WorldWideScience

Sample records for general corrosion rates

  1. A review on pipeline corrosion, in-line inspection (ILI), and corrosion growth rate models

    International Nuclear Information System (INIS)

    Vanaei, H.R.; Eslami, A.; Egbewande, A.

    2017-01-01

    Pipelines are the very important energy transmission systems. Over time, pipelines can corrode. While corrosion could be detected by in-line inspection (ILI) tools, corrosion growth rate prediction in pipelines is usually done through corrosion rate models. For pipeline integrity management and planning selecting the proper corrosion ILI tool and also corrosion growth rate model is important and can lead to significant savings and safer pipe operation. In this paper common forms of pipeline corrosion, state of the art ILI tools, and also corrosion growth rate models are reviewed. The common forms of pipeline corrosion introduced in this paper are Uniform/General Corrosion, Pitting Corrosion, Cavitation and Erosion Corrosion, Stray Current Corrosion, Micro-Bacterial Influenced Corrosion (MIC). The ILI corrosion detection tools assessed in this study are Magnetic Flux Leakage (MFL), Circumferential MFL, Tri-axial MFL, and Ultrasonic Wall Measurement (UT). The corrosion growth rate models considered in this study are single-value corrosion rate model, linear corrosion growth rate model, non-linear corrosion growth rate model, Monte-Carlo method, Markov model, TD-GEVD, TI-GEVD model, Gamma Process, and BMWD model. Strengths and limitations of ILI detection tools, and also corrosion predictive models with some practical examples are discussed. This paper could be useful for those whom are supporting pipeline integrity management and planning. - Highlights: • Different forms of pipeline corrosion are explained. • Common In-Line Inspection (ILI) tools and corrosion growth rate models are introduced. • Strength and limitations of corrosion growth rate models/ILI tools are discussed. • For pipeline integrity management programs using more than one corrosion growth rate model/ILI tool is suggested.

  2. General Corrosion and Localized Corrosion of Waste Package Outer Barrier

    Energy Technology Data Exchange (ETDEWEB)

    K.G. Mon

    2004-10-01

    The waste package design for the License Application is a double-wall waste package underneath a protective drip shield (BSC 2004 [DIRS 168489]; BSC 2004 [DIRS 169480]). The purpose and scope of this model report is to document models for general and localized corrosion of the waste package outer barrier (WPOB) to be used in evaluating waste package performance. The WPOB is constructed of Alloy 22 (UNS N06022), a highly corrosion-resistant nickel-based alloy. The inner vessel of the waste package is constructed of Stainless Steel Type 316 (UNS S31600). Before it fails, the Alloy 22 WPOB protects the Stainless Steel Type 316 inner vessel from exposure to the external environment and any significant degradation. The Stainless Steel Type 316 inner vessel provides structural stability to the thinner Alloy 22 WPOB. Although the waste package inner vessel would also provide some performance for waste containment and potentially decrease the rate of radionuclide transport after WPOB breach before it fails, the potential performance of the inner vessel is far less than that of the more corrosion-resistant Alloy 22 WPOB. For this reason, the corrosion performance of the waste package inner vessel is conservatively ignored in this report and the total system performance assessment for the license application (TSPA-LA). Treatment of seismic and igneous events and their consequences on waste package outer barrier performance are not specifically discussed in this report, although the general and localized corrosion models developed in this report are suitable for use in these scenarios. The localized corrosion processes considered in this report are pitting corrosion and crevice corrosion. Stress corrosion cracking is discussed in ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]).

  3. General corrosion, irradiation-corrosion, and environmental-mechanical evaluation of nuclear-waste-package structural-barrier materials. Progress report

    International Nuclear Information System (INIS)

    Westerman, R.E.; Pitman, S.G.; Nelson, J.L.

    1982-09-01

    Pacific Northwest Laboratory is studying the general corrosion, irradiation-corrosion, and environmentally enhanced crack propagation of five candidate materials in high-temperature aqueous environments simulating those expected in basalt and tuff repositories. The materials include three cast ferrous materials (ductile cast iron and two low-alloy Cr-Mo cast steels) and two titanium alloys, titanium Grade 2 (commercial purity) and Grade 12 (a Ti-Ni-Mo alloy). The general corrosion results are being obtained by autoclave exposure of specimens to slowly replenished simulated ground water flowing upward through a bed of the appropriate crushed rock (basalt or tuff), which is maintained at the desired test temperature (usually 250 0 C). In addition, tests are being performed in deionized water. Metal penetration rates of iron-base alloys are being derived by stripping off the corrosion product film and weighing the specimen after the appropriate exposure time. The corrosion of titanium alloy specimens is being determined by weight gain methods. The irradiation-corrosion studies are similar to the general corrosion tests, except that the specimen-bearing autoclaves are held in a 60 Co gamma radiation field at dose rates up to 2 x 10 6 rad/h. For evaluating the resistance of the candidate materials to environmentally enhanced crack propagation, three methods are being used: U-bend and fracture toughness specimens exposed in autoclaves; slow strain rate studies in repository-relevant environments to 300 0 C; and fatigue crack growth rate studies at ambient pressure and 90 0 C. The preliminary data suggest a 1-in. corrosion allowance for iron-base barrier elements intended for 1000-yr service in basalt or tuff repositories. No evidence has yet been found that titanium Grade 2 or Grade 12 is susceptible to environmentally induced crack propagation or, by extension, to stress corrosion cracking

  4. SITE-94. CAMEO: A model of mass-transport limited general corrosion of copper canisters

    International Nuclear Information System (INIS)

    Worgan, K.J.; Apted, M.J.

    1996-12-01

    This report describes the technical basis for the CAMEO code, which models the general, uniform corrosion of a copper canister either by transport of corrodants to the canister, or by transport of corrosion products away from the canister. According to the current Swedish concept for final disposal of spent nuclear fuels, extremely long containment times are achieved by thick (60-100 mm) copper canisters. Each canister is surrounded by a compacted bentonite buffer, located in a saturated, crystalline rock at a depth of around 500 m below ground level. Three diffusive transport-limited cases are identified for general, uniform corrosion of copper: General corrosion rate-limited by diffusive mass-transport of sulphide to the canister surface under reducing conditions; General corrosion rate-limited by diffusive mass-transport of oxygen to the canister surface under mildly oxidizing conditions; General corrosion rate-limited by diffusive mass-transport of copper chloride away from the canister surface under highly oxidizing conditions. The CAMEO code includes general corrosion models for each of the above three processes. CAMEO is based on the well-tested CALIBRE code previously developed as a finite-difference, mass-transfer analysis code for the SKI to evaluate long-term radionuclide release and transport in the near-field. A series of scoping calculations for the general, uniform corrosion of a reference copper canister are presented

  5. Effects of Alloyed Carbon on the General Corrosion and the Pitting Corrosion Behavior of FeCrMnN Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Heon-Young; Lee, Tae-Ho; Kim, Sung-Joon [Korea Institute of Materials Science, Changwon (Korea, Republic of)

    2011-10-15

    The effects of alloyed carbon on the pitting corrosion, the general corrosion, and the passivity behavior of Fe{sub 1}8Cr{sub 1}0Mn{sub 0}.4Nx{sub C} (x=0 ⁓ 0.38 wt%) alloys were investigated by various electrochemical methods and XPS analysis. The alloyed carbon increased the general corrosion resistance of the FeCrMnN matrix. Carbon enhanced the corrosion potential, reduced the metal dissolution rate, and accelerated the hydrogen evolution reaction rate in various acidic solutions. In addition, carbon promoted the pitting corrosion resistance of the matrix in a chloride solution. The alloyed carbon in the matrix increased the chromium content in the passive film, and thus the passive film became more protective.

  6. General Corrosion and Localized Corrosion of Waste Package Outer Barrier

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J.C.; McCright, R.D.

    2000-01-28

    Alloy 22 is an extremely Corrosion Resistant Material, with a very stable passive film. Based upon exposures in the LTCTF, the GC rates of Alloy 22 are typically below the level of detection, with four outliers having reported rates up to 0.75 #mu#m per year. In any event, over the 10,000 year life of the repository, GC of the Alloy 22 (assumed to be 2 cm thick) should not be life limiting. Because measured corrosion potentials are far below threshold potentials, localized breakdown of the passive film is unlikely under plausible conditions, even in SSW at 120 deg C. The pH in ambient-temperature crevices formed from Alloy 22 have been determined experimentally, with only modest lowering of the crevice pH observed under plausible conditions. Extreme lowering of the crevice pH was only observed under situations where the applied potential at the crevice mouth was sufficient to result in catastrophic breakdown of the passive film above the threshold potential in non-buffered conditions not characteristic of the Yucca Mountain environment. In cases where naturally ocurring buffers are present in the crevice solution, little or no lowering of the pH was observed, even with significant applied potential. With exposures of twelve months, no evidence of crevice corrosion has been observed in SDW, SCW and SAW at temperatures up to 90 deg C. An abstracted model has been presented, with parameters determined experimentally, that should enable performance assessment to account for the general and localized corrosion of this material. A feature of this model is the use of the materials specification to limit the range of corrosion and threshold potentials, thereby making sure that substandard materials prone to localized attack are avoided. Model validation will be covered in part by a companion SMR on abstraction of this model.

  7. Development of Copper Corrosion Products and Relation between Surface Appearance and Corrosion Rate

    International Nuclear Information System (INIS)

    Lan, Tran Thi Ngoc; Binh, Nguyen Thi Thanh; Tru, Nguyen Nhi; Yoshino, Tsujino; Yasuki, Maeda

    2008-01-01

    Copper was exposed unsheltered and sheltered in four humid tropical sites, representing urban, urban-industrial, urban-marine and rural environments. The corrosion rates and the sequence of corrosion product formation are presented and discussed in relation with climatic and atmospheric pollution parameters. Chemical compositions of corrosion products were found to depend on environments and duration of exposure. In all environments, cuprite was the predominating corrosion product that formed first and continuously increased during the exposure. Among the sulphur-containing corrosion products, posnjakite and brochantite were more frequently found and the first formed earlier. Nantokite was the most common chlorine-containing products for most cases, except the high-chloride environment, where atacamite was detected instead. The corrosion rate of copper was well indicated by the colour of patina. The red-purple colour corresponded to the high corrosion rate and the greenish grey colour corresponded to the low corrosion rate. Corrosion rate of sheltered copper in urban-marine environment increased with the exposure time

  8. General corrosion of metallic materials in boric acid environments

    International Nuclear Information System (INIS)

    Gras, J.M.

    1994-05-01

    Certain low-alloy steel components in PWR primary circuit were corroded by leaking water containing boric acid. A number of studies have been performed by manufacturers in the USA and by EDF in France to determine the rate of general corrosion for low-alloy steels in media containing varying concentrations of boric acid. The first part of this paper summarizes the studies performed and indicates how far work has advanced to date in establishing the resistance of stainless steels to general corrosion in concentrated boric acid solutions. The second part of the paper discusses the mechanism of corrosion and proposes a model. Carbon steels and low-alloy steels - carbon steels and low-alloy steels in deaerated diluted boric acid solutions (pH > 4) corrode very slowly ( -1 . (author). 31 refs., 12 figs., 13 tabs

  9. Corrosion Rate Monitoring in District Heating Systems

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Nielsen, Lars Vendelbo; Andersen, A.

    2005-01-01

    be applicable, and if on-line monitoring could improve the quality control. Water quality monitoring was applied as well as corrosion rate monitoring with linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), electrical resistance (ER) technique, mass loss and a crevice corrosion......Quality control in district heating systems to keep uniform corrosion rates low and localized corrosion minimal is based on water quality control. Side-stream units equipped with carbon steel probes for online monitoring were mounted in district heating plants to investigate which techniques would...... cell for localized corrosion risk estimation. Important variations in corrosion rate due to changes in make-up water quality were detected with the continuous monitoring provided by ER and crevice cell, while LPR gave unreliable corrosion rates. The acquisition time of two-three days for EIS...

  10. 49 CFR 192.475 - Internal corrosion control: General.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Internal corrosion control: General. 192.475... Control § 192.475 Internal corrosion control: General. (a) Corrosive gas may not be transported by... taken to minimize internal corrosion. (b) Whenever any pipe is removed from a pipeline for any reason...

  11. Monitoring corrosion rates and localised corrosion in low conductivity water

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2006-01-01

    Monitoring of low corrosion rates and localised corrosion in a media with low conductivity is a challenge. In municipal district heating, quality control may be improved by implementing on-line corrosion monitoring if a suitable technique can be identified to measure both uniform and localised...... corrosion. Electrochemical techniques (LPR, EIS, crevice corrosion current) as well as direct measurement techniques (high-sensitive electrical resistance, weight loss) have been applied in operating plants. Changes in the corrosion processes are best monitored in non-aggressive, low conductivity media...

  12. Experiments and models of general corrosion and flow-assisted corrosion of materials in nuclear reactor environments

    Science.gov (United States)

    Cook, William Gordon

    Corrosion and material degradation issues are of concern to all industries. However, the nuclear power industry must conform to more stringent construction, fabrication and operational guidelines due to the perceived additional risk of operating with radioactive components. Thus corrosion and material integrity are of considerable concern for the operators of nuclear power plants and the bodies that govern their operations. In order to keep corrosion low and maintain adequate material integrity, knowledge of the processes that govern the material's breakdown and failure in a given environment are essential. The work presented here details the current understanding of the general corrosion of stainless steel and carbon steel in nuclear reactor primary heat transport systems (PHTS) and examines the mechanisms and possible mitigation techniques for flow-assisted corrosion (FAC) in CANDU outlet feeder pipes. Mechanistic models have been developed based on first principles and a 'solution-pores' mechanism of metal corrosion. The models predict corrosion rates and material transport in the PHTS of a pressurized water reactor (PWR) and the influence of electrochemistry on the corrosion and flow-assisted corrosion of carbon steel in the CANDU outlet feeders. In-situ probes, based on an electrical resistance technique, were developed to measure the real-time corrosion rate of reactor materials in high-temperature water. The probes were used to evaluate the effects of coolant pH and flow on FAC of carbon steel as well as demonstrate of the use of titanium dioxide as a coolant additive to mitigated FAC in CANDU outlet feeder pipes.

  13. Corrosion rate of steel in concrete - Evaluation of confinement techniques for on-site corrosion rate

    DEFF Research Database (Denmark)

    Nygaard, Peter Vagn; Geiker, Mette Rica; Elsener, Bernhard

    2009-01-01

    Earlier on-site investigations and laboratory studies have shown that varying corrosion rates are obtained when different commercially available instruments are used. The different confinement techniques, rather than the different electrochemical techniques used in the instruments, are considered...... to be the main reason for the discrepancies. This paper presents a method for the quantitative assessment of confinement techniques based on monitoring the operation of the corrosion rate instrument and the current distribution between the electrode assembly on the concrete surface and a segmented reinforcement...... bar embedded in the concrete. The applicability of the method was demonstrated on two commercially available corrosion rate instruments based on different confinement techniques. The method provided an explanation of the differences in performance of the two instruments. Correlated measurements...

  14. The Corrosion Inhibition Characteristics of Sodium Nitrite Using an On-line Corrosion Rate Measurement System

    International Nuclear Information System (INIS)

    Park, Mal-Yong; Kang, Dae-Jin; Moon, Jeon-Soo

    2015-01-01

    An on-line corrosion rate measurement system was developed using a personal computer, a data acquisition board and program, and a 2-electrode corrosion probe. Reliability of the developed system was confirmed with through comparison test. With this system, the effect of sodium nitrite (NaNO 2 ) as a corrosion inhibitor were studied on iron and aluminum brass that were immersed in sodium chloride (NaCl) solution. Corrosion rate was measured based on the linear polarization resistance method. The corrosion rates of aluminum brass and iron in 1% NaCl solutions were measured to be 0.290 mm per year (mmpy) and 0.2134 mmpy, respectively. With the addition of 200 ppm of NO 2 - , the corrosion rates decreased to 0.0470 mmpy and 0.0254 mmpy. The addition of NO 2 - caused a decrease in corrosion rates of both aluminum brass and iron, yet the NO 2 - acted as a more effective corrosion inhibitor for iron. than aluminum brass

  15. Aqueous Corrosion Rates for Waste Package Materials

    Energy Technology Data Exchange (ETDEWEB)

    S. Arthur

    2004-10-08

    The purpose of this analysis, as directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), is to compile applicable corrosion data from the literature (journal articles, engineering documents, materials handbooks, or standards, and national laboratory reports), evaluate the quality of these data, and use these to perform statistical analyses and distributions for aqueous corrosion rates of waste package materials. The purpose of this report is not to describe the performance of engineered barriers for the TSPA-LA. Instead, the analysis provides simple statistics on aqueous corrosion rates of steels and alloys. These rates are limited by various aqueous parameters such as temperature (up to 100 C), water type (i.e., fresh versus saline), and pH. Corrosion data of materials at pH extremes (below 4 and above 9) are not included in this analysis, as materials commonly display different corrosion behaviors under these conditions. The exception is highly corrosion-resistant materials (Inconel Alloys) for which rate data from corrosion tests at a pH of approximately 3 were included. The waste package materials investigated are those from the long and short 5-DHLW waste packages, 2-MCO/2-DHLW waste package, and the 21-PWR commercial waste package. This analysis also contains rate data for some of the materials present inside the fuel canisters for the following fuel types: U-Mo (Fermi U-10%Mo), MOX (FFTF), Thorium Carbide and Th/U Carbide (Fort Saint Vrain [FSVR]), Th/U Oxide (Shippingport LWBR), U-metal (N Reactor), Intact U-Oxide (Shippingport PWR, Commercial), aluminum-based, and U-Zr-H (TRIGA). Analysis of corrosion rates for Alloy 22, spent nuclear fuel, defense high level waste (DHLW) glass, and Titanium Grade 7 can be found in other analysis or model reports.

  16. Aqueous Corrosion Rates for Waste Package Materials

    International Nuclear Information System (INIS)

    Arthur, S.

    2004-01-01

    The purpose of this analysis, as directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), is to compile applicable corrosion data from the literature (journal articles, engineering documents, materials handbooks, or standards, and national laboratory reports), evaluate the quality of these data, and use these to perform statistical analyses and distributions for aqueous corrosion rates of waste package materials. The purpose of this report is not to describe the performance of engineered barriers for the TSPA-LA. Instead, the analysis provides simple statistics on aqueous corrosion rates of steels and alloys. These rates are limited by various aqueous parameters such as temperature (up to 100 C), water type (i.e., fresh versus saline), and pH. Corrosion data of materials at pH extremes (below 4 and above 9) are not included in this analysis, as materials commonly display different corrosion behaviors under these conditions. The exception is highly corrosion-resistant materials (Inconel Alloys) for which rate data from corrosion tests at a pH of approximately 3 were included. The waste package materials investigated are those from the long and short 5-DHLW waste packages, 2-MCO/2-DHLW waste package, and the 21-PWR commercial waste package. This analysis also contains rate data for some of the materials present inside the fuel canisters for the following fuel types: U-Mo (Fermi U-10%Mo), MOX (FFTF), Thorium Carbide and Th/U Carbide (Fort Saint Vrain [FSVR]), Th/U Oxide (Shippingport LWBR), U-metal (N Reactor), Intact U-Oxide (Shippingport PWR, Commercial), aluminum-based, and U-Zr-H (TRIGA). Analysis of corrosion rates for Alloy 22, spent nuclear fuel, defense high level waste (DHLW) glass, and Titanium Grade 7 can be found in other analysis or model reports

  17. Influence of increasing phosphate/silikate contents on the pitting and general corrosion of galvanized steel tubing and the corrosion of copper in warm water mixed installation systems

    International Nuclear Information System (INIS)

    Ehreke, J.; Stichel, W.

    1989-01-01

    In hot tap water (65 0 C) the influence of a mixture of phosphate/silicate inhibitor on the general, the pitting and the galvanic corrosion of galvanized steel tubes and the general corrosion of copper in mixed installations of both metals was investigated. Increasing concentration of inhibitors descreases the general corrosion rate of galvanized steel and copper. A worth mentioning reduction of pitting and galvanic corrosion of steel could be reached only with high concentrations of 5 mg/l P 2 O 5 and 30 mg/l SiO 2 . Galvannealed tubes are much more sensitive to pitting corrosion than galvanized ones. Referring to this they could not be inhibited. (orig.) [de

  18. Volatile amines treatment: Corrosion rates and Atucha I nuclear power plant experience

    International Nuclear Information System (INIS)

    Iglesias, Alberto M.; Jimenez Rebagliati, Raul; Raffo Calderon, Maria C.; Manzi, Ricardo

    2000-01-01

    Steam generators water treatment with volatile amines in place of ammonia is usual today. This option seems an acceptable alternative to the generalize use of ammonia-sodium phosphate and has advantages when copper alloys are present. There are several amines that can work as corrosion inhibitor but the most useful for plant applications are: morpholine, ethanolamine and cyclohexylamine. In this work, are present the obtained results of corrosion rates measurements by electrochemical methods. The hydrothermal conditions of our experiences were similar to that of the Atucha I nuclear power plant (CNA I). pH, conductivity and dissolved oxygen measures were correlated with corrosion rates of the CNA I materials as carbon steel and admiralty brass. The faradaic impedance spectroscopy techniques allows a more detailed interpretation of corrosion rates process. Morpholine and ammonia behavior can be evaluated under power plant operations conditions with the accumulated experience of CNA I. Results are present throughout material release and his effects over heat transfer parameters. (author)

  19. The Effects of Corrosive Chemicals on Corrosion Rate of Steel Reinforcement Bars: II. Swamp Sludges

    Directory of Open Access Journals (Sweden)

    Henki Ashadi

    2010-10-01

    Full Text Available A polluted environment will influence the building age. The objective of this research was to find out the influence of corrosive chemicals within the sludge swamp area with the corrosion rate of steel concrete. Corrosion in steel concrete usually occur in acid area which contain of SO42-, Cl- and NO3-. The research treatment used by emerging ST 37 andST 60 within 60 days in 'polluted' sludge swamp area. Three variation of 'polluted' swamp sludge were made by increasing the concentration a corrosive unsure up to 1X, 5X and 10X. The corrosion rate measured by using an Immersion Method. The result of Immersion test showed that sulphate had a greatest influence to corrosion rate of ST 37 and ST 60 and followed by chloride and nitrate. Corrosion rate value for ST 37 was 17.58 mpy and for ST 60 was 12.47 mpy.

  20. Exposure testing of fasteners in preservative treated wood: Gravimetric corrosion rates and corrosion product analyses

    Energy Technology Data Exchange (ETDEWEB)

    Zelinka, Samuel L., E-mail: szelinka@fs.fed.u [USDA Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53726 (United States); Sichel, Rebecca J. [College of Engineering, University of Wisconsin, Madison, WI 53706 (United States); Stone, Donald S. [Department of Materials Science and Engineering, College of Engineering, University of Wisconsin, Madison, WI 53706 (United States)

    2010-12-15

    Research highlights: {yields} The composition of the corrosion products was similar for the nail head and shank. {yields} Reduced copper was not detected on any of the fasteners. {yields} Measured corrosion rates were between 1 and 35 {mu}m year{sup -1}. - Abstract: Research was conducted to determine the corrosion rates of metals in preservative treated wood and also understand the mechanism of metal corrosion in treated wood. Steel and hot-dip galvanized steel fasteners were embedded in wood treated with one of six preservative treatments and exposed to 27 {sup o}C at 100% relative humidity for 1 year. The corrosion rate was determined gravimetrically and the corrosion products were analyzed with scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. Although the accepted mechanism of corrosion in treated wood involves the reduction of cupric ions from the wood preservative, no reduced copper was found on the corrosion surfaces. The galvanized corrosion products contained sulfates, whereas the steel corrosion products consisted of iron oxides and hydroxides. The possible implications and limitations of this research on fasteners used in building applications are discussed.

  1. General Corrosion and Localized Corrosion of the Drip Shield

    Energy Technology Data Exchange (ETDEWEB)

    F. Hua

    2004-09-16

    The repository design includes a drip shield (BSC 2004 [DIRS 168489]) that provides protection for the waste package both as a barrier to seepage water contact and a physical barrier to potential rockfall. The purpose of the process-level models developed in this report is to model dry oxidation, general corrosion, and localized corrosion of the drip shield plate material, which is made of Ti Grade 7. This document is prepared according to ''Technical Work Plan For: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The models developed in this report are used by the waste package degradation analyses for TSPA-LA and serve as a basis to determine the performance of the drip shield. The drip shield may suffer from other forms of failure such as the hydrogen induced cracking (HIC) or stress corrosion cracking (SCC), or both. Stress corrosion cracking of the drip shield material is discussed in ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]). Hydrogen induced cracking of the drip shield material is discussed in ''Hydrogen Induced Cracking of Drip Shield'' (BSC 2004 [DIRS 169847]).

  2. General Corrosion and Localized Corrosion of the Drip Shield

    International Nuclear Information System (INIS)

    F. Hua

    2004-01-01

    The repository design includes a drip shield (BSC 2004 [DIRS 168489]) that provides protection for the waste package both as a barrier to seepage water contact and a physical barrier to potential rockfall. The purpose of the process-level models developed in this report is to model dry oxidation, general corrosion, and localized corrosion of the drip shield plate material, which is made of Ti Grade 7. This document is prepared according to ''Technical Work Plan For: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The models developed in this report are used by the waste package degradation analyses for TSPA-LA and serve as a basis to determine the performance of the drip shield. The drip shield may suffer from other forms of failure such as the hydrogen induced cracking (HIC) or stress corrosion cracking (SCC), or both. Stress corrosion cracking of the drip shield material is discussed in ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]). Hydrogen induced cracking of the drip shield material is discussed in ''Hydrogen Induced Cracking of Drip Shield'' (BSC 2004 [DIRS 169847])

  3. Humid-air and aqueous corrosion models for corrosion-allowance barrier material

    International Nuclear Information System (INIS)

    Lee, J.H.; Atkins, J.E.; Andrews, R.W.

    1995-01-01

    Humid-air and aqueous general and pitting corrosion models (including their uncertainties) for the carbon steel outer containment barrier were developed using the corrosion data from literature for a suite of cast irons and carbon steels which have similar corrosion behaviors to the outer barrier material. The corrosion data include the potential effects of various chemical species present in the testing environments. The atmospheric corrosion data also embed any effects of cyclic wetting and drying and salts that may form on the corroding specimen surface. The humid-air and aqueous general corrosion models are consistent in that the predicted humid-air general corrosion rates at relative humidities between 85 and 100% RH are close to the predicted aqueous general corrosion rates. Using the expected values of the model parameters, the model predicts that aqueous pitting corrosion is the most likely failure mode for the carbon steel outer barrier, and an earliest failure (or initial pit penetration) of the 100-mm thick barrier may occur as early as about 500 years if it is exposed continuously to an aqueous condition at between 60 and 70 degrees C

  4. Approach for evaluating the general and localized corrosion of carbon-steel containers for nuclear waste disposal

    International Nuclear Information System (INIS)

    Marsh, G.P.; Taylor, K.J.; Sharland, S.M.; Tasker, P.W.

    1987-01-01

    The paper considers the long term corrosion of carbon-steel containers for heat generating nuclear waste in a granitic repository. Under such conditions carbon steel may exhibit general, localized or passive corrosion behavior depending on the exact composition and redox potential of the groundwater contacting the containers; localized corrosion being of most concern because it has the fastest propagation rate. It is well established, however, that such localized corrosion is only possible when the environment is sufficiently oxidizing to maintain a positive potential gradient between the cathodic surface and the corrosion sites, which requires that species with oxidizing potentials greater than water need to be present. This fact provides a basis for estimating the periods during which containers may be subject to localized and subsequently to general corrosion, and hence for making an overall assessment of the metal allowance required for a specified container life. A model for the diffusion transport of oxygen has been developed, and a sensitivity analysis has shown that the period of possible localized attack is strongly dependent on the passive film leakage current, the radiation dose rate and the oxygen diffusion coefficient. 20 references, 5 figures

  5. A mechanistic model for predicting flow-assisted and general corrosion of carbon steel in reactor primary coolants

    Energy Technology Data Exchange (ETDEWEB)

    Lister, D. [University of New Brunswick, Fredericton, NB (Canada). Dept. of Chemical Engineering; Lang, L.C. [Atomic Energy of Canada Ltd., Chalk River Lab., ON (Canada)

    2002-07-01

    Flow-assisted corrosion (FAC) of carbon steel in high-temperature lithiated water can be described with a model that invokes dissolution of the protective oxide film and erosion of oxide particles that are loosened as a result. General corrosion under coolant conditions where oxide is not dissolved is described as well. In the model, the electrochemistry of magnetite dissolution and precipitation and the effect of particle size on solubility move the dependence on film thickness of the diffusion processes (and therefore the corrosion rate) away from reciprocal. Particle erosion under dissolving conditions is treated stochastically and depends upon the fluid shear stress at the surface. The corrosion rate dependence on coolant flow under FAC conditions then becomes somewhat less than that arising purely from fluid shear (proportional to the velocity squared). Under non-dissolving conditions, particle erosion occurs infrequently and general corrosion is almost unaffected by flow For application to a CANDU primary circuit and its feeders, the model was bench-marked against the outlet feeder S08 removed from the Point Lepreau reactor, which furnished one value of film thickness and one of corrosion rate for a computed average coolant velocity. Several constants and parameters in the model had to be assumed or were optimised, since values for them were not available. These uncertainties are no doubt responsible for the rather high values of potential that evolved as steps in the computation. The model predicts film thickness development and corrosion rate for the whole range of coolant velocities in outlet feeders very well. In particular, the detailed modelling of FAC in the complex geometry of one outlet feeder (F11) is in good agreement with measurements. When the particle erosion computations are inserted in the balance equations for the circuit, realistic values of crud level are obtained. The model also predicts low corrosion rates and thick oxide films for inlet

  6. A mechanistic model for predicting flow-assisted and general corrosion of carbon steel in reactor primary coolants

    International Nuclear Information System (INIS)

    Lister, D.

    2002-01-01

    Flow-assisted corrosion (FAC) of carbon steel in high-temperature lithiated water can be described with a model that invokes dissolution of the protective oxide film and erosion of oxide particles that are loosened as a result. General corrosion under coolant conditions where oxide is not dissolved is described as well. In the model, the electrochemistry of magnetite dissolution and precipitation and the effect of particle size on solubility move the dependence on film thickness of the diffusion processes (and therefore the corrosion rate) away from reciprocal. Particle erosion under dissolving conditions is treated stochastically and depends upon the fluid shear stress at the surface. The corrosion rate dependence on coolant flow under FAC conditions then becomes somewhat less than that arising purely from fluid shear (proportional to the velocity squared). Under non-dissolving conditions, particle erosion occurs infrequently and general corrosion is almost unaffected by flow For application to a CANDU primary circuit and its feeders, the model was bench-marked against the outlet feeder S08 removed from the Point Lepreau reactor, which furnished one value of film thickness and one of corrosion rate for a computed average coolant velocity. Several constants and parameters in the model had to be assumed or were optimised, since values for them were not available. These uncertainties are no doubt responsible for the rather high values of potential that evolved as steps in the computation. The model predicts film thickness development and corrosion rate for the whole range of coolant velocities in outlet feeders very well. In particular, the detailed modelling of FAC in the complex geometry of one outlet feeder (F11) is in good agreement with measurements. When the particle erosion computations are inserted in the balance equations for the circuit, realistic values of crud level are obtained. The model also predicts low corrosion rates and thick oxide films for inlet

  7. The Effects of Corrosive Chemicals on Corrosion Rate of Steel Reinforcement Bars: I. Swamp Water

    Directory of Open Access Journals (Sweden)

    Sulistyoweni Widanarko

    2010-10-01

    Full Text Available Most of infrastructures using steel concrete to reinforce the strength of concrete. Steel concrete is so vulnerable to chemical compounds that can cause corrosion. It can happen due to the presence of chemical compounds in acid environment in low pH level. These chemical compounds are SO42-, Cl-, NO3-. There are many swamp area in Indonesia. The acid contents and the concentration of ion sulphate, chlorides, and nitrate are higher in the swamp water than in the ground water .The objective of this research was to find out the influence of corrosive chemicals in the swamp water to the steel concrete corrosion rate. There were two treatment used: (1 emerging ST 37 and ST 60 within 60 days in the 'polluted' swamp water, (2 moving the ST 37 up and down periodically in the ' polluted' swamp water. Three variation of 'polluted' swamp water were made by increasing the concentration of corrosive chemical up to 1X, 5X and 10X respectively. The corrosion rate was measured by using an Immersion Method. The result of Immersion test showed that chloride had the greatest influence to corrosion rate of ST 37 and ST 60 and followed by sulphate and Nitrate. Corrosion rate value for ST 37 is 24.29 mpy and for ST 60 is 22.76 mpy. By moving the sample up and down, the corrosion rate of ST 37 increase up to 37.59 mpy, and chloride still having the greatest influence, followed by sulphate and nitrate.

  8. Corrosion product identification and relative rates of corrosion of candidate metals in an irradiated air-steam environment

    International Nuclear Information System (INIS)

    Reed, D.T.; Swayambunathan, V.; Tani, B.S.; Van Konynenburg, R.A.

    1989-01-01

    Previously reported work by others indicates that dicopper trihydroxide nitrate, Cu 2 NO 3 (OH) 3 , forms on copper and copper alloys subjected to irradiated moist air near room temperature. We have performed experiments over a range of temperature and humidity, and have found that this species is formed at temperatures up to at least 150 degree C if low to intermediate relative humidities are present. At 150 degree C and 100% relative humidity, only Cu 2 O and CuO were observed. The relative general corrosion rates of the copper materials tested in 1-month experiments at dose rates of 0.7 and 2.0 kGy/h were Cu > 70/30 Cu--Ni > Al-bronze. High-nickel alloy 825 showed no observable corrosion. 29 refs., 4 tabs

  9. Zinc Addition Effects on General Corrosion of Austenitic Stainless Steels in PWR Primary Conditions

    International Nuclear Information System (INIS)

    Qiao Peipeng; Zhang Lefu; Liu Ruiqin; Jiang Suqing; Zhu Fawen

    2010-01-01

    Zinc addition effects on general corrosion of austenitic stainless steel 316 and 304 were investigated in simulated PWR primary coolant without zinc or with 50 ppb zinc addition at 315 degree C for 500 h. The results show that with the addition of zinc, the corrosion rate of austenitic stainless steel is effectively reduced, the surface oxide film is thinner, the morphology and chemical composition of surface oxide scales are evidently different from those without zinc. There are needle-like corrosion products on the surface of stainless steel 304. (authors)

  10. Prediction of corrosion rates of water distribution pipelines according to aggressive corrosive water in Korea.

    Science.gov (United States)

    Chung, W S; Yu, M J; Lee, H D

    2004-01-01

    The drinking water network serving Korea has been used for almost 100 years. Therefore, pipelines have suffered various degrees of deterioration due to aggressive environments. The pipe breaks were caused by in-external corrosion, water hammer, surface loading, etc. In this paper, we focused on describing corrosion status in water distribution pipes in Korea and reviewing some methods to predict corrosion rates. Results indicate that corrosive water of lakes was more aggressive than river water and the winter was more aggressive compared to other seasons. The roughness growth rates of Dongbok lake showed 0.23 mm/year. The high variation of corrosion rates is controlled by the aging pipes and smaller diameter. Also the phenolphthalein test on a cementitious core of cement mortar lined ductile cast iron pipe indicated the pipes over 15 years old had lost 50-100% of their lime active cross sectional area.

  11. An approach for evaluating the general and localised corrosion of carbon steel containers for nuclear waste disposal

    International Nuclear Information System (INIS)

    Marsh, G.P.; Taylor, K.J.; Sharland, S.M.; Tasker, P.W.

    1987-06-01

    The paper considers the long term corrosion of carbon steel containers for heat generating nuclear waste in a granitic repository. Under such conditions carbon steel may exhibit general, localised or passive corrosion behaviour depending on the exact composition and redox potential of the groundwater contacting the containers; localised corrosion being of most concern because it has the fastest propagation rate. It is well established, however, that such localised corrosion is only possible when the environment is sufficiently oxidising to maintain a positive potential gradient between the cathodic surface and the corrosion sites, which requires that species which oxidising potentials greater than water need to be present. This fact provides a basis for estimating the periods during which containers may be subject to localised and subsequently to general corrosion, and hence for making an overall assessment of the metal allowance required for a specified container life. A model for the diffusion transport of oxygen has been developed, and a sensitivity analysis has shown that the period of possible attack is strongly dependent on the passive film leakage current, the radiation dose rate and the oxygen diffusion coefficient. (orig.)

  12. The Effect of General Corrosion on the Guided Wave Inspection of the Pipeline

    Directory of Open Access Journals (Sweden)

    Zhang Jin Heng

    2016-01-01

    Full Text Available The guided wave method can inspect pipelines very quickly and widely. For instance, it can inspect the overall pipelines by digging several detection pits or removing part of coating material to set the array ring. However, it will make the guided wave attenuate more seriously and make the signals hard to identify when setting the array ring on the general corrosion. In this study, the wave propagation will be discussed when the general corrosion is under the array ring and the severe localized corrosion is inside the general corrosion via experiment and finite element method. The results showed that the excitation energy will be lower when the array ring set on the pipe surface with the general corrosion. By two-dimensional Fourier transform analysis, its non-uniform contact surface will increase asymmetric modal and mix signals. The energy attenuation will increase when the corrosion depth is deepened or the inspection frequency is risen. For example, the 2 mm deep general corrosion will attenuate −1.09 dB/m at 20 kHz and attenuate −3.01 dB/m at 40 kHz; the 4 mm deep general corrosion will attenuation −5.76 dB/m at 20 kHz and attenuation −23.19 dB/m at 40 kHz. However, the coherent signals which were caused by the general corrosion will decay with increasing frequency. For example, the coherent signals of 2 mm deep general corrosion are −23.67 dB at 20 kHz and −35.44 dB at 40 kHz; then, the 20 mm long and 3.5 mm deep localized corrosion which signal is −26.34 dB at 20 kHz and −26.94 dB at 40 kHz will be detected easily at high frequency. It can provide detectors to understand the impact when the array ring set on the area of general corrosion and the way to distinguish the localized corrosion which is inside the area of general corrosion.

  13. General corrosion of carbon steels in high temperature water

    International Nuclear Information System (INIS)

    Gras, J.M.

    1994-04-01

    This short paper seeks to provide a summary of the main knowledge about the general corrosion of carbon steels in high temperature water. In pure water or slightly alkaline deaerated water, steels develop a protective coating of magnetite in a double layer (Potter and Mann oxide) or a single layer (Bloom oxide). The morphology of the oxide layer and the kinetics of corrosion depend on the test parameters controlling the solubility of iron. The parameters exercising the greatest influence are partial hydrogen pressure and mass transfer: hydrogen favours the solubilization of the magnetite; the entrainment of the dissolved iron prevents a redeposition of magnetite on the surface of the steel. Cubic or parabolic in static conditions, the kinetics of corrosion tends to be linear in dynamic conditions. In dynamic operation, corrosion is at least one order of magnitude lower in water with a pH of 10 than in pure water with a pH of 7. The activation energy of corrosion is 130 kJ/mol (31 kcal/mol). This results in the doubling of corrosion at around 300 deg C for a temperature increase of 15 deg C. Present in small quantities (100-200 ppb), oxygen decreases general corrosion but increases the risk of pitting corrosion - even for a low chloride content - and stress corrosion cracking or corrosion-fatigue. The steel composition has probably an influence on the kinetics of corrosion in dynamic conditions; further work would be required to clarify the effect of some residual elements. (author). 31 refs., 9 figs., 2 tabs

  14. Effect of Flow Velocity on Corrosion Rate and Corrosion Protection Current of Marine Material

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seong Jong [Kunsan National University, Kunsan (Korea, Republic of); Han, Min Su; Jang, Seok Ki; Kim, Seong Jong [Mokpo National Maritime University, Mokpo (Korea, Republic of)

    2015-10-15

    In spite of highly advanced paint coating techniques, corrosion damage of marine metal and alloys increase more and more due to inherent micro-cracks and porosities in coatings formed during the coating process. Furthermore, flowing seawater conditions promote the breakdown of the protective oxide of the materials introducing more oxygen into marine environments, leading to the acceleration of corrosion. Various corrosion protection methods are available to prevent steel from marine corrosion. Cathodic protection is one of the useful corrosion protection methods by which the potential of the corroded metal is intentionally lowered to an immune state having the advantage of providing additional protection barriers to steel exposed to aqueous corrosion or soil corrosion, in addition to the coating. In the present investigation, the effect of flow velocity was examined for the determination of the optimum corrosion protection current density in cathodic protection as well as the corrosion rate of the steel. It is demonstrated from the result that the material corrosion under dynamic flowing conditions seems more prone to corrosion than under static conditions.

  15. CORROSION RATE OF STEELS DX51D AND S220GD IN DIFFERENT CORROSION ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Alina Crina CIUBOTARIU

    2016-06-01

    Full Text Available Corrosion in the marine environment is an important issue because the costs causes by marine corrosion increased year upon year. It is necessary a correctly approach to materials selection, protection and corrosion control to reduce this burden of wasted materials, wasted energy and wasted money. Many different types of corrosion attack can be observed to structures, ships and other equipment used in sea water service. Shipping containers are exposed to various corrosive mediums like as airborne salt, industrial pollutants, rain and saltwater. Transport damage during loading onto and unloading off trucks, train beds and ships breaches the paint coating which further contributes to corrosion. The result is shortened container life and high costs for container repair or replacement. The paper intends to evaluate, by gravimetric method, the corrosion rate and corrosion penetration rate of two types of carbon steel DX51D and S220GD. Carbon steel DX51D and hot-dip galvanized steel S220GD are used in marine and industrial applications for buildings cargo vessels, container ships and oil tankers. For testing it was used different corrosive environments: 5% NaOH solution; 5% HCL solution and 0.5M NaCl solution. The samples were immersed in 400mL of testing solution for exposure period of 28 days. Periodically at 3 days, 7 days, 14 days, 21 days and 28 days was measured de mass loss and evaluate the corrosion rate and corrosion stability coefficient. The steel DX51D was stable in 5% NaOH solution for 28 days, the values of corrosion stability coefficient was 7 after 3 days and 6 after 28 days of immersion in corrosive medium. In 5% HCL solution steels DX51D and S220GD was completely corroded in 21 days with a corrosion stability coefficient equal with 9 for 7 days and 8 for 21 days of immersion in corrosive solution. It was observed a good resistance for 3 days in 0.5M NaCl solution with a corrosion stability coefficient equal with 5, but after that

  16. Strain rate effects in stress corrosion cracking

    Energy Technology Data Exchange (ETDEWEB)

    Parkins, R.N. (Newcastle upon Tyne Univ. (UK). Dept. of Metallurgy and Engineering Materials)

    1990-03-01

    Slow strain rate testing (SSRT) was initially developed as a rapid, ad hoc laboratory method for assessing the propensity for metals an environments to promote stress corrosion cracking. It is now clear, however, that there are good theoretical reasons why strain rate, as opposed to stress per se, will often be the controlling parameter in determining whether or not cracks are nucleated and, if so, are propagated. The synergistic effects of the time dependence of corrosion-related reactions and microplastic strain provide the basis for mechanistic understanding of stress corrosion cracking in high-pressure pipelines and other structures. However, while this may be readily comprehended in the context of laboratory slow strain tests, its extension to service situations may be less apparent. Laboratory work involving realistic stressing conditions, including low-frequency cyclic loading, shows that strain or creep rates give good correlation with thresholds for cracking and with crack growth kinetics.

  17. Influence of temperature on corrosion rate and porosity of corrosion products of carbon steel in anoxic bentonite environment

    International Nuclear Information System (INIS)

    Stoulil, J.; Kaňok, J.; Kouřil, M.; Parschová, H.; Novák, P.

    2013-01-01

    Highlights: •The corrosion rate is not significantly dependent on temperature. •Corrosion products at higher temperatures have different color. •Corrosion products at higher temperatures are more compact. •The change in corrosion products nature is reversible. -- Abstract: The study focuses on the porosity of layers of corrosion products and its impact on corrosion rate of carbon steel in moist bentonite. Measurements were performed in an aggressive Czech type of bentonite – Rokle B75 at temperatures of 90 and 40 °C. Aggressiveness of B75 bentonite consists in low content of chlorides. Presence of chlorides in pore solution allows formation of more protective magnetite. The evaluation was made by electrochemical techniques (red/ox potential, open circuit potential, linear polarization resistance, impedance spectroscopy) and resistometric sensor measurements. The result imply that the higher the temperature the more compact is the layer of corrosion products that slightly decelerates corrosion rate compared to the state at 40 °C. The state of corrosion products at both temperatures is reversible

  18. Influence of temperature on corrosion rate and porosity of corrosion products of carbon steel in anoxic bentonite environment

    Energy Technology Data Exchange (ETDEWEB)

    Stoulil, J., E-mail: jan.stoulil@vscht.cz [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague (Czech Republic); Kaňok, J.; Kouřil, M. [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague (Czech Republic); Parschová, H. [Department of Power Engineering, Institute of Chemical Technology, Prague (Czech Republic); Novák, P. [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague (Czech Republic)

    2013-11-15

    Highlights: •The corrosion rate is not significantly dependent on temperature. •Corrosion products at higher temperatures have different color. •Corrosion products at higher temperatures are more compact. •The change in corrosion products nature is reversible. -- Abstract: The study focuses on the porosity of layers of corrosion products and its impact on corrosion rate of carbon steel in moist bentonite. Measurements were performed in an aggressive Czech type of bentonite – Rokle B75 at temperatures of 90 and 40 °C. Aggressiveness of B75 bentonite consists in low content of chlorides. Presence of chlorides in pore solution allows formation of more protective magnetite. The evaluation was made by electrochemical techniques (red/ox potential, open circuit potential, linear polarization resistance, impedance spectroscopy) and resistometric sensor measurements. The result imply that the higher the temperature the more compact is the layer of corrosion products that slightly decelerates corrosion rate compared to the state at 40 °C. The state of corrosion products at both temperatures is reversible.

  19. High temperature corrosion in straw-fired power plants: Influence of steam/metal temperature on corrosion rates for TP347H

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Biede, O; Larsen, OH

    2002-01-01

    The corrosion in straw-fired boilers has been investigated at various straw-fired power plants in Denmark. Water/air-cooled probes, a test superheater and test sections removed from the actual superheater have been utilised to characterise corrosion and corrosion rates. This paper describes...... the corrosion rates measured for the TP347H type steel. The corrosion morphology at high temperature consists of grain boundary attack and selective attack of chromium. The corrosion rate increases with calculated metal temperature (based on steam temperature), however there is great variation within....... The difference in the results could be traced back to a lower flue gas temperature on one side of the boiler. Although metal temperature is the most important parameter with respect to corrosion rate, flue gas temperature also plays an important role. Efforts to quantify the effect of flue gas temperature...

  20. General corrosion of Ti in hot water and water saturated bentonite clay

    International Nuclear Information System (INIS)

    Mattsson, H.; Olefjord, I.

    1984-12-01

    Titanium has been proposed as one of the candidates for canister materials for storing spent nuclear fuel in the Swedish bed-rock. The deposition milieu was simulated on a laboratory scale by embedding titanium in compacted bentonite and the general corrosion rate was investigated. More fundamental studies were also performed where titanium was exposed to water in which special attention was paid to the NaCl content and oxygen content. In reaction cells designed according to high vacuum principles it was possible to reduce the oxygen content to very low values. The exposure time ranged between 1 min. and 6 months. Analysis of the corrosion products was performed mainly with ESCA. In water at 95 degrees C the oxide growth follows a direct logarithmic law: y equals 8.7 + 3.65 ln t. Oxygen and salt do not influence the rate of the oxide growth significantly. The general corrosion rate is approximately the same as the oxide growth rate since the dissolution of Ti into the water-solution is very low. The oxide consists of an outer layer of TiO 2 and a few atomic layers of suboxide close to the oxide/metal interface. Transmission electron microscopy studies of the water-formed oxides indicate that these are amorphous. The oxides formed on Ti exposed in bentonite is 70-100 Aa thick for exposure times ranging between 4 months and 2 years. It is shown, that montmorillonite - the main constituent in bentonite - is absorbed in the TiO 2 formed on these samples. If it is assumed that a logarithmic growth law is valid even for long-term exposure in bentonite, the growth law which will give the highest growth rate is y equals 5.5 ln t. An oxide thickness of 160 Aa is obtained if this law is extrapolated to 100.000 years exposure. (Author)

  1. Conditions for testing the corrosion rates of ceramics in coal gasification systems

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, J.P.; Nowok, J.W. [Univ. of North Dakota, Grand Forks, ND (United States)

    1996-08-01

    Coal gasifier operating conditions and gas and ash compositions affect the corrosion rates of ceramics used for construction in three ways: (1) through direct corrosion of the materials, (2) by affecting the concentration and chemical form of the primary corrodents, and (3) by affecting the mass transport rate of the primary corrodents. To perform an accurate corrosion test on a system material, the researcher must include all relevant corrodents and simulate conditions in the gasifier as closely as possible. In this paper, the authors present suggestions for conditions to be used in such corrosion tests. Two main types of corrosion conditions are discussed: those existing in hot-gas cleanup systems where vapor and dry ash may contribute to corrosion and those experienced by high-temperature heat exchangers and refractories where the main corrodent will be coal ash slag. Only the fluidized-bed gasification systems such as the Sierra Pacific Power Company Pinon Pine Power Project system are proposing the use of ceramic filters for particulate cleanup. The gasifier is an air-blown 102-MWe unit employing a Westinghouse{trademark} ceramic particle filter system operating at as high as 1100{degrees}F at 300 psia. Expected gas compositions in the filter will be approximately 25% CO, 15% H{sub 2}, 5% CO{sub 2}, 5% H{sub 2}O, and 50% N{sub 2}. Vapor-phase sodium chloride concentrations are expected to be 10 to 100 times the levels in combustion systems at similar temperatures, but in general the concentrations of the minor primary and secondary corrodents are not well understood. Slag corrosiveness will depend on its composition as well as viscosity. For a laboratory test, the slag must be in a thermodynamically stable form before the beginning of the corrosion test to assure that no inappropriate reactions are allowed to occur. Ideally, the slag would be flowing, and the appropriate atmosphere must be used to assure realistic slag viscosity.

  2. Corrosion rate transients observed by linear polarization techniques at Zr-1%Nb alloy

    International Nuclear Information System (INIS)

    Beran, J.; Cerny, K.

    1997-01-01

    Momentary corrosion rate of Zr-1%Nb alloy during nonisothermal autoclave experiments at temperature up to 328 deg. C in various solutions was determined by T/R p values (T - absolute temperature, R p - polarization resistance), multiplied by temperature independent conversion factor. This factor was found by comparison of conventional corrosion loss evaluation with electrochemical measurements. Corrosion rate transients in boric acid solutions and in lithium hydroxide differed significantly. Great differences were also found in stabilized corrosion rates at the end of experiments. Temperature irregularities caused considerable changes in corrosion rate. (author). 5 refs, 5 figs, 1 tab

  3. Corrosion rate transients observed by linear polarization techniques at Zr-1%Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Beran, J; Cerny, K [ZJS SKODA plc., Pelzen (Czech Republic)

    1997-02-01

    Momentary corrosion rate of Zr-1%Nb alloy during nonisothermal autoclave experiments at temperature up to 328 deg. C in various solutions was determined by T/R{sub p} values (T - absolute temperature, R{sub p}- polarization resistance), multiplied by temperature independent conversion factor. This factor was found by comparison of conventional corrosion loss evaluation with electrochemical measurements. Corrosion rate transients in boric acid solutions and in lithium hydroxide differed significantly. Great differences were also found in stabilized corrosion rates at the end of experiments. Temperature irregularities caused considerable changes in corrosion rate. (author). 5 refs, 5 figs, 1 tab.

  4. The effects of time, temperature and rotation of water on the corrosion rate of different types of steels

    International Nuclear Information System (INIS)

    Muhamad Daud; Jamaliah Shariff.

    1984-01-01

    By using hot plate/magnetic stirrer and immersion technique, the steel corroded uniformly and their corrosion rates vary due to type of steel, time of immersion, temperature and rotation of water. Therefore the rate of general corrosion, or sealing, of steel alloys is influenced by a number of factors, those best established being the composition of the metal, time, temperature, velocity, cleanliness or roughness of the metal surface and direct contact with solutions of the other materials. (author)

  5. Sensitivity Analysis of Corrosion Rate Prediction Models Utilized for Reinforced Concrete Affected by Chloride

    Science.gov (United States)

    Siamphukdee, Kanjana; Collins, Frank; Zou, Roger

    2013-06-01

    Chloride-induced reinforcement corrosion is one of the major causes of premature deterioration in reinforced concrete (RC) structures. Given the high maintenance and replacement costs, accurate modeling of RC deterioration is indispensable for ensuring the optimal allocation of limited economic resources. Since corrosion rate is one of the major factors influencing the rate of deterioration, many predictive models exist. However, because the existing models use very different sets of input parameters, the choice of model for RC deterioration is made difficult. Although the factors affecting corrosion rate are frequently reported in the literature, there is no published quantitative study on the sensitivity of predicted corrosion rate to the various input parameters. This paper presents the results of the sensitivity analysis of the input parameters for nine selected corrosion rate prediction models. Three different methods of analysis are used to determine and compare the sensitivity of corrosion rate to various input parameters: (i) univariate regression analysis, (ii) multivariate regression analysis, and (iii) sensitivity index. The results from the analysis have quantitatively verified that the corrosion rate of steel reinforcement bars in RC structures is highly sensitive to corrosion duration time, concrete resistivity, and concrete chloride content. These important findings establish that future empirical models for predicting corrosion rate of RC should carefully consider and incorporate these input parameters.

  6. Exposure testing of fasteners in preservative treated wood : gravimetric corrosion rates and corrosion product analyses

    Science.gov (United States)

    Samuel L. Zelinka; Rebecca J. Sichel; Donald S. Stone

    2010-01-01

    Research was conducted to determine the corrosion rates of metals in preservative treated wood and also understand the mechanism of metal corrosion in treated wood. Steel and hot-dip galvanized steel fasteners were embedded in wood treated with one of six preservative treatments and exposed to 27oC at 100% relative humidity for 1 year. The...

  7. General Corrosion and Localized Corrosion of the Drip Shield

    Energy Technology Data Exchange (ETDEWEB)

    F. Hua; K. Mon

    2003-06-24

    The recommended waste package (WP) design is described in BSC (2001a). The design includes a double-wall WP underneath a protective drip shield (DS) (BSC 2003a). The purpose of the process-level models developed in this report is to model dry oxidation (DOX), general corrosion (GC) and localized corrosion (LC) of the DS plate material, which is made of Ti Grade 7. The DS design also includes structural supports fabricated from Ti Grade 24. Degradation of Ti Grade 24 is not considered in this report. The DS provides protection for the waste package outer barrier (WPOB) both as a barrier to seepage water contact and a physical barrier to potential rockfall. This Model Report (MR) serves as a feed to the Integrated Waste Package Degradation Model (IWPD) analyses, and was developed in accordance with the Technical Work Plan (TWP) (BSC 2002a). The models contained in this report serve as a basis to determine whether or not the performance requirements for the DS can be met.

  8. General Corrosion and Localized Corrosion of the Drip Shield

    International Nuclear Information System (INIS)

    Hua, F.; Mon, K.

    2003-01-01

    The recommended waste package (WP) design is described in BSC (2001a). The design includes a double-wall WP underneath a protective drip shield (DS) (BSC 2003a). The purpose of the process-level models developed in this report is to model dry oxidation (DOX), general corrosion (GC) and localized corrosion (LC) of the DS plate material, which is made of Ti Grade 7. The DS design also includes structural supports fabricated from Ti Grade 24. Degradation of Ti Grade 24 is not considered in this report. The DS provides protection for the waste package outer barrier (WPOB) both as a barrier to seepage water contact and a physical barrier to potential rockfall. This Model Report (MR) serves as a feed to the Integrated Waste Package Degradation Model (IWPD) analyses, and was developed in accordance with the Technical Work Plan (TWP) (BSC 2002a). The models contained in this report serve as a basis to determine whether or not the performance requirements for the DS can be met

  9. A finite element modeling method for predicting long term corrosion rates

    International Nuclear Information System (INIS)

    Fu, J.W.; Chan, S.

    1984-01-01

    For the analyses of galvanic corrosion, pitting and crevice corrosion, which have been identified as possible corrosion processes for nuclear waste isolation, a finite element method has been developed for the prediction of corrosion rates. The method uses a finite element mesh to model the corrosive environment and the polarization curves of metals are assigned as the boundary conditions to calculate the corrosion cell current distribution. A subroutine is used to calculate the chemical change with time in the crevice or the pit environments. In this paper, the finite element method is described along with experimental confirmation

  10. Long Term Corrosion/Degradation Test Six Year Results

    Energy Technology Data Exchange (ETDEWEB)

    M. K. Adler Flitton; C. W. Bishop; M. E. Delwiche; T. S. Yoder

    2004-09-01

    The Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC) located at the Idaho National Engineering and Environmental Laboratory (INEEL) contains neutron-activated metals from non-fuel, nuclear reactor core components. The Long-Term Corrosion/Degradation (LTCD) Test is designed to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements to the environment. The test is using two proven, industry-standard methods—direct corrosion testing using metal coupons, and monitored corrosion testing using electrical/resistance probes—to determine corrosion rates for various metal alloys generally representing the metals of interest buried at the SDA, including Type 304L stainless steel, Type 316L stainless steel, Inconel 718, Beryllium S200F, Aluminum 6061, Zircaloy-4, low-carbon steel, and Ferralium 255. In the direct testing, metal coupons are retrieved for corrosion evaluation after having been buried in SDA backfill soil and exposed to natural SDA environmental conditions for times ranging from one year to as many as 32 years, depending on research needs and funding availability. In the monitored testing, electrical/resistance probes buried in SDA backfill soil will provide corrosion data for the duration of the test or until the probes fail. This report provides an update describing the current status of the test and documents results to date. Data from the one-year and three-year results are also included, for comparison and evaluation of trends. In the six-year results, most metals being tested showed extremely low measurable rates of general corrosion. For Type 304L stainless steel, Type 316L stainless steel, Inconel 718, and Ferralium 255, corrosion rates fell in the range of “no reportable” to 0.0002 mils per year (MPY). Corrosion rates for Zircaloy-4 ranged from no measurable corrosion to 0.0001 MPY. These rates are two orders of magnitude lower than those specified in

  11. Evaluation of intergranular corrosion rate and microstructure of forged 316L round bar

    International Nuclear Information System (INIS)

    Lim, H. K.; Kim, Y. S.

    2009-01-01

    When austenitic stainless steels are heat treated in the range of 500∼850 .deg. C, the alloys are sensitized due to the formation of chromium carbide at grain boundaries and then intergranular corrosion occurs. This paper aims to evaluate the intergranular corrosion rate and microstructural change of forged 316L stainless steel. To analyze the microstructure by forging conditions, ferrite phase, sigma phase, intergranular precipitation were observed. In order to evaluate the intergranular corrosion rate. Huey test was performed by ASTM A262. On the base of microstructural observation, ferrite and sigma phases were not detected, and also intergranular precipitation was not revealed in optical microscopic observation. By ASTM A262 Practice A, step structure was shown in all forging conditions. Intergranular corrosion rate gradually increased by Huey test periods but average corrosion rate was under 0.03 mm/month

  12. Evaluation of intergranular corrosion rate and microstructure of forged 316L round bar

    Energy Technology Data Exchange (ETDEWEB)

    Lim, H. K.; Kim, Y. S. [Andong National University, Andong (Korea, Republic of)

    2009-12-15

    When austenitic stainless steels are heat treated in the range of 500{approx}850 .deg. C, the alloys are sensitized due to the formation of chromium carbide at grain boundaries and then intergranular corrosion occurs. This paper aims to evaluate the intergranular corrosion rate and microstructural change of forged 316L stainless steel. To analyze the microstructure by forging conditions, ferrite phase, sigma phase, intergranular precipitation were observed. In order to evaluate the intergranular corrosion rate. Huey test was performed by ASTM A262. On the base of microstructural observation, ferrite and sigma phases were not detected, and also intergranular precipitation was not revealed in optical microscopic observation. By ASTM A262 Practice A, step structure was shown in all forging conditions. Intergranular corrosion rate gradually increased by Huey test periods but average corrosion rate was under 0.03 mm/month.

  13. Evaluation of the flow-accelerated corrosion downstream of an orifice. 2. Measurement of corrosion rate and evaluation on the effects of the flow field

    International Nuclear Information System (INIS)

    Nagaya, Yukinori; Utanohara, Yoichi; Nakamura, Akira; Murase, Michio

    2008-01-01

    In this study, in order to evaluate the effects of flow field on corrosion rate due to flow accelerated corrosion (FAC), a corrosion rate downstream of an orifice was measured using the electric resistance method. The diameter of the pipe is 50 mm and that of the orifice is 24.3 mm, and flow velocity of the experimental loop was set at 5m/s, and the temperature of water was controlled within ±1 at 150deg-C. There were no significant circumferential difference in measured corrosion rate, and the maximum corrosion rate was observed at 1D or 2D downstream from the orifice. The ratios of the measured corrosion rate and the calculated wall shear stress at the 1D downstream from the orifice to the value at upstream under well developed flow agreed well. (author)

  14. Standard practice for calculation of corrosion rates and related information from electrochemical measurements

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1989-01-01

    1.1 This practice covers the providing of guidance in converting the results of electrochemical measurements to rates of uniform corrosion. Calculation methods for converting corrosion current density values to either mass loss rates or average penetration rates are given for most engineering alloys. In addition, some guidelines for converting polarization resistance values to corrosion rates are provided. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

  15. Corrosion of metallic materials. Dry corrosion, aqueous corrosion and corrosion by liquid metal, methods of protection

    International Nuclear Information System (INIS)

    Helie, Max

    2015-01-01

    This book is based on a course on materials given in an engineering school. The author first gives an overview of metallurgy issues: metallic materials (pure metals, metallic alloys), defects of crystal lattices (point defects, linear defects or dislocations), equilibrium diagrams, steels and cast, thermal processing of steels, stainless steels, aluminium and its alloys, copper and its alloys. The second part addresses the properties and characterization of surfaces and interfaces: singularity of a metal surface, surface energy of a metal, energy of grain boundaries, adsorption at a material surface, metal-electrolyte interface, surface oxide-electrolyte interface, techniques of surface analysis. The third chapter addresses the electrochemical aspects of corrosion: description of the corrosion phenomenon, free enthalpy of a compound and free enthalpy of a reaction, case of dry corrosion (thermodynamic aspect, Ellingham diagram, oxidation mechanisms, experimental study, macroscopic modelling), case of aqueous corrosion (electrochemical thermodynamics and kinetics, experimental determination of corrosion rate). The fourth part addresses the different forms of aqueous corrosion: generalized corrosion (atmospheric corrosion, mechanisms and tests), localized corrosion (galvanic, pitting, cracking, intergranular, erosion and cavitation), particular cases of stress cracking (stress corrosion, fatigue-corrosion, embrittlement by hydrogen), and bi-corrosion (of non alloyed steels, of stainless steels, and of aluminium and copper alloys). The sixth chapter addresses the struggle and the protection against aqueous corrosion: methods of prevention, scope of use of main alloys, geometry-based protection of pieces, use of corrosion inhibitors, use of organic or metallic coatings, electrochemical protection. The last chapter proposes an overview of corrosion types in industrial practices: in the automotive industry, in the oil industry, in the aircraft industry, and in the

  16. Detrimental role of hydrogen on the corrosion rate of zirconium alloys

    International Nuclear Information System (INIS)

    Blat, M.; Noel, D.

    1996-01-01

    Recent studies have suggested that hydride precipitation at the metal/oxide interface could play a detrimental role on the waterside corrosion rate. Nevertheless, the mechanism of that detrimental role is not completely understood, and two hypotheses were investigated to understand the mechanism that controls the role of the hydrides. The first hypothesis is based on a mechanical effect: the hydrides precipitate at the metal/oxide interface and destroy the physical integrity of the barrier oxide layer. The second hypothesis is a modification of the transport properties of the oxide grown on the hydrided metal. The detrimental role of hydrides on the corrosion rate was studied by charging unirradiated Zircaloy-4 cladding material with hydrogen to a level higher than the limit of solubility at 400 C. Both gaseous and cathodic charging techniques were used. Static corrosion tests were carried out in autoclave with steam at 400 C on an as-received and hydrided sample. The detrimental role of hydrides is confirmed from the post-transition corrosion rate, and that effect is more significant for high cathodic charging. The results of the metallurgical examinations are discussed to provide an understanding of the mechanism. No relationship between hydrides, physical defects in the oxide, and local corrosion rate enhancement was found. Therefore, the results do not support the hypothesis of a mechanical effect at the scale of the performed examinations, but more detailed work is required to confirm this

  17. Corrosion processes of alloyed steels in salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kienzler, Bernhard [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Institut fuer Nukleare Entsorgung

    2018-02-15

    A summary is given of the corrosion experiments with alloyed Cr-Ni steels in salt solutions performed at Research Centre Karlsruhe (today KIT), Institute for Nuclear Waste Disposal (INE) in the period between 1980 and 2004. Alloyed steels show significantly lower general corrosion in comparison to carbon steels. However, especially in salt brines the protective Cr oxide layers on the surfaces of these steels are disturbed and localized corrosion takes place. Data on general corrosion rates, and findings of pitting, crevice and stress corrosion cracking are presented.

  18. Recorded corrosion rates on copper electrodes in the Prototype Repository at the Aespoe HRL

    Energy Technology Data Exchange (ETDEWEB)

    Rosborg, Bo [Rosborg Consulting, Nykoeping (Sweden)

    2013-04-15

    Real-time corrosion monitoring by means of electrochemical methods has been applied in an effort to measure corrosion rates of pure copper in the Prototype Repository at the Aspo Hard Rock Laboratory. Copper electrodes were installed in bentonite blocks on top of the electrically heated copper canisters in two deposition holes (dh). Three nominally identical cylindrical copper electrodes were installed in dh 1 and another three in dh 5 a few days before the heat was turned on to the canisters in September 2001 and in May 2003 respectively. The temperature of the copper electrodes has been around 30 deg C in dh 1 and somewhat below 35 deg C in dh 5. Real-time corrosion monitoring for both electrode setups was first applied in January 2004, and then periodically in 2005, 2006, 2008, and most recently in the end of 2010 just before work to open the outer section of the Prototype Repository was started. The recorded corrosion rates fall below 1.3 {mu}m/year (using a default value of n=2 in the software to convert the corrosion current density to a penetration rate by means of Faraday's law, and with no correction applied for the used measuring frequency of 0.01 Hz; also disregarding highly scattered data obtained for the copper electrodes in dh 1 during 2010). While the recorded rates on the electrodes in dh 5 first increased from about 0.2 {mu}m/year in 2004 up to a maximum of 1.3 {mu}m/year a year later (the drainage of the inner and outer sections was temporary closed in the end of 2004), and then gradually decreased to 0.7 {mu}m/year in the end of 2010, the recorded rates on the electrodes in dh 1 show a quite different picture. The recorded rates fall in the range 0.4-0.7 {mu}m/year and do not reflect any obvious decrease. However, it is anticipated that a similar time dependence as observed for the electrodes in dh 5 could have been present early on in the exposure; the electrodes were installed in 2001 but the first measurements were performed in 2004. Also

  19. Recorded corrosion rates on copper electrodes in the Prototype Repository at the Aespoe HRL

    International Nuclear Information System (INIS)

    Rosborg, Bo

    2013-04-01

    Real-time corrosion monitoring by means of electrochemical methods has been applied in an effort to measure corrosion rates of pure copper in the Prototype Repository at the Aspo Hard Rock Laboratory. Copper electrodes were installed in bentonite blocks on top of the electrically heated copper canisters in two deposition holes (dh). Three nominally identical cylindrical copper electrodes were installed in dh 1 and another three in dh 5 a few days before the heat was turned on to the canisters in September 2001 and in May 2003 respectively. The temperature of the copper electrodes has been around 30 deg C in dh 1 and somewhat below 35 deg C in dh 5. Real-time corrosion monitoring for both electrode setups was first applied in January 2004, and then periodically in 2005, 2006, 2008, and most recently in the end of 2010 just before work to open the outer section of the Prototype Repository was started. The recorded corrosion rates fall below 1.3 μm/year (using a default value of n=2 in the software to convert the corrosion current density to a penetration rate by means of Faraday's law, and with no correction applied for the used measuring frequency of 0.01 Hz; also disregarding highly scattered data obtained for the copper electrodes in dh 1 during 2010). While the recorded rates on the electrodes in dh 5 first increased from about 0.2 μm/year in 2004 up to a maximum of 1.3 μm/year a year later (the drainage of the inner and outer sections was temporary closed in the end of 2004), and then gradually decreased to 0.7 μm/year in the end of 2010, the recorded rates on the electrodes in dh 1 show a quite different picture. The recorded rates fall in the range 0.4-0.7 μm/year and do not reflect any obvious decrease. However, it is anticipated that a similar time dependence as observed for the electrodes in dh 5 could have been present early on in the exposure; the electrodes were installed in 2001 but the first measurements were performed in 2004. Also, saturation of

  20. Corrosion rate of nuclear glass in saturated media

    International Nuclear Information System (INIS)

    Fillet, S.; Vernaz, E.; Nogues, J.L.; Jacquet-Francillon, N.

    1986-01-01

    Leaching experiments under a static mode have shown that, after a given time, the concentration of the solubilized elements reaches an apparent steady state which can be detected by a plateau in the curve of cumulated leach rates vs time. Since the real slope of this plateau is a key datum to modernize the source term, works related to the evaluation of this slope and based on a statistical approach have been necessary. Twelve static leaching experiments carried out for one year at 90 0 C were scrutinized. Various glasses, both active and nonactive, akin to the LWR French reference glass were involved. Previously, an abnormally high corrosion rate had been found after 12 months of testing. This feature could have been interpreted as a further leaching step occuring after the plateau period. The corrosion rates at 90 0 C with deionized water are compared to those gained from integral tests at 90 0 C

  1. Uniform Corrosion and General Dissolution of Aluminum Alloys 2024-T3, 6061-T6, and 7075-T6

    Science.gov (United States)

    Huang, I.-Wen

    Uniform corrosion and general dissolution of aluminum alloys was not as well-studied in the past, although it was known for causing significant amount of weight loss. This work comprises four chapters to understand uniform corrosion of aluminum alloys 2024-T3, 6061-T6, and 7075-T6. A preliminary weight loss experiment was performed for distinguishing corrosion induced weight loss attributed to uniform corrosion and pitting corrosion. The result suggested that uniform corrosion generated a greater mass loss than pitting corrosion. First, to understand uniform corrosion mechanism and kinetics in different environments, a series of static immersion tests in NaCl solutions were performed to provide quantitative measurement of uniform corrosion. Thereafter, uniform corrosion development as a function of temperature, pH, Cl-, and time was investigated to understand the influence of environmental factors. Faster uniform corrosion rate has been found at lower temperature (20 and 40°C) than at higher temperature (60 and 80°C) due to accelerated corrosion product formation at high temperatures inhibiting corrosion reactions. Electrochemical tests including along with scanning electron microscopy (SEM) were utilized to study the temperature effect. Second, in order to further understand the uniform corrosion influence on pit growth kinetics, a long term exposures for 180 days in both immersion and ASTM-B117 test were performed. Uniform corrosion induced surface recession was found to have limited impact on pit geometry regardless of exposure methods. It was also found that the competition for limited cathodic current from uniform corrosion the primary rate limiting factor for pit growth. Very large pits were found after uniform corrosion growth reached a plateau due to corrosion product coverage. Also, optical microscopy and focused ion beam (FIB) imaging has provided more insights of distinctive pitting geometry and subsurface damages found from immersion samples and B117

  2. When can Electrochemical Techniques give Reliable Corrosion Rates on Carbon Steel in Sulfide Media?

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Hemmingsen, Tor; Nielsen, Lars Vendelbo

    2005-01-01

    in combination with ferrous sulfide corrosion products cover the steel surface. Corrosion rates can be overestimated by a factor of 10 to 100 with electrochemical techniques - both by linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS). Oxygen entering the system accelerates......Effects of film formation on carbon steel in hydrogen sulfide media may corrupt corrosion rate monitoring by electrochemical techniques. Electrochemical data from hydrogen sulfide solutions, biological sulfide media and natural sulfide containing geothermal water have been collected and the process...... of film formation in sulfide solutions was followed by video. It can be shown that capacitative and diffusional effects due to porous reactive deposits tend to dominate the data resulting in unreliable corrosion rates measured by electrochemical techniques. The effect is strongly increased if biofilm...

  3. The corrosion rate of copper in a bentonite test package measured with electric resistance sensors

    Energy Technology Data Exchange (ETDEWEB)

    Rosborg, Bo [Division of Surface and Corrosion Science, KTH, Stockholm (Sweden); Kosec, Tadeja; Kranjc, Andrej; Kuhar, Viljem; Legat, Andraz [Slovenian National Building and Civil Engineering Institute, Ljubljana (Slovenia)

    2012-12-15

    LOT1 test parcel A2 was exposed for six years in the Aespoe Hard Rock Laboratory, which offers a realistic environment for the conditions that will prevail in a deep repository for high-level radioactive waste disposal in Sweden. The test parcel contained copper electrodes for real-time corrosion monitoring in bentonite ring 36, where the temperature was 24 deg C, and copper coupons in bentonite rings 22 and 30, where the temperature was higher. After retrieval of the test parcel in January 2006, a bentonite test package consisting of bentonite rings 35 - 37 was placed in a container and sealed with a thick layer of paraffin. Later the same year new copper electrodes were installed in the test package. In January 2007 electric resistance (ER) sensors of pure copper with a thickness of 35 {mu}m were also installed in the test package mainly to facilitate the interpretation of the results from the real-time corrosion monitoring with electrochemical techniques. The ER measurements have shown that the corrosion rate of pure copper exposed in an oxic bentonite/ saline groundwater environment at room temperate decreases slowly with time to low but measurable values. The corrosion rates estimated from the regularly performed EIS measurements replicate the ER data. Thus, for this oxic environment in which copper acquires corrosion potentials of the order of 200 mV (SHE) or higher, electrochemical measurements provide believable data. Comparing the recorded ER data with an estimate of the average corrosion rate based on comparing cross-sections from exposed and protected sensor elements, it is obvious that the former overestimates the actual corrosion rate, which is understandable. It seems as if electrochemical measurements can provide a better estimate of the corrosion rate; however, this is quite dependent on the use of proper measuring frequencies and evaluation methods. In this respect ER measurements are more reliable. It has been shown that real-time corrosion

  4. The corrosion rate of copper in a bentonite test package measured with electric resistance sensors

    International Nuclear Information System (INIS)

    Rosborg, Bo; Kosec, Tadeja; Kranjc, Andrej; Kuhar, Viljem; Legat, Andraz

    2012-12-01

    LOT1 test parcel A2 was exposed for six years in the Aespoe Hard Rock Laboratory, which offers a realistic environment for the conditions that will prevail in a deep repository for high-level radioactive waste disposal in Sweden. The test parcel contained copper electrodes for real-time corrosion monitoring in bentonite ring 36, where the temperature was 24 deg C, and copper coupons in bentonite rings 22 and 30, where the temperature was higher. After retrieval of the test parcel in January 2006, a bentonite test package consisting of bentonite rings 35 - 37 was placed in a container and sealed with a thick layer of paraffin. Later the same year new copper electrodes were installed in the test package. In January 2007 electric resistance (ER) sensors of pure copper with a thickness of 35 μm were also installed in the test package mainly to facilitate the interpretation of the results from the real-time corrosion monitoring with electrochemical techniques. The ER measurements have shown that the corrosion rate of pure copper exposed in an oxic bentonite/ saline groundwater environment at room temperate decreases slowly with time to low but measurable values. The corrosion rates estimated from the regularly performed EIS measurements replicate the ER data. Thus, for this oxic environment in which copper acquires corrosion potentials of the order of 200 mV (SHE) or higher, electrochemical measurements provide believable data. Comparing the recorded ER data with an estimate of the average corrosion rate based on comparing cross-sections from exposed and protected sensor elements, it is obvious that the former overestimates the actual corrosion rate, which is understandable. It seems as if electrochemical measurements can provide a better estimate of the corrosion rate; however, this is quite dependent on the use of proper measuring frequencies and evaluation methods. In this respect ER measurements are more reliable. It has been shown that real-time corrosion

  5. NDT method in determining the rate of corrosion applicable to risk based inspection

    International Nuclear Information System (INIS)

    Mohamed Hairul Hasmoni; Mohamad Pauzi Ismail; Ab Razak Hamzah

    2004-01-01

    Corrosion is a major problem in oil and gas industries, refineries and chemical process plants as the equipment is often exposed to corrosive environments or elevated temperature. Important equipment need to operate safely and reliably to avoid injuries to personnel and the public, and to prevent loss time and cost incurred due to loss of production and shutdown. The paper assess the approach in evaluating the technique of non-destructive testing (NDT) using Ultrasonic Testing (UT) in determining the rate of corrosion and remaining life of equipment applicable to Risk Based Inspection (RBI). Methods in determining the corrosion rate are presented using analytical method. Examples and data from MINT chiller water pipeline are presented to illustrate the application of these methods. (Author)

  6. Experimental study on stress corrosion crack propagation rate of FV520B in carbon dioxide and hydrogen sulfide solution

    Directory of Open Access Journals (Sweden)

    Ming Qin

    Full Text Available FV520B steel is a kind of precipitation hardening Martensitic stainless steel, it has high-strength, good plasticity and good corrosion resistance. Stress corrosion cracking (SCC is one of the main corrosion failure mode for FV520B in industrial transportation of natural gas operation. For a better understanding the effect on SCC of FV520B, the improved wedge opening loading (WOL specimens and constant displacement loading methods were employed in experimental research in carbon dioxide and hydrogen sulfide solution. The test results showed that the crack propagation rate is 1.941 × 10−7–5.748 × 10−7 mm/s, the stress intensity factor KISCC is not more than 36.83 MPa m. The rate increases with the increasing of the crack opening displacement. Under the condition of different initial loading, KISCC generally shows a decreasing tendency with the increase in H2S concentration, and the crack propagation rate showed an increasing trend substantially. For the enrichment of sulfur ion in the crack tip induced the generation of pitting corrosion, promoting the surrounding metal formed the corrosion micro batteries, the pit defects gradually extended and connected with the adjacent pit to form a small crack, leading to further propagation till cracking happened. Fracture microscopic morphology displayed typical brittle fracture phenomena, accompanying with trans-granular cracking, river shape and sector, many second cracks on the fracture surface. Keywords: FV520B, Wedge opening loading specimen, Stress corrosion cracking, Hydrogen sulfide

  7. Reliability of Electrochemical Techniques for Determining Corrosion Rates on Carbon Steel in Sulfide Media

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Hemmingsen, T.; Nielsen, Lars Vendelbo

    2007-01-01

    if the biofilm in combination with ferrous sulfide corrosion products cover the steel surface. Corrosion rates can be overestimated by a factor of 10 to 100 with electrochemical techniques - both by linear polarization resistance (LPR) and electrochemicel impedance spectroscopy (EIS). Oxygen entering the system......Effects of film formation on carbon steel in hydrogen sulfide (H2S) media may corrupt corrosion rate monitoring by electrochemical techniques. Electrochemical data from H2S solutions, biological sulfide media, and natural sulfide containing geothermal water have been collected, and the process...... of film formation in sulfide solutins was followed by video. It can be shown that capacitative and diffusional effects due to porous reactive deposits tend to dominate the data, resulting in unreliable corrosion rates measured using electrochemical techniques. The effect is strongly increased...

  8. Elevated corrosion rates and hydrogen sulfide in homes with ‘Chinese Drywall’

    International Nuclear Information System (INIS)

    Allen, Joseph G.; MacIntosh, David L.; Saltzman, Lori E.; Baker, Brian J.; Matheson, Joanna M.; Recht, Joel R.; Minegishi, Taeko; Fragala, Matt A.; Myatt, Theodore A.; Spengler, John D.; Stewart, James H.; McCarthy, John F.

    2012-01-01

    In December 2008, the U.S. Consumer Product Safety Commission (CPSC) began receiving reports about odors, corrosion, and health concerns related to drywall originating from China. In response, a detailed environmental health and engineering evaluation was conducted of 41 complaint and 10 non-complaint homes in the Southeast U.S. Each home investigation included characterization of: 1) drywall composition; 2) indoor and outdoor air quality; 3) temperature, moisture, and building ventilation; and 4) copper and silver corrosion rates. Complaint homes had significantly higher hydrogen sulfide concentrations (mean 0.82 vs. 3 , p 2 S: 476 vs. 2 S: 1472 vs. 389 Å/30 d, p < 0.01). The abundance of carbonate and strontium in drywall was also elevated in complaint homes, and appears to be useful objective marker of problematic drywall in homes that meet other screening criteria (e.g., constructed or renovated in 2006–2007, reports of malodor and accelerated corrosion). This research provides empirical evidence of the direct association between homes constructed with ‘Chinese Drywall’ in 2006–2007 and elevated corrosion rates and hydrogen sulfide concentrations in indoor air. - Highlights: ► Environmental measurements in homes with and without “Chinese Drywall” ► Homes with “Chinese Drywall” had higher hydrogen sulfide concentrations ► Homes with “Chinese Drywall” had elevated corrosion rates ► Study provides empirical evidence of reported associations

  9. Double shell slurry low-temperature corrosion tests

    International Nuclear Information System (INIS)

    Divine, J.R.; Bowen, W.M.; McPartland, S.A.; Elmore, R.P.; Engel, D.W.

    1983-09-01

    A series of year-long tests have been completed on potential double shell slurry (DSS) compositions at temperatures up to 100 0 C. These tests have sought data on uniform corrosion, pitting, and stress-corrosion cracking. No indication of the latter two types of corrosion were observed within the test matrix. Corrosion rates after four months were generally below the 1 mpy (25 μm/y) design limit. By the end of twelve months all results were below this limit and, except for very concentrated mixtures, all were below 0.5 mpy. Prediction equations were generated from a model fitted to the data. The equations provide a rapid means of estimating the corrosion rate for proposed DSS compositions

  10. The Secant Rate of Corrosion: Correlating Observations of the USS Arizona Submerged in Pearl Harbor

    Science.gov (United States)

    Johnson, Donald L.; DeAngelis, Robert J.; Medlin, Dana J.; Johnson, Jon E.; Carr, James D.; Conlin, David L.

    2018-03-01

    Contrary to previous linear projections of steel corrosion in seawater, analysis of an inert marker embedded in USS Arizona concretion since the 7 December 1941 attack on Pearl Harbor reveals evidence that the effective corrosion rate decreases with time. The secant rate of corrosion, or SRC correlation, derived from this discovery could have a significant impact on failure analysis investigations for concreted shipwrecks or underwater structures. The correlation yields a lower rate of metal thinning than predicted. Development of the correlation is described.

  11. Corrosion of steel tanks in liquid nuclear wastes

    International Nuclear Information System (INIS)

    Carranza, Ricardo M.; Giordano, Celia M.; Saenz, Eduardo

    2005-01-01

    The objective of this work is to understand how solution chemistry would impact on the corrosion of waste storage steel tanks at the Hanford Site. Future tank waste operations are expected to process wastes that are more dilute with respect to some current corrosion inhibiting waste constituents. Assessment of corrosion damage and of the influence of exposure time and electrolyte composition, using simulated (non-radioactive) wastes, of the double-shell tank wall carbon steel alloys is being conducted in a statistically designed long-term immersion experiment. Corrosion rates at different times of immersion were determined using both weight-loss determinations and electrochemical impedance spectroscopy measurements. Localized corrosion susceptibility was assessed using short-term cyclic potentiodynamic polarization curves. The results presented in this paper correspond to electrochemical and weight-loss measurements of the immersed coupons during the first year of immersion from a two year immersion plan. A good correlation was obtained between electrochemical measurements, weight-loss determinations and visual observations. Very low general corrosion rates ( -1 ) were estimated using EIS measurements, indicating that general corrosion rate of the steel in contact with liquid wastes would no be a cause of tank failure even for these out-of-chemistry limit wastes. (author) [es

  12. Experimental study on stress corrosion crack propagation rate of FV520B in carbon dioxide and hydrogen sulfide solution

    Science.gov (United States)

    Qin, Ming; Li, Jianfeng; Chen, Songying; Qu, Yanpeng

    FV520B steel is a kind of precipitation hardening Martensitic stainless steel, it has high-strength, good plasticity and good corrosion resistance. Stress corrosion cracking (SCC) is one of the main corrosion failure mode for FV520B in industrial transportation of natural gas operation. For a better understanding the effect on SCC of FV520B, the improved wedge opening loading (WOL) specimens and constant displacement loading methods were employed in experimental research in carbon dioxide and hydrogen sulfide solution. The test results showed that the crack propagation rate is 1.941 × 10-7-5.748 × 10-7 mm/s, the stress intensity factor KISCC is not more than 36.83 MPa √{ m } . The rate increases with the increasing of the crack opening displacement. Under the condition of different initial loading, KISCC generally shows a decreasing tendency with the increase in H2S concentration, and the crack propagation rate showed an increasing trend substantially. For the enrichment of sulfur ion in the crack tip induced the generation of pitting corrosion, promoting the surrounding metal formed the corrosion micro batteries, the pit defects gradually extended and connected with the adjacent pit to form a small crack, leading to further propagation till cracking happened. Fracture microscopic morphology displayed typical brittle fracture phenomena, accompanying with trans-granular cracking, river shape and sector, many second cracks on the fracture surface.

  13. Prediction equations for corrosion rates of a A-537 and A-516 steels in Double Shell Slurry, Future PUREX, and Hanford Facilities Wastes

    International Nuclear Information System (INIS)

    Divine, J.R.; Bowen, W.M.; Mackey, D.B.; Bates, D.J.; Pool, K.H.

    1985-06-01

    Even though the interest in the corrosion of radwaste tanks goes back to the mid-1940's when waste storage was begun, and a fair amount of corrosion work has been done since then, the changes in processes and waste types have outpaced the development of new data pertinent to the new double shell tanks. As a consequence, Pacific Northwest Laboratory (PNL) began a development of corrosion data on a broad base of waste compositions in 1980. The objective of the program was to provide operations personnel with corrosion rate data as a function of waste temperature and composition. The work performed in this program examined A-537 tank steel in Double Shell Slurry and Future PUREX Wastes, at temperatures between 40 and 180 0 C as well as in Hanford Facilities Waste at 25 and 50 0 C. In general, the corrosion rates were less than 1 mpy (0.001 in./y) and usually less than 0.5 mpy. Excessive corrosion rates (>1 mpy) were only found in dilute waste compositions or in concentrated caustic compositions at temperatures above 140 0 C. Stress corrosion cracking was only observed under similar conditions. The results are presented as polynomial prediction equations with examples of the output of existing computer codes. The codes are not provided in the text but are available from the authors. 12 refs., 5 figs., 19 tabs

  14. On-line corrosion monitoring in district heating systems

    DEFF Research Database (Denmark)

    Richter, Sonja; Thorarinsdottir, R.I.; Hilbert, Lisbeth Rischel

    2004-01-01

    ), Electrochemical Noise (EN) and Zero Resistance Ammetry (ZRA). Electrochemical Resistance (ER) has also been used to measure corrosion. The method traditionally only measures corrosion off-line but with newly developed high-sensitive ER technique developed by MetriCorr in Denmark, on-line monitoring is possible...... complicates the chemistry of the environment. Hydrogen sulphide is present in geothermal systems and can be formed as a by-product of sulphate-reducing-bacteria (SRB). The application of electrochemical methods makes on-line monitoring possible. These methods include: Linear Polarization Resistance (LPR....... In order to assess both general corrosion and localized corrosion, it is necessary to apply more than one monitoring technique simultaneously, ZRA or EN for measuring localized corrosion and LPR or ER for measuring general corrosion rate. The advantage of monitoring localized corrosion is indisputable...

  15. Corrosion of carbon steel in oxidizing caustic solutions

    International Nuclear Information System (INIS)

    Divine, J.R.; Bowen, W.M.

    1984-01-01

    A series of tests have been completed on a range of proposed waste compositions at temperatures up to 100 0 C. These tests have sought data on uniform corrosion, pitting, and stress corrosion cracking. No indication of the latter two types of corrosion was observed within the test matrix. Corrosion rates after four months were generally below 25μm/y. By the end of twelve months all results, except for very concentrated mixtures, were below 13 μm/y. Prediction equations were generated from a model fitted to the data. The equations provide a rapid means of estimating the corrosion rate for waste compositions and temperatures within the test limits

  16. Effect of aging on the general corrosion and stress corrosion cracking of uranium--6 wt % niobium alloy

    International Nuclear Information System (INIS)

    Koger, J.W.; Ammons, A.M.; Ferguson, J.E.

    1975-11-01

    Mechanical properties of the uranium-6 wt percent niobium alloy change with aging time and temperature. In general, the ultimate tensile strength and hardness reach a peak, while elongation becomes a minimum at aging temperatures between 400 and 500 0 C. The first optical evidence of a second phase was in the 400 0 C-aged alloy, while complete transformation to a two-phase structure was seen in the 600 0 C-aged alloy. The maximum-strength conditions correlate with the minimum stress corrosion cracking (SCC) resistance. The maximum SCC resistance is found in the as-quenched and 150, 200, and 600 0 C-aged specimens. The as-quenched and 300 0 C-aged specimens had the greatest resistance to general corrosion in aqueous chloride solutions; the 600 0 C-aged specimen had the least resistance

  17. Elevated corrosion rates and hydrogen sulfide in homes with 'Chinese Drywall'

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Joseph G.; MacIntosh, David L. [Environmental Health and Engineering, Inc., 117 Fourth Avenue, Needham, MA (United States); Harvard School of Public Health, 677 Huntington Avenue, Boston, MA (United States); Saltzman, Lori E. [U.S. Consumer Product Safety Commission, Bethesda, MD (United States); Baker, Brian J. [Environmental Health and Engineering, Inc., 117 Fourth Avenue, Needham, MA (United States); Matheson, Joanna M.; Recht, Joel R. [U.S. Consumer Product Safety Commission, Bethesda, MD (United States); Minegishi, Taeko; Fragala, Matt A.; Myatt, Theodore A. [Environmental Health and Engineering, Inc., 117 Fourth Avenue, Needham, MA (United States); Spengler, John D.; Stewart, James H. [Environmental Health and Engineering, Inc., 117 Fourth Avenue, Needham, MA (United States); Harvard School of Public Health, 677 Huntington Avenue, Boston, MA (United States); McCarthy, John F., E-mail: jmcccarthy@eheinc.com [Environmental Health and Engineering, Inc., 117 Fourth Avenue, Needham, MA (United States)

    2012-06-01

    In December 2008, the U.S. Consumer Product Safety Commission (CPSC) began receiving reports about odors, corrosion, and health concerns related to drywall originating from China. In response, a detailed environmental health and engineering evaluation was conducted of 41 complaint and 10 non-complaint homes in the Southeast U.S. Each home investigation included characterization of: 1) drywall composition; 2) indoor and outdoor air quality; 3) temperature, moisture, and building ventilation; and 4) copper and silver corrosion rates. Complaint homes had significantly higher hydrogen sulfide concentrations (mean 0.82 vs. < LOD {mu}g/m{sup 3}, p < 0.05), and significantly greater rates of copper sulfide and silver sulfide corrosion compared to non-complaint homes (Cu{sub 2}S: 476 vs. < 32 A/30 d, p < 0.01; Ag{sub 2}S: 1472 vs. 389 A/30 d, p < 0.01). The abundance of carbonate and strontium in drywall was also elevated in complaint homes, and appears to be useful objective marker of problematic drywall in homes that meet other screening criteria (e.g., constructed or renovated in 2006-2007, reports of malodor and accelerated corrosion). This research provides empirical evidence of the direct association between homes constructed with 'Chinese Drywall' in 2006-2007 and elevated corrosion rates and hydrogen sulfide concentrations in indoor air. - Highlights: Black-Right-Pointing-Pointer Environmental measurements in homes with and without 'Chinese Drywall' Black-Right-Pointing-Pointer Homes with 'Chinese Drywall' had higher hydrogen sulfide concentrations Black-Right-Pointing-Pointer Homes with 'Chinese Drywall' had elevated corrosion rates Black-Right-Pointing-Pointer Study provides empirical evidence of reported associations.

  18. Monitoring of corrosion rates of Fe-Cu alloys under wet/dry condition in weakly alkaline environments

    International Nuclear Information System (INIS)

    Kim, Je Kyoung; Nishikata, Atsushi; Tsuru, Tooru

    2002-01-01

    When the steel, containing scrap elements like copper, is used as reinforcing steel bars for concrete, the steel is exposed to alkaline environments. in this study, AC impedance technique has been applied to the monitoring of corrosion rates of iron and several Fe-Cu (0.4, 10wt%) alloys in a wet-dry cycle condition. The wet-dry cycle was conducted by exposure to alternate conditions of 1 hour-immersion in a simulated pH10 concrete solution (Ca(OH) 2 ) containing 0.01M NaCl and 3 hour-drying at 298K and 50%RH. The corrosion rate of the iron is greatly accelerated by the wet-dry cycles. Because the active FeOOH species, which are produced by the oxidation of Fe(II, III)oxide in air during drying, act as very strong oxidants to the corrosion in the wet condition. As the drying progresses, iron shows a large increase in the corrosion rate and a small shift of the corrosion potential to the positive values. This can be explained by acceleration of oxygen transport through the thin electrolyte layer In contrast to iron, the Fe-Cu alloys show low corrosion rates and the high corrosion potentials in whole cycles

  19. Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants

    International Nuclear Information System (INIS)

    Uddin, M S; Hall, Colin; Murphy, Peter

    2015-01-01

    Due to their excellent biodegradability characteristics, Mg and Mg-based alloys have become an emerging material in biomedical implants, notably for repair of bone as well as coronary arterial stents. However, the main problem with Mg-based alloys is their rapid corrosion in aggressive environments such as human bodily fluids. Previously, many approaches such as control of alloying materials, composition and surface treatments, have been attempted to regulate the corrosion rate. This article presents a comprehensive review of recent research focusing on surface treatment techniques utilised to control the corrosion rate and surface integrity of Mg-based alloys in both in vitro and in vivo environments. Surface treatments generally involve the controlled deposition of thin film coatings using various coating processes, and mechanical surfacing such as machining, deep rolling or low plasticity burnishing. The aim is to either make a protective thin layer of a material or to change the micro-structure and mechanical properties at the surface and sub-surface levels, which will prevent rapid corrosion and thus delay the degradation of the alloys. We have organised the review of past works on coatings by categorising the coatings into two classes—conversion and deposition coatings—while works on mechanical treatments are reviewed based on the tool-based processes which affect the sub-surface microstructure and mechanical properties of the material. Various types of coatings and their processing techniques under two classes of coating and mechanical treatment approaches have been analysed and discussed to investigate their impact on the corrosion performance, biomechanical integrity, biocompatibility and cell viability. Potential challenges and future directions in designing and developing the improved biodegradable Mg/Mg-based alloy implants were addressed and discussed. The literature reveals that no solutions are yet complete and hence new and innovative approaches

  20. Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants

    Science.gov (United States)

    Uddin, M S; Hall, Colin; Murphy, Peter

    2015-01-01

    Due to their excellent biodegradability characteristics, Mg and Mg-based alloys have become an emerging material in biomedical implants, notably for repair of bone as well as coronary arterial stents. However, the main problem with Mg-based alloys is their rapid corrosion in aggressive environments such as human bodily fluids. Previously, many approaches such as control of alloying materials, composition and surface treatments, have been attempted to regulate the corrosion rate. This article presents a comprehensive review of recent research focusing on surface treatment techniques utilised to control the corrosion rate and surface integrity of Mg-based alloys in both in vitro and in vivo environments. Surface treatments generally involve the controlled deposition of thin film coatings using various coating processes, and mechanical surfacing such as machining, deep rolling or low plasticity burnishing. The aim is to either make a protective thin layer of a material or to change the micro-structure and mechanical properties at the surface and sub-surface levels, which will prevent rapid corrosion and thus delay the degradation of the alloys. We have organised the review of past works on coatings by categorising the coatings into two classes—conversion and deposition coatings—while works on mechanical treatments are reviewed based on the tool-based processes which affect the sub-surface microstructure and mechanical properties of the material. Various types of coatings and their processing techniques under two classes of coating and mechanical treatment approaches have been analysed and discussed to investigate their impact on the corrosion performance, biomechanical integrity, biocompatibility and cell viability. Potential challenges and future directions in designing and developing the improved biodegradable Mg/Mg-based alloy implants were addressed and discussed. The literature reveals that no solutions are yet complete and hence new and innovative approaches

  1. Corrosion Cost and Corrosion Map of Korea - Based on the Data from 2005 to 2010

    International Nuclear Information System (INIS)

    Kim, Y. S.; Lim, H. K.; Kim, J. J.; Hwang, W. S.; Park, Y. S.

    2011-01-01

    Corrosion of metallic materials occurs by the reaction with corrosive environment such as atmosphere, marine, soil, urban, high temperature etc. In general, reduction of thickness and cracking and degradation are resulted from corrosion. Corrosion in all industrial facilities and infrastructure causes large economic losses as well as a large number of accidents. Economic loss by corrosion has been reported to be nearly 1-6% of GNP or GDP. In order to reduce corrosion damage of industrial facilities, corrosion map as well as a systematic investigation of the loss of corrosion in each industrial sector is needed. The Corrosion Science Society of Korea in collaboration with 15 universities and institutes has started to survey on the cost of corrosion and corrosion map of Korea since 2005. This work presents the results of the survey on cost of corrosion by Uhlig, Hoar, and input-output methods, and the evaluation of atmospheric corrosion rate of carbon steel, weathering steel, galvanized steel, copper, and aluminum in Korea. The total corrosion cost was estimated in terms of the percentage of the GDP of industry sectors and the total GDP of Korea. According to the result of Input/output method, corrosion cost of Korea was calculated as 2.9% to GDP (2005). Time of wetness was shown to be categories 3 to 4 in all exposure areas. A definite seasonal difference was observed in Korea. In summer and fall, time of wetness was higher than in other seasons. Because of short exposure period (12 months), significant corrosion trends depending upon materials and exposure corrosion environments were not revealed even though increased mass loss and decreased corrosion rate by exposure time

  2. Corrosion of High Chromium Ferritic/Martensitic Steels in High Temperature Water. a Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, P.; Lapena, J.; Blazquez, F. [Ciemat, Madrid (Spain)

    2000-07-01

    Available literature concerning corrosion of high-chromium ferritic/martensitic steels in high temperature water has been reviewed. The subjects considered are general corrosion, effect of irradiation on corrosion, stress corrosion cracking (SCC) and irradiation-assisted stress corrosion cracking (IASCC). In addition some investigations about radiation induced segregation (RIS) are shown in order to know the compositional changes at grain boundaries of these alloys and their influence on corrosion properties. The data on general corrosion indicate moderate corrosion rates in high temperature water up to 350 degree centigree. Considerably larger corrosion rates were observed under neutron irradiation. The works concerning to the behaviour of these alloys to stress corrosion cracking seem to conclude that in these materials is necessary to optimize the temper temperature and to carry out the post-weld heat treatments properly in order to avoid stress corrosion cracking. (Author) 40 refs.

  3. Corrosion of High Chromium Ferritic/Martensitic Steels in High Temperature Water. a Literature Review

    International Nuclear Information System (INIS)

    Fernandez, P.; Lapena, J.; Blazquez, F.

    2000-01-01

    Available literature concerning corrosion of high-chromium ferritic/martensitic steels in high temperature water has been reviewed. The subjects considered are general corrosion, effect of irradiation on corrosion, stress corrosion cracking (SCC) and irradiation-assisted stress corrosion cracking (IASCC). In addition some investigations about radiation induced segregation (RIS) are shown in order to know the compositional changes at grain boundaries of these alloys and their influence on corrosion properties. The data on general corrosion indicate moderate corrosion rates in high temperature water up to 350 degree centigrade. Considerably larger corrosion rates were observed under neutron irradiation. The works concerning to the behaviour of these alloys to stress corrosion cracking seem to conclude that in these materials is necessary to optimize the temper temperature and to carry out the post-weld heat treatments properly in order to avoid stress corrosion cracking. (Author) 40 refs

  4. Prediction of pipeline corrosion rate based on grey Markov models

    International Nuclear Information System (INIS)

    Chen Yonghong; Zhang Dafa; Peng Guichu; Wang Yuemin

    2009-01-01

    Based on the model that combined by grey model and Markov model, the prediction of corrosion rate of nuclear power pipeline was studied. Works were done to improve the grey model, and the optimization unbiased grey model was obtained. This new model was used to predict the tendency of corrosion rate, and the Markov model was used to predict the residual errors. In order to improve the prediction precision, rolling operation method was used in these prediction processes. The results indicate that the improvement to the grey model is effective and the prediction precision of the new model combined by the optimization unbiased grey model and Markov model is better, and the use of rolling operation method may improve the prediction precision further. (authors)

  5. The Corrosion Rate Measurement of Inconel 690 on High Temperature andPressure by Using CMS100

    International Nuclear Information System (INIS)

    Sriyono; Febrianto

    2000-01-01

    The corrosion rate measurement of Inconel 690 on high temperature andpressure had been done. By using an Autoclave, pressure and temperature canbe simulated. The environment of this experiment is 0.1 ppm of chloridesolution, which permit to dissolved in secondary cooling of steam generator.The corrosion rate measurement was done on temperature between 150 o C and230 o C with step 10 o C. Pressure experiment is the pressure, which occurredin Autoclave. Corrosion rate is measured by CMS100. From the Tafel analysis,corrosion rate of Inconel 690 linearity increased from 6.548 x 10 -5 mpy to4.331 x 10 -4 mpy. It concludes that Inconel 690 is resist on corrosionenvironment, so it's most using on the fabrication of steam generator tubeson the advanced power plant. (author)

  6. New corrosion issues in gas sweetening plants

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, R.G. (CLI International and Asperger Technologies, Houston, TX (United States))

    Gas treating plants are experiencing corrosion problems which impact on efficiency and safety. While general corrosion is not particularly hazardous in the gas processing industry, local corrosion is very dangerous since it has several different mechanisms, all of which have dangerously high rates, and it occurs at locations which are hard to find and hard to predict. A newly discovered, velocity-dependent type of corrosion is reported. It is related to yet-undefined species which cause excessively high corrosion in areas of turbulence. This accelerated corrosion is not due to erosion or cavitation, but to a diffusion-limited reaction accelerated by turbulence. A full-flow test loop was built to evaluate the corrosiveness of gas plant solutions at their normal temperature and flow rates. Test runs were conducted with Co[sub 2]-loaded amine solutions for periods of 12 days. Carbon steel specimens mounted in the test loop were examined and corrosion rates calculated. Chromium alloys were shown to be attacked by corrodents in the low-velocity part of the loop and very aggressively attacked in the high-velocity part. The tests demonstrate the need for rigorous monitoring of corrosion in areas of higher velocity such as piping elbows and other points of turbulence. 5 refs., 2 figs., 3 tabs.

  7. A point defect model for the general and pitting corrosion on iron-oxide-electrolyte interface deduced from current oscillations

    CERN Document Server

    Pagitsas, M; Sazou, D

    2003-01-01

    Analysis of the passive-active oscillatory region of the Fe-0.75 M H sub 2 SO sub 4 system, perturbed by adding small amounts of halide species, allow the distinction between pitting and general corrosion. Complex periodic and aperiodic current oscillations characterize pitting corrosion whereas monoperiodic oscillations of a relaxation type indicate general corrosion. A point defect model (PDM) is considered for the microscopic description of the growth and breakdown of the iron oxide film. The physicochemical processes leading to different types of corrosion can be clarified in terms of the PDM. Occupation of an anion vacancy by a halide ion results in the localized attack of the passive oxide and pitting corrosion. On the other hand, the formation of surface soluble iron complexes is related to the uniform dissolution of the passive oxide and general corrosion.

  8. Influence of Pitting Corrosion on Fatigue and Corrosion Fatigue of Ship and Offshore Structures, Part II: Load - Pit - Crack Interaction

    Directory of Open Access Journals (Sweden)

    Jakubowski Marek

    2015-09-01

    Full Text Available In the paper has been discussed influence of stresses on general corrosion rate and corrosion pit nucleation rate and growth , whose presence has been questioned by some authors but accepted by most of them. Influence of roughness of pit walls on fatigue life of a plate suffering pit corrosion and presence of the so called „ non-damaging” pits which never lead to initiation of fatigue crack, has been presented. Possibility of prediction of pit-to-crack transition moment by two different ways, i.e. considering a pit a stress concentrator or an equivalent crack, has been analyzed. Also, influence of statistical distribution of depth of corrosion pits as well as anticorrosion protection on fatigue and corrosion fatigue has been described.

  9. Ultrasonic Measurement of Erosion/corrosion Rates in Industrial Piping Systems

    Science.gov (United States)

    Sinclair, A. N.; Safavi, V.; Honarvar, F.

    2011-06-01

    Industrial piping systems that carry aggressive corrosion or erosion agents may suffer from a gradual wall thickness reduction that eventually threatens pipe integrity. Thinning rates could be estimated from the very small change in wall thickness values measured by conventional ultrasound over a time span of at least a few months. However, measurements performed over shorter time spans would yield no useful information—minor signal distortions originating from grain noise and ultrasonic equipment imperfections prevent a meaningful estimate of the minuscule reduction in echo travel time. Using a Model-Based Estimation (MBE) technique, a signal processing scheme has been developed that enables the echo signals from the pipe wall to be separated from the noise. This was implemented in a laboratory experimental program, featuring accelerated erosion/corrosion on the inner wall of a test pipe. The result was a reduction in the uncertainty in the wall thinning rate by a factor of four. This improvement enables a more rapid response by system operators to a change in plant conditions that could pose a pipe integrity problem. It also enables a rapid evaluation of the effectiveness of new corrosion inhibiting agents under plant operating conditions.

  10. Concrete cover cracking with reinforcement corrosion of RC beam during chloride-induced corrosion process

    International Nuclear Information System (INIS)

    Zhang Ruijin; Castel, Arnaud; Francois, Raoul

    2010-01-01

    This paper deals with the evolution of the corrosion pattern based on two beams corroded by 14 years (beam B1CL1) and 23 years (beam B2CL1) of conservation in a chloride environment. The experimental results indicate that, at the cracking initiation stage and the first stage of cracking propagation, localized corrosion due to chloride ingress is the predominant corrosion pattern and pitting corrosion is the main factor that influences the cracking process. As corrosion cracking increases, general corrosion develops rapidly and gradually becomes predominant in the second stage of cracking propagation. A comparison between existing models and experimental results illustrates that, although Vidal et al.'s model can better predict the reinforcement corrosion of beam B1CL1 under localized corrosion, it cannot predict the corrosion of beam B2CL1 under general corrosion. Also, Rodriguez's model, derived from the general corrosion due to electrically accelerated corrosion experiments, cannot match natural chloride corrosion irrespective of whether corrosion is localized or general. Thus, for natural general corrosion in the second stage of cracking propagation, a new model based on the parameter of average steel cross-section loss is put forward to predict steel corrosion from corrosion cracking.

  11. Corrosion in ICPP fuel storage basins

    International Nuclear Information System (INIS)

    Dirk, W.J.

    1993-09-01

    The Idaho Chemical Processing Plant currently stores irradiated nuclear fuel in fuel storage basins. Historically, fuel has been stored for over 30 years. During the 1970's, an algae problem occurred which required higher levels of chemical treatment of the basin water to maintain visibility for fuel storage operations. This treatment led to higher levels of chlorides than seen previously which cause increased corrosion of aluminum and carbon steel, but has had little effect on the stainless steel in the basin. Corrosion measurements of select aluminum fuel storage cans, aluminum fuel storage buckets, and operational support equipment have been completed. Aluminum has exhibited good general corrosion rates, but has shown accelerated preferential attack in the form of pitting. Hot dipped zinc coated carbon steel, which has been in the basin for approximately 40 years, has shown a general corrosion rate of 4 mpy, and there is evidence of large shallow pits on the surface. A welded Type 304 stainless steel corrosion coupon has shown no attack after 13 years exposure. Galvanic couples between carbon steel welded to Type 304 stainless steel occur in fuel storage yokes exposed to the basin water. These welded couples have shown galvanic attack as well as hot weld cracking and intergranular cracking. The intergranular stress corrosion cracking is attributed to crevices formed during fabrication which allowed chlorides to concentrate

  12. Effect of heating rate on caustic stress corrosion cracking

    International Nuclear Information System (INIS)

    Indig, M.E.; Hoffman, N.J.

    1977-01-01

    To evaluate effects of a large water leak into the sodium side of a steam generator in a Liquid Metal Fast Breeder Reactor the Liquid Metal Engineering Center (LMEC) at Canoga Park, California, is performing a series of tests in a Large Leak Test Rig (LLTR). This test series involves heating a large steam generator that possibly contains localized pockets of aqueous caustic retained from a previous sodium-water reaction. Such pockets of caustic solution could be in contact with welds and other components that contain residual stresses up to the yield point. The LMEC and General Electric (GE) ran a series of tests to evaluate the effect of heating rate on caustic stress corrosion cracking (SCC) for alloys either used or considered for the LLTR. A summary of the temperatures and caustic concentration ranges that can result in caustic SCC for carbon steel and Type-304 stainless steel is given

  13. Corrosion studies on containment materials for vitrified high level nuclear waste

    International Nuclear Information System (INIS)

    Taylor, K.J.; Bland, I.D.; Marsh, G.P.

    1984-01-01

    The general corrosion of carbon steels buried in granite or bentonite beds and saturated with synthetic granitic ground water is investigated. Corrosion rates were measured after 170 and 470 days, and pitting corrosion after 200hrs and 300hrs. Experiments to measure corrosion rates due to radiolysis of γ-radiated argon-purged ground water were also carried out. Results support the feasibility of using carbon steel packs for isolating high-level wastes for 500-1000 yrs. (U.K.)

  14. Simulation of corrosion product activity in pressurized water reactors under flow rate transients

    International Nuclear Information System (INIS)

    Mirza, Anwar M.; Mirza, Nasir M.; Mir, Imran

    1998-01-01

    Simulation of coolant activation due to corrosion products and impurities in a typical pressurized water reactor has been done under flow rate transients. Employing time dependent production and losses of corrosion products in the primary coolant path an approach has been developed to calculate the coolant specific activity. Results for 24 Na, 56 Mn, 59 Fe, 60 Co and 99Mo show that the specific activity in primary loop approaches equilibrium value under normal operating conditions fairly rapidly. Predominant corrosion product activity is due to Mn-56. Parametric studies at full power for various ramp decreases in flow rate show initial decline in the activity and then a gradual rise to relatively higher saturation values. The minimum value and the time taken to reach the minima are strong functions of the slope of linear decrease in flow rate. In the second part flow rate coastdown was allowed to occur at different flow half-times. The reactor scram was initiated at 90% of the normal flow rate. The results show that the specific activity decreases and the rate of decrease depends on pump half time and the reactor scram conditions

  15. Influence of cooling rate on the microstructure and corrosion behavior of Al–Fe alloys

    International Nuclear Information System (INIS)

    Dorin, T.; Stanford, N.; Birbilis, N.; Gupta, R.K.

    2015-01-01

    Highlights: • Increasing the cooling rate from 0.1 to 500 °C/s, mass loss rate decreased by 6 times. • Increase in corrosion resistance was attributed to the refined Fe-intermetallics. • Increased cooling rate resulted in increased Fe content in solid solution. • Direct strip casting can produce alloys with higher acceptable content of impurities. • Direct Strip Casting is a potential candidate to improve recyclability of Al alloys - Abstract: The effect of Fe in Al is technologically important for commercial Al-alloys, and in recycled Al. This work explores the use of the novel rapid solidification technology, known as direct strip casting, to improve the recyclability of Al-alloys. We provide a comparison between the corrosion and microstructure of Al–Fe alloys prepared with wide-ranging cooling rates (0.1 °C/s to 500 °C/s). Rapid cooling was achieved via direct strip casting, while slow cooling was achieved using sand casting. Corrosion was studied via polarisation and immersion tests, followed by surface analysis using scanning electron microscopy and optical profilometry. It was shown that the corrosion resistance of Al–Fe alloys is improved with increased cooling rates, attributed to the reduced size and number of Fe-containing intermetallics.

  16. Controlling corrosion rate of Magnesium alloy using powder mixed electrical discharge machining

    Science.gov (United States)

    Razak, M. A.; Rani, A. M. A.; Saad, N. M.; Littlefair, G.; Aliyu, A. A.

    2018-04-01

    Biomedical implant can be divided into permanent and temporary employment. The duration of a temporary implant applied to children and adult is different due to different bone healing rate among the children and adult. Magnesium and its alloys are compatible for the biodegradable implanting application. Nevertheless, it is difficult to control the degradation rate of magnesium alloy to suit the application on both the children and adult. Powder mixed electrical discharge machining (PM-EDM) method, a modified EDM process, has high capability to improve the EDM process efficiency and machined surface quality. The objective of this paper is to establish a formula to control the degradation rate of magnesium alloy using the PM-EDM method. The different corrosion rate of machined surface is hypothesized to be obtained by having different combinations of PM-EDM operation inputs. PM-EDM experiments are conducted using an opened-loop PM-EDM system and the in-vitro corrosion tests are carried out on the machined surface of each specimen. There are four operation inputs investigated in this study which are zinc powder concentration, peak current, pulse on-time and pulse off-time. The results indicate that zinc powder concentration is significantly affecting the response with 2 g/l of zinc powder concentration obtaining the lowest corrosion rate. The high localized temperature at the cutting zone in spark erosion process causes some of the zinc particles get deposited on the machined surface, hence improving the surface characteristics. The suspended zinc particles in the dielectric fluid have also improve the sparking efficiency and the uniformity of sparks distribution. From the statistical analysis, a formula was developed to control the corrosion rate of magnesium alloy within the range from 0.000183 mm/year to 0.001528 mm/year.

  17. Corrosion studies on HGW-canister materials for marine disposal

    International Nuclear Information System (INIS)

    Taylor, K.J.; Bland, I.D.; Smith, S.; Marsh, G.P.

    1986-03-01

    Results are presented from theoretical and experimental work undertaken to investigate and assess the general corrosion behaviour of carbon steel canister/overpacks for heat generating nuclear waste under marine disposal conditions. The mean general corrosion rates of carbon steels, determined experimentally by polarisation resistance measurements on specimens in on-going immersion tests, are between 65-124 μm yr -1 at 90 0 C and 5-25 μm yr -1 at 25 0 C and are tending to increase with time. Anomalously high corrosion rates are being indicated by similar tests at 50 0 C. It is not clear what reliance should be placed on the polarisation resistance results, however, and therefore no conclusion will be drawn until the tests are dismantled and inspected in the 1985/86 programme. Tests with γ-radiation on forged carbon steel specimens immersed in deaerated seawater at 90 0 C show that this causes an acceleration of corrosion rate at the three dose rates down to at least 300 R h -1 . Deep ocean sediment from GME also accelerates the corrosion rate of carbon steel in deaerated seawater both with and without γ-radiation. The effect diminishes with continued exposure and is thought to be due to the presence of either an additional so far unidentified oxidising agent or some component which reduces the corrosion protection afforded by the build up of a corrosion product layer. Acquisition of improved electrochemical kinetic data for the mathematical model is now complete, and the model has been run for temperatures of 25 and 90 0 C, where it predicts steady corrosion rates of 19.3 and 180 μm/yr. The model has shown that the rate of attack is not influenced greatly by the depth of sediment, and that the component of corrosion caused by radiation is of the order of 7 mm over 1000 years. (author)

  18. Corrosion of Zircaloy-clad fuel rods in high-temperature PWRs: Measurement of waterside corrosion in North Anna Unit 1

    International Nuclear Information System (INIS)

    Balfour, M.G.; Kilp, G.R.; Comstock, R.J.; McAtee, K.R.; Thornburg, D.R.

    1992-03-01

    Twenty-four peripheral rods and two interior rods from North Anna Unit 1, End-of-Cycle 7, were measured at poolside for waterside corrosion on four-cycle Region 6 assemblies F35 and F66, with rod average burnups of 60 GWD/MTU. Similar measurements were obtained on 24 two-cycle fuel rods from Region 8A assemblies H02 and H10 with average burnups of about 40 GWD/MTU. The Region 6 peripheral rods had been corrosion measured previously after three cycles, at 45 GWD/MTU average burnup. The four-cycle Region 6 fuel rods showed high corrosion, compared to only intermediate corrosion level after three cycles. The accelerated corrosion rate in the fourth cycle was accompanied by extensive laminar cracking and spalling of the oxide film in the thickest regions. The peak corrosion of the two-cycle region 8A rods was 32 μm to 53 μm, with some isolated incipient oxide spalling. In conjunction with the in-reactor corrosion measurements, extensive characterization tests plus long-term autoclave corrosion tests were performed on archive samples of the three major tubing lots represented in the North Anna measurements. The autoclave tests generally showed the same ordering of corrosion by tubing lot as in the reactor; the chief difference between the archive tubing samples was a lower tin content (1.38 percent) for the lot with the lowest corrosion rate compared with a higher tin content (1.58) for the lot with the highest corrosion rate. There was no indication in the autoclave tests of an accelerated rate of corrosion as observed in the reactor

  19. Potential for erosion corrosion of SRS high level waste tanks

    International Nuclear Information System (INIS)

    Zapp, P.E.

    1994-01-01

    SRS high-level radioactive waste tanks will not experience erosion corrosion to any significant degree during slurry pump operations. Erosion corrosion in carbon steel structures at reported pump discharge velocities is dominated by electrochemical (corrosion) processes. Interruption of those processes, as by the addition of corrosion inhibitors, sharply reduces the rate of metal loss from erosion corrosion. The well-inhibited SRS waste tanks have a near-zero general corrosion rate, and therefore will be essentially immune to erosion corrosion. The experimental data on carbon steel erosion corrosion most relevant to SRS operations was obtained at the Hanford Site on simulated Purex waste. A metal loss rate of 2.4 mils per year was measured at a temperature of 102 C and a slurry velocity comparable to calculated SRS slurry velocities on ground specimens of the same carbon steel used in SRS waste tanks. Based on these data and the much lower expected temperatures, the metal loss rate of SRS tanks under waste removal and processing conditions should be insignificant, i.e. less than 1 mil per year

  20. Influence of LMFBR fuel pin temperature profiles on corrosion rate

    International Nuclear Information System (INIS)

    Shiels, S.A.; Bagnall, C.; Schrock, S.L.; Orbon, S.J.

    1976-01-01

    The paper describes the sodium corrosion behavior of 20 percent cold worked Type 316 stainless steel fuel pin cladding under a simulated reactor thermal environment. A temperature gradient, typical of a fuel pin, was generated in a 0.9 m long heater section by direct resistance heating. Specimens were located in an isothermal test section immediately downstream of the heater. A comparison of the measured corrosion rates with available data showed an enhancement factor of between 1.5 and 2 which was attributed to the severe axial temperature gradient through the heater. Differences in structure and surface chemistry were also noted

  1. A method for measuring the corrosion rate of materials in spallation neutron source target/blanket cooling loops

    International Nuclear Information System (INIS)

    Lillard, R.S.; Butt, D.P.

    1999-01-01

    This paper summarizes the ongoing evaluation of the susceptibility of materials in accelerator target/blanket cooling loops to corrosion. To simulate the exposure environment in a target/blanket cooling loop, samples were irradiated by an 800 MeV proton beam at the A6 Target Station of the Los Alamos Neutron Science Center (LANSCE). To accomplish this, a cooling water loop capable of exposing corrosion samples to an 800 MeV proton beam at currents upwards of 1 mA was constructed. This loop allowed control and evaluation hydrogen water chemistry, water conductivity, and solution pH. Specially designed ceramic sealed samples were used to measure the real-time corrosion rates of materials placed directly in the proton beam using electrochemical impedance spectroscopy (EIS). EIS was also used to measure real-time corrosion rates of samples that were out of the proton beam and downstream from the in-beam samples. These out-of-beam probes primarily examined the effects of long lived water radiolysis products from proton irradiation on corrosion rates. An overview of the LANSCE corrosion loop, the corrosion probes, and data from an in-beam alloy 718 probe are presented

  2. Intergranular corrosion testing of austenitic stainless steels in nitric acid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Whillock, G.O.H.; Dunnett, B. F. [British Nuclear Fuels plc, BNFL, B170, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom)

    2004-07-01

    In hot strong nitric acid solutions, stainless steels exhibit intergranular corrosion. Corrosion rates are often measured from immersion testing of specimens manufactured from the relevant material (e.g. plate or pipe). The corrosion rates, measured from weight loss, are found to increase with time prior to reaching steady state, which can take thousands of hours to achieve. The apparent increase in corrosion rate as a function of time was found to be an artefact due to the surface area of the specimen's being used in the corrosion rate calculations, rather than that of the true area undergoing active corrosion i.e. the grain boundaries. The steady state corrosion rate coincided with the onset of stable grain dropping, where the use of the surface area of the specimen to convert the weight loss measurements to corrosion rates was found to be appropriate. This was confirmed by sectioning of the specimens and measuring the penetration depths. The rate of penetration was found to be independent of time and no induction period was observed. A method was developed to shorten considerably the testing time to reach the steady state corrosion rate by use of a pre-treatment that induces grain dropping. The long-term corrosion rates from specimens which were pre-treated was similar to that achieved after prolonged testing of untreated (i.e. initially ground) specimens. The presence of cut surfaces is generally unavoidable in the simple immersion testing of specimens in test solutions. However, inaccuracy in the results may occur as the measured corrosion rate is often influenced by the orientation of the microstructure, the highest rates typically being observed on the cut surfaces. Two methods are presented which allow deconvolution of the corrosion rates from immersion testing of specimens containing cut surfaces, thus allowing reliable prediction of the long-term corrosion rate of plate surfaces. (authors)

  3. Simulation of corrosion product activity in ion- exchanger of PWR under acceleration of corrosion and flow rate perturbations

    International Nuclear Information System (INIS)

    Mirza, N.M.; Mirza, S.M.; Rafique, M.

    2005-01-01

    In this paper computer code developed earlier by the authors (CPAIR-P) has been employed to compute corrosion product activity in PWRs for flow rate perturbations. The values of radioactivity in ion exchanger of Pressurized Water Reactor (PWR) under normal and flow rate perturbation conditions have been calculated. For linearly accelerating corrosion rates, activity saturates for removal rate of 600 cm/sup 3// s in primary coolant of PWR. A higher removal rate of 750 cm/sup 3// s was selected for which the saturation value is sufficiently low (0. 28 micro Ci/cm/sup 3/). Simulation results shows that the Fe/sup 59/ Na/sup 24/, Mo/sup 99/, Mn/sup 56/ reaches saturation values with in about 700 hours of reactor operation. However, Co/sup 58/ and Co/sup 60/ keep on accumulating and do not saturate with in 2000 hours of these simulation time. When flow rate is decreased by 10% of rated flow rate after 500 hours of reactor operation, a dip in activity is seen, which reaches to the value of 0.00138 micro Ci cm/sup -3/ then again it begins to rise and reaches saturation value of 0.00147 cm/sup 3//s. (author)

  4. An electrochemical study of the corrosion behavior of primer coated 2219-T87 aluminum

    Science.gov (United States)

    Danford, M. D.; Higgins, R. H.

    1985-01-01

    The corrosion behavior for 2219-T87 aluminum coated with various primers, including those used for the external tank and solid rocket boosters of the Space Shuttle Transportation System, were investigated using electrochemical techniques. Corrosion potential time, polarization resistance time, electrical resistance time, and corrosion rate time measurements were all investigated. It was found that electrical resistance time and corrosion rate time measurement were most useful for studying the corrosion behavior of painted aluminum. Electrical resistance time determination give useful information concerning the porosity of paint films, while corrosion rate time curves give important information concerning overall corrosion rates and corrosion mechanisms. In general, the corrosion rate time curves all exhibited at least one peak during the 30 day test period, which was attributed, according to the proposed mechanisms, to the onset of the hydrogen evolution reaction and the beginning of destruction of the protective properties of the paint film.

  5. Chromium steel corrosion rates and mechanisms in aqueous nickel chloride at 300C

    International Nuclear Information System (INIS)

    Forrest, J.E.; Broomfield, J.P.; Mitra, P.K.

    1985-01-01

    Rapid corrosion of PWR steam generator carbon steel support structures and consequential denting of steam generator tubes led to investigation of alternative support designs and materials. In recent designs of steam generators the carbon steel drilled hole tube support plate has been replaced by one of quatrefoil or trefoil shape to minimize the contact area. These plates are now made of more corrosion resistant chromium steel (approx. 12%Cr) to ensure that they are less vulnerable to attack in the event of adverse boiler water chemistry. This study was initiated to examine the corrosion behavior of a range of chromium steels in the acid chloride environments characteristic of tube/support plate crevices under adverse boiler water conditions. Objectives of the study were to: 1) determine the relative susceptibility of candidate tube support plate steels to acid chloride corrosion; 2) investigate the corrosion product morphology and its relationship to the corrosion mechanism; 3) determine the effect of environment aggressiveness on 12%Cr (A405) steel corrosion rates and mechanisms; and 4) investigate the effect of restraint stress/environment on denting potential of A405. Experimental method and results are discussed

  6. Electrochemical and corrosion properties of carbon steel in simulated geological disposal environments

    International Nuclear Information System (INIS)

    Sugimoto, Katsuhisa

    2011-01-01

    This paper reviews electrochemical and corrosion studies on the application of carbon steel to an overpack container, which is used for the geological disposal of radioactive wastes. Deaerated alkaline Na 2 SO 4 -NaHCO 3 - NaCl solutions and bentonite soaked with the solutions are used as simulated geological disposal environments. Electrochemical studies show the corrosion of the steel in an early stage is the activation control. Corrosion rates are controlled by the composition of the solutions, alloying elements, and the structure of the steel. The rates decrease with time due to the formation of FeCO 3 (siderite) film on the steel. Immersion corrosion tests show general corrosion morphology. Average corrosion rates of long duration have been evaluated. Clear proofs of the initiation of localized corrosion, such as pitting, crevice corrosion, hydrogen embrittlement and stress-corrosion cracking, have not been reported. (author)

  7. Chloride-induced corrosion mechanism and rate of enamel- and epoxy-coated deformed steel bars embedded in mortar

    International Nuclear Information System (INIS)

    Tang, Fujian; Chen, Genda; Brow, Richard K.

    2016-01-01

    The chloride-induced corrosion mechanisms of uncoated, pure enamel (PE)-coated, mixed enamel (ME)-coated, double enamel (DE)-coated, and fusion bonded epoxy (FBE)-coated deformed steel bars embedded in mortar cylinders are investigated in 3.5 wt.% NaCl solution and compared through electrochemical tests and visual inspection. Corrosion initiated after 29 or 61 days of tests in all uncoated and enamel-coated steel bars, and after 244 days of tests in some FBE-coated steel bars. In active stage, DE- and FBE-coated steel bars are subjected to the highest and lowest corrosion rates, respectively. The uncoated and ME-coated steel bars revealed relatively uniform corrosion while the PE-, DE-, and FBE-coated steel bars experienced pitting corrosion around damaged coating areas. Due to the combined effect of ion diffusion and capillary suction, wet–dry cyclic immersion caused more severe corrosion than continuous immersion. Both exposure conditions affected the corrosion rate more significantly than the water–cement ratio in mortar design.

  8. Development and evaluation of an instantaneous atmospheric corrosion rate monitor

    Science.gov (United States)

    Mansfeld, F.; Jeanjaquet, S. L.; Kendig, M. W.; Roe, D. K.

    1985-06-01

    A research program was carried out in which a new instantaneous atmospheric corrosion rate monitor (ACRM) was developed and evaluated, and equipment was constructed which will allow the use of many sensors in an economical way in outdoor exposures. In the first task, the ACRM was developed and tested in flow chambers in which relative humidity and gaseous and particulate pollutant levels can be controlled. Diurnal cycles and periods of rain were simulated. The effects of aerosols were studied. A computerized system was used for collection, storage, and analysis of the electrochemical data. In the second task, a relatively inexpensive electronics system for control of the ACRM and measurement of atmospheric corrosion rates was designed and built. In the third task, calibration of deterioration rates of various metallic and nonmetallic materials with the response of the ACRMs attached to these materials was carried out under controlled environmental conditions using the system developed in the second task. A Quality Assurance project plan was prepared with inputs from the Rockwell International Environmental Monitoring and Service Center and Quality Assurance System audits were performed.

  9. The importance of the strain rate and creep on the stress corrosion cracking mechanisms and models

    International Nuclear Information System (INIS)

    Aly, Omar F.; Mattar Neto, Miguel; Schvartzman, Monica M.A.M.

    2011-01-01

    Stress corrosion cracking is a nuclear, power, petrochemical, and other industries equipment and components (like pressure vessels, nozzles, tubes, accessories) life degradation mode, involving fragile fracture. The stress corrosion cracking failures can produce serious accidents, and incidents which can put on risk the safety, reliability, and efficiency of many plants. These failures are of very complex prediction. The stress corrosion cracking mechanisms are based on three kinds of factors: microstructural, mechanical and environmental. Concerning the mechanical factors, various authors prefer to consider the crack tip strain rate rather than stress, as a decisive factor which contributes to the process: this parameter is directly influenced by the creep strain rate of the material. Based on two KAPL-Knolls Atomic Power Laboratory experimental studies in SSRT (slow strain rate test) and CL (constant load) test, for prediction of primary water stress corrosion cracking in nickel based alloys, it has done a data compilation of the film rupture mechanism parameters, for modeling PWSCC of Alloy 600 and discussed the importance of the strain rate and the creep on the stress corrosion cracking mechanisms and models. As derived from this study, a simple theoretical model is proposed, and it is showed that the crack growth rate estimated with Brazilian tests results with Alloy 600 in SSRT, are according with the KAPL ones and other published literature. (author)

  10. Corrosion of titanium and titanium alloys in spent fuel repository conditions - literature review

    International Nuclear Information System (INIS)

    Aho-Mantila, I.; Haenninen, H.; Aaltonen, P.; Taehtinen, S.

    1985-03-01

    The spent nuclear fuel is planned to be disposed in Finnish bedrock. The canister of spent fuel in waste repository is one barrier to the release of radionuclides. It is possible to choose a canister material with a known, measurable corrosion rate and to make it with thickness allowing corrosion to occur. The other possibility is to use a material which is nearly immune to general corrosion. In this second category there are titanium and titanium alloys which exhibit a very high degree of resistance to general corrosion. In this literature study the corrosion properties of unalloyed titanium, titanium alloyed with palladium and titanium alloyed with molybdenum and nickel are reviewed. The two titanium alloys own in addition to the excellent general corrosion properties outstanding properties against localized corrosion like pitting or crevice corrosion. Stress corrosion cracking and corrosion fatique of titanium seem not to be a problem in the repository conditions, but the possibilities of delayed cracking caused by hydrogen should be carefully appreciated. (author)

  11. The effect of texture, heat treatment and elongation rate on stress corrosion cracking in irradiated zircaloy

    International Nuclear Information System (INIS)

    Pettersson, K.; Stany, W.; Hellstrand, E.

    1979-03-01

    Irradiated zircaloy samples with different textures and heat treatments have been tested concerning stress corrosion. Irradiated samples of Zr-1Nb, pure Zr and beta quenched zircaloy have also been investigated. Stress-relieve annealled zircaloy is even after irradiation more sensitive to stress corrosion than recrystallized zircaloy. Zr-1Nb and beta quenched zircaloy are much more sinsitive to stress corrosion than the samples with different textures. As a rule irradiated zircaloy is sensitive to stress corrosion at stresses far below the yield point. The breaking stress decreases with the elongation rate. The extension of cracks is much faster in irradiated zircaloy than in unirradiated zircaloy. There is no simple failure criterium for irradiated zircaloy. However for a certain stress and a certain elongation rate the probability for a failure before this stress is reached with a constant elongation rate can be given. (E.R.)

  12. Corrosion potential detection method, potential characteristic simulation method for reaction rate and plant monitoring system using the same

    International Nuclear Information System (INIS)

    Sakai, Masanori; Onaka, Noriyuki; Takahashi, Tatsuya; Yamanaka, Hiroshi.

    1995-01-01

    In a calculation controlling device for a plant monitoring system, concentrations of materials concerning reaction materials in a certain state of a reaction process, and an actually measured value for the potential of a material in this state are substituted into a reaction rate equation obtained in accordance with a reaction process model. With such procedures, a relation between the reaction rate (current value) and the potential of the material can be obtained. A potential at which the reaction rates of an anode reaction and a cathode reaction contained in a corrosion reaction are made equal is determined by a numerical value calculation, based on an electrochemical hybrid potential logic by using the reaction rate equation, the reaction rate information relative to the corrosion reaction of the material and the concentration of the material concerning the corrosion reaction is obtained by a numerical value calculation. Then, simulation for the corrosion potential is enabled based on the handling corresponding to the actual reaction. Further, even for a portion which can not be measured actually, the corrosion potential can be recognized by simulation. (N.H.)

  13. Corrosion and runoff rates of Cu and three Cu-alloys in marine environments with increasing chloride deposition rate.

    Science.gov (United States)

    Odnevall Wallinder, Inger; Zhang, Xian; Goidanich, Sara; Le Bozec, Nathalie; Herting, Gunilla; Leygraf, Christofer

    2014-02-15

    Bare copper sheet and three commercial Cu-based alloys, Cu15Zn, Cu4Sn and Cu5Al5Zn, have been exposed to four test sites in Brest, France, with strongly varying chloride deposition rates. The corrosion rates of all four materials decrease continuously with distance from the coast, i.e. with decreasing chloride load, and in the following order: Cu4Sn>Cu sheet>Cu15Zn>Cu5Al5Zn. The patina on all materials was composed of two main layers, Cu2O as the inner layer and Cu2(OH)3Cl as the outer layer, and with a discontinuous presence of CuCl in between. Additional minor patina constituents are SnO2 (Cu4Sn), Zn5(OH)6(CO3)2 (Cu15Zn and Cu5Al5Zn) and Zn6Al2(OH)16CO3·4H2O/Zn2Al(OH)6Cl·2H2O/Zn5Cl2(OH)8·H2O and Al2O3 (Cu5Al5Zn). The observed Zn- and Zn/Al-containing corrosion products might be important factors for the lower sensitivity of Cu15Zn and Cu5Al5Zn against chloride-induced atmospheric corrosion compared with Cu sheet and Cu4Sn. Decreasing corrosion rates with exposure time were observed for all materials and chloride loads and attributed to an improved adherence with time of the outer patina to the underlying inner oxide. Flaking of the outer patina layer was mainly observed on Cu4Sn and Cu sheet and associated with the gradual transformation of CuCl to Cu2(OH)3Cl of larger volume. After three years only Cu5Al5Zn remains lustrous because of a patina compared with the other materials that appeared brownish-reddish. Significantly lower release rates of metals compared with corresponding corrosion rates were observed for all materials. Very similar release rates of copper from all four materials were observed during the fifth year of marine exposure due to an outer surface patina that with time revealed similar constituents and solubility properties. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Effect of Organic Acid Additions on the General and Localized Corrosion Susceptibility of Alloy 22 in Chloride Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Carranza, R M; Giordano, C M; Rodr?guez, M A; Ilevbare, G O; Rebak, R B

    2007-08-28

    Electrochemical studies such as cyclic potentiodynamic polarization (CPP) and electrochemical impedance spectroscopy (EIS) were performed to determine the corrosion behavior of Alloy 22 (N06022) in 1M NaCl solutions at various pH values from acidic to neutral at 90 C. All the tested material was wrought Mill Annealed (MA). Tests were also performed in NaCl solutions containing weak organic acids such as oxalic, acetic, citric and picric. Results show that the corrosion rate of Alloy 22 was significantly higher in solutions containing oxalic acid than in solutions of pure NaCl at the same pH. Citric and picric acids showed a slightly higher corrosion rate, and acetic acid maintained the corrosion rate of pure chloride solutions at the same pH. Organic acids revealed to be weak inhibitors for crevice corrosion. Higher concentration ratios, compared to nitrate ions, were needed to completely inhibit crevice corrosion in chloride solutions. Results are discussed considering acid dissociation constants, buffer capacity and complex formation constants of the different weak acids.

  15. Ontario Hydro studies on copper corrosion under waste disposal conditions

    International Nuclear Information System (INIS)

    Lam, K.W.

    1990-01-01

    The corrosion rate of copper is generally greater in aerated solutions containing sulphide; also, in the presence of sulphide there is the fear that pitting may occur. Experiments have been carried out to study the corrosion of copper in deaerated groundwater/bentonite slurries with and without added sulphide for exposure periods from two months to one year. The groundwater contains 6500 ppm of chloride and 1000 ppm of sulphate. Tests were also performed in the presence of a 150 rad/h radiation field. In deaerated slurries at 75C the corrosion rate is less than 2 μm/a. With one addition of 10 mg/l sulphide, the rate increases by a factor of ten. With daily sulphide additions to deaerated solutions the corrosion rate initially falls but then rises and stabilizes after 15 days. In aerated solutions the corrosion increases over the first 25 days and then stabilizes. The corrosion rate of copper reached a steady value in 15 to 30 days. Rates are higher in aerated solutions, but the effect of adding sulphide is not so marked in aerated solutions as in unaerated solutions. The highest corrosion rate, less than 150 μm/a, was observed in aerated slurries saturated with sulphide. For deaerated solutions in the absence of sulphide the corrosion rate increases with temperature, but in aerated solutions the rate decreases. For solutions containing added sulphide the influence of temperature is negligible. The effect of a radiation field may be beneficial; in the presence of a radiation field the corrosion rate is less than 20 μm/a. After descaling the coupons showed a high density of irregularly shaped pits both in the presence and absence of sulphide, resulting from intergranular attack. The pitting factor for the highest corrosion rate is around 15

  16. Effect of diamond-like carbon coating on corrosion rate of machinery steel HQ 805

    Science.gov (United States)

    Slat, Winda Sanni; Malau, Viktor; Iswanto, Priyo Tri; Sujitno, Tjipto; Suprapto

    2018-04-01

    HQ 805 is known as a super strength alloys steel and widely applied in military equipment and, aircraft components, drilling device and so on. It is due to its excellent behavior in wear, fatigue, high temperature and high speed operating conditions. The weakness of this material is the vulnerablality to corrosion when employed in sour environments where hydrogen sulfide and chlorides are present. To overcome the problems, an effort should be made to improve or enhance the surface properties for a longer service life. There are varieties of coatings developed and used to improve surface material properties. There are several kinds of coating methods; chemical vapour deposition (CVD), physical vapour deposition (PVD), thermochemical treatment, oxidation, or plasma spraying. This paper presents the research result of the influence of Diamond-Like Carbon (DLC) coating deposited using DC plasma enhanced chemical vapor deposition (DC-PECVD) on corrosion rate (by potentiodynamic polarization method) of HQ 805 machinery steel. As a carbon sources, a mixture of argon (Ar) and methane (CH4) with ratio 76% : 24% was used in this experiment. The conditions of experiment were 400 °C of temperature, 1.2 mbar, 1.4 mbar, 1.6 mbar and 1.8 mbar of pressure of process. Investigated surface properties were hardness (microhardness tester), roughness (roughness test), chemical composition (Spectrometer), microstructure (SEM) and corrosion rate (potentiodynamic polarization). It has been found that the optimum condition with the lowest corrosion rate is at a pressure of 1.4 mbar with a deposition duration of 4 hours at a constant temperature of 400 °C. In this condition, the corrosion rate decreases from 12.326 mpy to 4.487 mpy.

  17. The corrosion and corrosion mechanical properties evaluation for the LBB concept in VVERs

    Energy Technology Data Exchange (ETDEWEB)

    Ruscak, M.; Chvatal, P.; Karnik, D.

    1997-04-01

    One of the conditions required for Leak Before Break application is the verification that the influence of corrosion environment on the material of the component can be neglected. Both the general corrosion and/or the initiation and, growth of corrosion-mechanical cracks must not cause the degradation. The primary piping in the VVER nuclear power plant is made from austenitic steels (VVER 440) and low alloy steels protected with the austenitic cladding (VVER 1000). Inspection of the base metal and heterogeneous weldments from the VVER 440 showed that the crack growth rates are below 10 m/s if a low oxygen level is kept in the primary environment. No intergranular cracking was observed in low and high oxygen water after any type of testing, with constant or periodic loading. In the framework of the LBB assessment of the VVER 1000, the corrosion and corrosion mechanical properties were also evaluated. The corrosion and corrosion mechanical testing was oriented predominantly to three types of tests: stress corrosion cracking tests corrosion fatigue tests evaluation of the resistance against corrosion damage. In this paper, the methods used for these tests are described and the materials are compared from the point of view of response on static and periodic mechanical stress on the low alloyed steel 10GN2WA and weld metal exposed in the primary circuit environment. The slow strain rate tests and static loading of both C-rings and CT specimens were performed in order to assess the stress corrosion cracking characteristics. Cyclic loading of CT specimens was done to evaluate the kinetics of the crack growth under periodical loading. Results are shown to illustrate the approaches used. The data obtained were evaluated also from the point of view of comparison of the influence of different structure on the stress corrosion cracking appearance. The results obtained for the base metal and weld metal of the piping are presented here.

  18. An expert system for corrosion rate monitoring and diagnosis in the heating circuits of nuclear power plants

    International Nuclear Information System (INIS)

    Balducelli, C.; Conte, E.; Federico, A.G.; Tripi, A.; Ronchetti, C.

    1988-01-01

    The radiation field of out of core components of a water reactor primary plant depends on corrosion product equilibria. The computer programs that try to simulate the behaviour of the corrosion products and the radiation build up didn't provide good results, especially in describing several different plants with the same program. In order to obtain better results the authors decided to use a different approach, building an expert system, which performs on-line corrosion rate monitoring by means of a number of probes connected to an automatic corrosimeter, evaluates expected corrosion rate values and behaviours, and, if there are discrepancies, performs a diagnosis, providing suggestions to overcome the difficulty. (author)

  19. Estimation of flow rates through intergranular stress corrosion cracks

    International Nuclear Information System (INIS)

    Collier, R.P.; Norris, D.M.

    1984-01-01

    Experimental studies of critical two-phase water flow, through simulated and actual intergranular stress corrosion cracks, were performed to obtain data to evaluate a leak flow rate model and investigate acoustic transducer effectiveness in detecting and sizing leaks. The experimental program included a parametric study of the effects of crack geometry, fluid stagnation pressure and temperature, and crack surface roughness on leak flow rate. In addition, leak detection, location, and leak size estimation capabilities of several different acoustic transducers were evaluated as functions of leak rate and transducer position. This paper presents flow rate data for several different cracks and fluid conditions. It also presents the minimum flow rate detected with the acoustic sensors and a relationship between acoustic signal strength and leak flow rate

  20. Corrosion Characteristics of Inconel-600 at the NP(Cu)-HYBRID Decontamination Demonstration Test with HANARO FTL Specimen

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jun Young; Park, Sang Yoon; Won, Hui Jun; Kim, Seon Byeong; Choi, Wang Kyu; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    An alkaline permanganate (AP) or nitric permanganate (NP) oxidative phase has been generally used to dissolve the chromium-rich oxide. AP is advantageous for the corrosion resistance, but increases the volume of secondary waste during the decontamination procedure. On the other hand, NP has a high corrosion rate but reduces secondary waste. For the safe use of an oxidative decontamination solution with high corrosive resistance and less amount of secondary waste are required. In this study, we modified NP oxidative decontamination solution by adding Cu{sup 2+} to reduce the corrosion rate. To evaluate the general corrosion characteristics, we measured the weight losses of selected specimens in an NP(Cu) and other solutions. The localized corrosion was observed using an optical microscope (OM). To compare the decontamination performance, we measured the contact dose rate of specimens treated in NP-HYBRID and NP(Cu)-HYBRID systems. The reduced corrosion characteristics of the Inconel-600 specimen in a NP(Cu) oxidative solution was observed in terms of generalized corrosion as well as localized corrosion. Less corrosion characteristics do not affect the performance of the overall decontamination compared to the NP-HYBRID process. Therefore, our results support that the NP(Cu)-HYBRID decontamination process is appropriate for the decontamination of the primary coolant system in a nuclear reactor.

  1. General and crevice corrosion study of the in-wall shielding materials for ITER vacuum vessel

    Science.gov (United States)

    Joshi, K. S.; Pathak, H. A.; Dayal, R. K.; Bafna, V. K.; Kimihiro, Ioki; Barabash, V.

    2012-11-01

    Vacuum vessel In-Wall Shield (IWS) will be inserted between the inner and outer shells of the ITER vacuum vessel. The behaviour of IWS in the vacuum vessel especially concerning the susceptibility to crevice of shielding block assemblies could cause rapid and extensive corrosion attacks. Even galvanic corrosion may be due to different metals in same electrolyte. IWS blocks are not accessible until life of the machine after closing of vacuum vessel. Hence, it is necessary to study the susceptibility of IWS materials to general corrosion and crevice corrosion under operations of ITER vacuum vessel. Corrosion properties of IWS materials were studied by using (i) Immersion technique and (ii) Electro-chemical Polarization techniques. All the sample materials were subjected to a series of examinations before and after immersion test, like Loss/Gain weight measurement, SEM analysis, and Optical stereo microscopy, measurement of surface profile and hardness of materials. After immersion test, SS 304B4 and SS 304B7 showed slight weight gain which indicate oxide layer formation on the surface of coupons. The SS 430 material showed negligible weight loss which indicates mild general corrosion effect. On visual observation with SEM and Metallography, all material showed pitting corrosion attack. All sample materials were subjected to series of measurements like Open Circuit potential, Cyclic polarization, Pitting potential, protection potential, Critical anodic current and SEM examination. All materials show pitting loop in OC2 operating condition. However, its absence in OC1 operating condition clearly indicates the activity of chloride ion to penetrate oxide layer on the sample surface, at higher temperature. The critical pitting temperature of all samples remains between 100° and 200°C.

  2. Influence of irradiation and radiolysis on the corrosion rates and mechanisms of zirconium alloys

    International Nuclear Information System (INIS)

    Verlet, Romain

    2015-01-01

    The nuclear fuel of pressurized water reactors (PWR) in the form of uranium oxide UO 2 pellets (or MOX) is confined in a zirconium alloy cladding. This cladding is very important because it represents the first containment barrier against the release of fission products generated by the nuclear reaction to the external environment. Corrosion by the primary medium of zirconium alloys, particularly the Zircaloy-4, is one of the factors limiting the reactor residence time of the fuel rods (UO 2 pellets + cladding). To optimize core management and to extend the lifetime of the fuel rods in reactor, new alloys based on zirconium-niobium (M5) have been developed. However, the corrosion mechanisms of these are not completely understood because of the complexity of these materials, corrosion environment and the presence of radiation from the nuclear fuel. Therefore, this thesis specifically addresses the effects of radiolysis and defects induced by irradiation with ions in the matrix metal and the oxide layer on the corrosion rate of Zircaloy-4 and M5. The goal is to separate the influence of radiation damage to the metal, that relating to defects created in the oxide and that linked to radiolysis of the primary medium on the oxidation rate of zirconium alloys in reactor. 1) Regarding effect of irradiation of the metal on the oxidation rate: type dislocation loops appear and increase the oxidation rate of the two alloys. For M5, in addition to the first effect, a precipitation of fines needles of niobium reduced the solid solution of niobium concentration in the metal and ultimately in the oxide, which strongly reduces the oxidation rate of the alloy. 2) Regarding the effect of irradiation of the oxide layer on the oxidation rate: defects generated by the nuclear cascades in the oxide increase the oxidation rate of the two materials. For M5, germination of niobium enriched zones in irradiated oxide also causes a decrease of the niobium concentration in solid solution

  3. Active Waste Materials Corrosion and Decontamination Tests

    International Nuclear Information System (INIS)

    Danielson, M.J.; Elmore, M.R.; Pitman, S.G.

    2000-01-01

    Stainless steel alloys, 304L and 316L, were corrosion tested in representative radioactive samples of three actual Hanford tank waste solutions (Tanks AW-101, C-104, AN-107). Both the 304L and 316L exhibited good corrosion performance when immersed in boiling waste solutions. The maximum general corrosion rate was 0.015 mm/y (0.60 mils per year). Generally, the 304L had a slightly higher rate than the 316L. No localized attack was observed after 122 days of testing in the liquid phase, liquid/vapor phase, or vapor phase. Radioactive plate-out decontamination tests indicated that a 24-hour exposure to 1 und M HNO 3 could remove about 99% of the radioactive components in the metal film when exposed to the C-104 and AN-107 solutions. The decontamination results are less certain for the AW-101 solution, since the initial contamination readings exceeded the capacity of the meter used for this test

  4. TREATMENT TANK CORROSION STUDIES FOR THE ENHANCED CHEMICAL CLEANING PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.

    2011-08-24

    Radioactive waste is stored in high level waste tanks on the Savannah River Site (SRS). Savannah River Remediation (SRR) is aggressively seeking to close the non-compliant Type I and II waste tanks. The removal of sludge (i.e., metal oxide) heels from the tank is the final stage in the waste removal process. The Enhanced Chemical Cleaning (ECC) process is being developed and investigated by SRR to aid in Savannah River Site (SRS) High-Level Waste (HLW) as an option for sludge heel removal. Corrosion rate data for carbon steel exposed to the ECC treatment tank environment was obtained to evaluate the degree of corrosion that occurs. These tests were also designed to determine the effect of various environmental variables such as temperature, agitation and sludge slurry type on the corrosion behavior of carbon steel. Coupon tests were performed to estimate the corrosion rate during the ECC process, as well as determine any susceptibility to localized corrosion. Electrochemical studies were performed to develop a better understanding of the corrosion mechanism. The tests were performed in 1 wt.% and 2.5 wt.% oxalic acid with HM and PUREX sludge simulants. The following results and conclusions were made based on this testing: (1) In 1 wt.% oxalic acid with a sludge simulant, carbon steel corroded at a rate of less than 25 mpy within the temperature and agitation levels of the test. No susceptibility to localized corrosion was observed. (2) In 2.5 wt.% oxalic acid with a sludge simulant, the carbon steel corrosion rates ranged between 15 and 88 mpy. The most severe corrosion was observed at 75 C in the HM/2.5 wt.% oxalic acid simulant. Pitting and general corrosion increased with the agitation level at this condition. No pitting and lower general corrosion rates were observed with the PUREX/2.5 wt.% oxalic acid simulant. The electrochemical and coupon tests both indicated that carbon steel is more susceptible to localized corrosion in the HM/oxalic acid environment than

  5. Treatment Tank Corrosion Studies For The Enhanced Chemical Cleaning Process

    International Nuclear Information System (INIS)

    Wiersma, B.

    2011-01-01

    Radioactive waste is stored in high level waste tanks on the Savannah River Site (SRS). Savannah River Remediation (SRR) is aggressively seeking to close the non-compliant Type I and II waste tanks. The removal of sludge (i.e., metal oxide) heels from the tank is the final stage in the waste removal process. The Enhanced Chemical Cleaning (ECC) process is being developed and investigated by SRR to aid in Savannah River Site (SRS) High-Level Waste (HLW) as an option for sludge heel removal. Corrosion rate data for carbon steel exposed to the ECC treatment tank environment was obtained to evaluate the degree of corrosion that occurs. These tests were also designed to determine the effect of various environmental variables such as temperature, agitation and sludge slurry type on the corrosion behavior of carbon steel. Coupon tests were performed to estimate the corrosion rate during the ECC process, as well as determine any susceptibility to localized corrosion. Electrochemical studies were performed to develop a better understanding of the corrosion mechanism. The tests were performed in 1 wt.% and 2.5 wt.% oxalic acid with HM and PUREX sludge simulants. The following results and conclusions were made based on this testing: (1) In 1 wt.% oxalic acid with a sludge simulant, carbon steel corroded at a rate of less than 25 mpy within the temperature and agitation levels of the test. No susceptibility to localized corrosion was observed. (2) In 2.5 wt.% oxalic acid with a sludge simulant, the carbon steel corrosion rates ranged between 15 and 88 mpy. The most severe corrosion was observed at 75 C in the HM/2.5 wt.% oxalic acid simulant. Pitting and general corrosion increased with the agitation level at this condition. No pitting and lower general corrosion rates were observed with the PUREX/2.5 wt.% oxalic acid simulant. The electrochemical and coupon tests both indicated that carbon steel is more susceptible to localized corrosion in the HM/oxalic acid environment than

  6. Effectiveness of Ti-micro alloying in relation to cooling rate on corrosion of AZ91 Mg alloy

    International Nuclear Information System (INIS)

    Candan, S.; Celik, M.; Candan, E.

    2016-01-01

    In this study, micro Ti-alloyed AZ91 Mg alloys (AZ91 + 0.5wt.%Ti) have been investigated in order to clarify effectiveness of micro alloying and/or cooling rate on their corrosion properties. Molten alloys were solidified under various cooling rates by using four stage step mold. The microstructural investigations were carried out by using scanning electron microscopy (SEM). Corrosion behaviors of the alloys were evaluated by means of immersion and electrochemical polarization tests in 3.5% NaCl solution. Results showed that the Mg 17 Al 12 (β) intermetallic phase in the microstructure of AZ91 Mg alloy formed as a net-like structure. The Ti addition has reduced the distribution and continuity of β intermetallic phase and its morphology has emerged as fully divorced eutectic. Compared to AZ91 alloy, the effect of the cooling rate in Ti-added alloy on the grain size was less pronounced. When AZ91 and its Ti-added alloys were compared under the same cooling conditions, the Ti addition showed notably high corrosion resistance. Electrochemical test results showed that while I corr values of AZ91 decrease with the increase in the cooling rate, the effect of the cooling rate on I corr values was much lower in the Ti-added alloy. The corrosion resistance of AZ91 Mg alloy was sensitive towards the cooling rates while Ti-added alloy was not affected much from the cooling conditions. - Highlights: • Effect the cooling rate on grain size was less pronounced in the Ti-added alloy. • The morphology of the β phase transformed into fully divorced eutectics. • Ti addition exhibited significantly higher corrosion resistance. • Ti micro alloying is more effective than faster cooling of the alloy on corrosion.

  7. Effect of caffeine inhibitor in corrosion rate and microstructure of KS01 carbon steel and AISI 1045 at media sea water

    International Nuclear Information System (INIS)

    Sulistioso Giat S; Setyo Purwanto; Deswita; Ari Handayani; Berta Vidyananda

    2013-01-01

    Many synthetic materials are good inhibitors for the prevention of corrosion . Many inhibitors are toxic, because of the influence of these toxic properties, recently use organic materials as corrosion inhibitors, that are not hazardous and environmentally friendly. In this study caffeine compounds used as corrosion inhibitors. This compound could be used as corrosion inhibitor because of the existence of their chemical groups that containing free electron pair, that is nitrogen. Corrosion rate testing conducted in sea water medium taken from the Northern region of Indramayu with variations of the concentration of caffeine 0, 50, 100, 150, and 200 ppm to determine the optimum concentration of caffeine in corrosion rate of carbon steel AISI 1045 and KS01 that a widely used on the cooling system in the industry. Corrosion rate of KS-01 steel before used in inhibitor media is 25,07 mpy that less than corrosion rate of carbon steel AISI 1045, is 45,82 mpy . The results of this study indicate that caffeine is able to inhibit the corrosion rate of both of samples with optimum efficiency KS01 for 64.38%, and AISI 1045 of 66.63%. The optimum concentration of caffeine to inhibited AISI 1045 is 150 ppm and for KS01 is 100 ppm,. Beside that analysis of microstructure for both samples have done, for media before and after inhibitor addition. (author)

  8. Effects of prior cold work on corrosion and corrosive wear of copper in HNO3 and NaCl solutions

    International Nuclear Information System (INIS)

    Yin Songbo; Li, D.Y.

    2005-01-01

    Effects of prior cold work on corrosion and corrosive wear behavior of copper in 0.1 M HNO 3 and 3.5% NaCl solutions, respectively, were investigated using electrochemical tests, electron work function measurements, and sliding corrosive wear tests with and without cathodic protection. Optical microscope and SEM were employed to examine the microstructure and worn surfaces. It was shown that, in general, the prior cold work raised the corrosion rate, but the effect differed in different corrosive media. In both the solutions, pure mechanical wear decreased with an increase in cold work. The prior cold work had a significant influence on the corrosive wear of copper, depending on the corrosive solution and the applied load. In the 0.1 M HNO 3 solution, the ratio of the wear loss caused by corrosion-wear synergism to the total wear loss increased with the cold work and became saturated when the cold work reached a certain level. In the 3.5% NaCl solution, however, this ratio decreased initially and then became relatively stable with respect to the cold work. It was observed that wear of copper in the 3.5% NaCl solution was larger than that in 0.1 M HNO 3 solution, although copper showed lower corrosion rate in the former solution. The experimental observations and the possible mechanisms involved are discussed

  9. Corrosion rate of construction materials in hot phosphoric acid with the contribution of anodic polarization

    Energy Technology Data Exchange (ETDEWEB)

    Kouril, M. [Institute of Chemical Technology, Technicka 5, 166 28 Prague (Czech Republic); Christensen, E. [Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby (Denmark); Eriksen, S.; Gillesberg, B. [Tantaline A/S, Nordborgvej 81, 6430 Nordborg (Denmark)

    2012-04-15

    The paper is focused on selection of a proper material for construction elements of water electrolysers, which make use of a 85% phosphoric acid as an electrolyte at temperature of 150 C and which might be loaded with anodic polarization up to 2.5 V versus a saturated Ag/AgCl electrode (SSCE). Several grades of stainless steels were tested as well as tantalum, niobium, titanium, nickel alloys and silicon carbide. The corrosion rate was evaluated by means of mass loss at free corrosion potential as well as under various levels of polarization. The only corrosion resistant material in 85% phosphoric acid at 150 C and at polarization of 2.5 V/SSCE is tantalum. In that case, even a gentle cathodic polarization is harmful in such an acidic environment. Hydrogen reduction leads to tantalum hydride formation, to loss of mechanical properties and to complete disintegration of the metal. Contrary to tantalum, titanium is free of any corrosion resistance in hot phosphoric acid. Its corrosion rate ranges from tens of millimetres to metres per year depending on temperature of the acid. Alloy bonded tantalum coating was recognized as an effective corrosion protection for both titanium and stainless steel. Its serviceability might be limited by slow dissolution of tantalum that is in order of units of mm/year. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Predicting corrosion product transport in nuclear power stations using a solubility-based model for flow-accelerated corrosion

    International Nuclear Information System (INIS)

    Burrill, K.A.; Cheluget, E.L.

    1995-01-01

    A general model of solubility-driven flow-accelerated corrosion of carbon steel was derived based on the assumption that the solubilities of ferric oxyhydroxide and magnetite control the rate of film dissolution. This process involves the dissolution of an oxide film due to fast-flowing coolant unsaturated in iron. The soluble iron is produced by (i) the corrosion of base metal under a porous oxide film and (ii) the dissolution of the oxide film at the fluid-oxide film interface. The iron released at the pipe wall is transferred into the bulk flow by turbulent mass transfer. The model is suitable for calculating concentrations of dissolved iron in feedtrain lines. These iron levels were used to calculate sludge transport rates around the feedtrain. The model was used to predict sludge transport rates due to flow accelerated corrosion of major feedtrain piping in a CANDU reactor. The predictions of the model compare well with plant measurements

  11. Effect of hydrazine on general corrosion of carbon and low-alloyed steels in pressurized water reactor secondary side water

    Energy Technology Data Exchange (ETDEWEB)

    Järvimäki, Sari [Fortum Ltd, Loviisa Power Plant, Loviisa (Finland); Saario, Timo; Sipilä, Konsta [VTT Technical Research Centre of Finland Ltd., Nuclear Safety, P.O. Box 1000, FIN-02044 VTT (Finland); Bojinov, Martin, E-mail: martin@uctm.edu [Department of Physical Chemistry, University of Chemical Technology and Metallurgy, Kl. Ohridski Blvd, 8, 1756 Sofia (Bulgaria)

    2015-12-15

    Highlights: • The effect of hydrazine on the corrosion of steel in secondary side water investigated by in situ and ex situ techniques. • Oxide grown on steel in 100 ppb hydrazine shows weaker protective properties – higher corrosion rates. • Possible explanation of the accelerating effect of higher concentrations of hydrazine on flow assisted corrosion offered. - Abstract: The effect of hydrazine on corrosion rate of low-alloyed steel (LAS) and carbon steel (CS) was studied by in situ and ex situ techniques under pressurized water reactor secondary side water chemistry conditions at T = 228 °C and pH{sub RT} = 9.2 (adjusted by NH{sub 3}). It is found that hydrazine injection to a maximum level of 5.06 μmol l{sup −1} onto surfaces previously oxidized in ammonia does not affect the corrosion rate of LAS or CS. This is confirmed also by plant measurements at Loviisa NPP. On the other hand, hydrazine at the level of 3.1 μmol l{sup −1} decreases markedly the amount and the size of deposited oxide crystals on LAS and CS surface. In addition, the oxide grown in the presence of 3.1 μmol l{sup −1} hydrazine is somewhat less protective and sustains a higher corrosion rate compared to an oxide film grown without hydrazine. These observations could explain the accelerating effect of higher concentrations of hydrazine found in corrosion studies of LAS and CS.

  12. Review of corrosion causes and corrosion control in a technical facility

    International Nuclear Information System (INIS)

    Charng, T.; Lansing, F.

    1982-06-01

    Causes of corrosion of metals and their alloys are reviewed. The corrosion mechanism is explained by electrochemical reaction theory. The causes and methods of controlling of both physiochemical corrosion and biological corrosion are presented. Factors which influence the rate of corrosion are also discussed

  13. Evaluation of flow accelerated corrosion by coupled analysis of corrosion and flow dynamics. Relationship of oxide film thickness, hematite/magnetite ratio, ECP and wall thinning rate

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Naitoh, Masanori; Okada, Hidetoshi; Uehara, Yasushi; Koshizuka, Seiichi

    2011-01-01

    Systematic approaches to evaluate flow accelerated corrosion (FAC) are desired before discussing application of countermeasures for FAC. First, future FAC occurrence should be evaluated to identify locations where a higher possibility of FAC occurrence exists, and then, wall thinning rate at the identified FAC occurrence zone is evaluated to obtain the preparation time for applying countermeasures. Wall thinning rates were calculated with two coupled models: 1.static electrochemical analysis and 2.dynamic oxide layer growth analysis. The anodic current density and the electrochemical corrosion potential (ECP) were calculated with the static electrochemistry model based on an Evans diagram. The ferrous ion release rate, determined by the anodic current density, was applied as input for the dynamic double oxide layer model. Some of the dissolved ferrous ion was removed to the bulk water and others precipitated on the surface as magnetite particles. The thickness of oxide layer was calculated with the dynamic oxide layer growth model and then its value was used as input in the electrochemistry model. It was confirmed that the calculated results (corrosion rate and ECP) based on the coupled models were in good agreement with the measured ones. Higher ECP was essential for preventing FAC rate. Moderated conditions due to lower mass transfer coefficients resulted in thicker oxide layer thickness and then higher ECP, while moderated corrosion conditions due to higher oxidant concentrations resulted in larger hematite/magnetite rate and then higher ECP.

  14. An experimental comparison of three wire beam electrode based methods for determining corrosion rates and patterns

    International Nuclear Information System (INIS)

    Tan, Y.-J.

    2005-01-01

    Laboratory experiments have been carried out to examine the advantages and limitations of three wire beam electrode (WBE) based techniques, including the noise resistance R n -WBE method, the overpotential-galvanic current method, and the galvanic current method, in determining corrosion rates and patterns. These techniques have been applied simultaneously to several selected corrosion systems of different characteristics. It has been found that the R n -WBE method has advantages over other WBE based methods when applying to WBE surfaces under uniform corrosion. However, the R n -WBE method has been found to be unsuitable for low noise level corrosion systems. It has also been found that both R n -WBE and overpotential-galvanic current methods are similarly applicable to WBE surfaces under nonuniform corrosion. However, the galvanic current method has been found to be suitable only for WBE surfaces under highly localised corrosion. Some related issues regarding R n calculation such as trend removal and its effects on corrosion mapping have also been discussed

  15. Corrosion Compatibility Studies on Inconel-600 in NP Decontamination Solution

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Yoon; Jung, Jun Young; Won, Huijun; Choi, Wangkyu; Moon, Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    It is well known that corrosion and contamination process in the primary cooling circuit of nuclear reactors are essentially interrelated: the contaminant isotopes are mostly corrosion products activated in the reactor core, and the contamination takes place on the out-core of Inconel-600 surface. This radionuclide uptake takes place up to the inner oxide layer and oxide/metal interface. So, it is necessary to remove inner oxide layer as well as outer oxide layer for excellent decontamination effects. The outer oxide layers are composed of Fe{sub 3}O{sub 4} and NiFe{sub 2}O{sub 4}. On the other hand, the inner oxide layers are composed of Cr{sub 2}O{sub 3}, (Ni{sub 1-x}Ni{sub x})(Cr{sub 1-y}Fe{sub y}){sub 2}O{sub 4}, and FeCr{sub 2}O{sub 4}. Because of chromium in the trivalent oxidation state which is difficult to dissolve, the oxide layer has an excellent protectiveness and become hard to be decontaminated. Alkaline permanganate (AP) or nitric permanganate (NP) oxidative phase has been used to dissolve the chromium-rich oxide. A disadvantage of AP process is the generation of a large volume of secondary waste. On the other hand, that of NP process is the high corrosion rate for Ni-base alloys. Therefore, for the safe use of oxidative phase in PWR system decontamination, it is necessary to reformulate the NP chemicals for decrease of corrosion rate. This study describes the corrosion compatibility on Inconel-600 and type 304 stainless steel in NP decontamination solution for PWR applications. To evaluate the general corrosion properties, weight change of NP treated specimens was measured. NP treated specimen surface was observed using optical microscope (OM) and scanning electron microscopy (SEM) for the evaluation of the localized corrosion. The effect of additives on the corrosion of the specimens was also evaluated. This study describes the corrosion compatibility on Inconel-600 and type 304 stainless steel in NP decontamination solution for PWR applications

  16. Corrosion Compatibility Studies on Inconel-600 in NP Decontamination Solution

    International Nuclear Information System (INIS)

    Park, Sang Yoon; Jung, Jun Young; Won, Huijun; Choi, Wangkyu; Moon, Jeikwon

    2013-01-01

    It is well known that corrosion and contamination process in the primary cooling circuit of nuclear reactors are essentially interrelated: the contaminant isotopes are mostly corrosion products activated in the reactor core, and the contamination takes place on the out-core of Inconel-600 surface. This radionuclide uptake takes place up to the inner oxide layer and oxide/metal interface. So, it is necessary to remove inner oxide layer as well as outer oxide layer for excellent decontamination effects. The outer oxide layers are composed of Fe 3 O 4 and NiFe 2 O 4 . On the other hand, the inner oxide layers are composed of Cr 2 O 3 , (Ni 1-x Ni x )(Cr 1-y Fe y ) 2 O 4 , and FeCr 2 O 4 . Because of chromium in the trivalent oxidation state which is difficult to dissolve, the oxide layer has an excellent protectiveness and become hard to be decontaminated. Alkaline permanganate (AP) or nitric permanganate (NP) oxidative phase has been used to dissolve the chromium-rich oxide. A disadvantage of AP process is the generation of a large volume of secondary waste. On the other hand, that of NP process is the high corrosion rate for Ni-base alloys. Therefore, for the safe use of oxidative phase in PWR system decontamination, it is necessary to reformulate the NP chemicals for decrease of corrosion rate. This study describes the corrosion compatibility on Inconel-600 and type 304 stainless steel in NP decontamination solution for PWR applications. To evaluate the general corrosion properties, weight change of NP treated specimens was measured. NP treated specimen surface was observed using optical microscope (OM) and scanning electron microscopy (SEM) for the evaluation of the localized corrosion. The effect of additives on the corrosion of the specimens was also evaluated. This study describes the corrosion compatibility on Inconel-600 and type 304 stainless steel in NP decontamination solution for PWR applications. It is revealed that Inconel-600 specimen is more

  17. Prediction on corrosion rate of pipe in nuclear power system based on optimized grey theory

    International Nuclear Information System (INIS)

    Chen Yonghong; Zhang Dafa; Chen Dengke; Jiang Wei

    2007-01-01

    For the prediction of corrosion rate of pipe in nuclear power system, the pre- diction error from the grey theory is greater, so a new method, optimized grey theory was presented in the paper. A comparison among predicted results from present and other methods was carried out, and it is seem that optimized grey theory is correct and effective for the prediction of corrosion rate of pipe in nuclear power system, and it provides a fundamental basis for the maintenance of pipe in nuclear power system. (authors)

  18. The effect of quench rate on the microstructure, mechanical properties, and corrosion behavior of U-6 Wt Pct Nb

    International Nuclear Information System (INIS)

    Eckelmeyer, K.H.; Romiy, A.D.; Weirick, L.J.

    1984-01-01

    The effect of cooling rate on microstructure, mechanical behavior, corrosion resistance, and subsequent age hardenability is discussed. Cooling rates in excess of 20 Ks -1 cause the parent γ-phase to transform martensitically to a niobium supersaturated variant of the α-phase. This phase exhibits low hardness and strength, high ductility, good corrosion resistance, and age hardenability. As cooling rate decreases from 10 Ks -1 to 0.2 Ks -1 , microstructural changes (consistent with spinodal decomposition) occur to an increasing extent. These changes produce increases in hardness and strength and decreases in ductility, corrosion resistance, and age hardenability. At cooling rates less than 0.2 Ks -1 the parent phase undergoes cellular decomposition to a coarse two-phase lamellar microstructure which exhibits intermediate strength and ductility, reduced corrosion resistance, and no age hardenability. An analysis of the cooling rates indicates that fully martensitic microstructures can be obtained in plates as thick as 50 mm

  19. Long-term corrosion behaviors of Hastelloy-N and Hastelloy-B3 in moisture-containing molten FLiNaK salt environments

    International Nuclear Information System (INIS)

    Ouyang, Fan-Yi; Chang, Chi-Hung; Kai, Ji-Jung

    2014-01-01

    Highlights: •Corrosion behaviors of Hastelloy-N and -B3 in molten FLiNaK salt at 700 °C. •The alleviated corrosion rate of alloys was observed after long-hour immersion. •Long-term corrosion rate was limited by diffusion from matrix to alloy surface. •Corrosion pattern transferred from intergranular corrosion into general corrosion. •Presence of minor H 2 O did not greatly influence the long-term corrosion behavior. -- Abstract: This study investigated long-term corrosion behaviors of Ni-based Hastelloy-N and Hastelloy-B3 under moisture-containing molten alkali fluoride salt (LiF–NaF–KF: 46.5–11.5–42%) environment at an ambient temperature of 700 °C. The Hastelloy-N and Hastelloy-B3 experienced similar weight losses for tested duration of 100–1000 h, which was caused by aggregate dissolution of Cr and Mo into FLiNaK salts. The corrosion rate of both alloys was high initially, but then reduced during the course of the test. The alleviated corrosion rate was due to the depletion of Cr and Mo near surface of the alloys and thus the long-term corrosion rate was controlled by diffusion of Cr and Mo outward to the alloy surface. The results of microstructural characterization revealed that the corrosion pattern for both alloys tended to be intergranular corrosion at early stage of corrosion test, and then transferred to general corrosion for longer immersion hours

  20. Measuring the corrosion rate of steel in concrete – effect of measurement technique, polarisation time and current

    DEFF Research Database (Denmark)

    Nygaard, Peter Vagn; Geiker, Mette Rica

    2012-01-01

    , are in some studies considered the main reasons for the variations. This paper presents an experimental study on the quantitative effect of polarisation time and current on the measured polarisation resistance – and thus the corrosion current density – of passively and actively corroding steel. Two...... electrochemical techniques often used in instruments for on-site corrosion rate measurements are investigated. On passively corroding reinforcement the measured polarisation resistance was for both techniques found to be highly affected by the polarisation time and current and no plateaus at either short or long...... rate for actively corroding steel. For both techniques guidelines for polarisation times and currents are given for (on-site) non-destructive corrosion rate measurements on reinforcement steel in concrete....

  1. Effects of grain size on the corrosion resistance of pure magnesium by cooling rate-controlled solidification

    Science.gov (United States)

    Liu, Yichi; Liu, Debao; You, Chen; Chen, Minfang

    2015-09-01

    The aim of this study was to investigate the effect of grain size on the corrosion resistance of pure magnesium developed for biomedical applications. High-purity magnesium samples with different grain size were prepared by the cooling rate-controlled solidification. Electrochemical and immersion tests were employed to measure the corrosion resistance of pure magnesium with different grain size. The electrochemical polarization curves indicated that the corrosion susceptibility increased as the grain size decrease. However, the electrochemical impedance spectroscopy (EIS) and immersion tests indicated that the corrosion resistance of pure magnesium is improved as the grain size decreases. The improvement in the corrosion resistance is attributed to refine grain can produce more uniform and density film on the surface of sample.

  2. Corrosion evaluation of metallic HLW/spent fuel disposal containers - review

    International Nuclear Information System (INIS)

    Kursten, B.; Smailos, E.; Azkarate, I.; Werme, L.; Smart, N.R.; Marx, G.; Cunado, M.A.; Santarini, G.

    2004-01-01

    Over the years a lot of investigations have been performed to choose suitable container materials and to characterize their long-term corrosion behaviour in contact with their potential disposal environments, i.e. salt, clay, and granite. Carbon steels, stainless steels, nickel-based alloys, titanium-based alloys, and copper have been widely investigated as potential container materials depending on the studied host rock formation. The results obtained in salt environments indicate that the passively corroding Ti99.8-Pd is the primary choice for the thin-walled corrosion-resistant concept, since its general corrosion rate is negligible and it is highly resistant to localized corrosion and stress corrosion cracking (SCC) in salt brines. The TStE 355 carbon steel is the first candidate for the corrosion-allowance concept because it is resistant to pitting corrosion and SCC and its general corrosion rates are sufficiently low to provide corrosion allowance acceptable for thick-walled containers. Stainless steels, Ni-based alloys, and Ti-based alloys are the most important candidate container materials in clay for the thin-walled concept, while carbon steel is considered the main choice for the thick-walled corrosion-allowance concept. Studies performed in granite seem to indicate that copper containers provide an excellent corrosion barrier with an estimated lifetime exceeding 100,000 years. The TStE 355 carbon steel is also a valid option for a thick-walled container concept in granite. In this paper, some relevant corrosion data of carbon steel and stainless steel in cementitious environments are given in addition because large amounts of concrete will be used as structural materials in most of the envisaged repository design concepts. This paper also provides recommendations for future studies. (authors)

  3. Effect of temperature, of oxygen content and the downstream effect on corrosion rate of structural materials in liquid sodium

    International Nuclear Information System (INIS)

    Ilincev, G.

    1988-01-01

    The effects were experimentally tested of temperature and of oxygen content on the corrosion rate of structural materials in liquid sodium and on reducing the corrosion rate down the sodium stream. The results of the experiments are shown in graphs and tables and are discussed in detail. The duration of all tests was standard 1,000 hours. The test parameters were set such as to determine the effect of temperature on corrosion of a quantity of various materials in sodium with a low oxygen content (1.2 to 2 ppm) at temperatures of 500 to 800 degC and in sodium with a high oxygen content (345 ppm) at temperatures of 500 to 700 degC. More experiments served the determination of the effect of a different oxygen content varying between 1.2 and 2 ppm at a constant temperature of 600 degC. The materials being tested included main structural materials used for fast reactor construction and materials allowing to establish the effect of main alloying elements on their corrosion in liquid sodium of different temperatures and purity grades. The relationships showing the effects of temperature and oxygen content in sodium on the rate of corrosion of various structural materials in hot parts of the installation and on the reduction in the rate of corrosion downstream due to sodium saturation with corrosion products were constructed using the experimental results. (Z.M.). 15 figs., 2 tabs., 7 refs

  4. The Corrosion Protection of Magnesium Alloy AZ31B

    Science.gov (United States)

    Danford, M. D.; Mendrek, M. J.; Mitchell, M. L.; Torres, P. D.

    1997-01-01

    Corrosion rates for bare and coated Magnesium alloy AZ31B have been measured. Two coatings, Dow-23(Trademark) and Tagnite(Trademark), have been tested by electrochemical methods and their effectiveness determined. Electrochemical methods employed were the scanning reference electrode technique (SRET), the polarization resistance technique (PR) and the electrochemical impedance spectroscopy technique (EIS). In addition, general corrosion and stress corrosion methods were employed to examine the effectiveness of the above coatings in 90 percent humidity. Results from these studies are presented.

  5. The corrosion rate measurement of Inconel 690 on high temperature and pressure by using CMS100

    International Nuclear Information System (INIS)

    Sriyono; Satmoko, Ari; Febrianto; Hidayati, N R; Arifal; Sumarno, Ady; Handoyo, Ismu; Prasetjo, Joko

    1999-01-01

    The corrosion rate measurement of Inconel 690 on high temperature and pressure had been done. By using an Autoclave, and temperature can be simulated. For reducing the pressure on Autoclave so its can be measure by Corrosion Measurement System 100(CMS100), the electrodes placement had designed and fabrication on the cover of Autoclave. The electrodes of CMS100 are reference electrode, working electrodes and counter electrodes. The electrodes placement are made and and designed on two packages, these are Salt bridge and Counter-specimen placement. From the result of testing these both of placement are able to 90 bar (pressure) and 280 C (temperature) operation rate measurement was done on temperature variation from 150 0C, 190 0C, 200 0C, 210 0C, 220 0C and 230 0C, and the solution is 0.1 ppm chloride. The pressure experiment is the pressure, which occurred in Autoclave. From the Tafel analysis, even through very little The corrosion current increased from 150 C to 230 C it is 2,54x10-10 a/cm2 to 1,62x10-9 A/cm2, but the the corrosion rate is still zero

  6. A High-Performance Corrosion-Resistant Iron-Based Amorphous Metal - The Effects of Composition, Structure and Environment on Corrosion Resistance

    International Nuclear Information System (INIS)

    Farmer, J.; Haslam, J.; Day, D.; Lian, T.; Saw, C.; Hailey, P.; Choi, J.S.; Rebak, R.; Yang, N.; Bayles, R.; Aprigliano, L.; Payer, J.; Perepezko, J.; Hildal, K.; Lavernia, E.; Ajdelsztajn, L.; Branagan, D.; Beardsley, B.

    2007-01-01

    The passive film stability of several Fe-based amorphous metal formulations have been found to be comparable to that of high-performance Ni-based alloys, and superior to that of stainless steels, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. Chromium (Cr), molybdenum (Mo) and tungsten (W) provide corrosion resistance; boron (B) enables glass formation; and rare earths such as yttrium (Y) lower critical cooling rate (CCR). The high boron content of this particular amorphous metal also makes it an effective neutron absorber, and suitable for criticality control applications, as discussed in companion publications. Corrosion data for SAM2X5 (Fe 49.7 Cr 17.7 Mn 1.9 Mo 7.4 W 1.6 B 15.2 C 3.8 Si 2.4 ) is discussed here. (authors)

  7. Synergy effect of naphthenic acid corrosion and sulfur corrosion in crude oil distillation unit

    Energy Technology Data Exchange (ETDEWEB)

    Huang, B.S., E-mail: yinwenfeng2010@163.com [College of Materials Science and Engineering, Southwest Petroleum University, Sichuan, Chengdu, 610500 (China); Yin, W.F. [College of Mechatronic Engineering, Southwest Petroleum University, Sichuan, Chengdu, 610500 (China); Sang, D.H. [Sheng Li Construction Group International Engineering Department, Shandong, Dongying, 257000 (China); Jiang, Z.Y. [College of Materials Science and Engineering, Southwest Petroleum University, Sichuan, Chengdu, 610500 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer The corrosion of a carbon-manganese steel and a stainless steel in sulfur and/or naphthenic acid media was investigated. Black-Right-Pointing-Pointer The corrosion rate of the carbon-manganese steel increased with the increase of the acid value and sulfur content. Black-Right-Pointing-Pointer The critical values of the concentration of sulfur and acid for corrosion rate of the stainless steel were ascertained respectively. Black-Right-Pointing-Pointer The stainless steel is superior to the carbon-manganese steel in corrosion resistance because of the presence of stable Cr{sub 5}S{sub 8} phases. - Abstract: The synergy effect of naphthenic acid corrosion and sulfur corrosion at high temperature in crude oil distillation unit was studied using Q235 carbon-manganese steel and 316 stainless steel. The corrosion of Q235 and 316 in corrosion media containing sulfur and/or naphthenic acid at 280 Degree-Sign C was investigated by weight loss, scanning electron microscope (SEM), EDS and X-ray diffractometer (XRD) analysis. The results showed that in corrosion media containing only sulfur, the corrosion rate of Q235 and 316 first increased and then decreased with the increase of sulfur content. In corrosion media containing naphthenic acid and sulfur, with the variations of acid value or sulfur content, the synergy effect of naphthenic acid corrosion and sulfur corrosion has a great influence on the corrosion rate of Q235 and 316. It was indicated that the sulfur accelerated naphthenic acid corrosion below a certain sulfur content but prevented naphthenic acid corrosion above that. The corrosion products on two steels after exposure to corrosion media were investigated. The stable Cr{sub 5}S{sub 8} phases detected in the corrosion products film of 316 were considered as the reason why 316 has greater corrosion resistance to that of Q235.

  8. Comparison between the corrosion forecast based on the potential measurement and the determination of the corrosion rate of the reinforcement bar by means of electrochemical techniques

    Directory of Open Access Journals (Sweden)

    Castaneda, A.

    2003-12-01

    Full Text Available The ASTA4 876-91 standard establishes a corrosion forecast of concrete reinforced bar by measuring the electrochemical potential. This forecast is based on thermodynamic considerations without taking into account the kinetic of the corrosion process. A comparison was made between the results obtained based on this standard and others using electrochemical techniques (Tafel, Rp, EIS, Electrochemical Noise. These techniques allows to obtain the corrosion rate in samples having 0.4, 0.5 and 0.66 water/cement ratios submitted to salt spray outdoors and by immersion in 3% saline solution during a test time of 20 months. Differences were detected between the results obtained using the ASTM standard and the electrochemical techniques used. The main difference is that samples submitted to immersion shows a higher probability of corrosion than samples submitted to salt spray; however, the electrochemical techniques showed the contrary concerning the corrosion kinetic process .A comparison respecting corrosion rate was also made between the results obtained by the different electrochemical techniques. It is very well known that all electrochemical techniques supposed always general corrosion except electrochemical noise. Using the technique the pitting index can be calculated. It shows that localized corrosion is the most predominant

    La norma ASTM 876-91 establece un pronóstico de corrosión de la barra de refuerzo del hormigón armado mediante la determinación de potenciales electroquímicos. Este pronóstico se basa en consideraciones termodinámicas, sin tener en cuenta la cinética del proceso de corrosión. Se comparan los resultados obtenidos aplicando esta norma con técnicas electroquímicas (Tafel, Rp, EIS, Ruido Electroquímico que permiten calcular la velocidad de corrosión en probetas con relaciones agua/cemento 0,4, 0,5 y 0,66 sometidas a niebla salina en condiciones naturales y en inmersión en solución salina al 3% durante un

  9. Erosion and erosion-corrosion

    International Nuclear Information System (INIS)

    Isomoto, Yoshinori

    2008-01-01

    It is very difficult to interpret the technical term of erosion-corrosion' which is sometimes encountered in piping systems of power plants, because of complicated mechanisms and several confusing definitions of erosion-corrosion phenomena. 'FAC (flow accelerated corrosion)' is recently introduced as wall thinning of materials in power plant systems, as a representative of 'erosion-corrosion'. FAC is, however, not necessarily well understood and compared with erosion-corrosion. This paper describes firstly the origin, definition and fundamental understandings of erosion and erosion-corrosion, in order to reconsider and reconfirm the phenomena of erosion, erosion-corrosion and FAC. Next, typical mapping of erosion, corrosion, erosion-corrosion and FAC are introduced in flow velocity and environmental corrosiveness axes. The concept of damage rate in erosion-corrosion is finally discussed, connecting dissolution rate, mass transfer of metal ions in a metal oxide film and film growth. (author)

  10. A novel high-strength and highly corrosive biodegradable Fe-Pd alloy: Structural, mechanical and in vitro corrosion and cytotoxicity study.

    Science.gov (United States)

    Čapek, Jaroslav; Msallamová, Šárka; Jablonská, Eva; Lipov, Jan; Vojtěch, Dalibor

    2017-10-01

    Recently, iron-based materials have been considered as candidates for the fabrication of biodegradable load-bearing implants. Alloying with palladium has been found to be a suitable approach to enhance the insufficient corrosion rate of iron-based alloys. In this work, we have extensively compared the microstructure, the mechanical and corrosion properties, and the cytotoxicity of an FePd2 (wt%) alloy prepared by three different routes - casting, mechanical alloying and spark plasma sintering (SPS), and mechanical alloying and the space holder technique (SHT). The properties of the FePd2 (wt%) were compared with pure Fe prepared in the same processes. The preparation route significantly influenced the material properties. Materials prepared by SPS possessed the highest values of mechanical properties (CYS~750-850MPa) and higher corrosion rates than the casted materials. Materials prepared by SHT contained approximately 60% porosity; therefore, their mechanical properties reached the lowest values, and they had the highest corrosion rates, approximately 0.7-1.2mm/a. Highly porous FePd2 was tested in vitro according to the ISO 10993-5 standard using L929 cells, and two-fold diluted extracts showed acceptable cytocompatibility. In general, alloying with Pd enhanced both mechanical properties and corrosion rates and did not decrease the cytocompatibility of the studied materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The corrosion and stress corrosion cracking behavior of a novel alumina-forming austenitic stainless steel in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hongying [School of Mechanical Engineering, Anyang Institute of Technology, Anyang 455002 (China); Yang, Haijie [Modern Engineering Training Center, Anyang Institute of Technology, Anyang 455002 (China); Wang, Man [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Giron-Palomares, Benjamin [School of Mechanical Engineering, Anyang Institute of Technology, Anyang 455002 (China); Zhou, Zhangjian, E-mail: zhouzhj@mater.ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhang, Lefu [School of Nuclear Science and Engineering, Shanghai Jiaotong University, No 800 Dongchuan Road, Shanghai (China); Zhang, Guangming, E-mail: ustbzgm@163.com [School of Automobile & Transportation, Qingdao Technological University, Qingdao 266520 (China)

    2017-02-15

    The general corrosion and stress corrosion behavior of Fe-27Ni-15Cr-5Al-2Mo-0.4Nb alumina-forming austenitic (AFA) steel were investigated in supercritical water under different conditions. A double layer oxide structure was formed: a Fe-rich outer layer (Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4}) and an Al-Cr-rich inner layer. And the inner layer has a low growth rate with exposing time, which is good for improvement of corrosion resistance. Additionally, some internal nodular Al-Cr-rich oxides were also observed, which resulted in a local absence of inner layer. Stress corrosion specimens exhibited a combination of high strength, good ductility and low susceptibility. The stress strength and elongation was reduced by increasing temperature and amount of dissolved oxygen. In addition, the corresponding susceptibility was increased with decreased temperatures and increased oxygen contents. - Highlights: • The general corrosion and SCC in SCW of the AFA steel have been limited reported. • Fe-rich inner and Al-Cr-rich outer layers are formed in 650 °C/25 MPa/10 ppb SCW. • The SCC behavior exhibits a combination of high strength and good ductility. • Strength and elongation are lowered by increase of temperature and oxygen content. • The AFA steel shows low SCC susceptibility and a superior corrosion resistance.

  12. The corrosion and stress corrosion cracking behavior of a novel alumina-forming austenitic stainless steel in supercritical water

    International Nuclear Information System (INIS)

    Sun, Hongying; Yang, Haijie; Wang, Man; Giron-Palomares, Benjamin; Zhou, Zhangjian; Zhang, Lefu; Zhang, Guangming

    2017-01-01

    The general corrosion and stress corrosion behavior of Fe-27Ni-15Cr-5Al-2Mo-0.4Nb alumina-forming austenitic (AFA) steel were investigated in supercritical water under different conditions. A double layer oxide structure was formed: a Fe-rich outer layer (Fe 2 O 3 and Fe 3 O 4 ) and an Al-Cr-rich inner layer. And the inner layer has a low growth rate with exposing time, which is good for improvement of corrosion resistance. Additionally, some internal nodular Al-Cr-rich oxides were also observed, which resulted in a local absence of inner layer. Stress corrosion specimens exhibited a combination of high strength, good ductility and low susceptibility. The stress strength and elongation was reduced by increasing temperature and amount of dissolved oxygen. In addition, the corresponding susceptibility was increased with decreased temperatures and increased oxygen contents. - Highlights: • The general corrosion and SCC in SCW of the AFA steel have been limited reported. • Fe-rich inner and Al-Cr-rich outer layers are formed in 650 °C/25 MPa/10 ppb SCW. • The SCC behavior exhibits a combination of high strength and good ductility. • Strength and elongation are lowered by increase of temperature and oxygen content. • The AFA steel shows low SCC susceptibility and a superior corrosion resistance.

  13. Corrosion behavior of corrosion resistant alloys in stimulation acids

    Energy Technology Data Exchange (ETDEWEB)

    Cheldi, Tiziana [ENI E and P Division, 20097 San Donato Milanese Milano (Italy); Piccolo, Eugenio Lo; Scoppio, Lucrezia [Centro Sviluppo Materiali, via Castel Romano 100, 00128 Rome (Italy)

    2004-07-01

    In the oil and gas industry, selection of CRAs for downhole tubulars is generally based on resistance to corrosive species in the production environment containing CO{sub 2}, H{sub 2}S, chloride and in some case elemental sulphur. However, there are non-production environments to which these materials must also be resistant for either short term or prolonged duration; these environments include stimulation acids, brine and completion fluids. This paper reports the main results of a laboratory study performed to evaluate the corrosion and stress corrosion behaviour to the acidizing treatments of the most used CRAs for production tubing and casing. Laboratory tests were performed to simulate both 'active' and 'spent' acids operative phases, selecting various environmental conditions. The selected steel pipes were a low alloyed steel, martensitic, super-martensitic, duplex 22 Cr, superduplex 25 Cr and super-austenitic stainless steels (25 Cr 35 Ni). Results obtained in the 'active' acid environments over the temperature range of 100-140 deg. C, showed that the blend acids with HCl at high concentration and HCl + HF represented too much severe conditions, where preventing high general corrosion and heavy localised corrosion by inhibition package becomes very difficult, especially for duplex steel pipe, where, in some case, the specimens were completely dissolved into the solution. On the contrary, all steels pipes were successfully protected by inhibitor when organic acid solution (HCOOH + CH{sub 3}COOH) were used. Furthermore, different effectiveness on corrosion protection was showed by the tested inhibitors packages: e.g. in the 90% HCl at 12% + 10 CH{sub 3}COOH acid blend. In 'spent' acid environments, all steel pipes showed to be less susceptible to the localised and general corrosion attack. Moreover, no Sulphide Stress Corrosion Cracking (SSC) was observed. Only one super-austenitic stainless steel U-bend specimen showed

  14. Exploratory shaft liner corrosion estimate

    International Nuclear Information System (INIS)

    Duncan, D.R.

    1985-10-01

    An estimate of expected corrosion degradation during the 100-year design life of the Exploratory Shaft (ES) is presented. The basis for the estimate is a brief literature survey of corrosion data, in addition to data taken by the Basalt Waste Isolation Project. The scope of the study is expected corrosion environment of the ES, the corrosion modes of general corrosion, pitting and crevice corrosion, dissimilar metal corrosion, and environmentally assisted cracking. The expected internal and external environment of the shaft liner is described in detail and estimated effects of each corrosion mode are given. The maximum amount of general corrosion degradation was estimated to be 70 mils at the exterior and 48 mils at the interior, at the shaft bottom. Corrosion at welds or mechanical joints could be significant, dependent on design. After a final determination of corrosion allowance has been established by the project it will be added to the design criteria. 10 refs., 6 figs., 5 tabs

  15. A combined neural network and mechanistic approach for the prediction of corrosion rate and yield strength of magnesium-rare earth alloys

    Energy Technology Data Exchange (ETDEWEB)

    Birbilis, N., E-mail: nick.birbilis@monash.ed [ARC Centre of Excellence for Design in Light Metals, Monash University (Australia); CAST Co-operative Research Centre, Monash University (Australia); Cavanaugh, M.K. [Department of Materials Science and Engineering, The Ohio State University (United States); Sudholz, A.D. [ARC Centre of Excellence for Design in Light Metals, Monash University (Australia); Zhu, S.M.; Easton, M.A. [CAST Co-operative Research Centre, Monash University (Australia); Gibson, M.A. [CSIRO Division of Process Science and Engineering (Australia)

    2011-01-15

    Research highlights: This study presents a body of corrosion data for a set of custom alloys and displays this in multivariable space. These alloys represent the next generation of Mg alloys for auto applications. The data is processed using an ANN model, which makes it possible to yield a single expression for prediction of corrosion rate (and strength) as a function of any input composition (of Ce, La or Nd between 0 and 6 wt.%). The relative influence of the various RE elements on corrosion is assessed, with the outcome that Nd additions can offer comparable strength with minimal rise in corrosion rate. The morphology and solute present in the eutectic region itself (as opposed to just the intermetallic presence) was shown - for the first time - to also be a key contributor to corrosion. The above approach sets the foundation for rational alloy design of alloys with corrosion performance in mind. - Abstract: Additions of Ce, La and Nd to Mg were made in binary, ternary and quaternary combinations up to {approx}6 wt.%. This provided a dataset that was used in developing a neural network model for predicting corrosion rate and yield strength. Whilst yield strength increased with RE additions, corrosion rates also systematically increased, however, this depended on the type of RE element added and the combination of elements added (along with differences in intermetallic morphology). This work is permits an understanding of Mg-RE alloy performance, and can be exploited in Mg alloy design for predictable combinations of strength and corrosion resistance.

  16. A combined neural network and mechanistic approach for the prediction of corrosion rate and yield strength of magnesium-rare earth alloys

    International Nuclear Information System (INIS)

    Birbilis, N.; Cavanaugh, M.K.; Sudholz, A.D.; Zhu, S.M.; Easton, M.A.; Gibson, M.A.

    2011-01-01

    Research highlights: → This study presents a body of corrosion data for a set of custom alloys and displays this in multivariable space. These alloys represent the next generation of Mg alloys for auto applications. → The data is processed using an ANN model, which makes it possible to yield a single expression for prediction of corrosion rate (and strength) as a function of any input composition (of Ce, La or Nd between 0 and 6 wt.%). → The relative influence of the various RE elements on corrosion is assessed, with the outcome that Nd additions can offer comparable strength with minimal rise in corrosion rate. → The morphology and solute present in the eutectic region itself (as opposed to just the intermetallic presence) was shown - for the first time - to also be a key contributor to corrosion. → The above approach sets the foundation for rational alloy design of alloys with corrosion performance in mind. - Abstract: Additions of Ce, La and Nd to Mg were made in binary, ternary and quaternary combinations up to ∼6 wt.%. This provided a dataset that was used in developing a neural network model for predicting corrosion rate and yield strength. Whilst yield strength increased with RE additions, corrosion rates also systematically increased, however, this depended on the type of RE element added and the combination of elements added (along with differences in intermetallic morphology). This work is permits an understanding of Mg-RE alloy performance, and can be exploited in Mg alloy design for predictable combinations of strength and corrosion resistance.

  17. Laboratory investigations on the corrosion rate of A42 carbon steel in various secondary circuit chemistries representative of hydraulic tests conditions

    International Nuclear Information System (INIS)

    Brussieux, C.; Clinard, M.H.; Guillodo, M.; Alos-Ramos, O.

    2014-01-01

    Ammonia and hydrazine are currently used in the chemical conditioning of steam generators hydraulic test medium to minimize the corrosion rate of carbon steels. However, hydrazine is classified carcinogenic by the European Commission. Significant effort is therefore ongoing to limit its use or even replace it. The results presented in this paper were obtained in the frame of an EDF and AREVA research program on the subject. The corrosion rate of carbon steel in alkaline media with hydrazine was thoroughly studied. However, most studies concern polished coupons and very few data are available for carbon steel covered with oxides layer(s) representative of the layer(s) which can be found in a SG after operation. In this context, the corrosion rate at 25°C of carbon steel pre-oxidized by an autoclave treatment was studied. The tests coupons were submitted to a secondary circuit chemical conditioning treatment in an autoclave at 280°C during 30 days prior to the corrosion rate measurement. The corrosion rates were measured during two months by an electrochemical method (polarization resistance) in test media composed with deionized water, ammonia and hydrazine under an air blanket at 25°C. Similitudes with steam generators' volume/surface ratios were respected during these tests. The coupons submitted to an autoclave treatment were covered by a duplex magnetite layer. After exposure to hydrazine and ageing, the structure of the magnetite layer contains bigger crystallites than after ageing without exposure to hydrazine. The corrosion rate of passive A42 steel exposed to hydrazine was stable and low even after the complete consumption of hydrazine during at least 50 days. The corrosion rate of passive A42 steel not exposed to hydrazine grew steadily to reach the same corrosion rates as polished carbon steels within 50 days. The hydrazine consumption rate observed in the presence of magnetite covered A42 carbon steel was found higher than 1mg/kg/hour. To explain

  18. Review of Artificial Neural Networks (ANN) applied to corrosion monitoring

    International Nuclear Information System (INIS)

    Mabbutt, S; Picton, P; Shaw, P; Black, S

    2012-01-01

    The assessment of corrosion within an engineering system often forms an important aspect of condition monitoring but it is a parameter that is inherently difficult to measure and predict. The electrochemical nature of the corrosion process allows precise measurements to be made. Advances in instruments, techniques and software have resulted in devices that can gather data and perform various analysis routines that provide parameters to identify corrosion type and corrosion rate. Although corrosion rates are important they are only useful where general or uniform corrosion dominates. However, pitting, inter-granular corrosion and environmentally assisted cracking (stress corrosion) are examples of corrosion mechanisms that can be dangerous and virtually invisible to the naked eye. Electrochemical noise (EN) monitoring is a very useful technique for detecting these types of corrosion and it is the only non-invasive electrochemical corrosion monitoring technique commonly available. Modern instrumentation is extremely sensitive to changes in the system and new experimental configurations for gathering EN data have been proven. In this paper the identification of localised corrosion by different data analysis routines has been reviewed. In particular the application of Artificial Neural Network (ANN) analysis to corrosion data is of key interest. In most instances data needs to be used with conventional theory to obtain meaningful information and relies on expert interpretation. Recently work has been carried out using artificial neural networks to investigate various types of corrosion data in attempts to predict corrosion behaviour with some success. This work aims to extend this earlier work to identify reliable electrochemical indicators of localised corrosion onset and propagation stages.

  19. On the corrosion behaviour of stainless steel, nickel-chromium and zirconium-alloys in pore water of Portland cement

    International Nuclear Information System (INIS)

    Heitz, E.; Graefen, H.

    1991-12-01

    On the basis of an extensive review of literature and available experience, an evaluation was made of the corrosion of a metallic matrix for radioactive nuclides embedded in porous, water containing Portland cement. As a metallic matrix, austenitic high-alloy steel, nickel-base alloys and zirconium alloys are discussed. Pore waters in Portland cement have low aggressivity. However, through contact with formation water, chloride and sulphate enrichment can occur. Although corrosion is principally possible on the basis of purely thermodynamic considerations, it can be assumed that local corrosion (pitting, stress corrosion cracking, intergranular corrosion) is highly improbable under the given boundary conditions. This is valid for all three groups of alloys and means that only low release rates of corrosion products are to be expected. As a result of the discussion on radiolysis-induced corrosion, additional corrosion activity can be excluded. Final conclusions concerning the stimulation of corrosion processes by microbial action cannot be drawn and, therefore, additional experiments are proposed. The release rates of radioactive products are controlled by a very low dissolution rate of the materials in the passive state. All three groups of alloys show this type of general dissolution. From a survey of literature data it can be concluded that release rates greater than 250 mg/m 2 per day are not exceeded. Since these data were mainly obtained by electrochemical methods, it is proposed that quantitative analytical investigations of the corrosion products in pore water be made. On the whole the release rates determined are far below corrosion rates which are generally technically relevant. (author) 13 figs., 9 tabs., 61 refs

  20. The effect of moisture content on the corrosion of fasteners embedded in wood subjected to alkaline copper quaternary treatment

    International Nuclear Information System (INIS)

    Zelinka, Samuel L.; Glass, Samuel V.; Derome, Dominique

    2014-01-01

    Highlights: • We examine the dependence of metal corrosion on wood moisture content. • Corrosion of steel and galvanized steel in treated wood were measured. • Corrosion products were analyzed across moisture contents using X-ray diffraction. • The corrosion rate has a sigmoidal dependence on moisture content. • The data herein can be used to improve combined hygrothermal–corrosion models. - Abstract: This paper characterizes the corrosion rate of embedded fasteners as a function of wood moisture content using gravimetric and electrochemical measurements. The results indicated that the corrosion rate increased with moisture content before reaching a plateau. The phases present in the corrosion products, as analyzed using X-ray diffraction, are generally consistent with previous work. Uniform corrosion was observed for all fasteners and all conditions except steel fasteners embedded in water-saturated wood. Data of dependence of corrosion rate on moisture content, presented herein, are necessary to ensure the accuracy of combined hygrothermal/corrosion models used to predict durability of wood structures

  1. The Effect of superficial cracks of the concrete on the behavior and corrosion rate of steel rebars in Persian Golf (Booshehr)

    International Nuclear Information System (INIS)

    Afshar, A.; Rajabi, A.

    2001-01-01

    The presence of superficial cracks in concrete increases the diffusion of destructive agents into concrete and the corrosion of rebars will take place. In the present work, the effects of cracks width on the behavior and corrosion rate of steel rebars in the concrete containing cements type I and II at Persian Gulf water have been studied. The results show that the corrosion rate of steel rebars in the concrete with cracks width less than 0.4 mm is negligible, but with increasing the cracks width to 0.7 mm, the corrosion rate increase rapidly. Also, the corrosion gate of gebars in the concrete containing cement type I is more than that of cement type II. The visual inspection of the surface area of gebars shows that the corroded area is 6-7 times of the crack width and length

  2. Corrosion of a carbon steel in simulated liquid nuclear wastes

    International Nuclear Information System (INIS)

    Saenz Gonzalez, Eduardo

    2005-01-01

    This work is part of a collaboration agreement between CNEA (National Atomic Energy Commission of Argentina) and USDOE (Department of Energy of the United States of America), entitled 'Tank Corrosion Chemistry Cooperation', to study the corrosion behavior of carbon steel A537 class 1 in different simulated non-radioactive wastes in order to establish the safety concentration limits of the tank waste chemistry at Hanford site (Richland-US). Liquid high level nuclear wastes are stored in tanks made of carbon steel A537 (ASTM nomenclature) that were designed for a service life of 20 to 50 years. A thickness reduction of some tank walls, due to corrosion processes, was detected at Hanford site, beyond the existing predicted values. Two year long-term immersion tests were started using non radioactive simulated liquid nuclear waste solutions at 40 C degrees. This work extends throughout the first year of immersion. The simulated solutions consist basically in combinations of the 10 most corrosion significant chemical components: 5 main components (NaNO 3 , NaCl, NaF, NaNO 2 and NaOH) at three concentration levels and 5 secondary components at two concentration levels. Measurements of the general corrosion rate with time were performed for carbon steel coupons, both immersed in the solutions and in the vapor phases, using weight loss and electrochemistry impedance spectroscopy techniques. Optic and scanning electron microscopy examination, analysis of U-bend samples and corrosion potential measurements, were also done. Localized corrosion susceptibility (pitting and crevice corrosion) was assessed in isolated short-term tests by means of cyclic potentiodynamic polarization curves. The effect of the simulated waste composition on the corrosion behavior of A537 steel was studied based on statistical analyses. The Surface Response Model could be successfully applied to the statistical analysis of the A537 steel corrosion in the studied solutions. General corrosion was not

  3. High temperature corrosion of nickel alloys by molten calcium chloride in an oxidising environment

    International Nuclear Information System (INIS)

    Barnett, Roger; Gittos, Mike

    2012-09-01

    A series of nickel alloys was submerged in molten calcium chloride (a molten salt proposed for and used in the nuclear industry for a variety of applications), at 850 deg. C for 72 hours under an oxidising environment. The samples were analysed in detail, in order to determine their corrosion behaviour and suitability for use under these conditions. 310 stainless steel was used as a reference material. Extensive corrosion occurred and the observed attack on the metal substrates was general and massive with corrosion rates ranging from 1.17 mm/year, for Haynes 214, to 13.3 mm/year, for 310 stainless steel. All materials showed selective leaching of chromium from the samples but the oxide layer formed was not protective, spalling away easily. The severity of the attack was not immediately visible from the corrosion rate alone: samples showed a friable scale on the surface and deep penetration of the attack beneath, up to 0.63 mm for 310 stainless steel. In some cases, the attack was clearly intergranular with chromium being depleted along the grain boundaries, whereas in others, the attack was more general. No simple correlation between alloying elements and corrosion rate was apparent, with additions of aluminium and silicon appearing to have little or no protective effect. Alloys 600 and Haynes HR-160 showed promise, with relatively low corrosion rates and penetration depths. (authors)

  4. Review of corrosion phenomena on zirconium alloys, niobium, titanium, inconel, stainless steel, and nickel plate under irradiation

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.

    1975-01-01

    The role of nuclear fluxes in corrosion processes was investigated in ATR, ETR, PRTR, and in Hanford production reactors. Major effort was directed to zirconium alloy corrosion parameter studies. Corrosion and hydriding results are reported as a function of oxygen concentration in the coolant, flux level, alloy composition, surface pretreatment, and metallurgical condition. Localized corrosion and hydriding at sites of bonding to dissimilar metals are described. Corrosion behavior on specimens transferred from oxygenated to low-oxygen coolants in ETR and ATR experiments is compared. Mechanism studies suggest that a depression in the corrosion of the Zr--2.5Nb alloy under irradiation is due to radiation-induced aging. The radiation-induced onset of transition on several alloys is in general a gradual process which nucleates locally, causing areas of oxide prosity which eventually encompass the surface. Examination of Zry-2 process tubes reveals that accelerated corrosion has occurred in low-oxygen coolants. Hydrogen contents are relatively low, but show some localized profiles. Gross hydriding has occurred on process tubes containing aluminum spacers, apparently by a galvanic charging mechanism. Titanium paralleled Zry-2 in corrosion behavior under irradiation. Niobium corrosion was variable, but did not appear to be strongly influenced by radiation. Corrosion rates on Inconel and stainless steel were only slightly higher in-flux than out-of-reactor. Corrosion rates on nickel-plated aluminum appeared to vary substantially with preexposure treatments, but the rates generally were accelerated compared to rates on unirradiated coupons. (59 references, 11 tables, 12 figs.)

  5. Modeling of Metal Structure Corrosion Damage: A State of the Art Report

    Directory of Open Access Journals (Sweden)

    Francesco Portioli

    2010-07-01

    Full Text Available The durability of metal structures is strongly influenced by damage due to atmospheric corrosion, whose control is a key aspect for design and maintenance of both new constructions and historical buildings. Nevertheless, only general provisions are given in European codes to prevent the effects of corrosion during the lifetime of metal structures. In particular, design guidelines such as Eurocode 3 do not provide models for the evaluation of corrosion depth that are able to predict the rate of thickness loss as a function of different influencing parameters. In this paper, the modeling approaches of atmospheric corrosion damage of metal structures, which are available in both ISO standards and the literature, are presented. A comparison among selected degradation models is shown in order to evaluate the possibility of developing a general approach to the evaluation of thickness loss due to corrosion.

  6. Study of corrosion-erosion behaviour of stainless alloys in industrial phosphoric acid medium

    Energy Technology Data Exchange (ETDEWEB)

    Guenbour, Abdellah [Laboratory of Electrochemistry-Corrosion, Av. Ibn Batouta, BP1014-Faculty of Science, Rabat (Morocco)]. E-mail: guenbour@fsr.ac.ma; Hajji, Mohamed-Adil [Group Corrosion and Protection of Materials, ENIM, Rabat (Morocco); Jallouli, El Miloudi [Group Corrosion and Protection of Materials, ENIM, Rabat (Morocco); Bachir, Ali Ben [Laboratory of Electrochemistry-Corrosion, Av. Ibn Batouta, BP1014-Faculty of Science, Rabat (Morocco)

    2006-12-30

    The corrosion and corrosion-abrasion resistance of some stainless steels in industrial phosphoric acid 30% P{sub 2}O{sub 5} has been studied using electrochemical techniques. The corrosion rate of materials increases with the increase of temperature. Alloys which contain chromium, molybdenum and nitrogen in sufficient quantities present the best behaviour. In the abrasion-corrosion conditions, the experimental device set up allowed to follow continually samples electrochemical behaviour. Under dynamic conditions and without solid particles, the increase of acid projection speed has no effect on the alloys corrosion behaviour. The adding of abrasive leads to a general increase of corrosion rate and to a decrease of material resistance. Under these conditions, materials attack is controlled by synergistic effect between the abrasion and the impurities. The cast 30% Cr shows good resistance according to his high chromium content.

  7. Study of corrosion-erosion behaviour of stainless alloys in industrial phosphoric acid medium

    International Nuclear Information System (INIS)

    Guenbour, Abdellah; Hajji, Mohamed-Adil; Jallouli, El Miloudi; Bachir, Ali Ben

    2006-01-01

    The corrosion and corrosion-abrasion resistance of some stainless steels in industrial phosphoric acid 30% P 2 O 5 has been studied using electrochemical techniques. The corrosion rate of materials increases with the increase of temperature. Alloys which contain chromium, molybdenum and nitrogen in sufficient quantities present the best behaviour. In the abrasion-corrosion conditions, the experimental device set up allowed to follow continually samples electrochemical behaviour. Under dynamic conditions and without solid particles, the increase of acid projection speed has no effect on the alloys corrosion behaviour. The adding of abrasive leads to a general increase of corrosion rate and to a decrease of material resistance. Under these conditions, materials attack is controlled by synergistic effect between the abrasion and the impurities. The cast 30% Cr shows good resistance according to his high chromium content

  8. The corrosion pattern of reinforcement and its influence on serviceability of reinforced concrete members in chloride environment

    International Nuclear Information System (INIS)

    Zhang Ruijin; Castel, Arnaud; Francois, Raoul

    2009-01-01

    This paper deals with two corroded reinforcement concrete beams, which have been stored under sustained load in a chloride environment for 14 and 23 years respectively. The evolution of corrosion pattern of reinforcement and its influence on serviceability are studied. In chloride-induced corrosion process, corrosion cracking affects significantly the corrosion pattern. During the corrosion cracking initiation period, only local pitting corrosion occurs. At early stage of cracking propagation, localized pitting corrosion is still predominant as cracks widths are very small and cracks are not interconnected, but a general corrosion slowly develops as the cracks widen. At late cracking stage, interconnected cracking with wide width develops along large parts of the beam leading to a general corrosion pattern. Macrocells and microcells concepts are used for the interpretation of the results. Mechanical experiments and corrosion simulation tests are performed to clarify the influence of this corrosion pattern evolution on the serviceability of the beams (deflection increase). Experimental results show that, when the corrosion is localized (early cracking stage), the steel-concrete bond loss is the main factor affecting the beams serviceability. The local cross-section loss resulting from pitting attack does not significantly influence the deflection of the beam. When corrosion is generalized (late cracking stage), as the steel-concrete bond is already lost, the generalized steel cross-section reduction becomes the main factor affecting the beams serviceability. But, at this stage, the deflection increase is slower due to the low general corrosion rate.

  9. Study of biofilm influenced corrosion on cast iron pipes in reclaimed water

    International Nuclear Information System (INIS)

    Zhang, Haiya; Tian, Yimei; Wan, Jianmei; Zhao, Peng

    2015-01-01

    Highlights: • Compared to sterile water, biofilm in reclaimed water promoted corrosion process significantly. • Corrosion rate was accelerated by the biofilm in the first 7 days but was inhibited afterwards. • There was an inverse correlation between the biofilm thickness and general corrosion rate. • Corrosion process was influenced by bacteria, EPS and corrosion products comprehensively. • The corrosion process can be divided into three different stages in our study. - Abstract: Biofilm influenced corrosion on cast iron pipes in reclaimed water was systemically studied using the weight loss method and electrochemical impedance spectroscopy (EIS). The results demonstrated that compared to sterile water, the existence of the biofilm in reclaimed water promoted the corrosion process significantly. The characteristics of biofilm on cast iron coupons were examined by the surface profiler, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The bacterial counts in the biofilm were determined using the standard plate count method and the most probable number (MPN). The results demonstrated that the corrosion process was influenced by the settled bacteria, EPS, and corrosion products in the biofilm comprehensively. But, the corrosion mechanisms were different with respect to time and could be divided into three stages in our study. Furthermore, several corresponding corrosion mechanisms were proposed for different immersion times.

  10. Study of biofilm influenced corrosion on cast iron pipes in reclaimed water

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haiya, E-mail: flying850612@126.com; Tian, Yimei, E-mail: ymtian_2000@126.com; Wan, Jianmei, E-mail: 563926510@qq.com; Zhao, Peng, E-mail: zhpeng@tju.edu.cn

    2015-12-01

    Highlights: • Compared to sterile water, biofilm in reclaimed water promoted corrosion process significantly. • Corrosion rate was accelerated by the biofilm in the first 7 days but was inhibited afterwards. • There was an inverse correlation between the biofilm thickness and general corrosion rate. • Corrosion process was influenced by bacteria, EPS and corrosion products comprehensively. • The corrosion process can be divided into three different stages in our study. - Abstract: Biofilm influenced corrosion on cast iron pipes in reclaimed water was systemically studied using the weight loss method and electrochemical impedance spectroscopy (EIS). The results demonstrated that compared to sterile water, the existence of the biofilm in reclaimed water promoted the corrosion process significantly. The characteristics of biofilm on cast iron coupons were examined by the surface profiler, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The bacterial counts in the biofilm were determined using the standard plate count method and the most probable number (MPN). The results demonstrated that the corrosion process was influenced by the settled bacteria, EPS, and corrosion products in the biofilm comprehensively. But, the corrosion mechanisms were different with respect to time and could be divided into three stages in our study. Furthermore, several corresponding corrosion mechanisms were proposed for different immersion times.

  11. Effect of steam corrosion on core post strength loss: I. Low, chronic steam ingress rates

    International Nuclear Information System (INIS)

    Wichner, R.P.

    1976-10-01

    The purpose of the study was to assess the effect of chronic, low levels of steam ingress into the primary system of the HTGR on the corrosion, and consequent strength loss of the core support posts. The assessment proceeded through the following three steps: (1) The impurity composition in the primary system was estimated as a function of a range of steady ingress rates of from 0.001 to 1.0 g/sec, both by means of an analysis of the Dragon steam ingress experiment and a computer code, TIMOX, which treats the primary system as a well-mixed pot. (2) The core post burnoffs which result from 40-year exposures to these determined impurity atmospheres were then estimated using a corrosion rate expression derived from published ATJ-graphite corrosion rate data. Burnoffs were determined for both the core posts at the nominal and the maximum sustained temperature, estimated to be 90 0 C above nominal. (3) The final step involved assessment of the degree of strength loss resulting from the estimated burnoffs. An empirical equation was developed for this purpose which compares reasonably well with strength loss data for a number of different graphites and specimen geometries

  12. Corrosive wear. Evaluation of wear and corrosive resistant materials; Noetningskorrosion. Utvaerdering av noetnings- och korrosionsbestaendiga material

    Energy Technology Data Exchange (ETDEWEB)

    Persson, H.; Hjertsen, D.; Waara, P.; Prakash, B.; Hardell, J.

    2007-12-15

    assumption that a 60% reduction of the thickness is acceptable. The changes of the operation conditions, particularly the lower rotating speed that the new design led to, have shifted the wear/corrosion condition so that corrosion is more dominating in the wear-corrosion. This is obvious as the SS2377, one of the softest of the evaluated materials, shows low wear rate due to its good corrosion resistant characteristics. The design of the screw has proved to be very crucial for wear-corrosion. The results from the wear-corrosion test show a number of effects that are more or less difficult to explain. One example is that the SS2377 have better wear resistance than the harder materials in both corrosion and in non-corrosive environment. The general conclusion from these testing is that the conditions at the screw have not been successfully imitated. For the prediction of the useful life, a wear-corrosion model has been developed to be used with operation data to follow and/or predict the wear-corrosion. Especially with SS2377, where the synergy effects between corrosion and abrasion is small, a good conformance can be reached. The model needs however further verification to become more general

  13. Corrosion of candidate iron-base waste package structural barrier materials in moist salt environments

    International Nuclear Information System (INIS)

    Westerman, R.E.; Pitman, S.G.

    1984-11-01

    Mild steels are considered to be strong candidates for waste package structural barrier (e.g., overpack) applications in salt repositories. Corrosion rates of these materials determined in autoclave tests utilizing a simulated intrusion brine based on Permian Basin core samples are low, generally <25 μm (1 mil) per year. When the steels are exposed to moist salts containing simulated inclusion brines, the corrosion rates are found to increase significantly. The magnesium in the inclusion brine component of the environment is believed to be responsible for the increased corrosion rates. 1 reference, 4 figures, 2 tables

  14. The corrosion rate and the hydrogen absorption behavior of titanium under reducing condition-III. Research document

    International Nuclear Information System (INIS)

    Suzuki, H.; Taniguchi, N.; Kawakami, S.

    2005-03-01

    Titanium is one of the candidate materials for overpacks as a high corrosion resistance metal. At the initial stage of repository, oxidizing condition will be given around the overpack because oxygen will be brought from the ground. The oxygen will be consumed by the reaction with impurities in buffer material or corrosion of overpack, and reducing condition will be achieved around the overpack. With the changing of redox condition, the water reduction becomes to dominate the cathodic reaction accompanying hydrogen generation. Crevice corrosion and hydrogen embrittlement are main causes of the damage of long term integrity of titanium overpack. However, it is not known about the corrosion resistance and hydrogen absorption behavior of titanium under reduction condition. In this study, the completely sealed ampoule test and the immersion test of titanium in aqueous solution and bentonite was carried out. In order to obtain reliable data about the hydrogen generation rate and the ratio of hydrogen absorption in titanium. From the result of 3 years immersion tests, corrosion rate of titanium were estimated to be in the order of 10 -2 ∼10 -1 μm/y in the aqueous solution, and 10 -3 ∼10 -2 μm/y in bentonite. This value is almost the same as the last report. Almost all the hydrogen generated by corrosion was absorbed in titanium in the immersion tests in completely sealed ampoule. In the examination that changed each parameter, it was suggested that the amount of the hydrogen absorption become 2∼3 times in 1M HCO 3- and pH13. (author)

  15. Corrosion behaviour of the UO2 pellet in corrosive solutions using electrochemical Technique

    International Nuclear Information System (INIS)

    Taftanzani, A.; Sucipto; Lahagu, F.; Irianto, B.

    1996-01-01

    The UO 2 electrodes has been made from the local product of UO 2 pellets. The corrosion behaviour of the UO 2 pellets is affected by solution, by pH value and by concentration of salt solution. Investigation into corrosion behaviour of UO 2 electrodes have been carried out in saturated salt solutions using electrochemical technique. The saturated solutions have been made from salts NaCl, Na 2 CO 3 , Na 2 SO 4 and Na 3 PO 4 . The pH value have been done over range 1 pH 10 and the salt concentration (C) over range 0,001 mol/l C 1,0 mol/l, Na 2 CO 3 solution produced the lowest corrosion rates of UO 2 pellets. Those rates were relative constant in the range of pH = 4 - 8. The results indicate an influence of the Na 2 CO 3 concentrations on the corrosions on the corrosion rate, and the lowest rates occur in 0,10 mol/l Na 2 CO 3 . The lowest corrosion rate was 0.3388 mil/year in 0.10 mol/l Na 2 CO 3 by pH = 4. (author)

  16. Crevice corrosion of titanium under nuclear fuel waste conditions

    International Nuclear Information System (INIS)

    Ikeda, B.M.; Bailey, M.G.; Clarke, C.F.; Shoesmith, D.W.

    1989-11-01

    This report describes our experimental program to investigate the localized corrosion of ASTM Grade-2 titanium. In particular, it describes the study of the crevice corrosion of titanium, the process most likely to lead to the failure of nuclear waste containers constructed from this material. The basic mechanisms of crevice corrosion are discussed in detail. This is followed by a description of our laboratory program and the various immersion tests being performed under irradiated conditions. Experiments and tests were performed in NaCl solutions (generally 1.6 wt.%) and in simulated groundwater at 100 or 150 degrees C. A mechanism for crevice corrosion of titanium is presented and justified experimentally using an electrochemical approach. During the initiation stage, the crevice reaction is controlled by the kinetics of the anodic process. As oxygen is consumed in the propagation step, control switches to the cathodic step. Crevice corrosion eventually stops when the oxygen concentration falls to a low value. Propagation of the crevice can be restarted by the addition of oxygen. Our preliminary results on the effect of varying the iron content of the titanium are presented. An increase in iron content from 0.02 wt.% to 0.13 wt.% leads to passivation, as opposed to propagation, of the crevice. The effects of γ-irradiation, temperature, and oxygen concentration are also briefly discussed. Although our conclusions must be considered tentative, the effects of γ-irradiation appear to be beneficial. some crevice corrosion rates from longer-term immersion tests are also presented. Generally the rates are very low

  17. Carbon Dioxide Corrosion:

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup

    2008-01-01

    CO2 corrosion is a general problem in the industry and it is expensive. The focus of this study is an oil gas production related problem. CO2 corrosion is observed in offshore natural gas transportation pipelines. A general overview of the problem is presented in chapter 1. The chemical system...... with the basic thermodynamics of electrolytes in chapter 2, the extension and general description of electrolyte mass transport in chapter 3, and the electrochemical kinetics of corrosion in chapter 4. A literature overview of CO2 corrosion is shown in chapter 5 and possible extensions of the models...... and validated against heat capacity data. The model is also fitted to experimental data produced and shown in chapter 8 for SLE in the Na2CO3-NaHCO3-MEG-H2O system. The application of the above model is shown in chapter 9. Here the thermodynamic correction factors are calculated. These show how the diffusion...

  18. Savannah River Site Tank Cleaning: Corrosion Rate For One Versus Eight Percent Oxalic Acid Solution

    International Nuclear Information System (INIS)

    Ketusky, E.; Subramanian, K.

    2011-01-01

    Until recently, the use of oxalic acid for chemically cleaning the Savannah River Site (SRS) radioactive waste tanks focused on using concentrated 4 and 8-wt% solutions. Recent testing and research on applicable dissolution mechanisms have concluded that under appropriate conditions, dilute solutions of oxalic acid (i.e., 1-wt%) may be more effective. Based on the need to maximize cleaning effectiveness, coupled with the need to minimize downstream impacts, SRS is now developing plans for using a 1-wt% oxalic acid solution. A technology gap associated with using a 1-wt% oxalic acid solution was a dearth of suitable corrosion data. Assuming oxalic acid's passivation of carbon steel was proportional to the free oxalate concentration, the general corrosion rate (CR) from a 1-wt% solution may not be bound by those from 8-wt%. Therefore, after developing the test strategy and plan, the corrosion testing was performed. Starting with the envisioned process specific baseline solvent, a 1-wt% oxalic acid solution, with sludge (limited to Purex type sludge-simulant for this initial effort) at 75 C and agitated, the corrosion rate (CR) was determined from the measured weight loss of the exposed coupon. Environmental variations tested were: (a) Inclusion of sludge in the test vessel or assuming a pure oxalic acid solution; (b) acid solution temperature maintained at 75 or 45 C; and (c) agitation of the acid solution or stagnant. Application of select electrochemical testing (EC) explored the impact of each variation on the passivation mechanisms and confirmed the CR. The 1-wt% results were then compared to those from the 8-wt%. The immersion coupons showed that the maximum time averaged CR for a 1-wt% solution with sludge was less than 25-mils/yr for all conditions. For an agitated 8-wt% solution with sludge, the maximum time averaged CR was about 30-mils/yr at 50 C, and 86-mils/yr at 75 C. Both the 1-wt% and the 8-wt% testing demonstrated that if the sludge was removed from

  19. Stress corrosion crack growth rate in dissimilar metal welds

    International Nuclear Information System (INIS)

    Fernandez, M. P.; Lapena, J.; Lancha, A. M.; Perosanz, F. J.; Navas, M.

    2000-01-01

    Dissimilar welds, used to join different sections in light water reactors, are potentially susceptible to stress corrosion cracking (SCC) in aqueous mediums characteristic of nuclear plants. However, the study of these The ma has been limited to evaluating the weld material susceptibility in these mediums. Little scarce data are available on crack growth rates due, fundamentally, to inadequate testing techniques. In order to address this lack of information the crack growth rate at the interface of ferritic SA 533 B-1 alloy and alloy I-82, in a dissimilar weld (SA533B-1/I-82/316L), was studied. Experiments were conducted in water at 288 degree centigrade, 8 ppm of O 2 and 1 μS/cm conductivity. (Author) 33 refs

  20. Study of the Corrosion Resistance of Austenitic Stainless Steels during Conversion of Waste to Biofuel

    Science.gov (United States)

    Cabrini, Marina; Lorenzi, Sergio; Pastore, Tommaso; Pellegrini, Simone; Burattini, Mauro; Miglio, Roberta

    2017-01-01

    The paper deals with the corrosion behavior of stainless steels as candidate materials for biofuel production plants by liquefaction process of the sorted organic fraction of municipal solid waste. Corrosion tests were carried out on AISI 316L and AISI 304L stainless steels at 250 °C in a batch reactor during conversion of raw material to bio-oil (biofuel precursor), by exposing specimens either to water/oil phase or humid gas phase. General corrosion rate was measured by weight loss tests. The susceptibility to stress corrosion cracking was evaluated by means of U-bend specimens and slow stress rate tests at 10−6 or 10−5 s−1 strain rate. After tests, scanning electron microscope analysis was carried out to detect cracks and localized attacks. The results are discussed in relation with exposure conditions. They show very low corrosion rates strictly dependent upon time and temperature. No stress corrosion cracking was observed on U-bend specimens, under constant loading. Small cracks confined in the necking cone of specimens prove that stress corrosion cracking only occurred during slow strain rate tests at stresses exceeding the yield strength. PMID:28772682

  1. A study of microbial population dynamics associated with corrosion rates influenced by corrosion control materials

    NARCIS (Netherlands)

    Chang, Yu Jie; Hung, Chun Hsiung; Lee, Jyh Wei; Chang, Yi Tang; Lin, Fen Yu; Chuang, Chun Jie

    2015-01-01

    This research aims to analyze the variations of microbial community structure under anaerobic corrosive conditions, using molecular fingerprinting method. The effect of adding various materials to the environment on the corrosion mechanism has been discussed. In the initial experiment,

  2. Pitting corrosion as a mixed system: coupled deterministic-probabilistic simulation of pit growth

    Science.gov (United States)

    Ibrahim, Israr B. M.; Fonna, S.; Pidaparti, R.

    2018-05-01

    Stochastic behavior of pitting corrosion poses a unique challenge in its computational analysis. However, it also stems from electrochemical activity causing general corrosion. In this paper, a framework for corrosion pit growth simulation based on the coupling of the Cellular Automaton (CA) and Boundary Element Methods (BEM) is presented. The framework assumes that pitting corrosion is controlled by electrochemical activity inside the pit cavity. The BEM provides the prediction of electrochemical activity given the geometrical data and polarization curves, while the CA is used to simulate the evolution of pit shapes based on electrochemical activity provided by BEM. To demonstrate the methodology, a sample case of local corrosion cells formed in pitting corrosion with varied dimensions and polarization functions is considered. Results show certain shapes tend to grow in certain types of environments. Some pit shapes appear to pose a higher risk by being potentially significant stress raisers or potentially increasing the rate of corrosion under the surface. Furthermore, these pits are comparable to commonly observed pit shapes in general corrosion environments.

  3. Determination of corrosion rate of reinforcement with a modulated guard ring electrode; analysis of errors due to lateral current distribution

    International Nuclear Information System (INIS)

    Wojtas, H.

    2004-01-01

    The main source of errors in measuring the corrosion rate of rebars on site is a non-uniform current distribution between the small counter electrode (CE) on the concrete surface and the large rebar network. Guard ring electrodes (GEs) are used in an attempt to confine the excitation current within a defined area. In order to better understand the functioning of modulated guard ring electrode and to assess its effectiveness in eliminating errors due to lateral spread of current signal from the small CE, measurements of the polarisation resistance performed on a concrete beam have been numerically simulated. Effect of parameters such as rebar corrosion activity, concrete resistivity, concrete cover depth and size of the corroding area on errors in the estimation of polarisation resistance of a single rebar has been examined. The results indicate that modulated GE arrangement fails to confine the lateral spread of the CE current within a constant area. Using the constant diameter of confinement for the calculation of corrosion rate may lead to serious errors when test conditions change. When high corrosion activity of rebar and/or local corrosion occur, the use of the modulated GE confinement may lead to significant underestimation of the corrosion rate

  4. Corrosion rate of API 5L Gr. X60 multipurpose steel pipeline under combined effect of water and crude oil

    Science.gov (United States)

    Miao, Jian; Wang, Qiang

    2016-09-01

    Multipurpose pipeline is often seriously corroded during its service life, and the phenomenon is more prominent once the transportation medium is changed. Electrochemical polarization curves and impedance spectroscopy of the API 5L Gr. X60 steel pipeline's corrosion process in sedimentary water with different ion types and their concentrations have been studied in this work. The results showed that the corrosion rates were found to be 0.00418 and 0.00232 mm/a for pure water and crude oil, respectively. However, for the mixtures of water and crude oil (with water content increased from 0.2 vol% to 10 vol%), the corrosion rate increased consistently and reached a maximum value of 0.15557 mm/a for 10 vol% water in crude oil. The effect of the concentration of various ions, namely, chloride, bicarbonate and sulfate in (oil/water) mixtures on the corrosion rate was characterized by weight-loss method. The results showed that with increasing the ions' concentrations, the corresponding exchange current density increased significantly. The results were further supported by the observations of corrosion morphology using scanning electron microscopy and are helpful in devising guidelines which would help in reducing corrosion in multipurpose transport pipelines involving a change of transported medium during their service life.

  5. Synergy effect of naphthenic acid corrosion and sulfur corrosion in crude oil distillation unit

    Science.gov (United States)

    Huang, B. S.; Yin, W. F.; Sang, D. H.; Jiang, Z. Y.

    2012-10-01

    The synergy effect of naphthenic acid corrosion and sulfur corrosion at high temperature in crude oil distillation unit was studied using Q235 carbon-manganese steel and 316 stainless steel. The corrosion of Q235 and 316 in corrosion media containing sulfur and/or naphthenic acid at 280 °C was investigated by weight loss, scanning electron microscope (SEM), EDS and X-ray diffractometer (XRD) analysis. The results showed that in corrosion media containing only sulfur, the corrosion rate of Q235 and 316 first increased and then decreased with the increase of sulfur content. In corrosion media containing naphthenic acid and sulfur, with the variations of acid value or sulfur content, the synergy effect of naphthenic acid corrosion and sulfur corrosion has a great influence on the corrosion rate of Q235 and 316. It was indicated that the sulfur accelerated naphthenic acid corrosion below a certain sulfur content but prevented naphthenic acid corrosion above that. The corrosion products on two steels after exposure to corrosion media were investigated. The stable Cr5S8 phases detected in the corrosion products film of 316 were considered as the reason why 316 has greater corrosion resistance to that of Q235.

  6. Impact of β- radiolysis and transient products on irradiation-enhanced corrosion of zirconium alloys

    International Nuclear Information System (INIS)

    Lemaignan, C.

    1992-01-01

    An analysis has been undertaken of the various cases of local enhancement of the corrosion rate of zirconium alloys under irradiation. It is observed that in most cases a strong emission of energetic β - is present leading to a local energy desorption rate higher than the core average. This suggests that the local transient radiolytic oxidising species produced in the coolant by the β - particles could contribute to corrosion enhancement, by increasing the local corrosion potential. This process is applicable to the local enhanced corrosion found in front of stainless steels structural parts, due to the contribution of Mn, in front of Pt inserts and Cu-rich cruds. It explains also the irradiation corrosion enhancement of Cu-rich Zr alloys. Enhanced corrosion around neutron absorbing material is explained similarly by pair production from conversion of high energy capture photons in the cladding, leading to energetic electrons. The same process was found to be active with other highly ionising species like α in Ni-rich alloys and fission products in homogeneous reactors. This mechanism, applicable for an explanation of localised irradiation-enhanced corrosion, is proposed to be extended to the reactor core, where the general enhancement of Zr-alloy corrosion under irradiation would be due to the general radiolysis. It suggests that care should be taken to avoid any source of β - emission or other ionising species in the reactor core that could give an increase of energy deposition rate for radiolysis. Also the corrosion testing conditions for the materials to be used in reactors have to be relevant to the radiolytic environments found in the reactor cores. (orig.)

  7. Evaluating Steam Generator Tubing Corrosion through Shutdown Nickel and Cobalt Releases

    International Nuclear Information System (INIS)

    Marks, Chuck; Little, Mike; Krull, Peter; Dennis Hussey; Kenny Epperson

    2012-09-01

    temperature. The focus of this analysis was general corrosion rates, which are not structurally significant. This analysis made no findings regarding any other measures of tube performance such as NDE, SCC, thermal performance, or structural integrity. (authors)

  8. Preliminary study on the corrosion behavior of carbon steel in Horonobe groundwater environment

    International Nuclear Information System (INIS)

    Taniguchi, Naoki; Kogawa, Noritaka; Maeda, Kazuto

    2006-08-01

    It is necessary to understand the corrosion behavior of candidate overpack materials to plan the in-situ engineered barrier test at underground laboratory constructing at Horonobe and to design the overpacks suitable to Horonobe environment. The preliminary corrosion tests of carbon steel which is a candidate material for overpacks were carried out using artificial groundwater and actual groundwater sampled at Horonobe. As the results of anodic polarization experiments, the anodic polarization curves of carbon steel in buffer material were active dissolution type, and the corrosion type of carbon steel in Horonobe groundwater environment was expected to be general corrosion. The results of immersion test under air equilibrium condition showed that the degrees of corrosion localization were not exceeded the data obtained in previous studies. The trend of corrosion rates in buffer material under anaerobic condition were similar to the data obtained in previous studies. Based on the experimental results, it was confirmed that the corrosion assessment model and assumed corrosion rate in second progress report (H12 report) can be applied to the assessment for Horonobe groundwater condition. (author)

  9. Real time corrosion monitoring in atmosphere using automated battery driven corrosion loggers

    DEFF Research Database (Denmark)

    Prosek, T.; Kouril, M.; Hilbert, Lisbeth Rischel

    2008-01-01

    diminishes due to corrosion. Zinc, iron, copper and nickel sensors at several thicknesses are available. Sensitivity of the corrosion measurement varies from 1 to 10 nm depending on the type and thickness of the sensor. Changes in the air corrosivity can be thus detected within hours or even tens of minutes......A logger enabling continuous measurement of corrosion rate of selected metals in indoor and outdoor atmospheres has been developed. Principle of the measurement method is based on the increasing electrical resistance of a measuring element made of the material concerned as its cross-sectional area....... The logger lifetime in medium corrosive environments is designed to be 2 years with full autonomy. Data on the sensor corrosion rate are available any time through GPRS connection or by a non-contact inductive reading without the need of retracting the logger from the exposure site....

  10. Uniform and localized corrosion modelling by means of probabilistic cellular automata

    International Nuclear Information System (INIS)

    Perez-Brokate, Cristian

    2016-01-01

    Numerical modelling is complementary tool for corrosion prediction. The objective of this work is to develop a corrosion model by means of a probabilistic cellular automata approach at a mesoscopic scale. In this work, we study the morphological evolution and kinetics of corrosion. This model couples electrochemical oxidation and reduction reactions. Regarding kinetics, cellular automata models are able to describe current as a function of the applied potential for a redox reaction on an inert electrode. The inclusion of probabilities allows the description of the stochastic nature of anodic and cathodic reactions. Corrosion morphology has been studied in different context: generalised corrosion, pitting corrosion and corrosion in an occluded environment. a general tendency of two regimes is found. a first regime of uniform corrosion where the anodic and cathodic reactions occur homogeneously over the surface. a second regime of localized corrosion when there is a spatial separation of anodic and cathodic zones, with an increase of anodic reaction rate. (author) [fr

  11. A study on the corrosion rate for metal nuclear fuel by the soxhlet

    International Nuclear Information System (INIS)

    Oh, S. J.; Lee, Y. R.; Lee, D. B.; Park, J. M.; Kim, K. H.; Lee, Y. S.; Park, H. D.; Kim, C. K.

    2002-01-01

    In order to compare in-pile performance of nuclear fuel candidates for HANARO, corrosion test with the Soxhlet apparatus for rare-earth-oxide added U-Mo alloy fuels has been carried out by measuring a leaching rate. It appeared from the result that the leaching rate of the U-Mo fuel specimen became decreased as a rare-earth-oxide added, and there was a little difference in the leaching rate depending on the kind of the rare-earth-oxide

  12. Boric Acid Corrosion of Concrete Rebar

    Directory of Open Access Journals (Sweden)

    Yang L.

    2013-07-01

    Full Text Available Borated water leakage through spent fuel pools (SFPs at pressurized water reactors is a concern because it could cause corrosion of reinforcement steel in the concrete structure and compromise the integrity of the structure. Because corrosion rate of carbon steel in concrete in the presence of boric acid is lacking in published literature and available data are equivocal on the effect of boric acid on rebar corrosion, corrosion rate measurements were conducted in this study using several test methods. Rebar corrosion rates were measured in (i borated water flowing in a simulated concrete crack, (ii borated water flowing over a concrete surface, (iii borated water that has reacted with concrete, and (iv 2,400 ppm boric acid solutions with pH adjusted to a range of 6.0 to 7.7. The corrosion rates were measured using coupled multielectrode array sensor (CMAS and linear polarization resistance (LPR probes, both made using carbon steel. The results indicate that rebar corrosion rates are low (~1 μm/yr or lesswhen the solution pH is ~7.1 or higher. Below pH ~7.1, the corrosion rate increases with decreasing pH and can reach ~100 μm/yr in solutions with pH less than ~6.7. The threshold pH for carbon steel corrosion in borated solution is between 6.8 and 7.3.

  13. Galvanic corrosion of metals and coatings when coupled to uranium in severe environments

    International Nuclear Information System (INIS)

    Winkle, J.R.; Childs, E.L.

    1982-01-01

    The results of galvanic testing were varied in each environment. The position of metals in the galvanic series was not fixed, but changed with environment. In all cases where high general and galvanic corrosion rates were observed, the conditions of potential, pH, and impurity content could be correlated with regions of oxide surface film instability outlined by Pourbaix Diagrams. The majority of the severe corrosion reactions were observed in the acidic environment, although a few were noted in the caustic environment. The presence of chlorides tended to enhance galvanic corrosion rates at the neutral environment. 10 tables

  14. Monitoring Microbially Influenced Corrosion

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    and diffusional effects and unreliable corrosion rates, when biofilm and ferrous sulphide corrosion products cover the steel surface. Corrosion rates can be overestimated by a factor of 10 to 100 by electrochemical techniques. Weight loss coupons and ER are recommended as necessary basic monitoring techniques......Abstract Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria (SRB). The applicability and reliability of a number of corrosion monitoring techniques for monitoring MIC has been evaluated in experiments....... EIS might be used for detection of MIC as the appearance of very large capacitances can be attributed to the combined ferrous sulphide and biofilm formation. Capacitance correlates directly with sulphide concentration in sterile sulphide media. Keywords: Corrosion monitoring, carbon steel, MIC, SRB...

  15. Effect of thermal aging on corrosion resistance of C-22 alloy in chloride solutions

    International Nuclear Information System (INIS)

    Carranza, Ricardo M.; Rodriguez, Martin A.

    2007-01-01

    Alloy 22 (N06022) belongs to the Ni-Cr-Mo family and it is highly resistant to localized corrosion. The anodic behavior of mill annealed (MA) and thermally aged (10 hours at 760 C degrees) Alloy 22 was studied in chloride solutions with different pH values at 90 C degrees. Thermal aging leads to a microstructure of full grain boundary precipitation of topologically closed packed (TCP) phases. Electrochemical tests included monitoring of open circuit potential, potentiodynamic polarization and electrochemical impedance spectroscopy. Assessment of general and localized (crevice) corrosion was performed. Re passivation potentials were obtained from cyclic potentiodynamic polarization tests. Results indicate that MA and TCP material show similar general corrosion rates and crevice corrosion resistance in the tested environments. MA and TCP specimens suffered general corrosion in an active state when tested in low pH chloride solutions. The grain structure of the alloy was revealed for MA material, while TCP material suffered a preferential attack at grain boundaries. (author)

  16. Corrosion aspects of steel radioactive waste containers in cementitious materials

    International Nuclear Information System (INIS)

    Smart, Nick

    2012-01-01

    Nick Smart from Serco, UK, gave an overview of the effects of cementitious materials on the corrosion of steel during storage and disposal of various low- and intermediate-level radioactive wastes. Steel containers are often used as an overpack for the containment of radioactive wastes and are routinely stored in an open atmosphere. Since this is an aerobic and typically humid environment, the steel containers can start to corrode whilst in storage. Steel containers often come into contact with cementitious materials (e.g. grout encapsulants, backfill). An extensive account of different steel container designs and of steel corrosion mechanisms was provided. Steel corrosion rates under conditions buffered by cementitious materials have been evaluated experimentally. The main conclusion was that the cementitious environment generally facilitates the passivation of steel materials. Several general and localised corrosion mechanisms need to be considered when evaluating the performance of steel containers in cementitious environments, and environmental thresholds can be defined and used with this aim. In addition, the consequences of the generation of gaseous hydrogen by the corrosion of carbon steel under anoxic conditions must be taken into account. Discussion of the paper included: Is crevice corrosion really significant in cementitious systems? Crevice corrosion is unlikely in the cementitious backfill considered because it will tend to neutralise any acidic conditions in the crevice. What is the role of microbially-induced corrosion (MIC) in cementitious systems? Microbes are likely to be present in a disposal facility but their effect on corrosion is uncertain

  17. Susceptibility of 17-4PH stainless steel to stress corrosion cracking in aqueous environments by electrochemical techniques.; Estudio de la corrosion bajo tension del acero 17-4PH en medios acuosos usando tecnicas electroquimicas

    Energy Technology Data Exchange (ETDEWEB)

    Diaz S, A C [Instituto Nacional de Investigaciones Nucleares, Mexico City (Mexico)

    1998-12-31

    The susceptibility of a 17-4PH type steel to Stress Corrosion Cracking (SCC) in low pressure steam turbine environments was assessed using slow strain rate test at 90 Centigrade and at 1.35x10{sup -6} seg{sup -1}. Environments tested included different concentrated solutions of NaCl, NaOH and Na{sub 2}SO{sub 4}. It was concluded that this steel is susceptible to SCC in 20 % NaCl and pH=3 and in 20 % NaCl pH=neutral but under cathodic polarisation. The electrochemical potential noise of the specimen was monitored during the test. The naturally fluctuations in potential were arise due to spontaneous brake protective film and were characteristics of the kind of corrosion like pit or stress corrosion cracking. After that using Fast Fourier Transformer (FFT) the noise data set were analyzed to obtain power spectral density plots which showed differences between general corrosion and localized corrosion. Polarization curves were carry out at two different rates and them showed the general behavior of the systems. (Author).

  18. Corrosion Engineering.

    Science.gov (United States)

    White, Charles V.

    A description is provided for a Corrosion and Corrosion Control course offered in the Continuing Engineering Education Program at the General Motors Institute (GMI). GMI is a small cooperative engineering school of approximately 2,000 students who alternate between six-week periods of academic study and six weeks of related work experience in…

  19. Effect of niobium addition to the Fe-17% Cr alloy on the resistance to generalized corrosion in sulfuric acid

    International Nuclear Information System (INIS)

    Alonso, Neusa; Wolynec, Stephan

    1992-01-01

    The aim of present work was to investigate the influence of Nb upon the corrosion resistance to o.5 M H2 SO 4 cf 17% Cr ferritic stainless steels, to which it was added in amounts larger than those necessary for the stabilization of interstitial elements. The performance of Fe-17% Cr alloys containing 0.31%, 0.58%, 1.,62% Nb was compared to that of two other Fe-17% Cr alloys containing 0.31%, 0.58% and 1.62% Nb was compared to that of two other Fe-175 Cr alloys, one without additions and another containing 0.93% Nb. Through weight and electrochemical measurements and through morphologic examination of corroded surface it was found that in o.5 M H 2 SO 4 solution the corrosion of these alloys, with the exception of that containing molybdenum, products in two different stages. In the first stage (up to about 60 minutes the rate practically does not change with time, the lower rates being displayed by alloys containing larger mounts of Nb. In the second stage (for immersion times larger than 60 minutes) the corrosion rate increases with time. the corrosion rate of Mo containing alloy is constant with time so that for longer immersion times this alloy becomes the most resistant. The first stage was discussed in terms of electromechanical properties of Nb and its ability to combine with steel impurities, while the second stage was considered as affected by corrosion products formed on the surface of these alloys after certain time of immersion. (author)

  20. On-line corrosion monitoring in geothermal district heating systems

    DEFF Research Database (Denmark)

    Richter, S.; Hilbert, Lisbeth Rischel; Thorarinsdottir, R.I.

    2006-01-01

    General corrosion rates in the geothermal district heating systems in Iceland are generally low, of the magnitude 1 lm/y. The reason is high pH (9.5), low-conductivity (200 lm/y) and negligible dissolved oxygen. The geothermal hot water is either used directly from source or to heat up cold ground...

  1. Corrosion investigations at Masnedoe combined heat and power plant. Part VI

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, M. [Danmarks Tekniske Univ., Dept. for Manufacturing Engineering, Kgs Lyngby (Denmark); Karlsson, A. [ENERGI E2, Power Company, Copenhagen (Denmark); Hede Larsen, O. [Elsam - Fynsvaerket, Fredericia (Denmark)

    2001-02-01

    In Denmark, straw and other types of biomass are used for generating energy in power plats. Straw is considered a carbon dioxide neutral fuel and is therefore environmentally acceptable. Masnedoe CHP Plant is a straw-fired power plant on Sjaelland, Denmark. Corrosion tests were undertaken at Masnedoe CHP Plant by building a test superheater loop and subject it to higher steam temperatures than those of the actual plant. In addition a test section welded into superheater was investigated. The conclusions from the project are as follows: 1. The corrosion rates of the steels investigated are very close to one another and differences are small. 2. For the lower steam of 450 deg. C, a parabolic kinetic of oxide growth is not seen but more a paralinear corrosion rate for TP347H and a linear corrosion rate for the 12% Cr steel. 3. At temperatures above approx. 520 deg. C metal temperature for the austenitic steels, grain boundary attack is seen as a precursor for corrosion within the metal grains. For HCM12, attack of individual metal grains is also seen. The corrosion attack leads to depletion of chromium and manganese from the surface of the alloy. It is at these temperatures general corrosion changes to grain boundary corrosion attack. 4. Over one of the test superheater loops, varying corrosion rates could be measured that could not be explained by the change in steam temperature. This was related to the flue gas direction giving a higher surface metal temperature, however, there may be other factors giving localised high heat flux and therefore a higher metal temperature. The corrosion rate was lower this year (1999-2000) than the previous year and this is attributed to the lower flue gas temperatures or other factors such as a change in fuel or combustion characteristics. It must be noted that where the flue gas temperature is assumed to be highest similar corrosion rates are observed for both 1998-1999 and 1999-2000. There is much evidence to indicate that after

  2. Corrosion detector apparatus for universal assessment of pollution in data centers

    Science.gov (United States)

    Hamann, Hendrik F.; Klein, Levente I.

    2015-08-18

    A compact corrosion measurement apparatus and system includes an air fan, a corrosion sensor, a temperature sensor, a humidity sensor, a heater element, and an air flow sensor all under control to monitor and maintain constant air parameters in an environment and minimize environmental fluctuations around the corrosion sensor to overcome the variation commonly encountered in corrosion rate measurement. The corrosion measurement apparatus includes a structure providing an enclosure within which are located the sensors. Constant air flow and temperature is maintained within the enclosure where the corrosion sensor is located by integrating a variable speed air fan and a heater with the corresponding feedback loop control. Temperature and air flow control loops ensure that corrosivity is measured under similar conditions in different facilities offering a general reference point that allow a one to one comparison between facilities with similar or different pollution levels.

  3. Effect of Water Chemistry Factors on Flow Accelerated Corrosion : pH, DO, Hydrazine

    International Nuclear Information System (INIS)

    Lee, Eun Hee; Kim, Kyung Mo; Kim, Hong Pyo

    2013-01-01

    Flow accelerated corrosion(FAC) of the carbon steel piping in pressurized water reactors(PWRs) has been major issue in nuclear industry. Severe accident at Surry Unit 2 in 1986 initiated the worldwide interest in this area. Major parameters influencing FAC are material composition, microstructure, water chemistry, and hydrodynamics. Qualitative behaviors of FAC have been well understood but quantitative data about FAC have not been published for proprietary reason. In order to minimize the FAC in PWRs, the optimal method is to control water chemistry factors. Chemistry factors influencing FAC such as pH, corrosion potential, and hydrazine contents were reviewed in this paper. FAC rate decreased with pH up to 10 because magnetite solubility decreased with pH. Corrosion potential is generally controlled dissolved oxygen (DO) and hydrazine in secondary water. DO increased corrosion potential. FAC rate decreased with DO by stabilizing magnetite at low DO concentration or by formation of hematite at high DO concentration. Even though hydrazine is generally used to remove DO, hydrazine itself thermally decomposed to ammonia, nitrogen, and hydrogen raising pH. Hydrazine could react with iron and increased FAC rate. Effect of hydrazine on FAC is rather complex and should be careful in FAC analysis. FAC could be managed by adequate combination of pH, corrosion potential, and hydrazine

  4. Long-term atmospheric corrosion of mild steel

    International Nuclear Information System (INIS)

    Fuente, D. de la; Diaz, I.; Simancas, J.; Chico, B.; Morcillo, M.

    2011-01-01

    Research highlights: → Atmospheric corrosion rate stabilises after the first 4-6 years of exposure. → Great compaction of the rust layers in rural and urban atmospheres. → Corrosion (in rural and urban) deviates from common behaviour of bilogarithmic law. → Typical structures of lepidocrocite, goethite and akaganeite are identified. → Formation of hematite (industrial atmosphere) and ferrihydrite (marine atmosphere). - Abstract: A great deal of information is available on the atmospheric corrosion of mild steel in the short, mid and even long term, but studies of the structure and morphology of corrosion layers are less abundant and generally deal with those formed in just a few years. The present study assesses the structure and morphology of corrosion product layers formed on mild steel after 13 years of exposure in five Spanish atmospheres of different types: rural, urban, industrial and marine (mild and severe). The corrosion layers have been characterised by X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS). Long-term corrosion is seen to be more severe in the industrial and marine atmospheres, and less so in the rural and urban atmospheres. In all cases the corrosion rate is seen to decrease with exposure time, stabilising after the first 4-6 years of exposure. The most relevant aspects to be noted are (a) the great compaction of the rust layers formed in the rural and urban atmospheres, (b) the formation of hematite and ferrihydrite phases (not commonly found) in the industrial and marine atmospheres, respectively and (c) identification of the typical morphological structures of lepidocrocite (sandy crystals and flowery plates), goethite (cotton balls structures) and akaganeite (cotton balls structures and cigar-shaped crystals).

  5. Evaluation of flow accelerated corrosion by coupled analysis of corrosion and flow dynamics (3), relationship of oxide film thickness, hematite/magnetite ratio, ECP and wall thinning rate

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Naitoh, Masanori; Okada, Hidetoshi; Uehara, Yasushi; Koshizuka, Seiichi

    2009-01-01

    Systematic approaches for evaluating flow accelerated corrosion (FAC) are desired before discussing application of countermeasures for FAC. Firstly, future FAC occurrence should be evaluated to identify locations where a higher possibility of FAC occurrence exists, and then, wall thinning rate at the identified FAC occurrence zone is evaluated to obtain the preparation time for applying countermeasures. Wall thinning rates were calculated with the coupled models of static electrochemical analysis and dynamic double oxide layer analysis. Anodic current density and electrochemical corrosion potential (ECP) were calculated with the static electrochemistry model based on an Evans diagram and ferrous ion release rate determined by the anodic current density was applied as input for the dynamic double oxide layer model. Some of the dissolved ferrous ion was removed to the bulk water and others precipitated on the surface as magnetite particles. The thickness of oxide layer was calculated with the dynamic double oxide layer model and then was applied as input for the electrochemistry model. It was confirmed that the calculated results based on the coupled models resulted good agreement with the measured ones. Higher ECP was essential for preventing FAC rate. Moderated conditions due to lower mass transfer coefficients resulted in thicker oxide layer thickness and then higher ECP, while moderated corrosion conditions due to higher oxidant concentrations resulted in larger hematite/magnetite rate and then higher ECP. (author)

  6. Materials Characterization Center state-of-the-art report on corrosion data pertaining to metallic barriers for nuclear-waste repositories

    International Nuclear Information System (INIS)

    Merz, M.D.

    1982-10-01

    A compilation of published corrosion data on metals that have been suggested as canisters and overpack materials is presented. The data were categorized according to the solutions used in testing and divided into two parts: high-ionic strength solutions (such as seawater and brine) and low-ionic-strength waters (such as basalt and tuff waters). This distinction was made primarily because of the general difference in aggressiveness of these solutions with respect to general corrosion. A considerable amount of data indicated that titanium alloys have acceptably low uniform corrosion rates in anticipated repository sites; the other possible corrosion failure modes for titanium alloys, such as stress corrosion cracking and delayed failure due to hydrogen, have not been sufficiently studied to make any similar conclusions about lifetime with respect to these particular degradation processes. Other data suggested that iron-base alloys are sufficiently resistant to corrosion in basalt and tuff waters, although the effects of radiation and radiation combined with elevated temperature have not been reported in enough detail to conclusively qualify iron-base alloys for any particular barrier thickness in regard to uniform corrosion rate. The effect of overpack size on corrosion rate has been given little attention. A review of long-term underground data indicated that temperature and accessibility to oxygen were too different for deep geologic repositories to make the underground corrosion data directly applicable. However, the characteristics of corrosion attack, statistical treatment of data, and kinetics of corrosion showed that corrosion proceeds in a systematic and predictable way

  7. Advanced Corrosion-Resistant Zr Alloys for High Burnup and Generation IV Application

    International Nuclear Information System (INIS)

    Jeong, Y. H.; Park, S. Y.; Lee, M. H.; Choi, B. K.; Baek, J. H.; Park, J. Y.; Kim, J. H.; Kim, H. G.; Jung, Y. H.; Bang, B. G.

    2006-08-01

    The systematic study was performed to develop the advanced corrosion-resistant Zr alloys for high burnup and Gen IV application. The corrosion behavior was significantly changed with the alloy composition and the corrosion environment. In general, the model alloys with a higher alloying elements showed a higher corrosion resistance. Among the model alloys tested in this study, Zr-10Cr-0.2Fe showed the best corrosion resistance regardless of the corrosion condition. The oxide on the higher corrosion-resistant alloy such as Zr-1.0Cr-0.2Fe consisted of mainly columnar grains, and it have a higher tetragonal phase stability. In comparison with other alloys being considered for the SCWR, the Zr alloys showed a lower corrosion rate than ferritic-martensitic steels. The results of this study imply that, at least from a corrosion standpoint, Zr alloys deserve consideration as potential cladding or structural materials in supercritical water cooled reactors

  8. Evolutionary Computation Techniques for Predicting Atmospheric Corrosion

    Directory of Open Access Journals (Sweden)

    Amine Marref

    2013-01-01

    Full Text Available Corrosion occurs in many engineering structures such as bridges, pipelines, and refineries and leads to the destruction of materials in a gradual manner and thus shortening their lifespan. It is therefore crucial to assess the structural integrity of engineering structures which are approaching or exceeding their designed lifespan in order to ensure their correct functioning, for example, carrying ability and safety. An understanding of corrosion and an ability to predict corrosion rate of a material in a particular environment plays a vital role in evaluating the residual life of the material. In this paper we investigate the use of genetic programming and genetic algorithms in the derivation of corrosion-rate expressions for steel and zinc. Genetic programming is used to automatically evolve corrosion-rate expressions while a genetic algorithm is used to evolve the parameters of an already engineered corrosion-rate expression. We show that both evolutionary techniques yield corrosion-rate expressions that have good accuracy.

  9. Corrosion of the CANDU steam generator tubesheet due to aqueous environment pH

    International Nuclear Information System (INIS)

    Lucan, D.; Fulger, M.; Velciu, L.

    2009-01-01

    There is a side environment that is known to be affected significantly by several factors dependent on the balance of plant conditions (condenser leaks, condensate polishing, and coolant system materials) as well on the operational conditions, particularly through their thermal-hydraulic effects. The presence of tube-tubesheet crevices and restricted flow areas within sludge or surface deposits provides for local concentration sites for various impurities, including the acidic ones. The generalized corrosion can occur and can affect the steam generator performances. It is very important to understand the generalized corrosion mechanism with the purpose of evaluating the amount of corrosion products which exist in the steam generator after a determined period of operation. The purpose of this work consists in the assessment of corrosion behavior of the tubesheet material (carbon steel SA508 cl.2) at normal secondary circuit parameters (temperature, 260 deg. C, pressure, 5.1 MPa). The testing environment was the demineralized water without impurities, at different pH values regulated with morpholine and cyclohexylamine (all volatile treatment - AVT). The results are presented like micrographs, potentiodynamic curves and graphics representing loss of metal by corrosion, corrosion rate, the total corrosion products, the adherent corrosion products, the released corrosion products and the release of the metal. (authors)

  10. Study of stress corrosion cracking initiation of high alloy materials

    Energy Technology Data Exchange (ETDEWEB)

    Blahetova, Marie; Cihal, Vladimir; Lasek, Stanislav [Department of Materials Engineering, VSB - Technical University of Ostrava, tr. 17. listopadu 15, 708 33 Ostrava - Poruba (Czech Republic)

    2004-07-01

    The stainless steels and related alloys with sufficient resistance to a general corrosion can be susceptible to a localized corrosion (pitting, cracking, intergranular corrosion) in certain environment under specific conditions. The Drop Evaporation Test (DET) was developed for study of stainless materials resistance to stress corrosion cracking (SCC) at elevated temperatures 100 - 300 deg. C under constant external load using a chloride containing water solution. In the contribution the initiation and propagation of short cracks as well as pits were observed during the test. The crack initiation and/or propagation can be influenced by the cyclic thermal stresses, when the diluted water solution drops cool down the hot sample. The coordinates measurement of microscopic pits and sharp corrosion crack tips by the travelling microscope method allowed to derive the crack growth lengths and rates of short cracks. (authors)

  11. Study of stress corrosion cracking initiation of high alloy materials

    International Nuclear Information System (INIS)

    Blahetova, Marie; Cihal, Vladimir; Lasek, Stanislav

    2004-01-01

    The stainless steels and related alloys with sufficient resistance to a general corrosion can be susceptible to a localized corrosion (pitting, cracking, intergranular corrosion) in certain environment under specific conditions. The Drop Evaporation Test (DET) was developed for study of stainless materials resistance to stress corrosion cracking (SCC) at elevated temperatures 100 - 300 deg. C under constant external load using a chloride containing water solution. In the contribution the initiation and propagation of short cracks as well as pits were observed during the test. The crack initiation and/or propagation can be influenced by the cyclic thermal stresses, when the diluted water solution drops cool down the hot sample. The coordinates measurement of microscopic pits and sharp corrosion crack tips by the travelling microscope method allowed to derive the crack growth lengths and rates of short cracks. (authors)

  12. Review on stress corrosion and corrosion fatigue failure of centrifugal compressor impeller

    Science.gov (United States)

    Sun, Jiao; Chen, Songying; Qu, Yanpeng; Li, Jianfeng

    2015-03-01

    Corrosion failure, especially stress corrosion cracking and corrosion fatigue, is the main cause of centrifugal compressor impeller failure. And it is concealed and destructive. This paper summarizes the main theories of stress corrosion cracking and corrosion fatigue and its latest developments, and it also points out that existing stress corrosion cracking theories can be reduced to the anodic dissolution (AD), the hydrogen-induced cracking (HIC), and the combined AD and HIC mechanisms. The corrosion behavior and the mechanism of corrosion fatigue in the crack propagation stage are similar to stress corrosion cracking. The effects of stress ratio, loading frequency, and corrosive medium on the corrosion fatigue crack propagation rate are analyzed and summarized. The corrosion behavior and the mechanism of stress corrosion cracking and corrosion fatigue in corrosive environments, which contain sulfide, chlorides, and carbonate, are analyzed. The working environments of the centrifugal compressor impeller show the behavior and the mechanism of stress corrosion cracking and corrosion fatigue in different corrosive environments. The current research methods for centrifugal compressor impeller corrosion failure are analyzed. Physical analysis, numerical simulation, and the fluid-structure interaction method play an increasingly important role in the research on impeller deformation and stress distribution caused by the joint action of aerodynamic load and centrifugal load.

  13. Mobile evaporator corrosion test results

    International Nuclear Information System (INIS)

    Rozeveld, A.; Chamberlain, D.B.

    1997-05-01

    Laboratory corrosion tests were conducted on eight candidates to select a durable and cost-effective alloy for use in mobile evaporators to process radioactive waste solutions. Based on an extensive literature survey of corrosion data, three stainless steel alloys (304L, 316L, AL-6XN), four nickel-based alloys (825, 625, 690, G-30), and titanium were selected for testing. The corrosion tests included vapor phase, liquid junction (interface), liquid immersion, and crevice corrosion tests on plain and welded samples of candidate materials. Tests were conducted at 80 degrees C for 45 days in two different test solutions: a nitric acid solution. to simulate evaporator conditions during the processing of the cesium ion-exchange eluant and a highly alkaline sodium hydroxide solution to simulate the composition of Tank 241-AW-101 during evaporation. All of the alloys exhibited excellent corrosion resistance in the alkaline test solution. Corrosion rates were very low and localized corrosion was not observed. Results from the nitric acid tests showed that only 316L stainless steel did not meet our performance criteria. The 316L welded interface and crevice specimens had rates of 22.2 mpy and 21.8 mpy, respectively, which exceeds the maximum corrosion rate of 20 mpy. The other welded samples had about the same corrosion resistance as the plain samples. None of the welded samples showed preferential weld or heat-affected zone (HAZ) attack. Vapor corrosion was negligible for all alloys. All of the alloys except 316L exhibited either open-quotes satisfactoryclose quotes (2-20 mpy) or open-quotes excellentclose quotes (<2 mpy) corrosion resistance as defined by National Association of Corrosion Engineers. However, many of the alloys experienced intergranular corrosion in the nitric acid test solution, which could indicate a susceptibility to stress corrosion cracking (SCC) in this environment

  14. Contribution of archaeological analogs to the estimation of average corrosion rates and long term corrosion mechanisms of low carbon steel in soil

    International Nuclear Information System (INIS)

    Neff, D.

    2003-11-01

    . This corrosion form, constituted among others by a siderite layer is due to a particular environment: waterlogged soil containing wood. In the whole, analyses conducted in the TM show that it is composed of goethite badly crystallized in comparison with those of the DPL. Moreover, in this zone, the average elemental iron amount decreases progressively from the metal to the soil in which it stabilizes. In order to know the behaviour of the identified phases in soil water, some thermodynamic data have been involved to calculate their solubility in function of pH, potential and various water composition. The first conclusion concerns the influence of the composition and the structure of the material which is not important for the corrosion behaviour. From the results, some hypothesis have been formulated on the long term corrosion mechanisms of hypo-eutectoids steels in the considered environment. The role of the cracks formed in the DPL during the burial was evidenced. Moreover, these corrosion products undertake a dissolution in the soil water and a reprecipitation, explaining the progressive decrease of the iron amount in the TM. Lastly, some average corrosion rates have been measured with the help of the analytical and thermodynamic results: they do not exceed 4 μm/year. (author)

  15. Probability distribution of pitting corrosion depth and rate in underground pipelines: A Monte Carlo study

    International Nuclear Information System (INIS)

    Caleyo, F.; Velazquez, J.C.; Valor, A.; Hallen, J.M.

    2009-01-01

    The probability distributions of external-corrosion pit depth and pit growth rate were investigated in underground pipelines using Monte Carlo simulations. The study combines a predictive pit growth model developed by the authors with the observed distributions of the model variables in a range of soils. Depending on the pipeline age, any of the three maximal extreme value distributions, i.e. Weibull, Frechet or Gumbel, can arise as the best fit to the pitting depth and rate data. The Frechet distribution best fits the corrosion data for long exposure periods. This can be explained by considering the long-term stabilization of the diffusion-controlled pit growth. The findings of the study provide reliability analysts with accurate information regarding the stochastic characteristics of the pitting damage in underground pipelines.

  16. Probability distribution of pitting corrosion depth and rate in underground pipelines: A Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Caleyo, F. [Departamento de Ingenieria Metalurgica, ESIQIE, IPN, UPALM Edif. 7, Zacatenco, 07738 Mexico, D.F. (Mexico)], E-mail: fcaleyo@gmail.com; Velazquez, J.C. [Departamento de Ingenieria Metalurgica, ESIQIE, IPN, UPALM Edif. 7, Zacatenco, 07738 Mexico, D.F. (Mexico); Valor, A. [Facultad de Fisica, Universidad de La Habana, San Lazaro y L, Vedado, 10400, La Habana (Cuba); Hallen, J.M. [Departamento de Ingenieria Metalurgica, ESIQIE, IPN, UPALM Edif. 7, Zacatenco, 07738 Mexico, D.F. (Mexico)

    2009-09-15

    The probability distributions of external-corrosion pit depth and pit growth rate were investigated in underground pipelines using Monte Carlo simulations. The study combines a predictive pit growth model developed by the authors with the observed distributions of the model variables in a range of soils. Depending on the pipeline age, any of the three maximal extreme value distributions, i.e. Weibull, Frechet or Gumbel, can arise as the best fit to the pitting depth and rate data. The Frechet distribution best fits the corrosion data for long exposure periods. This can be explained by considering the long-term stabilization of the diffusion-controlled pit growth. The findings of the study provide reliability analysts with accurate information regarding the stochastic characteristics of the pitting damage in underground pipelines.

  17. Corrosion of API 5L B and X52 in crude oil/water/gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Perdomo, J J; Gonzalez, J J; Viloria, A; De Veer, H; De Abreu, Y

    2000-02-01

    Laboratory and field tests were conducted to evaluate the corrosion behavior of API 5L grade B and X52 steels using Furrial's crude oil in the presence of water and gas containing carbon dioxide (CO{sub 2}) and hydrogen sulfide (H{sub 2}S). The results suggest that the corrosiveness of this crude oil/water/gas mixture is not detrimental to either steel. However, pitting corrosion was observed. The low general corrosion rates measured were attributed to the natural inhibiting properties of the crude oil.

  18. Corrosion of carbon steel in contact with bentonite

    International Nuclear Information System (INIS)

    Dobrev, D.; Vokal, A.; Bruha, P.

    2010-01-01

    Document available in extended abstract form only. Carbon steel canisters were chosen in a number of disposal concepts as reference material for disposal canisters. The corrosion rates of carbon steels in water solution both in aerobic and anaerobic conditions are well known, but only scarce data are available for corrosion behaviour of carbon steels in contact with bentonite. A special apparatus, which enables to measure corrosion rate of carbon steels under conditions simulating conditions in a repository, namely in contact with bentonite under high pressure and elevated temperatures was therefore prepared to study: - Corrosion rate of carbon steels in direct contact with bentonite in comparison with corrosion rate of carbon steels in synthetic bentonite pore water. - Influence of corrosion products on bentonite. The apparatus is composed of corrosion chamber containing a carbon steel disc in direct contact with compacted bentonite. Synthetic granitic water is above compacted bentonite under high pressure (50 - 100 bar) to simulate hydrostatic pressure in a repository. The experiments can be carried out under various temperatures. Bentonites used for experiments were Na-type of bentonite Volclay KWK 80 - 20 and Ca-Mg Czech bentonite from deposit Rokle. Before adding water into corrosion system the corrosion chamber was purged by nitrogen gas. The saturation of bentonite and corrosion rate were monitored by measuring consumption of water, pressure increase caused by swelling pressure of bentonite and by generation of hydrogen. Corrosion rate was also determined after corrosion experiments from weight loss of samples. The results of experiments show that the corrosion behaviour of carbon steels in contact with bentonite is very different from corrosion of carbon steels in water simulating bentonite pore water solution. The corrosion rates of carbon steel in contact with bentonite reached after 30 days of corrosion the values approaching 40 mm/yr contrary to values

  19. Non-destructive elecrochemical monitoring of reinforcement corrosion

    DEFF Research Database (Denmark)

    Nygaard, Peter Vagn

    been widely accepted as a non-destructive ”state of the art” technique for detection of corrosion in concrete structures. And, over the last decade, the trend in corrosion monitoring has moved towards quantitative non-destructive monitoring of the corrosion rate of the steel reinforcement. A few...... corrosion rate measurement instruments have been developed and are commercially available. The main features of these instruments are the combined use of an electrochemical technique for determining the corrosion rate and a so-called ”confinement technique”, which in principle controls the polarised surface...... area of the reinforcement, i.e. the measurement area. Both on-site investigations and laboratory studies have shown that varying corrosion rates are obtained when the various commercially available instruments are used. And in the published studies, conflicting explanations are given illustrating...

  20. A thin-walled pressurized sphere exposed to external general corrosion and nonuniform heating

    Science.gov (United States)

    Sedova, Olga S.; Pronina, Yulia G.; Kuchin, Nikolai L.

    2018-05-01

    A thin-walled spherical shell subjected to simultaneous action of internal and external pressure, nonuniform heating and outside mechanochemical corrosion is considered. It is assumed that the shell is homogeneous, isotropic and linearly elastic. The rate of corrosion is linearly dependent on the equivalent stress, which is the sum of mechanical and temperature stress components. Paper presents a new analytical solution, which takes into account the effect of the internal and external pressure values themselves, not only their difference. At the same time, the new solution has a rather simple form as compared to the results based on the solution to the Lame problem for a thick-walled sphere under pressure. The solution obtained can serve as a benchmark for numerical analysis and for a qualitative forecast of durability of the vessel.

  1. An overview of erosion corrosion models and reliability assessment for corrosion defects in piping system

    International Nuclear Information System (INIS)

    Srividya, A.; Suresh, H.N.; Verma, A.K.; Gopika, V.; Santosh

    2006-01-01

    Piping systems are part of passive structural elements in power plants. The analysis of the piping systems and their quantification in terms of failure probability is of utmost importance. The piping systems may fail due to various degradation mechanisms like thermal fatigue, erosion-corrosion, stress corrosion cracking and vibration fatigue. On examination of previous results, erosion corrosion was more prevalent and wall thinning is a time dependent phenomenon. The paper is intended to consolidate the work done by various investigators on erosion corrosion in estimating the erosion corrosion rate and reliability predictions. A comparison of various erosion corrosion models is made. The reliability predictions based on remaining strength of corroded pipelines by wall thinning is also attempted. Variables in the limit state functions are modelled using normal distributions and Reliability assessment is carried out using some of the existing failure pressure models. A steady state corrosion rate is assumed to estimate the corrosion defect and First Order Reliability Method (FORM) is used to find the probability of failure associated with corrosion defects over time using the software for Component Reliability evaluation (COMREL). (author)

  2. Surface films and corrosion of copper

    International Nuclear Information System (INIS)

    Hilden, J.; Laitinen, T.; Maekelae, K.; Saario, T.; Bojinov, M.

    1999-03-01

    In Sweden and Finland the spent nuclear fuel is planned to be encapsulated in cast iron canisters that have an outer shield made of copper. The copper shield is responsible for the corrosion protection of the canister construction. General corrosion of the copper is not expected to be the limiting factor in the waste repository environment when estimating the life-time of the canister construction. However, different forms of localised corrosion, i.e. pitting, stress corrosion cracking, or environmentally assisted creep fracture may cause premature failure of the copper shield. Of the probable constituents in the groundwater, nitrites, chlorides, sulphides and carbonates have been suggested to promote localised corrosion of copper. The main assumption made in planning this research program is that the surface films forming on copper in the repository environment largely determine the susceptibility of copper to the different forms of localised corrosion. The availability of reactants, which also may become corrosion rate limiting, is investigated in several other research programs. This research program consists of a set of successive projects targeted at characterising the properties of surface films on copper in repository environment containing different detrimental anions. A further aim was to assess the significance of the anion-induced changes in the stability of the oxide films with regard to localised corrosion of copper. This report summarises the results from a series of investigations on properties of surface films forming on copper in water of pH = 8.9 at temperature of 80 deg C and pressure of 2 MPa. The main results gained so far in this research program are as follows: The surface films forming on copper in the thermodynamic stability region of monovalent copper at 80 deg C consist of a bulk part (about 1 mm thick) which is a good ionic and electronic conductor, and an outer, interfacial layer (0.001 - 0.005 mm thick) which shows p-type semiconductor

  3. Study on influence of native oxide and corrosion products on atmospheric corrosion of pure Al

    International Nuclear Information System (INIS)

    Liu, Yanjie; Wang, Zhenyao; Ke, Wei

    2014-01-01

    Highlights: •Corrosion products layer is only formed in coastal atmosphere. •In coastal atmosphere, rate controlling step is diffusion process. •In rural atmosphere, rate controlling step is charge transfer process. •Pitting area increases greatly in coastal site, but slightly in rural site. -- Abstract: Effects of native oxide and corrosion products on atmospheric corrosion of aluminium in rural and coastal sites were studied by electrochemical impedance spectroscopy (EIS), open-circuit potential (OCP) and scanning electron microscope (SEM) techniques after outdoor exposure. In the rural atmosphere, only the compact, adhesive native oxide layer exists, and the rate controlling step is diffusion process, while in the coastal atmosphere, another loose, inadhesive corrosion products layer exists, and a charge transfer process controls the corrosion process. The pitting area in the coastal atmosphere increases over time more obviously than that in the rural atmosphere

  4. Effect of water chemistry on flow accelerated corrosion rate of carbon steel measured by on-line corrosion-monitoring system

    International Nuclear Information System (INIS)

    Fujiwara, K.; Domae, M.; Yoneda, K.; Inada, F.

    2010-01-01

    Flow Accelerated Corrosion (FAC) of carbon steel is one of the most important subjects in coolant systems of power plants. FAC is influenced by material, flow condition, temperature, and water chemistry. Iron and chromium solubility should be the most effective factor to determine the effect of water chemistry on the FAC. It is very important to evaluate the correlation between the solubility and the FAC rate of the carbon steel. In the present study, the effects of pH and Cr concentration of material on the FAC rate of carbon steel were evaluated by using high temperature loop equipment with on-line corrosion-monitoring system. Effect of dissolved oxygen concentration at pH 7 was also evaluated. The experimental FAC rates were compared with the calculation result, which was obtained from a FAC model developed previously by the authors' group. The tube specimens made of STPT 480 carbon steel were used for the FAC tests. The Cr concentration of STPT 480 was specially adjusted to 0.001 and 0.08 %. The inner diameters of the tubes were 1.6, 2.4, and 3.2 mm. The solutions were fed to the specimens with the flow rate of 1.5 l/min. The temperature of the solution at the specimen was controlled at 140 o C. Test solutions were demineralized water or NH 3 solutions of pH 8.0, 9.2, and 10.0. The increase in pH more than 9 decreased the FAC rates of both 0.001 and 0.08 % Cr specimens at 140 o C. Increase of the Cr concentration of the material decreased the FAC rate in the solution of pH 7.0, 8.0, 9.2, and 10.0. The FAC model reproduced well dependence of the experimental FAC behavior on water chemistry. It was confirmed that effect of pH and Cr concentration of material on the FAC rate were closely related to the solubility and diffusion of iron and chromium. (author)

  5. Corrosion rates of fasteners in treated wood exposed to 100% relative humidity

    Science.gov (United States)

    Samuel L. Zelinka; Douglas R. Rammer

    2009-01-01

    In the past, gravimetric corrosion data for fasteners exposed to treated wood has been reported as a percent weight loss. Although percent weight loss is a valid measure of corrosion for comparing identical fasteners, it can distort the corrosion performance of fasteners with different geometries and densities. This report reevaluates a key report on the corrosiveness...

  6. The suitability of Titanium as a corrosion resistant canister for nuclear waste

    International Nuclear Information System (INIS)

    Henriksson, S.; Pettersson, K.

    1977-08-01

    A literature study and inventory of experience has been carried out, aimed at assessing the possibilities of unalloyed and Pd-alloyed titanium withstanding corrosion for 1000 - 10000 years in contact with Baltic Sea water at 100 percentC and pH 4 - 10. The following assesment can be made: -1. Pitting, crevice corrosion, stress corrosion cracking and corrosion fatigue constitute no problem if the canister is made of unalloyed titanium corresponding to ASTM Grade 1. 2. Linear extrapolation of reported corrosion rates for oxidation and general corrosion gives a life of between 1000 and 10000 years for a 5 mm thick canister. 3. Hydrogen embrittlement resulting from hydrogen pick-up from the deposition environment should not occur. Delayed failure caused by a redistribution of the hydrogen initially present in the titanium can be avoided if its concentration is maximized to 20 ppm. (author)

  7. Measurement of Localized Corrosion Rates at Inclusion Particles in AA7075 by In Situ Three Dimensional (3D) X-ray Synchrotron Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sudhanshu S.; Williams, Jason J.; Stannard, Tyler J.; Xiao, Xianghui; De Carlo, Francesco; Chawla, Nikhilesh

    2016-03-01

    In situ X-ray synchrotron tomography was used to measure the localized corrosion rate of Mg2Si particles present in 7075 aluminum alloys in deionized ultra-filtered (DIUF) water. The evolution of hydrogen bubbles was captured as a function of time and the measured volume was used to calculate the local corrosion rate of Mg2Si particles. It was shown that in the absence of chloride ions, stress was needed to create fresh particle surfaces, either by fracture or debonding, to initiate corrosion at the particles.

  8. Relationship between Corrosion Level of Rebar Embedded in Concrete, Corrosion Potential and Current Density Measured by Non-destructive Test Method

    International Nuclear Information System (INIS)

    Chung, Lan; Cho, Seung Ho; Roh, Young Sook; Kim, Joong Koo

    2004-01-01

    The purpose of this study is to identify corrosion mechanism and develop qualitative measurement method of corrosion level. Fist of all, structural behavior of each different level of corrosion states have been evaluated. And mathematical models that can predict corrosion level in terms of electric potential and corrosion intensity are proposed. Corrosion rate in reinforcing bar was investigated in this study using accelerated corrosion method due to electric potential differences based on Faradays law. Total 288 measurement spots were designed in terms of corrosion rates, diameter of reinforcing bars, and concrete cover thickness. Corrosion current densities and corrosion potentials of concrete were measured on these specimens using Gecor device. This study suggested the relationship between corrosion levels, and measured electric current density as follows

  9. Corrosion of API 5L B and X52 in crude oil/water/gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Perdomo, J.J.; Gonzalez, J.J.; Viloria, A.; De Veer, H.; De Abreu, Y.

    2000-02-01

    Laboratory and field tests were conducted to evaluate the corrosion behavior of API 5L grade B and X52 steels using Furrial's crude oil in the presence of water and gas containing carbon dioxide (CO{sub 2}) and hydrogen sulfide (H{sub 2}S). The results suggest that the corrosiveness of this crude oil/water/gas mixture is not detrimental to either steel. However, pitting corrosion was observed. The low general corrosion rates measured were attributed to the natural inhibiting properties of the crude oil.

  10. Alternating current techniques for corrosion monitoring in water reactor systems

    International Nuclear Information System (INIS)

    Isaacs, H.S.; Weeks, J.R.

    1977-01-01

    Corrosion in both nuclear and fossil fueled steam generators is generally a consequence of the presence of aggressive impurities introduced into the coolant system through condenser leakage. The impurities concentrate in regions of the steam generator protected from coolant flow, in crevices or under deposited corrosion products and adjacent to heat transfer surfaces. These three factors, the aggressive impurity, crevice type areas and heat transfer surfaces appear to be the requirements for the onset of rapid corrosion. Under conditions where coolant impurities do not concentrate the corrosion rates are low, easily measured and can be accounted for by allowances in the design of the steam generator. Rapid corrosion conditions cannot be designed for and must be suppressed. The condition of the surfaces when rapid corrosion develops must be markedly different from those during normal operation and these changes should be observable using electrochemical techniques. This background formed the basis of a design of a corrosion monitoring device, work on which was initiated at BNL. The basic principles of the technique are described. The object of the work is to develop a corrosion monitoring device which can be operated with PWR steam generator secondary coolant feed water

  11. Corrosion study in molten fluoride salt

    International Nuclear Information System (INIS)

    Keny, S.J.; Kumbhar, A.G.; Rangarajan, S.; Gupta, V.K.; Maheshwari, N.K.; Vijayan, P.K.

    2013-01-01

    Corrosion behaviors of two alloys viz. Inconel 625 and Inconel 617 were tested in molten fluoride salts of lithium, sodium and potassium (FLiNaK) in the temperature range of 550-750 ℃ in a nickel lined Inconel vessel. Electrochemical polarization (Tafel plot) technique was used for this purpose. For both alloys, the corrosion rate was found to increase sharply beyond 650 ℃ . At 600 ℃ , Inconel 625 showed a decreasing trend in the corrosion rate over a period of 24 hours, probably due to changes in the surface conditions. After fifteen days, re-testing of Inconel 625 in the same melt showed an increase in the corrosion rate. Inconel 625 was found to be more corrosion resistant than Inconel 617. (author)

  12. On researching erosion-corrosion wear in pipelines: the rate and residual lifetime estimation

    International Nuclear Information System (INIS)

    Baranenko, V.I.; Yanchenko, Yu.A.; Gulina, O.M.; Dokukin, D.A.

    2010-01-01

    To base the normative document on calculation of pipelines erosive-corrosive wear (ECW) rate and residual lifetime this research of ECW regularities for pearlitic steel NPP pipelines was performed. The estimates of control data treatment statistical procedures efficiency were presented. The influence of the scheme of piping control on the ECW rate and residual lifetime estimation results was demonstrated. The simplified scheme is valid only in case of complete information. It's usage under data uncertainties leads to essential residual lifetime overstating [ru

  13. Corrosion and stress corrosion cracking in supercritical water

    Science.gov (United States)

    Was, G. S.; Ampornrat, P.; Gupta, G.; Teysseyre, S.; West, E. A.; Allen, T. R.; Sridharan, K.; Tan, L.; Chen, Y.; Ren, X.; Pister, C.

    2007-09-01

    Supercritical water (SCW) has attracted increasing attention since SCW boiler power plants were implemented to increase the efficiency of fossil-based power plants. The SCW reactor (SCWR) design has been selected as one of the Generation IV reactor concepts because of its higher thermal efficiency and plant simplification as compared to current light water reactors (LWRs). Reactor operating conditions call for a core coolant temperature between 280 °C and 620 °C at a pressure of 25 MPa and maximum expected neutron damage levels to any replaceable or permanent core component of 15 dpa (thermal reactor design) and 100 dpa (fast reactor design). Irradiation-induced changes in microstructure (swelling, radiation-induced segregation (RIS), hardening, phase stability) and mechanical properties (strength, thermal and irradiation-induced creep, fatigue) are also major concerns. Throughout the core, corrosion, stress corrosion cracking, and the effect of irradiation on these degradation modes are critical issues. This paper reviews the current understanding of the response of candidate materials for SCWR systems, focusing on the corrosion and stress corrosion cracking response, and highlights the design trade-offs associated with certain alloy systems. Ferritic-martensitic steels generally have the best resistance to stress corrosion cracking, but suffer from the worst oxidation. Austenitic stainless steels and Ni-base alloys have better oxidation resistance but are more susceptible to stress corrosion cracking. The promise of grain boundary engineering and surface modification in addressing corrosion and stress corrosion cracking performance is discussed.

  14. Slow strain rate stress corrosion cracking under multiaxial deformation conditions: technique and application to admiralty brass

    International Nuclear Information System (INIS)

    Blanchard, W.K.; Heldt, L.A.; Koss, D.

    1984-01-01

    A set of straightforward experimental techniques are described for the examination of slow strain rate stress corrosion cracking (SCC) of sheet deforming under nearly all multiaxial deformation conditions which result in sheet thinning. Based on local fracture strain as a failure criterion, the results contrast stress corrosion susceptibility in uniaxial tension with those in both plane strain and balanced biaxial tension. These results indicate that the loss of ductility of the brass increases as the stress state changes from uniaxial toward balanced biaxial tension

  15. Real-time monitoring of copper corrosion at the Aespoe HRL

    Energy Technology Data Exchange (ETDEWEB)

    Rosborg, Bo; Pan, Jinshan [Div. Corrosion Science, Royal Institute of Technology, Drottning Kristinas vaeg 51, SE - 100 44 Stockholm (Sweden); Eden, David [InterCorr International, Inc., 14503 Bammel-N Houston, Suite 300, Houston, TX 77014 (United States); Karnland, Ola [Clay Technology AB, Ideon Research Center, SE - 223 70 Lund (Sweden); Werme, Lars [Svensk Kaernbraenslehantering AB, P.O. Box 5864, SE - 102 40 Stockholm (Sweden)

    2004-07-01

    In Sweden the principal strategy for high-level radioactive waste disposal is to enclose the spent nuclear fuel in tightly sealed copper canisters that are embedded in bentonite clay about 500 m down in the Swedish bed-rock. Initially, a limited amount of air will be left in a repository after emplacement. The entrapped oxygen will be consumed through reactions with minerals in the rock and the bentonite and also through microbial activity. After the oxygen has been consumed in the repository, after a few hundred years at the very most, corrosion will be controlled completely by the supply of dissolved sulphide to the canister. The present work concerns the oxic period after emplacement. The main hypothesis is that the average corrosion rate of the canister under oxic conditions will be less than 7 {mu}m/year, and that pitting will only be possible under these conditions. The Aespoe Hard Rock Laboratory offers a realistic environment for different experiments and tests under the conditions that will prevail in a deep repository. Real-time monitoring of copper corrosion is presently performed with polarization resistance, harmonic distortion analysis and electrochemical noise techniques. The first two techniques are used to derive information regarding the general corrosion rate and the third to derive information regarding localized corrosion. In order to support these measurements at Aespoe, laboratory work is also performed at the Royal Institute of Technology in Stockholm using the very same corrosion monitoring equipment and also other equipment and techniques. Copper coupons are also exposed at Aespoe. Results from the work at Aespoe and in Stockholm are presented with an emphasis on the gained information concerning localized corrosion. The recorded corrosion rates at Aespoe are well below the value given above, and the recorded localization factors are interpreted as indicating only a slight tendency to local attack. (authors)

  16. Real-time monitoring of copper corrosion at the Aespoe HRL

    International Nuclear Information System (INIS)

    Rosborg, Bo; Pan, Jinshan; Eden, David; Karnland, Ola; Werme, Lars

    2004-01-01

    In Sweden the principal strategy for high-level radioactive waste disposal is to enclose the spent nuclear fuel in tightly sealed copper canisters that are embedded in bentonite clay about 500 m down in the Swedish bed-rock. Initially, a limited amount of air will be left in a repository after emplacement. The entrapped oxygen will be consumed through reactions with minerals in the rock and the bentonite and also through microbial activity. After the oxygen has been consumed in the repository, after a few hundred years at the very most, corrosion will be controlled completely by the supply of dissolved sulphide to the canister. The present work concerns the oxic period after emplacement. The main hypothesis is that the average corrosion rate of the canister under oxic conditions will be less than 7 μm/year, and that pitting will only be possible under these conditions. The Aespoe Hard Rock Laboratory offers a realistic environment for different experiments and tests under the conditions that will prevail in a deep repository. Real-time monitoring of copper corrosion is presently performed with polarization resistance, harmonic distortion analysis and electrochemical noise techniques. The first two techniques are used to derive information regarding the general corrosion rate and the third to derive information regarding localized corrosion. In order to support these measurements at Aespoe, laboratory work is also performed at the Royal Institute of Technology in Stockholm using the very same corrosion monitoring equipment and also other equipment and techniques. Copper coupons are also exposed at Aespoe. Results from the work at Aespoe and in Stockholm are presented with an emphasis on the gained information concerning localized corrosion. The recorded corrosion rates at Aespoe are well below the value given above, and the recorded localization factors are interpreted as indicating only a slight tendency to local attack. (authors)

  17. Corrosion test plan to guide canister material selection and design for a tuff repository

    International Nuclear Information System (INIS)

    McCright, R.D.; van Konynenburg, R.A.; Ballou, L.B.

    1983-11-01

    Corrosion rates and the mode of corrosion attack form a most important basis for selection of canister materials and design of a nuclear waste package. Type 304L stainless steel was selected as the reference material for canister fabrication because of its generally excellent corrosion resistance in water, steam and air. However, 304L may be susceptible to localized and stress-assisted forms of corrosion under certain conditions. Alternative alloys are also investigated; these alloys were chosen because of their improved resistance to these forms of corrosion. The fabrication and welding processes, as well as the glass pouring operation for defense and commercial high-level wastes, may influence the susceptibility of the canister to localized and stress forms of corrosion. 12 references, 2 figures, 4 tables

  18. DPC materials and corrosion environments.

    Energy Technology Data Exchange (ETDEWEB)

    Ilgen, Anastasia Gennadyevna; Bryan, Charles R.; Teich-McGoldrick, Stephanie; Hardin, Ernest

    2014-10-01

    After an exposition of the materials used in DPCs and the factors controlling material corrosion in disposal environments, a survey is given of the corrosion rates, mechanisms, and products for commonly used stainless steels. Research needs are then identified for predicting stability of DPC materials in disposal environments. Stainless steel corrosion rates may be low enough to sustain DPC basket structural integrity for performance periods of as long as 10,000 years, especially in reducing conditions. Uncertainties include basket component design, disposal environment conditions, and the in-package chemical environment including any localized effects from radiolysis. Prospective disposal overpack materials exist for most disposal environments, including both corrosion allowance and corrosion resistant materials. Whereas the behavior of corrosion allowance materials is understood for a wide range of corrosion environments, demonstrating corrosion resistance could be more technically challenging and require environment-specific testing. A preliminary screening of the existing inventory of DPCs and other types of canisters is described, according to the type of closure, whether they can be readily transported, and what types of materials are used in basket construction.

  19. Establishing empirical relationships to predict porosity level and corrosion rate of atmospheric plasma-sprayed alumina coatings on AZ31B magnesium alloy

    Directory of Open Access Journals (Sweden)

    D. Thirumalaikumarasamy

    2014-06-01

    Full Text Available Plasma sprayed ceramic coatings are successfully used in many industrial applications, where high wear and corrosion resistance with thermal insulation are required. In this work, empirical relationships were developed to predict the porosity and corrosion rate of alumina coatings by incorporating independently controllable atmospheric plasma spray operational parameters (input power, stand-off distance and powder feed rate using response surface methodology (RSM. A central composite rotatable design with three factors and five levels was chosen to minimize the number of experimental conditions. Within the scope of the design space, the input power and the stand-off distance appeared to be the most significant two parameters affecting the responses among the three investigated process parameters. A linear regression relationship was also established between porosity and corrosion rate of the alumina coatings. Further, sensitivity analysis was carried out and compared with the relative impact of three process parameters on porosity level and corrosion rate to verify the measurement errors on the values of the uncertainty in estimated parameters.

  20. Susceptibility of 17-4PH stainless steel to stress corrosion cracking in aqueous environments by electrochemical techniques

    International Nuclear Information System (INIS)

    Diaz S, A.C.

    1997-01-01

    The susceptibility of a 17-4PH type steel to Stress Corrosion Cracking (SCC) in low pressure steam turbine environments was assessed using slow strain rate test at 90 Centigrade and at 1.35x10 -6 seg -1 . Environments tested included different concentrated solutions of NaCl, NaOH and Na 2 SO 4 . It was concluded that this steel is susceptible to SCC in 20 % NaCl and pH=3 and in 20 % NaCl pH=neutral but under cathodic polarisation. The electrochemical potential noise of the specimen was monitored during the test. The naturally fluctuations in potential were arise due to spontaneous brake protective film and were characteristics of the kind of corrosion like pit or stress corrosion cracking. After that using Fast Fourier Transformer (FFT) the noise data set were analyzed to obtain power spectral density plots which showed differences between general corrosion and localized corrosion. Polarization curves were carry out at two different rates and them showed the general behavior of the systems. (Author)

  1. EFFECT OF RATIO OF SURFACE AREA ON THE CORROSION RATE

    OpenAIRE

    Dody Prayitno; M. Irsyad

    2018-01-01

    Aluminum and steel are used to be a construction for a building outdoor panel. Aluminum and steel are connected by bolt and nut. An atmosphere due to a corrosion of the aluminum. The corrosion possibly to cause the hole diameter of bolt and nut to become larger. Thus the bolt and nut can not enough strong to hold the panel. The panel may collapse. The aim of the research is first to answer a question where does the corrosion starts. The second is to know the effect of ratio surface area of st...

  2. Mg and Mg alloys: how comparable are in vitro and in vivo corrosion rates? A review.

    Science.gov (United States)

    Martinez Sanchez, Adela Helvia; Luthringer, Bérengère J C; Feyerabend, Frank; Willumeit, Regine

    2015-02-01

    Due to their biodegradability, magnesium and magnesium-based alloys could represent the third generation of biomaterials. However, their mechanical properties and time of degradation have to match the needs of applications. Several approaches, such as choice of alloying elements or tailored microstructure, are employed to tailor corrosion behaviour. Due to the high electrochemical activity of Mg, numerous environmental factors (e.g. temperature and surrounding ion composition) influence its corrosion behaviour, making it unpredictable. Nevertheless, the need of reliable in vitro model(s) to predict in vivo implant degradation is increasing. In an attempt to find a correlation between in vitro and vivo corrosion rates, this review presents a systematic literature survey, as well as an attempt to correlate the different results. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Corrosion studies on HGW-canister materials for marine disposal

    International Nuclear Information System (INIS)

    Taylor, K.J.; Bland, I.D.; Marsh, G.P.

    1984-07-01

    A combination of mathematical modelling and experimental studies has been used to investigate and assess the long term corrosion behaviour of heat generating waste canister/ overpack materials under conditions relevant to deep ocean disposal. Preliminary operation of the model, using improved electrochemical kinetic data from the experimental programme, has indicated that the general corrosion rate of carbon steel at 90 deg C will be 57 μm yr -1 which is equivalent to a metal loss of 57 mm in 1000 years. This prediction compares favourably with the results from long term tests, which are also in progress, for plain and electron beam welded carbon steel specimens embedded in marine sediment at 90 deg C under active dissolution conditions. Tests with γ-radiation at a dose rate of 1.5 x 10 5 R h -1 have shown that the pH of seawater falls to 3.7 after 5000 hours exposure causing a significant increase in the corrosion rate of carbon steel from 50 to 80 μm yr -1 . Further work is in progress to investigate the mechanism of this acidification and whether it also occurs at the more realistic lower radiation dose rates. (author)

  4. Corrosion monitoring during a chemical cleaning

    International Nuclear Information System (INIS)

    Delepine, J.; Feron, D.; Roy, M.

    1994-01-01

    In order to estimate the possible corrosion induced by the chemical cleaning, a corrosion monitoring has been realized during the cleaning of the secondary circuit (including the model boiler) of ORION loop. It included coupons and electrodes and has required a preliminary setting in laboratory. The electrochemical device which was used during the chemical cleaning included two reference electrodes (Ag/AgCl) and eight metallic electrodes (carbon steel, stainless steel, Alloy 600 and Alloy 690) for free corrosion potential monitoring, three other carbon steel electrodes for instantaneous corrosion rate measurements by polarization resistance and three coupling devices with different surface ratios between carbon steel and Alloy 600. The results showed a good agreement between corrosion rates measured by weight losses on coupons or by electrochemistry (polarization resistance), and an increase of the carbon steel corrosion rate when it was coupled with Alloy 600. (authors). 5 figs., 2 tabs., 3 refs

  5. Evaluation of corrosion products formed by sulfidation as inhibitors of the naphthenic corrosion of AISI-316 steel

    Science.gov (United States)

    Sanabria-Cala, J. A.; Montañez, N. D.; Laverde Cataño, D.; Y Peña Ballesteros, D.; Mejía, C. A.

    2017-12-01

    Naphthenic acids present in oil from most regions worldwide currently stand as the main responsible for the naphthenic corrosion problems, affecting the oil-refining industry. The phenomenon of sulfidation, accompanying corrosion processes brought about by naphthenic acids in high-temperature refining plant applications, takes place when the combination of sulfidic acid (H2S) with Fe forms layers of iron sulphide (FeS) on the material surface, layers with the potential to protect the material from attack by other corrosive species like naphthenic acids. This work assessed corrosion products formed by sulfidation as inhibitors of naphthenic corrosion rate in AISI-316 steel exposed to processing conditions of simulated crude oil in a dynamic autoclave. Calculation of the sulfidation and naphthenic corrosion rates were determined by gravimetry. The surfaces of the AISI-316 gravimetric coupons exposed to acid systems; were characterized morphologically by X-Ray Diffraction (XRD) and X-ray Fluorescence by Energy Dispersive Spectroscopy (EDS) combined with Scanning Electron Microscopy (SEM). One of the results obtained was the determination of an inhibiting effect of corrosion products at 250 and 300°C, where lower corrosion rate levels were detected. For the temperature of 350°C, naphthenic corrosion rates increased due to deposition of naphthenic acids on the areas where corrosion products formed by sulfidation have lower homogeneity and stability on the surface, thus accelerating the destruction of AISI-316 steel. The above provides an initial contribution to oil industry in search of new alternatives to corrosion control by the attack of naphthenic acids, from the formation of FeS layers on exposed materials in the processing of heavy crude oils with high sulphur content.

  6. Development of Flow Accelerated Corrosion Reduction Technology

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Min Bum; Choi, Won Yeol; Lee, Jong Chan; Lim, Dong Seok; Kwon, Byung Il; Ku, Hee Kwon; Kim, Jong Uk [FNC Tech, Yongin (Korea, Republic of)

    2015-10-15

    Development of flow accelerated corrosion reduction technology is necessary for prevent this kind of accidents. This study deals with development of flow accelerated corrosion reduction technology through platinum injection and developed of flow accelerated corrosion reduction technology by imitating water chemical condition in PWR secondary system in practice. In addition, in order to get reliability of water chemical simulator in PWR secondary system, analyzed and compared with test result through CFD analysis. This study composed test device that can simulate water chemical environment in PWR secondary system, in order to develop flow accelerated corrosion reduction , and evaluated the ratio of corrosion in water chemical environment in PWR secondary system. In conclusion, corrosion ratio of low alloy steel material that includes more Cr and Mo was lower. And the results were confirmed to be the maximum corrosion rate in the case that replicate the 90 elbow. Additionally, inserted Pt nano particle for developing flow accelerated corrosion rate reduction technology, the test results, it was confirmed for about 80% of the flow accelerated corrosion rate reduction than before input.

  7. Downhole corrosion mechanisms and mitigation strategies

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, D. [Baker Hughes Canada, Calgary, AB (Canada)

    2010-07-01

    Pipeline corrosion refers to its deterioration because of a reaction with its environment. Although the physical condition of the metal at the anode initiates the corrosion process, it is the chemistry and composition of the electrolyte that controls the rate of the corrosion reaction and the severity of the corrosion. This presentation described the role of corrosion rate accelerators, with particular reference to dissolved gases such as oxygen, hydrogen sulfides and carbon dioxide, as well as pH levels, salinity, flow rate, temperature and presence of solids such as iron sulfides and sulfur. The effects of these accelerators were shown to be additive. Mitigation strategies include using materials such as resistant metal alloys or fiberglass, and applying coatings and chemical inhibitors. The importance of corrosion monitoring was also emphasized, with particular reference to the value of examining the number of corrosion related failures that have occurred over a fixed period of time. It was concluded that the ability to analyze samples of failed materials results in a better understanding of the cause of the failure, and is an integral part of designing any successful corrosion control program. tabs., figs.

  8. Study on the corrosion assessment of overpack welds-III (Joint research)

    International Nuclear Information System (INIS)

    Mitsui, Hiroyuki; Takahashi, Rieko; Otsuki, Akiyoshi; Asano, Hidekazu; Taniguchi, Naoki; Yui, Mikazu

    2006-12-01

    There is some possibility that the corrosion resistance of overpack welds is different from that of base metal due to the differences of material properties. In this study, corrosion behavior of welded joint for carbon steel was compared with base metal using the specimens taken from welded joint model fabricated by TIG, MAG and EBW respectively. The corrosion tests were performed for following four items. Passivation behavior and corrosion type. Propagation of general corrosion, pitting corrosion and crevice corrosion under aerobic condition. Stress corrosion cracking susceptibility. Propagation of general corrosion and hydrogen embrittlement under anaerobic condition. The results of these corrosion tests indicated that the corrosion resistance of welded metal by TIG and MAG was inferior to base metal for general corrosion, pitting corrosion and crevice corrosion. It was implied that the filler materials used for welding affected the corrosion resistance. No deterioration of corrosion resistance was observed in any corrosion modes for EBW, which does not need filler material. The susceptibility to stress corrosion cracking of welded metal and heat affected zone was lower than that of base metal. (author)

  9. Hanford transuranic storage corrosion review

    International Nuclear Information System (INIS)

    Nelson, J.L.; Divine, J.R.

    1980-12-01

    The rate of atmospheric corrosion of the transuranic (TRU) waste drums at the US Department of Energy's Hanford Project, near Richland, Washington, was evaluated by Pacific Northwest Laboratory (PNL). The rate of corrosion is principally contingent upon the effects of humidity, airborne pollutants, and temperature. Results of the study indicate that actual penetration of barrels due to atmospheric corrosion will probably not occur within the 20-year specified recovery period. Several other US burial sites were surveyed, and it appears that there is sufficient uncertainty in the available data to prevent a clearcut statement of the corrosion rate at a specific site. Laboratory and site tests are recommended before any definite conclusions can be made. The corrosion potential at the Hanford TRU waste site could be reduced by a combination of changes in drum materials (for example, using galvanized barrels instead of the currently used mild steel barrels), environmental exposure conditions (for example, covering the barrels in one of numerous possible ways), and storage conditions

  10. Passive Corrosion Behavior of Alloy 22

    International Nuclear Information System (INIS)

    R.B. Rebak; J.H. Payer

    2006-01-01

    Alloy 22 (NO6022) was designed to stand the most aggressive industrial applications, including both reducing and oxidizing acids. Even in the most aggressive environments, if the temperature is lower than 150 F (66 C) Alloy 22 would remain in the passive state having particularly low corrosion rates. In multi-ionic solutions that may simulate the behavior of concentrated ground water, even at near boiling temperatures, the corrosion rate of Alloy 22 is only a few nano-meters per year because the alloy is in the complete passive state. The corrosion rate of passive Alloy 22 decreases as the time increases. Immersion corrosion testing also show that the newer generation of Ni-Cr-Mo alloys may offer a better corrosion resistance than Alloy 22 only in some highly aggressive conditions such as in hot acids

  11. Detection of localized and general corrosion of mild steel in simulated defense nuclear waste solutions using electrochemical noise analysis

    International Nuclear Information System (INIS)

    Edgemon, G.L.; Ohl, P.C.; Bell, G.E.C.; Wilson, D.F.

    1995-12-01

    Underground waste tanks fabricated from mild steel store more than 60 million gallons of radioactive waste from 50 years of weapons production. Leaks are suspected in a significant number of tanks. The probable modes of corrosion failures are reported to be localized corrosion (e.g. nitrate stress corrosion cracking and pitting). The use of electrochemical noise (EN) for the monitoring and detection of localized corrosion processes has received considerable attention and application over the last several years. Proof of principle laboratory tests were conducted to verify the capability of EN evaluation to detect localized corrosion and to compare the predictions of general corrosion obtained from EN with those derived from other sources. Simple, pre-fabricated flat and U-bend specimens of steel alloys A516-Grade 60 (UNS K02100) and A537-CL 1 (UNS K02400) were immersed in temperature controlled simulated waste solutions. The simulated waste solution was either 5M NaNO 3 with 0.3M NaOH at 90 C or 11M NaNO 3 with 0.15M NaOH at 95 C. The electrochemical noise activity from the specimens was monitored and recorded for periods ranging between 140 and 240 hours. At the end of each test period, the specimens were metallographically examined to correlated EN data with corrosion damage

  12. Effect of Aging Temperature on Corrosion Behavior of Sintered 17-4 PH Stainless Steel in Dilute Sulfuric Acid Solution

    Science.gov (United States)

    Szewczyk-Nykiel, Aneta; Kazior, Jan

    2017-07-01

    The general corrosion behavior of sintered 17-4 PH stainless steel processed under different processing conditions in dilute sulfuric acid solution at 25 °C was studied by open-circuit potential measurement and potentiodynamic polarization technique. The corrosion resistance was evaluated based on electrochemical parameters, such as polarization resistance, corrosion potential, corrosion current density as well as corrosion rate. The results showed that the precipitation-hardening treatment could significantly improve the corrosion resistance of the sintered 17-4 PH stainless steel in studied environment. As far as the influence of aging temperature on corrosion behavior of the sintered 17-4 PH stainless steel is concerned, polarization resistance and corrosion rate are reduced with increasing aging temperature from 480 up to 500 °C regardless of the temperature of solution treatment. It can be concluded that the highest corrosion resistance in 0.5 M H2SO4 solution exhibits 17-4 PH after solution treatment at 1040 °C followed by aging at 480 °C.

  13. Electrochemical evaluation of under-deposit corrosion and its inhibition using the wire beam electrode method

    Energy Technology Data Exchange (ETDEWEB)

    Tan Yongjun, E-mail: yj.tan@curtin.edu.a [Western Australian Corrosion Research Group, Department of Chemistry, Curtin University, GPO Box U1987, Perth (Australia); Fwu, Young; Bhardwaj, Kriti [Western Australian Corrosion Research Group, Department of Chemistry, Curtin University, GPO Box U1987, Perth (Australia)

    2011-04-15

    Research highlights: A new experiment method for evaluating under-deposit corrosion and its inhibitors. Under-deposit corrosion did not occur in a CO{sub 2} saturated pure brine solution. Inhibitor imidazoline addition and O{sub 2} contamination initiated under-deposit corrosion. Inhibitor imidazoline reduced general corrosion but enhanced localised corrosion. - Abstract: A new experimental method has been applied to evaluate under-deposit corrosion and its inhibition by means of an electrochemically integrated multi-electrode array, namely the wire beam electrode (WBE). Maps showing galvanic current and corrosion potential distributions were measured from a WBE surface that was partially covered by sand. Under-deposit corrosion did not occur during the exposure of the WBE to carbon dioxide saturated brine under ambient temperature. The introduction of corrosion inhibitor imidazoline and oxygen into the brine was found to significantly affect the patterns and rates of corrosion, leading to the initiation of under-deposit corrosion over the WBE.

  14. Corrosion of high-density sintered tungsten alloys

    International Nuclear Information System (INIS)

    Batten, J.J.; Moore, B.T.

    1989-01-01

    In comparative corrosion tests, the corrosion resistance of an Australian tungsten alloy (95% W, 3.5% Ni, 1.5% Fe) was found to be superior to three other tungsten alloys and, under certain conditions, even more corrosion-resistant than pure tungsten. Corrosion resistance was evaluated after immersion in both distilled water and 5% sodium chloride solutions, and in cyclic humidity and salt mist environments. For all but the Australian alloy, the rate of corrosion in sodium chloride solution was markedly less than that in distilated water. In all cases, alloys containing copper had the greatest corrosion rates. Corrosion mechanisms were investigated using a scanning electron microscope, analysis of corrosion products and galvanic corrosion studies. For the alloys, corrosion was attributed primarily to a galvanic reaction. Whether the tungsten or binder phase of the alloy became anodic, and thus was attacked preferentially, depended upon alloy composition and corrosion environment. 16 refs., 4 tabs., 4 figs

  15. Effect of flow on corrosion in catenary risers and its corrosion inhibitor performance

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Pedro Altoe; Magalhaes, Alvaro Augusto Oliveira; Silva, Jussara de Mello [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Kang, Cheolho; More, Parimal P. [Det Norske Veritas (DNV), Oslo (Norway)

    2009-07-01

    In oil and gas production, multiphase flow is often encountered and a range of different flow patterns can be experienced in pipelines. The flow regime transition and flow characteristics can be changed with the change of pipeline topography, which affects the corrosion and the performance of corrosion inhibitor in these multiphase pipelines. This paper outlines on the effect of inclination on the flow characteristics and their subsequent effect on corrosion rates. Also, this paper presents on the performance of three candidate corrosion inhibitors under severe slugging conditions at low water cut. For the simulation of offshore flow lines and risers, the experiments were carried out in a 44 m long, 10 cm diameter, three different pipeline inclinations of 0, 3 and 45 degrees. Light condensate oil with a viscosity of 2.5 cP at room temperature was used and water cut was 20%. The results indicated that the baseline corrosion rate in 45 degrees showed higher than other inclinations. Each corrosion inhibitor showed a different inhibitor performance. (author)

  16. Risk Analysis using Corrosion Rate Parameter on Gas Transmission Pipeline

    Science.gov (United States)

    Sasikirono, B.; Kim, S. J.; Haryadi, G. D.; Huda, A.

    2017-05-01

    In the oil and gas industry, the pipeline is a major component in the transmission and distribution process of oil and gas. Oil and gas distribution process sometimes performed past the pipeline across the various types of environmental conditions. Therefore, in the transmission and distribution process of oil and gas, a pipeline should operate safely so that it does not harm the surrounding environment. Corrosion is still a major cause of failure in some components of the equipment in a production facility. In pipeline systems, corrosion can cause failures in the wall and damage to the pipeline. Therefore it takes care and periodic inspections or checks on the pipeline system. Every production facility in an industry has a level of risk for damage which is a result of the opportunities and consequences of damage caused. The purpose of this research is to analyze the level of risk of 20-inch Natural Gas Transmission Pipeline using Risk-based inspection semi-quantitative based on API 581 associated with the likelihood of failure and the consequences of the failure of a component of the equipment. Then the result is used to determine the next inspection plans. Nine pipeline components were observed, such as a straight pipes inlet, connection tee, and straight pipes outlet. The risk assessment level of the nine pipeline’s components is presented in a risk matrix. The risk level of components is examined at medium risk levels. The failure mechanism that is used in this research is the mechanism of thinning. Based on the results of corrosion rate calculation, remaining pipeline components age can be obtained, so the remaining lifetime of pipeline components are known. The calculation of remaining lifetime obtained and the results vary for each component. Next step is planning the inspection of pipeline components by NDT external methods.

  17. In-situ corrosion measurements of WWII shipwrecks in Chuuk Lagoon, quantification of decay mechanisms and rates of deterioration

    Directory of Open Access Journals (Sweden)

    Ian Donald Macleod

    2016-03-01

    Full Text Available This paper is based on a series of measurements taken on WWII historic shipwrecks that resulted from the effects of Operation Hailstone in February 1944 on the Japanese merchant fleet which was assembled in Chuuk lagoon, Federated States of Micronesia. More than 65 shipwrecks and 250 aircraft were sunk during two main bombing raids. The vessels lost covered a wide range of underwater orientation and water depths and so provided a perfect suite of corrosion experiments. Since the fuel on board the aircraft was either readily burnt at the time or was lost through volatilisation, the wrecked planes present no pollution problems today. However the bunker fuel kept inside on-board storage tanks does present a real conservation management crisis. In-situ measurements on many vessels have determined how water depth, the localised wreck topography, dissolved oxygen levels, temperature and salinity affects the corrosion rate of cast iron and mild steel. Thus corrosion rates can be calculated with confidence.

  18. Erosion-corrosion resistance properties of 316L austenitic stainless steels after low-temperature liquid nitriding

    Science.gov (United States)

    Zhang, Xiangfeng; Wang, Jun; Fan, Hongyuan; Pan, Dong

    2018-05-01

    The low-temperature liquid nitriding of stainless steels can result in the formation of a surface zone of so-called expanded austenite (S-phase) by the dissolution of large amounts of nitrogen in the solid solution and formation of a precipitate-free layer supersaturated with high hardness. Erosion-corrosion measurements were performed on low-temperature nitrided and non-nitrided 316L stainless steels. The total erosion-corrosion, erosion-only, and corrosion-only wastages were measured directly. As expected, it was shown that low-temperature nitriding dramatically reduces the degree of erosion-corrosion in stainless steels, caused by the impingement of particles in a corrosive medium. The nitrided 316L stainless steels exhibited an improvement of almost 84% in the erosion-corrosion resistance compared to their non-nitrided counterparts. The erosion-only rates and synergistic levels showed a general decline after low-temperature nitriding. Low-temperature liquid nitriding can not only reduce the weight loss due to erosion but also significantly reduce the weight loss rate of interactions, so that the total loss of material decreased evidently. Therefore, 316L stainless steels displayed excellent erosion-corrosion behaviors as a consequence of their highly favorable corrosion resistances and superior wear properties.

  19. Corrosion and electrochemical properties of lanthanum

    International Nuclear Information System (INIS)

    Tomashov, N.D.; Matveeva, T.V.

    The kinetics of the corrosion rate of lanthanum at 25 0 in air of different relative humidities, distilled water, sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, hydrofluoric acid, potassium hydroxide of different concentrations and at 100 0 C in distilled water and potassium hydroxide have been studied. In air at 22--100% relative humidity, the corrosion rate of lanthanum increases with time and with increasing humidity. In distilled water and in potassium hydroxide solutions, the corrosion rate of lanthanum increases with time and decreasees when the concentration of alkali exceeds 20%. With increasing concentration of the acids, the corrosion rate of lanthanum increases in hydrochloric acid and nitric acid and passes through a maximum in sulfuric acid (20%) and phosphoric acid (60%). The values of the corrosion rates of lanthanum in 40% nitric acid, 35% hydrochloric acid, 20% sulfuric acid, 60% phosphoric acid, and 40% hydrofluoric acid are 8 x 10 5 ; 4.4 x 10 4 ; 1.3 x 10 3 ; 9 g/m 2 h respectively

  20. Corrosion Fatigue in District Heating Water Tanks

    DEFF Research Database (Denmark)

    Maahn, Ernst Emanuel

    1996-01-01

    Three candidate materials for construction of buffer tanks for district heating water have been tested for corrosion fatigue properties in a district heating water environment. The investigation included Slow Strain Rate Testing of plain tensile specimens, crack initiation testing by corrosion...... fatigue of plain tensile specimens and crack growth rate determination for Compact Tensile Specimens under corrosion fatigue conditions. The three materials are equal with respect to stress corrosion sensibility and crack initiation. Crack growth rate is increased with a factor of 4-6 relative to an inert...

  1. On the corrosion of binary magnesium-rare earth alloys

    Energy Technology Data Exchange (ETDEWEB)

    Birbilis, N. [ARC Centre of Excellence for Design in Light Metals, Monash University (Australia); CAST Co-operative Research Centre (Australia); Department of Materials Engineering, Monash University, Wellington Road, Clayton, Vic. 3800 (Australia)], E-mail: nick.birbilis@eng.monash.edu.au; Easton, M.A. [CAST Co-operative Research Centre (Australia); Department of Materials Engineering, Monash University, Wellington Road, Clayton, Vic. 3800 (Australia); Sudholz, A.D. [ARC Centre of Excellence for Design in Light Metals, Monash University (Australia); Department of Materials Engineering, Monash University, Wellington Road, Clayton, Vic. 3800 (Australia); Zhu, S.M. [CAST Co-operative Research Centre (Australia); Department of Materials Engineering, Monash University, Wellington Road, Clayton, Vic. 3800 (Australia); Gibson, M.A. [CAST Co-operative Research Centre (Australia); CSIRO Division of Materials Science and Engineering (Australia)

    2009-03-15

    The corrosion properties of high-pressure die cast (HPDC) magnesium-rare earth (RE) based alloys have been studied. Binary additions of La, Ce and Nd to commercially pure Mg were made up to a nominal 6 wt.%. It was found that the intermetallic phases formed in the eutectic were Mg{sub 12}La, Mg{sub 12}Ce and Mg{sub 3}Nd, respectively. Results indicated that increasing RE alloying additions systematically increased corrosion rates. This was also described in the context of the electrochemical response of Mg-RE intermetallics - which were independently assessed by the electrochemical microcapillary technique. This study is a discrete effort towards revealing the electrochemical effect of carefully controlled binary alloying additions to magnesium in order to elucidate the microstructure-corrosion relationship more generally for HPDC Mg alloys. Such fundamental information is seen to not only be useful in understanding the corrosion of alloys which presently contain RE additions, but may be exploited in the design of magnesium alloys with more predictable corrosion behaviour. There is a special need to understand this relationship - particularly for magnesium that commonly displays poor corrosion resistance.

  2. Electrochemical corrosion behavior of Ni-containing hypoeutectic Al-Si alloy

    Directory of Open Access Journals (Sweden)

    Abul Hossain

    2015-12-01

    Full Text Available Electrochemical corrosion characteristics of the thermally treated 2 wt % Ni-containing Al-6Si-0.5Mg alloy were studied in NaCl solutions. The corrosion behavior of thermally treated (T6 Al-6Si-0.5Mg (-2Ni alloys in 0.1 M NaCl solution was investigated by electrochemical potentiodynamic polarization technique consisting of linear polarization method using the fit of Tafel plot and electrochemical impedance spectroscopy (EIS techniques. Generally, linear polarization experiments revealed a decrease of the corrosion rate at thermal treated Al-6Si-0.5Mg-2Ni alloy. The EIS test results showed that there is no significant change in charge transfer resistance (Rct after addition of Ni to Al-6Si-0.5Mg alloy. The magnitude of the positive shift in the open circuit potential (OCP, corrosion potential (Ecorr and pitting corrosion potential (Epit increased with the addition of Ni to Al-6Si-0.5Mg alloy. The forms of corrosion in the studied Al-6Si-0.5Mg alloy (except Al-6Si-0.5Mg-2Ni alloy are pitting corrosion as obtained from the scanning electron microscopy (SEM study.

  3. The optimization of CNT-PVA nanocomposite for mild steel coating: Effect of CNTs concentration on the corrosion rate of mild steel

    Science.gov (United States)

    Maryam, M.; Ibrahim, N. M. A. A.; Eswar, K. A.; Guliling, M.; Suhaimi, M. H. F.; Khusaimi, Z.; Abdullah, S.; Rusop, M.

    2018-05-01

    Carbon Nanotubes (CNTs) are molecular-scale tubes of graphitic carbon which have outstanding mechanical and magnetic properties with extraordinary strength. It can be said that CNTs can be used in coating application to prevent corrosion and lower the rate of corrosion on steel. However, CNT alone cannot be used for coating purposes. Therefore, by combining it with polymer to produce a nanocomposite thin film, it can be used for nanocoating on mild steel substrate. Polyvinyl alcohol (PVA) was chosen due to its high strength and high modulus polymer fibers and has the possibilities of improving the physicochemical properties of carbon nanotubes. Carbon nanotubes and polyvinyl alcohol (CNT-PVA) nanocomposite were prepared by using sol-gel method and coated as thin film on mild steel substrate by using spin coating. Sol-gel is a convenient technique used for the production of nanocomposite aqueous solution. Five samples were prepared at the different concentration of CNTs-PVA to verify the corrosion rate application. The samples were then characterized by Field Emission Scanning Electron Microscopy (FESEM) and Atomic Force Microscopy (AFM) obtaining the structural properties, surface morphology and topography of samples. Raman spectroscopy was used to determine the microraman spectra of CNTs which showed the quality and purity of samples. Finally, corrosion test was done to measure the corrosion rate of samples at the different concentration of CNTs/PVA nanocomposite.

  4. The roles of the micro-organisms and chromium content in the corrosion of iron-chromium steels in the presence of sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    Ferrante, V.

    1991-12-01

    Although the ability of sulfate-reducing bacteria to enhance the corrosion of steel is now widely accepted, the actual processes involved in such phenomena are still discussed. This work is dedicated to the study of the exact roles played in corrosion processes firstly, by the presence of D. vulgaris cells and, secondly, by chemical factors such as the material composition and the accumulation of sulfide ions in the solution. The use of microbiological, electrochemical and analytical experimental techniques lead to results that show the interdependence of the bacteria and the material as well as the importance of the steel composition in the adhesion of the micro-organisms and the general corrosion rates. The bacteria cells and dissolved sulfide ions do not markedly influence the general corrosion rates. They however induce surface state modifications that can result in localized corrosion phenomena

  5. Slow strain rate corrosion and fracture characteristics of X-52 and X-70 pipeline steels

    International Nuclear Information System (INIS)

    Contreras, A.; Albiter, A.; Salazar, M.; Perez, R.

    2005-01-01

    The susceptibility to stress corrosion cracking (SCC) in a NACE solution saturated with H 2 S, of the X-52 and X-70 steels was studied using slow strain rate tests (SSRT) and electrochemical evaluations. SCC tests were performed in samples which include the longitudinal weld bead of the pipeline steels and were carried out in the NACE solution at both room temperature and 50 deg. C. After failure, the fracture surfaces were observed in a scanning electron microscope (SEM) and the chemical analysis were obtained using X-rays energy dispersive (EDXs) techniques. The specimens tested in air, exhibited a ductile type of failure, and whereas, those tested in the corrosive solution showed a brittle fracture. Specimens tested in the NACE solution saturated with H 2 S presented high susceptibility to SCC. Corrosion was found to be an important factor in the initiation of some cracks. In addition, the effect of the temperature on the corrosion attack was explored. The susceptibility to SCC was manifested as a decrease in the mechanical properties. Potentiodynamic polarization curves and hydrogen permeation measurements were made. The diffusion of atomic hydrogen was related to this fracture forms. The hydrogen permeation flux increased with the increasing of temperature

  6. Effect of Thermal Aging on the Corrosion Behavior of Wrought and Welded Alloy 22

    International Nuclear Information System (INIS)

    Rebak, R.B.; Edgecumbe Summers, T.S.; Lian, T.

    2002-01-01

    Alloy 22 (UNS N06022) is a candidate material for the external wall of the high level nuclear waste containers for the potential repository site at Yucca Mountain. In the mill-annealed (MA) condition, Alloy 22 is a single face centered cubic phase. When exposed to temperatures on the order of 600 C and above for times higher than 1 h, this alloy may develop secondary phases that are brittle and offer a lower corrosion resistance than the MA condition. The objective of this work was to age Alloy 22 at temperatures between 482 C and 800 C for times between 0.25 h and 3,000 h and to study the corrosion performance of the resulting material. Aging was carried out using wrought specimens as well as gas tungsten arc welded (GTAW) specimens. The corrosion performance was characterized using standard immersion tests in aggressive acidic solutions and electrochemical tests in multi-component solutions. Results show that, in general, in aggressive acidic solutions the corrosion rate increased as the aging temperature and aging time increased. However, in multi ionic environments that could be relevant to the potential Yucca Mountain site, the corrosion rate of aged material was the same as the corrosion rate of the MA material

  7. Influence of tannin content in Terminalia catappa leaves extracts resulted from maceration extraction on decreasing corrosion rate for mild steel in 1M H2SO4

    Science.gov (United States)

    Pramudita, M.; Sukirno; Nasikin, M.

    2018-04-01

    The ability of natural compounds as corrosion inhibitors is necessary to obtain safe corrosion inhibitors for the environment. The tannin compounds derived from plant extract has the ability to decrease the corrosion rate. The purpose of this research is to find the ability of tannin compounds in Terminalia catappa leaves extracts to decrease corrosion rate on mild steel. Terminalia catappa leaves that have been mashed in ethanol solvent extraction using maceration with the variable time 2.4 and 6 days. Mild steel that has been on the sandpaper and cleaned then soak into the 1 M H2SO4. Terminalia catappa leaves extract concentration used is 0, 250, 500, 500, 750, 1000 ppm, the immersion time is 3.6 and 9 hours. Calculating of corrosion rate is used the weight loss method, the analysis of the tannin concentration using GC-MS. The results indicate that highest tannin content equal to 7.23% in 6 days maceration time. The result showed that the corrosion rate was reduced in the presence of tannin content in Terminalia catappa leaves extract.

  8. Corrosion Assessment by Using Risk-Based Inspection Method for Petrochemical Plant - Practical Experience

    International Nuclear Information System (INIS)

    Choi, Song Chun; Song, Ki Hun

    2009-01-01

    Corrosion assessment has a number of uses but the use considered here is as a precursor to Risk-Based Inspection (RBI) planning. Systematic methods consisting of technical modules of RBI program were used to assess the effect of specific corrosion mechanism on the probability of failure in equipment of petrochemical plants. Especially in part of the damage and corrosion assessment, screening step involved evaluating the combinations of process conditions and construction materials for each equipment item in order to determine which damage mechanisms are potentially active. For general internal corrosion, either API 510 or API 570 was applied as the damage rate in the calculation to determine the remaining life and inspection frequency. In some cases, a measured rate of corrosion may not be available. The technical modules of RBI program employ default values for corrosion, typically derived from published data or from experience with similar processes, for use until inspection results are available. This paper describes the case study of corrosion and damage assessment by using RBI methodology in petrochemical plant. Specifically, this paper reports the methodology and the results of its application to the petrochemical units using the KGS-RBI TM program, developed by the Korea Gas Safety Corporation to suit Korean situation in conformity with API 581 Codes

  9. A STUDY OF CORROSION AND STRESS CORROSION CRACKING OF CARBON STEEL NUCLEAR WASTE STORAGE TANKS

    International Nuclear Information System (INIS)

    BOOMER, K.D.

    2007-01-01

    The Hanford reservation Tank Farms in Washington State has 177 underground storage tanks that contain approximately 50 million gallons of liquid legacy radioactive waste from cold war plutonium production. These tanks will continue to store waste until it is treated and disposed. These nuclear wastes were converted to highly alkaline pH wastes to protect the carbon steel storage tanks from corrosion. However, the carbon steel is still susceptible to localized corrosion and stress corrosion cracking. The waste chemistry varies from tank to tank, and contains various combinations of hydroxide, nitrate, nitrite, chloride, carbonate, aluminate and other species. The effect of each of these species and any synergistic effects on localized corrosion and stress corrosion cracking of carbon steel have been investigated with electrochemical polarization, slow strain rate, and crack growth rate testing. The effect of solution chemistry, pH, temperature and applied potential are all considered and their role in the corrosion behavior will be discussed

  10. Long-term corrosion studies

    International Nuclear Information System (INIS)

    Gdowski, G.

    1998-01-01

    The scope of this activity is to assess the long-term corrosion properties of metallic materials under consideration for fabricating waste package containers. Three classes of metals are to be assessed: corrosion resistant, intermediate corrosion resistant, and corrosion allowance. Corrosion properties to be evaluated are general, pitting and crevice corrosion, stress-corrosion cracking, and galvanic corrosion. The performance of these materials will be investigated under conditions that are considered relevant to the potential emplacement site. Testing in four aqueous solutions, and vapor phases above them, and at two temperatures are planned for this activity. (The environmental conditions, test metals, and matrix are described in detail in Section 3.0.) The purpose and objective of this activity is to obtain the kinetic and mechanistic information on degradation of metallic alloys currently being considered for waste package containers. This information will be used to provide assistance to (1) waste package design (metal barrier selection) (E-20-90 to E-20-92), (2) waste package performance assessment activities (SIP-PA-2), (3) model development (E-20-75 to E-20-89). and (4) repository license application

  11. Testing and prediction of erosion-corrosion for corrosion resistant alloys used in the oil and gas production industry

    Science.gov (United States)

    Rincon, Hernan E.

    The corrosion behavior of CRAs has been thoroughly investigated and documented in the public literature by many researchers; however, little work has been done to investigate erosion-corrosion of such alloys. When sand particles are entrained in the flow, the degradation mechanism is different from that observed for sand-free corrosive environment. There is a need in the oil and gas industry to define safe service limits for utilization of such materials. The effects of flow conditions, sand rate, pH and temperature on the erosion-corrosion of CRAs were widely studied. An extensive experimental work was conducted using scratch tests and flow loop tests using several experimental techniques. At high erosivity conditions, a synergistic effect between erosion and corrosion was observed. Under the high sand rate conditions tested, erosivity is severe enough to damage the passive layer protecting the CRA thereby enhancing the corrosion rate. In most cases there is likely a competition between the rates of protective film removal due to mechanical erosion and protective film healing. Synergism occurs for each of the three alloys examined (13Cr and Super13Cr and 22Cr); however, the degree of synergism is quite different for the three alloys and may not be significant for 22Cr for field conditions where erosivities are typically much lower that those occurring in the small bore loop used in this research. Predictions of the corrosion component of erosion-corrosion based on scratch test data compared reasonably well to test results from flow loops for the three CRAs at high erosivity conditions. Second order behavior appears to be an appropriate and useful model for representing the repassivation process of CRAs. A framework for a procedure to predict penetration rates for erosion-corrosion conditions was developed based on the second order model behavior observed for the re-healing process of the passive film of CRAs and on computational fluid dynamics (CFD) simulations

  12. The effect of conditioning agents on the corrosive properties of molten urea

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, D E; Nguyen, D T; Norton, M M; Parker, B R; Daniels, L E

    1991-01-01

    From the process case histories of the failure of several heat exchanger tube bundles, it was revealed that molten urea containing lignosulfonate as a granulation conditioning-hardening agent (Urea LS[trademark]) is corrosive to Types 304 and 316 stainless steel. The results of field and laboratory immersion corrosion tests indicated that the corrosivity of molten urea is strongly dependent on the process temperature rather than the conditioner composition. At temperatures below 295F, molten Urea LS[trademark] is not aggressive to these stainless steels. However, at temperatures above 300F, the corrosion of these stainless steels is extremely severe. The corrosion rate of Types 304, 304L, 316, and 316L is as high as hundreds of mils per year. The corrosion mechanism tends to be more general than localized. The results of the laboratory corrosion test also revealed that among alloying elements, copper is detrimental to corrosion resistance of stainless steel exposed to molten Urea LS[trademark], chromium is the most beneficial, and nickel has only a minor effect. Thus, copper-free and chromium stainless steels have superior corrosion resistance to the molten Urea LS[trademark] at a wide range of temperatures up to 345F.

  13. The anaerobic corrosion of carbon steel in concrete

    International Nuclear Information System (INIS)

    Naish, C.C.; Balkwill, P.H.; O'Brien, T.M.; Taylor, K.J.; Marsh, G.P.

    1990-11-01

    The report describes the work of a two year programme investigating the anaerobic corrosion of carbon steel embedded in a range of candidate repository cements and concretes at laboratory temperatures. The factors investigated in the study were the rate of the anaerobic corrosion reaction, the effect of hydrogen overpressure on the reaction rate and the form of the corrosion product. Both electrochemical and sample weight loss corrosion rate measurements were used. The cements and concretes used were prepared both with and without small additions of chloride (2% by weight of mix water). The results indicate that the corrosion rate is low, < 1 μm/year, the effect of hydrogen overpressure is not significant over the range of pressures investigated, 1-100 atmospheres, and that the corrosion product is dependent on the cement used to cast the samples. Magnetite was identified in the case of blast furnace slag replacement cements but for pulverised fuel ash and ordinary Portland cements no corrosion product was evident either from X-ray diffraction or laser Raman measurements. Further work is presently underway to investigate the effects of elevated temperatures and chloride levels on the anaerobic corrosion reaction and the rate of hydrogen gas production. (author)

  14. Stochastic process corrosion growth models for pipeline reliability

    International Nuclear Information System (INIS)

    Bazán, Felipe Alexander Vargas; Beck, André Teófilo

    2013-01-01

    Highlights: •Novel non-linear stochastic process corrosion growth model is proposed. •Corrosion rate modeled as random Poisson pulses. •Time to corrosion initiation and inherent time-variability properly represented. •Continuous corrosion growth histories obtained. •Model is shown to precisely fit actual corrosion data at two time points. -- Abstract: Linear random variable corrosion models are extensively employed in reliability analysis of pipelines. However, linear models grossly neglect well-known characteristics of the corrosion process. Herein, a non-linear model is proposed, where corrosion rate is represented as a Poisson square wave process. The resulting model represents inherent time-variability of corrosion growth, produces continuous growth and leads to mean growth at less-than-one power of time. Different corrosion models are adjusted to the same set of actual corrosion data for two inspections. The proposed non-linear random process corrosion growth model leads to the best fit to the data, while better representing problem physics

  15. High Temperature Corrosion in Biomass-Fired Boilers

    DEFF Research Database (Denmark)

    Henriksen, Niels; Montgomery, Melanie; Hede Larsen, Ole

    2002-01-01

    condense on superheater components. This gives rise to specific corrosion problems not previously encountered in coal-fired power plants. The type of corrosion attack can be directly ascribed to the composition of the deposit and the metal surface temperature. To avoid such high corrosion rates, woodchip...... has also been utilised as a fuel. Combustion of woodchip results in a smaller amount of ash, and potassium and chlorine are present in lesser amounts. However, significant corrosion rates were still seen. A case study of a woodchip fired boiler is described. The corrosion mechanisms in both straw-fired...... and woodchip fired boilers are discussed....

  16. Corrosion of candidate materials for canister: applications in rock salt formations

    International Nuclear Information System (INIS)

    Azkarate, I.; Madina, V.; Barrio, A. del; Macarro, J.M.

    1994-01-01

    Previous corrosion studies carried out on various metallic materials in typical salt rock environments show that carbon steel and titanium alloys are the most promising candidates for canister applications in this geological formation. Although carbon steels have a low corrosion resistance, they are considered acceptable as corrosion-allowance materials for a thick walled container due to their practical immunity to the localized corrosion phenomena such as stress corrosion cracking, pitting or crevice corrosion. Aiming to improve the performances of these materials, studies on the effect of small additions of Ni and V on the general corrosion are in process. The improvement in the resistance to general corrosion should not be accompanied by a sensitivity to stress corrosion cracking. On the contrary, alfa titanium alloys are considered the most resistant materials to general corrosion in salt brines. However, pitting, are potential deficiencies of this corrosion-resistant materials for a thin walled container. (Author)

  17. Some observations on phosphate based corrosion inhibitors in preventing carbon steel corrosion

    International Nuclear Information System (INIS)

    Anupkumar, B.; Satpathy, K.K.

    2000-01-01

    Among the various types of phosphonic acid based inhibitors assayed, namely HEDP, ATMP and a commercial corrosion inhibitor (code named Betz), it was found that Betz has the maximum amount of organic phosphate followed by HEDP and ATMP. The corrosion rate studies show that Betz gives the highest inhibition efficiency followed by HEDP and ATMP. This shows that organic phosphate plays a significant role in corrosion protection. However, it was observed that due to synergestic effect, HEDP in the presence of Zn 2+ gave a better corrosion protection than Betz. The results are discussed in the light of available literature. (author)

  18. Study on Corrosion-induced Crack Initiation and Propagation of Sustaining Loaded RCbeams

    Science.gov (United States)

    Zhong, X. P.; Li, Y.; Yuan, C. B.; Yang, Z.; Chen, Y.

    2018-05-01

    For 13 pieces of reinforced concrete beams with HRB500 steel bars under long-term sustained loads, at time of corrosion-induced initial crack of concrete, and corrosion-induced crack widths of 0.3mm and 1mm, corrosion of steel bars and time-varying behavior of corrosion-induced crack width were studied by the ECWD (Electro-osmosis - constant Current – Wet and Dry cycles) accelerated corrosion method. The results show that when cover thickness was between 30 and 50mm,corrosion rates of steel bars were between 0.8% and 1.7% at time of corrosion-induced crack, and decreased with increasing concrete cover thickness; when corrosion-induced crack width was 0.3mm, the corrosion rate decreased with increasing steel bar diameter, and increased with increasing cover thickness; its corrosion rate varied between 0.98% and 4.54%; when corrosion-induced crack width reached 1mm, corrosion rate of steel bars was between 4% and 4.5%; when corrosion rate of steel bars was within 5%, the maximum and average corrosion-induced crack and corrosion rate of steel bars had a good linear relationship. The calculation model predicting the maximum and average width of corrosion-induced crack is given in this paper.

  19. Scanning reference electrode techniques in localized corrosion

    International Nuclear Information System (INIS)

    Isaacs, H.S.; Vyas, B.

    1979-04-01

    The principles, advantages, and implementations of scanning reference electrode techniques are reviewed. Data related to pitting, intergranular corrosion, welds and stress corrosion cracking are presented. The technique locates the position of localized corrosion and can be used to monitor the development of corrosion and changes in the corrosion rate under a wide range of conditions

  20. Rhenium corrosion in chloride melts

    International Nuclear Information System (INIS)

    Stepanov, A.D.; Shkol'nikov, S.N.; Vetyukov, M.M.

    1989-01-01

    The results investigating rhenium corrosion in chloride melts containing sodium, potassium and chromium ions by a gravimetry potentials in argon atmosphere in a sealing quarth cell are described. Rhenium corrosion is shown to be rather considerable in melts containing CrCl 2 . The value of corrosion rate depending on temperature is determined

  1. Preparation of bimodal grain size 7075 aviation aluminum alloys and their corrosion properties

    Directory of Open Access Journals (Sweden)

    Wenming TIAN

    2017-10-01

    Full Text Available The bimodal grain size metals show improved strength and ductility compared to traditional metals; however, their corrosion properties are unknown. In order to evaluate the corrosion properties of these metals, the bimodal grain size 7075 aviation aluminum alloys containing different ratios of coarse (100 μm in diameter and fine (10 μm in diameter grains were prepared by spark plasma sintering (SPS. The effects of grain size as well as the mixture degree of coarse and fine grains on general corrosion were estimated by immersion tests, electrochemical measurements and complementary techniques such as scanning electron microscope (SEM and transmission electron microscope-energy disperse spectroscopy (TEM-EDS. The results show that, compared to fine grains, the coarse grains have a faster dissolution rate in acidic NaCl solution due to the bigger size, higher alloying elements content and larger area fraction of second phases in them. In coarse grains, the hydrogen ions have a faster reduction rate on cathodic second phases, therefore promoting the corrosion propagation. The mixture of coarse and fine grains also increases the electrochemical heterogeneity of alloys in micro-scale, and thus the increased mixture degree of these grains in metal matrix accelerates the corrosion rate of alloys in acidic NaCl solution.

  2. Niobium corrosion in flowing liquid sodium between 400 and 600 degrees C

    International Nuclear Information System (INIS)

    Sannier, J.; Champeix, L.; Darras, R.; Graff, W.

    1966-10-01

    The corrosion of niobium and two of its alloys was studied under temperature, flow rate, and purity conditions of liquid sodium similar to those likely to occur in a fast neutron reactor. The results are discussed with reference to the following parameters: purification method used for the sodium, temperature, metallurgical condition of the structural metal. Generally speaking, an important role is played by the oxygen content of the liquid metal towards the corrosion of the niobium: although the metal behaves very satisfactorily when a hot trap purification is used, it undergoes corrosion in the presence of sodium which has been purified only by a cold trap. (authors) [fr

  3. Markov chain model helps predict pitting corrosion depth and rate in underground pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Caleyo, F.; Velazquez, J.C.; Hallen, J. M. [ESIQIE, Instituto Politecnico Nacional, Mexico D. F. (Mexico); Esquivel-Amezcua, A. [PEMEX PEP Region Sur, Villahermosa, Tabasco (Mexico); Valor, A. [Universidad de la Habana, Vedado, La Habana (Cuba)

    2010-07-01

    Recent reports place pipeline corrosion costs in North America at seven billion dollars per year. Pitting corrosion causes the higher percentage of failures among other corrosion mechanisms. This has motivated multiple modelling studies to be focused on corrosion pitting of underground pipelines. In this study, a continuous-time, non-homogenous pure birth Markov chain serves to model external pitting corrosion in buried pipelines. The analytical solution of Kolmogorov's forward equations for this type of Markov process gives the transition probability function in a discrete space of pit depths. The transition probability function can be completely identified by making a correlation between the stochastic pit depth mean and the deterministic mean obtained experimentally. The model proposed in this study can be applied to pitting corrosion data from repeated in-line pipeline inspections. Case studies presented in this work show how pipeline inspection and maintenance planning can be improved by using the proposed Markovian model for pitting corrosion.

  4. Dictionary corrosion and corrosion control

    International Nuclear Information System (INIS)

    1985-01-01

    This dictionary has 13000 entries in both languages. Keywords and extensive accompanying information simplify the choice of word for the user. The following topics are covered: Theoretical principles of corrosion; Corrosion of the metals and alloys most frequently used in engineering. Types of corrosion - (chemical-, electro-chemical, biological corrosion); forms of corrosion (superficial, pitting, selective, intercrystalline and stress corrosion; vibrational corrosion cracking); erosion and cavitation. Methods of corrosion control (material selection, temporary corrosion protection media, paint and plastics coatings, electro-chemical coatings, corrosion prevention by treatment of the corrosive media); Corrosion testing methods. (orig./HP) [de

  5. Investigations on Microstructure and Corrosion behavior of Superalloy 686 weldments by Electrochemical Corrosion Technique

    Science.gov (United States)

    Arulmurugan, B.; Manikandan, M.

    2018-02-01

    In the present study, microstructure and the corrosion behavior of Nickel based superalloy 686 and its weld joints has been investigated by synthetic sea water environment. The weldments were fabricated by Gas Tungsten Arc Welding (GTAW) and Pulsed Current Gas Tungsten Arc Welding (PCGTAW) techniques with autogenous mode and three different filler wires (ERNiCrMo-4, ERNiCrMo-10 and ERNiCrMo-14). Microstructure and Scanning electron microscope examination was carried out to evaluate the structural changes in the fusion zones of different weldments. Energy Dispersive X-ray Spectroscopy (EDS) analysis was carried out to evaluate the microsegregation of alloying elements in the different weld joints. Potentiodynamic polarization study was experimented on the base metal and weld joints in the synthetic sea water environment to evaluate the corrosion rate. Tafel’s interpolation technique was used to obtain the corrosion rate. The microstructure examination revealed that the fine equiaxed dendrites were observed in the pulsed current mode. EDS analysis shows the absence of microsegregation in the current pulsing technique. The corrosion rates of weldments are compared with the base metal. The results show that the fine microstructure with the absence of microsegregation in the PCGTA weldments shows improved corrosion resistance compared to the GTAW. Autogenous PCGTAW shows higher corrosion resistance irrespective of all weldments employed in the present study.

  6. Corrosion behaviour of laser surface melted magnesium alloy AZ91D

    International Nuclear Information System (INIS)

    Taltavull, C.; Torres, B.; Lopez, A.J.; Rodrigo, P.; Otero, E.; Atrens, A.; Rams, J.

    2014-01-01

    A high power diode laser (HPDL) was used to produce laser surface melting (LSM) treatments on the surface of the Mg alloy AZ91D. Different treatments with different microstructures were produced by varying the laser-beam power and laser-scanning speed. Corrosion evaluation, using hydrogen evolution and electrochemical measurements, led to a relationship between microstructure and corrosion. Most corrosion rates for LSM treated specimens were within the scatter of the as-received AZ91D, whereas some treatments gave higher corrosion rates and some of the samples had corrosion rates lower than the average of the corrosion rate for AZ91D. There were differences in corroded surface morphology. Nevertheless laser treatments introduced surface discontinuities, which masked the effect of the microstructure. Removing these surface defects decreased the corrosion rate for the laser-treated samples. - Highlights: • Corrosion behavior of AZ91D Mg alloys is intimately related with its microstructure. • Laser surface melting treatments allows surface modification of the microstructure. • Different laser parameters can achieve different microstructures. • Controlling laser parameters can produce different corrosion rates and morphologies. • Increase of surface roughness due to laser treatment is relevant to the corrosion rate

  7. The anaerobic corrosion of carbon steel in concrete

    International Nuclear Information System (INIS)

    Naish, C.C.; Balkwill, P.H.; O'Brien, T.M.; Taylor, K.J.; Marsh, G.P.

    1990-11-01

    The report describes the work of a two year programme investigating the anaerobic corrosion of carbon steel embedded in a range of candidate repository cements and concretes at laboratory ambient temperatures. The factors investigated in the study were the rate of the anaerobic corrosion reaction, the effect of hydrogen overpressure on the reaction rate and the form of the corrosion product. Both electrochemical and sample weight loss corrosion rate measurements were used. The cements and concretes used were prepared both with and without small additions of chloride (2% by weight of mix water). The results indicate that the corrosion rate is low, <1 μm/year, the effect of hydrogen overpressure is not significant over the range of pressures investigated, 1-100 atmospheres, and that the corrosion product is dependent on the cement used to cast the samples. Magnetite was identified in the case of blast furnace slag replacement cements but for pulverised fuel ash and ordinary Portland cements no corrosion product was evident either from X-ray diffraction or laser Raman measurements. (Author)

  8. Correlation of flow accelerated corrosion rate with iron solubility

    International Nuclear Information System (INIS)

    Fujiwara, K.; Domae, M.; Yoneda, K.; Inada, F.; Ohira, T.; Hisamune, K.; Takiguchi, H.

    2009-01-01

    Flow Accelerated Corrosion (FAC) of carbon steel is one of the most important subjects in coolant systems of power plants. FAC is influenced by material, flow condition, temperature, and water chemistry. It is considered that solubility is the most important factor to determine the effect of water chemistry on FAC. In the present study, effect of specific oxide on FAC rate was studied from the thermodynamic solubility of iron. The effects of temperature and pH on the iron solubility were evaluated by taking into consideration hydrolysis reactions of ferrous iron, dissolution equilibria of Fe 3 O 4 , FeO, and Fe(OH) 2 , and charge balance. The correlation between the iron solubility and FAC behavior was evaluated by using the normalized mass transfer coefficient. It is clarified that the product of iron solubility equilibrated with Fe 3 O 4 and normalized mass transfer coefficient can explain the temperature and pH dependence of FAC. These results indicate presence of magnetite on the surface of carbon steel. Diffusion of iron from the saturated layer determines the FAC rate from water chemistry aspect. (author)

  9. Removal of corrosion products of construction materials in heat carrier

    International Nuclear Information System (INIS)

    1975-01-01

    A review of reported data has been made on the removal of structural material corrosion products into the heat-carrying agent of power reactors. The corrosion rate, and at the same time, removal of corrosion products into the heat-carrying agent (water) decreases with time. Thus, for example, the corrosion rate of carbon steel in boiling water at 250 deg C and O 2 concentration of 0.1 mg/1 after 3000 hr is 0.083 g/m 2 . day; after 9000 hr the corrosion rate has been reduced 2.5 times. Under static conditions the transfer rate of corrosion products into water has been smaller than in the stream and also depends on time. The corrosion rate of carbon steel under nuclear plant operating conditions is almost an order higher over that of steel Kh18N10T

  10. Corrosion of X65 Pipeline Steel Under Deposit and Effect of Corrosion Inhibitor

    Directory of Open Access Journals (Sweden)

    XU Yun-ze

    2016-10-01

    Full Text Available Effect of the deposit on the electrochemical parameters of X65 pipeline steel in oxygen contained sodium chloride solution was studied by EIS and PDS methods. The galvanic corrosion behavior under deposit and effect of different concentration of corrosion inhibitor PBTCA were studied by electrical resistance (ER method combined with ZRA. The results show that the corrosion potential of X65 steel shifts negatively as SiO2 covering its surface and the corrosion rate becomes lower. When the galvanic couple specimen with deposit is electrically connected with the specimen without deposit, anodic polarization occurs on X65 steel under deposit and the galvanic current density decreases from 120μA/cm2 to 50μA/cm2 and keeps stable. As 5×10-5, 8×10-5 and 3×10-4 PBTCA were introduced into the solution, the galvanic current density reaches the highest 1300μA/cm2 and then decreases to 610μA/cm2 keeping stable around 610μA/cm2, corrosion rate of X65 steel under deposit reaches 6.11mm/a. PBTCA accelerates the corrosion of X65 steel under deposit in oxygen contained solution. Through the investigation on the surface of the specimens, serious local corrosion occurs on the X65 steel surface under deposit.

  11. Corrosivity of solutions from evaporation of radioactive liquid wastes. Final report

    International Nuclear Information System (INIS)

    Payer, H.; Kolic, E.S.; Boyd, W.K.

    1977-01-01

    New double-shell storage tanks are constructed with ASTM A-516 Grade 65 steel. This study had two main objectives: To characterize the corrosivity of synthetic nonradioactive terminal waste solutions to ASTM A-516 Grade 65 steel and to determine the severity of stress-corrosion cracking of carbon steel in terminal waste solutions. The information developed provides guidance in the characterization of the aggressiveness of actual terminal liquors and in the design and operation of fail-safe tanks. Corrosion behavior was measured over a range of oxidizing conditions by the potentiodynamic polarization technique. Oxidizing conditions in a solution likely to promote general corrosion, pitting or stress-corrosion cracking (SCC) were identified. Absolute stress-corrosion cracking susceptibility was determined by constant strain rate procedure for ASTM A-516 Grade 65 steel for conditions identified by polarization experiments as likely to promote SCC. Based on the results of this study, terminal waste storage tanks are safe from stress-corrosion cracking under freely corroding conditions. Corrosion potential of steel in solutions within anticipated compositions is at the positive end of the critical range for stress-corrosion cracking, and no conditions were observed which would lower the potential to more negative values within the cracking range under freely corroding conditions. Measurement of corrosion potential and hydroxide concentration provides a means to extend these results to compositions outside of the composition range studied

  12. Hot corrosion studies on nickel-based alloys containing silicon

    International Nuclear Information System (INIS)

    Kerr, T.W.; Simkovich, G.

    1976-01-01

    Alloys of Ni--Cr, Ni--Si and Ni--Cr--Si were oxidized and ''hot corroded'' in pure oxygen at 1000 0 C. In the oxidation experiments it was found that small amounts of either chromium or silicon in nickel increased the oxidation rates in comparison to pure nickel in accord with Wagner's parabolic oxidation theory. At high concentrations of the alloying elements the oxidation rates decreased due to the formation of oxide phases other than nickel oxide in the scale. Hot corrosion experiments were conducted on both binary and ternary alloys by oxidizing samples coated with 1.0 mg/cm 2 of Na 2 SO 4 in oxygen at 1000 0 C. In general it was found that high chromium and high silicon alloys displayed excellent resistance to the hot corrosion process gaining or losing less than 0.5 mg/cm 2 in 1800 min at temperature. Microprobe and x-ray diffraction studies of the alloy and the scale indicate that amorphous SiO 2 probably formed to aid in retarding both the oxidation and the hot corrosion process

  13. Corrosion and alteration of materials from the nuclear industry; La Corrosion et l'alteration des materiaux du nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Feron, D.; Guerin, Y.; Latge, C.; Limoge, Y.; Madic, C.; Santarini, G.; Seiler, J.M.; Vernaz, E.; Richet, C.

    2010-07-01

    The control of the corrosion phenomenon is of prime importance for the nuclear industry. The efficiency and the safety of facilities can be affected by this phenomenon. The nuclear industry has to face corrosion for a large variety of materials submitted to various environments. Metallic corrosion operates in the hot and aqueous environment of water reactors which represent the most common reactor type in the world. Progresses made in the control of the corrosion of the different components of these reactors allow to improve their safety. Corrosion is present in the facilities of the back-end of the fuel cycle as well (corrosion in acid environment in fuel reprocessing plants, corrosion of waste containers in disposal and storage facilities, etc). The future nuclear systems will widen even more the range of materials to be studied and the situations in which they will be placed (corrosion by liquid metals or by helium impurities). Very often, corrosion looks like a patchwork of particular cases in its description. The encountered corrosion problems and their study are presented in this book according to chapters representing the main sectors of the nuclear industry and classified with respect to their phenomenology. This monograph illustrates the researches in progress and presents some results of particular importance obtained recently. Content: 1 - Introduction: context, stakes and goals; definition of corrosion; a complex science; corrosion in the nuclear industry; 2 - corrosion in water reactors - phenomenology, mechanisms, remedies: A - uniform corrosion: mechanisms, uniform corrosion of fuel cladding, in-situ measurement of generalized corrosion rate by electrochemical methods, uniform corrosion of nickel alloys, characterization of the passive layer and growth mechanisms, the PACTOLE code - an integrating tool, influence of water chemistry on corrosion and contamination, radiolysis impact on uniform corrosion; B - stress corrosion: stress corrosion cracking

  14. Corrosion of chromium, nickel, titanium and steels in solutions of sodium and ammonium thiosulfates

    International Nuclear Information System (INIS)

    Grebenshchikova, S.V.; Kochergin, V.P.; Doronina, I.V.

    1983-01-01

    Results of gravimetric determinatiion of average rate of chromium, nickel, titatnium and steels 12Kh18N10T and VSt.3 corrosion rate in solutions 50 mass.% (NH 4 ) 2 S 2 O 3 and Na 2 S 2 O 3 in the air and nitrogen atmosphere at 333 K have been generalized. Anodic polarization curves are recorded and stationary potentials of metals and steels under the conditions are measured. It is shown that in (NH 4 ) 2 S 2 O 3 solution the rate of metal and steels corrosion is higher than in Na 2 S 2 O 3 solution indepenent of the nature of gaseous medium contacting with solution. In the series Ni → VSt.3 → 12Kh18N10T → VT1 → chromium in (NH 4 ) 2 S 2 O 3 and Na 2 S 2 O 3 solutions at 333 K corrosion resistance increases. Chromium, titanium and chromium-nickel steel 12Kh18N10T possess a high corrosion resistance

  15. Electrochemical techniques implementation for corrosion rate measurement in function of humidity level in grounding systems (copper and stainless steel) in soil samples from Tunja (Colombia)

    Science.gov (United States)

    Salas, Y.; Guerrero, L.; Blanco, J.; Jimenez, C.; Vera-Monroy, S. P.; Mejía-Camacho, A.

    2017-12-01

    In this work, DC electrochemical techniques were used to determine the corrosion rate of copper and stainless-steel electrodes used in grounding, varying the level of humidity, in sandy loam and clay loam soils. The maximum corrosion potentials were: for copper -211 and -236mV and for stainless steel of -252 and -281mV, in sandy loam and clay loam respectively, showing that in sandy loam the values are higher, about 30mV. The mechanism by which steel controls corrosion is by diffusion, whereas in copper it is carried out by transfer of mass and charge, which affects the rate of corrosion, which in copper reached a maximum value of 5mm/yr and in Steel 0.8mm/yr, determined by Tafel approximations. The behaviour of the corrosion rate was mathematically adjusted to an asymptotic model that faithfully explains the C.R. as a function of humidity, however, it is necessary to define the relation between the factor □ established in the model and the precise characteristics of the soil, such as the permeability or quantity of ions present.

  16. Marine corrosion of mild steel at Lumut, Perak

    Science.gov (United States)

    Ting, Ong Shiou; Potty, Narayanan Sambu; Liew, Mohd. Shahir

    2012-09-01

    The corrosion rate of structural steels in the adverse marine and offshore environments affects the economic interest of offshore structures since the loss of steel may have significant impact on structural safety and performance. With more emphasis to maintain existing structures in service for longer time and hence to defer replacement costs, there is increasing interest in predicting corrosion rate at a given location for a given period of exposure once the protection coating or cathodic protection is lost. The immersion depth, salinity, steel composition and water pollution will be taken into account. Various corrosion allowances are prescribed for structural members by different standards. There are no studies to determine the appropriate corrosion allowance for steel structures in marine environment in Malaysia. The objectives of the research are to determine the nature and rate of corrosion in mm/year for steel structures in marine environment. It also tries to identify whether the corrosion rate is affected by differences in the chemical composition of the steels, and microalgae. Two sets of corrosion coupons of Type 3 Steel consisting of mild steel were fabricated and immersed in seawater using steel frames. The corrosion rate of the coupon in mm/ per year is estimated based on the material weight loss with time in service. The results are compared with recommendations of the code.

  17. Stochastic theory of fatigue corrosion

    Science.gov (United States)

    Hu, Haiyun

    1999-10-01

    A stochastic theory of corrosion has been constructed. The stochastic equations are described giving the transportation corrosion rate and fluctuation corrosion coefficient. In addition the pit diameter distribution function, the average pit diameter and the most probable pit diameter including other related empirical formula have been derived. In order to clarify the effect of stress range on the initiation and growth behaviour of pitting corrosion, round smooth specimen were tested under cyclic loading in 3.5% NaCl solution.

  18. Corrosion-Activated Micro-Containers for Environmentally Friendly Corrosion Protective Coatings

    Science.gov (United States)

    Li, Wenyan; Buhrow, J. W.; Zhang, X.; Johnsey, M. N.; Pearman, B. P.; Jolley, S. T.; Calle, L. M.

    2016-01-01

    This work concerns the development of environmentally friendly encapsulation technology, specifically designed to incorporate corrosion indicators, inhibitors, and self-healing agents into a coating, in such a way that the delivery of the indicators and inhibitors is triggered by the corrosion process, and the delivery of self-healing agents is triggered by mechanical damage to the coating. Encapsulation of the active corrosion control ingredients allows the incorporation of desired autonomous corrosion control functions such as: early corrosion detection, hidden corrosion detection, corrosion inhibition, and self-healing of mechanical damage into a coating. The technology offers the versatility needed to include one or several corrosion control functions into the same coating.The development of the encapsulation technology has progressed from the initial proof-of-concept work, in which a corrosion indicator was encapsulated into an oil-core (hydrophobic) microcapsule and shown to be delivered autonomously, under simulated corrosion conditions, to a sophisticated portfolio of micro carriers (organic, inorganic, and hybrid) that can be used to deliver a wide range of active corrosion ingredients at a rate that can be adjusted to offer immediate as well as long-term corrosion control. The micro carriers have been incorporated into different coating formulas to test and optimize the autonomous corrosion detection, inhibition, and self-healing functions of the coatings. This paper provides an overview of progress made to date and highlights recent technical developments, such as improved corrosion detection sensitivity, inhibitor test results in various types of coatings, and highly effective self-healing coatings based on green chemistry. The NASA Kennedy Space Centers Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion

  19. Prediction of Corrosion of Alloys in Mixed-Solvent Environments

    Energy Technology Data Exchange (ETDEWEB)

    Anderko, Andrzej [OLI Systems Inc. Morris Plains (United States); Wang, Peiming [OLI Systems Inc. Morris Plains (United States); Young, Robert D. [OLI Systems Inc. Morris Plains (United States); Riemer, Douglas P. [OLI Systems Inc. Morris Plains (United States); McKenzie, Patrice [OLI Systems Inc. Morris Plains (United States); Lencka, Malgorzata M. [OLI Systems Inc. Morris Plains (United States); Babu, Sudarsanam Suresh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Angelini, Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2003-06-05

    systems; (6) Development of fundamentals of a detailed kinetic model of general corrosion, which includes a detailed treatment of local chemistry changes near the metal/solution interface coupled with transport through a liquid layer and solid phases at the interface; (7) Development of parameters for OLI's kinetic model of general corrosion of common engineering alloys in aqueous systems with a variety of solutes. With this model, the users will be able to predict the effect of various process conditions (such as environment composition, temperature, pressure) on the general corrosion of alloys; (8)Comprehensive review of the fundamentals of the models by an Academic Review Panel, which was performed in conjunction with three annual review meetings; (9)Development and commercial release of the Corrosion Analyzer, a Windows software product that encompasses the thermodynamic model, a facility for generating stability diagrams and the model for predicting the rates of general corrosion of selected alloys in aqueous systems.

  20. Corrosion strength monitoring of NPP component residual lifetime

    International Nuclear Information System (INIS)

    Denisov, V.G.; Belous, V.N.; Arzhaev, A.I.; Shuvalov, V.A.

    1994-01-01

    Importance of corrosion and fatigue monitoring; types of corrosion determine the NPP equipment life; why automated on-line corrosion and fatigue monitoring is preferable; major stages of lifetime monitoring system development; major groups of sensors for corrosion and strength monitoring system; high temperature on-line monitoring of water chemistry and corrosion; the RBMK-1000 NPP unit automatic water chemistry and corrosion monitoring scheme; examples of pitting, crevice and general corrosion forecast calculations on the basis of corrosion monitoring data; scheme of an experimental facility for water chemistry and corrosion monitoring sensor testing. 2 figs., 4 tabs

  1. Corrosion of tungsten microelectrodes used in neural recording applications.

    Science.gov (United States)

    Patrick, Erin; Orazem, Mark E; Sanchez, Justin C; Nishida, Toshikazu

    2011-06-15

    In neuroprosthetic applications, long-term electrode viability is necessary for robust recording of the activity of neural populations used for generating communication and control signals. The corrosion of tungsten microwire electrodes used for intracortical recording applications was analyzed in a controlled bench-top study and compared to the corrosion of tungsten microwires used in an in vivo study. Two electrolytes were investigated for the bench-top electrochemical analysis: 0.9% phosphate buffered saline (PBS) and 0.9% PBS containing 30 mM of hydrogen peroxide. The oxidation and reduction reactions responsible for corrosion were found by measurement of the open circuit potential and analysis of Pourbaix diagrams. Dissolution of tungsten to form the tungstic ion was found to be the corrosion mechanism. The corrosion rate was estimated from the polarization resistance, which was extrapolated from the electrochemical impedance spectroscopy data. The results show that tungsten microwires in an electrolyte of PBS have a corrosion rate of 300-700 μm/yr. The corrosion rate for tungsten microwires in an electrolyte containing PBS and 30 mM H₂O₂ is accelerated to 10,000-20,000 μm/yr. The corrosion rate was found to be controlled by the concentration of the reacting species in the cathodic reaction (e.g. O₂ and H₂O₂). The in vivo corrosion rate, averaged over the duration of implantation, was estimated to be 100 μm/yr. The reduced in vivo corrosion rate as compared to the bench-top rate is attributed to decreased rate of oxygen diffusion caused by the presence of a biological film and a reduced concentration of available oxygen in the brain. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Design considerations of fission and corrosion product in primary system of MONJU

    International Nuclear Information System (INIS)

    Yanagisawa, T.; Akagane, K.; Yamamoto, K.; Kawashima, K.

    1976-01-01

    General influence of fission and corrosion products in primary system on MONJU plant design is reviewed. Various research and development works are now in progress to decrease the generation rate, to remove the products more effectively and to develop the methods of evaluation the behaviour of radioactive products. The inventory and distribution of fission and corrosion products in the primary circuit of MONJU are given. The radiation levels on the primary components are estimated to be several roentgens per hour. (author)

  3. Corrosion studies on PREPP waste form

    International Nuclear Information System (INIS)

    Welch, J.M.; Neilson, R.M. Jr.

    1984-05-01

    Deformation or Failure Test and Accelerated Corrosion Test procedures were conducted to investigate the effect of formulation variables on the corrosion of oversize waste in Process Experimental Pilot Plant (PREPP) concrete waste forms. The Deformation or Failure Test did not indicate substantial waste form swelling from corrosion. The presence or absence of corrosion inhibitor was the most significant factor relative to measured half-cell potentials identified in the Accelerated Corrosion Test. However, corrosion inhibitor was determined to be only marginally beneficial. While this study produced no evidence that corrosion is of sufficient magnitude to produce serious degradation of PREPP waste forms, the need for corrosion rate testing is suggested. 11 references, 4 figures, 8 tables

  4. Marine atmospheric corrosion of carbon steels

    Energy Technology Data Exchange (ETDEWEB)

    Morcillo, M.; Alcantara, J.; Diaz, I.; Chico, B.; Simancas, J.; Fuente, D. de la

    2015-07-01

    Basic research on marine atmospheric corrosion of carbon steels is a relatively young scientific field and there continue to be great gaps in this area of knowledge. The presence of akaganeite in the corrosion products that form on steel when it is exposed to marine atmospheres leads to a notable increase in the corrosion rate. This work addresses the following issues: (a) environmental conditions necessary for akaganeite formation; (b) characterisation of akaganeite in the corrosion products formed; (c) corrosion mechanisms of carbon steel in marine atmospheres; (d) exfoliation of rust layers formed in highly aggressive marine atmospheres; (e) long-term corrosion rate prediction; and (f) behaviour of weathering steels. Field research has been carried out at Cabo Vilano wind farm (Camarinas, Galicia) in a wide range of atmospheric salinities and laboratory work involving the use of conventional atmospheric corrosion techniques and near-surface and bulk sensitive analytical techniques: scanning electron microscopy (SEM)/energy dispersive spectrometry (EDS), X-ray diffraction (XRD), Mossbauer spectroscopy and SEM/μRaman spectroscopy. (Author)

  5. Corrosion Assessment of Candidate Materials for the SHINE Subcritical Assembly Vessel and Components FY15 Report

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, Steven J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-01-01

    In the previous report of this series, a literature review was performed to assess the potential for substantial corrosion issues associated with the proposed SHINE process conditions to produce 99Mo. Following the initial review, substantial laboratory corrosion testing was performed emphasizing immersion and vapor-phase exposure of candidate alloys in a wide variety of solution chemistries and temperatures representative of potential exposure conditions. Stress corrosion cracking was not identified in any of the exposures up to 10 days at 80°C and 10 additional days at 93°C. Mechanical properties and specimen fracture face features resulting from slow-strain rate tests further supported a lack of sensitivity of these alloys to stress corrosion cracking. Fluid velocity was found not to be an important variable (0 to ~3 m/s) in the corrosion of candidate alloys at room temperature and 50°C. Uranium in solution was not found to adversely influence potential erosion-corrosion. Potentially intense radiolysis conditions slightly accelerated the general corrosion of candidate alloys, but no materials were observed to exhibit an annualized rate above 10 μm/y.

  6. On-line Corrosion Monitoring in District Heating Systems

    DEFF Research Database (Denmark)

    Richter, Sonja; Thorarinsdottir, R.I.; Hilbert, Lisbeth Rischel

    2005-01-01

    The corrosion control in district heating systems is today performed primarily with control of the water quality. The corrosion rate is kept low by assuring low dissolved oxygen concentration, high pH and low conductivity. Corrosion failures can occur, e.g. as a result of unknown oxygen ingress, ......, precipitation of deposits or crevices. The authors describe methods used for on-line monitoring of corrosion, cover the complications and the main results of a Nordic project.......The corrosion control in district heating systems is today performed primarily with control of the water quality. The corrosion rate is kept low by assuring low dissolved oxygen concentration, high pH and low conductivity. Corrosion failures can occur, e.g. as a result of unknown oxygen ingress...

  7. Determination of the corrosion rate of zinc by measuring the polarization resistance

    International Nuclear Information System (INIS)

    Roeschenbleck, B.; Koenig, W.

    1982-01-01

    Zinc is an important common metal. It should be noticeably attacked just by water as a result of its basic character. However, this is not the case, firstly because it tends to form protective layers and furthermore pure zinc has a high hydrogen overpressure. Zinc is often used as cathodic protection of iron. In order to assess the protective effect, the corrosion rate depending on the pH-value is important. A report is given here on the problems involved in determining these values. (orig./RW) [de

  8. Exopolysaccharides from lactic acid bacteria as corrosion inhibitors

    Science.gov (United States)

    Ignatova-Ivanova, Tsveteslava; Ivanov, Radoslav

    2016-03-01

    Bacterial EPSs (exopolysaccharides) are believed to play an important role in the environment by promoting survival strategies such as bacterial attachment to surfaces and nutrient trapping, which facilitate processes of biofilm formation and development. These microbial biofilms have been implicated in corrosion of metals, bacterial attachment to prosthetic devices, fouling of heat exchange surfaces, toxicant immobilization, and fouling of ship hulls. In this paper, data on EPS production and the effect of EPS on corrosion of steel produced by Lactobacillus sp. are presented and discussed. Lactobacillus delbrueckii K27, Lactobacillus delbrueckii B8, Lactobacillus delbrueckii KO43, Lactobacillus delbrueckii K3, Lactobacillus delbrueckii K15 and Lactobacillus delbrueckii K17 was obtained from Collection of Department of General and Applied Microbiology, Sofia University. It was tested for its ability to produce exopolysaccharides when cultivated in a media containing 10% sucrose, 10% lacose and 10% maltose. The study of the corrosive stability of steel samples was conducted on the gravimetrique method. The rate of corrosion, the degree of protection, and coefficient of protection have been calculated. The structure of layer over steel plates was analysed by SEM (scanning electron microscopy) JSM 5510. It could be underlined that 10% sucrose, 10% lactose and 10% maltose in the media stimulated the process of protection of corrosion.

  9. Corrosion of carbon steel under waste disposal conditions

    International Nuclear Information System (INIS)

    Marsh, G.

    1990-01-01

    The corrosion of carbon steel has been studied in the United Kingdom under granitic groundwater conditions, with pH between 5 and 10 and possibly substantial amounts of Cl - , SO 4 2- and HCO 3 - /CO 3 2- . Corrosion modes considered include uniform corrosion under both aerobic and anaerobic conditions; passive corrosion; localized attack in the form of pitting or crevice corrosion; and environmentally assisted cracking - hydrogen embrittlement or stress corrosion cracking. Studies of these processes are being carried out in order to predict the metal thicknesses required to give container lifetimes of 500 to 1000 years. A simple uniform corrosion model predicts a corrosion rate of around 13.4 μm/a at 20C, rising to 69 μm/a at 50C and 208 μm/a at 90C. A radiation dose of 10 5 rad/h and a G-value of 2.8 for the production of oxidizing species would account for an increase in corrosion rate of 7 μm/a. This model overestimates slightly the results actually achieved for experimental samples exposed for two years, the difference being due to a protective film formed on the samples. These corrosion rates predict that the container must be 227 mm thick to withstand uniform corrosion; however, they predict very high levels of hydrogen production. Conditions will be favourable for localized or pitting corrosion for about 125 years, leading to a maximum penetration of 160 mm. Since the exposure environment cannot be predicted precisely, one cannot state that stress corrosion cracking is impossible. Thus the container must be stress relieved. Other corrosion mechanisms such as microbial corrosion and hydrogen embrittlement are not considered significant

  10. Corrosion mechanism applicable to biodegradable magnesium implants

    Energy Technology Data Exchange (ETDEWEB)

    Atrens, Andrej, E-mail: Andrejs.Atrens@uq.edu.au [University of Queensland, Division of Materials, Brisbane, Qld 4072 (Australia); Liu Ming; Zainal Abidin, Nor Ishida [University of Queensland, Division of Materials, Brisbane, Qld 4072 (Australia)

    2011-12-15

    Much of our understanding of the Mg corrosion mechanism is based on research using aggressive chloride based solutions like 3% NaCl, which are appropriate for understand the corrosion for applications such as auto construction. The chloride ions tend to cause break down of the partly protective surface film on the Mg alloy surface. The corrosion rate increases with exposure time until steady state is reached, which may take several weeks. An overview is provided of the aspects which determine the corrosion of Mg alloys: (i) measurement details; (ii) impurity elements Fe, Ni, Cu and Co; (iii) second phases; (iv) surface films and surface condition and (v) stress corrosion cracking (SCC). This understanding is used to help understand Mg corrosion for Mg as a biodegradable implant for medical applications. Solutions that elucidate these applications tend to form surface films and the corrosion rate tends to decrease with immersion time.

  11. Corrosion of steel tendons used in prestressed concrete pressure vessels

    International Nuclear Information System (INIS)

    Griess, J.C.; Naus, D.J.

    The purpose of this investigation was to determine the corrosion behavior of a high strength steel (ASTM A416-74 grade 270), typical of those used as tensioning tendons in prestressed concrete pressure vessels, in several corrosive environments and to demonstrate the protection afforded by coating the steel with either of two commercial petroleum-base greases or Portland Cement grout. In addition, the few reported incidents of prestressing steel failures in concrete pressure vessels used for containment of nuclear reactors are reviewed. The susceptibility of the steel to stress corrosion cracking and hydrogen embrittlement and its general corrosion rate were determined in several salt solutions. Wires coated with the greases and grout were soaked for long periods in the same solutions and changes in their mechanical properties were subsequently determined. All three coatings appeared to give essentially complete protection but small flaws in the grease coatings were detrimental; flaws or cracks less than 1 mm wide in the grout were without effect

  12. Corrosion of ferrous materials in a basaltic environment

    International Nuclear Information System (INIS)

    Brehm, W.F.

    1990-01-01

    The results of corrosion tests on A27 cast low-carbon steel are discussed. The corrosion performance of these materials was tested in condensed systems at temperature ranging from 50 C to 200 C and in air-steam mixtures between 150 C and 300 C. The groundwater used was a deoxygenated mild sodium chloride solution. When used, the packing material was 75 percent crushed basalt and 25 percent Wyoming sodium bentonite. In synthetic groundwater corrosion rates for both cast carbon steel and A387 steel in saturated packing and air-steam mixtures were low; maximum rates of 9 μm/a for A27 steel and 1.8 μm/a for A387 steel were observed. These maximum rates were observed at intermediate temperatures because of the formation of non-protective corrosion films. In A27 steel magnetite was the principal corrosion product, with non-protective siderite observed at 100 C. Pits were difficult to produce in saturated packing in A27 steel and did not grow. In air-steam mixtures corrosion rates of both steels were again very low, less than 1 μm/a. Magnetite and small amounts of hematite were detected in corrosion product films

  13. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Digby D. Macdonald; Brian M. Marx; Sejin Ahn; Julio de Ruiz; Balaji Soundararaja; Morgan Smith; and Wendy Coulson

    2008-01-15

    Various forms of general and localized corrosion represent principal threats to the integrity of DOE liquid waste storage tanks. These tanks, which are of a single wall or double wall design, depending upon their age, are fabricated from welded carbon steel and contain a complex waste-form comprised of NaOH and NaNO{sub 3}, along with trace amounts of phosphate, sulfate, carbonate, and chloride. Because waste leakage can have a profound environmental impact, considerable interest exists in predicting the accumulation of corrosion damage, so as to more effectively schedule maintenance and repair. The different tasks that are being carried out under the current program are as follows: (1) Theoretical and experimental assessment of general corrosion of iron/steel in borate buffer solutions by using electrochemical impedance spectroscopy (EIS), ellipsometry and XPS techniques; (2) Development of a damage function analysis (DFA) which would help in predicting the accumulation of damage due to pitting corrosion in an environment prototypical of DOE liquid waste systems; (3) Experimental measurement of crack growth rate, acoustic emission signals and coupling currents for fracture in carbon and low alloy steels as functions of mechanical (stress intensity), chemical (conductivity), electrochemical (corrosion potential, ECP), and microstructural (grain size, precipitate size, etc) variables in a systematic manner, with particular attention being focused on the structure of the noise in the current and its correlation with the acoustic emissions; (4) Development of fracture mechanisms for carbon and low alloy steels that are consistent with the crack growth rate, coupling current data and acoustic emissions; (5) Inserting advanced crack growth rate models for SCC into existing deterministic codes for predicting the evolution of corrosion damage in DOE liquid waste storage tanks; (6) Computer simulation of the anodic and cathodic activity on the surface of the steel samples

  14. Stainless steels: general considerations and rates of crack growth

    International Nuclear Information System (INIS)

    Chator, T.

    1992-05-01

    This report describes the different types of stainless steels, and presents the laws governing the rates of crack growth for several stainless steels extensively used for the manufacture of structures in nuclear power plants. The laws are not discussed in detail in the report. After a brief review of the development of stainless steels, the main categories of stainless steels, their mechanical characteristics and corrosion resistance, are presented. Finally, the rates of crack growth are presented for various stainless steels, mainly austenitic. The study overall aim is an investigation of the cracking in the 900 MWe primary pump thermal barriers and shafts

  15. Recognition and Analysis of Corrosion Failure Mechanisms

    Directory of Open Access Journals (Sweden)

    Steven Suess

    2006-02-01

    Full Text Available Corrosion has a vast impact on the global and domestic economy, and currently incurs losses of nearly $300 billion annually to the U.S. economy alone. Because of the huge impact of corrosion, it is imperative to have a systematic approach to recognizing and mitigating corrosion problems as soon as possible after they become apparent. A proper failure analysis includes collection of pertinent background data and service history, followed by visual inspection, photographic documentation, material evaluation, data review and conclusion procurement. In analyzing corrosion failures, one must recognize the wide range of common corrosion mechanisms. The features of any corrosion failure give strong clues as to the most likely cause of the corrosion. This article details a proven approach to properly determining the root cause of a failure, and includes pictographic illustrations of the most common corrosion mechanisms, including general corrosion, pitting, galvanic corrosion, dealloying, crevice corrosion, microbiologically-influenced corrosion (MIC, corrosion fatigue, stress corrosion cracking (SCC, intergranular corrosion, fretting, erosion corrosion and hydrogen damage.

  16. Corrosion resistance of cast irons and titanium alloys as reference engineered metal barriers for use in basalt geologic storage: a literature assessment

    International Nuclear Information System (INIS)

    Charlot, L.A.; Westerman, R.E.

    1981-07-01

    A survey and assessment of the literature on the corrosion resistance of cast irons and low-alloy titanium are presented. Selected engineering properties of cast iron and titanium are briefly described; however, the corrosion resistance of cast iron and titanium in aqueous solutions or in soils and their use in a basalt repository are emphasized. In evaluating the potential use of cast iron and titanium as structural barrier materials for long-lived nuclear waste packages, it is assumed that titanium has the general corrosion resistance to be used in relatively thin cross sections whereas the cost and availability of cast iron allows its use even in very thick cross sections. Based on this assumption, the survey showed that: The uniform corrosion of low-alloy titanium in a basalt environment is expected to be extremely low. A linear extrapolation of general corrosion rates with an added corrosion allowance suggests that a 3.2- to 6.4-mm-thick wall may have a life of 1000 yr. Pitting and crevice corrosion are not likely corrosion modes in basalt ground waters. It is also unlikely that stress corrosion cracking (SCC) will occur in the commercially pure (CP) titanium alloy or in palladiumor molybdenum-alloyed titanium materials. Low-alloy cast irons may be used as barrier metals if the environment surrounding the metal keeps the alloy in the passive range. The solubility of the corrosion product and the semipermeable nature of the oxide film allow significant uniform corrosion over long time periods. A linear extrapolation of high-temperature corrosion rates on carbon steels and corrosion rates of cast irons in soils gives an estimated metal penetration of 51 to 64 mm after 1000 yr. A corrosion allowance of 3 to 5 times that suggests that an acceptable cast iron wall may be from 178 to 305 mm thick. Although they cannot be fully assessed, pitting and crevice corrosion should not affect cast iron due to the ground-water chemistry of basalt

  17. An evaluation of corrosion resistant alloys by field corrosion test in Japanese refuse incineration plants

    International Nuclear Information System (INIS)

    Kawahara, Yuuzou; Nakamura, Masanori; Shibuya, Eiichi; Yukawa, Kenichi

    1995-01-01

    As the first step for development of the corrosion resistant superheater tube materials of 500 C, 100 ata used in high efficient waste-to-energy plants, field corrosion tests of six conventional alloys were carried out at metal temperatures of 450 C and 550 C for 700 and 3,000 hours in four typical Japanese waste incineration plants. The test results indicate that austenitic alloys containing approximately 80 wt% [Cr+Ni] show excellent corrosion resistance. When the corrosive environment is severe, intergranular corrosion of 40∼200 microm depth occurs in stainless steel and high alloyed materials. It is confirmed quantitatively that corrosion behavior is influenced by environmental corrosion factors such as Cl concentration and thickness of deposits on tube surface, metal temperature, and flue gas temperature. The excellent corrosion resistance of high [Cr+Ni+Mo] alloys such as Alloy 625 is explained by the stability of its protective oxide, such that the time dependence of corrosion nearly obeys the parabolic rate law

  18. Methods and apparatus for managing corrosion in buildings

    Science.gov (United States)

    Chey, S Jay; Hamann, Hendrik F; Klein, Levente Ioan; Schappert, Michael Alan; Stepanchuk, Andriy

    2015-02-03

    Principles of the invention provide methods and apparatus for providing corrosion management in buildings. In one aspect, an exemplary method includes the step of receiving first data relating corrosion rate to a plurality of environmental conditions. This first data is subsequently utilized to determine a quantitative relationship between corrosion rate and the plurality of environmental conditions. In another step, second data indicative of one or more environmental conditions within a building is received. A corrosion rate in the building is then determined at least in part by applying the determined quantitative relationship to this second data.

  19. Graphene: corrosion-inhibiting coating.

    Science.gov (United States)

    Prasai, Dhiraj; Tuberquia, Juan Carlos; Harl, Robert R; Jennings, G Kane; Rogers, Bridget R; Bolotin, Kirill I

    2012-02-28

    We report the use of atomically thin layers of graphene as a protective coating that inhibits corrosion of underlying metals. Here, we employ electrochemical methods to study the corrosion inhibition of copper and nickel by either growing graphene on these metals, or by mechanically transferring multilayer graphene onto them. Cyclic voltammetry measurements reveal that the graphene coating effectively suppresses metal oxidation and oxygen reduction. Electrochemical impedance spectroscopy measurements suggest that while graphene itself is not damaged, the metal under it is corroded at cracks in the graphene film. Finally, we use Tafel analysis to quantify the corrosion rates of samples with and without graphene coatings. These results indicate that copper films coated with graphene grown via chemical vapor deposition are corroded 7 times slower in an aerated Na(2)SO(4) solution as compared to the corrosion rate of bare copper. Tafel analysis reveals that nickel with a multilayer graphene film grown on it corrodes 20 times slower while nickel surfaces coated with four layers of mechanically transferred graphene corrode 4 times slower than bare nickel. These findings establish graphene as the thinnest known corrosion-protecting coating.

  20. Microbial exopolysaccharides: Effect on corrosion and partial chemical characterization

    Digital Repository Service at National Institute of Oceanography (India)

    Majumdar, I; DeSouza, F.P.; Bhosle, N.B.

    gas chromatograph MICROBIAL EXOPOLYSACCHARIDES 543 Fig. I. Changes in the biofilm organic carbon (a) and EPS (b) associated with corrosion products and corrosion rate (c) of mild steel. Fig. 2. Linear correlation coeffiient (r) between EPS and organic... carbon (a), corrosion rate and organic carbon (b). and corrosion rate and EPS (c). (Chrompack model CP-9002) equipped with a fused silica capillary column coated with CP Sil-88 (25 m, i.d. = 0.32 mm) and flame ionization detector (FID) was used...

  1. Design and fabrication of an apparatus to study stress corrosion cracking

    International Nuclear Information System (INIS)

    Buscarlet, Carol

    1977-01-01

    In this research thesis, the author first gives a large overview of tests methods of stress corrosion cracking: definition and generalities, stress corrosion cracking in the laboratory (test methods with imposed deformation, load or strain rate, theories of hydrogen embrittlement, of adsorption, of film breaking, and electrochemical theories), stress corrosion cracking in alkaline environment (in light water reactors, of austenitic stainless steels), and conventional tests on polycrystals and monocrystals of stainless steels in sodium hydroxide. The next parts address the core of this research, i.e. the design of an autoclave containing a tensile apparatus, the fabrication of this apparatus, the stress application device, the sample environment, pressurization, control and command, preliminary tests in a melt salt, and the first cracking tests [fr

  2. Corrosion and protection of magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ghali, E. [Laval Univ., Quebec City, PQ (Canada). Dept. of Mining and Metallurgy

    2000-07-01

    The oxide film on magnesium offers considerable surface protection in rural and some industrial environments and the corrosion rate lies between that of aluminum and low carbon steels. Galvanic coupling of magnesium alloys, high impurity content such as Ni, Fe, Cu and surface contamination are detrimental for corrosion resistance of magnesium alloys. Alloying elements can form secondary particles which are noble to the Mg matrix, thereby facilitating corrosion, or enrich the corrosion product thereby possibly inhibiting the corrosion rate. Bimetallic corrosion resistance can be increased by fluxless melt protection, choice of compatible alloys, insulating materials, and new high-purity alloys. Magnesium is relatively insensible to oxygen concentration. Pitting, corrosion in the crevices, filiform corrosion are observed. Granular corrosion of magnesium alloys is possible due to the cathodic grain-boundary constituent. More homogeneous microstructures tend to improve corrosion resistance. Under fatigue loading conditions, microcrack initiation in Mg alloys is related to slip in preferentially oriented grains. Coating that exclude the corrosive environments can provide the primary defense against corrosion fatigue. Magnesium alloys that contain neither aluminum nor zinc are the most SCC resistant. Compressive surface residual stresses as that created by short peening increase SCC resistance. Cathodic polarization or cladding with a SCC resistant sheet alloy are good alternatives. Effective corrosion prevention for magnesium alloy components and assemblies should start at the design stage. Selective surface preparation, chemical treatment and coatings are recommended. Oil application, wax coating, anodizing, electroplating, and painting are possible alternatives. Recently, it is found that a magnesium hydride layer, created on the magnesium surface by cathodic charging in aqueous solution is a good base for painting. (orig.)

  3. Corrosion behavior of copper-base materials in a gamma-irradiated environment

    International Nuclear Information System (INIS)

    Yunker, W.H.

    1990-09-01

    Specimens of three copper-base materials were corrosion tested with gamma radiation exposure dose rates in the range of 1.9 x 10 3 R/h to 4.9 x 10 5 R/h. Materials used were pure copper, 7% aluminum bronze and 30% copper-nickel. Exposures were performed in moist air at 95 degree C and 150 degree C and liquid Well J-13 water at 95 degree C, for periods of up to 16 months. Specimens were monitored for uniform weight loss, stress-induced corrosion and crevice corrosion. Specimen surfaces were examined visually at 10X magnification as well as by Auger Electron Spectroscopy, x-ray diffraction and metallography. Corrosion was not severe in any of the cases. In general, the pure copper was corroded most uniformly while the copper-nickel was the least reproducibly corroded. 11 refs, 40 figs., 15 tabs

  4. A Fundamental study of remedial technology development to prevent stress corrosion cracking of steam generator tubing

    Energy Technology Data Exchange (ETDEWEB)

    Park, In Gyu; Lee, Chang Soon [Sunmoon University, Asan (Korea)

    1998-04-01

    Most of the PWR Steam generators with tubes in Alloy 600 alloy are affected by Stress Corrosion Cracking, such as PWSCC(Primary Water Stress Corrosion Cracking) and ODSCC(Outside Diameter Stress Corrosion Cracking). This study was undertaken to establish the background for remedial technology development to prevent SCC. in the report are included the following topics: (1) General: (i) water chemistry related factors, (ii) Pourbaix(Potential-pH) Diagram, (iii) polarization plot, (iv) corrosion mode of Alloy 600, 690, and 800, (v) IGA/SCC growth rate, (vi) material suspetibility of IGA/SCC, (vii) carbon solubility of Alloy 600 (2) Microstructures of Alloy 600 MA, Alloy 600 TT, Alloy 600 SEN Alloy 690 TT(Optical, SEM, and TEM) (3) Influencing factors for PWSCC initiation rate of Alloy 600: (i) microstructure, (ii) water chemistry(B, Li), (iii) temperature, (iv) plastic deformation, (v) stress relief annealing (4) Influencing factors for PWSCC growth rate of Alloy 600: (i) water chemistry(B, Li), (ii) Scott Model, (iii) intergranular carbide, (iv) temperature, (v) hold time (5) Laboratory conditions for ODSCC initiation rate: 1% NaOH, 316 deg C; 1% NaOH, 343 deg C; 50% NaOH, 288 deg C; 10% NaOH, 302 deg C; 10% NaOH, 316 deg C; 50% NaOH, 343 deg C (6) Sludge effects for ODSCC initiation rate: CuO, Cr{sub 2}O{sub 3}, Fe{sub 3}O{sub 4} (7) Influencing factors for PWSCC growth rate of Alloy 600: (i) Caustic concentration effect, (ii) carbonate addition effect (8) Sulfate corrosion: (i) sulfate ratio and pH effect, (ii) wastage rate of Alloy 600 and Alloy 690 (9) Crevice corrosion: (i) experimental setup for crevice corrosion, (ii) organic effect, (iii) (Na{sub 2}SO{sub 4} + NaOH) effect (10) Remedial measures for SCC: (i) Inhibitors, (ii) ZnO effect. (author). 30 refs., 174 figs., 51 tabs.

  5. Analysis of Gamma Dose Rate Caused by Corrosion Products inside the Containment Building of Yonngwang Nuclear Power Plant Unit 3 During Shutdown Period

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Wi Ho; Kim, Jae Cheon; Kim, Soon Young; Kim, Jong Kyung [Hanyang Univ., Seoul (Korea, Republic of)

    2005-07-01

    Occupational radiation exposure(ORE) of nuclear power plant(NPP) workers mainly occurs during the shutdown period. Major radioactive sources are the corrosion products released from the reactor coolant system(RCS). The corrosion products consist of circulating crud and deposited crud. Major radioactive corrosion products, {sup 58}Co and {sup 60}Co, are known to contribute approximately more than 70% of the total ORE. In this study, the corrosion products regarding cobalt were evaluated during the shutdown period, and gamma dose rates caused by them were calculated at the main working area inside the containment building of the Yonggwang NPP Unit 3.

  6. The effect of O{sub 2} content on the corrosion behaviour of X65 and 5Cr in water-containing supercritical CO{sub 2} environments

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Yong, E-mail: leo.huayong@gmail.com; Barker, Richard; Neville, Anne

    2015-11-30

    Highlights: • Corrosion behaviour was evaluated in water-containing SC-CO{sub 2} with different O{sub 2} levels. • Corrosion was observed when no free water was present. • Localized corrosion was a fundamental consideration in water-containing CO{sub 2} systems. • O{sub 2} content plays a key role in influencing the critical water content. - Abstract: The general and localized corrosion behaviour of X65 carbon steel and 5Cr low alloy steel were evaluated in a water-saturated supercritical CO{sub 2} environment in the presence of varying concentrations of O{sub 2}. Experiments were performed at a temperature of 35 °C and a pressure of 80 bar to simulate the conditions encountered during CO{sub 2} transport and injection. Results indicated that increasing O{sub 2} concentration from 0 to 1000 ppm caused a progressive reduction in the general corrosion rate, but served to increase the extent of localized corrosion observed on both materials. Pitting (or localized attack) rates for X65 ranged between 0.9 and 1.7 mm/year, while for 5Cr rose from 0.3 to 1.4 mm/year as O{sub 2} concentration was increased from 0 to 1000 ppm. General corrosion rates were over an order of magnitude lower than the pitting rates measured. Increasing O{sub 2} content in the presence of X65 and 5Cr suppressed the growth of iron carbonate (FeCO{sub 3}) on the steel surface and resulted in the formation of a corrosion product consisting mainly of iron oxide (Fe{sub 2}O{sub 3}). 5Cr was shown to offer more resistance to pitting corrosion in comparison to X65 steel over the conditions tested. At concentrations of O{sub 2} above 500 ppm 5Cr produced general corrosion rates less than 0.04 mm/year, which were half that recorded for X65. The improved corrosion resistance of 5Cr was believed to be at least partially attributed to the formation of a Cr-rich film on the steel surface which was shown using X-ray photoelectron spectroscopy to contain chromium oxide (Cr{sub 2}O{sub 3}) and chromium

  7. Technique for characterizing crevice corrosion under hydrothermal conditions

    International Nuclear Information System (INIS)

    Jain, H.; Ahn, T.M.; Soo, P.

    1983-01-01

    The current/potential results show that the crevice corrosion incubation period for a Grade-12 titanium crevice formed between two Teflon plates is about two days at 150 0 C. Optical and SEM observations show that the corrosion starts as isolated pitting which spreads along the surface as shallow pits. The corrosion conditions change significantly as the TiO 2 corrosion product fills the crevice, and the rate of corrosion may be greatly reduced after several days. The rate of crevice corrosion of commercial purity (Grade-2) titanium under similar consitions is approximately three orders of magnitude higher. In this case, active dissolution of metal starts during the initial heating of the autoclave and the incubation period is negligible

  8. Corrosion performance of several metals in plutonium nitrate solution

    International Nuclear Information System (INIS)

    Takeda, Seiichiro; Nagai, Takayuki; Yasu, Shozo; Koizumi, Tsutomu

    1995-01-01

    Corrosion behavior of several metals exposed in plutonium nitrate solution was studied. Plutonium nitrate solution with the plutonium concentration ranging from 0.01 to 300 g/l was used as a corrosive medium. Specimens tested were type 304 ULC (304 ULC) stainless steel, type 310 Nb (310 Nb) stainless steel, titanium (Ti), titanium-5% tantalum alloy (Ti-5Ta), and zirconium (Zr). Corrosion behavior of these metals in plutonium nitrate solution was evaluated through examining electrochemical characteristics and corrosion rates obtained by weight loss measurement. From the results of the corrosion tests, it was found that the corrosion rate of stainless steels i.e. 304 ULC and 310 Nb, increases by the presence of plutonium in nitric acid solution. The corrosion potential of the stainless steels shifted linearly towards the noble direction as the concentration of plutonium increases. It is thought that the shifts in corrosion potential of the stainless steels to the noble direction results an increase in anodic current and, hence, corrosion rate. Valve metals, i.e. Ti, Ti-5Ta and Zr, showed good corrosion resistance over the whole range of plutonium concentration examined here. (author)

  9. Corrosion process studies in a nuclear waste container

    International Nuclear Information System (INIS)

    Guasp, Ruben A.; Lanzani, Liliana A.; Coronel, Pascual; Bruzzoni, Pablo; Semino, Carlos J.

    1999-01-01

    Latest results on corrosion behavior studies on high activity nuclear waste container are reported. Corrosion evaluation on lead base alloys and modeling to predict carbon steel external container cover generalized corrosion, are the main issues of these studies. (author)

  10. Evaluation of flow accelerated corrosion by coupled analysis of corrosion and flow dynamics (1), major features of coupled analysis and application for evaluation of wall thinning rate

    International Nuclear Information System (INIS)

    Naitoh, Masanori; Uchida, Shunsuke; Okada, Hidetoshi; Uehara, Yasushi; Koshizuka, Seiichi

    2009-01-01

    Six calculation steps have been prepared for predicting flow accelerated corrosion (FAC) occurrence and evaluating wall thinning rate. (1) Flow pattern and temperature in each elemental volume along the flow path are obtained with a 1D plant system code, (2) Corrosive conditions, e.g., oxygen concentration and electrochemical corrosion potential (ECP) along the flow path are calculated with a hydrazine-oxygen reaction code, (3) Precise flow patterns and mass transfer coefficients at the structure surface are calculated with a 3D CFD code, (4) Danger zones are evaluated by combining major FAC parameters, (5) Wall thinning rates are calculated with the coupled models of static electrochemical analysis and dynamic double oxide layer analysis at the identified danger zone, and then, (6) Residual life and effects of countermeasures can be evaluated. Anodic and cathodic current densities and ECPs were calculated with the static electrochemistry model, and ferrous ion release rate determined by the anodic current density was used as input for the dynamic double oxide layer model. Thickness of the oxide film and its characteristics determined by the dynamic double oxide layer model were used for the electrochemistry model to determine the resistances of cathodic current from the bulk to the surface and anodic current from the surface to the bulk. The calculated results of the coupled models had been compared with the data measured at operating Boiling Water Reactor (BWR) plants and it was demonstrated that the calculated results had good agreements with the measured ones. 6 step-evaluation procedures for liquid droplet impingement (LDI) were also proposed. (author)

  11. Container material for the disposal of highly radioactive wastes: corrosion chemistry aspects

    International Nuclear Information System (INIS)

    Grauer, R.

    1984-08-01

    Prior to disposal in crystalline formations it is planned to enclose vitrified highly radioactive waste from nuclear power plants in metallic containers ensuring their isolation from the groundwater for at least 1,000 years. Appropriate metals can be either thermodynamically stable in the repository environment (such as copper), passive materials with very low corrosion rates (titanium, nickel alloys), or metals such as cast iron or unalloyed cast steels which, although they corrode, can be used in sections thick enough to allow for this corrosion. The first part of the report presents the essentials of corrosion science in order to enable even a non-specialist to follow the considerations and arguments necessary to choose the material and design the container against corrosion. Following this, the principles of the long-term extrapolation of corrosion behaviour are discussed. The second part summarizes and comments upon the literature search carried out to identify published results relevant to corrosion in a repository environment. Results of archeaological studies are included wherever possible. Not only the general corrosion behaviour but also localized corrosion and stress corrosion cracking are considered, and the influence of hydrogen on the material behaviour is discussed. Taking the corrosion behaviour as criterion, the author suggests the use either of copper or of cast iron or steel as an appropriate container material. The report concludes with proposals for further studies. (Auth.)

  12. An X-ray diffraction study of corrosion products from low carbon steel

    International Nuclear Information System (INIS)

    Morales, A. L.

    2003-01-01

    It was found in earlier work a decrease in the corrosion rate from low carbon steel when it was subjected to the action of a combined pollutant concentration (SO 4 ''2-=10''-4 M+Cl=1.5x 10''-3 M). It was also found that large magnetic content of the rust was related to higher corrosion rates. In the present study corrosion products are further analyzed by means of X-ray diffraction to account for composition changes during the corrosion process. it is found that lepidocrocite and goethite are the dominant components for the short-term corrosion in all batches considered while for log-term corrosion lepidocrite and goethite dominates if the corrosion rates is low and magnetite dominates if the corrosion rate is high. The mechanism for decreasing the corrosion rate is related to the inhibition of magnetite production at this particular concentration. (Author) 15 refs

  13. Some in-reactor loop experiments on corrosion product transport and water chemistry

    International Nuclear Information System (INIS)

    Balakrishnan, P.V.; Allison, G.M.

    1978-01-01

    A study of the transport of activated corrosion products in the heat transport circuit of pressurized water-cooled nuclear reactors using an in-reactor loop showed that the concentration of particulate and dissolved corrosion products in the high-temperature water depends on such chemical parameters as pH and dissolved hydrogen concentration. Transients in these parameters, as well as in temperature, generally increase the concentration of suspended corrosion products. The maximum concentration of particles observed is much reduced when high-flow, high-temperature filtration is used. Filtration also reduces the steady-state concentration of particles. Dissolved corrosion products are mainly responsible for activity accumulation on surfaces. The data obtained from this study were used to estimate the rate constants for some of the transfer processes involved in the contamination of the primary heat transport circuit in water-cooled nuclear power reactors

  14. Studies of Corrosion Resistant Materials Being Considered for High-Level Nuclear Waste Containment in Yucca Mountain Relevant Environments

    International Nuclear Information System (INIS)

    McCright, R.D.; Ilevbare, G.; Estill, J.; Rebak, R.

    2001-01-01

    Containment of spent nuclear fuel and vitrified forms of high level nuclear waste require use of materials that are highly corrosion resistant to all of the anticipated environmental scenarios that can occur in a geological repository. Ni-Cr-Mo Alloy 22 (UNS N60622) is proposed for the corrosion resistant outer barrier of a two-layer waste package container at the potential repository site at Yucca Mountain. A range of water compositions that may contact the outer barrier is under consideration, and a testing program is underway to characterize the forms of corrosion and to quantify the corrosion rates. Results from the testing support models for long term prediction of the performance of the container. Results obtained to date indicate a very low general corrosion rate for Alloy 22 and very high resistance to all forms of localized and environmentally assisted cracking in environments tested to date

  15. Corrosion behavior induced by LiCl-KCl in type 304 and 316 stainless steel and copper at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Jee Hyung; Kim, Yong Soo; Cho, Il Je [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of)

    2017-06-15

    The corrosion behavior of stainless steel (304 and 316 type) and copper induced by LiCl-KCl at low temperatures in the presence of sufficient oxygen and moisture was investigated through a series of experiments (at 30°C, 40°C, 60°C, and 80°C for 24 hours, 48 hours, 72 hours, and 96 hours). The specimens not coated on one side with an aqueous solution saturated with LiCl-KCl experienced no corrosion at any temperature, not even when the test duration exceeded 96 hours. Stainless steel exposed to LiCl-KCl experienced almost no corrosion below 40°C, but pitting corrosion was observed at temperatures above 60°C. As the duration of the experiment was increased, the rate of corrosion accelerated in proportion to the temperature. The 316 type stainless steel exhibited better corrosion resistance than did the 304 type. In the case of copper, the rate of corrosion accelerated in proportion to the duration and temperature but, unlike the case of stainless steel, the corrosion was more general. As a result, the extent of copper corrosion was about three times that of stainless steel.

  16. Structural Effects of Reinforced Concrete Beam Due to Corrosion

    Science.gov (United States)

    Noh, Hamidun Mohd; Idris, Nur'ain; Noor, Nurazuwa Md; Sarpin, Norliana; Zainal, Rozlin; Kasim, Narimah

    2018-03-01

    Corrosion of steel in reinforced concrete is one of the main issues among construction stakeholders. The main consequences of steel corrosion include loss of cross section of steel area, generation of expansive pressure which caused cracking of concrete, spalling and delaminating of the concrete cover. Thus, it reduces the bond strength between the steel reinforcing bar and concrete, and deteriorating the strength of the structure. The objective of this study is to investigate the structural effects of corrosion damage on the performance of reinforced concrete beam. A series of corroded reinforced concrete beam with a corrosion rate of 0%, 20% and 40% of rebar corrosion is used in parametric study to assess the influence of different level of corrosion rate to the structural performance. As a result, the used of interface element in the finite element modelling predicted the worst case of corrosion analysis since cracks is induced and generate at this surface. On the other hand, a positive linear relationship was sketched between the increase of expansive pressure and the corrosion rate. Meanwhile, the gradient of the graph is decreased with the increase of steel bar diameter. Furthermore, the analysis shows that there is a significant effect on the load bearing capacity of the structure where the higher corrosion rate generates a higher stress concentration at the mid span of the beam. This study could predict the residual strength of reinforced concrete beam under the corrosion using the finite element analysis. The experimental validation is needed on the next stage to investigate the quantitative relation between the corrosion rate and its influence on the mechanical properties.

  17. Corrosion of candidate materials in Lake Rotokawa geothermal exposure

    Energy Technology Data Exchange (ETDEWEB)

    Estill, J.C.; McCright, R.D.

    1995-05-01

    Corrosion rates were determined for CDA 613, CDA 715, A-36 carbon steel, 1020 carbon steel, and Alloy 825 flat coupons which were exposed to geothermal spring water at Paraiki site number 9 near Lake Rotokawa, New Zealand. Qualitative observations of the corrosion performance of Type 304L stainless steel and CDA 102 exposed to the same environment were noted. CDA 715, Alloy 825, 1020 carbon steel, and other alloys are being considered for the materials of construction for high-level radioactive waste containers for the United States civilian radioactive waste disposal program. Alloys CDA 613 and CDA 102 were tested to provide copper-based materials for corrosion performance comparison purposes. A36 was tested to provide a carbon steel baseline material for comparison purposes, and alloy 304L stainless steel was tested to provide an austenitic stainless steel baseline material for comparison purposes. In an effort to gather corrosion data from an environment that is rooted in natural sources of water and rock, samples of some of the proposed container materials were exposed to a geothermal spring environment. At the proposed site at Yucca Mountain, Nevada, currently under consideration for high-level nuclear waste disposal, transient groundwater may come in contact with waste containers over the course of a 10,000-year disposal period. The geothermal springs environment, while extremely more aggressive than the anticipated general environment at Yucca Mountain, Nevada, could have similarities to the environment that arises at selected local sites on a container as a result of crevice corrosion, pitting corrosion, microbiologically influenced corrosion (MIC), or the concentration of the ionic species due to repetitive evaporation or boiling of the groundwater near the containers. The corrosion rates were based on weight loss data obtained after six weeks exposure in a 90{degrees}C, low-pH spring with relatively high concentrations of SO{sub 4}{sup 2-} and Cl{sup -}.

  18. Effect of Chromium on Corrosion Behavior of P110 Steels in CO2-H2S Environment with High Pressure and High Temperature

    Directory of Open Access Journals (Sweden)

    Jianbo Sun

    2016-03-01

    Full Text Available The novel Cr-containing low alloy steels have exhibited good corrosion resistance in CO2 environment, mainly owing to the formation of Cr-enriched corrosion film. In order to evaluate whether it is applicable to the CO2 and H2S coexistence conditions, the corrosion behavior of low-chromium steels in CO2-H2S environment with high pressure and high temperature was investigated using weight loss measurement and surface characterization. The results showed that P110 steel suffered localized corrosion and both 3Cr-P110 and 5Cr-P110 steels exhibited general corrosion. However, the corrosion rate of 5Cr-P110 was the highest among them. The corrosion process of the steels was simultaneously governed by CO2 and H2S. The outer scales on the three steels mainly consisted of FeS1−x crystals, whereas the inner scales on Cr-containing steels comprised of amorphous FeS1−x, Cr(OH3 and FeCO3, in contrast with the amorphous FeS1−x and FeCO3 mixture film of P110 steel. The more chromium the steel contains, the more chromium compounds the corrosion products contain. The addition of chromium in steels increases the uniformity of the Cr-enriched corrosion scales, eliminates the localized corrosion, but cannot decrease the general corrosion rates. The formation of FeS1−x may interfere with Cr-enriched corrosion scales and lowering the corrosion performance of 3Cr-P110 and 5Cr-P110 steels.

  19. Effect of Chromium on Corrosion Behavior of P110 Steels in CO2-H2S Environment with High Pressure and High Temperature

    Science.gov (United States)

    Sun, Jianbo; Sun, Chong; Lin, Xueqiang; Cheng, Xiangkun; Liu, Huifeng

    2016-01-01

    The novel Cr-containing low alloy steels have exhibited good corrosion resistance in CO2 environment, mainly owing to the formation of Cr-enriched corrosion film. In order to evaluate whether it is applicable to the CO2 and H2S coexistence conditions, the corrosion behavior of low-chromium steels in CO2-H2S environment with high pressure and high temperature was investigated using weight loss measurement and surface characterization. The results showed that P110 steel suffered localized corrosion and both 3Cr-P110 and 5Cr-P110 steels exhibited general corrosion. However, the corrosion rate of 5Cr-P110 was the highest among them. The corrosion process of the steels was simultaneously governed by CO2 and H2S. The outer scales on the three steels mainly consisted of FeS1−x crystals, whereas the inner scales on Cr-containing steels comprised of amorphous FeS1−x, Cr(OH)3 and FeCO3, in contrast with the amorphous FeS1−x and FeCO3 mixture film of P110 steel. The more chromium the steel contains, the more chromium compounds the corrosion products contain. The addition of chromium in steels increases the uniformity of the Cr-enriched corrosion scales, eliminates the localized corrosion, but cannot decrease the general corrosion rates. The formation of FeS1−x may interfere with Cr-enriched corrosion scales and lowering the corrosion performance of 3Cr-P110 and 5Cr-P110 steels. PMID:28773328

  20. Studies on corrosion protection of laser hybrid welded AISI 316 by laser remelting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Ambat, Rajan; Rasmussen, A.J.

    2005-01-01

    laser surface melting on microstructure and corrosion behaviour of AISI 316L welds. Welding and laser treatment parameters were varied. General corrosion behaviour of the weld and laser treated surface was characterised using a gel visualization test. The local electrochemistry of the weld and laser......Unlike in autogenous laser welding, hybrid laser welding of stainless steel could introduce grain boundary carbides due to low cooling rates. Formation of grain boundary carbides leads to reduced corrosion properties. Studies have initially been carried out on hybrid laser welding and subsequent...... treated surface was investigated using a novel micro electrochemical technique with a tip resolution of ~1 mm. Results show that hybrid laser welding of 316L has increased corrosion susceptibility probably as a result of grain boundary carbide formation. However a suitable post laser treatment could...

  1. Corrosion study for a radioactive waste vitrification facility

    International Nuclear Information System (INIS)

    Imrich, K.J.; Jenkins, C.F.

    1993-01-01

    A corrosion monitoring program was setup in a scale demonstration melter system to evaluate the performance of materials selected for use in the Defense Waste Processing Facility (DWPF) at the DOE's Savannah River Site. The system is a 1/10 scale prototypic version of the DWPF. In DWPF, high activity radioactive waste will be vitrified and encapsulated for long term storage. During this study twenty-six different alloys, including DWPF reference materials of construction and alternate higher alloy materials, were subjected to process conditions and environments characteristic of the DWPF except for radioactivity. The materials were exposed to low pH, elevated temperature (to 1200 degree C) environments containing abrasive slurries, molten glass, mercury, halides and sulfides. General corrosion rates, pitting susceptibility and stress corrosion cracking of the materials were investigated. Extensive data were obtained for many of the reference materials. Performance in the Feed Preparation System was very good, whereas coupons from the Quencher Inlet region of the Melter Off-Gas System experienced localized attack

  2. Corrosion of Steel in Concrete – Thermodynamical Aspects

    DEFF Research Database (Denmark)

    Küter, Andre; Møller, Per; Geiker, Mette Rica

    2004-01-01

    The present understanding of selected corrosion phenomena in reinforced concrete is reviewed. Special emphasis is given to chloride induced corrosion. There is a general acceptance of the basic corrosion mechanism for steel in concrete. However different anodic reactions governing the subsequent...

  3. A corrosion detection system for buried pipeline (II)

    International Nuclear Information System (INIS)

    Choi, Yoon Seok; Shin, Dong Ho; Kim, Sang Hyun; Kim, Jung Gu

    2005-01-01

    In order to develop a new corrosion sensor for detecting and monitoring the corrosion of buried pipeline, the electrochemical property of sensors and the correlation of its output to corrosion rate of steel pipe, were evaluated by electrochemical methods in synthetic groundwater, two soils of varying resistivity (5,000 ohm-cm, 10,000 ohm-cm), and synthetic tap water. In this paper, two types of electrochemical probes were used: galvanic cells containing of pipeline steel-copper and pipeline steel-stainless steel (Type 304). The results of EIS measurement indicated that the sensor current was inversely related to sensor resistance, which was governed by the corrosion behavior of cathode. In galvanic corrosion tests, the galvanic current of Cu-CS probe was higher than that of SS-CS probe. The comparison of the sensor output and corrosion rates revealed that a linear relationship was found between the probe current and the corrosion rates. A good linear quantitative relationship was found between the Cu-CS probe current and the corrosion rate of pipeline steel coupons in the soil resistivity of 5,000 ohm-cm, and synthetic tap water. In the case of the soil resistivity of 10,000 ohm-cm, although the SS-CS probe showed a better linear correlation than that of Cu-CS probe, the Cu-CS probe is more suitable than SS-CS probe, due to the high current output

  4. Corrosion behaviour of alloy Ti-35 in boiling nitric acid solution

    International Nuclear Information System (INIS)

    Lan Cui; Qiu Shaoyu

    2005-01-01

    This report states the corrosion behaviors of alloy Ti-35 in boiling nitric acid solution. The results show that its general corrosion rate is by far superior to high-purity austenitic stainless steel with super-low carbon content, the stress corrosion and crevice corrosion have been not discovered in its samples, and oxide film can be quickly reproduced in scratch. The microstructural analysis on samples shows that there is a thin compact TiO 2 film on the sample surface of alloy Ti-35, and most of the film possess the crystal structure of rutile type, the other has the crystal structure of anatase type. This oxide layer plays a role in hindering corrosion development, so the corrosion resistance of alloy Ti-35 is raised. In contrast with it, the oxide film on the sample surface of austenitic stainless steel is not found. It is evident that alloy Ti-35 can become the prime candidate structural material for dissolver of reprocessing facility of spent fuel and be substituted for high-purity austenitic stainless steel with super-low carbon content which is used now. (authors)

  5. The characteristics of corrosion, radiation degradation and dissolution of titanium alloys

    International Nuclear Information System (INIS)

    Sung, K. W.; Na, J. W.; Choi, B. S.; Lee, D. J.; Chang, M. H.

    2001-12-01

    In order to establish the technical bases of water chemistry design requirement related titanium alloys, we investigated the characteristics of corrosion, activation, radiation degradation, radiation hydrogen embrittlement of titanium alloys and dissolution of titanium dioxide. Titanium alloys generally have high corrosion resistance. Corrosion product release from PT-7M and PT-3V titanium alloy surface for 18 months of operation is negligible, and the corrosion penetration for about 30 years is about 1 μm, while the corrosion rates is not higher than one third of that of austenitic steel. Titanium only converts into Sc-46 with 85 day halflife after neutron irradiation, and its radioactivity is not higher than one thousandth of that produced from nickel. Therefore, under the condition without any neutron irradiation, the radiation damage of titanium alloys would have no problem. Titanium dioxide, that protects the metals from the corrosion, has retrograde solubility in neutral solutions. It does not form any complexes with ligands such as ammonia, but Ti(IV) gets more stable by complexing with water molecules. In conclusion, it is estimated that titanium alloys such as PT-7M would be applicable to steam generator materials

  6. Corrosion inhibitors. Manufacture and technology

    International Nuclear Information System (INIS)

    Ranney, M.W.

    1976-01-01

    Detailed information is presented relating to corrosion inhibitors. Areas covered include: cooling water, boilers and water supply plants; oil well and refinery operations; fuel and lubricant additives for automotive use; hydraulic fluids and machine tool lubes; grease compositions; metal surface treatments and coatings; and general processes for corrosion inhibitors

  7. Boric acid corrosion of low alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.; White, G.; Collin, J.; Marks, C. [Dominion Engineering, Inc., Reston, Virginia (United States); Reid, R.; Crooker, P. [Electric Power Research Inst., Palo Alto, California (United States)

    2010-07-01

    In the last decade, the industry has been aware of a potential loss of coolant accident (LOCA) per the following scenario: primary water stress corrosion cracking (PWSCC) of a primary system component or weld leads to a coolant leak, the coolant corrodes a low alloy steel structural component (e.g., the reactor vessel (RV) or the reactor vessel head (RVH)), and corrosion degrades the pressure boundary leading to a loss of coolant accident. The industry has taken several steps to address this concern, including replacement of the most susceptible components (RVH replacement), enhanced inspection (both NDE of components and visual inspections for boric acid deposits), and safety analyses to determine appropriate inspection intervals. Although these measures are generally thought to have adequately addressed this issue, there have been some uncertainties in the safety analyses which the industry has sought to address in order to quantify the extent of conservatism in the safety analyses. Specifically, there has been some uncertainty regarding the rate of boric acid corrosion under various conditions which might arise due to a PWSCC leak and the extent to which boric acid deposits are retained near the leak under various geometries. This paper reviews the results of the Electric Power Research Institute (EPRI) Materials Reliability Program (MRP) boric acid corrosion (BAC) test programs conducted over the last 8 years, focusing on the most recent results of full-scale mockup testing of CRDM nozzle and bottom mounted nozzle (BMN) configurations. The main purpose of this presentation is to provide an overview of the latest understanding of the risk of boric acid corrosion as it is informed by the results of the testing conducted over the last eight years. The rate of boric acid corrosion has been found to be a function of many factors, including initial chemistry, the extent of concentration due to boiling, the temperature at which concentration takes place, the velocity

  8. In-situ monitoring of undercoating corrosion damage by Direct Optical Interrogation (DOI)

    Science.gov (United States)

    Lopez-Garrity, Meng

    topcoat dramatically reduces undercoating corrosion and masks many deficiencies of a conversion coating or primer. DOI was used to compare undercoating corrosion that developed due to exposure in ASTM B117, ASTM G85-A5 and outdoor environments. Similar corrosion morphologies developed in ASTM B117 and static immersion exposures. A single and stable corrosions site nucleated and propagated with a filamentary morphology. In general, salt spray exposure was more aggressive than static immersion. ASTM G85-A5 exposure produced different corrosion morphologies. Corrosion sites were round rather than filamentary. Massive nucleation of small corrosion sites across the whole surface also occurred. ASTM G85 environment was mild compared with the ASTM B117 and static immersion exposures. In outdoor exposure testing carried out for 5 months, no signs of corrosion was observed. To assess the extent to which oxygen reduction occurring on the coated surface supported corrosion site growth, a universal pH indicator was added to agar gels or PVB coatings applied on top of metallizations. Color changes indicating pH changes associated with local alkalization or acidification due to local cell action were assessed visually. Overall, the evidence is consistent with the idea that both hydrogen reduction and oxygen reduction support local corrosion site growth. In practical embodiments of corrosion protection, every effort should be made to restrict oxygen reduction to slow corrosion growth rates.

  9. Application of electromagnetic fields to improve the removal rate of radioactive corrosion products

    International Nuclear Information System (INIS)

    Kong, Tae Young; Lee, Kun Jai; Song, Min Chul

    2004-01-01

    To comply with increasingly strict regulations for protection against radiation exposure, many nuclear power plants have been working ceaselessly to reduce and control both the radiation sources within power plants and the radiation exposure experienced by operational and maintenance personnel. Many research studies have shown that deposits of irradiated corrosion products on the surfaces of coolant systems are the main cause of occupational radiation exposure in nuclear power plants. These corrosion product deposits on the fuel-clad surface are also known to be main factors in the onset of Axial Offset Anomaly (AOA). Hence, there is a great deal of ongoing research on water chemistry and corrosion processes. In this study, a magnetic filter with permanent magnets was devised to remove the corrosion products in the coolant stream by taking advantage of the magnetic properties of the corrosion particles. Experiments using permanent magnets to filter the corrosion products demonstrated a removal efficiency of over 90% for particles above 5 μm. This finding led to the construction of an electromagnetic device that causes the metallic particulates to flocculate into larger aggregates of about 5 μm in diameter by using a novel application of electromagnetic flocculation on radioactive corrosion products

  10. Monitoring corrosion and biofilm formation in nuclear plants using electrochemical methods

    International Nuclear Information System (INIS)

    Licina, G.J.; Nekoksa, G.; Ward, G.L.; Howard, R.L.; Cubicciotti, D.

    1993-01-01

    During the 1980's, degradation of piping, heat exchangers, and other components in raw water cooled systems by a variety of corrosion mechanisms became an important in the reliability and cost effectiveness of U.S. nuclear plants. General and localized corrosion, including pitting and crevice corrosion, have all been shown to be operative in nuclear plant cooling systems. Microbiologically influenced corrosion (MIC) also afflicts nuclear cooling water and service water systems. The prediction of locations to be inspected, selection of mitigation measures, and control of water treatments and maintenance planning rely upon the accuracy and sensitivity of monitoring techniques. Electrochemical methods can provide rapid measurements of corrosion and biological activity on line. The results from a corrosion monitoring study in a service water system at a fresh water cooled nuclear plant are presented. This study utilized determinations of open circuit potential and reversed potentiodynamic scans on carbon steels, Admiralty, and stainless steels (Types 304 and 316 as well as high chromium, high molybdenum ferritic and austenitic grades) to evaluate the rate and form of corrosion to be anticipated in typical service. An electrochemical method that permits the monitoring of biofilm activity on-line has been developed. Results from laboratory and in-plant exposure in a nuclear power plant system are presented

  11. Corrosion measurement using flux gate magnetometer

    International Nuclear Information System (INIS)

    Rashdi Shah Ahmad; Chong Cheong Wei

    2001-01-01

    The ability of fluxgate magnetometer to detect and measure quantitatively the magnetic field generated by electrochemical corrosion is presented. In this study, each sample (iron plate) was exposed to a range of increasingly corrosive environment. During the exposure, we measured the magnetic field above the sample for specific duration of time. The result shows that there is a clear relationship between corrosivity of the environment and the change in magnitude of magnetic field that was generated by the corrosion reaction. Therefore, the measurement of magnetic field might be used to determine the corrosion rates. (Author)

  12. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Digby Macdonald; Brian Marx; Balaji Soundararajan; Morgan Smith

    2005-07-28

    The different tasks that have been carried out under the current program are as follows: (1) Theoretical and experimental assessment of general corrosion of iron/steel in borate buffer solutions by using electrochemical impedance spectroscopy (EIS), ellipsometry and XPS techniques; (2) Development of a damage function analysis (DFA), which would help in predicting the accumulation of damage due to pitting corrosion in an environment prototypical of DOE liquid waste systems; (3) Experimental measurement of crack growth rate, acoustic emission signals, and coupling currents for fracture in carbon and low alloy steels as functions of mechanical (stress intensity), chemical (conductivity), electrochemical (corrosion potential, ECP), and microstructural (grain size, precipitate size, etc) variables in a systematic manner, with particular attention being focused on the structure of the noise in the current and its correlation with the acoustic emissions; (4) Development of fracture mechanisms for carbon and low alloy steels that are consistent with the crack growth rate, coupling current data and acoustic emissions; (5) Inserting advanced crack growth rate models for SCC into existing deterministic codes for predicting the evolution of corrosion damage in DOE liquid waste storage tanks; (6) Computer simulation of the anodic and cathodic activity on the surface of the steel samples in order to exactly predict the corrosion mechanisms; (7) Wavelet analysis of EC noise data from steel samples undergoing corrosion in an environment similar to that of the high level waste storage containers, to extract data pertaining to general, pitting and stress corrosion processes, from the overall data. The work has yielded a number of important findings, including an unequivocal demonstration of the role of chloride ion in passivity breakdown on nickel in terms of cation vacancy generation within the passive film, the first detection and characterization of individual micro fracture

  13. Corrosion of zirconium alloys in nuclear reactors: A model for irradiation induced enhancement by local radiolysis in the porous oxide

    Energy Technology Data Exchange (ETDEWEB)

    Lemaignan, C; Salot, R [CEA/DRN/DTP, CENG-SECC, Grenoble (France)

    1997-02-01

    An analysis has been undertaken of the various cases of local enhancement of corrosion rate of zirconium alloys under irradiation. It is observed that in most cases a strong emission of energetic {beta}{sup -} is present leading to a local energy deposition rate higher than the core average. This suggests that the local transient radiolytic oxidizing species produced in the coolant by the {beta}{sup -} particles could contribute to corrosion enhancement, by increasing the local corrosion potential. This process is applicable to the local enhanced corrosion found in front of stainless steels structural parts, due to the contribution of Mn, and in front of Pt inserts or Cu-rich cruds. It explains also the irradiation corrosion enhancement of Cu-Zr alloys. Enhanced corrosion around neutron absorbing material is explained similarly by pair production from conversion of high energy capture photons in the cladding, leading to energetic electrons. The same process was found to be active with other highly ionizing species like {alpha} from Ni-rich alloys and fission products in homogeneous reactors. Due to the changes induced by the irradiation intensity on the concentration of the radiolytic species, the coolant chemistry, that controls the boundary conditions for oxide growth, has to be analyzed with respect to the local value of the energy deposition rate. An analysis has been undertaken which shows that, in a porous media, the water is exposed to a higher intensity than bulk water. This leads to a higher concentration of oxidizing radiolytic species at the root of the cracks of the porous oxide, and increases the corrosion rate under irradiation. This mechanism, deduced from the explanation proposed for localized irradiation enhanced corrosion, can be extended to the whole reactor core, where the general enhancement of Zr alloys corrosion under irradiation could be attributed to the general radiolysis in the porous zirconia. (author). 18 refs, 3 figs, 3 tabs.

  14. Corrosion-resistant multilayer structures with improved reflectivity

    Science.gov (United States)

    Soufli, Regina; Fernandez-Perea, Monica; Robinson, Jeff C.

    2013-04-09

    In one general embodiment, a thin film structure includes a substrate; a first corrosion barrier layer above the substrate; a reflective layer above the first corrosion barrier layer, wherein the reflective layer comprises at least one repeating set of sub-layers, wherein one of the sub-layers of each set of sub-layers being of a corrodible material; and a second corrosion barrier layer above the reflective layer. In another general embodiment, a system includes an optical element having a thin film structure as recited above; and an image capture or spectrometer device. In a further general embodiment, a laser according to one embodiment includes a light source and the thin film structure as recited above.

  15. Standard Guide for Conducting Corrosion Tests in Field Applications

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This guide covers procedures for conducting corrosion tests in plant equipment or systems under operating conditions to evaluate the corrosion resistance of engineering materials. It does not cover electrochemical methods for determining corrosion rates. 1.1.1 While intended primarily for immersion tests, general guidelines provided can be applicable for exposure of test specimens in plant atmospheres, provided that placement and orientation of the test specimens is non-restrictive to air circulation. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. See also 10.4.2.

  16. Fuel corrosion processes under waste disposal conditions

    International Nuclear Information System (INIS)

    Shoesmith, D.W.

    1999-09-01

    Under the oxidizing conditions likely to be encountered in the Yucca Mountain Repository, fuel dissolution is a corrosion process involving the coupling of the anodic dissolution of the fuel with the cathodic reduction of oxidants available within the repository. The oxidants potentially available to drive fuel corrosion are environmental oxygen, supplied by the transport through the permeable rock of the mountain and molecular and radical species produced by the radiolysis of available aerated water. The mechanism of these coupled anodic and cathodic reactions is reviewed in detail. While gaps in understanding remain, many kinetic features of these reactions have been studied in considerable detail, and a reasonably justified mechanism for fuel corrosion is available. The corrosion rate is determined primarily by environmental factors rather than the properties of the fuel. Thus, with the exception of increase in rate due to an increase in surface area, pre-oxidation of the fuel has little effect on the corrosion rate

  17. Fuel corrosion processes under waste disposal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shoesmith, D.W. [Univ. of Western Ontario, Dept. of Chemistry, London, Ontario (Canada)

    1999-09-01

    Under the oxidizing conditions likely to be encountered in the Yucca Mountain Repository, fuel dissolution is a corrosion process involving the coupling of the anodic dissolution of the fuel with the cathodic reduction of oxidants available within the repository. The oxidants potentially available to drive fuel corrosion are environmental oxygen, supplied by the transport through the permeable rock of the mountain and molecular and radical species produced by the radiolysis of available aerated water. The mechanism of these coupled anodic and cathodic reactions is reviewed in detail. While gaps in understanding remain, many kinetic features of these reactions have been studied in considerable detail, and a reasonably justified mechanism for fuel corrosion is available. The corrosion rate is determined primarily by environmental factors rather than the properties of the fuel. Thus, with the exception of increase in rate due to an increase in surface area, pre-oxidation of the fuel has little effect on the corrosion rate.

  18. Electrochemical Noise Sensors for Detection of Localized and General Corrosion of Natural Gas Transmission Pipelines. Final Report for the Period July 2001-October 2002

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, Sophie J.; Covino, Jr., Bernard S.; Russell, James H.; Holcomb, Gordon R.; Cramer, Stephen D.; Ziomek-Moroz, Margaret

    2002-12-01

    The U.S. Department of Energy, National Energy Technology Laboratory funded a Natural Gas Infrastructure Reliability program directed at increasing and enhancing research and development activities in topics such as remote leak detection, pipe inspection, and repair technologies and materials. The Albany Research Center (ARC), U.S. Department of Energy was funded to study the use of electrochemical noise sensors for detection of localized and general corrosion of natural gas transmission pipelines. As part of this, ARC entered into a collaborative effort with the corrosion sensor industry to demonstrate the capabilities of commercially available remote corrosion sensors for use with the Nation's Gas Transmission Pipeline Infrastructure needs. The goal of the research was to develop an emerging corrosion sensor technology into a monitor for the type and degree of corrosion occurring at key locations in gas transmission pipelines.

  19. Corrosion behaviour of unalloyed steel in Portland cement

    International Nuclear Information System (INIS)

    Grauer, R.

    1988-04-01

    The production of hydrogen can cause problems in a repository for low and intermediate level waste. Since the production of gas is mainly due to the corrosion of unalloyed steel, it is important to have as reliable data as possible for the corrosion rate in anaerobic cement. A review of the literature shows that the corrosion current densities are in the range of 0.01 to 0.1 μA/cm 2 (corresponding to corrosion rates between 0.1 and 1.2 μm/a). This implies hydrogen production rates between 0.022 and 0.22 mol/(m 2 a). Corrosion rates of the abovementioned order of magnitude are technically irrelevant, so that there is little interest in determining them accurately. Furthermore, their determination entails problems of measurement technique. In the present situation it would therefore appear risky to accept the lower value as proven. Experiments are proposed to reduce the present uncertainty. (author) 35 refs., 10 figs

  20. Corrosion behaviour of unalloyed steel in Portland cement

    International Nuclear Information System (INIS)

    Grauer, R.

    1988-01-01

    The production of hydrogen can cause problems in a repository for low and intermediate level waste. Since the production of gas is mainly due to the corrosion of unalloyed steel, it is important to have as reliable data as possible for the corrosion rate in anaerobic cement. A review of the literature shows that the corrosion current densities are in the range of 0.01 to 0.1 μA/cm 2 (corresponding to corrosion rates between 0.1 and 1.2 μm/a). This implies hydrogen production rates between 0.022 and 0.22 mol/(m 2 xa). Corrosion rates of the abovementioned order of magnitude are technically irrelevant, so that there is little interest in determining them accurately. Furthermore, their determination entails problems of measurement technique. In the present situation it would therefore appear risky to accept the lower value as proven. Experiments are proposed to reduce the present uncertainty. (author) 35 refs., 10 figs

  1. Advanced modelling of concrete deterioration due to reinforcement corrosion

    International Nuclear Information System (INIS)

    Isgor, O.B.; Razaqpur, A.G.

    2006-01-01

    A comprehensive model is presented for predicting the rate of steel corrosion in concrete structures and the consequent formation and propagation of cracks around the steel reinforcement. The corrosion model considers both the initiation and the propagation stages of corrosion. Processes commencing in the initiation stage, such as the transport of chloride ions and oxygen within the concrete and variation in temperature and moisture, are assumed to continue in the propagation stage while active corrosion is occurring contemporaneously. This allows the model to include the effects of changes in exposure conditions on the corrosion rate and the effects of the corrosion reactions on the transport properties of concrete. The corrosion rates are calculated by applying the finite-element solution of the Laplace equation for electrochemical potential, with appropriate boundary conditions. Because these boundary conditions are nonlinear, a nonlinear solution algorithm is used. The results of the analysis are compared with available test data, and the comparison is found to be satisfactory. (author)

  2. Corrosion of Metal-Matrix Composites with Aluminium Alloy Substrate

    Directory of Open Access Journals (Sweden)

    B. Bobic

    2010-03-01

    Full Text Available The corrosion behaviour of MMCs with aluminium alloy matrix was presented. The corrosion characteristics of boron-, graphite-, silicon carbide-, alumina- and mica- reinforced aluminium MMCs were reviewed. The reinforcing phase influence on MMCs corrosion rate as well as on various corrosion forms (galvanic, pitting, stress corrosion cracking, corrosion fatique, tribocorrosion was discussed. Some corrosion protection methods of aluminium based MMCs were described

  3. Galvanic corrosion of beryllium welds

    International Nuclear Information System (INIS)

    Hill, M.A.; Butt, D.P.; Lillard, R.S.

    1997-01-01

    Beryllium is difficult to weld because it is highly susceptible to cracking. The most commonly used filler metal in beryllium welds is Al-12 wt.% Si. Beryllium has been successfully welded using Al-Si filler metal with more than 30 wt.% Al. This filler creates an aluminum-rich fusion zone with a low melting point that tends to backfill cracks. Drawbacks to adding a filler metal include a reduction in service temperature, a lowering of the tensile strength of the weld, and the possibility for galvanic corrosion to occur at the weld. To evaluate the degree of interaction between Be and Al-Si in an actual weld, sections from a mock beryllium weldment were exposed to 0.1 M Cl - solution. Results indicate that the galvanic couple between Be and the Al-Si weld material results in the cathodic protection of the weld and of the anodic dissolution of the bulk Be material. While the cathodic protection of Al is generally inefficient, the high anodic dissolution rate of the bulk Be during pitting corrosion combined with the insulating properties of the Be oxide afford some protection of the Al-Si weld material. Although dissolution of the Be precipitate in the weld material does occur, no corrosion of the Al-Si matrix was observed

  4. Corrosion of the copper canister in the repository environment

    Energy Technology Data Exchange (ETDEWEB)

    Hermansson, H.P.; Eriksson, Sture [Studsvik Material AB, Nykoeping (Sweden)

    1999-12-01

    The present report accounts for studies on copper corrosion performed at Studsvik Material AB during 1997-1999 on commission by SKI. The work has been focused on localised corrosion and electrochemistry of copper in the repository environment. The current theory of localised copper corrosion is not consistent with recent practical experiences. It is therefore desired to complete and develop the theory based on knowledge about the repository environment and evaluations of previous as well as recent experimental and field results. The work has therefore comprised a thorough compilation and up-date of literature on copper corrosion and on the repository environment. A selection of a 'working environment', defining the chemical parameters and their ranges of variation has been made and is used as a fundament for the experimental part of the work. Experiments have then been performed on the long-range electrochemical behaviour of copper in selected environments simulating the repository. Another part of the work has been to further develop knowledge about the thermodynamic limits for corrosion in the repository environment. Some of the thermodynamic work is integrated here. Especially thermodynamics for the system Cu-Cl-H-O up to 150 deg C and high chloride concentrations are outlined. However, there is also a rough overview of the whole system Cu-Fe-Cl-S-C-H-O as a fundament for the discussion. Data are normally accounted as Pourbaix diagrams. Some of the conclusions are that general corrosion on copper will probably not be of significant importance in the repository as far as transportation rates are low. However, if such rates were high, general corrosion could be disastrous, as there is no passivation of copper in the highly saline environment. The claim on knowledge of different kinds of localised corrosion and pitting is high, as pitting damages can shorten the lifetime of a canister dramatically. Normal pitting can happen in oxidising environment, but

  5. Corrosion of the copper canister in the repository environment

    International Nuclear Information System (INIS)

    Hermansson, H.P.; Eriksson, Sture

    1999-12-01

    The present report accounts for studies on copper corrosion performed at Studsvik Material AB during 1997-1999 on commission by SKI. The work has been focused on localised corrosion and electrochemistry of copper in the repository environment. The current theory of localised copper corrosion is not consistent with recent practical experiences. It is therefore desired to complete and develop the theory based on knowledge about the repository environment and evaluations of previous as well as recent experimental and field results. The work has therefore comprised a thorough compilation and up-date of literature on copper corrosion and on the repository environment. A selection of a 'working environment', defining the chemical parameters and their ranges of variation has been made and is used as a fundament for the experimental part of the work. Experiments have then been performed on the long-range electrochemical behaviour of copper in selected environments simulating the repository. Another part of the work has been to further develop knowledge about the thermodynamic limits for corrosion in the repository environment. Some of the thermodynamic work is integrated here. Especially thermodynamics for the system Cu-Cl-H-O up to 150 deg C and high chloride concentrations are outlined. However, there is also a rough overview of the whole system Cu-Fe-Cl-S-C-H-O as a fundament for the discussion. Data are normally accounted as Pourbaix diagrams. Some of the conclusions are that general corrosion on copper will probably not be of significant importance in the repository as far as transportation rates are low. However, if such rates were high, general corrosion could be disastrous, as there is no passivation of copper in the highly saline environment. The claim on knowledge of different kinds of localised corrosion and pitting is high, as pitting damages can shorten the lifetime of a canister dramatically. Normal pitting can happen in oxidising environment, but there is

  6. A Theoretical Model for Metal Corrosion Degradation

    Directory of Open Access Journals (Sweden)

    David V. Svintradze

    2010-01-01

    Full Text Available Many aluminum and stainless steel alloys contain thin oxide layers on the metal surface which greatly reduce the corrosion rate. Pitting corrosion, a result of localized breakdown of such films, results in accelerated dissolution of the underlying metal through pits. Many researchers have studied pitting corrosion for several decades and the exact governing equation for corrosion pit degradation has not been obtained. In this study, the governing equation for corrosion degradation due to pitting corrosion behavior was derived from solid-state physics and some solutions and simulations are presented and discussed.

  7. A non-destructive test method to monitor corrosion products and corrosion-induced cracking in reinforced cement based materials

    DEFF Research Database (Denmark)

    Michel, Alexander; Pease, Bradley Justin; Peterova, Adela

    2011-01-01

    ) was conducted to describe the impact of water-to-cement ratio and corrosion current density (i.e., corrosion rate) on the reinforcement corrosion process. Focus was placed, in particular on the determination of the corrosion accommodating region (CAR) and time to corrosion-induced cracking. Experimental results...... showed that x-ray attenuation measurements allow determination of the actual concentrations of corrosion products averaged through the specimen thickness. The total mass loss of steel measured by x-ray attenuation was found to be in very good agreement with the calculated mass loss obtained by Faraday......’s law. Furthermore, experimental results demonstrated that the depth of penetration of corrosion products as well as time to corrosion-induced cracking is varying for the different water-to-cement ratios and applied corrosion current densities....

  8. Monitoring and modeling stress corrosion and corrosion fatigue damage in nuclear reactors

    International Nuclear Information System (INIS)

    Andresen, P.L.; Ford, F.P.; Solomon, H.D.; Taylor, D.F.

    1990-01-01

    Stress corrosion and corrosion fatigue are significant problems in many industries, causing economic penalties from decreased plant availability and component repair or replacement. In nuclear power reactors, environmental cracking occurs in a wide variety of components, including reactor piping and steam generator tubing, bolting materials and pressure vessels. Life assessment for these components is complicated by the belief that cracking is quite irreproducible. Indeed, for conditions which were once viewed as nominally similar, orders of magnitude variability in crack growth rates are observed for stress corrosion and corrosion fatigue of stainless steels and low-alloy steels in 288 degrees C water. This paper shows that design and life prediction approaches are destined to be overly conservative or to risk environmental failure if life is predicted by quantifying only the effects of mechanical parameters and/or simply ignoring or aggregating environmental and material variabilities. Examples include the Nuclear Regulatory Commission (NRC) disposition line for stress-corrosion cracking of stainless steel in boiling water reactor (BWR) water and the American Society of Mechanical Engineers' Section XI lines for corrosion fatigue

  9. Online, real-time corrosion monitoring in district heating systems

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Thorarinsdottir, R.I.

    2005-01-01

    The corrosion control in district heating systems is today performed primarily with control of the water quality. The corrosion rate is kept low by assuring low dissolved oxygen concentration, high pH and low conductivity. Corrosion failures can occur, e.g. as a result of unknown oxygen ingress, ......, precipitation of deposits or crevices. The authors describe methods used for on-line monitoring of corrosion, cover the complications and the main results of a Nordic project.......The corrosion control in district heating systems is today performed primarily with control of the water quality. The corrosion rate is kept low by assuring low dissolved oxygen concentration, high pH and low conductivity. Corrosion failures can occur, e.g. as a result of unknown oxygen ingress...

  10. Corrosion of carbon steel in neutral water

    International Nuclear Information System (INIS)

    Kawai, Noboru; Iwahori, Toru; Kurosawa, Tatsuo

    1983-01-01

    The initial corrosion behavior of materials used in the construction of heat exchanger and piping system of BWR nuclear power plants and thermal power plants have been examined in neutral water at 30, 50, 100, 160, 200, and 285 deg C with two concentrations of dissolved oxygen in the water. In air-saturated water, the corrosion rate of carbon steel was so higher than those in deaerated conditions and the maximum corrosion rate was observed at 200 deg C. The corrosion rate in deaerated water gradually increased with increasing the water temperature. Low alloy steel (2.25 Cr, 1Mo) exhibited good corrosion resistance compared with the corrosion of carbon steel under similar testing conditions. Oxide films grown on carbon steel in deaerated water at 50, 100, 160, 200, and 285 deg C for 48 and 240 hrs were attacked by dissolved oxygen in room temperature water respectively. However the oxide films formed higher than about 160 deg C showed more protective. The electrochemical behavior of carbon steel with oxide films was also similar to the effect of temperature on the stability of oxide films. (author)

  11. An Electrochemical Method to Predict Corrosion Rates in Soils

    Energy Technology Data Exchange (ETDEWEB)

    Dafter, M. R. [Hunter Water Australia Pty Ltd, Newcastle (Australia)

    2016-10-15

    Linear polarization resistance (LPR) testing of soils has been used extensively by a number of water utilities across Australia for many years now to determine the condition of buried ferrous water mains. The LPR test itself is a relatively simple, inexpensive test that serves as a substitute for actual exhumation and physical inspection of buried water mains to determine corrosion losses. LPR testing results (and the corresponding pit depth estimates) in combination with proprietary pipe failure algorithms can provide a useful predictive tool in determining the current and future conditions of an asset{sup 1)}. A number of LPR tests have been developed on soil by various researchers over the years{sup 1)}, but few have gained widespread commercial use, partly due to the difficulty in replicating the results. This author developed an electrochemical cell that was suitable for LPR soil testing and utilized this cell to test a series of soil samples obtained through an extensive program of field exhumations. The objective of this testing was to examine the relationship between short-term electrochemical testing and long-term in-situ corrosion of buried water mains, utilizing an LPR test that could be robustly replicated. Forty-one soil samples and related corrosion data were obtained from ad hoc condition assessments of buried water mains located throughout the Hunter region of New South Wales, Australia. Each sample was subjected to the electrochemical test developed by the author, and the resulting polarization data were compared with long-term pitting data obtained from each water main. The results of this testing program enabled the author to undertake a comprehensive review of the LPR technique as it is applied to soils and to examine whether correlations can be made between LPR testing results and long-term field corrosion.

  12. Corrosion and corrosion control

    International Nuclear Information System (INIS)

    Khanna, A.S.; Totlani, M.K.

    1995-01-01

    Corrosion has always been associated with structures, plants, installations and equipment exposed to aggressive environments. It effects economy, safety and product reliability. Monitoring of component corrosion has thus become an essential requirement for the plant health and safety. Protection methods such as appropriate coatings, cathodic protection and use of inhibitors have become essential design parameters. High temperature corrosion, especially hot corrosion, is still a difficult concept to accommodate in corrosion allowance; there is a lack of harmonized system of performance testing of materials at high temperatures. In order to discuss and deliberate on these aspects, National Association for Corrosion Engineers International organised a National Conference on Corrosion and its Control in Bombay during November 28-30, 1995. This volume contains papers presented at the symposium. Paper relevant to INIS is indexed separately. refs., figs., tabs

  13. Exopolysaccharides from lactic acid bacteria as corrosion inhibitors

    Directory of Open Access Journals (Sweden)

    Ignatova-Ivanova Tsveteslava

    2016-03-01

    Full Text Available Bacterial EPSs (exopolysaccharides are believed to play an important role in the environment by promoting survival strategies such as bacterial attachment to surfaces and nutrient trapping, which facilitate processes of biofilm formation and development. These microbial biofilms have been implicated in corrosion of metals, bacterial attachment to prosthetic devices, fouling of heat exchange surfaces, toxicant immobilization, and fouling of ship hulls. In this paper, data on EPS production and the effect of EPS on corrosion of steel produced by Lactobacillus sp. are presented and discussed. Lactobacillus delbrueckii K27, Lactobacillus delbrueckii B8, Lactobacillus delbrueckii KO43, Lactobacillus delbrueckii K3, Lactobacillus delbrueckii K15 and Lactobacillus delbrueckii K17 was obtained from Collection of Department of General and Applied Microbiology, Sofia University. It was tested for its ability to produce exopolysaccharides when cultivated in a media containing 10% sucrose, 10% lacose and 10% maltose. The study of the corrosive stability of steel samples was conducted on the gravimetrique method. The rate of corrosion, the degree of protection, and coefficient of protection have been calculated. The structure of layer over steel plates was analysed by SEM (scanning electron microscopy JSM 5510. It could be underlined that 10% sucrose, 10% lactose and 10% maltose in the media stimulated the process of protection of corrosion.

  14. Corrosion of porous silicon in tetramethylammonium hydroxide solution

    International Nuclear Information System (INIS)

    Lai, Chuan; Li, Xue-Ming; Zou, Li-Ke; Chen, Qiang; Xie, Bin; Li, Yu-Lian; Li, Xiao-Lin; Tao, Zhi

    2014-01-01

    Highlights: • The corrosion of porous silicon in (CH 3 ) 4 NOH solution was studied. • The residue of corrosion products was a mixture of [(CH 3 ) 4 N] 2 SiO 3 and SiO 2 . • The effect factors for porous silicon corrosion were elaborately investigated. • The additive of ethanol in (CH 3 ) 4 NOH solution could reduce the corrosion rate. • The 1.0 M (CH 3 ) 4 NOH could act as an applicable and novel corrosion solution. - Abstract: Corrosion of porous silicon in tetramethylammonium hydroxide (TMAH) solution was studied using weight loss measurements and scanning electron microscope. The effects of temperature, concentration of TMAH and volume ratio of ethanol in 1.0 M TMAH on corrosion rate and corrosion time were elaborately investigated. The residue of corrosion products were characterized as a mixture of [(CH 3 ) 4 N] 2 SiO 3 and SiO 2 . A comparative test among TMAH, KOH and NaOH illustrated that the 1.0 M TMAH could act as an applicable and novel corrosion solution to remove porous silicon layer for determining the porosity of porous silicon

  15. Predicting concrete corrosion of sewers using artificial neural network.

    Science.gov (United States)

    Jiang, Guangming; Keller, Jurg; Bond, Philip L; Yuan, Zhiguo

    2016-04-01

    Corrosion is often a major failure mechanism for concrete sewers and under such circumstances the sewer service life is largely determined by the progression of microbially induced concrete corrosion. The modelling of sewer processes has become possible due to the improved understanding of in-sewer transformation. Recent systematic studies about the correlation between the corrosion processes and sewer environment factors should be utilized to improve the prediction capability of service life by sewer models. This paper presents an artificial neural network (ANN)-based approach for modelling the concrete corrosion processes in sewers. The approach included predicting the time for the corrosion to initiate and then predicting the corrosion rate after the initiation period. The ANN model was trained and validated with long-term (4.5 years) corrosion data obtained in laboratory corrosion chambers, and further verified with field measurements in real sewers across Australia. The trained model estimated the corrosion initiation time and corrosion rates very close to those measured in Australian sewers. The ANN model performed better than a multiple regression model also developed on the same dataset. Additionally, the ANN model can serve as a prediction framework for sewer service life, which can be progressively improved and expanded by including corrosion rates measured in different sewer conditions. Furthermore, the proposed methodology holds promise to facilitate the construction of analytical models associated with corrosion processes of concrete sewers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Corrosion behavior of electrodeposited Co-Fe alloys in aerated solutions

    Energy Technology Data Exchange (ETDEWEB)

    Chansena, A. [Research Unit on Corrosion, College of Data Storage Innovation, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand); Sutthiruangwong, S., E-mail: sutha.su@kmitl.ac.th [Department of Chemistry, Faculty of Science, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand); Research Unit on Corrosion, College of Data Storage Innovation, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand)

    2017-05-01

    Co-Fe alloy is an important component for reader-writer in hard disk drive. The surface of the alloy is exposed to the environment both in gas phase and in liquid phase during manufacturing process. The study of corrosion behavior of Co-Fe alloys can provide useful fundamental data for reader-writer production planning especially when corrosion becomes a major problem. The corrosion study of electrodeposited Co-Fe alloys from cyclic galvanodynamic polarization was performed using potentiodynamic polarization technique. The composition of electrodeposited Co-Fe alloys was determined by X-ray fluorescence spectrometry. The patterns from X-ray diffractometer showed that the crystal structure of electrodeposited Co-Fe alloys was body-centered cubic. A vibrating sample magnetometer was used for magnetic measurements. The saturation magnetization (M{sub s}) was increased and the intrinsic coercivity (H{sub ci}) was decreased with increasing Fe content. The corrosion rate study was performed in aerated deionized water and aerated acidic solutions at pH 3, 4 and 5. The corrosion rate diagram for Co-Fe alloys was constructed. It was found that the corrosion rate of Co-Fe alloys was increased with increasing Fe content in both aerated deionized water and aerated acidic solutions. In aerated pH 3 solution, the Co-Fe alloy containing 78.8% Fe showed the highest corrosion rate of 7.7 mm yr{sup −1} with the highest M{sub s} of 32.0 A m{sup 2} kg{sup −1}. The corrosion rate of the alloy with 23.8% Fe was at 1.1 mm yr{sup −1} with M{sub s} of 1.2 A m{sup 2} kg{sup −1}. In aerated deionized water, the alloy with the highest Fe content of 78.5% still showed the highest corrosion rate of 0.0059 mm yr{sup −1} while the alloy with the lowest Fe content of 20.4% gave the lowest corrosion rate of 0.0045 mm yr{sup −1}. - Highlights: • The aeration during corrosion measurement simulates reader-writer head production environment. • The corrosion rate diagram for Co-Fe alloys

  17. Corrosion in seawater systems

    International Nuclear Information System (INIS)

    Henrikson, S.

    1988-01-01

    Highly alloyed stainless steels have been exposed to natural chlorinated and chlorine-free seawater at 35 deg. C. Simulated tube-tubesheet joints, weld joints and galvanic couples with titanium, 90/10 CuNi and NiAl bronze were tested and evaluated for corrosion. The corrosion rates of various anode materials - zinc, aluminium and soft iron - were also determined. Finally the risk of hydrogen embrittlement of tubes of ferritic stainless steels and titanium as a consequence of cathodic protection was studied. An attempt was also made to explain the cracking mechanism of the ferritic steels by means of transmission electron microscopy. One important conclusion of the project is that chlorinated seawater is considerably more corrosive to stainless steels than chlorine-free water, whereas chlorination reduces the rate of galvanic corrosion of copper materials coupled to stainless steels. Hydrogen embrittlement of ferritic stainless steels and titanium as a consequence of cathodic protection of carbon steel or cast iron in the same structure can be avoided by strict potentiostatic control of the applied potential. (author)

  18. Corrosion monitoring using FSM technology

    International Nuclear Information System (INIS)

    Strommen, R.; Horn, H.; Gartland, P.O.; Wold, K.; Haroun, M.

    1995-01-01

    FSM is a non-intrusive monitoring technique based on a patented principle, developed for the purpose of detection and monitoring of both general and localized corrosion, erosion, and cracking in steel and metal structures, piping systems, and vessels. Since 1991, FSM has been used for a wide range of applications, including for buried and open pipelines, process piping offshore, subsea pipelines and flowlines, applications in the nuclear power industry, and in materials, research in general. This paper describes typical applications of the FSM technology, and presents operational experience from some of the land-based and subsea installations. The paper also describes recent enhancements in the FSM technology and in the analysis of FSM readings, allowing for monitoring and detailed quantification of pitting and mesa corrosion, and of corrosion in welds

  19. New technologies - new corrosion problems

    International Nuclear Information System (INIS)

    Heitz, E.

    1994-01-01

    Adequate resistance of materials to corrosion is equally important for classical and for new technologies. This article considers the economic consequences of corrosion damage and, in addition to the long-known GNP orientation, presents a new approach to the estimation of the costs of corrosion and corrosion protection via maintenance and especially corrosion-related maintenance. The significance of ''high-tech'', ''medium-tech'' and ''low-tech'' material and corrosion problems is assessed. Selected examples taken from new technologies in the areas of power engineering, environmental engineering, chemical engineering, and biotechnology demonstrate the great significance of the problems. It is concluded that corrosion research and corrosion prevention technology will never come to an end but will constantly face new problems. Two technologies are of particular interest since they focus attention on new methods of investigation: microelectronics and final disposal of radioactive wastes. The article closes by considering the importance of the transfer of experience and technology. Since the manufacturs and operators of machines and plant do not generally have access to the very latest knowledge, they should be kept informed through advisory services, experimental studies, databases, and further education. (orig.) [de

  20. 46 CFR 111.01-11 - Corrosion-resistant parts.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Corrosion-resistant parts. 111.01-11 Section 111.01-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-11 Corrosion-resistant parts. Each enclosure and part of electric...

  1. Improvements in zirconium alloy corrosion resistance

    International Nuclear Information System (INIS)

    Kilp, G.R.; Thornburg, D.R.; Comstock, R.J.

    1990-01-01

    The corrosion rates of a series of Zircaloy 4 and Zr-Nb alloys were evaluated in long-term (exceeding 500 days in some cases) autoclave tests. The testing was done at various conditions including 633 K (680 F) water, 633 K (650 F) water, 633 k (680 F) lithiated water (70 PPM/0.01 molal lithium), and 673 K (750 F) steam. Materials evaluated are from the following three groups: (1) standard Zircaloy 4; (2) Zircaloy 4 with tightened controls on chemistry limits and heat-treatment history; and (3) Zr-Nb alloys. To optimize the corrosion resistance of the Zircaloy 4 material, the effects of specific chemistry controls (tighter limits on nitrogen, oxygen, silicon, carbon and tin) were evaluated. Also the effects of the thermal history, as measured by integrated annealing of ''A'' time were determined. The ''A'' times ranged from 0.1x10 -18 (h) to 46x10 -18 (h). A material referred to as ''Improved Zircaloy 4'', having optimized chemistry and ''A'' time levels for reduced corrosion, has been developed and tested. This material has a reduced and more uniform corrosion rate compared to the prior Zircaloy 4 material. Alternative alloys were also evaluated for potential improvement in cladding corrosion resistance. ZIRLO TM material was chosen for development and has been included in the long-term corrosion testing. Demonstration fuel assemblies using ZIRLO cladding are now operating in a commercial reactor. The results for the various test conditions and compositions are reported and the relative corrosion characteristics summarized. Based on the BR-3 data, there is a ranking correspondence between in-reactor corrosion and autoclave testing in lithiated water. In particular, the ZIRLO material has significantly improved relative corrosion resistance in the lithiated water tests. Reduced Zircaloy-4 corrosion rates are also obtained from the tighter controls on the chemistry (specifically lower tin, nitrogen, and carbon; higher silicon; and reduced oxygen variability) and ''A

  2. Reinforcement corrosion in alkaline chloride media with reduced oxygen concentrations

    International Nuclear Information System (INIS)

    Andrade, C.; Fullea, J.; Toro, L.; Martinez, I.; Rebolledo, N.

    2013-01-01

    It is commonly considered that the corrosion of steel in concrete is controlled by the oxygen content of the pore solution and there are service life models that relate the corrosion rate to the amount of oxygen. It is also commonly believed that in water saturated conditions the oxygen content in the pores is negligible and that underwater there is no risk of depassivation and the corrosion rate is very low. However, the available data on corrosion rates in immersed conditions do not indicate such performance; on the contrary corrosion develops when sufficient chloride reaches the reinforcement. In the present paper, results are presented for tests performed in alkaline chloride solutions that were purged with nitrogen to reduce the oxygen content. The results indicate that at very low oxygen concentrations, corrosion may develop in the presence of chlorides. The presence or absence of corrosion is influenced by the amount of chloride, the corrosion potential and the steel surface condition. (authors)

  3. System for corrosion monitoring in pipeline applying fuzzy logic mathematics

    Science.gov (United States)

    Kuzyakov, O. N.; Kolosova, A. L.; Andreeva, M. A.

    2018-05-01

    A list of factors influencing corrosion rate on the external side of underground pipeline is determined. Principles of constructing a corrosion monitoring system are described; the system performance algorithm and program are elaborated. A comparative analysis of methods for calculating corrosion rate is undertaken. Fuzzy logic mathematics is applied to reduce calculations while considering a wider range of corrosion factors.

  4. Corrosion of well casings in compressed air energy storage environments

    Energy Technology Data Exchange (ETDEWEB)

    Elmore, R.P.; Stottlemyre, J.A.

    1980-10-01

    The goal of this study was to determine corrosive effects of compressed air energy storage (CAES) environments on several well casing materials to aid in material selections. A literature search on corrosion behavior of well casing material in similar environments revealed that corrosion rates of 0.20 to 0.25 mm/y might be expected. This information was employed in designing the laboratory study. Unstressed electrically isolate samples of various carbon steels were autoclaved at varying humidities, temperatures, and exposure durations to simulate anticipated environments in the well bore during CAES operation. All compressed air tests were run at 12.1 MPa. Temperatures varied from 323/sup 0/K to 573/sup 0/K, and humidity varied from 100% to completely dry air. The effects of salts in the humidified air were also studied. Results indicated that typical well casings of carbon steel as used in oil, gas, and water production wells adequately withstand the anticipated CAES reservoir environment. An acceptable corrosion rate arrived at by these laboratory simulations was between 0.0015 and 0.15 mm/y. Corrosion was caused by metal oxidation that formed a protective scale of iron oxide. Higher temperatures, humidity rates, or salinity content of the humid air increased corrosion. Corrosion also increased on a metal coupon in contact with a sandstone sample, possibly due to crevice corrosion. For each of these factors either singularly or collectively, the increased corrosion rates were still acceptable with the maximum measured at 0.15 mm/y. When coupons were reused in an identical test, the corrosion rates increased beyond the anticipated values that had been determined by extrapolation from one-time runs. Fine cracking of the protective scale probably occurred due to thermal variations, resulting in increased corrosion rates and a greater potential for particulates, which could plug the reservoir.

  5. Modelling aqueous corrosion of nuclear waste phosphate glass

    Energy Technology Data Exchange (ETDEWEB)

    Poluektov, Pavel P.; Schmidt, Olga V.; Kascheev, Vladimir A. [Bochvar All-Russian Scientific Research Institute for Inorganic Materials (VNIINM), Moscow (Russian Federation); Ojovan, Michael I., E-mail: m.ojovan@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom)

    2017-02-15

    A model is presented on nuclear sodium alumina phosphate (NAP) glass aqueous corrosion accounting for dissolution of radioactive glass and formation of corrosion products surface layer on the glass contacting ground water of a disposal environment. Modelling is used to process available experimental data demonstrating the generic inhibiting role of corrosion products on the NAP glass surface. - Highlights: • The radionuclides yield is determined by the transport from the glass through the surface corrosion layer. • Formation of the surface layer is due to the dissolution of the glass network and the formation of insoluble compounds. • The model proposed accounts for glass dissolution, formation of corrosion layer, specie diffusion and chemical reactions. • Analytical solutions are found for corrosion layer growth rate and glass components component leaching rates.

  6. Extremely high resolution corrosion monitoring of pipelines: retrofittable, non-invasive and real-time

    Energy Technology Data Exchange (ETDEWEB)

    Baltzersen, Oeystein; Tveit, Edd [Sensorlink AS, Trondheim (Norway); Verley, Richard [StatoilHydro ASA, Stockholm (Sweden)

    2009-07-01

    The Ultramonit unit is a clamp-on tool (removable) that uses an array of sensors to provide online, real-time, reliable and repeatable high accuracy ultrasonic wall thickness measurements and corrosion monitoring at selected locations along the pipeline. The unit can be installed on new or existing pipelines by diver or ROV. The system is based on the well-established ultrasonic pulse-echo method (A-scan). Special processing methods, and the fact that the unit is fixed to the pipeline, enable detection of changes in wall thickness in the micro-meter range. By utilizing this kind of resolution, it is possible to project corrosion rates in hours or days. The tool is used for calibration of corrosion inhibitor programs, verification and calibration of inspection pig data and general corrosion monitoring of new and existing pipelines. (author)

  7. Detection of localised corrosion by means of statistic and harmonic analysis of spontaneous potential noise

    International Nuclear Information System (INIS)

    Carassiti, F.; Cigna, R.; Goolamallee, R.; Gusmano, G.

    1989-01-01

    The analysis of the electrochemical noise, i.e. of the spontaneous fluctuations of potential of a freely corroding electrode, probably represent one of the most interesting novelty of the last years in the field of corrosion monitoring. Although this technique is still at an early stage, it could lead to interesting developments, especially for identifying localized forms of corrosion. The experiments which have been reported in the literature generally agree that in absence of active corrosion a slight variation of the potential is observed accompanied by non gaussian fluctuations; in presence of the onset of pitting a series of sharp variation is observed followed by relatively slow exponential recovery. In the domain of frequency the slope of the noise frequency curve is less than that noticed in the absence of active corrosion. In the domain of time generally the standard deviation of noise is proportional to the corrosion rate. Moreover it has been noticed that small variation in the experimental condition could cause modification in the shape of the spontaneous potential fluctuation and introduce some confusion in the analysis of data. Digital filtering of disturbs could allow a better reproducibility to be achieved. (author) 4 refs., 9 figs

  8. Corrosion of fuel assembly materials

    International Nuclear Information System (INIS)

    Noe, M.; Frejaville, G.; Beslu, P.

    1985-08-01

    Corrosion of zircaloy-4 is reviewed in relation with previsions of improvement in PWRs performance: higher fuel burnup; increase coolant temperature, implying nucleate boiling on the hot clad surfaces; increase duration of the cycle due to load-follow operation. Actual knowledge on corrosion rates, based partly on laboratory tests, is insufficient to insure that external clad corrosion will not constitute a limitation to these improvements. Therefore, additional testing within representative conditions is felt necessary [fr

  9. Chemical and mechanical control of corrosion product transport

    Energy Technology Data Exchange (ETDEWEB)

    Hede Larsen, O; Blum, R [I/S Fynsvaerket, Faelleskemikerne, Odense (Denmark); Daucik, K [I/S Skaerbaekvaerket, Faelleskemikerne, Fredericia (Denmark)

    1996-12-01

    The corrosion products formed in the condensate and feedwater system of once-through boilers are precipitated and deposited inside the evaporator tubes mainly in the burner zone at the highest heat flux. Depositions lead to increased oxidation rate and increased metal temperature of the evaporator tubes, hereby decreasing tube lifetime. This effect is more important in the new high efficiency USC boilers due to increased feedwater temperature and hence higher thermal load on the evaporator tubes. The only way to reduce the load on the evaporator tubes is to minimise corrosion product transport to the boiler. Two general methods for minimising corrosion product transport to the boiler have been evaluated through measurement campaigns for Fe in the water/steam cycle in supercritical boilers within the ELSAM area. One method is to reduce corrosion in the low temperature condensate system by changing conditioning mode from alkaline volatile treatment (AVT) to oxygenated treatment (OT). The other method is to filtrate part of the condensate with a mechanical filter at the deaerator. The results show, that both methods are effective at minimising Fe-transport to the boiler, but changing to OT has the highest effect and should always be used, whenever high purity condensate is maintained. Whether mechanical filtration also is required, depends on the boiler, specifically the load on the evaporator. A simplified calculation model for lifetime evaluation of evaporator tubes has been developed. This model has been used for evaluating the effect of corrosion product transport to the boiler on evaporator tube lifetime. Conventional supercritical boilers generally can achieve sufficient lifetime by AVT and even better by OT, whereas all measures to reduce Fe-content of feedwater, including OT and mechanical filtration, should be taken, to ensure sufficient lifetime for the new boilers with advanced steam data - 290 bar/580 deg. C and above. (au)

  10. Effect of radiation on anaerobic corrosion of iron

    International Nuclear Information System (INIS)

    Smart, N.R.; Rance, A.P.

    2005-01-01

    To ensure the safe encapsulation of spent nuclear fuel elements for geological disposal, SKB of Sweden are considering using the Advanced Cold Process Canister, which consists of an outer copper canister and a cast iron insert. A programme of work has been carried out to investigate a range of corrosion issues associated with the canister, including measurements of gas generation due to the anaerobic corrosion of ferrous materials (carbon steel and cast iron) over a range of conditions. To date, all this work has been conducted in the absence of a radiation field. SKB asked Serco Assurance to carry out a set of experiments designed to investigate the effect of radiation on the corrosion of steel in repository environments. This report describes the experimental programme and presents the results that were obtained. The measurements were carried out in the type of gas cell used previously, in which the change in gas pressure was measured using a liquid-filled manometer. The test cells were placed in a radiation cell and positioned so that the received radiation dose was equivalent to that expected in the repository. Control cells were used to allow for any gas generation caused by radiolytic breakdown of the construction materials and the water. Tests were carried out at two temperatures (30 deg C and 50 deg C), two dose rates (11 Gray/hr and 300 Gray/hr), and in two different artificial groundwaters. A total of four tests were carried out, using carbon steel wires as the test material. The cells were exposed for a period of several months, after which they were dismantled and the corrosion product on one wire from each test cell was analysed using Raman spectroscopy. The report presents the results from the gas generation tests and compares the results obtained under irradiated conditions to results obtained previously in the absence of radiation. Radiation was found to enhance the corrosion rate at both dose rates but the greatest enhancement occurred at the

  11. Oxidative corrosion of spent UO2 fuel in vapor and dripping groundwater at 900C

    International Nuclear Information System (INIS)

    Finch, R. J.

    1999-01-01

    Corrosion of spent UO 2 fuel has been studied in experiments conducted for nearly six years. Oxidative dissolution in vapor and dripping groundwater at 90 C occurs via general corrosion at fuel-fragment surfaces. Dissolution along fuel-grain boundaries is also evident in samples contacted by the largest volumes of groundwater, and corroded grain boundaries extend at least 20 or 30 grains deep (> 200 microm), possibly throughout millimeter-sized fragments. Apparent dissolution of fuel along defects that intersect grain boundaries has created dissolution pits that are 50 to 200 nm in diameter. Dissolution pits penetrate 1-2 microm into each grain, producing a ''worm-like'' texture along fuel-grain-boundaries. Sub-micrometer-sized fuel shards are common between fuel grains and may contribute to the reactive surface area of fuel exposed to groundwater. Outer surfaces of reacted fuel fragments develop a fine-grained layer of corrosion products adjacent to the fuel (5-15 microm thick). A more coarsely crystalline layer of corrosion products commonly covers the fine-grained layer, the thickness of which varies considerably among samples (from less than 5 microm to greater than 40 microm). The thickest and most porous corrosion layers develop on fuel fragments exposed to the largest volumes of groundwater. Corrosion-layer compositions depend strongly on water flux, with uranyl oxy-hydroxides predominating in vapor experiments, and alkali and alkaline earth uranyl silicates predominating in high drip-rate experiments. Low drip-rate experiments exhibit a complex assemblage of corrosion products, including phases identified in vapor and high drip-rate experiments

  12. Mapping the Galvanic Corrosion of Three Coupled Metal Alloys Using Coupled Multielectrode Array: Influence of Chloride Ion Concentration

    Directory of Open Access Journals (Sweden)

    Hong Ju

    2018-04-01

    Full Text Available The galvanic corrosion behavior of three metal alloys commonly used in water desalination plants was investigated using coupled multielectrode arrays consisting of aluminum-brass (HAl77-2, titanium alloy (TA2, and 316L stainless steel (316L SS. The three electrode types were coupled galvanically and arranged in different geometric configurations. Their corrosion behavior was characterized as a function of the chloride concentration. The potential and current distributions of the three-electrode coupling systems display electrochemical inhomogeneity. Generally, the aluminum-brass wires are anodic versus the titanium alloy and stainless steel. The titanium alloy acts as a primary cathode, and the 316L SS acts as a secondary cathode. The corrosion rate of aluminum-brass depends on the concentration of chloride ion, with a maximum corrosion rate at a chloride concentration of 2.3 wt %. In terms of geometrical arrangements, when the anodic HAl77-2 wires are located on the edge and are connected to the 316L SS wires in the coupling system, the main anodic area enlarges, especially in the area adjacent to the 316L SS wires. When the HAl77-2 wires are located between (in the middle of the two other types of wires, the corrosion rates are higher than the corrosion rates observed from the other two geometrical arrangements.

  13. Mapping the Galvanic Corrosion of Three Coupled Metal Alloys Using Coupled Multielectrode Array: Influence of Chloride Ion Concentration.

    Science.gov (United States)

    Ju, Hong; Duan, JinZhuo; Yang, Yuanfeng; Cao, Ning; Li, Yan

    2018-04-20

    The galvanic corrosion behavior of three metal alloys commonly used in water desalination plants was investigated using coupled multielectrode arrays consisting of aluminum-brass (HAl77-2), titanium alloy (TA2), and 316L stainless steel (316L SS). The three electrode types were coupled galvanically and arranged in different geometric configurations. Their corrosion behavior was characterized as a function of the chloride concentration. The potential and current distributions of the three-electrode coupling systems display electrochemical inhomogeneity. Generally, the aluminum-brass wires are anodic versus the titanium alloy and stainless steel. The titanium alloy acts as a primary cathode, and the 316L SS acts as a secondary cathode. The corrosion rate of aluminum-brass depends on the concentration of chloride ion, with a maximum corrosion rate at a chloride concentration of 2.3 wt %. In terms of geometrical arrangements, when the anodic HAl77-2 wires are located on the edge and are connected to the 316L SS wires in the coupling system, the main anodic area enlarges, especially in the area adjacent to the 316L SS wires. When the HAl77-2 wires are located between (in the middle of) the two other types of wires, the corrosion rates are higher than the corrosion rates observed from the other two geometrical arrangements.

  14. Corrosion probe. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-05-01

    Over 253 million liters of high-level waste (HLW) generated from plutonium production is stored in mild steel tanks at the Department of Energy (DOE) Hanford Site. Corrosion monitoring of double-shell storage tanks (DSTs) is currently performed at Hanford using a combination of process knowledge and tank waste sampling and analysis. Available technologies for corrosion monitoring have progressed to a point where it is feasible to monitor and control corrosion by on-line monitoring of the corrosion process and direct addition of corrosion inhibitors. The electrochemical noise (EN) technique deploys EN-based corrosion monitoring probes into storage tanks. This system is specifically designed to measure corrosion rates and detect changes in waste chemistry that trigger the onset of pitting and cracking. These on-line probes can determine whether additional corrosion inhibitor is required and, if so, provide information on an effective end point to the corrosion inhibitor addition procedure. This report describes the technology, its performance, its application, costs, regulatory and policy issues, and lessons learned

  15. Enhancing corrosion resistance of reinforced concrete structures with hybrid fiber reinforced concrete

    International Nuclear Information System (INIS)

    Blunt, J.; Jen, G.; Ostertag, C.P.

    2015-01-01

    Highlights: • Reinforced concrete beams were subjected to cyclic flexural loading. • Hybrid fiber reinforced composites were effective in reducing corrosion rates. • Crack resistance due to fibers increased corrosion resistance of steel rebar. • Galvanic corrosion measurements underestimated corrosion rates. • Polarization resistance measurements predicted mass loss more accurately. - Abstract: Service loads well below the yield strength of steel reinforcing bars lead to cracking of reinforced concrete. This paper investigates whether the crack resistance of Hybrid Fiber Reinforced Concrete (HyFRC) reduces the corrosion rate of steel reinforcing bars in concrete after cyclic flexural loading. The reinforcing bars were extracted to examine their surface for corrosion and compare microcell and macrocell corrosion mass loss estimates against direct gravimetric measurements. A delay in corrosion initiation and lower active corrosion rates were observed in the HyFRC beam specimens when compared to reinforced specimens containing plain concrete matrices cycled at the same flexural load

  16. Corrosion of steel structures in sea-bed sediment

    Indian Academy of Sciences (India)

    Unknown

    corrosion mechanism, measurement of metal corrosion rate, corrosion ... cables, steel rigs, pipelines and other marine facilities, is ..... make high strength steel material to crack with stress ... of SBS has yet been very limited, and selection of.

  17. Corrosion of aluminium in soft drinks.

    Science.gov (United States)

    Seruga, M; Hasenay, D

    1996-04-01

    The corrosion of aluminium (Al) in several brands of soft drinks (cola- and citrate-based drinks) has been studied, using an electrochemical method, namely potentiodynamic polarization. The results show that the corrosion of Al in soft drinks is a very slow, time-dependent and complex process, strongly influenced by the passivation, complexation and adsorption processes. The corrosion of Al in these drinks occurs principally due to the presence of acids: citric acid in citrate-based drinks and orthophosphoric acid in cola-based drinks. The corrosion rate of Al rose with an increase in the acidity of soft drinks, i.e. with increase of the content of total acids. The corrosion rates are much higher in the cola-based drinks than those in citrate-based drinks, due to the facts that: (1) orthophosphoric acid is more corrosive to Al than is citric acid, (2) a quite different passive oxide layer (with different properties) is formed on Al, depending on whether the drink is cola or citrate based. The method of potentiodynamic polarization was shown as being very suitable for the study of corrosion of Al in soft drinks, especially if it is combined with some non-electrochemical method, e.g. graphite furnace atomic absorption spectrometry (GFAAS).

  18. Insight into silicate-glass corrosion mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Cailleteau, C; Angeli, F; Gin, S; Jollivet, P [CEA VALRHO, DEN, Lab Etude Comportement Long Terme, F-30207 Bagnols Sur Ceze, (France); Devreux, F [Ecole Polytech, CNRS, Lab Phys Mat Condensee, F-91128 Palaiseau, (France); Jestin, J [CEA, CNRS, Lab Leon Brillouin, F-91191 Gif Sur Yvette, (France); Spalla, O [CEA, DSM, Lab Interdisciplinaire Org Nanometr et Supramol, F-91191 Gif Sur Yvette, (France)

    2008-07-01

    The remarkable chemical durability of silicate glass makes it suitable for a wide range of applications. The slowdown of the aqueous glass corrosion kinetics that is frequently observed at long time is generally attributed to chemical affinity effects (saturation of the solution with respect to silica). Here, we demonstrate a new mechanism and highlight the impact of morphological transformations in the alteration layer on the leaching kinetics. A direct correlation between structure and reactivity is revealed by coupling the results of several structure-sensitive experiments with numerical simulations at mesoscopic scale. The sharp drop in the corrosion rate is shown to arise from densification of the outer layers of the alteration film, leading to pore closure. The presence of insoluble elements in the glass can inhibit the film restructuring responsible for this effect. This mechanism may be more broadly applicable to silicate minerals. (authors)

  19. Corrosion of valve metals

    International Nuclear Information System (INIS)

    Draley, J.E.

    1976-01-01

    A general survey related to the corrosion of valve metals or film-forming metals. The way these metals corrode with some general examples is described. Valve metals form relatively perfect oxide films with little breakdown or leakage when anodized

  20. Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2000-01-01

    corrosion rates, when biofilm and corrosion products cover the steel surface. However, EIS might be used for detection of MIC. EN is a suitable technique to characterise the type of corrosion attack, but is unsuitable for corrosion rate estimation. The concentric electrodes galvanic probe arrangement......Abstract Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria, e.g. on pipelines buried in soil and on marine structures. MIC...... of carbon steel must be monitored on-line in order to provide an efficient protection and control the corrosion. A number of monitoring techniques is industrially used today, and the applicability and reliability of these for monitoring MIC is evaluated. Coupons and ER are recommended as necessary basic...

  1. Corrosion problems in PWR steam generators

    International Nuclear Information System (INIS)

    Weber, J.; Suery, P.

    1976-01-01

    Examinations on pulled steam generator tubes from the Swiss nuclear power plants Beznau I and II, together with some laboratory tests, may be summarized as follows: Corrosion problems in vertical U-tube steam generators with Alloy 600 as tube material are localized towards relatively narrow regions above the tube sheet where thermohydraulic conditions and, as a consequence thereof, chemical conditions are uncontrolled. Within these zones Alloy 600 is not sufficienthy resistent to caustic or phosphate attack (caustic stress corrosion cracking and general corrosion, resp.). The mechanisms of several corrosion phenomena are not fully understood. (orig.) [de

  2. The electrochemical corrosion of maraging steel in various media

    International Nuclear Information System (INIS)

    Iqbal, A.; Hussain, S.W.; Qamar, I.; Salam, I.

    1993-01-01

    Electrochemical corrosion behavior of maraging steel in various media has been studied using electrode kinetic measurements. The media used included IN H/sub 2/SO/sub 4/, IN HCl and artificial sea water, all at room temperature. The steel used was 350 grade of maraging steel and its corrosion behavior was studied in annealed as well as aged condition. In addition to the general behavior observed using potentiodynamic polarization, the corrosion rates were also evaluated using our own method known as Z TCorr . This method has been proved to be robust and accurate as compared to any other known method. The surfaces of corroded specimens were examined in an scanning electron microscope. The pitting observed in samples corroded by sea water was found to be associated with the inclusion present in the steel. Passive behavior was noted in IN H/sub 2/SO/sub 4/ but not IN HCl or artificial sea water. (author)

  3. On-line water chemistry monitoring for corrosion prevention in ageing nuclear power plants

    International Nuclear Information System (INIS)

    Aaltonen, P.; Jaernstroem, R.; Kvarnstroem, R.; Chanfreau, E.

    1991-01-01

    General corrosion and consequently radiation buildup in nuclear power plants are controlled by the selection of material and the chemical environment. In power plants useful information concerning the kinetics of chemical reactions can be obtained by using high temperature, high pressure measurements for pH, conductivity and electrochemical potentials (ECP) of construction materials or redox-potential. The rates of general or uniform corrosion of materials in contact with the primary coolant are quite low and do not compromise the integrity of the primary circuit. Chemistry control should be applied in the first hand to minimize the dissolution and the transport and subsequent deposition of activated corrosion products to out-of-core regions. A computerized monitoring system for high temperature high pressure pH and electrochemical potential (ECP) has been in continuous use at the Loviisa power plant since 1988. Special emphasis has been put on learning the effect of pH and ECP control during cooldown process in order to further reduce background radiation buildup. During the shutdown for refueling outage in summer 1989 the high temperature water chemistry parameters were monitored. In addition to the high temperature water chemistry parameters concentrations of dissolved corrosion products as well as the activities of the corrosion products were measured. In this paper the results obtained through simultaneous monitoring of water chemistry parameters and concentrations of dissolved corrosion products as well as the activity measurements are presented and discussed. (author)

  4. Slag corrosion of gamma aluminium oxynitride

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xidong; Li Wen Chao [Beijing Univ. of Science and Technology, BJ (China). Dept. of Physical Chemistry of Metals; Sichen Du; Seetharaman, S. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Materials Science and Technology

    2002-03-01

    Corrosion of {gamma}-aluminium oxynitride (AlON) by CaO-MgO-''FeO''-Al{sub 2}O{sub 3}-SiO{sub 2} melts corresponding to blast furnace slag was examined from 1693 to 1753 K under static and forced convection conditions. An intermediate layer was observed between the unreacted oxynitride and slag. After a certain time interval, the rate of the growth of this layer was found to be equal to the rate of the dissolution of the layer. Slag corrosion of AlON is a strongly thermally activated process, the overall activation energy being 1002 kJ/mol. The rate of corrosion was found to be significantly enhanced by the addition of ''FeO''. (orig.)

  5. Modelling the waterside corrosion of PWR fuel rods

    International Nuclear Information System (INIS)

    Abram, T.J.

    1997-01-01

    The mechanism of zirconium alloy cladding corrosion in PWRs is briefly reviewed, and an engineering corrosion model is proposed. The basic model is intended to produce a best-estimate fit to circumferentially-average oxide thickness measurements obtained from inter-span positions, way from the effects of structural or flow mixing grids. The model comprises an initial pre-transition weight gain expression which follows cubic rate kinetics. On reaching a critical oxide thickness, a transition to linear rate kinetics occurs. The post-transition corrosion rate includes a term which is dependent on fast neutron flux, and an Arrhenius thermal corrosion rate which has been fitted to isothermal ex-reactor data. This thermal corrosion rate is enhanced by the presence of lithium in the coolant, and by the concentration of hydrogen in the cladding. Different cladding materials are accounted for in the selection of the model constants, and results for standard Zircaloy-4, low tin (or ''optimized'') Zircaloy-4, and the Westinghouse advanced alloy ZIRLO TM are presented. A method of accounting for the effects of grids is described, and the application of the model within the ENIGMA-B and ZROX codes is discussed. (author). 35 refs, 6 figs, 3 tabs

  6. Engineering Task Plan for Fourth Generation Hanford Corrosion Monitoring System

    International Nuclear Information System (INIS)

    NORMAN, E.C.

    2000-01-01

    This Engineering Task Plan (ETP) describes the activities associated with the installation of cabinets containing corrosion monitoring equipment on tanks 241-AN-102 and 241-AN-107. The new cabinets (one per tank) will be installed adjacent to existing corrosion probes already installed in riser WST-RISER-016 on both tanks. The corrosion monitoring equipment to be installed utilizes the technique of electrochemical noise (EN) for monitoring waste tank corrosion. Typically, EN consists of low frequency (4 Hz) and small amplitude signals that are spontaneously generated by electrochemical reactions occurring at corroding or other surfaces. EN analysis is well suited for monitoring and identifying the onset of localized corrosion, and for measuring uniform corrosion rates. A typical EN based corrosion-monitoring system measures instantaneous fluctuations in corrosion current and potential between three nominally identical electrodes of the material of interest immersed in the environment of interest. Time-dependent fluctuations in corrosion current are described by electrochemical current noise, and time-dependent fluctuations of corrosion potential are described by electrochemical noise. The corrosion monitoring systems are designed to detect the onset of localized corrosion phenomena if tank conditions should change to allow these phenomena to occur. In addition to the EN technique, the systems also facilitate the use of the Linear Polarization Resistance (LPR) technique to collect uniform corrosion rate information. LPR measures the linearity at the origin of the polarization curve for overvoltages up to a few millivolts away from the rest potential or natural corrosion potential. The slope of the current vs. voltage plot gives information on uniform corrosion rates

  7. Corrosion and alteration of materials from the nuclear industry

    International Nuclear Information System (INIS)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Feron, D.; Guerin, Y.; Latge, C.; Limoge, Y.; Madic, C.; Santarini, G.; Seiler, J.M.; Vernaz, E.; Richet, C.

    2010-01-01

    The control of the corrosion phenomenon is of prime importance for the nuclear industry. The efficiency and the safety of facilities can be affected by this phenomenon. The nuclear industry has to face corrosion for a large variety of materials submitted to various environments. Metallic corrosion operates in the hot and aqueous environment of water reactors which represent the most common reactor type in the world. Progresses made in the control of the corrosion of the different components of these reactors allow to improve their safety. Corrosion is present in the facilities of the back-end of the fuel cycle as well (corrosion in acid environment in fuel reprocessing plants, corrosion of waste containers in disposal and storage facilities, etc). The future nuclear systems will widen even more the range of materials to be studied and the situations in which they will be placed (corrosion by liquid metals or by helium impurities). Very often, corrosion looks like a patchwork of particular cases in its description. The encountered corrosion problems and their study are presented in this book according to chapters representing the main sectors of the nuclear industry and classified with respect to their phenomenology. This monograph illustrates the researches in progress and presents some results of particular importance obtained recently. Content: 1 - Introduction: context, stakes and goals; definition of corrosion; a complex science; corrosion in the nuclear industry; 2 - corrosion in water reactors - phenomenology, mechanisms, remedies: A - uniform corrosion: mechanisms, uniform corrosion of fuel cladding, in-situ measurement of generalized corrosion rate by electrochemical methods, uniform corrosion of nickel alloys, characterization of the passive layer and growth mechanisms, the PACTOLE code - an integrating tool, influence of water chemistry on corrosion and contamination, radiolysis impact on uniform corrosion; B - stress corrosion: stress corrosion cracking

  8. Flow-induced corrosion of absorbable magnesium alloy: In-situ and real-time electrochemical study

    International Nuclear Information System (INIS)

    Wang, Juan; Jang, Yongseok; Wan, Guojiang; Giridharan, Venkataraman; Song, Guang-Ling; Xu, Zhigang; Koo, Youngmi; Qi, Pengkai; Sankar, Jagannathan; Huang, Nan; Yun, Yeoheung

    2016-01-01

    Highlights: • An in-situ and real-time electrochemical monitoring of flow-induced corrosion of Mg alloy is designed in a vascular bioreactor. • Effect of hydrodynamics on corrosion kinetics, types, rates and products is analyzed. • Flow accelerates mass and electron transfer, leading to an increase in uniform and localized corrosions. • Flow increases not only the thickness of uniform corrosion product layer, but the removal rate of localized corrosion products. • Electrochemical impedance spectroscopy and linear polarization-measured polarization resistances provide a consistent correlation to corrosion rate calculated by computed tomography. - Abstract: An in-situ and real-time electrochemical study in a vascular bioreactor was designed to analyze corrosion mechanism of magnesium alloy (MgZnCa) under mimetic hydrodynamic conditions. Effect of hydrodynamics on corrosion kinetics, types, rates and products was analyzed. Flow-induced shear stress (FISS) accelerated mass and electron transfer, leading to an increase in uniform and localized corrosions. FISS increased the thickness of uniform corrosion layer, but filiform corrosion decreased this layer resistance at high FISS conditions. FISS also increased the removal rate of localized corrosion products. Impedance-estimated and linear polarization-measured polarization resistances provided a consistent correlation to corrosion rate calculated by computed tomography.

  9. Correlation of Process Data and Electrochemical Noise to Assess Kraft Digester Corrosion: Kamloops Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, SJ

    2002-05-09

    Electrochemical noise (ECN) probes were deployed in a carbon steel continuous kraft digester at five locations roughly equi-spaced from top to bottom of the vessel. Current and potential noise, the temperature at each probe location, and the value of about 60 process parameters (flow rates, liquor chemistry, etc.) were monitored continuously for a period of one year. Historical vessel inspection data, including inspections accomplished immediately prior to and immediately following probe deployment, and post-test evaluation of the probe components were used to assess/compare corrosion indications from the probes with physical changes in wall thickness and corrosion patterns on the digester shell. The results indicate that furnish composition is a significant variable influencing digester corrosion, with increasing amounts of Douglas fir in the nominal furnish correlating directly with increased corrosion activity on the ECN probes. All five probes detected changes in furnish composition approximately simultaneously, indicating rapid chemical communication through the liquor, but the effect was strongest and persisted longest relatively high in the digester. The ECN probes also indicate significant corrosion activity occurred at each probe position during shutdown/restart transients. Little or no correlation between ECN probe corrosion activity and other operational variables was observed. Post-test evaluation of the probes confirmed general corrosion of a magnitude that closely agreed with corrosion current sums calculated for each probe over the exposure period and with historical average corrosion rates for the respective locations. Further, no pitting was observed on any of the electrodes, which is consistent with the ECN data, relevant polarization curves developed for steel in liquor removed from the digester, and the post-test inspection of the digester.

  10. FY2005 AND FY2006 CORROSION SURVEILLANCE RESULTS FOR L BASIN

    International Nuclear Information System (INIS)

    Vormelker, P.; Cynthia Foreman, C.

    2008-01-01

    This report documents the results of the L-Basin Corrosion Surveillance Program for the fiscal years 2005 and 2006. The water quality and basin conditions for the coupon immersion period are compared to the corrosion evaluation results from detailed metallurgical analysis of the coupons. Test coupons were removed from the basin on two occasions, March 29, 2005 and May 23, 2006, examined and photographed. Selected coupons were metallurgically characterized to evaluate the extent of general corrosion and pitting. Crystallographic and energy dispersive spectroscopy analysis were performed on a typical specimen, as-removed from the basin, to characterize the surface debris. Marked changes were noted in both the 2005 and 2006 specimens compared to previous years corrosion results. A new pitting incidence has occurred on the faces of the aluminum coupons compared to localized pitting at crevice regions only on specimens withdrawn in 2003 and 2004. The pitting incidence is attributed to sand filter fines that entered the basin on July 27, 2004 from an inadvertent backflush of the new sand filter. Pitting rate results show a trend of slowing down over time which is consistent with aluminum pit kinetics. Average pit growth rates were equal to or lower in all 2006 aluminum coupons than those removed in 2005. A trend line shows that pitting corrosion rates on Al1100, 6061, and 6063 coupons are slowing down since pit depth measurements were initiated in 2003. No impact to stored spent fuel is expected from the debris. The storage configuration of the majority of L-Basin spent fuel, in bundles, should provide a measure of isolation from debris settling in the basin

  11. Solutions of corrosion Problems in advanced Technologies

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Karlsson, Asger

    1999-01-01

    Austenitic and ferritic steels were exposed in the superheater area of a straw-fired CHP plant. The specimens were exposed for 1400 hours at 450-600°C. The rate of corrosion was assessed based on unattacked metal remaining. The corrosion products and course of corrosion for the various steel types...

  12. Corrosion of copper under Canadian nuclear fuel waste disposal conditions

    International Nuclear Information System (INIS)

    King, F.; Litke, C.D.

    1990-01-01

    The corrosion of copper was studied under Canadian nuclear fuel waste disposal conditions. The groundwater in a Canadian waste vault is expected to be saline, with chloride concentrations from 0.1 to 1.0 mol/l. The container would be packed in a sand/clay buffer, and the maximum temperature on the copper surface would be 100C; tests were performed up to 150C. Radiation fields will initially be around 500 rad/h, and conditions will be oxidizing. Sulfides may be present. The minimum design lifetime for the container is 500 years. Most work has been done on uniform corrosion, although pitting has been considered. It was found that the rate of uniform corrosion in aerated NaCl at room temperature is limited by the rate of the anodic reaction, which is controlled mainly by the rate of transport of dissolved metal species away from the copper surface. The rate of corrosion should become controlled by the transport of oxygen to the copper surface only at very low oxygen concentrations. In the presence of gamma radiation the corrosion rate may never become cathodically transport limited. In compacted buffer material, the corrosion rate appears to be limited by the rate of transport of copper species away from the corroding surface. The authors recommend that long-term predictions of container lifetime should be based on the known rate-determining step for the overall corrosion process. 8 refs

  13. Resistance to corrosion fatigue fracture in heat resistant steels and their welded joints

    International Nuclear Information System (INIS)

    Timofeev, B.T.; Fedorova, V.A.; Zvezdin, Yu.I.; Vajner, L.A.; Filatov, V.M.

    1987-01-01

    Experimental data on cyclic crack resistance of heat-resistant steels and their welded joints employed for production of the reactor bodies are for the first time generalized and systematized. The formula is suggested accounting for surface and inner defects to calculate the fatigue crack growth in the process of operation. This formula for surface defects regards also the effect of the corrosion factor. Mechanisms of the reactor water effect on the fatigue crack growth rate are considered as well as a combined effect of radiation and corrosive medium on this characteristic

  14. Correlation of the corrosion rates of steels in a straw fired boiler with the thermodynamically predicted trend of KOH(g) in the flue gases

    International Nuclear Information System (INIS)

    Blomberg, Tom

    2012-01-01

    The thermodynamic stability of KOH(g) in flue gases without sulfur and chlorine compounds was studied. Relatively good correlation of the thermodynamically predicted trend of KOH(g) in the flue gases and the literature data of the corrosion rates of different steels in a straw fired boiler was found. A discussion on a possible, physically reasonable mechanism is also presented. However, the causality of the found correlation requires further studies. Highlights: ► Corrosion rates in a straw boiler correlate with the predicted trend of KOH(g). ► KOH(g) impinging the surface may be an important factor in corrosion in straw fired boilers. ► The proposed mechanism may be relevant also to other biomass fuels that release potassium hydroxide during combustion.

  15. Available Prediction Methods for Corrosion under Insulation (CUI): A Review

    OpenAIRE

    Burhani Nurul Rawaida Ain; Muhammad Masdi; Ismail Mokhtar Che

    2014-01-01

    Corrosion under insulation (CUI) is an increasingly important issue for the piping in industries especially petrochemical and chemical plants due to its unexpected catastrophic disaster. Therefore, attention towards the maintenance and prediction of CUI occurrence, particularly in the corrosion rates, has grown in recent years. In this study, a literature review in determining the corrosion rates by using various prediction models and method of the corrosion occurrence between the external su...

  16. The corrosion of depleted uranium in terrestrial and marine environments

    International Nuclear Information System (INIS)

    Toque, C.; Milodowski, A.E.; Baker, A.C.

    2014-01-01

    Depleted Uranium alloyed with titanium is used in armour penetrating munitions that have been fired in a number of conflict zones and testing ranges including the UK ranges at Kirkcudbright and Eskmeals. The study presented here evaluates the corrosion of DU alloy cylinders in soil on these two UK ranges and in the adjacent marine environment of the Solway Firth. The estimated mean initial corrosion rates and times for complete corrosion range from 0.13 to 1.9 g cm −2 y −1 and 2.5–48 years respectively depending on the particular physical and geochemical environment. The marine environment at the experimental site was very turbulent. This may have caused the scouring of corrosion products and given rise to a different geochemical environment from that which could be easily duplicated in laboratory experiments. The rate of mass loss was found to vary through time in one soil environment and this is hypothesised to be due to pitting increasing the surface area, followed by a build up of corrosion products inhibiting further corrosion. This indicates that early time measurements of mass loss or corrosion rate may be poor indicators of late time corrosion behaviour, potentially giving rise to incorrect estimates of time to complete corrosion. The DU alloy placed in apparently the same geochemical environment, for the same period of time, can experience very different amounts of corrosion and mass loss, indicating that even small variations in the corrosion environment can have a significant effect. These effects are more significant than other experimental errors and variations in initial surface area. -- Highlights: ► In-situ experiments were conducted to evaluate corrosion rates of depleted uranium. ► Samples were corroded in marine sediments, open sea water and two terrestrial soils. ► The depleted uranium titanium alloy corroded fastest in the marine environments. ► Rates of mass loss can vary through time if corrosion products are not removed.

  17. Modeling flow-accelerated corrosion in CANDU

    International Nuclear Information System (INIS)

    Burrill, K.A.

    1995-11-01

    Flow-accelerated corrosion (FAC) of large areas of carbon steel in various circuits of CANDU plants generates significant quantities of corrosion products. As well, the relatively rapid corrosion rate can lead to operating difficulties with some components. Three areas in the plant are identified and a simple model of mass-transfer controlled corrosion of the carbon steel is derived and applied to these areas. The areas and the significant finding for each are given below: A number of lines in the feedwater system generate sludge by FAC, which causes steam generator fouling. Prediction of the steady-state iron concentration at the feedtrain outlet compares well with measured values. Carbon steel outlet feeders connect the reactor core with the steam generators. The feeder surface provides the dissolved iron through FAC, which fouls the primary side of the steam generator tubes, and can lead to derating of the plant and difficulty in tube inspection. Segmented carbon steel divider plates in the steam generator primary head leak at an increasing rate with time. The leakage rate is strongly dependent on the tightness of the overlapping joints. which undergo FAC at an increasing rate with time. (author) 7 refs., 5 tabs., 6 figs

  18. Generalized corrosion of nickel base alloys in high temperature aqueous media: a contribution to the comprehension of the mechanisms

    International Nuclear Information System (INIS)

    Marchetti-Sillans, L.

    2007-11-01

    In France, nickel base alloys, such as alloy 600 and alloy 690, are the materials constituting steam generators (SG) tubes of pressurized water reactors (PWR). The generalized corrosion resulting from the interaction between these alloys and the PWR primary media leads, on the one hand, to the formation of a thin protective oxide scale (∼ 10 nm), and on the other hand, to the release of cations in the primary circuit, which entails an increase of the global radioactivity of this circuit. The goal of this work is to supply some new comprehension elements about nickel base alloys corrosion phenomena in PWR primary media, taking up with underlining the effects of metallurgical and physico-chemical parameters on the nature and the growth mechanisms of the protective oxide scale. In this context, the passive film formed during the exposition of alloys 600, 690 and Ni-30Cr, in conditions simulating the PWR primary media, has been analyzed by a set of characterization techniques (SEM, TEM, PEC and MPEC, XPS). The coupling of these methods leads to a fine description, in terms of nature and structure, of the multilayered oxide forming during the exposition of nickel base alloys in primary media. Thus, the protective part of the oxide scale is composed of a continuous layer of iron and nickel mixed chromite, and Cr 2 O 3 nodules dispersed at the alloy / mixed chromite interface. The study of protective scale growth mechanisms by tracers and markers experiments reveals that the formation of the mixed chromite is the consequence of an anionic mechanism, resulting from short circuits like grain boundaries diffusion. Besides, the impact of alloy surface defects has also been studied, underlining a double effect of this parameter, which influences the short circuits diffusion density in oxide and the formation rate of Cr 2 O 3 nodules. The sum of these results leads to suggest a description of the nickel base alloys corrosion mechanisms in PWR primary media and to tackle some

  19. Importance of temperature, pH, and boric acid concentration on rates of hydrogen production from galvanized steel corrosion

    International Nuclear Information System (INIS)

    Loyola, V.M.

    1982-01-01

    One of the known sources of hydrogen gas within a nuclear plant containment building during a LOCA is the high temperature corrosion of galvanized steel yielding hydrogen gas. The importance of this source of hydrogen will vary depending on the severity of the accident. In an accident which resulted in core degradation, for example, the major source of hydrogen would probably be the metal-water reaction of the zircaloy cladding, and the corrosion of galvanized steel would then become a relatively minor source of hydrogen. However, in an accident in which core degradation is avoided or limited to minor damage, the corrosion of galvanized steel, and presumably of other materials as well, would then become a major contributor to the buildup of hydrogen within containment. The purpose of this paper is to present the overall effects of temperature, pH, and boric acid concentration on the rate of hydrogen generation over a broad range of each parameter

  20. Corrosion assessment of dry fuel storage containers

    Energy Technology Data Exchange (ETDEWEB)

    Graves, C.E.

    1994-09-01

    The structural stability as a function of expected corrosion degradation of 75 dry fuel storage containers located in the 200 Area Low-Level Waste Burial Grounds was evaluated. These containers include 22 concrete burial containers, 13 55-gal (208-l) drums, and 40 Experimental Breeder Reactor II (EBR-II) transport/storage casks. All containers are buried beneath at least 48 in. of soil and a heavy plastic tarp with the exception of 35 of the EBR-II casks which are exposed to atmosphere. A literature review revealed that little general corrosion is expected and pitting corrosion of the carbon steel used as the exterior shell for all containers (with the exception of the concrete containers) will occur at a maximum rate of 3.5 mil/yr. Penetration from pitting of the exterior shell of the 208-l drums and EBR-II casks is calculated to occur after 18 and 71 years of burial, respectively. The internal construction beneath the shell would be expected to preclude containment breach, however, for the drums and casks. The estimates for structural failure of the external shells, large-scale shell deterioration due to corrosion, are considerably longer, 39 and 150 years respectively for the drums and casks. The concrete burial containers are expected to withstand a service life of 50 years.

  1. Localized corrosion and stress corrosion cracking of candidate materials for high-level radioactive waste disposal containers in the US: A literature review

    International Nuclear Information System (INIS)

    Farmer, J.C.; McCright, R.D.

    1988-01-01

    Container materials may undergo any of several modes of degradation in this environment, including: undesirable phase transformations due to lack of phase stability; atmospheric oxidation; general aqueous corrosion; pitting; crevice corrosion; intergranular stress corrosion cracking (IGSCC); and transgranular stress corrosion cracking (TGSCC). This paper is an analysis of data from the literature relevant to the pitting, crevice corrosion, and stress corrosion cracking (SCC) of these alloys. Though all three austenitic candidates have demonstrated pitting and crevice corrosion in chloride-containing environments, Alloy 825 has the greatest resistance to these forms of localized attack. Both types 304L and 316L stainless steels are susceptible to SCC in acidic chloride media. In contrast, SCC has not been documented for Alloy 825 under comparable conditions. Gamma irradiation has been found to enhance SCC of Types 304 and 304L stainless steels, but it has no detectable effect on the resistance of Alloy 825 to SCC. Furthermore, while microbiologically induced corrosion effects have been observed for 300-series stainless steels, nickel-based alloys such as Alloy 825 seem to be immune to such problems. Of the copper-based alloys, CDA 715 has the best overall resistance to localized attack. Its resistance to pitting is comparable to that of CDA 613 and superior to that of CDA 102. Observed rates of dealloying in CDA 715 are less than those observed in CDA 613 by orders of magnitude. The resistance of CDA 715 to SCC in tarnishing ammonical environments is comparable to that of CDA 102 and superior to that of CDA 613. Its resistance to SCC in nontarnishing ammonical environments is comparable to that of CDA 613 and superior to that of CDA 102. 22 refs., 8 figs., 4 tabs

  2. The corrosion behaviour of carbon steel in Portland cement

    International Nuclear Information System (INIS)

    Grauer, R.

    1988-01-01

    The production of hydrogen can cause problems in a repository for low- and intermediate-level waste. Since gas production is mainly due to the corrosion of carbon steel, it is important to have as reliable data as possible on the corrosion rate of steel in anaerobic cement. A review of the literature shows that the corrosion current densities lie in the range 0.01 to 0.1 μA/cm 2 (corresponding to corrosion rates between 0.1 and 1.2 μm/a). This implies hydrogen production rates between 0.022 and 0.22 mol/(m 2 .a). Corrosion rates of this order of magnitude are technically irrelevant, with the result that there is very little interest in determining them accurately. Furthermore, their determination entails problems of measurement technique. Given the current situation, it would appear somewhat risky to accept the lower value for hydrogen production as proven. Proposals are made for experiments which would reduce this element of uncertainty. (author) 10 figs., 35 refs

  3. Corrosion of beryllium oxide

    International Nuclear Information System (INIS)

    Elston, J.; Caillat, R.

    1958-01-01

    Data are reported on the volatilization rate of beryllium oxide in moist air depending on temperature and water vapour concentration. They are concerned with powder samples or sintered shapes of various densities. For sintered samples, the volatilization rate is very low under the following conditions: - temperature: 1300 deg. C, - water vapour concentration in moist air: 25 g/m 3 , - flow rate: 12 I/hour corresponding to a speed of 40 m/hour on the surface of the sample. For calcinated powders (1300 deg. C), grain growth has been observed under a stream of moist air at 1100 deg. C. For instance, grain size changes from 0,5 to at least 2 microns after 500 hours of exposure at this temperature. Furthermore, results data are reported on corrosion of sintered beryllium oxide in pressurized water. At 250 deg. C, under a pressure of 40 kg/cm 2 water is very slightly corrosive; however, internal strains are revealed. Finally, some features on the corrosion in liquid sodium are exposed. (author) [fr

  4. Corrosion and Materials Performance in biomass fired and co-fired power plants

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Larsen, OH; Biede, O

    2003-01-01

    not previously encountered in coal-fired power plants. The type of corrosion attack can be directly ascribed to the composition of the deposit and the metal surface temperature. In woodchip boilers, a similar corrosion rate and corrosion mechanism has on some occasions been observed. Co-firing of straw (10...... and 20% energy basis) with coal has shown corrosion rates lower than those in straw-fired plants. With both 10 and 20% straw, no chlorine corrosion was seen. This paper will describe the results from in situ investigations undertaken in Denmark on high temperature corrosion in biomass fired plants....... Results from 100% straw-firing, woodchip and co-firing of straw with coal will be reported. The corrosion mechanisms observed are summarized and the corrosion rates for 18-8 type stainless steels are compared....

  5. Hot corrosion behaviour of austenitic steel-303 in molten chloride and carbonate salts

    International Nuclear Information System (INIS)

    Mohd Misbahul Amin; Shamsul Baharin Jamaludin; Che Mohd Ruzaidi Ghazali; Khairel Rafezi Ahmad

    2007-01-01

    The investigations are presented for the hot corrosion behaviors of Austenitic Steel-303, under influence of the molten chloride and carbonate salts viz KCl and K 2 CO 3 , oxidised at 1123 K for the period of 60 hour at atmospheric condition. The oxidation kinetic are effect of molten chloride and carbonate salts deposition on the oxidation rate were determined. The susceptibility to suffer a deleterious attack on the alloy by internal corrosion increases with increasing the time. In general, the corrosion resistance austenitic steel-303 in molten carbonate salts is much higher than chloride melt, being an active oxidizing agent providing oxygen during fluxing reaction. However, due to profuse evolution of CO/ CO 2 heavy mass losses are observed during corrosion and scales are porous. The test included mass change monitoring and surface layers were examined by means of scanning electron microscopy (SEM) studies. (author)

  6. Corrosion behavior of copper-base materials in a gamma-irradiated environment; Final report

    Energy Technology Data Exchange (ETDEWEB)

    Yunker, W.H.

    1990-09-01

    Specimens of three copper-base materials were corrosion tested with gamma radiation exposure dose rates in the range of 1.9 {times} 10{sup 3} R/h to 4.9 {times} 10{sup 5} R/h. Materials used were pure copper, 7% aluminum bronze and 30% copper-nickel. Exposures were performed in moist air at 95{degree}C and 150{degree}C and liquid Well J-13 water at 95{degree}C, for periods of up to 16 months. Specimens were monitored for uniform weight loss, stress-induced corrosion and crevice corrosion. Specimen surfaces were examined visually at 10X magnification as well as by Auger Electron Spectroscopy, x-ray diffraction and metallography. Corrosion was not severe in any of the cases. In general, the pure copper was corroded most uniformly while the copper-nickel was the least reproducibly corroded. 11 refs, 40 figs., 15 tabs.

  7. Corrosion and impedance studies on magnesium alloy in oxalate solution

    International Nuclear Information System (INIS)

    Fekry, A.M.; Tammam, Riham H.

    2011-01-01

    Highlights: → Corrosion behavior of AZ91E alloy was investigated in 0.1 M Na 2 C 2 O 4 containing different additives as Br - , Cl - or Silicate. → The corrosion rate of 0.1 M oxalate solution containing silicate ion is lower than the blank (0.1 M Na 2 C 2 O 4 ). This was confirmed by scanning electron microscope (SEM) observations. → For the other added ions Br - or Cl - , the corrosion rate is higher than the blank. - Abstract: Corrosion behavior of AZ91E alloy was investigated in oxalate solution using potentiodynamic polarization and electrochemical impedance measurements (EIS). The effect of oxalate concentration was studied, where the corrosion rate increases with increasing oxalate concentration. The effect of added ions (Br - , Cl - or SiO 3 2- ) on the electrochemical behavior of magnesium alloy in 0.1 M Na 2 C 2 O 4 solution at 298 K, was investigated. It was found that the corrosion rate of 0.1 M oxalate solution containing silicate ion is lower than the blank (0.1 M Na 2 C 2 O 4 ). This was confirmed by scanning electron microscope (SEM) observations. However, for the other added ions Br - or Cl - , the corrosion rate is higher than the blank.

  8. Microbiological corrosion of ASTM SA105 carbon steel pipe for industrial fire water usage

    Science.gov (United States)

    Chidambaram, S.; Ashok, K.; Karthik, V.; Venkatakrishnan, P. G.

    2018-02-01

    The large number of metallic systems developed for last few decades against both general uniform corrosion and localized corrosion. Among all microbiological induced corrosion (MIC) is attractive, multidisciplinary and complex in nature. Many chemical processing industries utilizes fresh water for fire service to nullify major/minor fire. One such fire water service line pipe attacked by micro-organisms leads to leakage which is industrially important from safety point of view. Also large numbers of leakage reported in similar fire water service of nearby food processing plant, paper & pulp plant, steel plant, electricity board etc…In present investigation one such industrial fire water service line failure analysis of carbon steel line pipe was analyzed to determine the cause of failure. The water sample subjected to various chemical and bacterial analyses. Turbidity, pH, calcium hardness, free chlorine, oxidation reduction potential, fungi, yeasts, sulphide reducing bacteria (SRB) and total bacteria (TB) were measured on water sample analysis. The corrosion rate was measured on steel samples and corrosion coupon measurements were installed in fire water for validating non flow assisted localized corrosion. The sulphide reducing bacteria (SRB) presents in fire water causes a localized micro biological corrosion attack of line pipe.

  9. Biotribocorrosion-an appraisal of the time dependence of wear and corrosion interactions: I. The role of corrosion

    International Nuclear Information System (INIS)

    Yan, Y; Neville, A; Dowson, D

    2006-01-01

    With the increasing interest in metal-on-metal (MoM) joint implants, studies have been focused on their wear and corrosion behaviour. Integrated electrochemical tests have been conducted and are reported in this paper. The corrosion, wear and wear-corrosion behaviour for three materials (high carbon CoCrMo, low carbon CoCrMo and UNS S31603) have been discussed. Corrosion effects on the overall performance for the three materials are analysed. Two distinct regimes have been found for the three materials: (a) the running-in regime and (b) the steady state regime, in line with other research. Even in the steady state regime, 20%-30% of the material degradation can be attributed to corrosion-related damage. High carbon CoCrMo showed excellent corrosion, wear and corrosion-wear resistance and therefore it delivered the best overall performance in terms of a lower wear rate, a lower friction coefficient and a higher resistance to corrosion

  10. Physical-chemical model for the mechanism of glass corrosion with particular consideration of simulated radioactive waste glasses

    International Nuclear Information System (INIS)

    Grambow, B.

    1985-01-01

    A physical-chemical model for the mechanism of glass corrosion is described. This model can be used for predicting, interpreting, and extrapolating experimental results. In static leaching tests the rate of corrosion generally decreases with time. Some authors assume that the surface layer, which grows during the course of the reaction, protects the underlying glass from further attack by the aqueous phase. Other authors assume that the saturation effects in solution are responsible for reducing the rate of the reaction. It is demonstrated within the scope of this work that examples can be found for both concepts; however, transport processes in the surface layer and/or in solution can be excluded as rate-determining processes within a majority of the examined cases. The location of the corrosion reaction is the boundary surface between the surface layer and the not yet attacked glass (transition zone)

  11. General considerations on the oxide fuel-cladding chemical interaction

    International Nuclear Information System (INIS)

    Pascard, R.

    1977-01-01

    Since the very first experimental irradiations in thermal reactors, performed in view of the future Rapsodie fuel general study, corrosion cladding anomalies were observed. After 10 years of Rapsodie and more than two years of Phenix, performance brought definite confirmation of the chemical reactions between the irradiated fuel and cladding. That is the reason for which the fuel designers express an urgent need for determining the corrosion rates. Semi-empirical laws and mechanisms describing corrosion processes are proposed. Erratic conditions for appearance of the oxide-cladding corrosion are stressed upon. Obviously such a problem can be fully appreciated only by a statistical approach based on a large number of observations on the true LMFBR fuel pins

  12. The influence of yttrium (Y) on the corrosion of Mg-Y binary alloys

    International Nuclear Information System (INIS)

    Liu Ming; Schmutz, Patrik; Uggowitzer, Peter J.; Song Guangling; Atrens, Andrej

    2010-01-01

    Research highlights: → The Y-intermetallic can accelerate corrosion and Y can increase the protectiveness of the surface layer. → In 0.1 M NaCl, the corrosion rate of Mg-Y alloys increased with increasing Y due to the Y intermetallic. → In 0.1 M NaCl, there was filiform corrosion. → In 0.1 M Na 2 SO 4 , the corrosion rate of Mg-Y alloys decreased with increasing Y in the range 3-7%Y. → Hydrogen evolution was observed from particular parts of the alloy surface. - Abstract: Corrosion of Mg-Y alloys was studied using electrochemical evaluations, immersion tests and direct observations. There were two important effects. In 0.1 M NaCl, the corrosion rate increased with increasing Y content due to increasing amounts of the Y-containing intermetallic. In 0.1 M Na 2 SO 4 , the corrosion rate decreased with increasing Y content above 3%, attributed to a more protective surface film, despite the intermetallic. The corrosion rate evaluated by electrochemical impedance spectroscopy was somewhat smaller than that evaluated from H evolution as expected from the Mg corrosion mechanism. A mechanism is proposed for filiform corrosion. Direct in situ corrosion observations revealed that a predominant feature was hydrogen evolution from particular parts of the alloy surface.

  13. Corrosion Characteristics and Kinetics of Zircaloys and Aluminium Alloys

    International Nuclear Information System (INIS)

    Sugondo; Chaidir, A

    1998-01-01

    Corrosion rate characterization of cladding materials has been done by dynamic method. The materials are zircaloy-2,zircaloy-4,AIMg2,and AIMgSi.The zircaloy alloys are characterized in the electrolytes of boric ion,iodide ion,lithium ion and cesium ion with a pH variation.The aluminum alloys are characterized in the cooling water of RSG-GAS reactor in different temperatures and Ph values .The results, show that corrosion product of iodine on zircaloy is not passivated, meanwhile the corrosion product of cesium undergoes passivation. However, the deposited substance in the surface of the specimens as indicated using WDX-SEM shows the same deposition rate.it is concluded therefore that iodine is diffused into the materials without getting resistance from the deposited substances on the surface. The effect of pH to corrosion rate of iodine on the zircaloy fluctuates meanwhile the cesium has the minimum corrosion rate at pH 7.5 At the concentration of 0.1 gram/1,cesium ion is more reactive than iodine but at higher concentration the reactivity becomes competitive . Furthermore , the interaction between zircaloy and boric ion at concentration of 300 ppm and lithium ion at 10 ppm shows an outstanding corrosion rate, i.e. 0.1 mpy. if both substances are mixed then the corrosion rate decreases drastically in the order of 10 -2 mpy.The reason of such a decrease may be due to the formation of complexes of boron lithium on the electrode surface. The arrhenius activation energies for such reaction have been found to be 37629.322 joule/mole 0 K for Al Mg 2 and 41609.822 joule /mole 0 K for AIMgSi ,respectively. This underlies the argument that AI Mg 2 is more reactive than AI Mg Si besides , AI Mg 2 is more reactive under acid condition meanwhile AI Mg Si more reactive under basic condition. Both alloys over come the minimum corrosion rate at the pH in between 4.7 to 7.5 and the level of the corrosion rate in the pH interval was outstanding

  14. Corrosion behavior of sensitized duplex stainless steel.

    Science.gov (United States)

    Torres, F J; Panyayong, W; Rogers, W; Velasquez-Plata, D; Oshida, Y; Moore, B K

    1998-01-01

    The present work investigates the corrosion behavior of 2205 duplex stainless steel in 0.9% NaCl solution after various heat-treatments, and compares it to that of 316L austenitic stainless steel. Both stainless steels were heat-treated at 500, 650, and 800 degrees C in air for 1 h, followed by furnace cooling. Each heat-treated sample was examined for their microstructures and Vickers micro-hardness, and subjected to the X-ray diffraction for the phase identification. Using potentiostatic polarization method, each heat-treated sample was corrosion-tested in 37 degrees C 0.9% NaCl solution to estimate its corrosion rate. It was found that simulated sensitization showed an adverse influence on both steels, indicating that corrosion rates increased by increasing the sensitization temperatures.

  15. Protecting solar collector systems from corrosion

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The main cause of the reduced life of a solar heating system is corrosion of the exterior parts and the internal components. This report outlines ways of reducing the cost of solar heating by reducing the corrosion in solar heating systems, and hence increasing the system's service life. Mechanisms for corrosion are discussed: these include galvanic corrosion and crevice corrosion. Means of minimizing corrosion at the design stage are then described. Such methods, when designing the solar collector, involve ensuring proper drainage of exterior water; eliminating situations where moisture, dirt and pollutants may collect; preventing condensation inside the collector; using proper gaskets and sealants at appropriate places; and selecting optimum materials and coatings. Interior corrosion can be minimized at the design stage by choosing a good heat transfer fluid and corrosion inhibitor, in the case of systems where liquids are used; ensuring a low enough flow rate to avoid erosion; designing the system to avoid crevices; and avoiding situations where galvanic corrosion could occur. Other procedures are given for minimizing corrosion in the construction and operation of solar heating systems. 7 figs., 7 tabs.

  16. Intergranular attack observed in radiation-enhanced corrosion of mild steel

    International Nuclear Information System (INIS)

    Reda, R.J.; Kelly, J.L.; Harna, S.L.A.

    1988-01-01

    Experiments were conducted to determine the effects of gamma radiation on the corrosion of AISI 1018 mild steel in deaerated brine solutions of various sodium, magnesium, and chloride ion concentrations. Immersed metal specimens were irradiated at an exposure rate of 3 x 10/sup 5/ R/h (0.3 MR/h) for up to 1250 h at a temperature of --25 C. The corrosion rates of the irradiated specimens were found to be roughly a factor of 10 greater than the rates for the non-irradiated specimens. The radiation-enhanced corrosion rate was also found to have increased with the chloride concentration. Electron micrographs revealed that the surface morphology of the specimens exposed to irradiated brines differed greatly from the non-irradiated specimens. The non-irradiated specimens had undergone uniform corrosion, while the irradiated specimens exhibited intergranular corrosion (IGC), a phenomenon not yet observed in mild steel. An explanation for this observation is offered in terms of the relative rates of formation and recombination of radiolytic species

  17. The Effects of Alloy Chemistry on Localized Corrosion of Austenitic Stainless Steels

    Science.gov (United States)

    Sapiro, David O.

    This study investigated localized corrosion behavior of austenitic stainless steels under stressed and unstressed conditions, as well as corrosion of metallic thin films. While austenitic stainless steels are widely used in corrosive environments, they are vulnerable to pitting and stress corrosion cracking (SCC), particularly in chloride-containing environments. The corrosion resistance of austenitic stainless steels is closely tied to the alloying elements chromium, nickel, and molybdenum. Polarization curves were measured for five commercially available austenitic stainless steels of varying chromium, nickel, and molybdenum content in 3.5 wt.% and 25 wt.% NaCl solutions. The alloys were also tested in tension at slow strain rates in air and in a chloride environment under different polarization conditions to explore the relationship between the extent of pitting corrosion and SCC over a range of alloy content and environment. The influence of alloy composition on corrosion resistance was found to be consistent with the pitting resistance equivalent number (PREN) under some conditions, but there were also conditions under which the model did not hold for certain commercial alloy compositions. Monotonic loading was used to generate SCC in in 300 series stainless steels, and it was possible to control the failure mode through adjusting environmental and polarization conditions. Metallic thin film systems of thickness 10-200 nm are being investigated for use as corrosion sensors and protective coatings, however the corrosion properties of ferrous thin films have not been widely studied. The effects of film thickness and substrate conductivity were examined using potentiodynamic polarization and scanning vibrating electrode technique (SVET) on iron thin films. Thicker films undergo more corrosion than thinner films in the same environment, though the corrosion mechanism is the same. Conductive substrates encourage general corrosion, similar to that of bulk iron

  18. A computation model for the corrosion resistance of nanocrystalline zirconium metal

    International Nuclear Information System (INIS)

    Zhang Xiyan; Shi Minghua; Liu Nianfu; Wei Yiming; Li Cong; Qiu Shaoyu; Zhang Qiang; Zhang Pengcheng

    2007-01-01

    In this paper a computation model of corrosion rate-grain size of nanocrystalline and ultra-fine zirconium has been presented. The model is based on the Wagner's theory and the electron theory of solids. The conductivity, electronic mean free path and grain size of metal were considered. By this model, the corrosion rate of zirconium metal under different temperature was computed. The results show that the corrosion weight gain and rate constant of nanocrystalline zirconium is lower than that of zirconium with coarse grain size. And the corrosion rate constant and weight gain of nanocrystalline zirconium metal decrease with the decrease of grain size. So the refinement of grain size can remarkably improve the corrosion resistance of zirconium metal. (authors)

  19. In vitro corrosion of magnesium alloy AZ31 — a synergetic influence of glucose and Tris

    Science.gov (United States)

    Li, Ling-Yu; Liu, Bin; Zeng, Rong-Chang; Li, Shuo-Qi; Zhang, Fen; Zou, Yu-Hong; Jiang, Hongwei George; Chen, Xiao-Bo; Guan, Shao-Kang; Liu, Qing-Yun

    2018-05-01

    Biodegradable Mg alloys have generated great interest for biomedical applications. Accurate predictions of in vivo degradation of Mg alloys through cost-effective in vivo evaluations require the latter to be conducted in an environment close to that of physiological scenarios. However, the roles of glucose and buffering agents in regulating the in vivo degradation performance of Mg alloys has not been elucidated. Herein, degradation behavior of AZ31 alloy is investigated by hydrogen evolution measurements, pH monitoring and electrochemical tests. Results indicate that glucose plays a content-dependent role in degradation of AZ31 alloy in buffer-free saline solution. The presence of a low concentration of glucose, i.e. 1.0 g/L, decreases the corrosion rate of Mg alloy AZ31, whereas the presence of 2.0 and 3.0 g/L glucose accelerates the corrosion rate during long term immersion in saline solution. In terms of Tris-buffered saline solution, the addition of glucose increases pH value and promotes pitting corrosion or general corrosion of AZ31 alloy. This study provides a novel perspective to understand the bio-corrosion of Mg alloys in buffering agents and glucose containing solutions.

  20. On-line electrochemical monitoring of microbially influenced corrosion

    International Nuclear Information System (INIS)

    Dowling, N.J.E.; Stansbury, E.E.; White, D.C.; Borenstein, S.W.; Danko, J.C.

    1989-01-01

    Newly emerging electrochemical measurement techniques can provide on-line, non-destructive monitoring of the average corrosion rate and indications of localized pitting corrosion together with insight into fundamental electrochemical mechanisms responsible for the corrosion process. This information is relevant to evaluating, monitoring, understanding and controlling microbially influenced corrosion (MIC). MIC of coupons exposed in sidestream devices on site or in laboratory-based experiments, where the corrosion response is accelerated by exposure to active consortia of microbes recovered from specific sites, can be utilized to evaluate mitigation strategies. The average corrosion rates can be determined by small amplitude cyclic voltametry (SACV), and AC impedance spectroscopy (EIS). EIS can also give insight into the mechanisms of the MIC and indications of localized corrosion. Pitting corrosion can be detected non-destructively with open circuit potential monitoring (OCP). OCP also responds to bacterial biofilm activities such as oxygen depletion and other electrochemical activities. Utilizing these methods, accelerated tests can be designed to direct the selection of materials, surface treatments of materials, and welding filler materials, as well as the optimization of chemical and mechanical countermeasures with the microbial consortia recovered and characterized from the specific sites of interest

  1. Corrosion resistance of zirconium: general mechanisms, behaviour in nitric acid

    International Nuclear Information System (INIS)

    Pinard Legry, G.

    1990-01-01

    Corrosion resistance of zirconium results from the strong affinity of this metal for oxygen; as a result a thin protective oxide film is spontaneously formed in air or aqueous media, its thickness and properties depending on the physicochemical conditions at the interface. This film passivates the underlying metal but obviously if the passive film is partially or completely removed, localised or generalised corrosion phenomena will occur. In nitric acid, this depassivation may be chemical (fluorides) or mechanical (straining, creep, fretting). In these cases it is useful to determine the physicochemical conditions (concentration, temperature, potential, stress) which will have to be observed to use safely zirconium and its alloys in nitric acid solutions [fr

  2. Corrosion resistance of zirconium in nitric acid

    International Nuclear Information System (INIS)

    Kajimura, H.; Morikawa, H.; Nagano, H.

    1987-01-01

    Slow strain rate tests are effected on zirconium in boiling nitric acid to study the influence of nitric acid concentration, of oxidizing ions (Cr and Ce) and of electric potential. Corrosion resistance is excellent and stress corrosion cracking occurs only for severe conditions: 350 mV over electric potential for corrosion with nitric acid concentration of 40 % [fr

  3. The aluminum chemistry and corrosion in alkaline solutions

    International Nuclear Information System (INIS)

    Zhang Jinsuo; Klasky, Marc; Letellier, Bruce C.

    2009-01-01

    Aluminum-alkaline solution systems are very common in engineering applications including nuclear engineering. Consequently, a thorough knowledge of the chemistry of aluminum and susceptibility to corrosion in alkaline solutions is reviewed. The aluminum corrosion mechanism and corrosion rate are examined based on current experimental data. A review of the phase transitions with aging time and change of environment is also performed. Particular attention is given to effect of organic and inorganic ions. As an example, the effect of boron is examined in detail because of the application in nuclear reactor power systems. Methods on how to reduce the corrosion rate of aluminum in alkaline solutions are also highlighted

  4. Modelling the waterside corrosion of PWR fuel rods

    Energy Technology Data Exchange (ETDEWEB)

    Abram, T J [Fuel Engineering Dept., British Nuclear Fuels plc, Salwick, Preston (United Kingdom)

    1997-08-01

    The mechanism of zirconium alloy cladding corrosion in PWRs is briefly reviewed, and an engineering corrosion model is proposed. The basic model is intended to produce a best-estimate fit to circumferentially-average oxide thickness measurements obtained from inter-span positions, way from the effects of structural or flow mixing grids. The model comprises an initial pre-transition weight gain expression which follows cubic rate kinetics. On reaching a critical oxide thickness, a transition to linear rate kinetics occurs. The post-transition corrosion rate includes a term which is dependent on fast neutron flux, and an Arrhenius thermal corrosion rate which has been fitted to isothermal ex-reactor data. This thermal corrosion rate is enhanced by the presence of lithium in the coolant, and by the concentration of hydrogen in the cladding. Different cladding materials are accounted for in the selection of the model constants, and results for standard Zircaloy-4, low tin (or ``optimized``) Zircaloy-4, and the Westinghouse advanced alloy ZIRLO{sup TM} are presented. A method of accounting for the effects of grids is described, and the application of the model within the ENIGMA-B and ZROX codes is discussed. (author). 35 refs, 6 figs, 3 tabs.

  5. Corrosion behavior of 2205 duplex stainless steel.

    Science.gov (United States)

    Platt, J A; Guzman, A; Zuccari, A; Thornburg, D W; Rhodes, B F; Oshida, Y; Moore, B K

    1997-07-01

    The corrosion of 2205 duplex stainless steel was compared with that of AISI type 316L stainless steel. The 2205 stainless steel is a potential orthodontic bracket material with low nickel content (4 to 6 wt%), whereas the 316L stainless steel (nickel content: 10 to 14 wt%) is a currently used bracket material. Both stainless steels were subjected to electrochemical and immersion (crevice) corrosion tests in 37 degrees C, 0.9 wt% sodium chloride solution. Electrochemical testing indicates that 2205 has a longer passivation range than 316L. The corrosion rate of 2205 was 0.416 MPY (milli-inch per year), whereas 316L exhibited 0.647 MPY. When 2205 was coupled to 316L with equal surface area ratio, the corrosion rate of 2205 reduced to 0.260 MPY, indicating that 316L stainless steel behaved like a sacrificial anode. When 316L is coupled with NiTi, TMA, or stainless steel arch wire and was subjected to the immersion corrosion test, it was found that 316L suffered from crevice corrosion. On the other hand, 2205 stainless steel did not show any localized crevice corrosion, although the surface of 2205 was covered with corrosion products, formed when coupled to NiTi and stainless steel wires. This study indicates that considering corrosion resistance, 2205 duplex stainless steel is an improved alternative to 316L for orthodontic bracket fabrication when used in conjunction with titanium, its alloys, or stainless steel arch wires.

  6. Corrosion behavior of carbon steel in wet Na-bentonite medium

    International Nuclear Information System (INIS)

    Yeon, Jae-Won; Ha, Young-Kyoung; Choi, In-Kyu; Chun, Kwan-Sik

    1996-01-01

    Corrosion behaviors of carbon steel in wet Na-bentonite medium were studied. Corrosion rate of carbon steel in wet bentonite was measured to be 20 μm/yr at 25 deg C using the AC impedance technique. This value is agreed with that obtained by weight loss at 40 deg C for 1 year. The effect of bicarbonate ion on the corrosion of carbon steel in wet bentonite was also evaluated. The carbon steels in wet bentonite having 0.001, 0.01, and 0.1 M concentration of bicarbonate ion gave corrosion rates of 20, 8, and 0.2 μm/yr, respectively. Corrosion potentials of specimens were also measured and compared with the AC impedance results. Both results indicated that bicarbonate ion could effectively reduce the corrosion rate of carbon steels in bentonite due to the formation of protective layer on the carbon steel. (author)

  7. Study on metal material corrosion behavior of packaging of cement solidified form

    International Nuclear Information System (INIS)

    He Zhouguo; Lin Meiqiong; Fan Xianhua

    1997-01-01

    The corrosion behavior of A3 carbon steel is studied by the specimens that are exposed to atmosphere, embedded in cement solidified form or immersed in corrosion liquid. The corrosion rate is determined by mass change of the specimens. In order to compare the corrosion resistant performance of various coatings, the specimens painted with various material such as epoxide resin, propionic acid resin, propane ether resin and Ti-white paint are tested. The results of the tests show that corrosion rate of A3 carbon steel is less than 10 -3 mm·a -1 in the atmosphere and the cement solidified from, less than 0.1 mm·a -1 in the corrosion liquids, and pH value in the corrosion liquids also affect the corrosion rate of A3 carbon steel. The corrosion resistant performance of Ti-white paint is better than that of other paints. So, A3 carbon steel as packaging material can meet the requirements during storage

  8. Water chemistry and corrosion control of cladding and primary circuit components. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1999-12-01

    Corrosion is the principal life limiting degradation mechanism in nuclear steam supply systems, especially taking into account the trends to increase fuel burnup, thermal rate and cycle length. Primary circuit components of water cooled power reactors have an impact on Zr-based alloys behaviour due to crud (primary circuit corrosion products) formation, transport and deposition on heat transfer surfaces. Crud deposits influence water chemistry, radiation and thermal hydraulic conditions near cladding surface, and by this way-Zr-based alloy corrosion. During the last decade, significant improvements were achieved in the reduction of the corrosion and dose rates by changing the cladding material for one more resistant to corrosion or by the improvement of water chemistry conditions. However, taking into account the above mentioned tendency for heavier fuel duties, corrosion and water chemistry, control will remain a serious task to work with for nuclear power plant operators and scientists, as well as development of generally accepted corrosion model of Zr-based alloys in a water environment in a new millennium. Upon the recommendation of the International Working Group on Water Reactor Fuel Performance and Technology, water chemistry and corrosion of cladding and primary circuit components are in the focus of the IAEA activities in the area of fuel technology and performance. At present the IAEA performs two co-ordinated research projects (CRPs): on On-line High Temperature Monitoring of Water Chemistry and Corrosion (WACOL) and on Activity Transport in Primary Circuits. Two CRPs deal with hydrogen and hydride degradation of the Zr-based alloys. A state-of-the-art review entitled: 'Waterside Corrosion of Zirconium Alloys in Nuclear Power Plants' was published in 1998. Technical Committee meetings on the subject were held in 1985 (Cadarache, France), 1989 (Portland, USA), 1993 (Rez, Czech Republic). During the last few years extensive exchange of experience in

  9. Electrochemical corrosion testing of metal waste forms

    International Nuclear Information System (INIS)

    Abraham, D. P.; Peterson, J. J.; Katyal, H. K.; Keiser, D. D.; Hilton, B. A.

    1999-01-01

    Electrochemical corrosion tests have been conducted on simulated stainless steel-zirconium (SS-Zr) metal waste form (MWF) samples. The uniform aqueous corrosion behavior of the samples in various test solutions was measured by the polarization resistance technique. The data show that the MWF corrosion rates are very low in groundwaters representative of the proposed Yucca Mountain repository. Galvanic corrosion measurements were also conducted on MWF samples that were coupled to an alloy that has been proposed for the inner lining of the high-level nuclear waste container. The experiments show that the steady-state galvanic corrosion currents are small. Galvanic corrosion will, hence, not be an important mechanism of radionuclide release from the MWF alloys

  10. Fundamental corrosion characterization of high-strength titanium alloys

    International Nuclear Information System (INIS)

    Schutz, R.W.; Grauman, J.S.

    1984-01-01

    Many commercially available and several developmental high-strength titanium alloys were evaluated for application in chloride-containing environments with respect to general, crevice, and stress corrosion resistance. Studies in boiling reducing and oxidizing acid chloride media permitted identification of certain high-strength titanium alloys, containing ≥4 weight % molybdenum, which are significantly more resistant than unalloyed titanium with respect to general and crevice attack. Data regression analysis suggests that molybdenum and vanadium impart a significant positive effect on alloy corrosion resistance under reducing acid chloride conditions, whereas aluminum is detrimental. Little effect of metallurgical condition (that is, annealed versus aged) on corrosion behavior of the higher molybdenum-containing alloys was noted. No obvious susceptibility to chloride and sulfide stress corrosion cracking (SCC) was detected utilizing U-bend specimens at 177 0 C

  11. Remote measurement of corrosion using ultrasonic techniques

    International Nuclear Information System (INIS)

    Garcia, K.M.; Porter, A.M.

    1995-02-01

    Supercritical water oxidation (SCWO) technology has the potential of meeting the US Department of Energy's treatment requirements for mixed radioactive waste. A major technical constraint of the SCWO process is corrosion. Safe operation of a pilot plant requires monitoring of the corrosion rate of the materials of construction. A method is needed for measurement of the corrosion rate taking place during operation. One approach is to directly measure the change in wall thickness or growth of oxide layer at critical points in the SCWO process. In FY-93, a brief survey of the industry was performed to evaluate nondestructive evaluation (NDE) methods for remote corrosion monitoring in supercritical vessels. As a result of this survey, it was determined that ultrasonic testing (UT) methods would be the most cost-effective and suitable method of achieving this. Therefore, the objective for FY-94 was to prove the feasibility of using UT to monitor corrosion of supercritical vessels remotely during operation without removal of the insulation

  12. Interaction between corrosion crack width and steel loss in RC beams corroded under load

    International Nuclear Information System (INIS)

    Malumbela, Goitseone; Alexander, Mark; Moyo, Pilate

    2010-01-01

    This paper presents results and discussions on an experimental study conducted to relate the rate of widening of corrosion cracks with the pattern of corrosion cracks as well as the level of steel corrosion for RC beams (153 x 254 x 3000 mm) that were corroded whilst subjected to varying levels of sustained loads. Steel corrosion was limited to the tensile reinforcement and to a length of 700 mm at the centre of the beams. The rate of widening of corrosion cracks as well as strains on uncracked faces of RC beams was constantly monitored during the corrosion process, along the corrosion region and along other potential cracking faces of beams using a demec gauge. The distribution of the gravimetric mass loss of steel along the corrosion region was measured at the end of the corrosion process. The results obtained showed that: the rate of widening of each corrosion crack is dependent on the overall pattern of the cracks whilst the rate of corrosion is independent of the pattern of corrosion cracks. A mass loss of steel of 1% was found to induce a corrosion crack width of about 0.04 mm.

  13. Corrosion of alloy C-22 in organic acid solutions

    International Nuclear Information System (INIS)

    Carranza, Ricardo M.; Rodriguez, Martin A.; Giordano, Celia M.

    2007-01-01

    Electrochemical studies such as cyclic potentiodynamic polarization (CPP) and electrochemical impedance spectroscopy (EIS) were performed to determine the corrosion behavior of Alloy 22 (N06022) in 1M NaCl solutions at various pH values from acidic to neutral at 90 C degrees. All the tested material was wrought Mill Annealed (MA). Tests were also performed in NaCl solutions containing weak organic acids such as oxalic, acetic, citric and picric acids. Results show that the corrosion rate of Alloy 22 was significantly higher in solutions containing oxalic acid than in solutions of pure NaCl at the same pH. Citric and Picric acids showed a slightly higher corrosion rate, and Acetic acid maintained the corrosion rate of pure chloride solutions at the same pH. Organic acids revealed to be weak inhibitors for crevice corrosion. Higher concentration ratios, compared to nitrate ions, were needed to completely inhibit crevice corrosion in chloride solutions. Results are discussed considering acid dissociation constants, buffer capacity and complex formation constants of the different weak acids. (author) [es

  14. Effect of Pseudomonas fluorescens on Buried Steel Pipeline Corrosion.

    Science.gov (United States)

    Spark, Amy J; Law, David W; Ward, Liam P; Cole, Ivan S; Best, Adam S

    2017-08-01

    Buried steel infrastructure can be a source of iron ions for bacterial species, leading to microbiologically influenced corrosion (MIC). Localized corrosion of pipelines due to MIC is one of the key failure mechanisms of buried steel pipelines. In order to better understand the mechanisms of localized corrosion in soil, semisolid agar has been developed as an analogue for soil. Here, Pseudomonas fluorescens has been introduced to the system to understand how bacteria interact with steel. Through electrochemical testing including open circuit potentials, potentiodynamic scans, anodic potential holds, and electrochemical impedance spectroscopy it has been shown that P. fluorescens increases the rate of corrosion. Time for oxide and biofilms to develop was shown to not impact on the rate of corrosion but did alter the consistency of biofilm present and the viability of P. fluorescens following electrochemical testing. The proposed mechanism for increased corrosion rates of carbon steel involves the interactions of pyoverdine with the steel, preventing the formation of a cohesive passive layer, after initial cell attachment, followed by the formation of a metal concentration gradient on the steel surface.

  15. The anaerobic corrosion of carbon steel in concrete

    International Nuclear Information System (INIS)

    Naish, C.C.; Balkwill, P.H.; O'Brien, T.M.; Taylor, K.J.; Marsh, G.P.

    1991-01-01

    This is the final report of a 2 year programme aimed at (1) determining the rate of anaerobic corrosion of steel in concrete, (2) investigating the nature of the corrosion products formed on carbon steel embedded in cementitious material under anaerobic conditions and (3) evaluating the effect of hydrogen over-pressures on the rate of anaerobic corrosion. All experiments have been carried out at temperatures in the range 20-30 0 C, ie ambient conditions. 4 refs.; 19 figs.; 6 tabs

  16. Corrosion and impedance studies on magnesium alloy in oxalate solution

    Energy Technology Data Exchange (ETDEWEB)

    Fekry, A.M., E-mail: hham4@hotmail.com [Chemistry Department, Faculty of Science, Cairo University, Gamaa Street, Giza 12613 (Egypt); Tammam, Riham H. [Chemistry Department, Faculty of Science, Cairo University, Gamaa Street, Giza 12613 (Egypt)

    2011-06-15

    Highlights: > Corrosion behavior of AZ91E alloy was investigated in 0.1 M Na{sub 2}C{sub 2}O{sub 4} containing different additives as Br{sup -}, Cl{sup -} or Silicate. > The corrosion rate of 0.1 M oxalate solution containing silicate ion is lower than the blank (0.1 M Na{sub 2}C{sub 2}O{sub 4}). This was confirmed by scanning electron microscope (SEM) observations. > For the other added ions Br{sup -} or Cl{sup -}, the corrosion rate is higher than the blank. - Abstract: Corrosion behavior of AZ91E alloy was investigated in oxalate solution using potentiodynamic polarization and electrochemical impedance measurements (EIS). The effect of oxalate concentration was studied, where the corrosion rate increases with increasing oxalate concentration. The effect of added ions (Br{sup -}, Cl{sup -} or SiO{sub 3}{sup 2-}) on the electrochemical behavior of magnesium alloy in 0.1 M Na{sub 2}C{sub 2}O{sub 4} solution at 298 K, was investigated. It was found that the corrosion rate of 0.1 M oxalate solution containing silicate ion is lower than the blank (0.1 M Na{sub 2}C{sub 2}O{sub 4}). This was confirmed by scanning electron microscope (SEM) observations. However, for the other added ions Br{sup -} or Cl{sup -}, the corrosion rate is higher than the blank.

  17. Application of electrochemical frequency modulation for monitoring corrosion and corrosion inhibition of iron by some indole derivatives in molar hydrochloric acid

    International Nuclear Information System (INIS)

    Khaled, K.F.

    2008-01-01

    The corrosion inhibition effect of four indole derivatives, namely indole (IND), benzotriazole (BTA), benzothiazole (BSA) and benzoimidazole (BIA), have been used as possible corrosion inhibitors for pure iron in 1 M HCl. In this study, electrochemical frequency modulation, EFM was used as an effective method for corrosion rate determination in corrosion inhibition studies. By using EFM measurements, corrosion current density was determined without prior knowledge of Tafel slopes. Corrosion rates obtained using EFM, were compared to that obtained from other chemical and electrochemical techniques. The results obtained from EFM, EIS, Tafel and weight loss measurements were in good agreement. Tafel polarization measurements show that indole derivatives are cathodic-type inhibitors. Molecular simulation studies were applied to optimize the adsorption structures of indole derivatives. The inhibitor/iron/solvent interfaces were simulated and the adsorption energies of these inhibitors were calculated. Quantum chemical calculations have been performed and several quantum chemical indices were calculated and correlated with the corresponding inhibition efficiencies

  18. Radiation-induced corrosion of stellite-6

    International Nuclear Information System (INIS)

    Behazin, M.; Wren, J.C.

    2012-09-01

    Stellite-6 is a Co-based (58%) alloy that is used for components that require high wear-resistance, such as valve facings and ball bearings in nuclear reactors. In the reactor core, stable 59 Co can be neutron activated by absorption of a neutron to become the radioactive isotope, 60 Co. The 60 Co that is created constitutes a safety hazard for plant workers who have to perform maintenance on the reactor. One of the operational and safety issues in a nuclear reactor is the potential corrosion of Co-based alloys and the introduction of dissolved Co ions into the reactor core. While the corrosion of Stellite-6 has been studied its corrosion behaviour with ionizing radiation present has not been well established. Corrosion kinetics depend on both the aqueous redox conditions and the physical and chemical nature of the alloy surface. The high radiation fields present in a reactor core will cause water to decompose to a range of redox-active species (both highly oxidizing (e.g., ·OH, H 2 O 2 ) and highly reducing (e.g., ·eaq - , ·O 2 - )). These species can significantly influence corrosion kinetics. The effect of γ-radiation on the corrosion of Stellite-6 at pH 10.6 was investigated at temperatures ≤ 150 deg. C. Since the corrosion rate depends strongly on the type of oxide that is present on the material surface, the focus of this corrosion study was to establish the mechanism by which radiolysis affects the nature of the oxide that is present on Stellite-6. The results show that γ-radiation (at a dose rate of 5.5 kGy.h -1 ) increases the corrosion potential on Stellite-6 from -0.7 VSCE to 0.12 VSCE . The corrosion potential without irradiation present is in a potential range where oxidation is limited to the formation of a Co (OH) 2 and CoCr 2 O 4 outer oxide layer on a pre-existing Cr 2 O 3 film. The corrosion potential with irradiation is in a potential range where further oxidation of Co (OH) 2 to CoOOH also occurs. However, since CoOOH is less soluble than

  19. Flow-induced corrosion behavior of absorbable magnesium-based stents.

    Science.gov (United States)

    Wang, Juan; Giridharan, Venkataraman; Shanov, Vesselin; Xu, Zhigang; Collins, Boyce; White, Leon; Jang, Yongseok; Sankar, Jagannathan; Huang, Nan; Yun, Yeoheung

    2014-12-01

    The aim of this work was to study corrosion behavior of magnesium (Mg) alloys (MgZnCa plates and AZ31 stents) under varied fluid flow conditions representative of the vascular environment. Experiments revealed that fluid hydrodynamics, fluid flow velocity and shear stress play essential roles in the corrosion behavior of absorbable magnesium-based stent devices. Flow-induced shear stress (FISS) accelerates the overall corrosion (including localized, uniform, pitting and erosion corrosions) due to the increased mass transfer and mechanical force. FISS increased the average uniform corrosion rate, the localized corrosion coverage ratios and depths and the removal rate of corrosion products inside the corrosion pits. For MgZnCa plates, an increase of FISS results in an increased pitting factor but saturates at an FISS of ∼0.15Pa. For AZ31 stents, the volume loss ratio (31%) at 0.056Pa was nearly twice that (17%) at 0Pa before and after corrosion. Flow direction has a significant impact on corrosion behavior as more severe pitting and erosion corrosion was observed on the back ends of the MgZnCa plates, and the corrosion product layer facing the flow direction peeled off from the AZ31 stent struts. This study demonstrates that flow-induced corrosion needs be understood so that Mg-based stents in vascular environments can be effectively designed. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Corrosion of Nickel-Titanium Orthodontic Archwires in Saliva and Oral Probiotic Supplements

    Directory of Open Access Journals (Sweden)

    Gianluca Turco

    2017-01-01

    Full Text Available Objectives: The aim of the study was to examine how probiotic supplements affect the corrosion stability of orthodontic archwires made of nickel-titanium alloy (NiTi. Materials and Methods: Ni-Ti archwires (0.508x0.508 and having the length of 2.5 cm were tested. The archwires (composition Ni=50.4%, Ti=49.6% were uncoated, nitrified and rhodium coated. Surface microgeometry was observed by using scanning electron microscope and surface roughness was measured by profilometer through these variables: roughness average, maximum height and maximum roughness depth. Corrosion was examined by electrochemical method of cyclic polarisation. Results: Rhodium coated alloy in saliva has significantly higher general corrosion in saliva than nitrified alloy and uncoated alloy, with large effect size (p=0.027; η2=0.700. In the presence of probiotics, the result was even more pronounced (p<0.001; η2=0.936. Probiotic supplement increases general and localised corrosion of rhodium coated archwire and slightly decreases general corrosion and increases localised corrosion in uncoated archwire , while in the case of nitrified archwire the probability of corrosion is very low. The differences in surface roughness between NiTi wires before corrosion are not significant. Exposure to saliva decreases roughness average in rhodium coated wire (p=0.015; η2=0.501. Media do not significantly influence surface microgeometry in nitrified and uncoated wires. Conclusion: Probiotic supplement affects corrosion depending on the type of coating of the NiTi archwire. It increases general corrosion of rhodium coated wire and causes localised corrosion of uncoated and rhodium coated archwire. Probiotic supplement does not have greater influence on surface roughness compared to that of saliva.

  1. Study of corrosive-erosive wear behaviour of Al6061/albite composites

    International Nuclear Information System (INIS)

    Sharma, S.C.; Krishna, M.; Murthy, H.N. Narasimha; Tarachandra, R.; Satyamoorthy, M.; Bhattacharyya, D.

    2006-01-01

    This investigation analyses the influence of dispersed alumina particles on the wear behaviour of the Al/albite composites in a corrosive environment. The composites were prepared by modified pressure die-casting technique. The corrosive-erosive wear experiments were carried out on a proprietary corrosion-erosion wear tester to study the wear characteristics of the composites. The slurry was made up of water and alumina (size: 90-150 μm, proportion: 0-30 wt.%), while H 2 SO 4 (0.01, 0.1 and 1N) was added to create the corrosive conditions. Experiments were arranged to test the relationships among the corrosive-erosive wear rate, concentrations of H 2 SO 4 and alumina in the slurry, weight percent of albite in the composite, erosion speed and distance. Wear rate varies marginally at low speeds but sharply increases at higher speeds. The corrosive wear rate logarithmically increased with the increasing concentration of the corrosive medium. The effect of abrasive particles and corrosion medium on the wear behaviour of the composite is explained experimentally, theoretically and using scanning electron microscopy

  2. Analysis of corrosion products of carbon steel in wet bentonite

    International Nuclear Information System (INIS)

    Osada, Kazuo; Nagano, Tetsushi; Nakayama, Shinichi; Muraoka, Susumu

    1992-02-01

    As a part of evaluation of the long-term durability for the overpack containers for high-level radioactive waste, we have conducted corrosion tests for carbon steel in wet bentonite, a candidate buffer material. The corrosion rates were evaluated by weight difference of carbon steel and corrosion products were analyzed by Fourier transform infrared spectroscopy (FT-IR) and colorimetry. At 40degC, the corrosion rate of carbon steel in wet bentonite was smaller than that in pure water. At 95degC, however, the corrosion rate in wet bentonite was much higher than that in pure water. This high corrosion rate in wet bentonite at 95degC was considered to result from evaporation of moisture in bentonite in contact with the metal. This evaporation led to dryness and then to shrinkage of the bentonite, which generated ununiform contact of the metal with bentonite. Probably, this ununiform contact promoted the local corrosion. The locally corroded parts of specimen in wet bentonite at 95degC were analyzed by Fourier transform infrared microspectroscopy (micro-FT-IR), and lepidocrocite γ-FeO(OH) was found as well as goethite α-FeO(OH). In wet bentonite at 95degC, hematite α-Fe 2 O 3 was identified by means of colorimetry. (author)

  3. Electrochemical corrosion study of Mg–Al–Zn–Mn alloy in aqueous ethylene glycol containing chloride ions

    Directory of Open Access Journals (Sweden)

    Harish Medhashree

    2017-01-01

    Full Text Available Nowadays most of the automobiles use magnesium alloys in the components of the engine coolant systems. These engine coolants used are mainly composed of aqueous ethylene glycol along with some inhibitors. Generally the engine coolants are contaminated by environmental anions like chlorides, which would enhance the rate of corrosion of the alloys used in the coolant system. In the present study, the corrosion behavior of Mg–Al–Zn–Mn alloy in 30% (v/v aqueous ethylene glycol containing chloride anions at neutral pH was investigated. Electrochemical techniques, such as potentiodynamic polarization method, cyclic polarization and electrochemical impedance spectroscopy (EIS were used to study the corrosion behavior of Mg–Al–Zn–Mn alloy. The surface morphology, microstructure and surface composition of the alloy were studied by using the scanning electron microscopy (SEM, optical microscopy and energy dispersion X-ray (EDX analysis, respectively. Electrochemical investigations show that the rate of corrosion increases with the increase in chloride ion concentration and also with the increase in medium temperature.

  4. Stress corrosion cracking of nuclear reactor pressure vessel and piping steels

    International Nuclear Information System (INIS)

    Speidel, M.O.; Magdowski, R.M.

    1988-01-01

    This paper presents an extensive investigation of stress corrosion cracking of nuclear reactor pressure vessel and piping steels exposed to hot water. Experimental fracture mechanics results are compared with data from the literature and other laboratories. Thus a comprehensive overview of the present knowledge concerning stress corrosion crack growth rates is provided. Several sets of data confirm that 'fast' stress corrosion cracks with growth rates between 10 -8 and 10 -7 m/s and threshold stress intensities around 20 MN m -3/2 can occur under certain conditions. However, it appears possible that specific environmental, mechanical and metallurgical conditions which may prevail in reactors can result in significantly lower stress corrosion crack growth rates. The presently known stress corrosion crack growth rate versus stress intensity curves are discussed with emphasis on their usefulness in establishing safety margins against stress corrosion cracking of components in service. Further substantial research efforts would be helpful to provide a data base which permits well founded predictions as to how stress corrosion cracking in pressure vessels and piping can be reliably excluded or tolerated. It is emphasized, however, that the nucleation of stress corrosion cracks (as opposed to their growth) is difficult and may contribute substantially to the stress corrosion free service behaviour of the overwhelming majority of pressure vessels and pipes. (author)

  5. Effect of flow velocity on erosion-corrosion behaviour of QSn6 alloy

    Science.gov (United States)

    Huang, Weijiu; Zhou, Yongtao; Wang, Zhenguo; Li, Zhijun; Zheng, Ziqing

    2018-05-01

    The erosion-corrosion behaviour of QSn6 alloy used as propellers in marine environment was evaluated by erosion-corrosion experiments with/without cathodic protection, electrochemical tests and scanning electron microscope (SEM) observations. The analysis was focused on the effect of flow velocity. The dynamic polarization curves showed that the corrosion rate of the QSn6 alloy increased as the flow velocity increased, due to the protective surface film removal at higher velocities. The lowest corrosion current densities of 1.26 × 10‑4 A cm‑2 was obtained at the flow velocity of 7 m s‑1. Because of the higher particle kinetic energies at higher flow velocity, the mass loss rate of the QSn6 alloy increased as the flow velocity increased. The mass loss rate with cathodic protection was lower than that without cathodic protection under the same conditions. Also, the lowest mass loss rate of 0.7 g m‑2 · h‑1 was acquired at the flow velocity of 7 m s‑1 with cathodic protection. However, the increase rate of corrosion rate and mass loss were decreased with increasing the flow velocity. Through observation the SEM morphologies of the worn surfaces, the main wear mechanism was ploughing with/without cathodic protection. The removal rates of the QSn6 alloy increased as the flow velocity increased in both pure erosion and erosion-corrosion, whereas the erosion and corrosion intensified each other. At the flow velocity of 7 m s‑1, the synergy rate (ΔW) exceeded by 5 times the erosion rate (Wwear). Through establishment and observation the erosion-corrosion mechanism map, the erosion-corrosion was the dominant regime in the study due to the contribution of erosion on the mass loss rate exceeded the corrosion contribution. The QSn6 alloy with cathodic protection is feasible as propellers, there are higher security at lower flow velocity, such as the flow velocity of 7 m s‑1 in the paper.

  6. Corrosion behavior of Mg/graphene composite in aqueous electrolyte

    International Nuclear Information System (INIS)

    Selvam, M.; Saminathan, K.; Siva, P.; Saha, P.; Rajendran, V.

    2016-01-01

    In the present work, the electrochemical corrosion behavior of magnesium (Mg) and thin layer graphene coated Mg (Mg/graphene) are studied in different salt electrolyte such as NaCl, KCl and Na_2SO_4. The phase structure, crystallinity, and surface morphology of the samples are investigated using X-ray diffraction (XRD) analysis, scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM/EDAX), and Raman spectroscopy techniques. The electrochemical corrosion behavior of the Mg and graphene coated Mg are also investigated using Electrochemical Impedance Spectroscopy (EIS) analysis. The tafel plot reveals that the corrosion of Mg drastically drops when coated with thin layer graphene (Mg/graphene) compared to Mg in KCl electrolyte. Moreover, the EIS confirms that Mg/graphene sample shows improve corrosion resistance and lower corrosion rate in KCl solution compare to all other electrolytes studied in the present system. - Highlights: • The corrosion behavior of magnesium alloy (AZ91) was investigated in three different electrolyte solution. • To study the anti-corrosion behavior of graphene coated with magnesium alloy. • To improve the corrosion resistance for magnesium alloy. • Nyquist plots confirms that MgG shows better corrosion resistance and lower corrosion rate in KCl solution.

  7. Corrosion behavior of Mg/graphene composite in aqueous electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Selvam, M. [Centre for Nano Science and Technology, KS Rangasamy College of Technology, Tiruchengode, 637215, Tamil Nadu (India); Saminathan, K., E-mail: ksaminath@gmail.com [Centre for Nano Science and Technology, KS Rangasamy College of Technology, Tiruchengode, 637215, Tamil Nadu (India); Siva, P. [Centre for Nano Science and Technology, KS Rangasamy College of Technology, Tiruchengode, 637215, Tamil Nadu (India); Saha, P. [Department of Ceramic Engineering, National Institute of Technology, Rourkela, India-769008 (India); Rajendran, V. [Centre for Nano Science and Technology, KS Rangasamy College of Technology, Tiruchengode, 637215, Tamil Nadu (India)

    2016-04-01

    In the present work, the electrochemical corrosion behavior of magnesium (Mg) and thin layer graphene coated Mg (Mg/graphene) are studied in different salt electrolyte such as NaCl, KCl and Na{sub 2}SO{sub 4}. The phase structure, crystallinity, and surface morphology of the samples are investigated using X-ray diffraction (XRD) analysis, scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM/EDAX), and Raman spectroscopy techniques. The electrochemical corrosion behavior of the Mg and graphene coated Mg are also investigated using Electrochemical Impedance Spectroscopy (EIS) analysis. The tafel plot reveals that the corrosion of Mg drastically drops when coated with thin layer graphene (Mg/graphene) compared to Mg in KCl electrolyte. Moreover, the EIS confirms that Mg/graphene sample shows improve corrosion resistance and lower corrosion rate in KCl solution compare to all other electrolytes studied in the present system. - Highlights: • The corrosion behavior of magnesium alloy (AZ91) was investigated in three different electrolyte solution. • To study the anti-corrosion behavior of graphene coated with magnesium alloy. • To improve the corrosion resistance for magnesium alloy. • Nyquist plots confirms that MgG shows better corrosion resistance and lower corrosion rate in KCl solution.

  8. In situ AFM study of pitting corrosion and corrosion under strain on a 304L stainless steel

    International Nuclear Information System (INIS)

    Martin, F.A.; Cousty, J.; Masson, J-L.; Bataillon, C.

    2004-01-01

    Our study is centred on surface localised corrosion under strain of a standard stainless steel (304L). The interest we take in these corrosion phenomena is led by the general misunderstanding of its primary initiation steps. The goal of this study is to determine precisely the relationships between local geometrical defects (grain boundaries, dislocation lines, etc) or chemical defects (inclusions) with the preferential sites of corrosion on the strained material. By combining three techniques at the same time: Atomic Force Microscopy, an electrochemical cell and a traction plate, we can observe in situ the effect of localised stress and deformation on the sample surface exposed to a corrosive solution. We managed to build an original set-up compatible with all the requirements of these three different techniques. Furthermore, we prepared the surface of our sample as flat as possible to decrease at maximum the topographical noise in order to observe the smallest defect on the surface. By using a colloidal suspension of SiO 2 , we obtained surfaces with a typical corrugation (RMS) of about 1 A for areas of at least 1 μm 2 . Our experimental study has been organised in two primary investigations: - In situ study of the morphology evolution of the surface under a corrosive chloride solution (borate buffer with NaCl salt). The influence of time, NaCl concentration, and potential was investigated; - In situ exploration of a 304L strained surface. It revealed the first stages of the surface plastic evolutions like activation of sliding dislocations, materialized by parallel steps of about 2 nm high in the same grain. The secondary sliding plane systems were also noticeable for higher deformation rates. Recent results concerning in situ AFM observation of corroded surfaces under strain in a chloride media will be presented. (authors)

  9. In situ AFM study of pitting corrosion and corrosion under strain on a 304L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F.A. [CEA de Saclay, DRECAM/SPCSI, 91191 Gif-sur-Yvette cedex (France); Cousty, J.; Masson, J-L. [CEA de Saclay, DRECAM/SPCSI, 91191 Gif-sur-Yvette cedex (France); Bataillon, C. [CEA de Saclay, DEN/DPC/LECA, 91191 Gif-sur-Yvette cedex (France)

    2004-07-01

    Our study is centred on surface localised corrosion under strain of a standard stainless steel (304L). The interest we take in these corrosion phenomena is led by the general misunderstanding of its primary initiation steps. The goal of this study is to determine precisely the relationships between local geometrical defects (grain boundaries, dislocation lines, etc) or chemical defects (inclusions) with the preferential sites of corrosion on the strained material. By combining three techniques at the same time: Atomic Force Microscopy, an electrochemical cell and a traction plate, we can observe in situ the effect of localised stress and deformation on the sample surface exposed to a corrosive solution. We managed to build an original set-up compatible with all the requirements of these three different techniques. Furthermore, we prepared the surface of our sample as flat as possible to decrease at maximum the topographical noise in order to observe the smallest defect on the surface. By using a colloidal suspension of SiO{sub 2}, we obtained surfaces with a typical corrugation (RMS) of about 1 A for areas of at least 1 {mu}m{sup 2}. Our experimental study has been organised in two primary investigations: - In situ study of the morphology evolution of the surface under a corrosive chloride solution (borate buffer with NaCl salt). The influence of time, NaCl concentration, and potential was investigated; - In situ exploration of a 304L strained surface. It revealed the first stages of the surface plastic evolutions like activation of sliding dislocations, materialized by parallel steps of about 2 nm high in the same grain. The secondary sliding plane systems were also noticeable for higher deformation rates. Recent results concerning in situ AFM observation of corroded surfaces under strain in a chloride media will be presented. (authors)

  10. Internal corrosion control of northern pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Papavinasam, S.

    2005-02-01

    The general causes of internal corrosion in pipelines were discussed along with the methods to control them. Efficient methods are needed to determine chemical efficiency for mitigating internal corrosion in transmission pipelines, particularly those used in environmentally sensitive regions in the Arctic where harsh environmental conditions prevail. According to the Office of Pipeline Safety, 15 per cent of pipeline failures in the United States from 1994 to 2000 were caused by internal corrosion. Since pipelines in the United States are slightly older than Canadian pipelines, internal corrosion is a significant issue from a Canadian perspective. There are 306,618 km of energy-related pipelines in western Canada. Between April 2001 and March 2002 there were 808 failures, of which 425 failures resulted from internal corrosion. The approach to control internal corrosion comprises of dehydrating the gases at production facilities; controlling the quality of corrosive gases such as carbon dioxide and hydrogen sulphide; and, using internal coatings. The approaches to control internal corrosion are appropriate, when supplemented by adequate integrity management program to ensure that corrosive liquids do not collect, over the operational lifetime of the pipelines, at localized areas. It was suggested that modeling of pipeline operations may need improvement. This paper described the causes, prediction and control of internal pitting corrosion. It was concluded that carbon steel equipment can continue to be used reliably and safely as pipeline materials for northern pipelines if the causes that lead to internal corrosion are scientifically and accurately predicted, and if corrosion inhibitors are properly evaluated and applied. 5 figs.

  11. Corrosion behavior of stainless steel and zirconium in nitric acid containing highly oxidizing species

    International Nuclear Information System (INIS)

    Mayuzumi, Masami; Fujita, Tomonari

    1994-01-01

    Corrosion behavior of 304ELC, 310Nb stainless steels and Zirconium was investigated in the simulated dissolver solution of a reprocessing plant to obtain fundamental data for life prediction. Corrosion of heat transfer surface was also investigated in nitric acid solutions containing Ce ion. The results obtained are as follows: (1) Stainless steels showed intergranular corrosion in the simulated dissolver solution. The corrosion rate increased with time and reached to a constant value after several hundred hours of immersing time. The constant corrosion rate changed depending on potential suggesting that corrosion potential dominates the corrosion process. 310Nb showed superior corrosion resistance to 304ELC. (2) Corrosion rate of stainless steels increased in the heat transfer condition. The causes of corrosion enhancement are estimated to be higher corrosion potential and higher temperature of heat transfer surface. (3) Zirconium showed perfect passivity in all the test conditions employed. (author)

  12. Evolution of carbon steel corrosion in feedwater conditions reproduce by the Fortrand loop

    International Nuclear Information System (INIS)

    Delaunay, Sophie; Bescond, Aurelien; Mansour, Carine; Bretelle, Jean-Luc

    2012-09-01

    thickness is around one hundred nanometers, then it reaches rapidly one micrometer after three hundred hours. The last tests show an important increase of the thickness. The following of iron release in solution confirms this result. During the first three hundred hours the release is linear but with a low slope, then an acceleration is observed from three hundred to nine hundred hours. The flow and the morphology of the oxide are in accordance with a generalized corrosion phenomenon. The addition base metal loss and the oxide formed on the surface confirm a parabolic rate characteristic of generalized corrosion during the first hours. Then, the rate of corrosion follows a linear law representative of flow accelerated corrosion. These tests show a corrosion of carbon steel in several steps in the feedwater system conditions, a general corrosion during three hundred hours and then a more important corrosion. In order to identify each phenomenon, additional tests and characterizations (porosity measurements) will be carried out. (authors)

  13. Virtual Instrumentation Corrosion Controller for Natural Gas Pipelines

    Science.gov (United States)

    Gopalakrishnan, J.; Agnihotri, G.; Deshpande, D. M.

    2012-12-01

    Corrosion is an electrochemical process. Corrosion in natural gas (methane) pipelines leads to leakages. Corrosion occurs when anode and cathode are connected through electrolyte. Rate of corrosion in metallic pipeline can be controlled by impressing current to it and thereby making it to act as cathode of corrosion cell. Technologically advanced and energy efficient corrosion controller is required to protect natural gas pipelines. Proposed virtual instrumentation (VI) based corrosion controller precisely controls the external corrosion in underground metallic pipelines, enhances its life and ensures safety. Designing and development of proportional-integral-differential (PID) corrosion controller using VI (LabVIEW) is carried out. When the designed controller is deployed at field, it maintains the pipe to soil potential (PSP) within safe operating limit and not entering into over/under protection zone. Horizontal deployment of this technique can be done to protect all metallic structure, oil pipelines, which need corrosion protection.

  14. Analysis of corrosion data for carbon steels in simulated salt repository brines and acid chloride solutions at high temperatures

    International Nuclear Information System (INIS)

    Diercks, D.R.; Hull, A.B.; Kassner, T.F.

    1988-03-01

    Carbon steel is currently the leading candidate material for fabrication of a container for isolation of high level nuclear waste in a salt repository. Since brine entrapped in the bedded salt can migrate to the container by several transport processes, corrosion is an important consideration in the long-term performance of the waste package. A detailed literature search was performed to compile relevant corrosion data for carbon steels in anoxic acid chloride solutions, and simulated salt repository brines at temperatures between ∼ 20 and 400 0 C. The hydrolysis of Mg 2+ ions in simulated repository brines containing high magnesium concentrations causes acidification at temperatures above 25 0 C, which, in turn, influences the protective nature of the magnetite corrosion product layer on carbon steel. The corrosion data for the steels were analyzed, and an analytical model for general corrosion was developed to calculate the amount of penetration (i.e., wall thinning) as a function of time, temperature, and the pressure of corrosion product hydrogen than can build up during exposure in a closed system (e.g., a sealed capsule). Both the temperature and pressure dependence of the corrosion rate of steels in anoxic acid chloride solutions indicate that the rate-controlling partial reaction is the cathodic reduction of water to form hydrogen. Variations in the composition and microstructure of the steels or the concentration of the ionic species in the chloride solutions (provided that they do not change the pH significantly) do not appear to strongly influence the corrosion rate

  15. Mechanism of Corrosion by Naphthenic Acids and Organosulfur Compounds at High Temperatures

    Science.gov (United States)

    Jin, Peng

    Due to the law of supply and demand, the last decade has witnessed a skyrocketing in the price of light sweet crude oil. Therefore, refineries are increasingly interested in "opportunity crudes", characterized by their discounted price and relative ease of procurement. However, the attractive economics of opportunity crudes come with the disadvantage of high acid/organosulfur compound content, which could lead to corrosion and even failure of facilities in refineries. However, it is generally accepted that organosulfur compounds may form protective iron sulfide layers on the metal surface and decrease the corrosion rate. Therefore, it is necessary to investigate the corrosive property of crudes at high temperatures, the mechanism of corrosion by acids (naphthenic acids) in the presence of organosulfur compounds, and methods to mitigate its corrosive effect. In 2004, an industrial project was initiated at the Institute for Corrosion and Multiphase Technology to investigate the corrosion by naphthenic acids and organosulfur compounds. In this project, for each experiment there were two experimentation phases: pretreatment and challenge. In the first pretreatment phase, a stirred autoclave was filled with a real crude oil fraction or model oil of different acidity and organosulfur compound concentration. Then, the stirred autoclave was heated to high temperatures to examine the corrosivity of the oil to different materials (specimens made from CS and 5% Cr containing steel were used). During the pretreatment, corrosion product layers were formed on the metal surface. In the second challenge phase, the steel specimens pretreated in the first phase were inserted into a rotating cylinder autoclave, called High Velocity Rig (HVR). The HVR was fed with a high-temperature oil solution of naphthenic acids to attack the iron sulfide layers. Based on the difference of specimen weight loss between the two steps, the net corrosion rate could be calculated and the protectiveness

  16. Corrosion and protection of aluminum alloys in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Nisancioglu Kemal [Department of Materials Technology, Norwegian University of Science and Technology, N-7491 Trondheim (Norway)

    2004-07-01

    The paper deals with pitting and uniform corrosion and effectiveness of cathodic protection in reducing these corrosion forms. In stagnant waters or presence of low flow rates, pitting may occur. However, pitting corrosion, driven by the Fe-rich cathodic intermetallic compounds, is often of superficial nature. The pits tend to passivate as a result of etching or passivation of the intermetallics with time. Cathodic protection is an effective way of preventing pitting. It also requires low current densities since the cathodic area, defined by the Fe-rich intermetallics, is small in contrast to steel, which is uniformly accessible to the cathodic reaction. Although thermodynamic calculations suggest possible instability of the oxide in slightly alkaline solutions, such as seawater, protective nature of the oxide in practice is attributed to the presence of alloying elements such as Mg and Mn. Thus, the passivity of both the aluminum matrix alloy (the anode) and the intermetallics (cathodes) have to be considered in evaluating the corrosion and protection of aluminum alloys. With increasing flow rate, the possibility of pitting corrosion reduces with increase in the rate of uniform corrosion, which is controlled by the flow dependent chemical dissolution of the oxide. Cathodic protection does not stop this phenomenon, and coatings have to be used. (authors)

  17. The Proposed Yucca Mountain Repository From A Corrosion Perspective

    International Nuclear Information System (INIS)

    J.H. Payer

    2005-01-01

    Corrosion is a primary determinant of waste package performance at the proposed Yucca Mountain Repository and will control the delay time for radionuclide transport from the waste package. Corrosion is the most probable and most likely degradation process that will determine when packages will be penetrated and the shape size and distribution of those penetrations. The general issues in corrosion science, materials science and electrochemistry are well defined, and the knowledge base is substantial for understanding corrosion processes. In this paper, the Yucca Mountain Repository is viewed from a corrosion perspective

  18. Investigation into the suitability of titanium as a corrosion resistant canister for nuclear waste

    International Nuclear Information System (INIS)

    Henriksson, S.; Pettersson, J.

    A literature study and inventory of experience has been carried out, aimed at assessing the possibilities of unalloyed and Pd-alloyed titanium withstanding corrosion for 1,000 to 10,000 years in contact with Baltic Sea water at 100 0 C and pH 4 to 10. Pitting, crevice corrosion, stress corrosion cracking and corrosion fatigue constitute no problem if the canister is made of unalloyed titanium corresponding to ASTM Grade 1. Titanium alloyed with palladium therefore need not be used. Linear extrapolation of reported corrosion rates for oxidation and general corrosion gives a life of between 1,000 and 10,000 years for a 5 mm thick canister. This estimate must be considered to be conservative since oxidation in fact follows a logarithmic law. Hydrogen embrittlement resulting from hydrogen pick-up from the deposition environment should not occur. Delayed failure caused by a redistribution of the hydrogen initially present in the titanium can be avoided if its concentration is maximized to 20 ppM. Pd-alloyed titanium is more sensitive than unalloyed titanium to hydrogen pick-up, especially in galvanic contact with less noble metals

  19. Shadow Corrosion Mechanism of Zircaloy

    International Nuclear Information System (INIS)

    Ullberg, Mats; Lysell, Gunnar; Nystrand, Ann-Charlotte

    2004-02-01

    Local corrosion enhancement appears on zirconium-base alloys in-core in boiling water reactors when the zirconium alloy is in close proximity to another metal. The visual appearance often resembles a shadow of the other component. The phenomenon is therefore referred to as 'shadow corrosion'. Shadow corrosion has been known for more than 25 years. Mechanisms based on either galvanic corrosion or local radiolysis effects have been proposed as explanations. Both types of mechanism have seemed to explain some facets of the phenomenon. Normally, shadow corrosion is of no practical significance. However, an enhanced and potentially serious form of shadow corrosion was discovered in 1996. This discovery stimulated new experiments that fully supported neither of the longstanding theories. Thus, there is till now no generally accepted understanding of the shadow corrosion phenomenon. The aim of the present investigation was to analyse the available data and to identify, if possible, a plausible mechanism of shadow corrosion. It was found that the experimental evidence is, with a few exceptions, remarkably consistent with a galvanic mechanism. The main exception is that shadow corrosion may occur also when the two metals are nominally electrically insulated. One way to account for the main exception could be to invoke the effect of photoconductivity. Photoconductivity results when a semiconductor or an insulator is irradiated with photons of UV or higher energy. The photons elevate electrons from the valence band to the conduction band, thereby raising the electron conductivity of the solid. In particular, photoconductivity lowers the electrical resistance of the normally insulating oxide on zirconium base alloys. Photoconductivity therefore also has the potential to explain why shadow corrosion is only seen in, or in proximity to, a nuclear reactor core. The suggested mechanism of shadow corrosion can be tested in a reasonably simple experiment in a research reactor

  20. Alloying effects on dissolution rate of crevice corrosion for austenitic stainless steels in 3% NaCl solution at 80 C

    International Nuclear Information System (INIS)

    Chen, P.; Shinohara, Tadashi; Tsujikawa, Shigeo

    1996-01-01

    Chloride stress corrosion cracking (SCC) has been a problem for austenitic stainless steel in aqueous environments containing chlorides. Studies have found that SCC initiates only from a dissolving surface and under the condition that the crack growth rate is higher than the dissolution rate of the dissolving surface. Research conducted to improve the resistance to SCC for Type 304 steels (UNS S30400) have revealed that while molybdenum and phosphorus are unfavored, the combined alloying of 3% aluminum with 2% copper can almost nullify their detrimental effect. Based on the mentioned criteria, this study was dedicated to clarify the mechanism behind these alloying effects by examining the relationship between the measured enhancements on SCC resistance and the dissolution rate observed via the moire technique. It was found that the addition of both molybdenum and phosphorus reduces the dissolution rate and therefore impaired SCC resistance; the addition of copper increases the dissolution rate of steady growth stage where crevice corrosion proceeds at a constant rate. Moreover this dissolution rate could further be increased when combined with the alloying of aluminum. These observed results correspond well to that of the measured behavior of the SCC critical temperature, T c , suggesting that the SCC susceptibility is influenced by anodic dissolution

  1. The Modeling of Ultimate Bearing Capacity of Fiber Reinforced Polymer and Its acidic/alkaline Corrosion Mechanism Analysis

    Directory of Open Access Journals (Sweden)

    Qin Liping

    2014-01-01

    Full Text Available In this study, the overall property of fiber reinforced polymer (FRP was researched. It is currently widely used in all areas, mainly in civil engineering. The huge need of this material drives the research of its mechanical property and corrosion mechanism. It is proven that the FRP can significantly strengthen the whole structure due to the support of fiber. And by applying osmosis hypothesis into the explanation of corrosion of FRP, we concluded that its corrosion rate is much slower than common materials, like steel. Generally, based on these conclusions, FRP is suitable for most of the facilities in civil engineering.

  2. Surface layer effects on waste glass corrosion

    International Nuclear Information System (INIS)

    Feng, X.

    1993-01-01

    Water contact subjects waste glass to chemical attack that results in the formation of surface alteration layers. Two principal hypotheses have been advanced concerning the effect of surface alteration layers on continued glass corrosion: (1) they act as a mass transport barrier and (2) they influence the chemical affinity of the glass reaction. In general, transport barrier effects have been found to be less important than affinity effects in the corrosion of most high-level nuclear waste glasses. However, they can be important under some circumstances, for example, in a very alkaline solution, in leachants containing Mg ions, or under conditions where the matrix dissolution rate is very low. The latter suggests that physical barrier effect may affect the long-term glass dissolution rate. Surface layers influence glass reaction affinity through the effects of the altered glass and secondary phases on the solution chemistry. The reaction affinity may be controlled by various precipitates and crystalline phases, amorphous silica phases, gel layer, or all the components of the glass. The surface alteration layers influence radionuclide release mainly through colloid formation, crystalline phase incorporation, and gel layer retention. This paper reviews current understanding and uncertainties

  3. Flow-induced corrosion of absorbable magnesium alloy: In-situ and real-time electrochemical study.

    Science.gov (United States)

    Wang, Juan; Jang, Yongseok; Wan, Guojiang; Giridharan, Venkataraman; Song, Guang-Ling; Xu, Zhigang; Koo, Youngmi; Qi, Pengkai; Sankar, Jagannathan; Huang, Nan; Yun, Yeoheung

    2016-03-01

    An in-situ and real-time electrochemical study in a vascular bioreactor was designed to analyze corrosion mechanism of magnesium alloy (MgZnCa) under mimetic hydrodynamic conditions. Effect of hydrodynamics on corrosion kinetics, types, rates and products was analyzed. Flow-induced shear stress (FISS) accelerated mass and electron transfer, leading to an increase in uniform and localized corrosions. FISS increased the thickness of uniform corrosion layer, but filiform corrosion decreased this layer resistance at high FISS conditions. FISS also increased the removal rate of localized corrosion products. Impedance-estimated and linear polarization-measured polarization resistances provided a consistent correlation to corrosion rate calculated by computed tomography.

  4. Flow-induced corrosion of absorbable magnesium alloy: In-situ and real-time electrochemical study

    Science.gov (United States)

    Wang, Juan; Jang, Yongseok; Wan, Guojiang; Giridharan, Venkataraman; Song, Guang-Ling; Xu, Zhigang; Koo, Youngmi; Qi, Pengkai; Sankar, Jagannathan; Huang, Nan; Yun, Yeoheung

    2016-01-01

    An in-situ and real-time electrochemical study in a vascular bioreactor was designed to analyze corrosion mechanism of magnesium alloy (MgZnCa) under mimetic hydrodynamic conditions. Effect of hydrodynamics on corrosion kinetics, types, rates and products was analyzed. Flow-induced shear stress (FISS) accelerated mass and electron transfer, leading to an increase in uniform and localized corrosions. FISS increased the thickness of uniform corrosion layer, but filiform corrosion decreased this layer resistance at high FISS conditions. FISS also increased the removal rate of localized corrosion products. Impedance-estimated and linear polarization-measured polarization resistances provided a consistent correlation to corrosion rate calculated by computed tomography. PMID:28626241

  5. Hydrogen Diffusion and H{sub 2}S Corrosion in Steel

    Energy Technology Data Exchange (ETDEWEB)

    Haugstveit, Bjarte Erlend

    2001-01-01

    The electrochemical permeation technique introduced by Devanathan and Stachurski has been used to measure the effective diffusivity of hydrogen in steel in a H{sub 2}S-saturated aqueous environment. The linear polarization resistance (LPR) method has been used to measure the corrosion rate. The effective diffusion coefficient of hydrogen has been found to be in the range of 1*10-12 to 7*10-11, depending on the environmental conditions. The corrosion film was identified as mackinawite, and it affected the permeation process of hydrogen. The results supported the assumption that the diffusion process can be described by a three layer model and indicated that the model could be reduced to a two layer model in the cases of iron and steel. A model aimed to describe the reaction pathway of hydrogen through the surface film and into the steel is proposed. The corrosion film influenced the corrosion rate, and it was least protective against corrosion at pH 6.5. Corrosion rates were in the range of 0.2-1 mm/year. The corrosion rate was increased significantly at pH 3.5, but the effect of the surface film was stronger and overshadowed the pH effect at the higher pH values. Increased flow velocity also lead to increased corrosion rate, but this effect was less significant compared to the effect of pH and the surface film. DEG decreased the corrosion rate. The uncertainty in the diffusion measurements was mainly due to the assumption of a constant sub-surface concentration of atomic hydrogen, which was not fulfilled. A method less dependent on constant surface conditions would probably yield better estimates of the effective diffusivity. The uncertainty in the corrosion measurements was mainly due to the uncertainty in the value of the Stern-Geary constant. The qualitative assumptions based on the results in this thesis are assumed to be valid. A test section designed for this thesis was tested and was found successful in corrosion rate measurements, but proved to be

  6. Corrosion behaviour of zinc and aluminium in simulated nuclear accident environments

    International Nuclear Information System (INIS)

    Piippo, J.; Laitinen, T.; Sirkiae, P.

    1997-02-01

    The corrosion rates of zinc and aluminium were determined in simulated large pipe break and in severe accident cases. An in situ on fine measurement technique, which is based on the resistance measurement of sample wires, was used. In the large pipe break case the corrosion rates of zinc and aluminium were determined at pH 8 and pH 10 in deaerated and in aerated solutions. Tests were also performed in aerated 0.1 M borate buffer solution at pH 9.2. Temperature range was 130 deg C - 50 deg C. The corrosion of zinc appears to be relatively fast in neutral or mildly alkaline aerated water, while both high pH and deaeration tend to reduce the corrosion rates of zinc. The aeration and pH elevation decrease the corrosion rate of aluminium. The simulation of the severe accident case took place in the pH range 3-11 in chloride containing solutions at 50 deg C temperature. The corrosion rate of aluminium was lower than that of zinc, except for the solution with pH 11, in which the corrosion rate of aluminium was practically identical to that of zinc. Both metals corroded more rapidly in the presence of chlorides in acidic and alkalic conditions than in the absence of chlorides at neutral environment. The solubility of zinc and aluminium and the stability of the corrosion products were estimated using thermodynamical calculations. The experimental results and the thermodynamical calculations were in fair agreement. (8 refs.)

  7. Exploration and Modeling of Structural changes in Waste Glass Under Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Pantano, Carlos; Ryan, Joseph; Strachan, Denis

    2013-11-10

    Vitrification is currently the world-wide treatment of choice for the disposition of high-level nuclear wastes. In glasses, radionuclides are atomistically bonded into the solid, resulting in a highly durable product, with borosilicate glasses exhibiting particularly excellent durability in water. Considering that waste glass is designed to retain the radionuclides within the waste form for long periods, it is important to understand the long-term stability of these materials when they react in the environment, especially in the presence of water. Based on a number of previous studies, there is general consensus regarding the mechanisms controlling the initial rate of nuclear waste glass dissolution. Agreement regarding the cause of the observed decrease in dissolution rate at extended times, however, has been elusive. Two general models have been proposed to explain this behavior, and it has been concluded that both concepts are valid and must be taken into account when considering the decrease in dissolution rate. Furthermore, other processes such as water diffusion, ion exchange, and precipitation of mineral phases onto the glass surface may occur in parallel with dissolution of the glass and can influence long-term performance. Our proposed research will address these issues through a combination of aqueous-phase dissolution/reaction experiments and probing of the resulting surface layers with state-of-the-art analytical methods. These methods include solid-state nuclear magnetic resonance (SSNMR) and time-of-flight secondary ion mass spectrometry (TOF-SIMS). The resulting datasets will then be coupled with computational chemistry and reaction-rate modeling to address the most persistent uncertainties in the understanding of glass corrosion, which indeed have limited the performance of the best corrosion models to date. With an improved understanding of corrosion mechanisms, models can be developed and improved that, while still conservative, take advantage of

  8. The corrosion of steels in molten sodium hydroxide

    International Nuclear Information System (INIS)

    Newman, R.N.; Smith, C.A.; Smith, R.J.

    1976-09-01

    The role of sodium hydroxide corrosion is discussed in relation to the wastage of materials observed in fast reactor boilers under fault conditions in the vicinity of a water leak into sodium. An experimental technique to study the corrosion under varying conditions is described. The results presented are for 2 1/4Cr 1Mo obtained in static sodium hydroxide in a closed volume over the temperature range 1033K to 1273K. It is found that the corrosion rate can be followed by monitoring the hydrogen produced by the reaction, which can be written as: Fe + 2NaOH = NaFeO 2 + NaH + 1/2H 2 . After an initial acceleration period the rate law is parabolic. The effect on the corrosion rate of melt and cover gas composition has been in part investigated, and the relevance of mass flow of reactants is discussed. (author)

  9. Fundamental aspects of stress corrosion cracking of copper relevant to the Swedish deep geologic repository concept

    International Nuclear Information System (INIS)

    Bhaskaran, Ganesh; Carcea, Anatolie; Ulaganathan, Jagan; Wang, Shengchun; Huang, Yin; Newman, Roger C.

    2013-03-01

    Phosphorus-doped oxygen-free copper will be used as the outer barrier in canisters that will contain spent nuclear fuel in the proposed Swedish underground repository. The possibility of stress corrosion cracking (SCC) is a concern, in view of isolated reports of cracking or intergranular corrosion of pure copper in sulfide solutions. This concern was addressed in the present work using copper tensile specimens provided by SKB. Methods included slow strain rate testing, constant strain tensile testing, electrochemical and surface analytical studies of corrosion products, and electron backscatter diffraction analysis of grain orientation effects on corrosion. The base solutions were prepared from NaCl or synthetic sea water with addition of varying amounts of sodium sulfide at room temperature and 80 degree Celsius. No SCC was found in any of the testing, for a range of sulfide concentrations from 5-50 mM at room temperature or 8 C, including tests where small anodic or cathodic potential displacements were applied from the open-circuit (corrosion) potential. Neither was SCC found in constant-strain immersion testing with very large strain. The Cu2S corrosion product is generally very coarse, fragile, and easily spalled off in severe corrosion environments, i.e. high sulfide concentration, high temperature, less perfect de aeration, etc. But it could also consist of very fine grains, relatively compact and adherent, on particular grain orientations when it was formed on an electro polished surface in a very well-deaerated solution. These orientations have not yet been identified statistically, although some preference for thin, adherent films was noted on orientations close to (100). The notion that the corrosion reaction is always controlled by inward aqueous-phase diffusion of sulfide may thus not be unconditionally correct for this range of sulfide concentrations; however it is hard to distinguish the role of diffusion within pores in the film. In the actual

  10. Fundamental aspects of stress corrosion cracking of copper relevant to the Swedish deep geologic repository concept

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskaran, Ganesh; Carcea, Anatolie; Ulaganathan, Jagan; Wang, Shengchun; Huang, Yin; Newman, Roger C. [Dept. of Chemical Engineering and Applied Chemistry, Univ. of Toronto, Toronto (Canada)

    2013-03-15

    Phosphorus-doped oxygen-free copper will be used as the outer barrier in canisters that will contain spent nuclear fuel in the proposed Swedish underground repository. The possibility of stress corrosion cracking (SCC) is a concern, in view of isolated reports of cracking or intergranular corrosion of pure copper in sulfide solutions. This concern was addressed in the present work using copper tensile specimens provided by SKB. Methods included slow strain rate testing, constant strain tensile testing, electrochemical and surface analytical studies of corrosion products, and electron backscatter diffraction analysis of grain orientation effects on corrosion. The base solutions were prepared from NaCl or synthetic sea water with addition of varying amounts of sodium sulfide at room temperature and 80 degree Celsius. No SCC was found in any of the testing, for a range of sulfide concentrations from 5-50 mM at room temperature or 8 C, including tests where small anodic or cathodic potential displacements were applied from the open-circuit (corrosion) potential. Neither was SCC found in constant-strain immersion testing with very large strain. The Cu2S corrosion product is generally very coarse, fragile, and easily spalled off in severe corrosion environments, i.e. high sulfide concentration, high temperature, less perfect de aeration, etc. But it could also consist of very fine grains, relatively compact and adherent, on particular grain orientations when it was formed on an electro polished surface in a very well-deaerated solution. These orientations have not yet been identified statistically, although some preference for thin, adherent films was noted on orientations close to (100). The notion that the corrosion reaction is always controlled by inward aqueous-phase diffusion of sulfide may thus not be unconditionally correct for this range of sulfide concentrations; however it is hard to distinguish the role of diffusion within pores in the film. In the actual

  11. Corrosion analysis in mooring chain links; Analise de corrosao em elos de amarras

    Energy Technology Data Exchange (ETDEWEB)

    Leal, Silvia N.; Pereira, Marcos V. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Ciencia dos Materiais e Metalurgia; Costa, Luis C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas; Motta, Sergio H. [Brasilamarras - Companhia Brasileira de Amarras, Niteroi, RJ (Brazil)

    2004-07-01

    The purpose of this work was to characterize the localized corrosion phenomenon in the weld region of offshore mooring chain links type ORQ. In this sense, a number of chain links were selected after finishing their projected life time without corrosion signs (chains without corrosion) as well as chain links which showed a reduced life time caused by localized corrosion (chains with corrosion). In the sequence, electrochemistry tests evaluated the corrosion susceptibility of the different regions of the weld joint. The results showed that the heat affected zone concerning the chains with corrosion was the anodic region, with high corrosion rate, while the same region on the not corroded chains was the cathodic one, with low corrosion rate. (author)

  12. The long-term acceleration of waste glass corrosion: A preliminary review

    International Nuclear Information System (INIS)

    Kielpinski, A.L.

    1995-07-01

    Whereas a prior conception of glass dissolution assumed a relatively rapid initial dissolution which then slowed to a smaller, fairly constant longer-term rate, some recent work suggests that these two stages are followed by a third phase of dissolution, in which the dissolution rate is accelerated with respect to what had previously been thought of as the final long-term rate. The goals of the present study are to compile experimental data which may have a bearing on this phenomena, and to provide an initial assessment of these data. The Savannah River Technology Center (SRTC) is contracted to develop glass formulation models for vitrification of Hanford low-level waste (LLW), in support of the Hanford Tank Waste Remediation System Technology Development Program. The phenomenon of an increase in corrosion rate, following a period characterized by a low corrosion rate, has been observed by a number of researchers on a number of waste glass compositions. Despite inherent ambiguities arising from SA/V (glass surface area to solution volume ratio) and other effects, valid comparisons can be made in which accelerated corrosion was observed in one test, but not in another. Some glass compositions do not appear to attain a plateau region; it may be that the observation of continued, non-negligible corrosion in these glasses represents a passage from the initial rate to the accelerated rate. The long-term corrosion is a function of the interaction between the glass and its environment, including the leaching solution and the surrounding materials. Reaction path modeling and stability field considerations have been used with some success to predict the changes in corrosion rate over time, due to these interactions. The accelerated corrosion phenomenon highlights the need for such integrated corrosion modeling and the scenario-specific nature of a particular glass composition's durability

  13. The corrosion behavior of iron and aluminum under waste disposal conditions

    International Nuclear Information System (INIS)

    Fujisawa, R.; Cho, T.; Sugahara, K.; Takizawa, Y.; Hironaga, M.

    1997-01-01

    The generation of hydrogen gas from metallic waste in corrosive disposal environment is an important issue for the safety analysis of low-level radioactive waste disposal facilities in Japan. In particular iron and aluminum are the possibly important elements regarding the gas generation. However, the corrosion behavior of these metals has not been sufficiently investigated under the highly alkaline non-oxidizing disposal conditions yet. The authors studied the corrosion behavior of iron and aluminum under simulated disposal environments. The quantity of hydrogen gas generated from iron was measured in a closed cell under highly alkaline non-oxidizing conditions. The observed corrosion rate of iron in the initial period of immersion was 4 nm/year at 15 C, 20 nm/year at 30 C, and 200 nm/year at 45 C. The activation energy was found to be 100 kJ/mol from Arrhenius plotting of the above corrosion rates. The corrosion behavior of aluminum was studied under an environment simulating conditions in which aluminum was solidified with mortar. In the initial period aluminum corroded rapidly with a corrosion rate of 20 mm/year. However, the corrosion rate decreased with time, and after 1,000 hours the rate reached 0.001 to 0.01 mm/year. Thus the authors obtained data on hydrogen gas generation from iron and aluminum under the disposal environment relevant to the safety analysis of low-level radioactive disposal facilities in Japan

  14. The corrosion behaviour of galvanized steel in cooling tower water containing a biocide and a corrosion inhibitor.

    Science.gov (United States)

    Minnoş, Bihter; Ilhan-Sungur, Esra; Çotuk, Ayşın; Güngör, Nihal Doğruöz; Cansever, Nurhan

    2013-01-01

    The corrosion behaviour of galvanized steel in cooling tower water containing a biocide and a corrosion inhibitor was investigated over a 10-month period in a hotel. Planktonic and sessile numbers of sulphate reducing bacteria (SRB) and heterotrophic bacteria were monitored. The corrosion rate was determined by the weight loss method. The corrosion products were analyzed by energy dispersive X-ray spectroscopy and X-ray diffraction. A mineralized, heterogeneous biofilm was observed on the coupons. Although a biocide and a corrosion inhibitor were regularly added to the cooling water, the results showed that microorganisms, such as SRB in the mixed species biofilm, caused corrosion of galvanized steel. It was observed that Zn layers on the test coupons were completely depleted after 3 months. The Fe concentrations in the biofilm showed significant correlations with the weight loss and carbohydrate concentration (respectively, p < 0.01 and p < 0.01).

  15. Contradictory effect of chromate inhibitor on corrosive wear of aluminium alloy

    International Nuclear Information System (INIS)

    Pokhmurskii, V.I.; Zin, I.M.; Vynar, V.A.; Bily, L.M.

    2011-01-01

    Research highlights: → Corrosive wear of aluminium alloy in inhibited artificial acid rain was studied. → Tribometer with linear reciprocating ball-on-flat geometry was used.→ Corrosion potential, polarization current and friction coefficient were measured. → Chromate decreases corrosion of aluminium alloy under wear conditions. → Chromate in general accelerates corrosive wear of the alloy in acid rain. - Abstract: The corrosive wear of D16T aluminium alloy in artificial acid rain was studied. A special tribometer with the linear reciprocating ball-on-flat geometry was used. The setup allows to measure simultaneously an open circuit potential, to carry out potentiostatic and potentiodynamic polarization studies of the alloy corrosion and to record the friction coefficient. It was established that the addition of strontium chromate inhibitor to the working environment decreases an electrochemical corrosion of the aluminium alloy under wear conditions, but in general accelerates its destruction due to insufficient wear resistance of a formed surface film.

  16. Analysis and countermeasures for the corrosion on the shaft of seawater pump

    International Nuclear Information System (INIS)

    Lu Hongtao; Chen Haiming

    2010-01-01

    The corrosion resistance of the shaft material-3Cr13 was studied through immersion test and electrochemistry test. The results indicated that 3Cr13 and the chromium plating on the shaft had poor resistance against local corrosion in seawater. And the free corrosion potential of 3Cr13 in seawater was lower than other components of the pump, this could accelerate the corrosion rate of the shaft due to galvanic corrosion. A comprehensive analysis showed that the root cause of the corrosion on the No.4 shaft was that 3Cr13 had poor resistance against local corrosion in seawater. Because of the exist of fit-up gap, galvanic corrosion effect and corrosive wear caused by sand, crevice corrosion, galvanic corrosion and wear occurred. All of these accelerated the corrosion rate of the shaft and finally caused its failure. It is suggested that the sealant should be improved and the current material 3Cr13 should be replaced by a kind of materials with better corrosion resistance. (authors)

  17. Evaluation of corrosion attack of chimney liners

    Directory of Open Access Journals (Sweden)

    Blahetová M.

    2016-06-01

    Full Text Available The case study of chimney liner corrosion addresses three specific cases of damage of chimney systems from of stainless steels. These systems were used for flue of gas arising from the combustion of brown coal in small automatic boilers, which are used for heating. Detailed analyzes implied that the cause of devastating corrosion of the steel AISI 316 and 304 steel (CSN 17349, 17241 was particularly high content of halides (chlorides and fluorides, which caused a severe pitting corrosion, which led up to the perforation of the liner material. Simultaneous reduction of the thickness of the used sheets was due to by the general corrosion, which was caused by the sulfur in the solid fuel. The condensation then led to acid environment and therefore the corrosion below the dew point of the sulfuric acid has occurred. All is documented by metallographic analysis and microanalysis of the corrosion products.

  18. Corrosion of Ferritic-Martensitic steels in high temperature water: A literature Review

    International Nuclear Information System (INIS)

    Fernandez, P.; Lapena, J.; Blazquez, F.

    2001-01-01

    Available literature concerning corrosion of high-chromium ferritic/martensitic steel in high temperature water as reviewed. The subjects considered are general corrosion, effect of irradiation on corrosion, environmentally assisted cracking (EAC) including stress corrosion cracking (SCC), corrosion fatigue and irradiation-assisted stress corrosion cracking (IASCC). In addition some investigations about radiation induced segregation (RIS). Are shown in order to know the compositional changes at grain boundaries of these alloys and their influence on corrosion properties. (Author)

  19. Efficiency and corrosion rate analysis of organic inhibitor utilization from bawang dayak leaves (EleutherineamericanaMerr.) on API 5L steel

    Science.gov (United States)

    Sari, Shaimah Rinda; Sari, Eli Novita; Rizky, Yoel; Sulistijono, Triana, Yunita

    2018-05-01

    This research studied the inhibition of corrosion by bawang dayak leaves extract (EleutherineamericanaMerr.) on API 5L steel in brine water environment (3.5% NaCl). The inhibitor was extracted using maceration process from bawang dayak leaves that was cultivated in Paser District, East Kalimantan. The test of antioxidant activity showed that bawang dayak leaves extract is a very powerful antioxidant with IC50 value of 27.30204. The results from FTIR test show the presence of electronegative atoms and double bonds of the alkenes groups that provide the potential of the extract as a corrosion inhibitor. Efficiency of inhibition reached up to 93.158% for the addition of inhibitor with 300 ppm concentration and 20 days of immersion time. This inhibitory behavior is also supported by polarization measurements where the lowest corrosion rate of 0.00128 mm/year is obtained at the same concentration and immersion time.

  20. Galvanic corrosion of copper-cast iron couples

    International Nuclear Information System (INIS)

    Smart, N.R.; Rance, A.P.; Fennell, P.A.H.

    2005-01-01

    To ensure the safe encapsulation of spent nuclear fuel rods for geological disposal, SKB are considering using the Copper-Cast Iron Canister, which consists of an outer copper canister and an inner cast iron container. The canister will be placed into boreholes in the bedrock of a geologic repository and surrounded by bentonite clay. In the unlikely event of the outer copper canister being breached, water would enter the annulus between the inner and outer canister and at points of contact between the two metals there would be the possibility of galvanic interactions. Although this subject has been considered previously from both a theoretical standpoint and by experimental investigations there was a need for further experimental studies in support of information provided by SKB to the Swedish regulators (SKI). In the work reported here copper-cast iron galvanic couples were set up in a number of different environments representing possible conditions in the SKB repository. The tests investigated two artificial porewaters at 30 deg C and 50 deg C, under aerated and deaerated conditions. Tests were also carried out in a 30 wt% bentonite slurry made up in artificial groundwater. The potential of the couples and the currents passing between the coupled electrodes were monitored for several months. The effect of growing an oxide film on the surface of the cast iron prior to coupling it with copper was investigated. In addition, some crevice specimens based on the multi-crevice assembly (MCA) design were used to simulate the situation where the copper canister will be in direct contact with the cast iron inner vessel. The electrochemical results are presented graphically in the form of electrode potentials and galvanic corrosion currents as a function of time. The galvanic currents in aerated conditions were much higher than in deaerated conditions. For example, at 30 deg C, galvanic corrosion rates as low as 0.02 μm/year for iron were observed after deaeration, but