WorldWideScience

Sample records for general concepts related

  1. The Concept of General Relativity is not Related to Reality

    Science.gov (United States)

    Kotas, Ronald

    2015-04-01

    The concept of general relativity is not related to reality. It is not real or factual Science. GR cannot account for objects falling to earth or for the weight of objects sitting on the earth. The Cavendish demonstration showing the attraction between two masses at right angles to earth's gravity, is not explained by GR. No one can prove the existence of ``space fabric.'' The concept of ``space time'' effects causing gravitational attraction between masses is wrong. Conservation law of energy - momentum does not exist in GR. LIGO fails in detecting ``gravity waves'' because there is no ``space fabric'' to transmit them. The Gravity B Probe data manipulated to show some effects, is not proof of ``space fabric.'' It is Nuclear Quantum Gravitation that provides clear definitive explanation of Gravity and Gravitation. It is harmonious with Newtonian and Quantum Mechanics, and Scientific Logic. Nuclear Quantum Gravitation has 10 clear, Scientific proofs and 21 more good indications. With this theory the Physical Forces are Unified. See: OBSCURANTISM ON EINSTEIN GRAVITATION? http://www.santilli-foundation.org/inconsistencies-gravitation.php and Einstein's Theory of Relativity versus Classical Mechanics, by Paul Marmet http://www.newtonphysics.on.ca/einstein/

  2. Bell's inequalities from the field concept in general relativity

    International Nuclear Information System (INIS)

    Sachs, M.

    1980-01-01

    A nonlinear field theory of matter, based axiomatically on general relativity, has an asymptotic, low-energy limit that predicts the outcome of experimental tests of Bell's inequalities. The inequalities should follow if spin-correlated, spin-1/2 particles, observed in coincidence, were a spacelike distance apart; they should be violated if they were separated by timelike distances. The experiment at timelike separations, for scattered protons observed in coincidence, was carried out by Lahemi-Rachti and Mittig and, thus far, agrees with this theory. Extension of the low-energy pp scattering experiment to observations at spacelike distances is suggested, with the prediction that agreement should be obtained with Bell's inequalities there. (author)

  3. Resolution of a cosmological paradox using concepts from general relativity theory

    International Nuclear Information System (INIS)

    Silverman, A.N.

    1986-01-01

    According to the big bang theory, the universe began about 15 billion years ago and has been continually expanding ever since. If certain elementary physical concepts are naively applied to this cosmological theory, it can lead to a paradox in which distant astronomical objects seem to have lain at distances from the Earth larger than the possible size of the universe. The paradox is resolved by using concepts from general relativity theory. These concepts may appear startling to some readers

  4. General relativity

    International Nuclear Information System (INIS)

    Kenyon, I.R.

    1990-01-01

    General relativity is discussed in this book at a level appropriate to undergraduate students of physics and astronomy. It describes concepts and experimental results, and provides a succinct account of the formalism. A brief review of special relativity is followed by a discussion of the equivalence principle and its implications. Other topics covered include the concepts of curvature and the Schwarzschild metric, test of the general theory, black holes and their properties, gravitational radiation and methods for its detection, the impact of general relativity on cosmology, and the continuing search for a quantum theory of gravity. (author)

  5. General Relativity

    CERN Document Server

    Straumann, Norbert

    2013-01-01

    This book provides a completely revised and expanded version of the previous classic edition ‘General Relativity and Relativistic Astrophysics’. In Part I the foundations of general relativity are thoroughly developed, while Part II is devoted to tests of general relativity and many of its applications. Binary pulsars – our best laboratories for general relativity – are studied in considerable detail. An introduction to gravitational lensing theory is included as well, so as to make the current literature on the subject accessible to readers. Considerable attention is devoted to the study of compact objects, especially to black holes. This includes a detailed derivation of the Kerr solution, Israel’s proof of his uniqueness theorem, and a derivation of the basic laws of black hole physics. Part II ends with Witten’s proof of the positive energy theorem, which is presented in detail, together with the required tools on spin structures and spinor analysis. In Part III, all of the differential geomet...

  6. General relativity

    International Nuclear Information System (INIS)

    Gourgoulhon, Eric

    2013-01-01

    The author proposes a course on general relativity. He first presents a geometrical framework by addressing, presenting and discussion the following notions: the relativistic space-time, the metric tensor, Universe lines, observers, principle of equivalence and geodesics. In the next part, he addresses gravitational fields with spherical symmetry: presentation of the Schwarzschild metrics, radial light geodesics, gravitational spectral shift (Einstein effect), orbitals of material objects, photon trajectories. The next parts address the Einstein equation, black holes, gravitational waves, and cosmological solutions. Appendices propose a discussion of the relationship between relativity and GPS, some problems and their solutions, and Sage codes

  7. Concept research on general passive system

    International Nuclear Information System (INIS)

    Han Xu; Yang Yanhua; Zheng Mingguang

    2009-01-01

    This paper summarized the current passive techniques used in nuclear power plants. Through classification and analysis, the functional characteristics and inherent identification of passive systems were elucidated. By improving and extending the concept of passive system, the general passive concept was proposed, and space and time relativity was discussed and assumption of general passive system were illustrated. The function of idealized general passive system is equivalent with the current passive system, but the design of idealized general passive system is more flexible. (authors)

  8. The Electromagnetic Conception of Nature at the Root of the Special and General Relativity Theories and Its Revolutionary Meaning

    Science.gov (United States)

    Giannetto, Enrico R. A.

    2009-01-01

    The revolution in XX century physics, induced by relativity theories, had its roots within the electromagnetic conception of Nature. It was developed through a tradition related to Brunian and Leibnizian physics, to the German "Naturphilosophie" and English XIXth physics. The electromagnetic conception of Nature was in some way realized by the…

  9. Introduction to some fundamental concepts of general relativity and to their required use in some modern timekeeping systems

    Science.gov (United States)

    Alley, C. O.

    1982-01-01

    Einstein's theory of gravity as curved space-time is presented. Emphasis is on the physical concepts, using only elementary mathematics. For the slow motions and weak gravitational fields experienced on Earth, the main curvature is that of time, not space. Experiments demonstrating this property are reviewed. The fundamental effects of motion and gravitational potential on clocks in many practical situations are discussed.

  10. Forces in General Relativity

    Science.gov (United States)

    Ridgely, Charles T.

    2010-01-01

    Many textbooks dealing with general relativity do not demonstrate the derivation of forces in enough detail. The analyses presented herein demonstrate straightforward methods for computing forces by way of general relativity. Covariant divergence of the stress-energy-momentum tensor is used to derive a general expression of the force experienced…

  11. Twistors in general relativity

    International Nuclear Information System (INIS)

    Penrose, R.

    1987-01-01

    The two most significant definitions of a twistor in (conformally) flat space-time are that given by solutions of the twistor equation and that given by α-planes in the complexification of the space-time. It is shown that these concepts are naturally dual to one another, and that they give rise to various different twistor concepts in curved space-time when referred to submanifolds of differing dimension. One of these concepts, that of 2-surface twistors, gives rise to a quasi-local definition of mass (and angular momentum). The status of this definition is explored in relation to various examples. (author)

  12. The general principles and consequences of environmental radiation exposure in relation to Canada's nuclear fuel waste management concept

    International Nuclear Information System (INIS)

    Myers, D.K.

    1989-09-01

    This document reviews the general principles and biological consequences of environmental radiation exposure. Particular attention was paid to the ICRP principle that if individual humans are adequately protected, then populations of other living organisms are likely to be sufficiently protected. The data reviewed in this document suggest that this principle is usually valid, although some theoretical concerns were noted with respect to effects of bioaccumulation of certain radionuclides in aquatic organisms

  13. Theoretical general relativity: 1979

    International Nuclear Information System (INIS)

    Bergmann, O.

    1979-01-01

    The metric and field equations of Einstein's general relativity theory are written down. Solutions to the equations are discussed. Connection is made between relativity theory and elementary particle theory. Possibilities for a unified field theory are considered

  14. Bimetric general relativity

    International Nuclear Information System (INIS)

    Rosen, N.

    1979-01-01

    A modification of general relativity is proposed involving a second metric tensor describing a space-time of constant curvature and associated with the fundamental rest-frame of the universe. The theory generally agrees with the Einstein theory, but gives cosmological models without singularities which can account for present observation, including helium abundance

  15. General Relativity and Energy

    Science.gov (United States)

    Jackson, A. T.

    1973-01-01

    Reviews theoretical and experimental fundamentals of Einstein's theory of general relativity. Indicates that recent development of the theory of the continually expanding universe may lead to revision of the space-time continuum of the finite and unbounded universe. (CC)

  16. General relativity and experiment

    OpenAIRE

    Damour, T.

    1994-01-01

    The confrontation between Einstein's theory of gravitation and experiment is summarized. Although all current experimental data are compatible with general relativity, the importance of pursuing the quest for possible deviations from Einstein's theory is emphasized.

  17. Forces in general relativity

    International Nuclear Information System (INIS)

    Ridgely, Charles T

    2010-01-01

    Many textbooks dealing with general relativity do not demonstrate the derivation of forces in enough detail. The analyses presented herein demonstrate straightforward methods for computing forces by way of general relativity. Covariant divergence of the stress-energy-momentum tensor is used to derive a general expression of the force experienced by an observer in general coordinates. The general force is then applied to the local co-moving coordinate system of a uniformly accelerating observer, leading to an expression of the inertial force experienced by the observer. Next, applying the general force in Schwarzschild coordinates is shown to lead to familiar expressions of the gravitational force. As a more complex demonstration, the general force is applied to an observer in Boyer-Lindquist coordinates near a rotating, Kerr black hole. It is then shown that when the angular momentum of the black hole goes to zero, the force on the observer reduces to the force on an observer held stationary in Schwarzschild coordinates. As a final consideration, the force on an observer moving in rotating coordinates is derived. Expressing the force in terms of Christoffel symbols in rotating coordinates leads to familiar expressions of the centrifugal and Coriolis forces on the observer. It is envisioned that the techniques presented herein will be most useful to graduate level students, as well as those undergraduate students having experience with general relativity and tensor analysis.

  18. Green economy and related concepts

    NARCIS (Netherlands)

    Loiseau, Eleonore; Saikku, Laura; Antikainen, Riina; Droste, Nils; Hansjürgens, Bernd; Pitkänen, Kati; Leskinen, Pekka; Kuikman, Peter; Thomsen, Marianne

    2016-01-01

    For the last ten years, the notion of a green economy has become increasingly attractive to policy makers. However, green economy covers a lot of diverse concepts and its links with sustainability are not always clear. In this article, we focus on definitions of green economy and related concepts

  19. Matter in general relativity

    Science.gov (United States)

    Ray, J. R.

    1982-01-01

    Two theories of matter in general relativity, the fluid theory and the kinetic theory, were studied. Results include: (1) a discussion of various methods of completing the fluid equations; (2) a method of constructing charged general relativistic solutions in kinetic theory; and (3) a proof and discussion of the incompatibility of perfect fluid solutions in anisotropic cosmologies. Interpretations of NASA gravitational experiments using the above mentioned results were started. Two papers were prepared for publications based on this work.

  20. New general relativity

    International Nuclear Information System (INIS)

    Hayashi, K.; Shirafuji, T.

    1979-01-01

    A gravitational theory is formulated on the Weitzenboeck space-time, characterized by the vanishing curvature tensor (absolute parallelism) and by the torsion tensor formed of four parallel vector fields. This theory is called new general relativity, since Einstein in 1928 first gave its original form. New general relativity has three parameters c 1 , c 2 , and lambda, besides the Einstein constant kappa. In this paper we choose c 1 = 0 = c 2 , leaving open lambda. We prove, among other things, that (i) a static, spherically symmetric gravitational field is given by the Schwarzschild metric, that (ii) in the weak-field approximation an antisymmetric field of zero mass and zero spin exists, besides gravitons, and that (iii) new general relativity agrees with all the experiments so far carried out

  1. Lectures on general relativity

    CERN Document Server

    Papapetrou, Achille

    1974-01-01

    This book is an elaboration of lecture notes for the graduate course on General Rela­ tivity given by the author at Boston University in the spring semester of 1972. It is an introduction to the subject only, as the time available for the course was limited. The author of an introduction to General Relativity is faced from the beginning with the difficult task of choosing which material to include. A general criterion as­ sisting in this choice is provided by the didactic character of the book: Those chapters have to be included in priority, which will be most useful to the reader in enabling him to understand the methods used in General Relativity, the results obtained so far and possibly the problems still to be solved. This criterion is not sufficient to ensure a unique choice. General Relativity has developed to such a degree, that it is impossible to include in an introductory textbook of a reasonable length even a very condensed treatment of all important problems which have been discussed unt...

  2. General Relativity and Gravitation

    Science.gov (United States)

    Ehlers, J.; Murdin, P.

    2000-11-01

    The General Theory of Relativity (GR), created by Albert Einstein between 1907 and 1915, is a theory both of gravitation and of spacetime structure. It is based on the assumption that matter, via its energy-momentum, interacts with the metric of spacetime, which is considered (in contrast to Newtonian physics and SPECIAL RELATIVITY) as a dynamical field having degrees of freedom of its own (GRAVI...

  3. General Atomic's superconducting toroidal field coil concept

    International Nuclear Information System (INIS)

    Alcorn, J.; Purcell, J.

    1978-01-01

    General Atomic's concept for a superconducting toroidal field coil is presented. The concept is generic for large tokamak devices, while a specific design is indicated for a 3.8 meter (major radius) ignition/burn machine. The concept utilizes bath cooled NbTi conductor to generate a peak field of 10 tesla at 4.2 K. The design is simple and straightforward, requires a minimum of developmental effort, and draws extensively upon the perspective of past experience in the design and construction of large superconducting magnets for high energy physics. Thus, the primary emphasis is upon economy, reliability, and expeditious construction scheduling. (author)

  4. Global general relativity

    International Nuclear Information System (INIS)

    Penrose, R.

    1979-01-01

    Much theoretical work in General Relativity has been concerned with finding explicit solutions of Einstein field equations. Exact solutions must involve simplifying procedures which in the case of strong gravitational fields may not be valid. Computers can help but complementary to these are the global qualitative mathematics that have been introduced into relativity over the past years. These have shown that Einstein's equations together with suitable inequalities on the energy-momentum tensor can lead inevitably to space-time singularities arising, provided that some qualitative geometric criterion is satisfied. It seems that in suitable situations of gravitational collapse this criterion will be satisfied. Similarly in a cosmological setting the criterion can be applied in the reverse direction in time. There is, however, the unsolved problem in general relativity of cosmic censorship and this is discussed as a consequence of Einstein's equations. (UK)

  5. Elementary general relativity

    International Nuclear Information System (INIS)

    Clarke, C.

    1979-01-01

    The plan of the book is as follows: Chapter 1 develops special relativity in a setting and notation that can immediately be transferred to general relativity. Most of the fundamental geometrical ideas are established here. Chapter 2 gives a more conventional account of some selected applications of special relativity. Chapter 3 is the heart of the book. A geometrical model of space-time is progressively built up, motivated by physical arguments stemming from the equivalence principle, leading to Einstein's field equations. Chapter 4 deals very quickly with the simplest form of weak-field theory with application to gravitational radiation. Chapter 5 concludes the book with a fairly detailed analysis of the Schwarzschild solution, plane fronted gravitational waves, and the Robertson-Walker cosmological solutions. Exercises at the end of each chapter extend the general theory into particular applications, giving a broader picture of the scope of the subject. (author)

  6. Gravitation. [Book on general relativity

    Science.gov (United States)

    Misner, C. W.; Thorne, K. S.; Wheeler, J. A.

    1973-01-01

    This textbook on gravitation physics (Einstein's general relativity or geometrodynamics) is designed for a rigorous full-year course at the graduate level. The material is presented in two parallel tracks in an attempt to divide key physical ideas from more complex enrichment material to be selected at the discretion of the reader or teacher. The full book is intended to provide competence relative to the laws of physics in flat space-time, Einstein's geometric framework for physics, applications with pulsars and neutron stars, cosmology, the Schwarzschild geometry and gravitational collapse, gravitational waves, experimental tests of Einstein's theory, and mathematical concepts of differential geometry.

  7. General Relativity and Gravitation

    Science.gov (United States)

    Ashtekar, Abhay; Berger, Beverly; Isenberg, James; MacCallum, Malcolm

    2015-07-01

    Part I. Einstein's Triumph: 1. 100 years of general relativity George F. R. Ellis; 2. Was Einstein right? Clifford M. Will; 3. Cosmology David Wands, Misao Sasaki, Eiichiro Komatsu, Roy Maartens and Malcolm A. H. MacCallum; 4. Relativistic astrophysics Peter Schneider, Ramesh Narayan, Jeffrey E. McClintock, Peter Mészáros and Martin J. Rees; Part II. New Window on the Universe: 5. Receiving gravitational waves Beverly K. Berger, Karsten Danzmann, Gabriela Gonzalez, Andrea Lommen, Guido Mueller, Albrecht Rüdiger and William Joseph Weber; 6. Sources of gravitational waves. Theory and observations Alessandra Buonanno and B. S. Sathyaprakash; Part III. Gravity is Geometry, After All: 7. Probing strong field gravity through numerical simulations Frans Pretorius, Matthew W. Choptuik and Luis Lehner; 8. The initial value problem of general relativity and its implications Gregory J. Galloway, Pengzi Miao and Richard Schoen; 9. Global behavior of solutions to Einstein's equations Stefanos Aretakis, James Isenberg, Vincent Moncrief and Igor Rodnianski; Part IV. Beyond Einstein: 10. Quantum fields in curved space-times Stefan Hollands and Robert M. Wald; 11. From general relativity to quantum gravity Abhay Ashtekar, Martin Reuter and Carlo Rovelli; 12. Quantum gravity via unification Henriette Elvang and Gary T. Horowitz.

  8. The use of generalized functions and distributions in general relativity

    International Nuclear Information System (INIS)

    Steinbauer, R; Vickers, J A

    2006-01-01

    We review the extent to which one can use classical distribution theory in describing solutions of Einstein's equations. We show that there are a number of physically interesting cases which cannot be treated using distribution theory but require a more general concept. We describe a mathematical theory of nonlinear generalized functions based on Colombeau algebras and show how this may be applied in general relativity. We end by discussing the concept of singularity in general relativity and show that certain solutions with weak singularities may be regarded as distributional solutions of Einstein's equations. (topical review)

  9. Strains in general relativity

    International Nuclear Information System (INIS)

    Bini, Donato; Felice, Fernando de; Geralico, Andrea

    2006-01-01

    The definition of relative accelerations and strains among a set of comoving particles is studied in connection with the geometric properties of the frame adapted to a 'fiducial observer'. We find that a relativistically complete and correct definition of strains must take into account the transport law of the chosen spatial triad along the observer's congruence. We use special congruences of (accelerated) test particles in some familiar spacetimes to elucidate such a point. The celebrated idea of Szekeres' compass of inertia, arising when studying geodesic deviation among a set of free-falling particles, is here generalized to the case of accelerated particles. In doing so we have naturally contributed to the theory of relativistic gravity gradiometer. Moreover, our analysis was made in an observer-dependent form, a fact that would be very useful when thinking about general relativistic tests on space stations orbiting compact objects like black holes and also in other interesting gravitational situations

  10. Introduction to general relativity

    CERN Document Server

    Parthasarthy, R

    2016-01-01

    INTRODUCTION TO GENERAL RELATIVITY begins with a description of the geometry of curved space, explaining geodesics, parallel transport, covariant differentiation, geodesic deviation and spacetime symmetry by killing vectors. It then introduces Einstein's theory of gravitation followed by Schwarzschild solution with its relevance to Positive Mass theorem. The three tests for Einstein's gravity are explained. Other exact solutions such as Vaidya, Kerr and Reisner - Nordstrom metric are included. In the Chapter on cosmological solutions, a detailed description of Godel metric is provided. It then introduces five dimensional spacetime of Kaluza showing the unification of gravity with electromagnetism. This is extended to include non-Abelian gauge theory by invoking compact extra dimensions. Explicit expressions in this case for Christoffel connections and ricci tensor are derived and the higher dimensional gravity action is shown to compactification are given.

  11. Vibronic coupling density and related concepts

    International Nuclear Information System (INIS)

    Sato, Tohru; Uejima, Motoyuki; Iwahara, Naoya; Haruta, Naoki; Shizu, Katsuyuki; Tanaka, Kazuyoshi

    2013-01-01

    Vibronic coupling density is derived from a general point of view as a one-electron property density. Related concepts as well as their applications are presented. Linear and nonlinear vibronic coupling density and related concepts, orbital vibronic coupling density, reduced vibronic coupling density, atomic vibronic coupling constant, and effective vibronic coupling density, illustrate the origin of vibronic couplings and enable us to design novel functional molecules or to elucidate chemical reactions. Transition dipole moment density is defined as an example of the one-electron property density. Vibronic coupling density and transition dipole moment density open a way to design light-emitting molecules with high efficiency.

  12. Attitude Counts: Self-Concept and Success in General Chemistry

    Science.gov (United States)

    Lewis, Scott E.; Shaw, Janet L.; Heitz, Judith O.; Webster, Gail H.

    2009-06-01

    General chemistry is a required first step for students who wish to pursue a career in science or health professions. The course often has low rates of student success and as a result serves as a gateway limiting access to science fields. This study seeks to better understand factors that are related to student success in general chemistry by focusing on the affective domain, in this case students' self-concept, or self-evaluation of ability as it pertains to a specific field of study. First, a profile of students' self-concept in the general chemistry setting is created. Next, the relationship between self-concept and success in the course is investigated, including examining the role of self-concept after taking into account a cognitive measure (SAT scores). This study is unique in that evidence is found for the impact of self-concept after taking into account a cognitive measure. Finally, the effect of a semester-long, inquiry-oriented learning environment on students' self-concept is described. Suggested interventions to improve student self-concept are also discussed.

  13. The renaissance of general relativity

    International Nuclear Information System (INIS)

    Will, C.

    1989-01-01

    A historical evaluation of Einstein's theory of general relativity is presented, including the three classical tests of the theory. Gravitation is shown to be a ''curved spacetime'' phenomenon, particularly if the Einstein equivalence principle (EEP) is true. The article traces the success and failures of the theory over the years and up to the present. The concept of gravitation waves was, for example, strengthened by the discovery of a binary pulsar in 1974. The author describes the theory's relevance to neutron stars and black holes and its role in establishing the hot big bang model of cosmological evolution. The article concludes by considering the possibility of antigravity and how gravitational calculations can be done by computer because of the large number of variables in the calculations. (U.K.)

  14. Pregnancy-related anxiety: A concept analysis.

    Science.gov (United States)

    Bayrampour, Hamideh; Ali, Elena; McNeil, Deborah A; Benzies, Karen; MacQueen, Glenda; Tough, Suzanne

    2016-03-01

    Evidence suggests that pregnancy-related anxiety is more strongly associated with maternal and child outcomes than general anxiety and depression are and that pregnancy-related anxiety may constitute a distinct concept. However, because of its poor conceptualization, the measurement and assessment of pregnancy-related anxiety have been limited. Efforts to analyze this concept can significantly contribute to its theoretical development. The first objective of this paper was to clarify the concept of pregnancy-related anxiety and identify its characteristics and dimensions. The second aim was to examine the items of current pregnancy-related anxiety measures to determine the dimensions and attributes that each scale addresses, noting any gaps between the current assessment and the construct of the concept. A concept analysis was conducted to examine the concept of pregnancy-related anxiety. To obtain the relevant evidence, several databases were searched including MEDLINE, PsycINFO, EBSCO's SocINDEX, Psychological and Behavioral Sciences Collection, CINAHL, SCOPUS, and EMBASE. A modified approach based on Walker and Avant (Strategies for theory construction in nursing. 5th ed; 2011) was used. Qualitative or quantitative studies published in English that explored or examined anxiety during pregnancy or its dimensions prospectively or retrospectively were included. Thirty eight studies provided data for the concept analysis. Three critical attributes (i.e., affective responses, cognitions, and somatic symptoms), three antecedents (i.e., a real or anticipated threat to pregnancy or its outcomes, low perceived control, and excessive cognitive activity, and four consequences (i.e., negative attitudes, difficulty concentrating, excessive reassurance-seeking behavior, and avoidance behaviors) were identified. Nine dimensions for pregnancy-related anxiety were determined, and a definition of the concept was proposed. The most frequently reported dimensions included anxiety

  15. Conformally Coupled General Relativity

    Directory of Open Access Journals (Sweden)

    Andrej Arbuzov

    2018-02-01

    Full Text Available The gravity model developed in the series of papers (Arbuzov et al. 2009; 2010, (Pervushin et al. 2012 is revisited. The model is based on the Ogievetsky theorem, which specifies the structure of the general coordinate transformation group. The theorem is implemented in the context of the Noether theorem with the use of the nonlinear representation technique. The canonical quantization is performed with the use of reparametrization-invariant time and Arnowitt– Deser–Misner foliation techniques. Basic quantum features of the models are discussed. Mistakes appearing in the previous papers are corrected.

  16. Relativity Concept Inventory: Development, Analysis, and Results

    Science.gov (United States)

    Aslanides, J. S.; Savage, C. M.

    2013-01-01

    We report on a concept inventory for special relativity: the development process, data analysis methods, and results from an introductory relativity class. The Relativity Concept Inventory tests understanding of relativistic concepts. An unusual feature is confidence testing for each question. This can provide additional information; for example,…

  17. General relativity basics and beyond

    CERN Document Server

    Date, Ghanashyam

    2015-01-01

    A Broad Perspective on the Theory of General Relativity and Its Observable Implications General Relativity: Basics and Beyond familiarizes students and beginning researchers with the basic features of the theory of general relativity as well as some of its more advanced aspects. Employing the pedagogical style of a textbook, it includes essential ideas and just enough background material needed for readers to appreciate the issues and current research. Basics The first five chapters form the core of an introductory course on general relativity. The author traces Einstein’s arguments and presents examples of space-times corresponding to different types of gravitational fields. He discusses the adaptation of dynamics in a Riemannian geometry framework, the Einstein equation and its elementary properties, and different phenomena predicted or influenced by general relativity. Beyond Moving on to more sophisticated features of general relativity, the book presents the physical requirements of a well-defined de...

  18. CHUVARDINSKY’S ANTIGLACIAL (GENERALIZED GEOLOGICAL CONCEPTION

    Directory of Open Access Journals (Sweden)

    P. K. Skufyin

    2016-12-01

    Full Text Available Based on the analytical study of V. G. Chuvardinsky’s monographs on the revision of the generally accepted glacial theory, the authors of the review concluded that there was convincing evidence of a fault-tectonic origin of ‘ice-exaration’ relief of the Baltic Shield. Developed by Chuvardinsky, a radically new methodology of boulder prospecting of ore deposits not only refuted the old glacial theory, but also led to the discovery of copper-nickel deposits, a new apatite alkaline massif, promising manifestation of copper-nickel ore, platinum group metals, native gold, chromite and other mineral resources. A thorough drilling of ice sheets in Greenland and Antarctica for the international project determined the absence of boulder material over the entire thickness of the ice, only pulverulent and fine particles (mainly volcanic ash were found in the ice. Bottom ice layers are immobilised, their function is preservation of the geological surface. V. G. Chuvardinsky far outstripped western and Russian scientists in the field of Earth Sciences. His field studies on the Baltic Shield not only refuted the mighty glacial theory, but also created and substantiated a new geological concept instead. Professor V. Z. Negrutsa was quite right when he wrote in his review on Chuvardinsky’s work (journal Geomorfologiya, 2003, no. 1, ‘Evidence of Chuvardinsky about tectonic origin of geological and geomorphological features traditionally associated with the Quaternary glaciation is so obvious and reproducible both by field observations and by geological modeling that is presented irrefutable and undeniable in its essence’. In general, assessing the scientific significance of V. G. Chuvardinsky’s works, it can be stated that his work would have done honour to research institutes of geological and geographical orientation according to the level of study of the geological material and the value of his field studies. His books present the material for

  19. Number-concept acquisition and general vocabulary development.

    Science.gov (United States)

    Negen, James; Sarnecka, Barbara W

    2012-11-01

    How is number-concept acquisition related to overall language development? Experiments 1 and 2 measured number-word knowledge and general vocabulary in a total of 59 children, ages 30-60 months. A strong correlation was found between number-word knowledge and vocabulary, independent of the child's age, contrary to previous results (D. Ansari et al., 2003). This result calls into question arguments that (a) the number-concept creation process is scaffolded mainly by visuo-spatial development and (b) that language only becomes integrated after the concepts are created (D. Ansari et al., 2003). Instead, this may suggest that having a larger nominal vocabulary helps children learn number words. Experiment 3 shows that the differences with previous results are likely due to changes in how the data were analyzed. © 2012 The Authors. Child Development © 2012 Society for Research in Child Development, Inc.

  20. Nanomedicine concepts in the general medical curriculum: initiating a discussion.

    Science.gov (United States)

    Sweeney, Aldrin E

    2015-01-01

    Various applications of nanoscale science to the field of medicine have resulted in the ongoing development of the subfield of nanomedicine. Within the past several years, there has been a concurrent proliferation of academic journals, textbooks, and other professional literature addressing fundamental basic science research and seminal clinical developments in nanomedicine. Additionally, there is now broad consensus among medical researchers and practitioners that along with personalized medicine and regenerative medicine, nanomedicine is likely to revolutionize our definitions of what constitutes human disease and its treatment. In light of these developments, incorporation of key nanomedicine concepts into the general medical curriculum ought to be considered. Here, I offer for consideration five key nanomedicine concepts, along with suggestions regarding the manner in which they might be incorporated effectively into the general medical curriculum. Related curricular issues and implications for medical education also are presented.

  1. Generalized Habituation of Concept Stimuli in Toddlers

    Science.gov (United States)

    Faulkender, Patricia J.; And Others

    1974-01-01

    An evaluation of selective generalization of habituation on the basis of meaningful categories of stimuli. Also explored are the sex differences in conceptual generalization of habituation. Subjects were 36 toddlers with a mean age of 40 months. (SDH)

  2. The KBS concepts - General outline, present study

    International Nuclear Information System (INIS)

    Pusch, R.

    1980-01-01

    The Swedish KBS 2 concept, which concerns spent, unreprocessed reactor fuel, implies the use of an 'engineered' barrier of highly compacted Na bentonite for isolating metal canisters with the wastes from the surrounding rock. The isolating power of a barrier of this kind will be so great that it will probably be suggested for other radioactive wastes as well

  3. Modern canonical quantum general relativity

    CERN Document Server

    Thiemann, Thomas

    2007-01-01

    This is an introduction to the by now fifteen years old research field of canonical quantum general relativity, sometimes called "loop quantum gravity". The term "modern" in the title refers to the fact that the quantum theory is based on formulating classical general relativity as a theory of connections rather than metrics as compared to in original version due to Arnowitt, Deser and Misner. Canonical quantum general relativity is an attempt to define a mathematically rigorous, non-perturbative, background independent theory of Lorentzian quantum gravity in four spacetime dimensions in the continuum. The approach is minimal in that one simply analyzes the logical consequences of combining the principles of general relativity with the principles of quantum mechanics. The requirement to preserve background independence has lead to new, fascinating mathematical structures which one does not see in perturbative approaches, e.g. a fundamental discreteness of spacetime seems to be a prediction of the theory provi...

  4. Cosmological tests of general relativity

    International Nuclear Information System (INIS)

    Hut, P.

    1977-01-01

    It is stated that the general relativity theory could be tested on a cosmological scale by measuring the Hubble constant and the deceleration parameter, if, in addition, everything could be known about the matter filling the universe. If, on the other hand, nothing could be presupposed about the matter content of the universe general relativity could not be tested by measuring any number of time derivatives of the scale factor. But upon making the assumption of a universe filled with non-interacting mixture of non-relativistic matter and radiation general relativity can in principle be tested by measuring the first five derivatives of the scale factor. Some general relations are here presented using this assumption. (author)

  5. Geometrical optics in general relativity

    OpenAIRE

    Loinger, A.

    2006-01-01

    General relativity includes geometrical optics. This basic fact has relevant consequences that concern the physical meaning of the discontinuity surfaces propagated in the gravitational field - as it was first emphasized by Levi-Civita.

  6. Cosmic frontiers of general relativity

    International Nuclear Information System (INIS)

    Kaufmann, W.J. III.

    1977-01-01

    All relevant topics in general astronomy are covered including orientation in space--time, special relativity, gravitation and general relativity, stars and stellar evolution, white dwarfs, pulsars, neutron stars, the black hole, the geometry of the Schwarzschild solution, and electrically charged and rotating black holes. Also the geometry of the Kerr solution, observations of black holes, white holes and particle creation, gravitational waves and lenses, exploding galaxies and massive and primordial black holes are discussed

  7. The power of general relativity

    International Nuclear Information System (INIS)

    Clifton, Timothy; Barrow, John D.

    2005-01-01

    We study the cosmological and weak-field properties of theories of gravity derived by extending general relativity by means of a Lagrangian proportional to R 1+δ . This scale-free extension reduces to general relativity when δ→0. In order to constrain generalizations of general relativity of this power class, we analyze the behavior of the perfect-fluid Friedmann universes and isolate the physically relevant models of zero curvature. A stable matter-dominated period of evolution requires δ>0 or δ -19 assuming that Mercury follows a timelike geodesic. The combination of these observational constraints leads to the overall bound 0≤δ -19 on theories of this type

  8. Ayurvedic concepts related to psychotherapy.

    Science.gov (United States)

    Behere, Prakash B; Das, Anweshak; Yadav, Richa; Behere, Aniruddh P

    2013-01-01

    The perfect balance of mind, body and soul is considered as complete health in Ayurveda. Ayurveda has its own identity as most ancient and traditional System of Medicine in India. Even Ayurveda emphasizes its treatment modalities into three parts viz. Satwawajay Chikitsa, Yuktivyapashray and Daivyapashray Chikitsa. Sattvavajaya therapy mentioned in Charakasamhita and it used as new concept of psychotherapy in Ayurveda. The effectiveness of "traditional mental health promoting practices" was identified as health regimens (swasthvrtt), correct behavior (sadvrtt), and yoga. Sattvavajaya as psychotherapy, is the mental restraint, or a "mind control" as referred by Caraka, is achieved through "spiritual knowledge, philosophy, fortitude, remembrance and concentration. Ayurvedic psychotherapy would play a dual role: First, as a revival of authentic medical culture, the exercise of a practice with an assumed primordial dimension, and second as a discovery of authentic subjectivity, the revelation of a self with an assumed interior depth. When we integrate the contemporary art of psychotherapy with the ancient science of Ayurveda, it becomes a powerful combination that is called Psycho Veda. The integration of Psycho and Veda is motivated by the complete integration of the immense but fairly contemporary view of the mind, emotions and psyche and how this performs in our lives. Integrating Psychotherapy and Vedic principles teaches us how to rediscover critical knowledge and awareness of the natural forces and rhythms that compliment and strengthen our human experience, through the understanding of the psyche and what our inner experiences are and also involving practical daily activities with thorough attention to our total environment to bring about radical changes in our mental outlook and in physical health.

  9. Advanced mechanics and general relativity an introduction to general relativity

    CERN Document Server

    Franklin, Joel

    2010-01-01

    Aimed at advanced undergraduates with background knowledge of classical mechanics and electricity and magnetism, this textbook presents both the particle dynamics relevant to general relativity, and the field dynamics necessary to understand the theory. Focusing on action extremization, the book develops the structure and predictions of general relativity by analogy with familiar physical systems. Topics ranging from classical field theory to minimal surfaces and relativistic strings are covered in a homogeneous manner. Nearly 150 exercises and numerous examples throughout the textbook enable students to test their understanding of the material covered.

  10. Generalized Moshinsky bracket recurrence relations

    International Nuclear Information System (INIS)

    Bevelacqua, J.J.

    1979-01-01

    Recurrence relations for generalized Talmi-Moshinsky brackets are derived. These relations permit the generation of transformation brackets once appropriate starting brackets are determined. The savings in computer time, when compared with generating brackets individually, is at least a factor of 10 for brackets with radial quantum numbers as large as 9 and angular quantum numbers as large as 2. (author)

  11. Spinning fluids in general relativity

    Science.gov (United States)

    Ray, J. R.; Smalley, L. L.

    1982-01-01

    General relativity field equations are employed to examine a continuous medium with internal spin. A variational principle formerly applied in the special relativity case is extended to the general relativity case, using a tetrad to express the spin density and the four-velocity of the fluid. An energy-momentum tensor is subsequently defined for a spinning fluid. The equations of motion of the fluid are suggested to be useful in analytical studies of galaxies, for anisotropic Bianchi universes, and for turbulent eddies.

  12. Modern Canonical Quantum General Relativity;

    International Nuclear Information System (INIS)

    Kiefer, Claus

    2008-01-01

    The open problem of constructing a consistent and experimentally tested quantum theory of the gravitational field has its place at the heart of fundamental physics. The main approaches can be roughly divided into two classes: either one seeks a unified quantum framework of all interactions or one starts with a direct quantization of general relativity. In the first class, string theory (M-theory) is the only known example. In the second class, one can make an additional methodological distinction: while covariant approaches such as path-integral quantization use the four-dimensional metric as an essential ingredient of their formalism, canonical approaches start with a foliation of spacetime into spacelike hypersurfaces in order to arrive at a Hamiltonian formulation. The present book is devoted to one of the canonical approaches-loop quantum gravity. It is named modern canonical quantum general relativity by the author because it uses connections and holonomies as central variables, which are analogous to the variables used in Yang-Mills theories. In fact, the canonically conjugate variables are a holonomy of a connection and the flux of a non-Abelian electric field. This has to be contrasted with the older geometrodynamical approach in which the metric of three-dimensional space and the second fundamental form are the fundamental entities, an approach which is still actively being pursued. It is the author's ambition to present loop quantum gravity in a way in which every step is formulated in a mathematically rigorous form. The formal Leitmotiv of loop quantum gravity is background independence. Non-gravitational theories are usually quantized on a given non-dynamical background. In contrast, due to the geometrical nature of gravity, no such background exists in quantum gravity. Instead, the notion of a background is supposed to emerge a posteriori as an approximate notion from quantum states of geometry. As a consequence, the standard ultraviolet divergences of

  13. Basic general concepts in the network analysis

    Directory of Open Access Journals (Sweden)

    Boja Nicolae

    2004-01-01

    Full Text Available This survey is concerned oneself with the study of those types of material networks which can be met both in civil engineering and also in electrotechnics, in mechanics, or in hydrotechnics, and of which behavior lead to linear problems, solvable by means of Finite Element Method and adequate algorithms. Here, it is presented a unitary theory of networks met in the domains mentioned above and this one is illustrated with examples for the structural networks in civil engineering, electric circuits, and water supply networks, but also planar or spatial mechanisms can be comprised in this theory. The attention is focused to make evident the essential proper- ties and concepts in the network analysis, which differentiate the networks under force from other types of material networks. To such a network a planar, connected, and directed or undirected graph is associated, and with some vector fields on the vertex set this graph is endowed. .

  14. Nanomedicine concepts in the general medical curriculum: initiating a discussion

    Directory of Open Access Journals (Sweden)

    Sweeney AE

    2015-12-01

    Full Text Available Aldrin E Sweeney Center for Teaching & Learning, Ross University School of Medicine, Roseau, Commonwealth of Dominica Abstract: Various applications of nanoscale science to the field of medicine have resulted in the ongoing development of the subfield of nanomedicine. Within the past several years, there has been a concurrent proliferation of academic journals, textbooks, and other professional literature addressing fundamental basic science research and seminal clinical developments in nanomedicine. Additionally, there is now broad consensus among medical researchers and practitioners that along with personalized medicine and regenerative medicine, nanomedicine is likely to revolutionize our definitions of what constitutes human disease and its treatment. In light of these developments, incorporation of key nanomedicine concepts into the general medical curriculum ought to be considered. Here, I offer for consideration five key nanomedicine concepts, along with suggestions regarding the manner in which they might be incorporated effectively into the general medical curriculum. Related curricular issues and implications for medical education also are presented. Keywords: medical education, basic science, teaching, learning, assessment, nanoscience curriculum, nanomedicine concepts

  15. Pseudo-complex general relativity

    CERN Document Server

    Hess, Peter O; Greiner, Walter

    2016-01-01

    This volume presents an pseudo-complex extension of General Relativity which addresses these issues and presents proposals for experimental examinations in strong fields near a large mass. General Relativity is a beautiful and well tested theory of gravitation. Nevertheless, it implies conceptual problems like the creation of singularities (Black Holes) as a result of the collapse of large masses, or the appearance of event horizons which exclude parts of the space-time from the observation of external observers. The mathematical and geometrical foundations of this extension are displayed in detail, and applications including orbits and accretion disks around large central masses, neutron stars or cosmological models are introduced. Calculations both for classical and extended applications are often executed in the form of problems with extensive solutions, which makes this volume also a valuable resource for any student of General Relativity.

  16. Bimetric general relativity and cosmology

    International Nuclear Information System (INIS)

    Rosen, N.

    1980-01-01

    A modification of the general relativity theory is proposed (bimetric general relativity) in which, in addition to the usual metric tensor gsub(μupsilon) describing the space-time geometry and gravitation, there exists also a background metric tensor γsub(μupsilon). The latter describes the space-time of the universe if no matter were present and is taken to correspond to a space-time of constant curvature with positive spatial curvature (k = 1). Field equations are obtained, and these agree with the Einstein equations for systems that are small compared to the size of the universe, such as the solar system. Energy considerations lead to a generalized form of the De Donder condition. Simple isotropic closed models of the universe can be set up which first contract and then expand without going through a singular state. It is suggested that the maximum density of the universe was of the order of c 5 -h -1 G -2 approximately 10 93 g/cm 3 . The expansion from such a high-density state is similar to that from the singular state ('big bang') of the general relativity models. In the case of the dust-filled model the parameters can be fitted to present cosmological data. Using the radiation-filled model to describe the early history of the universe, the cosmic abundance of helium and other light elements can be accounted for in the same way as in ordinary general relativity. (author)

  17. Conformal covariance of general relativity

    International Nuclear Information System (INIS)

    Ionescu-Pallas, N.; Gottlieb, I.

    1980-01-01

    The Einstein's equations of General Relativity are written in a conformal metric, resulting as a consequence of geometrizing the pressure forces. Accordingly, the trajectory of a test body pursues a geodetic line even inside the source of gravitational field. Moreover, the pressure, entering the perfect fluid scheme, may be replaced by a certain scalar interaction. This new manner of interpreting General Relativity is then applied to Cosmology, in order to build up a model of Universe whose static limit should coincide with that of Einstein. At the same time, the cosmological constant is connected to the scalar interaction acquiring a plausible explanation. (author)

  18. The gauge in general relativity

    International Nuclear Information System (INIS)

    Cohn, J.

    1975-01-01

    The view is taken that the field equations of General Relativity, without a definition of congruence of length and time intervals at different events, are without physical content. The possibility is explored that the customary Einstein field equations are to be used but with a different congruence definition than is customary. When these resulting equations are, in turn, expressed with the customary congruence, they comprise a new set of field equations physically not equivalent to either Einstein's or Brans-Dicke's formulations of general relativity. Similarities with Einstein's and Brans-Dicke's formulations are discussed, and the possibility of experimental confirmation of these new equations is also briefly considered. (author)

  19. General relativity and gravitational waves

    CERN Document Server

    Weber, Johanna

    1961-01-01

    An internationally famous physicist and electrical engineer, the author of this text was a pioneer in the investigation of gravitational waves. Joseph Weber's General Relativity and Gravitational Waves offers a classic treatment of the subject. Appropriate for upper-level undergraduates and graduate students, this text remains ever relevant. Brief but thorough in its introduction to the foundations of general relativity, it also examines the elements of Riemannian geometry and tensor calculus applicable to this field.Approximately a quarter of the contents explores theoretical and experimenta

  20. Concept similarity and related categories in information retrieval using formal concept analysis

    Science.gov (United States)

    Eklund, P.; Ducrou, J.; Dau, F.

    2012-11-01

    The application of formal concept analysis to the problem of information retrieval has been shown useful but has lacked any real analysis of the idea of relevance ranking of search results. SearchSleuth is a program developed to experiment with the automated local analysis of Web search using formal concept analysis. SearchSleuth extends a standard search interface to include a conceptual neighbourhood centred on a formal concept derived from the initial query. This neighbourhood of the concept derived from the search terms is decorated with its upper and lower neighbours representing more general and special concepts, respectively. SearchSleuth is in many ways an archetype of search engines based on formal concept analysis with some novel features. In SearchSleuth, the notion of related categories - which are themselves formal concepts - is also introduced. This allows the retrieval focus to shift to a new formal concept called a sibling. This movement across the concept lattice needs to relate one formal concept to another in a principled way. This paper presents the issues concerning exploring, searching, and ordering the space of related categories. The focus is on understanding the use and meaning of proximity and semantic distance in the context of information retrieval using formal concept analysis.

  1. Discrete expansions of continuum functions. General concepts

    International Nuclear Information System (INIS)

    Bang, J.; Ershov, S.N.; Gareev, F.A.; Kazacha, G.S.

    1979-01-01

    Different discrete expansions of the continuum wave functions are considered: pole expansion (according to the Mittag-Lefler theorem), Weinberg states. The general property of these groups of states is their completeness in the finite region of space. They satisfy the Schroedinger type equations and are matched with free solutions of the Schroedinger equation at the boundary. Convergence of expansions for the S matrix, the Green functions and the continuous-spectrum wave functions is studied. A new group of states possessing the best convergence is introduced

  2. General relativity 50 years old

    CERN Multimedia

    1966-01-01

    In May 1916, 'The Foundations of General Relativity Theory' by Albert Einstein was published in 'Annalen der Physik'. Fifty years later, this major contribution to scientific thought still has a rather isolated position with respect to the main-stream of scientific theory. (In contrast, the Special Theory of Relativity is one of the cornerstones of sub-nuclear physics.) To mark the anniversary of the publication of Einstein's paper a theoretician from CERN discusses the theory and its present status.

  3. Quantum mechanics from general relativity

    International Nuclear Information System (INIS)

    Sachs, M.

    1986-01-01

    A generalization of quantum mechanics is demonstrated in the context of general relativity, following from a generally covariant field theory of inertia. Nonrelativistically, the formalism corresponds with linear quantum mechanics. In the limit of special relativity, nonlinearity remains and several new features are derived: (1) Particle-antiparticle pairs do not annihilate; an exact bound state solution is derived corresponding with all experimental facts about annihilation/creation - which, in approximation, gives the blackbody radiation spectrum for a sea of such pairs. (2) A result is proven, without approximation, that is physically equivalent to the Pauli exclusion principle - which, in linear approximation, gives the totally antisymmetrised many-body wave function and Fermi-Dirac statistics. (3) The hydrogen spectrum is derived, including the Lamb shifts, in agreement with experiment; new results are found for high energy electron-proton scattering. (4) Finally, several applications to the elementary particle domain are demonstrated, in agreement with results from experimental high energy physics. (Auth.)

  4. Stochastic quantization of general relativity

    International Nuclear Information System (INIS)

    Rumpf, H.

    1986-01-01

    Following an elementary exposition of the basic mathematical concepts used in the theory of stochastic relaxation processes the stochastic quantization method of Parisi and Wu is briefly reviewed. The method is applied to Einstein's theory of gravitation using a formalism that is manifestly covariant with respect to field redefinitions. This requires the adoption of Ito's calculus and the introduction of a metric in field configuration space, for which there is a unique candidate. Due to the indefiniteness of the Euclidean Einstein-Hilbert action stochastic quantization is generalized to the pseudo-Riemannian case. It is formally shown to imply the DeWitt path integral measure. Finally a new type of perturbation theory is developed. (Author)

  5. General Relativity: horizons for tests

    Science.gov (United States)

    Yatskiv, Ya. S.; Alexandrov, A. N.; Vavilova, I. B.; Zhdanov, V. I.; Zhuk, A. I.; Kudrya, Yu. N.; Parnovsky, S. L.; Fedorova, E. V.; Khmil, S. V.

    2013-12-01

    Theoretical basis of the General Relativity Theory (GRT), its experimental tests as well as GRT applications are briefly summarized taking into account the results of the last decade. The monograph addresses scientists, post-graduated students, and students specialized in the natural sciences as well as everyone who takes an interest in GRT.

  6. General relativity and dark matter

    International Nuclear Information System (INIS)

    Pestov, A.B.

    1993-01-01

    It is shown that from the first principles of General Relativity it follows that there exists a new type of interactions which are tightly connected with the gravitational interactions. New particles representing a new form of interactions do not interact electromagnetically, strongly and weakly with the known elementary particles. Physics of the new particles is defined by the Planck scales. (author.). 9 refs

  7. General Relativity: Geometry Meets Physics

    Science.gov (United States)

    Thomsen, Dietrick E.

    1975-01-01

    Observing the relationship of general relativity and the geometry of space-time, the author questions whether the rest of physics has geometrical explanations. As a partial answer he discusses current research on subatomic particles employing geometric transformations, and cites the existence of geometrical definitions of physical quantities such…

  8. Modified General Relativity and Cosmology

    Science.gov (United States)

    Abdel-Rahman, A.-M. M.

    1997-10-01

    Aspects of the modified general relativity theory of Rastall, Al-Rawaf and Taha are discussed in both the radiation- and matter-dominated flat cosmological models. A nucleosynthesis constraint on the theory's free parameter is obtained and the implication for the age of the Universe is discussed. The consistency of the modified matter- dominated model with the neoclassical cosmological tests is demonstrated.

  9. Algebraic computing in general relativity

    International Nuclear Information System (INIS)

    D'Inverno, R.A.

    1975-01-01

    The purpose of this paper is to bring to the attention of potential users the existence of algebraic computing systems, and to illustrate their use by reviewing a number of problems for which such a system has been successfully used in General Relativity. In addition, some remarks are included which may be of help in the future design of these systems. (author)

  10. Cosmological models in general relativity

    Indian Academy of Sciences (India)

    Cosmological models in general relativity. B B PAUL. Department of Physics, Nowgong College, Nagaon, Assam, India. MS received 4 October 2002; revised 6 March 2003; accepted 21 May 2003. Abstract. LRS Bianchi type-I space-time filled with perfect fluid is considered here with deceler- ation parameter as variable.

  11. Dimensional Analysis and General Relativity

    Science.gov (United States)

    Lovatt, Ian

    2009-01-01

    Newton's law of gravitation is a central topic in the first-year physics curriculum. A lecturer can go beyond the physical details and use the history of gravitation to discuss the development of scientific ideas; unfortunately, the most recent chapter in this history, general relativity, is not covered in first-year courses. This paper discusses…

  12. The genesis of general relativity

    CERN Document Server

    Norton, John; Renn, Jürgen; Sauer, Tilman; Stachel, John

    2007-01-01

    This four-volume work represents the most comprehensive documentation and study of the creation of general relativity; one of the fundamental physical theories of the 20th century. It comprises key sources from Einstein and others who from the late 19th to the early 20th century contributed to this monumental development. Some of these sources are presented here in translation for the first time. Einstein’s famous Zurich notebook, which documents the pivotal steps toward general relativity, is reproduced here for the first time and transcribed in its entirety. The volumes offer detailed commentaries and analyses of these sources that are based on a close reading of these documents supplemented by interpretations by the leading historians of relativity. All in all, the facets of this work, based on more than a decade of research, combine to constitute one of the most in-depth studies of a scientific revolution ever written.

  13. Relativity concept inventory: Development, analysis, and results

    Directory of Open Access Journals (Sweden)

    J. S. Aslanides

    2013-05-01

    Full Text Available We report on a concept inventory for special relativity: the development process, data analysis methods, and results from an introductory relativity class. The Relativity Concept Inventory tests understanding of relativistic concepts. An unusual feature is confidence testing for each question. This can provide additional information; for example, high confidence correlated with incorrect answers suggests a misconception. A novel aspect of our data analysis is the use of Monte Carlo simulations to determine the significance of correlations. This approach is particularly useful for small sample sizes, such as ours. Our results show a gender bias that was not present in course assessment, similar to that reported for the Force Concept Inventory.

  14. Testing general relativity on accelerators

    Directory of Open Access Journals (Sweden)

    Tigran Kalaydzhyan

    2015-11-01

    Full Text Available Within the general theory of relativity, the curvature of spacetime is related to the energy and momentum of the present matter and radiation. One of the more specific predictions of general relativity is the deflection of light and particle trajectories in the gravitational field of massive objects. Bending angles for electromagnetic waves and light in particular were measured with a high precision. However, the effect of gravity on relativistic massive particles was never studied experimentally. Here we propose and analyze experiments devoted to that purpose. We demonstrate a high sensitivity of the laser Compton scattering at high energy accelerators to the effects of gravity. The main observable – maximal energy of the scattered photons – would experience a significant shift in the ambient gravitational field even for otherwise negligible violation of the equivalence principle. We confirm predictions of general relativity for ultrarelativistic electrons of energy of tens of GeV at a current level of resolution and expect our work to be a starting point of further high-precision studies on current and future accelerators, such as PETRA, European XFEL and ILC.

  15. Quantum information and general relativity

    International Nuclear Information System (INIS)

    Peres, A.

    2004-01-01

    The Einstein-Podolsky-Rosen paradox (1935) is reexamined in the light of Shannon's information theory (1948). The EPR argument did not take into account that the observers' information was localized, like any other physical object. General relativity introduces new problems: there are horizons which act as on-way membranes for the propagation of quantum information, in particular black holes which act like sinks. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  16. Quantum information and general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Peres, A. [Technion, Israel Institute of Technology, Haifa (Israel)

    2004-12-01

    The Einstein-Podolsky-Rosen paradox (1935) is reexamined in the light of Shannon's information theory (1948). The EPR argument did not take into account that the observers' information was localized, like any other physical object. General relativity introduces new problems: there are horizons which act as on-way membranes for the propagation of quantum information, in particular black holes which act like sinks. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  17. Quantum information and general relativity

    OpenAIRE

    Peres, Asher

    2004-01-01

    The Einstein-Podolsky-Rosen paradox (1935) is reexamined in the light of Shannon's information theory (1948). The EPR argument did not take into account that the observers' information was localized, like any other physical object. General relativity introduces new problems: there are horizons which act as one-way membranes for the propagation of quantum information, in particular black holes which act like sinks.

  18. Quantum information and general relativity

    Science.gov (United States)

    Peres, A.

    2004-11-01

    The Einstein-Podolsky-Rosen paradox (1935) is reexamined in the light of Shannon's information theory (1948). The EPR argument did not take into account that the observers' information was localized, like any other physical object. General relativity introduces new problems: there are horizons which act as on-way membranes for the propagation of quantum information, in particular black holes which act like sinks.

  19. Bubble collisions in general relativity

    International Nuclear Information System (INIS)

    Siklos, S.T.C.; Wu, Z.C.; University of Science and Technology of China, Hofei, Anhwei)

    1983-01-01

    The collision of two bubbles of true vacuum in a background of false vacuum is considered in the context of General Relativity. It is found that in the thin wall approximation, the problem, can be solved exactly. The region to the future of the collision is described by the pseudo-Schwarzschild de Sitter metric. The parameters in this metric are found by solving the junction conditions at each collision. (author)

  20. Results from Numerical General Relativity

    Science.gov (United States)

    Baker, John G.

    2011-01-01

    For several years numerical simulations have been revealing the details of general relativity's predictions for the dynamical interactions of merging black holes. I will review what has been learned of the rich phenomenology of these mergers and the resulting gravitational wave signatures. These wave forms provide a potentially observable record of the powerful astronomical events, a central target of gravitational wave astronomy. Asymmetric radiation can produce a thrust on the system which may accelerate the single black hole resulting from the merger to high relative velocity.

  1. Conformal methods in general relativity

    CERN Document Server

    Valiente Kroon, Juan A

    2016-01-01

    This book offers a systematic exposition of conformal methods and how they can be used to study the global properties of solutions to the equations of Einstein's theory of gravity. It shows that combining these ideas with differential geometry can elucidate the existence and stability of the basic solutions of the theory. Introducing the differential geometric, spinorial and PDE background required to gain a deep understanding of conformal methods, this text provides an accessible account of key results in mathematical relativity over the last thirty years, including the stability of de Sitter and Minkowski spacetimes. For graduate students and researchers, this self-contained account includes useful visual models to help the reader grasp abstract concepts and a list of further reading, making this the perfect reference companion on the topic.

  2. A generalized Principle of Relativity

    International Nuclear Information System (INIS)

    Felice, Fernando de; Preti, Giovanni

    2009-01-01

    The Theory of Relativity stands as a firm groundstone on which modern physics is founded. In this paper we bring to light an hitherto undisclosed richness of this theory, namely its admitting a consistent reformulation which is able to provide a unified scenario for all kinds of particles, be they lightlike or not. This result hinges on a generalized Principle of Relativity which is intrinsic to Einstein's theory - a fact which went completely unnoticed before. The road leading to this generalization starts, in the very spirit of Relativity, from enhancing full equivalence between the four spacetime directions by requiring full equivalence between the motions along these four spacetime directions as well. So far, no measurable spatial velocity in the direction of the time axis has ever been defined, on the same footing of the usual velocities - the 'space-velocities' - in the local three-space of a given observer. In this paper, we show how Relativity allows such a 'time-velocity' to be defined in a very natural way, for any particle and in any reference frame. As a consequence of this natural definition, it also follows that the time- and space-velocity vectors sum up to define a spacelike 'world-velocity' vector, the modulus of which - the world-velocity - turns out to be equal to the Maxwell's constant c, irrespective of the observer who measures it. This measurable world-velocity (not to be confused with the space-velocities we are used to deal with) therefore represents the speed at which all kinds of particles move in spacetime, according to any observer. As remarked above, the unifying scenario thus emerging is intrinsic to Einstein's Theory; it extends the role traditionally assigned to Maxwell's constant c, and can therefore justly be referred to as 'a generalized Principle of Relativity'.

  3. Modern Canonical Quantum General Relativity

    Science.gov (United States)

    Thiemann, Thomas

    2008-11-01

    Preface; Notation and conventions; Introduction; Part I. Classical Foundations, Interpretation and the Canonical Quantisation Programme: 1. Classical Hamiltonian formulation of general relativity; 2. The problem of time, locality and the interpretation of quantum mechanics; 3. The programme of canonical quantisation; 4. The new canonical variables of Ashtekar for general relativity; Part II. Foundations of Modern Canonical Quantum General Relativity: 5. Introduction; 6. Step I: the holonomy-flux algebra [P]; 7. Step II: quantum-algebra; 8. Step III: representation theory of [A]; 9. Step IV: 1. Implementation and solution of the kinematical constraints; 10. Step V: 2. Implementation and solution of the Hamiltonian constraint; 11. Step VI: semiclassical analysis; Part III. Physical Applications: 12. Extension to standard matter; 13. Kinematical geometrical operators; 14. Spin foam models; 15. Quantum black hole physics; 16. Applications to particle physics and quantum cosmology; 17. Loop quantum gravity phenomenology; Part IV. Mathematical Tools and their Connection to Physics: 18. Tools from general topology; 19. Differential, Riemannian, symplectic and complex geometry; 20. Semianalytical category; 21. Elements of fibre bundle theory; 22. Holonomies on non-trivial fibre bundles; 23. Geometric quantisation; 24. The Dirac algorithm for field theories with constraints; 25. Tools from measure theory; 26. Elementary introduction to Gel'fand theory for Abelean C* algebras; 27. Bohr compactification of the real line; 28. Operatir -algebras and spectral theorem; 29. Refined algebraic quantisation (RAQ) and direct integral decomposition (DID); 30. Basics of harmonic analysis on compact Lie groups; 31. Spin network functions for SU(2); 32. + Functional analytical description of classical connection dynamics; Bibliography; Index.

  4. Homothetic motions in general relativity

    International Nuclear Information System (INIS)

    McIntosh, C.B.G.

    1976-01-01

    Properties of homothetic or self-similar motions in general relativity are examined with particular reference to vacuum and perfect-fluid space-times. The role of the homothetic bivector with components Hsub((a;b)) formed from the homothetic vector H is discussed in some detail. It is proved that a vacuum space-time only admits a nontrivial homothetic motion if the homothetic vector field is non-null and is not hypersurface orthogonal. As a subcase of a more general result it is shown that a perfect-fluid space-time cannot admit a non-trivial homothetic vector which is orthogonal to the fluid velocity 4-vector. (author)

  5. Einstein algebras and general relativity

    International Nuclear Information System (INIS)

    Heller, M.

    1992-01-01

    A purely algebraic structure called an Einstein algebra is defined in such a way that every spacetime satisfying Einstein's equations is an Einstein algebra but not vice versa. The Gelfand representation of Einstein algebras is defined, and two of its subrepresentations are discussed. One of them is equivalent to the global formulation of the standard theory of general relativity; the other one leads to a more general theory of gravitation which, in particular, includes so-called regular singularities. In order to include other types of singularities one must change to sheaves of Einstein algebras. They are defined and briefly discussed. As a test of the proposed method, the sheaf of Einstein algebras corresponding to the space-time of a straight cosmic string with quasiregular singularity is constructed. 22 refs

  6. General relativity and gravitation, 1989

    International Nuclear Information System (INIS)

    Ashby, N.; Bartlett, D.F.; Wyss, W.

    1990-01-01

    This volume records the lectures and symposia of the 12th International Conference on General Relativity and Gravitation. Plenary lecturers reviewed the major advances since the previous conference in 1986. The reviews cover classical and quantum theory of gravity, colliding gravitational waves, gravitational lensing, relativistic effects on pulsars, tests of the inverse square law, numerical relativity, cosmic microwave background radiation, experimental tests of gravity theory, gravitational wave detectors, and cosmology. The plenary lectures are complemented by summaries of symposia, provided by the chairmen. Almost 700 contributed papers were presented at these and they cover an even wider range of topics than the plenary talks. The book provides a comprehensive guide to research activity in both experimental and theoretical gravitation and its applications in astrophysics and cosmology. It will be essential reading for research workers in these fields, as well as theoretical and experimental physicists, astronomers, and mathematicians who wish to be acquainted with modern developments in gravitational theory and general relativity. All the papers and summaries of the workshop sessions are indexed separately. (16 united talks, 20 workshop sessions). (author)

  7. Nonlinear generalization of special relativity

    International Nuclear Information System (INIS)

    Winterberg, F.

    1985-01-01

    In Poincares axiomatic formulation special relativity is a derived consequence of a true Lorentz contraction, for a rod in absolute motion through a substratum. Furthermore, Lorentz had shown that the rod contraction can be understood by an inverse square law interaction and therefore special relativity derived from more fundamental principles. The derivation by Lorentz shows that the root of the divergence problems is the singular inverse square law. By replacing the inverse square law with a regular one through the introduction of a finite length, the author has succeeded in deriving a nonlinear generalization of special relativity which eliminates all infinities. Besides the relative velocities, these nonlinear transformation equations also contain absolute velocities against a substratum, but in the limit of small energies they go over into the linear Lorentz transformations. Depending on the smallness of the fundamental length, departures from special relativity can be observed only at very high energies. The theorem that the velocity of light is the same in all reference systems still holds and likewise the conservation laws for energy and momentum

  8. Victories and defeats in general relativity theory

    International Nuclear Information System (INIS)

    Moeller, C.

    1977-01-01

    Only within the last 20 years has it been possible to conduct far-reaching experimental tests of the validity of Einstein's General Relativity Theory. Experimental confirmation in some fields is embarrassed by considerable difficulties in applying the theory to cosmic systems, which indicate that such major systems lie at the limit of the theory's applicability. The lecture here reproduced discusses both the successes and the limitations of the theory, starting with its replacement of the absolute space-time theory of Newton and its historical replacement by the relativistic gravitational postulates of Einstein which, in spite of its more complicated postulates, nevertheless introduced a great simplicity and comprehensiveness into the overall conception of nature. This theoretical 'beauty', however, can only be trusted if vindicated experimentally, which has to a considerable extent proved to be the case. For weak fields Newtonian and Einsteinian concepts coincide, while for stronger fields, and velocities not far from that of light, Einstein's theory is superior, giving,for example, an excellent correspondence with the precession of the perehelion of Mercury. On a larger scale, however, the theory appears to lead to conclusions which would invalidate the very concepts of space and time, even within a finite time-interval. A more generalized theory seems to be required. (A.D.N.)

  9. Relativity: Special, General, and Cosmological

    International Nuclear Information System (INIS)

    Ellis, G F R

    2005-01-01

    Wolfgang Rindler is known as a writer of exceptional clarity. This quality is evident in this book as it explores in depth first special relativity, then general relativity, and finally relativistic cosmology. He bases his writing in the fundamental underlying ideas and principles that so successfully guided Einstein in his work, clarifying their nature and implications in an illuminating way with many examples. The usual suspects are there: the relativity principle and equivalence principle, the abolishing of absolute space, invariance of the speed of light, analytic and geometric representations of the Lorentz transformation, its kinematic and dynamic consequences, relativistic optics, Minkowski spacetime, energy and momentum conservation, and the Compton effect. Particularly useful is the emphasis on the unity of the whole: for example (p 63) that the kinematic effect of length shortening must imply a corresponding detailed mechanical explanation of that shortening. The tensor formulation of Maxwell's equations leads to the transformation properties of the electromagnetic field and consequent elegant derivation of the field of an infinite straight current; in this case, relativity is important even for slowly moving charges because an ordinary current moves a very big charge (p 151). General relativity is systematically introduced in stages, starting with curved spaces and moving on through static and stationary spacetimes, geodesics, and tensor calculus to the field equations. A considerable strength of the book is the careful detailed examination of the local and global geometry of the major significant solutions of the equations: the Schwarzschild spacetime and its Kruskal extension, plane gravitational waves, de sitter and anti-de Sitter spacetimes, and Robertson-Walker cosmologies. The latter includes a clear presentation of the dust and radiation model dynamics for the variety of possible cases, a detailed examination of observational relations, and

  10. General Business Model Patterns for Local Energy Management Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Facchinetti, Emanuele, E-mail: emanuele.facchinetti@hslu.ch; Sulzer, Sabine [Lucerne Competence Center for Energy Research, Lucerne University of Applied Science and Arts, Horw (Switzerland)

    2016-03-03

    The transition toward a more sustainable global energy system, significantly relying on renewable energies and decentralized energy systems, requires a deep reorganization of the energy sector. The way how energy services are generated, delivered, and traded is expected to be very different in the coming years. Business model innovation is recognized as a key driver for the successful implementation of the energy turnaround. This work contributes to this topic by introducing a heuristic methodology easing the identification of general business model patterns best suited for Local Energy Management concepts such as Energy Hubs. A conceptual framework characterizing the Local Energy Management business model solution space is developed. Three reference business model patterns providing orientation across the defined solution space are identified, analyzed, and compared. Through a market review, a number of successfully implemented innovative business models have been analyzed and allocated within the defined solution space. The outcomes of this work offer to potential stakeholders a starting point and guidelines for the business model innovation process, as well as insights for policy makers on challenges and opportunities related to Local Energy Management concepts.

  11. General Business Model Patterns for Local Energy Management Concepts

    International Nuclear Information System (INIS)

    Facchinetti, Emanuele; Sulzer, Sabine

    2016-01-01

    The transition toward a more sustainable global energy system, significantly relying on renewable energies and decentralized energy systems, requires a deep reorganization of the energy sector. The way how energy services are generated, delivered, and traded is expected to be very different in the coming years. Business model innovation is recognized as a key driver for the successful implementation of the energy turnaround. This work contributes to this topic by introducing a heuristic methodology easing the identification of general business model patterns best suited for Local Energy Management concepts such as Energy Hubs. A conceptual framework characterizing the Local Energy Management business model solution space is developed. Three reference business model patterns providing orientation across the defined solution space are identified, analyzed, and compared. Through a market review, a number of successfully implemented innovative business models have been analyzed and allocated within the defined solution space. The outcomes of this work offer to potential stakeholders a starting point and guidelines for the business model innovation process, as well as insights for policy makers on challenges and opportunities related to Local Energy Management concepts.

  12. Concepts and recent advances in generalized information measures and statistics

    CERN Document Server

    Kowalski, Andres M

    2013-01-01

    Since the introduction of the information measure widely known as Shannon entropy, quantifiers based on information theory and concepts such as entropic forms and statistical complexities have proven to be useful in diverse scientific research fields. This book contains introductory tutorials suitable for the general reader, together with chapters dedicated to the basic concepts of the most frequently employed information measures or quantifiers and their recent applications to different areas, including physics, biology, medicine, economics, communication and social sciences. As these quantif

  13. General relativity: An erfc metric

    Science.gov (United States)

    Plamondon, Réjean

    2018-06-01

    This paper proposes an erfc potential to incorporate in a symmetric metric. One key feature of this model is that it relies on the existence of an intrinsic physical constant σ, a star-specific proper length that scales all its surroundings. Based thereon, the new metric is used to study the space-time geometry of a static symmetric massive object, as seen from its interior. The analytical solutions to the Einstein equation are presented, highlighting the absence of singularities and discontinuities in such a model. The geodesics are derived in their second- and first-order differential formats. Recalling the slight impact of the new model on the classical general relativity tests in the solar system, a number of facts and open problems are briefly revisited on the basis of a heuristic definition of σ. A special attention is given to gravitational collapses and non-singular black holes.

  14. Spacecraft Tests of General Relativity

    Science.gov (United States)

    Anderson, John D.

    1997-01-01

    Current spacecraft tests of general relativity depend on coherent radio tracking referred to atomic frequency standards at the ground stations. This paper addresses the possibility of improved tests using essentially the current system, but with the added possibility of a space-borne atomic clock. Outside of the obvious measurement of the gravitational frequency shift of the spacecraft clock, a successor to the suborbital flight of a Scout D rocket in 1976 (GP-A Project), other metric tests would benefit most directly by a possible improved sensitivity for the reduced coherent data. For purposes of illustration, two possible missions are discussed. The first is a highly eccentric Earth orbiter, and the second a solar-conjunction experiment to measure the Shapiro time delay using coherent Doppler data instead of the conventional ranging modulation.

  15. Kinematics of relative motion of test particles in general relativity

    International Nuclear Information System (INIS)

    Bazanski, S.L.

    1977-01-01

    A detailed mathematical study of the concept of geodesic deviation in pseudo-riemannian geometry is presented. A generalization of this concept to geodesic deviations of a higher order is then introduced and the second geodesic deviation is investigated in some detail. A geometric interpretation of the set of generalized geodesic deviations is given and applied in general relativity to determine a covariant and local description (with a desired order of accuracy) of test motions which take place in a certain finite neighbourhood of a given world line of an observer. The proper time evolution of two other objects related to geodesic deviation is also discussed: the space separation vector and the telescopic vector. This last name is given here to a field of null vectors along observer's world line which always point towards the same adjacent world line. The telescopic equations allow to determine the evolution of the frequency shift of electromagnetic radiation sent from and received on neighbouring world lines. On the basis of these equations also certain relations have been derived which connect the frequencies or frequency shifts with the curvature of space-time

  16. Machian effects in general relativity

    International Nuclear Information System (INIS)

    Embacher, F.

    1988-01-01

    As a consequence of Mach's principle, rotating matter should cause local inertial frames or gyroscopes in its vicinity to undergo a small rotation which is not present in the Newtonian picture. H. Thirring and J. Lense were the first to derive similar predictions from the field equations of general relativity. Since these early days of relativity, a lot of exact and approximate solutions to Einstein's equations have been examined under this point of view. The qualitative features of Machian effects are most easily demonstrated in the cylinder symmetric case, where some exact results are available. For example, space-time is flat inside a uniformly rotating matter shell, and the rotation of this interior with respect to 'infinity' (the distant stars) has a clear meaning. In the more realistic case of what happens near a massive rotating star, one is forced to perform certain approximations. In modern language, Machian effects are described in terms of the twist of timelike killing vector fields. In the linearized theory, the equations that determine the Machian structure generated by a given matter distribution, resemble to some extent those of classical electrodynamics. This correspondence provides a pedagogical approach how to compute the quantitative extent of inertial frame 'dragging'. 6 refs., 5 figs. (Author)

  17. Angular momentum in general relativity

    International Nuclear Information System (INIS)

    Prior, C.R.

    1977-01-01

    The definition of angular momentum proposed in part I of this series (Prior. Proc. R. Soc. Lond.; A354:379 (1977)) is investigated when applied to rotating black holes. It is shown how to use the formula to evaluate the angular momentum of a stationary black hole. This acts as a description of a background space on which the effect of first matter and then gravitational perturbations is considered. The latter are of most interest and the rate of change of angular momentum, dJ/dt, is found as an expression in the shear induced in the event horizon by the perturbation and in its time integral. Teukolsky's solutions (Astrophys. J.; 185:635 (1973)) for the perturbed component of the Weyl tensor are then used to find this shear and hence to give an exact answer for dJ/dt. One of the implications of the result is a direct verification of Bekenstein's formula (Phys. Rev.; 7D:949 (1973)) relating in a simple way the rate of change of angular momentum to the rate of change of mass caused by a plane wave. A more general expression is also given for dM/dt. Considering only stationary perturbations, it is shown how to generalize the definition of angular momentum so as to include information about its direction as well. Three problems are particularly discussed - a single moon, two or more moons and a ring of matter causing the perturbation - since they provide illustrations of all the main features of the black hole's behaviour. In every case it is found that the black hole realigns its axis of rotation so that the final configuration is axisymmetric if possible; otherwise is slows down completely to reach a static state. (author)

  18. Geometric quantization and general relativity

    International Nuclear Information System (INIS)

    Souriau, J.-M.

    1977-01-01

    The purpose of geometric quantization is to give a rigorous mathematical content to the 'correspondence principle' between classical and quantum mechanics. The main tools are borrowed on one hand from differential geometry and topology (differential manifolds, differential forms, fiber bundles, homology and cohomology, homotopy), on the other hand from analysis (functions of positive type, infinite dimensional group representations, pseudo-differential operators). Some satisfactory results have been obtained in the study of dynamical systems, but some fundamental questions are still waiting for an answer. The 'geometric quantization of fields', where some further well known difficulties arise, is still in a preliminary stage. In particular, the geometric quantization on the gravitational field is still a mere project. The situation is even more uncertain due to the fact that there is no experimental evidence of any quantum gravitational effect which could give us a hint towards what we are supposed to look for. The first level of both Quantum Theory, and General Relativity describes passive matter: influence by the field without being a source of it (first quantization and equivalence principle respectively). In both cases this is only an approximation (matter is always a source). But this approximation turns out to be the least uncertain part of the description, because on one hand the first quantization avoids the problems of renormalization and on the other hand the equivalence principle does not imply any choice of field equations (it is known that one can modify Einstein equations at short distances without changing their geometrical properties). (Auth.)

  19. A concept analysis of relational aggression.

    Science.gov (United States)

    Gomes, M M

    2007-08-01

    The purpose of this article is to conduct a concept analysis of the phenomenon of relational aggression. With the increases in violence among our youth, the topic of aggression, and more specifically relational aggression, has gained an increasing interest. Discussion of relational aggression is imperative because it lends credence to a type of aggression not readily studied in previous decades. A new understanding of relational aggression will aide in future nursing and multidisciplinary research studies and will guide health promotion interventions to alleviate the consequences of relational aggression for adolescent girls. Therefore, with an increased knowledge about the consequences of relational aggression the nurse can provide appropriate nursing interventions to combat the detriment associated with it.

  20. Yarbus's Conceptions on the General Mechanisms of Color Perception.

    Science.gov (United States)

    Nikolaev, Petr P; Rozhkova, Galina I

    2015-01-01

    In the last series of papers published during 1975 to 1980, Alfred Yarbus tried to formulate general conceptions concerning the basic principles of retinal image processing in the human visual system. The original ideas of Yarbus were based on the results of his numerous and various experiments carried out with extraordinary inventiveness and great skill. Being concentrated primarily on the problems of color vision, Alfred Yarbus dreamed of elaborating a comprehensive model that would simulate visual information processing at the monocular precognitive level in the visual system of humans with normal trichromatic color perception. In this article, the most important of Yarbus' experimental paradigms, findings, statements, and conclusions are systematized and considered in relation to the classical theories of color perception and, in particular, fundamental theses of the Nyberg school. The perceptual model developed by Alfred Yarbus remained incomplete. Nevertheless, it is already evident that some intrinsic contradictions make it inadequate in terms of comprehensive modeling. However, certain partial advantages deserve more thorough appreciation and further investigation. © The Author(s) 2015.

  1. Action principle for the generalized harmonic formulation of general relativity

    International Nuclear Information System (INIS)

    Brown, J. David

    2011-01-01

    An action principle for the generalized harmonic formulation of general relativity is presented. The action is a functional of the spacetime metric and the gauge source vector. An action principle for the Z4 formulation of general relativity has been proposed recently by Bona, Bona-Casas, and Palenzuela. The relationship between the generalized harmonic action and the Bona, Bona-Casas, and Palenzuela action is discussed in detail.

  2. The Nature of Living Systems: An Exposition of the Basic Concepts in General Systems Theory.

    Science.gov (United States)

    Miller, James G.

    General systems theory is a set of related definitions, assumptions, and propositions which deal with reality as an integrated hierarchy of organizations of matter and energy. In this paper, the author defines the concepts of space, time, matter, energy, and information in terms of their meaning in general systems theory. He defines a system as a…

  3. [The concept of health in the General Health Law (1986)].

    Science.gov (United States)

    Peral, D

    1993-01-01

    The 1986 "Le General de Sanidad" (Sanitary General Regulations) has been studied using the method of the "Topología del Discurso" in order to elucidate what are the thoughts of the lawmakers. The law protects not only the population of catastrophes as it happened with the choleric epidemic of the XIX century, but considers a new concept a sanitary wealth should be provided to the individuals. Together with this new concept there are new ones such as equality and universalization of the sanitary assistence that would be keys of the aim of the lawmakers: to coordinate all the State resources in the reform of the spanish sanity. This includes the integration of the Universities. This can help in the understanding of the dificulties in the development and aplication of the Law present reality.

  4. Zorn algebra in general relativity

    International Nuclear Information System (INIS)

    Oliveira, C.G.; Maia, M.D.

    The covariant differential properties of the split Cayley subalgebra of local real quaternion tetrads is considered. Referred to this local quaternion tetrad several geometrical objects are given in terms of Zorn-Weyl matrices. Associated to a pair of real null vectors we define two-component spinor fields over the curved space and the associated Zorn-Weyl matrices which satisfy the Dirac equation written in terms of the Zorn algebra. The formalism is generalized by considering a field of complex tetrads defining a Hermitian second rank tensor. The real part of this tensor describes the gravitational potentials and the imaginary part the electromagnetic potentials in the Lorentz gauge. The motion of a charged spin zero test body is considered. The Zorn-Weyl algebra associated to this generalized formalism has elements belonging to the full octonion algebra [pt

  5. Isotropic stars in general relativity

    International Nuclear Information System (INIS)

    Mak, M.K.; Harko, T.

    2013-01-01

    We present a general solution of the Einstein gravitational field equations for the static spherically symmetric gravitational interior space-time of an isotropic fluid sphere. The solution is obtained by transforming the pressure isotropy condition, a second order ordinary differential equation, into a Riccati type first order differential equation, and using a general integrability condition for the Riccati equation. This allows us to obtain an exact non-singular solution of the interior field equations for a fluid sphere, expressed in the form of infinite power series. The physical features of the solution are studied in detail numerically by cutting the infinite series expansions, and restricting our numerical analysis by taking into account only n=21 terms in the power series representations of the relevant astrophysical parameters. In the present model all physical quantities (density, pressure, speed of sound etc.) are finite at the center of the sphere. The physical behavior of the solution essentially depends on the equation of state of the dense matter at the center of the star. The stability properties of the model are also analyzed in detail for a number of central equations of state, and it is shown that it is stable with respect to the radial adiabatic perturbations. The astrophysical analysis indicates that this solution can be used as a realistic model for static general relativistic high density objects, like neutron stars. (orig.)

  6. Numerical Hydrodynamics in General Relativity

    Directory of Open Access Journals (Sweden)

    Font José A.

    2003-01-01

    Full Text Available The current status of numerical solutions for the equations of ideal general relativistic hydrodynamics is reviewed. With respect to an earlier version of the article, the present update provides additional information on numerical schemes, and extends the discussion of astrophysical simulations in general relativistic hydrodynamics. Different formulations of the equations are presented, with special mention of conservative and hyperbolic formulations well-adapted to advanced numerical methods. A large sample of available numerical schemes is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. A comprehensive summary of astrophysical simulations in strong gravitational fields is presented. These include gravitational collapse, accretion onto black holes, and hydrodynamical evolutions of neutron stars. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances on the formulation of the gravitational field and hydrodynamic equations and the numerical methodology designed to solve them.

  7. A logic road from special relativity to general relativity

    OpenAIRE

    Andréka, Hajnal; Madarász, Judit X.; Németi, István; Székely, Gergely

    2010-01-01

    We present a streamlined axiom system of special relativity in first-order logic. From this axiom system we "derive" an axiom system of general relativity in two natural steps. We will also see how the axioms of special relativity transform into those of general relativity. This way we hope to make general relativity more accessible for the non-specialist.

  8. Judeo-Christian concepts related to psychiatry

    Science.gov (United States)

    Ponnudurai, R.

    2013-01-01

    The behavioral manifestations of psychotic disorders that are attributed to evil spirits in the Judeo-Christian scriptures as demonstrated by Jesus Christ have been narrated. The descriptions of false beliefs and the perceptual experiences that are consistent with the psychiatric terminologies “delusions and hallucinations” are briefly discussed. Attempt has been made to analyze the patterns of suicidal behaviors, guilt feelings, and, expressions of depressive symptoms in the Jewish culture. Of interest is the mass suicide by the Jews in the 1st century AD at the Fort Masada, perhaps the first of its kind recorded in the history. Noteworthy are alcohol and related mental health problems prevalent in the Jewish culture. While highlighting the descriptions of dreams and their revelations recorded in the Bible, it is suggested that such concepts about dreams might have influenced Sigmund Freud's classical works on dreams. The biblical messages and teachings that could be applied for psychotherapy and behavior modification strategies have been outlined. The mental concepts of Jewish culture and their relevance to Indian culture have also been discussed from a cross-cultural perspective. PMID:23858255

  9. Advancing Uncertainty: Untangling and Discerning Related Concepts

    Directory of Open Access Journals (Sweden)

    Janice Penrod

    2002-12-01

    Full Text Available Methods of advancing concepts within the qualitative paradigm have been developed and articulated. In this section, I describe methodological perspectives of a project designed to advance the concept of uncertainty using multiple qualitative methods. Through a series of earlier studies, the concept of uncertainty arose repeatedly in varied contexts, working its way into prominence, and warranting further investigation. Processes of advanced concept analysis were used to initiate the formal investigation into the meaning of the concept. Through concept analysis, the concept was deconstructed to identify conceptual components and gaps in understanding. Using this skeletal framework of the concept identified through concept analysis, subsequent studies were carried out to add ‘flesh’ to the concept. First, a concept refinement using the literature as data was completed. Findings revealed that the current state of the concept of uncertainty failed to incorporate what was known of the lived experience. Therefore, using interview techniques as the primary data source, a phenomenological study of uncertainty among caregivers was conducted. Incorporating the findings of the phenomenology, the skeletal framework of the concept was further fleshed out using techniques of concept correction to produce a more mature conceptualization of uncertainty. In this section, I describe the flow of this qualitative project investigating the concept of uncertainty, with special emphasis on a particular threat to validity (called conceptual tunnel vision that was identified and addressed during the phases of concept correction. Though in this article I employ a study of uncertainty for illustration, limited substantive findings regarding uncertainty are presented to retain a clear focus on the methodological issues.

  10. Advancing Uncertainty: Untangling and Discerning Related Concepts

    OpenAIRE

    Janice Penrod

    2002-01-01

    Methods of advancing concepts within the qualitative paradigm have been developed and articulated. In this section, I describe methodological perspectives of a project designed to advance the concept of uncertainty using multiple qualitative methods. Through a series of earlier studies, the concept of uncertainty arose repeatedly in varied contexts, working its way into prominence, and warranting further investigation. Processes of advanced concept analysis were used to initiate the formal in...

  11. Pulsar timing and general relativity

    Science.gov (United States)

    Backer, D. C.; Hellings, R. W.

    1986-01-01

    Techniques are described for accounting for relativistic effects in the analysis of pulsar signals. Design features of instrumentation used to achieve millisecond accuracy in the signal measurements are discussed. The accuracy of the data permits modeling the pulsar physical characteristics from the natural glitches in the emissions. Relativistic corrections are defined for adjusting for differences between the pulsar motion in its spacetime coordinate system relative to the terrestrial coordinate system, the earth's motion, and the gravitational potentials of solar system bodies. Modifications of the model to allow for a binary pulsar system are outlined, including treatment of the system as a point mass. Finally, a quadrupole model is presented for gravitational radiation and techniques are defined for using pulsars in the search for gravitational waves.

  12. Hybrid-source impedance network and its generalized cascading concepts

    DEFF Research Database (Denmark)

    Li, Ding; Gao, Feng; Loh, Poh Chiang

    2009-01-01

    Hybrid-source impedance networks have attracted attention among researchers because of their flexibility in performing buck-boost energy conversion. To date, three distinct types of impedance networks can be summarized for implementing voltage-type inverters, with another three types summarized...... for current-type inverters. These impedance networks can in principle be combined into a single generic network entity, before generalized cascading concepts are proposed for connecting multiple of them together to form energy converters with a higher output voltage gain and other unique advantages...

  13. A general theory of quantum relativity

    International Nuclear Information System (INIS)

    Minic, Djordje; Tze, C.-H.

    2004-01-01

    The geometric form of standard quantum mechanics is compatible with the two postulates: (1) the laws of physics are invariant under the choice of experimental setup and (2) every quantum observation or event is intrinsically statistical. These postulates remain compatible within a background independent extension of quantum theory with a local intrinsic time implying the relativity of the concept of a quantum event. In this extension the space of quantum events becomes dynamical and only individual quantum events make sense observationally. At the core of such a general theory of quantum relativity is the three-way interplay between the symplectic form, the dynamical metric and non-integrable almost complex structure of the space of quantum events. Such a formulation provides a missing conceptual ingredient in the search for a background independent quantum theory of gravity and matter. The crucial new technical element in our scheme derives from a set of recent mathematical results on certain infinite-dimensional almost Kahler manifolds which replace the complex projective spaces of standard quantum mechanics

  14. General relativity and mathematics; Relatividad General y Matematicas

    Energy Technology Data Exchange (ETDEWEB)

    Mars, M.

    2015-07-01

    General relativity is more than a theory of gravity, since any physical process occupies space and lasts for a time, forcing to reconcile that physical theory that describes what the dynamic nature of space-time itself. (Author)

  15. An Introduction to General Relativity and Cosmology

    International Nuclear Information System (INIS)

    Wainwright, John

    2007-01-01

    inflation scenario, arguing that the problems that it aims to solve (the so-called horizon problem and the flatness problem) are a consequence of the very special geometry of the FL models. In particular, the flatness problem loses its urgency when one broadens the class of cosmological models, since the condition for flatness depends on spatial position. They also discuss in detail an analysis due to Celerier and Schneider showing how the horizon problem can be resolved using a delayed big-bang singularity in a Lemaitre-Tolman cosmology. We comment on two notable omissions as regards cosmology. First, the authors only refer in passing to the notion of the density parameter, which plays an important role in the analysis of the FL models, and which can also be introduced in more general models. Second, there is no discussion of perturbations of the FL models, although two related concepts, the density contrast and the curvature contrast, are analysed in the Lemaitre-Tolman models. A second unusual feature is that there is a considerable emphasis on exact solutions, their derivation and physical interpretation. Derivations that are given in detail are for the spatially homogeneous solution of Bianchi type I with pressure-free matter, the Lemaitre-Tolman solutions, the Szekeres solutions and the Kerr solution (the original derivation using the Kerr-Schild metric, and Carter's derivation using separability of the Klein-Gordon equation). Readers may wish to compare the above-mentioned derivation of the Bianchi type I solutions, which uses metric components and coordinates, with the derivation given, using the orthonormal frame formalism. In summary, this book is an interesting and informative introduction to general relativity and cosmology. The unconventional choice of topics and emphasis may, however, lead some readers to conclude that it may be more suitable as a reference work than as the text for a course. (book review)

  16. Centennial of general relativity a celebration

    CERN Document Server

    2017-01-01

    It has been over 100 years since the presentation of the Theory of General Relativity by Albert Einstein, in its final formulation, to the Royal Prussian Academy of Sciences. To celebrate 100 years of general relativity, World Scientific publishes this volume with a dual goal: to assess the current status of the field of general relativity in broad terms, and discuss future directions. The volume thus consists of broad overviews summarizing major developments over the past decades and their perspective contributions.

  17. Action Relations. Basic Design Concepts for Behaviour Modelling and Refinement.

    NARCIS (Netherlands)

    Quartel, Dick

    This thesis presents basic design concepts, design methods and a basic design language for distributed system behaviours. This language is based on two basic concepts: the action concept and the causality relation concept. Our methods focus on behaviour refinement, which consists of replacing an

  18. Direction dependent structures in general relativity

    International Nuclear Information System (INIS)

    Herberthson, M.

    1993-01-01

    This thesis deals with, within the theory of general relativity, asymptotic properties of certain types of space-times. Using conformal transformations, it is possible to describe asymptotic properties of a physical space-time in terms of the local behaviour of the new, rescaled space-time. One then uses so called direction dependent structures. We present two such structures and applications to them. One structure is used in the study of spacelike (or spatial) infinity. We discuss the asymptotic conditions on the gravitational and the electromagnetic field, especially the conditions put on directions corresponding to future and past null infinity. It is shown that these fields have desired physical properties. The other structure is used in connection with timelike infinity. Using this structure, we suggest a new definition of timelike infinity. This definition differs significantly from earlier definitions, and leads to the concept of asymptotically stationary space-times. We also suggest a definition of asymptotic flatness at future null infinity, and a definition of a black hole which is, in a sense, local. Both of these definitions fit nicely into the structure. (24 refs.)

  19. Comparative phylogeography: concepts, methods and general patterns in neotropical birds

    International Nuclear Information System (INIS)

    Arbelaez Cortes, Enrique

    2012-01-01

    Understanding the patterns and processes involved in intraspecific lineages diversification in time and space is the aim of phylogeography. The comparison of those phylogeographic patterns among co-distributed species shows insights of a community history. Here I review the concepts and methodologies of comparative phylogeography, an active research field that has heterogeneous analytical methods. In order to present a framework for phylogeography in the neotropics, I comment the general phylogeographic patterns of the birds from this region. this review is based on more than 100 studies conducted during the last 25 years and indicate that despite different co-distributed species seem to share some points in their phylogeographic pattern they have idiosyncratic aspects, indicating an unique history for each one.

  20. General Relativity in (1 + 1) Dimensions

    Science.gov (United States)

    Boozer, A. D.

    2008-01-01

    We describe a theory of gravity in (1 + 1) dimensions that can be thought of as a toy model of general relativity. The theory should be a useful pedagogical tool, because it is mathematically much simpler than general relativity but shares much of the same conceptual structure; in particular, it gives a simple illustration of how gravity arises…

  1. Dynamics of relative motion of test particles in general relativity

    International Nuclear Information System (INIS)

    Bazanski, S.L.

    1977-01-01

    Several variational principles which lead to the first and the second geodesic deviation equations, recently formulated by the author and used for the description of the relative motion of test particles in general relativity are presented. Relations between these principles are investigated and exhibited. The Hamilton-Jacobi equation is also studied for these generalized deviations and the conservation laws appearing here are discussed

  2. The Confrontation between General Relativity and Experiment

    Directory of Open Access Journals (Sweden)

    Will Clifford

    2001-01-01

    Full Text Available The status of experimental tests of general relativity and of theoretical frameworks for analysing them are reviewed. Einstein's equivalence principle (EEP is well supported by experiments such as the Eötvös experiment, tests of special relativity, and the gravitational redshift experiment. Future tests of EEP and of the inverse square law will search for new interactions arising from unification or quantum gravity. Tests of general relativity at the post-Newtonian level have reached high precision, including the light deflection, the Shapiro time delay, the perihelion advance of Mercury, and the Nordtvedt effect in lunar motion. Gravitational wave damping has been detected in an amount that agrees with general relativity to half a percent using the Hulse-Taylor binary pulsar, and new binary pulsar systems may yield further improvements.When direct observation of gravitational radiation from astrophysical sources begins, new tests of general relativity will be possible.

  3. Particle field in bimetric general relativity

    International Nuclear Information System (INIS)

    Falik, D.; Rosen, N.

    1980-01-01

    The field equations of the bimetric general relativity theory proposed recently by one of the authors (N. Rosen) are put into a static form. The equations are solved near the Schwarzschild sphere, and it is found that the field differs from that of the Einstein general relativity theory: instead of a black hole, one has an impenetrable sphere. For larger distances the field is found to agree with that of ordinary general relativity, so that solar system observations cannot distinguish between the two theories. For very large distances one gets a cosmic contribution to the field which may affect the dynamics of clusters of galaxies

  4. Compact objects in bimetric general relativity

    International Nuclear Information System (INIS)

    Harpaz, A.; Rosen, N.

    1985-01-01

    The field equations of the bimetric general relativity theory proposed by one of the authors (N. Rosen), in the static form, are solved in order to investigate the structure of a star. It is found that for an ordinary star the bimetric theory gives the same results as the Einstein general relativity theory. However, for a collapsed star the two theories give different results. In the bimetric theory a configuration in hydrostatic equilibrium exists for a collapsed star filling its Schwarzschild sphere. In general relativity no equilibrium configuration exists in this region, and the star shrinks to a point singularity to form a black hole

  5. O(3)-invariant tunneling in general relativity

    International Nuclear Information System (INIS)

    Berezin, V.A.; Tkachev, I.I.; Kuzmin, V.A.; AN SSSR, Moscow. Inst. Yadernykh Issledovanij)

    1987-12-01

    We derived a general formula for the action for any O(3)-invariant tunneling processes in false vacuum decay in general relativity. The general classification of the bubble Euclidean trajectories is elaborated and explicit expressions for bounces for some processes like the vacuum creation of a double bubble, in particular in the vicinity of a black hole; the subbarrier creation of the Einstein-Rosen bridge, creation from nothing of two Minkowski worlds connected by a shell etc., are given. (orig.)

  6. Axisymmetric solution with charge in general relativity

    International Nuclear Information System (INIS)

    Arutyunyan, G.G.; Papoyan, V.V.

    1989-01-01

    The possibility of generating solutions to the equations of general relativity from known solutions of the generalized theory of gravitation and vice versa is proved. An electrovac solution to Einstein's equations that describes a static axisymmetric gravitational field is found. 14 refs

  7. Einstein and General Relativity: Historical Perspectives.

    Science.gov (United States)

    Chandrasekhar, S.

    1979-01-01

    This paper presented in the 1978 Oppenheimer Memorial Lecture at Los Alamos Scientific Laboratories on August 17, 1978, discusses Einstein's contributions to physics, in particular, his discovery of the general theory of relativity. (HM)

  8. Quantum theory and Einstein's general relativity

    International Nuclear Information System (INIS)

    Borzeszkowski, H.H.v.; Treder, H.J.

    1984-01-01

    The paper concerns Einstein's general relativity, wave mechanics and the quantization of Einstein's gravitation equations. The principle of equivalence and its association with both wave mechanics and quantum gravity, is discussed. (U.K.)

  9. Black hole dynamics in general relativity

    Indian Academy of Sciences (India)

    Abstract. Basic features of dynamical black holes in full, non-linear general relativity are summarized in a pedagogical fashion. Qualitative properties of the evolution of various horizons follow directly from the celebrated Raychaudhuri equation.

  10. Einstein and general relativity: historical perspectives

    International Nuclear Information System (INIS)

    Chandrasekhar, S.

    1978-01-01

    The place of Einstein in 20th-century physics is discussed. The basic ideas that led Einstein to his theory of gravitation by the sheer power of speculative thought are described in the most general terms. The prediction of the bending of starlight by the Sun and the eclipse expedition of 1919 are recounted. The author feels that ''the general theory of relativity is incredibly rich in its content;...one finds a glittering face at almost every turn.'' The prediction of black holes by general relativity is noted

  11. Action Relations. Basic Design Concepts for Behaviour Modelling and Refinement.

    OpenAIRE

    Quartel, Dick

    1998-01-01

    This thesis presents basic design concepts, design methods and a basic design language for distributed system behaviours. This language is based on two basic concepts: the action concept and the causality relation concept. Our methods focus on behaviour refinement, which consists of replacing an abstract behaviour by a more concrete behaviour, such that the concrete behaviour conforms to the abstract behaviour. An important idea underlying this thesis is that an effective design methodology s...

  12. Procedural Content Generation: Concepts and Related Works

    Directory of Open Access Journals (Sweden)

    MARIÑO, J. R. H.

    2016-12-01

    Full Text Available The digital games market is growing every year and game development is becoming increasingly complex. Thus, scalability in content generation may require the work of a team with hundreds of people. Procedural Content Generation (PCG comes as an alternative to decrease costs and accelerate the process of game production by creating content automatically or semi-automatically. This article presents some concepts and reviews works developed in PCG, aiming to provide a starting point for those interested in learning and going deeper in the subject of PCG for digital games.

  13. Energy and Uncertainty in General Relativity

    Science.gov (United States)

    Cooperstock, F. I.; Dupre, M. J.

    2018-03-01

    The issue of energy and its potential localizability in general relativity has challenged physicists for more than a century. Many non-invariant measures were proposed over the years but an invariant measure was never found. We discovered the invariant localized energy measure by expanding the domain of investigation from space to spacetime. We note from relativity that the finiteness of the velocity of propagation of interactions necessarily induces indefiniteness in measurements. This is because the elements of actual physical systems being measured as well as their detectors are characterized by entire four-velocity fields, which necessarily leads to information from a measured system being processed by the detector in a spread of time. General relativity adds additional indefiniteness because of the variation in proper time between elements. The uncertainty is encapsulated in a generalized uncertainty principle, in parallel with that of Heisenberg, which incorporates the localized contribution of gravity to energy. This naturally leads to a generalized uncertainty principle for momentum as well. These generalized forms and the gravitational contribution to localized energy would be expected to be of particular importance in the regimes of ultra-strong gravitational fields. We contrast our invariant spacetime energy measure with the standard 3-space energy measure which is familiar from special relativity, appreciating why general relativity demands a measure in spacetime as opposed to 3-space. We illustrate the misconceptions by certain authors of our approach.

  14. Supersymmetry, General Relativity and Unity of Nature

    OpenAIRE

    Shima, Kazunari; Tsuda, Motomu

    2008-01-01

    The basic idea and some physical implications of nonlinear supersymmetric general relativity (NLSUSY GR) are presented. NLSUSY GR may give new insights into the origin of mass and the mysterious relations between the cosmology and the low energy particle physics, e.g. the spontaneous SUSY breaking scale, the cosmological constant, the (dark) energy density of the universe and the neutrino mass.

  15. Teaching General Relativity to the Layperson

    Science.gov (United States)

    Egdall, Mark

    2009-01-01

    This paper describes a lay course on general relativity (GR) given at the Osher Lifelong Learning Institute at Florida International University. It is presented in six hour-and-a-half weekly sessions. Other courses offered by the author include special relativity (which precedes the course described here), quantum theory, and cosmology. Students…

  16. Black hole based tests of general relativity

    International Nuclear Information System (INIS)

    Yagi, Kent; Stein, Leo C

    2016-01-01

    General relativity has passed all solar system experiments and neutron star based tests, such as binary pulsar observations, with flying colors. A more exotic arena for testing general relativity is in systems that contain one or more black holes. Black holes are the most compact objects in the Universe, providing probes of the strongest-possible gravitational fields. We are motivated to study strong-field gravity since many theories give large deviations from general relativity only at large field strengths, while recovering the weak-field behavior. In this article, we review how one can probe general relativity and various alternative theories of gravity by using electromagnetic waves from a black hole with an accretion disk, and gravitational waves from black hole binaries. We first review model-independent ways of testing gravity with electromagnetic/gravitational waves from a black hole system. We then focus on selected examples of theories that extend general relativity in rather simple ways. Some important characteristics of general relativity include (but are not limited to) (i) only tensor gravitational degrees of freedom, (ii) the graviton is massless, (iii) no quadratic or higher curvatures in the action, and (iv) the theory is four-dimensional. Altering a characteristic leads to a different extension of general relativity: (i) scalar–tensor theories, (ii) massive gravity theories, (iii) quadratic gravity, and (iv) theories with large extra dimensions. Within each theory, we describe black hole solutions, their properties, and current and projected constraints on each theory using black hole based tests of gravity. We close this review by listing some of the open problems in model-independent tests and within each specific theory. (paper)

  17. General very special relativity in Finsler cosmology

    International Nuclear Information System (INIS)

    Kouretsis, A. P.; Stathakopoulos, M.; Stavrinos, P. C.

    2009-01-01

    General very special relativity (GVSR) is the curved space-time of very special relativity (VSR) proposed by Cohen and Glashow. The geometry of general very special relativity possesses a line element of Finsler geometry introduced by Bogoslovsky. We calculate the Einstein field equations and derive a modified Friedmann-Robertson-Walker cosmology for an osculating Riemannian space. The Friedmann equation of motion leads to an explanation of the cosmological acceleration in terms of an alternative non-Lorentz invariant theory. A first order approach for a primordial-spurionic vector field introduced into the metric gives back an estimation of the energy evolution and inflation.

  18. The Confrontation between General Relativity and Experiment.

    Science.gov (United States)

    Will, Clifford M

    2014-01-01

    The status of experimental tests of general relativity and of theoretical frameworks for analyzing them is reviewed and updated. Einstein's equivalence principle (EEP) is well supported by experiments such as the Eötvös experiment, tests of local Lorentz invariance and clock experiments. Ongoing tests of EEP and of the inverse square law are searching for new interactions arising from unification or quantum gravity. Tests of general relativity at the post-Newtonian level have reached high precision, including the light deflection, the Shapiro time delay, the perihelion advance of Mercury, the Nordtvedt effect in lunar motion, and frame-dragging. Gravitational wave damping has been detected in an amount that agrees with general relativity to better than half a percent using the Hulse-Taylor binary pulsar, and a growing family of other binary pulsar systems is yielding new tests, especially of strong-field effects. Current and future tests of relativity will center on strong gravity and gravitational waves.

  19. On generalization uniaxial stress-strain relation

    International Nuclear Information System (INIS)

    Sahay, C.; Dubey, R.N.

    1980-01-01

    Different forms of constitutive relations have been advanced for elastic, plastic and elastic-plastic behaviour of materials. It is shown that the various forms of the stress-strain relationship are specialized forms of generalization of a single stress-strain relation. For example, it is shown how the laws of elastic deformation, and the incremental and total deformation relationship for plastic behaviour are derivable from the Ramberg-Osgood relation. (orig.)

  20. The clinical popularity of object relations concepts.

    Science.gov (United States)

    Friedman, L

    1988-10-01

    Object relations theory has the effect of supporting the psychoanalyst when he feels that the patient's effort is strongly opposed to his own. The current popularity of object relations theory may be related to the gradual disappearance from Freudian theory of a simple, clear image of an obligatory insistence by the patient that is useful even though it is unreflective. Object relations theory offers the practitioner a way of fortifying himself against blind demand, while newer Freudian theorists cope with the problem by orienting themselves more stringently toward the original paradigm of optional choice.

  1. Generalized transformations and coordinates for static spherically symmetric general relativity

    Science.gov (United States)

    Hill, James M.; O'Leary, Joseph

    2018-04-01

    We examine a static, spherically symmetric solution of the empty space field equations of general relativity with a non-orthogonal line element which gives rise to an opportunity that does not occur in the standard derivations of the Schwarzschild solution. In these derivations, convenient coordinate transformations and dynamical assumptions inevitably lead to the Schwarzschild solution. By relaxing these conditions, a new solution possibility arises and the resulting formalism embraces the Schwarzschild solution as a special case. The new solution avoids the coordinate singularity associated with the Schwarzschild solution and is achieved by obtaining a more suitable coordinate chart. The solution embodies two arbitrary constants, one of which can be identified as the Newtonian gravitational potential using the weak field limit. The additional arbitrary constant gives rise to a situation that allows for generalizations of the Eddington-Finkelstein transformation and the Kruskal-Szekeres coordinates.

  2. Generalized transformations and coordinates for static spherically symmetric general relativity.

    Science.gov (United States)

    Hill, James M; O'Leary, Joseph

    2018-04-01

    We examine a static, spherically symmetric solution of the empty space field equations of general relativity with a non-orthogonal line element which gives rise to an opportunity that does not occur in the standard derivations of the Schwarzschild solution. In these derivations, convenient coordinate transformations and dynamical assumptions inevitably lead to the Schwarzschild solution. By relaxing these conditions, a new solution possibility arises and the resulting formalism embraces the Schwarzschild solution as a special case. The new solution avoids the coordinate singularity associated with the Schwarzschild solution and is achieved by obtaining a more suitable coordinate chart. The solution embodies two arbitrary constants, one of which can be identified as the Newtonian gravitational potential using the weak field limit. The additional arbitrary constant gives rise to a situation that allows for generalizations of the Eddington-Finkelstein transformation and the Kruskal-Szekeres coordinates.

  3. Generalized Disjunctions in (Infinitary) Structural Consequence Relations

    Czech Academy of Sciences Publication Activity Database

    Cintula, Petr; Noguera, C.

    2012-01-01

    Roč. 18, č. 3 (2012), s. 442-443 ISSN 1079-8986. [Logic Colloquium 2011. 11.07.2011-16.07.2011, Barcelona] R&D Projects: GA MŠk(CZ) 1M0545 Institutional research plan: CEZ:AV0Z10300504 Keywords : Abstract Algebraic Logic * Generalized disjunction * Proof by cases properties * Consequence relations Subject RIV: BA - General Mathematics http://www.math.ucla.edu/~asl/bsl/1803- toc .htm

  4. Student Conceptions about Energy Transformations: Progression from General Chemistry to Biochemistry

    Science.gov (United States)

    Wolfson, Adele J.; Rowland, Susan L.; Lawrie, Gwendolyn A.; Wright, Anthony H.

    2014-01-01

    Students commencing studies in biochemistry must transfer and build on concepts they learned in chemistry and biology classes. It is well established, however, that students have difficulties in transferring critical concepts from general chemistry courses; one key concept is "energy." Most previous work on students' conception of energy…

  5. Einstein and the history of general relativity

    International Nuclear Information System (INIS)

    Howard, D.; Stachel, J.

    1989-01-01

    This book is a collection of essays by the authors and other people that deal with scientific opinions that led Einstein and his contemporaries to their views of general relativity. Some of the essays explore Einstein's passage from the special theory through a sequence of gravitational theories to the discovery of the field equations of the grand theory in November 1915. Two other essays discuss Einstein's public and private exchanges with Max Abraham and Tullio Levi-Civita in 1913 and 1914. A sympathetic picture of H.A. Lorentz's reaction to the general theory of relativity is included, and a careful and insightful essay on the early understanding of the Schwarzschild-Droste solution to the field equations of general relativity is presented. One paper presents a discussion on the state of the enterprise of general relativity between 1925 and 1928, and a short essay details the history of steps toward quantum gravitational through canonical quantization. A discussion of the history of derivations of the geodesic equation of motion from the field equation and conservation laws of the general theory is presented. The early history of geometrical unified field theories is included

  6. Canonical perturbation theory in linearized general relativity theory

    International Nuclear Information System (INIS)

    Gonzales, R.; Pavlenko, Yu.G.

    1986-01-01

    Canonical perturbation theory in linearized general relativity theory is developed. It is shown that the evolution of arbitrary dynamic value, conditioned by the interaction of particles, gravitation and electromagnetic fields, can be presented in the form of a series, each member of it corresponding to the contribution of certain spontaneous or induced process. The main concepts of the approach are presented in the approximation of a weak gravitational field

  7. Generalized Landau-Pollak uncertainty relation

    International Nuclear Information System (INIS)

    Miyadera, Takayuki; Imai, Hideki

    2007-01-01

    The Landau-Pollak uncertainty relation treats a pair of rank one projection valued measures and imposes a restriction on their probability distributions. It gives a nontrivial bound for summation of their maximum values. We give a generalization of this bound (weak version of the Landau-Pollak uncertainty relation). Our generalization covers a pair of positive operator valued measures. A nontrivial but slightly weak inequality that can treat an arbitrary number of positive operator valued measures is also presented. A possible application to the problem of separability criterion is also suggested

  8. Discovering Related Clinical Concepts Using Large Amounts of Clinical Notes.

    Science.gov (United States)

    Ganesan, Kavita; Lloyd, Shane; Sarkar, Vikren

    2016-01-01

    The ability to find highly related clinical concepts is essential for many applications such as for hypothesis generation, query expansion for medical literature search, search results filtering, ICD-10 code filtering and many other applications. While manually constructed medical terminologies such as SNOMED CT can surface certain related concepts, these terminologies are inadequate as they depend on expertise of several subject matter experts making the terminology curation process open to geographic and language bias. In addition, these terminologies also provide no quantifiable evidence on how related the concepts are. In this work, we explore an unsupervised graphical approach to mine related concepts by leveraging the volume within large amounts of clinical notes. Our evaluation shows that we are able to use a data driven approach to discovering highly related concepts for various search terms including medications, symptoms and diseases.

  9. Discovering Related Clinical Concepts Using Large Amounts of Clinical Notes

    Directory of Open Access Journals (Sweden)

    Kavita Ganesan

    2016-01-01

    Full Text Available The ability to find highly related clinical concepts is essential for many applications such as for hypothesis generation, query expansion for medical literature search, search results filtering, ICD-10 code filtering and many other applications. While manually constructed medical terminologies such as SNOMED CT can surface certain related concepts, these terminologies are inadequate as they depend on expertise of several subject matter experts making the terminology curation process open to geographic and language bias. In addition, these terminologies also provide no quantifiable evidence on how related the concepts are. In this work, we explore an unsupervised graphical approach to mine related concepts by leveraging the volume within large amounts of clinical notes. Our evaluation shows that we are able to use a data driven approach to discovering highly related concepts for various search terms including medications, symptoms and diseases.

  10. The Confrontation between General Relativity and Experiment

    Directory of Open Access Journals (Sweden)

    Will Clifford M.

    2006-03-01

    Full Text Available The status of experimental tests of general relativity and of theoretical frameworks for analyzing them is reviewed. Einstein’s equivalence principle (EEP is well supported by experiments such as the Eötvös experiment, tests of special relativity, and the gravitational redshift experiment. Ongoing tests of EEP and of the inverse square law are searching for new interactions arising from unification or quantum gravity. Tests of general relativity at the post-Newtonian level have reached high precision, including the light deflection, the Shapiro time delay, the perihelion advance of Mercury, and the Nordtvedt effect in lunar motion. Gravitational wave damping has been detected in an amount that agrees with general relativity to better than half a percent using the Hulse-Taylor binary pulsar, and other binary pulsar systems have yielded other tests, especially of strong-field effects. When direct observation of gravitational radiation from astrophysical sources begins, new tests of general relativity will be possible.

  11. Parallel Evolution in Science: The Historical Roots and Central Concepts of General Systems Theory; and "General Systems Theory,""Modern Organizational Theory," and Organizational Communication.

    Science.gov (United States)

    Lederman, Linda Costigan; Rogers, Don

    The two papers in this document focus on general systems theory. In her paper, Linda Lederman discusses the emergence and evolution of general systems theory, defines its central concepts, and draws some conclusions regarding the nature of the theory and its value as an epistemology. Don Rogers, in his paper, relates some of the important features…

  12. Approaches to Macroevolution: 1. General Concepts and Origin of Variation.

    Science.gov (United States)

    Jablonski, David

    2017-01-01

    . The temporal and spatial patterns of the origins of evolutionary novelties are a challenge to macroevolutionary theory; individual events can be described retrospectively, but a general model relating development, genetics, and ecology is needed. An accompanying paper (Jablonski in Evol Biol 2017) reviews diversity dynamics and the sorting of variation, with some general conclusions.

  13. Relational Coordination in Danish General Practice

    DEFF Research Database (Denmark)

    Lundstrøm, Sanne Lykke

    . The dissertation present the research study and a collection of three research papers prepared during the period from May 2010 to June 2014. Relational coordination and organisational social capital are measures of novel aspects of an organisation's performance. Relational coordination analyse the communication...... and relationship networks through which work is coordinated across functional and organisational boundaries. Previous studies have shown that relational coordination is positively associated with delivery of care for patients with chronic illness. Organisational social capital is used when analysing...... the psychosocial work environment in organisations, and is seen as a powerful resources for improving organisational performance. Relational coordination and organisational social capital may oer new insight and opportunities for general practice to learn. General practice provides cost-efficient, first...

  14. Generating perfect fluid spheres in general relativity

    Science.gov (United States)

    Boonserm, Petarpa; Visser, Matt; Weinfurtner, Silke

    2005-06-01

    Ever since Karl Schwarzschild’s 1916 discovery of the spacetime geometry describing the interior of a particular idealized general relativistic star—a static spherically symmetric blob of fluid with position-independent density—the general relativity community has continued to devote considerable time and energy to understanding the general-relativistic static perfect fluid sphere. Over the last 90 years a tangle of specific perfect fluid spheres has been discovered, with most of these specific examples seemingly independent from each other. To bring some order to this collection, in this article we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres.

  15. Generating perfect fluid spheres in general relativity

    International Nuclear Information System (INIS)

    Boonserm, Petarpa; Visser, Matt; Weinfurtner, Silke

    2005-01-01

    Ever since Karl Schwarzschild's 1916 discovery of the spacetime geometry describing the interior of a particular idealized general relativistic star--a static spherically symmetric blob of fluid with position-independent density--the general relativity community has continued to devote considerable time and energy to understanding the general-relativistic static perfect fluid sphere. Over the last 90 years a tangle of specific perfect fluid spheres has been discovered, with most of these specific examples seemingly independent from each other. To bring some order to this collection, in this article we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres

  16. Generalization of Gibbs Entropy and Thermodynamic Relation

    OpenAIRE

    Park, Jun Chul

    2010-01-01

    In this paper, we extend Gibbs's approach of quasi-equilibrium thermodynamic processes, and calculate the microscopic expression of entropy for general non-equilibrium thermodynamic processes. Also, we analyze the formal structure of thermodynamic relation in non-equilibrium thermodynamic processes.

  17. Gravity: An Introduction to Einstein's General Relativity

    International Nuclear Information System (INIS)

    Fabris, Julio C

    2004-01-01

    General relativity is one of the cornerstones of modern physics. In spite of this, the teaching of general relativity at undergraduate level remains quite marginal. The reasons for this particular situation are quite well known. We can quote, for example, two of them: general relativity requires specific mathematical tools that are somehow outside the mainstream of undergraduate technical development; moreover, this is a branch of physics whose observational and experimental applications have remained rare until recent times, and even though this scenario has changed dramatically in the last few years, the new situation has not yet been absorbed into undergraduate teaching. In this new book, Hartle attempts to address the difficulties that must be faced by anyone who teaches general relativity at undergraduate level. In order to not scare the student with the hard technical preparation needed to obtain the basic equations of general relativity, Einstein's equations, he simply gives up the idea of introducing these equations at the very beginning. Instead, he chooses to present Einstein's equations, with most of the mathematics needed to do them, in the last part of the book. This delicate (and of course dangerous) choice has the advantage of introducing the reader first to the physical aspects of general relativity. This approach can be dangerous because the relevant solutions of the equations necessary to discuss the physical content of general relativity are presented first without a formal derivation. The book is divided into three parts. In the first, covering five chapters of the 24 in the whole book, Newtonian physics and special relativity are reviewed. This review is done in a manner that prepares the reader for the subsequent discussion of general relativity itself. The principle of relativity, the variational principle, the geometrical content of Newtonian theory and the main ideas behind special relativity are all presented. The heart of the book is, in

  18. Summary of classical general relativity workshop

    Indian Academy of Sciences (India)

    In the classical general relativity workshop, ten lectures were presented on various topics. The topics included aspects of black-hole physics, gravitational collapse and the formation of black holes, specific stellar models like a superdense star, method of extracting solutions by exploiting Noether symmetry, brane world and.

  19. The confrontation between general relativity and experiment

    Indian Academy of Sciences (India)

    ... and tests of gravity at short distance to look for extra spatial dimensions could further constrain alternatives to general relativity. Laser Interferometric Gravitational Wave Observatories on Earth and in space may provide new tests of scalar–tensor gravity and graviton-mass theories via the properties of gravitational waves.

  20. Tests of General Relativity with GW150914

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, M. K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Boyle, M.; Campanelli, M.; Hemberger, D. A.; Kidder, L. E.; Ossokine, S.; Scheel, M. A.; Szilagyi, B.; Teukolsky, S.; Zlochower, Y.; LIGO Scientific; Virgo Collaborations

    2016-06-01

    The LIGO detection of GW150914 provides an unprecedented opportunity to study the two-body motion of a compact-object binary in the large-velocity, highly nonlinear regime, and to witness the final merger of the binary and the excitation of uniquely relativistic modes of the gravitational field. We carry out several investigations to determine whether GW150914 is consistent with a binary black-hole merger in general relativity. We find that the final remnant's mass and spin, as determined from the low-frequency (inspiral) and high-frequency (postinspiral) phases of the signal, are mutually consistent with the binary black-hole solution in general relativity. Furthermore, the data following the peak of GW150914 are consistent with the least-damped quasinormal mode inferred from the mass and spin of the remnant black hole. By using waveform models that allow for parametrized general-relativity violations during the inspiral and merger phases, we perform quantitative tests on the gravitational-wave phase in the dynamical regime and we determine the first empirical bounds on several high-order post-Newtonian coefficients. We constrain the graviton Compton wavelength, assuming that gravitons are dispersed in vacuum in the same way as particles with mass, obtaining a 90%-confidence lower bound of 1013 km . In conclusion, within our statistical uncertainties, we find no evidence for violations of general relativity in the genuinely strong-field regime of gravity.

  1. Tests of General Relativity with GW150914.

    Science.gov (United States)

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Haris, M K; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pan, Y; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Pfeiffer, H P; Phelps, M; Piccinni, O; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J; Boyle, M; Campanelli, M; Hemberger, D A; Kidder, L E; Ossokine, S; Scheel, M A; Szilagyi, B; Teukolsky, S; Zlochower, Y

    2016-06-03

    The LIGO detection of GW150914 provides an unprecedented opportunity to study the two-body motion of a compact-object binary in the large-velocity, highly nonlinear regime, and to witness the final merger of the binary and the excitation of uniquely relativistic modes of the gravitational field. We carry out several investigations to determine whether GW150914 is consistent with a binary black-hole merger in general relativity. We find that the final remnant's mass and spin, as determined from the low-frequency (inspiral) and high-frequency (postinspiral) phases of the signal, are mutually consistent with the binary black-hole solution in general relativity. Furthermore, the data following the peak of GW150914 are consistent with the least-damped quasinormal mode inferred from the mass and spin of the remnant black hole. By using waveform models that allow for parametrized general-relativity violations during the inspiral and merger phases, we perform quantitative tests on the gravitational-wave phase in the dynamical regime and we determine the first empirical bounds on several high-order post-Newtonian coefficients. We constrain the graviton Compton wavelength, assuming that gravitons are dispersed in vacuum in the same way as particles with mass, obtaining a 90%-confidence lower bound of 10^{13}  km. In conclusion, within our statistical uncertainties, we find no evidence for violations of general relativity in the genuinely strong-field regime of gravity.

  2. Auditing the multiply-related concepts within the UMLS.

    Science.gov (United States)

    Mougin, Fleur; Grabar, Natalia

    2014-10-01

    This work focuses on multiply-related Unified Medical Language System (UMLS) concepts, that is, concepts associated through multiple relations. The relations involved in such situations are audited to determine whether they are provided by source vocabularies or result from the integration of these vocabularies within the UMLS. We study the compatibility of the multiple relations which associate the concepts under investigation and try to explain the reason why they co-occur. Towards this end, we analyze the relations both at the concept and term levels. In addition, we randomly select 288 concepts associated through contradictory relations and manually analyze them. At the UMLS scale, only 0.7% of combinations of relations are contradictory, while homogeneous combinations are observed in one-third of situations. At the scale of source vocabularies, one-third do not contain more than one relation between the concepts under investigation. Among the remaining source vocabularies, seven of them mainly present multiple non-homogeneous relations between terms. Analysis at the term level also shows that only in a quarter of cases are the source vocabularies responsible for the presence of multiply-related concepts in the UMLS. These results are available at: http://www.isped.u-bordeaux2.fr/ArticleJAMIA/results_multiply_related_concepts.aspx. Manual analysis was useful to explain the conceptualization difference in relations between terms across source vocabularies. The exploitation of source relations was helpful for understanding why some source vocabularies describe multiple relations between a given pair of terms. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  3. General relativity and gravitation a centennial perspective

    CERN Document Server

    Berger, Beverly K; Isenberg, James; MacCallum, Malcolm

    2015-01-01

    Explore spectacular advances in cosmology, relativistic astrophysics, gravitational wave science, mathematics, computational science, and the interface of gravitation and quantum physics with this unique celebration of the centennial of Einstein's discovery of general relativity. Twelve comprehensive and in-depth reviews, written by a team of world-leading international experts, together present an up-to-date overview of key topics at the frontiers of these areas, with particular emphasis on the significant developments of the last three decades. Interconnections with other fields of research are also highlighted, making this an invaluable resource for both new and experienced researchers. Commissioned by the International Society on General Relativity and Gravitation, and including accessible introductions to cutting-edge topics, ample references to original research papers, and informative colour figures, this is a definitive reference for researchers and graduate students in cosmology, relativity, and grav...

  4. General Relativity and John Archibald Wheeler

    CERN Document Server

    Ciufolini, Ignazio

    2010-01-01

    Observational and experimental data pertaining to gravity and cosmology are changing our view of the Universe. General relativity is a fundamental key for the understanding of these observations and its theory is undergoing a continuing enhancement of its intersection with observational and experimental data. These data include direct observations and experiments carried out in our solar system, among which there are direct gravitational wave astronomy, frame dragging and tests of gravitational theories from solar system and spacecraft observations. This book explores John Archibald Wheeler's seminal and enduring contributions in relativistic astrophysics and includes: the General Theory of Relativity and Wheeler's influence; recent developments in the confrontation of relativity with experiments; the theory describing gravitational radiation, and its detection in Earth-based and space-based interferometer detectors as well as in Earth-based bar detectors; the mathematical description of the initial value pro...

  5. Development of Einstein's general theory of relativity

    International Nuclear Information System (INIS)

    Datta, B.K.

    1980-01-01

    Starting from Poincare's Lorentz-invariant theory of gravity formulated in 1906, development of Einstein's general theory of relativity during 1906-1916 is discussed. Three stages in this development are recognised. In the first stage during 1907-1914, Einstein tried to extend the relativity principle of uniform motion to the frames in non-uniform motion. For this purpose, he introduced the principle of equivalence which made it possible to calculate the effect of homogeneous gravitational field on arbitrary physical processes. During the second stage comprising years 1912-1914 overlapping the first stage, Einstein and Grossmann were struggling to translate physical postulates into the language of the absolute differential calculus. In the period 1915-1916, Einstein formulated the field equations of general relativity. While discussing these developmental stages, theories of gravitation formulated by Abraham, Nordstroem and Mie are also discussed. (M.G.B.)

  6. Partial Differential Equations in General Relativity

    International Nuclear Information System (INIS)

    Choquet-Bruhat, Yvonne

    2008-01-01

    General relativity is a physical theory basic in the modeling of the universe at the large and small scales. Its mathematical formulation, the Einstein partial differential equations, are geometrically simple, but intricate for the analyst, involving both hyperbolic and elliptic PDE, with local and global problems. Many problems remain open though remarkable progress has been made recently towards their solutions. Alan Rendall's book states, in a down-to-earth form, fundamental results used to solve different types of equations. In each case he gives applications to special models as well as to general properties of Einsteinian spacetimes. A chapter on ODE contains, in particular, a detailed discussion of Bianchi spacetimes. A chapter entitled 'Elliptic systems' treats the Einstein constraints. A chapter entitled 'Hyperbolic systems' is followed by a chapter on the Cauchy problem and a chapter 'Global results' which contains recently proved theorems. A chapter is dedicated to the Einstein-Vlasov system, of which the author is a specialist. On the whole, the book surveys, in a concise though precise way, many essential results of recent interest in mathematical general relativity, and it is very clearly written. Each chapter is followed by an up to date bibliography. In conclusion, this book will be a valuable asset to relativists who wish to learn clearly-stated mathematical results and to mathematicians who want to penetrate into the subtleties of general relativity, as a mathematical and physical theory. (book review)

  7. Partial Differential Equations in General Relativity

    Energy Technology Data Exchange (ETDEWEB)

    Choquet-Bruhat, Yvonne

    2008-09-07

    General relativity is a physical theory basic in the modeling of the universe at the large and small scales. Its mathematical formulation, the Einstein partial differential equations, are geometrically simple, but intricate for the analyst, involving both hyperbolic and elliptic PDE, with local and global problems. Many problems remain open though remarkable progress has been made recently towards their solutions. Alan Rendall's book states, in a down-to-earth form, fundamental results used to solve different types of equations. In each case he gives applications to special models as well as to general properties of Einsteinian spacetimes. A chapter on ODE contains, in particular, a detailed discussion of Bianchi spacetimes. A chapter entitled 'Elliptic systems' treats the Einstein constraints. A chapter entitled 'Hyperbolic systems' is followed by a chapter on the Cauchy problem and a chapter 'Global results' which contains recently proved theorems. A chapter is dedicated to the Einstein-Vlasov system, of which the author is a specialist. On the whole, the book surveys, in a concise though precise way, many essential results of recent interest in mathematical general relativity, and it is very clearly written. Each chapter is followed by an up to date bibliography. In conclusion, this book will be a valuable asset to relativists who wish to learn clearly-stated mathematical results and to mathematicians who want to penetrate into the subtleties of general relativity, as a mathematical and physical theory. (book review)

  8. Concept relation discovery and innovation enabling technology (CORDIET)

    NARCIS (Netherlands)

    Poelmans, J.; Elzinga, P.; Neznanov, A.; Viaene, S.; Kuznetsov, S.O.; Ignatov, D.; Dedene, G.

    2011-01-01

    Concept Relation Discovery and Innovation Enabling Technology (CORDIET), is a toolbox for gaining new knowledge from unstructured text data. At the core of CORDIET is the C-K theory which captures the essential elements of innovation. The tool uses Formal Concept Analysis (FCA), Emergent Self

  9. Using "Monopoly" to Introduce Concepts of Race and Ethnic Relations

    Science.gov (United States)

    Waren, Warren

    2011-01-01

    In this paper I suggest a technique which uses the familiar Parker Brother's game "Monopoly" to introduce core concepts of race and ethnic relations. I offer anecdotes from my classes where an abbreviated version of the game is used as an analog to highlight the sociological concepts of direct institutional discrimination, the legacy of…

  10. Measuring the Computer-Related Self-Concept

    Science.gov (United States)

    Langheinrich, Jessica; Schönfelder, Mona; Bogner, Franz X.

    2016-01-01

    A positive self-concept supposedly affects a student's well-being as well as his or her perception of individual competence at school. As computer-based learning is becoming increasingly important in school, a positive computer-related self-concept (CSC) might help to enhance cognitive achievement. Consequently, we focused on establishing a short,…

  11. The Confrontation between General Relativity and Experiment

    Directory of Open Access Journals (Sweden)

    Clifford M. Will

    2014-06-01

    Full Text Available The status of experimental tests of general relativity and of theoretical frameworks for analyzing them is reviewed and updated. Einstein’s equivalence principle (EEP is well supported by experiments such as the Eötvös experiment, tests of local Lorentz invariance and clock experiments. Ongoing tests of EEP and of the inverse square law are searching for new interactions arising from unification or quantum gravity. Tests of general relativity at the post-Newtonian level have reached high precision, including the light deflection, the Shapiro time delay, the perihelion advance of Mercury, the Nordtvedt effect in lunar motion, and frame-dragging. Gravitational wave damping has been detected in an amount that agrees with general relativity to better than half a percent using the Hulse–Taylor binary pulsar, and a growing family of other binary pulsar systems is yielding new tests, especially of strong-field effects. Current and future tests of relativity will center on strong gravity and gravitational waves.

  12. Evolutionary understanding of the concept "Public relations"

    OpenAIRE

    Кам’янецька, О.В.

    2013-01-01

    The considered approaches to determination of notion of «public relations» different research and practical workers. The analyzed stages of development of communications with public and described their signs. Розглянуті підходи до визначення поняття «паблік рілейшнз» різних науковців та практиків. Проаналізовані етапи розвитку підходів до зв’язків з громадськістю та охарактеризовані їх ознаки....

  13. Current Concepts in Sports-Related Concussion.

    Science.gov (United States)

    Chatterjee, Dipal; Frumberg, David B; Mulchandani, Neil B; Eldib, Ahmed M; Xavier, Fred; Barbash, Scott E; Saha, Subrata; Urban, William P

    2015-01-01

    Traumatic brain injury, specifically concussion, is prevalent in contact sports. In the United States (US) each year, 170 million adults participate in physical recreational activities, and 38 million children and adolescents participate in organized sports. The Centers for Disease Control estimate that in this group ~1.6 to 3.8 million concussions occur annually. Recent class-action lawsuits in the US filed by professional athletes against their respective leagues allege negligence in protecting them from concussions, and this has contributed to the attention received in the popular media. In response, concussion-related publications have increased exponentially during the past several years. Recent studies have challenged earlier assumptions that the effects of concussion are transient. Stronger links between concussion and neurodegenerative processes such as Alzheimer's disease-like conditions, depression, and heightened risk for suicide are being elucidated. In this article, we explore the current knowledge on concussion, including pathophysiology, management, and long-term effects. We conclude that more evidence-based results regarding guidelines for diagnosis, treatment, and return to play (RTP) are needed and should be the focus of future investigations. Attributing the etiology of certain neurodegenerative conditions to a history of concussion has been suggested in the current literature, but additional quantitative data regarding the pathophysiology and causality are needed as well. Bioengineers can have an important role in measuring the dynamic forces encountered during head impacts and their effects on the brain. These results can be effective in designing better helmets as well as improved playing surfaces to reduce the impact of such injuries. At this time, we believe that groups of people with heightened risk for concussion should be followed closely during longer periods of time and compared to matched controls. Such long-term studies are urgently

  14. BOOK REVIEW: Advanced Mechanics and General Relativity Advanced Mechanics and General Relativity

    Science.gov (United States)

    Louko, Jorma

    2011-04-01

    Joel Franklin's textbook `Advanced Mechanics and General Relativity' comprises two partially overlapping, partially complementary introductory paths into general relativity at advanced undergraduate level. Path I starts with the Lagrangian and Hamiltonian formulations of Newtonian point particle motion, emphasising the action principle and the connection between symmetries and conservation laws. The concepts are then adapted to point particle motion in Minkowski space, introducing Lorentz transformations as symmetries of the action. There follows a focused development of tensor calculus, parallel transport and curvature, using examples from Newtonian mechanics and special relativity, culminating in the field equations of general relativity. The Schwarzschild solution is analysed, including a detailed discussion of the tidal forces on a radially infalling observer. Basics of gravitational radiation are examined, highlighting the similarities to and differences from electromagnetic radiation. The final topics in Path I are equatorial geodesics in Kerr and the motion of a relativistic string in Minkowski space. Path II starts by introducing scalar field theory on Minkowski space as a limit of point masses connected by springs, emphasising the action principle, conservation laws and the energy-momentum tensor. The action principle for electromagnetism is introduced, and the coupling of electromagnetism to a complex scalar field is developed in a detailed and pedagogical fashion. A free symmetric second-rank tensor field on Minkowski space is introduced, and the action principle of general relativity is recovered from coupling the second-rank tensor to its own energy-momentum tensor. Path II then merges with Path I and, supplanted with judicious early selections from Path I, can proceed to the Schwarzschild solution. The choice of material in each path is logical and focused. A notable example in Path I is that Lorentz transformations in Minkowki space are introduced

  15. General relativity with applications to astrophysics

    CERN Document Server

    Straumann, Norbert

    2004-01-01

    This text provides a comprehensive and timely introduction to general relativity The foundations of the theory in Part I are thoroughly developed together with the required mathematical background from differential geometry in Part III The six chapters in Part II are devoted to tests of general relativity and to many of its applications Binary pulsars are studied in considerable detail Much space is devoted to the study of compact objects, especially to black holes This includes a detailed derivation of the Kerr solution, Israel's proof of his uniqueness theorem, and derivations of the basic laws of black hole physics The final chapter of this part contains Witten's proof of the positive energy theorem The book addresses undergraduate and graduate students in physics, astrophysics and mathematics It is very well structured and should become a standard text for a modern treatment of gravitational physics The clear presentation of differential geometry makes it also useful for string theory and other fields of ...

  16. A precise extragalactic test of General Relativity.

    Science.gov (United States)

    Collett, Thomas E; Oldham, Lindsay J; Smith, Russell J; Auger, Matthew W; Westfall, Kyle B; Bacon, David; Nichol, Robert C; Masters, Karen L; Koyama, Kazuya; van den Bosch, Remco

    2018-06-22

    Einstein's theory of gravity, General Relativity, has been precisely tested on Solar System scales, but the long-range nature of gravity is still poorly constrained. The nearby strong gravitational lens ESO 325-G004 provides a laboratory to probe the weak-field regime of gravity and measure the spatial curvature generated per unit mass, γ. By reconstructing the observed light profile of the lensed arcs and the observed spatially resolved stellar kinematics with a single self-consistent model, we conclude that γ = 0.97 ± 0.09 at 68% confidence. Our result is consistent with the prediction of 1 from General Relativity and provides a strong extragalactic constraint on the weak-field metric of gravity. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. Generalized Weierstrass Relations and Frobenius Reciprocity

    International Nuclear Information System (INIS)

    Matsutani, Shigeki

    2006-01-01

    This article investigates local properties of the further generalized Weierstrass relations for a spin manifold S immersed in a higher dimensional spin manifold M from the viewpoint of the study of submanifold quantum mechanics. We show that the kernel of a certain Dirac operator defined over S, which we call a submanifold Dirac operator, gives the data of the immersion. In the derivation, the simple Frobenius reciprocity of Clifford algebras S and M plays an important role

  18. Screening vector field modifications of general relativity

    International Nuclear Information System (INIS)

    Beltrán Jiménez, Jose; Delvas Fróes, André Luís; Mota, David F.

    2013-01-01

    A screening mechanism for conformal vector–tensor modifications of general relativity is proposed. The conformal factor depends on the norm of the vector field and makes the field to vanish in high dense regions, whereas drives it to a non-null value in low density environments. Such process occurs due to a spontaneous symmetry breaking mechanism and gives rise to both the screening of fifth forces as well as Lorentz violations. The cosmology and local constraints are also computed

  19. Interacting electromagnetic waves in general relativity

    International Nuclear Information System (INIS)

    Griffiths, J.B.

    1976-01-01

    The problem is considered of finding exact solutions of the Einstein-Maxwell equations which describe the physical situation of two colliding and subsequently interacting electromagnetic waves. The general theory of relativity predicts a nonlinear interaction between electromagnetic waves. The situation is described using an approximate geometrical method, and a new exact solution describing two interacting electromagnetic waves is given. This describes waves emitted from two sources mutually focusing each other on the opposite source. (author)

  20. Gravity, general relativity theory and alternative theories

    International Nuclear Information System (INIS)

    Zel'dovich, Ya.B.; Grishchuk, L.P.; Moskovskij Gosudarstvennyj Univ.

    1986-01-01

    The main steps in plotting the current gravitation theory and some prospects of its subsequent development are reviewed. The attention is concentrated on a comparison of the relativistic gravitational field with other physical fields. Two equivalent formulations of the general relativity (GR) - geometrical and field-theoretical - are considered in detail. It is shown that some theories of gravity constructed as the field theories at a flat background space-time are in fact just different formulations of GR and not alternative theories

  1. Between general relativity and quantum theory

    International Nuclear Information System (INIS)

    Rayski, J.

    1982-01-01

    Some possibilities of reconciling general relativity with quantum theory are discussed. The procedure of quantization is certainly not unique, but depends upon the choice of the coordinate conditions. Most versions of quantization predict the existence of gravitons, but it is also possible to formulate a quantum theory with a classical gravity whereby the expectation values of Tsub(μν) constitute the sources of the classical metric field. (author)

  2. Testing General Relativity with Pulsar Timing

    Directory of Open Access Journals (Sweden)

    Stairs Ingrid H.

    2003-01-01

    Full Text Available Pulsars of very different types, including isolated objects and binaries (with short- and long-period orbits, and white-dwarf and neutron-star companions provide the means to test both the predictions of general relativity and the viability of alternate theories of gravity. This article presents an overview of pulsars, then discusses the current status of and future prospects for tests of equivalence-principle violations and strong-field gravitational experiments.

  3. Probing the Higgs vacuum with general relativity

    Science.gov (United States)

    Mannheim, Philip D.; Kazanas, Demosthenes

    1991-01-01

    It is shown that the structure of the Higgs vacuum can be revealed in gravitational experiments which probe the Schwarzschild geometry to only one order in MG/r beyond that needed for the classical tests of general relativity. The possibility that deviations from the conventional geometry are at least theoretically conceivable is explored. The deviations obtained provide a diagnostic test for searching for the existence of macroscopic scalar fields and open up the possiblity for further exploring the Higgs mechanism.

  4. Special relativity, electrodynamics, and general relativity from Newton to Einstein

    CERN Document Server

    Kogut, John B

    2018-01-01

    Special Relativity, Electrodynamics and General Relativity: From Newton to Einstein, Second Edition, is intended to teach (astro)physics, astronomy, and cosmology students how to think about special and general relativity in a fundamental, but accessible, way. Designed to render any reader a "master of relativity," everything on the subject is comprehensible and derivable from first principles. The book emphasizes problem solving, contains abundant problem sets, and is conveniently organized to meet the needs of both student and instructor. Fully revised, updated and expanded second edition Includes new chapters on magnetism as a consequence of relativity and electromagnetism Contains many improved and more engaging figures Uses less algebra resulting in more efficient derivations Enlarged discussion of dynamics and the relativistic version of Newton's second law

  5. Quantum theory and Einstein's general relativity

    International Nuclear Information System (INIS)

    Borzeszkowski, H. von; Treder, H.

    1982-01-01

    We dicusss the meaning and prove the accordance of general relativity, wave mechanics, and the quantization of Einstein's gravitation equations themselves. Firstly, we have the problem of the influence of gravitational fields on the de Broglie waves, which influence is in accordance with Einstein's weak principle of equivalence and the limitation of measurements given by Heisenberg's uncertainty relations. Secondly, the quantization of the gravitational fields is a ''quantization of geometry.'' However, classical and quantum gravitation have the same physical meaning according to limitations of measurements given by Einstein's strong principle of equivalence and the Heisenberg uncertainties for the mechanics of test bodies

  6. Relativity the special and the general theory

    CERN Document Server

    Einstein, Albert

    2015-01-01

    After completing the final version of his general theory of relativity in November 1915, Albert Einstein wrote a book about relativity for a popular audience. His intention was "to give an exact insight into the theory of relativity to those readers who, from a general scientific and philosophical point of view, are interested in the theory, but who are not conversant with the mathematical apparatus of theoretical physics." The book remains one of the most lucid explanations of the special and general theories ever written. In the early 1920s alone, it was translated into ten languages, and fifteen editions in the original German appeared over the course of Einstein's lifetime. This new edition of Einstein's celebrated book features an authoritative English translation of the text along with an introduction and a reading companion by Hanoch Gutfreund and Jürgen Renn that examines the evolution of Einstein's thinking and casts his ideas in a broader present-day context. A special chapter explores the history...

  7. Simple recursion relations for general field theories

    International Nuclear Information System (INIS)

    Cheung, Clifford; Shen, Chia-Hsien; Trnka, Jaroslav

    2015-01-01

    On-shell methods offer an alternative definition of quantum field theory at tree-level, replacing Feynman diagrams with recursion relations and interaction vertices with a handful of seed scattering amplitudes. In this paper we determine the simplest recursion relations needed to construct a general four-dimensional quantum field theory of massless particles. For this purpose we define a covering space of recursion relations which naturally generalizes all existing constructions, including those of BCFW and Risager. The validity of each recursion relation hinges on the large momentum behavior of an n-point scattering amplitude under an m-line momentum shift, which we determine solely from dimensional analysis, Lorentz invariance, and locality. We show that all amplitudes in a renormalizable theory are 5-line constructible. Amplitudes are 3-line constructible if an external particle carries spin or if the scalars in the theory carry equal charge under a global or gauge symmetry. Remarkably, this implies the 3-line constructibility of all gauge theories with fermions and complex scalars in arbitrary representations, all supersymmetric theories, and the standard model. Moreover, all amplitudes in non-renormalizable theories without derivative interactions are constructible; with derivative interactions, a subset of amplitudes is constructible. We illustrate our results with examples from both renormalizable and non-renormalizable theories. Our study demonstrates both the power and limitations of recursion relations as a self-contained formulation of quantum field theory.

  8. Relative Effects of Problem-Solving and Concept Mapping ...

    African Journals Online (AJOL)

    Relative Effects of Problem-Solving and Concept Mapping Instructional ... mapping strategies are also discussed and their significance and importance to students. ... development of problem solving skills before the end of SSCE Programmebr ...

  9. Relating Complexity and Error Rates of Ontology Concepts. More Complex NCIt Concepts Have More Errors.

    Science.gov (United States)

    Min, Hua; Zheng, Ling; Perl, Yehoshua; Halper, Michael; De Coronado, Sherri; Ochs, Christopher

    2017-05-18

    Ontologies are knowledge structures that lend support to many health-information systems. A study is carried out to assess the quality of ontological concepts based on a measure of their complexity. The results show a relation between complexity of concepts and error rates of concepts. A measure of lateral complexity defined as the number of exhibited role types is used to distinguish between more complex and simpler concepts. Using a framework called an area taxonomy, a kind of abstraction network that summarizes the structural organization of an ontology, concepts are divided into two groups along these lines. Various concepts from each group are then subjected to a two-phase QA analysis to uncover and verify errors and inconsistencies in their modeling. A hierarchy of the National Cancer Institute thesaurus (NCIt) is used as our test-bed. A hypothesis pertaining to the expected error rates of the complex and simple concepts is tested. Our study was done on the NCIt's Biological Process hierarchy. Various errors, including missing roles, incorrect role targets, and incorrectly assigned roles, were discovered and verified in the two phases of our QA analysis. The overall findings confirmed our hypothesis by showing a statistically significant difference between the amounts of errors exhibited by more laterally complex concepts vis-à-vis simpler concepts. QA is an essential part of any ontology's maintenance regimen. In this paper, we reported on the results of a QA study targeting two groups of ontology concepts distinguished by their level of complexity, defined in terms of the number of exhibited role types. The study was carried out on a major component of an important ontology, the NCIt. The findings suggest that more complex concepts tend to have a higher error rate than simpler concepts. These findings can be utilized to guide ongoing efforts in ontology QA.

  10. The Self-Education Concept: General Notions and Structure

    Directory of Open Access Journals (Sweden)

    I. F. Medvedev

    2012-01-01

    Full Text Available The paper is devoted to the developing approach to students’ training based on the concept of self-education. The aim of the study is defined as developing the theoretical basis for self-education at Higher School. The initial research positions are derived from the methodology approach; the terminology analysis is being applied for defining the conceptual field of the research; the systematic approach gives the ground for the integral consideration of the self-education issue. The author specifies the categories and attributes of the self-education concept, its methodology basis, as well as the essence and practical conclusions, including the didactic conformities, principles and method requirements. The content of the concept in question substantiates organizational methodic arrangements of educational process including the complex of procedures for working out the normative documents, planning and organizing students’ self-educational activity, application of modern educational technologies. The re- search findings can be used by scientists, lectures, teaching staff and post-graduates in the process of implementing the innovation education technologies at Higher School. 

  11. Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity

    Directory of Open Access Journals (Sweden)

    Font José A.

    2008-09-01

    Full Text Available This article presents a comprehensive overview of numerical hydrodynamics and magnetohydrodynamics (MHD in general relativity. Some significant additions have been incorporated with respect to the previous two versions of this review (2000, 2003, most notably the coverage of general-relativistic MHD, a field in which remarkable activity and progress has occurred in the last few years. Correspondingly, the discussion of astrophysical simulations in general-relativistic hydrodynamics is enlarged to account for recent relevant advances, while those dealing with general-relativistic MHD are amply covered in this review for the first time. The basic outline of this article is nevertheless similar to its earlier versions, save for the addition of MHD-related issues throughout. Hence, different formulations of both the hydrodynamics and MHD equations are presented, with special mention of conservative and hyperbolic formulations well adapted to advanced numerical methods. A large sample of numerical approaches for solving such hyperbolic systems of equations is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. As previously stated, a comprehensive summary of astrophysical simulations in strong gravitational fields is also presented. These are detailed in three basic sections, namely gravitational collapse, black-hole accretion, and neutron-star evolutions; despite the boundaries, these sections may (and in fact do overlap throughout the discussion. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances in the formulation of the gravitational field, hydrodynamics and MHD equations and the numerical methodology designed to solve them. To keep the length of this article reasonable

  12. Artificial General Intelligence: Concept, State of the Art, and Future Prospects

    Science.gov (United States)

    Goertzel, Ben

    2014-12-01

    In recent years broad community of researchers has emerged, focusing on the original ambitious goals of the AI field - the creation and study of software or hardware systems with general intelligence comparable to, and ultimately perhaps greater than, that of human beings. This paper surveys this diverse community and its progress. Approaches to defining the concept of Artificial General Intelligence (AGI) are reviewed including mathematical formalisms, engineering, and biology inspired perspectives. The spectrum of designs for AGI systems includes systems with symbolic, emergentist, hybrid and universalist characteristics. Metrics for general intelligence are evaluated, with a conclusion that, although metrics for assessing the achievement of human-level AGI may be relatively straightforward (e.g. the Turing Test, or a robot that can graduate from elementary school or university), metrics for assessing partial progress remain more controversial and problematic.

  13. Energy conditions and stability in general relativity

    International Nuclear Information System (INIS)

    Hall, G.S.

    1982-01-01

    The dominant energy condition in general relativity theory, which says that every observer measures a nonnegative local energy density and a nonspacelike local energy flow, is examined in connection with the types of energy-momentum tensor it permits. The condition that the energy-momentum tensor be ''stable'' in obeying the dominant energy conditions is then defined in terms of a suitable topology on the set of energy-momentum tensors on space-time and the consequences are evaluated and discussed. (author)

  14. Weak field approximation of new general relativity

    International Nuclear Information System (INIS)

    Fukui, Masayasu; Masukawa, Junnichi

    1985-01-01

    In the weak field approximation, gravitational field equations of new general relativity with arbitrary parameters are examined. Assuming a conservation law delta sup(μ)T sub(μν) = 0 of the energy-momentum tensor T sub(μν) for matter fields in addition to the usual one delta sup(ν)T sub(μν) = 0, we show that the linearized gravitational field equations are decomposed into equations for a Lorentz scalar field and symmetric and antisymmetric Lorentz tensor fields. (author)

  15. The mathematical theory of general relativity

    CERN Document Server

    Katkar, L N

    2014-01-01

    This book is prepared for M. Sc. Students of Mathematics and Physics. The aim of writing this book is to give the reader a feeling for the necessity and beauty of the laws of general relativity. The contents of the book will attract both mathematicians and physicists which provides motivation and applications of many ideas and powerful mathematical methods of modern analysis and differential geometry. An attempt has been made to make the presentation comprehensive, rigorous and yet simple. Most calculations and transformations have been carried out in great detail. KEY FEATURE: Numerous solved examples using the well known mathematical techniques viz., the tensors and the differential forms in each chapter.

  16. Tests of General Relativity with GW150914

    OpenAIRE

    Abbott, B. P.; Abbott, R.; Abernathy, M. R.; Adhikari, R. X.; Anderson, S. B.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cahillane, C.

    2016-01-01

    The LIGO detection of GW150914 provides an unprecedented opportunity to study the two-body motion of a compact-object binary in the large-velocity, highly nonlinear regime, and to witness the final merger of the binary and the excitation of uniquely relativistic modes of the gravitational field. We carry out several investigations to determine whether GW150914 is consistent with a binary black-hole merger in general relativity. We find that the final remnant’s mass and spin, as determined fro...

  17. New Area Law in General Relativity.

    Science.gov (United States)

    Bousso, Raphael; Engelhardt, Netta

    2015-08-21

    We report a new area law in general relativity. A future holographic screen is a hypersurface foliated by marginally trapped surfaces. We show that their area increases monotonically along the foliation. Future holographic screens can easily be found in collapsing stars and near a big crunch. Past holographic screens exist in any expanding universe and obey a similar theorem, yielding the first rigorous area law in big bang cosmology. Unlike event horizons, these objects can be identified at finite time and without reference to an asymptotic boundary. The Bousso bound is not used, but it naturally suggests a thermodynamic interpretation of our result.

  18. Anholonomic Cauchy problem in general relativity

    International Nuclear Information System (INIS)

    Stachel, J.

    1980-01-01

    The Lie derivative approach to the Cauchy problem in general relativity is applied to the evolution along an arbitrary timelike vector field for the case where the dynamical degrees of freedom are chosen as the (generally anholonomic) metric of the hypersurface elements orthogonal to the vector field. Generalizations of the shear, rotation, and acceleration are given for a nonunit timelike vector field, and applied to the three-plus-one breakup of the Riemann tensor into components parallel and orthogonal to the vector field, resulting in the anholonomic Gauss--Codazzi equations. A similar breakup of the Einstein field equations results in the form of the constraint and evolution equations for the anholonomic case. The results are applied to the case of a space--time with a timelike Killing vector field (stationary field) to demonstrate their utility. Other possible applications, such as in the numerical integration of the field equations, are mentioned. Definitions are given of three-index shear, rotation, and acceleration tensors, and their use in a two-plus-two decomposition of the Riemann tensor and field equations is indicated

  19. Introduction to general relativity and cosmology

    CERN Document Server

    Berger, Mitchell A

    2018-01-01

    The textbook aims to present general relativity and modern cosmology in a friendly form suitable for advanced undergraduates. The text begins with a self-contained introduction to the theory of manifolds and then develops the tools needed to understand curved spaces and curved spacetimes. Special relativity can then be understood in a geometrical context, bypassing some of the difficulties students have when encountering relativistic effects (e.g. time dilation and length contraction) for the first time. The theory of curvature and its effects leads to the Einstein field equations and its classic tests in the precession of Mercury and the deflection of starlight. The second part of the book covers modern cosmology, starting with the evolution equations for the expansion of the universe. The microwave background, evidence for dark matter, and the clustering of galaxies are examined in detail.

  20. Generalization of information-based concepts in forecast verification

    Science.gov (United States)

    Tödter, J.; Ahrens, B.

    2012-04-01

    This work deals with information-theoretical methods in probabilistic forecast verification. Recent findings concerning the Ignorance Score are shortly reviewed, then the generalization to continuous forecasts is shown. For ensemble forecasts, the presented measures can be calculated exactly. The Brier Score (BS) and its generalizations to the multi-categorical Ranked Probability Score (RPS) and to the Continuous Ranked Probability Score (CRPS) are the prominent verification measures for probabilistic forecasts. Particularly, their decompositions into measures quantifying the reliability, resolution and uncertainty of the forecasts are attractive. Information theory sets up the natural framework for forecast verification. Recently, it has been shown that the BS is a second-order approximation of the information-based Ignorance Score (IGN), which also contains easily interpretable components and can also be generalized to a ranked version (RIGN). Here, the IGN, its generalizations and decompositions are systematically discussed in analogy to the variants of the BS. Additionally, a Continuous Ranked IGN (CRIGN) is introduced in analogy to the CRPS. The applicability and usefulness of the conceptually appealing CRIGN is illustrated, together with an algorithm to evaluate its components reliability, resolution, and uncertainty for ensemble-generated forecasts. This is also directly applicable to the more traditional CRPS.

  1. Reconsidering relations between nuclear energy and security concepts

    International Nuclear Information System (INIS)

    Irie, Kazutomo

    2004-01-01

    Relations between nuclear energy and security concepts can be clarified through investigation into the multivocal nature of security concepts. While military uses of nuclear energy significantly influence national security, peaceful uses of nuclear energy contribute energy security, which is an expanded concept of national security. Military and peaceful uses of nuclear energy have reciprocal actions, thus influencing national security and energy security, respectively. Nuclear security, which means security of nuclear systems themselves, recently attracts the attention of the international society. Nuclear security directly influences national security issues. On the other hand, along with nuclear safety, nuclear security becomes a prerequisite for energy security through peaceful uses of nuclear energy. In investigating into relations between nuclear energy and security concepts, the difficulty of translating the English word of 'nuclear security' into Japanese as well as other languages is found. (author)

  2. Astrometric tests of General Relativity in the Solar system

    International Nuclear Information System (INIS)

    Gai, M; Vecchiato, A; Riva, A; Lattanzi, M G; Sozzetti, A; Crosta, M T; Busonero, D

    2014-01-01

    Micro-arcsec astronomy is able to verify the predictions of theoretical models of gravitation at a level adequate to constraint relevant parameters and select among different formulations. In particular, this concerns the weak field limit applicable to the Sun neighborhood, where competing models can be expressed in a common framework as the Parametrised Post-Newtonian and Parametrised Post-Post-Newtonian formulations. The mission Gaia is going to provide an unprecedented determination of the γ PPN parameter at the 10 −6 level. Other recently proposed concepts, as GAME, may improve the precision on γ by one or two orders of magnitude and provide constraints on other crucial phenomenological aspects. We review the key concepts of astrometric tests of General Relativity and discuss a possible development scenario

  3. Mechanics of extended masses in general relativity

    International Nuclear Information System (INIS)

    Harte, Abraham I

    2012-01-01

    The 'external' or 'Right' motion of extended bodies is studied in general relativity. Compact material objects of essentially arbitrary shape, spin, internal composition and velocity are allowed as long as there is no direct (non-gravitational) contact with other sources of stress-energy. Physically reasonable linear and angular momenta are proposed for such bodies and exact equations describing their evolution are derived. Changes in the momenta depend on a certain 'effective metric' that is closely related to a non-perturbative generalization of the Detweiler-Whiting R-field originally introduced in the self-force literature. If the effective metric inside a self-gravitating body can be adequately approximated by an appropriate power series, the instantaneous gravitational force and torque exerted on it is shown to be identical to the force and torque exerted on an appropriate test body moving in the effective metric. This result holds to all multipole orders. The only instantaneous effect of a body's self-field is to finitely renormalize the 'bare' multipole moments of its stress-energy tensor. The MiSaTaQuWa expression for the gravitational self-force is recovered as a simple application. A gravitational self-torque is obtained as well. Lastly, it is shown that the effective metric in which objects appear to move is approximately a solution to the vacuum Einstein equation if the physical metric is an approximate solution to Einstein's equation linearized about a vacuum background. (paper)

  4. Optical drift effects in general relativity

    Science.gov (United States)

    Korzyński, Mikołaj; Kopiński, Jarosław

    2018-03-01

    We consider the question of determining the optical drift effects in general relativity, i.e. the rate of change of the apparent position, redshift, Jacobi matrix, angular distance and luminosity distance of a distant object as registered by an observer in an arbitrary spacetime. We present a fully relativistic and covariant approach, in which the problem is reduced to a hierarchy of ODE's solved along the line of sight. The 4-velocities and 4-accelerations of the observer and the emitter and the geometry of the spacetime along the line of sight constitute the input data. We build on the standard relativistic geometric optics formalism and extend it to include the time derivatives of the observables. In the process we obtain two general, non-perturbative relations: the first one between the gravitational lensing, represented by the Jacobi matrix, and the apparent position drift, also called the cosmic parallax, and the second one between the apparent position drift and the redshift drift. The applications of the results include the theoretical study of the drift effects of cosmological origin (so-called real-time cosmology) in numerical or exact Universe models.

  5. Kinematics in special and general relativity

    International Nuclear Information System (INIS)

    Woodside, R.W.M.

    1979-05-01

    This thesis investigates the problem of motion for extended bodies from the viewpoint of classical field theory, where the classical field is the body's energy-momentum or matter tensor. In special relativity a symmetric and divergence-free matter tensor combined with inertial frames is used to generate a kinematics for extended bodies. In general relativity the author suggests an analogous kinematics and applies it to the simplest non-trivial example of static, spherical stars, looking for special sets of vector fields whose matter currents are conserved. Such a set of ten vector fields defines a special frame, and integrals of the conserved matter currents define ten momenta whcih give the kinematics. Application of de Rham cohomology theory shows that the conserved matter currents for isolated bodies will have mechanical potentials which enable the momenta to be found from flux integrals evaluated in the vacuum region surrounding the body. These potentials contain the full Riemann curvature, allowing a body's general relativistic momenta to be determined by its vacuum graviational field

  6. Culture of Honour and Emotional Intelligence: Incompatible or related concepts?

    Directory of Open Access Journals (Sweden)

    Esther López-Zafra

    2013-11-01

    Full Text Available In this study we relate two concepts, Emotional Intelligence and Culture of Honour; in both cases the emotional aspect is very important and we believe they may have a role in couple relations. We propose that both concepts would relate in reverse, so that an individual with a high level of Emotional Intelligence would give less importance to the Culture of Honor and vice versa. A sample of 203 heterosexual couples completed a questionnaire. Our results show that the dimension Attention to emotions is associated with the culture of honor. Among our fi ndings we propose that the two concepts are related in some way and that congruency in the valuation of the Culture of Honor between the two partners will also deal with a level of Emotional Intelligence higher than in couples where there is not this congruence.

  7. An elementary course on general relativity

    International Nuclear Information System (INIS)

    Regge, T.

    1983-01-01

    This report gives an informal account of the theory of general relativity, for non-specialists. It does not contain any detailed technical expose of tensor calculus but relies instead on a number of intuitive arguments. After a brief historical introduction the notion of curvature is developed, first in two dimensions (as done originally by Gauss) and then in higher dimensions, following the ideas of Riemann. This curvature is then related to quantities of physical interest through the following steps: i) The equality of gravitational and inertial masses is discussed and presented as the ''weak equivalence principle''. ii) This is then extended to the ''strong equivalence principle'' according to the original programme of Einstein. iii) The ''strong equivalence principle'' implies the existence of a local inertial observer in any point of space-time. In a sufficiently small region of space-time this observer will not sense any gravitational field. iv) In a larger region the observer will, however, sense residual tidal forces. These forces are identified with the curvature of spacetime, to achieve a direct geometrical interpretation of gravity. v) Finally certain curvature components are related to the distribution of matter through Einstein's field equations. Section 4 contains a discussion of the classical tests of the theory and of the possibility of detecting gravitational waves. Sections 5 and 6 deal with cosmology and with the possible extension of the theory along the lines of the original ideas of Einstein, with emphasis on the dimensional reduction techniques of current interest. (orig.)

  8. Pacifier Overuse and Conceptual Relations of Abstract and Emotional Concepts.

    Science.gov (United States)

    Barca, Laura; Mazzuca, Claudia; Borghi, Anna M

    2017-01-01

    This study explores the impact of the extensive use of an oral device since infancy (pacifier) on the acquisition of concrete, abstract, and emotional concepts. While recent evidence showed a negative relation between pacifier use and children's emotional competence (Niedenthal et al., 2012), the possible interaction between use of pacifier and processing of emotional and abstract language has not been investigated. According to recent theories, while all concepts are grounded in sensorimotor experience, abstract concepts activate linguistic and social information more than concrete ones. Specifically, the Words As Social Tools (WAT) proposal predicts that the simulation of their meaning leads to an activation of the mouth (Borghi and Binkofski, 2014; Borghi and Zarcone, 2016). Since the pacifier affects facial mimicry forcing mouth muscles into a static position, we hypothesize its possible interference on acquisition/consolidation of abstract emotional and abstract not-emotional concepts, which are mainly conveyed during social and linguistic interactions, than of concrete concepts. Fifty-nine first grade children, with a history of different frequency of pacifier use, provided oral definitions of the meaning of abstract not-emotional, abstract emotional, and concrete words. Main effect of concept type emerged, with higher accuracy in defining concrete and abstract emotional concepts with respect to abstract not-emotional concepts, independently from pacifier use. Accuracy in definitions was not influenced by the use of pacifier, but correspondence and hierarchical clustering analyses suggest that the use of pacifier differently modulates the conceptual relations elicited by abstract emotional and abstract not-emotional. While the majority of the children produced a similar pattern of conceptual relations, analyses on the few (6) children who overused the pacifier (for more than 3 years) showed that they tend to distinguish less clearly between concrete and

  9. Pacifier Overuse and Conceptual Relations of Abstract and Emotional Concepts

    Directory of Open Access Journals (Sweden)

    Laura Barca

    2017-12-01

    Full Text Available This study explores the impact of the extensive use of an oral device since infancy (pacifier on the acquisition of concrete, abstract, and emotional concepts. While recent evidence showed a negative relation between pacifier use and children's emotional competence (Niedenthal et al., 2012, the possible interaction between use of pacifier and processing of emotional and abstract language has not been investigated. According to recent theories, while all concepts are grounded in sensorimotor experience, abstract concepts activate linguistic and social information more than concrete ones. Specifically, the Words As Social Tools (WAT proposal predicts that the simulation of their meaning leads to an activation of the mouth (Borghi and Binkofski, 2014; Borghi and Zarcone, 2016. Since the pacifier affects facial mimicry forcing mouth muscles into a static position, we hypothesize its possible interference on acquisition/consolidation of abstract emotional and abstract not-emotional concepts, which are mainly conveyed during social and linguistic interactions, than of concrete concepts. Fifty-nine first grade children, with a history of different frequency of pacifier use, provided oral definitions of the meaning of abstract not-emotional, abstract emotional, and concrete words. Main effect of concept type emerged, with higher accuracy in defining concrete and abstract emotional concepts with respect to abstract not-emotional concepts, independently from pacifier use. Accuracy in definitions was not influenced by the use of pacifier, but correspondence and hierarchical clustering analyses suggest that the use of pacifier differently modulates the conceptual relations elicited by abstract emotional and abstract not-emotional. While the majority of the children produced a similar pattern of conceptual relations, analyses on the few (6 children who overused the pacifier (for more than 3 years showed that they tend to distinguish less clearly between

  10. General Relativity solutions in modified gravity

    Science.gov (United States)

    Motohashi, Hayato; Minamitsuji, Masato

    2018-06-01

    Recent gravitational wave observations of binary black hole mergers and a binary neutron star merger by LIGO and Virgo Collaborations associated with its optical counterpart constrain deviation from General Relativity (GR) both on strong-field regime and cosmological scales with high accuracy, and further strong constraints are expected by near-future observations. Thus, it is important to identify theories of modified gravity that intrinsically possess the same solutions as in GR among a huge number of theories. We clarify the three conditions for theories of modified gravity to allow GR solutions, i.e., solutions with the metric satisfying the Einstein equations in GR and the constant profile of the scalar fields. Our analysis is quite general, as it applies a wide class of single-/multi-field scalar-tensor theories of modified gravity in the presence of matter component, and any spacetime geometry including cosmological background as well as spacetime around black hole and neutron star, for the latter of which these conditions provide a necessary condition for no-hair theorem. The three conditions will be useful for further constraints on modified gravity theories as they classify general theories of modified gravity into three classes, each of which possesses i) unique GR solutions (i.e., no-hair cases), ii) only hairy solutions (except the cases that GR solutions are realized by cancellation between singular coupling functions in the Euler-Lagrange equations), and iii) both GR and hairy solutions, for the last of which one of the two solutions may be selected dynamically.

  11. Dynamical laws of superenergy in general relativity

    International Nuclear Information System (INIS)

    Gomez-Lobo, Alfonso GarcIa-Parrado

    2008-01-01

    The Bel and Bel-Robinson tensors were introduced nearly 50 years ago in an attempt to generalize to gravitation the energy-momentum tensor of electromagnetism. This generalization was successful from the mathematical point of view because these tensors share mathematical properties which are remarkably similar to those of the energy-momentum tensor of electromagnetism. However, the physical role of these tensors in general relativity has remained obscure and no interpretation has achieved wide acceptance. In principle, they cannot represent energy and the term superenergy has been coined for the hypothetical physical magnitude lying behind them. In this work, we try to shed light on the true physical meaning of superenergy by following the same procedure which enables us to give an interpretation of the electromagnetic energy. This procedure consists in performing an orthogonal splitting of the Bel and Bel-Robinson tensors and analyzing the different parts resulting from the splitting. In the electromagnetic case such splitting gives rise to the electromagnetic energy density, the Poynting vector and the electromagnetic stress tensor, each of them having a precise physical interpretation which is deduced from the dynamical laws of electromagnetism (Poynting theorem). The full orthogonal splitting of the Bel and Bel-Robinson tensors is more complex but, as expected, similarities with electromagnetism are present. Also the covariant divergence of the Bel tensor is analogous to the covariant divergence of the electromagnetic energy-momentum tensor and the orthogonal splitting of the former is found. The ensuing equations are to the superenergy what the Poynting theorem is to electromagnetism. Some consequences of these dynamical laws of superenergy are explored, among them the possibility of defining superenergy radiative states for the gravitational field

  12. On multipole moments in general relativity

    International Nuclear Information System (INIS)

    Hoenselaers, C.

    1986-01-01

    In general situations, involving gravitational waves the question of multiple moments in general relativity restricts the author to stationary axisymmetric situations. Here it has been shown that multipole moments, a set of numbers defined at spatial infinity as far away from the source as possible, determine a solution of Einstein's equations uniquely. With the rather powerful methods for generating solutions one might hope to get solutions with predefined multipole moments. Before doing so, however, one needs an efficient algorithm for calculating the moments of a given solution. Chapter 2 deals with a conjecture pertaining to such a calculational procedure and shows it to be not true. There is another context in which multipole moments are important. Consider a system composed of several objects. To separate, if possible, the various parts of their interaction, one needs a definition for multipole moments of individual members of a many body system. In spite of the fact that there is no definition for individual moments, with the exception of mass and angular momentum, Chapter 3 shows what can be done for the double Kerr solution. The authors can identify various terms in he interaction of two aligned Kerr objects and show that gravitational spin-spin interaction is indeed proportional to the product of the angular momenta

  13. Rotating Quark Stars in General Relativity

    Directory of Open Access Journals (Sweden)

    Enping Zhou

    2018-03-01

    Full Text Available We have built quasi-equilibrium models for uniformly rotating quark stars in general relativity. The conformal flatness approximation is employed and the Compact Object CALculator (cocal code is extended to treat rotating stars with surface density discontinuity. In addition to the widely used MIT bag model, we have considered a strangeon star equation of state (EoS, suggested by Lai and Xu, that is based on quark clustering and results in a stiff EoS. We have investigated the maximum mass of uniformly rotating axisymmetric quark stars. We have also built triaxially deformed solutions for extremely fast rotating quark stars and studied the possible gravitational wave emission from such configurations.

  14. Motivations for antigravity in General Relativity

    Energy Technology Data Exchange (ETDEWEB)

    Chardin, G. [DSM/DAPNIA/SPP, CEN-Saclay (France)

    1997-08-15

    We present arguments showing that it is natural to interpret the negative mass part of the Kerr solution as representing the geometry experienced by antimatter. The C, P and T discrete transformations are considered for this geometry. The C and T properties of the proposed identification are found to be in agreement with the usual representation of antimatter. In addition, we conjecture a property of perfect stigmatism through Kerr wormholes which allows General Relativity to mimic antigravity. Kerr wormholes would then act as 'supermirrors' reversing the C, P and T images of an object seen through it. This interpretation is subject to several experimental tests and able to provide an explanation, without any free parameter, of the 'CP' violation observed in the neutral kaon system.

  15. Motivations for antigravity in General Relativity

    International Nuclear Information System (INIS)

    Chardin, G.

    1997-01-01

    We present arguments showing that it is natural to interpret the negative mass part of the Kerr solution as representing the geometry experienced by antimatter. The C, P and T discrete transformations are considered for this geometry. The C and T properties of the proposed identification are found to be in agreement with the usual representation of antimatter. In addition, we conjecture a property of perfect stigmatism through Kerr wormholes which allows General Relativity to mimic antigravity. Kerr wormholes would then act as 'supermirrors' reversing the C, P and T images of an object seen through it. This interpretation is subject to several experimental tests and able to provide an explanation, without any free parameter, of the 'CP' violation observed in the neutral kaon system

  16. On thick domain walls in general relativity

    Science.gov (United States)

    Goetz, Guenter; Noetzold, Dirk

    1989-01-01

    Planar scalar field configurations in general relativity differ considerably from those in flat space. It is shown that static domain walls of finite thickness in curved space-time do not possess a reflection symmetry. At infinity, the space-time tends to the Taub vacuum on one side of the wall and to the Minkowski vacuum (Rindler space-time) on the other. Massive test particles are always accelerated towards the Minkowski side, i.e., domain walls are attractive on the Taub side, but repulsive on the Minkowski side (Taub-vacuum cleaner). It is also proved that the pressure in all directions is always negative. Finally, a brief comment is made concerning the possibility of infinite, i.e., bigger than horizon size, domain walls in our universe. All of the results are independent of the form of the potential V(phi) greater than or equal to 0 of the scalar field phi.

  17. Women's toileting behaviour related to urinary elimination: concept analysis.

    Science.gov (United States)

    Wang, Kefang; Palmer, Mary H

    2010-08-01

    This paper is a report of analysis of the concept of women's toileting behaviour related to urinary elimination. Behaviours related to emptying urine from the bladder can contribute to bladder health problems. Evidence exists that clinical interventions focusing on specific behaviours that promote urine storage and controlled emptying are effective in reducing lower urinary tract symptoms. The concept of women's toileting behaviour related to urinary elimination has not been well-developed to guide nursing research and intervention. The CINAHL, Medline, PsycInfo and ISI Citation databases were searched for publications between January, 1960 and May, 2009, using combinations of keywords related to women's toileting behaviour. Additional publications were identified by examining the reference lists in the papers identified. Johnson's behavioural system model provided the conceptual framework to identify the concept. Walker and Avant's method was used for this concept analysis. Women's toileting behaviour related to urinary elimination can be defined as voluntary actions related to the physiological event of emptying the bladder, which is comprised of specific attributes including voiding place, voiding time, voiding position and voiding style. This behaviour is also influenced by the physical and social environments. An explicit definition of women's toileting behaviour can offer a basis for nurses to understand the factors involved in women's toileting behaviour. It also facilitates the development of an instrument to assess women's toileting behaviour better, and to facilitate development of behavioural interventions designed to prevent, eliminate, reduce and manage female lower urinary tract symptoms.

  18. Generalized concepts for measures in case of nuclear and radiological emergencies; Generalisierte Konzepte fuer Massnahmen bei nuklearen und radiologischen Notfaellen

    Energy Technology Data Exchange (ETDEWEB)

    Sogalla, Martin; Buettner, Uwe; Schnadt, Horst

    2015-05-15

    In the frame of the project 3610S60014 GRS has developed a generalized concept of measures for an improved availability of support and information systems for emergency purposes and the planning of press and public relations that shall be applicable for the complete spectrum of nuclear end radiological emergencies. The concept allows the derivation of criteria and clear procedures for the situation evaluation and decision making. The project is aimed to integrate all available measure concepts from external emergency preparedness, prevention of ABD hazards and specific nuclear emergency plans.

  19. Singular Null Hypersurfaces in General Relativity

    International Nuclear Information System (INIS)

    Dray, T

    2006-01-01

    Null hypersurfaces are a mathematical consequence of the Lorentzian signature of general relativity; singularities in mathematical models usually indicate where the interesting physics takes place. This book discusses what happens when you combine these ideas. Right from the preface, this is a no-nonsense book. There are two principal approaches to singular shells, one distributional and the other 'cut and paste'; both are treated in detail. A working knowledge of GR is assumed, including familiarity with null tetrads, differential forms, and 3 + 1 decompositions. Despite my own reasonably extensive, closely related knowledge, there was material unfamiliar to me already in chapter 3, although I was reunited with some old friends in later chapters. The exposition is crisp, with a minimum of transition from chapter to chapter. In fact, my main criticism is that there is no clear statement of the organization of the book, nor is there an index. Everything is here, and the story is compelling if you know what to look for, although it is less easy to follow the story if you are not already familiar with it. But this is really a book for experts, and the authors certainly qualify, having played a significant role in developing and extending the results they describe. It is also entirely appropriate that the book is dedicated to Werner Israel, who pioneered the thin-shell approach to (non-null) singular surfaces and later championed the use of similar methods for analysing null shells. After an introductory chapter on impulsive signals, the authors show how the Bianchi identities can be used to classify spacetimes with singular null hypersurfaces. This approach, due to the authors, generalizes the framework originally proposed by Penrose. While astrophysical applications are discussed only briefly, the authors point out that detailed physical characteristics of signals from isolated sources can be determined in this manner. In particular, they describe the behaviour of

  20. Correlation between effective dose and radiological risk: general concepts

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Paulo Roberto; Yoshimura, Elisabeth Mateus; Nersissian, Denise Yanikian; Melo, Camila Souza, E-mail: pcosta@if.usp.br [Universidade de Sao Paulo (IF/USP), Sao Paulo, SP (Brazil). Instituto de Fisica

    2016-05-15

    The present review aims to offer an educational approach related to the limitations in the use of the effective dose magnitude as a tool for the quantification of doses resulting from diagnostic applications of ionizing radiation. We present a critical analysis of the quantities accepted and currently used for dosimetric evaluation in diagnostic imaging procedures, based on studies published in the literature. It is highlighted the use of these quantities to evaluate the risk attributed to the procedure and to calculate the effective dose, as well as to determine its correct use and interpretation. (author)

  1. Intuitionistic fuzzy 2-normed space and some related concepts

    International Nuclear Information System (INIS)

    Mursaleen, M.; Danish Lohani, Q.M.

    2009-01-01

    Motivated by the notion of 2-norm due to Gaehler [Gaehler S. Lineare 2-normietre Raeume. Math Nachr 28;1965:1-43], in this paper we define the concept of intuitionistic fuzzy 2-normed space which is a generalization of the notion of intuitionistic fuzzy normed space due to Saadati and Park [Saadati R, Park JH, On the intuitionistic fuzzy topological spaces. Chaos Solitons and Fractals 2006;27:331-44]. Further we establish some topological results in this new set up.

  2. Axially symmetric Lorentzian wormholes in general relativity

    International Nuclear Information System (INIS)

    Schein, F.

    1997-11-01

    The field equations of Einstein's theory of general relativity, being local, do not fix the global structure of space-time. They admit topologically non-trivial solutions, including spatially closed universes and the amazing possibility of shortcuts for travel between distant regions in space and time - so-called Lorentzian wormholes. The aim of this thesis is to (mathematically) construct space-times which contain traversal wormholes connecting arbitrary distant regions of an asymptotically flat or asymptotically de Sitter universe. Since the wormhole mouths appear as two separate masses in the exterior space, space-time can at best be axially symmetric. We eliminate the non-staticity caused by the gravitational attraction of the mouths by anchoring them by strings held at infinity or, alternatively, by electric repulsion. The space-times are obtained by surgically grafting together well-known solutions of Einstein's equations along timelike hypersurfaces. This surgery naturally concentrates a non-zero stress-energy tensor on the boundary between the two space-times which can be investigated by using the standard thin shell formalism. It turns out that, when using charged black holes, the provided constructions are possible without violation of any of the energy conditions. In general, observers living in the axially symmetric, asymptotically flat (respectively asymptotically de Sitter) region axe able to send causal signals through the topologically non-trivial region. However, the wormhole space-times contain closed timelike curves. Because of this explicit violation of global hyperbolicity these models do not serve as counterexamples to known topological censorship theorems. (author)

  3. General concept of a remote multipurpose vehicle for nuclear applications

    International Nuclear Information System (INIS)

    Devresse, M.; Costa, L.; DeBuck, F.

    1984-01-01

    A remotely operated autonomous system is presently developed for inspection and intervention inside the reactor building of nuclear power plants. The vehicle is also suitable for other nuclear and non-nuclear energy related task areas where inspection and intervention operations are taking place in hazardous environment. The goal of this remote robot is to significantly reduce personnel exposure to radiation or other risks. The system consists of five major items: an autonomous motorized carrier, two slave manipulators mounted on an interface structure, optical and environmental sensors, the digital electronic control and communication module, the man-machine interface. Main design and performance characteristics of the system are described as well as a description of the evaluation and test program

  4. Gender differences in teachers' behaviors in relation to adolescents' self-concepts.

    Science.gov (United States)

    Mboya, M M

    1995-12-01

    Gender differences in the relationship between teachers' behaviors and adolescents' self-concepts were investigated in 276 (156 boys and 120 girls) Standard Ten students from two coeducational high schools in Langa, Cape Town, South Africa. The Perceived Teacher Behavior Inventory was used to measure adolescents' self-concepts. Analysis indicated significant differences in perceived teachers' behavior and adolescents' self-description scale scores between boys and girls. Further, students' self-concept dimensions most strongly associated with teachers' behaviors were relations with family, general school, and health.

  5. 'This stroke was sent…': Stroke-related illness concepts and ...

    African Journals Online (AJOL)

    Though there is evidence that stroke incidence is increasing even in low and middle income countries, there is no study of stroke-related illness concepts and HSB in Nigerians. Data from 960 educated Nigerians were analysed. Eight hundred and fifty four respondents (431 aged 20-40 years and 423 aged 41 years or ...

  6. Hot Brakes and Energy-Related Concepts: Is Energy Lost?

    Science.gov (United States)

    Lopez, V.; Pinto, R.

    2012-01-01

    This paper describes a secondary school experience which is intended to help students to think profoundly about some energy-related concepts. It is quite different to other experiences of mechanics because the focus is not on the quantitative calculation of energy conservation but on the qualitative understanding of energy degradation. We first…

  7. On the ultrarelativistic limit of general relativity

    International Nuclear Information System (INIS)

    Dautcourt, G.

    1998-01-01

    As is well-known, Newton's gravitational theory can be formulated as a four-dimensional space-time theory and follows as singular limit from Einstein's theory, if the velocity of light tends to the infinity. Here 'singular' stands for the fact, that the limiting geometrical structure differs from a regular Riemannian space-time. Geometrically, the transition Einstein → Newton can be viewed as an 'opening' of the light cones. This picture suggests that there might be other singular limits of Einstein's theory: Let all light cones shrink and ultimately become part of a congruence of singular world lines. The limiting structure may be considered as a null hypersurface embedded in a five-dimensional spacetime. While the velocity of light tends to zero here, all other velocities tend to the velocity of light. Thus one may speak of an ultrarelativistic limit of General Relativity. The resulting theory is as simple as Newton's gravitational theory, with the basic difference, that Newton's elliptic differential equation is replaced by essentially ordinary differential equations, with derivatives tangent to the generators of the singular congruence. The Galilei group is replaced by the Carroll group introduced by Levy-Leblond. We suggest to study near ultrarelativistic situations with a perturbational approach starting from the singular structure, similar to post-Newtonian expansions in the c → ∞ case. (author)

  8. Ducklings imprint on the relational concept of "same or different".

    Science.gov (United States)

    Martinho, Antone; Kacelnik, Alex

    2016-07-15

    The ability to identify and retain logical relations between stimuli and apply them to novel stimuli is known as relational concept learning. This has been demonstrated in a few animal species after extensive reinforcement training, and it reveals the brain's ability to deal with abstract properties. Here we describe relational concept learning in newborn ducklings without reinforced training. Newly hatched domesticated mallards that were briefly exposed to a pair of objects that were either the same or different in shape or color later preferred to follow pairs of new objects exhibiting the imprinted relation. Thus, even in a seemingly rigid and very rapid form of learning such as filial imprinting, the brain operates with abstract conceptual reasoning, a faculty often assumed to be reserved to highly intelligent organisms. Copyright © 2016, American Association for the Advancement of Science.

  9. ALERT. Adverse late effects of cancer treatment. Vol. 1. General concepts and specific precepts

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, Philip; Constine, Louis S. [Univ. Rochester Medical Center, NY (United States). Dept. of Radiation Oncology; Marks, Lawrence B. (ed.) [Univ. North Carolina and Lineberger, Comprehensive Cancer Center, Chapel Hill, NC (United States). Dept. of Radiation Oncology

    2014-09-01

    Considers in detail the general concepts and principles relevant to the adverse late effects of cancer treatment. Explains the molecular, cytologic and histopathologic events that lead to altered physiologic and metabolic functions and their clinical manifestations. Includes chapters on legal issues, economic aspects, nursing, psychological issues and quality of life. The literature on the late effects of cancer treatment is widely scattered in different journals since all major organ systems are affected and management is based on a variety of medical and surgical treatments. The aim of ALERT - Adverse Late Effects of Cancer Treatment is to offer a coherent multidisciplinary approach to the care of cancer survivors. The central paradigm is that cytotoxic multimodal therapy results in a perpetual cascade of events that affects each major organ system differently and is expressed continually over time. Essentially, radiation and chemotherapy are intense biologic modifiers that allow for cancer cure and cancer survivorship but accelerate senescence of normal tissues and increase the incidence of age-related diseases and second malignant tumors. Volume 1 of this two-volume work focuses on the general concepts and principles relevant to late effects and on the dynamic interplay of molecular, cytologic and histopathologic events that lead to altered physiologic and metabolic functions and their clinical manifestations. Chapters are also included on legal issues, economic aspects, nursing, psychological issues and quality of life.

  10. ALERT. Adverse late effects of cancer treatment. Vol. 1. General concepts and specific precepts

    International Nuclear Information System (INIS)

    Rubin, Philip; Constine, Louis S.; Marks, Lawrence B.

    2014-01-01

    Considers in detail the general concepts and principles relevant to the adverse late effects of cancer treatment. Explains the molecular, cytologic and histopathologic events that lead to altered physiologic and metabolic functions and their clinical manifestations. Includes chapters on legal issues, economic aspects, nursing, psychological issues and quality of life. The literature on the late effects of cancer treatment is widely scattered in different journals since all major organ systems are affected and management is based on a variety of medical and surgical treatments. The aim of ALERT - Adverse Late Effects of Cancer Treatment is to offer a coherent multidisciplinary approach to the care of cancer survivors. The central paradigm is that cytotoxic multimodal therapy results in a perpetual cascade of events that affects each major organ system differently and is expressed continually over time. Essentially, radiation and chemotherapy are intense biologic modifiers that allow for cancer cure and cancer survivorship but accelerate senescence of normal tissues and increase the incidence of age-related diseases and second malignant tumors. Volume 1 of this two-volume work focuses on the general concepts and principles relevant to late effects and on the dynamic interplay of molecular, cytologic and histopathologic events that lead to altered physiologic and metabolic functions and their clinical manifestations. Chapters are also included on legal issues, economic aspects, nursing, psychological issues and quality of life.

  11. Is Being Gifted Always an Advantage? Peer Relations and Self-Concept of Gifted Students

    Science.gov (United States)

    Košir, Katja; Horvat, Marina; Aram, Urška; Jurinec, Nina

    2016-01-01

    The purpose of this study was to investigate the differences between identified gifted adolescents and adolescents not identified as gifted in terms of social acceptance and self-concept (peer relations, academic, and general). In addition, we aimed to investigate the differences between two groups of students identified according to different…

  12. General relativity invariance and string field theory

    International Nuclear Information System (INIS)

    Aref'eva, I.Ya.; Volovich, I.V.

    1987-04-01

    The general covariance principle in the string field theory is considered. The algebraic properties of the string Lie derivative are discussed. The string vielbein and spin connection are introduced and an action invariant under general co-ordinate transformation is proposed. (author). 18 refs

  13. Gravitational Wave in Linear General Relativity

    Science.gov (United States)

    Cubillos, D. J.

    2017-07-01

    General relativity is the best theory currently available to describe the interaction due to gravity. Within Albert Einstein's field equations this interaction is described by means of the spatiotemporal curvature generated by the matter-energy content in the universe. Weyl worked on the existence of perturbations of the curvature of space-time that propagate at the speed of light, which are known as Gravitational Waves, obtained to a first approximation through the linearization of the field equations of Einstein. Weyl's solution consists of taking the field equations in a vacuum and disturbing the metric, using the Minkowski metric slightly perturbed by a factor ɛ greater than zero but much smaller than one. If the feedback effect of the field is neglected, it can be considered as a weak field solution. After introducing the disturbed metric and ignoring ɛ terms of order greater than one, we can find the linearized field equations in terms of the perturbation, which can then be expressed in terms of the Dalambertian operator of the perturbation equalized to zero. This is analogous to the linear wave equation in classical mechanics, which can be interpreted by saying that gravitational effects propagate as waves at the speed of light. In addition to this, by studying the motion of a particle affected by this perturbation through the geodesic equation can show the transversal character of the gravitational wave and its two possible states of polarization. It can be shown that the energy carried by the wave is of the order of 1/c5 where c is the speed of light, which explains that its effects on matter are very small and very difficult to detect.

  14. Relation between self-concept and students alcohol drinking

    Directory of Open Access Journals (Sweden)

    H.M. Fernandes

    2009-01-01

    Full Text Available This study examines the relation between multiple self-concept dimensions and alcohol consumption within the adolescent schooling. A sample of 642 students (263 boys and 379 girls aged between 15 and 23 years completed the Self-Description Questionnaire II (SDQ II and an alcohol drinking measure. Results reveal an absence of significant relationships between global self-esteem and alcohol consumption and a small relation, found only in the female, between alcoholic drinking and global self-concept, supporting the assumption that supports the low sensitivity and the consequent use of scarce global dimensions of the self. In contrast, there are significant relations between some specific dimensions of the self and alcohol consumption, whilst the correlation coefficients vary according to subject’s gender, suggesting a cultural involvement based analysis.

  15. Relation between self-concept and students alcohol drinking

    Directory of Open Access Journals (Sweden)

    José Vasconcelos-Raposo

    2009-03-01

    Full Text Available This study examines the relation between multiple self-concept dimensions and alcohol consumption within the adolescent schooling. A sample of 642 students (263 boys and 379 girls aged between 15 and 23 years completed the Self-Description Questionnaire II (SDQ II and an alcohol drinking measure. Results reveal an absence of significant relationships between global self-esteem and alcohol consumption and a small relation, found only in the female, between alcoholic drinking and global self-concept, supporting the assumption that supports the low sensitivity and the consequent use of scarce global dimensions of the self. In contrast, there are significant relations between some specific dimensions of the self and alcohol consumption, whilst the correlation coefficients vary according to subject’s gender, suggesting a cultural involvement based analysis.

  16. Embedding Versus Immersion in General Relativity

    OpenAIRE

    Monte, Edmundo M.

    2009-01-01

    We briefly discuss the concepts of immersion and embedding of space-times in higher-dimensional spaces. We revisit the classical work by Kasner in which he constructs a model of immersion of the Schwarzschild exterior solution into a six-dimensional pseudo-Euclidean manifold. We show that, from a physical point of view, this model is not entirely satisfactory since the causal structure of the immersed space-time is not preserved by the immersion.

  17. Prelinguistic Relational Concepts: Investigating Analogical Processing in Infants

    Science.gov (United States)

    Ferry, Alissa L.; Hespos, Susan J.; Gentner, Dedre

    2015-01-01

    This research asks whether analogical processing ability is present in human infants, using the simplest and most basic relation--the "same-different" relation. Experiment 1 (N = 26) tested whether 7- and 9-month-olds spontaneously detect and generalize these relations from a single example, as previous research has suggested. The…

  18. Iz ''general relativity'' necessary for the Einstein gravitation theory gravitation theory

    International Nuclear Information System (INIS)

    Bondi, G.

    1982-01-01

    Main principles of relativity and gravitation theories are deeply analyzed. Problems of boundaries of applicability for these theories and possible ways of their change and generalization are discussed. It is shown that the notion of general relativity does not introduce any post-newton physics - it only deals with coordinate transformations. It is supposed that ''general relativity'' is a physically senseless phrase which can be considered only as a historical remainder of an interesting philosophic discourse. The paper reveals that there exists appropriate physical substantiation of the Einstein gravitation theory not including a physically senseless concept of general relativity and promoting its fundamental relations with the experiment

  19. Topics in the Foundations of General Relativity and Newtonian Gravitation Theory

    CERN Document Server

    Malament, David B

    2012-01-01

    In Topics in the Foundations of General Relativity and Newtonian Gravitation Theory, David B. Malament presents the basic logical-mathematical structure of general relativity and considers a number of special topics concerning the foundations of general relativity and its relation to Newtonian gravitation theory. These special topics include the geometrized formulation of Newtonian theory (also known as Newton-Cartan theory), the concept of rotation in general relativity, and Gödel spacetime. One of the highlights of the book is a no-go theorem that can be understood to show that there is

  20. Academic self-concept in children with epilepsy and its relation to their quality of life.

    Science.gov (United States)

    Brabcova, Dana; Krsek, Pavel; Kohout, Jiri; Jost, Jiri; Zarubova, Jana

    2015-04-01

    Academic achievement in children with epilepsy is a highly studied topic with many important implications. However, only little attention has been devoted to academic self-concept of such children and the relation of academic self-concept to their quality of life. We aimed to examine academic self-concept in children with epilepsy, to assess its relationship to academic achievement and to determine possible correlations between academic self-concept and quality of life. The study group consisted of 182 children and adolescents aged 9-14 years who completed the student's perception of ability scale (SPAS) questionnaire to determine their academic self-concept and the modified Czech version of the CHEQOL-25 questionnaire to determine their health-related quality of life. We found that academic self-concept in children with epilepsy was on average significantly lower than in their peers without seizures, especially with regard to general school-related abilities, reading, and spelling. On the other hand, the variance in the data obtained from the group of children with epilepsy was significantly higher than in the whole population and the proportion of individuals with very high academic self-concept seems comparable among children with and without epilepsy. Moreover, it was found that correlations between academic self-concept and academic achievement are significantly lower in children with epilepsy than in the whole population. The presented results suggest that considerable attention should be paid to the role of academic self-concept in education of children with epilepsy and to the factors influencing this self-concept in this group.

  1. A possible generalization of the concept of symmetry in analytical mechanics

    International Nuclear Information System (INIS)

    Grigore, D.R.

    1987-09-01

    A theorem of Lee Hwa Chung suggests a possible generalization of the symmetry concept in classical mechanics. It is shown that the theory of Konstant-Souriau-Kirillov can be adapted to this more general case. The theory is illustrated with a number of exaples.(author)

  2. Triangular Norms, Triangular Conorms, and Some Related Concepts

    Directory of Open Access Journals (Sweden)

    Angel Garrido

    2011-01-01

    Full Text Available Abstract. Mathematically considered, a Triangular Norm is a kind of binary operation frequently used in the context of Probabilistic Metric Spaces, but also in other very interesting fields, as may be Fuzzy Logic, or in general, in Multi-Valued Logic (MVL. The T-conorm, or S-norm, is a dual concept. Both ideas allow us to generalize the intersection and the union in a Lattice, or disjunction and conjunction in Logic. Also may be very interesting to introduce a special class of real monotone operations. We refer to the so-called Copulas, very useful in many fields. So, we offer now a comprehensive analysis of all these aggregation operators.

  3. The tensorial conservation law in general relativity

    International Nuclear Information System (INIS)

    Zhao, M.G.

    1984-01-01

    A general tensorial conservation law is formulated by starting from the invariance of the gravitational Lagrangian density. Utilising this new formula, the author derives some reasonable results for the mass-energy distribution which are in accordance with the Newtonian formulae. (author)

  4. Theory of Nonlocal Point Transformations in General Relativity

    Directory of Open Access Journals (Sweden)

    Massimo Tessarotto

    2016-01-01

    Full Text Available A discussion of the functional setting customarily adopted in General Relativity (GR is proposed. This is based on the introduction of the notion of nonlocal point transformations (NLPTs. While allowing the extension of the traditional concept of GR-reference frame, NLPTs are important because they permit the explicit determination of the map between intrinsically different and generally curved space-times expressed in arbitrary coordinate systems. For this purpose in the paper the mathematical foundations of NLPT-theory are laid down and basic physical implications are considered. In particular, explicit applications of the theory are proposed, which concern (1 a solution to the so-called Einstein teleparallel problem in the framework of NLPT-theory; (2 the determination of the tensor transformation laws holding for the acceleration 4-tensor with respect to the group of NLPTs and the identification of NLPT-acceleration effects, namely, the relationship established via general NLPT between particle 4-acceleration tensors existing in different curved space-times; (3 the construction of the nonlocal transformation law connecting different diagonal metric tensors solution to the Einstein field equations; and (4 the diagonalization of nondiagonal metric tensors.

  5. The Concept of Security in International Relations Theory

    Directory of Open Access Journals (Sweden)

    Gabriel Orozco

    2006-01-01

    Full Text Available The end of the Cold War and the emergence of globalisation have transformed the reality of International Relations, which has meant a change in the theories which this reality had assumed. The concept of security reveals itself as an organisational idea on the different phenomena of globalisation, carrying out a programme of research that goes beyond the realistic presumptions of military power or of the idealistic principles of research for peace. This article explores the new meanings of security for International Relations theory and discusses the theoretical models that influence policy design and that aim to confront the problems and challenges of security in globalisation.

  6. The 'Falling Box' method in general relativity

    International Nuclear Information System (INIS)

    Gladush, V.D.

    1998-01-01

    The problems of justification, generalization, and applicability of the 'falling box' method to obtained some exact solutions of the vacuum Einstein equations are investigated. The 'physical' inference of the Reissner-Nordstrom-de Sitter and Kerr metrics is shown. Explanation is given for the well-known relativistic phenomenon which consists in that gravity is created by the double density of the electrical field energy

  7. Abstract memory representations in the ventromedial prefrontal cortex and hippocampus support concept generalization.

    Science.gov (United States)

    Bowman, Caitlin R; Zeithamova, Dagmar

    2018-02-07

    Memory function involves both the ability to remember details of individual experiences and the ability to link information across events to create new knowledge. Prior research has identified the ventromedial prefrontal cortex (VMPFC) and the hippocampus as important for integrating across events in service of generalization in episodic memory. The degree to which these memory integration mechanisms contribute to other forms of generalization, such as concept learning, is unclear. The present study used a concept-learning task in humans (both sexes) coupled with model-based fMRI to test whether VMPFC and hippocampus contribute to concept generalization, and whether they do so by maintaining specific category exemplars or abstract category representations. Two formal categorization models were fit to individual subject data: a prototype model that posits abstract category representations and an exemplar model that posits category representations based on individual category members. Latent variables from each of these models were entered into neuroimaging analyses to determine whether VMPFC and the hippocampus track prototype or exemplar information during concept generalization. Behavioral model fits indicated that almost three quarters of the subjects relied on prototype information when making judgments about new category members. Paralleling prototype dominance in behavior, correlates of the prototype model were identified in VMPFC and the anterior hippocampus with no significant exemplar correlates. These results indicate that the VMPFC and portions of the hippocampus play a broad role in memory generalization and that they do so by representing abstract information integrated from multiple events. SIGNIFICANCE STATEMENT Whether people represent concepts as a set of individual category members or by deriving generalized concept representations abstracted across exemplars has been debated. In episodic memory, generalized memory representations have been shown

  8. General Information about AIDS-Related Lymphoma

    Science.gov (United States)

    ... and treatment options. AIDS-related lymphoma is a disease in which malignant (cancer) cells form in the ... cord. The sample may also be checked for Epstein-Barr virus . This procedure is also called an LP ...

  9. On ``minimally curved spacetimes'' in general relativity

    OpenAIRE

    Dadhich, Naresh

    1997-01-01

    We consider a spacetime corresponding to uniform relativistic potential analogus to Newtonian potential as an example of ``minimally curved spacetime''. We also consider a radially symmetric analogue of the Rindler spacetime of uniform proper acceleration relative to infinity.

  10. Grand Canonical Ensembles in General Relativity

    International Nuclear Information System (INIS)

    Klein, David; Yang, Wei-Shih

    2012-01-01

    We develop a formalism for general relativistic, grand canonical ensembles in space-times with timelike Killing fields. Using that, we derive ideal gas laws, and show how they depend on the geometry of the particular space-times. A systematic method for calculating Newtonian limits is given for a class of these space-times, which is illustrated for Kerr space-time. In addition, we prove uniqueness of the infinite volume Gibbs measure, and absence of phase transitions for a class of interaction potentials in anti-de Sitter space.

  11. On hypermomentum in general relativity. Pt.1

    International Nuclear Information System (INIS)

    Hehl, F.W.; Kerlick, G.D.; Heyde, P. von der

    1976-01-01

    In this series of notes, we introduce a new quantity into the theory of classical matter fields. Besides the usual energy-momentum tensor, we postulate the existence of a further dynamical attribute of matter, the 3rd rank tensor Δsup(ijk) of hypermomentum. Subsequently, a general relativistic field theory of energy-momentum and hypermomentum is outlined. In Part I we motivate the need for hypermomentum. We split it into spin angular momentum, the dilatation hypermomentum, and traceless proper hypermomentum and discuss their physical meanings and conservation laws. (orig.) [de

  12. The Implementation of Physics Problem Solving Strategy Combined with Concept Map in General Physics Course

    Science.gov (United States)

    Hidayati, H.; Ramli, R.

    2018-04-01

    This paper aims to provide a description of the implementation of Physic Problem Solving strategy combined with concept maps in General Physics learning at Department of Physics, Universitas Negeri Padang. Action research has been conducted in two cycles where each end of the cycle is reflected and improved for the next cycle. Implementation of Physics Problem Solving strategy combined with concept map can increase student activity in solving general physics problem with an average increase of 15% and can improve student learning outcomes from 42,7 in the cycle I become 62,7 in cycle II in general physics at the Universitas Negeri Padang. In the future, the implementation of Physic Problem Solving strategy combined with concept maps will need to be considered in Physics courses.

  13. The dynamics of generalization: From fuzzy linguistic statements to concepts and constructs

    Energy Technology Data Exchange (ETDEWEB)

    Kohout, L.J. [Florida State Univ., Tallahassee, FL (United States)

    1996-12-31

    Because of the importance of generalization, it is rather surprising that one finds less information in the literature on the nature and character of the process of generalization than one would expect. Some attention is paid to the mechanism of generalization in philosophy, artificial intelligence and cognitive science. In the AI literature, the notion of generalization appears most frequently in connection with learning. Learning through description generalization or specialization is usually performed in one of the following ways: (i) general-to-specific way (G-S), (ii) specific-to-general way (S-G). In S-G approaches the aim is to find a minimal general description that includes all the possible instances of some concept in the knowledge or data base without including any negative instances. So, the S-G approach leads to the set of concept descriptors that are more general than the input set from which it is derived. Problem that any universal generalization must face is the problem of exceptions. In logic, one way of handling exceptions is non-monotonic reasoning. Another example of an AI device that can generalize is a Neural Network (NN) used for classification of patterns. Advantages and disadvantages of this approach will be discussed.

  14. Singularities in the general theory of relativity

    International Nuclear Information System (INIS)

    Treder, H.J.

    1980-01-01

    'Regular solutions of Einstein's equations' mean very different things. In the case of the empty-space equations, Rsub(ik) = o, such solutions must be metrics gsub(ik)(xsup(l)) without additionaly singular 'field sources' (Einstein's 'Particle problem'). However the 'phenomenological matter' is defined by the Einstein equations Rsub(ik) - 1/2gsub(ik)R = -kappaTsub(ik) itselves. Therefore if 10 regular functions gsub(ik)(xsup(l)) are given (which the inequalities of Lorentz-signature fulfil) then these gsub(ik) define 10 functions Tsub(ik)(xsup(l)) without singularities. But, the matter-tensor Tsub(ik) must fulfil the two inequalities T >= o, T 0 0 >= 1/2 T only and therefore the Einstein-equations with 'phenomenological matter' mean the two inequalities R >= o, R 0 0 <= o which are incompatible with a permanently regular metric with Lorentz-signature, generally. (author)

  15. Matroidal Structure of Generalized Rough Sets Based on Tolerance Relations

    Directory of Open Access Journals (Sweden)

    Hui Li

    2014-01-01

    of the generalized rough set based on the tolerance relation. The matroid can also induce a new relation. We investigate the connection between the original tolerance relation and the induced relation.

  16. Self-esteem, general and sexual self-concepts in blind people.

    Science.gov (United States)

    Salehi, Mehrdad; Azarbayejani, Abas; Shafiei, Katayoun; Ziaei, Tayebe; Shayegh, Bahar

    2015-10-01

    People with visual disability have lower self-esteem and social skills than sighted people. This study was designed to describe self-esteem and general and sexual self-concepts in blind people. This was a cross-sectional study, conducted in the Isfahan University of Medical Sciences in 2013-2014. In this study, 138 visually impaired people participated from Isfahan Province Welfare Organization and were interviewed for measuring of self-esteem and self-concept using Eysenck self-esteem and Rogers' self-concept questionnaires. The correlation between above two variables was measured using Statistical Package for the Social Sciences (SPSS) software by Pearson correlation test. Mean [± standard deviation (SD)] age of patients was 30.9 ± 8 years. The mean (±SD) of general self-concept score was 11 ± 5.83. The mean (±SD) of self-esteem score was 16.62 ± 2.85. Pearson correlation results showed a significant positive correlation between self-esteem and general self-concept (r = 0.19, P = 0.025). The mean of sexual self-concept scores in five subscales (sexual anxiety, sexual self-efficacy, sexual self-esteem, sexual fear, and sexual depression) were correspondingly 11 ± 4.41, 19.53 ± 4.53, 12.96 ± 4.19, 13.48 ± 1.76, and 5.38 ± 2.36. Self-esteem and self-concept had significant positive correlation with sexual anxiety (r = 0.49; P Self-esteem and self-concept had significant correlation with sexual anxiety and sexual fear; and negative correlation with sexual self-efficacy and sexual-esteem.

  17. Hallucinations and related concepts – their conceptual background

    Directory of Open Access Journals (Sweden)

    Diogo eTelles-Correia

    2015-07-01

    Full Text Available Prior to the 17th century, the experiences we now name hallucinations or others alike were valued within a cultural context, they could bring meaning to the subject or the world. From mid-17th to 18th centuries, they acquire a medical quality in mental and organic illnesses. However, the term was only fully integrated in psychiatry by Esquirol in the 18th-19th centuries. By then, a controversy begins on whether hallucinations have a perceptual or intellectual origin. Esquirol favours the intellectual origin, describing them as an involuntary exercise of memory and imagination.By the twentieth century, some authors maintain that hallucinations are a form of delusion (Ey, while others describe them as a change in perception (Jaspers, Fish. A more integrated perspectives like those proposed by Alonso Fernandez and Luque, highlights the heterogeneity of hallucinations and the multiplicity of their types and causes.The terms pseudohallucination, illusion and hallucinosis are grafted into the concept of hallucination. Since its introduction the term pseudohallucination has been used with different meanings. The major characteristics that we found associated with pseudohallucinations were ‘lack of objectivity’ and ‘presence of insight’ (differing from hallucinations. Illusions are unanimously taken as distortions of real objects. Hallucinosis, first described in the context of alcohol consumption, is generally considered egodystonic, in which insight is preserved.These and other controversial aspects regarding the evolution of the term hallucination and all its derivative concepts are discussed in this paper.

  18. Overview and theory relating to the concepts of competitiveness, efficiency and productivity

    OpenAIRE

    Latruffe, Laure

    2017-01-01

    This is a brief overview and theory relating to the concepts of competitiveness, efficiency and productivity: concept of competitiveness, measurement of competitiveness, determinants of competitiveness.

  19. New developments and concepts related to biomarker application to vaccines

    Science.gov (United States)

    Ahmed, S. Sohail; Black, Steve; Ulmer, Jeffrey

    2012-01-01

    Summary This minireview will provide a perspective on new developments and concepts related to biomarker applications for vaccines. In the context of preventive vaccines, biomarkers have the potential to predict adverse events in select subjects due to differences in genetic make‐up/underlying medical conditions or to predict effectiveness (good versus poor response). When expanding them to therapeutic vaccines, their utility in identification of patients most likely to respond favourably (or avoid potentially negative effects of treatment) becomes self‐explanatory. Despite the progress made so far on dissection of various pathways of biological significance in humans, there is still plenty to unravel about the mysteries related to the quantitative and qualitative aspects of the human host response. This review will provide a focused overview of new concepts and developments in the field of vaccine biomarkers including (i) vaccine‐dependent signatures predicting subject response and safety, (ii) predicting therapeutic vaccine efficacy in chronic diseases, (iii) exploring the genetic make‐up of the host that may modulate subject‐specific adverse events or affect the quality of immune responses, and (iv) the topic of volunteer stratification as a result of biomarker screening (e.g. for therapeutic vaccines but also potentially for preventive vaccines) or as a reflection of an effort to compare select groups (e.g. vaccinated subjects versus patients recovering from infection) to enable the discovery of clinically relevant biomarkers for preventive vaccines. PMID:21895991

  20. Towards a concept of food-related life style

    DEFF Research Database (Denmark)

    Grunert, Klaus G.

    Life style has become popular in explaining food choice. In this paper the way life style studies are usually conducted is criticized based on a) that the methods lack a theoretical foundation, b) that the statistical methods are questionable, and c)that the explanatory power with regard to food...... choice remains to be demonstrated. A cognitive deductive approach is presented as a theoretically more well-founded alternative. It defines life style as the system of cognitive categories, scripts, and their associations, which relate a set of products to a set of values. A concept of food-related life...... style should hence contain elements like shopping scripts, meal preparation scripts, desired higher-order food attributes, food usage situations, and desired consequences of food products....

  1. Large-scale tides in general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Ip, Hiu Yan; Schmidt, Fabian, E-mail: iphys@mpa-garching.mpg.de, E-mail: fabians@mpa-garching.mpg.de [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany)

    2017-02-01

    Density perturbations in cosmology, i.e. spherically symmetric adiabatic perturbations of a Friedmann-Lemaȋtre-Robertson-Walker (FLRW) spacetime, are locally exactly equivalent to a different FLRW solution, as long as their wavelength is much larger than the sound horizon of all fluid components. This fact is known as the 'separate universe' paradigm. However, no such relation is known for anisotropic adiabatic perturbations, which correspond to an FLRW spacetime with large-scale tidal fields. Here, we provide a closed, fully relativistic set of evolutionary equations for the nonlinear evolution of such modes, based on the conformal Fermi (CFC) frame. We show explicitly that the tidal effects are encoded by the Weyl tensor, and are hence entirely different from an anisotropic Bianchi I spacetime, where the anisotropy is sourced by the Ricci tensor. In order to close the system, certain higher derivative terms have to be dropped. We show that this approximation is equivalent to the local tidal approximation of Hui and Bertschinger [1]. We also show that this very simple set of equations matches the exact evolution of the density field at second order, but fails at third and higher order. This provides a useful, easy-to-use framework for computing the fully relativistic growth of structure at second order.

  2. Basic concepts in the management of heart failure in general clinical ...

    African Journals Online (AJOL)

    Basic concepts in the management of heart failure in general clinical practice. KO Ogunyankin. Abstract. No Abstract. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors ...

  3. Conceptions of the Nature of Science--Are They General or Context Specific?

    Science.gov (United States)

    Urhahne, Detlef; Kremer, Kerstin; Mayer, Juergen

    2011-01-01

    The study investigates the relationship between general and context-specific conceptions of the nature of science (NOS). The categorization scheme by Osborne et al. (J Res Sci Teach 40:692-720, "2003") served as the theoretical framework of the study. In the category "nature of scientific knowledge", the certainty, development, simplicity,…

  4. Longitudinal Factor Structure of General Self-Concept and Locus of Control among High School Students

    Science.gov (United States)

    Wang, Ze; Su, Ihui

    2013-01-01

    This study examined the longitudinal factor structure of general self-concept and locus of control among high school students over a 4-year period, with data from the National Educational Longitudinal Study of 1988. Measurement invariance was tested over time and across gender and ethnic groups; second-order piecewise latent growth models were…

  5. First-Year Cadets' Conceptions of General Education Writing at a Senior Military College

    Science.gov (United States)

    Rifenburg, J. Michael; Forester, Brian

    2018-01-01

    This study investigates conceptions first-year cadets at a US senior military college bring to general education writing courses, often termed first-year composition (FYC). Using a mixed methods research design, we received survey responses from 122 cadets and conducted semi-structured in-person interviews with four first-year cadets. Our data…

  6. Gender differences in the causal relation between adolescents' maths self-concept and scholastic performance

    Directory of Open Access Journals (Sweden)

    Cristina Antunes

    2007-05-01

    Full Text Available Mathematics is a core subject in every school curriculum and it is strongly correlated with maths self-concept, which is defined as the subjective feelings and beliefs about one's competence in maths. In general, boys tend to report higher maths self-concept than girls, but the difference between boys and girls' maths scholastic performance is low or even inexistent. Some authors maintain that academic self-concept can play an important role as a motivational variable, promoting self-confidence and investment in the learning process. This study examined the causal relations between maths self-concept and maths scholastic performance in four cohorts of boys and girls within a three-wave longitudinal study. The first two cohorts were composed of 187 girls and 139 boys attending grades 7 and 8 at Time 1 and the third and fourth cohorts were composed of 167 girls and 123 boys attending grades 9 and 10 at Time 1. Structural Equation Modelling was used to test the fit of several models of causal relations. The results revealed that for the first two cohorts the best models were reciprocal and skill-development for both boys and girls. However, for the older students, a reciprocal model gave a best fit for the boys, but for the girls there was only one significant effect from maths self-concept to maths scholastic performance. Results are discussed on the basis of gender-related differential learning expectancies.

  7. Concepts and Relations in Neurally Inspired In Situ Concept-Based Computing.

    Science.gov (United States)

    van der Velde, Frank

    2016-01-01

    In situ concept-based computing is based on the notion that conceptual representations in the human brain are "in situ." In this way, they are grounded in perception and action. Examples are neuronal assemblies, whose connection structures develop over time and are distributed over different brain areas. In situ concepts representations cannot be copied or duplicated because that will disrupt their connection structure, and thus the meaning of these concepts. Higher-level cognitive processes, as found in language and reasoning, can be performed with in situ concepts by embedding them in specialized neurally inspired "blackboards." The interactions between the in situ concepts and the blackboards form the basis for in situ concept computing architectures. In these architectures, memory (concepts) and processing are interwoven, in contrast with the separation between memory and processing found in Von Neumann architectures. Because the further development of Von Neumann computing (more, faster, yet power limited) is questionable, in situ concept computing might be an alternative for concept-based computing. In situ concept computing will be illustrated with a recently developed BABI reasoning task. Neurorobotics can play an important role in the development of in situ concept computing because of the development of in situ concept representations derived in scenarios as needed for reasoning tasks. Neurorobotics would also benefit from power limited and in situ concept computing.

  8. General relativity and gauge gravity theories of higher order

    International Nuclear Information System (INIS)

    Konopleva, N.P.

    1998-01-01

    It is a short review of today's gauge gravity theories and their relations with Einstein General Relativity. The conceptions of construction of the gauge gravity theories with higher derivatives are analyzed. GR is regarded as the gauge gravity theory corresponding to the choice of G ∞4 as the local gauge symmetry group and the symmetrical tensor of rank two g μν as the field variable. Using the mathematical technique, single for all fundamental interactions (namely variational formalism for infinite Lie groups), we can obtain Einstein's theory as the gauge theory without any changes. All other gauge approaches lead to non-Einstein theories of gravity. But above-mentioned mathematical technique permits us to construct the gauge gravity theory of higher order (for instance SO (3,1)-gravity) so that all vacuum solutions of Einstein equations are the solutions of the SO (3,1)-gravity theory. The structure of equations of SO(3,1)-gravity becomes analogous to Weeler-Misner geometrodynamics one

  9. General and special education teachers' relations within teamwork ...

    African Journals Online (AJOL)

    and instruction, assessment and evaluation, and classroom management and behavior. Typically, the ... teaching techniques and learning processes. ... general objective of this research is to establish the relations of general and special.

  10. Multidimensional Generalized Functions in Aeroacoustics and Fluid Mechanics. Part 1; Basic Concepts and Operations

    Science.gov (United States)

    Farassat, Fereidoun; Myers, Michael K.

    2011-01-01

    This paper is the first part of a three part tutorial on multidimensional generalized functions (GFs) and their applications in aeroacoustics and fluid mechanics. The subject is highly fascinating and essential in many areas of science and, in particular, wave propagation problems. In this tutorial, we strive to present rigorously and clearly the basic concepts and the tools that are needed to use GFs in applications effectively and with ease. We give many examples to help the readers in understanding the mathematical ideas presented here. The first part of the tutorial is on the basic concepts of GFs. Here we define GFs, their properties and some common operations on them. We define the important concept of generalized differentiation and then give some interesting elementary and advanced examples on Green's functions and wave propagation problems. Here, the analytic power of GFs in applications is demonstrated with ease and elegance. Part 2 of this tutorial is on the diverse applications of generalized derivatives (GDs). Part 3 is on generalized Fourier transformations and some more advanced topics. One goal of writing this tutorial is to convince readers that, because of their powerful operational properties, GFs are absolutely essential and useful in engineering and physics, particularly in aeroacoustics and fluid mechanics.

  11. One interpretation for both Quantum Mechanics and General Relativity

    Energy Technology Data Exchange (ETDEWEB)

    Halewijn, Ewoud

    2014-07-01

    In reconciling General Relativity with Quantum Mechanics, it is challenging to resolve the combined mathematical equations and to find an interpretation that makes sense ontologically. Such an interpretation has been developed by quantizing descriptive components in both the theories and other views. The resulting micro-components have been re-integrated within the scope of known gaps between science and 'the real world'. The odd peculiarities in these theories have been made look 'normal' by fully untraditionally answering fundamental questions. The interpretation is suggesting that we define time as a discrete operator and its eigenvalues as constraints on space-time manifolds, in order to reconcile the mathematical equations. Outside the mathematical arena we suggest reconsidering the concepts of Black Holes, the Big Bang, the epistemological problem of perception in philosophy and the supposed clash between scientific and the spiritual worldviews. It is concluded that developing one consistent ontological interpretation for both theorie is possible. It is a weird story, but it is making powerful suggestions for reviewing some of our fundamental convictions.

  12. General definition of the concept of "sport" as one of the basic constructs of the general theory of physical culture and sports theory

    Directory of Open Access Journals (Sweden)

    Vasil Sutula

    2018-02-01

    Full Text Available Purpose: to reveal modern ideas about the essence of the concept of "sport" and determine its role in the development of the general theory of physical culture and sports theory. Material & Methods: analysis of specialized literature, which highlights various aspects of the development of the field of people's activities related to the use of physical exercises. Results: in today's society there is an objective sphere of human activity related to the use of physical exercises, for which the name in domestic and foreign scientific and social practice is most often used the term "physical culture". Conclusion: the constitutive conditions of the process of developing a general theory of physical culture are singled out, it is shown that sport, as a special socio-cultural phenomenon, is a historically conditioned activity of people associated with the use of physical exercises, aimed at preparing and participating in competitions, as well as individual and socially significant results of such activity.

  13. DSR Theories, Conformal Group and Generalized Commutation Relation

    International Nuclear Information System (INIS)

    Leiva, Carlos

    2006-01-01

    In this paper the relationship of DSR theories and Conformal Group is reviewed. On the other hand, the relation between DSR Magueijo Smolin generators and generalized commutation relations is also shown

  14. Generalized uncertainty relations and characteristic invariants for the multimode states

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Chiu, C.B.; Bhamathi, G.

    1995-01-01

    The close relationship between the zero-point energy, the uncertainty relation, coherent states, squeezed states, and correlated states for one mode is investigated. This group theoretic perspective of the problem enables the parametrization and identification of their multimode generalization. A simple and efficient method of determining the canonical structure of the generalized correlated states is presented. Implication of canonical commutation relations for correlations are not exhausted by the Heisenberg uncertainty relation, not even by the Schroedinger-Robertson uncertainty inequality, but there are relations in the multimode case that are the generalization of the Schroedinger-Robertson relation

  15. General concept of a gas engine for a hybrid vehicle, operating on methanol dissociation products

    International Nuclear Information System (INIS)

    Tartakovsky, L.; Aleinikov, Y.; Fainberg, V.; Garbar, A.; Gutman, M.; Hetsroni, G.; Schindler, Y.; Zvirin, Y.

    1998-01-01

    The paper presents a general concept of a hybrid propulsion system, based on an SI internal combustion engine fueled by methanol dissociation products (MDP). The proposed hybrid propulsion scheme is a series hybrid, which allows the engine to be operated in an on-off mode at constant optimal regime. The engine is fed by gaseous products of methanol dissociation (mainly hydrogen and carbon monoxide) emerging from an on-board catalytic reformer. The general scheme and base operation features of the propulsion system are described. The benefits that may be achieved by combining the well-known idea of on-board methanol dissociation with the hybrid vehicle concept are discussed. The proposed scheme is compared with those of systems operating on gasoline, liquid methanol, hydrogen and also with the multi-regime (not hybrid) engine fed by MDP

  16. Distributing learning over time: the spacing effect in children's acquisition and generalization of science concepts.

    Science.gov (United States)

    Vlach, Haley A; Sandhofer, Catherine M

    2012-01-01

    The spacing effect describes the robust finding that long-term learning is promoted when learning events are spaced out in time rather than presented in immediate succession. Studies of the spacing effect have focused on memory processes rather than for other types of learning, such as the acquisition and generalization of new concepts. In this study, early elementary school children (5- to 7-year-olds; N = 36) were presented with science lessons on 1 of 3 schedules: massed, clumped, and spaced. The results revealed that spacing lessons out in time resulted in higher generalization performance for both simple and complex concepts. Spaced learning schedules promote several types of learning, strengthening the implications of the spacing effect for educational practices and curriculum. © 2012 The Authors. Child Development © 2012 Society for Research in Child Development, Inc.

  17. The concept of "psychosomatic" in general practice. Reflections on body language and a tentative model for understanding.

    Science.gov (United States)

    Mattsson, Bengt; Mattsson, Monica

    2002-09-01

    In medicine, the concept "psychosomatic" indicates both dualism and polarisation. "Could it mean something psychic or is it something somatic?" This artificial dichotomy and body/mind split is not as apparent in general practice as it is in other medical disciplines. In general practice, the prerequisites for a division are overlooked. Following the work of Piaget, the article outlines manifestations of a body/mind unity as exposed in the language. Words and expressions describing the way we move, stand and walk therefore indicate our attitude and state of mind. Our body language conveys a message. The importance of breathing and its relation to our emotions is highlighted. The function of breathing is said to represent a bridge between the conscious and the unconscious--breathing can be controlled by our will, but generally we breathe reflexively. Restricted breathing is not just a mechanical process; it is shown that there is a connection between breathing and our emotions. Finally, a model of the "human organism" is presented linking four concepts, "human activity", "organ functions", "physical body" and "neurophysiological functions". Activities within the different systems are linked and relate to each other. The model supports the necessity to overcome the body/mind split, which is one of the obstacles to the fulfillment of good quality general practice.

  18. Reintroducing the concept of force into relativity theory

    International Nuclear Information System (INIS)

    Mahajan, S.; Qadir, A.; Valanju, P.

    1979-07-01

    It is suggested that re-introducing forces into relativity theory may provide new insights and results. A look at the Kerr-Newmann geometry, and special cases of it, from this viewpoint indicates that there can be a short range repulsion in general. This repulsion suggests that naked singularities may be physically feasible. It is also found that there is a gravito-electric repulsion which would be important to consider in a grand unification scheme of strong, weak and electromagnetic forces. 8 references

  19. Reintroducing the concept of force into relativity theory

    Energy Technology Data Exchange (ETDEWEB)

    Mahajan, S.; Qadir, A.; Valanju, P.

    1979-07-01

    It is suggested that re-introducing forces into relativity theory may provide new insights and results. A look at the Kerr-Newmann geometry, and special cases of it, from this viewpoint indicates that there can be a short range repulsion in general. This repulsion suggests that naked singularities may be physically feasible. It is also found that there is a gravito-electric repulsion which would be important to consider in a grand unification scheme of strong, weak and electromagnetic forces. 8 references.

  20. Generalization of risk concept in case risk components depend on time

    International Nuclear Information System (INIS)

    Volkov, Yu.V.

    2006-01-01

    Ratios of risk assessments vs. nuclear technologies objects have been obtained for cases when that kind of risk components as accident probability and the consequent damage depend on time. Such generalization of risk concept ensures new possibilities for performing the probabilistic safety analysis which have been demonstrated with simple models in the present paper. As an example safety of radioactive storage with one-component activity has been analyzed with a very simple model [ru

  1. A Rejoinder to Mackintosh and some Remarks on the Concept of General Intelligence

    OpenAIRE

    Heene, Moritz

    2008-01-01

    In 2000 Nicholas J. Mackintosh (2000) published an article in "Nature" referring to the concept of general intelligence ("g") claiming that there is clear empirical evidence for the existence of the g factor and psychologists are "united in their support of g". Surprisingly, his view remained yet unchallenged although this issue is by no means as clear-cut as Mackintosh argues. Let us therefore attempt to clarify some common but unfortunately major misconceptions about g, which Mackintosh, fo...

  2. A Rejoinder to Mackintosh and some Remarks on the Concept of General Intelligence

    OpenAIRE

    Heene, Moritz

    2017-01-01

    In 2000 Nicholas J. Mackintosh (2000) published an article in Nature referring to the concept of general intelligence (“g”) claiming that there is clear empirical evidence for the existence of the g factor and psychologists are “...united in their support of g”. Surprisingly, his view remained yet unchallenged although this issue is by no means as clear-cut as Mackintosh argues. Let us therefore attempt to clarify some common but unfortunately major misconceptions about g, which Mackintosh, f...

  3. General formulation of standard model the standard model is in need of new concepts

    International Nuclear Information System (INIS)

    Khodjaev, L.Sh.

    2001-01-01

    The phenomenological basis for formulation of the Standard Model has been reviewed. The Standard Model based on the fundamental postulates has been formulated. The concept of the fundamental symmetries has been introduced: To look for not fundamental particles but fundamental symmetries. By searching of more general theory it is natural to search first of all global symmetries and than to learn consequence connected with the localisation of this global symmetries like wise of the standard Model

  4. Self-esteem, general and sexual self-concepts in blind people

    OpenAIRE

    Salehi, Mehrdad; Azarbayejani, Abas; Shafiei, Katayoun; Ziaei, Tayebe; Shayegh, Bahar

    2015-01-01

    Background: People with visual disability have lower self-esteem and social skills than sighted people. This study was designed to describe self-esteem and general and sexual self-concepts in blind people. Materials and Methods: This was a cross-sectional study, conducted in the Isfahan University of Medical Sciences in 2013-2014. In this study, 138 visually impaired people participated from Isfahan Province Welfare Organization and were interviewed for measuring of self-esteem and self-conce...

  5. Children's Self-Concepts as Related to Family Structure and Family Concept.

    Science.gov (United States)

    Parish, Joycelyn G.; Parish, Thomas S.

    1983-01-01

    Surveyed 426 children from intact, divorced, and reconstituted families, who responded to the Personal Attribute Inventory for Children to evaluate their families and themselves. Results showed a significant association between children's self-concepts and both their family structure and family concepts. (JAC)

  6. Factors Related to Students' Learning of Biomechanics Concepts

    Science.gov (United States)

    Hsieh, ChengTu; Smith, Jeremy D.; Bohne, Michael; Knudson, Duane

    2012-01-01

    The purpose of this study was to replicate and expand a previous study to identify the factors that affect students' learning of biomechanical concepts. Students were recruited from three universities (N = 149) located in the central and western regions of the United States. Data from 142 students completing the Biomechanics Concept Inventory…

  7. Factors relating to professional self-concept among nurse managers.

    Science.gov (United States)

    Kantek, Filiz; Şimşek, Belkıs

    2017-12-01

    To investigate the self-concept in nurse managers in Turkey and the effects of certain variables on professional self-concept. Professional self-concept plays a significant role in improving certain professional behaviours. Nursing managers have the potential to influence other members of the profession with their attitudes and behaviours. The study was designed as a cross-sectional descriptive study. This study was conducted with 159 nurse managers in nine different hospitals. The study data were collected with a Personal Information Form and Professional Self-concept Nursing Inventory, and the data analysis was accomplished with descriptive statistics, Cronbach's alpha coefficients and Chi-squared Automatic Interaction Detector analyses. The professional self-concept score of nurse managers was 3·33 (SD = 0·308). Professional competence subdimension had the highest scores, while professional satisfaction subdimension had the lowest. The types of hospital were found to be influential on professional self-concept. The types of hospital were reported to influence the professional self-concept of nurses. Nursing managers are visionaries who can potentially influence nursing practices and decisions. Nursing leaders must monitor and administer strategies to improve their professional self-concept. © 2017 John Wiley & Sons Ltd.

  8. Differential forms and the geometry of general relativity

    CERN Document Server

    Dray, Tevian

    2015-01-01

    Differential Forms and the Geometry of General Relativity provides readers with a coherent path to understanding relativity. Requiring little more than calculus and some linear algebra, it helps readers learn just enough differential geometry to grasp the basics of general relativity.The book contains two intertwined but distinct halves. Designed for advanced undergraduate or beginning graduate students in mathematics or physics, most of the text requires little more than familiarity with calculus and linear algebra. The first half presents an introduction to general relativity that describes

  9. A concept of customer–provider relation monitoring system solution

    Directory of Open Access Journals (Sweden)

    Naděžda Chalupová

    2008-01-01

    Full Text Available The contribution deals with design of customer–provider relationship monitoring system solution with regard to needs of business managers and analytics and to possibilities of contemporaneous information and communication technologies.The attention is followed to targeted modelling, what brings possibilities of acquisition of bigger overview about things taking place in the relation. In consequence it describes the functionality of analytical systems producing these very strategically valuable models – to so-called business intelligence tools. Onward it deals with modern technologies conductive to above mentioned system implementation – with Ajax concept and with some XML applications: PMML for analytical models manipulation, XSLT for XML data transformations to various formats, SVG for representing pictures of statistical graphs etc. and MathML for description of mathematical formulas created in analytical systems.Following these basis it suggests technological solution of some parts of client–provider relationship watching and evaluating system and it discusses its potential advantages and problems, which can occur.

  10. Sustainable refurbishment of exterior walls and building facades. Final report, Part B - General refurbishment concepts

    Energy Technology Data Exchange (ETDEWEB)

    Vares, S.; Pulakka, S.; Toratti, T. [and others

    2012-11-01

    This report is the second part of the final report of Sustainable refurbishment of building facades and exterior walls (SUSREF). SUSREF project was a collaborative (small/medium size) research project within the 7th Framework Programme of the Commission and it was financed under the theme Environment (including climate change) (Grant agreement no. 226858). The project started in October 1st 2009 and ended in April 30th 2012. The project included 11 partners from five countries. SUSREF developed sustainable concepts and technologies for the refurbishment of building facades and external walls. This report together with SUSREF Final report Part B and SUSREF Final Report Part C introduce the main results of the project. Part A focuses on methodological issues. The descriptions of the concepts and the assessment results of the developed concepts are presented in SUSREF Final report part B (generic concepts) and SUSREF Final report Part C (SME concepts). The following list shows the sustainability assessment criteria defined by the SUSREF project. These are Durability; Impact on energy demand for heating; Impact on energy demand for cooling; Impact on renewable energy use potential; Impact on daylight; Environmental impact of manufacture and maintenance; Indoor air quality and acoustics; Structural stability; Fire safety; Aesthetic quality; Effect on cultural heritage; Life cycle costs; Need for care and maintenance; Disturbance to the tenants and to the site; Buildability. This report presents sustainability assessment results of general refurbishment concepts and gives recommendations on the basis of the results. The report covers the following refurbishment cases - External insulation - Internal insulation - Cavity wall insulation - Replacement Insulation during renovation.

  11. Constraints on stress-energy perturbations in general relativity

    International Nuclear Information System (INIS)

    Traschen, J.

    1985-01-01

    Conditions are found for the existence of integral constraints on stress-energy perturbations in general relativity. The integral constraints can be thought of as a general-relativistic generalization of the conservation of energy and momentum of matter perturbations in special relativity. The constraints are stated in terms of a vector field V, and the Robertson-Walker spacetimes are shown to have such constraint vectors. Although in general V is not a Killing vector, in a vacuum spacetime the constraint vectors are precisely the Killing vectors

  12. ABOUT THE GENERAL CONCEPT OF THE UNIVERSAL STORAGE SYSTEM AND PRACTICE-ORIENTED DATA PROCESSING

    Directory of Open Access Journals (Sweden)

    L. V. Rudikova

    2017-01-01

    Full Text Available Approaches evolution and concept of data accumulation in warehouse and subsequent Data Mining use is perspective due to the fact that, Belarusian segment of the same IT-developments is organizing. The article describes the general concept for creation a system of storage and practice-oriented data analysis, based on the data warehousing technology. The main aspect in universal system design on storage layer and working with data is approach uses extended data warehouse, based on universal platform of stored data, which grants access to storage and subsequent data analysis different structure and subject domains have compound’s points (nodes and extended functional with data structure choice option for data storage and subsequent intrasystem integration. Describe the universal system general architecture of storage and analysis practice-oriented data, structural elements. Main components of universal system for storage and processing practice-oriented data are: online data sources, ETL-process, data warehouse, subsystem of analysis, users. An important place in the system is analytical processing of data, information search, document’s storage and providing a software interface for accessing the functionality of the system from the outside. An universal system based on describing concept will allow collection information of different subject domains, get analytical summaries, do data processing and apply appropriate Data Mining methods and algorithms.

  13. 6th International Conference on the History of General Relativity

    CERN Document Server

    Eisenstaedt, Jean; The Universe of General Relativity; GR 6

    2005-01-01

    This volume from the Einstein Studies Series is based largely on papers presented at the Sixth International Conference on the History of General Relativity, held in Amsterdam on June 26-29, 2002. These contributions from notable experts offer both new and historical insights on gravitation, general relativity, cosmology, unified field theory, and the history of science. Topics discussed include the prehistory of special relativity, early attempts at a relativistic theory of gravitation, the beginnings of general relativity, the problem of motion in the context of relativity, conservation laws, the axiomatization of relativity, classical and contemporary cosmology, gravitation and electromagnetism, quantum gravity, and relativity as seen through the eyes of the public and renowned relativists. Contributors: K. Brading; G. Gale; H.F.M. Goenner; J. Goldberg; S. Katzir; D. Kennefick; H. Kragh; C. Lehner; U. Majer; J. Mattingly; E.T. Newman; J.D. Norton; J. Renn; R. Rynasiewicz; J.M. Sánchez-Ron; T. Sauer; C. Sm...

  14. The consistency assessment of topological relations in cartographic generalization

    Science.gov (United States)

    Zheng, Chunyan; Guo, Qingsheng; Du, Xiaochu

    2006-10-01

    The field of research in the generalization assessment has been less studied than the generalization process itself, and it is very important to keep topological relation consistency for meeting generalization quality. This paper proposes a methodology to assess the quality of generalized map from topological relations consistency. Taking roads (including railway) and residential areas for examples, from the viewpoint of the spatial cognition, some issues about topological consistency in different map scales are analyzed. The statistic information about the inconsistent topological relations can be obtained by comparing the two matrices: one is the matrix for the topological relations in the generalized map; the other is the theoretical matrix for the topological relations that should be maintained after generalization. Based on the fuzzy set theory and the classification of map object types, the consistency evaluation model of topological relations is established. The paper proves the feasibility of the method through the example about how to evaluate the local topological relations between simple roads and residential area finally.

  15. Generalized string theory mapping relations between gravity and gauge theory

    International Nuclear Information System (INIS)

    Bjerrum-Bohr, N.E.J.

    2003-01-01

    A previous study of the Kawai, Lewellen and Tye (KLT) relations between gravity and gauge theories, imposed by the relationship of closed and open strings, are here extended in the light of general relativity and Yang-Mills theory as effective field theories. We discuss the possibility of generalizing the traditional KLT mapping in this effective setting. A generalized mapping between the effective Lagrangians of gravity and Yang-Mills theory is presented, and the corresponding operator relations between gauge and gravity theories at the tree level are further explored. From this generalized mapping remarkable diagrammatic relations are found, linking diagrams in gravity and Yang-Mills theory, as well as diagrams in pure effective Yang-Mills theory. Also the possibility of a gravitational coupling to an antisymmetric field in the gravity scattering amplitude is considered, and shown to allow for mixed open-closed string solutions, i.e., closed heterotic strings

  16. Can one tell Einstein's unimodular theory from Einstein's general relativity?

    OpenAIRE

    Alvarez, Enrique

    2005-01-01

    The so called unimodular theory of gravitation is compared with general relativity in the quadratic (Fierz-Pauli) regime, using a quite broad framework, and it is argued that quantum effects allow in principle to discriminate between both theories.

  17. The role of Einstein's general relativity theory in today's physics

    International Nuclear Information System (INIS)

    Bicak, J.

    The relationships are discussed of the general relativity theory to other fields of today's physics. Recent results are reported of studies into gravitational radiation, relativistic astrophysics, cosmology and the quantum theory. (Z.M.)

  18. Generalized hypervirial and Blanchard's recurrence relations for radial matrix elements

    International Nuclear Information System (INIS)

    Dong Shihai; Chen Changyuan; Lozada-Cassou, M

    2005-01-01

    Based on the Hamiltonian identity, we propose a generalized expression of the second hypervirial for an arbitrary central potential wavefunction in arbitrary dimensions D. We demonstrate that the new proposed second hypervirial formula is very powerful in deriving the general Blanchard's and Kramers' recurrence relations among the radial matrix elements. As their useful and important applications, we derive all general Blanchard's and Kramers' recurrence relations and some identities for the Coulomb-like potential, harmonic oscillator and Kratzer oscillator. The recurrence relation and identity between the exponential functions and the powers of the radial function are established for the Morse potential. The corresponding general Blanchard's and Kramers' recurrence relations in 2D are also briefly studied

  19. NICOLAS MALEBRANCHE: FROM THE THEORY OF “GENERAL WILL” TO THE CONCEPT OF “INCLINATION”

    Directory of Open Access Journals (Sweden)

    CRISTIAN MOISUC

    2014-11-01

    Full Text Available The period between 1670 and 1740 is considered a time of “crisis of Christian rationalism” (A. McKenna or a time of “skepticism” (V.Cousin, since the Christian apologetics, trapped between Protestantism and the Rationalism, are gradually reduced to a row of inefficient and traditional “proofs” for the existence and kindness of God. In 1680, Nicolas Malebranche publishes the Treatise on Nature and Grace, following to explain the way in which God granted His grace to all mankind. In order to fight the skeptical thesis according to which God takes not directly part in this world, Malebranche refers the action of God to the concept of “general/divine will”. If such a theory is useful at a certain metaphysical level in explaining the presence of the evil in the world (God does not create but allows the evil, it raises some anthropological issues, especially concerning the nature of the human free will. If anything in the world emerges as a direct consequence of God’s “general will”, how can be conceived a real free human will? The theory of God’s general will generates an unexpected anthropological consequence (the dissolution of the human free will that Malebranche tries to hide it by inventing the concept of “inclination of the will”: God does not interfere (by causation with the human will, but He influences it (by inclination. Is it philosophically defensible? The aim of the article is to analyze some philosophical and methodological difficulties related to the new Malebranchist concept of “inclination of human will” in order to prove that the passage from the occasionalist theory of general will to an inquiry about the human will is quite problematic.

  20. 70 years of the general theory of relativity

    International Nuclear Information System (INIS)

    Castro Diaz-Balart, F.; Cabezas Solorzano, R.

    1986-06-01

    In view of the 70th anniversary of the discovery of the General Theory of Relativity, an analysis was made of the special and general theories. The basic postulates, their consequences in the formulation of the theories, the main results, some aspects related to the experimental verification and its applications are presented, as are some elements of the mathematical formalism of the theories, to facilitate the logical interrelationships between its results and consequences. (author)

  1. Using CAMAL for algebraic computations in general relativity

    International Nuclear Information System (INIS)

    Fitch, J.P.

    1979-01-01

    CAMAL is a collection of computer algebra systems developed in Cambridge, England for use mainly in theoretical physics. One of these was designed originally for general relativity calculations, although it is often used in other fields. In a recent paper Cohen, Leringe, and Sundblad compared six systems for algebraic computations applied to general relativity available in Stockholm. Here similar information for CAMAL is given and by using the same tests CAMAL is added to the comparison. (author)

  2. Generalizing ecological site concepts of the Colorado Plateau for landscape-level applications

    Science.gov (United States)

    Duniway, Michael C.; Nauman, Travis; Johanson, Jamin K.; Green, Shane; Miller, Mark E.; Bestelmeyer, Brandon T.

    2016-01-01

    Numerous ecological site descriptions in the southern Utah portion of the Colorado Plateau can be difficult to navigate, so we held a workshop aimed at adding value and functionality to the current ecological site system.We created new groups of ecological sites and drafted state-and-transition models for these new groups.We were able to distill the current large number of ecological sites in the study area (ca. 150) into eight ecological site groups that capture important variability in ecosystem dynamics.Several inventory and monitoring programs and landscape scale planning actions will likely benefit from more generalized ecological site group concepts.

  3. Concepts and Relations in Neurally Inspired In Situ Concept-Based Computing

    NARCIS (Netherlands)

    van der Velde, Frank; van der Velde, Frank

    2016-01-01

    In situ concept-based computing is based on the notion that conceptual representations in the human brain are “in situ.” In this way, they are grounded in perception and action. Examples are neuronal assemblies, whose connection structures develop over time and are distributed over different brain

  4. Diffeomorphism invariance in the Hamiltonian formulation of General Relativity

    International Nuclear Information System (INIS)

    Kiriushcheva, N.; Kuzmin, S.V.; Racknor, C.; Valluri, S.R.

    2008-01-01

    It is shown that when the Einstein-Hilbert Lagrangian is considered without any non-covariant modifications or change of variables, its Hamiltonian formulation leads to results consistent with principles of General Relativity. The first-class constraints of such a Hamiltonian formulation, with the metric tensor taken as a canonical variable, allow one to derive the generator of gauge transformations, which directly leads to diffeomorphism invariance. The given Hamiltonian formulation preserves general covariance of the transformations derivable from it. This characteristic should be used as the crucial consistency requirement that must be met by any Hamiltonian formulation of General Relativity

  5. Spinor formalism and complex-vector formalism of general relativity

    International Nuclear Information System (INIS)

    Han-ying, G.; Yong-shi, W.; Gendao, L.

    1974-01-01

    In this paper, using E. Cartan's exterior calculus, we give the spinor form of the structure equations, which leads naturally to the Newman--Penrose equations. Furthermore, starting from the spinor spaces and the el (2C) algebra, we construct the general complex-vector formalism of general relativity. We find that both the Cahen--Debever--Defrise complex-vector formalism and that of Brans are its special cases. Thus, the spinor formalism and the complex-vector formalism of general relativity are unified on the basis of the uni-modular group SL(2C) and its Lie algebra

  6. Implications of a positive cosmological constant for general relativity.

    Science.gov (United States)

    Ashtekar, Abhay

    2017-10-01

    Most of the literature on general relativity over the last century assumes that the cosmological constant [Formula: see text] is zero. However, by now independent observations have led to a consensus that the dynamics of the universe is best described by Einstein's equations with a small but positive [Formula: see text]. Interestingly, this requires a drastic revision of conceptual frameworks commonly used in general relativity, no matter how small [Formula: see text] is. We first explain why, and then summarize the current status of generalizations of these frameworks to include a positive [Formula: see text], focusing on gravitational waves.

  7. The general class of the vacuum spherically symmetric equations of the general relativity theory

    International Nuclear Information System (INIS)

    Karbanovski, V. V.; Sorokin, O. M.; Nesterova, M. I.; Bolotnyaya, V. A.; Markov, V. N.; Kairov, T. V.; Lyash, A. A.; Tarasyuk, O. R.

    2012-01-01

    The system of the spherical-symmetric vacuum equations of the General Relativity Theory is considered. The general solution to a problem representing two classes of line elements with arbitrary functions g 00 and g 22 is obtained. The properties of the found solutions are analyzed.

  8. Einstein's space-time an introduction to special and general relativity

    CERN Document Server

    Ferraro, Rafael

    2007-01-01

    Einstein's Space-Time: An Introduction to Special and General Relativity is a textbook addressed to students in physics and other people interested in Relativity and a history of physics. The book contains a complete account of Special Relativity that begins with the historical analysis of the reasons that led to a change in our manner of regarding the space and time. The first chapters are aimed to afford a deep understanding of the relativistic spacetime and its consequences for Dynamics. The chapter about covariant formulation includes among its topics the concepts of volume and hypersurfaces in manifolds, energy-momentum tensor of a fluid, and prepares the language for General Relativity. The last two chapters are devoted to an introduction of General Relativity and Cosmology in a modern approach connected with the latest discoveries in these areas.

  9. Concepts of Kinship Relations and Inheritance in Childhood and Adolescence

    Science.gov (United States)

    Williams, Joanne M.; Smith, Lesley A.

    2010-01-01

    This paper examines the development and consistency of children's (4, 7, 10, and 14 years) naive concepts of inheritance using three tasks. A modified adoption task asked participants to distinguish between biological and social parentage in their predictions and explanations of the origins of different feature types (physical characteristics,…

  10. Two relational conceptions of individuals: teams and neuroeconomics

    NARCIS (Netherlands)

    Davis, J.B.

    2009-01-01

    Recent work on the theory of teams and team reasoning in game interactive settings is due principally to the late Michael Bacharach (Bacharach, 2006), who offers a conception of the individual as a team member, and also to Martin Hollis (1998) and Robert Sugden and Natalie Gold (Sugden, 2000; Gold &

  11. Climacteric symptoms and their relation to feminine self-concept.

    Science.gov (United States)

    Quiroga, A; Larroy, C; González-Castro, P

    2017-06-01

    To investigate women's subjective experiences in the climacteric transition, especially the impact of self-concept, quality of life and depression on the severity of climacteric symptoms. Non-experimental, cross-sectional study, purpose sampling. To analyze the results, we proposed a three-way interaction, in which the direct effect of depression on the severity of climacteric symptoms would be buffered by perceived sexual quality of life, and mediated by self-concept. As hypothesized, depression significantly predicted self-concept, which in turn mediated the severity of climacteric symptoms. In a second stage of the model, sexual quality of life moderated the direct effect of depression on climacteric symptoms, such that women with a better sexual quality of life would perceive less severity of climacteric symptoms than those with a less favorable sexual quality of life. Physical quality of life did not significantly buffer the direct effect of depression on climacteric symptoms, nor did vasomotor or psychosocial quality of life. Our study confirmed the impact of subjective factors such as satisfaction, self-concept, and quality of life on climacteric symptoms; specifically, we observed the moderating effect of the sexual quality of life on the previously established correlation between depression and aggravation of climacteric symptoms.

  12. Nonlinear Supersymmetric General Relativity and Unity of Nature

    OpenAIRE

    Shima, Kazunari; Tsuda, Motomu

    2008-01-01

    The basic idea and some physical implications of nonlinear supersymmetric general relativity (NLSUSY GR) are discussed, which give new insights into the origin of mass and the mysterious relations between the cosmology and the low energy particle physics, e.g. the spontaneous SUSY breaking scale, the cosmological constant, the (dark) energy density of the universe and the neutrino mass.

  13. Indefinite-metric quantum field theory of general relativity, 2

    International Nuclear Information System (INIS)

    Nakanishi, Noboru

    1978-01-01

    The canonical commutation relations are analyzed in detail in the manifestly covariant quantum field theory of general relativity proposed previously. It is explicitly proved that the BRS charge is indeed the generator of the BRS transformation both in the Landau gauge and in the non-Landau one. The equivalence between the field equations and the Heisenberg equations is confirmed. (author)

  14. Experimental tests of general relativity: recent progress and future directions

    International Nuclear Information System (INIS)

    Turyshev, S G

    2009-01-01

    Einstein's general theory of relativity is the standard theory of gravity, especially where the needs of astronomy, astrophysics, cosmology, and fundamental physics are concerned. As such, this theory is used for many practical purposes involving spacecraft navigation, geodesy, and time transfer. We review the foundations of general relativity, discuss recent progress in tests of relativistic gravity, and present motivations for the new generation of high-accuracy tests of new physics beyond general relativity. Space-based experiments in fundamental physics are presently capable of uniquely addressing important questions related to the fundamental laws of nature. We discuss the advances in our understanding of fundamental physics that are anticipated in the near future and evaluate the discovery potential of a number of recently proposed space-based gravitational experiments. (reviews of topical problems)

  15. Liouville's equation and radiative acceleration in general relativity

    International Nuclear Information System (INIS)

    Keane, A.J.

    1999-01-01

    This thesis examines thoroughly the general motion of a material charged particle in the intense radiation field of a static spherically symmetric compact object with spherical emitting surface outside the Schwarzschild radius. Such a test particle will be pulled in by the gravitational attraction of the compact object and pushed out by the radiation pressure force, therefore the types of trajectory admitted will depend the gravitational field, the radiation field and the particle cross-section. The presence of a strong gravitational field demands a fully general relativistic treatment of the problem. This type of calculation is interesting not only as a formal problem in general relativity but also since it has important astrophysical implications, for example, application to astrophysical discs and jets. In chapter 1 we review the classical radiation force problem and outline the transition to a fully general relativistic scenario. We discuss the method for obtaining the radiation pressure force and calculating the particle trajectories. We review previous work in this area and outline the aims of the thesis. Then we consider some astrophysical applications and discuss how realistic our calculations are. In chapter 2 we give an introduction and overview of differential geometry as this is necessary for an accurate description of tensors on a curved manifold. Then we review the general theory of relativity and in particular obtain the Schwarzschild metric describing a static spherically symmetric vacuum spacetime. Chapter 3 deals with test particle motion through a curved spacetime. Liouville's equation describes the statistical distribution in phase space of a collection of test particles and is based upon a Hamiltonian formulation of the dynamical system - this material also relies heavily upon the concepts of differential geometry introduced in chapter 2. In particular we are interested in photon transport and find the general solutions for some symmetric

  16. Proceedings of the fourth Marcel Grossmann meeting on general relativity

    International Nuclear Information System (INIS)

    Ruffini, R.

    1986-01-01

    The Marcel Grossmann meetings were conceived with the aim of reviewing recent advances in gravitation and general relativity with the major emphasis on their mathematical foundations and physical predictions. Their main objective is to elicit contributions which deepen our understanding of space-time structures as well as to review the status of experiments verifying Einstein's Theory of Gravitation. It has been demonstrated by the previous meetings that these sessions provide physicists from various countries who are involved in research on general relativity with a unique opportunity to exchange experiences and enhance co-operation in fields of common interest. The meeting was essentially divided into 3 sub-areas; interplay between elementary particle physics and cosmology and relativistic astrophysics, classical relativity, and experimental relativity. Among the topics covered were supergravity and superstrings, bar gravitational wave detectors, black holes, classical relativity, computer relativity, cosmology and inos, early cosmology, exact solutions, Kaluza Klein theories, relativistic self-gravitating systems and quantum gravity. (Auth.)

  17. The generalized Crewther relation in QCD and its experimental consequences

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Gabadadze, G.T.; Kataev, A.L.; Lu, H.J.

    1995-12-01

    We use the BLM scale-fixing prescription to derive a renormalization-scheme invariant relation between the coefficient function for the Bjorken sum rule for polarized deep inelastic scattering and the R-ratio for the e + e - annihilation cross section. This relation provides a generalization of the Crewther relation to non-conformally invariant gauge theories. The derived relations allow one to calculate unambiguously without renormalization scale or scheme ambiguity the effective charges of the polarized Bjorken and the Gross-Llewellen Smith sum rules from the experimental value for the effective charge associated with R-ratio. Present data are consistent with the generalized Crewther relations, but measurements at higher precision and energies will be needed to decisively test these fundamental relations in QCD. (orig.)

  18. Relational conceptions of paternalism: a way to rebut nanny-state accusations and evaluate public health interventions.

    Science.gov (United States)

    Carter, S M; Entwistle, V A; Little, M

    2015-08-01

    'Nanny-state' accusations can function as powerful rhetorical weapons against interventions intended to promote public health. Public health advocates often lack effective rebuttals to these criticisms. Nanny-state accusations are largely accusations of paternalism. They conjure up emotive concern about undue governmental interference undermining peoples' autonomy. But autonomy can be understood in various ways. We outline three main conceptions of autonomy, argue that these that can underpin three different conceptions of paternalism, and consider implications for responses to nanny-state accusations and the assessment of public health interventions. Detailed conceptual analysis. The conceptions of paternalism implicit in nanny-state accusations generally depend on libertarian conceptions of autonomy. These reflect unrealistic views of personal independence and do not discriminate sufficiently between trivial and important freedoms. Decisional conceptions of paternalism, like their underlying decisional conceptions of autonomy, have limited applicability in public health contexts. Relational conceptions of paternalism incorporate relational conceptions of autonomy, so recognize that personal autonomy depends on socially shaped skills, self-identities and self-evaluations as well as externally structured opportunities. They encourage attention to the various ways that social interactions and relationships, including disrespect, stigmatization and oppression, can undermine potential for autonomy. While nanny-state accusations target any interference with negative freedom, however trivial, relational conceptions direct concerns to those infringements of negative freedom, or absences of positive freedom, serious enough to undermine self-determination, self-governance and/or self-authorization. Relational conceptions of autonomy and paternalism offer public health policymakers and practitioners a means for rebutting nanny-state accusations, and can support more nuanced

  19. Three conceptions of the changing relations between education and work

    DEFF Research Database (Denmark)

    Jørgensen, Christian Helms

    2009-01-01

    the organization of work and draw special attention to the problems of reductionism and determinism in each of these approaches. As conclusion a conceptual framework is outlined that combines the three conceptions and opens up for understanding the complex interplay between the various types of dynamics at play......Education and training is the key to transform the organization of work into more knowing work. This is a common assumption in a number of political discourses about the demise of Fordist, Taylorist and bureaucratic ways of organizing work. It is though not very clear what the relationship...... is between education and training and the organization of work. In this chapter I will describe three different conceptions of the interaction between education and training and work and of the different dynamics of this interaction. I explore the scope for education and training policy in changing...

  20. Self-concept and academic achievement: a meta-analysis of longitudinal relations.

    Science.gov (United States)

    Huang, Chiungjung

    2011-10-01

    The relation between self-concept and academic achievement was examined in 39 independent and longitudinal samples through the integration of meta-analysis and path analysis procedures. For relations with more than 3 independent samples, the mean observed correlations ranged from .20 to .27 between prior self-concept and subsequent academic achievement and from .19 to .25 between prior academic achievement and subsequent self-concept. Globality/specificity of self-concept was the only significant moderating factor in the relation between (a) prior self-concept and subsequent academic achievement and (b) prior academic achievement and subsequent self-concept. As high self-concept is related to high academic performance and vice-versa, intervention programs that combine self-enhancement and skill development should be integrated. Copyright © 2011 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  1. General practitioners' and district nurses' conceptions of the encounter with obese patients in primary health care

    Directory of Open Access Journals (Sweden)

    Rasmussen Finn

    2011-02-01

    Full Text Available Abstract Background Primary health care specialists have a key role in the management of obesity. Through understanding how they conceive the encounter with patients with obesity, treatment may be improved. The aim of this study was thus to explore general practitioners' and district nurses' conceptions of encountering patients with obesity in primary health care. Method Data were collected through semi-structured interviews, and analysed using a phenomenographic approach. The participants were 10 general practitioners (6 women, 4 men and 10 district nurses (7 women, 3 men from 19 primary health care centres within a well-defined area of Sweden. Results Five descriptive categories were identified: Adequate primary health care, Promoting lifestyle change, Need for competency, Adherence to new habits and Understanding patient attitudes. All participants, independent of gender and profession, were represented in the descriptive categories. Some profession and gender differences were, however, found in the underlying conceptions. The general staff view was that obesity had to be prioritised. However, there was also the contradictory view that obesity is not a disease and therefore not the responsibility of primary health care. Despite this, staff conceived it as important that patients were met with respect and that individual solutions were provided which could be adhered to step-by-step by the patient. Patient attitudes, such as motivation to change, evasive behaviour, too much trust in care and lack of self-confidence, were, however, conceived as major barriers to a fruitful encounter. Conclusions Findings from this study indicate that there is a need for development and organisation of weight management in primary health care. Raising awareness of staff's negative views of patient attitudes is important since it is likely that it affects the patient-staff relationship and staff's treatment efforts. More research is also needed on gender and

  2. Introduction to general relativity, black holes and cosmology

    CERN Document Server

    Choquet-Bruhat, Yvonne

    2015-01-01

    General Relativity is a beautiful geometric theory, simple in its mathematical formulation but leading to numerous consequences with striking physical interpretations: gravitational waves, black holes, cosmological models, and so on. This introductory textbook is written for mathematics students interested in physics and physics students interested in exact mathematical formulations (or for anyone with a scientific mind who is curious to know more of the world we live in), recent remarkable experimental and observational results which confirm the theory are clearly described and no specialised physics knowledge is required. The mathematical level of Part A is aimed at undergraduate students and could be the basis for a course on General Relativity. Part B is more advanced, but still does not require sophisticated mathematics. Based on Yvonne Choquet-Bruhat's more advanced text, General Relativity and the Einstein Equations, the aim of this book is to give with precision, but as simply as possible, the found...

  3. The motion of a charged particle in general relativity

    International Nuclear Information System (INIS)

    Ludvigsen, M.

    1979-01-01

    A new approach to the problem of the motion of a self-interacting massive charged particle in general relativity is presented. A charged Robinson-Trautman solution is used as a general relativistic model of such a particle. Such a solution is shown to generate a unique world line in its own H space, which is interpreted as the world line of the particle. Using the R-T dynamical relations, the equation of motion of the particle is derived, which, in the limiting case of zero curvature, is shown to be the same as the classical Lorentz-Dirac equation of motion. (author)

  4. Gravitational radiation and the validity of general relativity

    International Nuclear Information System (INIS)

    Will, C.M.

    2001-01-01

    The regular observation of gravitational radiation by a world-wide network of resonant and laser-interferometric detectors will usher in a new form of astronomy. At the same time, it will provide new and interesting tests of general relativity. We review the current empirical status of general relativity, and discuss three areas in which direct observation of gravitational radiation could test the theory further: polarization of the waves, speed of the waves, and back-reaction of the waves on the evolution of the source. (author)

  5. On the mathematical theory of classical fields and general relativity

    CERN Document Server

    Klainerman, S

    1993-01-01

    From the perspective of an analyst, like myself, the General Theory of Relativity provides an extrordinary rich and vastly virgin territory. It is the aim of my lecture to provide, first, an account of those aspects of the theory which attract me most and second a perspective of what has been accomplished so far in that respect. In trying to state our main objectives it helps to view General Relativity in the broader context of Classical Field Theory. EinsteiniVacuum equations, or shortly E—V, is already sufficiently complicated. I will thus restrict my attention to them.

  6. Canonical quantization of general relativity in discrete space-times.

    Science.gov (United States)

    Gambini, Rodolfo; Pullin, Jorge

    2003-01-17

    It has long been recognized that lattice gauge theory formulations, when applied to general relativity, conflict with the invariance of the theory under diffeomorphisms. We analyze discrete lattice general relativity and develop a canonical formalism that allows one to treat constrained theories in Lorentzian signature space-times. The presence of the lattice introduces a "dynamical gauge" fixing that makes the quantization of the theories conceptually clear, albeit computationally involved. The problem of a consistent algebra of constraints is automatically solved in our approach. The approach works successfully in other field theories as well, including topological theories. A simple cosmological application exhibits quantum elimination of the singularity at the big bang.

  7. Essays in general relativity a Festschrift for Abraham Taub

    CERN Document Server

    Tipler, Frank J

    1981-01-01

    Essays in General Relativity: A Festschrift for Abraham Taub is collection of essays to honor Professor Abraham H. Taub on the occasion of his retirement from the mathematics faculty of the University of California at Berkeley. Relativistic hydrodynamics has always been a subject dear to Taub's heart. In fact, many basic results on special relativistic fluid flows are due to him, and he has been a major contributor to the study of fluid flows near shocks. The book contains 16 chapters and begins with a discussion of a geometrical approach to general relativity. This is followed by separate cha

  8. The generalized Balescu-Lenard collision operator: A unifying concept for tokamak transport

    International Nuclear Information System (INIS)

    Mynick, H.E.

    1987-08-01

    The generalization of the Balescu-Lenard collision operator to its fully electromagnetic counterpart in Kaufman's action-angle formalism is derived and its properties investigated. The general form may be specialized to any particular geometry where the unperturbed particle motion is integrable, and thus includes cylindrical plasmas, inhomogeneous slabs with nonuniform magnetic fields, tokamaks, and the particularly simple geometry of the standard operator as special cases. The general form points to the commonality between axisymmetric, turbulent, and ripple transport, and implies properties (e.g., intrinsic ambipolarity) which should be shared by them, under appropriate conditions. Along with a turbulent ''anomalous diffusion coefficient'' calculated for tokamaks in previous work, an ''anomalous pinch'' term of closely related structure and scaling is also implied by the generalized operator. 20 refs

  9. Doppler frequency in interplanetary radar and general relativity

    Science.gov (United States)

    Mcvittie, G. C.

    1972-01-01

    The change of frequency of an interplanetary radar signal sent from the earth to another planet or to a space probe is worked out according to general relativity. The Schwarzschild spacetime is employed and its null geodesics control the motion of the signals. Exact Doppler frequency formulas are derived for one-way and two-way radar in terms of an arbitrary Schwarzschild radial coordinate. A reduction to the special relativity case is used to interpret the formulas in terms of the relative radial velocity of emitter and target. The general relativity corrections are worked out approximately for each of three possible Schwarzschild radial coordinates, and a numerical example is given. The amount of the correction is different according as one or the other of the Schwarzschild coordinates is identified with the radius vector deduced from classical celestial mechanics. The identification problem is discussed.

  10. Cosmological perturbations in a family of deformations of general relativity

    International Nuclear Information System (INIS)

    Krasnov, Kirill; Shtanov, Yuri

    2010-01-01

    We study linear cosmological perturbations in a previously introduced family of deformations of general relativity characterized by the absence of new degrees of freedom. The homogeneous and isotropic background in this class of theories is unmodified and is described by the usual Friedmann equations. The theory of cosmological perturbations is modified and the relevant deformation parameter has the dimension of length. Gravitational perturbations of the scalar type can be described by a certain relativistic potential related to the matter perturbations just as in general relativity. A system of differential equations describing the evolution of this potential and of the stress-energy density perturbations is obtained. We find that the evolution of scalar perturbations proceeds with a modified effective time-dependent speed of sound, which, contrary to the case of general relativity, does not vanish even at the matter-dominated stage. In a broad range of values of the length parameter controlling the deformation, a specific transition from the regime of modified gravity to the regime of general relativity in the evolution of scalar perturbations takes place during the radiation domination. In this case, the resulting power spectrum of perturbations in radiation and dark matter is suppressed on the comoving spatial scales that enter the Hubble radius before this transition. We estimate the bounds on the deformation parameter for which this suppression does not lead to observable consequences. Evolution of scalar perturbations at the inflationary stage is modified but very slightly and the primordial spectrum generated during inflation is not noticeably different from the one obtained in general relativity

  11. BOOK REVIEW: Partial Differential Equations in General Relativity

    Science.gov (United States)

    Halburd, Rodney G.

    2008-11-01

    Although many books on general relativity contain an overview of the relevant background material from differential geometry, very little attention is usually paid to background material from the theory of differential equations. This is understandable in a first course on relativity but it often limits the kinds of problems that can be studied rigorously. Einstein's field equations lie at the heart of general relativity. They are a system of partial differential equations (PDEs) relating the curvature of spacetime to properties of matter. A central part of most problems in general relativity is to extract information about solutions of these equations. Most standard texts achieve this by studying exact solutions or numerical and analytical approximations. In the book under review, Alan Rendall emphasises the role of rigorous qualitative methods in general relativity. There has long been a need for such a book, giving a broad overview of the relevant background from the theory of partial differential equations, and not just from differential geometry. It should be noted that the book also covers the basic theory of ordinary differential equations. Although there are many good books on the rigorous theory of PDEs, methods related to the Einstein equations deserve special attention, not only because of the complexity and importance of these equations, but because these equations do not fit into any of the standard classes of equations (elliptic, parabolic, hyperbolic) that one typically encounters in a course on PDEs. Even specifying exactly what ones means by a Cauchy problem in general relativity requires considerable care. The main problem here is that the manifold on which the solution is defined is determined by the solution itself. This means that one does not simply define data on a submanifold. Rendall's book gives a good overview of applications and results from the qualitative theory of PDEs to general relativity. It would be impossible to give detailed

  12. Relational Aggression, Victimization and Self-Concept: Testing Pathways from Middle Childhood to Adolescence.

    Science.gov (United States)

    Blakely-McClure, Sarah J; Ostrov, Jamie M

    2016-02-01

    When studying adolescent development, it is important to consider two key areas that are salient for teens, which are self-concept and peer relations. A secondary analysis of the National Institute of Health and Human Development Study of Early Child Care and Youth Development was conducted to examine the prospective bidirectional associations between self-concept and peer relations. To date, how social development broadly and peer relations in particular (e.g., relational aggression and victimization) affect self-concept domains is not fully understood. Using a large sample (N = 1063; 532 girls; M = 11.14 years; SD = .59) with multiple informants, the present study examined whether fifth grade relational aggression and sixth grade relational victimization was associated with adolescent self-concept in three key domains (i.e., academic, sports, physical appearance). A significant direct effect emerged, such that relational aggression in middle childhood was associated with decreases in academic self-concept and increases in sports self-concept in adolescence. Analyses also revealed that having higher levels of domain specific self-concept led to decreases in relational aggression across the transition to adolescence. The findings highlight the importance of examining bidirectional prospective associations between relational aggression, relational victimization, and domain specific self-concept. Implications for future research and clinical intervention are discussed.

  13. Indefinite-metric quantum field theory of general relativity

    International Nuclear Information System (INIS)

    Nakanishi, Noboru

    1978-01-01

    Quantum field theory of Einstein's general relativity is formulated in the indefinitemetric Hilbert space in such a way that asymptotic fields are manifestly Lorentz covariant and the physical S-matrix is unitary. The general coordinate transformation is transcribed into a q-number transformation, called the BRS transformation. Its abstract definition is presented on the basis of the BRS transformation for the Yang-Mills theory. The BRS transformation for general relativity is then explicitly constructed. The gauge-fixing Lagrangian density and the Faddeev-Popov one are introduced in such a way that their sum behaves like a scalar density under the BRS transformation. One can then proceed in the same way as in the Kugo-Ojima formalism of the Yang-Mills theory to establish the unitarity of the physical S-matrix. (author)

  14. General projective relativity and the vector-tensor gravitational field

    International Nuclear Information System (INIS)

    Arcidiacono, G.

    1986-01-01

    In the general projective relativity, the induced 4-dimensional metric is symmetric in three cases, and we obtain the vector-tensor, the scalar-tensor, and the scalar-vector-tensor theories of gravitation. In this work we examine the vector-tensor theory, similar to the Veblen's theory, but with a different physical interpretation

  15. Test theories of special relativity: a general critique

    International Nuclear Information System (INIS)

    Maciel, A.K.A.; Tiomno, J.

    1988-01-01

    Absolute Spacetime Theories conceived for the purpose of testing Special Relativity (SR) are reviewed. It is found that most theories proposed were in fact SR in different coordinate systems, since in general no specific SR violations were introduced. Models based on possible SR violating mechanisms are considered. Misconceptions in recently published papers are examined. (author) [pt

  16. Survey on Dirac equation in general relativity theory

    International Nuclear Information System (INIS)

    Paillere, P.

    1984-10-01

    Starting from an infinitesimal transformation expressed with a Killing vector and using systematically the formalism of the local tetrades, we show that, in the area of the general relativity, the Dirac equation may be formulated only versus the four local vectors which determine the gravitational potentials, their gradients and the 4-vector potential of the electromagnetic field [fr

  17. An experiment designed to verify the general theory of relativity

    International Nuclear Information System (INIS)

    Surdin, Maurice

    1960-01-01

    The project for an experiment which uses the effect of gravitation on Maser-type clocks placed on the ground at two different heights and which is designed to verify the general theory of relativity. Reprint of a paper published in Comptes rendus des seances de l'Academie des Sciences, t. 250, p. 299-301, sitting of 11 January 1960 [fr

  18. Spinning fluids in general relativity: a variational formulation

    International Nuclear Information System (INIS)

    Oliveira, H.P. de; Salim, J.M.

    1990-01-01

    In this paper we present a variational formulation for spinning fluids in General Relativity. In our model each volume element of the fluid has rigid microstructure. We deduce a symmetrical energy-moment tensor where there is an explicit contribution of kinetic spin energy to the total energy. (author)

  19. Albert Einstein's 1916 Review Article on General Relativity

    OpenAIRE

    Sauer, Tilman

    2004-01-01

    The first comprehensive overview of the final version of the general theory of relativity was published by Einstein in 1916 after several expositions of preliminary versions and latest revisions of the theory in November 1915. A historical account of this review paper is given, of its prehistory, including a discussion of Einstein's collaboration with Marcel Grossmann, and of its immediate reception.

  20. Derivation of Einstein-Cartan theory from general relativity

    Science.gov (United States)

    Petti, Richard

    2015-04-01

    General relativity cannot describe exchange of classical intrinsic angular momentum and orbital angular momentum. Einstein-Cartan theory fixes this problem in the least invasive way. In the late 20th century, the consensus view was that Einstein-Cartan theory requires inclusion of torsion without adequate justification, it has no empirical support (though it doesn't conflict with any known evidence), it solves no important problem, and it complicates gravitational theory with no compensating benefit. In 1986 the author published a derivation of Einstein-Cartan theory from general relativity, with no additional assumptions or parameters. Starting without torsion, Poincaré symmetry, classical or quantum spin, or spinors, it derives torsion and its relation to spin from a continuum limit of general relativistic solutions. The present work makes the case that this computation, combined with supporting arguments, constitutes a derivation of Einstein-Cartan theory from general relativity, not just a plausibility argument. This paper adds more and simpler explanations, more computational details, correction of a factor of 2, discussion of limitations of the derivation, and discussion of some areas of gravitational research where Einstein-Cartan theory is relevant.

  1. General relativity from a gauged Wess-Zumino-Witten term

    International Nuclear Information System (INIS)

    Anabalon, Andres; Willison, Steven; Zanelli, Jorge

    2007-01-01

    In this paper two things are done. First it is shown how a four-dimensional gauged Wess-Zumino-Witten term arises from the five-dimensional Einstein-Hilbert plus Gauss-Bonnet Lagrangian with a special choice of the coefficients. Second, the way in which the equations of motion of four-dimensional General Relativity arise is exhibited

  2. Einstein and Hilbert: The creation of general relativity

    International Nuclear Information System (INIS)

    Todorov, I.T.

    1992-12-01

    It took eight years after Einstein announced the basic physical ideas behind the relativistic gravity theory before the proper mathematical formulation of general-relativity was mastered. The efforts of the greatest physicist and of the greatest mathematician of the time was involved and reached a breathtaking concentration during the last month of the work. (author)

  3. Proceedings of the third Marcel Grossmann meeting on general relativity

    International Nuclear Information System (INIS)

    Hu Ning

    1983-01-01

    This book contains 64 session papers presented at the 3rd Marcel Grossmann Meeting on General Relativity. The papers are divided into 10 sections including: classical problem in gravitation; alternative approaches to gravitational theory; supergravity; quantum gravity and quantum field theory in curved space; cosmology; early universe; physics of compact bodies; gravitational wave experiments; gravitational experiments; miscellaneous. (Auth.)

  4. Generalized virial relations and the theory of subdynamics

    International Nuclear Information System (INIS)

    Obcemea, Ch.; Froelich, P.; Braandas, E.J.

    1981-05-01

    In this paper, we discuss the implication of the generalized virial relations in the spectral analysis of Liouville operators. In particular, we refer to the existence problem of the analytic continuation of these super-operators and their resolvents occurring in the reduced dynamics description of open systems. For completeness, we outline the main ideas of the subdynamics approach. (author)

  5. Energy-momentum distribution: A crucial problem in general relativity

    NARCIS (Netherlands)

    Sharif, M.; Fatima, T.

    2005-01-01

    This paper is aimed to elaborate the problem of energy–momentum in general relativity. In this connection, we use the prescriptions of Einstein, Landau–Lifshitz, Papapetrou and Möller to compute the energy–momentum densities for two exact solutions of Einstein field equations. The space–times under

  6. Statistical equilibrium and symplectic geometry in general relativity

    International Nuclear Information System (INIS)

    Iglesias, P.

    1981-09-01

    A geometrical construction is given of the statistical equilibrium states of a system of particles in the gravitational field in general relativity. By a method of localization variables, the expression of thermodynamic values is given and the compatibility of this description is shown with a macroscopic model of a relativistic continuous medium for a given value of the free-energy function [fr

  7. Collineations of the curvature tensor in general relativity

    Indian Academy of Sciences (India)

    The general theory of relativity, which is a field theory of gravitation, is described by the Einstein field equations. These equations whose fundamental constituent is the space-time metric gij, are highly non-linear partial differential equations and, therefore it is very difficult to obtain exact solutions. They become still more diffi-.

  8. The general theory of relativity: the first thirty years

    International Nuclear Information System (INIS)

    Chandrasekhar, S.

    1980-01-01

    The principal landmarks in the development of general relativity (exclusive of cosmology) during the first 30 years after its founding are presented. The emergence of the new gravitational laws, their experimental consequences and the consequent growth of the present concern with gravitational collapse and black holes are traced. (U.K.)

  9. Scalar fields and cosmic censorship hypothesis in general relativity

    International Nuclear Information System (INIS)

    Parnovs'kij, S.L.; Gajdamaka, O.Z.

    2004-01-01

    We discuss an influence of the presence of some nonstandard scalar fields in the vicinity of naked time-like singularity on the type and properties of this singularity. The main goal is to study the validity of the Penrose's Cosmic Censorship hypothesis in the General Relativity

  10. Probing Students' Understanding of Some Conceptual Themes in General Relativity

    Science.gov (United States)

    Bandyopadhyay, Atanu; Kumar, Arvind

    2010-01-01

    This work is an attempt to see how physics undergraduates view the basic ideas of general relativity when they are exposed to the topic in a standard introductory course. Since the subject is conceptually and technically difficult, we adopted a "case studies" approach, focusing in depth on about six students who had just finished a one semester…

  11. Galileons as the Scalar Analogue of General Relativity

    NARCIS (Netherlands)

    Klein, Remko; Ozkan, Mehmet; Roest, Diederik

    2016-01-01

    We establish a correspondence between general relativity with diffeomorphism invariance and scalar field theories with Galilean invariance: notions such as the Levi-Civita connection and the Riemann tensor have a Galilean counterpart. This suggests Galilean theories as the unique nontrivial

  12. Age and gender differences in the relation between self-concept facets and self-esteem

    OpenAIRE

    Arens, A. Katrin; Hasselhorn, Marcus

    2014-01-01

    This study tested whether the gender intensification hypothesis applies to relations between multiple domain-specific self-concept facets and self-esteem. This hypothesis predicts gender-stereotypic differences in these relations and assumes they intensify with age. Furthermore, knowledge about gender-related or age-related differences in self-concept-self-esteem relations might provide valuable knowledge for designing effective self-esteem enhancement interventions. We investigated grade and...

  13. On stability relative to vector elements of the orbit in general relativity motion

    International Nuclear Information System (INIS)

    Abdil'din, M.M.; Bejsenova, N.A.

    2002-01-01

    In this work a question of a new type of stability - stability relative to vector elements of the orbit is considered in general relativity mechanics in case of the Lenze-Thirring and two body rotation. (author)

  14. Generalization of the test theory of relativity to noninertial frames

    International Nuclear Information System (INIS)

    Abolghasem, G.H.; Khajehpour, M.R.H.; Mansouri, R.

    1988-08-01

    We present a generalized test theory of special relativity, using a noninertial frame. Within the framework of the special theory of relativity the transport- and Einstein-synchronizations are equivalent on a rigidly rotating disk. But in any theory with a preferred frame such an equivalence does not hold. The time difference resulting from the two synchronization procedures is a measurable quantity within the reach of existing clock systems on the earth. The final result contains a term which depends on the angular velocity of the rotating system, and hence measures an absolute effect. This term is of crucial importance in our test theory of the special relativity. (author). 13 refs

  15. Reformulation of the symmetries of first-order general relativity

    Science.gov (United States)

    Montesinos, Merced; González, Diego; Celada, Mariano; Díaz, Bogar

    2017-10-01

    We report a new internal gauge symmetry of the n-dimensional Palatini action with cosmological term (n>3 ) that is the generalization of three-dimensional local translations. This symmetry is obtained through the direct application of the converse of Noether’s second theorem on the theory under consideration. We show that diffeomorphisms can be expressed as linear combinations of it and local Lorentz transformations with field-dependent parameters up to terms involving the variational derivatives of the action. As a result, the new internal symmetry together with local Lorentz transformations can be adopted as the fundamental gauge symmetries of general relativity. Although their gauge algebra is open in general, it allows us to recover, without resorting to the equations of motion, the very well-known Lie algebra satisfied by translations and Lorentz transformations in three dimensions. We also report the analog of the new gauge symmetry for the Holst action with cosmological term, finding that it explicitly depends on the Immirzi parameter. The same result concerning its relation to diffeomorphisms and the open character of the gauge algebra also hold in this case. Finally, we consider the non-minimal coupling of a scalar field to gravity in n dimensions and establish that the new gauge symmetry is affected by this matter field. Our results indicate that general relativity in dimension greater than three can be thought of as a gauge theory.

  16. Preservice Elementary Mathematics Teachers' Level of Relating Mathematical Concepts in Daily Life Contexts

    Science.gov (United States)

    Akkus, Oylum

    2008-01-01

    The purpose of this study was to investigate preservice elementary mathematics teachers' ability of relating mathematical concepts and daily life context. Two research questions were set; what is the preservice elementary mathematics teachers' level of relating mathematical concepts and daily life context regarding to their education year and…

  17. Dissociating the Representation of Action- and Sound-Related Concepts in Middle Temporal Cortex

    Science.gov (United States)

    Kiefer, Markus; Trumpp, Natalie; Herrnberger, Barbel; Sim, Eun-Jin; Hoenig, Klaus; Pulvermuller, Friedemann

    2012-01-01

    Modality-specific models of conceptual memory propose close links between concepts and the sensory-motor systems. Neuroimaging studies found, in different subject groups, that action-related and sound-related concepts activated different parts of posterior middle temporal gyrus (pMTG), suggesting a modality-specific representation of conceptual…

  18. Self-Concept and Academic Achievement: A Meta-Analysis of Longitudinal Relations

    Science.gov (United States)

    Huang, Chiungjung

    2011-01-01

    The relation between self-concept and academic achievement was examined in 39 independent and longitudinal samples through the integration of meta-analysis and path analysis procedures. For relations with more than 3 independent samples, the mean observed correlations ranged from 0.20 to 0.27 between prior self-concept and subsequent academic…

  19. Extent of the Immirzi ambiguity in quantum general relativity

    International Nuclear Information System (INIS)

    Marugan, Guillermo A Mena

    2002-01-01

    The Ashtekar-Barbero formulation of general relativity admits a one-parameter family of canonical transformations that preserves the expressions of the Gauss and diffeomorphism constraints. The loop quantization of the connection formalism based on each of these canonical sets leads to different predictions. This phenomenon is called the Immirzi ambiguity. It has been recently argued that this ambiguity could be generalized to the extent of a spatially dependent function instead of a parameter. This would ruin the predictability of loop quantum gravity. We prove that such expectations are not realized, so that the Immirzi ambiguity introduces exclusively a freedom in the choice of a real number. (letter to the editor)

  20. Escape trajectories of solar sails and general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Kezerashvili, Roman Ya. [Physics Department, New York City College of Technology, City University of New York, 300 Jay Street, Brooklyn, NY 11201 (United States); Graduate School and University Center, City University of New York, 365 Fifth Avenue, New York, NY 10016 (United States); Vazquez-Poritz, Justin F., E-mail: jvazquez-poritz@citytech.cuny.ed [Physics Department, New York City College of Technology, City University of New York, 300 Jay Street, Brooklyn, NY 11201 (United States); Graduate School and University Center, City University of New York, 365 Fifth Avenue, New York, NY 10016 (United States)

    2009-11-16

    General relativity can have a significant impact on the long-range escape trajectories of solar sails deployed near the sun. For example, spacetime curvature in the vicinity of the sun can cause a solar sail traveling from about 4 solar radii to 2550 AU to be deflected by on the order of a million kilometers, and should therefore be taken into account at the beginning of the mission. There are a number of smaller general relativistic effects, such as frame dragging due to the slow rotation of the sun which can cause a deflection of more than one thousand kilometers.

  1. Escape trajectories of solar sails and general relativity

    International Nuclear Information System (INIS)

    Kezerashvili, Roman Ya.; Vazquez-Poritz, Justin F.

    2009-01-01

    General relativity can have a significant impact on the long-range escape trajectories of solar sails deployed near the sun. For example, spacetime curvature in the vicinity of the sun can cause a solar sail traveling from about 4 solar radii to 2550 AU to be deflected by on the order of a million kilometers, and should therefore be taken into account at the beginning of the mission. There are a number of smaller general relativistic effects, such as frame dragging due to the slow rotation of the sun which can cause a deflection of more than one thousand kilometers.

  2. Towards a Relation Extraction Framework for Cyber-Security Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Corinne L [ORNL; Bridges, Robert A [ORNL; Huffer, Kelly M [ORNL; Goodall, John R [ORNL

    2015-01-01

    In order to assist security analysts in obtaining information pertaining to their network, such as novel vulnerabilities, exploits, or patches, information retrieval methods tailored to the security domain are needed. As labeled text data is scarce and expensive, we follow developments in semi-supervised NLP and implement a bootstrapping algorithm for extracting security entities and their relationships from text. The algorithm requires little input data, specifically, a few relations or patterns (heuristics for identifying relations), and incorporates an active learning component which queries the user on the most important decisions to prevent drifting the desired relations. Preliminary testing on a small corpus shows promising results, obtaining precision of .82.

  3. [Current concepts in pathogenesis of age-related macular degeneration].

    Science.gov (United States)

    Kubicka-Trząska, Agnieszka; Karska-Basta, Izabella; Romanowska-Dixon, Bożena

    2014-01-01

    Age-related macular degeneration is the leading cause of central blindness in elderly population of the western world. The pathogenesis of this disease, likely multifactorial, is not well known, although a number of theories have been put forward, including oxidative stress, genetic interactions, hemodynamic imbalance, immune and inflammatory processes. The understanding of age-related macular degeneration pathogenesis will give rise to new approaches in prevention and treatment of the early and late stages of both atrophic and neovascular age-related macular degeneration.

  4. Iconic gestures prime related concepts: an ERP study.

    Science.gov (United States)

    Wu, Ying Croon; Coulson, Seana

    2007-02-01

    To assess priming by iconic gestures, we recorded EEG (at 29 scalp sites) in two experiments while adults watched short, soundless videos of spontaneously produced, cospeech iconic gestures followed by related or unrelated probe words. In Experiment 1, participants classified the relatedness between gestures and words. In Experiment 2, they attended to stimuli, and performed an incidental recognition memory test on words presented during the EEG recording session. Event-related potentials (ERPs) time-locked to the onset of probe words were measured, along with response latencies and word recognition rates. Although word relatedness did not affect reaction times or recognition rates, contextually related probe words elicited less-negative ERPs than did unrelated ones between 300 and 500 msec after stimulus onset (N400) in both experiments. These findings demonstrate sensitivity to semantic relations between iconic gestures and words in brain activity engendered during word comprehension.

  5. Relationship of sexual assault with self-concept and general health in victims referred to forensic Center in Ahvaz city.

    Science.gov (United States)

    Alboebadi, F; Afshari, P; Jamshidi, F; Poor, Rm; Cheraghi, M

    We aimed to study the relationship of sexual assault with self-concept and the general health of the victims referred to forensics in Ahvaz city (Iran). It was a cross-sectional descriptive and analytical study that was designed by two groups as case and control which has done on 128 subjects. Sixty-four rape victims who were referred to the forensic center, considered as case group and in control group, 64 people who were being referred to health clinics in Ahvaz city. The data were collected through Rogers's standard self-concept and general health questionnaires. Questionnaires were filled in self-completion way. Data had entered and analyzed by using SPSS software (version 22). A level of significance was less than 0.05. The average score of self-concept in the case group was 14.97 ±4.78 and in control group was 6.08 ±2.9. Average score of general health of the case and control groups, respectively, were 51.09 ±18.07 and 16.92 ±12.79. A significant statistical difference between the average score of self-concept, social functioning, physical and general health components in the groups was observed. More negative self-concept and vulnerable general health was observed in the rape victims group than in the control group. Providing counseling and health services and family and social support of these victims can be effective in their general health promotion.

  6. Formal structures, the concepts of covariance, invariance, equivalent reference frames, and the principle Relativity

    Science.gov (United States)

    Rodrigues, W. A.; Scanavini, M. E. F.; de Alcantara, L. P.

    1990-02-01

    In this paper a given spacetime theory T is characterized as the theory of a certain species of structure in the sense of Bourbaki [1]. It is then possible to clarify in a rigorous way the concepts of passive and active covariance of T under the action of the manifold mapping group G M . For each T, we define also an invariance group G I T and, in general, G I T ≠ G M . This group is defined once we realize that, for each τ ∈ ModT, each explicit geometrical object defining the structure can be classified as absolute or dynamical [2]. All spacetime theories possess also implicit geometrical objects that do not appear explicitly in the structure. These implicit objects are not absolute nor dynamical. Among them there are the reference frame fields, i.e., “timelike” vector fields X ∈ TU,U subseteq M M, where M is a manifold which is part of ST, a substructure for each τ ∈ ModT, called spacetime. We give a physically motivated definition of equivalent reference frames and introduce the concept of the equivalence group of a class of reference frames of kind X according to T, G X T. We define that T admits a weak principle of relativity (WPR) only if G X T ≠ identity for some X. If G X T = G I T for some X, we say that T admits a strong principle of relativity (PR). The results of this paper generalize and clarify several results obtained by Anderson [2], Scheibe [3], Hiskes [4], Recami and Rodrigues [5], Friedman [6], Fock [7], and Scanavini [8]. Among the novelties here, there is the realization that the definitions of G I T and G X T can be given only when certain boundary conditions for the equations of motion of T can be physically realizable in the domain U U subseteq M M, where a given reference frame is defined. The existence of physically realizable boundary conditions for each τ ∈ ModT (in ∂ U), in contrast with the mathematically possible boundary condition, is then seen to be essential for the validity of a principle of relativity for T

  7. Comparison of Einstein-Boltzmann solvers for testing general relativity

    Science.gov (United States)

    Bellini, E.; Barreira, A.; Frusciante, N.; Hu, B.; Peirone, S.; Raveri, M.; Zumalacárregui, M.; Avilez-Lopez, A.; Ballardini, M.; Battye, R. A.; Bolliet, B.; Calabrese, E.; Dirian, Y.; Ferreira, P. G.; Finelli, F.; Huang, Z.; Ivanov, M. M.; Lesgourgues, J.; Li, B.; Lima, N. A.; Pace, F.; Paoletti, D.; Sawicki, I.; Silvestri, A.; Skordis, C.; Umiltà, C.; Vernizzi, F.

    2018-01-01

    We compare Einstein-Boltzmann solvers that include modifications to general relativity and find that, for a wide range of models and parameters, they agree to a high level of precision. We look at three general purpose codes that primarily model general scalar-tensor theories, three codes that model Jordan-Brans-Dicke (JBD) gravity, a code that models f (R ) gravity, a code that models covariant Galileons, a code that models Hořava-Lifschitz gravity, and two codes that model nonlocal models of gravity. Comparing predictions of the angular power spectrum of the cosmic microwave background and the power spectrum of dark matter for a suite of different models, we find agreement at the subpercent level. This means that this suite of Einstein-Boltzmann solvers is now sufficiently accurate for precision constraints on cosmological and gravitational parameters.

  8. New ghost-free extensions of general relativity

    International Nuclear Information System (INIS)

    Mann, R.B.

    1989-01-01

    The method of algebraic extension is shown to yield a large class of gravitational theories which are extensions of general relativity. Requiring positivity of energy in the flat-space limit of such theories provides some constraints, but a large set of theories of potential phenomenological interest survives this condition. Explicit examples of such theories include the non-symmetric gravitational theory, algebraically extended Hilbert gravity and a one-parameter family of theories with dynamical torsion. In general such theories do not alter general relativistic post-Newtonian predictions for time delay experiments; rather they alter the non-linearities of the post-Newtonian gravitational potential. Such effects may be probed by measuring periastron shifts, as in the eclipsing binary systems Di Her and As Cam, as well as in the binary pulsar PSR 1913 + 16 (author)

  9. Isotropic extensions of the vacuum solutions in general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Molina, C. [Universidade de Sao Paulo (USP), SP (Brazil); Martin-Moruno, Prado [Victoria University of Wellington (New Zealand); Gonzalez-Diaz, Pedro F. [Consejo Superior de Investigaciones Cientificas, Madrid (Spain)

    2012-07-01

    Full text: Spacetimes described by spherically symmetric solutions of Einstein's equations are of paramount importance both in astrophysical applications and theoretical considerations. And among those, black holes are highlighted. In vacuum, Birkhoff's theorem and its generalizations to non-asymptotically flat cases uniquely fix the metric as the Schwarzschild, Schwarzschild-de Sitter or Schwarzschild-anti-de Sitter geometries, the vacuum solutions of the usual general relativity with zero, positive or negative values for the cosmological constant, respectively. In this work we are mainly interested in black holes in a cosmological environment. Of the two main assumptions of the cosmological principle, homogeneity is lost when compact objects are considered. Nevertheless isotropy is still possible, and we enforce this condition. Within this context, we investigate spatially isotropic solutions close - continuously deformable - to the usual vacuum solutions. We obtain isotropic extensions of the usual spherically symmetric vacuum geometries in general relativity. Exact and perturbative solutions are derived. Maximal extensions are constructed and their causal structures are discussed. The classes of geometries obtained include black holes in compact and non-compact universes, wormholes in the interior region of cosmological horizons, and anti-de Sitter geometries with excess/deficit solid angle. The tools developed here are applicable in more general contexts, with extensions subjected to other constraints. (author)

  10. Noncommutative unification of general relativity and quantum mechanics

    International Nuclear Information System (INIS)

    Heller, Michael; Pysiak, Leszek; Sasin, Wieslaw

    2005-01-01

    We present a model unifying general relativity and quantum mechanics based on a noncommutative geometry. This geometry is developed in terms of a noncommutative algebra A which is defined on a transformation groupoid Γ given by the action of a noncompact group G on the total space E of a principal fiber bundle over space-time M. The case is important since to obtain physical effects predicted by the model we should assume that G is a Lorentz group or some of its representations. We show that the generalized Einstein equation of the model has the form of the eigenvalue equation for the generalized Ricci operator, and all relevant operators in the quantum sector of the model are random operators; we study their dynamics. We also show that the model correctly reproduces general relativity and the usual quantum mechanics. It is interesting that the latter is recovered by performing the measurement of any observable. In the act of such a measurement the model 'collapses' to the usual quantum mechanics

  11. General Theory of Relativity: Will It Survive the Next Decade?

    Science.gov (United States)

    Bertolami, Orfeu; Paramos, Jorge; Turyshev, Slava G.

    2006-01-01

    The nature of gravity is fundamental to our understanding of our own solar system, the galaxy and the structure and evolution of the Universe. Einstein's general theory of relativity is the standard model that is used for almost ninety years to describe gravitational phenomena on these various scales. We review the foundations of general relativity, discuss the recent progress in the tests of relativistic gravity, and present motivations for high-accuracy gravitational experiments in space. We also summarize the science objectives and technology needs for the laboratory experiments in space with laboratory being the entire solar system. We discuss the advances in our understanding of fundamental physics anticipated in the near future and evaluate discovery potential for the recently proposed gravitational experiments.

  12. Academic Training: Einstein and beyond: Introduction to General relativity

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 3, 4, 5, 6, 7 October from 11:00 to 12:00 - Main Auditorium, bldg. 500 Einstein and beyond: Introduction to General relativity by N. Straumann / Institut fur theoretische physics, Univ. Zürich We review the enduring achievements of Einstein's papers of 1905 and their impact on the further developments in physics. Program : Lectures I and II:Einstein's Contributions to Statistical Mechanics and Quantum Theory Lecture III:Einstein's Thesis at the University of Zürich Lecture IV: From Special to General Relativity Lecture V: The History and the Mystery of the Cosmological Constant ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch

  13. Relations between task delegation and job satisfaction in general practice

    DEFF Research Database (Denmark)

    Riisgaard, Helle; Nexøe, Jørgen; Videbæk Le, Jette

    2016-01-01

    practitioners' and their staff's job satisfaction appears to be sparse even though job satisfaction is acknowledged as an important factor associated with both patient satisfaction and medical quality of care. Therefore, the overall aim of this study was 1) to review the current research on the relation between...... task delegation and general practitioners' and their staff's job satisfaction and, additionally, 2) to review the evidence of possible explanations for this relation. METHODS: A systematic literature review. We searched the four databases PubMed, Cinahl, Embase, and Scopus systematically. The immediate...... attitude towards task delegation was positive and led to increased job satisfaction, probably because task delegation comprised a high degree of work autonomy. CONCLUSIONS: The few studies included in our review suggest that task delegation within general practice may be seen by the staff as an overall...

  14. Testing General Relativity with the Shadow Size of Sgr A(*).

    Science.gov (United States)

    Johannsen, Tim; Broderick, Avery E; Plewa, Philipp M; Chatzopoulos, Sotiris; Doeleman, Sheperd S; Eisenhauer, Frank; Fish, Vincent L; Genzel, Reinhard; Gerhard, Ortwin; Johnson, Michael D

    2016-01-22

    In general relativity, the angular radius of the shadow of a black hole is primarily determined by its mass-to-distance ratio and depends only weakly on its spin and inclination. If general relativity is violated, however, the shadow size may also depend strongly on parametric deviations from the Kerr metric. Based on a reconstructed image of Sagittarius A^{*} (Sgr A^{*}) from a simulated one-day observing run of a seven-station Event Horizon Telescope (EHT) array, we employ a Markov chain Monte Carlo algorithm to demonstrate that such an observation can measure the angular radius of the shadow of Sgr A^{*} with an uncertainty of ∼1.5  μas (6%). We show that existing mass and distance measurements can be improved significantly when combined with upcoming EHT measurements of the shadow size and that tight constraints on potential deviations from the Kerr metric can be obtained.

  15. A century of general relativity: astrophysics and cosmology.

    Science.gov (United States)

    Blandford, R D

    2015-03-06

    One hundred years after its birth, general relativity has become a highly successful physical theory in the sense that it has passed a large number of experimental and observational tests and finds extensive application to a wide variety of cosmic phenomena. It remains an active area of research as new tests are on the way, epitomized by the exciting prospect of detecting gravitational waves from merging black holes. General relativity is the essential foundation of the standard model of cosmology and underlies our description of the black holes and neutron stars that are ultimately responsible for the most powerful and dramatic cosmic sources. Its interface with physics on the smallest and largest scales will continue to provide fertile areas of investigation in its next century. Copyright © 2015, American Association for the Advancement of Science.

  16. A student's manual for A first course in general relativity

    CERN Document Server

    Scott, Robert B

    2016-01-01

    This comprehensive student manual has been designed to accompany the leading textbook by Bernard Schutz, A First Course in General Relativity, and uses detailed solutions, cross-referenced to several introductory and more advanced textbooks, to enable self-learners, undergraduates and postgraduates to master general relativity through problem solving. The perfect accompaniment to Schutz's textbook, this manual guides the reader step-by-step through over 200 exercises, with clear easy-to-follow derivations. It provides detailed solutions to almost half of Schutz's exercises, and includes 125 brand new supplementary problems that address the subtle points of each chapter. It includes a comprehensive index and collects useful mathematical results, such as transformation matrices and Christoffel symbols for commonly studied spacetimes, in an appendix. Supported by an online table categorising exercises, a Maple worksheet and an instructors' manual, this text provides an invaluable resource for all students and in...

  17. Assessing tolerance for wildlife: Clarifying relations between concepts and measures

    Science.gov (United States)

    Bruskotter, Jeremy T.; Singh, Ajay; Fulton, David C.; Slagle, Kristina

    2015-01-01

    Two parallel lines of inquiry, tolerance for and acceptance of wildlife populations, have arisen in the applied literature on wildlife conservation to assess probability of successfully establishing or increasing populations of controversial species. Neither of these lines is well grounded in social science theory, and diverse measures have been employed to assess tolerance, which inhibits comparability across studies. We empirically tested behavioral measures of tolerance against self-reports of previous policy-relevant behavior and behavioral intentions. Both composite behavioral measures were strongly correlated (r > .70) with two attitudinal measures of tolerance commonly employed in the literature. The strong correlation between attitudinal and behavioral measures suggests existing attitudinal measures represent valid, parsimonious measures of tolerance that may be useful when behavioral measures are too cumbersome or misreporting of behavior is anticipated. Our results demonstrate how behavioral measures of tolerance provide additional, useful information beyond general attitudinal measures.

  18. A theory of strong interactions ''from'' general relativity

    International Nuclear Information System (INIS)

    Caldirola, P.; Recami, E.

    1979-01-01

    In this paper a previous letter (where, among other things, a classical ''quark confinement'' was derived from general relativity plus dilatation-covariance), is completed by showing that the theory is compatible also with quarks ''asymptotic freedom''. Then -within a bi-scale theory of gravitational and strong interactions- a classical field theory is proposed for the (strong) interactions between hadrons. Various consequences are briefly analysed

  19. On the geometry of null congruences in general relativity

    International Nuclear Information System (INIS)

    Ahsan, Zafar; Malik, N.P.

    1977-01-01

    Some theorems for the null congruences within the framework of general theory of relativity are given. These theorems are important in themselves as they illustrate the geometric meaning of the spin coefficients. The newly developed Geroch-Held-Penrose (GHP) formalism has been used throughout the investigations. The salient features of GHP formalism that are necessary for the present work are given and these techniques are applied to a pair of null congruences C(l) and C(n). (author)

  20. Testing general relativity at cosmological scales: Implementation and parameter correlations

    International Nuclear Information System (INIS)

    Dossett, Jason N.; Ishak, Mustapha; Moldenhauer, Jacob

    2011-01-01

    The testing of general relativity at cosmological scales has become a possible and timely endeavor that is not only motivated by the pressing question of cosmic acceleration but also by the proposals of some extensions to general relativity that would manifest themselves at large scales of distance. We analyze here correlations between modified gravity growth parameters and some core cosmological parameters using the latest cosmological data sets including the refined Cosmic Evolution Survey 3D weak lensing. We provide the parametrized modified growth equations and their evolution. We implement known functional and binning approaches, and propose a new hybrid approach to evolve the modified gravity parameters in redshift (time) and scale. The hybrid parametrization combines a binned redshift dependence and a smooth evolution in scale avoiding a jump in the matter power spectrum. The formalism developed to test the consistency of current and future data with general relativity is implemented in a package that we make publicly available and call ISiTGR (Integrated Software in Testing General Relativity), an integrated set of modified modules for the publicly available packages CosmoMC and CAMB, including a modified version of the integrated Sachs-Wolfe-galaxy cross correlation module of Ho et al. and a new weak-lensing likelihood module for the refined Hubble Space Telescope Cosmic Evolution Survey weak gravitational lensing tomography data. We obtain parameter constraints and correlation coefficients finding that modified gravity parameters are significantly correlated with σ 8 and mildly correlated with Ω m , for all evolution methods. The degeneracies between σ 8 and modified gravity parameters are found to be substantial for the functional form and also for some specific bins in the hybrid and binned methods indicating that these degeneracies will need to be taken into consideration when using future high precision data.

  1. The role of general relativity in the uncertainty principle

    International Nuclear Information System (INIS)

    Padmanabhan, T.

    1986-01-01

    The role played by general relativity in quantum mechanics (especially as regards the uncertainty principle) is investigated. It is confirmed that the validity of time-energy uncertainty does depend on gravitational time dilation. It is also shown that there exists an intrinsic lower bound to the accuracy with which acceleration due to gravity can be measured. The motion of equivalence principle in quantum mechanics is clarified. (author)

  2. Introduction to General Relativity and Black Holes (5/5)

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    Conceptual foundations of General Relativity (GR). Uniqueness of GR. Mathematical framework: tensor calculus, Riemannian geometry, connection, 'spin' connection, curvature, Cartan's form calculus. Hilbert-Einstein action, Einstein equations. Weak gravitational fields. Post Newtonian Approximation. Gravitanional Waves. Exact solutions. Killing vectors. Experimental tests. Black Holes: extensions of the Schwarzschild solution; Kerr-Newman holes; no-hair theorems; energtics of black holes; the membrane approach; quantum mechanics of black holes; Bekenstein entropy; Hawking temperature; black holes and string theory.

  3. Introduction to General Relativity and Black Holes (3/5)

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    Conceptual foundations of General Relativity (GR). Uniqueness of GR. Mathematical framework: tensor calculus, Riemannian geometry, connection, 'spin' connection, curvature, Cartan's form calculus. Hilbert-Einstein action, Einstein equations. Weak gravitational fields. Post Newtonian Approximation. Gravitanional Waves. Exact solutions. Killing vectors. Experimental tests. Black Holes: extensions of the Schwarzschild solution; Kerr-Newman holes; no-hair theorems; energtics of black holes; the membrane approach; quantum mechanics of black holes; Bekenstein entropy; Hawking temperature; black holes and string theory.

  4. Introduction to General Relativity and Black Holes (1/5)

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    Conceptual foundations of General Relativity (GR). Uniqueness of GR. Mathematical framework: tensor calculus, Riemannian geometry, connection, 'spin' connection, curvature, Cartan's form calculus. Hilbert-Einstein action, Einstein equations. Weak gravitational fields. Post Newtonian Approximation. Gravitanional Waves. Exact solutions. Killing vectors. Experimental tests. Black Holes: extensions of the Schwarzschild solution; Kerr-Newman holes; no-hair theorems; energtics of black holes; the membrane approach; quantum mechanics of black holes; Bekenstein entropy; Hawking temperature; black holes and string theory.

  5. Introduction to General Relativity and Black Holes (2/5)

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    Conceptual foundations of General Relativity (GR). Uniqueness of GR. Mathematical framework: tensor calculus, Riemannian geometry, connection, 'spin' connection, curvature, Cartan's form calculus. Hilbert-Einstein action, Einstein equations. Weak gravitational fields. Post Newtonian Approximation. Gravitanional Waves. Exact solutions. Killing vectors. Experimental tests. Black Holes: extensions of the Schwarzschild solution; Kerr-Newman holes; no-hair theorems; energtics of black holes; the membrane approach; quantum mechanics of black holes; Bekenstein entropy; Hawking temperature; black holes and string theory.

  6. Introduction to General Relativity and Black Holes (4/5)

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    Conceptual foundations of General Relativity (GR). Uniqueness of GR. Mathematical framework: tensor calculus, Riemannian geometry, connection, 'spin' connection, curvature, Cartan's form calculus. Hilbert-Einstein action, Einstein equations. Weak gravitational fields. Post Newtonian Approximation. Gravitanional Waves. Exact solutions. Killing vectors. Experimental tests. Black Holes: extensions of the Schwarzschild solution; Kerr-Newman holes; no-hair theorems; energtics of black holes; the membrane approach; quantum mechanics of black holes; Bekenstein entropy; Hawking temperature; black holes and string theory.

  7. New relativistic generalization of the Heisenberg commutation relations

    International Nuclear Information System (INIS)

    Bohm, A.; Loewe, M.; Magnollay, P.; Tarlini, M.; Aldinger, R.R.; Kielanowski, P.

    1984-01-01

    A relativistic generalization of the Heisenberg commutation relations is suggested which is different from the conventional ones used for the intrinsic coordinates and momenta in the relativistic oscillator model and the relativistic string. This new quantum relativistic oscillator model is determined by the requirement that it gives a unified description of relativistic vibrations and rotations and contracts in the nonrelativistic limit c -1 →0 into the usual nonrelativistic harmonic oscillator

  8. Generalization of uncertainty relation for quantum and stochastic systems

    Science.gov (United States)

    Koide, T.; Kodama, T.

    2018-06-01

    The generalized uncertainty relation applicable to quantum and stochastic systems is derived within the stochastic variational method. This relation not only reproduces the well-known inequality in quantum mechanics but also is applicable to the Gross-Pitaevskii equation and the Navier-Stokes-Fourier equation, showing that the finite minimum uncertainty between the position and the momentum is not an inherent property of quantum mechanics but a common feature of stochastic systems. We further discuss the possible implication of the present study in discussing the application of the hydrodynamic picture to microscopic systems, like relativistic heavy-ion collisions.

  9. Tests of general relativity from timing the double pulsar.

    Science.gov (United States)

    Kramer, M; Stairs, I H; Manchester, R N; McLaughlin, M A; Lyne, A G; Ferdman, R D; Burgay, M; Lorimer, D R; Possenti, A; D'Amico, N; Sarkissian, J M; Hobbs, G B; Reynolds, J E; Freire, P C C; Camilo, F

    2006-10-06

    The double pulsar system PSR J0737-3039A/B is unique in that both neutron stars are detectable as radio pulsars. They are also known to have much higher mean orbital velocities and accelerations than those of other binary pulsars. The system is therefore a good candidate for testing Einstein's theory of general relativity and alternative theories of gravity in the strong-field regime. We report on precision timing observations taken over the 2.5 years since its discovery and present four independent strong-field tests of general relativity. These tests use the theory-independent mass ratio of the two stars. By measuring relativistic corrections to the Keplerian description of the orbital motion, we find that the "post-Keplerian" parameter s agrees with the value predicted by general relativity within an uncertainty of 0.05%, the most precise test yet obtained. We also show that the transverse velocity of the system's center of mass is extremely small. Combined with the system's location near the Sun, this result suggests that future tests of gravitational theories with the double pulsar will supersede the best current solar system tests. It also implies that the second-born pulsar may not have formed through the core collapse of a helium star, as is usually assumed.

  10. Explanatory and illustrative visualization of special and general relativity.

    Science.gov (United States)

    Weiskopf, Daniel; Borchers, Marc; Ertl, Thomas; Falk, Martin; Fechtig, Oliver; Frank, Regine; Grave, Frank; King, Andreas; Kraus, Ute; Müller, Thomas; Nollert, Hans-Peter; Rica Mendez, Isabel; Ruder, Hanns; Schafhitzel, Tobias; Schär, Sonja; Zahn, Corvin; Zatloukal, Michael

    2006-01-01

    This paper describes methods for explanatory and illustrative visualizations used to communicate aspects of Einstein's theories of special and general relativity, their geometric structure, and of the related fields of cosmology and astrophysics. Our illustrations target a general audience of laypersons interested in relativity. We discuss visualization strategies, motivated by physics education and the didactics of mathematics, and describe what kind of visualization methods have proven to be useful for different types of media, such as still images in popular science magazines, film contributions to TV shows, oral presentations, or interactive museum installations. Our primary approach is to adopt an egocentric point of view: The recipients of a visualization participate in a visually enriched thought experiment that allows them to experience or explore a relativistic scenario. In addition, we often combine egocentric visualizations with more abstract illustrations based on an outside view in order to provide several presentations of the same phenomenon. Although our visualization tools often build upon existing methods and implementations, the underlying techniques have been improved by several novel technical contributions like image-based special relativistic rendering on GPUs, special relativistic 4D ray tracing for accelerating scene objects, an extension of general relativistic ray tracing to manifolds described by multiple charts, GPU-based interactive visualization of gravitational light deflection, as well as planetary terrain rendering. The usefulness and effectiveness of our visualizations are demonstrated by reporting on experiences with, and feedback from, recipients of visualizations and collaborators.

  11. Modeling of charged anisotropic compact stars in general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Dayanandan, Baiju; Maurya, S.K.; T, Smitha T. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman)

    2017-06-15

    A charged compact star model has been determined for anisotropic fluid distribution. We have solved the Einstein-Maxwell field equations to construct the charged compact star model by using the radial pressure, the metric function e{sup λ} and the electric charge function. The generic charged anisotropic solution is verified by exploring different physical conditions like causality condition, mass-radius relation and stability of the solution (via the adiabatic index, TOV equations and the Herrera cracking concept). It is observed that the present charged anisotropic compact star model is compatible with the star PSR 1937+21. Moreover, we also presented the EOS ρ = f(p) for the present charged compact star model. (orig.)

  12. The concept of entropy. Relation between action and entropy

    Directory of Open Access Journals (Sweden)

    J.-P.Badiali

    2005-01-01

    Full Text Available The Boltzmann expression for entropy represents the traditional link between thermodynamics and statistical mechanics. New theoretical developments like the Unruh effect or the black hole theory suggest a new definition of entropy. In this paper we consider the thermodynamics of black holes as seriously founded and we try to see what we can learn from it in the case of ordinary systems for which a pre-relativistic description is sufficient. We introduce a space-time model and a new definition of entropy considering the thermal equilibrium from a dynamic point of view. Then we show that for black hole and ordinary systems we have the same relation relating a change of entropy to a change of action.

  13. Seeding science success: Relations of secondary students' science self-concepts and motivation with aspirations and achievement

    Science.gov (United States)

    Chandrasena, Wanasinghe Durayalage

    This research comprises three inter-related synergistic studies. Study 1 aims to develop a psychometrically sound tool to measure secondary students' science self-concepts, motivation, and aspirations in biology, chemistry, earth and environmental methodology to explicate students' and teachers' views, practices, and personal experiences, to identify the barriers to undertaking science for secondary students and to provide rich insights into the relations of secondary students' science self-concepts and motivation with their aspirations and achievement. Study 3 will detect additional issues that may not necessarily be identifiable from the quantitative findings of Study 2. The psychometric properties of the newly developed instrument demonstrated that students' science self-concepts were domain specific, while science motivation and science aspirations were not. Students' self-concepts in general science, chemistry, and physics were stronger for males than females. Students' self-concepts in general science and biology became stronger for students in higher years of secondary schooling. Students' science motivation did not vary across gender and year levels. Though students' science aspirations did not vary across gender, they became stronger with age. In general, students' science self-concepts and science motivation were positively related to science aspirations and science achievement. Specifically, students' year level, biology self-concept, and physics self concept predicted their science and career aspirations. Biology self-concept predicted teacher ratings of students' achievement, and students' general science self-concepts predicted their achievement according to students' ratings. Students' year level and intrinsic motivation in science were predictors of their science aspirations, and intrinsic motivation was a greater significant predictor of students' achievement, according to student ratings. Based upon students' and teachers' perceptions, the

  14. Longitudinal Relation Between General Well-Being and Self-Esteem.

    Science.gov (United States)

    Barendregt, Charlotte S; van der Laan, André M; Bongers, Ilja L; van Nieuwenhuizen, Chijs

    2016-12-01

    This study investigated the longitudinal relation between general well-being and self-esteem of male adolescents with severe psychiatric disorders. Moreover, the transition out of secure residential care was studied. Adolescents ( N = 172) were assessed three times with 6 months between each assessment. The sample comprised adolescents who were admitted throughout the entire study ( n = 116) and who had been discharged at 6/12 months follow-up ( n = 56). General well-being and self-esteem were stable concepts over time. The relation between general well-being and self-esteem differed for both groups. Among the admitted group general well-being positively predicted self-esteem and self-esteem negatively predicted general well-being from Time 2 to Time 3. Among the discharged adolescents, self-esteem at Time 1 positively predicted general well-being at Time 2 and general well-being at Time 2 positively predicted self-esteem at Time 3. Changing social contexts, as well as problems experienced during the transition out of secure care, might affect this relationship.

  15. The concept Conduct of Everyday Life in relation to toddlers

    DEFF Research Database (Denmark)

    Juhl, Pernille

    , they are involved in preventive interventions. I conducted participatory observations with the children in their everyday life. Overall, the study stresses that even small children must be perceived as active participants who act upon and struggle with different conditions and meaning making processes across......In the paper I discuss how small children (0-4 year) develop through ‘conducting everyday life’ across contexts (Holzkamp 2013). I discuss how this process of conducting everyday life is essential when discussing the ‘good life for children’ from a child perspective. These issues are addressed...... contexts (home, day care, part-time foster family) and in relation to other co-participants....

  16. A clinical trial design using the concept of proportional time using the generalized gamma ratio distribution.

    Science.gov (United States)

    Phadnis, Milind A; Wetmore, James B; Mayo, Matthew S

    2017-11-20

    Traditional methods of sample size and power calculations in clinical trials with a time-to-event end point are based on the logrank test (and its variations), Cox proportional hazards (PH) assumption, or comparison of means of 2 exponential distributions. Of these, sample size calculation based on PH assumption is likely the most common and allows adjusting for the effect of one or more covariates. However, when designing a trial, there are situations when the assumption of PH may not be appropriate. Additionally, when it is known that there is a rapid decline in the survival curve for a control group, such as from previously conducted observational studies, a design based on the PH assumption may confer only a minor statistical improvement for the treatment group that is neither clinically nor practically meaningful. For such scenarios, a clinical trial design that focuses on improvement in patient longevity is proposed, based on the concept of proportional time using the generalized gamma ratio distribution. Simulations are conducted to evaluate the performance of the proportional time method and to identify the situations in which such a design will be beneficial as compared to the standard design using a PH assumption, piecewise exponential hazards assumption, and specific cases of a cure rate model. A practical example in which hemorrhagic stroke patients are randomized to 1 of 2 arms in a putative clinical trial demonstrates the usefulness of this approach by drastically reducing the number of patients needed for study enrollment. Copyright © 2017 John Wiley & Sons, Ltd.

  17. [ISO 15189 accreditation in clinical microbiology laboratory: general concepts and the status in our laboratory].

    Science.gov (United States)

    Akyar, Işin

    2009-10-01

    One important trend in the laboratory profession and quality management is the global convergence of laboratory operations. The goal of an accredited medical laboratory is to continue "offering useful laboratory service for diagnosis and treatment of the patients and also aid to the health of the nation". An accredited clinical laboratory is managed by a quality control system, it is competent technically and the laboratory service meets the needs of all its patients and physicians by taking the responsibility of all the medical tests and therapies. For this purpose, ISO 15189 international standard has been prepared by 2003. ISO 15189 standard is originated from the arrangement of ISO 17025 and ISO 9001:2000 standards. Many countries such as England, Germany, France, Canada and Australia have preferred ISO 15189 as their own laboratory accreditation programme, meeting all the requirements of their medical laboratories. The accreditation performance of a clinical microbiology laboratory is mainly based on five essential points; preanalytical, analytical, postanalytical, quality control programmes (internal, external, interlaboratory) and audits (internal, external). In this review article, general concepts on ISO 15189 accreditation standards for the clinical microbiology laboratories have been summarized and the status of a private laboratory (Acibadem LabMed, Istanbul) in Turkey has been discussed.

  18. The General Adaptation Syndrome: A Foundation for the Concept of Periodization.

    Science.gov (United States)

    Cunanan, Aaron J; DeWeese, Brad H; Wagle, John P; Carroll, Kevin M; Sausaman, Robert; Hornsby, W Guy; Haff, G Gregory; Triplett, N Travis; Pierce, Kyle C; Stone, Michael H

    2018-04-01

    Recent reviews have attempted to refute the efficacy of applying Selye's general adaptation syndrome (GAS) as a conceptual framework for the training process. Furthermore, the criticisms involved are regularly used as the basis for arguments against the periodization of training. However, these perspectives fail to consider the entirety of Selye's work, the evolution of his model, and the broad applications he proposed. While it is reasonable to critically evaluate any paradigm, critics of the GAS have yet to dismantle the link between stress and adaptation. Disturbance to the state of an organism is the driving force for biological adaptation, which is the central thesis of the GAS model and the primary basis for its application to the athlete's training process. Despite its imprecisions, the GAS has proven to be an instructive framework for understanding the mechanistic process of providing a training stimulus to induce specific adaptations that result in functional enhancements. Pioneers of modern periodization have used the GAS as a framework for the management of stress and fatigue to direct adaptation during sports training. Updates to the periodization concept have retained its founding constructs while explicitly calling for scientifically based, evidence-driven practice suited to the individual. Thus, the purpose of this review is to provide greater clarity on how the GAS serves as an appropriate mechanistic model to conceptualize the periodization of training.

  19. Specifying the Concept of Future Generations for Addressing Issues Related to High-Level Radioactive Waste.

    Science.gov (United States)

    Kermisch, Celine

    2016-12-01

    The nuclear community frequently refers to the concept of "future generations" when discussing the management of high-level radioactive waste. However, this notion is generally not defined. In this context, we have to assume a wide definition of the concept of future generations, conceived as people who will live after the contemporary people are dead. This definition embraces thus each generation following ours, without any restriction in time. The aim of this paper is to show that, in the debate about nuclear waste, this broad notion should be further specified and to clarify the related implications for nuclear waste management policies. Therefore, we provide an ethical analysis of different management strategies for high-level waste in the light of two principles, protection of future generations-based on safety and security-and respect for their choice. This analysis shows that high-level waste management options have different ethical impacts across future generations, depending on whether the memory of the waste and its location is lost, or not. We suggest taking this distinction into account by introducing the notions of "close future generations" and "remote future generations", which has important implications on nuclear waste management policies insofar as it stresses that a retrievable disposal has fewer benefits than usually assumed.

  20. Gauge stability of 3+1 formulations of general relativity

    International Nuclear Information System (INIS)

    Khokhlov, A M; Novikov, I D

    2002-01-01

    We present a general approach to the analysis of gauge stability of 3+1 formulations of general relativity (GR). Evolution of coordinate perturbations and the corresponding perturbations of lapse and shift can be described by a system of eight quasi-linear partial differential equations. Stability with respect to gauge perturbations depends on the choice of gauge and a background metric, but it does not depend on a particular form of a 3+1 system if its constrained solutions are equivalent to those of the Einstein equations. Stability of a number of known gauges is investigated in the limit of short-wavelength perturbations. All fixed gauges except a synchronous gauge are found to be ill posed. A maximal slicing gauge and its parabolic extension are shown to be ill posed as well. A necessary condition is derived for well-posedness of metric-dependent algebraic gauges. Well-posed metric-dependent gauges are found, however, to be generally unstable. Both instability and ill-posedness are associated with the existence of growing modes of coordinate perturbations related to perturbations of physical accelerations of reference frames

  1. The general dispersion relation of induced streaming instabilities in quantum outflow systems

    Energy Technology Data Exchange (ETDEWEB)

    Mehdian, H., E-mail: mehdian@khu.ac.ir; Hajisharifi, K.; Hasanbeigi, A. [Department of Physics and Institute for Plasma Research, Kharazmi University, 49 Dr Mofatteh Avenue, Tehran 15614 (Iran, Islamic Republic of)

    2015-11-15

    In this manuscript the dispersion relations of streaming instabilities, by using the unique property (neutralized in charge and current by default) of plasma shells colliding, have been generalized and studied. This interesting property for interpenetrating beams enables one to find the general dispersion relations without any restrictions used in the previous works in this area. In our previous work [H. Mehdian et al., ApJ. 801, 89 (2015)], employing the plasma shell concept and boost frame method, the general dispersion relation for filamentation instability has been derived in the relativistic classical regime. But in this paper, using the above mentioned concepts, the general dispersion relations (for each of streaming instabilities, filamentation, two-stream and multi-stream) in the non-relativistic quantum regime have been derived by employing the quantum fluid equations together with Maxwell equations. The derived dispersion relations enable to describe any arbitrary system of interacting two and three beams, justified neutralization condition, by choosing the inertial reference frame embedded on the one of the beams. Furthermore, by the numerical and analytical study of these dispersion relations, many new features of streaming instabilities (E.g. their cut-off wave numbers and growth rates) in terms of all involved parameters have been illustrated. The obtained results in this paper can be used to describe many astrophysical systems and laboratory astrophysics setting, such as collision of non-parallel plasma shells over a background plasma or the collision of three neutralized plasma slabs, and justifying the many plasma phenomena such as particle accelerations and induced fields.

  2. Humanity as a Contested Concept: Relations between Disability and ‘Being Human’

    Directory of Open Access Journals (Sweden)

    Paul van Trigt

    2016-11-01

    Full Text Available This editorial presents the theme and approach of the themed issue “Humanity as a Contested Concept: Relations between Disability and ‘Being Human’”. The way in which the concept of humanity is or must be related to disability is critically investigated from different disciplinary perspectives in the themed issue, which is, moreover, situated in the field of disability studies and related to discussions about posthumanism. The argument is made that humanity is a concept that needs to be constantly reflected upon from a disability studies perspective. Finally, the contributions of the themed issue are briefly outlined.

  3. The Motivational Effects of Types of Computer Feedback on Children's Learning and Retention of Relational Concepts.

    Science.gov (United States)

    Armour-Thomas, Eleanor; And Others

    The effects of different types of feedback in computer assisted instruction (CAI) on relational concept learning by young children were compared in this study. Subjects were 89 kindergarten students whose primary language was English, and whose performance on the Boehm Test of Basic Concepts was within the average range chosen from classes in a…

  4. Prospective Mathematics Teachers' Ability to Identify Mistakes Related to Angle Concept of Sixth Grade Students

    Science.gov (United States)

    Arslan, Cigdem; Erbay, Hatice Nur; Guner, Pinar

    2017-01-01

    In the present study we try to highlight prospective mathematics teachers' ability to identify mistakes of sixth grade students related to angle concept. And also we examined prospective mathematics teachers' knowledge of angle concept. Study was carried out with 30 sixth-grade students and 38 prospective mathematics teachers. Sixth grade students…

  5. Are digital games perceived as fun or danger? Supporting and suppressing different game-related concepts.

    Science.gov (United States)

    Kneer, Julia; Glock, Sabine; Beskes, Sara; Bente, Gary

    2012-11-01

    Violent digital game play has repeatedly been discussed to be strongly related to aggression and emotional instability. Thus, digital game players have to defend against these prejudices through emphasizing positive game-related concepts such as achievement, social interaction, and immersion. We experimentally investigated which positive- and negative-concept players and nonplayers activate when being primed with digital games. Participants were either exposed to violent or nonviolent game content and were required to work on a lexical decision task. Results showed that response latencies for the concept aggression and emotional instability were faster than for neutral concepts (not associated with digital games), but slower than for the positive concepts sociality and competition. Both players and nonplayers felt the need to defend against prejudices and emphasized positive concepts. Neither their own gaming experience nor the game content influenced the results. Being a part of the net generation is sufficient to suppress negative game-related concepts and to support positive game-related concepts to protect digital games as common leisure activity among peers.

  6. Preservice Teachers' Professional Knowledge and Its Relation to Academic Self-Concept

    Science.gov (United States)

    Paulick, Isabell; Großschedl, Jörg; Harms, Ute; Möller, Jens

    2016-01-01

    We investigated the factorial structure of preservice teachers' academic self-concept with regard to three domains of professional knowledge (content knowledge [CK], pedagogical content knowledge [PCK], and pedagogical/psychological knowledge [PPK]). We also analyzed the relation between preservice teachers' academic self-concept and their…

  7. A database for extract solutions in general relativity

    International Nuclear Information System (INIS)

    Horvath, I.; Horvath, Zs.; Lukacs, B.

    1993-07-01

    The field of equations of General Relativity are coupled second order partial differential equations. Therefore no general method is known to generate solutions for prescribed initial and boundary conditions. In addition, the meaning of the particular coordinates cannot be known until the metric is not found. Therefore the result must permit arbitrary coordinate transformations, i.e. most kinds of approximating methods are improper. So exact solutions are necessary and each one is an individual product. For storage, retrieval and comparison database handling techniques are needed. A database of 1359 articles is shown (cross-referred at least once) published in 156 more important journals. It can be handled by dBase III plus on IBM PC's. (author) 5 refs.; 5 tabs

  8. Solitons and action propagation according to general relativity (Part one)

    International Nuclear Information System (INIS)

    Stavroulakis, N.

    1987-01-01

    The current exposition of General Relativity involves two contradictory statements: at first it is asserted that every change in the distribution of matter brings about gravitational waves. Then it is asserted that, specifically, no gravitational effect is produced by the pulsations of a spherical source. By analysing the second statement, we conclude that it arises from a vicious circle tied up with mathematical errors which led to the Schwarzschild solution and the theory of black holes. In order to obtain the correct formulation of the problem, we establish rigorously the general form of the θ(4)-invariant space-time metrics on R x R 3 and bring out the principles allowing to associate gravitational effects with oscillating masses [fr

  9. Charged point particles with magnetic moment in general relativity

    International Nuclear Information System (INIS)

    Amorim, R.; Tiomno, J.

    1977-01-01

    Halbwachs Lagrangean formalism for the theory of charged point particles with spin (g = 2) is generalized and formulated in General Relativity for particles of arbitrary charge and magnetic moment. Equations are obtained, both corresponding to Frenkel's condition Ssub(μν)Xsup(ν) = 0 and to Nakano's condition Ssub(μν)Psup(ν) = 0. With the later condition the exact equations are highly coupled and non linear. When linearized in the electromagnetic and gravitational fields they coincide with de Groot-Suttorp equations for vanishing gravitational fields and with Dixon-Wald equations in the absence of electromagnetic field. The equations corresponding to Frenkel's condition, when linearized in Ssub(μν), coincide with Papapetrou's and Frenkel's equations in the corresponding limits [pt

  10. General relativity with spin and torsion: Foundations and prospects

    International Nuclear Information System (INIS)

    Hehl, F.W.; von der Heyde, P.; Kerlick, G.D.; Nester, J.M.

    1976-01-01

    A generalization of Einstein's gravitational theory is discussed in which the spin of matter as well as its mass plays a dynamical role. The spin of matter couples to a non-Riemannian structure in space-time, Cartan's torsion tensor. The theory which emerges from taking this coupling into account, the U 4 theory of gravitation, predicts, in addition to the usual infinite-range gravitational interaction mediated by the metric field, a new, very weak, spin contact interaction of gravitational origin. We summarize here all the available theoretical evidence that argues for admitting spin and torsion into a relativistic gravitational theory. Not least among this evidence is the demonstration that the U 4 theory arises as a local gauge theory for the Poincare group in space-time. The deviations of the U 4 theory from standard general relativity are estimated, and the prospects for further theoretical development are assessed

  11. Current Concept of IgG4-Related Disease.

    Science.gov (United States)

    Okazaki, Kazuichi; Umehara, Hisanori

    2017-01-01

    IgG4-related disease (IgG4-RD) is a fibroinflammatory disease of unknown etiology, which is characterized by a tendency to form tumefactive lesions, increased serum levels of IgG4, and massive infiltration of IgG4-positive plasma cells with storiform fibrosis and/or obliterative phlebitis. Patients with IgG4-RD have frequently multiorgan involvements such as the pancreas, biliary tree, salivary glands, periorbital tissues, kidneys, lungs, lymph nodes, and retroperitoneum. IgG4-RD mainly affects middle-aged to elderly men except for involvement in lachrymal and salivary glands, so-called Mikulicz's disease. The clinical manifestations of IgG4-RD depend on individually involved organs and respond well to steroid, but the prognosis still remains unclear. Some patients develop serious complications such as obstructive jaundice due to hepatic, gallbladder, or pancreatic lesions; hydronephrosis due to retroperitoneal fibrosis; or respiratory symptoms due to pulmonary lesions. Nomenclatures of individual organ manifestation of IgG4-RD have been internationally consented.

  12. The revival of General Relativity at Princeton: Daring Conservatism

    Science.gov (United States)

    Brill, Dieter; Blum, Alexander

    2018-01-01

    After General Relativity was established in essentially its present form in 1915 it was celebrated as a great success of mathematical physics. But the initial hopes for this theory as a basis for all of physics began to fade in the next several decades, as General Relativity was relegated to the margins of theoretical physics. Its fate began to rise in the 1950's in a revival of interest and research that over time made gravitational physics one of the hottest research topics it is today. One center of this renaissance was Princeton, where two relative newcomers explored new and different approaches to gravitational physics. Robert Dicke showed that gravity is not as inaccessible to experiment as was thought, and John Wheeler propelled it into the mainstream by proposing highly original and imaginative consequences of Einstein's theory. We will concentrate on these ideas that, in his characteristically intriguing style, Wheeler called "Daring Conservatism" - a term well known to his associates, but one he never mentioned in print. With the aid of unpublished manuscripts and notes we will explore Daring Conservatism's origin and motivation, its successes and failures, and the legacy it left behind.

  13. The revival of General Relativity at Princeton: Daring Conservatism

    Directory of Open Access Journals (Sweden)

    Brill Dieter

    2018-01-01

    Full Text Available After General Relativity was established in essentially its present form in 1915 it was celebrated as a great success of mathematical physics. But the initial hopes for this theory as a basis for all of physics began to fade in the next several decades, as General Relativity was relegated to the margins of theoretical physics. Its fate began to rise in the 1950's in a revival of interest and research that over time made gravitational physics one of the hottest research topics it is today. One center of this renaissance was Princeton, where two relative newcomers explored new and different approaches to gravitational physics. Robert Dicke showed that gravity is not as inaccessible to experiment as was thought, and John Wheeler propelled it into the mainstream by proposing highly original and imaginative consequences of Einstein's theory. We will concentrate on these ideas that, in his characteristically intriguing style, Wheeler called "Daring Conservatism" -- a term well known to his associates, but one he never mentioned in print. With the aid of unpublished manuscripts and notes we will explore Daring Conservatism's origin and motivation, its successes and failures, and the legacy it left behind.

  14. How unique is continuity of care? A review of continuity and related concepts.

    Science.gov (United States)

    Uijen, Annemarie A; Schers, Henk J; Schellevis, François G; van den Bosch, Wil J H M

    2012-06-01

    The concept of 'continuity of care' has changed over time and seems to be entangled with other care concepts, for example coordination and integration of care. These concepts may overlap, and differences between them often remain unclear. In order to clarify the confusion of tongues and to identify core values of these patient-centred concepts, we provide a historical overview of continuity of care and four related concepts: coordination of care, integration of care, patient-centred care and case management. We identified and reviewed articles including a definition of one of these concepts by performing an extensive literature search in PubMed. In addition, we checked the definition of these concepts in the Oxford English Dictionary. Definitions of continuity, coordination, integration, patient-centred care and case management vary over time. These concepts show both great entanglement and also demonstrate differences. Three major common themes could be identified within these concepts: personal relationship between patient and care provider, communication between providers and cooperation between providers. Most definitions of the concepts are formulated from the patient's perspective. The identified themes appear to be core elements of care to patients. Thus, it may be valuable to develop an instrument to measure these three common themes universally. In the patient-centred medical home, such an instrument might turn out to be an important quality measure, which will enable researchers and policy makers to compare care settings and practices and to evaluate new care interventions from the patient perspective.

  15. Longitudinal relations between symptoms, neurocognition, and self-concept in schizophrenia.

    Science.gov (United States)

    Hesse, Klaus; Kriston, Levente; Wittorf, Andreas; Herrlich, Jutta; Wölwer, Wolfgang; Klingberg, Stefan

    2015-01-01

    Cognitive models suggest that the self-concept of persons with psychosis can be fundamentally affected. Self-concepts were found to be related to different symptom domains when measured concurrently. Longitudinal investigations to disentangle the possible causal associations are rare. We examined a sample of 160 people with a diagnosis of schizophrenia who took part in a psychotherapy study. All participants had the DSM-IV diagnosis of a schizophrenia and pronounced negative symptoms. Neurocognition, symptoms, and self-concepts were assessed at two time points 12 months apart. Structural equation modeling was used to test whether symptoms influence self-concepts (scar-model) or self-concepts affect symptoms (vulnerability model). Negative symptoms correlated concurrently with self-concepts. Neurocognitive deficits are associated with more negative self-concepts 12 months later. Interpersonal self-concepts were found to be relevant for paranoia. The findings implicate that if deficits in neurocognition are present, fostering a positive self-concept should be an issue in therapy. Negative interpersonal self-concept indicates an increased risk for paranoid delusions in the course of 1 year. New aspects for cognitive models in schizophrenia and clinical implications are discussed.

  16. Longitudinal relations between symptoms, neurocognition and self-concept in schizophrenia

    Directory of Open Access Journals (Sweden)

    Klaus eHesse

    2015-07-01

    Full Text Available Objective: Cognitive models suggest that the self-concept of persons with psychosis can be fundamentally affected. Self-concepts were found to be related to different symptom domains when measured concurrently. Longitudinal investigations to disentangle the possible causal associations are rare. Method: We examined a sample of 160 people with a diagnosis of schizophrenia who took part in a psychotherapy study. All participants had the DSM-IV diagnosis of a schizophrenia and pronounced negative symptoms. Neurocognition, symptoms and self-concepts were assessed at two time points twelve months apart. Structural equation modelling was used to test whether symptoms influence self-concepts (scar-model or self-concepts affect symptoms (vulnerability model. Results: Negative symptoms correlated concurrently with self-concepts. Neurocognitive deficits are associated with more negative self-concepts twelve months later. Interpersonal self-concepts were found to be relevant for paranoia. Conclusion: The findings implicate that if deficits in neurocognition are present, fostering a positive self-concept should be an issue in therapy. Negative interpersonal self-concept indicates an increased risk for paranoid delusions in the course of one year. New aspects for cognitive models in schizophrenia and clinical implications are discussed

  17. Age and Gender Differences in the Relation between Self-Concept Facets and Self-Esteem

    Science.gov (United States)

    Arens, A. Katrin; Hasselhorn, Marcus

    2014-01-01

    This study tested whether the gender intensification hypothesis applies to relations between multiple domain-specific self-concept facets and self-esteem. This hypothesis predicts gender-stereotypic differences in these relations and assumes they intensify with age. Furthermore, knowledge about gender-related or age-related differences in…

  18. On complicated continuum models in general relativity theory

    International Nuclear Information System (INIS)

    Tsypkin, A.G.

    1987-01-01

    A set of Euler's equations is obtained in the framework of the general relativity theory from the variational equation in the supposition that lagrangian of the material depends on additional (in comparison with classical theories) thermodynamic parameters and taking into account possible irreversible processes. Momentum equations for continuous medium of a thermodynamic closed set are shown to be the consequence of field equations. The problem about the type of energy-momentum material tensor in the presence of derivatives from additional thermodynamic parameters in the number of lagrangian arguments is considered

  19. A superconducting gyroscope to test Einstein's general theory of relativity

    Science.gov (United States)

    Everitt, C. W. F.

    1978-01-01

    Schiff (1960) proposed a new test of general relativity based on measuring the precessions of the spin axes of gyroscopes in earth orbit. Since 1963 a Stanford research team has been developing an experiment to measure the two effects calculated by Schiff. The gyroscope consists of a uniform sphere of fused quartz 38 mm in diameter, coated with superconductor, electrically suspended and spinning at about 170 Hz in vacuum. The paper describes the proposed flight apparatus and the current state of development of the gyroscope, including techniques for manufacturing and measuring the gyro rotor and housing, generating ultralow magnetic fields, and mechanizing the readout.

  20. Lectures on General Relativity, Cosmology and Quantum Black Holes

    Science.gov (United States)

    Ydri, Badis

    2017-07-01

    This book is a rigorous text for students in physics and mathematics requiring an introduction to the implications and interpretation of general relativity in areas of cosmology. Readers of this text will be well prepared to follow the theoretical developments in the field and undertake research projects as part of an MSc or PhD programme. This ebook contains interactive Q&A technology, allowing the reader to interact with the text and reveal answers to selected exercises posed by the author within the book. This feature may not function in all formats and on reading devices.

  1. Hamiltonian Dynamics and Positive Energy in General Relativity

    Energy Technology Data Exchange (ETDEWEB)

    Deser, S. [Physics Department, Brandeis University, Waltham, MA (United States)

    1969-07-15

    A review is first given of the Hamiltonian formulation of general relativity; the gravitational field is a self-interacting massless spin-two system within the framework of ordinary Lorentz covariant field theory. The recently solved problem of positive-definiteness of the field energy is then discussed. The latter, a conserved functional of the dynamical variables, is shown to have only one extremum, a local minimum, which is the vacuum state (flat space). This implies positive energy for the field, with the vacuum as ground-state. Similar results hold when minimally coupled matter is present. (author)

  2. Indefinite-metric quantum field theory of general relativity, 5

    International Nuclear Information System (INIS)

    Nakanishi, Noboru

    1979-01-01

    The indefinite-metric quantum field theory of general relativity is extended to the coupled system of the gravitational field and a Dirac field on the basis of the vierbein formalism. The six extra degrees of freedom involved in vierbein are made unobservable by introducing an extra subsidiary condition Q sub(s) + phys> = 0, where Q sub(s) denotes a new BRS charge corresponding to the local Lorentz invariance. It is shown that a manifestly covariant, unitary, canonical theory can be constructed consistently on the basis of the vierbein formalism. (author)

  3. Proposed new test of spin effects in general relativity.

    Science.gov (United States)

    O'Connell, R F

    2004-08-20

    The recent discovery of a double-pulsar PSR J0737-3039A/B provides an opportunity of unequivocally observing, for the first time, spin effects in general relativity. Existing efforts involve detection of the precession of the spinning body itself. However, for a close binary system, spin effects on the orbit may also be discernible. Not only do they add to the advance of the periastron (by an amount which is small compared to the conventional contribution) but they also give rise to a precession of the orbit about the spin direction. The measurement of such an effect would also give information on the moment of inertia of pulsars.

  4. Conservation and non-conservation in general relativity

    International Nuclear Information System (INIS)

    Bondi, H.

    1990-01-01

    The difficulties of conservation laws in general relativity are discussed, with special reference to the non-tangible nature of gravitational energy and its transformation into tangible forms of energy. Inductive transfer of energy is marked out as wholly distinct from wave transfer. Slow (adiabatic) changes are utilized to make clear, in the axi-symmetric case, that the mass of an isolated body is conserved irrespective of any local changes (e.g. of shape) and that in inductive transfer the movement of energy between two bodies can readily be traced by the changes in their masses. (author)

  5. Equivalence of the theories of reciprocity and general relativity

    International Nuclear Information System (INIS)

    Qadir, A.

    1976-01-01

    Khan's theory (Nuovo Cimento; 57B:321 (1968) and Int. J. Theor. Phys.; 6:383 (1972)) of reciprocity has been shown to be equivalent to the theory of general relativity (in a conformally flat space-time) in that the same predictions are made physically. It is is proved that, since 'centrifugal forces' are used by Khan, gravitational phenomena are being considered equal in status to electromagnetic phenomena, and hence the difference claimed to exist between Milne's theory and Khan's theory disappears. (author)

  6. Self-concept mediates the relation between achievement and emotions in mathematics.

    Science.gov (United States)

    Van der Beek, Jojanneke P J; Van der Ven, Sanne H G; Kroesbergen, Evelyn H; Leseman, Paul P M

    2017-09-01

    Mathematics achievement is related to positive and negative emotions. Pekrun's control-value theory of achievement emotions suggests that students' self-concept (i.e., self-appraisal of ability) may be an important mediator of the relation between mathematics achievement and emotions. The aims were (1) to investigate the mediating role of mathematical self-concept in the relation between mathematics achievement and the achievement emotions of enjoyment and anxiety in a comprehensive model, and (2) to test possible differences in this mediating role between low-, average-, and high-achieving students. Participants were ninth-grade students (n = 1,014) from eight secondary schools in the Netherlands. Through an online survey including mathematical problems, students were asked to indicate their levels of mathematics enjoyment, anxiety, and self-concept. Structural equation modelling was used to test the mediating role of self-concept in the relation between mathematics achievement and emotions. Multigroup analyses were performed to compare these relations across the three achievement groups. Results confirmed full mediation of the relation between mathematics achievement and emotions by mathematical self-concept. Furthermore, we found higher self-concepts, more enjoyment and less math anxiety in high-achieving students compared to their average and low-achieving peers. No differences across these achievement groups were found in the relations in the mediational model. Mathematical self-concept plays a pivotal role in students' appraisal of mathematics. Mathematics achievement is only one factor explaining students' self-concept. Likely also classroom instruction and teachers' feedback strategies help to shape students' self-concept. © 2017 The British Psychological Society.

  7. Gyroscope precession in special and general relativity from basic principles

    Science.gov (United States)

    Jonsson, Rickard M.

    2007-05-01

    In special relativity a gyroscope that is suspended in a torque-free manner will precess as it is moved along a curved path relative to an inertial frame S. We explain this effect, which is known as Thomas precession, by considering a real grid that moves along with the gyroscope, and that by definition is not rotating as observed from its own momentary inertial rest frame. From the basic properties of the Lorentz transformation we deduce how the form and rotation of the grid (and hence the gyroscope) will evolve relative to S. As an intermediate step we consider how the grid would appear if it were not length contracted along the direction of motion. We show that the uncontracted grid obeys a simple law of rotation. This law simplifies the analysis of spin precession compared to more traditional approaches based on Fermi transport. We also consider gyroscope precession relative to an accelerated reference frame and show that there are extra precession effects that can be explained in a way analogous to the Thomas precession. Although fully relativistically correct, the entire analysis is carried out using three-vectors. By using the equivalence principle the formalism can also be applied to static spacetimes in general relativity. As an example, we calculate the precession of a gyroscope orbiting a static black hole.

  8. Kerr-Taub-NUT General Frame, Energy, and Momentum in Teleparallel Equivalent of General Relativity

    Directory of Open Access Journals (Sweden)

    Gamal G. L. Nashed

    2012-01-01

    Full Text Available A new exact solution describing a general stationary and axisymmetric object of the gravitational field in the framework of teleparallel equivalent of general relativity (TEGR is derived. The solution is characterized by three parameters “the gravitational mass M, the rotation a, and the NUT L.” The vierbein field is axially symmetric, and the associated metric gives the Kerr-Taub-NUT spacetime. Calculation of the total energy using two different methods, the gravitational energy momentum and the Riemannian connection 1-form Γα̃β, is carried out. It is shown that the two methods give the same results of energy and momentum. The value of energy is shown to depend on the mass M and the NUT parameter L. If L is vanishing, then the total energy reduced to the energy of Kerr black hole.

  9. BOOK REVIEW: A First Course in General Relativity (Second Edition) A First Course in General Relativity (Second Edition)

    Science.gov (United States)

    Poisson, Eric

    2010-05-01

    A few years ago, in my review of Sean Carroll's book in Classical and Quantum Gravity [1], I wrote that while the 1970s was the decade of Weinberg [2] and Misner, Thorne and Wheeler [3], and while the eighties was the decade of Schutz [4] and Wald [5], the 2000s was clearly the decade of Hartle [6] and Carroll [7]. In my opinion, these books continue to stand out in the surprisingly dense crowd of introductory textbooks on general relativity. At the dawn of this new decade I look forward to see what fresh pedagogical insights will be produced next, and who will be revealed as the winners of the 2010s. It is, of course, much too early to tell, but Schutz is back, and he will set the standard just as he did back in 1985. This is the long-awaited second edition of his `First Course', a short, accessible, and very successful introduction to general relativity. The changes from the first edition are modest: Schutz wisely refrained from bloating the text with new topics, and limited himself to updating his discussion of gravitational-wave sources and detectors, neutron-star and black-hole astrophysics, and suggestions for further reading. Most importantly, he completely rewrote the chapter on cosmology, a topic that has evolved enormously since the first edition. The book begins in chapter 1 with a beautiful review of special relativity that emphasizes spacetime geometry and stays away from an algebraic approach based on the Lorentz transformation, which appears only later in the chapter. This is followed up in chapters 2 and 3 with an introduction to vector and tensor analysis in flat spacetime. The point of view is modern (tensors are defined as linear mapping of vectors and one-forms into real numbers) but the presentation is very accessible and avoids an overload of mathematical fine print. In chapter 4 the book introduces the spacetime description of fluids; it is here that the energy-momentum tensor makes its first appearance. The move to curved spacetime is

  10. Geometrical determination of the constant of motion in General Relativity

    International Nuclear Information System (INIS)

    Catoni, F.; Cannata, R.; Zampetti, P.

    2009-01-01

    In recent time a theorem, due to E. Beltrami, through which the integration of the geodesic equations of a curved manifold is obtained by means of a merely geometric method, has been revisited. This way of dealing with the problem is well in accordance with the geometric spirit of the Theory of General Relativity. In this paper we show another relevant consequence of this method. Actually, the constants of the motion, introduced in this geometrical way that is completely independent of Newton theory, are related to the conservation laws for test particles in the Einstein theory. These conservation laws may be compared with the conservation laws of Newton. In particular, by the conservation of energy (E) and the L z component of angular momentum, the equivalence of the conservation laws for the Schwarzschild field is verified and the difference between Newton and Einstein theories for the rotating bodies (Kerr metric) is obtained in a straightforward way.

  11. The problem of time quantum mechanics versus general relativity

    CERN Document Server

    Anderson, Edward

    2017-01-01

    This book is a treatise on time and on background independence in physics. It first considers how time is conceived of in each accepted paradigm of physics: Newtonian, special relativity, quantum mechanics (QM) and general relativity (GR). Substantial differences are moreover uncovered between what is meant by time in QM and in GR. These differences jointly source the Problem of Time: Nine interlinked facets which arise upon attempting concurrent treatment of the QM and GR paradigms, as is required in particular for a background independent theory of quantum gravity. A sizeable proportion of current quantum gravity programs - e.g. geometrodynamical and loop quantum gravity approaches to quantum GR, quantum cosmology, supergravity and M-theory - are background independent in this sense. This book's foundational topic is thus furthermore of practical relevance in the ongoing development of quantum gravity programs. This book shows moreover that eight of the nine facets of the Problem of Time already occur upon ...

  12. Nonlinear generalization of special relativity at very high energies

    International Nuclear Information System (INIS)

    Winterberg, F.

    1984-01-01

    It is shown, that the introduction of a fundamental length constant into the operator representation of the quantum mechanical commutation relations, as suggested by Bagge, leads to a nonlinear generalization of the Lorentz transformations. The theory requires the introduction of a substratum (ether) and which can be identified as the zero point vacuum energy. At very high energies a non-Lorentz invariant behaviour for the cross sections between elementary particles is predicted. Using the Einstein clock synchronisation definition, the velocity of light is also constant and equal to c in the new theory, but the zero point vacuum energy becomes finite, as are all other quantities which are divergent in Lorentz invariant quantum field theories. In the limiting case where the length constant is set equal to zero, the zero point vacuum energy diverges and special relativity is recovered. (orig.) [de

  13. Correlated quadratures of resonance fluorescence and the generalized uncertainty relation

    Science.gov (United States)

    Arnoldus, Henk F.; George, Thomas F.; Gross, Rolf W. F.

    1994-01-01

    Resonance fluorescence from a two-state atom has been predicted to exhibit quadrature squeezing below the Heisenberg uncertainty limit, provided that the optical parameters (Rabi frequency, detuning, laser linewidth, etc.) are chosen carefully. When the correlation between two quadratures of the radiation field does not vanish, however, the Heisenberg limit for quantum fluctuations might be an unrealistic lower bound. A generalized uncertainty relation, due to Schroedinger, takes into account the possible correlation between the quadrature components of the radiation, and it suggests a modified definition of squeezing. We show that the coherence between the two levels of a laser-driven atom is responsible for the correlation between the quadrature components of the emitted fluorescence, and that the Schrodinger uncertainty limit increases monotonically with the coherence. On the other hand, the fluctuations in the quadrature field diminish with an increasing coherence, and can disappear completely when the coherence reaches 1/2, provided that certain phase relations hold.

  14. Einstein and Beyond: A Critical Perspective on General Relativity

    Directory of Open Access Journals (Sweden)

    Ram Gopal Vishwakarma

    2016-05-01

    Full Text Available An alternative approach to Einstein’s theory of General Relativity (GR is reviewed, which is motivated by a range of serious theoretical issues inflicting the theory, such as the cosmological constant problem, presence of non-Machian solutions, problems related with the energy-stress tensor T i k and unphysical solutions. The new approach emanates from a critical analysis of these problems, providing a novel insight that the matter fields, together with the ensuing gravitational field, are already present inherently in the spacetime without taking recourse to T i k . Supported by lots of evidence, the new insight revolutionizes our views on the representation of the source of gravitation and establishes the spacetime itself as the source, which becomes crucial for understanding the unresolved issues in a unified manner. This leads to a new paradigm in GR by establishing equation R i k = 0 as the field equation of gravitation plus inertia in the very presence of matter.

  15. Development and evaluation of a thermochemistry concept inventory for college-level general chemistry

    Science.gov (United States)

    Wren, David A.

    The research presented in this dissertation culminated in a 10-item Thermochemistry Concept Inventory (TCI). The development of the TCI can be divided into two main phases: qualitative studies and quantitative studies. Both phases focused on the primary stakeholders of the TCI, college-level general chemistry instructors and students. Each phase was designed to collect evidence for the validity of the interpretations and uses of TCI testing data. A central use of TCI testing data is to identify student conceptual misunderstandings, which are represented as incorrect options of multiple-choice TCI items. Therefore, quantitative and qualitative studies focused heavily on collecting evidence at the item-level, where important interpretations may be made by TCI users. Qualitative studies included student interviews (N = 28) and online expert surveys (N = 30). Think-aloud student interviews (N = 12) were used to identify conceptual misunderstandings used by students. Novice response process validity interviews (N = 16) helped provide information on how students interpreted and answered TCI items and were the basis of item revisions. Practicing general chemistry instructors (N = 18), or experts, defined boundaries of thermochemistry content included on the TCI. Once TCI items were in the later stages of development, an online version of the TCI was used in expert response process validity survey (N = 12), to provide expert feedback on item content, format and consensus of the correct answer for each item. Quantitative studies included three phases: beta testing of TCI items (N = 280), pilot testing of the a 12-item TCI (N = 485), and a large data collection using a 10-item TCI ( N = 1331). In addition to traditional classical test theory analysis, Rasch model analysis was also used for evaluation of testing data at the test and item level. The TCI was administered in both formative assessment (beta and pilot testing) and summative assessment (large data collection), with

  16. Determination Motive through the Prism of the General Concept of the Motives of Human Behaviour

    Science.gov (United States)

    Veresha, Roman V.

    2016-01-01

    This research studies the problems of defining the concept of motive of crime in terms of the psychological concept of motives of human behavior. The purpose of this research is to define the motive of crime (which is yet undefined in spite of the longstanding existence of criminology) and to improve existing scientific theories regarding the…

  17. Fixing extensions to general relativity in the nonlinear regime

    Science.gov (United States)

    Cayuso, Juan; Ortiz, Néstor; Lehner, Luis

    2017-10-01

    The question of what gravitational theory could supersede General Relativity has been central in theoretical physics for decades. Many disparate alternatives have been proposed motivated by cosmology, quantum gravity and phenomenological angles, and have been subjected to tests derived from cosmological, solar system and pulsar observations typically restricted to linearized regimes. Gravitational waves from compact binaries provide new opportunities to probe these theories in the strongly gravitating/highly dynamical regimes. To this end however, a reliable understanding of the dynamics in such a regime is required. Unfortunately, most of these theories fail to define well posed initial value problems, which prevents at face value from meeting such challenge. In this work, we introduce a consistent program able to remedy this situation. This program is inspired in the approach to "fixing" viscous relativistic hydrodynamics introduced by Israel and Stewart in the late 70's. We illustrate how to implement this approach to control undesirable effects of higher order derivatives in gravity theories and argue how the modified system still captures the true dynamics of the putative underlying theories in 3 +1 dimensions. We sketch the implementation of this idea in a couple of effective theories of gravity, one in the context of Noncommutative Geometry, and one in the context of Chern-Simons modified General Relativity.

  18. Comment on "Ducklings imprint on the relational concept of 'same or different'".

    Science.gov (United States)

    Langbein, Jan; Puppe, Birger

    2017-02-24

    Martinho and Kacelnik (Reports, 15 July 2016, p. 286) reported that newly hatched ducklings imprinted on relational concepts. We argue that reanalyzing the data at the individual level shows that this conclusion cannot be applied for all sets of stimuli presented and that the ability to grasp relational concepts is limited to the stimulus category that is most beneficial for survival. Copyright © 2017, American Association for the Advancement of Science.

  19. Einstein's creative thinking and the general theory of relativity: a documented report.

    Science.gov (United States)

    Rothenberg, A

    1979-01-01

    A document written by Albert Einstein has recently come to light in which the eminent scientist described the actual sequence of his thoughts leading to the development of the general theory of relativity. The key creative thought was an instance of a type of creative cognition the author has previously designated "Janusian thinking," Janusian thinking consists of actively conceiving two or more opposite or antithetical concepts, ideas, or images simultaneously. This form of high-level secondary process cognition has been found to operate widely in art, science, and other fields.

  20. On unifying concepts in plasticity theory and related matters in numerical analysis

    International Nuclear Information System (INIS)

    Havner, K.S.

    1977-01-01

    This paper reviews a rate-independent theory (or class of theories) of multiple-mode plastic straining which unifies various constitutive equations of macroscopic solids and single crystals. Some consideration is given to the relationship between the multiple-mode theory and thermodynamic concepts; including physical aspects of finite distortion of metal crystals. Uniqueness criteria and related minimum principles in incremental (or 'rate-type') boundary value problems are presented for the general class at finite strain. Special circumstances (one being infinitesimal strain) are defined under which the uniqueness criteria assure convergence of a form of finite element approximation in the boundary value problem. Extensive reference is made to recently published work of Hill, Rice, Sewell and Havner. A symmetry postulate pertaining to the 'effective hardening moduli' plays a key role in the general theory. This postulate permits the adoption of Sewell's multiple-mode saddle function as a potential for stress and plastic mechanism rates and leads to the connection between uniqueness and (rate-type) minimum principles. The postulate has a remarkable consequence for application of a simple form of the theory to single crystals in the tensile test. At small strain this theory reduces to the classical Taylor hardening of crystals, which has had wide application in micromechanical calculations of crystalline aggregate models. At infinitesimal strain, and at finite strain when the two dominant principal stresses are everywhere tensile, additional minimum principles are given for the 'self-straining problem' which permit the independent variation of displacement and plastic mechanism rates

  1. Effects of Aging Stereotype Threat on Working Self-Concepts: An Event-Related Potentials Approach

    Directory of Open Access Journals (Sweden)

    Baoshan Zhang

    2017-07-01

    Full Text Available Although the influence of stereotype threat (ST on working self-concepts has been highlighted in recent years, its neural underpinnings are unclear. Notably, the aging ST, which largely influences older adults’ cognitive ability, mental and physical health, did not receive much attention. In order to investigate these issues, electroencephalogram (EEG data were obtained from older adults during a modified Stroop task using neutral words, positive and negative self-concept words in aging ST vs. neutral control conditions. Results showed longer reaction times (RTs for identifying colors of words under the aging ST compared to the neutral condition. More importantly, the negative self-concept elicited more positive late P300 amplitudes and enhanced theta band activities compared to the positive self-concept or neutral words under the aging ST condition, whereas no difference was found between these self-concepts and neutral words in the control condition. Furthermore, the aging ST induced smaller theta band synchronization and enhanced alpha band synchronization compared to the control condition. Moreover, we also observed valence differences in self-concepts where the negative self-concept words reduced early P150/N170 complex relative to neutral words. These findings suggest that priming ST could activate negative self-concepts as current working self-concept, and that this influence occurred during a late neural time course.

  2. Effects of Aging Stereotype Threat on Working Self-Concepts: An Event-Related Potentials Approach

    Science.gov (United States)

    Zhang, Baoshan; Lin, Yao; Gao, Qianyun; Zawisza, Magdalena; Kang, Qian; Chen, Xuhai

    2017-01-01

    Although the influence of stereotype threat (ST) on working self-concepts has been highlighted in recent years, its neural underpinnings are unclear. Notably, the aging ST, which largely influences older adults’ cognitive ability, mental and physical health, did not receive much attention. In order to investigate these issues, electroencephalogram (EEG) data were obtained from older adults during a modified Stroop task using neutral words, positive and negative self-concept words in aging ST vs. neutral control conditions. Results showed longer reaction times (RTs) for identifying colors of words under the aging ST compared to the neutral condition. More importantly, the negative self-concept elicited more positive late P300 amplitudes and enhanced theta band activities compared to the positive self-concept or neutral words under the aging ST condition, whereas no difference was found between these self-concepts and neutral words in the control condition. Furthermore, the aging ST induced smaller theta band synchronization and enhanced alpha band synchronization compared to the control condition. Moreover, we also observed valence differences in self-concepts where the negative self-concept words reduced early P150/N170 complex relative to neutral words. These findings suggest that priming ST could activate negative self-concepts as current working self-concept, and that this influence occurred during a late neural time course. PMID:28747885

  3. Auditing SNOMED CT hierarchical relations based on lexical features of concepts in non-lattice subgraphs.

    Science.gov (United States)

    Cui, Licong; Bodenreider, Olivier; Shi, Jay; Zhang, Guo-Qiang

    2018-02-01

    We introduce a structural-lexical approach for auditing SNOMED CT using a combination of non-lattice subgraphs of the underlying hierarchical relations and enriched lexical attributes of fully specified concept names. Our goal is to develop a scalable and effective approach that automatically identifies missing hierarchical IS-A relations. Our approach involves 3 stages. In stage 1, all non-lattice subgraphs of SNOMED CT's IS-A hierarchical relations are extracted. In stage 2, lexical attributes of fully-specified concept names in such non-lattice subgraphs are extracted. For each concept in a non-lattice subgraph, we enrich its set of attributes with attributes from its ancestor concepts within the non-lattice subgraph. In stage 3, subset inclusion relations between the lexical attribute sets of each pair of concepts in each non-lattice subgraph are compared to existing IS-A relations in SNOMED CT. For concept pairs within each non-lattice subgraph, if a subset relation is identified but an IS-A relation is not present in SNOMED CT IS-A transitive closure, then a missing IS-A relation is reported. The September 2017 release of SNOMED CT (US edition) was used in this investigation. A total of 14,380 non-lattice subgraphs were extracted, from which we suggested a total of 41,357 missing IS-A relations. For evaluation purposes, 200 non-lattice subgraphs were randomly selected from 996 smaller subgraphs (of size 4, 5, or 6) within the "Clinical Finding" and "Procedure" sub-hierarchies. Two domain experts confirmed 185 (among 223) suggested missing IS-A relations, a precision of 82.96%. Our results demonstrate that analyzing the lexical features of concepts in non-lattice subgraphs is an effective approach for auditing SNOMED CT. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Effects of Students' Pre- and Post-Laboratory Concept Maps on Students' Attitudes toward Chemistry Laboratory in University General Chemistry

    Science.gov (United States)

    Kilic, Ziya; Kaya, Osman Nafiz; Dogan, Alev

    2004-01-01

    The purpose of this study was to investigate the effects of scientific discussions based on student-constructed pre- and post-laboratory concept maps on students' attitudes toward chemistry laboratory in the university general chemistry. As part of instruction, during the first four laboratory sessions, students were taught how to construct and…

  5. Engagement and burnout at work, and related concepts for the 6th EWCS

    NARCIS (Netherlands)

    Houtman, I.L.D.; Schaufeli, W.B.

    2017-01-01

    Work engagement in Europe: an ultra-short work engagement scale and its relation with related concepts. Research and policy attention on work-related stress, mental health and well-being has increased, both in the international scientific literature as well as in society. Within the latter sphere,

  6. The generalized scheme-independent Crewther relation in QCD

    Science.gov (United States)

    Shen, Jian-Ming; Wu, Xing-Gang; Ma, Yang; Brodsky, Stanley J.

    2017-07-01

    The Principle of Maximal Conformality (PMC) provides a systematic way to set the renormalization scales order-by-order for any perturbative QCD calculable processes. The resulting predictions are independent of the choice of renormalization scheme, a requirement of renormalization group invariance. The Crewther relation, which was originally derived as a consequence of conformally invariant field theory, provides a remarkable connection between two observables when the β function vanishes: one can show that the product of the Bjorken sum rule for spin-dependent deep inelastic lepton-nucleon scattering times the Adler function, defined from the cross section for electron-positron annihilation into hadrons, has no pQCD radiative corrections. The ;Generalized Crewther Relation; relates these two observables for physical QCD with nonzero β function; specifically, it connects the non-singlet Adler function (Dns) to the Bjorken sum rule coefficient for polarized deep-inelastic electron scattering (CBjp) at leading twist. A scheme-dependent ΔCSB-term appears in the analysis in order to compensate for the conformal symmetry breaking (CSB) terms from perturbative QCD. In conventional analyses, this normally leads to unphysical dependence in both the choice of the renormalization scheme and the choice of the initial scale at any finite order. However, by applying PMC scale-setting, we can fix the scales of the QCD coupling unambiguously at every order of pQCD. The result is that both Dns and the inverse coefficient CBjp-1 have identical pQCD coefficients, which also exactly match the coefficients of the corresponding conformal theory. Thus one obtains a new generalized Crewther relation for QCD which connects two effective charges, αˆd (Q) =∑i≥1 αˆg1 i (Qi), at their respective physical scales. This identity is independent of the choice of the renormalization scheme at any finite order, and the dependence on the choice of the initial scale is negligible. Similar

  7. General concepts of ventricular function, Myocardial perfusion, and exercise physiology relevant to nuclear cardiology

    International Nuclear Information System (INIS)

    Kronenberg, M.W.; Becker, L.C.

    1988-01-01

    Knowledge of ventricular mechanics, the physiology of the coronary circulation, and exercise physiology is necessary for the accurate interpretation of radionuclide ventriculographic and myocardial perfusion images. This chapter outlines these important basic concepts as applied to the whole heart

  8. Generalized concept for the estimation of body dose for radiation workers exposed to external #betta#-rays

    International Nuclear Information System (INIS)

    Piesch, E.; Boehm, J.; Heinzelmann, M.

    1983-01-01

    In radiation protection monitoring the need exists for an estimation of body dose due to external #betta#-rays, for instance if the #betta#-dose rate at the working area is expected to be high according to the data of source activity or room contamination, the indicated dose values of a personal dosemeter exceed the operational limit for the organ or tissue depth of interest, or a person was exposed to a significant dose. On behalf of the Federal Ministry of the Interior, Federal Republic of Germany, a guideline is now under preparation which offers a standardized concept of the estimation of #betta#-doses in personnel monitoring. The calculation models discussed here will be used as a basis for any case of external #betta#-irradiation where, in connection with the German Radiation Protection Ordinance, the ICRP dose equivalent limits are reached or the dosemeter readings are not representative for an individual exposure. The generalized concept discussed in the paper relates to: the calculation of #betta#-dose on the basis of source activity or spectral particle fluence and takes into account the special cases of point sources, area sources and volume sources; the estimation of body dose on the basis of calculated data or measured results from area or personnel monitoring, taking into account the dose equivalent in different depths of tissue, in particular the dose equivalent to the skin, the lens of the eye and other organs; and finally the estimation of skin dose due to the contamination of the skin surface. Basic reference data are presented in order to estimate the dose equivalent of interest which varies significantly in the #betta#-radiation field as a function of the maximum #betta#-energy, distance to the source, size of the source, activity per area for surface contamination and activity per volume for air contamination

  9. Outer boundary as arrested history in general relativity

    International Nuclear Information System (INIS)

    Lau, Stephen R

    2002-01-01

    We present explicit outer boundary conditions for the canonical variables of general relativity. The conditions are associated with the causal evolution of a finite Cauchy domain, a so-called quasilocal boost, and they suggest a consistent scheme for modelling such an evolution numerically. The scheme involves a continuous boost in the spacetime orthogonal complement 'orthogonal' T p (B) of the tangent space T p (B) belonging to each point p on the system boundary B. We show how the boost rate may be computed numerically via equations similar to those appearing in canonical investigations of black-hole thermodynamics (although here holding at an outer two-surface rather than the bifurcate two-surface of a Killing horizon). We demonstrate the numerical scheme on a model example, the quasilocal boost of a spherical three-ball in Minkowski spacetime. Developing our general formalism with recent hyperbolic formulations of the Einstein equations in mind, we use Anderson and York's 'Einstein-Christoffel' hyperbolic system as the evolution equations for our numerical simulation of the model

  10. Outer boundary as arrested history in general relativity

    Science.gov (United States)

    Lau, Stephen R.

    2002-06-01

    We present explicit outer boundary conditions for the canonical variables of general relativity. The conditions are associated with the causal evolution of a finite Cauchy domain, a so-called quasilocal boost, and they suggest a consistent scheme for modelling such an evolution numerically. The scheme involves a continuous boost in the spacetime orthogonal complement ⊥Tp(B) of the tangent space Tp(B) belonging to each point p on the system boundary B. We show how the boost rate may be computed numerically via equations similar to those appearing in canonical investigations of black-hole thermodynamics (although here holding at an outer two-surface rather than the bifurcate two-surface of a Killing horizon). We demonstrate the numerical scheme on a model example, the quasilocal boost of a spherical three-ball in Minkowski spacetime. Developing our general formalism with recent hyperbolic formulations of the Einstein equations in mind, we use Anderson and York's 'Einstein-Christoffel' hyperbolic system as the evolution equations for our numerical simulation of the model.

  11. Outer boundary as arrested history in general relativity

    CERN Document Server

    Lau, S

    2002-01-01

    We present explicit outer boundary conditions for the canonical variables of general relativity. The conditions are associated with the causal evolution of a finite Cauchy domain, a so-called quasilocal boost, and they suggest a consistent scheme for modelling such an evolution numerically. The scheme involves a continuous boost in the spacetime orthogonal complement 'orthogonal' T sub p (B) of the tangent space T sub p (B) belonging to each point p on the system boundary B. We show how the boost rate may be computed numerically via equations similar to those appearing in canonical investigations of black-hole thermodynamics (although here holding at an outer two-surface rather than the bifurcate two-surface of a Killing horizon). We demonstrate the numerical scheme on a model example, the quasilocal boost of a spherical three-ball in Minkowski spacetime. Developing our general formalism with recent hyperbolic formulations of the Einstein equations in mind, we use Anderson and York's 'Einstein-Christoffel' hy...

  12. Accelerating particles in general relativity (stationary C-metric)

    International Nuclear Information System (INIS)

    Farhoosh, H.

    1979-01-01

    The purpose of this thesis is to study the physical and geometrical properties of uniformly accelerating particles in the general theory of relativity and it consists of four main parts. In the first part the structure of the Killing horizons in the static vacuum C-metric which represents the gravitational field of a uniformly accelerating Schwarzschild like particle (non-rotating and spherically symmetric) is studied. In the second part these results are generalized to include the effects of the rotation of the source. For small acceleration and small rotation this solution reveals the existance of three Killing horizons. Two the these horizons are the Schwarzschild and the Rindler surfaces which are mainly due to the mass and the acceleration of the particle, respectively. In part three the radial geodesic and non-geodesic motions in the static vacuum C-metric (non-rotating case) are investigated. The effect of the dragging of the inertial frame is also shown in this part. In part four the radiative behavior of the stationary charged C-metric representing the electro-gravitational field of a uniformly accelerating and rotating charged particle with magnetic monopole and the NUT-parameter are investigated. The physical quantities - the news function, mass loss, mass, charge and the multipole moments - are calculated. It is also shown in this part that the magnetic monopole in the presence of rotation and acceleration affects the electric charge

  13. Ambiguous tests of general relativity on cosmological scales

    International Nuclear Information System (INIS)

    Zuntz, Joe; Baker, Tessa; Ferreira, Pedro G.; Skordis, Constantinos

    2012-01-01

    There are a number of approaches to testing General Relativity (GR) on linear scales using parameterized frameworks for modifying cosmological perturbation theory. It is sometimes assumed that the details of any given parameterization are unimportant if one uses it as a diagnostic for deviations from GR. In this brief report we argue that this is not necessarily so. First we show that adopting alternative combinations of modifications to the field equations significantly changes the constraints that one obtains. In addition, we show that using a parameterization with insufficient freedom significantly tightens the apparent theoretical constraints. Fundamentally we argue that it is almost never appropriate to consider modifications to the perturbed Einstein equations as being constraints on the effective gravitational constant, for example, in the same sense that solar system constraints are. The only consistent modifications are either those that grant near-total freedom, as in decomposition methods, or ones which map directly to a particular part of theory space

  14. Numerical performance of the parabolized ADM formulation of general relativity

    International Nuclear Information System (INIS)

    Paschalidis, Vasileios; Hansen, Jakob; Khokhlov, Alexei

    2008-01-01

    In a recent paper [Vasileios Paschalidis, Phys. Rev. D 78, 024002 (2008).], the first coauthor presented a new parabolic extension (PADM) of the standard 3+1 Arnowitt, Deser, Misner (ADM) formulation of the equations of general relativity. By parabolizing first-order ADM in a certain way, the PADM formulation turns it into a well-posed system which resembles the structure of mixed hyperbolic-second-order parabolic partial differential equations. The surface of constraints of PADM becomes a local attractor for all solutions and all possible well-posed gauge conditions. This paper describes a numerical implementation of PADM and studies its accuracy and stability in a series of standard numerical tests. Numerical properties of PADM are compared with those of standard ADM and its hyperbolic Kidder, Scheel, Teukolsky (KST) extension. The PADM scheme is numerically stable, convergent, and second-order accurate. The new formulation has better control of the constraint-violating modes than ADM and KST.

  15. Determinants related to gender differences in general practice utilization

    DEFF Research Database (Denmark)

    Jørgensen, Jeanette Therming; Andersen, John Sahl; Tjønneland, Anne

    2016-01-01

    OBJECTIVE: This study aims to describe the determinants related to gender differences in the GP utilization in Danish population aged 50-65 years. DESIGN: Cohort-based cross-sectional study. SETTING: Danish general practice. SUBJECTS: Totally, 54,849 participants of the Danish Diet, Cancer...... information on lifestyle (smoking, body mass index (BMI), alcohol use, physical activity), medical conditions (somatic and mental), employment, education, gravidity, and hormone therapy (HT) use was collected by questionnaire. RESULTS: Women had on average 4.1 and men 2.8 consultations per year. In a crude....... Strongest determinants for GP use among Danish adults aged 50-65 years were the presence of medical conditions (somatic and mental) and unemployment, while lifestyle factors (e.g., body mass index, alcohol consumption and smoking) had minor effect....

  16. Motivations for anti-gravity in general relativity

    International Nuclear Information System (INIS)

    Chardin, G.

    1996-05-01

    Arguments are presented showing that it is natural to interpret the negative mass part of the Kerr solution as representing the geometry experienced by antimatter. The C, P and T discrete transformations are considered for this geometry. The C and T properties of the proposed identification are found to be in agreement with the usual representation of antimatter. In addition, a property of perfect stigmatism through Kerr wormholes which allows general relativity to mimic anti-gravity is conjectured. Kerr wormholes would then act as 'super-mirrors' reversing the C, P and T images of an object seen through it. This interpretation is subjected to several experimental tests and able to provide an explanation, without any free parameter, of the 'CP'-violation observed in the neutral kaon system. (K.A.)

  17. Rotating collapse of stellar iron cores in general relativity

    International Nuclear Information System (INIS)

    Ott, C D; Dimmelmeier, H; Marek, A; Janka, H-T; Zink, B; Hawke, I; Schnetter, E

    2007-01-01

    We present results from the first 2 + 1 and 3 + 1 simulations of the collapse of rotating stellar iron cores in general relativity employing a finite-temperature equation of state and an approximate treatment of deleptonization during collapse. We compare full 3 + 1 and conformally-flat spacetime evolution methods and find that the conformally-flat treatment is sufficiently accurate for the core-collapse supernova problem. We focus on the gravitational wave (GW) emission from rotating collapse, core bounce and early postbounce phases. Our results indicate that the GW signature of these phases is much more generic than previously estimated. In addition, we track the growth of a nonaxisymmetric instability of dominant m = 1 character in two of our models that leads to prolonged narrow-band GW emission at ∼920-930 Hz over several tens of milliseconds

  18. Commutative deformations of general relativity: nonlocality, causality, and dark matter

    Energy Technology Data Exchange (ETDEWEB)

    De Vegvar, P.G.N. [SWK Research, Bellingham, WA (United States)

    2017-01-15

    Hopf algebra methods are applied to study Drinfeld twists of (3+1)-diffeomorphisms and deformed general relativity on commutative manifolds. A classical nonlocality length scale is produced above which microcausality emerges. Matter fields are utilized to generate self-consistent Abelian Drinfeld twists in a background independent manner and their continuous and discrete symmetries are examined. There is negligible experimental effect on the standard model of particles. While baryonic twist producing matter would begin to behave acausally for rest masses above ∝1-10 TeV, other possibilities are viable dark matter candidates or a right-handed neutrino. First order deformed Maxwell equations are derived and yield immeasurably small cosmological dispersion and produce a propagation horizon only for photons at or above Planck energies. This model incorporates dark matter without any appeal to extra dimensions, supersymmetry, strings, grand unified theories, mirror worlds, or modifications of Newtonian dynamics. (orig.)

  19. A non-local variable for general relativity

    International Nuclear Information System (INIS)

    Kozameh, C.N.; Newman, E.T.

    1983-01-01

    The usual description of differential geometry and general relativity is in terms of local fields, e.g. the metric, the curvature tensor, etc, which satisfy local differential equations. The authors introduce a new non-local field (Z) from which the local fields can be derived. Basically Z, though it is non-local, should be thought of as a function on the bundle of null directions on a space-time. The program can be divided into two parts; first the authors want to show the geometric meaning of and the relationship between Z and the local field. Then they want to provide field equations (non-local) for Z which will be equivalent to the vacuum Einstein equations for the local field. (Auth.)

  20. Motivations for anti-gravity in general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Chardin, G. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee

    1996-05-01

    Arguments are presented showing that it is natural to interpret the negative mass part of the Kerr solution as representing the geometry experienced by antimatter. The C, P and T discrete transformations are considered for this geometry. The C and T properties of the proposed identification are found to be in agreement with the usual representation of antimatter. In addition, a property of perfect stigmatism through Kerr wormholes which allows general relativity to mimic anti-gravity is conjectured. Kerr wormholes would then act as `super-mirrors` reversing the C, P and T images of an object seen through it. This interpretation is subjected to several experimental tests and able to provide an explanation, without any free parameter, of the `CP`-violation observed in the neutral kaon system. (K.A.). 37 refs.

  1. CPT symmetry and antimatter gravity in general relativity

    Science.gov (United States)

    Villata, M.

    2011-04-01

    The gravitational behavior of antimatter is still unknown. While we may be confident that antimatter is self-attractive, the interaction between matter and antimatter might be either attractive or repulsive. We investigate this issue on theoretical grounds. Starting from the CPT invariance of physical laws, we transform matter into antimatter in the equations of both electrodynamics and gravitation. In the former case, the result is the well-known change of sign of the electric charge. In the latter, we find that the gravitational interaction between matter and antimatter is a mutual repulsion, i.e. antigravity appears as a prediction of general relativity when CPT is applied. This result supports cosmological models attempting to explain the Universe accelerated expansion in terms of a matter-antimatter repulsive interaction.

  2. On special and general relativity theory. 24. ed.

    International Nuclear Information System (INIS)

    Einstein, Albert

    2009-01-01

    The present booklet shall mediate to such an as possible exact view in relativity theory, who are especially interested for the theory from a generally scientific, philosophical, point of view, without mastering the mathematical apparatus. The lecture presupposes some maturity knowledge and - in spite of the shortness of the booklet - quite much perseverance and strength of mind. The author has token very much efforts in order to present the main thoughts as distinctly and simply as possible, in the whole in such a sequence and in such connection, as it has really been arose. With the aim of distinctiveness it seemed to me unavoidable to repeat myself frequently without paying the smallest regard to the elegance of the presentation; I maintained conscientiously the prescription of the ingenious theoretician L. Boltzmann, elegance should by the object of the taylors ans shoemakers [de

  3. General Relativity and Cosmology: Unsolved Questions and Future Directions

    Directory of Open Access Journals (Sweden)

    Ivan Debono

    2016-09-01

    Full Text Available For the last 100 years, General Relativity (GR has taken over the gravitational theory mantle held by Newtonian Gravity for the previous 200 years. This article reviews the status of GR in terms of its self-consistency, completeness, and the evidence provided by observations, which have allowed GR to remain the champion of gravitational theories against several other classes of competing theories. We pay particular attention to the role of GR and gravity in cosmology, one of the areas in which one gravity dominates and new phenomena and effects challenge the orthodoxy. We also review other areas where there are likely conflicts pointing to the need to replace or revise GR to represent correctly observations and consistent theoretical framework. Observations have long been key both to the theoretical liveliness and viability of GR. We conclude with a discussion of the likely developments over the next 100 years.

  4. Probing strong-field general relativity near black holes

    CERN Multimedia

    CERN. Geneva; Alvarez-Gaumé, Luís

    2005-01-01

    Nature has sprinkled black holes of various sizes throughout the universe, from stellar mass black holes in X-ray sources to supermassive black holes of billions of solar masses in quasars. Astronomers today are probing the spacetime near black holes using X-rays, and gravitational waves will open a different view in the near future. These tools give us an unprecedented opportunity to test ultra-strong-field general relativity, including the fundamental theorem of the uniqueness of the Kerr metric and Roger Penrose's cosmic censorship conjecture. Already, fascinating studies of spectral lines are showing the extreme gravitational lensing effects near black holes and allowing crude measurements of black hole spin. When the ESA-NASA gravitational wave detector LISA begins its observations in about 10 years, it will make measurements of dynamical spacetimes near black holes with an accuracy greater even than that which theoreticians can reach with their computations today. Most importantly, when gravitational wa...

  5. The canonical Lagrangian approach to three-space general relativity

    Science.gov (United States)

    Shyam, Vasudev; Venkatesh, Madhavan

    2013-07-01

    We study the action for the three-space formalism of general relativity, better known as the Barbour-Foster-Ó Murchadha action, which is a square-root Baierlein-Sharp-Wheeler action. In particular, we explore the (pre)symplectic structure by pulling it back via a Legendre map to the tangent bundle of the configuration space of this action. With it we attain the canonical Lagrangian vector field which generates the gauge transformations (3-diffeomorphisms) and the true physical evolution of the system. This vector field encapsulates all the dynamics of the system. We also discuss briefly the observables and perennials for this theory. We then present a symplectic reduction of the constrained phase space.

  6. Obsessive-compulsive disorder and its related disorders: a reappraisal of obsessive-compulsive spectrum concepts.

    Science.gov (United States)

    Murphy, Dennis L; Timpano, Kiara R; Wheaton, Michael G; Greenberg, Benjamin D; Miguel, Euripedes C

    2010-01-01

    Obsessive-compulsive disorder (OCD) is a clinical syndrome whose hallmarks are excessive, anxiety-evoking thoughts and compulsive behaviors that are generally recognized as unreasonable, but which cause significant distress and impairment. When these are the exclusive symptoms, they constitute uncomplicated OCD. OCD may also occur in the context of other neuropsychiatric disorders, most commonly other anxiety and mood disorders. The question remains as to whether these combinations of disorders should be regarded as independent, cooccurring disorders or as different manifestations of an incompletely understood constellation of OCD spectrum disorders with a common etiology. Additional considerations are given here to two potential etiology-based subgroups: (i) an environmentally based group in which OCD occurs following apparent causal events such as streptococcal infections, brain injury, or atypical neuroleptic treatment; and (ii) a genomically based group in which OCD is related to chromosomal anomalies or specific genes. Considering the status of current research, the concept of OCD and OCD-related spectrum conditions seems fluid in 2010, and in need of ongoing reappraisal.

  7. Dynamics of plane-symmetric thin walls in general relativity

    International Nuclear Information System (INIS)

    Wang, A.

    1992-01-01

    Plane walls (including plane domain walls) without reflection symmetry are studied in the framework of Einstein's general relativity. Using the distribution theory, all the Einstein field equations and Bianchi identities are split into two groups: one holding in the regions outside of the wall and the other holding at the wall. The Einstein field equations at the wall are found to take a very simple form, and given explicitly in terms of the discontinuities of the metric coefficients and their derivatives. The Bianchi identities at the wall are also given explicitly. Using the latter, the interaction of a plane wall with gravitational waves and some specific matter fields is studied. In particular, it is found that, when a gravitational plane wave passes through a wall, if the wall has no reflection symmetry, the phenomena, such as reflection, stimulation, or absorption, in general, occur. It is also found that, unlike for gravitational waves, a massless scalar wave or an electromagnetic wave continuously passes through a wall without any reflection. The repulsion and attraction of a plane wall are also studied. It is found that the acceleration of an observer who is at rest relative to the wall usually consists of three parts: one is due to the force produced by the wall, the second is due to the force produced by the space-time curvature, which is zero if the wall has reflection symmetry, and the last is due to the accelerated motion of the wall. As a result, a repulsive (attractive) plane wall may not be repulsive (attractive) at all. Finally, the collision and interaction among the walls are studied

  8. Why Multicollinearity Matters: A Reexamination of Relations Between Self-Efficacy, Self-Concept, and Achievement

    Science.gov (United States)

    Marsh, Herbert W.; Dowson, Martin; Pietsch, James; Walker, Richard

    2004-01-01

    Multicollinearity is a well-known general problem, but it also seriously threatens valid interpretations in structural equation models. Illustrating this problem, J. Pietsch, R. Walker, and E. Chapman (2003) found paths leading to achievement were apparently much larger for self-efficacy (.55) than self-concept (-.05), suggesting--erroneously, as…

  9. Concept Analysis: Health-Promoting Behaviors Related to Human Papilloma Virus (HPV) Infection.

    Science.gov (United States)

    McCutcheon, Tonna; Schaar, Gina; Parker, Karen L

    2015-01-01

    The concept of health-promoting behaviors incorporates ideas presented in the Ottawa Charter of Public Health and the nursing-based Health Promotion Model. Despite the fact that the concept of health-promoting behaviors has a nursing influence, literature suggests nursing has inadequately developed and used this concept within nursing practice. A further review of literature regarding health promotion behaviors and the human papilloma virus suggest a distinct gap in nursing literature. This article presents a concept analysis of health-promoting behaviors related to the human papilloma virus in order to encourage the application of the concept into nursing practice, promote continued nursing research regarding this concept, and further expand the application of health-promoting behaviors to other situations and populations within the nursing discipline. Attributes of health-promoting behaviors are presented and include empowerment, participation, community, and a positive concept of health. Antecedents, consequences, and empirical referents are also presented, as are model, borderline, and contrary cases to help clarify the concept. Recommendations for human papilloma virus health-promoting behaviors within the nursing practice are also provided. © 2014 Wiley Periodicals, Inc.

  10. Mathematica® for Theoretical Physics Electrodynamics, Quantum Mechanics, General Relativity and Fractals

    CERN Document Server

    Baumann, Gerd

    2005-01-01

    Mathematica for Theoretical Physics: Electrodynamics, Quantum Mechanics, General Relativity, and Fractals This second edition of Baumann's Mathematica® in Theoretical Physics shows readers how to solve physical problems and deal with their underlying theoretical concepts while using Mathematica® to derive numeric and symbolic solutions. Each example and calculation can be evaluated by the reader, and the reader can change the example calculations and adopt the given code to related or similar problems. The second edition has been completely revised and expanded into two volumes: The first volume covers classical mechanics and nonlinear dynamics. Both topics are the basis of a regular mechanics course. The second volume covers electrodynamics, quantum mechanics, relativity, and fractals and fractional calculus. New examples have been added and the representation has been reworked to provide a more interactive problem-solving presentation. This book can be used as a textbook or as a reference work, by student...

  11. Origins and development of the Cauchy problem in general relativity

    International Nuclear Information System (INIS)

    Ringström, Hans

    2015-01-01

    The seminal work of Yvonne Choquet-Bruhat published in 1952 demonstrates that it is possible to formulate Einstein's equations as an initial value problem. The purpose of this article is to describe the background to and impact of this achievement, as well as the result itself. In some respects, the idea of viewing the field equations of general relativity as a system of evolution equations goes back to Einstein himself; in an argument justifying that gravitational waves propagate at the speed of light, Einstein used a special choice of coordinates to derive a system of wave equations for the linear perturbations on a Minkowski background. Over the following decades, Hilbert, de Donder, Lanczos, Darmois and many others worked to put Einstein's ideas on a more solid footing. In fact, the issue of local uniqueness (giving a rigorous justification for the statement that the speed of propagation of the gravitational field is bounded by that of light) was already settled in the 1930s by the work of Stellmacher. However, the first person to demonstrate both local existence and uniqueness in a setting in which the notion of finite speed of propagation makes sense was Yvonne Choquet-Bruhat. In this sense, her work lays the foundation for the formulation of Einstein's equations as an initial value problem. Following a description of the results of Choquet-Bruhat, we discuss the development of three research topics that have their origin in her work. The first one is local existence. One reason for addressing it is that it is at the heart of the original paper. Moreover, it is still an active and important research field, connected to the problem of characterizing the asymptotic behaviour of solutions that blow up in finite time. As a second topic, we turn to the questions of global uniqueness and strong cosmic censorship. These questions are of fundamental importance to anyone interested in justifying that the Cauchy problem makes sense globally. They are

  12. On the relation of the theoretical foundations of quantum theory and general relativity theory

    International Nuclear Information System (INIS)

    Kober, Martin

    2010-01-01

    The specific content of the present thesis is presented in the following way. First the most important contents of quantum theory and general relativity theory are presented. In connection with the general relativity theory the mathematical property of the diffeomorphism invariance plays the deciding role, while concerning the quantum theory starting from the Copenhagen interpretation first the measurement problem is treated, before basing on the analysis of concrete phenomena and the mathematical apparatus of quantum theory the nonlocality is brought into focus as an important property. This means that both theories suggest a relationalistic view of the nature of the space. This analysis of the theoretical foundations of quantum theory and general relativity theory in relation to the nature of the space obtains only under inclusion of Kant's philosophy and his analysis of the terms space and time as fundamental forms of perception its full persuasive power. Then von Weizsaeckers quantum theory of the ur-alternatives is presented. Finally attempts are made to apply the obtained knowledge to the question of the quantum-theoretical formulation of general relativity theory.

  13. [Multistep surgery for spondylosyndesis. Treatment concept of destructive spondylodiscitis in patients with reduced general condition].

    Science.gov (United States)

    Isenberg, J; Jubel, A; Hahn, U; Seifert, H; Prokop, A

    2005-02-01

    Retrospective assessment of multistage surgery in the treatment of progressive spondylodiscitis in patients with critical physical status. A total of 34 patients (mean age 58.6 years) with 37 progressive spondylodiscitis foci and destruction of one to three vertebral segments (1.9 mean) were recorded within an 8-year period. Time between first complaints and operative treatment was 3 months (mean). Preoperative health status was critically reduced in 11 patients (ASA IV) and poor general condition (ASA III) was seen in 23 patients when vital indication was seen preoperatively. Considerable systemic disease (n=31), further infection focus (n=18), and nosocomial trauma (n=5) were causally related. Spondylodiscitis was seen more frequently in the lumbar (n=20) and thoracolumbar than in the thoracic (n=10) and cervical spine (n=1). Staphylococcus aureus was detectable from operative specimens and hemoculture in 15 cases, MRSA in 6 of these. In cases of monosegmentary involvement (n=7) ventral debridement, biopsy, and application of antibiotic chains were followed by autologous interbody bone grafting in a second stage operation. In 29 cases with destruction of two (n=27) and three (n=3) segments, posterior instrumentation including laminectomy in 4 patients was completed by anterior debridement and application of antibiotic chains during a first surgical intervention. After stabilization of physical condition and having reached a macroscopically indisputable implant bed, the ventral fusion with autologous interbody bone grafting or cage in combination with a plate or internal fixation system was performed as the last of several surgical steps. No case of perioperative mortality was observed. Intensive care continued 9.1 days and hospitalization 49.5 days (mean). During a 37.6-month follow-up two late recurrences were observed. A multistep surgical procedure under protection of dorsal instrumentation can limit perioperative mortality in patients in critical general

  14. Cultural Mediation. The Usefulness of Selected Concepts of Developmental Psychology for Coaching and Mentoring Relations

    OpenAIRE

    Smorczewska, Barbara

    2013-01-01

    Some developmental psychological concepts, such as L. S. Vygotsky’s zone of proximal development or H. R. Schaffer’s joint involvement episodes, gave a new perspective in perceiving the process of teaching and development, by providing very detailed characteristics of the situation of acquiring competence in social relations. The mentioned concepts are based on a belief in the developmental potential of humans, and they perceive teaching as future-oriented. These assumptions are also characte...

  15. Adolescent Girls' Self-Concept and Its Related Factors Based on Roy Adaptation Model

    OpenAIRE

    M. Basiri Moghadam; SH. Khosravan; L. Sadeghmoghadam; N. Ebrahimi Senoo

    2017-01-01

    Aims: One of the most important factors of individual health in the adolescents is the self-concept. As a nursing model, the Roy adaptation model mainly investigates the factor. The aim of the study was to investigate the self-concept and its related factors in the adolescent girls in Gonabad Township, based on the Roy adaptation model. Instrument & Methods: In the descriptive cross-sectional study, 270 adolescent girls were studied in Gonabad Township, Iran, in 2015. The subjects were s...

  16. Spacetime and Geometry: An Introduction to General Relativity

    International Nuclear Information System (INIS)

    Poisson, E

    2005-01-01

    The ever growing relevance of general relativity to astrophysics and cosmology continues to motivate the publication of new textbooks which put the theory in a fresh perspective informed by recent developments. While the 1970s were the decade of Weinberg and Misner et al and the 80s the decade of Schutz and Wald, this is clearly the decade of Hartle and Carroll. Hartle has introduced a novel pedagogical approach to teaching general relativity, which he convincingly argues should be done in the standard undergraduate physics curriculum. His 'physics-first approach' emphasizes physical phenomena and minimizes mathematical formalism. Hartle achieves a lot by introducing only the spacetime metric and the geodesic equation, which are the main tools needed to explore curved spacetime and extract physical consequences. To be sure, to explain how the metric is obtained in the first place does require a background of differential geometry and the formulation of the Einstein field equations. But in Hartle's book this material is wisely presented at a later stage, after an ample sampling of the physics of curved spacetime has motivated the need for the advanced mathematics. Carroll follows instead the traditional route, what Hartle calls the 'math-first approach', in which one introduces first the required mathematical formalism and only then derives the physical consequences. He is, of course, in good company, as this is the method followed in all existing textbooks (with Hartle's being the sole exception). Carroll's approach may not be original, but it is tried and true, and the result of Carroll's efforts is an excellent introduction to general relativity. The book covers the standard topics that would be found in virtually all textbooks (differential geometry, the field equations, linearized theory, black holes, and cosmology), but in addition it contains topics (such as quantum field theory in curved spacetime) which can rarely be found in introductory texts. All these

  17. The Reciprocal Relations between Self-Concept, Motivation and Achievement: Juxtaposing Academic Self-Concept and Achievement Goal Orientations for Mathematics Success

    Science.gov (United States)

    Seaton, Marjorie; Parker, Philip; Marsh, Herbert W.; Craven, Rhonda G.; Yeung, Alexander Seeshing

    2014-01-01

    Research suggests that motivated students and those with high academic self-concepts perform better academically. Although substantial evidence supports a reciprocal relation between academic self-concept and achievement, there is less evidence supporting a similar relation between achievement goal orientations and achievement. There is also a…

  18. Concept analysis of risk in relation to coronary heart disease among Filipino-Americans.

    Science.gov (United States)

    Dalusung-Angosta, Alona

    2010-01-01

    To analyze the concept of risk in relation to coronary heart disease (CHD) among Filipino-Americans (FAs) and provide a new definition of risk. Published literature. This concept analysis provided a new meaning of risk in relation to CHD among FAs and shed light on further understanding of risk. Risk has been laced with negativity in health care, but based on the current literature, risk can be conceptualized in a positive perspective, especially in the area of chronic health disease such as CHD. However, further research is needed in the conceptualization of risk related to CHD for consistency, adequacy, and meaning. © 2010 Wiley Periodicals, Inc.

  19. Biomass energy projects in Central and Eastern Europe. General information, favorable concepts and financing possibilities

    International Nuclear Information System (INIS)

    Ellenbroek, R.; Ballard-Tremeer, G.; Koeks, R.; Venendaal, R.

    2000-08-01

    The purpose of this guide is to provide information on the possibilities to invest and carry out biomass energy projects in Central and Eastern Europe. In the first part of the guide background information is given on countries in Central and Eastern Europe, focusing on bio-energy. A few cases are presented to illustrate different biomass energy concepts. Based on economic calculations an indication is given of the feasibility of those concepts. Also the most relevant sources of information are listed. In the second part an overview is given of Dutch, European and international financial tools that can be used in biomass energy projects in Central and Eastern Europe

  20. Towards a Definition of Role-related Concepts for Business Modeling

    NARCIS (Netherlands)

    Meertens, Lucas Onno; Iacob, Maria Eugenia; Nieuwenhuis, Lambertus Johannes Maria

    2010-01-01

    Abstract—While several role-related concepts play an important role in business modeling, their definitions, relations, and use differ greatly between languages, papers, and reports. Due to this, the knowledge captured by models is not transferred correctly, and models are incomparable. In this

  1. Misconceptions of High School Students Related to the Conceptions of Absolutism and Constitutionalism in History Courses

    Science.gov (United States)

    Bal, Mehmet Suat

    2011-01-01

    The goal of this study is to analyze the 10th grade high school students' misconceptions related to the sense of ruling in the Ottoman State during the absolutist and constitutional periods and to investigate the causes of these misconceptions. The data were collected through eight open-ended questions related to the concepts of absolutism and…

  2. Self-concept mediates the relation between achievement and emotions in mathematics

    NARCIS (Netherlands)

    Van der Beek, Jojanneke P J; Van der Ven, Sanne H G; Kroesbergen, Evelyn H; Leseman, Paul P M

    BACKGROUND: Mathematics achievement is related to positive and negative emotions. Pekrun's control-value theory of achievement emotions suggests that students' self-concept (i.e., self-appraisal of ability) may be an important mediator of the relation between mathematics achievement and emotions.

  3. Activity-Based Restorative Therapies: Concepts and Applications in Spinal Cord Injury-Related Neurorehabilitation

    Science.gov (United States)

    Sadowsky, Cristina L.; McDonald, John W.

    2009-01-01

    Physical rehabilitation following spinal cord injury-related paralysis has traditionally focused on teaching compensatory techniques, thus enabling the individual to achieve day-to-day function despite significant neurological deficits. But the concept of an irreparable central nervous system (CNS) is slowly being replaced with evidence related to…

  4. Self-concept mediates the relation between achievement and emotions in mathematics

    NARCIS (Netherlands)

    Beek, J.P.J. van der; Ven, S.H.G. van der; Kroesbergen, E.H.; Leseman, P.P.M.

    2017-01-01

    Background: Mathematics achievement is related to positive and negative emotions. Pekrun's control-value theory of achievement emotions suggests that students' self-concept (i.e., self-appraisal of ability) may be an important mediator of the relation between mathematics achievement and emotions.

  5. Self-Concept Mediates the Relation between Achievement and Emotions in Mathematics

    Science.gov (United States)

    Van der Beek, Jojanneke P. J.; Van der Ven, Sanne H. G.; Kroesbergen, Evelyn H.; Leseman, Paul P. M.

    2017-01-01

    Background: Mathematics achievement is related to positive and negative emotions. Pekrun's control-value theory of achievement emotions suggests that students' self-concept (i.e., self-appraisal of ability) may be an important mediator of the relation between mathematics achievement and emotions. Aims: The aims were (1) to investigate the…

  6. Risk in technical and scientific studies: general introduction to uncertainty management and the concept of risk

    International Nuclear Information System (INIS)

    Apostolakis, G.E.

    2004-01-01

    George Apostolakis (MIT) presented an introduction to the concept of risk and uncertainty management and their use in technical and scientific studies. He noted that Quantitative Risk Assessment (QRA) provides support to the overall treatment of a system as an integrated socio-technical system. Specifically, QRA aims to answer the questions: - What can go wrong (e.g., accident sequences or scenarios)? - How likely are these sequences or scenarios? - What are the consequences of these sequences or scenarios? The Quantitative Risk Assessment deals with two major types of uncertainty. An assessment requires a 'model of the world', and this preferably would be a deterministic model based on underlying processes. In practice, there are uncertainties in this model of the world relating to variability or randomness that cannot be accounted for directly in a deterministic model and that may require a probabilistic or aleatory model. Both deterministic and aleatory models of the world have assumptions and parameters, and there are 'state-of-knowledge' or epistemic uncertainties associated with these. Sensitivity studies or eliciting expert opinion can be used to address the uncertainties in assumptions, and the level of confidence in parameter values can be characterised using probability distributions (pdfs). Overall, the distinction between aleatory and epistemic uncertainties is not always clear, and both can be treated mathematically in the same way. Lessons on safety assessments that can be learnt from experience at nuclear power plants are that beliefs about what is important can be wrong if a risk assessment is not performed. Also, precautionary approaches are not always conservative if failure modes are not identified. Nevertheless, it is important to recognize that uncertainties will remain despite a quantitative risk assessment: e.g., is the scenario list complete, are the models accepted as reasonable, and are parameter probability distributions representative of

  7. Buyer social responsibility: a general concept and its implications for marketing management

    NARCIS (Netherlands)

    Ingenbleek, P.T.M.; Meulenberg, M.T.G.; Trijp, van J.C.M.

    2015-01-01

    The inclusion of sustainability concerns in consumer decision-making poses new challenges to marketing. The existing literature contains a variety of concepts and definitions that pertain to social issues in consumption but lacks an overarching conceptualisation of buyer social responsibility (BSR)

  8. Inferring general relations between network characteristics from specific network ensembles.

    Science.gov (United States)

    Cardanobile, Stefano; Pernice, Volker; Deger, Moritz; Rotter, Stefan

    2012-01-01

    Different network models have been suggested for the topology underlying complex interactions in natural systems. These models are aimed at replicating specific statistical features encountered in real-world networks. However, it is rarely considered to which degree the results obtained for one particular network class can be extrapolated to real-world networks. We address this issue by comparing different classical and more recently developed network models with respect to their ability to generate networks with large structural variability. In particular, we consider the statistical constraints which the respective construction scheme imposes on the generated networks. After having identified the most variable networks, we address the issue of which constraints are common to all network classes and are thus suitable candidates for being generic statistical laws of complex networks. In fact, we find that generic, not model-related dependencies between different network characteristics do exist. This makes it possible to infer global features from local ones using regression models trained on networks with high generalization power. Our results confirm and extend previous findings regarding the synchronization properties of neural networks. Our method seems especially relevant for large networks, which are difficult to map completely, like the neural networks in the brain. The structure of such large networks cannot be fully sampled with the present technology. Our approach provides a method to estimate global properties of under-sampled networks in good approximation. Finally, we demonstrate on three different data sets (C. elegans neuronal network, R. prowazekii metabolic network, and a network of synonyms extracted from Roget's Thesaurus) that real-world networks have statistical relations compatible with those obtained using regression models.

  9. Identifying biological concepts from a protein-related corpus with a probabilistic topic model

    Directory of Open Access Journals (Sweden)

    Lu Xinghua

    2006-02-01

    Full Text Available Abstract Background Biomedical literature, e.g., MEDLINE, contains a wealth of knowledge regarding functions of proteins. Major recurring biological concepts within such text corpora represent the domains of this body of knowledge. The goal of this research is to identify the major biological topics/concepts from a corpus of protein-related MEDLINE© titles and abstracts by applying a probabilistic topic model. Results The latent Dirichlet allocation (LDA model was applied to the corpus. Based on the Bayesian model selection, 300 major topics were extracted from the corpus. The majority of identified topics/concepts was found to be semantically coherent and most represented biological objects or concepts. The identified topics/concepts were further mapped to the controlled vocabulary of the Gene Ontology (GO terms based on mutual information. Conclusion The major and recurring biological concepts within a collection of MEDLINE documents can be extracted by the LDA model. The identified topics/concepts provide parsimonious and semantically-enriched representation of the texts in a semantic space with reduced dimensionality and can be used to index text.

  10. Free and constrained symplectic integrators for numerical general relativity

    International Nuclear Information System (INIS)

    Richter, Ronny; Lubich, Christian

    2008-01-01

    We consider symplectic time integrators in numerical general relativity and discuss both free and constrained evolution schemes. For free evolution of ADM-like equations we propose the use of the Stoermer-Verlet method, a standard symplectic integrator which here is explicit in the computationally expensive curvature terms. For the constrained evolution we give a formulation of the evolution equations that enforces the momentum constraints in a holonomically constrained Hamiltonian system and turns the Hamilton constraint function from a weak to a strong invariant of the system. This formulation permits the use of the constraint-preserving symplectic RATTLE integrator, a constrained version of the Stoermer-Verlet method. The behavior of the methods is illustrated on two effectively (1+1)-dimensional versions of Einstein's equations, which allow us to investigate a perturbed Minkowski problem and the Schwarzschild spacetime. We compare symplectic and non-symplectic integrators for free evolution, showing very different numerical behavior for nearly-conserved quantities in the perturbed Minkowski problem. Further we compare free and constrained evolution, demonstrating in our examples that enforcing the momentum constraints can turn an unstable free evolution into a stable constrained evolution. This is demonstrated in the stabilization of a perturbed Minkowski problem with Dirac gauge, and in the suppression of the propagation of boundary instabilities into the interior of the domain in Schwarzschild spacetime

  11. Spinning solutions in general relativity with infinite central density

    Science.gov (United States)

    Flammer, P. D.

    2018-05-01

    This paper presents general relativistic numerical simulations of uniformly rotating polytropes. Equations are developed using MSQI coordinates, but taking a logarithm of the radial coordinate. The result is relatively simple elliptical differential equations. Due to the logarithmic scale, we can resolve solutions with near-singular mass distributions near their center, while the solution domain extends many orders of magnitude larger than the radius of the distribution (to connect with flat space-time). Rotating solutions are found with very high central energy densities for a range of adiabatic exponents. Analytically, assuming the pressure is proportional to the energy density (which is true for polytropes in the limit of large energy density), we determine the small radius behavior of the metric potentials and energy density. This small radius behavior agrees well with the small radius behavior of large central density numerical results, lending confidence to our numerical approach. We compare results with rotating solutions available in the literature, which show good agreement. We study the stability of spherical solutions: instability sets in at the first maximum in mass versus central energy density; this is also consistent with results in the literature, and further lends confidence to the numerical approach.

  12. Simulation of merging neutron stars in full general relativity

    International Nuclear Information System (INIS)

    Shibata, M.

    2001-01-01

    We have performed 3D numerical simulations for merger of equal mass binary neutron stars in full general relativity. We adopt a Γ-law equation of state in the form P = (Γ - 1)ρε where P, ρ, ε and Γ are the pressure, rest mass density, specific internal energy, and the adiabatic constant. As initial conditions, we adopt models of irrotational binary neutron stars in a quasiequilibrium state. Simulations have been carried out for a wide range of Γ and compactness of neutron stars, paying particular attention to the final product and gravitational waves. We find that the final product depends sensitively on the initial compactness of the neutron stars: In a merger between sufficiently compact neutron stars, a black hole is formed in a dynamical timescale. As the compactness is decreased, the formation timescale becomes longer and longer. It is also found that a differentially rotating massive neutron star is formed instead of a black hole for less compact binary cases. In the case of black hole formation, the disk mass around the black hole appears to be very small; less than 1% of the total rest mass. It is indicated that waveforms of high-frequency gravitational waves after merger depend strongly on the compactness of neutron stars before the merger. We point out importance of detecting such gravitational waves of high frequency to constrain the maximum allowed mass of neutron stars. (author)

  13. Gravitational field of massive point particle in general relativity

    International Nuclear Information System (INIS)

    Fiziev, P.P.

    2003-10-01

    Using various gauges of the radial coordinate we give a description of the static spherically symmetric space-times with point singularity at the center and vacuum outside the singularity. We show that in general relativity (GR) there exist infinitely many such solutions to the Einstein equations which are physically different and only some of them describe the gravitational field of a single massive point particle. In particular, we show that the widespread Hilbert's form of Schwarzschild solution does not solve the Einstein equations with a massive point particle's stress-energy tensor. Novel normal coordinates for the field and a new physical class of gauges are proposed, in this way achieving a correct description of a point mass source in GR. We also introduce a gravitational mass defect of a point particle and determine the dependence of the solutions on this mass defect. In addition we give invariant characteristics of the physically and geometrically different classes of spherically symmetric static space-times created by one point mass. (author)

  14. A New Solution for Einstein Field Equation in General Relativity

    Science.gov (United States)

    Mousavi, Sadegh

    2006-05-01

    There are different solutions for Einstein field equation in general relativity that they have been proposed by different people the most important solutions are Schwarzchild, Reissner Nordstrom, Kerr and Kerr Newmam. However, each one of these solutions limited to special case. I've found a new solution for Einstein field equation which is more complete than all previous ones and this solution contains the previous solutions as its special forms. In this talk I will present my new metric for Einstein field equation and the Christofel symbols and Richi and Rieman tensor components for the new metric that I have calculated them by GR TENSOR software. As a result I will determine the actual movement of black holes which is different From Kerr black hole's movement. Finally this new solution predicts, existence of a new and constant field in the nature (that nobody can found it up to now), so in this talk I will introduce this new field and even I will calculate the amount of this field. SADEGH MOUSAVI, Amirkabir University of Technology.

  15. A Time Domain Waveform for Testing General Relativity

    International Nuclear Information System (INIS)

    Huwyler, Cédric; Jetzer, Philippe; Porter, Edward K

    2015-01-01

    Gravitational-wave parameter estimation is only as good as the theory the waveform generation models are based upon. It is therefore crucial to test General Relativity (GR) once data becomes available. Many previous works, such as studies connected with the ppE framework by Yunes and Pretorius, rely on the stationary phase approximation (SPA) to model deviations from GR in the frequency domain. As Fast Fourier Transform algorithms have become considerably faster and in order to circumvent possible problems with the SPA, we test GR with corrected time domain waveforms instead of SPA waveforms. Since a considerable amount of work has been done already in the field using SPA waveforms, we establish a connection between leading-order-corrected waveforms in time and frequency domain, concentrating on phase-only corrected terms. In a Markov Chain Monte Carlo study, whose results are preliminary and will only be available later, we will assess the ability of the eLISA detector to measure deviations from GR for signals coming from supermassive black hole inspirals using these corrected waveforms. (paper)

  16. Mixed hyperbolic-second-order-parabolic formulations of general relativity

    International Nuclear Information System (INIS)

    Paschalidis, Vasileios

    2008-01-01

    Two new formulations of general relativity are introduced. The first one is a parabolization of the Arnowitt-Deser-Misner formulation and is derived by the addition of combinations of the constraints and their derivatives to the right-hand side of the Arnowitt-Deser-Misner evolution equations. The desirable property of this modification is that it turns the surface of constraints into a local attractor because the constraint propagation equations become second-order parabolic independently of the gauge conditions employed. This system may be classified as mixed hyperbolic--second-order parabolic. The second formulation is a parabolization of the Kidder-Scheel-Teukolsky formulation and is a manifestly mixed strongly hyperbolic--second-order-parabolic set of equations, bearing thus resemblance to the compressible Navier-Stokes equations. As a first test, a stability analysis of flat space is carried out and it is shown that the first modification exponentially damps and smoothes all constraint-violating modes. These systems provide a new basis for constructing schemes for long-term and stable numerical integration of the Einstein field equations.

  17. General relativity cosmological models without the big bang

    International Nuclear Information System (INIS)

    Rosen, N.

    1985-01-01

    Attention is given to the so-called standard model of the universe in the framework of the general theory of relativity. This model is taken to be homogeneous and isotropic and filled with an ideal fluid characterized by a density and a pressure. Taking into consideration, however, the assumption that the universe began in a singular state, it is found hard to understand why the universe is so nearly homogeneous and isotropic at present for a singularity represents a breakdown of physical laws, and the initial singularity cannot, therefore, predetermine the subsequent symmetries of the universe. The present investigation has the objective to find a way of avoiding this initial singularity, i.e., to look for a cosmological model without the big bang. The idea is proposed that there exists a limiting density of matter of the order of magnitude of the Planck density, and that this was the density of matter at the moment at which the universe began to expand

  18. Hydrodynamics in full general relativity with conservative adaptive mesh refinement

    Science.gov (United States)

    East, William E.; Pretorius, Frans; Stephens, Branson C.

    2012-06-01

    There is great interest in numerical relativity simulations involving matter due to the likelihood that binary compact objects involving neutron stars will be detected by gravitational wave observatories in the coming years, as well as to the possibility that binary compact object mergers could explain short-duration gamma-ray bursts. We present a code designed for simulations of hydrodynamics coupled to the Einstein field equations targeted toward such applications. This code has recently been used to study eccentric mergers of black hole-neutron star binaries. We evolve the fluid conservatively using high-resolution shock-capturing methods, while the field equations are solved in the generalized-harmonic formulation with finite differences. In order to resolve the various scales that may arise, we use adaptive mesh refinement (AMR) with grid hierarchies based on truncation error estimates. A noteworthy feature of this code is the implementation of the flux correction algorithm of Berger and Colella to ensure that the conservative nature of fluid advection is respected across AMR boundaries. We present various tests to compare the performance of different limiters and flux calculation methods, as well as to demonstrate the utility of AMR flux corrections.

  19. Cosmology in time asymmetric extensions of general relativity

    International Nuclear Information System (INIS)

    Leon, Genly; Saridakis, Emmanuel N.

    2015-01-01

    We investigate the cosmological behavior in a universe governed by time asymmetric extensions of general relativity, which is a novel modified gravity based on the addition of new, time-asymmetric, terms on the Hamiltonian framework, in a way that the algebra of constraints and local physics remain unchanged. Nevertheless, at cosmological scales these new terms can have significant effects that can alter the universe evolution, both at early and late times, and the freedom in the choice of the involved modification function makes the scenario able to produce a huge class of cosmological behaviors. For basic ansatzes of modification, we perform a detailed dynamical analysis, extracting the stable late-time solutions. Amongst others, we find that the universe can result in dark-energy dominated, accelerating solutions, even in the absence of an explicit cosmological constant, in which the dark energy can be quintessence-like, phantom-like, or behave as an effective cosmological constant. Moreover, it can result to matter-domination, or to a Big Rip, or experience the sequence from matter to dark energy domination. Additionally, in the case of closed curvature, the universe may experience a cosmological bounce or turnaround, or even cyclic behavior. Finally, these scenarios can easily satisfy the observational and phenomenological requirements. Hence, time asymmetric cosmology can be a good candidate for the description of the universe

  20. OPTIS - A satellite test of Special and General Relativity

    Science.gov (United States)

    Dittus, H.; Lämmerzahl, C.; Peters, A.; Schiller, S.

    OPTIS has been proposed as a small satellite platform in a high elliptical orbit (apogee 40,000 km, perigee 10,000 km) and is designed for high precision tests of foundations of Special and General Relativity. The experimental set-up consists of two ultrastable Nd:YAG lasers, two crossed optical resonators (monolithic cavities), an atomic clock, and an optical comb generator. OPTIS enables (1) a Michelson- Morley experiment to test the isotropy of light propagation (constancy of light speed, dc/c) with an accuracy of 1 part in 101 8 , (2) a Kennedey-Thorndike experiment to measure the independence of the light speed from the velocity of the laboratory in the order of 1 part in 101 6 , and (3) a test of the gravitational red shift by comparing the atomic clock and an optical clock on a precision level of 1 part in 104 . To avoid any influence from atmospheric drag, solar radiation, or earth albedo, the satellite needs drag free control, to depress the residual acceleration down to 10-14 m/s 2 in the frequency range between 100 to 1,000 Hz, and thermal control to stabilize the cavity temperature variation, dT/T, to 1 part in 107 during 100 s and to 1 part in 105 during 1 orbit.