconomic Modelling

    Directory of Open Access Journals (Sweden)

    Emil DINGA

    2012-03-01

    Full Text Available The purpose of the research project was to identify the methodological bases for the aggregate description of the Romanian national economy, both logically and in terms of the sources of empirical data for modelling. The specific objectives of the project were: a description of the economic markets in correlation with the logic description of the economic behaviours; b determination of the sectoral blocks of the Romanian economy, on the basis of the homogeneity of the economic; activity and behaviour; c association of the sectoral blocks to the national accounts, so as to ensure the sources of empirical data for the calibration and utilisation of the model; d association of the sectoral blocks to the economic markets; e association of the national accounts with the economic markets; f identification of the classes of interactions between the determined sectoral blocks.

  18. Generalized Mathai-Quillen Topological Sigma Models

    OpenAIRE

    Llatas, Pablo M.

    1995-01-01

    A simple field theoretical approach to Mathai-Quillen topological field theories of maps $X: M_I \\to M_T$ from an internal space to a target space is presented. As an example of applications of our formalism we compute by applying our formulas the action and Q-variations of the fields of two well known topological systems: Topological Quantum Mechanics and type-A topological Sigma Model.

  19. Reduced Order Modeling in General Relativity

    Science.gov (United States)

    Tiglio, Manuel

    2014-03-01

    Reduced Order Modeling is an emerging yet fast developing filed in gravitational wave physics. The main goals are to enable fast modeling and parameter estimation of any detected signal, along with rapid matched filtering detecting. I will focus on the first two. Some accomplishments include being able to replace, with essentially no lost of physical accuracy, the original models with surrogate ones (which are not effective ones, that is, they do not simplify the physics but go on a very different track, exploiting the particulars of the waveform family under consideration and state of the art dimensional reduction techniques) which are very fast to evaluate. For example, for EOB models they are at least around 3 orders of magnitude faster than solving the original equations, with physically equivalent results. For numerical simulations the speedup is at least 11 orders of magnitude. For parameter estimation our current numbers are about bringing ~100 days for a single SPA inspiral binary neutron star Bayesian parameter estimation analysis to under a day. More recently, it has been shown that the full precessing problem for, say, 200 cycles, can be represented, through some new ideas, by a remarkably compact set of carefully chosen reduced basis waveforms (~10-100, depending on the accuracy requirements). I will highlight what I personally believe are the challenges to face next in this subarea of GW physics and where efforts should be directed. This talk will summarize work in collaboration with: Harbir Antil (GMU), Jonathan Blackman (Caltech), Priscila Canizares (IoA, Cambridge, UK), Sarah Caudill (UWM), Jonathan Gair (IoA. Cambridge. UK), Scott Field (UMD), Chad R. Galley (Caltech), Frank Herrmann (Germany), Han Hestahven (EPFL, Switzerland), Jason Kaye (Brown, Stanford & Courant). Evan Ochsner (UWM), Ricardo Nochetto (UMD), Vivien Raymond (LIGO, Caltech), Rory Smith (LIGO, Caltech) Bela Ssilagyi (Caltech) and MT (UMD & Caltech).

  20. Electron traps in semiconducting polymers : Exponential versus Gaussian trap distribution

    NARCIS (Netherlands)

    Nicolai, H. T.; Mandoc, M. M.; Blom, P. W. M.

    2011-01-01

    The low electron currents in poly(dialkoxy-p-phenylene vinylene) (PPV) derivatives and their steep voltage dependence are generally explained by trap-limited conduction in the presence of an exponential trap distribution. Here we demonstrate that the electron transport of several PPV derivatives can

  1. Electron traps in semiconducting polymers: exponential versus Gaussian trap distribution

    NARCIS (Netherlands)

    Nicolai, H.T.; Mandoc, M.M.; Blom, P.W.M.

    2011-01-01

    The low electron currents in poly(dialkoxy-p-phenylene vinylene) (PPV) derivatives and their steep voltage dependence are generally explained by trap-limited conduction in the presence of an exponential trap distribution. Here we demonstrate that the electron transport of several PPV derivatives can

  2. Exponential Hilbert series of equivariant embeddings

    OpenAIRE

    Johnson, Wayne A.

    2018-01-01

    In this article, we study properties of the exponential Hilbert series of a $G$-equivariant projective variety, where $G$ is a semisimple, simply-connected complex linear algebraic group. We prove a relationship between the exponential Hilbert series and the degree and dimension of the variety. We then prove a combinatorial identity for the coefficients of the polynomial representing the exponential Hilbert series. This formula is used in examples to prove further combinatorial identities inv...

  3. Models and materials for generalized Kitaev magnetism

    Science.gov (United States)

    Winter, Stephen M.; Tsirlin, Alexander A.; Daghofer, Maria; van den Brink, Jeroen; Singh, Yogesh; Gegenwart, Philipp; Valentí, Roser

    2017-12-01

    The exactly solvable Kitaev model on the honeycomb lattice has recently received enormous attention linked to the hope of achieving novel spin-liquid states with fractionalized Majorana-like excitations. In this review, we analyze the mechanism proposed by Jackeli and Khaliullin to identify Kitaev materials based on spin-orbital dependent bond interactions and provide a comprehensive overview of its implications in real materials. We set the focus on experimental results and current theoretical understanding of planar honeycomb systems (Na2IrO3, α-Li2IrO3, and α-RuCl3), three-dimensional Kitaev materials (β- and γ-Li2IrO3), and other potential candidates, completing the review with the list of open questions awaiting new insights.

  4. Modeling electrokinetics in ionic liquids: General

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA USA; Bao, Jie [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA USA; Pan, Wenxiao [Department of Mechanical Engineering, University of Wisconsin-Madison, Madison WI USA; Sun, Xin [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA USA

    2017-04-07

    Using direct numerical simulations we provide a thorough study on the electrokinetics of ionic liquids. In particular, the modfied Poisson-Nernst-Planck (MPNP) equations are solved to capture the crowding and overscreening effects that are the characteristics of an ionic liquid. For modeling electrokinetic flows in an ionic liquid, the MPNP equations are coupled with the Navier-Stokes equations to study the coupling of ion transport, hydrodynamics, and electrostatic forces. Specifically, we consider the ion transport between two parallel plates, charging dynamics in a 2D straight-walled pore, electro-osmotic ow in a nano-channel, electroconvective instability on a plane ion-selective surface, and electroconvective ow on a curved ion-selective surface. We discuss how the crowding and overscreening effects and their interplay affect the electrokinetic behaviors of ionic liquids in these application problems.

  5. The DART general equilibrium model: A technical description

    OpenAIRE

    Springer, Katrin

    1998-01-01

    This paper provides a technical description of the Dynamic Applied Regional Trade (DART) General Equilibrium Model. The DART model is a recursive dynamic, multi-region, multi-sector computable general equilibrium model. All regions are fully specified and linked by bilateral trade flows. The DART model can be used to project economic activities, energy use and trade flows for each of the specified regions to simulate various trade policy as well as environmental policy scenarios, and to analy...

  6. Exponential rise of dynamical complexity in quantum computing through projections.

    Science.gov (United States)

    Burgarth, Daniel Klaus; Facchi, Paolo; Giovannetti, Vittorio; Nakazato, Hiromichi; Pascazio, Saverio; Yuasa, Kazuya

    2014-10-10

    The ability of quantum systems to host exponentially complex dynamics has the potential to revolutionize science and technology. Therefore, much effort has been devoted to developing of protocols for computation, communication and metrology, which exploit this scaling, despite formidable technical difficulties. Here we show that the mere frequent observation of a small part of a quantum system can turn its dynamics from a very simple one into an exponentially complex one, capable of universal quantum computation. After discussing examples, we go on to show that this effect is generally to be expected: almost any quantum dynamics becomes universal once 'observed' as outlined above. Conversely, we show that any complex quantum dynamics can be 'purified' into a simpler one in larger dimensions. We conclude by demonstrating that even local noise can lead to an exponentially complex dynamics.

  7. Generalized bi-additive modelling for categorical data

    NARCIS (Netherlands)

    P.J.F. Groenen (Patrick); A.J. Koning (Alex)

    2004-01-01

    textabstractGeneralized linear modelling (GLM) is a versatile technique, which may be viewed as a generalization of well-known techniques such as least squares regression, analysis of variance, loglinear modelling, and logistic regression. In may applications, low-order interaction (such as

  8. A QCD Model Using Generalized Yang-Mills Theory

    International Nuclear Information System (INIS)

    Wang Dianfu; Song Heshan; Kou Lina

    2007-01-01

    Generalized Yang-Mills theory has a covariant derivative, which contains both vector and scalar gauge bosons. Based on this theory, we construct a strong interaction model by using the group U(4). By using this U(4) generalized Yang-Mills model, we also obtain a gauge potential solution, which can be used to explain the asymptotic behavior and color confinement.

  9. An exponentiation method for XML element retrieval.

    Science.gov (United States)

    Wichaiwong, Tanakorn

    2014-01-01

    XML document is now widely used for modelling and storing structured documents. The structure is very rich and carries important information about contents and their relationships, for example, e-Commerce. XML data-centric collections require query terms allowing users to specify constraints on the document structure; mapping structure queries and assigning the weight are significant for the set of possibly relevant documents with respect to structural conditions. In this paper, we present an extension to the MEXIR search system that supports the combination of structural and content queries in the form of content-and-structure queries, which we call the Exponentiation function. It has been shown the structural information improve the effectiveness of the search system up to 52.60% over the baseline BM25 at MAP.

  10. An Exponentiation Method for XML Element Retrieval

    Science.gov (United States)

    2014-01-01

    XML document is now widely used for modelling and storing structured documents. The structure is very rich and carries important information about contents and their relationships, for example, e-Commerce. XML data-centric collections require query terms allowing users to specify constraints on the document structure; mapping structure queries and assigning the weight are significant for the set of possibly relevant documents with respect to structural conditions. In this paper, we present an extension to the MEXIR search system that supports the combination of structural and content queries in the form of content-and-structure queries, which we call the Exponentiation function. It has been shown the structural information improve the effectiveness of the search system up to 52.60% over the baseline BM25 at MAP. PMID:24696643

  11. Late-time acceleration with steep exponential potentials

    Energy Technology Data Exchange (ETDEWEB)

    Shahalam, M. [Zhejiang University of Technology, Institute for Advanced Physics and Mathematics, Hangzhou (China); Yang, Weiqiang [Liaoning Normal University, Department of Physics, Dalian (China); Myrzakulov, R. [Eurasian National University, Department of General and Theoretical Physics, Eurasian International Center for Theoretical Physics, Astana (Kazakhstan); Wang, Anzhong [Zhejiang University of Technology, Institute for Advanced Physics and Mathematics, Hangzhou (China); Baylor University, GCAP-CASPER, Department of Physics, Waco, TX (United States)

    2017-12-15

    In this letter, we study the cosmological dynamics of steeper potential than exponential. Our analysis shows that a simple extension of an exponential potential allows to capture late-time cosmic acceleration and retain the tracker behavior. We also perform statefinder and Om diagnostics to distinguish dark energy models among themselves and with ΛCDM. In addition, to put the observational constraints on the model parameters, we modify the publicly available CosmoMC code and use an integrated data base of baryon acoustic oscillation, latest Type Ia supernova from Joint Light Curves sample and the local Hubble constant value measured by the Hubble Space Telescope. (orig.)

  12. Late-time acceleration with steep exponential potentials

    International Nuclear Information System (INIS)

    Shahalam, M.; Yang, Weiqiang; Myrzakulov, R.; Wang, Anzhong

    2017-01-01

    In this letter, we study the cosmological dynamics of steeper potential than exponential. Our analysis shows that a simple extension of an exponential potential allows to capture late-time cosmic acceleration and retain the tracker behavior. We also perform statefinder and Om diagnostics to distinguish dark energy models among themselves and with ΛCDM. In addition, to put the observational constraints on the model parameters, we modify the publicly available CosmoMC code and use an integrated data base of baryon acoustic oscillation, latest Type Ia supernova from Joint Light Curves sample and the local Hubble constant value measured by the Hubble Space Telescope. (orig.)

  13. The Extended Erlang-Truncated Exponential distribution: Properties and application to rainfall data

    Directory of Open Access Journals (Sweden)

    I.E. Okorie

    2017-06-01

    Full Text Available The Erlang-Truncated Exponential ETE distribution is modified and the new lifetime distribution is called the Extended Erlang-Truncated Exponential EETE distribution. Some statistical and reliability properties of the new distribution are given and the method of maximum likelihood estimate was proposed for estimating the model parameters. The usefulness and flexibility of the EETE distribution was illustrated with an uncensored data set and its fit was compared with that of the ETE and three other three-parameter distributions. Results based on the minimized log-likelihood (−ℓˆ, Akaike information criterion (AIC, Bayesian information criterion (BIC and the generalized Cramér–von Mises W⋆ statistics shows that the EETE distribution provides a more reasonable fit than the one based on the other competing distributions. Keywords: Mathematics, Applied mathematics

  14. The Extended Erlang-Truncated Exponential distribution: Properties and application to rainfall data.

    Science.gov (United States)

    Okorie, I E; Akpanta, A C; Ohakwe, J; Chikezie, D C

    2017-06-01

    The Erlang-Truncated Exponential ETE distribution is modified and the new lifetime distribution is called the Extended Erlang-Truncated Exponential EETE distribution. Some statistical and reliability properties of the new distribution are given and the method of maximum likelihood estimate was proposed for estimating the model parameters. The usefulness and flexibility of the EETE distribution was illustrated with an uncensored data set and its fit was compared with that of the ETE and three other three-parameter distributions. Results based on the minimized log-likelihood ([Formula: see text]), Akaike information criterion (AIC), Bayesian information criterion (BIC) and the generalized Cramér-von Mises [Formula: see text] statistics shows that the EETE distribution provides a more reasonable fit than the one based on the other competing distributions.

  15. Asymptotic estimates and exponential stability for higher-order monotone difference equations

    Directory of Open Access Journals (Sweden)

    Pituk Mihály

    2005-01-01

    Full Text Available Asymptotic estimates are established for higher-order scalar difference equations and inequalities the right-hand sides of which generate a monotone system with respect to the discrete exponential ordering. It is shown that in some cases the exponential estimates can be replaced with a more precise limit relation. As corollaries, a generalization of discrete Halanay-type inequalities and explicit sufficient conditions for the global exponential stability of the zero solution are given.

  16. Asymptotic estimates and exponential stability for higher-order monotone difference equations

    Directory of Open Access Journals (Sweden)

    Mihály Pituk

    2005-03-01

    Full Text Available Asymptotic estimates are established for higher-order scalar difference equations and inequalities the right-hand sides of which generate a monotone system with respect to the discrete exponential ordering. It is shown that in some cases the exponential estimates can be replaced with a more precise limit relation. As corollaries, a generalization of discrete Halanay-type inequalities and explicit sufficient conditions for the global exponential stability of the zero solution are given.

  17. A generalized model via random walks for information filtering

    International Nuclear Information System (INIS)

    Ren, Zhuo-Ming; Kong, Yixiu; Shang, Ming-Sheng; Zhang, Yi-Cheng

    2016-01-01

    There could exist a simple general mechanism lurking beneath collaborative filtering and interdisciplinary physics approaches which have been successfully applied to online E-commerce platforms. Motivated by this idea, we propose a generalized model employing the dynamics of the random walk in the bipartite networks. Taking into account the degree information, the proposed generalized model could deduce the collaborative filtering, interdisciplinary physics approaches and even the enormous expansion of them. Furthermore, we analyze the generalized model with single and hybrid of degree information on the process of random walk in bipartite networks, and propose a possible strategy by using the hybrid degree information for different popular objects to toward promising precision of the recommendation. - Highlights: • We propose a generalized recommendation model employing the random walk dynamics. • The proposed model with single and hybrid of degree information is analyzed. • A strategy with the hybrid degree information improves precision of recommendation.

  18. A generalized model via random walks for information filtering

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhuo-Ming, E-mail: zhuomingren@gmail.com [Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700, Fribourg (Switzerland); Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, ChongQing, 400714 (China); Kong, Yixiu [Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700, Fribourg (Switzerland); Shang, Ming-Sheng, E-mail: msshang@cigit.ac.cn [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, ChongQing, 400714 (China); Zhang, Yi-Cheng [Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700, Fribourg (Switzerland)

    2016-08-06

    There could exist a simple general mechanism lurking beneath collaborative filtering and interdisciplinary physics approaches which have been successfully applied to online E-commerce platforms. Motivated by this idea, we propose a generalized model employing the dynamics of the random walk in the bipartite networks. Taking into account the degree information, the proposed generalized model could deduce the collaborative filtering, interdisciplinary physics approaches and even the enormous expansion of them. Furthermore, we analyze the generalized model with single and hybrid of degree information on the process of random walk in bipartite networks, and propose a possible strategy by using the hybrid degree information for different popular objects to toward promising precision of the recommendation. - Highlights: • We propose a generalized recommendation model employing the random walk dynamics. • The proposed model with single and hybrid of degree information is analyzed. • A strategy with the hybrid degree information improves precision of recommendation.

  19. Understanding apparently non-exponential outbreaks Comment on "Mathematical models to characterize early epidemic growth: A review" by Gerardo Chowell et al.

    Science.gov (United States)

    Champredon, David; Earn, David J. D.

    2016-09-01

    Mechanistic mathematical modelling of the population dynamics of infectious diseases has advanced tremendously over the last few decades [1-6]. Transmission models have been applied to countless diseases of public health importance, including seasonal and pandemic influenza [7], childhood diseases such as measles [8,9] and whooping cough [10], vector transmitted diseases such as malaria [11] and dengue [12], and waterborne diseases such as cholera [13-15]. Much attention in recent years has been directed to emergent diseases such as SARS [16], new subtypes of influenza [17,18], Ebola [19,20], and Zika [21], for which an understanding of early outbreak dynamics is critical.

  20. Generalization of the event-based Carnevale-Hines integration scheme for integrate-and-fire models

    NARCIS (Netherlands)

    van Elburg, R.A.J.; van Ooyen, A.

    2009-01-01

    An event-based integration scheme for an integrate-and-fire neuron model with exponentially decaying excitatory synaptic currents and double exponential inhibitory synaptic currents has been introduced by Carnevale and Hines. However, the integration scheme imposes nonphysiological constraints on

  1. Generalization of the Event-Based Carnevale-Hines Integration Scheme for Integrate-and-Fire Models

    NARCIS (Netherlands)

    van Elburg, Ronald A. J.; van Ooyen, Arjen

    An event-based integration scheme for an integrate-and-fire neuron model with exponentially decaying excitatory synaptic currents and double exponential inhibitory synaptic currents has been introduced by Carnevale and Hines. However, the integration scheme imposes nonphysiological constraints on

  2. Multivariate Marshall and Olkin Exponential Minification Process ...

    African Journals Online (AJOL)

    A stationary bivariate minification process with bivariate Marshall-Olkin exponential distribution that was earlier studied by Miroslav et al [15]is in this paper extended to multivariate minification process with multivariate Marshall and Olkin exponential distribution as its stationary marginal distribution. The innovation and the ...

  3. Dual exponential polynomials and linear differential equations

    Science.gov (United States)

    Wen, Zhi-Tao; Gundersen, Gary G.; Heittokangas, Janne

    2018-01-01

    We study linear differential equations with exponential polynomial coefficients, where exactly one coefficient is of order greater than all the others. The main result shows that a nontrivial exponential polynomial solution of such an equation has a certain dual relationship with the maximum order coefficient. Several examples illustrate our results and exhibit possibilities that can occur.

  4. Reliability assessment of competing risks with generalized mixed shock models

    International Nuclear Information System (INIS)

    Rafiee, Koosha; Feng, Qianmei; Coit, David W.

    2017-01-01

    This paper investigates reliability modeling for systems subject to dependent competing risks considering the impact from a new generalized mixed shock model. Two dependent competing risks are soft failure due to a degradation process, and hard failure due to random shocks. The shock process contains fatal shocks that can cause hard failure instantaneously, and nonfatal shocks that impact the system in three different ways: 1) damaging the unit by immediately increasing the degradation level, 2) speeding up the deterioration by accelerating the degradation rate, and 3) weakening the unit strength by reducing the hard failure threshold. While the first impact from nonfatal shocks comes from each individual shock, the other two impacts are realized when the condition for a new generalized mixed shock model is satisfied. Unlike most existing mixed shock models that consider a combination of two shock patterns, our new generalized mixed shock model includes three classic shock patterns. According to the proposed generalized mixed shock model, the degradation rate and the hard failure threshold can simultaneously shift multiple times, whenever the condition for one of these three shock patterns is satisfied. An example using micro-electro-mechanical systems devices illustrates the effectiveness of the proposed approach with sensitivity analysis. - Highlights: • A rich reliability model for systems subject to dependent failures is proposed. • The degradation rate and the hard failure threshold can shift simultaneously. • The shift is triggered by a new generalized mixed shock model. • The shift can occur multiple times under the generalized mixed shock model.

  5. Estimation of exponential convergence rate and exponential stability for neural networks with time-varying delay

    International Nuclear Information System (INIS)

    Tu Fenghua; Liao Xiaofeng

    2005-01-01

    We study the problem of estimating the exponential convergence rate and exponential stability for neural networks with time-varying delay. Some criteria for exponential stability are derived by using the linear matrix inequality (LMI) approach. They are less conservative than the existing ones. Some analytical methods are employed to investigate the bounds on the interconnection matrix and activation functions so that the systems are exponentially stable

  6. Learning general phonological rules from distributional information: a computational model.

    Science.gov (United States)

    Calamaro, Shira; Jarosz, Gaja

    2015-04-01

    Phonological rules create alternations in the phonetic realizations of related words. These rules must be learned by infants in order to identify the phonological inventory, the morphological structure, and the lexicon of a language. Recent work proposes a computational model for the learning of one kind of phonological alternation, allophony (Peperkamp, Le Calvez, Nadal, & Dupoux, 2006). This paper extends the model to account for learning of a broader set of phonological alternations and the formalization of these alternations as general rules. In Experiment 1, we apply the original model to new data in Dutch and demonstrate its limitations in learning nonallophonic rules. In Experiment 2, we extend the model to allow it to learn general rules for alternations that apply to a class of segments. In Experiment 3, the model is further extended to allow for generalization by context; we argue that this generalization must be constrained by linguistic principles. Copyright © 2014 Cognitive Science Society, Inc.

  7. General Friction Model Extended by the Effect of Strain Hardening

    DEFF Research Database (Denmark)

    Nielsen, Chris V.; Martins, Paulo A.F.; Bay, Niels

    2016-01-01

    An extension to the general friction model proposed by Wanheim and Bay [1] to include the effect of strain hardening is proposed. The friction model relates the friction stress to the fraction of real contact area by a friction factor under steady state sliding. The original model for the real...... contact area as function of the normalized contact pressure is based on slip-line analysis and hence on the assumption of rigid-ideally plastic material behavior. In the present work, a general finite element model is established to, firstly, reproduce the original model under the assumption of rigid...

  8. On a Generalized Squared Gaussian Diffusion Model for Option Valuation

    Directory of Open Access Journals (Sweden)

    Edeki S.O.

    2017-01-01

    Full Text Available In financial mathematics, option pricing models are vital tools whose usefulness cannot be overemphasized. Modern approaches and modelling of financial derivatives are therefore required in option pricing and valuation settings. In this paper, we derive via the application of Ito lemma, a pricing model referred to as Generalized Squared Gaussian Diffusion Model (GSGDM for option pricing and valuation. Same approach can be considered via Stratonovich stochastic dynamics. We also show that the classical Black-Scholes, and the square root constant elasticity of variance models are special cases of the GSGDM. In addition, general solution of the GSGDM is obtained using modified variational iterative method (MVIM.

  9. Kalman Filter for Generalized 2-D Roesser Models

    Institute of Scientific and Technical Information of China (English)

    SHENG Mei; ZOU Yun

    2007-01-01

    The design problem of the state filter for the generalized stochastic 2-D Roesser models, which appears when both the state and measurement are simultaneously subjected to the interference from white noise, is discussed. The wellknown Kalman filter design is extended to the generalized 2-D Roesser models. Based on the method of "scanning line by line", the filtering problem of generalized 2-D Roesser models with mode-energy reconstruction is solved. The formula of the optimal filtering, which minimizes the variance of the estimation error of the state vectors, is derived. The validity of the designed filter is verified by the calculation steps and the examples are introduced.

  10. Generalized Linear Models with Applications in Engineering and the Sciences

    CERN Document Server

    Myers, Raymond H; Vining, G Geoffrey; Robinson, Timothy J

    2012-01-01

    Praise for the First Edition "The obvious enthusiasm of Myers, Montgomery, and Vining and their reliance on their many examples as a major focus of their pedagogy make Generalized Linear Models a joy to read. Every statistician working in any area of applied science should buy it and experience the excitement of these new approaches to familiar activities."-Technometrics Generalized Linear Models: With Applications in Engineering and the Sciences, Second Edition continues to provide a clear introduction to the theoretical foundations and key applications of generalized linear models (GLMs). Ma

  11. Characterizing quantum correlations. Entanglement, uncertainty relations and exponential families

    Energy Technology Data Exchange (ETDEWEB)

    Niekamp, Soenke

    2012-04-20

    This thesis is concerned with different characterizations of multi-particle quantum correlations and with entropic uncertainty relations. The effect of statistical errors on the detection of entanglement is investigated. First, general results on the statistical significance of entanglement witnesses are obtained. Then, using an error model for experiments with polarization-entangled photons, it is demonstrated that Bell inequalities with lower violation can have higher significance. The question for the best observables to discriminate between a state and the equivalence class of another state is addressed. Two measures for the discrimination strength of an observable are defined, and optimal families of observables are constructed for several examples. A property of stabilizer bases is shown which is a natural generalization of mutual unbiasedness. For sets of several dichotomic, pairwise anticommuting observables, uncertainty relations using different entropies are constructed in a systematic way. Exponential families provide a classification of states according to their correlations. In this classification scheme, a state is considered as k-correlated if it can be written as thermal state of a k-body Hamiltonian. Witness operators for the detection of higher-order interactions are constructed, and an algorithm for the computation of the nearest k-correlated state is developed.

  12. Characterizing quantum correlations. Entanglement, uncertainty relations and exponential families

    International Nuclear Information System (INIS)

    Niekamp, Soenke

    2012-01-01

    This thesis is concerned with different characterizations of multi-particle quantum correlations and with entropic uncertainty relations. The effect of statistical errors on the detection of entanglement is investigated. First, general results on the statistical significance of entanglement witnesses are obtained. Then, using an error model for experiments with polarization-entangled photons, it is demonstrated that Bell inequalities with lower violation can have higher significance. The question for the best observables to discriminate between a state and the equivalence class of another state is addressed. Two measures for the discrimination strength of an observable are defined, and optimal families of observables are constructed for several examples. A property of stabilizer bases is shown which is a natural generalization of mutual unbiasedness. For sets of several dichotomic, pairwise anticommuting observables, uncertainty relations using different entropies are constructed in a systematic way. Exponential families provide a classification of states according to their correlations. In this classification scheme, a state is considered as k-correlated if it can be written as thermal state of a k-body Hamiltonian. Witness operators for the detection of higher-order interactions are constructed, and an algorithm for the computation of the nearest k-correlated state is developed.

  13. Exponential gain of randomness certified by quantum contextuality

    Science.gov (United States)

    Um, Mark; Zhang, Junhua; Wang, Ye; Wang, Pengfei; Kim, Kihwan

    2017-04-01

    We demonstrate the protocol of exponential gain of randomness certified by quantum contextuality in a trapped ion system. The genuine randomness can be produced by quantum principle and certified by quantum inequalities. Recently, randomness expansion protocols based on inequality of Bell-text and Kochen-Specker (KS) theorem, have been demonstrated. These schemes have been theoretically innovated to exponentially expand the randomness and amplify the randomness from weak initial random seed. Here, we report the experimental evidence of such exponential expansion of randomness. In the experiment, we use three states of a 138Ba + ion between a ground state and two quadrupole states. In the 138Ba + ion system, we do not have detection loophole and we apply a methods to rule out certain hidden variable models that obey a kind of extended noncontextuality.

  14. Critical Comments on the General Model of Instructional Communication

    Science.gov (United States)

    Walton, Justin D.

    2014-01-01

    This essay presents a critical commentary on McCroskey et al.'s (2004) general model of instructional communication. In particular, five points are examined which make explicit and problematize the meta-theoretical assumptions of the model. Comments call attention to the limitations of the model and argue for a broader approach to…

  15. Membrane models and generalized Z2 gauge theories

    International Nuclear Information System (INIS)

    Lowe, M.J.; Wallace, D.J.

    1980-01-01

    We consider models of (d-n)-dimensional membranes fluctuating in a d-dimensional space under the action of surface tension. We investigate the renormalization properties of these models perturbatively and in 1/n expansion. The potential relationships of these models to generalized Z 2 gauge theories are indicated. (orig.)

  16. A Duality Result for the Generalized Erlang Risk Model

    Directory of Open Access Journals (Sweden)

    Lanpeng Ji

    2014-11-01

    Full Text Available In this article, we consider the generalized Erlang risk model and its dual model. By using a conditional measure-preserving correspondence between the two models, we derive an identity for two interesting conditional probabilities. Applications to the discounted joint density of the surplus prior to ruin and the deficit at ruin are also discussed.

  17. A Generalized Partial Credit Model: Application of an EM Algorithm.

    Science.gov (United States)

    Muraki, Eiji

    1992-01-01

    The partial credit model with a varying slope parameter is developed and called the generalized partial credit model (GPCM). Analysis results for simulated data by this and other polytomous item-response models demonstrate that the rating formulation of the GPCM is adaptable to the analysis of polytomous item responses. (SLD)

  18. Linear and Generalized Linear Mixed Models and Their Applications

    CERN Document Server

    Jiang, Jiming

    2007-01-01

    This book covers two major classes of mixed effects models, linear mixed models and generalized linear mixed models, and it presents an up-to-date account of theory and methods in analysis of these models as well as their applications in various fields. The book offers a systematic approach to inference about non-Gaussian linear mixed models. Furthermore, it has included recently developed methods, such as mixed model diagnostics, mixed model selection, and jackknife method in the context of mixed models. The book is aimed at students, researchers and other practitioners who are interested

  19. a Proposal for Generalization of 3d Models

    Science.gov (United States)

    Uyar, A.; Ulugtekin, N. N.

    2017-11-01

    In recent years, 3D models have been created of many cities around the world. Most of the 3D city models have been introduced as completely graphic or geometric models, and the semantic and topographic aspects of the models have been neglected. In order to use 3D city models beyond the task, a generalization is necessary. CityGML is an open data model and XML-based format for the storage and exchange of virtual 3D city models. Level of Details (LoD) which is an important concept for 3D modelling, can be defined as outlined degree or prior representation of real-world objects. The paper aim is first describes some requirements of 3D model generalization, then presents problems and approaches that have been developed in recent years. In conclude the paper will be a summary and outlook on problems and future work.

  20. Stochastic Frontier Models with Dependent Errors based on Normal and Exponential Margins || Modelos de frontera estocástica con errores dependientes basados en márgenes normal y exponencial

    Directory of Open Access Journals (Sweden)

    Gómez-Déniz, Emilio

    2017-06-01

    Full Text Available Following the recent work of Gómez-Déniz and Pérez-Rodríguez (2014, this paper extends the results obtained there to the normal-exponential distribution with dependence. Accordingly, the main aim of the present paper is to enhance stochastic production frontier and stochastic cost frontier modelling by proposing a bivariate distribution for dependent errors which allows us to nest the classical models. Closed-form expressions for the error term and technical efficiency are provided. An illustration using real data from the econometric literature is provided to show the applicability of the model proposed. || Continuando el reciente trabajo de Gómez-Déniz y Pérez-Rodríguez (2014, el presente artículo extiende los resultados obtenidos a la distribución normal-exponencial con dependencia. En consecuencia, el principal propósito de este artículo es mejorar el modelado de la frontera estocástica tanto de producción como de coste proponiendo para ello una distribución bivariante para errores dependientes que nos permitan encajar los modelos clásicos. Se obtienen las expresiones en forma cerrada para el término de error y la eficiencia técnica. Se ilustra la aplicabilidad del modelo propouesto usando datos reales existentes en la literatura econométrica.

  1. General classical solutions in the noncommutative CPN-1 model

    International Nuclear Information System (INIS)

    Foda, O.; Jack, I.; Jones, D.R.T.

    2002-01-01

    We give an explicit construction of general classical solutions for the noncommutative CP N-1 model in two dimensions, showing that they correspond to integer values for the action and topological charge. We also give explicit solutions for the Dirac equation in the background of these general solutions and show that the index theorem is satisfied

  2. Parameter Estimation for a Computable General Equilibrium Model

    DEFF Research Database (Denmark)

    Arndt, Channing; Robinson, Sherman; Tarp, Finn

    2002-01-01

    We introduce a maximum entropy approach to parameter estimation for computable general equilibrium (CGE) models. The approach applies information theory to estimating a system of non-linear simultaneous equations. It has a number of advantages. First, it imposes all general equilibrium constraints...

  3. Parameter Estimation for a Computable General Equilibrium Model

    DEFF Research Database (Denmark)

    Arndt, Channing; Robinson, Sherman; Tarp, Finn

    We introduce a maximum entropy approach to parameter estimation for computable general equilibrium (CGE) models. The approach applies information theory to estimating a system of nonlinear simultaneous equations. It has a number of advantages. First, it imposes all general equilibrium constraints...

  4. Dividend taxation in an infinite-horizon general equilibrium model

    OpenAIRE

    Pham, Ngoc-Sang

    2017-01-01

    We consider an infinite-horizon general equilibrium model with heterogeneous agents and financial market imperfections. We investigate the role of dividend taxation on economic growth and asset price. The optimal dividend taxation is also studied.

  5. Two point function for a simple general relativistic quantum model

    OpenAIRE

    Colosi, Daniele

    2007-01-01

    We study the quantum theory of a simple general relativistic quantum model of two coupled harmonic oscillators and compute the two-point function following a proposal first introduced in the context of loop quantum gravity.

  6. Generalized model for Memristor-based Wien family oscillators

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne; Radwan, Ahmed G.; Salama, Khaled N.

    2012-01-01

    In this paper, we report the unconventional characteristics of Memristor in Wien oscillators. Generalized mathematical models are developed to analyze four members of the Wien family using Memristors. Sustained oscillation is reported for all types

  7. The DINA model as a constrained general diagnostic model: Two variants of a model equivalency.

    Science.gov (United States)

    von Davier, Matthias

    2014-02-01

    The 'deterministic-input noisy-AND' (DINA) model is one of the more frequently applied diagnostic classification models for binary observed responses and binary latent variables. The purpose of this paper is to show that the model is equivalent to a special case of a more general compensatory family of diagnostic models. Two equivalencies are presented. Both project the original DINA skill space and design Q-matrix using mappings into a transformed skill space as well as a transformed Q-matrix space. Both variants of the equivalency produce a compensatory model that is mathematically equivalent to the (conjunctive) DINA model. This equivalency holds for all DINA models with any type of Q-matrix, not only for trivial (simple-structure) cases. The two versions of the equivalency presented in this paper are not implied by the recently suggested log-linear cognitive diagnosis model or the generalized DINA approach. The equivalencies presented here exist independent of these recently derived models since they solely require a linear - compensatory - general diagnostic model without any skill interaction terms. Whenever it can be shown that one model can be viewed as a special case of another more general one, conclusions derived from any particular model-based estimates are drawn into question. It is widely known that multidimensional models can often be specified in multiple ways while the model-based probabilities of observed variables stay the same. This paper goes beyond this type of equivalency by showing that a conjunctive diagnostic classification model can be expressed as a constrained special case of a general compensatory diagnostic modelling framework. © 2013 The British Psychological Society.

  8. A Generalized QMRA Beta-Poisson Dose-Response Model.

    Science.gov (United States)

    Xie, Gang; Roiko, Anne; Stratton, Helen; Lemckert, Charles; Dunn, Peter K; Mengersen, Kerrie

    2016-10-01

    Quantitative microbial risk assessment (QMRA) is widely accepted for characterizing the microbial risks associated with food, water, and wastewater. Single-hit dose-response models are the most commonly used dose-response models in QMRA. Denoting PI(d) as the probability of infection at a given mean dose d, a three-parameter generalized QMRA beta-Poisson dose-response model, PI(d|α,β,r*), is proposed in which the minimum number of organisms required for causing infection, K min , is not fixed, but a random variable following a geometric distribution with parameter 0Poisson model, PI(d|α,β), is a special case of the generalized model with K min = 1 (which implies r*=1). The generalized beta-Poisson model is based on a conceptual model with greater detail in the dose-response mechanism. Since a maximum likelihood solution is not easily available, a likelihood-free approximate Bayesian computation (ABC) algorithm is employed for parameter estimation. By fitting the generalized model to four experimental data sets from the literature, this study reveals that the posterior median r* estimates produced fall short of meeting the required condition of r* = 1 for single-hit assumption. However, three out of four data sets fitted by the generalized models could not achieve an improvement in goodness of fit. These combined results imply that, at least in some cases, a single-hit assumption for characterizing the dose-response process may not be appropriate, but that the more complex models may be difficult to support especially if the sample size is small. The three-parameter generalized model provides a possibility to investigate the mechanism of a dose-response process in greater detail than is possible under a single-hit model. © 2016 Society for Risk Analysis.

  9. Stretched versus compressed exponential kinetics in α-helix folding

    International Nuclear Information System (INIS)

    Hamm, Peter; Helbing, Jan; Bredenbeck, Jens

    2006-01-01

    In a recent paper (J. Bredenbeck, J. Helbing, J.R. Kumita, G.A. Woolley, P. Hamm, α-helix formation in a photoswitchable peptide tracked from picoseconds to microseconds by time resolved IR spectroscopy, Proc. Natl. Acad. Sci USA 102 (2005) 2379), we have investigated the folding of a photo-switchable α-helix with a kinetics that could be fit by a stretched exponential function exp(-(t/τ) β ). The stretching factor β became smaller as the temperature was lowered, a result which has been interpreted in terms of activated diffusion on a rugged energy surface. In the present paper, we discuss under which conditions diffusion problems occur with stretched exponential kinetics (β 1). We show that diffusion problems do have a strong tendency to yield stretched exponential kinetics, yet, that there are conditions (strong perturbation from equilibrium, performing the experiment in the folding direction) under which compressed exponential kinetics would be expected instead. We discuss the kinetics on free energy surfaces predicted by simple initiation-propagation models (zipper models) of α-helix folding, as well as by folding funnel models. We show that our recent experiment has been performed under condition for which models with strong downhill driving force, such as the zipper model, would predict compressed, rather than stretched exponential kinetics, in disagreement with the experimental observation. We therefore propose that the free energy surface along a reaction coordinate that governs the folding kinetics must be relatively flat and has a shape similar to a 1D golf course. We discuss how this conclusion can be unified with the thermodynamically well established zipper model by introducing an additional kinetic reaction coordinate

  10. Specific and General Human Capital in an Endogenous Growth Model

    OpenAIRE

    Evangelia Vourvachaki; Vahagn Jerbashian; : Sergey Slobodyan

    2014-01-01

    In this article, we define specific (general) human capital in terms of the occupations whose use is spread in a limited (wide) set of industries. We analyze the growth impact of an economy's composition of specific and general human capital, in a model where education and research and development are costly and complementary activities. The model suggests that a declining share of specific human capital, as observed in the Czech Republic, can be associated with a lower rate of long-term grow...

  11. Dynamical CP violation of the generalized Yang-Mills model

    International Nuclear Information System (INIS)

    Wang Dianfu; Chang Xiaojing; Sun Xiaoyu

    2011-01-01

    Starting from the generalized Yang-Mills model which contains, besides the vector part V μ , also a scalar part S and a pseudoscalar part P . It is shown, in terms of the Nambu-Jona-Lasinio (NJL) mechanism, that CP violation can be realized dynamically. The combination of the generalized Yang-Mills model and the NJL mechanism provides a new way to explain CP violation. (authors)

  12. A general model for membrane-based separation processes

    DEFF Research Database (Denmark)

    Soni, Vipasha; Abildskov, Jens; Jonsson, Gunnar Eigil

    2009-01-01

    behaviour will play an important role. In this paper, modelling of membrane-based processes for separation of gas and liquid mixtures are considered. Two general models, one for membrane-based liquid separation processes (with phase change) and another for membrane-based gas separation are presented....... The separation processes covered are: membrane-based gas separation processes, pervaporation and various types of membrane distillation processes. The specific model for each type of membrane-based process is generated from the two general models by applying the specific system descriptions and the corresponding...

  13. Generalized continua as models for classical and advanced materials

    CERN Document Server

    Forest, Samuel

    2016-01-01

    This volume is devoted to an actual topic which is the focus world-wide of various research groups. It contains contributions describing the material behavior on different scales, new existence and uniqueness theorems, the formulation of constitutive equations for advanced materials. The main emphasis of the contributions is directed on the following items - Modelling and simulation of natural and artificial materials with significant microstructure, - Generalized continua as a result of multi-scale models, - Multi-field actions on materials resulting in generalized material models, - Theories including higher gradients, and - Comparison with discrete modelling approaches.

  14. Pricing Participating Products under a Generalized Jump-Diffusion Model

    Directory of Open Access Journals (Sweden)

    Tak Kuen Siu

    2008-01-01

    Full Text Available We propose a model for valuing participating life insurance products under a generalized jump-diffusion model with a Markov-switching compensator. It also nests a number of important and popular models in finance, including the classes of jump-diffusion models and Markovian regime-switching models. The Esscher transform is employed to determine an equivalent martingale measure. Simulation experiments are conducted to illustrate the practical implementation of the model and to highlight some features that can be obtained from our model.

  15. Exponential Stability of Switched Positive Homogeneous Systems

    Directory of Open Access Journals (Sweden)

    Dadong Tian

    2017-01-01

    Full Text Available This paper studies the exponential stability of switched positive nonlinear systems defined by cooperative and homogeneous vector fields. In order to capture the decay rate of such systems, we first consider the subsystems. A sufficient condition for exponential stability of subsystems with time-varying delays is derived. In particular, for the corresponding delay-free systems, we prove that this sufficient condition is also necessary. Then, we present a sufficient condition of exponential stability under minimum dwell time switching for the switched positive nonlinear systems. Some results in the previous literature are extended. Finally, a numerical example is given to demonstrate the effectiveness of the obtained results.

  16. Exponential Frequency Spectrum in Magnetized Plasmas

    International Nuclear Information System (INIS)

    Pace, D. C.; Shi, M.; Maggs, J. E.; Morales, G. J.; Carter, T. A.

    2008-01-01

    Measurements of a magnetized plasma with a controlled electron temperature gradient show the development of a broadband spectrum of density and temperature fluctuations having an exponential frequency dependence at frequencies below the ion cyclotron frequency. The origin of the exponential frequency behavior is traced to temporal pulses of Lorentzian shape. Similar exponential frequency spectra are also found in limiter-edge plasma turbulence associated with blob transport. This finding suggests a universal feature of magnetized plasma turbulence leading to nondiffusive, cross-field transport, namely, the presence of Lorentzian shaped pulses

  17. Matrix-exponential description of radiative transfer

    International Nuclear Information System (INIS)

    Waterman, P.C.

    1981-01-01

    By appling the matrix-exponential operator technique to the radiative-transfer equation in discrete form, new analytical solutions are obtained for the transmission and reflection matrices in the limiting cases x >1, where x is the optical depth of the layer. Orthongonality of the eigenvectors of the matrix exponential apparently yields new conditions for determining. Chandrasekhar's characteristic roots. The exact law of reflection for the discrete eigenfunctions is also obtained. Finally, when used in conjuction with the doubling method, the matrix exponential should result in reduction in both computation time and loss of precision

  18. Asymmetric Bimodal Exponential Power Distribution on the Real Line

    Directory of Open Access Journals (Sweden)

    Mehmet Niyazi Çankaya

    2018-01-01

    Full Text Available The asymmetric bimodal exponential power (ABEP distribution is an extension of the generalized gamma distribution to the real line via adding two parameters that fit the shape of peakedness in bimodality on the real line. The special values of peakedness parameters of the distribution are a combination of half Laplace and half normal distributions on the real line. The distribution has two parameters fitting the height of bimodality, so capacity of bimodality is enhanced by using these parameters. Adding a skewness parameter is considered to model asymmetry in data. The location-scale form of this distribution is proposed. The Fisher information matrix of these parameters in ABEP is obtained explicitly. Properties of ABEP are examined. Real data examples are given to illustrate the modelling capacity of ABEP. The replicated artificial data from maximum likelihood estimates of parameters of ABEP and other distributions having an algorithm for artificial data generation procedure are provided to test the similarity with real data. A brief simulation study is presented.

  19. International Competition and Inequality: A Generalized Ricardian Model

    OpenAIRE

    Adolfo Figueroa

    2014-01-01

    Why does the gap in real wage rates persist between the First World and the Third World after so many years of increasing globalization? The standard neoclassical trade model predicts that real wage rates will be equalized with international trade, whereas the standard Ricardian trade model does not. Facts are thus consistent with the Ricardian model. However, this model leaves undetermined income distribution. The objective of this paper is to fill this gap by developing a generalized Ricard...

  20. Adaptation of a general circulation model to ocean dynamics

    Science.gov (United States)

    Turner, R. E.; Rees, T. H.; Woodbury, G. E.

    1976-01-01

    A primitive-variable general circulation model of the ocean was formulated in which fast external gravity waves are suppressed with rigid-lid surface constraint pressires which also provide a means for simulating the effects of large-scale free-surface topography. The surface pressure method is simpler to apply than the conventional stream function models, and the resulting model can be applied to both global ocean and limited region situations. Strengths and weaknesses of the model are also presented.

  1. Population density approach for discrete mRNA distributions in generalized switching models for stochastic gene expression.

    Science.gov (United States)

    Stinchcombe, Adam R; Peskin, Charles S; Tranchina, Daniel

    2012-06-01

    We present a generalization of a population density approach for modeling and analysis of stochastic gene expression. In the model, the gene of interest fluctuates stochastically between an inactive state, in which transcription cannot occur, and an active state, in which discrete transcription events occur; and the individual mRNA molecules are degraded stochastically in an independent manner. This sort of model in simplest form with exponential dwell times has been used to explain experimental estimates of the discrete distribution of random mRNA copy number. In our generalization, the random dwell times in the inactive and active states, T_{0} and T_{1}, respectively, are independent random variables drawn from any specified distributions. Consequently, the probability per unit time of switching out of a state depends on the time since entering that state. Our method exploits a connection between the fully discrete random process and a related continuous process. We present numerical methods for computing steady-state mRNA distributions and an analytical derivation of the mRNA autocovariance function. We find that empirical estimates of the steady-state mRNA probability mass function from Monte Carlo simulations of laboratory data do not allow one to distinguish between underlying models with exponential and nonexponential dwell times in some relevant parameter regimes. However, in these parameter regimes and where the autocovariance function has negative lobes, the autocovariance function disambiguates the two types of models. Our results strongly suggest that temporal data beyond the autocovariance function is required in general to characterize gene switching.

  2. Species abundance distributions in neutral models with immigration or mutation and general lifetimes.

    Science.gov (United States)

    Lambert, Amaury

    2011-07-01

    We consider a general, neutral, dynamical model of biodiversity. Individuals have i.i.d. lifetime durations, which are not necessarily exponentially distributed, and each individual gives birth independently at constant rate λ. Thus, the population size is a homogeneous, binary Crump-Mode-Jagers process (which is not necessarily a Markov process). We assume that types are clonally inherited. We consider two classes of speciation models in this setting. In the immigration model, new individuals of an entirely new species singly enter the population at constant rate μ (e.g., from the mainland into the island). In the mutation model, each individual independently experiences point mutations in its germ line, at constant rate θ. We are interested in the species abundance distribution, i.e., in the numbers, denoted I(n)(k) in the immigration model and A(n)(k) in the mutation model, of species represented by k individuals, k = 1, 2, . . . , n, when there are n individuals in the total population. In the immigration model, we prove that the numbers (I(t)(k); k ≥ 1) of species represented by k individuals at time t, are independent Poisson variables with parameters as in Fisher's log-series. When conditioning on the total size of the population to equal n, this results in species abundance distributions given by Ewens' sampling formula. In particular, I(n)(k) converges as n → ∞ to a Poisson r.v. with mean γ/k, where γ : = μ/λ. In the mutation model, as n → ∞, we obtain the almost sure convergence of n (-1) A(n)(k) to a nonrandom explicit constant. In the case of a critical, linear birth-death process, this constant is given by Fisher's log-series, namely n(-1) A(n)(k) converges to α(k)/k, where α : = λ/(λ + θ). In both models, the abundances of the most abundant species are briefly discussed.

  3. A generalized statistical model for the size distribution of wealth

    International Nuclear Information System (INIS)

    Clementi, F; Gallegati, M; Kaniadakis, G

    2012-01-01

    In a recent paper in this journal (Clementi et al 2009 J. Stat. Mech. P02037), we proposed a new, physically motivated, distribution function for modeling individual incomes, having its roots in the framework of the κ-generalized statistical mechanics. The performance of the κ-generalized distribution was checked against real data on personal income for the United States in 2003. In this paper we extend our previous model so as to be able to account for the distribution of wealth. Probabilistic functions and inequality measures of this generalized model for wealth distribution are obtained in closed form. In order to check the validity of the proposed model, we analyze the US household wealth distributions from 1984 to 2009 and conclude an excellent agreement with the data that is superior to any other model already known in the literature. (paper)

  4. A generalized statistical model for the size distribution of wealth

    Science.gov (United States)

    Clementi, F.; Gallegati, M.; Kaniadakis, G.

    2012-12-01

    In a recent paper in this journal (Clementi et al 2009 J. Stat. Mech. P02037), we proposed a new, physically motivated, distribution function for modeling individual incomes, having its roots in the framework of the κ-generalized statistical mechanics. The performance of the κ-generalized distribution was checked against real data on personal income for the United States in 2003. In this paper we extend our previous model so as to be able to account for the distribution of wealth. Probabilistic functions and inequality measures of this generalized model for wealth distribution are obtained in closed form. In order to check the validity of the proposed model, we analyze the US household wealth distributions from 1984 to 2009 and conclude an excellent agreement with the data that is superior to any other model already known in the literature.

  5. Generalized Pareto for Pattern-Oriented Random Walk Modelling of Organisms' Movements.

    Directory of Open Access Journals (Sweden)

    Sophie Bertrand

    Full Text Available How organisms move and disperse is crucial to understand how population dynamics relates to the spatial heterogeneity of the environment. Random walk (RW models are typical tools to describe movement patterns. Whether Lévy or alternative RW better describes forager movements is keenly debated. We get around this issue using the Generalized Pareto Distribution (GPD. GPD includes as specific cases Normal, exponential and power law distributions, which underlie Brownian, Poisson-like and Lévy walks respectively. Whereas previous studies typically confronted a limited set of candidate models, GPD lets the most likely RW model emerge from the data. We illustrate the wide applicability of the method using GPS-tracked seabird foraging movements and fishing vessel movements tracked by Vessel Monitoring System (VMS, both collected in the Peruvian pelagic ecosystem. The two parameters from the fitted GPD, a scale and a shape parameter, provide a synoptic characterization of the observed movement in terms of characteristic scale and diffusive property. They reveal and quantify the variability, among species and individuals, of the spatial strategies selected by predators foraging on a common prey field. The GPD parameters constitute relevant metrics for (1 providing a synthetic and pattern-oriented description of movement, (2 using top predators as ecosystem indicators and (3 studying the variability of spatial behaviour among species or among individuals with different personalities.

  6. Generalized Pareto for Pattern-Oriented Random Walk Modelling of Organisms' Movements.

    Science.gov (United States)

    Bertrand, Sophie; Joo, Rocío; Fablet, Ronan

    2015-01-01

    How organisms move and disperse is crucial to understand how population dynamics relates to the spatial heterogeneity of the environment. Random walk (RW) models are typical tools to describe movement patterns. Whether Lévy or alternative RW better describes forager movements is keenly debated. We get around this issue using the Generalized Pareto Distribution (GPD). GPD includes as specific cases Normal, exponential and power law distributions, which underlie Brownian, Poisson-like and Lévy walks respectively. Whereas previous studies typically confronted a limited set of candidate models, GPD lets the most likely RW model emerge from the data. We illustrate the wide applicability of the method using GPS-tracked seabird foraging movements and fishing vessel movements tracked by Vessel Monitoring System (VMS), both collected in the Peruvian pelagic ecosystem. The two parameters from the fitted GPD, a scale and a shape parameter, provide a synoptic characterization of the observed movement in terms of characteristic scale and diffusive property. They reveal and quantify the variability, among species and individuals, of the spatial strategies selected by predators foraging on a common prey field. The GPD parameters constitute relevant metrics for (1) providing a synthetic and pattern-oriented description of movement, (2) using top predators as ecosystem indicators and (3) studying the variability of spatial behaviour among species or among individuals with different personalities.

  7. Coarse Grained Exponential Variational Autoencoders

    KAUST Repository

    Sun, Ke; Zhang, Xiangliang

    2017-01-01

    Variational autoencoders (VAE) often use Gaussian or category distribution to model the inference process. This puts a limit on variational learning because this simplified assumption does not match the true posterior distribution, which is usually

  8. Dynamic Diffusion Estimation in Exponential Family Models

    Czech Academy of Sciences Publication Activity Database

    Dedecius, Kamil; Sečkárová, Vladimíra

    2013-01-01

    Roč. 20, č. 11 (2013), s. 1114-1117 ISSN 1070-9908 R&D Projects: GA MŠk 7D12004; GA ČR GA13-13502S Keywords : diffusion estimation * distributed estimation * paremeter estimation Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.639, year: 2013 http://library.utia.cas.cz/separaty/2013/AS/dedecius-0396518.pdf

  9. Stretched Exponential relaxation in pure Se glass

    Science.gov (United States)

    Dash, S.; Ravindren, S.; Boolchand, P.

    A universal feature of glasses is the stretched exponential relaxation, f (t) = exp[ - t / τ ] β . The model of diffusion of excitations to randomly distributed traps in a glass by Phillips1 yields the stretched exponent β = d[d +2] where d, the effective dimensionality. We have measured the enthalpy of relaxation ΔHnr (tw) at Tg of Se glass in modulated DSC experiments as glasses age at 300K and find β = 0.43(2) for tw in the 0 model. The result is consistent with the growth of interchain structural correlations mediated by both long range (van der Waals forces) and short-range (covalent) interactions. A striking consequence of this relaxation is a narrowing of the glass transition width from 7.1°C to 1.4°C, and the ΔHnr term increasing from 0.21 cal/gm to 0.92 cal/gm. In bulk GexSe100-x glasses as x increases to 20%, the length of the polymeric Sen chains between the Ge-crosslinks decreases to n = 2. and the striking relaxation effects nearly vanish. J.C. Phillips, Rep.Prog.Phys. 59 , 1133 (1996). Supported by NSF Grant DMR 08-53957.

  10. Generalized entropy formalism and a new holographic dark energy model

    Science.gov (United States)

    Sayahian Jahromi, A.; Moosavi, S. A.; Moradpour, H.; Morais Graça, J. P.; Lobo, I. P.; Salako, I. G.; Jawad, A.

    2018-05-01

    Recently, the Rényi and Tsallis generalized entropies have extensively been used in order to study various cosmological and gravitational setups. Here, using a special type of generalized entropy, a generalization of both the Rényi and Tsallis entropy, together with holographic principle, we build a new model for holographic dark energy. Thereinafter, considering a flat FRW universe, filled by a pressureless component and the new obtained dark energy model, the evolution of cosmos has been investigated showing satisfactory results and behavior. In our model, the Hubble horizon plays the role of IR cutoff, and there is no mutual interaction between the cosmos components. Our results indicate that the generalized entropy formalism may open a new window to become more familiar with the nature of spacetime and its properties.

  11. A generalized model via random walks for information filtering

    Science.gov (United States)

    Ren, Zhuo-Ming; Kong, Yixiu; Shang, Ming-Sheng; Zhang, Yi-Cheng

    2016-08-01

    There could exist a simple general mechanism lurking beneath collaborative filtering and interdisciplinary physics approaches which have been successfully applied to online E-commerce platforms. Motivated by this idea, we propose a generalized model employing the dynamics of the random walk in the bipartite networks. Taking into account the degree information, the proposed generalized model could deduce the collaborative filtering, interdisciplinary physics approaches and even the enormous expansion of them. Furthermore, we analyze the generalized model with single and hybrid of degree information on the process of random walk in bipartite networks, and propose a possible strategy by using the hybrid degree information for different popular objects to toward promising precision of the recommendation.

  12. Geometry of q-Exponential Family of Probability Distributions

    Directory of Open Access Journals (Sweden)

    Shun-ichi Amari

    2011-06-01

    Full Text Available The Gibbs distribution of statistical physics is an exponential family of probability distributions, which has a mathematical basis of duality in the form of the Legendre transformation. Recent studies of complex systems have found lots of distributions obeying the power law rather than the standard Gibbs type distributions. The Tsallis q-entropy is a typical example capturing such phenomena. We treat the q-Gibbs distribution or the q-exponential family by generalizing the exponential function to the q-family of power functions, which is useful for studying various complex or non-standard physical phenomena. We give a new mathematical structure to the q-exponential family different from those previously given. It has a dually flat geometrical structure derived from the Legendre transformation and the conformal geometry is useful for understanding it. The q-version of the maximum entropy theorem is naturally induced from the q-Pythagorean theorem. We also show that the maximizer of the q-escort distribution is a Bayesian MAP (Maximum A posteriori Probability estimator.

  13. Novel criteria for exponential synchronization of inner time-varying complex networks with coupling delay

    International Nuclear Information System (INIS)

    Zhang Qun-Jiao; Zhao Jun-Chan

    2012-01-01

    This paper mainly investigates the exponential synchronization of an inner time-varying complex network with coupling delay. Firstly, the synchronization of complex networks is decoupled into the stability of the corresponding dynamical systems. Based on the Lyapunov function theory, some sufficient conditions to guarantee its stability with any given convergence rate are derived, thus the synchronization of the networks is achieved. Finally, the results are illustrated by a simple time-varying network model with a coupling delay. All involved numerical simulations verify the correctness of the theoretical analysis. (general)

  14. On the formation of exponential discs

    International Nuclear Information System (INIS)

    Yoshii, Yuzuru; Sommer-Larsen, Jesper

    1989-01-01

    Spiral galaxy discs are characterized by approximately exponential surface luminosity profiles. In this paper the evolutionary equations for a star-forming, viscous disc are solved analytically or semi-analytically. It is shown that approximately exponential stellar surface density profiles result if the viscous time-scale t ν is comparable to the star-formation time scale t * everywhere in the disc. The analytical solutions are used to illuminate further on the issue of why the above mechanism leads to resulting exponential stellar profiles under certain conditions. The sensitivity of the solution to variations of various parameters are investigated and show that the initial gas surface density distribution has to be fairly regular in order that final exponential stellar surface density profiles result. (author)

  15. Exponential attractors for a nonclassical diffusion equation

    Directory of Open Access Journals (Sweden)

    Qiaozhen Ma

    2009-01-01

    Full Text Available In this article, we prove the existence of exponential attractors for a nonclassical diffusion equation in ${H^{2}(Omega}cap{H}^{1}_{0}(Omega$ when the space dimension is less than 4.

  16. Merons in a generally covariant model with Gursey term

    International Nuclear Information System (INIS)

    Akdeniz, K.G.; Smailagic, A.

    1982-10-01

    We study meron solutions of the generally covariant and Weyl invariant fermionic model with Gursey term. We find that, due to the presence of this term, merons can exist even without the cosmological constant. This is a new feature compared to previously studied models. (author)

  17. Simulation modelling in agriculture: General considerations. | R.I. ...

    African Journals Online (AJOL)

    A computer simulation model is a detailed working hypothesis about a given system. The computer does all the necessary arithmetic when the hypothesis is invoked to predict the future behaviour of the simulated system under given conditions.A general pragmatic approach to model building is discussed; techniques are ...

  18. Response of an ocean general circulation model to wind and ...

    Indian Academy of Sciences (India)

    The stretched-coordinate ocean general circulation model has been designed to study the observed variability due to wind and thermodynamic forcings. The model domain extends from 60°N to 60°S and cyclically continuous in the longitudinal direction. The horizontal resolution is 5° × 5° and 9 discrete vertical levels.

  19. General Separations Area (GSA) Groundwater Flow Model Update: Hydrostratigraphic Data

    Energy Technology Data Exchange (ETDEWEB)

    Bagwell, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Bennett, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-02-21

    This document describes the assembly, selection, and interpretation of hydrostratigraphic data for input to an updated groundwater flow model for the General Separations Area (GSA; Figure 1) at the Department of Energy’s (DOE) Savannah River Site (SRS). This report is one of several discrete but interrelated tasks that support development of an updated groundwater model (Bagwell and Flach, 2016).

  20. Simplicial models for trace spaces II: General higher dimensional automata

    DEFF Research Database (Denmark)

    Raussen, Martin

    of directed paths with given end points in a pre-cubical complex as the nerve of a particular category. The paper generalizes the results from Raussen [19, 18] in which we had to assume that the HDA in question arises from a semaphore model. In particular, important for applications, it allows for models...

  1. Generalized algebra-valued models of set theory

    NARCIS (Netherlands)

    Löwe, B.; Tarafder, S.

    2015-01-01

    We generalize the construction of lattice-valued models of set theory due to Takeuti, Titani, Kozawa and Ozawa to a wider class of algebras and show that this yields a model of a paraconsistent logic that validates all axioms of the negation-free fragment of Zermelo-Fraenkel set theory.

  2. Efficient probabilistic model checking on general purpose graphic processors

    NARCIS (Netherlands)

    Bosnacki, D.; Edelkamp, S.; Sulewski, D.; Pasareanu, C.S.

    2009-01-01

    We present algorithms for parallel probabilistic model checking on general purpose graphic processing units (GPGPUs). For this purpose we exploit the fact that some of the basic algorithms for probabilistic model checking rely on matrix vector multiplication. Since this kind of linear algebraic

  3. Stability analysis for a general age-dependent vaccination model

    International Nuclear Information System (INIS)

    El Doma, M.

    1995-05-01

    An SIR epidemic model of a general age-dependent vaccination model is investigated when the fertility, mortality and removal rates depends on age. We give threshold criteria of the existence of equilibriums and perform stability analysis. Furthermore a critical vaccination coverage that is sufficient to eradicate the disease is determined. (author). 12 refs

  4. A General Polygon-based Deformable Model for Object Recognition

    DEFF Research Database (Denmark)

    Jensen, Rune Fisker; Carstensen, Jens Michael

    1999-01-01

    We propose a general scheme for object localization and recognition based on a deformable model. The model combines shape and image properties by warping a arbitrary prototype intensity template according to the deformation in shape. The shape deformations are constrained by a probabilistic distr...

  5. A General Microscopic Traffic Model Yielding Dissipative Shocks

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Caputo, Jean Guy; Christiansen, Peter Leth

    2018-01-01

    We consider a general microscopic traffic model with a delay. An algebraic traffic function reduces the equation to the Aw-Rascle microscopic model while a sigmoid function gives the standard “follow the leader”. For zero delay we prove that the homogeneous solution is globally stable...

  6. Central limit theorem and deformed exponentials

    International Nuclear Information System (INIS)

    Vignat, C; Plastino, A

    2007-01-01

    The central limit theorem (CLT) can be ranked among the most important ones in probability theory and statistics and plays an essential role in several basic and applied disciplines, notably in statistical thermodynamics. We show that there exists a natural extension of the CLT from exponentials to so-called deformed exponentials (also denoted as q-Gaussians). Our proposal applies exactly in the usual conditions in which the classical CLT is used. (fast track communication)

  7. Sampling from the normal and exponential distributions

    International Nuclear Information System (INIS)

    Chaplin, K.R.; Wills, C.A.

    1982-01-01

    Methods for generating random numbers from the normal and exponential distributions are described. These involve dividing each function into subregions, and for each of these developing a method of sampling usually based on an acceptance rejection technique. When sampling from the normal or exponential distribution, each subregion provides the required random value with probability equal to the ratio of its area to the total area. Procedures written in FORTRAN for the CYBER 175/CDC 6600 system are provided to implement the two algorithms

  8. Bayesian Subset Modeling for High-Dimensional Generalized Linear Models

    KAUST Repository

    Liang, Faming; Song, Qifan; Yu, Kai

    2013-01-01

    criterion model. The consistency of the resulting posterior is established under mild conditions. Further, a variable screening procedure is proposed based on the marginal inclusion probability, which shares the same properties of sure screening

  9. Infrared problems in two-dimensional generalized σ-models

    International Nuclear Information System (INIS)

    Curci, G.; Paffuti, G.

    1989-01-01

    We study the correlations of the energy-momentum tensor for classically conformally invariant generalized σ-models in the Wilson operator-product-expansion approach. We find that these correlations are, in general, infrared divergent. The absence of infrared divergences is obtained, as one can expect, for σ-models on a group manifold or for σ-models with a string-like interpretation. Moreover, the infrared divergences spoil the naive scaling arguments used by Zamolodchikov in the demonstration of the C-theorem. (orig.)

  10. Calibration and validation of a general infiltration model

    Science.gov (United States)

    Mishra, Surendra Kumar; Ranjan Kumar, Shashi; Singh, Vijay P.

    1999-08-01

    A general infiltration model proposed by Singh and Yu (1990) was calibrated and validated using a split sampling approach for 191 sets of infiltration data observed in the states of Minnesota and Georgia in the USA. Of the five model parameters, fc (the final infiltration rate), So (the available storage space) and exponent n were found to be more predictable than the other two parameters: m (exponent) and a (proportionality factor). A critical examination of the general model revealed that it is related to the Soil Conservation Service (1956) curve number (SCS-CN) method and its parameter So is equivalent to the potential maximum retention of the SCS-CN method and is, in turn, found to be a function of soil sorptivity and hydraulic conductivity. The general model was found to describe infiltration rate with time varying curve number.

  11. Partially Observed Mixtures of IRT Models: An Extension of the Generalized Partial-Credit Model

    Science.gov (United States)

    Von Davier, Matthias; Yamamoto, Kentaro

    2004-01-01

    The generalized partial-credit model (GPCM) is used frequently in educational testing and in large-scale assessments for analyzing polytomous data. Special cases of the generalized partial-credit model are the partial-credit model--or Rasch model for ordinal data--and the two parameter logistic (2PL) model. This article extends the GPCM to the…

  12. Is the shape of the decline in risk following quitting smoking similar for squamous cell carcinoma and adenocarcinoma of the lung? A quantitative review using the negative exponential model.

    Science.gov (United States)

    Fry, John S; Lee, Peter N; Forey, Barbara A; Coombs, Katharine J

    2015-06-01

    One possible contributor to the reported rise in the ratio of adenocarcinoma to squamous cell carcinoma of the lung may be differences in the pattern of decline in risk following quitting for the two lung cancer types. Earlier, using data from 85 studies comparing overall lung cancer risks in current smokers, quitters (by time quit) and never smokers, we fitted the negative exponential model, deriving an estimate of 9.93years for the half-life - the time when the excess risk for quitters compared to never smokers becomes half that for continuing smokers. Here we applied the same techniques to data from 16 studies providing RRs specific for lung cancer type. From the 13 studies where the half-life was estimable for each type, we derived estimates of 11.68 (95% CI 10.22-13.34) for squamous cell carcinoma and 14.45 (11.92-17.52) for adenocarcinoma. The ratio of the half-lives was estimated as 1.32 (95% CI 1.20-1.46, p<0.001). The slower decline in quitters for adenocarcinoma, evident in subgroups by sex, age and other factors, may be one of the factors contributing to the reported rise in the ratio of adenocarcinoma to squamous cell carcinoma. Others include changes in the diagnosis and classification of lung cancer. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Generalized Tavis-Cummings models and quantum networks

    Science.gov (United States)

    Gorokhov, A. V.

    2018-04-01

    The properties of quantum networks based on generalized Tavis-Cummings models are theoretically investigated. We have calculated the information transfer success rate from one node to another in a simple model of a quantum network realized with two-level atoms placed in the cavities and interacting with an external laser field and cavity photons. The method of dynamical group of the Hamiltonian and technique of corresponding coherent states were used for investigation of the temporal dynamics of the two nodes model.

  14. Estimating and Forecasting Generalized Fractional Long Memory Stochastic Volatility Models

    Directory of Open Access Journals (Sweden)

    Shelton Peiris

    2017-12-01

    Full Text Available This paper considers a flexible class of time series models generated by Gegenbauer polynomials incorporating the long memory in stochastic volatility (SV components in order to develop the General Long Memory SV (GLMSV model. We examine the corresponding statistical properties of this model, discuss the spectral likelihood estimation and investigate the finite sample properties via Monte Carlo experiments. We provide empirical evidence by applying the GLMSV model to three exchange rate return series and conjecture that the results of out-of-sample forecasts adequately confirm the use of GLMSV model in certain financial applications.

  15. Generalized heat-transport equations: parabolic and hyperbolic models

    Science.gov (United States)

    Rogolino, Patrizia; Kovács, Robert; Ván, Peter; Cimmelli, Vito Antonio

    2018-03-01

    We derive two different generalized heat-transport equations: the most general one, of the first order in time and second order in space, encompasses some well-known heat equations and describes the hyperbolic regime in the absence of nonlocal effects. Another, less general, of the second order in time and fourth order in space, is able to describe hyperbolic heat conduction also in the presence of nonlocal effects. We investigate the thermodynamic compatibility of both models by applying some generalizations of the classical Liu and Coleman-Noll procedures. In both cases, constitutive equations for the entropy and for the entropy flux are obtained. For the second model, we consider a heat-transport equation which includes nonlocal terms and study the resulting set of balance laws, proving that the corresponding thermal perturbations propagate with finite speed.

  16. Stretched exponential relaxation in molecular and electronic glasses

    Science.gov (United States)

    Phillips, J. C.

    1996-09-01

    Stretched exponential relaxation, 0034-4885/59/9/003/img1, fits many relaxation processes in disordered and quenched electronic and molecular systems, but it is widely believed that this function has no microscopic basis, especially in the case of molecular relaxation. For electronic relaxation the appearance of the stretched exponential is often described in the context of dispersive transport, where 0034-4885/59/9/003/img2 is treated as an adjustable parameter, but in almost all cases it is generally assumed that no microscopic meaning can be assigned to 0034-4885/59/9/003/img3 even at 0034-4885/59/9/003/img4, a glass transition temperature. We show that for molecular relaxation 0034-4885/59/9/003/img5 can be understood, providing that one separates extrinsic and intrinsic effects, and that the intrinsic effects are dominated by two magic numbers, 0034-4885/59/9/003/img6 for short-range forces, and 0034-4885/59/9/003/img7 for long-range Coulomb forces, as originally observed by Kohlrausch for the decay of residual charge on a Leyden jar. Our mathematical model treats relaxation kinetics using the Lifshitz - Kac - Luttinger diffusion to traps depletion model in a configuration space of effective dimensionality, the latter being determined using axiomatic set theory and Phillips - Thorpe constraint theory. The experiments discussed include ns neutron scattering experiments, particularly those based on neutron spin echoes which measure S( Q,t) directly, and the traditional linear response measurements which span the range from 0034-4885/59/9/003/img8 to s, as collected and analysed phenomenologically by Angell, Ngai, Böhmer and others. The electronic materials discussed include a-Si:H, granular 0034-4885/59/9/003/img9, semiconductor nanocrystallites, charge density waves in 0034-4885/59/9/003/img10, spin glasses, and vortex glasses in high-temperature semiconductors. The molecular materials discussed include polymers, network glasses, electrolytes and alcohols, Van

  17. Stretched exponential relaxation in molecular and electronic glasses

    International Nuclear Information System (INIS)

    Phillips, J.C.

    1996-01-01

    Stretched exponential relaxation, exp[-(t/τ) β ], fits many relaxation processes in disordered and quenched electronic and molecular systems, but it is widely believed that this function has no microscopic basis, especially in the case of molecular relaxation. For electronic relaxation the appearance of the stretched exponential is often described in the context of dispersive transport, where β is treated as an adjustable parameter, but in almost all cases it is generally assumed that no microscopic meaning can be assigned to 0 g , a glass transition temperature. We show that for molecular relaxation β(T g ) can be understood, providing that one separates extrinsic and intrinsic effects, and that the intrinsic effects are dominated by two magic numbers, β SR =3/5 for short-range forces, and β K =3/7 for long-range Coulomb forces, as originally observed by Kohlrausch for the decay of residual charge on a Leyden jar. Our mathematical model treats relaxation kinetics using the Lifshitz-Kac-Luttinger diffusion to traps depletion model in a configuration space of effective dimensionality, the latter being determined using axiomatic set theory and Phillips-Thorpe constraint theory. The experiments discussed include ns neutron scattering experiments, particularly those based on neutron spin echoes which measure S(Q, t) directly, and the traditional linear response measurements which span the range from μs to s, as collected and analysed phenomenologically by Angell, Ngai, Boehmer and others. The electronic materials discussed include a-Si:H, granular C 60 , semiconductor nanocrystallites, charge density waves in TaS 3 , spin glasses, and vortex glasses in high-temperature semiconductors. The molecular materials discussed include polymers, network glasses, electrolytes and alcohols, Van der Waals supercooled liquids and glasses, orientational glasses, water, fused salts, and heme proteins. In the intrinsic cases the theory of β(T g ) is often accurate to 2%, which

  18. Generalized semi-Markovian dividend discount model: risk and return

    OpenAIRE

    D'Amico, Guglielmo

    2016-01-01

    The article presents a general discrete time dividend valuation model when the dividend growth rate is a general continuous variable. The main assumption is that the dividend growth rate follows a discrete time semi-Markov chain with measurable space. The paper furnishes sufficient conditions that assure finiteness of fundamental prices and risks and new equations that describe the first and second order price-dividend ratios. Approximation methods to solve equations are provided and some new...

  19. Practical likelihood analysis for spatial generalized linear mixed models

    DEFF Research Database (Denmark)

    Bonat, W. H.; Ribeiro, Paulo Justiniano

    2016-01-01

    We investigate an algorithm for maximum likelihood estimation of spatial generalized linear mixed models based on the Laplace approximation. We compare our algorithm with a set of alternative approaches for two datasets from the literature. The Rhizoctonia root rot and the Rongelap are......, respectively, examples of binomial and count datasets modeled by spatial generalized linear mixed models. Our results show that the Laplace approximation provides similar estimates to Markov Chain Monte Carlo likelihood, Monte Carlo expectation maximization, and modified Laplace approximation. Some advantages...... of Laplace approximation include the computation of the maximized log-likelihood value, which can be used for model selection and tests, and the possibility to obtain realistic confidence intervals for model parameters based on profile likelihoods. The Laplace approximation also avoids the tuning...

  20. Modeling the brain morphology distribution in the general aging population

    Science.gov (United States)

    Huizinga, W.; Poot, D. H. J.; Roshchupkin, G.; Bron, E. E.; Ikram, M. A.; Vernooij, M. W.; Rueckert, D.; Niessen, W. J.; Klein, S.

    2016-03-01

    Both normal aging and neurodegenerative diseases such as Alzheimer's disease cause morphological changes of the brain. To better distinguish between normal and abnormal cases, it is necessary to model changes in brain morphology owing to normal aging. To this end, we developed a method for analyzing and visualizing these changes for the entire brain morphology distribution in the general aging population. The method is applied to 1000 subjects from a large population imaging study in the elderly, from which 900 were used to train the model and 100 were used for testing. The results of the 100 test subjects show that the model generalizes to subjects outside the model population. Smooth percentile curves showing the brain morphology changes as a function of age and spatiotemporal atlases derived from the model population are publicly available via an interactive web application at agingbrain.bigr.nl.